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Abstract

Linear Programming (LP) has a wide range of industrial applications, including
closed-loop systems such as real-time optimization and the steady-state economic
optimization at each execution of Model Predictive Controllers. This thesis presents new
metrics for monitoring the performance of linear closed-loop real-time optimization
systems, as well as new methods for improving their performance when necessary. A
novel diagnostic method for ranking parameter importance with respect to the objective
function is also presented.

Many standard methods are available for estimating the effects of parameter
uncertainty on the objective function without a basis change, and more powerful existing
methods require enumeration or sampling. This work introduces new sensitivity methods
in LP problems with uncertain coefficients that can be correlated, appear in equality and
inequality constraints, and have uncertainties with large enough magnitudes to lead to
basis changes.

The new monitoring approach measures the uncertainty effect as the range
between the maximum and minimum profit in the plant under closed-loop optimization,
termed the Profit Gap, and both its maximum and expected values can be determined.

If the monitoring indicates a substantial Profit Gap could exist, the improvement
step designs experiments to reduce parametric uncertainty. The unique experimental
design maximizes the total profit during and after the experiment to the end of a
production run.

Both the monitoring and improvement methods involve the solution of bilevel
optimization problems, which include complementarity constraints. Results of application

to a closed-loop gasoline-blending problem demonstrate the power of the methods. The
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studies include typical uncertainties and measurement noise and show the economic

benefits possible through the application of real-time monitoring and improvement.
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Chapter 1

Introduction

1.1. Optimization in the Process Industries

Optimization has been successfully applied in the process industries since the
beginning of mathematical programming and digital computation (e.g., Symonds, 1955).
Because of the many degrees of freedom in complex process applications, optimization
can improve solutions obtained through experience or heuristics. Because of the large
cash flows, the economic benefits are often substantial. Typical optimization applications
involve models that contain uncertain parameters; therefore, the benefits of optimization
can be eroded because of model uncertainty. This study develops methods for
monitoring the performance of process optimization and for improving the performance

when severe degradation is possible due to uncertainty.
1.1.1 . General properties of optimization problems

An optimization problem comprises an objective function which is to be
minimized or maximized. In some cases, inequality and equality constraints must be
added to the optimization problem. Inequality constraints may be of two types, Bounds or
General. Bounds are used when the decision variables in the problem must be limited by
upper and/or lower values. For example, in a process plant, individual flowrates cannot
have negative values or be above the maximum pumping capacity. General constraints
are used where some function of the variables (e.g. summation of flowrates) must be
limited (Williams, 1999). Equality constraints define the relationship between dependent
and independent variables, such as in the case where the production rate has to be exactly

equal to the demand.
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There are two methods for optimizing an existing physical system. One method is
through continuous perturbation of process variables in the plant, which is called
Evolutionary Operations (EVOP) (Box and Draper, 1998). Besides requiring continual
perturbations of the system, EVOP does not ensure satisfying process constraints in the
dependent variables, and scales poorly with the number of manipulated variables. The
second method is by optimizing a mathematical model cf the system and implementing
the results in the system. Since mismatch will undoubtedly exist between the model and
the real system, measurements can be used to provide updated estimates of model
parameters. This research investigated the performance of model-based optimization.

The optimization systems addressed in this thesis include feedback of measured
variables for model correction, which is a common optimization approach used in the
process industries. Optimization models can be used in either an open-loop or closed-
loop manner. These two approaches are briefly explained in the following two

subsections.
1.1.2 . Open-Loop Optimization

In open-loop optimization systems, the model-based optimization results are
implemented in the process, and no information from the process is used to update or
correct the model or calculated results (Figure 1.1a). In automatic control, this approach
would be termed feedforward. We note that the decisions from open-loop optimization
could be implemented automatically or could rely on a person for implementation.
Naturally, the performance of an open-loop optimization can be strongly affected by
model mismatch, but it is sometimes the only possible approach when timely

measurements are not available.
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Process _ Optimization [—» Decisions
Process g

—»| Optimization [ Decisions
data l

(a) (b)

Figure 1.1. (a) Open-Loop and (b) Closed-Loop Optimization

There are several typical applications of open-loop optimization problems in
industry. As an example, one application is in plant design problems, in which one must
determine what is the best set of design variables — e.g., tank volumes, number of trays in

a column, and so on — in a process.
1.1.3. Closed-Loop Optimization

Closed-loop optimization is the term used to describe a system that contains some
form of feedback information that modifies subsequent optimization calculations (Figure
1.1b). In plant operations, the information is provided by real-time sensors to measure
selected physical variables. Naturally, the feedback hes the potential for reducing the
effects of model mismatch and disturbances, but in general, feedback cannot eliminate
their effects.

A wide variety of approaches are possible for using measurements to update the
model used in the optimization. The approach used in this study involves the Model-
Predictive Control (MPC) structure, which is widely employed in the process industries.
In MPC, future values of selected manipulated variables are determined to optimize an
objective function, which includes controlled and manipulated variables. The measured
values of the controlled variables are used for the feedback. This control structure has

several excellent properties; primary among these are zero-steady-state offset from the

(%]
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Economic setpoints Measured variables
Plant
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optimizer
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Model >
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Updated Bias

Figure 1.2. Structure of a Model Predictive Controller (MPC)

setpoints (reference values) and flexible feedback compeasation that is not restricted by a
fixed control law, such as PID or other algorithm. The structure of an MPC controller can
be seen in Figure 1.2, and details of the structure are given in Appendix A.

As we will see, the applications in this study involve quasi-steady-state processes
(note that the system is dynamic, because it takes several iterations to reach steady-state),
so that dynamic performance is less of an issue

This thesis concentrates on Closed-Loop Real-Time Optimization (CLRTO) using
the MPC structure. In Real-Time Optimization (RTO), the economic optimization of a
system is achieved by adjusting manipulated variables. which often are setpoints of
controllers. The calculations involved in the feedback compensation in model updating
will be presented in subsequent chapters. The extension to open-loop optimization is

presented with examples in Appendix E.

1.2 . Linear Programming

Many optimization problems in the process industries are based on linear
equations; thus, linear programming is the natural choice for these optimization
problems. Although processes are nearly always nonlinear, adequate optimization results
can often be obtained by careful modelling, e.g., disjurctive, separable, base-delta, etc.
(Williams, 1999) and restricting operations within the linear region. Linear programming
has mathematical properties that make it attractive for use in closed-loop optimization,

where obtaining rapid and reliable solutions is important.
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This thesis concentrates on linear programming because of its importance in the
process industries. While the selection might appear limiting, CLRTO using linear
programming contains some of the most challenging aspects of the research project,
which are monitoring the performance of closed-loop optimization of uncertain processes
with the possibility of changing active inequality constraints. The extension of results to

nonlinear problems is briefly introduced in Appendix E.

1.3. Monitoring the Performance of Economic Optimization

Optimizing a complex process using linear programming will perform well, i.e.,
achieve nearly the best possible objective in the real process, when model mismatch is
small. Therefore, monitoring the performance of an optimizer involves determining a
metric that measures the effect of model mismatch. Performance monitoring is
complicated by the typical situation in which the objective achieved in the real plant
cannot be measured exactly because of sensor inaccuracies and in some cases, missing
measurements. Therefore, monitoring requires two key elements: a description of the
potential model mismatch, i.e., the uncertainty, and a metric of the effect of uncertainty
on optimization performance.

Model mismatch can result from structural mismatch between the model and true
plant and from parametric mismatch between the model and in the true plant. No
structural mismatch between model and plant is considered in this work. All plant/model
mismatch originates from the difference between parameters in the true plant and in the
model. In this work, the parameter uncertainties are described using two different
approaches: (1) interval model parameter uncertainty, which is used whenever there is
little or no knowledge about the correlation structure of the system, and (2) ellipsoidal
model parameter uncertainty, which uses the variance-covariance matrix of the system
that represents either correlated or independent parameter variations. Ellipsoidal
unceftainty could result from a multivariate normal disiribution, where parameters are
assumed to vary within an ellipsoid with confidence regions delimited by the chi-square

statistic. In some formulations in this work, only the boundary of this ellipse was taken

N
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into consideration, whereas in other formulations, an approximation of the parameter
probability distribution was considered.

The performance metric addresses the objective function. In process examples,
the objective function is the profit of the operation, and if secondary items are important,
such as changes to the manipulated variables, they can be included either in the objective
function or as variable bounds. As previously noted, the objective function value in the
true plant cannot be obtained in the general situation. A potential straightforward
approach for improving the model would involve perturbing the process to compare the
responses of the model and true plant; however, continual perturbations would be very
costly. Therefore, this work presents monitoring methods that do not require plant
perturbations. The monitoring method develops scalar measures on the performance of
the uncertain system; for example, the greatest possible loss in profit due to mismatch or
the expected value of the loss due to mismatch.

When monitoring performance, the user must decide a critical value that
distinguishes “good” from “poor” performance. Since the objective function is the metric
in the monitoring method, the critical value will be profit, which is expressed in $/day in
the examples in this work. The critical value is problem dependent. However, one
generally would not strive for a metric value of $0.0/day because the effort for further
improvement would not be worth the gain and because the monitoring methods provide
only an estimate of the improvements, which are not exact. In this work, we will use a
critical value of roughly $100/day for the maximum tolerable profit loss due to mismatch.
When the metric is below the critical value, the system is deemed to be functioning
acceptably. The threshold value should be defined based on the trade-off between the
inherent achievable accuracy given the available sensors (which would be very
significant for a production with a large cash flow), the true costs of changing operation,

and organizational barriers.

1.4. Optimizer Performance Diagnosis and Enhancement
When the metric indicates unacceptable performance, the engineer would like to

improve the performance of the CLRTO system, which requires reducing the model

6
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mismatch. There are a few approaches for improving parameter estimates. First, one can
measure each uncertain parameter by onstream analysis or by sampling with subsequent
offline analysis. These approaches definitely increase the process cost. Besides, onstream
measurement might even be impossible, depending on the system. Second, a more
accurate first-principles model can be developed in order to achieve better estimates of
the model parameters. However, when the more accurate model is not readily available, it
1s expensive to develop and might not provide the required accuracy. Finally, a third
option is to re-estimate model parameters by running designed experiments in the plant,
which can be costly. This thesis presents novel experimental designs that minimize total
cost, so that the experiment yields the optimum f{radeoff between the costs of
experimentation and the benefits of future (improved) operation after the experiment.

In some systems, it is useful to obtain diagnostic information about the relative
importance of parameter uncertainty with respect to the optimizer performance. This
information can help in sensor location problems or in focusing fundamental model
improvement efforts. This thesis presents a method for determining the relative
importance of parameters with respect to the objective function that does not require a

constant active constraint set.

1.5. The Major Case Study and a Motivating Example

The methods are developed for application to any CLRTO using linear
programming. The case studies in this work demonstrate the efficacy of the methods on
an industrial process. The blending of petroleum products to manufacture gasoline has
been selected because it has the basic properties of the process systems being considered

in this research, namely:

» The process can be modeled with reasonable accuracy using linear programming;

» CLRTO has been applied to many industrial gasoline blending processes using the
MPC structure;

» The process has significant uncertainty in constraint parameters that multiply

variables, i.e., left-hand side coefficients in a linear program;
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Figure 1.3. Gasoline Biending Process

» The process is economically important and has opportunity for further improvements
via monitoring and diagnosis;

» The process is representative of cther CLRTO systems using an LP.

In an oil refinery, there are several important tlending processes, such as the
blending of crude oil, gasoline and fuel oil. Most of the case studies in this thesis refer to
the gasoline-blending process, which has great economic incentive for optimizer
performance improvement.

In the gasoline-blending process considered in this work, five components are
blended to form the final gasoline product: Reformate, Light-Straight Run (LSR)
Naphtha. n-Butane, FCC Gasoline and Alkylate (Figure 1.3). There are two property
specifications that are very relevant to customers: octane number and Reid vapour
pressure (RVP). These properties are only measured online for the final product.

The five components are either purchased or obtained from upstream operation
that has variable operating conditions, and are stored in large tanks; therefore, short-term
violations of component properties are allowed. The component properties are only
measured very infrequently, e.g., once a week (Mudt, 2005; Kelly, 2006). Also, due to

occasional shortage of storage capacity, components may bz pre blended into component
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Figure 1.4. Result of Parametric Mismatch on CLRTO operation

tanks (Kelly, 2006; Chin, 2006). Therefore, the octane numbers and RVP for each of the
components are a significant source of uncertainty to this CLRTO system. Details on this
process can be found in Appendix A.

The closed-loop implementation of RTO has limited feedback information, since
only the right-hand side of the constraints ("bias") is updated (Figure 1.2). This is a
common feedback structure in industrial applications, such as MPC systems. The bias-
updating method, however, is only guaranteed to lead the system to the true plant
optimum if the parametric mismatch between model and plant is small enough; Forbes
and Marlin (1994) provide the mathematical definition for the needed size of uncertainty.
If the parametric mismatch is too large, the CLRTO may operate at an optimum different
from the true plant.

To demonstrate the effect of parametric mismatch, Figure 1.4 shows the flowrates
of gasoline components to the final blend during a blending batch. These flowrates were
calculated by the CLRTO system for the same plant parameters using different CLRTO
models; i.e., linear models with different parameter values The octane number and RVP

quality specifications of the final product are met for boch CLRTO models. However,
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only one of the two models results in a system achieving its true plant optimum. With no
additional information about this system, how is it possible to know which operation is
better or whether either is close to the true plant optimum? Which model parameters
should be re-estimated in order to achieve potentially more profitable operation? How
should the parameters be re-estimated in order not tc have major disruptions in plant

operation? Such questions are answered by using the methods developed in this work.

1.6 . Importance and Contributions
Perhaps the major question for the reader is: “Is this work important?” The value
can be evaluated based on the importance for applications and on the contributions to

technology. Both are addressed briefly in this section.

1.6.1 . Useful applications

In process industries, LP has been used in many applications, such as planning
and scheduling models, which assign, time, size and sequence operations in production.
Yet another application of LPs is in selected CLRTO systems when the linear(ized)
model provides adequate accuracy. This generally occurs when the optimum is known to
occur at a corner point of the feasible region, which is assured in the LP solution. Linear
CLRTO blending systems exist, for example, in cement manufacture and in coal mixing
for use as fuel. The approaches in this research are tailored for application to CLRTO,
and two important applications of LP-based CLRTO are discussed in this section.

One of the earliest applications of closed-loop linear programming was to
gasoline blending (Birchfield, 2002), which resulted from the enormous economic
importance of this process. For example, the average gasoline demand in the USA is
about 3.8x10® gal/day (Oak Ridge National Laboratory, 2004). At the current cost of
gasoline (about 2.50 $/gal), the total cost to the US consumer is about 3.5x10'' (350
billion) $/year! Clearly, even small percentage improvemer:ts in the blending process can
have significant benefit to refining companies and consumers.

In addition, the LP in the widely used Model Predictive Controller (MPC) has the

same structure as the systems considered in this thesis, so that the results of this work are

10



D. Zyngier, Ph.D. Thesis McMasterUniversity, Chemical Engineering

applicable to the steady-state optimization of MPC systems. Linear models are used in
steady-state optimization to give the final conditions for MPC controllers (Qin and
Badgwell, 1997). The final steady-state solution is required for (1) open-loop unstable
processes, and (2) non-square control systems, where exira degrees of freedom are used
to improve the profitability of the plant operation. Besides blending processes, MPCs are
a very significant application of the technology, since there are approximately 4,000
MPC controllers currently installed worldwide, and MPC implementation growth rates
are expected to increase in the next few years with the recent rise in oil prices and due to
growth in China, Eastern Europe, India and the Middle East (Wagler, 2006). Since MPC
implementation costs for a single refinery process unit may range from $250,000 to
$500,000 (Wagler, 2006), it is clear that methods are required to monitor the performance
of the LP in the MPC, and that improve it if necessary.

The formulations in this thesis were tailored to linear CLRTO systems, and were
applied to a 5-manipulated-variable blending process. The extension of the methods to
open-loop linear optimization problems is straightforward. Nonlinear optimization
problems may also benefit frem the technology, although some post-solution checks must
be made. The extensions to open-loop linear and nonlinear problems are discussed in
Appendix E. The computational aspects of the application of the methods to larger
optimization problems (20+ variables) should be evaluated in the future.

1.6.2 . Technical contributions

This work concentrates on optimization of uncertain systems. The importance of
this topic was identified by a recent NSF-funded workshop on Statistics and Operations
Research (Robinson, 2005), where some of the key issues in these fields were identified.
Amongst those issues selected as high priority were (1) the design of profit-based
experiments to reduce the uncertainty in key parameters, and (2) screening the uncertain
model parameters to determine their importance on optimizer performance. This research
addresses these two issues, along with a performance monitoring method to identify

when these two technologies are needed for a specific application.
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The work described in this thesis presents the following new technical

contributions.

» Modelling the behaviour of the LP-based closed-loop real-time optimization system

(CLRTO) in one simultaneous equation set

‘//

Modelling the effect of uncertainty in CLRTO system on plant profit

» Evaluating several metrics for the effect of parameter mismatch on CLRTO
performance, i.e., profit

» Developing a diagnostic method for ranking the effects of uncertain parameters

» Designing novel, profit-based experimental designs appropriate for enhancing
CLRTO performance in operating plants

» Applying the methods to several cases of an industrially-relevant blending process

» Extending the monitoring methods to open-loop linear problems and to a preliminary

study of nonlinear problems

A new sequential procedure for implementing the monitoring and enhancement of
closed-loop linear RTO systems was also developed. The method is designed to monitor
and diagnose CLRTO performance without plant perturbations. The sequential nature of
the procedure enables its interruption whenever perfcrmance is deemed satisfactory.
Also, it ensures that the cost-effective experiments are implemented only when

necessary.

1.7 . Overview of the Thesis
The thesis is outlined as follows:
» Chapter 2 gives an overview of technology related to this work, including related
optimization problems and solution strategies.
» Chapter 3 presents CLRTO performance monitoring approaches. One approach is
based on the number of corner points, and four approaches are based on the Profit
Gap. Monitoring CLRTO performance determines if model enhancements are

necessary.
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‘///

Chapter 4 contains different experimental design strategies for when there is the need
for CLRTO model enhancement. Experiments are designed in a cost-efficient
manner. This chapter also presents the diagnostic method for determining key model
parameters whose uncertainty should be reduced in order to achieve a better RTO
performance metric.

Chapter 5 presents a sequential procedure for implementing the CLRTO monitoring
and enhancement strategy, so that model/plant mismatch is assessed and the plant is
perturbed (only if needed) by profit-based experiments.

Finally, Chapter 6 summarizes the work with conclusions and future extensions to the
technology developed in this thesis.

A Nomenclature section contains all the symbols used throughout this thesis.

1.8. Thesis Conventions

In this work, closed-loop real-time optimization (CLRTO) and real-time
optimization (RTO) refer to a steady-state constrained economic optimizer operated
under closed-loop, where the term real time refers to how measurements are obtained
(as opposed to computing). True plant properties refer to properties that occur in the
real process, and that are not known by operating personnel. Model (or RTO or
CLRTO) parameters or properties are properties used in the RTO model.

Optimizer performance measures the potential economic loss due to
parametric uncertainty. The Profit Gap is defined as the difference between CLRTO
operation under perfect knowledge of parameter values and CLRTO operation using
nominal parameter values. It is an indication of the cost of uncertainty in a system.

Optimizer Performance Enhancement aims at reducing the parameter
uncertainty in order to decrease the potential economic loss (Profit Gap) in the
optimization problem. In the extensions to open-loop problems, there are references
to best-case (worst-case) properties. These properties are those that yield the best
(worst) objective function value in an optimization problem (for instance, highest

(lowest) profit).
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Chapter 2
Technology Survey

Model-based optimization employs a mathematical model of a process when
determining feasible values of the variables that yield the best objective function value.
As a result, the performance of model-based optimization depends on the accuracy of the
model. This research develops methods for quantifying the potential loss in performance,
i.e., deviation in the true plant objective function from its optimum value, due to model
errors. This chapter reviews the relevant state-of-the-art in formulation of optimization
problems under uncertainty and solution methods.

Linear programming problems have found wide application in the process
industries, such as in blending processes and in the steady-state optimization within
Model Predictive Control systems. Due to their practical importance, linear closed-loop
RTO systems were considered in this work. More details are presented in Section 2.4.

If the performance of a CLRTO system is deemed unacceptable, parameter
uncertainty should be reduced. One of the ways to achieve this is through designed
experiments in the plant. The formulations in this thesis differ from state-of-the-art
experimental design strategies in that they take the cost of experimentation into account,
as well as the CLRTO monitoring metric of choice. More details can be seen in Section
2.2.2.

Once plant data has been obtained, parameters should be re-estimated in order to
improve CLRTO model accuracy. The parameter-updating method of choice was
Bayesian estimation, since prior information about parameter uncertainty can be included
(Section 2.2.3). This information is obtained from historical data from previous

processing runs.
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Finally, several formulations in this work involve bilevel optimization problems.
Solving these problems is computationally very -challenging, requiring special

reformulations. An overview of this field is given in Section 2.3.3.

2.1. Sensitivity Analysis

The work in this thesis concentrates on the sensitivity of the objective function
with respect to parameter uncertainty, which may originate in any of the coefficients of
the problem (including left-hand side coefficients of constraints). The parameter
uncertainty may cause the active set to change, and the objective function values are
compared at different optimal bases without the need for enumerative procedures.

A natural topic when dealing with uncertain systems is to evaluate how much the
problem is affected by parameter uncertainty. This is the goal of sensitivity analysis (SA).
SA evaluates the sensitivity of the problem to changes in variables affer the decisions
have been made, and therefore are not appropriate methods for integration into the
optimization decisions.

Traditional sensitivity analysis methods for linear programming provide valuable
information about changes in selected single parameters (Winston, 1994; Nash and Sofer,
1996). They give the effect on the objective of changes in the right-hand side of
inequalities and changes in cost coefficients. In addition, they give ranges for each
coefficient over which the optimal basis (active set) does not change. Limited results are
available for multiple coefficient changes via the 100% rules that give the maximum total
changes for multiple coefficients for which the basis is guaranteed not to change. These
methods find wide application in applied optimization.

Unfortunately, these traditional methods are not applicable to the problems posed
in this research. First, in addition to cost and right-hand side uncertainty, the problems in
this research have uncertainty in the left-hand side coefficients, i.e. those that are
multiplied by variables in the constraint equalities and inequalities. Second, many
parameters have uncertainty simultaneously. Third, a key issue in this research is the

evaluation of changes in parameters when the optimal basis changes.
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Chinneck and Ramadan (2000) determined the sensitivity of LP problems to
parametric interval uncertainty. They use interval mathematics to determine the worst-
case (best-case) value of each parameter, and then, they solve the resulting LP for the
worse-case (best-case) objective value. Chinneck and Ramadan solve problems similar
to those in this research; however, substantial differences exist. First, they address “open-
loop” systems without feedback correction. Second. they allow only independent
parameter variations, i.e., no correlation among parameters is considered. Third, their
solution method requires a combinatorial procedure to deal with uncertainty in equality
constraints. However, the problems of Chinneck and Ramadan are of practical interest
and therefore the solution methods developed in this research were applied to their
problems to demonstrate the advantages of these new formulations. The results can be
found in Appendix E.

