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Abstract 

High-content screening (HCS) produces an immense amount of data, often on the scale of 

Terabytes.  This requires considerable processing power resulting in long analysis time. 

As a result, HCS with a single-core processor system is an inefficient option because it 

takes a huge amount of time, storage and processing power. The situation is even worse 

because most of the image processing software is developed in high-level languages 

which make customization, flexibility and multi-processing features very challenging.  

Therefore, the goal of the project is to develop a multithreading model in C language.  

This model will be used to extract subcellular localization features, such as threshold 

adjacency statistics (TAS) from the HCS data.  The first step of the research was to 

identify an appropriate dye for use in staining the MCF-7 cell line. The cell line has been 

treated with staurosporin kinase inhibitor, which can provide important physiological and 

morphological imaging information. The process of identifying a suitable dye involves 

treating cells with different dye options, capturing the fluorescent images of the treated 

cells with the Opera microscope, and analyzing the imaging properties of the stained 

cells. Several dyes were tested, and the most suitable dye to stain the cellular membrane 

was determined to be Di4-Anepps. The second part of the thesis was to design and 

develop a parallel program in C that can extract TAS features from the stained cellular 

images. The program reads the input cell images captured by Opera microscopes, 

converts it to TIFF format from the proprietary Opera format, identifies the region-of-

interest contours of each cell, and computes the TAS features.  A significant increase in 

speed in the order of four fold was obtained using the customized program. Different 

scalability tests using the developed software were compared against software developed 

in Acapella scripting language.   The result of the test shows that the computational time 

is proportional to number of cells in the image and is inversely proportional to number of 

cores in a processor. 
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1 Introduction 

 

1.1 Motivation 

Since its discovery 10 years ago, information obtained from high content screening 

(HCS) has considerably advanced the field of drug discovery (Bickle, 2010).  HCS has 

been well practised in all aspects of the drug discovery pipeline.  It was widely used in 

primary screening, RNAI technology, toxicity analysis, and lead optimization (Rausch, 

2006).  Imaging in HCS has stimulated the advancement of two different fields: 

improvement of the hardware in automated microscopes and the enhancement of feature 

extraction software for image analysis (Zanella, Lorens, & Link, 2010). A standard 

screening would require several steps: incubation of cells in 96 or 384 well plates, 

treatment of cells with chemical compounds, staining with relevant fluorophores or 

tagged proteins, imaging each well by state of the art microscopes, and then finally 

interpretation of the images with quantifiable measurements.  The root of the screening is 

the image analysis process where millions of multi parameter features are extracted.  

Examples of these extracted features are: texture, morphology, intensity and spatial 

distribution. However, with the advancement of HCS, there are still  numerous challenges 

within the field of image computing, particularly in image processing, data mining, and 

visualization (Peng, 2008). 
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Even with huge development in high content screening analysis, there is still a desperate 

need to overcome the current hardware and software limitations (Starkuviene & 

Pepperkok, 2007).  Rapid technical development in the field of fluorescence microscopy 

has enabled researchers to collect massive amounts of data; however, more processing 

power and data modeling tools would be required. Futhermore, with advancements in the 

fields of multispectral fluorophores, quantum dots, and fluorescent proteins: different 

cellular phenotypes of a cell can be measured with various parameters, which demand 

intensive computation, requiring more advanced algorithms and advanced hardware 

technology. For example, in a simple screening experiment a cell by cell image 

processing analysis of multiple spectra would require a huge computational power and 

time to process. However, due to the limitations on existing analysis software in the 

context of speed, the averaged population data was commonly used;  this  lacked detailed 

biological information of the phenotypes(Levsky& Singer, 2003).  Current image 

analysis tools lack compatibility and integration, which consequentially failed to carry on 

with the high demand on processing of screening data (Wong, 2006); hence the benefit of 

HSC has not been fully exploited.  Nevertheless, as the acquired data grows, the mining 

of biological knowledge has surpassed the capability of image processing tools. 

Therefore a different approach, such as parallel processing, would be needed to reduce 

the gap between current biological advancement and technological drawbacks. 
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1.2 High Content Screening: From Microscopy Imaging To Machine Learning 

High content screening can be defined as a sequence of task flows where collective 

compounds are tested to observe the biological activities of living cell. Antje et al. have 

defined high content screening as phenotypic screening of cells on a multi well plate that 

uses tasks involved with automated microscopy, followed by automated image analysis, 

and analysis of many numerous numerical features. Thus, understating the workflow of 

high content screening is very significant.  Every stage of the screening pipeline is very 

important and must be performed carefully, following proper protocol and understanding 

of the automation system through each step.  Successful completion of one step is highly 

dependent on the previous successful step; therefore any error in any stage of the pipeline 

will affect the image analysis process. However, the screening task flow could also be 

designed according to the experiments and the biological questions; hence, number of 

factors needs to be considered and optimized (navigating).  Despite the flexibility of 

screening workflow, a typical high content screening experiment can be divided into the 

five following steps: 

 

1.2.1 Assay Development 

Assay development is required step of the High Content Analysis process. The first part 

of the assay involves selecting the cell lines for the experiments, which mainly depends 

on the particular research area of interest.  Once the cell lines have been selected, the 

cells need to be cultured so that there are enough cells on the culture surface to perform 

screening; however, the culture surface should not be too confluent.  Next, the cells are 
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transferred to multi well micro-plates of various well densities (48, 96 and 384). Drugs 

and compounds, of appropriate concentrations are added to the wells which are left to 

incubate or kinases to react with the cells.   The cell type, plated cell density and the 

incubation time differ from assay to assay based upon the experiments.  Post –Assay 

processing is performed by labelling cells with different fluorescent tags.  The mostly 

commonly -used fluorescent labels are fluorescent proteins, fluorescent dyes and 

antibodies.  The excitation and emission spectra of the fluorescent tags need to be 

carefully analyzed with respect to target identification (Haney, 2008). 

 

1.2.2 Image Acquisition 

After the cells are treated with the targeted drug, they are ready for acquisition of 

microscopic images.  The choice of microscopic hardware is dependent on two types of 

microscopy systems: confocal and wide field.   The selection is based upon microscope 

resolution, the size of the object, and the information that needs to be collected.  For 

instance, a confocal microscope uses a pin hole to eliminate out of focus light, thereby 

providing better resolution; by contrast a wide field microscope includes all out of focus 

light, but has more signal to noise ratio and fast acquisition time.  In order to achieve an 

appropriate measurement of the targeted objects the acquired images from the microscope 

must not contain out of focus light, a good image resolution, and no over or under 

exposed light.  To achieve this goal, proper selection of the exposure parameters, 

excitation filter, emission filters and focus parameters of the microscope is essential 

(Niederlein, Meyenhofer, White, & Bickle, 2009). 
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1.2.3 Segmentation 

Segmentation is the third, and mostcrucial process on high throughput image automated 

screening.  The purpose of segmentation is to identify the targeted objects where 

measurements need to be calculated.  There are various predefined algorithms for 

segmentation that are commonly used to identify targeted substances in High content 

screening analysis.  The most popular segmentation strategies  are Ostu’s method (N, 

1979), Sobel (Sobel et al) and Canny(Canny, 1986) .   Combination of all these 

segmentation methods also results into obtaining satisfactory results.  The output of the 

segmentation process is the masks images which are binary images that locate the objects 

of interest for quantifiable measurement (Niederlein et al., 2009)(Oberholzer, Ostreicher, 

Christen, & Brühlmann, 1996). 

 

1.2.4 Feature Extraction 

Once the segmentation process has been successful, the output mask images locating the 

identified objects are used to extract quantifiable features.  Different statistical 

approaches are used to extract various features, such as, texture, morphology, and 

intensity.  These features are extracted from single or multiple fluorescence channels 

from the same field of view.  In high content analysis, huge volumes of data are 

generated from feature extraction, often in the terabytes (Wollman & Stuurman, 2007) 

ranges, and not all these data are informative or useful. To get a subset of useful data 

feature selection methods are used.  Formal algorithms, such as Stepwise Discriminate 
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Analysis and Principal Component Analysis are used to decide the minimum features 

needed for the proper classification (Kheirkhah & Haghipour, 2010).  

 

1.2.5 Machine Learning 

After selection, the subsets of feature extraction, machine learning can be used to classify 

the data or to identify the similarity and dissimilarity on biological phenotypes with the 

desired phenotypes.  For instance, to find out how similar or different are the extracted 

features with the desired changes of the labelled sample.   Three major classifiers are 

used: supervised, semi supervised and unsupervised.  In the supervised classifier, the 

model is trained with the sample data or control data sets where the labels of the patters 

are known, and then the classifier is tested with the extracted features (Yang, Beyenal, 

Harkin, & Lewandowski, 2000).  Common supervised learning models are neural 

network, support vector machines, and KNN (Wong, 2006). While in unsupervised 

learning, the learning is performed with unlabeled data set, the computer divides the input 

cells in different categories.   Lastly, the semi-supervised models uses both trained and 

untrained data. 

 

1.3 Project Goals 

 To design parallel computation software to reduce the processing time of HCS 

data and extracting Threshold Adjacency Statistics feature from it. 

 To compare the results of low level programming language, such as C, with 

scripting language, Acapella. 
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 To investigate the morphology and texture features of MCF-7 cell lines treated 

with staurosporine kinase inhibitor. 

 To find an suitable dye that stains MCF-7 cell lines treated with staurosporine 

kinase inhibitor. 

 

1.4 Motivation 

Based on cancer statistics in year 2012, 88,800 Canadian women and 97600 men will be 

diagnosed with cancer each year. On an average day,  500 Canadians will be diagnosed 

with cancer and 200 will die of cancer every day(Canada, 2012).    Cancer can be defined 

in medical terms as a disease of abnormal cell proliferation, where these cells are capable 

invading other tissue through the blood and lymph systems.   There are over 100 different 

types of cancer, where the naming convention refers to the organ where the cancer 

originated.  For instance, cancer that origins in the lungs are referred as lung cancer.  

