
Design of an Adaptive Cruise Control Model for

Hybrid Systems Fault Diagnosis

DESIGN OF AN ADAPTIVE CRUISE CONTROL MODEL FOR

HYBRID SYSTEMS FAULT DIAGNOSIS

BY

BENJAMIN BREIMER, B.Eng

a thesis

submitted to the department of computing and software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

© Copyright by Benjamin Breimer, August 2012

All Rights Reserved

Master of Applied Science (2012) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Design of an Adaptive Cruise Control Model for Hybrid

Systems Fault Diagnosis

AUTHOR: Benjamin Breimer

B.Eng, (Mechatronics Engineering)

McMaster University, Hamilton, On

SUPERVISOR: Dr. Alan Wassyng and Dr. Mark Lawford

NUMBER OF PAGES: xv, 167

ii

Abstract

Driver Assistance Systems like Adaptive Cruise Control (ACC) can help prevent acci-

dents by reducing the workload on the driver. However, this can only be accomplished

if the driver can rely on the system to perform safely even in the presence of faults.

In this thesis we develop an Adaptive Cruise Control model that will be used

to investigate Hybrid Systems Fault Diagnosis techniques. System Identification is

performed upon an electric motor to obtain its transfer function. This electric motor

belongs to a 1/10th scale RC car that is being used as part of a test bench for the

Adaptive Cruise Control system. The identified model is then used to design a hybrid

controller which will switch between a set of LQR controllers to create an example

Adaptive Cruise Controller. The model of the controller is then used to generate

fixed point code for implementation on the testbed and validation against the model

controller. Finally a detailed hazard analysis of the resulting system is performed

using Leveson’s STPA.

iii

Notation and abbreviations

Abbreviations

ABC: Active Brake Control 24

ACC: Adaptive Cruise Control 1

ARMAX: Autoregressive-Moving-Average model with eXogenous Input Model 140

ARX: Autoregressive model with eXogenous Input Model 139

BJ: Box Jenkins Model 140

CACC: Coordinated Adaptive Cruise Control 5

CC: Cruise Control 3

CCC Cluster of Continuous Controllers 40

CFS: Car Following System 24

DAS: Driver Assistance System 4

DC: Direct Current 79

DES: Discrete Event System 18

DPU: Data Processing Unit 40

EDESA: Extended Discrete Event System Abstraction 18

ETFE: Empirical Transfer Function Estimate 71

iv

FSA: Finite State Automata 20

FSM: Finite State Machine 40

FTA: Fault Tree Analysis 119

IIR: Infinite Impulse Response 89

IVS: Inter-Vehicular Sensor 24

LQR: Linear Quadratic Regulator 106

LIDAR: Light Detecting and Ranging 5

MIMO: Multiple-Input Multiple-Output 48

MPC: Model Predictive Control 6

MUX: Multiplexor 58

OE: Output Error Model 140

PID: Proportional-Integral-Derivative Controller 42

PD: Proportional-Derivative Controller 6

PRBS: Pseudo Random Binary Sequence 72

PSD: Power Spectrum Density 76

RC: Remote Control 11

SISO: Single-Input Single-Output 48

STAMP: Systems-Theoretic Accident Modelling and Processes 123

STPA: Systems-Theoretic Process Analysis 123

SVD: Singular Value Decomposition 86

TCC: Traditional Cruise Control 24

VSS: Vehicle Speed Sensor 24

v

Symbols

etrack: The difference between the desired headway, as specified by hset, and the

actual headway of the system h∗. Consequently, etrack = hset − h∗

epace: The difference between the desired velocity, as specified by Vset, and the

actual velocity of the subject vehicle Vself . Consequently, epace = Vset−Vself

epacerel : The difference between the velocity of the leader vehicle Vlead and the ve-

locity of subject vehicle Vself . Consequently, epacerel = Vlead − Vself

h∗,hself : The current headway between the subject and leader vehicles

hbrake: The braking threshold headway

hmax: The maximum following headway for normal following behaviour

hmin: The minimum following headway for normal following behaviour

hsafe: The minimum safe following headway

hset: The desired following headway

hsetmax: The upper bound on the following headway for which the tracking error

need not be reduced further

hsetmin: The lower bound on the following headway for which the tracking error need

not be reduced further

Vset: The driver requested cruising velocity

tolpace: A predefined value that specifies the maximum value epace for which the

system is not obligated to further reduce epace

vi

tolset: A predefined value that specifies the maximum value etrack for which the

system is not obligated to further reduce etrack

toltrack: A predefined value that specifies the maximum value etrack for which the

system is not obligated to begin reducing etrack

vii

Contents

Abstract iii

Notation and abbreviations iv

1 Background and Literature Review 1

1.1 Introduction . 1

1.2 Hybrid systems . 2

1.3 Adaptive Cruise Control systems . 3

1.4 Software Dependability and Fault Tolerance 9

2 Introduction and Preliminary information 11

2.1 Representing a discrete system . 12

2.1.1 Notation of a general hybrid automaton 13

2.2 Introduction to Hybrid Fault Diagnosis 15

2.2.1 The Hybrid Diagnoser . 16

2.3 Thesis Contributions . 20

3 Introduction to Adaptive Cruise Control and System Design 22

3.1 Definitions . 23

viii

3.2 Problem Space and Notation . 25

3.2.1 Symbols . 26

3.2.2 Explanation of Headway Zones 29

3.3 Assumptions . 30

3.4 System Requirements . 31

3.4.1 Functional Requirements . 31

3.4.2 Safety Constraints . 34

3.5 High Level Design of a Car Following System 38

3.6 Design of an Adaptive Cruise Controller 39

3.6.1 An Initial Design for the Finite State Machine 42

3.6.2 An Improved Finite State Machine 48

3.7 Summary . 50

4 Simulink Model 52

4.1 Introduction . 52

4.2 The Signals . 52

4.3 The Subsystems . 56

4.3.1 Blocks representing physical systems 61

4.4 Code Generation process . 61

4.4.1 Porting to the Test Bench . 62

4.4.2 Test Bench Results . 63

4.5 Summary . 67

5 System Identification of the Adaptive Cruise Control Testbed 69

5.1 The System . 70

ix

5.2 Initial Tests . 71

5.2.1 Frequency Range of Interest and the Bandwidth of the System 71

5.2.2 Delay . 72

5.2.3 Dead Band . 75

5.2.4 Noise Characteristics . 76

5.2.5 Linear Piece-Wise Region . 79

5.3 Model Order Estimation . 83

5.3.1 ARX . 83

5.3.2 Impulse Response . 86

5.3.3 Resulting Model Order . 88

5.4 Data Processing . 89

5.4.1 Filter Design . 89

5.4.2 The Difference Filtering Makes 93

5.5 Model Estimation . 95

5.6 Model Fit . 97

5.6.1 Model Residue . 98

5.6.2 Poles Analysis . 100

5.7 Model Evaluation and Validation . 101

5.7.1 Model Response to steps at different levels 101

5.7.2 Model response to a chirp signal 103

5.8 The Resulting Model . 104

5.9 Conclusions . 104

6 LQR Controller Design and Kalman Estimator Implementation 106

6.1 Introduction . 106

x

6.1.1 LQR basics . 107

6.1.2 Designing LQR Controllers . 107

6.2 Obtaining the System Model . 108

6.2.1 Converting to State Space . 108

6.2.2 Expanding the model . 110

6.3 Designing LQR Controllers for ACC 114

6.4 Obtaining Full State Feedback . 117

6.5 Summary . 118

7 Identifying the Faults 119

7.1 Introduction . 119

7.2 Fault Tree Analysis . 119

7.2.1 Intro . 119

7.3 System-Theoretic Process Analysis 123

7.3.1 Intro . 123

7.3.2 Getting started . 124

7.3.3 STPA Step 1 . 129

7.3.4 STPA Step 2 . 131

7.4 Conclusion . 135

8 Conclusion 136

A Appendix 137

A.1 Calculation of the Scaling Factor . 137

A.2 Model Structures in System Identification 138

A.2.1 Auto-Regressive Model with an eXogenous Input Model (ARX) 139

xi

A.2.2 Auto-Regressive-Moving-Average Model with an eXogenous In-

put Model (ARMAX) . 140

A.2.3 Box Jenkins Model (BJ) and Output Error (OE) 140

A.3 Results from STPA Step 1 . 142

A.4 Results from STPA Step 2 . 151

A.4.1 Diagrams . 151

A.4.2 Table of Results . 155

xii

List of Figures

2.1 Mohammadi’s Hybrid Diagnoser (Mohammadi, 2009) 17

3.1 Diagram of Headway Zones . 25

3.2 Desired Vrel as a function of egap . 38

3.3 The Architecture of the Adaptive Cruise Control System 40

3.4 StateFlow Diagram of State Automata 43

3.5 Decision process for choosing state transitions 47

3.6 The FSM designed to control the LQR controllers 49

4.1 Top level view of ACC Simulink Model 53

4.2 The RC Car cruising at 300cm/s, 200cm/s, 100cm/s and 50cm/s . . 64

4.3 The ACC car following a leader travelling at different velocities . . . 65

4.4 ACC is Cruising until it gets within range 66

4.5 Following a car then switching to Cruise 68

5.1 System Setup . 70

5.2 ETFE of PRBS with no windowing 73

5.3 Delay in Step from 30% to 40% input. Red denotes the input signal

and blue the system’s response . 74

5.4 Delay in Impulse Signal . 75

5.5 Dead band as shown by sequential steps 76

xiii

5.6 Welch Power Spectrum of Steps with Varying Amplitudes 77

5.7 Welch Power Spectrum of Steps with Varying Operating Points . . . 78

5.8 Plot of the motors steady state gain across the operating region . . . 81

5.9 Plot of the residuals from the DC Gain test 82

5.10 Plot of the relative residuals from the DC Gain test 82

5.11 ARX estimate on unfiltered data . 85

5.12 ARX order estimate on filtered data 85

5.13 ARX order estimate using filtered data to estimate unfiltered data . . 85

5.14 Singular Values Plot (Zoomed in) . 87

5.15 Butterworth Response . 91

5.16 ChebyChev II Response . 92

5.17 The effect of the ChebyChev II filter on a PRBS signal. Blue is the

original signal and green the filtered signal 94

5.18 Residue plot of ARX 222 . 99

5.19 Residue plot of ARMAX 2222 . 99

5.20 Residue plot of OE 222 . 99

5.21 Residue plot of BJ 22222 . 99

5.22 Map of the Poles and Zeroes . 100

5.23 Map of the Poles and Zeroes (Zoomed in) 101

5.24 Results of the models on the first 3 seconds of a chirp signal 103

7.1 Legend for FTA shapes . 120

7.2 Fault tree analysis on case ”Gap too Small” 121

7.3 Fault Tree Analysis on case ”Gap too Large” 122

7.4 Top Level Control Structure . 127

xiv

7.5 Full/Expanded Control Structure . 128

7.6 Excerpt from STPA step 1 . 130

7.7 Causal factors for inadequate control (Leveson, 2009) 132

A.1 Structure of an ARX model . 139

A.2 Structure of an ARMAX model . 139

A.3 Structure of a Box Jenkin model . 141

A.4 Structure of an OE model . 141

A.5 Results of STPA Step 2 - Method 1 152

A.6 Results of STPA Step 2 - Method 2 153

A.7 Results of STPA Step 2 - Method 2 154

xv

Chapter 1

Background and Literature Review

1.1 Introduction

Adaptive Cruise Control (ACC) is a Driver Assistance System that can help to im-

prove the safety of our roads by reducing the workload on the driver. By extending

traditional Cruise Control (CC) with the ability to adjust its velocity based on traf-

fic conditions, ACC can be used in many situations where traditional CC would be

impractical.

However, before the advantages of ACC can be leveraged, drivers must be able to

trust it to perform safety even in the presence of faults. Fault Diagnosis techniques

can be used to detect when a fault has occurred so that the appropriate action can

be taken.

The goal of this thesis is to develop a hybrid systems model of Adaptive Cruise

Control for use in the development and testing of fault diagnosis techniques on a test

1

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

bed involving a Remote Control (RC) car. Additionally, since many of the fault diag-

nosis and control techniques require a model of the system, a realistic representation

of the RC car will be obtained.

1.2 Hybrid systems

Many systems can be described as either evolving continuously or discretely with

respect to time. Systems that evolve continuously are often represented by a set of

differential equations, while discrete systems are commonly represented as a state

machine.

In a continuous system, there are an infinite number of states that the system

could be in and the system evolves through these different states as a function of

time. In contrast, a discrete system the transition between states occur as the result

of an event or by some condition being met.

In a state machine each state is represented by some shape, often an oval, and

the available transitions are represented by directed edges between the states. These

transitions are labelled with a guard condition and the name of the event(s) that can

trigger it. If a transition is triggered, the guard condition must first be evaluated to

see if it will be allowed to occur.

While many systems fall into one of these two categories, more complex systems

often contain aspects of both continuous and discrete systems. Hybrid systems theory

provides a method for describing systems which fall into the latter category. However,

understanding a hybrid system as merely one in which both continuous and discrete

aspects are present would likely be inadequate. The reason for this claim is that much

of the functionality of the hybrid system comes not just from the co-existence of the

2

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

continuous and discrete aspects but in their interactions.

A typical hybrid system contains a set of discrete states in addition to the contin-

uous states that are found in a continuous system and which will evolve over time.

The key difference is that in a hybrid system the manner in which the continuous

states will evolve is dependent on the current discrete state.

Consider for example the longitudinal dynamics of a bicycle. The rider can contin-

uously adjust the speed of the bike by adjusting the amount of force applied through

the pedals. In this way the rider has a degree of continuous control over the bike’s mo-

tion. However, there are also a number of discrete control decisions that can change

the way the bike responds to the rider’s pedalling. When the rider changes gears, the

continuous dynamics of the bike will also change. This can be seen in the fact that,

after the gear change, the same amount of force on the pedals will result in a different

response from the bike. This is an example of a discrete control decision changing

the continuous dynamics of a system. Other discrete control decisions the rider can

make include choosing whether or not to choose to apply or release the brakes.

However, not all discrete control decisions are controllable. The bursting of a

tire or breaking of a chain are both examples of discrete events that will change the

dynamics of the bike even if they were undesired.

1.3 Adaptive Cruise Control systems

Cruise Control (CC) is a driver assistance system that controls the longitudinal dy-

namics of the host vehicle. By modulating the vehicle’s throttle signal it attempts

to maintain a user-requested velocity. Adaptive Cruise Control (ACC) extends this

system by sensing the presence of a leader vehicle and adjusting the vehicle’s speed

3

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

accordingly. However, the majority of ACC systems are designed only to operate at

highway speeds and will often have a minimum velocity of around 30km/h (Shakouri

& Ordys, 2011).

Stop&Go systems were developed to further extend ACC to be able to handle

these slower speeds and the style of driving that goes with it. In (Yoshinori Yama-

mura & Murakami, 2001) the development of a Stop&Go system is discussed along

with some of the challenges that arise from low speed driving including smaller inter-

vehicular spacing and more frequent changes in velocity.

Adaptive Cruise Control and other Driver Assistance Systems (DAS) have been

active areas of research for a number of years and as a result the literature on the

topic is rather diverse. However, despite their differences, most ACC systems have at

least two things in common.

The first is that any ACC implementation requires a method of gaining infor-

mation about its environment. Information is needed both about the host vehicle’s

own continuous state (velocity, acceleration, etc.), as well as information about the

presence and behaviour of a leader vehicle. Information about the vehicles own con-

tinuous state can be obtained using the sensors that are already a part of the vehicle.

An example of this is the wheel speed sensor which provides information to the driver

about their velocity via the speedometer.

Information about the lead vehicle’s continuous state is more difficult to come

by and requires additional hardware. The most common method for gaining this

information is by mounting a Radar1 or Radar-like sensors to the front of the vehicle.

Included in this category are Microwave and Doppler radar units as well as the light

1RADAR is an acronym for RAdio Detection And Ranging

4

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

based LIDAR2 .

As part of the development process in (Girard et al., 2005), the authors carried

out a comparison of three of these types of sensors. Doppler Radar was found to

work well at highway speeds with its range of 100 m. It also has the ability to provide

information about the range, range rate3 and azimuth for multiple targets. The

azimuth information can be useful in determining whether any of the lead vehicles

are in the process of changing lanes. However, the Doppler radar is unable to sense

vehicles with zero relative velocity (Girard et al., 2005). Microwave radar, operating

in the millimetre wave region, was found to be useful only in Stop&Go situations since

it only had a range of 40 m. However, its value in Stop&Go scenarios was shown in

its use in (Yoshinori Yamamura & Murakami, 2001). LIDAR had the disadvantage

that its output is provided in the form of distance and intensity values for a plane of

view. As a result, the data had to undergo processing before the system could gain

an understanding of the leader vehicle’s behaviour.

Other ACC systems supplement the information from their radar sensor by assum-

ing that the lead vehicle will radio back information about its velocity and accelera-

tion. ACC Systems that rely on this form of information are known as Coordinated

Adaptive Cruise Controls (CACC) . Examples of such systems are developed in (Dew,

2002) and (Girard et al., 2005) .

The second aspect that all ACC systems must contain is the ability to take the

information provided by the sensors and use it to implement some form of control.

While the methods used to implement this control can range greatly from one system

2LIDAR stands for LIght Detection And Ranging
3The range is the distance between the two vehicles. The range rate is the rate at which this

distance changes, it is in effect the relative velocity

5

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

to another, any ACC system has to be able to safely adjust its speed in the presence

of a leader and maintain a velocity set point in the absence of one.

For this purpose, the ACC system is given access to the vehicle’s throttle and

brakes and must use each as needed. How the system employs each depends on the

control method chosen for the implementation. A wide range of control methods have

been used in the literature, from simple Proportional-Derivative (PD)(Girard et al.,

2005) feedback control to methods which use Model Predictive Control (MPC)(Kural

& B.A., 2010; Shakouri & Ordys, 2011; Li et al., 2011) to obtain their goals. Other

types of control that have been implemented for this purpose include Linear Quadratic

Regulators (LQR)(Junaid et al., 2005) and Sliding Mode Control (Hedrick & Yip,

2000).

The implementations in (Kural & B.A., 2010; Shakouri & Ordys, 2011; Li et

al., 2011) use Model Predictive Control (MPC) in a hierarchical architecture. The

top level controllers in these systems were created using Model Predictive Control

to determine the trajectory of the vehicle based on a set of goals and constraints

while relying on simple linear controllers to control the actuators. The importance of

meeting multiple design criteria when developing an ACC system is discussed in (Li

et al., 2011). To demonstrate this point, the authors show how MPC can be used to

create a design that will have this ability. The example system they design optimizes

for fuel economy, tracking accuracy and driver comfort. Also discussed in (Li et al.,

2011) is the use of an “Action Point”, the idea being that the system will not take

action to further reduce the tracking error until it exceeds some threshold.

In (Kural & B.A., 2010), the authors point to MPC’s ability to naturally integrate

constraints into the optimization process as one of the advantages of this approach to

6

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

control. The system in (Kural & B.A., 2010) was developed and tested against a high-

fidelity non-linear model of a vehicle under different traffic situations. The authors

of (Shakouri & Ordys, 2011) also developed a pair of detailed non-linear models of

their vehicle to serve as the basis of their control. The need for two models in their

work arose from the fact that the vehicle’s continuous dynamics changed depending

on if the throttle or brakes were currently engaged.

Although the use of MPC is popular in the literature, it does have several draw-

backs including its tendency to be computationally expensive. Alternatives to Model

Predictive Control techniques include sliding mode control as discussed in (Hedrick

& Yip, 2000) and (Dew, 2002), or the use of LQR controllers as discussed in (Junaid

et al., 2005).

The system discussed in (Girard et al., 2005) uses a hybrid control system which

switches between Cruise Control mode, Adaptive Cruise Control mode and Coordi-

nated Adaptive Cruise Control (CACC) mode. Each of these modes have their own

control law which is used to calculate the desired acceleration. The result is then

passed down to a low level controller for implementation. The low level controller is

then responsible for deciding whether the brakes or throttle should be used to achieve

this goal. The mode that the system is in depends on the information provided by

the radar sensor. If there is no lead vehicle then the Cruise Control system will be

activated and the system will attempt to achieve the velocity set point using a PD

controller. However if there is a lead vehicle present, the system will have to decide

between Adaptive Cruise Control and Coordinated Adaptive Cruise Control, based

on whether or not the leader is communicating back its continuous state. The purpose

of both the ACC and the CACC systems is to maintain a predetermined following

7

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

distance; this is done through use of sliding mode control.

