

PARALLEL IMAGE PROCESSING FOR

HIGH CONTENT SCREENING DATA

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

ii

PARALLEL IMAGE PROCESSING FOR

HIGH CONTENT SCREENING DATA

By

TAMNUN-E-MURSALIN, M.Sc., B.Sc.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the

Requirements for the Degree

Master of Science

McMaster University

© Copyright by Tamnun-E-Mursalin, January 2013

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

iii

MASTER OF APPLIED SCIENCE (2013) McMaster University

(Biomedical Engineering) Hamilton, Ontario

TITLE: PARALLEL IMAGE PROCESSING FOR HIGH CONTENT SCREENING DATA

AUTHOR: Tamnun-E-Mursalin, M.Sc. (Northeastern University), B.Sc. (Northeastern University)

SUPERVISORS:

Associate Professor Dr. Qiyin Fang

Biomedical Engineering Department

Canada Research Chair in Biophotonics

Professor Dr. M. Jamal Deen

Electrical and Computer Engineering Department

Senior Canada Research Chair in Information Technology

Professor Dr. David W. Andrews

Biochemistry and Biomedical Sciences Department

Canada Research Chair in Membrane Biogenesis

Associate Professor Dr. Aleksandar Jeremic

Electrical and Computer Engineering Department

PAGES: vii, 84

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

iv

Abstract

High-content screening (HCS) produces an immense amount of data, often on the scale of

Terabytes. This requires considerable processing power resulting in long analysis time.

As a result, HCS with a single-core processor system is an inefficient option because it

takes a huge amount of time, storage and processing power. The situation is even worse

because most of the image processing software is developed in high-level languages

which make customization, flexibility and multi-processing features very challenging.

Therefore, the goal of the project is to develop a multithreading model in C language.

This model will be used to extract subcellular localization features, such as threshold

adjacency statistics (TAS) from the HCS data. The first step of the research was to

identify an appropriate dye for use in staining the MCF-7 cell line. The cell line has been

treated with staurosporin kinase inhibitor, which can provide important physiological and

morphological imaging information. The process of identifying a suitable dye involves

treating cells with different dye options, capturing the fluorescent images of the treated

cells with the Opera microscope, and analyzing the imaging properties of the stained

cells. Several dyes were tested, and the most suitable dye to stain the cellular membrane

was determined to be Di4-Anepps. The second part of the thesis was to design and

develop a parallel program in C that can extract TAS features from the stained cellular

images. The program reads the input cell images captured by Opera microscopes,

converts it to TIFF format from the proprietary Opera format, identifies the region-of-

interest contours of each cell, and computes the TAS features. A significant increase in

speed in the order of four fold was obtained using the customized program. Different

scalability tests using the developed software were compared against software developed

in Acapella scripting language. The result of the test shows that the computational time

is proportional to number of cells in the image and is inversely proportional to number of

cores in a processor.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

v

Acknowledgements

I cannot find words to express my sincere gratitude to my four supervisors. Without their

encouragement and patience this thesis would not have been possible. My deepest appreciation

and thanks to Dr. Qiyin Fang for his sincere assistance and valuable feedback. I am indebted for

his constant assistance, encouragement, guidance and opportunities he provided throughout

my graduate studies. Thanks to Dr. David Andrew for introducing me to a new discipline of cell

biology and allowing me to explore. Thanks to Dr. Aleksandar Jeremic for his valuable guidance

on image processing and useful suggestions on programming problems. Thanks to Dr. Jamal

Deen for his guidance and mentorship.

I would like to express my deep gratitude to Dr. David Andrew’s Lab members for helping and

allowing me to run the experiments in the facilities. My sincere gratitude I would like to express

my sincere appreciation to Dr. Ognian Marinov for his valuable and constructive suggestion

during the writing of this thesis. I am very grateful to Anthony Tsikouras for proofreading my

thesis and for providing feedback. Also thanks to Michael Nelson for proofreading.

Also thanks to the students and researchers in Dr. Fang and Dr. Andrew’s Lab. They were a

great team to work with and I have learned many things from them. More specifically, I thank

to Fei Gang for hands on training on laboratory experiments from cell culture to cell treatment,

to Jarkko Ylanko and Caitlin Mills for teaching me to use the Opera, serial dilution and for all the

technical assistance.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

vi

Finally, I would like to thank all members of my family. I start with mother for her unconditional

love throughout my life. It is impossible to put in words the thanks and appreciation of my wife

and two kids. Together, they have always been there for me, and I am forever in their debt.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

vii

This work is dedicated to my Mother, Professor Touhida Faruki Begum. She has been a constant

source of inspiration in my life. She taught me the value of education, hard work and sacrifice.

Without these qualities, I would not have been able to achieve all that I have so far. Thanks to

her for all the support, inspiration and sacrifices.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

viii

TABLE OF CONTENTS

1 INTRODUCTION ... 12

1.1 MOTIVATION ... 12

1.2 HIGH CONTENT SCREENING: FROM MICROSCOPY IMAGING TO MACHINE LEARNING.............................. 14

1.2.1 Assay Development .. 14

1.2.2 Image Acquisition .. 15

1.2.3 Segmentation ... 16

1.2.4 Feature Extraction ... 16

1.2.5 Machine Learning .. 17

1.3 PROJECT GOALS .. 17

1.4 MOTIVATION ... 18

1.5 MAJOR CONTRIBUTIONS OF THE THESIS ... 20

1.6 THESIS ORGANIZATION... 21

2 SUBCELLULAR LOCALIZATION FEATURES .. 22

2.1 IMAGE ANALYSIS ... 22

2.2 TEXTURE ... 23

2.3 FEATURE EXTRACTION ALGORITHM FOR SUBCELLULAR LOCALIZATION ... 24
2.4 AN EFFICIENT FEATURE FOR SUBCELLULAR LOCALIZATION: THRESHOLD ADJACENCY STATISTICS

(TAS) .. 27

2.4.1 Threshold Adjacency Statistics (TAS) Algorithm ... 29

2.4.2 Application of Threshold Adjacency Statistics .. 31

2.4.3 Comparison between TAS and other Texture Feature Algorithms .. 32

3 PROBLEM DESCRIPTION AND PARALLEL PROCESSING 34

3.1 CHALLENGES OF HIGH CONTENT SCREENING ANALYSIS SOFTWARE .. 34

3.2 EXISTING HIGH CONTENT ANALYSIS SOFTWARE AND THEIR LIMITATIONS ... 38

3.3 PARALLEL PROCESSING .. 40

3.3.1 Existing Image Processing Model and Their Limitations .. 41

4 CUSTOMIZED SOFTWARE SOLUTION .. 43

4.1 THE NEED FOR PARALLEL COMPUTATION IN HIGH CONTENT SCREENING ... 43

4.2 DATA COLLECTION ... 45

4.2.1 Sample Preparation ... 45
4.2.1.1 Cell Culture and Slide Preparation ... 46
4.2.1.2 Treating With Staurosporin .. 47
4.2.1.3 Staining With Fluorescent Probes .. 49

4.2.2 Image Acquisition .. 50

4.3 DESIGN OF THE SOFTWARE ... 52

4.3.1 Development Process of the Software ... 52
4.3.1.1 Input Processing: Conversion from FLEX to TIFF .. 54

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

ix

4.3.1.2 Preprocessing Images ... 54
4.3.1.3 Contour Identification and Segmentation ... 55
4.3.1.4 Feature Extraction .. 56

4.3.2 Implementation of C Code ... 57

4.3.3 Design of Parallelization ... 61
4.3.3.1 Overview of the Design ... 61
4.3.3.2 Multithreading Design ... 62
4.3.3.3 Design of Shared Memory and Synchronization .. 63
4.3.3.4 Code Optimization ... 64

4.3.4 Features of the Code .. 64

5 RESULT, DISCUSSION AND CONCLUSION ... 66

5.1 PERFORMANCE ANALYSIS OF PARALLELISM ... 66

5.2 VALIDATION OF THE RESULT.. 70

5.3 EXECUTION TIME COMPARISON ... 73

5.4 CONCLUSION ... 75

5.5 FUTURE WORK .. 76

REFERENCES .. 78

STATISTICAL ANALYSIS ... 83

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

x

LIST OF FIGURES

FIGURE 2-1: FIVE STEPS FOR CALCULATING THE HARALICK TEXTURAL FEATURE MATRICES. 26

FIGURE 4-1: TASK BREAKDOWN OF DATA COLLECTION AND IMAGE ACQUISITION. .. 46
FIGURE 4-2: EXCITATION AND EMISSION SPECTRA FOR DRAQ5 AND DI4-ANEPPS. DRAQ5 HAS EXCITATION

PEAK AT 635NM AND EMISSION PEAK AT 690NM; AND DI4-ANEPPS HAS AN EXCITATION PEAK AT 448NM

AND EMISSION PEAK AT 600NM. .. 50

FIGURE 4-3 A) DI4-ANEPPS STAINING OF CELLULAR MEMBRANE. .. 50
FIGURE 4-4: IMAGE OF CONTROL CELLS (LEFT) AND TREATED CELLS WITH HIGH DOSAGE (RIGHT). THE

YELLOW SEGMENTED STENCILS REPRESENT CELLS WHICH ARE NOT TREATED AND RED STENCILS

REPRESENT TREATED CELLS. ... 51
FIGURE 4-5: DRUG DOSAGE CURVE OF MCF-7 CELLS WITH .00004 MICROMOLARS TO 1 MICROMOLAR. USING

KNN1 MODEL: AT .03 MICROMOLAR 75% OF CELLS ARE UNTREATED AND 25% TREATED; AT 1

MICROMOLAR 60% ARE UNTREATED AND 40% TREATED. ... 52
FIGURE 4-6: SOFTWARE DEVELOPMENT PROCESS FOR PARALLEL FEATURE EXTRACTION SOFTWARE. THE

PROCESS MODEL OUTLINES THE WATERFALL MODEL- THE SEQUENCE OF TASKS TO DEVELOP THE

SOFTWARE. .. 53
FIGURE 4-7: MASK IMAGE BEFORE PREPROCESSING (LEFT) AND MASK IMAGE AFTER PREPROCESSING (RIGHT).

THE BORDER NUCLEUS IS REMOVED FROM THE IMAGES ON THE RIGHT. ... 55

FIGURE 4-8: CONTROL FLOW DIAGRAM DESCRIBING THE SEQUENCE OF FUNCTION CALL IN THE CODE. 58
FIGURE 4-9: AN OVERVIEW OF IMAGES GENERATED AS EACH OF THE FUNCTIONS LABELED BELOW IS CALLED.

 .. 60
FIGURE 4-10: PARALLEL DESIGN OF THE FEATURE EXTRACTION SOFTWARE. ALL FUNCTIONS PRESENT IN A

PARALLEL LINE CAN BE EXECUTED IN PARALLEL. .. 62
FIGURE 5-1: EXPERIMENTAL RESULTS: COMPUTATIONAL TIME MEASURED AGAINST NUMBER OF OBJECTS IN

THE IMAGE USING DIFFERENT NUMBERS OF CORES. ... 67
FIGURE 5-2 EXPERIMENTAL RESULTS: COMPUTATIONAL TIME MEASURED AGAINST NUMBER OF CORES USED

USING DIFFERENT NUMBERS OF OBJECTS IN THE IMAGE. .. 68
FIGURE 5-4: PERFORMANCE COMPARISON: SPEEDUP VERSUS NUMBER OF CORES. INCREASE IN SPEEDUP

INDICATES INCREASE IN LEVEL OF PARALLELISM. ... 69
FIGURE 5-6: THE PLOT DEMONSTRATES THE EXECUTION TIME BETWEEN ACAPELLA, C CODE WITH TIFF

IMAGES AND WITHOUT TIFF IMAGES. .. 74

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

xi

LIST OF TABLES

TABLE 3-1: THE TABLE REPRESENTS THE CURRENT MULTI CORE HARDWARE TECHNOLOGIES AND THEIR LIMITATIONS. 42
TABLE 4-1: WELL MAP OF DOSAGE OF STAUROSPORINE USED IN THE EXPERIMENT, DOSE RANGE (1

MICROMOLAR TO .0004 MICROMOLAR) ... 48

TABLE 5-1: COMPARISON OF RESULTS OF C CODE WITH ACAPELLA. .. 73

TABLE 5-2: EXECUTION TIME COMPARISON OF ACAPELLA AND C CODE. ... 73

file:///C:/Users/Tamnun/Dropbox/defense/thesis_final_jan_21_2013.docx%23_Toc346669500

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

12

1 Introduction

1.1 Motivation

Since its discovery 10 years ago, information obtained from high content screening

(HCS) has considerably advanced the field of drug discovery (Bickle, 2010). HCS has

been well practised in all aspects of the drug discovery pipeline. It was widely used in

primary screening, RNAI technology, toxicity analysis, and lead optimization (Rausch,

2006). Imaging in HCS has stimulated the advancement of two different fields:

improvement of the hardware in automated microscopes and the enhancement of feature

extraction software for image analysis (Zanella, Lorens, & Link, 2010). A standard

screening would require several steps: incubation of cells in 96 or 384 well plates,

treatment of cells with chemical compounds, staining with relevant fluorophores or

tagged proteins, imaging each well by state of the art microscopes, and then finally

interpretation of the images with quantifiable measurements. The root of the screening is

the image analysis process where millions of multi parameter features are extracted.