Cells are continuously being signalled to proliferate, differentiate or die.  However, in 

cancer cells, a protein that dictates the signal is disrupted due to a gene mutation.  This 

allows the cells to proliferate autonomously and spread, causing a tumour.  These signal 

transducer proteins are called kinases; kinases transduce signals in a cascade pathway 

from the outer membrane of a cell to the nucleus by phosphorylation.  Phosphorylation is 

a process where  a kinases add phosphate to an amino acid chain of a protein which 

changes the characteristics of the phosphorylated protein(Faivre, Djelloul, & Raymond, 

2006).  The hydroxyl groups (-OH) of serine, threonine, or tyrosine,  amino acid side 

chains are the most common target to bond a phosphate molecule for phosphorylation 



M.A.Sc . Thesis- Tamnun-E-Mursalin;  Mcmaster University-Biomedical Engineering. 

19 
 

(Secko, 2011) .  To inhibit this pathway, researchers have developed kinase inhibitors as a 

cancer therapeutic drug.  Kinase inhibitors inhibit the signals of different families of 

kinases by targeting a specific kinase in a group, thus interrupting phosphorylation. 

Unlike conventional therapy, such as chemotherapy, which fails to discriminate between 

normal cells and tumor cells, kinase inhibitors are more target specific directed towards 

cancer-specific molecules. These target specific therapies are more therapeutic and 

provides less toxicity than chemotherapy. Nevertheless, specificity of the kinase 

inhibitors, targeting a specific protein kinase,  is still challenging and  their inhibition 

selectivity is currently under research (Gasparri, Sola, Bandiera, Moll, & Galvani, 2008) 

(Karaman et al., 2008).  Karaman et al have tested the activities of 38 kinase inhibitors 

against 287 kinases.   They have worked on the affinity factor of these kinase inhibitors 

and found kinase inhibitors off targeting to unrelated kinases.  Despite their limitations, 

they are considered one of the most promising target based therapeutic treatment for 

cancer due to their specificity.  Understanding the specificity of kinases require complex 

screening with advance microscopic technologies and image analysis modalities(Fabbro 

et al., 2002).  These screening produces huge amount of data and needs fast processing, 

thus can only be achieved by high content screening.  It is our belief that HCS would 

provide researchers and biologist with the methodologies and technologies to uncover the 

mysteries of these target specific drugs.  Considering this as our incentive, the motivation 

of the project is using the kinase inhibitor as our test bed for the experiment of applying a 

solution to accelerate the HCS processes through the development of fast and advanced 

parallel textural feature extraction software.  The increased speed of analysis will 
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therefore, decrease the time of experiment and increase the number of screening, making 

kinase inhibitor treatment more viable option for cancer treatment. 

 

1.5 Major Contributions of the Thesis 

 A new parallel image processing technique to extract textural feature was applied 

on HCS data.   This has been proven to be the most efficient technique by previous 

researchers.  Hamilton et al. (2007) have computed threshold adjacency statistics features 

to distinguish sub-cellular localization of cells more efficiently and accurately than other 

image statistics computations. TAS has also been widely used in the biomedical field 

primarily for protein subcellular localization. By understanding the behavior of all 

expressed protein will simulate cell behavior and therapeutic efficiency. Even though the 

algorithm has proven to be faster and more efficient than other image statistics 

algorithms, the algorithm’s performance was never tested on parallel model. To our 

knowledge, this is the first attempt at applying a parallel image processing technique to 

TAS. 

 

 A parallel program was developed for feature extraction in C language for HCS 

data.  Implementation for the parallel model for computation and I/O intensive HCS data 

is not a trivial task, due to its inherent complexity and error-prone nature.  A minor error 

in the code can lead to a race condition scenario or deadlock (Messerli, 1998).  The 

difficulty of developing parallel models is one of the major factors preventing 
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commercial software for developing their own parallel image analysis software, which 

currently run primarily on single processor systems.  In summary, this project develops, 

for the first time, a parallel C program for TAS feature algorithm and apply it HCS data. 

The performance is then measured and compared to the commercial offerings. 

 

1.6 Thesis Organization 

In this chapter the motivation for the project as well as an introduction to the facets of the 

project is provided.  In Chapter 2 the background information on texture features and 

subcellular localization features are discussed.  In Chapter 3 the problems and challenges 

involved in HCS software are mentioned.  In Chapter 4, various solutions, their 

advantages and disadvantages, with an emphasis on parallel computation as a solution are 

introduced.  Then the experimental setup and software implementations are explained in 

details.  The results of this research, conclusions and future work are presented in Chapter 

5. 
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2 Subcellular Localization Features  

 

After explaining the concept of HCS, this chapter elaborates on background information 

in image analysis, texture features and existing texture feature extraction algorithms in 

the context of subcellular localization features. An efficient feature extraction algorithm, 

Threshold Adjacency Statistics (TAS), is also introduced, used primarily for extracting 

meaningful numerical descriptors of subcellular localization of proteins.  An example and 

statistical interpretation of TAS follows, and compares the performance of TAS with 

existing feature extraction algorithms, such as, Haralick, Zernike Moment, and Local 

Binary Pattern.   

 

2.1 Image Analysis  

According to Gonzalez, an image can be defined as f (x, y), where x and y denotes the 

spatial plane of the image and the amplitude of any coordinates in the plane represents the 

intensity.  Digital images are images processed by computers with finite elements, each 

representing a particular value and location of the image, referred as pixel. The image is 

represented as 2D array, and each element of the array is a pixel corresponding to a 

particular value and location.  Base on the range of possible values that a pixel can hold, 

images can be divided into three types.  A binary image can only hold two possible 

values (0 and 1) in each pixel.  This type is often obtained by thresholding a greyscale 
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image: any values above a threshold are presented as a 1, and values below the threshold 

are presented as 0. A greyscale image typically has a bit depth is 8 bits, providing a 

range of possible intensity values from 0 to 255.  Finally, a color image is represented by 

24 bits for each pixel, with the brightness and color information combined (Jain, 1998).  

Image analysis can be defined as an operation that is performed on an image to extract 

meaningful information. If these operations are applied in digital images, it is referred to 

as digital image processing. The processing of an image can be simple, or as complex as 

facial recognition.  In the biomedical field, image analysis is applied to quantify 

phenotype properties of cells, such as the aspect of shape, intensity, co-localization, 

texture etc. Among all of the feature extraction algorithms applied in cell imaging, 

particularly focusing on subcellular localization features, texture is the mostly commonly 

used numerical descriptor (Wong, 2006). 

 

2.2 Texture 

Texture can be defined as the variation of intensities across an image, or a variance of 

pixel values from one pixel to another pixel within an image or local portion of an image.  

Texture can also be defined as a spatial distribution of greyscale pixels, and their 

relationship with neighbours (Haralick, R.M.K. Shanmuga, 1973).  Texture analysis 

provides the most significant information in the biological field. This analysis can be 

done by extracting information from the interested region and differentiating it with 

another texture group (Haney, 2008).  For instance, Haralick texture features provide the 

information about different types of textural measurement on contrast, uniformity and 
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complexity across the region of interest (Haralick, R.M.K. Shanmuga, 1973).   There are 

various textural feature extraction algorithms that have been developed, but their 

intensive computation is still a challenge for investigators.  However, in the context of 

subcellular localization features, there are only few algorithms that have been tested so 

far. Among them, the most common are Haralick texture, Zerenike Moments, Local 

Binary Pattern and Threshold Adjacency Statistics. 

 

2.3 Feature Extraction Algorithm for Subcellular Localization 

Subcellular localization can be defined as the localization of molecular compounds or 

proteins in a specific compartment within a cell. The locations of the probe and the 

protein are correlated, and can be used as a tool in understanding the function of proteins 

or the molecular probe. Understanding the subcellular localization of protein provides 

information on the biological activity of the compound that is being localized, and the 

relationship between the biological compound and the cellular compartment in which it is 

localized (Liu, 2012).  Computational methods for predicting this localization pattern are 

very important in understanding the biological activity of the cell at an organelle level.  

Despite their importance, the progress on developing computational methods to extract 

subcellular feature is still limited (Gao et al., 2009). 

 

However, Murphy et al. have designed a numerical subcellular location feature set to 

analyze the subcellular distribution of proteins (Murphy, Velliste, & Porreca, 2003).  

These features include the Haralick texture feature, Zerenike Moment feature, Convex 
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hull and derived feature from morphology.  Detail algorithm of these features is described 

below: 

 

The Haralick texture feature is considered one of the most important feature analysis 

methods, widely used in the biomedical field, as well as in the processing of radar signals 

and control systems.  In the computation of Haralick texture features, four grey level co-

occurrence matrices (GLCM) are created. The GLCM is a tabulation of how often 

different combinations of pixel brightness values (grey levels) occur in an image.  The 

GLCM description of texture considers the relation between two pixels at a time, called 

the reference and the neighbour pixel (Roumi, 2009).  The Haralick texture method 

requires producing matrices for each angle and for each offset. This produces a total of 

four for each angular direction (horizontal, vertical, left and right diagonal); and a total of 

four for offset zero and one.  These matrices are very large; with their imensions 

dependent on the depth of the pixel intensity.  Thirteen texture features are calculated 

from these matrices, following the five steps shown on the flow diagram (Figure 2-1) 

below, which measure the homogeneity, contrast, complexity, etc. (Haralick, R.M.K. 

Shanmuga, 1973).    
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Figure 2-1: Five steps for calculating the Haralick textural feature matrices. 
 