Most of the systems that have been discussed use a hierarchical or federated ar-

chitecture. For example in (Girard et al., 2005) and (Li et al., 2011), the top level

controller will determine the desired acceleration and will rely on the lower level con-

troller(s) to implement it. However, the system in (Shakouri & Ordys, 2011) uses a

different structure. In this design the low level controller is similar to a traditional

Cruise Control system. A simple PI controller is used to achieve whatever velocity is

requested by the top-level controller. The top level controller will choose this velocity

set point according to the current traffic conditions and ACC objectives.

While the use of a hierarchical architecture is very popular, some other designs

like (Junaid et al., 2005) use a more integrated approach. The system presented in

this paper uses an LQR controller that takes care of determining both the current

ACC objective as well as how to achieve it.

Other areas of research within the field of ACC systems include the use of formal

verification techniques (Loos et al., 2011; Jairam et al., 2008), the problem of string

stability (Liang & Peng, 1999) and the effect of ACC on drivers (Lees & Lee, n.d.;

Han & Yi, 2006). Additionally, studies like the one presented in (Han & Yi, 2006)

study driver’s habits to better understand how to make the ACC system behave more

like a human driver.

8

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

1.4 Software Dependability and Fault Tolerance

Since, the goal of this thesis is to produce a model that can be used to develop new

fault diagnosis techniques, it would be helpful to briefly cover some of the work that

has been done in this field. By looking at what has been done in the past, the need

for new techniques can be better understood.

Fault tolerance is the ability of a system to “continue operating properly in the

event of the failure of some of its components”(Chandhrasekaran & Choi, 2009). Fault

tolerance can take many forms in a system, the most obvious is through the addition

of redundancy. An example of such an approach is the N -Version programming

method in which N teams of software developers independently work from a set of

requirements to develop N versions of the same software. In many cases, each team is

required to develop their solution to the problem using a different approach to software

development and may even be working from slightly different sets of requirements.

The idea is simple, if N -versions of the system are running, then their results can be

compared by a voter unit. Then whichever value was chosen by the majority of the

subsystems will be applied.

Intrinsic in this method is the assumption that each version of the software will be

independent of the others. To test this assumption, John Knight and Nancy Leveson

carried out an experiment in (Knight & Leveson, 1986). The findings of this study

were that the assumption of independence can fail for a number of reasons including

common assumptions, mistakes or oversights in the requirements, and commonalities

in the way that programmers are educated. Additionally, by producing multiple

versions of each component, the budget for development is spent towards diversity

rather than focusing the developer’s attention on a single version.

9

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

In (Sha, 2001), these problems are cited as proof of the argument that the way to

improve software reliability is through simplicity rather than diversity. Their claim is

that developing a simple version of the program, that is simple and understandable,

will yield more robust results than an N-version solution. This approach is made

difficult by the fact that adding features naturally increases the complexity of a sys-

tem. Their solution to this problem is to create two versions of the system. The

first version would be designed with simplicity and verifiability with formal methods

in mind. The second could then include all of the required features. At run-time,

the simple system could then be used to check the results of the more complicated

system.

A similar argument is made in (Wassyng et al., 2012) about developing software

for safety critical applications. The claim is that when developing safety-critical

software, the control system can become rather complex. Therefore, to ensure the

system remains safe, an independent safety system should be developed to monitor

the behaviour of the system. The result is once again, a complex system that is

difficult to verify, being monitored by a simpler system which has undergone formal

verification.

10

Chapter 2

Introduction and Preliminary

information

In this thesis we develop of a Hybrid Systems model for Adaptive Cruise Control.

The intended use for this model is to aid in the design and testing of fault diagnostics

techniques, especially those that exploit the hybrid nature of the controller.

In a related project, a test bed involving a Remote Control (RC) car was prepared

for the testing of automotive safety algorithms. The Adaptive Cruise Control system

developed in this thesis was designed to make use of this test bed and its RC car.

Since many of the fault diagnosis and control techniques require a mathematical

model of the system, a realistic representation of the RC car was needed. This need

was met by using a System Identification process to obtain a model of the car. This

model was then used to develop the Hybrid Systems Adaptive Cruise Controller which

consists of both a Finite State Machine (FSM) and a bank of LQR controllers.

The resulting model was then used to generate fixed point C code capable of

controlling the RC car. The design of the ACC system was also subjected to a

11

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

rigorous hazard analysis using STPA.

2.1 Representing a discrete system

Hybrid systems can be modelled in a number of different ways, each having its own

strengths and weaknesses. According to (Mohammadi, 2009), the use of Petri nets and

Finite State machines is popular among computer scientists, while systems engineers

prefer to use a set of differential equations. An example of the latter are switching

systems, as explained by (Goebel et al., 2009). A switching system is an equation

whose right hand side is determined by a set of conditions. An example switching

statement is shown in equation (2.1)

f(t) =

Equation 1 if condition 1

...
...

...

Equation n if condition n

(2.1)

The representation that will be reflected in this thesis is that of a hybrid automata.

The hybrid automata can be thought of as an extension of the state machine discussed

previously. Each discrete state in the hybrid automata includes a set of differential

equations. These equations represent the continuous dynamics of the system while in

that state. A reset map is also included in the hybrid automata to describe the effect

of a discrete transition on the continuous dynamics.

12

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

2.1.1 Notation of a general hybrid automaton

In (Goebel et al., 2009), the authors state that the hybrid automata usually consists

of the following components:

A set of modes, Q

A domain map, Domain : Q⇒ Rn

A flow map, f : Q× Rn → Rn

A set of edges, Edges ⊂ Q×Q

A guard map, Guard : Edges⇒ R

And a reset map, Reset : Edges× Rn → Rn

Note that in this notation ⇒indicates a set value mapping while→ denotes

a function.

The flow map in this definition is a state-dependant differential equation that

represents the continuous dynamics of the system when that state is active.

As an example of this notation consider the bicycle example from Section 1.2. The

different gears would be represented as different discrete modes. The set of discrete

modes could also be used to represent whether or not the brakes are being applied.

In this case the set of discrete modes Q would include one mode for first gear with

brakes applied, and another for first gear with no brakes applied. The continuous

variable on the other hand would be the velocity of the bike.

The set of edges would be the transitions between these modes. Their presence or

absence would show which transitions are possible. For example an edge would exist

between first and second gear, and between second and third gear. However, there

13

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

would be no edge between the first and third gear. So to transition from the first

gear to the third, the rider would have to transition into second gear temporarily.

The guard map would be a set of logical statements found on individual edges.

For a transition to occur over an edge, its guard condition must first evaluate to true.

A guard condition from the bike example would be that a transition between gears

can only occur if the pedals are moving.

The domain map for each discrete mode would be the range of values which the

continuous state could take on while in this mode. The domain map of each gear

in the bicycle example would be the range of velocities the bike can achieve while in

that gear.

Finally, the flow map would be a set of differential equations that describe the

bike’s continuous dynamics based on the current mode Q.

An extended notation for fault diagnosis

This definition is sometimes extended, as can be seen in Mohammadi’s work on fault

diagnosis. In (Mohammadi, 2009), Mohammadi describes his definition of the hybrid

system by a 14-tuple.

H = (Q,X ,U ,Y , FT, Init, S,Σ, T,G, ρ,D, λ, q0)

Where

Q is the set of finite discrete states

X ⊆ Rn is the set of vector spaces of continuous state

U ⊆ Rp is the set of vector spaces of continuous input

Y ⊆ Rr is the set of vector spaces of continuous output

14

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

FT is the set of known fault types that are modelled in this notation

Init ⊆ X is the set of initial continuous states

S = {Sq|q ∈ Q} is the set of dynamic models defining the continuous

dynamics of the system

Σ is the set of symbols representing the discrete events labelling the tran-

sitions between discrete states

T ⊆ Q× Σ×Q is the set of discrete transitions

G : T ×X × U → {True, False}is the set of guard conditions

ρ : T ×X → X is a reset map D is the set of discrete output symbols

λ : Q→ D is the discrete output map

q0 is the initial discrete state

2.2 Introduction to Hybrid Fault Diagnosis

Hybrid systems can be an effective way to model complex systems which display both

continuous dynamics as well as discrete modes. If these complex systems are being

developed for a safety critical application then it would be highly desirable to be able

to identify when a fault has occurred within the system.

The literature contains numerous papers on the topics of fault tolerance and fault

diagnosis for complex systems like Adaptive Cruise Control. However, one of the

most interesting techniques we discovered was introduced by Mohammadi in his PhD

dissertation (Mohammadi, 2009). The method he introduced utilizes the hybrid sys-

tems representation of complex systems to develop a fault diagnosis framework. He

15

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

then demonstrated its use on a jet turbine engine. We believe that his work could

also be applied to more software intensive systems like Adaptive Cruise Control.

To investigate this possibility, as well as other fault diagnosis techniques, a model

of an ACC system was developed. However, before going into the details about the

design and implementation of the ACC model, a brief survey of Mohammadi’s work is

in order. The following discussion will highlight the principles behind Mohammadi’s

method since it is a good example of how a hybrid system representation can be used

to create more diagnosable systems.

2.2.1 The Hybrid Diagnoser

Mohammadi introduced “A hybrid framework for passive on-line fault diagnosis in

systems modelled by hybrid automata” (Mohammadi, 2009). The term “passive on-

line diagnosis” refers to a system that will, at run-time, monitor the system’s outputs

to determine its health. As a passive diagnoser, the health of the system will be

determined without interjecting test inputs; instead it will rely on the outputs the

system gives during its operation.

The advantage of a hybrid diagnoser over one that relies on either purely continu-

ous or purely discrete diagnosis techniques is a greater ability to diagnose the system.

By combining the information obtained from the continuous diagnosers with knowl-

edge of the current discrete state, faults that would have otherwise gone undiagnosed

can be detected and isolated.

The key to constructing Mohammadi’s Hybrid Diagnoser is to obtain an abstrac-

tion of the system that will integrate the continuous and discrete sensors while mod-

elling the system as a Finite State Automata. In his thesis, Mohammadi refers to

16

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 2.1: Mohammadi’s Hybrid Diagnoser (Mohammadi, 2009)

this view of the system as the EDESA or the Extended Discrete Event System Ab-

straction. Much of the work contained within his thesis focuses on the process of

transforming the hybrid state automata into this EDESA.

Obtaining the EDESA

Figure 2.1 shows a schematic of the Hybrid Diagnoser. The system is assumed to

have two types of sensors: discrete sensors, whose output changes only at certain

17

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

thresholds, and continuous sensors. The strength of the Hybrid Diagnoser is the

ability to merge the information that each provides.

The “System” will feed a copy of its inputs u(t) and outputs y(t) to the bank

of Residual Generators/Isolators. These Isolators will be designed to monitor the

system’s continuous dynamics in search of unusual behaviour. Integration of these

isolators, with the system and its discrete outputs, is done by obtaining the Discrete

Event System (DES) abstraction of each.

The DES abstraction of each isolator will also have its outputs discretized by

comparing its residual against a threshold value to see if it has been exceeded. The

DES abstraction of the system is essentially the hybrid automata with the continuous

dynamics removed from each state. When the DES representation of both the system

and the Isolators have been obtained, they are merged together using the synchronous

operator to create the Extended DES abstraction or EDESA.

The Residual Generators

The continuous fault diagnosis in (Mohammadi, 2009) is carried out by the bank

of Residual Generator/Isolators. A residual generator uses a mathematical model

of the system, along with the system’s inputs, to calculate an expected value for

the system’s output. This value will then be compared to the actual output of the

system, as measured by the sensors. The result of this comparison will be a residual

that should be close to zero under normal conditions. Since faults in a linear system

can be modelled as additive1 (Mohammadi, 2009), the residual will take on a non-zero

value when one of these faults has occurred.

1In the statespace notation an additive fault is treated as an unknown input to the system. If a
fault is active, then the term fi in x(k + 1) = Ax(k) +Bu(k) + fi, would be non zero (Mohammadi,
2009)

18

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

As an example, consider a fuel delivery system that is suffering from a fault that is

causing a 10% fuel loss on its way to the engine. The amount of fuel that the engine

would receive in this situation would be 10% less than what the system controlling

it thinks it has received. This discrepancy will manifest itself in the fact that the

vehicle will be travelling slower than expected. A residual generator designed for

this system would use the model of the vehicle along with the throttle opening to

determine the expected velocity of the vehicle. When compared to the sensor value,

this expected value will reveal that the vehicle is not responding to the input in the

expected manner.

However, there is another use for the residual generators in the Hybrid Diagnoser.

Recall that in a hybrid system, the continuous dynamics are dependent on the discrete

state and that each state in the hybrid automata will contain its own mathematical

model of the system’s dynamics. Since the residual generator operates from a specific

model of the system’s dynamics, a residual generator designed for state A would have a

non-zero residual when state B is active. Therefore, in the bank of residual generators,

each residual generator will correspond to a specific state and the continuous dynamics

that occur when that state is active.

While this does make the hybrid diagnoser more difficult to construct, because of

the additional work of designing each isolator, it does yield some advantages as well.

The most significant of these advantages is that the bank of residual generators can

help determine which state the system is currently operating in. If the system is in

state A then only state A’s residual generator should have a near-zero residual. If

this is not the case either because A’s isolator is actually non-zero or if any of the

19

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

other states have a near-zero residual, then a problem has been found in the system.

The Hybrid Diagnoser

As previously mentioned, obtaining the EDESA of the system and its isolators is

a prerequisite to constructing the Hybrid Diagnoser. However, once it has been

obtained the design process can go forward. Since the EDESA abstracts the system

as a Finite State Automata (FSA), fault diagnosis techniques from the field of Discrete

Event Systems (DES) can be applied at this point.

The method Mohammadi makes use of is a state based method discussed in (Zad

et al., 2003). The diagnoser in this method is designed with knowledge of the discrete

states in the FSA. Required is the knowledge of what the discrete output will be in

each state and the possible states it can transition to. As the system operates the

sequence of discrete outputs is recorded. This information is used to identify which

state the system is currently in and how it got there.

More importantly, since each state can only transition to a certain subset of the

total number of states, only a certain subset of the possible sequences of discrete

outputs will correspond to a working system. If the sequence that is observed does

not fall into this subset, then the system has transitioned to a fault state. Admittedly

this is a rather simplistic explanation of this diagnoser but a more in depth description

of this method can be found in (Zad et al., 2003) since such a discussion would be

out of the scope of this thesis.

2.3 Thesis Contributions

The contributions of this thesis are as follows

20

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

� The development of a Hybrid Model of Adaptive Cruise Control using StateFlow

& Simulink and the use of this model to generate fixed point code for an ARM-

based implementation on board the RC car

� The derivation of a mathematical model of the RC car for use in simulation,

testing and the creation of fault diagnosis techniques

� The application of the STPA hazard analysis technique to the ACC system to

derive a list of potential faults and component-level safety constraints

21

Chapter 3

Introduction to Adaptive Cruise

Control and System Design

In this chapter the design of the Hybrid Systems Adaptive Cruise Controller will be

discussed. This discussion begins with a list of definitions and acronyms that will be

used throughout the thesis. Following that, the notation used to describe the current

traffic situation of the ACC controlled vehicle will be introduced.

The second half of this chapter begins by listing the requirements and safety

constraints that were used to build the system. The design of the system is then

discussed in two stages; the high level design is presented along with a description of

the architecture used to create the controller. Finally, two designs of Hybrid ACC

are presented. The first design uses a Finite State Machine to switch between a set

of PID controllers. The second design improves upon the first by introducing more

sophisticated LQR-based MIMO controllers which can be used to simplify the design.

22

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

3.1 Definitions

Progress Pi(t): The progress of each vehicle is defined as the total distance it has

travelled from some arbitrary but common starting point.

The progress of the ith vehicle can be represented by Pi(t).

Note: If i is not explicitly denoted, then it is referring to the

subject vehicle.

Headway h(t): The headway of two vehicles A and B is defined as the time it

would take for A to reach B based on their current velocities. Put

another way, the headway of A and B is the period of time h it

would take so that PA(t+ h) = PB(t), assuming that the velocity

of each vehicle is held constant through the interval h.

The headway of the ith vehicle and its leader is denoted hi(t).

Note:If i is not explicitly denoted, then it is referring to the subject

vehicle.

Subject Vehicle: Also referred to as Self or the Host Vehicle.

The Subject vehicle is the vehicle that is equipped with the ACC

system along with its supporting hardware. This vehicle’s lon-

gitudinal dynamics will be controlled by the ACC system for as

long as the ACC system is activated.

Lead Vehicle: Also referred to as the Leader.

The vehicle that is currently ahead of the subject vehicle in the

lane that the subject vehicle is operating in.

23

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

LV := vehicle(i)| mini=1:n (Pi (t)− Ps (t)) ∧ Pi (t) > Ps(t))

Where Ps(t) represents the progress of the Subject Vehicle

IVS: Inter-Vehicular Sensor

The term IVS shall be used to refer to the sensor that provides

information on the inter-vehicular states range and range-rate also

known as drel and vrel respectively. This category includes sensors

like radar, lidar, ladar and ultra-sonic sensors

VSS: Vehicle Speed Sensor

The term VSS shall be used to refer to the sensor that provides

the information about the host vehicle’s velocity. This category

includes Hall Effect sensors and optical encoders.

ABC: Active Brake Control

The subsystem within ACC that when activated is responsible for

controlling the subject vehicle’s braking behaviour.

CFS: Car Following System

The subsystem within ACC that when activated is responsible for

controlling the subject vehicle’s dynamic following behaviour.

TCC: Traditional Cruise Control

The subsystem within ACC that when activated is responsible for

controlling the subject vehicle’s cruising behaviour.

24

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 3.1: Diagram of Headway Zones

3.2 Problem Space and Notation

Adaptive Cruise Control is a driver assistance system responsible for controlling the

vehicle’s longitudinal behaviour on behalf of the driver. The functional requirements

for ACC specifies two operating modes. The first operating mode is similar to what

would be found in a more traditional cruise control system. In this operating mode the

ACC system will control the vehicle’s throttle so as to maintain a cruising velocity

requested by the driver. However, if the ACC controlled vehicle is approaching a

slower moving vehicle then the second operating mode will be used. In this mode

the ACC controlled vehicle will slow down and begin following the lead vehicle by

maintaining a gap whose size is chosen by the driver.

Since the behaviour of the vehicle will be influenced by its proximity to the leader

vehicle, a system was devised for categorizing its current following distance. Figure

3.1 gives a visual representation of this system while a more in-depth explanation of

each “Zone” can be found in section 3.2.2. The legend in the top right corner of the

diagram indicates that the vehicles are moving in the positive direction on the x-axis.

It also shows that the value of “Headway” will get smaller as the host vehicle gets

closer to the lead vehicle. So a vehicle that is operating in Zone A will have a much

larger headway than one operating in Zone E.

25

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

3.2.1 Symbols

h∗,hself (s): The current headway between the subject and leader vehicles

hbrake (s): The threshold which specifies the minimum following time needed to

brake if both vehicles were to apply max braking power at the exact

same time

hsafe (s): The threshold headway which specifies the minimum following time

needed to:

1. Recognize the lead vehicle is decelerating (Sensing)

2. Make a decision on what to do and do it (Classification and Com-

munication Delays)

3. Come to a stop without colliding with the lead vehicle (Actuation)

As a result hsafe > hbrake

Note: The radar system’s sensing range must be greater than both

hsafe × Vself and hmax × Vself

hmin (s): The threshold that specifies the smallest value for headway in which

the system should attempt to maintain normal operation of the vehicle

without utilizing the Active Braking Control. For the system to be able

to operate safely the condition hmin ≤ hsafe must remain true.

hmax (s): The threshold beyond which the system should behave as a traditional

cruise control system and no longer attempt to meet the objective of

keeping etrack ≤ toltrack

The factors that must be considered when choosing this value in-

clude, but are not limited to: the upper bound of the range capabilities

26

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

of the radar system to provide reliable sensor data and driver car fol-

lowing behaviour characteristics

hset (s): A value set by the driver that specifies the desired following time. This

value may be chosen from a range of values set by the manufacturer to

ensure that hsetmin > hmin and hmax > hsetmax. When in “following

mode” this value will become the desired value for h∗

hsetmax (s): The upper bound on the headway region. It is the maximum headway

value for which the system’s tracking error will be considered accept-

able.