Finally, the effect of parameter variation can be determined by introducing
changes to relevant parameters and re-solving the optimization problem. This approach
might be attractive when few, discrete candidates are to be evaluated. However, the
uncertain parameters are continuous within a defined region; therefore, a large number of
cases would be required to estimate the effect of uncertainty (Sen and Higle, 1999). In
addition, the evaluation of many cases, each requiring an LP solution, would be
problematic when embedded in a sub-problem on a multi-level optimization, as discussed

in Section 2.3.3.

2.2. Problem Definition

The problem defined in Section 1.5 is a linear optimization problem, with limited
feedback. Model and plant are assumed to differ only in the parameter values, since no
structural mismatch is considered. We seek a steady-state solution that is feasible, if
possible, and at or close to the optimum of the true plant.

Two descriptions of parameter uncertainty were used in this work: (1) Interval,
where parameters vary within upper and lower bounds, and is used when there is no

information about parameter distribution, and (2) Ellipsoidal, where the parameters are
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assumed to be normally distributed, and vary within a multidimensional ellipsoid
described by:

(Q -0, )T \A (Q)(Q -0, ) e Zozz,doj (2.1)

In the ellipsoidal description of uncertainty, parameters Q lie within the
ellipsoidal contour defined by their variance-covariance matrix V() at a given
confidence level (a). The number of degrees of freedom (dof) for the chi-square
distribution is equal to the number of uncertain parameters (Rooney and Biegler, 2003;
Draper and Smith, 1998). This description of uncertainty allows for the incorporation of
correlation among parameters.

An important class of optimization problems under uncertainty is Stochastic

Programming, which is discussed below.

2.2.1. Stochastic Programming

Stochastic Programming enables the integration of uncertainty into the solution of
an optimization problem. Stochastic Programming can be classified into two main types

of problems: Probabilistic Programming and Recourse Problems (Sahinidis, 2004).
Probabilistic Programming

Probabilistic Programming incorporates uncertainty by the use of chance
constraints (Charnes and Cooper, 1963). Chance constraints occur in both steady-state
and dynamic optimization problems. An example of a chance-constrained problem can be

seen below.

min c¢x {22)

st. P(Ax>b)>p
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In Problem (2.2), the constraint Ax> b is satisfied with a probability of at least p.
As examples of steady-state chance-constraint applications, there is the work of Charnes
and Cooper (1963) that considers independent uncertainty in the right-hand side
coefficients. More recent works related to robust feasibility are Ben-Tal and Nemirovski
(2000) and Lin et al. (2004), which take the uncertainty in the left-hand side coefficients
(A4) into account. These methods, however, cannot handle closed-loop systems directly.

Dynamic robust MPC problems, on the other hand, consider the feedback
structure of the problem when incorporating parameter uncertainty to ensure that
constraints remain feasible during transient operation (Kothare et al., 1996; Warren and
Marlin, 2004). Even though robust MPC technology guarantees a feasible trajectory to
the final steady-state, it does not ensure that the final point of the trajectory is the true
plant optimum because it is not part of the robust control definition.

In this thesis, an inherently dynamic system is considered, but only the steady-
state performance is monitored. The trajectory that leads to steady-state operation is
allowed to be infeasible due to the integrating properties of batch processes with only
end-point objectives. If necessary, the formulations developed in robust control
technology could be applied to the dynamic transient system to ensure feasibility
throughout the trajectory leading to steady-state operation. In fact, the combination of
steady-state optimization with dynamic trajectory optimization is an example of this
combined approach, although uncertainty has not been considered in this coordinated

system to date.

Recourse Problems

The probabilistic programming approaches described previously limit the
probability of infeasibility of an optimization problem. Ariother approach to optimization
under uncertainty is to model the future response (recourse) of a model to the realizations
of the uncertain parameters (Sen and Higle, 1999). In the two-stage recourse problem, the

variables are named according to when they have to be implemented within the decision-
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making process: the decisions that have to be made before the realization of the uncertain
variables are called first-stage decision variables, whereas the decisions that can be made
after the realization of the uncertain variables are called second-stage decision variables.
The classical case of recursion assumes "perfect" information about the second-
stage (inner) variables of the uncertain optimization problems. An example of a two-stage

recourse problem is seen below (Sen and Higle, 1999).

min ¢x, + E(I?(x, )) (23)

X

st. Ax =
xl,min = xl < xl.max

h.s’ (xl ) = min c2.\'x2.r
%2

st. A, %, + Bx;=b,,

xZ,min % x2\‘ £ xl,max

In Problem ( 2.3 ), x; and x; are the first- and second stage decision variables,
respectively. The subscript s corresponds to each of the S scenarios used in the
evaluation, and E(ﬁ(x, )) is the expected value of the random variable % (x,). The
expected value of this variable also known as the recourse function. From Problem
(2.3), it is possible to see that the inner problem (4(x;)) depends on the realization of the
outer problem (x,), i.e., the decisions x; are only made aftzsr deciding on x;.

There are two types of models associated with Recourse Programming: the Here-
and-Now (HAN) and the Wait-and-See (WAS) models. HAN models relate to the first
stage decision variables, where the decision must be made before knowing the outcome
of the uncertain parameters in the second stage problems. If nominal parameter values are
assumed for the second stage variables, the HAN solution may be infeasible for the
uncertain problem (Sen and Higle, 1999). Therefore, ore of the methods for handling
HAN models by reformulating second stage decisions as chance constraints, as seen

below.
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min ¢x (24)
st. Ax=b,

P(AzbeZ)Zp

Koo LXK

In WAS models, perfect information of parameter values is assumed when the
optimization problem is performed, which corresponds 1o the optimization of the second
stage variables. WAS models often require the solution of several scenarios for the
different realizations of the second stage variables (Sen and Higle, 1999). Decision
Analysis literature has WAS models in the form of, for example, Regret problems
(Averbakh, 2000), which will be addressed in more detail in Section 2.5. Many
applications of WAS models only consider interval uncertainty (with the exception of
Rooney and Biegler, 2003). Most of the work in the literature can only handle inequality
constraints, and the parameter space is usually discretized to solve the inner problems.
These shortfalls were overcome with the methods presented in this thesis.

Ierapetritou et al. (1996) studied the effect of uncertainty in a production planning
problem through the use of the Expected Value of Perfect Information (EVPI). In
Ierapetritou et al. (1996), EVPI is described as the difference between the HAN and the
WAS model decisions. EVPI is further addressed in Section 2.5.

The work in this thesis is a combination of HAN and WAS models in Recourse
Programming. The HAN-model concept of making a decision before the realization of
the uncertain variables in known is used. However, differently from the WAS approach
of enumerating the different realizations, or from the chance-constrained approach of
"backing-off" from constraints to ensure feasibility, feedback information was
incorporated directly into the model by a novel modeling approach in order to predict the
closed-loop response of the system. In addition, the systems in this research have

“limited feedback’, so that the uncertainty in some parameters is not reduced in spite of

multiple recursion.
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Other Related Problems in Stochastic Programming

There are other problems in the literature of Optimization under Uncertainty that
relate to the work in this thesis. Grossmann and Sargent (1978) developed a minmax
optimization strategy to solve an open-loop plant design problem under uncertainty. The
idea was to minimize the sum of design and operational costs subject to keeping process
constraints feasible given the worst-case parameter disturbances. In their work, they
assumed interval parameter uncertainty without any correlation. Equality constraints were
eliminated from the problem, and the constraints that were monotonic with respect to the
parameters were fixed at the worst-case parameter bounds in order to eliminate the inner
optimization problem.

In another plant design problem, Rooney and Biegler (2003) considered uncertain
model parameters and variable process parameters (disturbances). They suggested an
iterative procedure for solving the design and feasibility problems, in which the (full)
parameter space was discretized in the design stage, and then, for a fixed set of design
variables, the problem was solved again for feasibility. A new set of critical (worst-case)
parameters that yield the largest constraint violation was identified and added to the set of
discretized parameters. The procedure continued until no constraint violation was found
in the feasibility stage. In their work, complementarity constraints were replaced by a
smoothing function, and ellipsoidal confidence regions were used. The complementarity
constraints originated from replacing the bilevel ortimization problems in their
formulation with the corresponding optimality conditions. Even with efficient sampling,
the problem complexity grows rapidly. Furthermore, their methodology was only applied

to open-loop problems in which there were no explicit equality constraints.

2.2.2. Model Improvement

In Chapter 3, methods for monitoring CLRTO performance are presented. When

the RTO performance metric indicates that the RTO is performing poorly, model
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parameters should be re-estimated in order to reduce their uncertainty. Experiments are
performed to obtain better parameter estimates. Note that the methods are not intended to
discriminate between different model structures, since no structural mismatch is assumed.

Traditional (fractional) factorial design of experiments (Montgomery and Runger,
1994) predetermines the condition and size of experirnents. This method tends to use
extreme values of the variables during experiments, and no cost of experimentation is
considered. As a result, there is likely an excessive number of (unfocused) experiments.

In an attempt to reduce the number of experiments needed in the plant, "alpha"-
optimal design of experiments (such as A-optimal and D-optimal) focus on reducing the
uncertainty in parameters such that the some metric of the parameter confidence region
(volume, largest axis, etc.) becomes smaller (Fraleigh, 1999). These methods, however,
do not take the cost of experimenting into account, and rthey may therefore result in very
expensive experiments.

Other methods for model improvement have been proposed that do not require
drastic changes in operation. One of these strategies is Dual Control (Wittenmark, 2002).
This technology enables the controller (or CLRTO) to reach the desired setpoint while
also improving the model by minimizing the expected loss over the remainder of the
control horizon. However, the calculations can be very intensive because of the nested
calculation of conditional expectation in the optimization. Evolutionary Operations
(EVOP) (Box and Draper, 1969), on the other hand, continually excites the plant with
small perturbations in order to continually improve the model. Both Dual Control and
EVOP may introduce unnecessary perturbations in the plant because they do not include
a monitoring phase; i.e., there is no established threshold on performance at which plant
perturbation stops.

Pinto (2001) recognized the importance of incorporating the cost of parameter
uncertainty into the experimental design framework. In his work, the objective function
in the experimental design procedure was characterized as the cost of not operating at the
true plant optimum due to uncertainty, and it was based on profit Hessian information

and variances of the manipulated variables and parameters. Besides only being applicable
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to nonlinear problems, this method only considers operi-loop optimization problems and
independent parameter variations, and does not have a straightforward extension to
constrained optimization problems.

Yip and Marlin (2001) included the cost of experimentation into the design of
experiments for nonlinear constrained RTO systems. The objective function for the
design of experiments was subdivided in three parts: RTO profit given the current
nominal model, profit during experimentation, and profit after experimentation. In his
work, however, a constant active set was assumed. The method was limited to nonlinear
RTO systems with second-order derivative information, and there was no possibility of
incorporating constraints during the experiment.

In this thesis, a profit-based experimental design strategy was developed for linear
CLRTO systems. This method chooses experimental conditions to achieve the desired
uncertainty bounds after experimentation, while obeying process constraints during the

experiment.

2.2.3. Parameter Estimation

Once there is process data available for updating the model, a parameter
estimation strategy must be chosen. A traditional method of estimating parameters is
Least-Squares regression (Montgomery and Runger, 1994; Robertson and Lee, 2002). In
this method, the sum of squares of the deviations between measured and predicted
outputs are minimized, weighted by the inverse of the measurement variance-covariance
matrix. Least-squares estimation, however, assumes errcr-free input variables. In order
to account for errors in the input variables of a system, the Error-in-Variables method
(EVM) was developed (Keeler and Reilly, 1992).

Kalman filtering is an online recursive method for uipdating states, which could be
physical variables or model parameters. For linear systems, the Kalman filter and the
least-squares estimator are equivalent if the weighting matrices are tuned appropriately
(Robertson et al., 1996). Since it is very difficult to incorporate constraints in a Kalman

filter, it is not often used in CLRTO applications.
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When updating a model with (very) limited amounts of data, Least-Squares and
EVM should be used with caution: even though the parameter estimates may be closer to
the true plant parameters, the estimates of parameter variances will be very large until a
sufficient number of data points are considered. In an operating production unit, however,
there may be prior knowledge (from past operation) on the "usual" variability of some
process parameters. Even when there is no information available from previous
operation, prior information can be obtained from using efficient sampling techniques,
such as Latin Hypercube. This information on the prior parameter distributions can be
incorporated into the parameter estimation in order to decrease the number of
experiments needed to bring the parameters to a small uncertainty region.

The incorporation of the prior distributions can be done by using Bayesian
estimation (Box and Tiao, 1973). In this technique, the prior knowledge about the
parameter distribution is multiplied by the likelihood of the new observation in order to
obtain the new parameter distribution. Reilly (1973) derived the Least-Squares parameter
estimation in a Bayesian framework. Due to its ability to incorporate prior knowledge,
the Bayesian approach to least-squares estimation was used to update parameters in this
thesis.

When parameters are initially assumed unknown (i.e., with an "infinite-valued"
variance-covariance matrix. or in traditional least-squares estimation), the system is very
susceptible to ill-conditioned parameter estimates. This occurs due to the inversion of the
variance-covariance matrix of parameters in the estimation procedure. Because the
Bayesian approach to Least Squares incorporates (reasonable, slightly greater-than-
expected-value) prior variances of the uncertain parameters, the parameter estimation
becomes numerically more stable. More details on Bayesian Estimation can be found in

Appendix B.
2.3. Solution Methods

In order to solve an optimization problem, there are two common solution

approaches: model-based and direct-search methods. Model-based optimization is based
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on using a model of the system and its curvature information (from derivatives) in order
to find a search direction. In direct-search optimization methods, the manipulated
(optimization) variables in a system are perturbed, and the objective function value is
assessed for improved values. In the following subsections, some model-based and
direct-search methods are briefly discussed. For a more detailed discussion on each of the

optimization methods described below, the reader is referred to Appendix D.

2.3.1. Model-Based Optimization

This section briefly presents the optimization methods used in this work. One of
the first model-based optimization methods for finding a search direction for nonlinear
optimization models was the Newton method (Nash and Sofer, 1996). It is based on
finding the next point in the search by approximating a function by its tangent line at the
current point.

Many optimization methods are based on Newton's method. One of them is
Sequential Quadratic Programming (SQP), in which the Lagrangian of the original
problem is approximated by a quadratic function, and the original constraints are
linearized. The "approximated" quadratic programming (QP) problem is then solved by
either an active set-based method. or by an interior-point method. One of the commercial
solvers with an active set-based SQP is Matlab's fmincon solver (Mathworks, 1999).

Active-set methods are based on considering only the active inequality constraints
at each iterate of the QP subproblem in order to compute a search direction based on an
equality-constrained problem (Wichter, 2002). Interior-point methods, as its name
suggests, ensure that the iterates will remain in the interior of the feasible region. One of
the methods used in interior-point algorithms are barrier methods, in which the
constraints g(x) > 0 are satisfied at every iteration by making constraint violations
infeasible. This is done by adding a barrier function — such as inverse (1/ g(x)) or the
logarithm (log(g(x))) operator — in the objective function of the original problem.

[POPT-C is a solver based on solving the internal QP of the SQP algorithm by an
interior point method (Raghunathan and Biegler, 2003; Wichter, 2002). In path-
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following interior point methods such as the one used in IPOPT-C, a trust region is
assigned around the starting point, and a search direction is found within that region.
Then, a (Newton) step is taken along the central path and the procedure is repeated
around the new point (Nash and Sofer, 1996). More details on SQP and IPOPT-C can be
found in Appendix D.

2.3.2. Direct-Search Optimization

Direct search methods were first proposed in the 1950's and continued being used
since the 1960's (Wright, 1996). Although having been available for a few decades, no
theoretical results on the convergence properties of these methods were available until
1980's, with the thesis of Torczon (1989) on multidirectional searches. This interest was
sparked 20 years after the initial development of direct search methods due to the
possibility of parallel computing.

Direct-search methods are based on finding the maximum or minimum of a
(possibly) nonlinear and non-smooth function, using only function evaluations. There is
no need for calculating derivatives or Hessians. Direct-search methods can be useful
when the function evaluations are computationally very expensive, and/or when
derivatives either do not exist or are not continuous over the feasible region.

One of the most famous and widely used direct-search methods is the Nelder-
Mead simplex method. It is based on defining a sequence of (n+1)-dimensional simplexes
that adapt to the surface of the n-dimensional function. The simplexes may reflect,
expand, contract (outside or inside) or shrink at each step. In the Nelder-Mead simplex,
an iteration succeeds when it finds a point that has a better objective function than the
worst simplex vertex. It was shown that, even for relatively well-behaved functions,
convergence to a local optimum for a Nelder-Mead simplex method can be slow (Wright,
1996).

Dennis and Torczon (1991) proposed a Parallel Direct Search algorithm to take
advantage of parallel computing environments. Each iteration of this algorithm succeeds

whenever it finds a better point than the best vertex of tke simplex, which is a stronger
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assumption than the one in the Nelder-Mead simplex method. However, this
multidirectional search method requires a larger number of (expensive) iterations.

In order to reduce the number of evaluations needed in the optimization, Conn e?
al. (1996) developed a Derivative-Free Optimization (DFO) method, which exploits (but
does not require) smoothness in the objective function. DFO is based on approximating
the objective function by a (simpler) smooth, quadratic surrogate model within a trust
region, and then optimizing the surrogate model to obtain an improved point. A more
detailed description of DFO can be found in Appendix D. Due to its good reported
performance and global convergence characteristics, DFO was used in this work (see

Chapter 4).

2.3.3. Bilevel Optimization

Multilevel programming problems are structured in such a way that there is a
decision-making hierarchy defined. An example of a bilevel programming problem can

be seen below.

minfl(x],xz) (2.5)

st. g (xl,xz)s 0
x, € argmin f,(x,,x,)

st g,(x, ,xZ)S 0

The upper-level decision variables (x;) affect not only the objective functions, but
also the feasible set of the lower-level decision variables (x;), and vice-versa. An
extensive survey of bilevel programming applications is given by Vicente and Calamai
(1994).

Bilevel optimization problems are mathematically very challenging due to this
interacting nature between variables in different levels. One of the complicating

characteristics of this class of problems is that even if each one of the levels is a convex
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optimization problem, the overall bilevel formulation is inherently non-convex due to the
optimality conditions of the lower-level problem (Clark and Westerberg, 1990). This
implies that there is no guarantee of global optimality, unless a global optimization
method is used.

One of the methods to solve bilevel optimization problems is to substitute the
inner problem by algebraic equations that correspond to its Karush-Kuhn-Tucker (KKT)
optimality conditions. If the inner problem of Problem (2.5) is substituted by its KKT

conditions, the following (single-level) optimization problem is obtained:

mrfnfl (2,2, ) (2.6a)
st g,(x,x,)<0 (2.6b)
V. fx,x,)+ AV, g, (x,x,)=0 (2.6¢)
Bolditg J X0 (2.6d)
Ase (2.6e)
i~ (2.6)

It is known that inequality constraints that are not at their bounds must have zero
Lagrange multipliers (4) associated with them. This is the origin of equation (2.6f), also
known as a complementarity constraint, where either g(x.,x,) or A must be equal to zero.
Due to its discontinuous characteristic, these constraints introduce a type of nonlinearity
that leads to nonconvexity of the overall problem, and that most NLP solvers cannot
handle easily due to degeneracy. In linear programming, degeneracy occurs when some
basic variable is at one of its bound values (INFORMS, 2006).

Algorithms to solve bilevel problems usually differ in the manner in which the
complementarity constraints in equation (2.6f) are handled (Clark and Westerberg, 1990).
For example, mixed-integer programming reformulations may be used to define the

active set. However, these reformulations may result in very large computation times.
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Another method for solving bilevel optimization problems is by enumerating
scenarios or by using sampling approaches (Averbakh, 2000). However, a prohibitively
large number of scenarios (or samples) is needed as the problem size increases. If a
direct-search method is used on the overall problem, the inner optimization problem can
be viewed as an expensive, discontinuous function with unavailable derivatives.

Parametric programming (Ryu et al., 2004) transforms the bilevel problems into
many single-level optimization problems, which are solved at once. Clearly, this
approach results in a very large optimization problem. Furthermore, the parameterization
depends upon the (single level) LP problem formulation, which may change frequently.

Raghunathan and Biegler (2003) developed a method for handling
complementarity constraints based on an interior point solver (IPOPT-C). Their method
relaxes the equality constraints to g,(x;,x2). A < ¢, so that they are satisfied to successively
smaller tolerances ¢ until the user-specified tolerance is achieved. So far, [IPOPT-C has
been reported to handle problems with up to 1,748 complementarity constraints
(Raghunathan and Biegler, 2003). Due to ability to handle complementarity constraints in
a computationally-efficient manner, IPOPT-C was applied extensively to the

formulations in this work.

2.4. Closed-Loop Blending Technology

The choice of LP blending processes as case studies in this research was made
because they have numerous and important industrial applications. In the petroleum
industry, gasoline, diesel, fuel oils and lubricating oils are blended from multiple
intermediate products. Some of the earliest applications of linear programming were to
gasoline blending (Symonds, 1955).

Optimal blending is also important in other industries. Some examples include
iron ore processing (Long, 1981; Zhou et al., 2003), coal processing (Shih and Frey,
1993; Liao et al., 2005) and in the cement industry (Sakr et al., 1988, ABB, 2006). In
fact, one of the very early published papers on industrial closed-loop LP blending

optimization describes an application to cement blending (Bay et al., 1969). Therefore,
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the monitoring and improvement of closed-loop LP optimization can have wide
application in many industries.

It is very often the case where the component properties blend linearly (e.g., %
lumps and fines in mineral processing, °Brix in fruit juice processing). In other cases,
such as gasoline blending, the relationship between flow ratios and product qualities is
nonlinear. There are nonlinear blend models available for calculating the octane
properties of the final blend, such as the Ethyl RT-70 method (Healy et al,, 1959), the
DuPont interaction method (Snee, 1981) and the Mobil transformation method (Rusin et
al., 1981). Even when nonlinear blend laws are used, the solution will be at the corner
point of the feasible region for economic reasons; i.e., the blend properties and total
production rate will be at their upper or lower bounds. Some component flowrates will be
between their bounds to satisfy the quality and production constraints, while the
remaining ones will be at their bounds. Therefore, the nonlinear blend models can be
linearized around the current operation, resulting in a linear blending model that can be
used for octane ranges of up to around +£0.4 octane numbers (Snee, 1981). If the variation
range of component properties is larger, there can be several linear models available, one
for each region of interest.