Zernike moment is another effective statistical descriptor to distinguish subcellular 

localizations (Hamilton, Wang, Kerr, & Teasdale, 2009). Zernike moment calculates 49 

texture features, providing information on rotation and translation invariance.  Zernike 

moment is calculated by first calculating the center of the mass of each cell, than 

subtracting the value of each pixel with the center of the mass and dividing the result by 

the user-specified cell radius R.  Then, to find the ratio of similarities between grey level 

pixel distributions, the correlation between the transformed image and Zernike 

polynomial is performed.  Only the amplitudes of pixels within the unit circle of the 

normalized image are used(Lu, Lu, Liu, & Yang, 2010)(Liu, 2012).  One of the 

disadvantages of Zernike features is that it is can only be applied to single cell images. As 

a result, each cell needs to be cropped prior to processing.  Consequently, it requires a 

very long pre-processing time. For instance, in an experiment by Hamilton et al., pre-

processing of Zernike features of 503 images, cropped to 1420 single cells, took 4 

minutes and 16 seconds. The total processing time was 17 minutes and 22 seconds to 

extract the full feature extraction algorithm.  As well, when Zernike moment was tested 

as a classifier compared with Haralick and TAS, it provided the lowest accuracy of 

68.2%, compared to others 86% and 83.3%, respectively. 
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Morphology is commonly used to define the shape of the image: the boundaries, 

skeleton and convex hull (Mcandrew, 2004).  It also provides information related to the 

shape of the cell, such as perimeter, area and ratio.  From a mathematical perspective, 

morphology is presented in set theory, where two objects in an image can be identified as 

two sets, set A and set B. There are two main morphological operators: erosion and 

dilation. Erosion subtracts the value of a pixel from the border of the image, while 

dilation adds the value of a pixel on the image.  Other operators, such as fill and 

connected, open and closed, boundary and skeleton, are based on the  erosion and dilation 

operator (Gonzalez, 2008).  Understanding the shape of the cell or organelles provides the 

user with significant biological information.  For instance, staining MCF-7 cells with 

Draq5 will provide information of the nucleus, specifically whether the cell is going 

through mitosis or apoptosis.  A condensed nucleus is indicative that the cell is going 

through apoptosis, with chromatin condensation (Mooney, Al-Sakkaf, Brown, & Dobson, 

2002), whereas a round cell shape indicates that the cell is poorly attached (Haney, 2008), 

etc.  In the field of subcellular localization, tagged proteins can be useful in segmentation 

of different subpopulations of cells growing together, such as neurons. 

2.4 An Efficient Feature for Subcellular Localization: Threshold 

Adjacency Statistics (TAS) 

Proteins play a major role in cell function, and the location of a protein in a cell can 

provide vital information for understanding the behaviour of the cell.  This is why 

subcellular location of proteins in cells has become one of the most important studies in 
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biological science (Kheirkhah & Haghipour, 2010).  Traditionally, labour-intensive 

manual visual inspection was the only approach available for identifying the protein’s 

location (Nanni & Lumini, 2008).  However, due to the development of fluorescence 

imaging and image analysis algorithms used in HCS, identifying the subcellular locations 

of proteins has become easier more manageable task. Efficient statistical modeling 

techniques are applied on fluorescence-labelled cellular images to extract features from 

the spatial distribution of proteins.   Despite their efficiency, these feature extraction 

techniques are very complex, and require long computational times with currently 

available hardware technology.  As a result, simpler and faster algorithms are needed in 

order to extract morphological and textural features of proteins in cells. 

 

 In 2007, Hamilton et al. introduced a fast and simple texture feature extraction algorithm 

for this purpose (Hamilton, Pantelic, Hanson, & Teasdale, 2007a).  The algorithm 

thresholds the image, then counts the number of pixels whose intensities are above the 

threshold pixel value of “given number of above threshold pixels adjacent” (Hamilton, 

Pantelic, Hanson, & Teasdale, 2007b).    The algorithm was tested with two types of 

images labelled with endogenously expressed and transfected proteins, providing 98.2% 

and 93.2% classification accuracy, respectively.  It has also outperformed other 

commonly used texture feature algorithms, such as Haralick and Zernike moment in 

terms of accuracy. (Hamilton et al., 2007b).   
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2.4.1 Threshold Adjacency Statistics (TAS) Algorithm 

Unlike other algorithms, the computation of TAS is simple. The image is made binary 

with certain threshold values, and this is performed to distinguish the dissimilarity in the 

threshold image, which is not possible with the naked eye.  Then from the threshold 

image, for each white pixel, the number of neighbouring white pixels is counted. 

Therefore, the first TAS value would be total number of white pixels with no neighbour, 

the second TAS value would be the total number of white pixels with one neighbour, and 

this succession will continue until nine TAS values are calculated.  Finally, these values 

are normalized by dividing all of the computed values with the total number of white 

pixels in the image.  The following is an example that demonstrates the mathematical 

calculation of TAS. 

Example 1:  The example demonstrates the computation of Threshold Adjacency 

Statistics (TAS) by using a 3X3 Matrix: 

Image matrix (3X3): 

 

 

Step 1: First the mean of the matrix is calculated. The mean of the above matrix is 

54/9=6. 

8 7 11 

3 6 9 

6 4 0 
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Step 2: The interested region is identified. In this example, the region is (mean-3, mean 

+3); which give us a range between 3 and 9 So now, by thresholding the values between 

these numbers, the following matrix is obtained: 

 

 

 

 

Step 3: The total number of white pixels is found to be 5. 

Step 4: All of the white pixels are taken and the white pixels in their corresponding nine 

neighbours are counted.  All the values that are zero are X, because TAS algorithm is 

only interested in white pixels. For instance, for Row 1 and Col 1, there are two white 

pixels surrounding it, so the number of white neighbouring pixel is 2.  The resulting 

matrix of adjacent neighbourhood is as follows: 

 

 

 

 

Step 5: The TAS is calculated by normalizing it with total white, according to the 

algorithm.  

TAS 0= Number of pixels with zero white neighbours = 0 

TAS 1= Number of pixels with one white neighbour=4/5=.8 

TAS 2= Number of pixels with two white neighbours =0 

1 1 0 

0 1 0 

1 1 0 

2 2 X 

X 4 X 

2 2 X 
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TAS 3= Number of pixels with three white neighbours =1/5=.2 

TAS 4= Number of pixels with four white neighbours =0 

TAS 5= Number of pixels with five white neighbours =0 

TAS 6= Number of pixels with six white neighbours =0 

TAS 7= Number of pixels with seven white neighbours =0 

TAS 8= Number of pixels with eight white neighbours = 0 

 

2.4.2 Application of Threshold Adjacency Statistics 

TAS is commonly used for analyzing the spatial distribution patterns of protein in a cell 

to understand the biological activities of the cell. Researchers are currently evaluating the 

performance of the algorithm and comparing its performance with other algorithms, by 

testing with different machine-learning tools. Few are optimizing the algorithm to 

increase its efficiency.  Two of the major developments are provided below: Fatema et al. 

have used a different threshold adjacency statistics algorithm, a modified version, to 

extract the sub-cellular protein location features.   The algorithm is similar to Hamilton et 

al but instead of computing the threshold adjacency statistics in one layer around the 

targeted pixel, it calculated three layers of pixel in each white pixel.  The algorithm was 

tested with same set of images, test sets of images by Hamilton on similar model of 

Support Vector machine, provided an accuracy of 97.06%, and outperforming the results 

of Haralick and Zernike moments (Kheirkhah & Haghipour, 2010). 
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Fatema et al. have used a modified TAS algorithm to extract the subcellular protein 

location features.   The algorithm is similar to Hamilton et al, but instead of computing 

the threshold adjacency statistics in one layer around the targeted pixel, it is calculated by 

three layers of pixels surrounding each white pixel.  The algorithm was tested with the 

same set of images as Hamilton on similar model of Support Vector machine (SVM), and 

obtained an accuracy of 97.06%, outperforming the results of Haralick and Zernike 

moments (Kheirkhah & Haghipour, 2010). 

 

Lorins, Nanni et al have used a different approach to improve the accuracy by combining 

different features and classifiers on the 2D-Hela dataset.  The research used two different 

classifiers to test the accuracy: the SVM and the neural network. It also used features of 

Local Binary Patterns, TAS and Haralick.  The results show the neural network performs 

better than SVM and the combination of Haralick and TAS obtains better accuracy, 

98.2% in endogenous dataset and 93.2% in transfixed dataset (Nanni & Lumini, 2008). 

 

2.4.3 Comparison between TAS and other Texture Feature Algorithms 

Texture feature extraction methods are the most widely used algorithm in the medical 

field.  However most of these texture feature algorithms are complex, computationally 

intensive and time-consuming.  For instance, Haralick texture feature (Haralick, R.M.K. 

Shanmuga, 1973), the most commonly used feature extraction algorithm, requires 

creating four grey level co-occurrence matrices in four different angles for each offset, 

which requires very long processing times as well as large storage considerations.  In 
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contrast, TAS does not have any computational overhead besides the size of the threshold 

matrix that it generates.  When Hamilton et al. Processed 503 images with TAS, Haralick 

and Zernike feature algorithms, it took 12 and 18 minutes for Haralick and Zernike to 

extract subcellular features, respectively, while TAS took 60 seconds for 27 textural 

features (Hamilton et al., 2007a). 

 

Another major drawback of other textural feature algorithms is that they require pre-

processing prior to implementation.  Pre-processing is a two-fold problem: requiring 

additional time, as well as providing reduced accuracy (Nanni & Lumini, 2008).  For 

instance, Zernike feature extraction requires pre-processing time for single cell cropping, 

and automated cell selection for cropping may provide variable results by failing to locate 

all cells. To illustrate this problem, in the same experiment mentioned before by 

Hamilton et al., it took 5 minutes of additional time to crop 503 images into 1420 single 

cell images.  In contrast, TAS only requires pre-processing for making binary images by 

thresholding: a 30 percent reduction in processing time (Hamilton et al., 2009).   
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3 PROBLEM DESCRIPTION and Parallel 

Processing 

 

After exploring the background of HCS, feature extraction algorithms, threshold 

adjacency statistics and parallel processing, this chapter will present the current 

challenges and weaknesses of HCS software in general.  The first section illustrates the 

deficiencies of customizability and multiprocessing in current HCS software, as well as 

the shortcomings of high-level scripting language compared to low-level C languages in 

image analysis. The second section follows by analyzing the limitations of contemporary 

three image analysis software packages: cellprofiler, ImageJ and Acapella.  Finally, in the 

next section (2.3), it introduces parallel processing and existing parallel models. 

 

3.1 Challenges of High Content Screening Analysis Software 

Even though optical imaging modalities have advanced, the hardware and the software 

used for image analysis are still in a comparably primitive stage (Eliceiri et al., 2012).  

Due to the extensive development within this field, vast amounts of multiparametric data 

are generated that cannot be analysed by the software and hardware at a fitting pace.  In 

other words, the algorithm of the image analysis software is still not optimized for the 

needs of the HCS system.  The feature extraction algorithms, which are developed for 

different fields and for unique applications, now need to be adjusted and customized 
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according the requirements of HCS data processing.  Current algorithms, such as 

Haralick and Zerenike moments, are no longer suitable for ongoing HCS technology, 

which needs further tuning and optimization to provide faster and more accurate results.  