- Acceptable here means that etrack ≤ toltrack, or equivalently hsetmax ≤

hset + toltracking

hsetmin (s): The lower bound on the headway region explained above. However,

here acceptable means that etrack ≤ toltrack, or equivalently hsetmax ≤

hset − toltracking

Vself (km/h): The current velocity of the Subject vehicle

Vlead (km/h): The current velocity of the Leader vehicle

Note: This value cannot be directly obtained since there is no di-

rect communication between the vehicles with regard to vehicle states.

Instead it must be estimated using the Radar sensor while taking into

account the velocity of the vehicle with the Radar sensor.

Vset (km/h): A value set by the driver that specifies the desired cruising velocity.

The system will attempt to minimize the difference between Vself and

27

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Vset unless there is a slower moving leader vehicle less than hmax sec-

onds ahead

epace (km/h): The difference between the desired velocity, as specified by Vset, and

the actual velocity of the subject vehicle Vself . Consequently, epace =

Vset − Vself .

Note: This value is only relevant when “cruising”.

epacerel (km/h): The difference between the velocity of the leader vehicle Vlead and that

of the subject vehicle Vself . Consequently, epacerel = Vlead − Vself .

Note: This value is only relevant when “following”.

etrack (s): The difference between the desired headway, as specified by hset, and

the actual headway of the system h∗. Consequently, etrack = hset− h∗.

Note: This value is only relevant when “following”.

tolpace (km/h): A predefined value that specifies the maximum value for epace beyond

which the system is not obligated to further reduce epace.

tolset (s): A predefined value that specifies the maximum value for etrack beyond

which the system is not obligated to further reduce etrack

toltrack (s): A predefined value that specifies the maximum value for etrack beyond

which the system is not obligated to begin1 reducing etrack

Note that hset + toltrack = hsetmax ≤ hmax

and hset − toltrack = hsetmin ≤ hmin ≤ hsafe

1The difference between toltrack and tolset will become more apparent in the section about defining
the state transitions, but in general tolset is concerned with specifying when the activity of reducing
the error can be ceased, while toltrack specifies when this activity should be resumed. So the
difference between the two is a hysteresis region.

28

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

3.2.2 Explanation of Headway Zones

The behaviour of the ACC controlled vehicle depends on how close it is to the leader

vehicle. While the system is running it will use its Radar sensor to measure the

distance to the leader. It will then use this information to categorize its current

situation into one of 5 “Zones”. Table 3.1 gives a mathematical definition of each

zone.

Definition of Zones
Zone A h∗ ≥ hmax

Zone B hmax < h∗ < (hset + tolset)
Zone C (hset + tolset) ≤ h∗ ≤ (hset − tolset)
Zone D (hset − tolset) < h∗ < hmin

Zone E h∗ < hbrake
Note: hbrake ≤ hmin

Table 3.1: Definition of Headway Zones

Zone A Subject’s leader is either beyond the reliable range of the IVS, or it beyond

the range at which following behaviour would be considered desirable

Zone B Subject vehicle is within the range at which following behaviour should be

considered but still has a larger headway than the user requested

Zone C Subject vehicle is within the desired range of following times

Zone D Subject vehicle’s headway is less than desired but still within the safe range

or it less than the safe range but in a situation where Active Brake Control

should not be utilized

Zone E: Gentle Braking Region. Subject vehicle’s headway is less than the safe

range and Active Brake Control should be utilized but its power limited to

some predefined value

29

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

3.3 Assumptions

1. It is assumed that the Subject Vehicle contains the following sensors

(a) VSS: A vehicle speed sensor (eg, encoder) that can detect the current

speed of the vehicle.

(b) Radar/IVS: A radar system or other range detecting sensor that is ca-

pable of sensing both range and range rate.

2. It is assumed that there is no direct communication of state values back from

the lead vehicle (ie this is not a CACC2 system).

3. It is assumed that a system has been worked out to provide reliable range and

range-rate information around bends and for vehicles that are only partially in

the lane (provided the Radar sensor is currently operating correctly).

4. It is assumed that the velocity of all vehicles is no less than 0 (ie, they are not

reversing).

5. It is assumed that the driver or some other system is responsible for steering

the vehicle.

6. It is assumed that the system will never have the need to apply both the brakes

and throttle at the same instance.

2A description of Coordinated Adaptive Cruise Control is included in the literature review

30

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

3.4 System Requirements

To be able to effectively design the Adaptive Cruise Control system, a proper un-

derstanding of the desired functionality should be obtained and recorded as a set of

requirements.

This section contains the Functional Requirements that were used to design the

system. Additionally, a list of safety constraints which were obtained using the STPA

hazards analysis has been included. More information about STPA and its use on

Hybrid ACC can be found in Chapter 7.

3.4.1 Functional Requirements

1. Safety

(a) The driver must be able to regain control of the vehicle or override the

system at any point in its operation

(b) The space between the subject and lead vehicle must remain positive so

long as they are in the same lane,

i. The subject vehicle must leave enough space to be able to come to a

complete stop if the lead vehicle were to suddenly apply full braking

power

ii. The system must be able to respond in a timely manner to rapid

deceleration of the lead vehicle or to a vehicle cutting in

(c) The system must never actively move into an unsafe following distance

i. If a vehicle cuts in, leading to a potentially unsafe situation, the sys-

tem:

31

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

A. must not take any action that will further reduce the following

distance

B. must work to return the system to a safe following distance

(d) Avoid sudden braking or rapid deceleration

(e) String stability of the traffic

i. A string of at least N vehicles should be able to drive in series without

the string becoming unstable

(f) The system must have a framework in place to attempt to detect when an

error has occurred within the ACC system, its actuators or with one of its

sensors

(g) The system must be shut down immediately and control returned to the

driver if any of the following occur

i. The driver presses the brake pedal, clutch, or chooses to disable ACC

from the instrumentation panel

ii. A sensor, for which there is no reliable alternative, fails

iii. A sensor fails and due to its failure it becomes impossible to verify the

correctness of the other sensor(s) in the system

iv. The fault diagnosis unit detects the presence of a unrecoverable fault

Any one of the following fails: CPU, Actuator, communication bus

2. Tracking accuracy

(a) When the subject vehicle approaches a slower moving lead vehicle, it must

slow down to the leader’s velocity and follow at some predefined time

headway

32

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

(b) When the lead vehicle is not accelerating and is travelling at a velocity

less than the user’s desired velocity, as expressed by the velocity set point,

then:

i. At every point in time the system’s tracking error must be less than

some predefined value toltrack or approaching it3

ii. The system must achieve a tracking error at least as small as toltrack

within some predefined time period so long as the leader’s velocity

doesn’t change by more than X1% during that time period.

(c) If either of the following are true:

- there is no lead vehicle present

- the lead vehicle is moving at least as fast as the subject vehicle and

the current headway exceeds hmin

then the subject vehicle will act as a traditional cruise control system and

will attempt to minimize the difference between the velocity set point and

the current velocity of the vehicle

i. The tracking error in this situation will be defined as epace = Vset −

Vself

3. Driver comfort/Fuel economy

(a) Restrict maximum acceleration and braking power

(b) Transitions between different modes of operation should be smooth enough

so that acceleration will be less than Xmaxaccel

3Some designs in the literature have a requirement that goes something like this: “Tracking
errors should approach 0 as time approaches infinity”, however this won’t be included in this set of
requirements due to conflict with the string stability requirement

33

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

(c) Avoid braking when it is safe to do so

(d) The driver should be able to specify the following from the instrumentation

panel4

i. Desired velocity of the vehicle : vset

ii. Desired following time : hset (from a range of acceptable values)

iii. Desired following accuracy which is inversely proportional to toltracking

this value will be chosen from a range of acceptable values provided

by the system

3.4.2 Safety Constraints

In addition to the high level functional requirements, which deal with the system at

a fairly high level of abstraction, a set of safety constraints were added. These safety

constraints are the result of using the STPA process on the high level design of Hybrid

ACC. One of the strengths of STPA is its ability to assign responsibility for enforcing

the safety requirements to individual components. As a result, these constraints deal

with the system at a much lower level, mostly dealing with individual subsystems.

Full system

S0.1 While the system is in control of the vehicle, the velocity must not exceed the

user-defined velocity set point by more than some pre-defined tolerance. The

value of this tolerance is dependant on the mode in which the system is cur-

rently operating. If it is in ‘following’ mode then the tolerance will be tolpace

4A proper HMI design would be required in the actual implementation to determine the best way
to provide the driver with an interface that won’t distract them from their task.

34

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

and if it is in ‘cruise’ mode then it will be tolpacerel

S0.2 If approaching a vehicle that is moving slower than the user defined velocity then

the system must slow down and begin to maintain the user-specified following

distance

S0.3 The system must reduce throttle in the presence of a leader vehicle that is less

than hsetMax away if the leader vehicle’s velocity is greater than the set point

velocity

S0.4 Hysteresis regions must be added to the switching conditions to avoid rapid

switching and system instability due to delays

Braking System

To utilize the system’s brakes two things must happen: the Active Brake Controller

must first be activated then it must be used to activate the brakes.

Brakes

S1.1 The system must activate the brakes when the gap between the vehicle and its

leader is less than the safe following distance

S1.2 The vehicle must not brake unless the gap is less than the safe following distance

S1.3 Brake power must be limited to Xmaxbrake
%

S1.4 The brake lights must be on when the vehicle is braking

35

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Active Brake Controller Subsystem

S2.1 The ABC Controller must be activated if the gap is less than the safe following

distance

S2.2 The ABC Controller must not be activated unless the gap is less than the safe

following distance

Car Following Subsystem

S3.1 Once activated the ABC controller must remain active until the system has

restored a safe following distance or the user deactivates or suspends the system

S3.2 The system must not attempt to follow a vehicle whose velocity is greater than

the user defined set point velocity

S3.3 The system must not attempt to follow a vehicle whose headway from the host

vehicle is greater than hmax aka Zone A

S3.4 Once activated the CFS must remain active unless

- the gap between the host vehicle and its leader is less than the safe following

distance

- the leader vehicle’s velocity becomes greater than the set point velocity

- the distance between the velocity of the host vehicle and its leader becomes

greater than hmax or the user deactivates/suspends the system

Traditional Cruise Control Subsystem

S4.1 In the absence of a suitable leader vehicle to follow, the system must attempt

to maintain the user-defined velocity without exceeding it by more than tolpace

36

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

S4.2 Once activated, the TCC must remain active unless the system approaches a

slower moving vehicle (Zone C or closer) or the user deactivates or suspends the

system

Interaction with Driver

S5.1 The system must not activate or resume unless commanded to by the driver

S5.2 The system must return control to the driver upon receiving the deactivation

signal/suspend signal or after sensing the user’s brakes

a. This must occur within X milliseconds from when the signal is sent

S5.3 The system must indicate when it is active

S5.4 The system must indicate if CConly is active

S5.5 The system must indicate when “Initiation” is complete and the vehicle is under

ACC’s control

S5.6 Once activated the system must remain active unless commanded by the driver

to “deactivate” or “suspend” or if any of the events identified in requirement

1(g) occurs

S5.7 The system MUST respond to the user’s acceleration and braking commands

(User command actions override the system’s commands)

37

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

3.5 High Level Design of a Car Following System

If the ACC controlled vehicle doesn’t currently have a slower moving leader vehicle

then its desired velocity is simply Vset.

However, if the vehicle is approaching a slower moving vehicle, then determining

the desired velocity of the system becomes more complicated. Figure 3.2 shows a plot

of a function f : egap → Vrel which describes the desired velocity of the vehicle in a

“following” situation.

Figure 3.2: Desired Vrel as a function of egap

When following a leader vehicle the system’s continuous dynamics can be described

by a function f : egap → Vrel which has the following properties:

1. Piecewise continuous (smooth transitions)

2. | ∂f
∂egap
| < A, where A = max allowable acceleration,

� i.e. Magnitude of the Slope in of each segment must be less than A

38

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

3. Relative velocity should be a monotonically decreasing function of the quantity

egap = hset− h∗. As a result the following statements must hold true so long as

the system is in following mode

(
egap> toltracking →

∂f

∂egap
< 0

)
(3.1)(

egap< −toltracking →
∂f

∂egap
< 0

)
(3.2)

i.e. if egap ≥ toltracking the slope must be negative and such that egap will

decrease over time

Notes:

1. The slope of the curve at the end of Zone D represents the deceleration the

system would undergo when the throttle is set to 0 and the brakes are not

applied

2. The slope of the curve in Zone E represents the braking power (assuming a

linear model for the brakes)

3.6 Design of an Adaptive Cruise Controller

This section will highlight the workings of the ACC system that was designed in

response to the requirements listed above. Implicit in the functional requirements

was the need for the system’s dynamics to adapt to the current situation. If no lead

vehicle is present, or if the leader is travelling faster than the set point velocity, then

the system must act as a traditional cruise control system. However, if approaching

39

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

a slower moving vehicle then the system must switch to following at a safe distance

while matching the lead vehicle’s velocity. Finally, the ACC system must issue the

brake command if the lead vehicle gets too close.

The use of a hybrid automata will allow for a controller to be designed that will

be able to handle the need for different operating modes without neglecting the need

for continuous control over the vehicle’s dynamics.

The resulting system consists of three subsystems and a data flow between them

as depicted in the block diagram of Figure 3.3.

FSM Continuous
Controllers

Cntrl_sel
Setpoints

Throttle Signal

Brake Signal
Driver requested set points

Sensor Data

Driver Control Signals

Data
Processing

Unit

Enhanced Sensor Data

Figure 3.3: The Architecture of the Adaptive Cruise Control System

The first of these subsystems is the Data Processing Unit or DPU. This subsystem

plays a supporting role to the other subsystems by providing each with sensor data

that has undergone the necessary filtering and conditioning.

Together, the other two components make up the hybrid automata. The Finite

State Machine (FSM) makes the discrete control decisions using the sensor data and

the set points chosen by the driver. The FSM itself is a (discrete) automata consisting

of several states, each of which corresponds to one of the system’s operating modes.

The continuous portion of the hybrid automata is implemented by a cluster of

continuous controllers, which shall be called the CCC. Each controller within this

40

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

bank has been designed to implement the desired dynamics for a specific mode. The

goals and design of each of these controllers will be discussed in more detail later.

The decision as to which of the continuous controllers should be activated is taken

care of by the FSM. The FSM will also supply the active continuous controller with

the set points it is responsible for achieving.

Driver Interface

The driver interacts with the system through the instrumentation panel. The instru-

mentation panel provides the driver with feedback about the system’s current state

as well as the opportunity to issue commands like “Activate ACC” or “Suspend”.

The driver is also able to issue a command to activate only the subset of ACC

which implements traditional cruise control. If this is chosen then the system will

attempt to match the vehicle’s velocity with the user’s requested velocity even if it

is approaching a slower moving vehicle. It is important to note that in this situation

it is up to the driver to manage the gap with the other vehicle and to operate the

brakes if necessary5.

The user interface also allows the user to increase or decrease the velocity and

headway set point values. By adjusting these values, the driver can control what

cruising velocity the system will attempt to achieve and how much of a gap it should

leave if a slower moving vehicle prevents this goal from being realized.

If the driver chooses to manually operate the throttle through the gas pedal, the

5It would be beneficial to consider different ways the system could alert the driver to the need
for extra braking power. Alternatively, ACC could be paired with a pre-crash braking system which
could be given full control of the brakes when the vehicles get too close

41

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

system will be temporarily suspended until the driver removes their foot from the gas

pedal. If, on the other hand, the driver presses the brake pedal, then the system will

be suspended until the driver chooses to manually re-activate the system by pressing

the corresponding button on the user interface.

3.6.1 An Initial Design for the Finite State Machine

As a first attempt the FSM was designed to work with a bank of PID6 controllers.

In this scheme each controller would have a single “goal” and would map to exactly

one state. An explanation of the FSM that was designed to control this system in

included below.

System States

The original FSM consisted of four states to represent the system when it was active

and two states for when ACC was inactive.

A description of these states is included below and a graphical representation of

this state machine can be seen in Figure 3.4.

1. ACC Off: The ACC system is off and will not attempt to control the vehicle

or to gain information about current conditions via its sensors.

2. ACC Initialize: The user has initiated the ACC system. The system will

begin to use its sensors to gather information about the current scenario. This

information will be used to choose the appropriate state to transition into.

Control of the actuators has not yet commenced.

6PID stands for Proportional-Integral-Derivative and is a popular form for simple single-input
single-output controllers

42

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

ACC_On ACC_Initialize
en:state=0.5;
du:h_self=D_radar;

ACC_Activated
du:V_lead=V_self + V_radar;
du:h_self=D_radar;

CloseGap
en: state=2;

MaintainHeadway
en: state=3;

Cruise
en:state=1;

Brake
en:state=4;

ACC_Off
en:state=0;
du: cntl_sel=0;

[UserActivate]

[!UserActivate]

02 && [!Suspend]1

[Suspend]

01

2

32

1

12

2

23

2

21
1

14

3

42

1

31 3

133

43

3

34

2

14

1

41
2

Figure 3.4: StateFlow Diagram of State Automata

3. Cruise: One of the four active states. While this state is active the system will

attempt to minimize the difference between the velocity requested by the user

and the actual velocity of the system.

4. Close Gap: While this state is active the system will attempt to minimize the

difference between the current headway of the system and that requested by

the driver.

43

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5. Maintain Headway: While this state is active the system will attempt to

match the velocity of the leading vehicle so as to maintain a constant headway.

6. Apply Brakes: While this state is active the system will apply the brakes

until a safe gap has been restored. While in this state the system will attempt

to minimize the difference between the desired headway and actual headway.

It should be noted that only one of the active states (Apply Brakes) will result

in any brake action at all. The other three active states rely on manipulating the

throttle signal to achieve their goals. A summary of each state is included in Table

3.2. The table shows each state’s name along with the control variable it will attempt

to minimize, the sensors that will provide it with data and the actuators that will

carry out its commands.

State Name Control Variable Sensor Used Actuator
ACC Off - - -

ACC Initialize - VSS, Radar -
Cruise epace = Vset − Vself VSS Engine

Close Gap etrack = hset − h∗ VSS, Radar Engine
Maintain Headway epacerel = Vlead − Vself Radar Engine

Active Brake Control etrack = hset − h∗ VSS, Radar Brakes

Table 3.2: State Information

State Transitions

Equally important to the design of the individual states are the transitions between

them and the associated guard conditions. The diagram in Figure 3.4 depicts these

transitions as directed edges which have been labelled with a two digit number.

In the actual implementation, this number would be replaced with the guard

44

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Zone A Zone B Zone C Zone D Zone E
VLead ≥ VSet + tolhyst Cruise Cruise Cruise CloseGap Brake
|VLead − VSet| ≤ tolhyst Cruise Cruise/CloseGap Cruise/Headway CloseGap Brake
VLead < VSet − tolhyst Cruise CloseGap Headway CloseGap Brake

Table 3.3: Transition Criteria for each for ACC with PID

condition for that transition. For now these labels will provide a way of referencing

their corresponding transition.

Using the functional requirements, Table 3.3 was created to indicate what the

system’s next state should be based on current conditions. The flow chart in Figure

3.5 depicts the reasoning which led to Table 3.3. This flow chart depiction is useful

here since it shows the hierarchy of decision criteria.

The transition criteria that result from this analysis can be summarized as follows.

1. Zone A7 always leads to “Cruise”

2. Zone E8 always leads to the state “CloseGap” to slow the vehicle down.

3. So long as the velocity of the leader is at least as fast as the set point velocity

and the vehicle is not in Zone E, then the next state will be Cruise

4. So long as the velocity of the leader is slower than our set point velocity

(a) Zone D 9 will lead to CloseGap

(b) Zone B10 will lead to CloseGap, unless it is transitioning from the state

Cruise and is currently in the hysteresis region

7h∗ ≥ hmax
8h∗ < hmax
9(hset − tolset) < h∗ < hmin

10hmax < h∗ < (hset + tolset)

45

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

(c) Zone C 11 will lead to Headway, unless it is transitioning from the state

Initialize

The transitions will be driven by a clock and guarded by the conditions expressed

by Table 3.3.