Many technology vendors provide hardware and software for closed-loop optimal
blending, e.g., Yokogawa (Sasaki ef al., 1997), ABB's Optimize"” Raw Mix Preparation
(ABB, 2006), Invensys's Blend Optimization and Supervisory System - BOSS (Foxboro,
2006), Aspen Technology's ASPEN BLEND (AspenTech, 2006), Honeywell's OpenBPC
(Open Blend Property Control) (Honeywell, 2006). In all cases, the structure of the
optimizer is the same as the MPC structure described in Chapter 1 and Appendix A,
where the manipulated variables are the component flows (or flow ratios) and the
measured output variables are blend product properties. In no case are the component
qualities measured or estimated from the measured component flow rates and product
qualities. As demonstrated in this research, the data from typical plant operation does not
have sufficient information, ie., variation, to enable the estimation of component

compositions.

30



D. Zyngier, Ph.D. Thesis McMaster University, Chemical Engineering

The models used in these commercial blending applications vary from linear to
nonlinear. For example, Honeywell's OpenBPC uses nonlinear models directly. In
contrast, others use a nonlinear model to provide the composition coefficients in the LP
coefficient matrix. These systems usually solve an LP at each iteration (Vermeer ef al.,
1996). As the system converges, the step where the LP coefficients are calculated based
on the current blend ratios does not change the coefficients. Therefore, the optimizer is an
LP when converged to a steady state, even though the qualities used for each component
in the linearized model are calculated in a (separate) nonlinear optimization. Because a
linear programming problem is commonly applied in gasoline-blending systems, linear
blend models were considered in this study. For more details on the gasoline-blending
process model, data, and on-line optimizer, the reader is referred to Appendix A.

At the present time, we know of no systematic manner for monitoring or
diagnosing the performance of closed-loop blending optimization available in either
industrial practice or technical publications. One heuristic approach is to determine
whether the active set of inequality constraints in the plant operation conforms to
guidelines based on experience (Chin, 2006). This approach has shortcomings. First, the
proper active set depends upon the scenario, which changes daily. Second, the active set
of output (quality and production rate) variables does not uniquely determine the
operation or profit. Third, the heuristic does not estimate the cost for not achieving the

expected good operation.
2.5. Relationship to Decision Analysis Theory

Decision Analysis (DA) literature poses questions that are very relevant to the
work in this thesis. The most relevant topics from Decision Analysis for this research
address the effect of uncertainty on decision making and introduce the concepts of Regret
and Expected Value of Information. These concepts are used throughout the thesis to
monitor, diagnose and improve closed-loop optimization systems.

Regret is defined as the opportunity loss identified after the uncertain variable

realizations have been determined. In other words, Regret can be seen as the deviation of
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the current objective function value from the one that would have been achieved if the
information on the realization of the uncertain variables of a system had been known at
the time of the decision-making (Averbakh, 2000). The Maximum Regret, therefore, is
the decision based on the worst possible parameter realization in the system. For each
realization j of the uncertain variables, the Regret (r) with respect to the decision i € D

can be defined as (Drezner, 2001):

By = n,.lf},x(aii )_ai/ (2.7)

In equation (2.7), a; corresponds to the payoff of decision i: i.e., the objective
function value, which is maximized.

The Expected Value of Perfect Information (EVPI) is similar to Regret in that it is
also a measure of the cost of uncertainty in a system. EVPI can be interpreted as the
expected objective function improvement if the informetion on the future realization of
uncertain variables (including the probability p; of each realization) were known in

advance (Drezner, 2001).

i€l e

P (2.8)
Zplau‘)

EVPI = i P, max(aU )— max(

J=1

The Expected Value of Sample Information (EVSI) evaluates the potential
benefits (in terms of objective function value) of a sample that provides improved
information about a system (Winston, 1994). If the EVSI is less than the cost for gaining
new information to reduce (eliminate) uncertainty, €.g., by performing a test or
measurement, such an evaluation is not performed. In traditional Decision Analysis
literature, the cost of obtaining the information is known (e.g., cost of performing a
market evaluation or of taking samples to a laboratory), as is the improvement in
information content due to the added information. This is a realistic description of many

decision-making systems, but the scenario in this research is very different. In the real-
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time optimization system, the current scenario and the experimental design affect the cost
of experimentation. Also, the improvement after the experiment depends upon the
problem scenario and the experimental design. Therefore, the evaluation of the EVSI in
this research is more challenging.

Finally, Decision Analysis often optimizes over a set of discrete options that are
the decision variables. These could be laboratory analysis, hiring a consultant, etc. In the
real-time optimizer, the decision variables are continuous and the uncertain parameters
are continuous over known regions. Therefore, the solution approaches required to
evaluate the problems in this thesis are significantly different from, and more challenging

than. those in common use in Decision Analysis.

2.6. Summary

This chapter presented the aspects of optimization literature that are relevant to
this work. The methods for diagnosing and enhancing CLRTO performance developed in
this work cover technological gaps in the Model Improvement and Screening
Experiments areas. The following table shows some of the challenges of state-of-the-art

optimization technology, and summarizes the contributions made by this thesis.

Table 2.1. Challenges in State-of-the-Art Optimization Technology

2.1. Sensitivity Analysis

State-of-the-Art This Thesis
Sensitivity analysis literature, Not restricted to a constant active
restricted to a single active set of set. Solution is obtained in a single
constraints, or requiring optimization run.
Monitoring enumeration of scenarios.
and
Diagnosing Sensitivity Analysis has not been Closed-loop optimization systems
Optimization  applied to closed-loop are considered, with “limited
Systems optimization systems. feedback” information

Regret, EVPl and EVSI used in ~ Novel diagnostics method that ranks

decision analysis parameters with respect to effect on
objective function, calculated in few
optimization runs.
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Table 2.1. Challenges in State-of-the-Art Optimization Technology (continued)

2.2.1 Model Formulation / Stochastic Programming

State-of-the-Art

This Thesis

Types of Chance constraint established for Closed-loop optimization
Optimization  open-loop optimization with systems are considered, in which
Problems uncertainty the best- and worst-case
parameter realizations are
Recursion methods for perfect obtained as a "byproduct” of the
information and sampling performance evaluation
uncertainty well established
Existing worst-case techniques
concentrate on formulations for
open-loop optimization
Many techniques do not handle all All sources of parameter
Sources of possible sources of parameter uncertainty are considered: left-
Parameter uncertainty (especially left-hand and right-hand side coefficients
Uncertainty side coefficients and coefficients in  cf any constraint type and
equality constraints) cbjective function coefficients.
Parameter correlation is also
kandled.
Continuous Currently, there is great reliance on ~ No evaluation of scenarios or
Parameter sampling and scenarios to represent  sampling.
Distributions  continuous distributions
2.2.2 Model Enhancement
State-of-the-Art This Thesis
Experimental design technology Cost of (possibly constrained)
Experimental  based on information (parameter experimentation is considered
Design variance) is mature. However, a gap  explicitly. Experiment improves

exists in considering the cost of
experimentation

the new performance metric.
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Table 2.1. Challenges in State-of-the-Art Optimization Technology (continued)

2.3. Solution Methods

State-of-the-Art This Thesis
Solver Extensive range of technology and  Because of diverse problems,
Technology software packages available LP, SQP, IPM, and direct search

methods are employed.
No novel contribution is made to
the algorithms in this work

2.4. Closed-Loop Optimization

State-of-the-Art This Thesis

Mature technology widely applied to Novel, integrated five-step

LP-Based blending processes and to procedure for monitoring,
CLRTO optimizing the steady-state for MPC diagnosing and enhancing
dynamic controllers developed that is compatible
with the installed base of
CLRTO
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Chapter 3

RTO Performance Monitoring

This chapter introduces new methods for performance monitoring in process
optimization. The basic scenario considered involves a nominal model, uncertain plant
parameters and estimates for the uncertainty regions of these parameters. In all but one
short example in Appendix E, the model structure is linear, thus yielding a linear
programming optimization problem. The uncertain parameters can appear anywhere in
the linear program, i.e., the objective, equalities and inequalities, right hand side bounds,
and the left hand side coefficients multiplied by the variables. The uncertainty
descriptions can be either individual intervals or correlated ellipsoidal regions.

The goal of the monitoring is to determine the effect of the parameter uncertainty
on the optimization solution when it is implemented in the true plant, which is not known
exactly. The results of the monitoring analysis determine whether the true plant optimum
is achieved, or if it is not achieved, these results give a measure of the deviation from the
true plant optimum; the deviation measure is different depending on the method applied,
as described in the chapter.

The methods in this chapter are designed to provide capabilities beyond current
technology, specifically: sensitivity analysis allowing changes in the active set of
inequality constraints, automatic selection of worst-case plant parameter realizations
without guidance from the engineer, and assessment of uncertainty for closed-loop
systems. Importantly, the methods achieve their results in the numerical solution of one
optimization problem, rather than through Monte Carlo prccedures. This feature not only
greatly speeds the solution to the problems addressed in this chapter, but it also is

essential for these methods to be effectively integrated with the diagnostic and
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improvement methods introduced in Chapter 4. In addition, monitoring is achieved
without interfering with typical plant operation.

Several monitoring methods are presented in this chapter, with each subsequent
method providing more valuable information at the cost of more computation. The first
method in Section 3.2 determines whether or not the true plant optimum will be achieved
for all realizations of the uncertain parameters. The second method in Section 3.3
determines the maximum decrease in profit due to interval uncertainty. Then, this method
is extended to ellipsoidal uncertainty in Section 3.4. Since the problem is stochastic in
nature, Sections 3.5 and 3.6 introduce methods for evaluating the expected value of the
cost of uncertainty. Finally, in Appendix E, the methods are applied to monitoring the
performance of open-loop optimization for both linear and nonlinear models.

A Pentium 4, 1700MHz, 523 Gb was used in the siraulations. All problems in the
thesis were solved to the 10 tolerance levels of IPOPT-C (version 2.0.1) solver. In
fmincon (Mathworks, 1999) (in Matlab version 6.5.0.180913a Release 13), tolerances of
107 for constraint violations and absolute values of the variables and objective function
values were set. All of the closed-loop optimization methods will be applied to an
industrially important, closed-loop blending system. Therefore, we begin with a

description of the gasoline-blending process in the next section.
3.1. Gasoline-Blending Case Study

One of the first industrial applications of real-time optimization was the gasoline
blending processes (Birchfield, 2002). Since these processes have a very high throughput,
even small improvements in operation have a large economic impact. The components
that are blended to form the final gasoline product come from very large storage tanks, so
that fluctuations in their (unmeasured) properties can be assumed to be much slower than
the RTO execution periods. Nevertheless, since the components are made from variable
upstream refinery operations or are purchased from suppliers, their properties vary from
one batch to another, justifying the need for real-time optimization. Since this is a batch

blending process, transient violations of blended properties can be compensated for, if
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Figure 3.1. Gasoline Blending Process

necessary. Very large deviations from the specifications should be avoided, however,
since stratification of material can occur due to the large volume of gasoline stored in the
product tank, which is not mixed.

In the gasoline-blending process considered in tais work, five components
(Reformate, LSR Naphtha, n-Butane, FCC Gasoline and Alkylate) are blended to form
the final gasoline product. Component properties are assumed to blend linearly due to the
use of blending indexes. A schematic of this process can be seen in Figure 3.1.

All uncertainty in this system is parametric and occurs in the octane and Reid
vapour pressure (RVP) properties of the five components in the tanks, which are not
measured. The parameter uncertainty is described by either intervals (Sections 3.2 and
3.3) or ellipsoids (Sections 3.4 and 3.5). In Sections 3.2 to 3.5, the parameters are
assumed to lie within intervals of + 1.0 (octane numbers or psi) for the interval
description of uncertainty, or to have variances of 0.0546 (octane numbers’ or psiz) for

ellipsoidal description of uncertainty. For parameter values used in the case studies and
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more detailed information about the gasoline-blending process, the reader is referred to
Appendix A.

In many industrial blending applications of RTOs, bias updating is chosen as the
model updating strategy, since it leads the model to the frue plant optimum whenever the
parametric mismatch is sufficiently small (Diaz and Barsamian, 1996; Vermeer et al.,
1996; Forbes and Marlin, 1994; Zahed et al., 1993). The closed-loop RTO that uses a

bias-updating strategy obeys the set of equations described in Problem 3.1.

Problem 3.1: Closed-Loop RTO

n .
Proomct = max Z (value — cost, )F,

i,nom
ionem i1

s.t.

" n
J J J i s 7
Z ‘Fl nom (Q.-',nom t+é& ) = leeml.mv'n Z F; nom J =oct, RVP
1=1 i=1
n ) n
J J J
Z E‘nom (Qi,m)m +& ) = leeml.max Z E,l:om
i=1 =1

n
Fhlend,min = ZF;,nom = Fhleud.max
i=1

0<F,

i,nom

£F

i,max

where the bias term &’ is constant during the optimization. This term corrects the model
prediction of each product quality and is calculated prior to the optimization at each

CLRTO execution using the following equation.

e>YF =YF B _ gy i = oct, RV/P
1 1 J

Snom 1,nom i,nom

i=1 i=l (3.1)
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In cases where the model mismatch in the component quality parameters is large,
the closed-loop system will converge to a corner point that is different from the true plant
optimum. In the following sections in this chapter, monitoring methods for the
performance of CLRTO systems are developed that do not rely on any information about

the true plant optimum.
3.2. Method Based on the Number of Optimal Corner Points

As an initial monitoring criterion of a CLRTO system, the Maximum Achievable

Profit (MAP) is calculated by solving the following prob em.

Problem 3.2

J.plant
F.Q ;

MAP = max Z": (value —cost, )F,
i=1

s.t.

n " i
Jj.plant J j =oct, RVP
z F:Q: = leend,min Z E
i=1 i=1
n ) n
J.plant J
Z F;Qr = leena’,max Z F;
i=1 i=l

n
F, blend ,min = Z F; = F;;Iend.max

i=1

F;Lmin £ E -2 F

i,max
; w ;
Qij,min = Q:j e = Ql{max

This metric indicates the optimum operation for the best possible scenario of
component qualities in the plant, given the parameter vncertainty. If the current profit
achieved by the CLRTO is close in value to MAP, the system is deemed to be functioning
properly. If not, the possibility of improvement exists, and a subsequent monitoring

metric needs to be calculated. This additional metric is based on determining if more than

40



D. Zyngier, Ph.D. Thesis McMasterUniversity, Chemical Engineering

one corner point is possible given the parameter uncertainty, and is presented in Section
32.1.

3.2.1. Point-Wise Model Adequacy

If only one corner point is possible within the parameter uncertainty, such a
corner point corresponds to the true plant optimum, because the parameter uncertainty is
small enough so that the bias-updating strategy of the CLRTO will be able to achieve the
true plant optimum (Forbes and Marlin, 1994). Forbes and Marlin (1994) have defined
the point-wise model accuracy for RTO models. Consider the following optimization

problem.

Problem 3.3:

max Pr(F;)

s.t.

hF,.Q!)-p =0
g.(F.0/)-p,=0
g, (F,0!)-pB,, <0

In Problem 3.3, A, g4 and g; correspond to equality constraints, active inequality
constraints and inactive inequality constraints, respectively. For this problem, the model
is deemed point-wise adequate if, at the true process optimum, there exists a vector of
adjustable bias parameter values A (the difference between measured and predicted

values) for which the optimality conditions are satisfied (Forbes and Marlin, 1994).

Vo Pr—-A'Vg,=0 (3.2a)
hF.0!)-p =0 (3.2b)
8, (F,Q0')-pP,,; <0 (3.2¢)
g.(F.0')-p,,=0 (3.2d)
4,20 (3.2¢)
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The optimality conditions are given in the set of equations ( 3.2 ), where the
Lagrange multipliers 4; are for the active inequality constraints of the original CLRTO
model. By using the bias-updating strategy, the adjustable parameters £ (which are
equivalent to the bias terms &’ in equation (3.1)) only play a part in ensuring feasibility of
the solution (equations (3.2b) to (3.2d)), but do not influence its optimality (equation

(3.2a)). The parameters that influence the optimality arc the uncertain parameters in the

model-based optimizer, Q7 , which appear in the first-orcer optimality condition, equation

( 3.2a). Note that no feedback terms £ appear in this equation.
If the model is adequate for a given uncertainty tegion, the Lagrange multipliers
Ai will be positive at the solution, since this indicates that the same optimal bases is

maintained. This verification can be done by using the following formulation.

Problem 3.4:
min 4,
YN
. .| st
0 = min ; _
"V Prlg =a*Veg, =0
Ql’min = Qr/ < Ql{max

Problem 3.4 is the basis of the first monitoring strategy developed in this chapter:
if the smallest Lagrange multiplier is positive over the range of uncertain parameters,
only one corner point is optimal. This criterion is used to determine whether there is a
possibility of different optimal bases occurring in the system given the uncertainty
information.

In order to compute 6, the minimization sub-problem in Problem 3.4 was solved
successively for each element i in the vector of Lagrange multipliers. This sub-problem
was solved using the fmincon software in Matlab. For more details on fmincon and SQP,
the reader is referred to Appendix D. The following section illustrates the results of

applying this monitoring strategy to the gasoline-blending process.
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Table 3.1. Solution of Problem 3.2

Qiocr,plam (Octane) QiRVP.PIam (pSl) F,' (bbl I djy)

Reformate 94.10 1.70 5258.2
LSR Naphtha 65.30 9.90 1353.0
n-Butane 93.50 137.00 388.8
FCC Gas 84.78 6.26 0.0
Alkylate 96.62 6.68 0.0
CPU seconds (IPOPT) : <le-3
# obj fun / constr evals : 14

3.2.2. Case Study

We begin by determining whether the current profit is close to the maximum
achievable profit. By using the nominal parameter values in Tables A.1 to A.3 (Appendix
A) with an interval uncertainty of 1.0 octane or psi for each of the ten parameters in
Table A.3, a Maximum Achievable Profit (MAP) of $ 14,090.4 / day is obtained from the
solution of Problem 3.2. The component properties at the steady-state solution of
Problem 3.2 (from "perfect" RTO) can be seen in Table 3.1.

Since Problem 3.2 is nonconvex due to the bilinear terms in the inequality

equations, solutions of this problem from different starting points were compared (Table

3.2). A starting point of Q/° = Q/ = was used in both cases. The same value of MAP

($ 14,090.4/day) was obtained by using Starting Point 1 or Starting Point 2, but different
values for FCC Gasoline and Alkylate octane and RVP properties were found at the
solution. This is because there are infinite combinations of values for these component
properties and flow rates that will yield the same objective function value. The existence
of alternative solutions in this problem does not affect the analysis, as expected, because

the assessment is based on the objective function.
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Table 3.2. Starting Points Used in Problem 3.2

Starting Point 1 Starting Point 2
= (1/5)* Fbtend max = current CLRTO
operation
F’ (bbl/day) E' (bbl/day)

Reformate 1,400.0 5,695.6
LSR Naphtha 1,400.0 942.5
n-Butane 1,400.0 361.0
FCC Gas 1,400.0 0.0
Alkylate 1,400.0 0.0

Suppose that the CLRTO has reached a steady-state operation yielding a profit of
$10,257.2/day. Since the current profit is significantly lower than the MAP, Problem 3.4
is used to check if multiple optima are possible in this system. When assessing alternative
optimal bases within the uncertainty description of the parameters, a value of 6= -0.7665
$/bbl/day was obtained in 5.7 CPU seconds. Since & is negative, more than one optimal
basis for the CLRTO exists given the parameter uncerrainty description. For example,
given "true" plant parameters of 92.3 and 64.0 octane for Reformate and LSR,
respectively, different nominal model parameter values for these properties in the RTO
model (within the uncertainty description) will yield two different optimal bases at the
closed-loop steady state operation reached by the CLRTO after 10 executions. Table 3.3
contains the "true" plant parameters, while Table 3.4 shows the two different bases that
result from solving Problem 3.1 with different nominal parameter values in the RTO
model for Reformate and LSR octane numbers. The nominal model parameters for the
remaining components and properties used in this comparison are the same as the true

plant parameters in Table 3.3.
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Table 3.3. Values of Q/”*"" used in the Case Study

Q?cl,plarll (octane)

/

QiRVP.pIanI (pSl)

Reformate 92.30 2.70
LSR Naphtha 64.00 10.90
n-Butane 92.50 138.00
FCC Gas 84.60 6.40
Alkylate 96.60 6.70

Table 3.4. Two Different Optimal Bases within Uncertainty Description

Wrong Basis
F; (bbl / day)
Orer . =93.1 octane

Ref nom

oct

1SR pom 64.3 octane

Correct Basis
F; (bbl / day)
o =92.9 octane

Ref .nom

oct

LSR .nom = 64-0 octane

Reformate 5,695.6 3.212.7
LSR Naphtha 942.5 0.0
n-Butane 361.9 324.4

FCC Gas 0.0 3,463.0
Alkylate 0.0 0.0
Ptoomics $10,257.2 / day $10,680.1 / day

The CLRTO profit at each of these two different optimal bases (Prnom 1) is lower
than MAP because the latter represents the best possible plant scenario (Reformate octane
= 94.1 octane), which in this case does not correspond to the true plant parameter
realization (Reformate octane = 92.3 octane) considered in this case study. The transient

flowrates and blended qualities can be seen in Figure 3.2(a-c).
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Figure 3.2. Transient CLRTO behaviour for the case with two possible corner points:
(a) Flowrates converging to the wrong basis; (b) Flowrates converging to the correct

basis; (c) Blend properties for both cases
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Table 3.5. Values of Q/”“ used in the Comparison

Qiacl,planl (octane) QRVP,pImtl (pSl)

I

Reformate 93.12 2.70
LSR Naphtha 64.30 10.90
n-Butane 92.50 138.00

FCC Gas 84.60 6.40

Alkylate 96.60 6.70

In order to further illustrate the monitoring procedure, a different case study is
presented (Table 3.5). In this case, all the parameter intervals are defined as £0.02 (octane
or psi), which is smaller than the original case of +1.0 (octane or psi). The Maximum
Achievable Profit (MAP from Problem 3.2) in this case, is equal to $ 11,385.1/day,
whereas the current profit is $11,354.4/day. The variable values at the solution can be
seen in Table 3.6. The same two starting points were used as in the previous case studies.

Since MAP is very close to the current profit (within $30/day), no further
diagnostics would be needed. However, for illustration purposes, Problem 3.4 was solved
to determine if other optimal bases existed. This problem yielded a value of & of
+0.00735 $/bbl/day in 3.1 CPU seconds. Since ¢ is positive, only one optimal basis
exists given the parameter uncertainty (Table 3.7), indicating that the CLRTO is
performing adequately, i.e., the CLRTO system is achieving the maximum profit

achievable in the plant, as expected. The results can be seen in Figure 3.3.