Alternatively, Threshold Adjacency Statistics (TAS) is a new approach that could provide 

a quicker algorithm that would provide the same magnitude of accuracy with faster 

performance.  On the other hand, along with a suitable software algorithm, the design and 

selection of appropriate hardware, compatible with assay based experiment, is also vital.  

Due to their limited processing power, built-in chips lack flexibility, and biologists are 

included towards other customizable processing hardware, such as, multiprocessing, 

distributed systems and FPGA.  The advantage of these hardware options is that they are 

programmable and expandable according to the need for screening. With proper design 

and implementation these hardware options can provide satisfactory performance, both in 

speed and accuracy.  Despite the flexibility of these architectures, the major challenge is 

to develop an efficient and optimized code that could fulfill the requirement of HCS 

analysis, without compromising speed or accuracy. 

 

Another major bottleneck for HCS is the lack of flexibility and customizability of the 

image analysis software.   Most of the image-processing software that is bundled with the 

microscopes is mainly developed for drug discovery intended for the pharmaceutical 

companies (Niederlein et al., 2009).  These software modules only support functions that 

are needed for drug testing purposes; therefore, they lack flexibility for use in customized 

screening.  They are also very expensive, and the modules only support image processing 



M.A.Sc . Thesis- Tamnun-E-Mursalin;  Mcmaster University-Biomedical Engineering. 

36 
 

of mammalian cells and cellular features (Carpenter et al., 2006).  Nevertheless, few have 

used their own customized scripts and alternative scripting languages to overcome the 

limitations of the commercial software.  Despite the offered scripting language’s 

moderate flexibility compared to the commercial software, it is still dependent on the 

supported library features, and it is slow due to the translation to machine code.  

Furthermore, the major drawback of both of these software options, commercial and 

scripting, is that their algorithms are proprietary software, which lack flexibility of any 

modification and cannot be customized for various complex screening experiments.  The 

software’s source code is hidden, so the algorithms cannot be modified according to the 

experiments.  This prevents the end users from being able to write codes which are 

perfectly suited for their experiments. 

 

An additional downside of image analysis software developed in a scripting language, 

such as Acapella, is that they make use of high-level languages, which are further away 

from the hardware, reducing speed and performance.  High-level languages make it easier 

for the programmer to code and understand the program thus requiring lesser 

programming skills. However, this convenience to the end user is provided by 

compromising the flexibility of the algorithm design at the hardware level. For instance, 

low-level languages, like machine languages and assembly languages, require detailed 

knowledge of the hardware, which provides more design flexibility to the programmer 

due to their direct interaction with hardware.  On the contrary, high-level languages are 

syntax-specific, requiring less programming skill: only the knowledge of the supported 
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syntaxes (Ram, 2005). Therefore, they are easier to program but lack design flexibility.  

Since low-level languages have more control over the hardware, they are faster and more 

resource-efficient.  High-level languages are further away from the hardware, and they 

are dependent on an interpreter or compiler to translate the code into low-level code.  The 

translation process from higher level to machine level makes the scripting language 

slower.  For instance, codes in the Acapella scripting language use an interpreter, a tool 

that translates each line of code to machine code as it is executed during run time, to 

decode scripting syntax to hardware level and an interpreter would require more time to 

translate to a hardware platform than an intermediate-level programming language, such 

as C, C++ or Java.  Due to its control over the hardware, intermediate level languages can 

perform better with finite resources by using resource optimization techniques in the 

code. Programmers can design a task with limited resources by optimizing the memory 

usage, processor speed and storage. 

 

Another shortcoming of the existing software is that they lack the capability of 

multiprocessing. The majority of software is built for a serial processing environment.  

As a result, they typically fail to use a multiprocessing environment efficiently. Serial 

processing software runs a program in a single execution path, on a first-come-first-serve 

basis. As a result, they fail to fully exploit the multi-core environment. Furthermore, the 

load sharing of jobs in serial processing software are not evenly distributed to the entire 

core. Therefore, optimized hardware efficiency is not achievable. Making the situation 

worse, due to their lack of accessibility in the code, end users are also incapable of 
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modifying the code in order to optimize it for multiprocessing technology, like second 

generation languages C, Java, etc. Most of the HCS feature extraction algorithms are 

repeatable operations, meaning the same code is run on different images multiple times. 

Therefore, the goal of implementing code efficiently for parallel environment is of 

significant interest for the biologist. In summary, due to their proprietary nature, lack of 

flexibility, multiprocessing incapability and further limitations, there is a clear need for 

software that would be more customizable for screening needs, with faster processing 

times. 

 

3.2 Existing High Content Analysis Software and Their 

Limitations 

There are two types of existing software in the image analysis arena: 1) proprietary 

software 2) open-source software (Niederlein et al., 2009).  The proprietary software can 

be further divided as the one that comes bundled with the microscope, and separate image 

analysis software that can be integrated with microscopy images. Microscope packaged 

software is limited to the processing features and operations supported by the microscope, 

compared to customary proprietary image analysis software. Despite their easy-to-use 

features and minimal programming skill requirements, proprietary software packages are 

extremely expensive and are limited to built-in features (Lamprecht, Sabatini, & 

Carpenter, 2007).  However, open-source software is not typically restricted with any 

license, and is less expensive overall.  Unlike proprietary software, their software 

packages are flexible and the coding analysis is not hidden for the users. However, they 
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require more extensive knowledge of programming to adapt, depending on the software 

macros and custom algorithms. For instance,  ImageJ and Cell profiler are commonly 

used open source software, but it requires skill on Java and Matlab programming 

language. 

 

The project uses Acapella scripting language to compare the performance against the 

feature extraction program developed in programming language C.  Acapella is one of the 

bundled software packages that comes with the Opera image acquisition microscope from 

Perkin Elmer.  The input image format in Acapella is usuallyFLEX, converted to TIFF 

during processing.  The Acapella program runs on scripting languages. To process 

images, it uses user-friendly drag-and-drop modules, as well as an alternative optional 

text-based editor.  Nevertheless, the scripting language is user-friendly and does not 

require any prior background on programming.  Users can select different algorithms,  

such as nuclei, spot and cytoplasm detection,  for segmentation purposes (Elmer, 2008).  

It also has a partially-open architecture, providing flexibility in writing algorithms based 

on advanced assays (http://www.perkinelmer.com/; access September 23, 2012).   

However, Acapella uses interpreter for translation to machine code, making it very slow.  

Additionally, the scripting environment does not support any multiprocessing features.  

The syntax is primarily dependent on pre-defined library functions, which provides less 

flexibility to customize code.  Due to the limitations on these pre-defined functions or 

API, Acapella generates lots of images that takes lots of storage space and time.  For 

http://www.perkinelmer.com/
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instance, to generate nine TAS values in Acapella generates 25 mask images whereas the 

C code only generates one mask image. 

 

3.3 Parallel Processing 

A huge amount of data is required in order to process HCS data, which is a significant 

problem for a conventional microprocessor.   To execute 2000 cells for TAS factors 

would require almost 7 hour of processing time.   Even an Intel processor with a quad 

core of 4GHz will require high speed memory access to process the data. L1 and L2 

cache are also on the scale of kilobytes, which are not enough to hold one single image. 

Memory is still slow and the greatest disadvantage is that their bandwidth is limited to 

one word read/write cycles. The number of transistors and clock speeds of 

microprocessors will likely continue to increase exponentially according to Moore’s Law, 

however the memory access time will increase linearly (Greco, 2005).  As a result there 

will be always an ever-widening gap between these two compatible technologies.  Hence, 

in order to improve efficiency and improve speedup on image processing, parallel 

algorithms need to be developed so that it can run independent tasks in parallel on multi-

core or multi-processor systems. Parallel algorithms should also take into consideration 

data dependency, processor-to-processor communication overhead, and I/O and CPU 

computation jobs. Parallel computation can be defined as “simultaneous use of multiple 

computer resources to solve independent tasks concurrently and efficiently.”(Blaise 

Barney, 2012)(Grama, Aananth, Gupta, Anshul, Karypis, 2003) 
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3.3.1 Existing Image Processing Model and Their Limitations 

 Table 3-1 represents the current available hardware technologies for parallel processing 

with their limitations.  The major limitation of these technologies is that they require 

specific hardware or special skill in programming. For instance, FPGA requires HDL 

programming language skills, and NVidia requires CUDA and Cell Broadband Cell SDK 

3.1.  There are also other specific limitations. FPGA often needs an extra memory block 

or symmetric images for better performance. GPU performs less efficiently on 

biomedical images, and CBE performance is measured based on throughput instead of the 

simplicity of the algorithm (Shahbahrami, Pham, & Bertels, 2011).  As a result, the 

project was implemented on core microarchitecture because they are simpler, more 

available and can be integrated with existing microscopic system without any additional 

cost. 
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Table 3-1: The table represents the current multi core hardware technologies and 
their limitations.  

 
Images Ref: website Altera, NvVdia  Sony Playstation,intel (Reteieved September 3, 2012) 
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4 Customized Software Solution 

 

After understanding the limitations of existing systems from Chapter 3, this chapter 

presents the need for parallel processing in high content screening (HCS) as a solution to 

fast and accurate processing.  The chapter examines towards the solution by categorically 

explaining the design and implementation phases of the parallel feature extraction 

software of the project.  The development phases of the software are divided into four 

parts: data collection, design of the software, design of the programming code and finally 

design of parallelization model. 

 

4.1 The Need for Parallel Computation in High Content Screening  

High content screening analysis (HCS) produces a huge amount of data, often in the size 

of terabytes (Niederlein et al., 2009),  and this requires massive processing power 

resulting in long analysis time.  There are various factors that affect the speed of High 

Content Screening.  For instance, the number of cells on a plate, typically 10
6
, requires a 

long time to process key features.  In a typical cell by cell experiment, each cell is 

represented in the matrix; therefore, the more cells on a plate will require more matrices 

to process resulting in more analysis time. To illustrate, in Acapella software, each image 

is represented by 672x508 matrix whose entries are 16 bit numbers. This requires an 
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outstanding processing time for each typical experiment that uses 10
6
cells on average. 