Examples of these extracted features are: texture, morphology, intensity and spatial

distribution. However, with the advancement of HCS, there are still numerous challenges

within the field of image computing, particularly in image processing, data mining, and

visualization (Peng, 2008).

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

13

Even with huge development in high content screening analysis, there is still a desperate

need to overcome the current hardware and software limitations (Starkuviene &

Pepperkok, 2007). Rapid technical development in the field of fluorescence microscopy

has enabled researchers to collect massive amounts of data; however, more processing

power and data modeling tools would be required. Futhermore, with advancements in the

fields of multispectral fluorophores, quantum dots, and fluorescent proteins: different

cellular phenotypes of a cell can be measured with various parameters, which demand

intensive computation, requiring more advanced algorithms and advanced hardware

technology. For example, in a simple screening experiment a cell by cell image

processing analysis of multiple spectra would require a huge computational power and

time to process. However, due to the limitations on existing analysis software in the

context of speed, the averaged population data was commonly used; this lacked detailed

biological information of the phenotypes(Levsky& Singer, 2003). Current image

analysis tools lack compatibility and integration, which consequentially failed to carry on

with the high demand on processing of screening data (Wong, 2006); hence the benefit of

HSC has not been fully exploited. Nevertheless, as the acquired data grows, the mining

of biological knowledge has surpassed the capability of image processing tools.

Therefore a different approach, such as parallel processing, would be needed to reduce

the gap between current biological advancement and technological drawbacks.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

14

1.2 High Content Screening: From Microscopy Imaging To Machine Learning

High content screening can be defined as a sequence of task flows where collective

compounds are tested to observe the biological activities of living cell. Antje et al. have

defined high content screening as phenotypic screening of cells on a multi well plate that

uses tasks involved with automated microscopy, followed by automated image analysis,

and analysis of many numerous numerical features. Thus, understating the workflow of

high content screening is very significant. Every stage of the screening pipeline is very

important and must be performed carefully, following proper protocol and understanding

of the automation system through each step. Successful completion of one step is highly

dependent on the previous successful step; therefore any error in any stage of the pipeline

will affect the image analysis process. However, the screening task flow could also be

designed according to the experiments and the biological questions; hence, number of

factors needs to be considered and optimized (navigating). Despite the flexibility of

screening workflow, a typical high content screening experiment can be divided into the

five following steps:

1.2.1 Assay Development

Assay development is required step of the High Content Analysis process. The first part

of the assay involves selecting the cell lines for the experiments, which mainly depends

on the particular research area of interest. Once the cell lines have been selected, the

cells need to be cultured so that there are enough cells on the culture surface to perform

screening; however, the culture surface should not be too confluent. Next, the cells are

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

15

transferred to multi well micro-plates of various well densities (48, 96 and 384). Drugs

and compounds, of appropriate concentrations are added to the wells which are left to

incubate or kinases to react with the cells. The cell type, plated cell density and the

incubation time differ from assay to assay based upon the experiments. Post –Assay

processing is performed by labelling cells with different fluorescent tags. The mostly

commonly -used fluorescent labels are fluorescent proteins, fluorescent dyes and

antibodies. The excitation and emission spectra of the fluorescent tags need to be

carefully analyzed with respect to target identification (Haney, 2008).

1.2.2 Image Acquisition

After the cells are treated with the targeted drug, they are ready for acquisition of

microscopic images. The choice of microscopic hardware is dependent on two types of

microscopy systems: confocal and wide field. The selection is based upon microscope

resolution, the size of the object, and the information that needs to be collected. For

instance, a confocal microscope uses a pin hole to eliminate out of focus light, thereby

providing better resolution; by contrast a wide field microscope includes all out of focus

light, but has more signal to noise ratio and fast acquisition time. In order to achieve an

appropriate measurement of the targeted objects the acquired images from the microscope

must not contain out of focus light, a good image resolution, and no over or under

exposed light. To achieve this goal, proper selection of the exposure parameters,

excitation filter, emission filters and focus parameters of the microscope is essential

(Niederlein, Meyenhofer, White, & Bickle, 2009).

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

16

1.2.3 Segmentation

Segmentation is the third, and mostcrucial process on high throughput image automated

screening. The purpose of segmentation is to identify the targeted objects where

measurements need to be calculated. There are various predefined algorithms for

segmentation that are commonly used to identify targeted substances in High content

screening analysis. The most popular segmentation strategies are Ostu’s method (N,

1979), Sobel (Sobel et al) and Canny(Canny, 1986) . Combination of all these

segmentation methods also results into obtaining satisfactory results. The output of the

segmentation process is the masks images which are binary images that locate the objects

of interest for quantifiable measurement (Niederlein et al., 2009)(Oberholzer, Ostreicher,

Christen, & Brühlmann, 1996).

1.2.4 Feature Extraction

Once the segmentation process has been successful, the output mask images locating the

identified objects are used to extract quantifiable features. Different statistical

approaches are used to extract various features, such as, texture, morphology, and

intensity. These features are extracted from single or multiple fluorescence channels

from the same field of view. In high content analysis, huge volumes of data are

generated from feature extraction, often in the terabytes (Wollman & Stuurman, 2007)

ranges, and not all these data are informative or useful. To get a subset of useful data

feature selection methods are used. Formal algorithms, such as Stepwise Discriminate

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

17

Analysis and Principal Component Analysis are used to decide the minimum features

needed for the proper classification (Kheirkhah & Haghipour, 2010).

1.2.5 Machine Learning

After selection, the subsets of feature extraction, machine learning can be used to classify

the data or to identify the similarity and dissimilarity on biological phenotypes with the

desired phenotypes. For instance, to find out how similar or different are the extracted

features with the desired changes of the labelled sample. Three major classifiers are

used: supervised, semi supervised and unsupervised. In the supervised classifier, the

model is trained with the sample data or control data sets where the labels of the patters

are known, and then the classifier is tested with the extracted features (Yang, Beyenal,

Harkin, & Lewandowski, 2000). Common supervised learning models are neural

network, support vector machines, and KNN (Wong, 2006). While in unsupervised

learning, the learning is performed with unlabeled data set, the computer divides the input

cells in different categories. Lastly, the semi-supervised models uses both trained and

untrained data.

1.3 Project Goals

 To design parallel computation software to reduce the processing time of HCS

data and extracting Threshold Adjacency Statistics feature from it.

 To compare the results of low level programming language, such as C, with

scripting language, Acapella.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

18

 To investigate the morphology and texture features of MCF-7 cell lines treated

with staurosporine kinase inhibitor.

 To find an suitable dye that stains MCF-7 cell lines treated with staurosporine

kinase inhibitor.

1.4 Motivation

Based on cancer statistics in year 2012, 88,800 Canadian women and 97600 men will be

diagnosed with cancer each year. On an average day, 500 Canadians will be diagnosed

with cancer and 200 will die of cancer every day(Canada, 2012). Cancer can be defined

in medical terms as a disease of abnormal cell proliferation, where these cells are capable

invading other tissue through the blood and lymph systems. There are over 100 different

types of cancer, where the naming convention refers to the organ where the cancer

originated. For instance, cancer that origins in the lungs are referred as lung cancer.

Cells are continuously being signalled to proliferate, differentiate or die. However, in

cancer cells, a protein that dictates the signal is disrupted due to a gene mutation. This

allows the cells to proliferate autonomously and spread, causing a tumour. These signal

transducer proteins are called kinases; kinases transduce signals in a cascade pathway

from the outer membrane of a cell to the nucleus by phosphorylation. Phosphorylation is

a process where a kinases add phosphate to an amino acid chain of a protein which

changes the characteristics of the phosphorylated protein(Faivre, Djelloul, & Raymond,

2006). The hydroxyl groups (-OH) of serine, threonine, or tyrosine, amino acid side

chains are the most common target to bond a phosphate molecule for phosphorylation

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

19

(Secko, 2011) . To inhibit this pathway, researchers have developed kinase inhibitors as a

cancer therapeutic drug. Kinase inhibitors inhibit the signals of different families of

kinases by targeting a specific kinase in a group, thus interrupting phosphorylation.

Unlike conventional therapy, such as chemotherapy, which fails to discriminate between

normal cells and tumor cells, kinase inhibitors are more target specific directed towards

cancer-specific molecules. These target specific therapies are more therapeutic and

provides less toxicity than chemotherapy. Nevertheless, specificity of the kinase

inhibitors, targeting a specific protein kinase, is still challenging and their inhibition

selectivity is currently under research (Gasparri, Sola, Bandiera, Moll, & Galvani, 2008)

(Karaman et al., 2008). Karaman et al have tested the activities of 38 kinase inhibitors

against 287 kinases. They have worked on the affinity factor of these kinase inhibitors

and found kinase inhibitors off targeting to unrelated kinases. Despite their limitations,

they are considered one of the most promising target based therapeutic treatment for

cancer due to their specificity. Understanding the specificity of kinases require complex

screening with advance microscopic technologies and image analysis modalities(Fabbro

et al., 2002). These screening produces huge amount of data and needs fast processing,

thus can only be achieved by high content screening. It is our belief that HCS would

provide researchers and biologist with the methodologies and technologies to uncover the

mysteries of these target specific drugs. Considering this as our incentive, the motivation

of the project is using the kinase inhibitor as our test bed for the experiment of applying a

solution to accelerate the HCS processes through the development of fast and advanced

parallel textural feature extraction software. The increased speed of analysis will

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

20

therefore, decrease the time of experiment and increase the number of screening, making

kinase inhibitor treatment more viable option for cancer treatment.

1.5 Major Contributions of the Thesis

 A new parallel image processing technique to extract textural feature was applied

on HCS data. This has been proven to be the most efficient technique by previous

researchers. Hamilton et al. (2007) have computed threshold adjacency statistics features

to distinguish sub-cellular localization of cells more efficiently and accurately than other

image statistics computations. TAS has also been widely used in the biomedical field

primarily for protein subcellular localization. By understanding the behavior of all

expressed protein will simulate cell behavior and therapeutic efficiency. Even though the

algorithm has proven to be faster and more efficient than other image statistics

algorithms, the algorithm’s performance was never tested on parallel model. To our

knowledge, this is the first attempt at applying a parallel image processing technique to

TAS.

 A parallel program was developed for feature extraction in C language for HCS

data. Implementation for the parallel model for computation and I/O intensive HCS data

is not a trivial task, due to its inherent complexity and error-prone nature. A minor error

in the code can lead to a race condition scenario or deadlock (Messerli, 1998). The

difficulty of developing parallel models is one of the major factors preventing

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

21

commercial software for developing their own parallel image analysis software, which

currently run primarily on single processor systems. In summary, this project develops,

for the first time, a parallel C program for TAS feature algorithm and apply it HCS data.

The performance is then measured and compared to the commercial offerings.

1.6 Thesis Organization

In this chapter the motivation for the project as well as an introduction to the facets of the

project is provided. In Chapter 2 the background information on texture features and

subcellular localization features are discussed. In Chapter 3 the problems and challenges

involved in HCS software are mentioned. In Chapter 4, various solutions, their

advantages and disadvantages, with an emphasis on parallel computation as a solution are

introduced. Then the experimental setup and software implementations are explained in

details. The results of this research, conclusions and future work are presented in Chapter

5.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

22

2 Subcellular Localization Features

After explaining the concept of HCS, this chapter elaborates on background information

in image analysis, texture features and existing texture feature extraction algorithms in

the context of subcellular localization features. An efficient feature extraction algorithm,

Threshold Adjacency Statistics (TAS), is also introduced, used primarily for extracting

meaningful numerical descriptors of subcellular localization of proteins. An example and

statistical interpretation of TAS follows, and compares the performance of TAS with

existing feature extraction algorithms, such as, Haralick, Zernike Moment, and Local

Binary Pattern.