Note: This is a slight variation of the hybrid automata that was used by Moham-

madi in his thesis (Mohammadi, 2009). The main difference being that in Moham-

madi’s version, the guard conditions were evaluated to decide if a transition was valid.

However, even if the transition was found to be valid, it would only be taken when the

state invariant became false

11(hset + tolset) ≤ h∗ ≤ (hset − tolset)

46

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Zone A or E?Zone A

Start

Brake

Zone E

V_lead > V_set

No

Zone D?

Yes

Zone C?

No

Cruise

No

Yes

Headway

Yes

CloseGap

No

Leader not present
or too far away to

follow

Leader is too Close!
Must Apply Brakes

Tracking error
within tolerance,

switch to matching
velocity

Cruise

CloseGap

Leader is moving
faster than setpoint

Leader is moving
slower than setpoit

Leader is too close
for cruising, but not

close enough for
brakes.

Ease off throttle

Figure 3.5: Decision process for choosing state transitions

47

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

3.6.2 An Improved Finite State Machine

The FSM discussed in Section 3.6.1 was designed for a system which had the limitation

of using Single-Input-Single-Output (SISO) controllers. This limitation resulted in

a more complicated following mode since the system would have to switch between

tracking the distance to the leader and their velocity.

However, Multiple-Input-Multiple-Output (MIMO) controllers like the LQR can

be designed to track both of these quantities at the same time. The benefit of this

can be seen when one considers the FSM that would be needed to control such a

system. While the original FSM had to switch back and forth between two states to

ensure accurate following, the FSM for this MIMO-enabled system would be in the

same state for as long as the following continues.

System States

The FSM for the LQR-controlled system shares most of its states with the PID-

controlled system. In fact the only difference between these two FSMs is that the

LQR-FSM merges the states Close Gap and Cruise into a single state Follow. The

description of follow can be seen below.

Follow: While this state is active the system will attempt to minimize the difference

between the current headway and that requested by the driver while concurrently

attempting to match the leader’s velocity

State transitions

The move to LQR controllers also has an effect on the transitions between states. For

starters, by reducing the number of states a reduction in the number of transitions is

48

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

ACC_On ACC_Initialize
en:state=0.5;
du: cntl_sel=0;
du:h_self=D_radar;

ACC_Activated
du:V_lead=V_self + V_radar;
du:h_self=D_radar; Follow

en: state=5;
du: cntl_sel=1;
du:V_requested=V_lead;
du:h_setpoint=h_set;

Cruise
en:state=1;
du:V_requested=V_set;
du: cntl_sel=3;
du:h_setpoint=h_set;

Brake
en:state=4;
du:cntl_sel=3;

ACC_Off
en:state=0;
du: cntl_sel=0;

[UserActivate]

[!UserActivate]

05 && [!Suspend]
1

[Suspend]

01

2

15

2
45

1

54

2

51

1

41
2

14

1

Figure 3.6: The FSM designed to control the LQR controllers

49

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Zone A Zone B Zone C Zone D Zone E
VLead ≥ VSet + tolhyst Cruise Cruise Cruise Follow Brake
|VLead − VSet| ≤ tolhyst Cruise Cruise/Follow Cruise/Follow Follow Brake
VLead < VSet − tolhyst Cruise Follow Follow Follow Brake

Table 3.4: Transition conditions for ACC with LQR

also realized. Secondly, since this reduction in the number of states was obtained by

merging two existing states, the guard conditions on the transitions to the new states

will be simpler. Before the FSM had to determine not only if the system should be

following but also which quantity it should begin tracking first. In the new system,

the continuous LQR controller will work to achieve both goals simultaneously.

Table 3.4 shows the guard conditions for the new system which is depicted in

Figure 3.6

The LQR controllers

Information on the LQR controller and its use in this Adaptive Cruise Control System

can be found in Chapter 6.

3.7 Summary

In this chapter notation was given to make use of different ‘Zones’ to categorize the

following situation of the ACC vehicle. This notation made it easier to communicate

the design and requirements.

The system requirements were also given along with the safety constraints that

are derived using STPA in Chapter 7. Finally, the design of the system was discussed.

Included in this discussion was the use of LQR controllers from Chapter 6, to simplify

the design. Chapter 4 will describe the realization of this design in Simulink and

50

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Stateflow.

51

Chapter 4

Simulink Model

4.1 Introduction

To be able to simulate the operation of the ACC system a model was created in

Matlab’s Simulink. Included in this model is an implementation of the ACC system

as well as the mathematical model of the RC car that will be developed in Chapter

5. The top level of this Simulink model consists of 6 blocks or subsystems and the

signals that flow between them. Four of these blocks represent components of the

ACC system and the other two represent the host vehicle and the leader vehicle

respectively.

4.2 The Signals

Before diving into each of the subsystems and the role they fulfil, it is helpful to first

gain an understanding of the signals that are passed between them as inputs and

outputs.

52

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 4.1: Top level view of ACC Simulink Model

53

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Vset (km/h): This signal represents the driver’s desired cruising velocity.

The system will attempt to achieve this velocity so long

as there is not a slower moving vehicle in its path.

hset (s): This signal represents the driver’s desired following dis-

tance for situations in which a slower moving leader ve-

hicle is preventing the ACC system from being able to

achieve Vset

Vrequested (km/h): While Vset represents the velocity that the driver wants

the system to cruise at, Vrequested is the velocity that the

FSM decides the system should attempt to achieve based

on the current conditions.

hrequested(s): Similarly hrequested is the following distance that the FSM

system decides the system should attain based on the cur-

rent conditions.

Throttle Signal (% × 10): This signal is passed from the ACC controller to the vehi-

cle to operate the throttle. The value is a number in the

range 0-1000 where 1000 is full throttle. Effectively then

the units for this signal become %Throttle × 10.

VSS (km/h): This signal represents the output of the Vehicle Speed Sen-

sor (VSS) and gives a reading of the vehicle’s velocity.

Alternatively the units on this could be converted to m/s by

the DPU

Vself (km/h): This signal represents the system’s measurement of the

54

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

host vehicle’s velocity after it has undergone signal pro-

cessing.

VRadar (km/h): This signal represents the velocity reading taken from the

radar mounted on the host vehicle. As a result the value

contained in this signal will be the relative velocity be-

tween the lead vehicle and the Radar’s own velocity.

Thus the leader’s velocity can be estimated as Vself+VRadar

Vrel (km/h): This signal represents VRadar after it has undergone signal

processing (See Section 4.3)

This value is used by the system to estimate the leader’s

velocity by the relation Vleader = Vself + Vrel.

DRadar (s): This signal represents the Radar sensor’s measurement of

the distance between the host vehicle and the leader vehi-

cle.

Drel (s): This signal represents DRadar after it has undergone signal

processing.

V DAself : This signal is very important as it represents the system’s

estimate of the vehicle’s continuous state. This signal is a

4-tuple with the units of (km/h, -,s,km/h2).(See Section 4.3)

Inter-vehicle states: This signal is used only in simulation as a way to pro-

vide the simulated leader vehicle’s continuous state (For

more information see the description of the lead vehicle in

Section 4.3.1)

55

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

4.3 The Subsystems

As previously mentioned, the blocks included in the top-level view of the Simulink

Model can be partitioned into three categories:

1. Components of the ACC controller

2. Blocks that represent physical systems that are being simulated

3. Scopes and tags that are used to study the behaviour of the system

In the following section the blocks in the first two categories will be explored.

1. Components of the ACC Controller

The architecture of the ACC Controller can be viewed as consisting of four compo-

nents. Sensor data that is fed into the ACC system is first passed to one of the two

Data Processing Units. From there it is passed on to the FSM and the Cluster of

Continuous Controllers (CCC). The FSM also provides instructions to the CCC with

regard to which controller to use and what set points are to be achieved.

Block: ACC Discrete

The block used to implement ACC Discrete is designed using the Stateflow toolbox

which allows for the creation of FSMs in the Simulink environment. The ACC Discrete

block implements the discrete control decisions that are made by the controller and

the discrete states or modes that arise out of this.

Inputs Each of the inputs to this block can be classified as either

feedback data or as a driver control signal. In the first cate-

gory are the signals Vself , VRadar, and DRadar, which provide

56

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

the block with information about the current state of the

system. These signals are provided by the Data Processing

Units.

The second category of inputs (the driver control sig-

nals) consist of set points like Vset and hset as well as boolean

signals which allow the driver to make decisions about the

behaviour of the system. Included in this is the ability of

the driver to turn the system on or off, to put it in Cruise

Control Only mode or to temporarily suspend operation.

Outputs There are 3 outputs from this block all of which are fed to

the CCC. The first of these outputs is cntl sel which tells

the CCC which of its internal controllers should currently

be active. The other two outputs are the signals Vrequested

and hrequested, which are the set points that the CCC is

responsible for achieving.

Internal Operation The internal operation of this subsystem is driven by a

discrete automata. This automata is made up of discrete

states/modes and the transitions between these modes which

are guarded by logical statements. The transitions and

their guard conditions are used to implement the discrete

control decisions, e.g. when to switch from cruising to fol-

lowing. The discrete states are used to realize the hybrid

57

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

modes that were identified during design of the ACC al-

gorithm (Following, Cruising, ACC Off, etc). Each dis-

crete state influences the behaviour of the overall system

by its choice of controllers and set points (both of which

are passed to the CCC).

Example of operation If the system is too far from any lead vehicle then it will

begin to act like a traditional cruise control system (ie it

will try to minimize the error between the vehicle’s velocity

and the set point velocity.) So in this case cntl sel will be

set so that the Cruise System controller (inside the CCC)

will be allowed to pass its output through the MUX and

therefore to be the controller that is currently active.

Block: Cluster of Continuous Controllers

This block/subsystem implements the continuous control portion of the hybrid con-

troller. This is done by providing three Linear Quadratic Regulators (LQR) and the

ability of the ACC Discrete subsystem to decide which of them will generate the

output. Each of these LQR controllers has been designed to meet the control goals

of its respective state. More information about the LQR controllers and their design

can be found in Chapter 6.

As mentioned there are three LQR controllers present in the CCC

Following System: This LQR controller’s goal is to attain the following distance spec-

ified by the driver and then to match its velocity. Additionally,

58

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

it also has the goal of minimizing the acceleration since large ac-

celerations can introduce instability into the system, shake up the

driver and are bad for fuel economy.

Cruise System: This LQR controller’s goal is to minimize acceleration while min-

imizing the difference between the vehicle’s velocity and that re-

quested by the user. In other words this is a traditional Cruise

Control system.

Braking System: At present, this system has yet to be implemented. The reason

for this is that the RC does not have a proper set of brakes. Fur-

thermore, once the brakes are added to the RC car, an estimate

of its transfer function is needed for the LQR design process.

However this controller’s goal will be to use the brakes to slow

the car down until it is following at a safe distance and velocity.

The outputs of this block are the Throttle and Brake Signals, both of which are

represented in the format of a % x10.

Block: VSS Data Processing Unit

This block represents the subsystem responsible for carrying out the signal processing

on the sensor data provided by the Vehicle Speed Sensor (VSS).

The first stage in this unit is a low pass filter responsible for removing the high-

frequency noise which, if left unfiltered, would greatly degrade the control effort.

Currently the implementation of this filter has not yet taken place. However, the

chapter on System Identification covers many of the considerations that would need to

be considered here. The main difference between this situation and the one presented

59

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

in Chapter 5, is that here the processing has to happen real-time so the approach

used there using filtfilt will not be applicable here.

Next, the filtered signal is passed on to the full-state observer which will derive

information about the other continuous states (eg acceleration) from the velocity in-

formation provided by the VSS. This data is important since LQR controllers require

knowledge of the full system state. In this case the Observer that has been imple-

mented is a Kalman filter in ‘Triple Integrator form’ (Canet, 1994) .

Output: The output of this block is an array of 4 signals, collectively called

V DAself , the signals are in order: Vself , SSstate, dself , aself . Note that the SSstate is

a by-product of the State Space notation and while it has no physical significance on

its own, it is necessary for the calculations of Vself .

Block: Radar Data Processing Unit

This block is very similar to the VSS Data Processing Unit block except it operates

on the data from the radar sensor instead of the VSS. Also, its Kalman observer only

keeps track of two states (drel and Vrel) both of which the system is able to measure

directly. So while there are not any unobserved states that need to be estimated, the

Kalman filter can still help improve the quality of drel and Vrel since the relationship

between these signals is known.

Example: Since Vrel is a derivative of drel, then if dradar suddenly jumps sharply

and Vradar does not, then there is possibly something wrong

60

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

4.3.1 Blocks representing physical systems

Block: Model of Physical Vehicle with Sensors

This block represents the physical system being controlled, in this case the RC car.

The main component within this subsystem is the Discrete Vehicle Model which

contains the transfer function for the RC car. This transfer function was obtained

using the System Identification process. In addition to this there are also blocks that

simulate the functionality of the Radar and Vehicle Speed Sensors (VSS) and allow

for noise to be artificially introduced for simulation purposes.

Block: Lead Vehicle

The final block on the top-level diagram is a simulated leader vehicle. Like the Model

of Physical Vehicle with Sensors this block is only used for simulation purposes and

is not included in the code generation. Within this block the developer can draw

out velocity trajectories for the leader vehicle that can be used as test cases when

simulating the system.

4.4 Code Generation process

One of the goals of this project was to implement the ACC system on the physical

RC car. This set-up would allow for faults to not only be simulated in the Simulink

model but also using the physical test bench.

A test bed using an RC car to test active safety systems like ACC is being de-

veloped in a related project (Sullivan, 2012). As part of that project, the RC car,

whose model is obtained in Chapter 5 of this thesis, was equipped with an ARM

61

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

board which provides an API for interfacing with the hardware.

To be able to use the Hybrid ACC model on this test bench, the code was first

converted into a fixed-point representations and then into executable C-code. Matlab

provides a suite of tools that enabled this process.

� The Model Advisor tool examined the model to ensure that the system was

compliant with good coding practices and warns of aspects that may cause

problems.

� The Fixed Point tool was used to analyse the range of data each signal would

be expected to represent. Following this, it was used to convert the signals into

the appropriate fixed point representation.

� The Matlab Embedded Coder toolbox was used to ensure the code was com-

pliant with the needs of the code generator. Once this was complete the fixed

point code was generated and then installed on the ARM board.

4.4.1 Porting to the Test Bench

In porting the code to the RC car several changes had to be made to the model to

reflect changes in the test bench. The first of these changes is the units of measurement

that were used for both velocity and distance. In the model these measurements were

done in km/h and km respectively. However, since the test bench used cm and only

allowed for 16 bit data types over the CAN bus, attempts to interface the two resulted

in large numerical errors. To solve this problem a copy of the model was altered to

use cm as its unit of measurement.

62

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

The second change was to the sampling rate. The model was originally devel-

oped to run at 300 Hz, the frequency used during the system identification process.

However, the CAN bus was found to be unable to keep up with the model when it

operated at this rate. As a result, the model was reconfigured to run at 100 Hz before

it was converted into C code.

Finally, the LQR controllers had to be adjusted using the methods described in

Chapter 6 to get the desired response from the system. During this tuning it was

found that the trade-off between reducing the steady state error and keeping the LQR

smooth made it difficult to find the ideal tuning. In response to this, a small integral

signal was introduced into the following controller.

4.4.2 Test Bench Results

Testing of the ACC system on the test bench was done in an incremental fashion, it

started with simple tests that were easy to verify. Then once they had been completed

and any necessary corrective action taken, the next stage of tests was applied. It is

important to note that the test that appear at the beginning of this process are

rather simplistic and would not represent actual driving conditions (eg. A leader

whose velocity changes as a step function). However, the final two tests capture a

more realistic operating environment.

The first step was to verify that the modified model still matched the physical

car. To do this, the system was run at various throttle levels and the resulting speed

compared to what the model predicted. The results of this test proved that the steady

state velocity of the car still matched the results of Chapter 5.

63

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 4.2: The RC Car cruising at 300cm/s, 200cm/s, 100cm/s and 50cm/s

64

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 4.3: The ACC car following a leader travelling at different velocities

The second test was concerned with the behaviour of the car using only traditional

cruise control. This was achieved by giving the system different velocity set points

while the “Cruise Control Only” option was selected. Then the resulting velocities

were compared with the requested velocities. The initial results of this test allowed

for the “Cruising” LQR to be tuned to the test bench. The later results were then

used to verify the effectiveness of this tuning. An example of the system’s perfor-

mance under this test can be seen in Figure 4.2.

65

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

The third test was to place the car in a “Following” situation on the test bench

and to adjust the leader’s velocity to see how the ACC vehicle would respond. As in

the previous case, the test results were used to both tune and verify the correspond-

ing LQR controller. In Figure 4.3 the system is following a leader whose velocity is

changing to different velocities according to a step function. Then in the Figure 4.5

the system is following a vehicle whose velocity is changing continuously with respect

to time.

Finally, a set of tests was created to test the switching from “Cruising” to “Follow-

ing” and vice versa. These tests allowed for the verification of the transitions on the

physical car. Although these transitions had already been verified on the Simulink

model these tests showed that the hysteresis zones had to be adjusted. These adjust-

ments were necessary due to some of the non-linear effects that the model couldn’t

capture. An example of the system switching from cruising to following can be found

in Figure 4.4 while Figure 4.5 shows the opposite.

4.5 Summary

The topic of this chapter was the Simulink model which implements the design of

Chapter 3. The ACC system consists of three components: the data processing

units, the finite state machine and the continuous controllers. Two additional sub-

systems represent the physical system being controlled (the car) and the lead vehicle,

respectively. For each of these systems the inputs and outputs were presented along

with a description of how each subsystem contributes to the whole.

66

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 4.4: ACC is Cruising until it gets within range

This Simulink model was used to simulate the ACC system functioning in response

to the different trajectories given to the leader vehicle. The model was also used to

generate code that could be used to control the physical car on the test bed. To meet

the needs of the ARM-board on the vehicle the model was converted to fixed point

code and verified using the Simulink model checker.

An important part of this model was the representation of the physical vehicle

found in the block “Model of the Physical Vehicle with Sensors”. The next chapter

67

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 4.5: Following a car then switching to Cruise

68

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

explains how this model was obtained using the System Identification process.

69

Chapter 5

System Identification of the

Adaptive Cruise Control Testbed

System Identification is a technique for obtaining a black box model of a physical

system. In this chapter the system that is being identified is the electric motor of

an RC car. The resulting model will be used in creating a simulation of the system,

designing the continuous controllers and in developing the fault diagnosis.

The process involves providing the system with a known input signal and using

sensors to measure and record the output. An assortment of statistical tools will then

be applied to the results to derive a model that is able to predict the output of the

system. Important aspects to consider in this process include stability, accuracy and

computational costs.

70

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Electric Motor

Transmission :
Gear Ratio of

7.16

Encoder

Angular Velocity
of motor

Speed
Controller

10x % Throttle
PWM
signal

Measurement of
Angular Velocity

at motor

Angular Velocity
of Wheels

Figure 5.1: System Setup

5.1 The System

The target of this process is a 1/10th scale model Remote Control (RC) car. The

resulting model will relate the input, provided to the speed controller, to the output,

measured at the wheels. The input signal is a number between 0 and 1000 and the

units can be thought of as (% offullthrottle) × 10. This signal is provided to the

speed controller which will convert it into a Pulse-Width Modulated (PWM) signal

to drive the motor.

The output is measured by an optical encoder with 256 pulses per revolution. The

encoder has been attached to the output gear of the electric motor which drives a

simple transmission in order to power the wheels. The gear ratio between the output

gear of the motor and the wheels is 7.16, therefore the angular velocity of the wheels

can be found by multiplying the measured angular velocity by 7.16.

A limitation of this system, at the time of the System Identification process, was

a maximum update period of 3 ms. As a result the maximum rate at which the input

could be fed was 333 Hz. For simplicity the sensor’s sampling period was set to this

same frequency.

71

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.2 Initial Tests

The system identification process requires that certain assumptions be met about the

system. In particular, the model structures that will be used in this report assume

that the underlying model is linear and that the noise is Gaussian in nature. Ensuring

these structures can be used and that their results will be accurate requires the use

of preliminary tests to both verify these assumptions and to gain other valuable

information about the system.