Another big factor that influences the processing is the number of features that needs to 

be calculated, and the complexity of the feature calculations.  Feature extraction 

calculations are mostly repeated structures, meaning that the same code or task with 

different parameters is called multiple times for each image. Therefore, as the number of 

images increases in the analysis, the computational power increases, and so too does the 

time of processing.  As a result, high content screening with a single-core processor 

system would take an extensive amount of time, storage and processing power, providing 

a less efficient method.  To understand the properties of HCS data, a set of sample HCS 

data has been collected from Biophotonics Lab.   A probability density function of this 

data set is provided in Appendix A. 

 

To overcome the limitations of serial computation in high throughput screening, a parallel 

computation would be the most efficient approach to reduce the time.  The advantage of 

parallel processing is that several computations can be processed in simultaneously.  In 

parallel computation approach, large tasks are divided into discrete independent tasks, so 

they can be executed in multiple processors concurrently (Blaise Barney, 2012). As 

mentioned earlier, most of the feature extraction tasks are repeated codes that are 

executed multiple times on a same image. In a parallel computation environment, these 

codes can be executed in parallel using multiple processors simultaneously, instead of 

sequentially in a serial processing system. Thus, it would make the HCS feature 

extraction software run much faster than before.  In addition, in terms of image size, the 
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large number of bytes of images in HCS can be partitioned, and each portioned datasets 

can be processed in parallel.  Furthermore, the problem or the task applied on the images 

can also be divided into several independent subtasks, where each subtasks can be 

executed in parallel as well.   To summarize, both parallel design approaches, partitioning 

the data sets or the tasks, would accelerate the image automation process of HCS. 

 

4.2 Data Collection 

The data collection of this project can be categorized in two parts: 1) Sample Preparation 

and 2) Image Acquisition 

 

4.2.1 Sample Preparation 

Figure 4-1 shows the task breakdown of the laboratory experiment.  The quality of the 

assay is very important for image processing: a better assay provides a higher quality 

image, which reduces the speed of processing (Lu et al., 2010).  During this screening 

assay, a systematic protocol for staining, drug dosing, and image acquisition was 

maintained for better image quality. Different experimental variable, such as, the number 

of cells to avoid confluence, correct focus to avoid out-of-focus light, and optimized 

staining for better quality image were seriously monitored (Haney, 2008).   
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Figure 4-1: Task breakdown of data collection and image acquisition. 

 

4.2.1.1 Cell Culture and Slide Preparation 

 

Our experiment uses the MCF-7 breast cancer cell line. The cell line is collected from 

liquid nitrogen storage.  To thaw, the cells are placed in water bath (37 -C) for five 

minutes, then slowly diluted with 10 fold of growth medium (FBS) and placed in 

incubation for 24 hours at 37C. 
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After 24 hours of incubation, the culture’s cell growth is observed.  If the cells reach 80% 

confluence, the cells are passaged and a small sample is taken for experiment.   The 

subculture process for the MCF-7 cell line begins with washing the cell layer with PBS 

and then adding trypsin.   The solution is then placed in the incubator for 5 minutes to 

cause the cells to detach from the dish.  Finally, the detached cells are suspended with 

fresh medium, which are then used for welling or incubation. Cell culture is protocol and 

materials were prepared by ref (Doyle et al., 1995) 

 

4.2.1.2 Treating With Staurosporin 

When the cells are ready they were welled on 384 well plates, each well consisting of 

5000-7000 cells.  Cell counting is performed with a haemocytometer to ensure a 

consistent number of cells.  To treat the cells, serial dilution is used from highest to 

lowest dose.  The experiments used Staurosporin kinase inhibitor to treat the cultured 

MCF 7 cell lines starting from high dosage of 1micromolar down to .0004 micromolars.  

Table 4.1 presents the map of the dosage treatment on the well plate.  The first two and 

last two rows are untreated wells (as controls), and the rest of wells run from highest to 

lowest concentration.  Every new concentration of solution is reduced to half of previous 

concentration.  Staurosporin kinase inhibitor was selected because due to its promiscuity 

and high affinity with most  kinases (Karaman et al., 2008)(Ghoreschi, Laurence, & 

O’Shea, 2009).  

 

 



M.A.Sc . Thesis- Tamnun-E-Mursalin;  Mcmaster University-Biomedical Engineering. 

48 
 

Table 4-1: Well Map of dosage of staurosporine used in the experiment, dose range (1 micromolar to .0004 micromolar) 

 
1 2 3 4 

1 untreated untreated untreated untreated 
2 untreated untreated untreated untreated 

3 1 1 .  015 .015 

4 1 1 .  015 .015 

5 .5 .5 .0007 .0007 

6 .5 .5 .0007 .0007 

7 .25 .25 .0003 .0003 

8 .25 .25 .0003 .0003 

9 .125 .125 .00015 .00015 

10 .125 .125 .00015 .00015 

11 .0625 .0625 .0019 .0019 

12 .0625 . 0625 .0019 .0019 

13 .03125 .03125 .0019 .00039 

14 .03125 .03125 .00039 .00039 

15 untreated untreated untreated untreated 

16 untreated untreated untreated untreated 
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4.2.1.3 Staining With Fluorescent Probes 

The major concern with staining is to identify the appropriate dye that would stain the 

interested organelle or cellular membrane for proper segmentation.  Proper staining 

protocol is very vital, since it influences the segmentation of interested object-- 

specifically if the analysis is based on an intensity threshold (Ronneberger et al., 2008).  

Therefore identifying the best candidate dye that stains the cells membrane, which is the 

experiment’s object of interest for subcellular localization, is very challenging.  Several 

dye were tested, such as, PKH36 red fluorescent, NaO and Di4-Anepps (Kao, Davis, 

Kim, & Beach, 2001) on MCF-7 cell lines; and the most suitable dye that stains the 

cellular membrane  was determined to be Di4-Anepps. The excitation spectrum for Di4-

Anepps is 450-510nm, and the emission peak is 570nm, after an incubation time of 30 

minutes (37C) (Invitrogen, 2012). In addition, Draq5 dye was used for staining the 

nuclear membranes, used as a reference signal for image segmentation. The protocol for 

Di4-Anepps was followed from the protocol referenced in Invitrogen (Invitrogen, 2012) , 

and the Draq5 protocol is referenced from Biostatus (Biostatus, 2012).  Figure 4-2 shows 

the excitation and emission spectra of Di4-Anepps and Draq5 dye and figure 4-3 shows 

images of stained cells (figure 4-3): 
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Figure 4-2: Excitation and emission spectra for Draq5 and Di4-Anepps. Draq5 has 

excitation peak at 635nm and emission peak at 690nm; and Di4-Anepps has an 

excitation peak at 448nm and emission peak at 600nm. 

 

 

Figure 4-3 a) Di4-Anepps staining of cellular membrane. 

 

 

4-3 b) Draq5 staining of nucleus. 

 

4.2.2 Image Acquisition 

Images are taken by using the Evotec Technologies Opera automated microscope system.  

Opera is a confocal high-content screening microscope with three laser lines (488,561 

and 640 nm) and a UV filter for screening in 96 or 384 well format (Elmer, 2008).  The 

images captured from the microscope are in FLEX format; where one FLEX image stores 
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images of one single well from specified field of views.  The experiment has used two 

cameras to acquire image, three exposures and six fields of view:  Exposure 1 on Camera 

3 is assigned as Channel 1, as reference channel for the nuclei; and exposure 2 and 3 was 

taken by camer1 as channel 2 and channel 3, respectively, for the cytoplasm.    

 

Figure 4-4 show the microscopic images acquired from the dose response experiment.  

Control cells without any treatment are traced with a yellow segmented outline and the 

cells treated with highest dose of 1 micromolar of staurosporin are traced with a red 

outline.  As seen in the figure, most of the cells are affected after being treated with 

staurosporin.  Figure 4-5 depicts the drug dose curve.  It can be seen that at .03 

micromolars, 25 percent of the cells are treated.  As the dosage increases to 1 micromolar 

the percentage treated cells increases to 40%.  

 

 

 

 

 

Figure 4-4: Image of control cells (left) and treated cells with high dosage (right). 

The yellow segmented stencils represent cells which are not treated and red stencils 

represent treated cells. 

 



M.A.Sc . Thesis- Tamnun-E-Mursalin;  Mcmaster University-Biomedical Engineering. 

52 
 

 

Figure 4-5: Drug dosage curve of MCF-7 cells with .00004 micromolars to 1 

micromolar. Using KNN1 model: at .03 micromolar 75% of cells are untreated and 

25% treated; at 1 micromolar 60% are untreated and 40% treated. 

4.3 Design of the Software 

The design of the software is split into three sections.  The first section defines the step 

by step development process of the software, following the waterfall model.  The second 

phase explains the coding design of the software, with description of all the functions in 

sequential order. The last phase provides the parallel design of the software. 

 

4.3.1 Development Process of the Software 

In this project, the goal is to design parallel image processing software to extract texture 

features from HCS data.  The objective is to improve the running time of the program, so 

the vast amounts of data can be processed in a way that minimizes processing time.  In 

order to boost speed of processing the data, the project was approached in two different 
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ways: algorithmically and by parallel processing.  The algorithmic approach requires 

analyzing the code and reducing the running time of the program.  An efficient algorithm 

with short running time is the required goal of the project.  In the second phase, the 

algorithmic code, written in C, needs to be modularized according to the parallel-

processing functionalities.  Figure 4-6 depicts the software development process of the 

parallel image automation system: 

 

 

Figure 4-6:  Software development process for parallel feature extraction software. The 

process model outlines the waterfall model- the sequence of tasks to develop the software. 
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4.3.1.1 Input Processing: Conversion from FLEX to TIFF 

The input is the first step in the development process. According to the requirement, there 

are two types of input images the program is capable of processing.  These two image 

formats are: the FLEX image and the TIFF image format.  Reading the FLEX image 

format is very complex, since it uses a proprietary microscopy images native to Acapella, 

and the only way to convert it to TIFF is to use the Bio-Format conversion tool package 

from LOCI (LOCI, 2012). However, the Bio-Format conversion package is not directly 

complaint with the C platform, it is for MATLAB and other supported applications.  The 

LOCI conversion tool, for C language, is a package of Java class libraries whose routines 

are used to convert FLEX images and to extract their metadata.  To make it compliant 

with the C language, it uses the  jar2lib program to generate a C++ proxy class for each 

equivalent Bio-Format Java class (Pepperkok & Ellenberg, 2006). The second image 

format, TIFF, can be directly read from the input folders.  Due to their indirect 

conversion processes, reading FLEX images requires more time than reading TIFF 

images. The format of these images is 16 bit; however, the mask images generated by the 

program are 8 bit images. 