Table 3.6. Solution of Problem 3.2

QP (octane) O™ (psi)  F, (bbl/day)

Reformate 93.12 2.68 5,531.9
LSR Naphtha 64.32 10.88 1,115.6
n-Butane 92.52 137.98 352.5
FCC Gas 84.60 6.40 0.0
Alkylate 96.60 6.70 0.0
CPU seconds (IPOPT) : <le-3
# obj fun / constr evals : 12
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Table 3.7. One Optimal Basis within Uncertainty Description

F; (bbl / day)
oct _
Ref nom — 3.1 OCtane
ocl _
Lsrom = 04.3 OCtane
Reformate 5.537.5
LSR Naphtha 1,110.7
n-Butane 351.8
FCC Gas 0.0
Alkylate 0.0
Prnam,CL $ 11,3544 / day
QMAP v PrnomLCLl $ 307 / dgy
—— 8860
60000 00— r © RVP-
14.00 ; .
— 50000 . 5 Right Basis
E —O— Reformate = .‘-é
= 4000.0 —0— LSR Naphtha a Al - 3 -
2 & 120 >
% 30000 Bl = -2 -0--Qf 8850 £ B8
s —O0—FCC Gas = B st g
§ 2000.0 —¥— Alkylate 2 1000 s O Octane - '
= 10000 <> < <> —Q 2 Right Basis
0.0 = s i a a 800 “—-——+——— 8840 » = = = Minimum
| 2 3 } L2 3 4 Octane
CLRTO execution number CLRTO execution number
(a) (b)

Figure 3.3. Closed-Loop RTO behaviour for the case with one possible corner point: (a)

Transient behaviour of the flowrates; (b) Transient blend properties.

3.2.3. Conclusions

The monitoring method described in this section provides the definitive answer
regarding achieving the maximum plant profit; if only one corner point exists, the system
is at its best possible operation. However, this methcd is only applicable to linear

programming problems, since it is based on corner point information.
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Furthermore, there is no indication of the number of alternative corner points
when the smallest Lagrange multiplier found by solving Problem 3.4 is negative, or of
how large the difference in profit between the alternative corner points is. If the profit
difference is small, the system may already be operating very close to the best possible
operation. A negative Lagrange multiplier in Problem 3 4 could trigger overly aggressive
model improvement actions, as shown in the Chapter 4. Therefore, a method that

determines the profit loss that can occur due to model mismatch is shown in Section 3.3.

3.3. Method Based on the Largest Profit Gap — Interval
Uncertainty (MaxGap;,,)

Since the method in Section 3.2 does not evaluate RTO performance based on
profit information, it is likely that in some cases, model enhancement will be performed —
possibly with substantial costs to operation -- with only very small (or no) performance
improvement possible.

In this section, the potential profit loss due to mismatch is considered. It can be
represented by the maximum profit difference (gap) between the "best case" and "worst
case" CLRTO operations. The best case involves a CLRTO with no model mismatch, so
that it achieves the true plant optimum for the given parameter values. The worst case
involves a CLRTO using a nominal model, which differs from the true plant in a manner
that yields the largest profit loss. Recall that the feedback affects the “biases™ in the
model, so that the behaviour is determined by Problem 3.1 with the nominal model used
by the CLRTO controller and the plant model having parameters within the uncertainty

description.

» Best CLRTO - Since the best performance occurs with no model error, the model
of the CLRTO in Problem 3.1 can be simplified The feedback error is always
zero for no mismatch, and the CLRTO can be modelled as an optimization

without feedback.
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» Nominal CLRTO - Because of model mismatch between plant and (nominal)

model parameters, the closed-loop RTO using nominal parameter values can
result in an operation (component flows) that yields a profit that is lower than the
true plant optimum. The worst-case scenario occurs when the component qualities
in the true plant maximize the profit difference due to plant/model mismatch.

» Uncertainty - In this sub-section, the model uncertainty is represented by intervals

for each model parameter.

The difference between best CLRTO and nominal CLRTO is the maximum
benefit than can be achieved for reducing CLRTO mode! mismatch. This is the measure

used for performance monitoring, with a small value being good and a large value being
bad.

The formulation for evaluating the largest profit gap given interval parameter

uncertainty description is presented in the following problem.
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Problem 3.5:

MaxGap,-m = max (P Ir'sc —Pr, nom',CL)

TPy,
Pryc s Pl c1s€750;

subject to

PryomcL = maxZ(value —cost, )F, _— w

lnour i=1

Sk

Z l"DM :nom +81)2leendmmz i,nom .
i1 > Nominal CLRTO for

any plant realization
Z nnnm lnom+8 )<leendmax2 i,nom o
QJ
F blend ,min < Z i,nom F blend ,max
i=1
F;,min s F;,nom = F;,max )
‘c"j Z i,nom Z ( j 1 ,nom )
Prgc = maxZ(value cost, )F, 5 )
i=1
S.t.
Best result for
z iBC* Q leendmm Z F: BC
> CLRTO for any plant
Z EBC -Qij < ijlend,max Z E,BC realization Q’!
i=1 i=1
blend min = Z i,BC 3 F’blend,max }
i=]
E,min < F:',BC < E,max
OQlun SO/ <0/ . } Interval bounds
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We note that the best- and nominal CLRTO cases are evaluated at the same
values of the uncertain plant parameters, so that the optimal value of MaxGapi,, is due
entirely to model mismatch. Also, we note that Problem 3.5 maximizes the difference
between the results of two optimizations; therefore, Problem 3.5 is a bilevel optimization
problem. Problem 3.5 was solved by replacing the inner optimization problems Prpc and
Proomci, with their respective optimality conditions. This formulation can be seen in
Appendix F. The resulting nonlinear optimization problem was solved using an interior-
point solver tailored to handle complementarity constraints, IPOPT-C (Raghunathan and

Biegler, 2003). Details on this interior-point method can be found in Appendix D.

3.3.1. Case Study

Problem 3.5 was applied to the gasoline-blending case study using the nominal
parameter values in Tables A.1 to A.3. All parametric intervals for the uncertain plant
qualities in Table A.3 were equal to :+ 1.0 (octane or psi) around the nominal values. In
this case, a value of MaxGap;,, = $ 3,024.9/day is found, where Prpc = $11,845.1/day and
Proomct = $ 8,820.2/day. MaxGap;,, corresponds to the largest potential profit loss due to
model mismatch under the parametric uncertainty assumptions. The variable values at the
solution are given in Table 3.8.

Since Problem 3.5 is nonconvex, there is no guarantee of global optimality of the
solution when standard nonlinear solvers are used. In order to search for better local
optima, different starting points were used to solve this problem, as can be seen in Table

3.9,

Table 3.8. Parameter Values and Flowrates at the Solution of Problem 3.5

RIP

Q"' (octane numbers) O (psi) 7, 5 (bbl/day) Fi,.m (bbl/day)

Reformate 92.10 3.70 2,731.1 5,791.5
LSR Naphtha 63.30 11.90 0.0 890.5
n-Butane 93.50 137.00 322.5 318.1
FCC Gas 85.60 5.40 3.,946.4 0.0
Alkylate 96.58 6.72 0.0 0.0
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Table 3.9. Starting points for Problem 3.5

F, F,
= (1/5)* Fytend max = current CLRTO operation
(bbl/day) (bbl/day)
Reformate 1,400.0 5,695.6
LSR Naphtha 1,400.0 942.5
n-Butane 1,400.0 361.0
FCC Gas 1,400.0 0.0
Alkylate 1,400.0 0.0

The results found by solving Problem 3.5 for different starting points can be seen

in Table 3.10. Initial quality values Q/- * were assumed equal to 0O/, - In this table, 4,om

rnom

are the Lagrange multipliers obtained from the initial CLRTO system (with mismatch)
after it converges to steady operation. "Good" solutions correspond to the same local
optimum as the one found in Table 3.8, whereas "Bad" solutions correspond to the
(worse) local optimum of MaxGap,,, = 0. Since the same two solutions were found given
four different initial starting points, the procedure was considered completed, and the
results, valid. Again, since this is a nonconvex op:mization problem, there is no
guarantee that the solutions found correspond to global optima.

As previously mentioned, Problem 3.5 was solved using an interior point solver,
IPOPT-C (Raghunathan and Biegler, 2003). When the reduction in the barrier parameter
in the interior point solver is too aggressive and the solution approaches corner points of
the optimization prematurely (where Lagrange multipliers switch from zero to non-zero

values, or vice versa), and depending on the initial points and initial value of the

Table 3.10. Computational Results for Problem 3.5

Starting Points CPU sec # func. eval # restarts Solution
Fe™ Fppe = Foyp 5 A=y =1 1.16 570 0 Good
Fie = Fow = Fi) 3 A0 = Auw =oom 645 12,682 0 Good
™ Pl = Fy § gy = B, =8 0.75 460 0 Bad
Foc= Fopu = Fs 3 e = Ry =2 386 13310 0 Bad
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barrier parameter, IPOPT-C sometimes fails, and the optimization is aborted (Nocedal et
al., 2005). Even though different values of the barrier parameter and line search (using a
merit function) were tuned, this problem could not be zliminated. In order to overcome
this failure, the optimization problem was warm-started at the point at which it failed,
initializing the barrier parameter at its default initial (larger) value. This procedure
provides the algorithm with a broader search space, since the complementarity constraints
are relaxed. Very recently, Nocedal er al. (2005) developed an improved (adaptive)
barrier reduction strategy that may be able to avoid such a problem from occurring.

Nocedal's new method, however, was not tested in this work.

3.3.2. Conclusions

By using the MaxGap;,, approach for a defined parameter uncertainty, a one-step
optimization determines the largest profit gap possible and the values of the parameters
and variables for the cases giving the MaxGap,,. This approach handles closed-loop
optlimization systems, equality and inequality constraints and uncertainty in any model
coefficient directly, and it is computationally efficient for the case study in this work.

There are a few drawbacks to the use of this approach. Problem 3.5 is a
nonconvex optimization problem, so global optimal solutions cannot be guaranteed
unless a global solver is used. For large-scale problerns, the formulation may become
computationally expensive due to the increasing number of complementarity constraints.
So far, IPOPT-C has been reported to handle up to 1.748 complementarity constraints
(Raghunathan and Biegler, 2003).

Also, the method in this section uses interval description of uncertainty, which is
simple and easily defined but may not accurately represent parameter uncertainty where
the physics and chemistry dictate correlation in parameter variation. The interval
description can only be extended to deterministic relationships between parameters (e.g.,
a;; = 0.5*a;y) but cannot address statistical correlation among parameters. In order to
address this challenge, a method based on ellipsoidal description of uncertainty was

developed and is presented in Section 3.4.
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3.4. Method Based on the Largest Profit Gap — Ellipsoidal
Uncertainty (MaxGap.;)

In order to overcome the difficulties associated with the interval uncertainty in
MaxGap;,;, a monitoring method using an ellipsoidal description of parameter uncertainty
(MaxGap,;;) was developed. This allows for the incorporation of correlation among
parameters, which often occurs in process models. The formulation for calculating
MaxGap, is shown in Problem 3.6.

One should note that the number of equations in Problem 3.6 is smaller than in
Problem 3.5, since the parameter region in Problem 3.6 can be represented by a single
ellipsoid equation instead of requiring 2* P bound constraints as in Problem 3.5 (where P
is the number of uncertain parameters).

As in Problem 3.5, the potential profit loss due to mismatch is calculated as the
maximum profit gap between the "best case" and "worst case" CLRTO operations. As
previously mentioned, the "best case" CLRTO has the same parameters as the true plant
(no mismatch), whereas the "worst case” CLRTO uses a nominal model that differs irom

the true plant and thus a smaller profit than the "best case" CLRTO may be achieved.

» Best CLRTO — Similarly to Problem 3.5, the fzedback term in Problem 3.1 is
always zero for the "best case” CLRTO (no mismatch), and therefore the CLRTO
can be modelled as an optimization without feedtack.

» Nominal CLRTO — Also as in Problem 3.5, model mismatch between plant and

(nominal) model parameters may result in CLRTO profit that is lower than the
true plant optimum. The worst-case scenario occurs when the component qualities
in the true plant maximize the profit difference due to plant/model mismatch.

» Uncertainty - In this sub-section, an ellipsoidal description of model uncertainty is

used.
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Problem 3.6:

MaxGap.n = max

J J
PrBC’ nomCL’g ’Qi

subject to

Proomct = max Z(value cost, ) A

/ham i=]

s.t.

z lnom :nom+gj)>leendmmZ i,nom

(Prpc —Pr, nom,CL)

Nominal CLRTO for

> any plant realization

J
Z i, nom 1 nom + gj ) = leendmax Z i,nom Q’

blend ,min = Z i,nom — <F blend ,max

Prgc = maxZ(value cost) F, ¢

s.t.

Z i,BC " Q leend min Z E BC

Z i,BC* QJ leend max Z E BC

i=1

blend min = Z i,BC = blend max

(©-01on) VOO~ 01 )< 22 s
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3.4.1. Case Study

Problem 3.6 was applied to the gasoline-blending case study using the nominal
parameter values in Tables A.1 to A.3. The uncertainty region was assumed to be that of
a 10-dimensional distribution with independent parameter variances of 0.0546 (octane’ of
psi’). Therefore, at 95% confidence levels, the largest variation possible for each
individual parameter would be +1.0 octane or psi. In this case, the chi-squared statistic
used in Problem 3.6 is equal to 18.31 (with = 0.95 and 10 degrees-of-freedom). For the
independent parameter case evaluated in this section, the parameter variance-covariance
matrix V(Q) = 0.0546*1;y, where /) is the 10-dimensional identity matrix.

When applying Problem 3.6 to this case study, a value of MaxGap., =
$1,314.0/day is found, where Prgc = $ 11,813.7/day and Pruomcr = $ 10,499.7/day. The
variable values at the solution of Problem 3.6 are presented in Table 3.11.

As in Section 3.3, different starting points wers used, and the computational

experience can be found in Tables 3.12 and 3.13. For these cases, the nominal parameter

values (Q/

nom

) were used as starting points for the component qualities. Again, "good"

solutions correspond to the same solution found in Table 3.11, and "bad" solutions

correspond to the optimum at which MaxGap,; = $0/day.

Table 3.11. Case Study Results (Problem 3.6)

oct RVP

O/ (octane) Q" (psi) F, g (bbl/day) F;nom (bbl/day)

Reformate 92.74 3.04 2,696.1 5,622.9
LSR Naphtha 64.15 11.02 0.0 1,035.8
n-Butane 92.51 138.00 316.9 341.3
FCC Gas 85.31 5.94 3,987.0 0.0
Alkylate 96.60 6.70 0.0 0.0
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Table 3.12. Starting Points for Problem 3.6

F F, Fj
= (1/5)* Fptenamax = current CLRTO operation = same basis as F; g
(bbl/day) (bbl/day) (bbl/day)
Reformate 1,400.0 5,695.6 3,000.0
LSR Naphtha 1,400.0 942.5 0.0
n-Butane 1,400.0 361.0 300.0
FCC Gas 1,400.0 0.0 3,700.0
Alkylate 1,400.0 0.0 0.0

The computational results show that this approach is computationally very

efficient (convergence is obtained in mostly small CPU times compared to the 9-hour

batch runs and requires up to three restarts, if any at all). The value of MaxGap, obtained

from Problem 3.6 was confirmed by applying the parameter settings obtained from the

monitoring method (Table 3.11) to a CLRTO simulator. In this case, a gap of

$1.312.6/day is obtained after the system reaches steady cperation, which is very close to

the value of MaxGap., ($1,314.0/day). The difterence is 'ikely due to round-off errors in

the parameters. For example, when using a value of reformate octane of 92.738 (instead

of 92.74), a gap of $1,313.6/day was found by solving Problem 3.6,

sensitivity of this system to small parameter changes.

Table 3.13. Computational Results for Problem 3.6

illustrating the

Starting Points CPU sec # func. eval # restarts Solution
Fone = P = By 5 hyg = Mo, =0 3.625 5913 3 Good
Foe = Foum = By 3 Agg = A =Auom 25766 123,374 1 Bad
Ko = Fl = Fig 3 Age = gy =1 0.109 48 0 Bad
Fiwe = From = Fiy 3 Age = Kooy = Huom 1,156 664 1 Good
R = BB = Fs 5 g™ Han =0 (3,850 306 1 Good
e = B P =Bl s Me™ R =non G131 37 0 Good
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Another way to evaluate the results in Table 3.11 is to run Monte Carlo
simulations on the system. The largest profit gap found in 8,768 Monte Carlo runs with
the same ellipsoidal uncertainty region was $1,053.6/day. This value is within 20% of the
result from Problem 3.6 ($1,314.0/day). The fact that even 8,768 runs were not able to
find the largest value of the profit gap at the 95% confidence level shows the strength of
the monitoring method developed in this section. The number of Monte Carlo runs
(8,768) was deemed sufficient because there were no significant changes in the results
from when approximately 5,000 runs were made.

In this case study, MaxGap.; ($ 1,314.0/day) is much less conservative than
MaxGapi,, ($3,024.9/day), as expected because the box description of uncertainty
encompasses a larger parameter region than the ellipsoid. as can be seen in Figure 3.4.

The solution of the MaxGap,;; problem does not appear to be at the boundary in
Figure 3.4 because this is a two-dimensional projection of the 10-dimensional object, and
there is parameter variation in the remaining 8 dimensions ot the ellipsoid. Actually. it is

on the boundary of the 10-dimensional ellipsoid, since the ellipsoidal constraint is active

S
N

at the solution.

84.5

FCC Gas Octane

84

_/
83.5

92 92.5 93 93.5 94
Reformate Octane

Figure 3.4. Interval Uncertainty versus Ellipsoidal Uncertainty Results (o - interval,

® - cllipsoidal)
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3.4.2. Conclusions

The monitoring of closed-loop RTO systems using MaxGap,; as a criterion has
the same advantages as the ones presented in Section 3.3.2 for MaxGapi,; namely, it is a
one-step optimization problem that handles closed-loop systems and parametric sources
of uncertainty appearing in all types of constraints. In addition, MaxGap.; uses a
description of uncertainty that also enables the establishment of correlation among
parameters, which exists in many applications in the process industries. Therefore, it is a
more realistic monitoring criterion than MaxGapi.

On the other hand, it suffers from some of the drawbacks mentioned in Section
3.3.2. The computation of MaxGap,; still requires a solution of a non-convex
optimization problem, where a global solution can only be guaranteed by the use of a
global solver. Also, for large-scale problems, the formulation may become
computationally very expensive due to the increasing number of complementarity
constraints.

Since MaxGap, 1s still a conservative estimate of the potential economic loss due
to parametric uncertainty, Sections 3.5 and 3.6 iniroduce extensions for obtaining a better

estimate of potential profit loss to be used for monitoring CLRTO.

3.5. Method Based on the Expected Value of the Largest Profit
Gap

In order to obtain an improved estimate of the largest profit gap, its expected
value is calculated over a range of confidence levels. 1t is important to note that this
approach considers the distribution of the parameters instead of only considering
parameter ranges or bounds of an ellipsoidal region. For illustration purposes, a bivariate

normal distribution of two random variables, X and Y, is presented in Figure 3.5.
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fXY)

Figure 3.5. Joint Probability Density of Normally Distributed Random Variables X and
Y, with Respective Marginal Distributions

The method in Section 3.4 calculates the Largest Profit Gap for a fixed confidence
level. The expected value of a function Z that depends on X and Y is calculated by
integrating over the entire surface in Figure 3.5; for example, for two variables, the

integration is given in the following (Montgomery and Runger, 1994).
E(Z) = [ [2(%,)fyy . y)dxdy (33)

In equation (3.3), f;,(x,y) is the joint probability density function. For discrete

random variables, the summation operator replaces the integrals:

B(Z)=).> Z(x,3) fry (x,9) (3.4)
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In order to approximate the expectation operator, the probability distribution was
discretized at a number of different confidence levels, and the expected value of the
largest profit gap was calculated according to equation { 3.4 ). When there are n random

variables, this equation becomes

E(Z) =Z"'ZZ(X|’--"XH)f,\1.. X, (e ,) (3.5)

Equation (3.5) provides a method for evaluating the expected value of a function.
If Z = Profit Gap, each sample would entail the solution of two convex optimization
problems: one for the CLRTO model with no mismatch, and another for a CLRTO
system with model mismatch. The difference between the objective function of these two
optimization problems is defined as the Profit Gap. However, this approach may require a
very large number of samples depending on the number of uncertain parameters.

When considering Z = MaxGap,;, the bilevel Froblem 3.6 is solved for a few
different levels of significance. This approach requires few evaluations of Problem 3.6.
Even though a nonconvex optimization problem has to te solved at each evaluation, this
approach was selected because it scales well as the number of parameters increases. The

method is developed in detail and applied in subsequent sections.

3.5.1. Determination of Smallest Confidence Level that Yields
MaxGap., 2T

The first step is to determine the confidence level below which the MaxGap,, is
zero. At very small confidence levels, the uncertain pararmneters lie in a very small region
around the nominal parameters. Therefore, up to a given confidence level, the largest
profit gap may be zero for the linear programming CLRTO problem being considered. If
the value of the largest confidence level that yields a zero largest profit gap is determined,

fewer discretization points are needed for a good approximation of the expected value of
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the largest profit gap. The formulation to determine the largest confidence level that still

yields a maximum profit gap of zero is stated in Problem 3.7.

Problem 3.7 :

min CGapmin

J J
PrB( ’Prnom(l s€ ’Qi

subject to
Pr, nomCL — I;n?oz( ;(value cost, ) i,nom \
s.t.
z F; ,nom (Qa nom +& ) thznd min z i,nom
i=]
Nominal CLRTO for
Z i nnm l nom +& ) -3 le(.nd max Z i,nom > any plant realization
(04
hl:.ml min — Z inom — Fblnnd max
i=l
F = E nom — E ,max
g/ZF;nom —Z lnom(Q, lnom) j
=1
Prpc = max ; (value —cost, )F, . 3
s.t.
F:' ,' QII 2 Qj/end min F: BC
,-Z=1: . e ; - } Best result for
n . , 2 CLRTO for any plant
0! <0 s -
Z F:,B( Ql thend,max z E,b‘(. reallzatlon Q‘_!
hlcnd min s Z i,BC = blend max
F;',min S F;,b‘( - F; ,max }
[yl = Ellipsoidal
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Table 3.14. Solution of Problem 3.7 for Different Values of Gapin

Gapmin ($/day) Coamin a (2, 10 dof)
0 0.07959 0.0
500 3.459 0.0315
1314.0 18.3106 0.9501

The case study considered was the same as the one in Section 3.4.1. From the
results in Table 3.14, since the largest o that yields Gap.i,» = $0/day was zero, and even
very small confidence levels of 3.15% yielded a significant value of the largest profit gap
($500/day), the approximation of the integral was made starting at zero confidence level.

The next step is to formulate a series of problems that can be used to approximate
the expected value. To calculate the expected value of profit, three approximations to the
integral were used: backward difference equation ( 3.6 ), forward difference equation

( 3.7) and trapezoidal approximation equation ( 3.8 ), which are illustrated in Figure 3.6.

E(MaxGap,, ) yy = Z(ak & )MaxGapL,,, (@) (3.6)
k=1
E(MaxGap,; ) iy = Z (ak+l —Q, )MQXGapeu (@) (3.7)
k=1
. (ak — Q. )
E(MaxGap.) = ), ———=>[MaxGap,, (@, , )+ MaxGap,, (@, ) (3.8)
k=t

MaxGap,; in equations (3.6) to (3.8) is obtained by solving Problem 3.6. The
backward difference provides an upper bound to the estimate of the area below the curve.
The forward difference provides a lower bound to this estimate, and the trapezoidal

approximation is the average of the two previous estimates, as illustrated in Figure 3.6.