5.2.1 Frequency Range of Interest and the Bandwidth of the

System

One of the most important parameters to consider when designing the experiment

is the range of frequencies that will be excited and measured. When designating

this range it is important to capture both the bandwidth of the system and a large

enough region around it in order to capture the transient effects. The bandwidth of

the system can be found by looking at the ETFEs1 of the system and locating the

-3dB point or the point where the signal is at 70.7% of its original amplitude. The

bandwidth of the RC car was found to be around 60 rad/sec or 9.5 Hz.

Ideally the frequency range of interest would be 10× the bandwidth. However,

limitations like the signal to noise ratio, the Nyquist rate and the power spectrum of

the input can prevent this from being realistic. An examination of the ETFE plots

show that at higher frequencies the signal to noise ratio becomes very small making

1An ETFE or Empirical Transfer Function Estimate can be found by GN (w) =
YN (w)

XN (w)
where

UN (w) and YN (w) are the FFT of the input and output signals respectively Habibi (2011b). The
ETFE is often represented graphically in the form of a bode plot.

72

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

data in that region unreliable.

Additionally, to prevent aliasing in the data, anything above the Nyquist frequency

(166 Hz) will be removed via filtering. It will also be important to have a flat power

spectrum for the input signal. This is an important point to take into consideration

when using PRBS2 signals for inputs since the flat portion of the PRBS’s power

spectrum is limited to 1/3rd of the switching rate (Habibi, 2011b). In this case the

switching rate was set equal to the sampling rate of 333 Hz.

Taking all these limitations into consideration, the frequency range of interest was

decided to be between 0-45 Hz

5.2.2 Delay

One of the most important characteristics to identify, when building a mathematical

model of a system, is the time delay from when an input signal is applied to when

the system begins to respond to it. Determining the delay of the system, before

beginning the main identification process, can greatly simplify the process by reducing

the number of models that need to be compared in the identification stage.

Step Input

To determine the delay of the system, a step input was applied to the motor. Figure

5.3 shows the system’s response to this step from 30% (2.36V) to 40% (2.49V).

From this plot it can be seen that there is a 2 sample delay from when the input

signal is applied, to when the system begins to respond to it. Since the test was done

at a sampling rate of 333 Hz that 2 sample delay translates to 0.006 seconds.

2PRBS is an acronym for Pseudo-Random Binary Sequence

73

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.2: ETFE of PRBS with no windowing

74

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.3: Delay in Step from 30% to 40% input. Red denotes the input signal and
blue the system’s response

Impulse Response

Figure 5.4 shows the system responding to an impulse from 50%(2.63V) to 60%

(-2.76V). Since it is very difficult to generate an impulse input due to electrical limi-

tations, a step input from 2.63V-2.76V is applied and the result differentiated. This

process will be explained in more detail when discussing the methods used to estimate

the model order. However, examination of this plot also shows that the delay can be

estimated at 2 samples or 4 milliseconds.

75

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.4: Delay in Impulse Signal

5.2.3 Dead Band

A common source of non-linearities within systems is the region known as the Dead

Band. In this region the non-linear effects of static friction and the stick-slip phe-

nomenon can be observed, both of which can cause large errors when trying to derive

our model.

Identification of this region allows for steps to be taken to reduce its effect. The

first step that can be taken is to avoid this region when collecting the data that

will be used to identify the model. Secondly, once the model is obtained its use can

be restricted to exclude this band or at the very least to apply some appropriate

compensation.

To locate this region a sequence of step inputs, with enough time between steps to

76

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.5: Dead band as shown by sequential steps

compensate for the delay, was provided. Figure 5.5 shows the result of this process.

In this plot each step has a magnitude of 0.135 mV and the time between steps is

3 seconds. Examination of this plot reveals that the motor enters the linear region

at the 6th step or at approximately 2.03 V or 6% full throttle. The effects of the

slip-stick phenomenon can be seen in the region preceding that point.

5.2.4 Noise Characteristics

Another assumption that had to be investigated is whether or not the noise in the

system could be considered uncorrelated. An estimate of the Welch power spectrum

density (PSD) was plotted for a series of step inputs. The resulting plots can be seen

in Figures 5.6 and 5.7.

77

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.6: Welch Power Spectrum of Steps with Varying Amplitudes

78

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.7: Welch Power Spectrum of Steps with Varying Operating Points

79

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

An examination of the plots in Figures 5.6 and 5.7 shows an initial spike followed

by a period of rapid attenuation. The section following that, from 10-150 Hz, is

mostly flat however a slight downward trend visible in Figure 5.6.

The initial spike reveals that a large magnitude for signals with a frequency of

>10Hz. This is caused by our step signal which represents a DC signal before and

after the change in amplitude takes place.

The real area of interest here is the flatness of the band that follows the initial

spike which is mostly noise. The PSD shows the “power” of each frequency present.

If this section is flat then the power of the noise is independent of the frequency.

The noise in these two plots is fairly flat after the initial spike. However, the slight

downwards trend in Figure 5.6 may limit the accuracy of the final model.

5.2.5 Linear Piece-Wise Region

As previously stated, the method being used in this report assumes an underlying

linear system. However, it is not uncommon for a system to meet this criteria only

within a certain subset of its range. Also possible is the situation where the operating

range could contain more than one linear region. In the situation with multiple

linear regions, a separate model would need to be obtained for each of the regions.

Consequently this section investigates whether the RC car has zero, one or multiple

linear regions.

DC Gain Test

The first method used to investigate these questions was the DC gain test. In this

test, the system was fed a series of step inputs and the average of their steady state

80

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

values recorded. This was done 3 times for each voltage level to improve reliability.

Input
Input
(V)

RPM of Motor Predicted
Value

Residual
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

100 2.085 36.931 40.660 40.829 44.019 7.088 3.350 3.190
200 2.220 96.228 96.769 96.867 99.638 3.409 2.868 2.771
300 2.355 154.075 155.024 155.042 155.256 1.181 0.232 0.214
400 2.490 210.960 211.357 211.874 210.875 -0.085 -0.482 -0.998
500 2.625 269.816 270.233 270.277 266.494 -3.322 -3.739 -3.783
600 2.760 326.102 326.403 326.661 322.112 -3.990 -4.291 -4.548
700 2.895 380.949 381.350 381.401 377.731 -3.218 -3.619 -3.670
800 3.030 439.475 439.554 439.670 433.350 -6.125 -6.205 -6.320
900 3.165 496.197 496.235 496.155 488.968 -7.229 -7.267 -7.187
1000 3.300 527.355 527.115 527.284 544.587 17.232 17.472 17.303

Table 5.1: Results of the DC Gain Test

Linear regression was performed on this data and the results plotted in Figure

5.8. The linear regression found the relationship to be

RPMOutput = 412 ∗ (VInput)− 815 (5.1)

The corresponding correlation coefficient of 0.9982 suggests that this is a very good

fit and that the system is indeed linear.

Delving a little deeper into the data, the residuals at each voltage level were

also produced and plotted in Figures 5.9 and 5.10. These residuals were found by

using equation (5.1) to predict what the RPM of the motor would be at that voltage

level. The difference between the predicted value and the actual value then became

the residual. The relative residual is defined here as the residual divided by the

magnitude of the predicted value.

The results from the residual analysis also support the claim that system has one

linear region in the defined operating region of 0 - 1000. However, the residuals also

81

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.8: Plot of the motors steady state gain across the operating region

reveal that at both ends of this range, the values don’t fit as well. As a result it can

be expected that the model won’t be as accurate in predicting values that appear

near the boundaries. Another conclusion that can be drawn from this data is that

the data collection from the system identification should come from the middle of the

operating range.

82

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.9: Plot of the residuals from the DC Gain test

Figure 5.10: Plot of the relative residuals from the DC Gain test

83

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.3 Model Order Estimation

When using linear regression to fit a model to data a common pitfall is over-parameterization.

Higher-order model estimations can often appear to give a better fit for a particular

set of data. However, these results are misleading and the effect will be noticed when

the model is used to estimate a different type of input. To counter this effect two

steps are taken: The first is that the data used to create the model will not be the

data used to verify it, though this will be explained more fully later on. The second

step is to determine the model’s order prior to the main estimation.

5.3.1 ARX

The first method used to approximate the order of the system involves generating a

series of models within the expected range of system order. Since the delay of the

system was already known to be 2 samples, that value was held constant while the

orders of the numerator and denominator were varied from one to ten. The models

were created from a PRBS signal switching between 50-60% of full throttle.

Prior to generating the models, the data was split into two intervals. The first

interval was then used to generate each model and the second interval was used to

assess the level of fit the model could achieve. The results of this process are included

in the box plots below. The first boxplot shows the ARX estimate of the system using

unfiltered data to generate the models. The data used to generate the second plot

was filtered with a ChebyChev type 2 filter as explained in Section 5.4.

� Figure 5.11 shows the fit level of the different models when unfiltered data is

used to create and verify the ARX models.

84

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

� Figure 5.12 shows the fit level of the different models when filtered data is used

to create and verify the ARX models.

� Figure 5.13 shows the fit level of the different models when filtered data is used

to create the ARX models and filtered data is used to verify them.

According to (McCullough, 2011), the model which shows the greatest improve-

ment over the previous model can be regarded as the best fit. In figures 5.11 and

5.12 the bar that corresponds to the greatest drop is the second bar. In both of these

diagrams that second bar represents the output of the ARX 222 model34.

3The identity of each bar can be found in Matlab’s ident tool by selecting the bar of interest
4The ARX model is discussed in more details in Section A.2 of the Appendix

85

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.11: ARX estimate on unfiltered
data

Figure 5.12: ARX order estimate on fil-
tered data

Figure 5.13: ARX order estimate using filtered data to estimate unfiltered data

86

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.3.2 Impulse Response

The second method used to estimate the system order involves analysing the system’s

response to an impulse input. If a system’s response to an impulse input is put into a

Hankel matrix, then the rank of this matrix will be the order of the system (Habibi,

2011b). However, there are a number of physical limitations that will make the

process a little more challenging.

The first of these challenges is that it is impossible to generate a true impulse

input due to limitations in the electrical control circuitry. Fortunately, the effect of

an impulse can be approximated by taking the derivative of the system’s response to

a step input.

Once the data is collected, it needs to be filtered to remove the noise from the

sensors or any frequency about 45 Hz, the upper bound on the frequency range of

interest. A low pass ChebyChev II filter was used for this purpose. Section 5.4

explains how this filter was chosen.

After filtering the data, its derivative was taken and placed into a Hankel matrix.

However, filtering is unable to remove all the noise from the system, a situation which

is only made worse by taking the derivative of the signal. As a result, determining

the system’s rank is a non-trivial task.

As an alternative to finding the rank of the matrix directly, Singular Value De-

composition or SVD was employed to factor the system and to find the matrix S.

S is a diagonal matrix containing the singular values of the Hankel matrix on which

SVD was used.

The results of this process are shown in Figure 5.14 which shows the system to

be second order. It is easy to see that the noise still has an effect on the system, but

87

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.14: Singular Values Plot (Zoomed in)

this method allows for the number of dominant singular values to be determined.

Since the second bar shows the most significant drop in Figure 5.14, the system

is once again found to be a second order system (McCullough, 2011).

The Matlab code used to carry out this process can be seen below

%Choose data and f i l t e r the s i g n a l

[b , a]=cheby2 (10 ,40 ,45/(333/2) , ‘ low ’) ;

data= f i l t f i l t (b , a , y stepAmp (: , 6)) ;

%s e l e c t the impulse r eg i on

data=data (1 0 0 : 4 0 0) ;

88

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

%D i f f e r e n t i a t e the step in to an impulse

f o r t =2: l ength (data)−1

dx (t)=(data (t+1)−data (t −1))/ (2*0 .003) ;

end

%Create Hankel Matrix and f i n d i t s s i n g u l a r va lue s

han=hankel (dx) ;

[U, S ,V]=svd (han) ;

%Plot the r e s u l t

f i g u r e (9 2) ; bar (diag (S)) ; a x i s ([0 , 20 . 5 , 0 , 6 . 5 * 1 0 ˆ 4]) ;

5.3.3 Resulting Model Order

In both tests, the system was found to be 2nd order, though there is strong evidence to

suggest that while there are second order dynamics present, the first order dynamics

will be dominant. These results are useful for reducing the number of different models

that need to be estimated in the main estimation process. However, since the system’s

first order dynamics are so much stronger than the second order dynamics, both first

and second order models will be investigated.

89

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.4 Data Processing

The model produced by the system identification is highly dependent on the quality of

the data used to create it. Consequently, the data processing stage is very important

in ensuring the quality of the final result. In this section two different Infinite Impulse

Response (IIR) filters will be investigated.

The disadvantage of using IIR filters is that they don’t have a linear phase which

will result in non-equal time delays for different frequencies. However, since the

calculations are being completed off-line, and therefore all the data is available before

hand, zero-phase filtering can be carried out using Matlab’s filtfilt command. The

filtfit command will filter the data, flip it, filter it again and then flip it back. Doing

so will ensure the phase of the signal is kept intact.

5.4.1 Filter Design

The choice of filters relies heavily on what the data will be used for. The four most

common types of IIR filters are the Butterworth, ChebyChev type I, ChebyChev type

II and Elliptical filters. Of these only the Butterworth and ChebChev type II filters

are classified as maximally flat in the pass band.

A comparison was made of a 10th order Butterworth filter with a 10th order Cheby-

Chev II filter. Both of these filters were designed to have a cut-off frequency of 45

Hz. The advantage of the Butterworth filter is that it is maximally flat in both the

pass band and the stop band. The ChebyChev II filter on the other hand, is only flat

in the pass band but can achieve a much sharper drop-off than the Butterworth can

for a given number of poles.

The flatness of the stop band is not terribly important for system identification so

90

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

long as the attenuation in this range is sufficiently large. It can be seen from Figure

5.16 that the attenuation in ChebyChev II’s stop band oscillates between 40 and 70

dB. It can also be seen that the drop off is much sharper than what the Butterworth

filter was able to achieve in Figure 5.15.

The ChebyChev type II filter was chosen for all data processing carried out in this

chapter5. This decision was made because it had better drop-off than the Butterworth

and maintained the flatness of the pass band.

5It should also be noted that the experiments were also carried out using the Butterworth filter
for comparison and the difference was quite noticeable

91

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.15: Butterworth Response

%Butterworth Filter

clear filt

[filt(:,1) filt(:,2)]= butter(10,45/(333/2),’low’);

fvtool(filt(:,1), filt(:,2));

%filtfilt() will be used to carry out zero-phase filtering

92

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.16: ChebyChev II Response

%Chebychev2 Filter

clear filt

[filt(:,1) filt(:,2)]= cheby2(10,40,45/(333/2),’low’);

fvtool(filt(:,1), filt(:,2));

%filtfilt() will be used to carry out zero-phase filtering

93

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.4.2 The Difference Filtering Makes

Figure 5.17 demonstrates the effect that our 10th order ChebyChev II filter has on the

data. The plot shown here is an ETFE of the system’s behaviour before (blue) and

after (green) filtering. The plot shows how the data up to 45 Hz (approximately 280

rad/s) remains mostly untouched and how shortly after the 45 Hz point, the signal

has been greatly attenuated.

94

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.17: The effect of the ChebyChev II filter on a PRBS signal. Blue is the
original signal and green the filtered signal

95

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.5 Model Estimation

The actual model estimation portion of this project was done using a process known

as “Parameter Identification” (Habibi, 2011a). In this process the data is fit to

a predefined model structure with a number of parameters. The choice of these

parameters will define the model’s behaviour. The models that were used for this

process are ARX, ARMAX, Output Error (OE) and the Box Jenkins (BJ) model. A

brief description of each of these can be found in the Appendix in Section A.2.

The estimation process was done in an iterative fashion. The process was broken

down into a series of phases and the estimation process began with the simplest types

of models and progressed towards the more complex models. This progression allowed

for the simpler models with less parameters (ARX and OE) to identify the parameters

which were also shared by the more complex models (ARMAX and Box Jenkins). As

a result only 2-4 different Box Jenkins models needed to be compared rather than

the 16 that would have had to have been compared had the process gone straight to

Box-Jenkins.

The complete list of phases is listed below

1. Phase 1: Compare the Fit and Residuals of various ARX models

2. Phase 2: Compare the Fit and Residuals of various OE models

3. Phase 3: Compare the Fit and Residuals of various ARMAX models

4. Phase 4: Compare the Fit and Residuals of various Box Jenkins models

5. Phase 5: Compare the Fit and Residuals of the top model from each of phases

1-4

96

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

6. Phase 6: Compare the Fit and Residuals of the top model from each of phases

1-4 on other types of input data like steps and chirp signals

Phases 1-4 were used to choose the best ARX, OE, ARMAX and Box Jenkins

models in an elimination style. The “winner” of each of these phases was then com-

pared in phases 5 and 6. For the sake of brevity, only the results of phases 5 and 6

are reported on here. Phase 5 is reported on in this section of the thesis and Phase

6’s results are shown in Section 5.7 Model Evaluation and Validation.

ARX 222

y(z) =
2.225z−2 − 2.067z−3

1− 1.744z−1 + 0.755z−2
u(z) +

1

1− 1.744z−1 + 0.755z−2
e(z) (5.2)

OE 222

y(z) =
2.22z−2 − 1.698z−3

1− 1.41z−1 + 0.444z−2
u(z) + e(z) (5.3)

ARMAX 2222

y(z) =
2.22z−2 − 2.046z−3

1− 1.744z−1 + 0.756z−2
u(z) +

1 + 1.952z−1 + 0.967z−2

1− 1.744z−1 + 0.756z−2
e(z) (5.4)

BJ 22222

y(z) =
1.725z−2 − 1.357z−3

1− 1.568z−1 + 0.5924z−2
u(z) +

1 + 1.942z−1 + 0.963z−2

1− 1.764z−1 + 0.9439z−2
e(z) (5.5)

97

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.6 Model Fit

The fit of the model can be assessed by applying an input signal to the model and

examining how closely its output matches the output of the actual system. Here the

model’s fit is defined as “the percentage of the measured output that was explained

by the model” (MATLAB, 2012) and is calculated as

Fit = 100 ∗

1−

∥∥∥Y − Ŷ ∥∥∥
‖Y −mean (Y)‖

 (5.6)

In Table 5.2 the fit of each model is shown with different prediction horizons. The

Matlab documentation states that “Measured output values in data up to time t-

prediction horizon are used to predict the output of sys at time t (MATLAB, 2012)”

and that “For time-series models, use a finite value for Prediction horizon. (MAT-

LAB, 2012)”. Since the discrete models we are using are second order with a time

delay we are most concerned with the results for a prediction horizon of length 3.

The data in Table 5.2 shows that the ARMAX and BJ models display the best fit for

the given validation data.

Prediction
Horizon

Model Fit
ARX OE ARMAX Box Jenkins

1 93.43% 64.24% 98.15% 98.72%
2 82.50% 64.24% 91.65% 94.19%
3 69.43% 64.24% 80.62% 86.65%
5 33.07% 64.24% 53.73% 71.01%
Simulation 49.74% 64.24% 48.44% 62.72%

Table 5.2: Comparing Model fit over different prediction horizons

98

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.6.1 Model Residue

The model residuals are the differences between the model predicted output and what

was measured. In effect, the residuals are the part of the output signal that the model

failed to reproduce.

Additionally, the correlation between the current and past residuals (the auto-

correlations) and the correlation between the input and residuals (the cross-correlation)

can provide insight on the maturity of the model. That is, by studying where the

model fails to predict the output of the system accurately, a better understanding of

the model’s effectiveness can be obtained.

The plots in Figures 5.18, 5.19, 5.20 and 5.21 each consist of two sub plots. The

top sub plot shows the auto-correlation of output residuals while the bottom sub plot

shows the cross correlation.

The autocorrelation plots for the ARX ,ARMAX and OE models eventually settle

into the 95% confidence interval, but the BJ model continues to display oscillations

even 40 samples after the input. This would suggest that there is information present

in past outputs that could have been used to more accurately predict the current

output.

The cross correlation plots of the OE and BJ models reveal the presence of cor-

relation between the inputs and the residuals that doesn’t attenuate over time. On

the other hand the ARX and ARMAX models display rather a strong correlation

between the inputs and the residuals during the first 15 samples, however after that

the strength of the correlation attenuates into the 99% confidence interval.

99

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.18: Residue plot of ARX 222
Figure 5.19: Residue plot of ARMAX
2222

Figure 5.20: Residue plot of OE 222 Figure 5.21: Residue plot of BJ 22222

100

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.6.2 Poles Analysis

Stability is an important property to consider when evaluating a model. To investigate

the stability of equations (5.2), (5.3), (5.4) and (5.5), an analysis of their poles was

carried out. Figure 5.22 show the poles and zeroes of each of these models plotted on

the unit circle. Figure 5.23 is also included and focuses on the area of interest.