 

4.3.1.2 Preprocessing Images 

Preprocessing the process of reconstructing the true intensity values of the fluorophore 

distribution by removing noise or uneven illumination (Ronneberger et al., 2008).  In the 

experiment, the images captured from the microscope are pre-processed in two stages:  

removing the border cells and normalizing the intensity values of the cell.  Since the cells 

http://loci.wisc.edu/software/jar2lib
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at the border of the image lack full information of a cell, it is omitted for further 

processing.  Once the cells are identified, the ‘remove border’ function removes the cells 

that are on the border of the image. Figure 4-7 shows mask images after removing the 

border nuclei. The second stage of preprocessing is, applying smoothing techniques 

(Fotiadis, 2002).  It is done by computing the average intensity of each object and 

distributing it on the full object. 

 

  

 

Figure 4-7: Mask image before preprocessing (left) and mask image after 

preprocessing (right).  The border nucleus is removed from the images on the right. 

 

4.3.1.3 Contour Identification and Segmentation 

 

Segmentation in fluorescence imaging is mostly based on intensity thresholds, either for 

edge detection or region selection (Yang et al., 2000).  In this experiment, the 

segmentation process is initiated by first identifying the nucleus and cytoplasm using the 

watershed algorithm.  Each image has a field of view which includes many cells. Two 

stencils are segmented – there is one stencil for the outer membrane and one for the 

nucleus.  These two stencils are used to identify the whole cell, the nucleus and the 
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cytoplasm, which is the whole cell minus the nucleus.  Acapella performs the initial 

transformation of the data on the whole image and then uses the stencils to calculate the 

features on a cell by cell basis.  Our C code takes these stencils to identify the nucleus, 

cytoplasm and whole cell, and extract the textural features.  The program separates each 

stencil into a separate mask image, and uses that mask image to extract feature from the 

image.  The code uses a contour identification algorithm to identify each stencil from the 

mask image generated by Acapella. 

 

4.3.1.4 Feature Extraction 

Texture feature, threshold adjacency statistics (TAS), is extracted from the images, which 

are recognized by the contours.  Three TAS values were calculated for each object.  

These three TAS values correspond to different threshold values applied to the objects.  

For each threshold, nine TAS values are computed, totalling to 27 for three thresholds of 

each identified object.  Following are the range of threshold: 

[µ-, 65535] 

[µ+,65535] 

[µ - , µ +] 

where µ=average intensity, and   =µ*range 

For every threshold, a mask image is created of the corresponding threshold values.  This 

mask image is used to perform the TAS calculation. The TAS is then calculated for each 

white pixel, and the total number of neighbouring white pixels is counted by looping 

around its eight neighbours on the matrix.  Nine threshold statistics are computed, each 
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representing the white total number of white neighbours around each white pixel. Finally, 

each threshold statistics is normalized with total number of white pixels. 

 

4.3.2 Implementation of C Code 

A control flow diagram provides an overview of the sequence of functions (or a flow 

chart of function calls) that was executed in the code.  Figure 4-8 is the control flow 

diagram of the software.  This is followed by a description of each function.   
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Figure 4-8: Control flow diagram describing the sequence of function call in the 

code. 

 

copymask (): The purpose of this function is to initiate the program execution, initializing 

the global variables and reading the location of the folder of the mask image folder.  The 

function loads three mask images: nucleus, cytoplasm and whole cell.  Instead of loading 

the cell mask, the function derives the cell mask by adding the nucleus and cytoplasm 

masks together. 
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separatemask ():  The purpose of this function is to separate each contour from the mask 

with the image provided by the copymask function.  Each contour is saved in a separate 

image. 

handleobject(): The function takes the separated contour image generated by the 

separatemask function, then loads the TIFF input image from each channel, and performs 

a logical ‘AND’ operation on both of these images.  This allows the program to extract 

the intensity information of each image on the location of the contour.  The function calls 

the TAS function for each channel to compute the threshold adjacency statistics for that 

located object. 

tas (): The function performs the computation of TAS of each object located by the 

contour from each channel.  The computation is made by calling the four following 

functions, each performing the specified tasks: 

average intensity(): The function computes the average intensity of the object. 

slice_threshold(): The function creates a mask image based on the threshold values. 

total_white(): The function counts the total number of white pixels in the mask image 

created with the threshold values by the  slice_image function. 

calculate_statistics (): This function counts the total number of neighbouring white 

pixels of each white pixel.  The function calculates nine TAS values; each corresponds to 

the total number of white neighbours for each white pixel in the threshold image.   

 

These four functions are called by tas() for calculating the TAS of one threshold value, 

producing nine TAS values.  The functions will need to be invoked three times for the 
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threshold values, generating a total of 27 TAS outputs for each object. 

 

 

Figure 4-9: An overview of images generated as each of the functions labeled below 

is called. 

 

Figure 4-9 provides an overview of all the objects that are generated as each function is 

executed.  The copymask function reads the mask image and calls the separatemask 

image.  The separatemask function creates separate images of each object and invokes 

the handleobject function.   The handleobject function then loads the original grey-scale 

image and perform an ‘AND’ operation with the single mask image.  The resulting image 

is sent to TAS to perform the threshold adjacency calculation. 
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4.3.3 Design of Parallelization 

4.3.3.1 Overview of the Design 

As mentioned earlier, parallel design requires breaking down the task or the 

computational problem into discrete components such that each task can be executed 

independently and distributed to multiple processors (Grama, Aananth, Gupta, Anshul, 

Karypis, 2003).  Each task can be categorized as being dependent on other tasks, being 

independent of other tasks, or requiring intensive computation.  After arranging the tasks, 

hotspots of the tasks are identified.  Hotspots are single tasks or a collective task that 

require intense computation time.  These tasks are further analyzed to reduce the time 

either by using optimized algorithm or by breaking them down into more independent 

tasks. Since reading and writing requires massive computation time, I/O intensive jobs 

are also labeled, so they can be more evenly distributed among different processes. The 

goal of the ideal parallel model would be to parallelize and synchronize tasks that can 

execute independently, and distribute the load of all processes evenly.  The size of these 

tasks is important in parallel processing and must be optimized carefully  (Silberschatz, 

Galvin, and Gagne, 2004).  This is because the computational overhead of parallelizing a 

small task can actually be detrimental, while large jobs will acquire the processor for long 

periods of time blocking other jobs from executing, thus decreasing the performance. 

Following these design principles, the project’s parallel model was created, shown in 

Figure 4-11.   The dependent tasks or processes, tasks that are dependent on previous 

tasks, are presented along the horizontal direction, and are done sequentially following 

matching-colored arrows. Independent tasks can be executed in parallel, and are listed 
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vertically. Tasks that are independent of each other are shown in the same colour and fall 

in the same dotted-line region. 

 

Figure 4-10: Parallel design of the feature extraction software. All functions present 

in a parallel line can be executed in parallel. 

 

4.3.3.2 Multithreading Design 

Threads were used for the parallel design of the project. Threads are lightweight 

processes: they work on the same memory space and require less time to communicate 

(Silberschatz, Galvin, and Gagne, 2004).  Since our model will run in a multi-core 

environment with constrained memory, threads are more suitable for parallel modeling.  
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Our project requires smaller tasks and an integrated environment, for which threads are 

the most efficient option.   

 

As depicted in the parallel design in Figure 4-10, the copymask function initiates three 

threads of separatemask. Each thread executes the task of separating the contours of 

different thresholds: nucleus, cytoplasm and cell.  Each separatemask function then will 

spawn a number of handleobject threads according to the number of contours in the input 

mask image.  For n number of contours, separatemask will create n handleobject threads.  

Subsequently, the handleobject thread will create a TAS thread for each of the 3 channels 

(Channels 1, 2 and 3) simultaneously to compute the threshold adjacency statistics.  By 

analyzing the design, it is obvious that the highest level of parallelism can be achieved at 

the last level: the TAS process.  Therefore, the experimental results in this project focus 

mainly on TAS level parallelism. 

 

4.3.3.3 Design of Shared Memory and Synchronization 

Communication between the threads was done by using shared memory. As a 

synchronization mechanism, semaphore was used to access the shared memory and 

communicate between the threads (Tanenbaum, 2007).  The design uses a global variable 

‘counter’ in the separatemask function, and increases the value as each contour mask is 

created. This counter value is also shared by the handleobject process to keep track of the 

contour it is operating on.  This global variable, counter, executes as a critical section 

using semaphore.   
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The writing of an output file is also synchronized by the threads.  Each thread writes the 

nine TAS values asynchronously. As one TAS thread finishes writing on the output file, 

it signals the next waiting thread to write on the output file.  Furthermore, loading and 

releasing of images on threads is also done synchronously. 

 

4.3.3.4 Code Optimization 

The algorithm is also optimized to reduce the speed.  The optimization occurs in the 

handleobject function, where a logical ‘AND’ operation between the mask image and the 

input image is executed. The operation iterates through the full 672x508 sized matrices in 

order to identify the targeted object.  However, only a small subset of the matrix, the 

pixel values of the region of interest, is required for the computation.  Therefore, to 

optimize this operation, the coordinates of the regions of interest are extracted, and the 

logical ‘AND’ operation is only applied to the region of interest of the image, thus 

reducing the iteration time. 

 

4.3.4 Features of the Code 

 The code is modularized: each function executes a specific task.  As a result, it is 

easily maintainable and flexible for future modification. 

 The model is threading-safe.  Standard synchronization design procedures were 

followed to maintain deadlock proof. 