2.1 Image Analysis

According to Gonzalez, an image can be defined as f (x, y), where x and y denotes the

spatial plane of the image and the amplitude of any coordinates in the plane represents the

intensity. Digital images are images processed by computers with finite elements, each

representing a particular value and location of the image, referred as pixel. The image is

represented as 2D array, and each element of the array is a pixel corresponding to a

particular value and location. Base on the range of possible values that a pixel can hold,

images can be divided into three types. A binary image can only hold two possible

values (0 and 1) in each pixel. This type is often obtained by thresholding a greyscale

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

23

image: any values above a threshold are presented as a 1, and values below the threshold

are presented as 0. A greyscale image typically has a bit depth is 8 bits, providing a

range of possible intensity values from 0 to 255. Finally, a color image is represented by

24 bits for each pixel, with the brightness and color information combined (Jain, 1998).

Image analysis can be defined as an operation that is performed on an image to extract

meaningful information. If these operations are applied in digital images, it is referred to

as digital image processing. The processing of an image can be simple, or as complex as

facial recognition. In the biomedical field, image analysis is applied to quantify

phenotype properties of cells, such as the aspect of shape, intensity, co-localization,

texture etc. Among all of the feature extraction algorithms applied in cell imaging,

particularly focusing on subcellular localization features, texture is the mostly commonly

used numerical descriptor (Wong, 2006).

2.2 Texture

Texture can be defined as the variation of intensities across an image, or a variance of

pixel values from one pixel to another pixel within an image or local portion of an image.

Texture can also be defined as a spatial distribution of greyscale pixels, and their

relationship with neighbours (Haralick, R.M.K. Shanmuga, 1973). Texture analysis

provides the most significant information in the biological field. This analysis can be

done by extracting information from the interested region and differentiating it with

another texture group (Haney, 2008). For instance, Haralick texture features provide the

information about different types of textural measurement on contrast, uniformity and

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

24

complexity across the region of interest (Haralick, R.M.K. Shanmuga, 1973). There are

various textural feature extraction algorithms that have been developed, but their

intensive computation is still a challenge for investigators. However, in the context of

subcellular localization features, there are only few algorithms that have been tested so

far. Among them, the most common are Haralick texture, Zerenike Moments, Local

Binary Pattern and Threshold Adjacency Statistics.

2.3 Feature Extraction Algorithm for Subcellular Localization

Subcellular localization can be defined as the localization of molecular compounds or

proteins in a specific compartment within a cell. The locations of the probe and the

protein are correlated, and can be used as a tool in understanding the function of proteins

or the molecular probe. Understanding the subcellular localization of protein provides

information on the biological activity of the compound that is being localized, and the

relationship between the biological compound and the cellular compartment in which it is

localized (Liu, 2012). Computational methods for predicting this localization pattern are

very important in understanding the biological activity of the cell at an organelle level.

Despite their importance, the progress on developing computational methods to extract

subcellular feature is still limited (Gao et al., 2009).

However, Murphy et al. have designed a numerical subcellular location feature set to

analyze the subcellular distribution of proteins (Murphy, Velliste, & Porreca, 2003).

These features include the Haralick texture feature, Zerenike Moment feature, Convex

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

25

hull and derived feature from morphology. Detail algorithm of these features is described

below:

The Haralick texture feature is considered one of the most important feature analysis

methods, widely used in the biomedical field, as well as in the processing of radar signals

and control systems. In the computation of Haralick texture features, four grey level co-

occurrence matrices (GLCM) are created. The GLCM is a tabulation of how often

different combinations of pixel brightness values (grey levels) occur in an image. The

GLCM description of texture considers the relation between two pixels at a time, called

the reference and the neighbour pixel (Roumi, 2009). The Haralick texture method

requires producing matrices for each angle and for each offset. This produces a total of

four for each angular direction (horizontal, vertical, left and right diagonal); and a total of

four for offset zero and one. These matrices are very large; with their imensions

dependent on the depth of the pixel intensity. Thirteen texture features are calculated

from these matrices, following the five steps shown on the flow diagram (Figure 2-1)

below, which measure the homogeneity, contrast, complexity, etc. (Haralick, R.M.K.

Shanmuga, 1973).

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

26

Figure 2-1: Five steps for calculating the Haralick textural feature matrices.

Zernike moment is another effective statistical descriptor to distinguish subcellular

localizations (Hamilton, Wang, Kerr, & Teasdale, 2009). Zernike moment calculates 49

texture features, providing information on rotation and translation invariance. Zernike

moment is calculated by first calculating the center of the mass of each cell, than

subtracting the value of each pixel with the center of the mass and dividing the result by

the user-specified cell radius R. Then, to find the ratio of similarities between grey level

pixel distributions, the correlation between the transformed image and Zernike

polynomial is performed. Only the amplitudes of pixels within the unit circle of the

normalized image are used(Lu, Lu, Liu, & Yang, 2010)(Liu, 2012). One of the

disadvantages of Zernike features is that it is can only be applied to single cell images. As

a result, each cell needs to be cropped prior to processing. Consequently, it requires a

very long pre-processing time. For instance, in an experiment by Hamilton et al., pre-

processing of Zernike features of 503 images, cropped to 1420 single cells, took 4

minutes and 16 seconds. The total processing time was 17 minutes and 22 seconds to

extract the full feature extraction algorithm. As well, when Zernike moment was tested

as a classifier compared with Haralick and TAS, it provided the lowest accuracy of

68.2%, compared to others 86% and 83.3%, respectively.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

27

Morphology is commonly used to define the shape of the image: the boundaries,

skeleton and convex hull (Mcandrew, 2004). It also provides information related to the

shape of the cell, such as perimeter, area and ratio. From a mathematical perspective,

morphology is presented in set theory, where two objects in an image can be identified as

two sets, set A and set B. There are two main morphological operators: erosion and

dilation. Erosion subtracts the value of a pixel from the border of the image, while

dilation adds the value of a pixel on the image. Other operators, such as fill and

connected, open and closed, boundary and skeleton, are based on the erosion and dilation

operator (Gonzalez, 2008). Understanding the shape of the cell or organelles provides the

user with significant biological information. For instance, staining MCF-7 cells with

Draq5 will provide information of the nucleus, specifically whether the cell is going

through mitosis or apoptosis. A condensed nucleus is indicative that the cell is going

through apoptosis, with chromatin condensation (Mooney, Al-Sakkaf, Brown, & Dobson,

2002), whereas a round cell shape indicates that the cell is poorly attached (Haney, 2008),

etc. In the field of subcellular localization, tagged proteins can be useful in segmentation

of different subpopulations of cells growing together, such as neurons.

2.4 An Efficient Feature for Subcellular Localization: Threshold

Adjacency Statistics (TAS)

Proteins play a major role in cell function, and the location of a protein in a cell can

provide vital information for understanding the behaviour of the cell. This is why

subcellular location of proteins in cells has become one of the most important studies in

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

28

biological science (Kheirkhah & Haghipour, 2010). Traditionally, labour-intensive

manual visual inspection was the only approach available for identifying the protein’s

location (Nanni & Lumini, 2008). However, due to the development of fluorescence

imaging and image analysis algorithms used in HCS, identifying the subcellular locations

of proteins has become easier more manageable task. Efficient statistical modeling

techniques are applied on fluorescence-labelled cellular images to extract features from

the spatial distribution of proteins. Despite their efficiency, these feature extraction

techniques are very complex, and require long computational times with currently

available hardware technology. As a result, simpler and faster algorithms are needed in

order to extract morphological and textural features of proteins in cells.

 In 2007, Hamilton et al. introduced a fast and simple texture feature extraction algorithm

for this purpose (Hamilton, Pantelic, Hanson, & Teasdale, 2007a). The algorithm

thresholds the image, then counts the number of pixels whose intensities are above the

threshold pixel value of “given number of above threshold pixels adjacent” (Hamilton,

Pantelic, Hanson, & Teasdale, 2007b). The algorithm was tested with two types of

images labelled with endogenously expressed and transfected proteins, providing 98.2%

and 93.2% classification accuracy, respectively. It has also outperformed other

commonly used texture feature algorithms, such as Haralick and Zernike moment in

terms of accuracy. (Hamilton et al., 2007b).

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

29

2.4.1 Threshold Adjacency Statistics (TAS) Algorithm

Unlike other algorithms, the computation of TAS is simple. The image is made binary

with certain threshold values, and this is performed to distinguish the dissimilarity in the

threshold image, which is not possible with the naked eye. Then from the threshold

image, for each white pixel, the number of neighbouring white pixels is counted.

Therefore, the first TAS value would be total number of white pixels with no neighbour,

the second TAS value would be the total number of white pixels with one neighbour, and

this succession will continue until nine TAS values are calculated. Finally, these values

are normalized by dividing all of the computed values with the total number of white

pixels in the image. The following is an example that demonstrates the mathematical

calculation of TAS.

Example 1: The example demonstrates the computation of Threshold Adjacency

Statistics (TAS) by using a 3X3 Matrix:

Image matrix (3X3):

Step 1: First the mean of the matrix is calculated. The mean of the above matrix is

54/9=6.

8 7 11

3 6 9

6 4 0

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

30

Step 2: The interested region is identified. In this example, the region is (mean-3, mean

+3); which give us a range between 3 and 9 So now, by thresholding the values between

these numbers, the following matrix is obtained:

Step 3: The total number of white pixels is found to be 5.

Step 4: All of the white pixels are taken and the white pixels in their corresponding nine

neighbours are counted. All the values that are zero are X, because TAS algorithm is

only interested in white pixels. For instance, for Row 1 and Col 1, there are two white

pixels surrounding it, so the number of white neighbouring pixel is 2. The resulting

matrix of adjacent neighbourhood is as follows:

Step 5: The TAS is calculated by normalizing it with total white, according to the

algorithm.

TAS 0= Number of pixels with zero white neighbours = 0

TAS 1= Number of pixels with one white neighbour=4/5=.8

TAS 2= Number of pixels with two white neighbours =0

1 1 0

0 1 0

1 1 0

2 2 X

X 4 X

2 2 X

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

31

TAS 3= Number of pixels with three white neighbours =1/5=.2

TAS 4= Number of pixels with four white neighbours =0

TAS 5= Number of pixels with five white neighbours =0

TAS 6= Number of pixels with six white neighbours =0

TAS 7= Number of pixels with seven white neighbours =0

TAS 8= Number of pixels with eight white neighbours = 0

2.4.2 Application of Threshold Adjacency Statistics

TAS is commonly used for analyzing the spatial distribution patterns of protein in a cell

to understand the biological activities of the cell. Researchers are currently evaluating the

performance of the algorithm and comparing its performance with other algorithms, by

testing with different machine-learning tools. Few are optimizing the algorithm to

increase its efficiency. Two of the major developments are provided below: Fatema et al.

have used a different threshold adjacency statistics algorithm, a modified version, to

extract the sub-cellular protein location features. The algorithm is similar to Hamilton et

al but instead of computing the threshold adjacency statistics in one layer around the

targeted pixel, it calculated three layers of pixel in each white pixel. The algorithm was

tested with same set of images, test sets of images by Hamilton on similar model of

Support Vector machine, provided an accuracy of 97.06%, and outperforming the results

of Haralick and Zernike moments (Kheirkhah & Haghipour, 2010).

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

32

Fatema et al. have used a modified TAS algorithm to extract the subcellular protein

location features. The algorithm is similar to Hamilton et al, but instead of computing

the threshold adjacency statistics in one layer around the targeted pixel, it is calculated by

three layers of pixels surrounding each white pixel. The algorithm was tested with the

same set of images as Hamilton on similar model of Support Vector machine (SVM), and

obtained an accuracy of 97.06%, outperforming the results of Haralick and Zernike

moments (Kheirkhah & Haghipour, 2010).

Lorins, Nanni et al have used a different approach to improve the accuracy by combining

different features and classifiers on the 2D-Hela dataset. The research used two different

classifiers to test the accuracy: the SVM and the neural network. It also used features of

Local Binary Patterns, TAS and Haralick. The results show the neural network performs

better than SVM and the combination of Haralick and TAS obtains better accuracy,

98.2% in endogenous dataset and 93.2% in transfixed dataset (Nanni & Lumini, 2008).

2.4.3 Comparison between TAS and other Texture Feature Algorithms

Texture feature extraction methods are the most widely used algorithm in the medical

field. However most of these texture feature algorithms are complex, computationally

intensive and time-consuming. For instance, Haralick texture feature (Haralick, R.M.K.