A system is considered to be stable if all of its poles, which are represented as ×

in the diagram, lie within the unit circle. The presence of poles on the unit circle

itself would indicate that the system is marginally stable while a system with poles

outside the circle are considered unstable.

Although it is difficult to make out the individual poles in Figure 5.23 it can be

seen that they all lie within the permitted range. Therefore, it can be safely assumed

that the systems are stable.

Figure 5.22: Map of the Poles and Zeroes

101

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 5.23: Map of the Poles and Zeroes (Zoomed in)

5.7 Model Evaluation and Validation

In the previous section, the ARX, ARMAX, OE and BJ candidates were compared

based on their performance on a specific set of validation data. That data was very

similar to the data that was used to create those models. In this section the models

are again compared but this time it will be against a range of validation data.

5.7.1 Model Response to steps at different levels

Table 5.3 shows the model fit of each model for a range of Step inputs. In each of

these tests the input was a step which would start at 0% throttle and go up to the

value indicated in the table. These tests were also repeated with fixed step size of

10% and the starting point ranging from 0-90% throttle with similar results.

The data in Table 5.3 shows that the ARX and ARMAX models have the best

performance across the operating envelope. It also shows that the model performs

much better when operating at above 20% throttle. This is especially noticeable in

102

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

the BJ and OE models which have very poor performance below this point.

The similarity in the ARX and ARMAX results can be attributed to the fact that

the only difference in their structure is the noise model. The similarity supports the

earlier findings that the noise in the system has very little ‘colour’. However, it also

should be noted that ARMAX with its more complex noise model does consistently

predict the output more effectively, even if the difference is very small at times.

Step Amplitude
Model Fit

ARX OE ARMAX Box Jenkins
10% Throttle 85.78% 6.19% 90.46% 51.47%
20% Throttle 95.65% 87.79% 97.15% 93.64%
30% Throttle 96.31% 92.61% 97.54% 96%
40% Throttle 97.6% 87.81% 98.42% 93.63%
50% Throttle 97.81% 83.38% 98.59% 91.43%
60% Throttle 97.52% 82.23% 98.4% 90.78%
70% Throttle 97.72% 82.08% 98.52% 90.71%
80% Throttle 98.29% 80.33% 98.92% 89.8%
90% Throttle 98.19% 79.79% 98.85% 89.52%
100% Throttle 98.41% 89.75% 98.99% 94.69%

Table 5.3: Model Fit for step inputs

103

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.7.2 Model response to a chirp signal

The final set of validation data that was used to evaluate each model was a chirp

signal. A chirp signal is a sinusoid in which the frequency of the oscillation increases

over time. The first 3 seconds of this test can be seen in Figure 5.24. The fit level of

each signal is as follows: ARX222 57.53%, OE222 -80.5%, ARMAX2222 72.3% and

BJ22222 7.087%.

This final test shows that in the rapidly changing chirp signal, the performance of

the BJ and OE models deteriorates rapidly. It also is the one test case in which the

ARMAX model pulls ahead of the ARX model in a significant manner.

Figure 5.24: Results of the models on the first 3 seconds of a chirp signal

104

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

5.8 The Resulting Model

Based on the results of the original validation data, the chirp data and the step

inputs data, the ARMAX model was chosen as the model to represent the system.

The resulting transfer function is

y(z) =
[2.22z−2 − 2.046z−3]/30

1− 1.744z−1 + 0.756z−2
u(z) +

[1 + 1.952z−1 + 0.967z−2]

1− 1.744z−1 + 0.756z−2
e(z) (5.7)

This transfer function will relate the throttle input to the motor speed at the

output gear. To make the transfer function more meaningful, it can be multiplied by

the scaling factor of 1/29.92 6 to get the output in km/h. This scaling factor will take

into account the gears in the transmission and the conversion from angular to linear

velocity.

A factor of 1/30 can be seen in the numerator of the system model. Its presence is

a result of the data being scaled up during the system identification process to make

the results easier to plot along side the inputs.

5.9 Conclusions

In this chapter the RC car was put through a batch of tests to gain a better un-

derstanding of the system, its noise level and linear regions. This information was

then used in preparing the system for the main identification process. Four candidate

models were compared for a variety of different input signals including PRBS, Chirp

and Step signals at different voltage levels. The result of this comparison was the

decision to accept the ARMAX 2222 model to represent the system throughout the

6This scaling factor is calculated in Section A.1 of the appendix

105

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

rest of the project. This model will be used to create a Simulink model for the system,

the LQR controllers that will control the system and the observers that will assist in

monitoring the system’s health.

106

Chapter 6

LQR Controller Design and

Kalman Estimator Implementation

6.1 Introduction

This chapter covers the design and implementation of a Linear Quadratic Regulator

(LQR) for use in the ACC implementation. The LQR is an optimal controller and can

be obtained by solving the Riccati equation to determine the optimal feedback gains

to be used. This process requires knowledge of the system’s mathematical model and

full state feedback. It is on these issues that this chapter will focus.

It would also be useful to note, that in this chapter a lower case variable represents

a vector, while an upper case variable represents a matrix.

107

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

6.1.1 LQR basics

The LQR is an optimal controller with regards to energy and is capable of handling

systems with multiple inputs and outputs. Advantages of optimizing for energy in-

clude inherent closed loop stability and a degree of robustness (Hesphanha, 2007).

The control input in an LQR controller is calculated according to the state feed-

back law u = −Kx. The gain matrix K, is the solution to the least-squares opti-

mization problem of minimizing the cost of one of the functions shown in (6.1). The

values R, Q and N are positive definite matrices whose value is chosen by the user

to tune the system.

J = Sum(xTQx+ uTRu+ 2 ∗ xTNu) (6.1a)

J = Sum(yTQy + uTRu+ 2 ∗ yTNu) (6.1b)

Note that (6.1a) is the cost function for a discrete LQR controller with state weighting

and (6.1b) is the cost function for a discrete LQR with output weighting (MATLAB,

2012).

6.1.2 Designing LQR Controllers

Without going into the details of the derivation of the LQR controller, it should be

stated that the solution to the optimization problem can be found by solving the

Riccati equation (6.2a). The solution of this equation S, is used to calculate the LQR

matrix gain K according to equation (6.2b).

108

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

0 = SA+ ATS + CTC − SBR−1BTS +Q (6.2a)

K = R−1BTS (6.2b)

Inherent in this controller is a trade-off between minimizing the control input u(k)

and either the internal states x(k) or the system output y(k) depending on whether

equation (6.1a) or (6.1b) is used . The input and output penalty matrices, R and

Q respectively, provide the designer with a way of managing these trade-offs. The

matrices A, B and C are provided by the state space model of the system being

controlled. They will be discussed in more detail later.

6.2 Obtaining the System Model

6.2.1 Converting to State Space

Chapter 5 explained how the Transfer Function of the RC car was obtained. At the

end of that chapter the following Transfer Function was given.

G(z) =
Y (z)

U(z)
= z−2 ∗ [2.2202− 2.046z−1]/30

1− 1.7445z−1 + 0.756z−2
∗ scale (6.3)

This Transfer Function gives the relationship between the input (a number be-

tween 0-1000) and the output velocity, which is measured at the wheels. The scaling

factor scale takes into consideration the gear ratio between the motor and the wheels

as well as the unit conversion. Finally, the factor z−2 indicates that the system con-

tains a 2 sample delay between the input and output.

109

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

The LQR design process calls for the system to be represented in a State Space

(SS) representation. To convert the Transfer Function (TF) given in (6.3) into a

SS equation, the canonical forms were employed. The process for carrying out this

conversion is described in (Ogata, 1987) and the results can be seen in (6.4) and (6.5).

The resulting SS equation in controllable canonical form is

x1cntl
(k + 1)

x2cntl
(k + 1)

 =

1.745 −0.756

1 0

x1cntl

(k)

x2cntl
(k)

+

1

0

u(k) (6.4a)

ycntl(k) =

[
0.0740 −0.0682

]x1cntl
(k)

x2cntl
(k)

 (6.4b)

and in observable canonical formx1obs(k + 1)

x2obs(k + 1)

 =

 1.745 1

−0.756 0

x1obs(k)

x2obs(k)

+

 0.0740

−0.0682

u(k) (6.5a)

yobs(k) =

[
1 0

]x1obs(k)

x2obs(k)

 (6.5b)

Representing the 2 sample delay shown in (6.3) required special attention. The

first of these delays was absorbed into the transfer function before converting to state

space. This allowed the resulting state-space equations (6.4) and (6.5) to have results

in which y(k) doesn’t directly rely on the input. This observation will be important

to the calculation of the extended system model in the next section.

The other delay z−1 must be handled by cascading the SS model with a one sample

110

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

unit delay.

6.2.2 Expanding the model

The structure of the 2nd order SS equation will be

Xmotor(k + 1) =

a1 a2

a3 a4

x1motor(k)

x2motor(k)

+

b1(k)

b2(k)

u(k) (6.6a)

ymotor(k) =

[
c1 c2

]x1motor(k)

x2motor(k)

+ d1u(k) (6.6b)

The SS equations in (6.4)- (6.5) each contain one output y(k) which will correspond

to the velocity of the system measured at the motor.

Vmotor(k) = y1(k) (6.7)

Both the design and operation of the LQR controller require knowledge of the full

state of the system. When the system is running, the VSS will provide measurements

of the velocity of the system. This measurement will also be passed to a Kalman

Observer which will use the value to provide an estimate of the vehicle’s position and

acceleration.

However, the system model used to design the LQR must contain information

about these states and more importantly how they are related. To facilitate this

need, two new states were added to the model of the system, both as internal states

and as outputs.

111

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

The first of these new states is the current position of the system. This value is

simple to calculate in SS form since it is the integral of the vehicle’s velocity.

V elocity : v(k) = c1x1(k) + c2x2(k) + d1u(k) (6.8a)

Position : p(k + 1) = p(k) + v(k) ∗ Ts + a(k)T 2
s /2 (6.8b)

= p(k) + [c1x1(k) + c2x2(k) + d1u(k)]Ts + a(k)T 2
s /2 (6.8c)

Note that Ts is the sampling time of the system.

The second new state is the acceleration of the system. Calculating this value

is a little trickier since it requires knowledge of the past. To handle this, a third

extra state could be added to keep track of the velocity of the system at time k − 1.

However, when this approach was attempted, the solver for the Riccati equation ran

into problems with the matrix not being full rank.

Another approach is to consider the nature of the SS equation. At each time-

step two things happen, the output is calculated and the value of the internal states

updated. v(k) will be calculated by the output equation using the values x1(k) and

x2(k). Therefore, calculation of v(k + 1) will require knowledge of x1(k + 1) and

x2(k + 1), values which will be calculated by the state-update equation. Equation

(6.9) shows how this was done.

112

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Acceleration :

a(k + 1) =
v(k + 1)− v(k)

Ts
(6.9a)

v(k) = c1x1(k) + c2x2(k) + d1u(k) (6.9b)

v(k + 1) = c1x1(k + 1) + c2x2(k + 1) + d1u(k + 1) (6.9c)

v(k + 1) = c1[a1x1(k) + a2x2(k) + b1u(k)]

+ c2[a3x1(k) + a4x2(k) + b2u(k)] + d1u(k + 1)

(6.9d)

Now that v(k + 1) and v(k) are known, the acceleration of the system can be

approximated as follows

v(k + 1) = (c1a1 + c2a3)x1(k) + (c1a2 + c2a4)x2(k)+

(c1b1 + c2b2)u(k) + d1u(k + 1)

−v(k) = c1x1(k) + c2x2(k) + d1u(k)

(6.10a)

—————————————————————————————————–

a(k + 1) = 1/Ts((c1a1 + c2a3 − c1)x1(k) + (c1a2 + c2a4 − c2)x2(k)+

(c1b1 + c2b2 − d1)u(k) + d1u(k + 1)) (6.10b)

Taking the results of (6.8c) and (6.10b), the SS equation of (6.6) can be updated

to include the new states.

113

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

xLQR(k) =

a1 a2 0 0

a3 a4 0 0

c1Ts c2Ts 1 T 2
s /2

c1a1+c2a3−c1
Ts

(c1a2+c2a4−c2)
Ts

0 0

xLQR(k) +

b1

b2

0

c1b1+c2b2+d1
Ts

u(k) +

0

0

0

d1

u(k + 1)

(6.11a)

yLQR(k) =

0 0 1 0

c1 c2 0 0

0 0 0 1

xLQR(k) (6.11b)

Substituting in the parameters from (6.4) and (6.5), the solution then becomes.

Controllable Canonical Form

xLQRcntl(k) =

1.744 −0.756 0 0

1 0 0 0

0.0740Ts −0.0682Ts 1 T 2
s /2

−0.0131/Ts 0.0123/Ts 0 0

xLQRcntl

(k) +

1

0

0

0.0740/Ts

u(k)

(6.12a)

zLQRcntl
(k) =

0 0 1 0

0.0740 −0.0682 0 0

0 0 0 1

xLQRcntl
(k) (6.12b)

114

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Observable Canonical Form

xLQRobs
(k + 1) =

1.744 1 0 0

−0.756 0 0 0

Ts 0 1 T 2
s /2

−0.744/Ts 1/Ts 0 0

xLQRobs

(k) +

0.0740

−0.682

0

0.0740/Ts

u(k)

(6.13a)

yLQRobs
(k) =

0 0 1 0

1 0 0 0

0 0 0 1

xLQRobs
(k) (6.13b)

In both these equations the output vector y(k) will be

[
p(k) v(k) a(k)

]T
and

the state vector will be

[
v(k) ∼ (k) p(k) a(k)

]T
. Where ∼ (k) is a state without

physical meaning but is still needed for the calculation of V (k).

At this point a decision was made to use the Observable Canonical Form since its

output equation will allow for easier tuning of the controller.

6.3 Designing LQR Controllers for ACC

The LQR controllers for the ACC system were designed in Matlab using equation

(6.13) as the model of the system. Matlab provides a command lqry which will

compute LQR gains using the method described earlier in this chapter.

Since Matlab will take care of solving the Ricatti equation shown in equation

(6.2a), the designer has only to tune the parameters to obtain the desired behaviour.

Firstly, the values of the input and output penalty matrices R and Q need to be

115

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

chosen. Since there isn’t a set way to choose these values, they will need to be tuned

manually.

The second method the designer has of altering the system is to tune the mea-

surement matrix. The measurement matrix in (6.13) can be modified to reflect this

ability as such

z(k) =

0 0 w1 0

w2 0 0 0

0 0 0 w3

x(k) (6.14)

By changing the value of any of these weights w relative to the others, the designer can

choose to put more importance on a particular state’s goal. For example, the LQR

controller that will be used for cruising doesn’t care what the error in the following

distance is but the difference between the cruising velocity and set point velocity will

be very important.

The ability to tune the measurement matrix in this way allowed for the design of

two different LQR controllers using the same system model. A brief description of

each is included below.

Following Subsystem

The LQR controller designed for following behaviour has three states it attempts to

minimize. It will attempt to match the lead vehicle’s velocity, achieve the driver’s

desired inter-vehicle spacing, and it will attempt to minimize acceleration.

In this controller the velocity and position data that matter are relative to the lead

vehicle. As such this controller makes heavy use of the radar sensor. Matching the

lead vehicle’s velocity involves minimizing the relative velocity which is measured by

116

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

the radar unit. On the other hand, achieving the desired following distance requires

minimizing the difference between the set-point and the inter-vehicle distance, which

is also measured by the radar unit.

The acceleration that is to be minimized is not relative to the lead vehicle and as

such its measurement comes from the observer tied to the VSS sensor and not the

radar.

Cruising Subsystem

The LQR Controller designed for implementing the cruising behaviour has only two

goals that it will attempt to achieve. The first of these goals is to minimize the

difference between he vehicle’s current velocity and the driver requested cruising ve-

locity. The second goal is once again to minimize the acceleration of the vehicle. Both

of these goals require only the sensor data provided by the VSS and its associated

observer. As a result, the behaviour of this controller is independent of the radar

unit.

Under actuated systems

Note that this system is considered to be “under-actuated”. An under-actuated sys-

tem is one that has more controlled outputs than process inputs (Hesphanha, 2007).

A result of this is that the system will have to make temporary trade-offs in its goals.

For example when following a vehicle the system may need to temporarily increase its

relative velocity so that it can move closer to the lead vehicle and in doing so achieve

the desired inter-vehicle spacing. However, once this is accomplished both the veloc-

ity and distance criteria will dictate that the system should once again minimize its

117

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

relative velocity. These trade-offs can be managed by tuning the measurement matrix

and the output penalty matrix Q.

6.4 Obtaining Full State Feedback

Implementing the LQR controller with the calculated gain requires that the full state

vector be available for feedback. However, the VSS only directly provides information

about the vehicle’s velocity. To obtain the acceleration and position data, either

additional sensors need to be added or an observer introduced.

For this project the decision was made to use an observer in the interest of reducing

the hardware costs. In designing the observer there are a number of options available.

The first option is to use the enlarged system model found in (6.13) as the model

of the system. The problem with this approach is that (6.13) relies on numerical

differentiation, a property which will cause large errors when noise is present in the

system. The reason (6.13) was able to be used when designing the system was that

those calculations were being done off-line and not with noisy sensor data.

A method for dealing with the unreliable sensor data and the need to observe the

full state of the system can be handled together through the use of a Kalman observer.

Kalman observers are commonly used in navigation applications. The Kalman filter

combines the measurement data with knowledge about the model of the system to

determine an estimate of the current state of the system using Bayesian statistics.

In the case of the ACC system, the Kalman filter was used to combine the knowl-

edge of how the states are related (by the kinematic equations) with the sensor data.

It was used to increase the reliability of the radar data which estimates the relative

distance and velocity. Since the relative velocity is a function of the change in the

118

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

relative distance, these two values can not change independently. Sensor readings

that would suggest otherwise are likely unreliable.

However, the main use of the Kalman observer was to extract information about

the vehicle’s position and acceleration from the data provided by the VSS. A variation

of the Triple Integrator Form discussed in (Canet, 1994) was used and can be seen

in (6.15). The difference between the version shown below and the one appearing in

(Canet, 1994) is that (Canet, 1994)’s uses measurement data of the system’s position

while the one below uses measured velocity data.

XKalman(kT + T) =

1 T T 2/2

0 1 T

0 0 1

XKalman(kT) + w(kT) (6.15a)

YKalman(kT) =

[
0 1 0

]
XKalman(kT) + e(kT) (6.15b)

6.5 Summary

In this chapter a set of Linear Quadratic Regulators was designed to implement the

continuous control aspect of ACC. The problem of providing full-state feedback was

handled for both the design and implementation of the LQR controllers. By tuning

the output and penalty matrices the desired behaviour for continuous control was

obtained for both the cruising controller and the following controller.

These controllers make up an important part of the design presented in Chapter

3. In the next chapter the resulting system will be examined using Hazard Analysis

techniques.

119

Chapter 7

Identifying the Faults

7.1 Introduction

Hazard Analysis techniques are used to gain information about the potential hazards

and faults that can occur within a system. Their use is critical to the effort of

building safety critical systems like Adaptive Cruise Control. Of special importance

for a safety critical system is the need to identify the conditions under which the

system’s operation can result in harm to humans or damage to the environment in

which it operates.

7.2 Fault Tree Analysis

7.2.1 Intro

One of the techniques that was used to analyse the ACC system is known as Fault

Tree Analysis or FTA . This technique was applied at the beginning of the project

120

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

to gain a better understanding of the potential faults that needed to be considered

during the design process.

Fault Tree Analysis is based upon the “Chain-of-Events” accident causation model.

The “Chain-of-Events” model holds that accidents can be explained by a sequential

chain of events initiated by component failure or human error (Leveson, 2009).

A very simple FTA notation was used for the analysis in this thesis. Figure 7.1

shows the legend for each of the four symbols and their purpose. The transfer block,

represented by a pair of triangles, can be used to continue a branch of the tree in

another location. This functionality can be quite useful when creating large fault

trees or fault trees where a branch is repeated in the tree.