64



D. Zyngier, Ph.D. Thesis McMasterUniversity, Chemical Engineering

A A
g g
&} (]
= &
e =
a., o
ey R
g g
g ]
<
=] .|
Q, Q, a; o a, a, a, o, a; a,
confidence level (@) confidence level (@)
(a) (b)
Y
]
o
=
e
o,
7
L)
=11
—
=~
3
a, a, a, a; 2,
confidence level ()
(©)

Figure 3.6. Integration using (a) backward difference, (b) forward difference and (c)

trapezoidal approximation

The importance of using the three approximation approaches simultaneously is to
assess the error in the estimate. If the three areas are similar, the number (and location) of
approximation points is deemed appropriate. If the results differ above a user-defined
threshold, more points can be added to the discretization, in the region where the values
of the areas differ by unacceptable amounts.

Because it is likely to be the closest approximation to this curve, the trapezoidal
approach is taken as the best estimate of the expected profit gap for comparing with the

other approaches.
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Table 3.15. Results for the Approximation of the Integral

<050 a>2050 2075 a=2090 a=095 a>099 EMaxGap.y

<075 a<090 <095 «a<0.99 ($ / day)
BW 447.2 264.7 182.4 65.7 60.2 - 1,020.3
Fw - 223.6 158.8 60.8 52.6 15.0 510.9
TR 223.6 244.2 170.6 63.2 56.4 - 758.0

3.5.2. Case Study

The same case study as in Section 3.4.1 was considered. Table 3.15 shows the
three different approximations of the expected values for each confidence level interval,
and the final expected value of the largest profit gap E(MaxGap,,). Details on the
computational experience can be found in Appendix C.

From Table 3.15, at least one additional point should be added between « = 0.0
and o = 0.50 due to the large difference between the arcas for the three approximations.
If another point is added at « = 0.25, the results in Table 3.16 are obtained. After the
addition of another discretization point of the confidence region, the difference between
the expected largest profit gap calculated by the three methods decreased significantly.
The results in Table 3.16 were confirmed by running 8,768 Monte Carlo simulations. The
expected largest profit gap using trapezoidal approximation from the simulated data was
$685.7/day, which is roughly $140/day less than E(MaxGap.;)rr and $10/day less than
E(MaxGap.;)rw. Even though E(MaxGap.;)rw 1s a lower bound for the integral, it is
based on calculating the /argest Profit Gap. It is important to point out that although over
8,000 Monte Carlo runs were performed, a larger number of realizations might increase

the

Table 3.16. Results for the Refined Approximation of the Integral

a<025 «@2025 a2050 «@2075 «a2090 «a=095 «@>099 EMaxGap.y)

a<050 a<0.75 a<090 «a<095 «<0.99 ($ / day)
BW 1852 223.6 264.7 182.4 65.7 60.2 E 981.9
Fw g 185.2 223.6 158.8 60.8 52.6 15.0 696.1
TR 92.6 204.4 2442 170.6 63.2 56.4 : 831.5
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value of the expected largest profit gap coming from simulated data, since local optimal
points may have been found during the Monte Carlo sirnulations. Also, the discretization
of the parameter region may have been too coarse. If more accuracy in the estimate were
required, another point could be added between o = 0.0 and « = 0.25. However, since the
inconsistencies were considered small, further computation was not justified.

As anticipated, the integration of MaxGap,.; over several confidence levels
provides a smaller estimate of the economic impact of parametric uncertainty on the
objective function ($831.5/day) than does MaxGap,, ($ 1,314.0/day) or MaxGapy,
($3,024.9/day) for the same system. However, this evaluaticn requires the solution of
several non-convex optimization problems. In this case, obtaining E(MaxGap.;)rr
required 7 times more computational time than the obtaining MaxGap.,,. Therefore, there
is a trade-off between the improved representation of the monitoring goal and its
computational demands.

The expected value of the /argest profit gap E(MaxGap.;)rr is a more accurate
criterion for determining the potential profit loss in the closed-loop system due to
parametric mismatch, but it is still conservative (an overestimate) when compared to the
expected value of the profit gap. Section 3.6 presents a method for determining upper-

and lower-bounds on the expected value of the profit gap.
3.6. Method Based on the Expected Value of the Profit Gap

In most applications of monitoring uncertain plart operations, the expected value
of the profit gap (E(Gap)), the difference between the best and worst profits for CLRTO
over the uncertainty range of the parameters is the best estimate of the effect of parameter
uncertainty on the objective function. Calculating the expected value of a function
usually requires computationally expensive methods such as function integration or
sampling from the parameter space. In this section, a method is presented that reduces the
size of the parameter space based on bounds of the objective function in a subspace. The

result is a reduction in the computational burden of the calculations.
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The approach taken here is similar to the previous section, in that equation (3.5) is
applied to estimate the expected value, and the function “Z” is the MaxGap,.; (Problem
3.6). In this section, we take advantage of the insight that the MaxGap,; depends
strongly on “direction”, i.e., the worst case MaxGap,; in a ellipse will usually be much
worse (larger) than the average Gap in the ellipse. Therefore, the regions in this section
are divided by confidence level and “direction”; here, angles are used to define the
direction. In addition, since we seek the expected value of the Gap (profit loss), and not
the MaxGap,;, we evaluate the expected values of both the maximum and the minimum
profit gaps in each region.

A case study with only two uncertain parameters is considered so that a graphical
interpretation can be presented. The parameter values for this case study can be seen in
Tables A.1 to A.3. The only uncertain parameters in this case are Reformate octane and
LSR Naphtha octane, each with a variance of 0.167 octane’. In a two-dimensional
multivariate distribution, this variance allows for maximum variations of £1.0 octane in
each parameter.

The method divides the parameter space into several regions and determines the
expected largest profit gap (E(MaxGap.y) from Section 3.5) in each region. If the
expected largest gap in a region is small (near zero), there is no reason to sub-divide the
region further, since the Gap in the region is also very small.

If the expected largest gap is significant, the value of the expected smallest profit
gap is also evaluated: in order to obtain a lower bound cf E(Gap) in a parameter region,
the profit gap in the objective function of Problem 3.6 was minimized for that region.
This objective function will be denoted as MinGap.;. As in the calculation of the upper
bound of E(Gap) (E(MaxGap.r)), the lower bound of E(Cfap) was calculated by using the
forward difference approximation to obtain the expected smallest profit gap
(E(MinGap.y)) over large regions of the parameter space.

When the values of the expected largest and smallest profit gaps in a region are
sufficiently close, an estimate of the Gap has been determined, and there is no reason to

sub-divide the region further. If the difference is large, the region can be sub-divided
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Figure 3.7. First Division of Paramater Space

until the difference in the expected profit gaps is sufficiently close. When all regions
have been evaluated, the total expected value is the sum cf the profit gaps for each region
weighted by its probability.

In the two-dimensional case study, this method was initially applied to each of the
four quadrants, as shown in Figure 3.7. As a first step, the calculations were performed
without any concern for direction with 6 confidence levels: 25%, 50%, 75%, 90%, 95%
and 99%.. The value for the upper bound of E(Gap), E(MaxGap.;)sw was $275.8/day.
The value of E(MinGap.i)rw (lower bound of E(Gap)) for the entire parameter region
was $0.0/day. This is too large a difference, so the method proceeded by subdivisions
according to direction within each confidence region.

After dividing the parameter space in four quadrants shown in Figure 3.7, the
upper and lower bounds of E(Gap) became $131.3/day and $3.7/day, respectively (Table
3.17). Since the difference between the bounds was still considered too large, further
divisions were warranted. Since Quadrants 1 and 4 had $0.0/day values for
E(MaxGap.i)sw (upper bound), they did not need to be further evaluated, thus reducing
the computational requirements substantially. The values in Quadrants 2 and 3 were

significantly different and were subdivided in 45° halves. From Table 3.18 to Table 3.20,
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Table 3.17. First division of parameter space

E(MaxGapen)sw ~ E(MinGap.n)rw

($/day) ($/day)
Quadrant 1 0.0 0.0
Quadrant 2 249.5 0.0
Quadrant 3 275.8 14.6
Quadrant 4 0.0 0.0
Bounds on E(Gap) 131.3 3.7

Table 3.18. Second division of parameter space

E(MaxGap.i)sw E(MinGap.i)rw

($/day) ($/day)
Quadrant 1 0.0 0.0
Quadrant 2 (90°-135°) 59.9 0.0
Quadrant 2 (135°-180°) 249.5 14.4
Quadrant 3 (180°-225°) 275.8 86.4
Quadrant 3 (225°-270°) 250.1 14.6
Quadrant 4 0.0 0.0
Bounds on E(Gap) 104.4 14.4

Table 3.19. Third division of parameter space

EMaxGap.n)sw  E(MinGapen)rw

($/day) ($/day)
Quadrant 1 0.0 0.0
Quadrant 2 (90°-112.5°) 0.0 00
Quadrant 2 (112.5°-135°) 59.9 0.0
Quadrant 2 (135°-157.5°) 173.9 14.4
Quadrant 2 (157.5°-180°) 249.5 56.8
Quadrant 3 (180°-202.5°) 275.8 86.4
Quadrant 3 (202.5°-225°) 275.8 86.6
Quadrant 3 (225°-247.5°) 250.1 57.0
Quadrant 3 (247.5°-270°) 174.5 14.6
Quadrant 4 0.0 0.0
Bounds on E(Gap) 91.2 19.7
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the angles are considered to originate on the intersection between Qadrant 1 and
Quadrant 4, and to increase counter-clockwise. After the second subdivision of the
parameter space, E(Gap) was determined to be between $14.4/day and $104.4/day
(Table 3.18). Even though E(MaxGap,;)sw in sub-quadrant 2, from 90° to 135° was fairly
small ($59.9/day), it was further subdivided because it was adjacent to a large parameter
region (Quadrant 1), which had a $0.0/day E(MaxGap.i)ew.

As can be seen in Table 3.19, the third subdivision of Quadrant 2 showed that
25% of the area in Quadrant 2 (90°-112.5°) yielded a $0.0/day E(MaxGape)sw, which
leads to a less conservative estimate of E(Gap). After the third subdivision of the
parameter space, E(Gap) was determined to be between $19.7/day and $91.2/day. Only
the regions of the parameter space that yielded a E(MaxGap.;)pw larger than $200.0/day

were then further subdivided.

Table 3.20. Fourth division of pararaeter space

E(Ma.x Gapeu)gw E(MinGapeu)pw

($/day) ($/day)
Quadrant 1 0.0 0.0
Quadrant 2 (90°-112.5°) 0.0 0.0
Quadrant 2 (112.5°-135°) 59.9 0.0
Quadrant 2 (135°-157.5°) 173.9 14.4
Quadrant 2 (157.5°-168.8°) 218.8 56.8
Quadrant 2 (168.8°-180°) 249.5 73.8
Quadrant 3 (180°-191.3°) 269.1 86.4
Quadrant 3 (191.3°-202.5°) 275.8 94.1
Quadrant 3 (202.5°-213.8°) 275.8 86.4
Quadrant 3 (213.8°-225°) 269.4 86.6
Quadrant 3 (225°-236.3°) 250.1 74.0
Quadrant 3 (236.3°-247.5°) 218.1 57.0
Quadrant 3 (247.5°-270°) 174.5 14.6
Quadrant 4 0.0 0.0
Bounds on E(Gap) 88.8 21.0
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Figure 3.8. Estimation of Upper and Lower Bounds of E(Gap)

The fourth subdivision of the parameter space can be seen in Table 3.20, and
resulted in E(Gap) bounds of $21.0/day and $88.8/day. Since the additional subdivision
did not change the upper and lower bound estimation significantly, and since the bounds
are only $67.8/day apart, no further subdivisions of the parameter space were made.

Figure 3.8 shows the estimation of upper and lower bounds of E(Gap) with the
number of required solutions of Problem 3.6 (MaxGap.;). Between the 3" and 4"
divisions of the parameter space, the rate of change of the bounds was very small, being
another indication that the procedure could be interrupted. In order to verify the results,
1,103 Monte Carlo simulations were performed on this system, resulting in an estimated
E(Gap) of $27.2/day, which lies within the estimated upper and lower bounds.

For higher-dimensional systems, regions of the parameter space should be divided
by hyper-planes, and the procedure of estimating bounds for E(Gap) should be applied to
the areas divided by these hyper-planes. Depending on the problem structure, this could
be computationally more efficient than sampling the parameter space to determine the
expected value of the profit gap, since large areas of the parameter space could
potentially be eliminated. This is especially true for large-scale systems in which large
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parameter regions yield very small profit gaps. Furthermore, since upper and lower
bounds are calculated, the procedure of estimating E(Gap) only needs to be applied until

the bounds are close enough to each other.
3.7. Relationship to Decision Analysis Theory

The methods in this chapter deal with monitor:ng optimization systems under
uncertainty, and thus, they are related to problems of decision-making under uncertainty.
Therefore, they have similarities to some of the technology developed in the Operations
Research (OR) field. The most relevant topics in OR that are related to this chapter are
(Maximum) Regret and Expected Value of Perfect Information

Regret is defined as the deviation of the objective function at any given point
from the best possible one (Averbakh, 2000). Typically, OR methods determine the
Regret by solving the problem for samples of uncertain parameters from the allowable
space. This method can be appropriate when the uncertainty contains a small number of
discrete variables, such as options for a process technology (e.g., distillation, membrane,
no reccvery). However, sampling can impose a substantial computational burden when
the region of uncertain parameters is large. By using the approach in this thesis, the
maximum Regret is evaluated by solving one problem, which can be more
computationally efficient and is essential for the experimental design method introduced

in Chapter 4.

The Expected Value of Perfect Information (EVFI) is the difference between the
results of the decision made with perfect information and the decision made with original
information (Winston, 1994). This problem is typically solved by Monte Carlo
simulations, scenario enumerations or decision trees in literature, which scale poorly for
large-dimensional systems. Section 3.6 presented a method for determining bounds on

the value of the EVPI, which corresponds to the expected value of the profit gap.
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3.8. Conclusions

Model-based optimization of plant operations is susceptible to mismatch between
the model used for optimization and the true plant. This chapter has presented methods
for estimating the effect of model mismatch on optimization performance, where
performance is the deviation from the maximum achievable profit. The methods monitor
the performance without interfering with the operation of the process, i.e., no experiments
are required.

The mismatch is characterized by a range of parameter values in a linear
programming optimization model. Depending upon the method used, the monitoring

method determines one of the following metrics.

» The maximum achievable profit, including the most favourable parameters that
could exist in the plant

Whether the current optimal corner point is the orly possible optimal corner point

Y

within the parameter uncertainty (assured optimality)

Y

The maximum profit loss due to model mismatch (Maximum Regret)

v

The expected value of the maximum profit loss due to model mismatch

Y/

Bounds on the expected value of the profit loss (EVPI)

Each subsequent method provides more information and better monitoring;
however, the computational demands increase as well Importantly, the method that
evaluates the maximum profit loss due to mismatch requires the solution to a single
optimization problem. This method is integrated into the experimental design for process
improvement in the next chapter.

The key application addressed is closed-loop, linear real-time optimization, which
has found wide application to blending over that last 20 years. Therefore, a new
formulation that represents the behaviour of the closed-loop system has been developed.

In contrast, many applications of optimization in operations optimization are referred to
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as “open-loop”, indicating that no feedback information is used in subsequent
optimization executions. In reality, many of these applications include some form on
periodic model correction based on measurements; therefore, many applications referred

3

to as “open-loop” are really “closed-loop” with a slow period on the feedback. This
situation is demonstrated, for instance, by the existence of reactive scheduling problems
(Herroelen and Leus, 2005). The results in this chapter can be applied to both automated
CLRTO and “manual” optimization with model correct.ons introduced by the engineer,
as long as the linear programming model contains only continuous variables (not
discrete) and the feedback is applied consistently as modelled.

Nevertheless, the methods in this chapter can also be applied to truly open-loop
decisions with little modification. Some extensions to open-loop systems are presented in
Appendix E with applications to previously published case studies.

The formulations in this chapter required the solution of optimality conditions as
constraints in an “outer” optimization problem. The method builds on recent advances in
optimization methods and software, using the IPOPT-C solver for the non-convex
problems involving complementarity constraints. Even with this software. several restarts
and selection of the best of several Jocal solutions were required to achieve reliable
monitoring results.

The case studies in the chapter are representative of the on-line gasoline and fuel
oil blending in industry, as well as other industries such &s cement production. However,
these are not necessarily large-scale problems, and further investigation is required to
establish the limits of application of the method. In terms of the complementarity
constraints that arise in the formulation, IPOPT has beer reported to handle up to 1,748
complementarity constraints so far (Raghunathan and Biegler, 2003). Certainly, further
work is required to refine the method developed for the expected value of the profit loss.

When monitoring indicates a significant potential profit loss, the engineer would
like to understand the likely cause(s) and take actions to improve process operations.

These topics are addressed in the next chapter.
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Chapter 4

RTO Performance Enhancement and

Diagnostics

4.1. RTO Performance Enhancement

In Chapter 3, methods were developed that monitor closed-loop RTO
performance. If the optimizer performance is deemed unacceptable, i.e., the largest profit
gap is considered excessive, uncertainty in key model parameters needs to be reduced.
This chapter introduces methods for diagnosing and improving optimization
performance.

There are several ways to obtain a more accurate process model. In some
processes, parameters may be physically measurable, so sensors can be installed in order
to obtain an accurate estimate of their true values. In gasoline-blending processes, for
instance, octane number and Reid vapour pressure (RVP) are potentially measurable
parameters. Sensors, however, can be very expensive. The cost of a single near infrared
(NIR) sensor that can measure different properties for onz component stream costs in the
order of US$300,000, without considering maintenance costs (Measurementation Inc.,
2004). An alternative to measuring parameters is to rely on a more accurate process
model than the one used in the RTO. However, if not available, such a model may be
very expensive to develop. In the blending application, the linear model would have been

developed by local linearization of a more accurate nonlinear model, if one existed.
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Finally, model parameters can be re-estimated based on existing process measurements
available during plant operation. Since typical variation in the plant is limited, significant
improvement in parameter accuracy will usually require designed experiments in the
plant. The experimental approach to model improvement is selected for model
improvement.

Two different approaches to experimental design were developed in this work
One approach requires the number of optimal bases to be no more than one given the
parametric uncertainty while minimizing cost. The secord approach maximizes the profit
during the remaining batch duration by improving the performance monitoring metric
(reducing the largest profit gap) while also performing low-cost experiments. The latter
approach was solved using two different optimization methods: model-based methods
and direct search methods using Derivative-Free Optimization (DFO).

All of the experimental design formulations proposed in this chapter have a
flexible constraint structure that can be tailored to the specific plant situation. For
example, the user may choose constraints on product cuality, component and blended
product flowrates, and changes in flowrates between contiguous steady states, among
others.

The parameter-updating strategy embedded in the experimental design
formulations is Bayesian Estimation, which allows for the direct incorporation of
estimates of the uncertainty in the model parameters based on prior information, which
includes previous experiments. The inclusion of prior information prevents unnecessarily
large experiments in the plant. As a safeguard against underestimating prior parameter
variance, a larger variance than assumed by plant personnel can be used (Box and Tiao,
1973). The effect of different prior variances on the intercepts of the equations is
discussed in Chapter 5. More details on Bayesian parameter estimation can be found in
Appendix B.

As discussed in Chapter 2, conventional experimental design methods reduce the
size of the parameter confidence region. The formulations in Sections 4.1.1 and 4.1.2 are

focused on improving the performance of the CLRTO system. These new designs reduce

77



D. Zyngier, Ph.D. Thesis McMaster University, Chemical Engineering

parametric uncertainty in the constraints that most influence the potential loss in profit.
Another contribution is the fact that the cost of experirnentation is considered, building
on the work of Yip and Marlin (2001).

In the following section, the model enhancement based on comer point

information is presented, followed by the method based on the largest profit gap.

4.1.1. Performance Enhancement Based on Corner Point Information

As mentioned in Chapter 3, if there is only one possible corner point in a linear
closed-loop RTO system with parametric uncertainty between the plant and optimizer,
that corner point corresponds to the true plant optimum (Forbes and Marlin, 1994).
Therefore, the first approach to designing experiments 1o improve CLRTO performance
requires that the final parameter uncertainty lie within the parameter region that yields a
single corner point. In this formulation, the experiments are performed to achieve this
goal at the lowest possible cost to plant operation. The experiments for the gasoline-

blending problem are determined by solving the following bilevel mathematical program.

78



D. Zyngier, Ph.D. Thesis McMaster University, Chemical Engineering

Problem 4.1:
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The solution of the “inner problem” ensures that only one optimal corner point is
possible for all realizations of the uncertain parameters cfter the experiments. Therefore,
an estimate of the variance is required. As mentioned in the introduction of this chapter,
the parameter-updating strategy of choice was Bayesian Estimation, which allows for the
incorporation of estimates of the uncertainty in the model parameters based on prior
information. The prior information will be plant experience for the first experiment in a
batch and will combine experience and experimentation for later iterates. In this way, the
estimate of the variance-covariance matrix of the parameters V(Q) will rely on prior
knowledge of V(Q)|..; (equation (B.3) in Appendix B).

Even though this problem presents discontinuous derivatives, the Sequential
Quadratic Programming (SQP) method in fmincon was able to find locally optimal
solutions. The good performance is likely due to two fac:ors. First, the (multiple) starting
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points used were reasonably close to the optimum (Biegler and Grossmann, 2004).
Second, for these problems, sudden changes in the directionality of decision variables
should not occur with the discontinuity due to the nezd to reduce uncertainty in key
component properties by using the same key component flowrates.