Shanmuga, 1973), the most commonly used feature extraction algorithm, requires

creating four grey level co-occurrence matrices in four different angles for each offset,

which requires very long processing times as well as large storage considerations. In

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

33

contrast, TAS does not have any computational overhead besides the size of the threshold

matrix that it generates. When Hamilton et al. Processed 503 images with TAS, Haralick

and Zernike feature algorithms, it took 12 and 18 minutes for Haralick and Zernike to

extract subcellular features, respectively, while TAS took 60 seconds for 27 textural

features (Hamilton et al., 2007a).

Another major drawback of other textural feature algorithms is that they require pre-

processing prior to implementation. Pre-processing is a two-fold problem: requiring

additional time, as well as providing reduced accuracy (Nanni & Lumini, 2008). For

instance, Zernike feature extraction requires pre-processing time for single cell cropping,

and automated cell selection for cropping may provide variable results by failing to locate

all cells. To illustrate this problem, in the same experiment mentioned before by

Hamilton et al., it took 5 minutes of additional time to crop 503 images into 1420 single

cell images. In contrast, TAS only requires pre-processing for making binary images by

thresholding: a 30 percent reduction in processing time (Hamilton et al., 2009).

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

34

3 PROBLEM DESCRIPTION and Parallel

Processing

After exploring the background of HCS, feature extraction algorithms, threshold

adjacency statistics and parallel processing, this chapter will present the current

challenges and weaknesses of HCS software in general. The first section illustrates the

deficiencies of customizability and multiprocessing in current HCS software, as well as

the shortcomings of high-level scripting language compared to low-level C languages in

image analysis. The second section follows by analyzing the limitations of contemporary

three image analysis software packages: cellprofiler, ImageJ and Acapella. Finally, in the

next section (2.3), it introduces parallel processing and existing parallel models.

3.1 Challenges of High Content Screening Analysis Software

Even though optical imaging modalities have advanced, the hardware and the software

used for image analysis are still in a comparably primitive stage (Eliceiri et al., 2012).

Due to the extensive development within this field, vast amounts of multiparametric data

are generated that cannot be analysed by the software and hardware at a fitting pace. In

other words, the algorithm of the image analysis software is still not optimized for the

needs of the HCS system. The feature extraction algorithms, which are developed for

different fields and for unique applications, now need to be adjusted and customized

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

35

according the requirements of HCS data processing. Current algorithms, such as

Haralick and Zerenike moments, are no longer suitable for ongoing HCS technology,

which needs further tuning and optimization to provide faster and more accurate results.

Alternatively, Threshold Adjacency Statistics (TAS) is a new approach that could provide

a quicker algorithm that would provide the same magnitude of accuracy with faster

performance. On the other hand, along with a suitable software algorithm, the design and

selection of appropriate hardware, compatible with assay based experiment, is also vital.

Due to their limited processing power, built-in chips lack flexibility, and biologists are

included towards other customizable processing hardware, such as, multiprocessing,

distributed systems and FPGA. The advantage of these hardware options is that they are

programmable and expandable according to the need for screening. With proper design

and implementation these hardware options can provide satisfactory performance, both in

speed and accuracy. Despite the flexibility of these architectures, the major challenge is

to develop an efficient and optimized code that could fulfill the requirement of HCS

analysis, without compromising speed or accuracy.

Another major bottleneck for HCS is the lack of flexibility and customizability of the

image analysis software. Most of the image-processing software that is bundled with the

microscopes is mainly developed for drug discovery intended for the pharmaceutical

companies (Niederlein et al., 2009). These software modules only support functions that

are needed for drug testing purposes; therefore, they lack flexibility for use in customized

screening. They are also very expensive, and the modules only support image processing

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

36

of mammalian cells and cellular features (Carpenter et al., 2006). Nevertheless, few have

used their own customized scripts and alternative scripting languages to overcome the

limitations of the commercial software. Despite the offered scripting language’s

moderate flexibility compared to the commercial software, it is still dependent on the

supported library features, and it is slow due to the translation to machine code.

Furthermore, the major drawback of both of these software options, commercial and

scripting, is that their algorithms are proprietary software, which lack flexibility of any

modification and cannot be customized for various complex screening experiments. The

software’s source code is hidden, so the algorithms cannot be modified according to the

experiments. This prevents the end users from being able to write codes which are

perfectly suited for their experiments.

An additional downside of image analysis software developed in a scripting language,

such as Acapella, is that they make use of high-level languages, which are further away

from the hardware, reducing speed and performance. High-level languages make it easier

for the programmer to code and understand the program thus requiring lesser

programming skills. However, this convenience to the end user is provided by

compromising the flexibility of the algorithm design at the hardware level. For instance,

low-level languages, like machine languages and assembly languages, require detailed

knowledge of the hardware, which provides more design flexibility to the programmer

due to their direct interaction with hardware. On the contrary, high-level languages are

syntax-specific, requiring less programming skill: only the knowledge of the supported

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

37

syntaxes (Ram, 2005). Therefore, they are easier to program but lack design flexibility.

Since low-level languages have more control over the hardware, they are faster and more

resource-efficient. High-level languages are further away from the hardware, and they

are dependent on an interpreter or compiler to translate the code into low-level code. The

translation process from higher level to machine level makes the scripting language

slower. For instance, codes in the Acapella scripting language use an interpreter, a tool

that translates each line of code to machine code as it is executed during run time, to

decode scripting syntax to hardware level and an interpreter would require more time to

translate to a hardware platform than an intermediate-level programming language, such

as C, C++ or Java. Due to its control over the hardware, intermediate level languages can

perform better with finite resources by using resource optimization techniques in the

code. Programmers can design a task with limited resources by optimizing the memory

usage, processor speed and storage.

Another shortcoming of the existing software is that they lack the capability of

multiprocessing. The majority of software is built for a serial processing environment.

As a result, they typically fail to use a multiprocessing environment efficiently. Serial

processing software runs a program in a single execution path, on a first-come-first-serve

basis. As a result, they fail to fully exploit the multi-core environment. Furthermore, the

load sharing of jobs in serial processing software are not evenly distributed to the entire

core. Therefore, optimized hardware efficiency is not achievable. Making the situation

worse, due to their lack of accessibility in the code, end users are also incapable of

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

38

modifying the code in order to optimize it for multiprocessing technology, like second

generation languages C, Java, etc. Most of the HCS feature extraction algorithms are

repeatable operations, meaning the same code is run on different images multiple times.

Therefore, the goal of implementing code efficiently for parallel environment is of

significant interest for the biologist. In summary, due to their proprietary nature, lack of

flexibility, multiprocessing incapability and further limitations, there is a clear need for

software that would be more customizable for screening needs, with faster processing

times.

3.2 Existing High Content Analysis Software and Their

Limitations

There are two types of existing software in the image analysis arena: 1) proprietary

software 2) open-source software (Niederlein et al., 2009). The proprietary software can

be further divided as the one that comes bundled with the microscope, and separate image

analysis software that can be integrated with microscopy images. Microscope packaged

software is limited to the processing features and operations supported by the microscope,

compared to customary proprietary image analysis software. Despite their easy-to-use

features and minimal programming skill requirements, proprietary software packages are

extremely expensive and are limited to built-in features (Lamprecht, Sabatini, &

Carpenter, 2007). However, open-source software is not typically restricted with any

license, and is less expensive overall. Unlike proprietary software, their software

packages are flexible and the coding analysis is not hidden for the users. However, they

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

39

require more extensive knowledge of programming to adapt, depending on the software

macros and custom algorithms. For instance, ImageJ and Cell profiler are commonly

used open source software, but it requires skill on Java and Matlab programming

language.

The project uses Acapella scripting language to compare the performance against the

feature extraction program developed in programming language C. Acapella is one of the

bundled software packages that comes with the Opera image acquisition microscope from

Perkin Elmer. The input image format in Acapella is usuallyFLEX, converted to TIFF

during processing. The Acapella program runs on scripting languages. To process

images, it uses user-friendly drag-and-drop modules, as well as an alternative optional

text-based editor. Nevertheless, the scripting language is user-friendly and does not

require any prior background on programming. Users can select different algorithms,

such as nuclei, spot and cytoplasm detection, for segmentation purposes (Elmer, 2008).

It also has a partially-open architecture, providing flexibility in writing algorithms based

on advanced assays (http://www.perkinelmer.com/; access September 23, 2012).

However, Acapella uses interpreter for translation to machine code, making it very slow.

Additionally, the scripting environment does not support any multiprocessing features.

The syntax is primarily dependent on pre-defined library functions, which provides less

flexibility to customize code. Due to the limitations on these pre-defined functions or

API, Acapella generates lots of images that takes lots of storage space and time. For

http://www.perkinelmer.com/

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

40

instance, to generate nine TAS values in Acapella generates 25 mask images whereas the

C code only generates one mask image.

3.3 Parallel Processing

A huge amount of data is required in order to process HCS data, which is a significant

problem for a conventional microprocessor. To execute 2000 cells for TAS factors

would require almost 7 hour of processing time. Even an Intel processor with a quad

core of 4GHz will require high speed memory access to process the data. L1 and L2

cache are also on the scale of kilobytes, which are not enough to hold one single image.

Memory is still slow and the greatest disadvantage is that their bandwidth is limited to

one word read/write cycles. The number of transistors and clock speeds of

microprocessors will likely continue to increase exponentially according to Moore’s Law,

however the memory access time will increase linearly (Greco, 2005). As a result there

will be always an ever-widening gap between these two compatible technologies. Hence,

in order to improve efficiency and improve speedup on image processing, parallel

algorithms need to be developed so that it can run independent tasks in parallel on multi-

core or multi-processor systems. Parallel algorithms should also take into consideration

data dependency, processor-to-processor communication overhead, and I/O and CPU

computation jobs. Parallel computation can be defined as “simultaneous use of multiple

computer resources to solve independent tasks concurrently and efficiently.”(Blaise

Barney, 2012)(Grama, Aananth, Gupta, Anshul, Karypis, 2003)

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

41

3.3.1 Existing Image Processing Model and Their Limitations

 Table 3-1 represents the current available hardware technologies for parallel processing

with their limitations. The major limitation of these technologies is that they require

specific hardware or special skill in programming. For instance, FPGA requires HDL

programming language skills, and NVidia requires CUDA and Cell Broadband Cell SDK

3.1. There are also other specific limitations. FPGA often needs an extra memory block

or symmetric images for better performance. GPU performs less efficiently on

biomedical images, and CBE performance is measured based on throughput instead of the

simplicity of the algorithm (Shahbahrami, Pham, & Bertels, 2011). As a result, the

project was implemented on core microarchitecture because they are simpler, more

available and can be integrated with existing microscopic system without any additional

cost.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

42

Table 3-1: The table represents the current multi core hardware technologies and
their limitations.

Images Ref: website Altera, NvVdia Sony Playstation,intel (Reteieved September 3, 2012)

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

43

4 Customized Software Solution

After understanding the limitations of existing systems from Chapter 3, this chapter

presents the need for parallel processing in high content screening (HCS) as a solution to

fast and accurate processing. The chapter examines towards the solution by categorically

explaining the design and implementation phases of the parallel feature extraction

software of the project. The development phases of the software are divided into four

parts: data collection, design of the software, design of the programming code and finally

design of parallelization model.

4.1 The Need for Parallel Computation in High Content Screening

High content screening analysis (HCS) produces a huge amount of data, often in the size

of terabytes (Niederlein et al., 2009), and this requires massive processing power

resulting in long analysis time. There are various factors that affect the speed of High

Content Screening. For instance, the number of cells on a plate, typically 10
6
, requires a

long time to process key features. In a typical cell by cell experiment, each cell is

represented in the matrix; therefore, the more cells on a plate will require more matrices

to process resulting in more analysis time. To illustrate, in Acapella software, each image

is represented by 672x508 matrix whose entries are 16 bit numbers. This requires an

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

44

outstanding processing time for each typical experiment that uses 10
6
cells on average.

Another big factor that influences the processing is the number of features that needs to

be calculated, and the complexity of the feature calculations. Feature extraction

calculations are mostly repeated structures, meaning that the same code or task with

different parameters is called multiple times for each image. Therefore, as the number of

images increases in the analysis, the computational power increases, and so too does the

time of processing. As a result, high content screening with a single-core processor

system would take an extensive amount of time, storage and processing power, providing

a less efficient method. To understand the properties of HCS data, a set of sample HCS

data has been collected from Biophotonics Lab. A probability density function of this

data set is provided in Appendix A.