Figure 7.1: Legend for FTA shapes

Analysis in FTA is an iterative, top-down process. To begin, the hazard/scenario

whose causes are being investigated, is placed at the top of the tree. Then the

events/scenarios that are immediate causes for that event are placed in the second

row and connected to the root via the boolean gates. This process is then repeated

for each of the situations that are now at the bottom of the tree.

The top level hazard used to start the analysis for the ACC system is “Gap

121

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

between vehicles is incorrect” which immediately led to two situations “Gap between

vehicles is too small” and “Gap between vehicles is too large”. To be able to represent

this tree, it was broken into two sub trees as seen in Figures 7.2 and 7.3.

Figure 7.2: Fault tree analysis on case ”Gap too Small”

122

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

G
ap

 to
o

la
rg

e

Ch
an

ge
 in

 L
ea

d
Ve

hi
cl

e
Ac

tu
at

io
n

er
ro

r

Sy
st

em
 h

as
 w

ro
ng

m

ea
su

re
m

en
t o

f
G

ap

Ve
lo

ci
ty

m

ea
su

re
d

w
ro

ng

Fa
ul

ty

co
nn

ec
tio

n
to

VS

S

VS
S

gi
ve

s b
ad

re

ad
in

g

Di
st

an
ce

m

ea
su

re
d

w
ro

ng

Ra
da

r
m

isa
lig

ne
d

Fa
ul

ty

co
nn

ec
tio

n
to

Ra

da
r

Ra
da

r g
iv

es
 b

ad

re
ad

in
g

Ca
lc

ul
at

io
n

is
w

ro
ng

O
th

er
 V

eh
ic

le

sp
ee

ds
 u

p
O

th
er

 v
eh

ic
le

ch

an
ge

s l
an

e

Le
ad

 v
eh

ic
le

 v
el

>

se
t_

ve
l

Le
ad

 v
eh

ic
le

 v
el

<=

 se
t_

ve
l

Th
ro

tt
le

Br
ak

e
Ap

pl
ie

d
ne

ed
le

ss
ly Fa
ul

ty
 B

ra
ke

sig

na
l

Br
ak

e
st

uc
k

Th
ro

tt
le

 st
uc

k
cl

os
ed

Fa
ul

ty
 th

ro
tt

le

sig
na

l

G
oi

ng
 a

ro
un

d
cu

rv
e

in
 th

e
ro

ad
Se

ns
or

 F
au

lty

So
ft

w
ar

e/
Se

ns
in

g
er

ro
r

Pr
oc

es
so

r F
ai

ls
De

ci
sio

n
er

ro
r

Figure 7.3: Fault Tree Analysis on case ”Gap too Large”

123

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

7.3 System-Theoretic Process Analysis

7.3.1 Intro

After the preliminary system design had been developed, an alternative to FTA was

applied to the system. This new technique is known as the System-Theoretic Process

Analysis or STPA. Although, this technique was was only applied to the design at the

end of the project it should be noted that STPA contains provisions for examining a

design throughout its life cycle. A full comparison between FTA and STPA is beyond

the scope of this thesis but it is beneficial to highlight a few key areas before going

ahead with its application.

STPA is based off of the System-Theoretic Accident Modelling and Processes also

known as STAMP (Leveson, 2009) . Of special importance to this project is the way

that STAMP views safety as both

A) A System/Emergent property

B) A control problem.

The first point refers to the idea that the safety of a system can’t be inferred

by proving the safety of its individual components. Put another way, safety is an

emergent property, one that depends on the interaction of the components involved

and not just the behaviour of the individual components.

The second point involves a bit of a paradigm shift from the classic “Chain-of-

events” model. STAMP claims that accidents should not be viewed as the result of a

failure. Instead an accident in STAMP is regarded as the result of inadequate control

124

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

actions. The effects of this view will become quite evident during Step 1 of the STPA

process.

For more information about the STAMP accident model and STPA, readers are

encouraged to consult either (Leveson, 2009) or (Song, 2012).

7.3.2 Getting started

The STPA process is broken down into a two step process. The first step is to identify

the inadequate control actions that could lead to the system being in a hazardous

state. The second step is then to examine the system to determine how these control

actions could arise. However, there are several things that need to be taken care of

before the process can begin. This includes identifying the accidents, the system level

hazards and system level safety requirements. It also requires developing a model of

the system’s control structure that will be used to analyse where the responsibility

and risk lie within the system.

Defining the Accidents and Hazards

The process begins by identifying the “accidents” or loss events that must be avoided.

In STAMP an accident is defined as

An undesired or unplanned event that results in a loss, including loss of

human life or human injury, property damage, environmental pollution,

mission loss, etc. (Leveson, 2009)

The list of possible accidents that were identified for ACC can be found in Table 7.1

Once the stakeholders have agreed upon the list of accidents that must be avoided,

the next step is to determine the associated hazards. In STAMP a hazard is defined

125

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

AC 1: Collision with lead car causing harm/damage to occupants/vehicles
AC 2: Vehicle is hit from behind resulting in harm/damage to the occupants/vehicles
AC 3: Occupants/Vehicle harmed/damaged but not because of a collision
AC 4: Damage/Harm inflicted on operating environment

Table 7.1: Accidents/ Unacceptable Losses for Adaptive Cruise Control

as

“A system state or set of conditions that, together with a particular set

of worst-case environmental conditions, will lead to an accident (Leveson,

2009)”

In short, the term “accident” refers to the undesirable events that must be avoided

and “hazard” refers to the set of conditions under which the system is susceptible to

such accidents. Note that implicit in the definition of a hazard, is the assumption that

they lie within the system’s boundaries. This is necessary since as (Leveson, 2009)

points out, designers can only be responsible for eliminating/controlling hazards that

are within their design space. Table 7.3 shows the list of hazards identified for the

ACC system. The second column of this table shows which accidents from Table 7.1

each hazard is considered to be in danger of contributing towards.

Hazard Corresponding Accident
H1. Vehicle fails to leave enough of a gap AC 1
H2. Vehicle accelerates/decelerates unexpectedly AC 2
H3. Vehicle accelerates/decelerates rapidly AC 2, AC 3
H4. Vehicle obtains unsafe velocity AC 1, AC 4
H5. Driver confusion about systems operating mode AC 1, AC 2 AC 3

Table 7.2: System Level Hazards for Adaptive Cruise Control

126

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Hazard Safety Constraints
H1. Vehicle fails to leave
enough of a gap

System must leave a headway of at least X1 seconds
when active

H2. Unexpected deceleration System must signal when undergoing deceleration
of more than X2 m/s

2

System must activate brake lights when brakes are
being applied

H3. Rapid acceleration/de-
celeration

Acceleration of system must not exceed X3 m/s
2

Deceleration of system must not exceed X4 m/s
2

Braking must be limited to X5% of total braking
power

H4. Vehicle obtains unsafe
velocity

The vehicle must not exceed the velocity set point
given by the driver by a tolerance of more thanX7%

H5. Driver confusion about
systems operating mode

System must keep the driver informed about its cur-
rent mode of operation (Active, Suspended, OFF)
as well as current velocity

Table 7.3: High-Level Safety Constraints

Now that the high level/system hazards have been identified, they can be used to

generate safety constraints that will be included as part of the design requirements.

Note that just as the hazards that are being used here are system-level hazards, so

also the constraints that are produced from them will be system-level. The later

steps of STPA will help to refine these constraints and to assign the responsibility of

enforcing them to individual components. Table 7.2 shows the list of System-Level

Safety Constraints developed in response to the system hazards identified in the ACC

system.

127

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Defining the control structure

The control structure of the system is a functional decomposition of the system and

can be represented by a component diagram. The boxes represent the components/-

subsystems and the directed edges represent the control instructions and feedback

information that flows between them.

Starting with the very simple and highly abstracted view of the system shown in

Figure 7.4, the subsystems can be expanded to include the desired amount of detail

about the system. In the case of the ACC system, emphasis is given to the controller

and its internal structure as shown in Figure 7.5. These diagrams are important

because they will serve as the working models for the STPA process.

Controller

Vehicle

Lead Vehicle

VSS

Wheel Speed

Engine Brakes

Torque Friction

Estimated states

Operator

V_setpoint
H_setpoint

Resume/Suspend
ACC on
CC only

Throttle Signal
Brake Signal

Visual

Brake PWMThrottle PWM

Radar

Relative Distance
Relative Velocity

Visual/Audial
Feedback

Disturbances

Noise

Noise

Figure 7.4: Top Level Control Structure

128

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 7.5: Full/Expanded Control Structure

129

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

7.3.3 STPA Step 1

As previously mentioned, STPA views safety as a control problem and analysis on

the system is carried out in a top-down manner. The process begins with a high-level

model of the system (the control structure), the list of system hazards and system

safety requirements/constraints. Once these have been prepared, the list of hazards

is refined by examining the control structure to determine what inadequate control

signals could result in the hazardous states identified earlier.

STPA provides four categories of inadequate control, these are (Leveson, 2009):

a. “A required control action not provided or not followed”

b. “An incorrect or unsafe control action is provided”

c. “A potentially safe control action is provided too early or too late, that is, at

the wrong time or in the wrong sequence”

d. “A correct control action is stopped too soon”

Analysis begins by taking each command action in the system and considering

the effect of it being inadequate in any of the four ways listed above. The goal of this

process is to identify the scenarios that result in inadequate control so that the next

step of STPA can investigate how they occur.

This process was carried out on the ACC system and the results stored in a table.

An excerpt of these results can be found in Figure 7.6 below. The full table can be

found in the Appendix .

130

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 7.6: Excerpt from STPA step 1

131

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Identification of the potentially inadequate control actions within the system al-

lows for the development of safety constraints. The list of safety constraints that were

developed from this stage of STPA are listed in Table A.1 in the Appendix.

7.3.4 STPA Step 2

Once each command action has been analysed, the ones that are determined to be

a potential safety risk undergo another stage of analysis. In this stage the control

structure is again examined, but this time the goal is to determine the causal factors

of such command actions being issued.

This process itself has two steps: firstly each controller’s process models must be

identified; secondly these process models are used in conjunction with the control

structure to identify the causal factors of inadequate control.

A controller’s process model is a representation of how the controller views the

system. If this process model does not match the physical system, then the controller

may end up issuing command actions that do more harm than good. Take for example

the case where a faulty sensor results in the controller’s estimate of the vehicle’s

velocity being slower than it really is. If the vehicle is currently “cruising”, then the

result of this discrepancy would be the controller causing the vehicle to exceed the

set point velocity.

It is also important to note that both technical and human controllers have an

internal process model from which they make control decisions. A human driver that

doesn’t properly understand the system, or operates it under false information, is

at risk of causing an accident. This is the reasoning behind the inclusion of hazard

(H5). The process models for the controllers in the ACC system are shown in Table

132

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure 7.7: Causal factors for inadequate control (Leveson, 2009)

133

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

7.4.

Controller Property Possible Values

FSM Velocity Too fast Acceptable Too slow Unknown
Leader Velocity Faster w/in Tol Slower Unknown
Following distance Zone A Zone B ... Zone E Unknown
ACC Status ACCActive CCActive Suspended Off
Internal Mode Cruise Follow Brake Off

Driver Velocity Too fast Acceptable Too slow Unknown
Leader Velocity Faster w/in Tol Slower Unknown
Following distance Too close Acceptable Too far Unknown
ACC Status ACCActive CCActive Suspended Off Unknown
Mode Following Traditional Inactive Unknown

CCC Following Distance Too close Acceptable Too far Unknown
Velocity Too fast Acceptable Too slow Unknown
Leader Velocity Faster w/in Tol Slower Unknown
Active Controller Brake Follow Cruise

Brake Following Distance Too close Acceptable Too far Unknown
Velocity Too fast Slow enough Unknown

Follow Following Distance Too close Acceptable Too far Unknown
Velocity Too fast Acceptable Too slow Unknown
Leader Velocity Faster w/in Tol Slower Unknown

Cruise Velocity Too fast Acceptable Too slow Unknown

Table 7.4: Process Models For ACC system

For the ACC brake system, the causal analysis was first attempted directly on

the full control structure. For this process Figure 7.7 was used as a guideline of what

types of causal factors might arise in each part of the control structure. However, this

was done without lumping together the different components as either an “actuator”,

“controller”, “controlled process” or “sensor”. The result of this process can be seen

in Figure A.5 and then again in the form of a chart. Both are located in the Appendix.

It quickly became clear that this method of analysis would result in diagrams that

were burdensome to create due to the resulting size and clutter. However, the result-

ing diagram did allow for an intuitive mapping of faults to individual components.

134

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Following this, the causal analysis for the brake system was attempted a second

time. This time the only components that were involved in the control action’s control

loop were included. Additionally, each component’s role in that specific control loop

was classified as one of the following 4 categories: the controller that issues the control

action, the actuator that carries out the control action, the controlled process that is

being controlled via the control action, and the sensor that monitors the system to

provide feedback about the effectiveness of the control action.

Once this was done Figure 7.7 was used as a guide to identify each of the potential

sources of this inadequate control action. Representing the system in a similar manner

to Figure 7.7 made it much easier to use Figure 7.7 as a guide. The resulting diagrams

were much cleaner and the analysis was simpler to carry out. The disadvantage is

that extra care had to be taken to consider which components were represented by

each block. For example, the “Sensor” block included the Encoder, the Radar, the

filters and the observer.

Figure A.6 and Figure A.7 show the two diagrams that carry out the equivalent

analysis to Figure A.5. Two diagrams were needed here since there are two stages of

control (The FSM, and the CCC). In Figure A.6 the CCC is the controller while in

Figure A.7 it is considered to be part of the actuator system.

By looking at the result of these two methods, it was eventually determined that

the analysis for the remaining control actions would be done according to the second

method. This decision was heavily influenced by the fact that the second method

resulted in diagrams that were much cleaner, easier to read and as a result easier to

create.

135

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

This process was repeated for each inadequate control signal that could lead to a

safety concern. During this process it became apparent that many of the fault that

were identified were common to multiple diagrams. To be able to present a clear,

unified list of faults out of the result of this analysis Table A.2 was created. The

disadvantage this representation had over the diagrams is that it removes the context.

For example it does not show what inadequate control action “Radar Blocked” can

lead to. The Table can be found in the Appendix on page 155.

This information about potential faults is useful when preparing maintenance

schedules, choosing sensors and identifying faults that should be identifiable by the

fault diagnosis system.

7.4 Conclusion

Hazard Analysis techniques are essential tools in the design and construction of safety

critical systems. In this chapter the Hybrid Systems Adaptive Cruise Control was

initially subjected to Fault Tree Analysis. Following that a more comprehensive

analysis of the system was carried out using STPA. The result of this process is a

better understanding of the system and its vulnerability as well as a better idea how

to mitigate these vulnerabilities. Special attention was given to the possibility of

inadequate control actions and the faults that could cause them. This information

was used to create safety constraints that the system must enforce to remain in a

safe state along with a list of faults that should prove useful when designing the fault

diagnosis system.

136

Chapter 8

Conclusion

In this thesis a model of a Hybrid Systems Adaptive Cruise Controller was developed

and implemented via Matlab’s Simulink. This model contained both a mathematical

representation of the physical system being controlled as well as a realization of the

ACC controller. The controller consists of a set of LQR controllers and a Finite State

Automata. The individual LQR controllers implement different aspects of the ACC

system’s behaviour like cruising or following. The use of a Finite State Automata

allows for switching between these LQR controllers according to the current traffic

situation.

STPA was also used to perform a detailed hazards analysis of the resulting con-

troller. Its results can be used to gain a better understanding of what faults a diagnosis

system would need to be able to identify. Additionally, the mathematical represen-

tation of the system that was used to develop the LQR controllers is provided. It

can be used to verify the system’s results through simulation or incorporated into the

design of fault diagnosis tools like Residual Generators.

137

Appendix A

Appendix

A.1 Calculation of the Scaling Factor

The following discussion will explain how the scaling factor was obtained for Section

5.8

y(z) =
2.22z−2 − 2.046z−3

1− 1.744z−1 + 0.756z−2
u(z) +

1 + 1.952z−1 + 0.967z−2

1− 1.744z−1 + 0.756z−2
e(z) (A.1)

The output of the system from the original transfer function can be converted into

RPMs by the following formula

Output× SamplingRate× 60

1000
= Output× 333× 60

1000
= Output in RPM (A.2)

The next thing to consider is that the angular velocity of the car is measured at the

output gear of the motor. To obtain the angular velocity of the wheels the gear ratio

138

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

of 7.16 must be taken into account.

Output at Wheels =
1

7.16
×Output at Motor (A.3)

The next step is to convert the angular velocity given in RPM into m/s

RPM =
Revolutions

Minute
× π × diameter

60
= RPM × π × 63.55 ∗ 10−3

60
= m/s (A.4)

So to convert angular velocity measured at the motor’s output gear into the veloc-

ity of the car measured in m/s a scaling factor of
1

107.7
can be used. Alternatively if

the desired output is to be measured in km/h then the scaling factor would be
1

29.92

A.2 Model Structures in System Identification

Chapter 5 discussed the identification of an electric motor using the system identi-

fication technique. The form of system identification that was used in Chapter 5 is

known as Parametric Identification (Habibi, 2011a). In this approach a set of general

models are used and adapted to the particular system by identifying the parameters.

To aid in this process four transfer function models were used and their parameters

identified. These are the ARX, the ARMAX, the Output Error and the Box Jenkins

model. A short description of each is included below.

139

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

A.2.1 Auto-Regressive Model with an eXogenous Input Model

(ARX)

The ARX Model takes the form of a simple difference equation shown in equation

(A.5) (Johansson, 1993). In this equation A and B are polynomials which are deter-

mined using “prediction error methods” (Johansson, 1993).

A(z−1)yk = z−dB(z−1)uk + wk (A.5)

This structure of this model can be seen in Figure A.1 (Habibi, 2011a). The two

components to this model are the system model
B(z)

A(z)
and the noise model

1

A(z)
.

According to (Habibi, 2011a), the main advantage of ARX is that “it can be

found analytically without numerical optimization and iterations”. Its disadvantage

is a highly restricted noise model.

Figure A.1: Structure of an
ARX model

Figure A.2: Structure of an
ARMAX model

140

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

A.2.2 Auto-Regressive-Moving-Average Model with an eX-

ogenous Input Model (ARMAX)

The ARMAX model expands the ARX model by increasing the flexibility of the noise

model. Like the ARX model, the ARMAX model takes the form of a difference

equation as can be seen in equation (A.6)

A(z−1)yk = z−dB(z−1)uk + C(z−1)wk (A.6)

Once again A, B and C are polynomials that are determined by the “prediction

error method” of data fitting (Johansson, 1993). The structure of the ARMAX model

can be seen in Figure A.2 (Habibi, 2011a).

A.2.3 Box Jenkins Model (BJ) and Output Error (OE)

The Box Jenkins model and the Output Error model are transfer function models

(Johansson, 1993). Unlike the difference equations used to describe the ARX and

ARMAX, the noise models in these systems are independent of the system model.

The Box Jenkins models the disturbances in the system as “a white noise sequence

wk filtered through the transfer function C/D (Johansson, 1993)”. It also contains

the most flexible noise model of any of the model structures discussed in this thesis.

yk =
B(z−1)

F (z−1)
uk +

C(z−1)

D(z−1)
wk (A.7)

The Output-Error Model on the other hand makes no assumptions about the

disturbances in the system (Johansson, 1993). It can be described by the transfer

141

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

function

yk =
B(z−1)

F (z−1)
uk + vk (A.8)

The structures of the Box Jenkins and Output Error models can be seen in Figures

A.3 (Habibi, 2011a) and A.4 (Habibi, 2011a) respectively.

Figure A.3: Structure of a
Box Jenkin model

Figure A.4: Structure of an
OE model

142

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

A.3 Results from STPA Step 1

Results of Step 1 in STPA

Control

Action

Missing or

Not Provided

Causes

Hazard

Provided

Incorrectly

Causes

Hazard

Wrong

Timing/Order

Causes

Hazard

Stopped too

soon Causes

Hazard

Apply

Brakes

The vehicle fails

to activate

brakes when too

close to a

leading vehi-

cle(H1)(S1)

The vehicle

brakes

unexpectedly

(H2) (S2)(S3)

The vehicle fails

to start braking

until it is too

close to the

leading vehicle

(H1). System

may attempt to

use heavy

braking to make

up for lost time

(H3)(S1)(S3)

The vehicle

stops braking

when it is still

too close to the

leading vehicle

(H1)(S1)

The vehicle fails

to brake when

the velocity is

greater than the

set point(H4)

Vehicle is rear

ended because

braking started

before the brake

lights come on.