J

~» correspond 1o the bias values in the CLRTO

In Problem 4.1, the parameters &

before running the experiment. The parameters g; in the objective function correspond to
the marginal costs (Lagrange multipliers) of each component flow at the current RTO
run. These costs will be zero for variables between their bounds (basic variables). In the
gasoline-blending process, the product quality specifications are for the total, integrated
product. Therefore, changes to the basic flows that are not at their bounds can be
compensated after the experiment to have no net effect on the product qualities or total
flows used to produce the blend. Changes to any compcnent flow that is at its upper or
lower bound results in a cost because the integrated flow will deviate from the predicted
best value due to the experiment. The objective function of Problem 4.1 shows costs on
flows at their lower bounds (Fjm,). In the case of flows at their upper bounds, the
objective function should be 4.(F; max — Fix)-

Since the experimental design is formulated as a mathematical program, many
options exist in the definition of the constraints in the experimental design to satisfy
specific problem requirements. For the experimental design defined in Problem 4.1, the
flows of components and final product and the blended qualities can vary within their
bounds. Since the blended gasoline product is stored in a large tank before being shipped
to customers, no requirement exits for strict control of instantaneous product qualities
during the experiment (Diaz and Barsamian, 1996; Sakr et al., 1988). Because of this, the
experimental design formulation in Problem 4.1 only requires feasibility of the nominal
model during the experiment. Other strategies for experimental designs, such as
restricting changes in the flow rates from the current operation or introducing chance

constraints (Ben-Tal and Nemirovski, 1998) that would require the uncertain model to be
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Table 4.1. Description of Case for Approach Based on Comer Points

2 RVP 1 RVP ! RIP cost;
Qilf:':)m Qi hom V( Qi‘,,rcmm ) V( Q.",lmln ) Qi{.'lcnle Qi Jrue !

(octane) (pst) (octane?) (psiz) (octane) (psi) (3/bbl)
Reformate 92.33 2.6 0.0256 le-8 923 2.6 342
LSR Naphtha  63.90 10.9 0.664 le-8 64 .0 10.9 26.5
n-Butane 92.5 138.8 le-8 le-8 92.5 138.8 10.3
FCC Gas 84.6 6.4 le-8 le-8 84.6 6.4 31.8
Alkylate 96.6 6.7 le-8 le-8 96.6 6.7 34.4

(Variances are before an experiment)

feasible during experimentation could be easily incorporated at the cost of introducing
nonlinear, conic constraints.

An additional variable in the design is the nexp number of experiments. When
considering multiple experiments, the process constraints in Problem 4.1 have to be
repeated for each experiment. Also, the new experiments are included in matrix X,,, and
affect Problem 4.1 through V(Q) (See (B.3) in Appendix B). To demonstrate the
experimental design method, a case study involving uncertain Reformate and LSR
Naphtha octane numbers is presented. All other component properties were assumed to
have very small uncertainties, as can be seen in Table 4.1. During the experiment, O, ,

was required to be above or equal to 80.0 octane and (..., , below or equal to 10.8 psi.

These bounds were included to prevent large deviations in product quality from occuring
in the product tank that is not perfectly mixed.

The steady-state CLRTO was operating with the flowrates F; seen in the left-most
column in Table 4.2 with a profit of $10,257/day. After a single experiment Fj.,,,
parameter uncertainty was reduced so that only one corner point was possible, and with
the updated parameters obtained from the experiment, the CLRTO system converged to a
different corner point, that had a profit of $10,680/day. Its flowrates can be seen in the
right-most column of Table 4.2. Note that the objective function for the experimental
design (i.e., the cost of the experiment) was 0.0, since only basic variables of the original

basis were changed during the experiments.
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Table 4.2. Results — CLRTO Flowrates in Experimental Design Based on Corner Points

F, - : |
CLRTO before CLRTO after  Y(©@/on)
experiments (bbl/day) experiment after experiment
(bbl/day) (bbl/day) (octane?)
Reformate 5696.0 5620.7 3212.7 0.0176
LSR Naphtha 942.0 1421.3 0.0 0.330
n-Butane 362.0 293.0 324.4 le-8
FCC Gas 0.0 0.0 3463.0 le-8
Alkylate 0.0 0.0 0.0 le-8

Computational Experience:
CPU seconds ~ 1,500

Additional scenarios are discussed in Zyngier and Marlin (2003). Generally, as
the number of experiments is increased, the deviation from the nominal flow rates for
each experiment decreases. Each individual experiment rnay be smaller since the multiple
experiments can provide the equivalent information as a single, large experiment. Also,
in some cases, a single experiment would not be able to generate enough information for
the simultaneous update of several parameters, so that the design problem would be
infeasible. Naturally, the time for experimentation will increase as the number of
experiments increases.

The approach developed in this section reduces the uncertainty in the coefficients
of the linear programming problem to levels where only one corner point is possible, thus
guaranteeing that the “true” plant optimum has been achieved. However, in systems
where corner points adjacent to the optimum have similar profits, this approach will
likely be too expensive; i.e., many experiments might be required in exchange for
potentially small (even negligible) economic benefits. Since the experimental design
strategies presented in the following sections are improved approaches that take into
account the difference in profit between corner points. the additional case studies in

Zyngier and Marlin (2003) are not shown in detail.
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4.1.2. Performance Enhancement Based on Largest Profit Gap

Since the method in Section 4.1.1 will cause excessive experimentation in some
cases, a different experimental design strategy was developed that considers the potential
improvement in the system measured by the objective tunction (profit). This is done by
applying a CLRTO performance metric developed in Chapter 3. Since the cost of model
uncertainty becomes a sub-problem in the experimental design, a metric that can be
obtained from a single optimization is embedded in the experimental design formulation.

The performance metric chosen for use in the experimental design was the largest
profit gap with ellipsoidal description of parameter uncertainty (MaxGap.y). It is a better
representation of the monitoring goal than the metric with interval description of
uncertainty (MaxGap;,) since it allows for the incorporation of correlation among
parameters, while being computationally more tractable than expected value
approximations that require enumeration of several segments. In the gasoline-blending
process, correlation among component properties may occur due to disturbances in
upstream operation. Some of these disturbances are imperfect separation in distillation
columns (resulting in correlated octane and RVP properties, for example), or different
feed properties and operations of upstream reactors, which also affects component

properties in a correlated manner.
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Problem 4.2:

min t*[ MaxGapen] — t7*[ Prexp ]
F, exp

Subject to

Prep, = i (value —cost,; )Fi,exp

i=l
n

n n
J J J J e
leend,min Z E.exp s Z F'i,z.\'p (Qr nom & gexp )S leend max Z F': exp J oct, RVP
i=1 i=1

i=l

"
Fhlend.min = Z F;',exp -3 Fhlend,max
i=1

< F

iexp

<F

i,max

F.

i,min

V(Q) = (V(Q) |r—l +Xe'lx;pV(z)_l Xexp )_]

MaxGap,;  « details in Problem 3.6

The formulation of the experimental design based on the largest profit gap is
given in Problem 4.2. The objective function is a time-weighted average of the
performance metric and the cost of the experiment: the weighting factors ¢, and ¢
correspond to the batch time remaining after the experiment and the time to run an
experiment, respectively. Therefore profit is being maximized over the remaining batch
duration.

The formulation in Problem 4.2 is a three-level optimization problem, since
Problem 3.6 consists of a bilevel programming problem. In this work, two different ways
of solving this problem have been evaluated. The first one consists of replacing the
MaxGap,; problem by its optimality conditions, and solving Problem 4.2 as a one-level
optimization problem using a gradient-based, interior point method. The second approach
considers Problem 3.6 to be a black-box function. The inner problem (MaxGap.;) is
solved as a bilevel problem using methods explained in Chapter 3, with the uncertainty
V(Q) value calculated after the experiment, and the “outer” optimization problem is

solved using a direct-search optimization method. The selection of a direct search method
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for the outer problem is based on the discontinuities in derivatives that occur as the active
set changes.

The first approach to solving Problem 4.2 is to replace Problem 3.6 by its KKT
conditions and solve the overall problem with IPOPT-C (Raghunathan and Biegler,
2003). Details about IPOPT-C can be found in Appendix D. Since Problem 4.2 is ill-
conditioned due to the change in corner points (where different Lagrange multipliers and
slack variables reach values of zero) and highly nonlinear due to the complementarity
constraints and the embedded Bayesian parameter estirnation, its solution benefits from
“good” starting points. In this work, a “good” starting point is considered to be any point
that leads the optimization problem to a local minimizer, with delays due to computation
times that do not result in significant economic loss in the system. This will be discussed
in Section 4.1.2.2.

A drawback to the first approach to solving Problem 4.2 is that, since the
substitution of the innermost optimization problem with its KKT conditions introduces
nonlinearities in the system, the next optimization level is not guaranteed to achieve a
local optimum of the problem unless the second-order optimality conditions of the
innermost problem (Problem 3.6) are included in the formulation. This approach,
however, causes the problem to be computationally intractable. Another option is to not
include the second-order optimality conditions within the optimization problem, but to
verify if they are satisfied at the solution of the problem (Clark and Westerberg, 1990). If
they are not satisfied, the problem should be re-solved from another starting point.
Alternatively, the solution could be perturbed to verify optimality (Forbes et al., 1994).

Since these are all computationally intensive alternatives, a direct search method
known as Derivative-Free Optimization (DFO) (Conn et al., 1997) was also applied to
Problem 4.2. This method is based on approximating the objective function by a
(simpler) surrogate model within a trust region, and then optimizing the surrogate model
to obtain an improved point. Then, the size of the trust region is increased or decreased,
according to a new point being a better or worse objective function value than the current

point, until the convergence tolerances are met.

85



D. Zyngier, Ph.D. Thesis McMaster University, Chemical Engineering

It is well known in the literature that the traditional direct-search Nelder-Mead
simplex method can have poor convergence properties (Wright, 1996). Preliminary
studies were performed in this work that confirmed that DFO converged faster than
Nelder-Mead for all cases. More details about the DFO algorithm can be found in
Appendix D. DFO, however, cannot handle constraints directly. These have to be
replaced in the objective function as penalty terms. The reformulation of Problem 4.2 so

that DFO can be applied is seen in Problem 4.3.

Problem 4.3:

min ;*[ MaxGapey] — 1*[ Prexp ] + sum(penalty terms)
F, exp

MaxGap,y is determined by the solution of Problem 3.6, and the profit during
experiment is defined in the first constraint of Problem 4.2. In order to increase the
chances of finding "good" local optima for MaxGap,; during DFO implementation, at
each DFO iteration, Problem 3.6 was solved for two different starting points (different
sets of Lagrange multipliers), with several restarts. Of course, the formulation and restart
procedures increased computation times for this approach.

The penalty term for each constraint was defined as: 10**(/,-norm of constraint

violation). The following constraints were considered during the design of experiments:

n n n
Qlflend,min Z F;,exp o Z E exp (Qij,m)m + gé\'p )S Q[_tllend.max Z E,exp j = oct, f R VP ( 4' 1 )
=1 =1 =l
n
Fhlend,min % Z E.exp < E?Iend,max ( 42 )
i=l
F;',min = E,exp 2 E.max (43 )

Before each function evaluation, the parameter variances were re-estimated
according to the following equation, derived from Bayesian parameter estimation (for

details, see Appendix B).

86




D. Zyngier, Ph.D. Thesis McMasterUniversity, Chemical Engineering

V) =)l +XL V"X, ) (44)

4.1.2.1. Case Study Description

Next, we illustrate the methods proposed in Section 4.1.2 through a case study.
The description of the case study before experimentation can be seen in Table 4.3. Note
that the “true” values are not used in the calculations for the experimental design.

The monitoring results yield the following: MaxGap., = $1,456.8/day, where Prpc
= $8,895.9/day and Pryomc1=$7,439.1/ day.

4.1.2.2. Solution Using Optimality Conditions

The first solution strategy is the substitution of the inner MaxGap,; problem with its
optimality conditions. Naturally, this approach benefits from good starting points. A
method for obtaining a good starting point (for convergence) for Problem 4.2 is outlined
as follows. First, Problem 4.2 with ellipsoidal uncertainty is modified (Modified Problem
4.2) so that the flowrates during the experiment are not taken into account in the overall
profit, and that they are not used to update the model parameters. This implies that the
cost of experimentation is not taken into account in the objective function, and that the

parameter variances are fixed.

Table 4.3. Description of Case Study

RVP R7P RVP ;
Qi‘f'cxlum Qi Jnom V( Qil,):cr:m: ) V( Qi Shom ) Qi(ffrfm' Qi Jrue COS[,

(octane) (psi) (octane’)  ( psi:) (octane) (psi) (3/bbl)
Reformate 91.90 2.60 0.0546  0.0546 92.3 Py | 342
LSR Naphtha  63.89 11.01 0.0524  0.0524 64.0 10.9 26.5
n-Butane 92.40 13790 0.0546  0.05<6 92.5 138.0 10.3
FCC Gas 84.90 6.50 0.0546  0.0546 85.3 6.4 31.8
Alkylate 97.08 6.62 0.0373  0.0370 97.0 6.7 34.4
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Modified Problem 4.2:
» Change objective function of Problem 4.2 to: Maximize (Prgc —Prpomcr): the
experiment is not considered in the overall profit
» Solve the problem with this new objective function and fixed parameter variances

(the flowrates during experiment are not used to update the model parameters)

The following variable values were used as starting points to the Modified
Problem 4.2:
» Fipc, Finom and A, from solution of MaxGap,;; problem
» Fiexp=1[1,400.0 1,400.0 1,400.0 1,400.0 1,400.0]
» Remaining Lagrange multipliers = 1.0. These variables correspond to the
additional multipliers created by the replacement of the inner (bilevel) problem

with its optimality conditions.

The solution of the Modified Problem 4.2 seen in Table 4.4 is then used as a

starting point for Problem 4.2. The results can be seen in Table 4.5.

Table 4.4. Results of Modified Problem 4.2

F i,BC F i.nom F, iexp
(bbl/day) (bbl/day) (bbl/day)
Reformate 0.0 0.0 2877.3
LSR Naphtha 1,860.8 71.0 1,119.1
n-Butane 177.3 214.2 372.0
FCC Gas 0.0 4,500.0 2,634.0
Alkylate 4.961.9 2,214.7 2,997.5

Prosp = $11.230.1/day*(Fuicirro/Fiiey) = $7,861.1/day

Computational Experience:

CPU seconds 2.0
# function evaluations : 124
# restarts : 0
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Table 4.5. Solution of Problem 4.2 for Method using Optimality Conditions

Q’_""’ Q"R”) Figc Finom F, i.exp
(octane)  (psi) (bbl/day) (bbl/day) (bbl/day)
Reformate 91.90 2.60 0.0 0.0 2,857.3
LSR Naphtha 64.15 10.81 1,858.4 71.4 1,114.1
n-Butane 92.40 13780 1752 2143 369.0
FCC Gas 84.29 6.96 0.0 4,500.0 2,631.7
Alkylate 97.47 6.31 4,966.4 22144 30279

Prey = $11,107.9.0/day*(Fyi.cLrro/Filexp) = $7,775.5/day.

Computational Experience:

CPU seconds : 56.3
# function evaluations : 42,010
# restarts 3

After this experiment, the predicted MaxGap.; = $1,476.3/day. Since the total
blend flowrate during the experiment was allowed to vary (and in this case was different
from the flowate during normal operation), a “normalized” profit during experiment
(Prexp) was calculated. This was done in order to compare Pr.y, to the current CLRTO
profit.

In this case, the predicted value of MaxGap,, after experimentation is slightly
larger than its original value, which is not an expected result because the cost of the
experiment should be offset by the reduction in MaxGap.. This result is likely due to the
fact that the second order conditions were not included ir. the optimization problem when
substituting Problem 3.6 with its KKT conditions. This experiment will be further

discussed in the next section.
4.1.2.3. Solution Using a Direct Search Method

The second solution strategy is to use DFO to solve the problem in Table 4.3. The
parameter values and initial starting point used in the case study are given in Table 4.6.
The solution is given in Table 4.7. The predicted MaxGap,, after experiment is

$1,357.7/day, which is smaller than the original MaxGap,, of $1,456.8/day, as expected.
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Table 4.6. Parameter Values Used in Problem 4.3

Qlflend, min Ql;lleud. max
Octane (octane) 80.0 100.0
RVP (psi) 45 10.8
F, blend min (bbl/ day) Fhleml. max ( bbl’/ dﬂ)’)
5,500.0 10,000.0

The normalized profit during experiment (Pr..,) was equal to [$1,917.0/day
*(Foi.cLrro/Friep)=] $2,349.0/day.

Even though the number of function evaluations was much smaller than in the
model-based method in Section 4.1.2.2, each function evaluation when using DFO is
more expensive. This is because, in this case, each function evaluation involves the
solution of the MaxGap,, problem in Chapter 3 from a few different starting points in
order to increase the chances of finding a "good" local optimum. Thus, the CPU time was

much larger for the direct-search method.

Table 4.7. Solution of Problem 4.3

F; .xp (bbl/day)
Reformate 1,707.7
LSR Naphtha 690.2
n-Butane 21.9
FCC Gas 1,382.0
Alkylate 1,910.8

Prex,, = $1,91 7.5/day*(Fb1,CLRm/Fb,,e,p) = $2,349.6/day.
Starting point: Fj.,, = [1,000.0 1,000.0 1,000.0 1,000.0 1,000.0]

Computational Experience:
CPU seconds :1,839.6
# function evaluations : 267
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Table 4.8. Solution of Problem 4.3 — Different Starting Point

Fiexp (bbl/day)
Reformate 2,855.9
LSR Naphtha 1,112.8
n-Butane 371.6
FCC Gas 2,632.1
Alkylate 3,027.6

Prex,, = $1 1,161.3/day*(F[,/‘aRro/Fb/‘exp) = $7,8129/day

Starting point from Table 4.5: Fj.,, = [2,857.3 1,114.1 369.0 2,631.7 3,027.9]

Computational Experience:
CPU seconds :589.7
# function evaluations : 170

The predicted MaxGap,, after the experiment in Table 4.8 was $ 1,415.7/ day,
which is smaller than the original MaxGap,, as expected. The normalized profit during
the experiment (Pr.y,) was [$11,161.0/day *(Fu;cLrro/Fpiep)=] $7,812.7/day.

When using the starting point for Fj ., from Table 4.5, the computational effort of
the direct-search method decreased significantly in comparison with the starting point of
all flowrates equal to 1,000 bbl/day (seen in Table 4.7). Also, since the "black-box"
function of the method based on DFO is a bilevel optimization problem with a linear
inner problem (with no second-order optimality conditions), it is guaranteed that a local
optimum is found for Problem 3.6, if one exists.

The profit during experimentation (Pr.,) was much higher when using the results
of the model-based method as a starting point for DFO. It is worth mentioning that the
experiment in Table 4.8 was very similar to the starting point obtained from the model-
based method, indicating that the optimization variable values in Table 4.5 were already
very close to a local optimum.

There are a few options in designing experiments. One possibility is to calculate
nexp experiments simultaneously. This allows for the incorporation of constraints on

integrated rather than instantaneous product qualities, thus permitting instantaneous
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infeasibility in the process and consequently a smaller number of experiments. However,
this approach does not take into account the information that is being generated by each
experiment before all nexp experiments are completed. Also, calculating nexp
experiments increases the size of the experimental design problem thus increasing the
computational demands.

Another option is to adopt a receding horizon strategy in designing the
experiments. In this approach, an initial nexp experiments are designed, and only the first
one is implemented. Then, using parameter values updated from the first experiment,
(nexp-1) experiments are designed, and only the first one is implemented. The procedure
continues until the nexp™ experiment is implemented. This approach is likely to provide
the best experimental designs, since the time horizon of the blending batch is taken into
account and recently updated parameters are used in the design of each experiment.
However, the computational burden of this method is very high, since several large
experimental design problems must be solved.

Finally, each experiment can be designed individually, and its results can be
implemented in the plant before calculating the subsequent experiment. This avoids the
design of a large number of experiments simultaneously, thus easing the computational
burden during each of the calculations for designing the experiments. Also, this approach
uses updated parameter information in each design of experiment, and allows for the
interruption of experimentation as soon as the stopping criterion (size of MaxGap,;) is
met. For its computational advantages, the sequential calculation of individual
experiments was the chosen approach in this work.

During the experiments, the RTO system is turned off; i.e., no new feedback
information is being used by the model. This could resul: in quality violations if process
disturbances were to occur while experiments were being run. Either of the following
modifications ensures that feedback information would be considered during the
experimental design step: (1) Alternate experimentation with CLRTO runs. Therefore,
one experiment would be implemented, followed by a single CLRTO run, followed by an

experiment, and so on. (2) Update the bias parameter before each experiment, without

92



D. Zyngier, Ph.D. Thesis McMasterUniversity, Chemical Engineering

having a CLRTO run between experiments. The latter approach would be preferable
because it would lead to a shorter model enhancement stage of a system.

The next section presents a new method for diagnosing CLRTO performance.
This is a good tool for understanding the effect of specific parameter changes on the

objective function value.
4.2. RTO Performance Diagnostics

Screening the importance of model parameters for a particular problem is very
useful. With the performance monitoring strategies in Chapter 3, it is possible to
determine the parameter values in the plant that result in the largest difference in profit
during closed-loop operation. In the solution of the monitoring problem with interval
uncertainty in Chapter 3, all parameters that influence the objective function are equal to
their upper or lower bounds, so there is no insight as to which is the most relevant
parameter. At best, the user obtains information about the directionality of the problem.
In the case of monitoring CLRTO performance given ellipsoidal uncertainty, the most
influential parameters are singled out, since they are taken to the bound of the (multi-
dimensional) ellipsoid, while the remaining parameters do not deviate much from their
nominal values. In this case, the monitoring approach may indicate which parameters are
the most important ones for a particular case, but there is no insight as to a ranking of
their importance with respect to the objective function value.

Knowledge of the parameters whose uncertainty affects CLRTO profit can be
used to select measurements for the system; i.e., detect which process variables should
have their samples analyzed at a laboratory or determ:ne which on-stream analyzers
should be installed. The diagnostics can also be used to guide laboratory experiments for
model improvement, in that it indicates the importance of each parameter. Also, LP
model structure improvements such as disjunctive modelling, separable programming,
base-delta, etc., can be more easily made if there is information on parameter relevance to
the optimization problem (Williams, 1999). The diagnostics formulation in Problem 4.4

finds the smallest trace of the parameter variance-covariance matrix that yields a profit
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gap of at least the threshold value T. Thus, the diagnostic finds the smallest parameter

uncertainty that yields a specified profit gap.

Problem 4.4:

min Tr(V(Q))
Pryc, Py i€’ s RA()
subject to

i,nom
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This problem is solved for various values of T, and as T is reduced, a smaller

number of (more important) parameters must have non-zero variances (be uncertain) so

that the specified profit gap (7) is achieved. Therefore, the parameters whose variances
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are last reduced as 7 is decreased are deemed to be the most relevant to the optimization
problem. The smallest trace when 7' = 0 $/day is also zero, since all variances must be
non-negative.

In the case studies considered in the following section, all the off-diagonal
elements of V(Q) are equal to zero (i.e., there is no correlation among parameters). In
cases in which there is correlation among parameters, the off-diagonal (covariance) terms
can be explicitly set as a function of the diagonal terms (variances), with fixed
correlation. For example, if correlation exists between the first and second parameters,
the off-diagonal terms of V(Q) can be expressed as V;, = V,; = correlation* V;,;* V5,.

It is important to note that this method does not assume a constant active set for
the diagnostics. In the following section, this diagnostic method is applied to the

gasoline-blending case study in Section 4.1.2.1.