 The software is documented and indented according to standard coding guidelines. 
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 The code uses memory efficiently and also allocates and releases memory properly to 

avoid memory leaks. 
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5 Result, Discussion and Conclusion 

 

In this Chapter result will be presented to justify our findings with parallel scalability 

tests.  Our software output will be validated against the Acapella output, and comparison 

of execution time against Acapella will be provided.  Then a statistical representation of 

sample data and execution time will be given.  A conclusion is drawn with suggestions 

for future work. 

 

5.1 Performance Analysis of Parallelism 

In order to evaluate the efficiency of parallelism, the code was tested in multi-core 

environment.   The purpose of this evaluation was to measure the performance of the 

software with respect to parallelization.  Accordingly, a scalability test was performed to 

evaluate the performance of the parallel system. Two common scalability tests were 

performed: strong scalability, to measure the performance of the software with a constant 

load as resources increase; and weak scalability, measuring the performance as load 

increases with the resources being constant (Kumar, Vipin, 1994).   

 

The scalability test was initiated by using images with a single object as the input, then 

repeatedly processing the image using an increasing number of cores, from single to four 

cores.  The image processing time for each case is subsequently recorded.  The full test is 
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then repeated by using images with an increasing number of objects, and processing each 

of the images with an increasing number of cores.  The test was carried out by AMD 

CodeAnalyst performance analyzer running the programs on computer with an AMD 

Phenom Quad Core processor, 2.11 GHz, 4 GB memory, 64 bit Windows 7.  Each 

individual image was run multiple times (four runs) and the computation times were then 

averaged. 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Experimental results: Computational time measured against number of 

objects in the image using different numbers of cores. 

 

 The graph in Figure 5-1 represents the computational time with increasing number of 

objects for four cores.  The computational time is proportional to the number of objects.  

These findings also corroborate with Fahim et al (2011), who tested optimized GLCM 

code on multiple processors and compared to serial processor execution time. The graph 
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also shows that the coefficient of proportionality, the slope of the curves, reduces from 

.222 ms/obj to .057 ms/obj from singe core to 4 cores. This indicates that the processing 

speed increases 4 folds from single core serial processing to multi-core parallel 

computation. 

 

 

 

 

 

 

 

 

Figure 5-2  Experimental results: Computational time measured against number of 

cores used using different numbers of objects in the image. 

 

Figure 5-2 represents a complementary comparison of computational time of four objects 

with respect to increasing number of cores.  In this experiment, the cores remained 

constant and the load of the images was increased by adding objects to the image.  The 

computational time of four objects is inversely proportional to increasing number of 

cores, which means the computational time reduces with an increasing number of cores 

for all three curves.  The exponent in the power law trends of all three objects is very 

close to -1, indicating that the computational time is reciprocally related to the number of 

cores.   
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However, to analyze how well the program performs parallel compare to a single 

processor, a speedup test was performed on the datasets.  Speedup is a well-known 

standard measurement metric for assessing the performance of parallelism. This 

measurement provides information of how ideal the parallel processing is by comparing 

the execution time of the program while using one core to multiple cores (Brown, 2000). 

The calculation is done by dividing the execution time on one processor core to n 

processor cores. A higher speedup value indicates more parallelism. As observed in the 

graph of Figure 5-4, the metric indicates significant improvement in the level of 

parallelism: four times more speedup than a single processor in all cases. Below is the 

calculation of speed up follows with the graph: 

         
                                

                              
 

 

Figure 5-3: Performance comparison: Speedup versus number of cores. Increase in 

speedup indicates increase in level of parallelism. 
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It is also seen from the figure 5-4 that the speedup varies at 4 cores from 3.5 to 4 

depending on the number of objects.  Object 3 at core 4 has the most speed up value and 

provides the highest level of parallelism than other three objects. The speedup of the 

other three objects declines slightly from 3.5 to 4 with increasing cores.   This variation 

on speedup values could be justified by three reasons.   Firstly, a major portion of the 

software is I/O bound tasks, performing image load, read or writes; as a result, as the 

number of objects is increases more I/O operations were performed, slowing down the 

parallelization efficiency (Silberschatz et al., 2004).  Secondly, not all the codes are 

parallelized, just thirty percent of the code, the remaining serial portion of the code 

decreases the performance of parallelization as the number of object increases.  Finally, 

for every new object a thread is created.   As object number increases the thread number 

increases accordingly. Increasing threads will take more time on synchronization and 

communication resulting on more processing time,  therefore affecting the overall 

computational time (Silberschatz et al., 2004). 

5.2 Validation of the Result 

In order to validate the software’s results, the output of the code was compared with 

Acapella’s output in Table 5-1.  Acapella has been used in many experiments in the 

McMaster Biophotonics Facility, so the results are authenticated and provide a credible 

dataset to validate our software.  The output of Acapella and C code is provided below 

from a set of images.  Although there is a negligible difference in the results in a few 

instances, this is due to the scripting language limitation of Acapella’s API.  Like any 
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other scripting language, Acapella is limited to its supported specifications, such as 

routines, variables and objects. Consequently, due to Acapella being a less customizable 

script, complex algorithms are often very hard to implement, and accuracy can be 

compromised significantly. However, due to the flexibility of low-level languages, the 

final results of the C code are more precise and accurate,  even though both languages  

follow the same calculation of TAS by Hamilton (Hamilton et al., 2007a).  
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Result Comparison

Channel Object Number Threshold TAS_01_20 TAS_02_20 TAS_03_20 TAS_04_20 TAS_05_20 TAS_06_20 TAS_07_20 TAS_08_20 TAS_09_20

2 Cytoplasm 1 Threshold 1 Acapella 0.0066462 0.0158487 0.047546 0.0864008 0.122699 0.163088 0.197853 0.175358 0.18456

C code 0.0066462 0.0158487 0.047546 0.0864008 0.122699 0.163088 0.197853 0.175358 0.18456

Threshold 2

Acapella 0.003876 0.00599013 0.0158562 0.030303 0.0461593 0.0852713 0.0930233 0.143411 0.57611

C code 0.003876 0.00599013 0.0158562 0.030303 0.0461593 0.0852713 0.0930233 0.143411 0.57611

Threshold 3

Acapella 0.0038437 0.0102498 0.0307495 0.0621397 0.0916079 0.140935 0.124279 0.160794 0.3754

C code 0.0038437 0.0102498 0.0307495 0.0621397 0.0916079 0.140935 0.124279 0.160794 0.3754

3 Cytoplasm 1 Threshold 1 Acapella 0.0002828 0.000848416 0.0042421 0.0084842 0.0483597 0.0927602 0.0854072 0.116799 0.642817

C code 0.0002828 0.000848416 0.0042421 0.0084842 0.0483597 0.0927602 0.0854072 0.116799 0.642817

Threshold 2

Acapella 0 0.000250564 0.0007517 0.0027562 0.0298171 0.0643949 0.0438487 0.0699073 0.788274

C code 0 0.000250564 0.0007517 0.0027562 0.0298171 0.0643949 0.0438487 0.0699073 0.788274

Threshold 3

Acapella 0.00052 0.00520021 0.0171607 0.0364015 0.0785231 0.126885 0.117005 0.152886 0.465419

C code 0.0010499 0.00419948 0.0183727 0.0356955 0.0839895 0.126509 0.120735 0.149606 0.459843

2 Cytoplasm 2 Threshold 1 Acapella 0.0020756 0.014944 0.0402657 0.0805313 0.15193 0.188045 0.173931 0.199668 0.148609

C code 0.0020585 0.0148209 0.0395224 0.0794566 0.145327 0.186908 0.180733 0.198024 0.153149

Threshold 2

Acapella 0.0010419 0.00547017 0.0101589 0.0208388 0.0552227 0.092472 0.0989841 0.151602 0.564209

C code 0.0010419 0.00547017 0.0101589 0.0208388 0.0552227 0.092472 0.0989841 0.151602 0.564209

Threshold 3

Acapella 0.0038494 0.00769889 0.0162532 0.0491873 0.0919589 0.143713 0.130026 0.150984 0.40633

C code 0.0034647 0.00606323 0.0181897 0.049372 0.0922477 0.145518 0.127761 0.151581 0.405803

3 Cytoplasm 2 Threshold 1 Acapella 0.0017534 0.00204559 0.0087668 0.028346 0.075979 0.125073 0.120982 0.158387 0.478667

C code 0.0017534 0.00204559 0.0087668 0.028346 0.075979 0.125073 0.120982 0.158387 0.478667

Threshold 2

Acapella 0.0006509 0.000216967 0.0015188 0.0086787 0.0364504 0.0700803 0.0598828 0.0902582 0.732263

C code 0.0006509 0.000216967 0.0015188 0.0086787 0.0364504 0.0700803 0.0598828 0.0902582 0.732263

Threshold 3

Acapella 0.0024691 0.00329218 0.0131687 0.0304527 0.0987654 0.14856 0.112757 0.155144 0.435391

C code 0.0024691 0.00329218 0.0131687 0.0304527 0.0987654 0.14856 0.112757 0.155144 0.435391

2 Neuclus 1 Threshold 1 Acapella 0.0024184 0.0157195 0.0411125 0.108827 0.159613 0.182588 0.185006 0.135429 0.169287

C code 0.0059022 0.00927487 0.0451096 0.102445 0.150084 0.194351 0.190556 0.167791 0.134486

Threshold 2

Acapella 0.0008271 0.00413565 0.006617 0.0314309 0.063689 0.129032 0.110008 0.124897 0.529363

C code 0.0034667 0.0032 0.0093333 0.0234667 0.0402667 0.0696 0.0885333 0.134667 0.627467

Threshold 3

Acapella 0.0056657 0.00708215 0.0311615 0.0651558 0.117564 0.13881 0.124646 0.145892 0.364023

C code 0.0043085 0.00689358 0.0159414 0.0366221 0.0779836 0.130116 0.125377 0.140026 0.462732

3 Neuclus 1 Threshold 1 Acapella 0.0007911 0.00237342 0.005538 0.0205696 0.0490506 0.121044 0.148734 0.174051 0.477848

C code 0.0002139 0.000855432 0.0040633 0.011976 0.0457656 0.0904619 0.100941 0.134944 0.610778