(H2)(S4)

The Vehicle

stops braking

when it is still

travelling faster

than the set

point (H4)

143

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Activate the

controller

“Active

Brake

Controller”

(ABC)

The brake

system is not

activated when

following too

close to the lead

vehicle. Leads to

brakes not being

applied (H1) (cf

“Apply Brakes”

) (S5)(S1)

Accidental

activation of

ABC leads to

incorrect &

unexpected

braking (cf

“Apply Brakes”

) (S6)(S2)

Activating the

brake controller

too soon results

in unexpected

braking

(H2)(S6)(S2)

(cf “Apply

Brakes”)

Brake controller

will be

deactivated

prematurely

leading to the

brakes being

deactivated

prematurely.

(H1) (H4) (cf

“Apply Brakes”

) (S6)(S2)

The system

leaves the mode

it was supposed

to be operating

in (following or

cruise) without

notifying the

driver(H5)

Activating the

brake controller

too late results

in brakes not

being applied

when needed.

(cf “Apply

Brakes”) (S6)

(S2)

The system

deactivates ABC

without

activating a

different

controller and

without alerting

the user that the

system is not

currently

controlling the

vehicle(H5)

144

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Activate the

controller

“Cruise”

/TCC

Vehicle reaches

an unsafe

velocity because

it is attempting

to follow a

vehicle that is

moving too fast

(H4)(S8)(S10)

(S12)

Cruise activated

when slower

moving vehicle is

in its path (H1)

(H5)(S11)

The system

deactivates

“cruise” without

activating a

different

controller and

without alerting

the user that the

system is not

currently

controlling the

vehicle(H5)

Activate the

controller

“Fol-

low”/CFS

Vehicle

continues to use

“Cruise” when

approaching a

slower moving

vehi-

cle(H1)(S11)

System attempts

to follow a

vehicle moving

faster than the

set point and

achieves an

unsafe velocity

(H4)(S8)(S10)

(S12)

The system gets

too close to the

leader before it

attempt to fol-

low(H1)(S11)

The CFS is

deactivated

when following

another car and

as a result gets

too close to the

leader

(H1)(S11)(S14)

145

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

The system

attempts to

follow a vehicle

that is too far

away. Causing

the LQR

controller to

attempt to

minimize a very

large error.

Could result in

large

velocities/accel-

erations

(H3)(H4)(S9)

(S10)(S12)

Late activation

of controller

results in system

instability as it

attempts to

make up for lost

time. For

example by the

time it realizes

it should have

been following it

is now time to

brake (S15)

The system

deactivates

“follow” without

activating a

different

controller and

without alerting

the user that the

system is not

currently

controlling the

vehicle (H5)

146

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Open

Throttle

The vehicle will

decelerate

unexpectedly

(H2b) and will

fall below its

velocity set

point

NA

Delay between

when the

throttle is

requested and

activated results

in system

instability

Maintain

increase

The vehicle does

not accelerate

when

commanded by

the user to avoid

a dangerous

situation (S36)

The vehicle

moves too close

to the leader

(H1)(S16)

Vehicle

accelerates from

the desired

speed to an

unsafe velocity

(H4)

147

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Vehicle

experiences

runaway

acceleration

(H2a)

decrease

The vehicle fails

to slow down

when following

approaching a

slower moving

vehicle (H1)

(H4)(S16)

The vehicle will

decelerate

unexpectedly

(H2b)

The vehicle fails

to slow down

enough when

approaching a

slower moving

vehicle (H1)

(H4)(S16)

148

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Driver

”Activates”

ACC

The driver

thinks the

system is in

control and

removes foot

from accelerator

leading to

unexpected but

gradual vehicle

deceleration

(H5)

System

“Activates” and

begins to control

the system at

the same time as

the driver (H5)

(Controller

coordination

problem)

(S30)(S32)

N/A

The driver

thinks the

system is in

control and does

not apply the

brakes its

needed (H1)

(H5) (S32)

The driver

thinks the

system is in

control and does

not apply the

brakes its

needed (H1)

(H5) (S32)

(S34)

149

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Driver “De-

activates”

ACC

The ACC

system does not

return control to

the driver

(H5)(S31)

The ACC

system

deactivates

unexpectedly

and does not

brake when

needed

(H1)(H5)(S32)

(S34)

ACC delays in

returning control

to the driver

(H5)(S31a)

N/A

Driver

“Resumes”

ACC

The driver

thinks the

system is in

control and

removes foot

from accelerator

leading to

unexpected but

gradual vehicle

deceleration

(H5)

System

“Resumes” and

begins to control

the system at

the same time as

the driver (H5)

(Controller

coordination

prob-

lem)(S30)(S32)

N/A

150

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

The driver

thinks the

system is in

control and does

not apply the

brakes when the

leader applies its

brakes (H1)

(H5)(S32)

(S34)

Driver

“Suspends”

ACC

The ACC

system does not

return control to

the driver

(H5)(S31)

The ACC

system

deactivates

unexpectedly

and does not

brake when

needed

(H1)(H5)(S32)

(S35)

ACC delays in

returning control

to the driver

(H5)(S31a)

N/A

151

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

“Cruise

Control

Only”

selected by

driver

System use full

ACC

functionality,

including brakes

and following

procedures while

driver expects a

traditional CC

(H2)(H5)(S33)

When

approaching a

lead vehicle it

does not use

brakes or

following

procedures

(H1)(H5)(S33)

N/A

Brake lights

activated

The vehicle’s

brake lights do

not turn on to

indicate to

follower that it

is braking (H2)

(S4)

No hazard

The brake lights

do not turn on

with the brakes

(H2)

The brake lights

will turn off

while the vehicle

is still slowing

A.4 Results from STPA Step 2

A.4.1 Diagrams

152

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure A.5: Results of STPA Step 2 - Method 1

153

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure A.6: Results of STPA Step 2 - Method 2

154

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Figure A.7: Results of STPA Step 2 - Method 2

155

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

A.4.2 Table of Results

Results of STPA Step 2

Component Type of failure Specific

Radar Feedback Inadequacies Radar Blocked

Radar Dirty

Calibration Needed

Misaligned/Mounting issues

Unable to operate in current envi-

ronment (eg weather)

Feedback delays Update rate too low

Component failure Internal fault on Radar sensor

Encoder Feedback Inadequacies Encoder Dirty

Misaligned/Mounting issues

Resolution too low

Feedback delays Update rate too low

Component failure Component failure

Signal Processing

Unit

Inaccuracy Inadequate filtering to remove

noise

Filtering corrupts data

Observer in need of tuning

Feedback delays Observer’s operation too slow

Inaccurate Process Mod-

el/ Inadequate control

Incorrect scaling of sensor data for

input to system

156

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Component Type of failure Specific

Observer’s model of system incor-

rect

Brakes Component Failure Fault in physical braking system

(eg brake pads, master cylinder

etc.)

Delay Delay in actuation

Engine Component Failure Fault in physical engine

Delay Delay in actuation

Brake and Throttle

Control Units

Component Failure Delay in CAN bus communication

CAN bus loses signal

CAN bus corrupts data

Processor Failure

Power loss

Inadequate operation Error in calculating PWM signal

Controller Interaction Conflicting commands from sys-

tem and driver

CCC Process Model Incorrect Sensor feedback missing or de-

layed

Incorrect/Old sensor data used to

calculate Brake and Throttle sig-

nals

157

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Component Type of failure Specific

Inadequate Control Algo-

rithm

LQR gains incorrect/ calculated

from an inaccurate/outdated

model

Instability in controller

Sensor data incorrectly scaled/in-

terfaced

Inadequate Control Ac-

tion

Outputs wrong controller’s result

Inadequate Control Input Incorrect controller selected

Set points (Vrequest & hrequest miss-

ing, delayed or corrupt)

Component Failure Processor Failure

Power loss

MUX failure

FSM Process Model Incorrect State transitions incorrect

Inadequate Control Algo-

rithm

Guard conditions incorrect

State contents incorrect

Sensor Data not used to update

internal model

Incorrect Sensor data is used to

update internal model

158

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Component Type of failure Specific

Error in evaluating sensor data (eg

units mismatch)

Mode Confusion Wrong system operating mode

Wrong Controller operating mode

(state)

Bad Control Input Incorrect, Missing or delayed

Driver Signal*

Component Failure Processor Failure

Power Loss

Vehicle Changes over time Vehicle on incline

Low or flat tires

Un-modelled frictions

Change in vehicle weight

Component Failures Component failure (eg axle

brakes)

Inter-component

communication

Feedback/Control Delay Signal delayed

Feedback/Control Incor-

rect

Signal corrupted by noise

Feedback/Control miss-

ing

Signal lost in transmission

Table A.2: STPA Step 2 Results

159

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Obtaining the Systems as a Differential Equation

Starting with the transfer function from Chapter 5

G(z) =
Y (z)

U(z)
= z−2 [2.2202− 2.046z−1]/30

1− 1.7445z−1 + 0.756z−2
× scale (A.9)

Convert to s-domain using Zero Order Hold

G(s) =
Y (s)

U(s)
= e−2Ts 27.17s+ 739.5

s2 + 93.245s+ 1403
× scale (A.10)

To make things easier

G(s) =
Y (s)

U(s)
= e−2Ts

a1s+ a2
s2 + b1s+ b2

(A.11a)

a1 = 21.17× scale (A.11b)

a2 = 739.5× scale (A.11c)

b1 = 93.245 (A.11d)

b2 = 1043 (A.11e)

Next convert to Time Domain

Y (s)
(
s2 + b1s+ b2

)
= U(s)

[
e−2Ts(a1s+ a2)

]
(A.12)

ÿ(t) + b1ẏ(t) + b2y(t) = a1u̇(t+ 2Ts) + a2u(t+ 2Ts) (A.13)

y(t) =
a1u̇(t+ 2Ts) + a2u(t+ 2Ts)− ÿ(t)− b1ẏ(t)

b2
(A.14)

160

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

According to the LQR feedback law for Output weighted LQR

u(t) = −KLQRy(t) (A.15)

Therefore,

u(t) = −

k1

k2

k3

k4

[
V (t) ∼ (t) d(t) a(t)

]
(A.16)

u(t) = −k1V (t)− k2 ∼ (t)− k3d(t)− k4a(t) (A.17)

d(t) =

∫
y(t)dt (A.18)

∼ (t) = −0.756V (t− Ts)− 0.0559u(t) (A.19)

= c1V (t− Ts) + c2u(t) (A.20)

Since the output of the system is velocity, y(t) = V (t)

u(t) = −k1y(t)− k2c1y(t− Ts)− k2c2u(t)− k3
∫
y(t)dt− k4ẏ(t) (A.21)

u(t) =
−k1y(t)− k2c1y(t− Ts)− k3

∫
y(t)dt− k4ẏ(t)

[1 + k2c2]
(A.22)

u̇(t) =
−k1ẏ(t)− k2c1ẏ(t− Ts)− k3 · y(t)− k4ÿ(t)

[1 + k2c2]
(A.23)

161

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Subbing into (A.14)

y(t) =
a1u̇(t+ 2Ts) + a2u(t+ 2Ts)− ÿ(t)− b1ẏ(t)

b2
(A.24)

y(t− 2Ts) =
a1u̇(t) + a2u(t)− ÿ(t− 2Ts)− b1ẏ(t− 2Ts)

b2
(A.25)

b2y(t− 2Ts) + ÿ(t− 2Ts) + b1ẏ(t− 2Ts) =

a1
[1 + k2c2]

[−k1ẏ(t)− k2c1ẏ(t− Ts)− k3 · y(t)− k4ÿ(t)]

+
a2

[1 + k2c2]
[−k1y(t)− k2c1y(t− Ts)− k3

∫
y(t)dt− k4ẏ(t)] (A.26)

Multiply in

(1 + k2c2)[b2y(t− 2Ts) + ÿ(t− 2Ts) + b1ẏ(t− 2Ts)] =

− a1k1ẏ(t)− a1k2c1ẏ(t− Ts)− a1k2c2u̇(t)− a1k3 · y(t)− a1k4ÿ(t)

− a2k1y(t)− a2k2c1y(t− Ts)− a2k2c2U(t)− a2k3
∫
y(t)dt− a2k4ẏ(t) (A.27)

Organize terms by derivative

[b2 + b2k2c2]y(t− 2Ts) + [1 + k2c2]ÿ(t− 2Ts) + [b1 + b1k2c2]ẏ(t− 2Ts) =

− [a2k1 + a1k3]y(t)− [a1k1 + a2k4]ẏ(t)− [a1k4]ÿ(t)

− a2k3
∫
y(t)dt− [a2k2c1]y(t− Ts)− [a1k2c1]ẏ(t− Ts) (A.28)

162

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Isolate the y(t) term

[a2k1 + a1k3]y(t) = −[a1k1 + a2k4]ẏ(t)− [a1k4]ÿ(t)− a2k3
∫
y(t)dt

− [a2k2c1]y(t− Ts)− [a1k2c1]ẏ(t− Ts)− [b2 + b2k2c2]y(t− 2Ts)

− [1 + k2c2]ÿ(t− 2Ts)− [b1 + b1k2c2]ẏ(t− 2Ts) (A.29)

Finally

y(t) = −a1k1 + a2k4
a2k1 + a1k3

ẏ(t)− a1k4
a2k1 + a1k3

ÿ(t)− a2k3
a2k1 + a1k3

∫
y(t)dt

− a2k2c1
a2k1 + a1k3

y(t− Ts)−
a1k2c1

a2k1 + a1k3
ẏ(t− Ts)−

b2 + b2k2c2
a2k1 + a1k3

y(t− 2Ts)

− 1 + k2c2
a2k1 + a1k3

ÿ(t− 2Ts)−
b1 + b1k2c2
a2k1 + a1k3

ẏ(t− 2Ts) (A.30)

If we use km/h then scaling = 1/29.92. So the numerical values to sub back into

the equations are

a1 = 21.17/29.92 = 0.708 b1 = 93.25 c1 = −0.756

a2 = 739.5/29.92 = 24.72 b2 = 1043 c2 = −0.056

y(t) = −0.708k1+24.72k4
24.72k1+0.708k3

ẏ(t)− 0.708k4
24.72k1+0.708k3

ÿ(t) (A.31)

− 24.72k3
24.72k1+0.708k3

∫
y(t)dt+ 18.69k2

24.72k1+0.708k3
y(t− Ts)

+ 0.535k2
24.72k1+0.708k3

ẏ(t− Ts)− 1043−85.41k2
24.72k1+0.708k3

y(t− 2Ts)

− 1+k2(−0.056)
24.72k1+0.708k3

ÿ(t− 2Ts)− 93.25−5.22k2
24.72k1+0.708k3

ẏ(t− 2Ts)

163

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

So the resulting differential equation is dependent on the values of

[
k1 k2 k3 k4

]

164

References

Canet, P. (1994). Kalman filter estimation of angular velocity and acceleration on-line

implementation. Unpublished doctoral dissertation, McGill University, Montreal,

Qc.

Chandhrasekaran, V., & Choi, E. (2009, Sept.). Fault tolerance for embedded con-

trol system. In Iscit 2009. 9th international symposium on communications and

information technology (p. 1316 -1320).

Dew, M. (2002). Coordinated adaptive cruise control: Design and simulation. Un-

published doctoral dissertation, University of California, Berkeley.

Girard, A. R., Spry, S., & Hendrick, K. (2005, March). Intelligent cruise control

applications: Real-time embedded hybrid control software. Robotics Automation

Magazine, IEEE , 12 (1), 22 - 28. doi: 10.1109/MRA.2005.1411415

Goebel, R., Sanfelice, R., & Teel, A. (2009, April). Hybrid dynamical systems. IEEE

Control Systems , 29 (2), 28 -93.

Habibi, S. R. (2011a). Lecture notes on system identification - part 2. University

Lecture.

Habibi, S. R. (2011b). System identification lecture 6. University Lecture.

165

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Han, D., & Yi, K. (2006, June). Evaluation of adaptive cruise control algorithms on

a virtual test track. In American control conference, 2006.

Hedrick, J. K., & Yip, P. (2000). Multiple sliding surface control: Theory and

application. Journal of Dynamic Systems, Measurement, and Control , 122 (4),

586-593.

Hesphanha, J. (2007). Undergraduate lecture notes on lqg/lqr controller design. Uni-

versity Lecture.

Jairam, S., Lata, K., Roy, S., & Bhat, N. (2008). Verification of a mems-based

adaptive cruise control system using simulation and semi-formal approaches. In

Electronics, circuits and systems, 2008. icecs 2008. 15th ieee international confer-

ence on (p. 910 -913).

Johansson, R. (1993). Englewood Cliff, New Jeresy, 07632: Prentice Hall Inc.

Junaid, K. M., Shuning, W., Usman, K., & Naveed, R. (2005). Lqr autonomous

longitudinal cruise control with a minimum state observer. In Proceedings of the

eighth iasted international conference: Intelligent systems and control.

Knight, J. C., & Leveson, N. G. (1986, January). An experimental evaluation of the

assumption of independence in multi-version programming. IEEE Trans. Softw.

Eng., 12 (1), 96–109.

Kural, E., & B.A., G. (2010, Oct.). Model predictive adaptive cruise control. In

2010 ieee international conference on systems man and cybernetics (smc) (p. 1455

-1461).

166

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Lees, M. N., & Lee, J. D. (n.d.). Driver distraction and reliance adaptive cruise

control in the context of sensor reliability and algorithm limits. In Proceedings of

the third international driving symposium on human factors in driver assessment

training and vehicle design.

Leveson, N. (2009). Engineering a safer world: Draft.

Li, S., Li, K., Rajamani, R., & Wang, J. (2011, May). Model predictive multi-

objective vehicular adaptive cruise control. IEEE Transactions on Control Systems

Technology , 19 (3), 556 -566.

Liang, C.-Y., & Peng, H. (1999). Optimal adaptive cruise control with guaranteed

string stability. In Proceedings of the 1998 avec conference (p. 717-722).

Loos, S., Platzer, A., & Nistor, L. (2011). Adaptive cruise control: Hybrid, dis-

tributed, and now formally verified. In M. Butler & W. Schulte (Eds.), Fm 2011:

Formal methods (Vol. 6664, p. 42-56). Springer Berlin Heidelberg.

MATLAB. (2012). Matlab documentation. The MathWorks Inc.

McCullough, K. (2011). Design and characterization of a dual electro-hydrostatic

actuator. Unpublished doctoral dissertation, McMaster University, Hamilton, ON.

Mohammadi, R. (2009). Fault diagnosis of hybrid systems with applications to gas tur-

bine engines. Unpublished doctoral dissertation, Concordia University, Montreal,

Qc.

Ogata, K. (1987). Discrete-time control systems (M. Rizzi, Ed.). Prentice Hall Inc.

167

M.A.Sc. Thesis - Benjamin Breimer McMaster - Software Engineering

Sha, L. (2001, Jul/Aug). Using simplicity to control complexity. Software, IEEE ,

18 (4), 20 -28. doi: 10.1109/MS.2001.936213

Shakouri, P., & Ordys, A. (2011, Oct.). Application of the state-dependent nonlinear

model predictive control in adaptive cruise control system. In 14th international

ieee conference on intelligent transportation systems (itsc) (p. 686 -691).

Song, Y. (2012). Applying system-theoretic accident model and processes (stamp)

to hazard analysis. Unpublished master’s thesis, McMaster University, Hamilton,

ON.

Sullivan, J. (2012). A development and testing platform for automotive active safety

systems using a small-scale vehicle. Unpublished master’s thesis, McMaster Uni-

versity, Hamilton, ON.

Wassyng, A., Lawford, M., & Maibaum, T. (2012). Separating safety and control

systems to reduce complexity. In M. Hinchey & L. Coyle (Eds.), Conquering com-

plexity (p. 85-102). Springer London.

Yoshinori Yamamura, M. K., Masahiko Tabe, & Murakami, T. (2001). Development

of an adaptive cruise control system with stop-and-go capability. SAE Technical

Paper 2001-01-0798 .

Zad, S. H., Kwong, R., & W.M.Wonham. (2003). Fault diagnosis in discrete event

systems: Framework and model reduction. IEEE Transactions On Automatic Con-

trol , 48 (E2), 1199-1212.

168