4.2.1. Case Study

Given the parameter values in Table 4.3, the user may be interested in gaining
insight into which are the most important parameters, and in which order. Therefore, the

diagnostic method in Problem 4.4 was used. The results are shown in Figure 4.1.
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Figure 4.1. CLRTO Performance Diagnostics Results
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The original variances from Table 4.3 (that yield a MaxGap,.; of $1,456.8/ day)
are seen in the far left of the graph, under "original". This is the situation when the
monitoring has been completed and no improvement through experimentation has been
performed. When the value of the threshold T is reduced to $1,450/day, Reformate
octane and RVP, and n-Butane octane and RVP parameters have their variances reduced
to zero in the solution of Problem 4.4. Therefore, for this case study, they are the least
important parameters. For a value of 7 of $1,400/day, the variance of LSR Naphtha RVP
is reduced to zero and the variance of LSR Naphtha octane is decreased from its original
value. This indicates that the uncertainty in LSR Naphtha RVP has a smaller effect on the
objective function than LSR Naphtha octane, which in turn has a smaller effect than the
remaining parameters.

The same analysis applies to the subsequent values of 7. As T is assigned a value
of $1,100/day, the variance of FCC gasoline RVP starts to decrease, while the variance of
FCC gasoline octane still retains its original value. This indicates that, for this case study,
FCC gasoline octane is the parameter whose uncertainty has the largest effect on the
objective function, followed by FCC gasoline RVP, Alkylate octane, Alkylate RVP, LSR
Naphtha octane, and so on. As long as 7 is greater than zero, at least one parameter (in
this case, FCC gasoline octane) will have a nonzero variance in order to achieve a
positive value of profit gap.

The results in Figure 4.1 depend on the uncertainty scenario in the plant. For
example, if before the diagnostics, laboratory experiments had been run on FCC gasoline
thereby dramatically reducing the variances on its properties, these parameters (FCC
gasoline octane and RVP) would not be considered the most important by the diagnostic
method. In addition, the variances would have to be scaled by the nominal measurement
values (or its expected range of variation), which was not necessary in this example
because of the similarity in the scaling factors.

The most likely application of this diagnostic method is in improving
measurements available for the CLRTO. The parameters most frequently isolated as the

most important in the system would be chosen for evaluation, with the final selection of
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measurements based on an economic analysis. In the case study, the FCC RVP and

octane have been identified as the most important parameters.
4.3. Relationship to Decision Analysis Theory

As discussed in Chapter 3, the experimental design approaches in this chapter
have similarities to Operations Research technology. Section 3.7 discussed the
similarities between the monitoring approaches developed in this thesis and Regret and
EVPI problems. The monitoring approaches provide the answer to the questions of what
are the minimum- and maximum regrets (or expected value of the regret) under the
current parametric uncertainty and which parameter scenarios lead to these regret values.

By using the experimental design strategies in Section 4.1, it is then possible to
answer the questions "What is the lowest cost experiment(s) that reduces the regret to
zerc?" (Section 4.1.1) and "What is the economically optimal policy of experimentation
and production to the end of the production run?" (Section 4.1.2). A parallel can be
drawn between the experimental design approaches in this chapter and the Expected
Value of Sample Information (EVSI), which is defined as the value of information from
testing or sampling the system (Winston, 1994). When the costs for obtaining information
and values for improved information are easily determined, the existing enumeration
methods for EVSI are appropriate. However, in this work, the cost of experiment and
possible economic improvement depend upon the values of the decision variables (the
flows during the experiments) so that existing solution methods are not applicable. The
approach in Section 4.1 provides a solution to the more challenging scenario, in which
the expected value of improvement is replaced with (1) the maximum profit loss after

experimentation and (2) the nominal profit during the experiment.
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4.4. Conclusions

Key issues in the Statistics and Operation Research fields (Robinson, 2005) were
addressed in this chapter; namely, screening the model parameters in order to determine
their importance and designing profit-based experiments in order to reduce the
uncertainty in key parameters.

The two novel approaches to experimental design based on corner point
information and based on profit achieve improvement of the CLRTO system performance
rather than information (reduction of the size of the parameter confidence region). The
approaches provide technology that complements CLRTO monitoring in Chapter 3, in
that a monitoring criterion is embedded into the experimental design formulation. Also,
the experiments would not be initiated unless the monitoring indicated the possibility for
significant improvement.

Two methods were evaluated to solve the experimental design formulation based
on the largest profit gap (Problem 3.6). One was based on substituting the inner
optimization problem in Problem 4.2 with its optimality conditions, while the other was
based on a direct-search method, which approached the inner optimization problem in
Problem 4.2 as an expensive, black-box function.

The first method resulted in a nonlinear optimization problem with 177 decision
variables (which includes Lagrange multipliers), 289 constraints and 91 complementarity
constraints, resulting in (289 + 91) 380 constraints. The solution of this formulation in the
case study shown took approximately 1 CPU minute. However, the solution found is only
a stationary point of the inner problem and has to be further tested for local optimality by
probing the parameter space, or by evaluating the second-order derivatives at the
solution. Results in the case study indicated that a valid solution is not reliably achieved.

The second method based on direct-search optimization consisted of only »n
decision variables, where » is the number of manipulated variables during the
experiment, which was equal to five in the case study shown in this chapter. The

constraints during the experiment were replaced by penalty functions in the objective
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function. At each direct-search step, however, the inner "black-box" function evaluation
corresponded to solving the MaxGap,; formulation in Problem 3.6, with 117 decision
variables, 75 constraints and 30 complementarity constraints, resulting in (75 + 30) 115
constraints. As reported in Chapter 3, each solution of Problem 3.6 took about 2.0 CPU
seconds, and the design of the experiment took approximately 10.0 CPU minutes with a
penalty-free starting point.

Since the direct-search method solves the bilevel optimization Problem 3.6 as an
inner problem, the equation-oriented approach to designing experiments was simplified
to a bilevel optimization problem. This strategy also requires fewer function evaluations
than the experimental design strategy based on optimality conditions. However, because
of the relatively high computational requirement of each function evaluation (Problem
3.6), computation times of designing experiments based on DFO are higher.
Nevertheless, the case study results using a direct-search method produced better results.

A new diagnostics method was also developed in order to rank parameter
importance with respect to their effect on the objective function. This approach is not
limited to a single active set and it does not require pre-selection of key variables. It
could be used to simplify computational demands in the design of experiments by
reducing the number of parameters included in its formulation. Alternatively, it can serve
as a guide to improving the CLRTO system via laboratory measurements, on-stream
sensors, or improved models.

All experimental design strategies and diagnostics were successfully implemented
in a gasoline-blending case study. In Chapter 5, the monitoring methods from Chapter 3
and the diagnostics and enhancement methods from Chapter 4 are integrated into an

overall scheme for application to an online closed-loop RTO system.
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Chapter 5

Sequential Procedure for Implementation

In Chapter 3, methods were presented for monitoring the performance of CLRTO
systems under parameter uncertainty. These methods may serve as an independent tool
for detecting the degradation of the systems. Once a performance issue has been found in
an RTO system, steps should be taken in order to eliminate it. Therefore, new
experimental design and diagnostic strategies were developed and presented in Chapter 4.

A systematic integration of the previously presented monitoring, diagnosing and
enhancing methods into a sequential procedure for closed-loop RTO systems is presented

in this chapter. The goals of the sequential procedure are to achieve the following:

» To base the performance on the CLRTO objective, which is profit;

» Reduce the likelihood that a sensor failure or unexpected model mismatch will lead to
poor monitoring performance;
Interfere with the normal process operation as little as possible;
Utilize all available information about the current situation (e.g., economics, bounds,

a priori uncertainty estimates, etc.);

‘/

Use formulations that are computationally tractable within the time available in
typical industrial processes. For gasoline blending, computations ranged from a few
seconds to 20 minutes, while the total batch time is approximately 10 hours.

The sequential procedure consists of the following five steps. First, the plant data
is checked for consistency with the model structure and the uncertainty description.
Second, performance monitoring is performed to provide information about the

performance status of the CLRTO system. If monitoring indicates the potential for
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significant improvement, the procedure proceeds to the third step. In the third step, plant
operating data from the current blend is used to provide better estimates of the plant for
use in the CLRTO model. If monitoring indicates that opportunity exists for further
performance improvement after step three, the procedure proceeds to the fourth step,
where designed experiments are introduced in the plant. This step is repeated until the
best tradeoff between experimentation and model uncertainty is achieved. The fifth and
final step involves implementing the final operating conditions. Note that the first two
steps are performed prior to every CLRTO execution and that the first three steps require
no perturbation in process operation.

In the following sections, details are given on each of the steps in the sequential
procedure for CLRTO performance monitoring and enhancement. Three case studies are
presented, The first two demonstrate the importance of the thorough method, since they
start from the same initial condition and yet conclude at very different operations: clearly,
heuristics would not suffice for these cases. A third case study emphasizes the importance
of the experimental design. Since all steps in the sequential procedure, except for data
checking, have already been presented in previous chapters, we proceed directly to the

case studies.
5.1. Definition of Case Studies 1 and 2

In order to demonstrate the full potential of the sequential procedure, the two case
studies in Table 5.1 and Table 5.2 are considered. All parameters representing the physics
and chemistry of the true plant and of the CLRTO model are the same for both cases. In
addition, the initial parameter uncertainties are the same, namely 0.0546 octane number’
or psi’, which, in a 10-degree-of-freedom multivariate normal distribution corresponds to
a maximum variation of £1.0 (octane number or psi) in a single parameter. The only
differences between the case studies are the component costs, which vary by a maximum
of 2.1%. Cost variation of this (or much greater) magnitude could occur due to, for
example, fluctuations in the prices of crude oil, purchased intermediate material (e.g.,
FCC gasoline) or short-term plant inventory.
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Table 5.1. Description of Case Study 1

Qit,,fcr:)m Qil,znl;lr)n Q:orcp;e Q:er,e cost; F;
(octane) (psi) (octane) (psi) ($/bbl)  (bbl/day)
Reformate 91.9 2.6 92.3 2.7 34.0 0.0
LSR Naphtha 63.9 11.0 64.0 10.9 26.0 1,781.0
n-Butane 92.4 137.9 92.5 138.0 10.3 161.6
FCC Gas 84.9 6.5 85.3 6.4 32.5 0.0
Alkylate 97.1 6.6 97.0 6.7 34;5 5,057{1
Current Profit
($/day) 8,549.5
Table 5.2. Description of Case Study 2
Q;T:‘:I:m; Q i';::;’;. Qrolcr’ue QIRI::II:' cost; Fi
(octane) (psi) (octane) (psi) ($/bbl)  (bbl/day)
Reformate 91.9 2.6 92.3 2.7 342 0.0
LSR Naphtha 63.9 11.0 64.0 10.9 26.5 1,781.0
n-Butane 92.4 1379 92.5 138.0 10.3 161.6
FCC Gas 84.9 6.5 85.3 6.4 31.8 0.0
Alkylate 97.1 6.6 97.0 6.7 34.4 5,057.4
Current Profit
($/day) 8,164.7

The last column in Table 5.1 and Table 5.2 represents the steady-state flowrates
achieved under CLRTO prior to beginning the monitoring process, which are the same
for both cases; therefore, these two cases would appear to be essentially the same to

operating personnel.

5.2. Data Rectification

This first step in the sequential procedure is executed at every CLRTO execution
after the flowrates have reached the values at which they can be accurately measured by
the flow sensors. In this step, real-time measurements are checked for gross errors and
model inconsistencies. If these inconsistencies exceed the expected random variation,

performance monitoring is interrupted, and a warning is provided to plant personnel. The
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situation should then be analyzed and corrected by the personnel before optimization
proceeds. Typical causes for gross errors could be sensor failures (gross errors in the
measurements) or improper connection of component tanks to pipes and meters (gross
errors in the model structure). In addition, a component quality could differ a great deal
from typical values because of unusual variation in plant operation or because the
component has been purchased from an outside supplier. The personnel will troubleshoot
the problem and restore the CLRTO to closed-loop operation when the data and model
agree within the typical range of mismatch, at which point monitoring can resume.

The method for data rectification has not been explained in previous sections, and
therefore, is introduced here. The model is used to predict some variables that are also
measured; therefore, opportunity exists to compare the predictions with measurements. In
traditional gross error detection methods, rigorous mass and energy balances provide the
basis for evaluating the consistency of redundant measurements (Crowe, 1996). Data
rectification, on the other hand, can be applied using not only the fundamental balance
equations, but also component quality predictions for octane and RVP (Johnston and
Kramer, 1995). Note that this step doesn’t include new technology, but it is included to
provide some assurance that the uncertainty bounds are valid for subsequent steps.

The total mass balance and the balances for octane and RVP are given in the

tollowing equations.

n

7 4 = 3.4
Z F!.mrm - [Ivlrml.num - 0 ( )

" ]J () /

i .nom i nom }: _ o,
Z 2 - thwul.num =0 g OCtane’ RVP ( 5.2 )
i=i

blend nom

All flowrates and the blended product qualities (Q'pens) are measured in real time

/

nom

but the component qualities (Q/, ) are not measured. Substituting the measurements

and nominal values for the flowrates and component qualities in equations ( 5.1 ) and
( 5.2 ) will not result in a zero right-hand side because of variation in component

qualities, as shown in the following equations.
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n

Z E,lrleuv - F blend ,meas = ¢] ( 53 )
N F; measQiJ nom
2P = Ol e = k=23 (54)

blend ,meas

The second and third elements of the variance-covariance matrix V(¢) of the error

vector @ = [ @ qo_:,]T are calculated by linearizing equations ( 5.4 ) around the nominal
point used in the model equations (Narasimhan and Mah, 1989). This method assumes
zero mean, independent, normally distributed measurement errors in the flows and in the

blend octane and RVP properties.

F,

blend .nom

d 2 ' . ] 5.3
V((ok)=2(—'"“—m—J V(Qij'p’a"')+2(ﬂ’_"__\ V(F,.p,""’)+ ( )

blend ,nom

i

F ;,nnm Ql{nnm ’ plant J.plant
+ Z FT V(.F;rleml ) nr V(lezml

blend .nom

The first element of the variance-covariance matrix V() is calculated as follows.
V(¢1) = z V(F;‘,mea.\') 1 V(F;)Iend,mea.\') ( 56 )

If a “perfect” model with “perfect” measurements were used, the value of the
residual vector @ would be zero. Assuming zero-mean, independent, normally distributed
noise in the errors, the magnitude of @ can be evaluated with respect to the expected

range of error by comparing the value M from the following equation against the y>

statistic.

' Vi(p)p=M (5.7)
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From equation ( 5.7 ), if M <y}, the model mismatch is deemed within the

expected range, the monitoring procedure continues; if M > g}, ., a warning message

should be sent to operating personnel, who can identify and correct the gross error by re-
calibrating instruments, re-sampling purchased material to obtain correct composition
information, etc. Three degrees-of-freedom (DOF) were used in this study because @ is 3-
dimensional (one material balance and two component balances). In all calculations, the
confidence level is a = 0.95.

The data rectification step requires information on the uncertainty in the model

parameters, as well as the measurement uncertainty. The variances of all octane and RVP

model parameters V(Q/”*") would be based on historical plant data, and for this case

study were taken to be 0.0546 (octane number’ or psiz, respectively). According to
ASTM standards, the accuracies required for the final blend octane and RVP
measurements are +0 2 octane and +0.15 psi, respectively (ASTM D-323; ASTM D-
2699; ASTM D-2700). Interpreting these bounds as 95% confidence intervals, the
variances of octane and RVP measurements used in this work were 0.01 octane’ and
0.0056 psi’, respectively.

Turbine flowmeters are sometimes used in gasoline-blending processes (Mudt,
2005). Their principle of operation is that the speed of rotation of a turbine within the
meter is proportional to the volumetric flowrate through the pipe. This type of flowmeter
has a typical accuracy of +0.5% of the actual (flow)rate (4R) over a 10:1 flow range
(Omega, 2005); that is, this accuracy is valid for flowrates from 10-100% of the largest

flowrate.
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Table 5.3. Variance of Flowrate Measurements (Accuracy = +0.5% AR)

AR 0.5%*AR V(F))

Reformate 0.0 0.0 le-8
LSR Naphtha 1,781.0 8.9 19.8
n-Butane 161.6 0.8 0.2

FCC Gas 0.0 0.0 le-8
Alkylate 5,057.4 25.3 159.9
Blend 7,000.0 35.0 306.3

The current CLRTO flowrates were used to estimate turbine meter accuracy. In
Table 5.3, the variance was calculated assuming the variation in flowrates corresponds to
two standard deviations.

Since the only difference between the case studies lies in economics, the data
rectification step is the same for both Case 1 and Case 2. A Monte Carlo study was
performed in order to identify the rate of false alarms in this system; i.e., when M is
larger than the chi-square statistic (Table 5.4). In order to mimic the real plant more
closely, the sampled flowrates were not allowed to have negative values.

In practice, false alarms are expected to happen. If the value of M in equation
( 5.7 ) is slightly above the chi-square statistic, thus indicating that the model is
inconsistent with the data, the data rectification check should be repeated at several
additional CLRTO executions to reduce false alarms. Since the likelihood that three
adjacent measurements will be above the 95% confidence limits under normal operation
is very small (0.05*0.05*%0.05 = 0.0125%), if the third consecutive data point still
indicates inconsistencies, the sequential procedure should be interrupted in order to
perform offline troubleshooting. In order to proceed with the case studies, it will be

assumed that the model has been deemed consistent with the data.

Table 5.4. Data Rectification - 5,000 Monte Carlo Runs

X23. 0.93
Number of false alarms 214 (4.3%)
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5.3. Monitoring RTO Performance

After verifying that plant measurements are consistent with the model and
parameter uncertainty descriptions, the potential cost of uncertainty to the CLRTO is
determined. In Chapter 3, five different methods were presented to determine the effect
of uncertainty on the objective function. Here, the method based on the largest profit gap,
considering ellipsoidal uncertainty (MaxGap.;, Section 3.4) is used due to the good trade-
off between the quality of the description of the monitoring goal and the computational
burden of the method.

The performance monitoring can begin when the CLRTO has reached steady
state. When applying Problem 3.6 to Case Study 1, a MaxGap,; of $2,205 4/day was
found, where Prpc = $9,810.3/ day and PrpomcL = $7,604.9/ day. The results can be seen
in Table 5.5.

Table 5.5. Monitoring Results (Problem 3.6) - Case Study 1

Qir)('l (octane) Q,»RVI) (psi) Fi,BC (bbl/day) F,‘_nom (bbl/day)

Reformate 92.47 2.16 5,648.7 0.0
LSR Naphtha 63.82 11.06 969.2 1,702.8
n-Butane 92.42 137.88 382.1 150.1
FCC Gas 84.90 6.50 0.0 0.0
Alkylate 96.56 7.01 0.0 5,147.2

Table 5.6. Monitoring Results (Problem 3.6) - Case Study 2

Qi""' (octane) Q,-RVP (pSI) Fige (bbl/ day) Finom (bbl/ day )

Reformate 91.90 2.60 0.0 0.0
LSR Naphtha 63.69 11.17 194.4 1,734.3
n-Butane 92.41 137.89 235.0 154.0
FCC Gas 85.55 5.97 4,500.0 0.0
Alkylate 96.80 6.84 2,070.7 5,111.6
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For Case Study 2, Problem 3.6 resulted in a MaxGap,; of $1,484.9/day, where
Prgc = $9,098.2/ day and Pr,om . = $7,613.3/ day. The results can be seen in Table 5.6.

Since the potential profit losses (MaxGap.;) for both case studies are
unacceptably large, enhancement actions are taken in order to improve the estimates of

the model parameters.
5.4. Updating RTO Model Parameters using Available Data

Section 5.3 indicates that economic improvement might be possible. Therefore,
RTO model parameters are re-estimated in order to reduce their uncertainty. Recent
historical data offers some additional information at essentially no cost. CLRTO systems
change plant operation as a response to process disturbances (including model
mismatch); therefore, data in the current batch is likely to provide an opportunity for
parameter estimation. Note that this “transient” data is actually a series of steady states as
the CLRTO approaches its final steady-state operation.

The Bayesian approach to parameter estimation presented in Appendix B is
employed to update the model parameters due to the use of prior knowledge about
parameter values and variances. We note that the estimation using recent data without
perturbations might often not improve the estimates, i.e., reduce the confidence intervals,
sufficiently to achieve the desired small monitoring metric MaxGap,;. The variation in
the transient CLRTO data used in this section is a result of achieving the predicted
optimum operation. This variation might not change the key flowrates by large enough

magnitudes to improve the estimates of the component qualities. However, since this data

Table 5.7. Transient CLRTO flowrates

F; (bbl/day) F;(bbl/day) F;(bbl/day)
RTOrun! RTOrun2 RTOrun3

Reformate 0 0.0 0.0
LSR Naphtha 1,790.0 1,781.1 1,781.0
n-Butane 163.9 161.6 161.6
FCC Gas 0.0 0.0 0.0
Alkylate 5,046.0 5,057.3 5.057.4
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provides valid process information and is free of cost to operation and since the
parameter updating method is very fast, it is suggested that the updating step using
available closed-loop data be performed in case the model improvement is sufficient.

Results from using equations (B.2) and (B.3) to update model parameters using
the available closed-loop data from Table 5.7 can be seen in Table 5.8. In these case
studies, the intercepts in the model equations were assumed known and equal to zero (a
case with uncertain intercepts will be shown later in this chapter). The transient CLRTO
flowrates are the same for both Case Studies 1 and 2, since model and plant parameters
are initially the same.

After the parameters were updated using the closed-loop data in Table 5.7, the
CLRTO system in Case Studies 1 and 2 converged to different optimal bases (Table 5.9),
with profits of $9.118.1/day and $8,678.5/day, respectively. This corresponds to an
improvement of $568.6/day (Case Study 1) and $513.8/day (Case Study 2) in comparison

with the initial basis seen in the last column of Table 5.1.

Table 5.8. Parameter Update with Available Data

Qioen Dinw V(i) V(D)
(octane) (psi) (octane’)  (psi’)
Reformate 91.90 2.60 0.0546 0.0546
LSR Naphtha 63.88 11.02 0.0491 0.0489
n-Butane 92.40 137.90 0.0546 0.0546
FCC Gas 84.90 6.50 0.0546 0.0546
Alkylate 97.05 6.66 0.0107 0.0088

Table 5.9. New optimal CLRTO bases

F; (bbl/day) F;(bbl/day)
Case Study 1  Case Study 2

Reformate 5695.6 0
LSR Naphtha 942.5 177.1
n-Butane 361.9 223.2
FCC Gas 0.0 4500
Alkylate 0.0 2099.7
Profit ($/day) 9118.1 8678.5
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MaxGap,; (Problem 3.6) was calculated again after the parameter update in order
to determine if further model enhancement was necessary. For Case Study 1, MaxGap,
was equal to $1,785.6/day (with Prgc = $ 8,837.5/day and Prpomcr = $7,051.9/day), while
for Case Study 2, a MaxGap.; of $1,304.3/day was obtained (where Prgc = $8,474.0/day
and Pruomcr = $7,169.7/day). Since MaxGap,; was still deemed large for both cases,
additional model improvement was required, and cost-efficient experiments were

designed.
5.5. RTO Performance Enhancement

Since the monitoring metric after the parameter update using normal operating
data was still large in Section 5.4, experimentation was deemed necessary in order to
improve CLRTO performance in both case studies. The experimental design calculations
were performed using Derivative-Free Optimization (Appendix D), since it is a more
reliable method for the proposed experimental design formulation than model-based
methods. The following constraints were included in the design using the data in Table
5.10; they were implemented as penalty functions in the design calculations in the outer

problem.

n " n
J J J J = .
themt min Z F;',uxp < Z E,exp (Qi,lmm T+ gexp )S theml.ma.\' Z E,u.\'p J= OCtJ R VP ( 5 8 )
i=l i=1 1=
n 5 9
Fblena'.min = Z F;‘.exp < Fhlend.max ( ’ )
i=1
F;‘,min 5 F;‘,cxp = F;'.max ( 510 )

Table 5.10. Parameter Values Used in Case Studies 1 and 2

Qi:/end,mm Qb,/end.max
Octane (octane) 88.5 100.0
RVP (psi) 4.5 10.8
Fblend min (bb1/day) Fiiend max (bbl/day)
6,999.0 7,000.0
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The experiments were calculated sequentially, as discussed in Chapter 4. After
each experiment and parameter update, MaxGap,;; was calculated in order to check the
improvement in performance due to experimentation. If the performance was deemed
satisfactory (i.e., if the largest profit gap was below a user-defined threshold), no
additional experiments were designed. The results for the design of experiments are
discussed separately for each case study in Sections 5.5.1 and 5.5.2. In Section 5.5.3, a

case study with uncertain intercepts is presented.