To overcome the limitations of serial computation in high throughput screening, a parallel

computation would be the most efficient approach to reduce the time. The advantage of

parallel processing is that several computations can be processed in simultaneously. In

parallel computation approach, large tasks are divided into discrete independent tasks, so

they can be executed in multiple processors concurrently (Blaise Barney, 2012). As

mentioned earlier, most of the feature extraction tasks are repeated codes that are

executed multiple times on a same image. In a parallel computation environment, these

codes can be executed in parallel using multiple processors simultaneously, instead of

sequentially in a serial processing system. Thus, it would make the HCS feature

extraction software run much faster than before. In addition, in terms of image size, the

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

45

large number of bytes of images in HCS can be partitioned, and each portioned datasets

can be processed in parallel. Furthermore, the problem or the task applied on the images

can also be divided into several independent subtasks, where each subtasks can be

executed in parallel as well. To summarize, both parallel design approaches, partitioning

the data sets or the tasks, would accelerate the image automation process of HCS.

4.2 Data Collection

The data collection of this project can be categorized in two parts: 1) Sample Preparation

and 2) Image Acquisition

4.2.1 Sample Preparation

Figure 4-1 shows the task breakdown of the laboratory experiment. The quality of the

assay is very important for image processing: a better assay provides a higher quality

image, which reduces the speed of processing (Lu et al., 2010). During this screening

assay, a systematic protocol for staining, drug dosing, and image acquisition was

maintained for better image quality. Different experimental variable, such as, the number

of cells to avoid confluence, correct focus to avoid out-of-focus light, and optimized

staining for better quality image were seriously monitored (Haney, 2008).

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

46

Figure 4-1: Task breakdown of data collection and image acquisition.

4.2.1.1 Cell Culture and Slide Preparation

Our experiment uses the MCF-7 breast cancer cell line. The cell line is collected from

liquid nitrogen storage. To thaw, the cells are placed in water bath (37 -C) for five

minutes, then slowly diluted with 10 fold of growth medium (FBS) and placed in

incubation for 24 hours at 37C.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

47

After 24 hours of incubation, the culture’s cell growth is observed. If the cells reach 80%

confluence, the cells are passaged and a small sample is taken for experiment. The

subculture process for the MCF-7 cell line begins with washing the cell layer with PBS

and then adding trypsin. The solution is then placed in the incubator for 5 minutes to

cause the cells to detach from the dish. Finally, the detached cells are suspended with

fresh medium, which are then used for welling or incubation. Cell culture is protocol and

materials were prepared by ref (Doyle et al., 1995)

4.2.1.2 Treating With Staurosporin

When the cells are ready they were welled on 384 well plates, each well consisting of

5000-7000 cells. Cell counting is performed with a haemocytometer to ensure a

consistent number of cells. To treat the cells, serial dilution is used from highest to

lowest dose. The experiments used Staurosporin kinase inhibitor to treat the cultured

MCF 7 cell lines starting from high dosage of 1micromolar down to .0004 micromolars.

Table 4.1 presents the map of the dosage treatment on the well plate. The first two and

last two rows are untreated wells (as controls), and the rest of wells run from highest to

lowest concentration. Every new concentration of solution is reduced to half of previous

concentration. Staurosporin kinase inhibitor was selected because due to its promiscuity

and high affinity with most kinases (Karaman et al., 2008)(Ghoreschi, Laurence, &

O’Shea, 2009).

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

48

Table 4-1: Well Map of dosage of staurosporine used in the experiment, dose range (1 micromolar to .0004 micromolar)

1 2 3 4

1 untreated untreated untreated untreated
2 untreated untreated untreated untreated

3 1 1 . 015 .015

4 1 1 . 015 .015

5 .5 .5 .0007 .0007

6 .5 .5 .0007 .0007

7 .25 .25 .0003 .0003

8 .25 .25 .0003 .0003

9 .125 .125 .00015 .00015

10 .125 .125 .00015 .00015

11 .0625 .0625 .0019 .0019

12 .0625 . 0625 .0019 .0019

13 .03125 .03125 .0019 .00039

14 .03125 .03125 .00039 .00039

15 untreated untreated untreated untreated

16 untreated untreated untreated untreated

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

49

4.2.1.3 Staining With Fluorescent Probes

The major concern with staining is to identify the appropriate dye that would stain the

interested organelle or cellular membrane for proper segmentation. Proper staining

protocol is very vital, since it influences the segmentation of interested object--

specifically if the analysis is based on an intensity threshold (Ronneberger et al., 2008).

Therefore identifying the best candidate dye that stains the cells membrane, which is the

experiment’s object of interest for subcellular localization, is very challenging. Several

dye were tested, such as, PKH36 red fluorescent, NaO and Di4-Anepps (Kao, Davis,

Kim, & Beach, 2001) on MCF-7 cell lines; and the most suitable dye that stains the

cellular membrane was determined to be Di4-Anepps. The excitation spectrum for Di4-

Anepps is 450-510nm, and the emission peak is 570nm, after an incubation time of 30

minutes (37C) (Invitrogen, 2012). In addition, Draq5 dye was used for staining the

nuclear membranes, used as a reference signal for image segmentation. The protocol for

Di4-Anepps was followed from the protocol referenced in Invitrogen (Invitrogen, 2012) ,

and the Draq5 protocol is referenced from Biostatus (Biostatus, 2012). Figure 4-2 shows

the excitation and emission spectra of Di4-Anepps and Draq5 dye and figure 4-3 shows

images of stained cells (figure 4-3):

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

50

Figure 4-2: Excitation and emission spectra for Draq5 and Di4-Anepps. Draq5 has

excitation peak at 635nm and emission peak at 690nm; and Di4-Anepps has an

excitation peak at 448nm and emission peak at 600nm.

Figure 4-3 a) Di4-Anepps staining of cellular membrane.

4-3 b) Draq5 staining of nucleus.

4.2.2 Image Acquisition

Images are taken by using the Evotec Technologies Opera automated microscope system.

Opera is a confocal high-content screening microscope with three laser lines (488,561

and 640 nm) and a UV filter for screening in 96 or 384 well format (Elmer, 2008). The

images captured from the microscope are in FLEX format; where one FLEX image stores

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

51

images of one single well from specified field of views. The experiment has used two

cameras to acquire image, three exposures and six fields of view: Exposure 1 on Camera

3 is assigned as Channel 1, as reference channel for the nuclei; and exposure 2 and 3 was

taken by camer1 as channel 2 and channel 3, respectively, for the cytoplasm.

Figure 4-4 show the microscopic images acquired from the dose response experiment.

Control cells without any treatment are traced with a yellow segmented outline and the

cells treated with highest dose of 1 micromolar of staurosporin are traced with a red

outline. As seen in the figure, most of the cells are affected after being treated with

staurosporin. Figure 4-5 depicts the drug dose curve. It can be seen that at .03

micromolars, 25 percent of the cells are treated. As the dosage increases to 1 micromolar

the percentage treated cells increases to 40%.

Figure 4-4: Image of control cells (left) and treated cells with high dosage (right).

The yellow segmented stencils represent cells which are not treated and red stencils

represent treated cells.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

52

Figure 4-5: Drug dosage curve of MCF-7 cells with .00004 micromolars to 1

micromolar. Using KNN1 model: at .03 micromolar 75% of cells are untreated and

25% treated; at 1 micromolar 60% are untreated and 40% treated.

4.3 Design of the Software

The design of the software is split into three sections. The first section defines the step

by step development process of the software, following the waterfall model. The second

phase explains the coding design of the software, with description of all the functions in

sequential order. The last phase provides the parallel design of the software.

4.3.1 Development Process of the Software

In this project, the goal is to design parallel image processing software to extract texture

features from HCS data. The objective is to improve the running time of the program, so

the vast amounts of data can be processed in a way that minimizes processing time. In

order to boost speed of processing the data, the project was approached in two different

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

53

ways: algorithmically and by parallel processing. The algorithmic approach requires

analyzing the code and reducing the running time of the program. An efficient algorithm

with short running time is the required goal of the project. In the second phase, the

algorithmic code, written in C, needs to be modularized according to the parallel-

processing functionalities. Figure 4-6 depicts the software development process of the

parallel image automation system:

Figure 4-6: Software development process for parallel feature extraction software. The

process model outlines the waterfall model- the sequence of tasks to develop the software.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

54

4.3.1.1 Input Processing: Conversion from FLEX to TIFF

The input is the first step in the development process. According to the requirement, there

are two types of input images the program is capable of processing. These two image

formats are: the FLEX image and the TIFF image format. Reading the FLEX image

format is very complex, since it uses a proprietary microscopy images native to Acapella,

and the only way to convert it to TIFF is to use the Bio-Format conversion tool package

from LOCI (LOCI, 2012). However, the Bio-Format conversion package is not directly

complaint with the C platform, it is for MATLAB and other supported applications. The

LOCI conversion tool, for C language, is a package of Java class libraries whose routines

are used to convert FLEX images and to extract their metadata. To make it compliant

with the C language, it uses the jar2lib program to generate a C++ proxy class for each

equivalent Bio-Format Java class (Pepperkok & Ellenberg, 2006). The second image

format, TIFF, can be directly read from the input folders. Due to their indirect

conversion processes, reading FLEX images requires more time than reading TIFF

images. The format of these images is 16 bit; however, the mask images generated by the

program are 8 bit images.

4.3.1.2 Preprocessing Images

Preprocessing the process of reconstructing the true intensity values of the fluorophore

distribution by removing noise or uneven illumination (Ronneberger et al., 2008). In the

experiment, the images captured from the microscope are pre-processed in two stages:

removing the border cells and normalizing the intensity values of the cell. Since the cells

http://loci.wisc.edu/software/jar2lib

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

55

at the border of the image lack full information of a cell, it is omitted for further

processing. Once the cells are identified, the ‘remove border’ function removes the cells

that are on the border of the image. Figure 4-7 shows mask images after removing the

border nuclei. The second stage of preprocessing is, applying smoothing techniques

(Fotiadis, 2002). It is done by computing the average intensity of each object and

distributing it on the full object.

Figure 4-7: Mask image before preprocessing (left) and mask image after

preprocessing (right). The border nucleus is removed from the images on the right.

4.3.1.3 Contour Identification and Segmentation

Segmentation in fluorescence imaging is mostly based on intensity thresholds, either for

edge detection or region selection (Yang et al., 2000). In this experiment, the

segmentation process is initiated by first identifying the nucleus and cytoplasm using the

watershed algorithm. Each image has a field of view which includes many cells. Two

stencils are segmented – there is one stencil for the outer membrane and one for the

nucleus. These two stencils are used to identify the whole cell, the nucleus and the

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

56

cytoplasm, which is the whole cell minus the nucleus. Acapella performs the initial

transformation of the data on the whole image and then uses the stencils to calculate the

features on a cell by cell basis. Our C code takes these stencils to identify the nucleus,

cytoplasm and whole cell, and extract the textural features. The program separates each

stencil into a separate mask image, and uses that mask image to extract feature from the

image. The code uses a contour identification algorithm to identify each stencil from the

mask image generated by Acapella.

4.3.1.4 Feature Extraction

Texture feature, threshold adjacency statistics (TAS), is extracted from the images, which

are recognized by the contours. Three TAS values were calculated for each object.

These three TAS values correspond to different threshold values applied to the objects.

For each threshold, nine TAS values are computed, totalling to 27 for three thresholds of

each identified object. Following are the range of threshold:

[µ-, 65535]

[µ+,65535]

[µ - , µ +]

where µ=average intensity, and =µ*range

For every threshold, a mask image is created of the corresponding threshold values. This

mask image is used to perform the TAS calculation. The TAS is then calculated for each

white pixel, and the total number of neighbouring white pixels is counted by looping

around its eight neighbours on the matrix. Nine threshold statistics are computed, each

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

57

representing the white total number of white neighbours around each white pixel. Finally,

each threshold statistics is normalized with total number of white pixels.

4.3.2 Implementation of C Code

A control flow diagram provides an overview of the sequence of functions (or a flow

chart of function calls) that was executed in the code. Figure 4-8 is the control flow

diagram of the software. This is followed by a description of each function.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

58

Figure 4-8: Control flow diagram describing the sequence of function call in the

code.

copymask (): The purpose of this function is to initiate the program execution, initializing

the global variables and reading the location of the folder of the mask image folder. The

function loads three mask images: nucleus, cytoplasm and whole cell. Instead of loading

the cell mask, the function derives the cell mask by adding the nucleus and cytoplasm

masks together.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

59

separatemask (): The purpose of this function is to separate each contour from the mask

with the image provided by the copymask function. Each contour is saved in a separate

image.

handleobject(): The function takes the separated contour image generated by the

separatemask function, then loads the TIFF input image from each channel, and performs

a logical ‘AND’ operation on both of these images. This allows the program to extract

the intensity information of each image on the location of the contour. The function calls

the TAS function for each channel to compute the threshold adjacency statistics for that

located object.

tas (): The function performs the computation of TAS of each object located by the

contour from each channel. The computation is made by calling the four following

functions, each performing the specified tasks:

average intensity(): The function computes the average intensity of the object.

slice_threshold(): The function creates a mask image based on the threshold values.

total_white(): The function counts the total number of white pixels in the mask image

created with the threshold values by the slice_image function.

calculate_statistics (): This function counts the total number of neighbouring white

pixels of each white pixel. The function calculates nine TAS values; each corresponds to

the total number of white neighbours for each white pixel in the threshold image.