Threshold 2

Acapella 0 0.000662252 0.0013245 0.0046358 0.0324503 0.0827815 0.0781457 0.101325 0.698676

C code 0.0001835 0.000183453 0.0016511 0.0066043 0.0229316 0.0432948 0.0398092 0.0647588 0.820583

Threshold 3

Acapella 0.0014265 0.00713267 0.0242511 0.0527817 0.116976 0.17689 0.0998573 0.122682 0.398003

C code 0.0024361 0.00527812 0.0133983 0.047503 0.091758 0.120585 0.112058 0.146569 0.460414

2 Neuclus 2 Threshold 1 Acapella 0.0147368 0.0273684 0.0378947 0.0673684 0.145263 0.128421 0.157895 0.168421 0.252632

C code 0.0043415 0.010492 0.0416064 0.0846599 0.138205 0.171491 0.166787 0.187048 0.195369

Threshold 2

Acapella 0.0094086 0.016129 0.0241935 0.030914 0.077957 0.104839 0.0873656 0.133065 0.516129

C code 0.0019694 0.00350109 0.0091904 0.0183807 0.045733 0.0741794 0.0787746 0.128446 0.639825

Threshold 3

Acapella 0.0048426 0.00968523 0.0290557 0.0338983 0.123487 0.1477 0.101695 0.1477 0.401937

C code 0.0041958 0.00804196 0.0143357 0.0391608 0.0832168 0.11993 0.112587 0.158042 0.46049

3 Neuclus 3 Threshold 1 Acapella 0 0 0.0030675 0.0322086 0.0705521 0.107362 0.0904908 0.136503 0.559816

C code 0.0016047 0.00561647 0.0080235 0.0243381 0.0722118 0.131319 0.122225 0.145761 0.488901

Threshold 2

Acapella 0 0 0.0021787 0.0174292 0.0511983 0.083878 0.0555556 0.0991285 0.690632

C code 0.000747 0.00149393 0.0018674 0.0056022 0.0291317 0.0567694 0.0435107 0.0702148 0.790663

Threshold 3

Acapella 0 0.00210084 0.0063025 0.0210084 0.102941 0.157563 0.102941 0.142857 0.464286

C code 0.0012512 0.00406631 0.0050047 0.0184548 0.0791367 0.108539 0.0985299 0.156084 0.528933

3 Neuclus 2 Threshold 1 Acapella 0.0031898 0.0183413 0.0430622 0.0614035 0.0972887 0.133174 0.118022 0.185805 0.339713

C code 0.0072243 0.0117871 0.0285171 0.0634981 0.102662 0.157034 0.175285 0.203422 0.25057

Threshold 2

Acapella 0.001836 0.0134639 0.0312118 0.0367197 0.0771114 0.109547 0.0850673 0.127907 0.517136

C code 0.0034474 0.00541738 0.0118197 0.0201921 0.0381679 0.0598375 0.0726422 0.0948042 0.693672

Threshold 3

Acapella 0.0169051 0.0104031 0.023407 0.0507152 0.114434 0.135241 0.118336 0.149545 0.381014

C code 0.0031323 0.00587314 0.0109632 0.032498 0.0712608 0.104933 0.110023 0.139389 0.521926

3 Neuclus 2 Threshold 1 Acapella 0 0.00171233 0.0011416 0.0085616 0.0348174 0.0456621 0.0525114 0.086758 0.768836

C code 0.0009918 0.000743863 0.0039673 0.0143814 0.0513266 0.104885 0.0984379 0.12844 0.596826

Threshold 2

Acapella 0 0.0004914 0.0004914 0.0034398 0.029484 0.0481572 0.0378378 0.0687961 0.811302

C code 0.0001988 0.000397693 0.0007954 0.0045735 0.0284351 0.0554782 0.0419567 0.0517001 0.816464

Threshold 3

Acapella 0.0040215 0.0147453 0.0227882 0.0254692 0.103217 0.130027 0.103217 0.119303 0.477212

C code 0.0014075 0.00387051 0.0087966 0.0246305 0.0647431 0.104152 0.096411 0.110837 0.585151
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Table 5-1: Comparison of results of C code with Acapella. 

5.3 Execution Time Comparison 

Two types of execution time were tested and are shown in Table 5-2.  The program was 

first tested with converted TIFF images as input, not including the conversion time from 

flex to TIFF images (3rd column), and the second test was performed on FLEX images, 

including the conversion time from flex to TIFF (4th column).   Figure 5-6 also provides 

the plot of Table 5-2. 

Number of FLEX 

Images 

Acapella 

*C code (TIFF 

images as input) 

**C code(FLEX 

images as input) 

1 61 seconds 7 seconds 50 seconds 

6 350 seconds 50 seconds 245 seconds 

10 620 seconds 105 seconds 360 seconds 

20 1200seconds 150 seconds 780 seconds 

384 25800sec (7hour) 550 seconds 

18010 seconds (5 

hour) 

Table 5-2: Execution time comparison of Acapella and C code. 

*only TIFF images as input, execution performed on converted images. 

** conversion time from flex to TIFF + code execution on converted images. 
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Figure 5-4: The plot demonstrates the execution time between Acapella, C code with 

TIFF images and without TIFF images. 

 

As can be seen in the results above, the majority of the time of the C code is used on 

converting the FLEX images to TIFF format.  This is because FLEX images are 

proprietary microscopy images and the only way to convert it to TIFF is to use the Bio-

Format conversion tool package from the Laboratory for Optical and Computational 

Instrumentation (LOCI) (http://loci.wisc.edu/software/bio-formats) (Eliceiri et al., 2012).  

However, the Bio-Format conversion package from LOCI is not directly compliant with 

the C platform, as it is for MATLAB and other supported applications.  The LOCI 

conversion tool, for C code, is a package of Java class libraries whose routines are used to 

convertFLEXimages and to extract their metadata.  To make it compliant to C 
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language, it uses the jar2lib program to generate a C++ proxy class for each equivalent 

Bio-Format Java class (“Bio-Formats | LOCI,” n.d.).  As a result, the conversion is very 

time consuming when using a language like C due to their indirect support through Java 

packages.  On the other hand, conversion to TIFF images in Acapella is much faster and 

more efficient, since it uses their own proprietary conversion code, implemented directly 

to the flex images, and does not rely on third party Bio-Format tools.  If conversion factor 

is not considered than the code operates much faster than the Acapella script, since the 

majority of the C code operation is spent converting the file with the Java tool.  

Consequently, the performance of the code can be appropriately evaluated without 

considering the conversion time. Regardless, in the future, Opera images will be in TIFF 

format instead of flex format. 

 

5.4 Conclusion 

The research focuses on modeling a parallel algorithm in C code that would extract 

textural features from HCS data.  Most of the textural feature extraction algorithms used 

in HCS are computationally complex and intensive, requiring huge amount of time to 

process.  Comparatively, Threshold Adjacency Statistics (TAS) by Hamilton et al. has 

proven to be more efficient in speed and accuracy than other algorithms.  As well as, 

according to our review, this is the first work to date on parallelizing TAS and evaluating 

its performance.  Scalability and speedup tests were performed on the model to evaluate 

the level of parallelism in the code.  The running time and the quality of the code were 

also compared with the Acapella feature extraction software.  Despite the limitation of 

http://loci.wisc.edu/software/jar2lib
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the hardware (testing quad-core PC) where the performance evaluation test was 

performed, our model has provided better results than serial processing software. 

 

5.5 Future Work 

In this thesis we have used TAS features for parallelization, but other subcellular 

localization feature mentioned in section 2.3 needs to be explored on parallel modes in 

future.  Furthermore, as seen from table 5.2 that the conversion from flex to tiff was very 

time consuming.  This conversion could be performed in parallel to reduce the 

computational time.  Another possibility could be operating on multiple images in 

parallel.  Due to the limitation of the hardware, the program operates on one single input 

image at each run.  If multiple images could be executed in parallel, the computational 

speed would immensely increase.  But, this will require customized and expensive 

hardware.   

 

Another directional approach could be applying TAS on other multicore hardware 

technologies, for example, FPGA and GPU.  For further study, a comparative analysis of 

this parallel hardware would provide a better insight on their performances.  In past 

FPGA and GPU technologies have been proven to provide better performance on texture 

and morphological features.  In addition to the hardware, using advance optimization 

algorithm and data structure would also be an advantage to the processing speed.  

Advance data structure algorithm, such as link list, graph and hash table will also 
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improve the execution time of the software.  The developed software does not assign 

tasks to specific core.  By using windows programming specific tasks could be assigned 

to specific core which will provide an equal distribution of load to all the cores.  This will 

also optimize the overall use of cores. 

 

Figure 4-10 in chapter four represents the feasible concurrent execution path of the 

software that could be executed in parallel.  All the tasks between the parallel lines in the 

figure are independent, and could be executed in parallel.  Due to time constraint, the 

thesis has only parallelized the code after segmentation.  The optimal performance of the 

code could be further evaluated by parallelizing the segmentation tasks of the software.  

For further work, it is recommended to try different combination of concurrent execution 

path from figure 4-10, tasks that are between the parallel lines, to identify the optimal 

processing speed of the software.  
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Appendix A 

Statistical Analysis 

A data set is being collected to understand the statistical properties of the whole 

population. A subset size is N=2,304 trials (N) of data and it was taken from 

Biophotonics Lab. The minimum, maximum and average numbers of cells found were 0, 

180 and 53.47, respectively. The standard deviation of the data was σ=32.43. The 

histograms in Figure A-1 shows the frequency of occurrence (n) and normalized 

occurrence (n/N) versus the number of cells. The bin width of σ≈8. The probability 

distribution function, PDF=(n/N)/Δx, is also depicted in Figure 5-7. One observes in the 

figure that the distribution is skewed. 
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Figure A-1: Histograms of Probability density function plot, shown alongside the 

frequency of occurrence of various cell counts. 

Figure A-2 compares the data distribution to the standard normal distribution. The blue 

curve corresponds to the normalized probability density function of the distribution 

deviated from the mean with 1 standard deviation and 0.25 bin width.  The pink line 

represents the normal distribution.   

 

Figure A-2: Probability density function of the experimental data plotted with 

closest matching to normal distribution 
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