These four functions are called by tas() for calculating the TAS of one threshold value,

producing nine TAS values. The functions will need to be invoked three times for the

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

60

threshold values, generating a total of 27 TAS outputs for each object.

Figure 4-9: An overview of images generated as each of the functions labeled below

is called.

Figure 4-9 provides an overview of all the objects that are generated as each function is

executed. The copymask function reads the mask image and calls the separatemask

image. The separatemask function creates separate images of each object and invokes

the handleobject function. The handleobject function then loads the original grey-scale

image and perform an ‘AND’ operation with the single mask image. The resulting image

is sent to TAS to perform the threshold adjacency calculation.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

61

4.3.3 Design of Parallelization

4.3.3.1 Overview of the Design

As mentioned earlier, parallel design requires breaking down the task or the

computational problem into discrete components such that each task can be executed

independently and distributed to multiple processors (Grama, Aananth, Gupta, Anshul,

Karypis, 2003). Each task can be categorized as being dependent on other tasks, being

independent of other tasks, or requiring intensive computation. After arranging the tasks,

hotspots of the tasks are identified. Hotspots are single tasks or a collective task that

require intense computation time. These tasks are further analyzed to reduce the time

either by using optimized algorithm or by breaking them down into more independent

tasks. Since reading and writing requires massive computation time, I/O intensive jobs

are also labeled, so they can be more evenly distributed among different processes. The

goal of the ideal parallel model would be to parallelize and synchronize tasks that can

execute independently, and distribute the load of all processes evenly. The size of these

tasks is important in parallel processing and must be optimized carefully (Silberschatz,

Galvin, and Gagne, 2004). This is because the computational overhead of parallelizing a

small task can actually be detrimental, while large jobs will acquire the processor for long

periods of time blocking other jobs from executing, thus decreasing the performance.

Following these design principles, the project’s parallel model was created, shown in

Figure 4-11. The dependent tasks or processes, tasks that are dependent on previous

tasks, are presented along the horizontal direction, and are done sequentially following

matching-colored arrows. Independent tasks can be executed in parallel, and are listed

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

62

vertically. Tasks that are independent of each other are shown in the same colour and fall

in the same dotted-line region.

Figure 4-10: Parallel design of the feature extraction software. All functions present

in a parallel line can be executed in parallel.

4.3.3.2 Multithreading Design

Threads were used for the parallel design of the project. Threads are lightweight

processes: they work on the same memory space and require less time to communicate

(Silberschatz, Galvin, and Gagne, 2004). Since our model will run in a multi-core

environment with constrained memory, threads are more suitable for parallel modeling.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

63

Our project requires smaller tasks and an integrated environment, for which threads are

the most efficient option.

As depicted in the parallel design in Figure 4-10, the copymask function initiates three

threads of separatemask. Each thread executes the task of separating the contours of

different thresholds: nucleus, cytoplasm and cell. Each separatemask function then will

spawn a number of handleobject threads according to the number of contours in the input

mask image. For n number of contours, separatemask will create n handleobject threads.

Subsequently, the handleobject thread will create a TAS thread for each of the 3 channels

(Channels 1, 2 and 3) simultaneously to compute the threshold adjacency statistics. By

analyzing the design, it is obvious that the highest level of parallelism can be achieved at

the last level: the TAS process. Therefore, the experimental results in this project focus

mainly on TAS level parallelism.

4.3.3.3 Design of Shared Memory and Synchronization

Communication between the threads was done by using shared memory. As a

synchronization mechanism, semaphore was used to access the shared memory and

communicate between the threads (Tanenbaum, 2007). The design uses a global variable

‘counter’ in the separatemask function, and increases the value as each contour mask is

created. This counter value is also shared by the handleobject process to keep track of the

contour it is operating on. This global variable, counter, executes as a critical section

using semaphore.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

64

The writing of an output file is also synchronized by the threads. Each thread writes the

nine TAS values asynchronously. As one TAS thread finishes writing on the output file,

it signals the next waiting thread to write on the output file. Furthermore, loading and

releasing of images on threads is also done synchronously.

4.3.3.4 Code Optimization

The algorithm is also optimized to reduce the speed. The optimization occurs in the

handleobject function, where a logical ‘AND’ operation between the mask image and the

input image is executed. The operation iterates through the full 672x508 sized matrices in

order to identify the targeted object. However, only a small subset of the matrix, the

pixel values of the region of interest, is required for the computation. Therefore, to

optimize this operation, the coordinates of the regions of interest are extracted, and the

logical ‘AND’ operation is only applied to the region of interest of the image, thus

reducing the iteration time.

4.3.4 Features of the Code

 The code is modularized: each function executes a specific task. As a result, it is

easily maintainable and flexible for future modification.

 The model is threading-safe. Standard synchronization design procedures were

followed to maintain deadlock proof.

 The software is documented and indented according to standard coding guidelines.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

65

 The code uses memory efficiently and also allocates and releases memory properly to

avoid memory leaks.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

66

5 Result, Discussion and Conclusion

In this Chapter result will be presented to justify our findings with parallel scalability

tests. Our software output will be validated against the Acapella output, and comparison

of execution time against Acapella will be provided. Then a statistical representation of

sample data and execution time will be given. A conclusion is drawn with suggestions

for future work.

5.1 Performance Analysis of Parallelism

In order to evaluate the efficiency of parallelism, the code was tested in multi-core

environment. The purpose of this evaluation was to measure the performance of the

software with respect to parallelization. Accordingly, a scalability test was performed to

evaluate the performance of the parallel system. Two common scalability tests were

performed: strong scalability, to measure the performance of the software with a constant

load as resources increase; and weak scalability, measuring the performance as load

increases with the resources being constant (Kumar, Vipin, 1994).

The scalability test was initiated by using images with a single object as the input, then

repeatedly processing the image using an increasing number of cores, from single to four

cores. The image processing time for each case is subsequently recorded. The full test is

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

67

then repeated by using images with an increasing number of objects, and processing each

of the images with an increasing number of cores. The test was carried out by AMD

CodeAnalyst performance analyzer running the programs on computer with an AMD

Phenom Quad Core processor, 2.11 GHz, 4 GB memory, 64 bit Windows 7. Each

individual image was run multiple times (four runs) and the computation times were then

averaged.

Figure 5-1: Experimental results: Computational time measured against number of

objects in the image using different numbers of cores.

 The graph in Figure 5-1 represents the computational time with increasing number of

objects for four cores. The computational time is proportional to the number of objects.

These findings also corroborate with Fahim et al (2011), who tested optimized GLCM

code on multiple processors and compared to serial processor execution time. The graph

0.222ms/obj

0.105ms/obj

0.076ms/obj

0.057ms/obj

 1/32

 1/16

 1/8

 1/4

 1/2

1

2

 1/4 1/2 1 2 4 8 16

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(m

s)

Number of Objects

1 Core

2 Cores

3 Cores
4 Cores

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

68

also shows that the coefficient of proportionality, the slope of the curves, reduces from

.222 ms/obj to .057 ms/obj from singe core to 4 cores. This indicates that the processing

speed increases 4 folds from single core serial processing to multi-core parallel

computation.

Figure 5-2 Experimental results: Computational time measured against number of

cores used using different numbers of objects in the image.

Figure 5-2 represents a complementary comparison of computational time of four objects

with respect to increasing number of cores. In this experiment, the cores remained

constant and the load of the images was increased by adding objects to the image. The

computational time of four objects is inversely proportional to increasing number of

cores, which means the computational time reduces with an increasing number of cores

for all three curves. The exponent in the power law trends of all three objects is very

close to -1, indicating that the computational time is reciprocally related to the number of

cores.

0.67n
-0.99

0.85n

-0.96

 1/32

 1/16

 1/8

 1/4

 1/2

1

2

 1/4 1/2 1 2 4 8 16

Number of Cores (n)

1 obj

2 obj
3 obj
4 obj

0.44n
-0.99

0.21n
-0.89

 C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(m

s)

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

69

However, to analyze how well the program performs parallel compare to a single

processor, a speedup test was performed on the datasets. Speedup is a well-known

standard measurement metric for assessing the performance of parallelism. This

measurement provides information of how ideal the parallel processing is by comparing

the execution time of the program while using one core to multiple cores (Brown, 2000).

The calculation is done by dividing the execution time on one processor core to n

processor cores. A higher speedup value indicates more parallelism. As observed in the

graph of Figure 5-4, the metric indicates significant improvement in the level of

parallelism: four times more speedup than a single processor in all cases. Below is the

calculation of speed up follows with the graph:

Figure 5-3: Performance comparison: Speedup versus number of cores. Increase in

speedup indicates increase in level of parallelism.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5

Sp
e

e
d

u
p

Number of Cores

Processor Vs Speedup

1 Object

2 Objects

3 Objects

4 Objects

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

70

It is also seen from the figure 5-4 that the speedup varies at 4 cores from 3.5 to 4

depending on the number of objects. Object 3 at core 4 has the most speed up value and

provides the highest level of parallelism than other three objects. The speedup of the

other three objects declines slightly from 3.5 to 4 with increasing cores. This variation

on speedup values could be justified by three reasons. Firstly, a major portion of the

software is I/O bound tasks, performing image load, read or writes; as a result, as the

number of objects is increases more I/O operations were performed, slowing down the

parallelization efficiency (Silberschatz et al., 2004). Secondly, not all the codes are

parallelized, just thirty percent of the code, the remaining serial portion of the code

decreases the performance of parallelization as the number of object increases. Finally,

for every new object a thread is created. As object number increases the thread number

increases accordingly. Increasing threads will take more time on synchronization and

communication resulting on more processing time, therefore affecting the overall

computational time (Silberschatz et al., 2004).

5.2 Validation of the Result

In order to validate the software’s results, the output of the code was compared with

Acapella’s output in Table 5-1. Acapella has been used in many experiments in the

McMaster Biophotonics Facility, so the results are authenticated and provide a credible

dataset to validate our software. The output of Acapella and C code is provided below

from a set of images. Although there is a negligible difference in the results in a few

instances, this is due to the scripting language limitation of Acapella’s API. Like any

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

71

other scripting language, Acapella is limited to its supported specifications, such as

routines, variables and objects. Consequently, due to Acapella being a less customizable

script, complex algorithms are often very hard to implement, and accuracy can be

compromised significantly. However, due to the flexibility of low-level languages, the

final results of the C code are more precise and accurate, even though both languages

follow the same calculation of TAS by Hamilton (Hamilton et al., 2007a).

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

72

Result Comparison

Channel Object Number Threshold TAS_01_20 TAS_02_20 TAS_03_20 TAS_04_20 TAS_05_20 TAS_06_20 TAS_07_20 TAS_08_20 TAS_09_20

2 Cytoplasm 1 Threshold 1 Acapella 0.0066462 0.0158487 0.047546 0.0864008 0.122699 0.163088 0.197853 0.175358 0.18456

C code 0.0066462 0.0158487 0.047546 0.0864008 0.122699 0.163088 0.197853 0.175358 0.18456

Threshold 2

Acapella 0.003876 0.00599013 0.0158562 0.030303 0.0461593 0.0852713 0.0930233 0.143411 0.57611

C code 0.003876 0.00599013 0.0158562 0.030303 0.0461593 0.0852713 0.0930233 0.143411 0.57611

Threshold 3

Acapella 0.0038437 0.0102498 0.0307495 0.0621397 0.0916079 0.140935 0.124279 0.160794 0.3754

C code 0.0038437 0.0102498 0.0307495 0.0621397 0.0916079 0.140935 0.124279 0.160794 0.3754

3 Cytoplasm 1 Threshold 1 Acapella 0.0002828 0.000848416 0.0042421 0.0084842 0.0483597 0.0927602 0.0854072 0.116799 0.642817

C code 0.0002828 0.000848416 0.0042421 0.0084842 0.0483597 0.0927602 0.0854072 0.116799 0.642817

Threshold 2

Acapella 0 0.000250564 0.0007517 0.0027562 0.0298171 0.0643949 0.0438487 0.0699073 0.788274

C code 0 0.000250564 0.0007517 0.0027562 0.0298171 0.0643949 0.0438487 0.0699073 0.788274

Threshold 3

Acapella 0.00052 0.00520021 0.0171607 0.0364015 0.0785231 0.126885 0.117005 0.152886 0.465419

C code 0.0010499 0.00419948 0.0183727 0.0356955 0.0839895 0.126509 0.120735 0.149606 0.459843

2 Cytoplasm 2 Threshold 1 Acapella 0.0020756 0.014944 0.0402657 0.0805313 0.15193 0.188045 0.173931 0.199668 0.148609

C code 0.0020585 0.0148209 0.0395224 0.0794566 0.145327 0.186908 0.180733 0.198024 0.153149

Threshold 2

Acapella 0.0010419 0.00547017 0.0101589 0.0208388 0.0552227 0.092472 0.0989841 0.151602 0.564209

C code 0.0010419 0.00547017 0.0101589 0.0208388 0.0552227 0.092472 0.0989841 0.151602 0.564209

Threshold 3

Acapella 0.0038494 0.00769889 0.0162532 0.0491873 0.0919589 0.143713 0.130026 0.150984 0.40633

C code 0.0034647 0.00606323 0.0181897 0.049372 0.0922477 0.145518 0.127761 0.151581 0.405803

3 Cytoplasm 2 Threshold 1 Acapella 0.0017534 0.00204559 0.0087668 0.028346 0.075979 0.125073 0.120982 0.158387 0.478667

C code 0.0017534 0.00204559 0.0087668 0.028346 0.075979 0.125073 0.120982 0.158387 0.478667

Threshold 2

Acapella 0.0006509 0.000216967 0.0015188 0.0086787 0.0364504 0.0700803 0.0598828 0.0902582 0.732263

C code 0.0006509 0.000216967 0.0015188 0.0086787 0.0364504 0.0700803 0.0598828 0.0902582 0.732263

Threshold 3

Acapella 0.0024691 0.00329218 0.0131687 0.0304527 0.0987654 0.14856 0.112757 0.155144 0.435391

C code 0.0024691 0.00329218 0.0131687 0.0304527 0.0987654 0.14856 0.112757 0.155144 0.435391

2 Neuclus 1 Threshold 1 Acapella 0.0024184 0.0157195 0.0411125 0.108827 0.159613 0.182588 0.185006 0.135429 0.169287

C code 0.0059022 0.00927487 0.0451096 0.102445 0.150084 0.194351 0.190556 0.167791 0.134486

Threshold 2

Acapella 0.0008271 0.00413565 0.006617 0.0314309 0.063689 0.129032 0.110008 0.124897 0.529363

C code 0.0034667 0.0032 0.0093333 0.0234667 0.0402667 0.0696 0.0885333 0.134667 0.627467

Threshold 3

Acapella 0.0056657 0.00708215 0.0311615 0.0651558 0.117564 0.13881 0.124646 0.145892 0.364023

C code 0.0043085 0.00689358 0.0159414 0.0366221 0.0779836 0.130116 0.125377 0.140026 0.462732

3 Neuclus 1 Threshold 1 Acapella 0.0007911 0.00237342 0.005538 0.0205696 0.0490506 0.121044 0.148734 0.174051 0.477848

C code 0.0002139 0.000855432 0.0040633 0.011976 0.0457656 0.0904619 0.100941 0.134944 0.610778

Threshold 2

Acapella 0 0.000662252 0.0013245 0.0046358 0.0324503 0.0827815 0.0781457 0.101325 0.698676

C code 0.0001835 0.000183453 0.0016511 0.0066043 0.0229316 0.0432948 0.0398092 0.0647588 0.820583

Threshold 3

Acapella 0.0014265 0.00713267 0.0242511 0.0527817 0.116976 0.17689 0.0998573 0.122682 0.398003

C code 0.0024361 0.00527812 0.0133983 0.047503 0.091758 0.120585 0.112058 0.146569 0.460414

2 Neuclus 2 Threshold 1 Acapella 0.0147368 0.0273684 0.0378947 0.0673684 0.145263 0.128421 0.157895 0.168421 0.252632

C code 0.0043415 0.010492 0.0416064 0.0846599 0.138205 0.171491 0.166787 0.187048 0.195369

Threshold 2

Acapella 0.0094086 0.016129 0.0241935 0.030914 0.077957 0.104839 0.0873656 0.133065 0.516129

C code 0.0019694 0.00350109 0.0091904 0.0183807 0.045733 0.0741794 0.0787746 0.128446 0.639825

Threshold 3

Acapella 0.0048426 0.00968523 0.0290557 0.0338983 0.123487 0.1477 0.101695 0.1477 0.401937

C code 0.0041958 0.00804196 0.0143357 0.0391608 0.0832168 0.11993 0.112587 0.158042 0.46049

3 Neuclus 3 Threshold 1 Acapella 0 0 0.0030675 0.0322086 0.0705521 0.107362 0.0904908 0.136503 0.559816

C code 0.0016047 0.00561647 0.0080235 0.0243381 0.0722118 0.131319 0.122225 0.145761 0.488901

Threshold 2

Acapella 0 0 0.0021787 0.0174292 0.0511983 0.083878 0.0555556 0.0991285 0.690632

C code 0.000747 0.00149393 0.0018674 0.0056022 0.0291317 0.0567694 0.0435107 0.0702148 0.790663

Threshold 3

Acapella 0 0.00210084 0.0063025 0.0210084 0.102941 0.157563 0.102941 0.142857 0.464286

C code 0.0012512 0.00406631 0.0050047 0.0184548 0.0791367 0.108539 0.0985299 0.156084 0.528933

3 Neuclus 2 Threshold 1 Acapella 0.0031898 0.0183413 0.0430622 0.0614035 0.0972887 0.133174 0.118022 0.185805 0.339713

C code 0.0072243 0.0117871 0.0285171 0.0634981 0.102662 0.157034 0.175285 0.203422 0.25057

Threshold 2

Acapella 0.001836 0.0134639 0.0312118 0.0367197 0.0771114 0.109547 0.0850673 0.127907 0.517136

C code 0.0034474 0.00541738 0.0118197 0.0201921 0.0381679 0.0598375 0.0726422 0.0948042 0.693672

Threshold 3

Acapella 0.0169051 0.0104031 0.023407 0.0507152 0.114434 0.135241 0.118336 0.149545 0.381014

C code 0.0031323 0.00587314 0.0109632 0.032498 0.0712608 0.104933 0.110023 0.139389 0.521926

3 Neuclus 2 Threshold 1 Acapella 0 0.00171233 0.0011416 0.0085616 0.0348174 0.0456621 0.0525114 0.086758 0.768836

C code 0.0009918 0.000743863 0.0039673 0.0143814 0.0513266 0.104885 0.0984379 0.12844 0.596826

Threshold 2

Acapella 0 0.0004914 0.0004914 0.0034398 0.029484 0.0481572 0.0378378 0.0687961 0.811302

C code 0.0001988 0.000397693 0.0007954 0.0045735 0.0284351 0.0554782 0.0419567 0.0517001 0.816464

Threshold 3

Acapella 0.0040215 0.0147453 0.0227882 0.0254692 0.103217 0.130027 0.103217 0.119303 0.477212

C code 0.0014075 0.00387051 0.0087966 0.0246305 0.0647431 0.104152 0.096411 0.110837 0.585151

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

73

Table 5-1: Comparison of results of C code with Acapella.

5.3 Execution Time Comparison

Two types of execution time were tested and are shown in Table 5-2. The program was

first tested with converted TIFF images as input, not including the conversion time from

flex to TIFF images (3rd column), and the second test was performed on FLEX images,

including the conversion time from flex to TIFF (4th column). Figure 5-6 also provides

the plot of Table 5-2.

Number of FLEX

Images

Acapella

*C code (TIFF

images as input)

**C code(FLEX

images as input)

1 61 seconds 7 seconds 50 seconds

6 350 seconds 50 seconds 245 seconds

10 620 seconds 105 seconds 360 seconds

20 1200seconds 150 seconds 780 seconds

384 25800sec (7hour) 550 seconds

18010 seconds (5

hour)

Table 5-2: Execution time comparison of Acapella and C code.

*only TIFF images as input, execution performed on converted images.

** conversion time from flex to TIFF + code execution on converted images.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

74

Figure 5-4: The plot demonstrates the execution time between Acapella, C code with

TIFF images and without TIFF images.

As can be seen in the results above, the majority of the time of the C code is used on

converting the FLEX images to TIFF format. This is because FLEX images are

proprietary microscopy images and the only way to convert it to TIFF is to use the Bio-

Format conversion tool package from the Laboratory for Optical and Computational

Instrumentation (LOCI) (http://loci.wisc.edu/software/bio-formats) (Eliceiri et al., 2012).

However, the Bio-Format conversion package from LOCI is not directly compliant with

the C platform, as it is for MATLAB and other supported applications. The LOCI

conversion tool, for C code, is a package of Java class libraries whose routines are used to

convertFLEXimages and to extract their metadata. To make it compliant to C

y = 58.74x1.02

y = 12.48x0.71

y = 40.03x0.98

1

10

100

1000

10000

100000

1 10 100 1000

Ti
m

e
, S

e
co

n
d

s

Number of Flex Images

Acapella

*C code (tiff images as input)

**C code(flex images as
input)

http://loci.wisc.edu/software/bio-formats

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

75

language, it uses the jar2lib program to generate a C++ proxy class for each equivalent

Bio-Format Java class (“Bio-Formats | LOCI,” n.d.). As a result, the conversion is very

time consuming when using a language like C due to their indirect support through Java

packages. On the other hand, conversion to TIFF images in Acapella is much faster and

more efficient, since it uses their own proprietary conversion code, implemented directly

to the flex images, and does not rely on third party Bio-Format tools. If conversion factor

is not considered than the code operates much faster than the Acapella script, since the

majority of the C code operation is spent converting the file with the Java tool.

Consequently, the performance of the code can be appropriately evaluated without

considering the conversion time. Regardless, in the future, Opera images will be in TIFF

format instead of flex format.

5.4 Conclusion

The research focuses on modeling a parallel algorithm in C code that would extract

textural features from HCS data. Most of the textural feature extraction algorithms used

in HCS are computationally complex and intensive, requiring huge amount of time to

process. Comparatively, Threshold Adjacency Statistics (TAS) by Hamilton et al. has

proven to be more efficient in speed and accuracy than other algorithms. As well as,

according to our review, this is the first work to date on parallelizing TAS and evaluating

its performance. Scalability and speedup tests were performed on the model to evaluate

the level of parallelism in the code. The running time and the quality of the code were

also compared with the Acapella feature extraction software. Despite the limitation of

http://loci.wisc.edu/software/jar2lib

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

76

the hardware (testing quad-core PC) where the performance evaluation test was

performed, our model has provided better results than serial processing software.

5.5 Future Work

In this thesis we have used TAS features for parallelization, but other subcellular

localization feature mentioned in section 2.3 needs to be explored on parallel modes in

future. Furthermore, as seen from table 5.2 that the conversion from flex to tiff was very

time consuming. This conversion could be performed in parallel to reduce the

computational time. Another possibility could be operating on multiple images in

parallel. Due to the limitation of the hardware, the program operates on one single input

image at each run. If multiple images could be executed in parallel, the computational

speed would immensely increase. But, this will require customized and expensive

hardware.

Another directional approach could be applying TAS on other multicore hardware

technologies, for example, FPGA and GPU. For further study, a comparative analysis of

this parallel hardware would provide a better insight on their performances. In past

FPGA and GPU technologies have been proven to provide better performance on texture

and morphological features. In addition to the hardware, using advance optimization

algorithm and data structure would also be an advantage to the processing speed.

Advance data structure algorithm, such as link list, graph and hash table will also

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

77

improve the execution time of the software. The developed software does not assign

tasks to specific core. By using windows programming specific tasks could be assigned

to specific core which will provide an equal distribution of load to all the cores. This will

also optimize the overall use of cores.

Figure 4-10 in chapter four represents the feasible concurrent execution path of the

software that could be executed in parallel. All the tasks between the parallel lines in the

figure are independent, and could be executed in parallel. Due to time constraint, the

thesis has only parallelized the code after segmentation. The optimal performance of the

code could be further evaluated by parallelizing the segmentation tasks of the software.

For further work, it is recommended to try different combination of concurrent execution

path from figure 4-10, tasks that are between the parallel lines, to identify the optimal

processing speed of the software.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

78

References

Bickle, M. (2010). The beautiful cell: high-content screening in drug discovery.

Analytical and bioanalytical chemistry, 398(1), 219–26. doi:10.1007/s00216-010-

3788-3

Bio-Formats | LOCI.. Retrieved September 3, 2012, from

http://loci.wisc.edu/software/bio-formats

Biostatus. (2012). Biostatus. Retrieved September 3, 2012 from

http://www.biostatus.com/product/draq5/

Blaise Barney. (2012). Introduction to Parallel Computing. Retrieved June 20, 2012 from

https://computing.llnl.gov/tutorials/parallel_comp/

Brown, R. G. (2000). Amdahl’s Law & Parallel Speedup. Retrieved September 3, 2012,

from http://www.phy.duke.edu/~rgb/brahma/Resources/als/als/node3.html

Canada, C. (2012). General cancer statistics at a glance. Retrieved September 3, 2012

from http://www.cancer.ca/

Canny, J. (1986). A computational Approach to edge detection. IEEE Transactions on

Computers, 8, 679–698.

Doyle, L. a, Ross, D. D., Sridhara, R., Fojo, a T., Kaufmann, S. H., Lee, E. J., & Schiffer,

C. a. (1995). Expression of a 95 kDa membrane protein is associated with low

daunorubicin accumulation in leukaemic blast cells. British journal of cancer, 71(1),

52–8. Retrieved September 3, 2012 from

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2033479&tool=pmcentr

ez&rendertype=abstract

Eliceiri, K. W., Berthold, M. R., Goldberg, I. G., Ibáñez, L., Manjunath, B. S., Martone,

M. E., Murphy, R. F., et al. (2012). Biological imaging software tools. Nature

methods, 9(7), 697–710. doi:10.1038/nmeth.2084

Elmer, P. (2008). O PERA
TM

 Software Manual. Opera Software Manual.

Fabbro, D., Ruetz, S., Buchdunger, E., Cowan-Jacob, S. W., Fendrich, G., Liebetanz, J.,

Mestan, J., et al. (2002). Protein kinases as targets for anticancer agents: from

inhibitors to useful drugs. Pharmacology & therapeutics, 93(2-3), 79–98. Retrieved

from http://www.ncbi.nlm.nih.gov/pubmed/12191602

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

79

Faivre, S., Djelloul, S., & Raymond, E. (2006). New paradigms in anticancer therapy:

targeting multiple signaling pathways with kinase inhibitors. Seminars in oncology,

33(4), 407–20. doi:10.1053/j.seminoncol.2006.04.005

Fotiadis, D. (2002). Scattering and Biomedical Engineering. Greece: World Scientific

Publishihng Co. Ltd.

Gao, Q.-B., Jin, Z.-C., Wu, C., Sun, Y.-L., He, J., & He, X. (2009). Feature Extraction

Techniques for Protein Subcellular Localization Prediction. Current Bioinformatics,

4(2), 120–128. doi:10.2174/157489309788184765

Gasparri, F., Sola, F., Bandiera, T., Moll, J., & Galvani, A. (2008). High-content analysis

of kinase activity in cells. Combinatorial chemistry & high throughput screening,

11(7), 523–36. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18694389

Ghoreschi, K., Laurence, A., & O’Shea, J. J. (2009). Selectivity and therapeutic

inhibition of kinases: to be or not to be? Nature immunology, 10(4), 356–60.

doi:10.1038/ni.1701

Gonzalez, R. C. (2008). Digital Image Processing, (third.). New Jersey: Prentice Hall.

Grama, Aananth, Gupta, Anshul, Karypis, G. (2003). Introduction to Prallel Computing

(second.). ACM Press. Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:[+Team+LiB+]+?

#6

Greco, J. (2005). Parallel image processing and computer vision architecture,

undergraduate thesis, University of Florida, Florida.

Hamilton, N. a, Pantelic, R. S., Hanson, K., & Teasdale, R. D. (2007a). Fast automated

cell phenotype image classification. BMC bioinformatics, 8, 110. doi:10.1186/1471-

2105-8-110

Hamilton, N. a, Pantelic, R. S., Hanson, K., & Teasdale, R. D. (2007b). Fast automated

cell phenotype image classification. BMC bioinformatics, 8, 110. doi:10.1186/1471-

2105-8-110

Hamilton, N. a, Wang, J. T. H., Kerr, M. C., & Teasdale, R. D. (2009). Statistical and

visual differentiation of subcellular imaging. BMC bioinformatics, 10, 94.

doi:10.1186/1471-2105-10-94

Haney, S. A. (Ed.). (2008). High Content Screening. Hoboken, NJ, USA: John Wiley &

Sons, Inc. doi:10.1002/9780470229866

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

80

Haralick, R.M.K. Shanmuga, I. D. (1973).Texture features for imageclassifiactaion.

.IEEE transaction system and management, SMC3, 610–621.

Invitrogen. (2012). Invitrogen. Retrieved September 3, 2012 from

http://products.invitrogen.com/ivgn/product/D1199

M. Tuceryan and A. K. Jain, ``Texture Analysis,'' In The Handbook of Pattern

Recognition and Computer Vision (2nd Edition), by C. H. Chen, L. F. Pau,

P. S. P. Wang (eds.), pp. 207-248, World Scientific Publishing Co.,

1998. (Book Chapter) Kao, W. Y., Davis, C. E., Kim, Y. I., & Beach, J. M.

(2001). Fluorescence emission spectral shift measurements of membrane potential in

single cells. Biophysical journal, 81(2), 1163–70. doi:10.1016/S0006-

3495(01)75773-6

Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B.

T., Chan, K. W., et al. (2008). A quantitative analysis of kinase inhibitor selectivity.

Nature biotechnology, 26(1), 127–32. doi:10.1038/nbt1358

Kheirkhah, F. M., & Haghipour, S. (2010). Classification of Subcellular Location

Patterns in Fluorescence Microscope Images Based on Modified Threshold

Adjacency Statistics. Biomedical Engineering, 1–7.

Kumar, Vipin, G. A. (1994). Analyzing scalibility of parallel algorithms.pdf. Journal of

Parallel And Distributed Computing, 22, 379–391.

Levsky, J. M., & Singer, R. H. (2003). Gene expression and the myth of the average cell.

Trends in cell biology, 13(1), 4–6. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/12480334

Liu, F. (2012). Contributions to Statistical Image Analysis for High Content Screening.

PhD thesis, University of Michigan, Michigan

LOCI. (2012). BioFormat. Retrieved September 3, 2012 from

http://loci.wisc.edu/software/bio-formats

Lu, Y., Lu, J., Liu, T., & Yang, J. (2010). Automated Cell Phase Classification for

Zebrafish Fluorescence Microscope Images. 2010 20th International Conference on

Pattern Recognition, 2584–2587. doi:10.1109/ICPR.2010.633

Mcandrew, A. (2004). An Introduction to Digital Image Processing with Matlab Notes

for SCM2511 Image Processing 1 Semester 1 , 2004. Image Processing.

Messerli, V. (1998). Tools for Parallel I / O and Compute Intensive Applications, 1915.

http://cs.iupui.edu/~tuceryan/research/ComputerVision/texture-review.pdf

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

81

Mooney, L. M., Al-Sakkaf, K. a, Brown, B. L., & Dobson, P. R. M. (2002). Apoptotic

mechanisms in T47D and MCF-7 human breast cancer cells. British journal of

cancer, 87(8), 909–17. doi:10.1038/sj.bjc.6600541

Murphy, R. F., Velliste, M., & Porreca, G. (2003). Robust Numerical Features for

Description and Classification of Subcellular Location Patterns in Fluorescence

Microscope Images ∗. Neural Networks, 311–321.

N, O. (1979). Threshold Selection Method Form Gray-level Histogram”. IEEE Trans

SMC, 62–66.

Nanni, L., & Lumini, A. (2008). A reliable method for cell phenotype image

classification. Artificial intelligence in medicine, 43(2), 87–97.

doi:10.1016/j.artmed.2008.03.005

Niederlein, A., Meyenhofer, F., White, D., & Bickle, M. (2009). Image analysis in high-

content screening. Combinatorial chemistry & high throughput screening, 12(9),

899–907. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19531001

Oberholzer, M., Ostreicher, M., Christen, H., & Brühlmann, M. (1996). Methods in

quantitative image analysis. Histochemistry and cell biology, 105(5), 333–55.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8773570

Peng, H. (2008). Bioimage informatics: a new area of engineering biology.

Bioinformatics (Oxford, England), 24(17), 1827–36.

doi:10.1093/bioinformatics/btn346

Pepperkok, R., & Ellenberg, J. (2006). Microscopy for systems biology. Group,

7(September), 690–696.

Rausch, O. (2006). High content cellular screening. Current opinion in chemical biology,

10(4), 316–20. doi:10.1016/j.cbpa.2006.06.004

Ronneberger, O., Baddeley, D., Scheipl, F., Verveer, P. J., Burkhardt, H., Cremer, C.,

Fahrmeir, L., et al. (2008). Spatial quantitative analysis of fluorescently labeled

nuclear structures: problems, methods, pitfalls. Chromosome research : an

international journal on the molecular, supramolecular and evolutionary aspects of

chromosome biology (Vol. 16, pp. 523–62). doi:10.1007/s10577-008-1236-4

Roumi, M. (2009). MSc THESIS Implementing Texture Feature Extraction Algorithms on

FPGA. Electrical Engineering.

Secko, D. (2011). Protein phosphorylation: a global regulator of cellular activity. The

Sceince Creative Quarterly, 6.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

82

Shahbahrami, A., Pham, T. A., & Bertels, K. (2011). Parallel implementation of Gray

Level Co-occurrence Matrices and Haralick texture features on cell architecture. The

Journal of Supercomputing, 59(3), 1455–1477. doi:10.1007/s11227-011-0556-x

Silberschatz, A., Galvin, P. B., & Gagne, G. (2004). Operating System Concepts, Seventh

Edition (p. 921). John Wiley & Sons. Retrieved from

http://www.amazon.com/Operating-System-Concepts-Seventh-

Edition/dp/0471694665

Starkuviene, V., & Pepperkok, R. (2007). The potential of high-content high-throughput

microscopy in drug discovery. British journal of pharmacology, 152(1), 62–71.

doi:10.1038/sj.bjp.0707346

Tanenbaum, A. (2007). Modern Operating System. New jersey: Prentice Hall.

Wollman, R., & Stuurman, N. (2007). High throughput microscopy: from raw images to

discoveries. Journal of cell science, 120(Pt 21), 3715–22. doi:10.1242/jcs.013623

Wong, S. T. C. (2006). Informatics challenges of high-throughput microscopy. IEEE

Signal Processing Magazine, 23(3), 63–72. doi:10.1109/MSP.2006.1628879

Yang, X., Beyenal, H., Harkin, G., & Lewandowski, Z. (2000). Quantifying biofilm

structure using image analysis. Journal of microbiological methods, 39(2), 109–19.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10576700

Zanella, F., Lorens, J. B., & Link, W. (2010). High content screening: seeing is believing.

Trends in biotechnology, 28(5), 237–45. doi:10.1016/j.tibtech.2010.02.005

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

83

Appendix A

Statistical Analysis

A data set is being collected to understand the statistical properties of the whole

population. A subset size is N=2,304 trials (N) of data and it was taken from

Biophotonics Lab. The minimum, maximum and average numbers of cells found were 0,

180 and 53.47, respectively. The standard deviation of the data was σ=32.43. The

histograms in Figure A-1 shows the frequency of occurrence (n) and normalized

occurrence (n/N) versus the number of cells. The bin width of σ≈8. The probability

distribution function, PDF=(n/N)/Δx, is also depicted in Figure 5-7. One observes in the

figure that the distribution is skewed.

M.A.Sc . Thesis- Tamnun-E-Mursalin; Mcmaster University-Biomedical Engineering.

84

Figure A-1: Histograms of Probability density function plot, shown alongside the

frequency of occurrence of various cell counts.

Figure A-2 compares the data distribution to the standard normal distribution. The blue

curve corresponds to the normalized probability density function of the distribution

deviated from the mean with 1 standard deviation and 0.25 bin width. The pink line

represents the normal distribution.

Figure A-2: Probability density function of the experimental data plotted with

closest matching to normal distribution

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-6 -4 -2 0 2 4 6 8 10

s
td

*P
D

F
,

s
td

*(
n
/N

)/
b
in

.w
id

th
 z

.

normalized deviation from average, in number of standard deviations

normalzed.PDF std*(n/N)/bin.width
PDF norm.dist