5.5.1. Case Study 1

The trend plot of the flowrates for Case Study 1 during the entire sequential
procedure for RTO performance monitoring and enhancement is given in Figure 5.1.
Table 5.11 presents the seven experiments calculated for this case study. After
experiment 7, the CLRTO system performance was deemed satisfactory since MaxGap,
was small ($82.1/day).

The total cost of experimentation was calculated as the marginal costs associated

with variables (flowrates) at their lower- or upper bounds, times the deviation of the
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Figure 5.1. Results for Case Study 1
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Table 5.11. Experiments for Case Study 1

Fi,expl Fi.epo Fi.exp3 Fi.exp4 Fi,exp5 Fi,exp6 Fi,exp7

(bbl/day) (bbl/day)(bbl/day)(bbl/day)(bbl/day)(bbl/day)(bbl/day)
Reformate 6,498.0 5,736.0 5,705.8 84.7 5,690.6 950 5,677.1
LSR Naphtha 92.3 7552 7348 1,545.2 705.8 11,5189 744.0

n-Butane 137.6 300.1 3545 17222 369.1 1602 3672
FCC Gas 118.4 103.9 91.5 123.3 1135 1498 90.9

Alkylate 153.6 1046 113.3 5,0743 121.0 5,076.2 120.7
MaxGap,y 494.5 3650 3082 2163 173.8 117.2 82.1

($/day)

Reduction of

initial 78% 83% 86% 90% 92% 95% 96%
MaxGap.y

variables from those bounds, as defined in Problem 4.1. The cost was also multiplied by
the ratio between the duration of the experiment (15 minutes) and total batch time (9
hours) as in Problem 4.2. The total cost of experimentation in Figure 5.1 was $7.0. This
value is very small because the original sysiem has nearly alternative solutions (i.e., its
marginal costs are close to zero). In a real plant, however, there would be additional
resistance to changing plant operation, especially due to the transients involving pump
startups and shutdowns. This could be avoided by adding constraints in the design of
experiments to keep flowrates within bounds defined by operations personnel.

The parameter variances after the update with available CLRTO data and their
variances after the 7" experiment are shown in Table 5.12. Note that the experiments
focused on reducing the variances mainly of Reformate octane and RVP, and of Alkylate
octane and RVP. These parameters were determined automatically by the experimental
design problem, without input from the user. By analyzing the results in Table 5.12
together with Figure 5.1, it is clear that the key decision in this case study is whether
Reformate or Alkylate should be added to the blend. Note that both contribute high
octane to the product, but are costly.

If the diagnosis procedure presented in Chapter 4 were used in this system after
the parameter update with CLRTO data (Table 5.8), it would be possible to determine the

parameter importance in this system before any experiments were run. Figure 5.2 shows

112



D. Zyngier, Ph.D. Thesis McMasterUniversity, Chemical Engineering

Table 5.12. Diagnosis and Experimental Design Results (Case Study 1)

After Update After 7" Exp
Ordering According V(Qle) V(OS) V(O ) V( Q.R,:ulm
to Diagnosis (octane®)  (psi’) (octane?) (psi 2
Reformate 0.0546 0.0546 0.0029 0.0016
Alkylate 0.0107 0.0088 0.0055 0.0039
LSR Naphtha 0.0491 0.0489 0.0334 0.0276
n-Butane 0.0546 0.0546 0.0524 0.0510
FCC Gas 0.0546 0.0546 0.0543 0.0540

that the single most important parameter in this case study is Reformate Octane, followed
by Alkylate Octane, Reformate RVP and Alkylate RVP. This matches the results
obtained in Table 5.12, since the experiments reduced the variances of the most important

parameters more than the variances of the remaining parameters.
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Figure 5.2. Diagnosing Case Study 1
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5.5.2. Case Study 2

The same procedure was applied to Case Study 2. The flowrates for the entire
sequential procedure can be seen in Figure 5.3, and the flowrates during experimentation
are in Table 5.13. The total cost of experimentation was $28.5. After experiment 10, the
CLRTO system performance was deemed satisfactory since MaxGap.; was small
($103.2/day).

The reason why MaxGap,; increased slightly after Experiment 5 was because
initially there was significant mismatch in Reformate octane. Since Experiment 5
improved the estimate in this parameter substantially, the largest profit gap was
calculated with smaller parameter variances, but around a different nominal model.

In this case, MaxGap, around the new nominal model was larger than around the
original nominal model. With a few additional experiments as shown in these results, the

performance metric was reduced to acceptable levels.
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Figure 5.3. Results for Case Study 2
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Table 5.13. Experiments for Case Study 2

I iexpl K iexp2 F i.exp3 ¥ iexpd F iexp3 F, i.expb P iexp” '3 i,exp8 F i.expy F Lexpl
(bbl/day) (bbl/day)(bbl/day)(bbl/day)(bbl/day)(bbl/day)(bbl/day)(bbl/day)(bbl/day)(bbl/day)

Reformate 305.2 279.6 9158 274 58827 902 8350 8384 131.1 179.7
LSR Naphtha 218.6 2445 1362 486 6389  81.7 583 57.8 148.7 1,590.9

n-Butane 2299 224.5 534 40.5 361.8 42.5 32.6 272 2273 65.5
FCC Gas 4,205.1 4,151.1 9499 39412 73.8 39173 43704 4371.5 4,447.0 1406
Alkylate 2,040.1 2,099.5 49447 29422 429 28683 1,703.6 1,705.1 2,045.5 5,023.3
MuaxGap. 540.7 371.3 3353 2774 2833 2455 2044 173.4  156.8 103.2
($/day)

Reduction of  64% 75%  77%  81%  81%  83%  86%  88%  89%  93%
initial
MaxGap.

The results from Case Studies 1 and 2 show that the sequential procedure is able
to determine the sources of uncertainty in the RTO model and reduce the variances in the
key model parameters through focused experiments. Even though the two case studies
had exactly the same initial optimal basis (same flowrates) and used the same RTO
model on the same true plant, different economics resulted in different requirements for
model enhancement in each case. This difference was recognized by the sequential
procedure, and Case Studies 1 and 2 converged to different optimal bases for Cases | and
2 (Table 5.9)!

5.5.3. Case Study 1B: Intercept in Parameter Estimation

In the previous studies, the product quality model intercepts have been assumed to
be exactly zero. For example, in the quality equations ( B.1 ) shown in Appendix B, a
linear blending model with intercepts 6 equal to zero is assumed for octane and RVP
properties in the component streams. The use of uncertain model intercepts can play a
significant role in Bayesian parameter estimation.

Many refineries use a linear model without intercept for calculating blended
gasoline octane (Zahed et al., 1993), since it only needs a small amount of data and

produces simpler correlations between component properties (Miiller, 1992). Since it is
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known that octane does not blend linearly (Singh et al., 2000), model mismatch must be
handled by this linear model.

Reid vapour pressure blends linearly on a molar basis. When blending on a
volumetric basis as done in ( B.1 ), practitioners often use the Chevron RVP blending
index (Gary and Handwerk, 1984). Even though the index allows vapour pressure to
blend in an approximately linear fashion without intercept, it does not provide a perfect
correlation. Therefore, there may also be some residual nonlinearity in the linear blending
model for this property.

The intercepts 1n equation ( B.1 ) can account for some of the linearization error
incurred by approximating the nonlinear process model by a linear model one. The proper
choice of whether to include intercepts in the model depends oa plant experience: one
should evaluate the effect of linearization for the range of operating conditions in the
plant. This evaluation could be performed using laboratory blending data or by
implementing the real-time monitoring and diagnosis systern with an intercept and
observing if the intercept is significantly different from zero.

The prior variances of the intercepts in equation ( B.1 ) play a significant role in
the parameter estimation: the larger these variances are, the smaller the effect of new data
points on the estimated octane and RVP coefficients. However, too small a prior variance
on the intercepts is equivalent to not using intercepts at all in the formulation.

In order to illustrate the effect of uncertainty in the intercept, Case Study 1 was
repeated using the same prior variance in the intercepts as in the estimated parameters.
Since there were 12 degrees of freedom in this system (10 octane and RVP properties and
2 intercepts), all variances were assumed to be 0.0476 (octane’ or psi®) so that the
individual parameter variations did not exceed +1.0 (octane’ or psi®) at the 95%

confidence level. The results can be seen in Table 5.14.
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Table 5.14. Experiments for Case Study 1 with Uncertain Intercepts

Fi,exp[ Fi,epo Fi,exp3 Fi.exp4 Fi.exp5 Fi.exp6 Fi,exp7
(bbl/day) (bbl/day)(bbl/day)(bbl/day)(bbl/day)(bbl/day)(bbl/day)

Reformate 5,725.6 1915 5,684.8 551.6 5,700.7 5,705.1 5,686.2
LSR Naphtha 7224 1,583.1 7424 1,045.7 719.7 709.3 7525
n-Butane 310.8 151.8 3634 140.5 3505 282.1 3379
FCC Gas 106.3 66.5 1053 1793 1229 1847 105.9
Alkylate 1349  5,007.1 104.1 5,082.6 106.1 1182 1175

MaxGap, ($/day) _ 1378.6  1,0962 8142 6296 4772 3980 357.1

Reduction of initial 37% 50% 63% 71% 78% 82% 84%
MaxGap.

The initial monitoring step yielded the same metric value as shown previously
(MaxGap,; = $2,205.4/day). After the update with closed-loop data, MaxGap,., had a
value of $2.123.6/day (with Prg- = $ 9,288.8 /day and Pruomc. = $7,165.1/day). Since
MaxGap,; was still large ($2,123.6/day), experiments were designed. In this case,
because of the uncertain intercepts in the quality balance equations, the reduction of the
initial profit gap wasn’t as substantial as in the case with no intercepts, as expected. In
fact, after Experiment 7, the reduction of the initial MaxGap,;, was of 84%, instead of the
96% obtained in the case with the known, zero intercepts.

By applying the diagnostics method from Chapter 4 on this system, it is evident
from Figure 5.4 that the most important parameter is Reformate octane, followed by
Alkylate octane, Reformate RVP and Alkylate RVP. It i5 assumed that if a sensor is
placed to measure a given component quality, the quality’s uncertainty is considered to be
reduced to zero. The effect of installing sensors in this system after the 7™ experiment can

be seen in Table 5.15.
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Figure 5.4. Diagnosing Case Study 1 with Uncertain Intercepts

The evaluation of whether sensors should be installed or not is problem-
dependent. For example in this case study, sensors may be useful if the system remains
very sensitive to information on Reformate and Alkylate properties, i.e., if the MaxGap,;
remains large after several experiments. Based on an analysis of substantial amount of
historical data, if this situation occurs frequently, onstream analyzers could be
appropriate. If this situation occurs only infrequently, offline lab samples may be more

appropriate for these key component qualities.

Table 5.15. Effect of sensors

Sensor Location MaxGap,n
($/day)
No sensors 357.1
Q;ilcl-’l_pluul 2606
Q;:;Lplum , Q((’;;,;l.plum O‘ 5
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The cost of installing a Near Infra-Red (NIR) analyzer, which is capable of
measuring several component qualities including octane and RVP, is roughly $300,000
(Measurementation, Inc., 2004). In order to decide how many sensors should be installed,
if any at all, one should note that MaxGap., corresponds to a conservative estimate of the
profit gap: a more realistic estimate could be obtained by using the more refined
approaches in Chapter 3 (the expected value of MaxGap,, or ideally, the expected value
of the profit gap). Also, maintenance and installation costs of the sensors should be taken
into consideration before making the decision to purchase the sensor. The decision would
be based on an economic analysis using standard time-value of money measures, €.g., net

present value (NPV).
5.6. Two-Parameter Case Study 3

In the case studies shown in the previous sections, the use of closed-loop RTO
data was sufficient for the system to attain the correct basis, and the experiments were
performed in order to achieve a small enough largest profit gap This means that for these
cases, the experiments did not increase profit; they increased the probability that the
highest profit had been achieved. However, this does not occur in all situations. As an

example, we present a case study with two uncertain parameters, defined in Table 5.16.

Table 5.16. Description of Two-Parameter Case Study

fo.):;:)::r Qiﬁi«?l:y Q/”l‘rgu Q:k;,nl:: cost; F
(octane) (psi) (octane) (psi) ($/bbl) (bbl/day)

Reformate 91.9 2.6 92.3 2.7 34.2 0.0
LSR Naphtha 64.0 11.0 64.0 10.9 26.5 1796.3
n-Butane 92.5 137.9 92.5 138.0 10.3 161.1
FCC Gas 84.8 6.5 85.3 6.4 31.8 0.0
Alkylate 97.0 6.6 97.0 6.7 34.4 5042.5
Current Profit
($/day) 8,274.1
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The variances of Reformate octane and FCC Gas octane parameters were
assumed to be 0.1280 octanez, which, in a 3-degree-of-freedom multivariate normal
distribution (2 octane parameters and one intercept for the blended octane equation)
corresponds to a maximum variation of +1.0 octane in each parameter.

When monitoring the performance of the system, a value of $897.7/day was found
for MaxGap.;, where Prgc = $ 9,123.0/ day and Prpomcr = $ 8,225.3/ day. Since this
value is considered too high, transient RTO data without experimentation (Table 5.17)
was used to update model parameters.

Since the initial transient data contained nc information on the component streams
with uncertain parameters, the largest profit gap MaxGap.; remained the same
($897.7/day) after model updating using the initial data. Two designed experiments were

required to reduce the profit gap to an acceptable level, as shown in Table 5.18.

Table 5.17. Transient RTO runs

F, (bbl/day) F;(bbl/day)
RTOrun1l RTOrun2

Reformate 0 0.0
LSR Naphtha 1,796.4 1,796.3
n-Butane 161.1 161.1
FCC Gas 0.0 0.0
Alkylate 5,042.5 5,042.5

Table 5.18. Experiments for Two-Parameter Case Study

F iexpl F iexp2
(bbl/day) (bbl/day)

Reformate 55.8 274
LSR Naphtha 9.3 60.0
n-Butane 19.5 61.3
FCC Gas 3,9749 3,953.5
Alkylate 2,940.5 2,897.8
MaxGap,; ($/day) 213.9 53.1
Reduction of initial MaxGap., 76% 94%
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Figure 5.5. Results for Two-Parameter Case Study

The profile of the flowrates during the sequential procedure for this case study
can be seen in Figure 5.5. In this example, the total cost of experimentation was $1.0.

Note that the optimal basis of this system after the update with initial CLRTO
data remained was the same as the initial basis. After the second experiment, the CLRTO
system performance was deemed satisfactory since MaxGap,; was small ($53.1/day).
After experimentation, the system converged to a new optimal basis, with a profit of
$8,626.6/day. This represented an improvement of ($8,626.6/day — $8,274.1/day =)
$352.5/day to plant operation.

5.7. Conclusions

In this chapter, the new methods presented in previous chapters were integrated
into a sequential procedure for monitoring, diagnosing and improving the performance of
linear CLRTO systems. The sequential nature of this procedure allows for its interruption
as soon as CLRTO performance is deemed satisfactory.

The monitoring method does not interfere with the closed-loop RTO. It checks

data for validity before performance monitoring is performed, and it evaluates the
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potential profit loss in the system based on prior information about model uncertainty.
From the results in Chapter 3, MaxGap,; was the monitoring metric that possessed the
best trade-off between quality of representation of monitoring goal and computational
expense; therefore, it was the chosen metric for the sequential procedure. The monitoring
strategy allows for the incorporation of correlation among parameters and handles all
types of constraints (equality and inequality) directly in closed- or open-loop systems. It
can also handle uncertainty in any coefficient of the original CLRTO problem.

Experimentation is only performed when uncertainty (based on prior information)
and current batch data do not provide sufficient model accuracy to reduce the monitoring
metric (MaxGap,y) to acceptable levels. Derivative-Free Optimization is used to solve the
experimental design formulation due to its greater reliability in comparison to the
optimality-based methods. The experiments are designed to maxirnize the overall profit
during the process batch and to have a very flexible constraint structure. The
experimental design can be tailored to plant requirements by defining additional
constraints, such as limitations to the changes in variables from their current values or on
final product quality. This is desired since blended gasoline is usually stored in large
tanks with no agitation, so stratification of material could occur.

The sequential procedure provides a clear record of the key parameters whose
uncertainty might influence profit tracking. The diagnosis method presented in Chapter 4
can effectively rank parameters in terms of importance with respect to the objective
function of the original problem without assuming a constant LP basis. This information
could be used to simplify the design of experiments by determining variables that should
have improved estimates, or for determining process sensor location.

The case studies in this chapter have demonstrated the efficacy of the sequential
method for CLRTO performance monitoring, diagnosing and enhancement. The
experimentation and diagnosing reduced the uncertainty as predicted and resulted in the

closed-loop RTO system converging to the true plant optimum in all cases.
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Chapter 6
Conclusions and Future Work

Real-time optimization systems use an updated model in order to track optimum
operation in a plant. In all commercial real-time optimization systems with feedback only
some of the model parameters are updated at every CLRTO execution. Therefore, some
process parameters such as component properties, prices and costs are not known exactly,
but instead, within some uncertainty region. The CLRTO system determines the
operating conditions in the system by optimizing the uncertain model. As a result, there
is generally no guarantee that the optimum of the true plant has been achieved and no
straightforward manner for estimating the deviation from the true plant optimum.

This thesis focuses on determining the cost of the uncertainty in closed-loop LP
problems under limited feedback. Methods were developed for diagnosing the
optimization system by calculating measures of the profit loss due to parameter
uncertainty and by identifying parameters that affect the objective function the most. In
addition, novel formulations were developed for designing profit-based experiments to
update model parameters when their uncertainty needs to be reduced. None of these
methods assumes knowledge about the true values of unmeasured process variables in the
plant. The only assumptions are that their uncertainty ranges (or in some cases,
distributions) are known and that there is no significant structural mismatch between
model and plant.

In the following sections, some conclusions and contributions of this work are

presented in more detail.
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6.1. Conclusions

6.1.1. Problem Definition

This thesis addressed monitoring, diagnosis and improvement of the performance

of a class of closed-loop optimization systems. The key assumptions and characteristics

of the models considered in this research are stated in the following paragraphs.

b

‘/’/

‘///

Linear Programming: The systems in this work can be adequately modeled using
linear programming, including linearization of properties and quality-flow
constraints in the gasoline-blending process. All variables are continuous
between their bounds, and no significant structural mismatch exists.

Closed-loop optimization: The optimization is performed periodically after the
model has been updated using selected measurements of output variables. In this
study. only the steady state behaviour of the system is monitored. The transient to
the steady state is not evaluated because the material is mixed prior to being
shipped to the customers, and therefore deviations from specifications are
moderated by mixing and deviations in the mean can be can be corrected by
modifying the target of qualities at the mixing point.

Measurements: Measurements for use in the real-time system are assumed to be
limited.

Uncertain feedback parameters: The plant parameters are not known exactly, and
some may not be observable using commonly available data. At least some of the
uncertain parameters are multiplied with variables in the LP model.

Correlated parameters: The uncertain parameters may be correlated due to the
chemistry and physics of the upstream processes.

Limited interference: The monitoring and enhancement system developed in this
thesis introduces as little change as possible to the process operation, so as to
reduce modifications of product qualities, production rate and economic

performance.
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> Real-time implementation: Uncertainty, input variable bounds, output constraint
limits, and economic coefficients define a scenario, and the scenario can change

from day to day. Therefore, the system should be implemented in real time.

The research addresses the performance of the closed-loop real-time optimization.
Therefore, methods were developed to determine how close a real-time optimizer is to the
best possible closed-loop operation for a given plant realization. For a closed-loop
system, this metric represents the effect of uncertainty on the system for a single plant
realization. For open-loop systems, however, this metric represents the effect of
disturbances such as the properties of the blending components, which have a strong
effect on profit. This topic is further discussed in Appendix E.

Linear CLRTO with limited feedback is applied to relevant industrial problems,
such as blending of components into a final product. Examples of such blending
problems are present in the cement industry, coal industry and in refinery operations,
such as the blending of crude oil, diesel and gasoline. In the gasoline-blending process, it
is common to have a bias model updating strategy, which can lead to the wrong corner
point if the mismatch between plant and model parameters is too large. Because of its
economic relevance, this process was used in several case studies throughout the thesis.
Other types of problems to which the technology in this work is applicable are:

g The steady-state LP in every MPC controller (at least 4,000 installed worldwide).
The monitoring and diagnosis is directly applicable, while the experimentation
would require modification: in this case, the experimentation process would be
dynamic. where the experimental design would perturb the dynamic system to
obtain improved estimates for the steady-state gains. Depending on the goals of
the design (improved estimates of steady-state gains, dynamic performance), the
experimental design would be substantially different, requiring design of the input
forcing (magnitude, frequency content, etc.), consideration of constraints in the
dynamic variables during the experiment, and model building diagnostics (Box

and Jenkins, 1970).
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> Any production planning problem that can be re-solved periodically using updates
from recent measurements. This could be a daily re-optimization performed “off-

line”, which would emulate the CLRTO implementation.

6.1.2. Monitoring CLRTO Performance

In most processes, the condition of the true plant relative to its optimum cannot be
determined by measurements. There may be too few measurements available to update
all of the uncertain parameters, or, in the gasoline blending process, some flows may not
be in the current optimal basis (i.e., their flows may be zero), and therefore do not have
any effect on the output measurements.

The CLRTO performance measure was based on the value of the objective
function, i.e., profit, in the gasoline case study. Variability of the optimization variables
(flows in the blending problem) was not considered important in terms of performance.
The methods in this research could be applied to optimization including other terms in the
objective function, which would be a form of goal programming.

In order to assess CLRTO performance, an a priori estimate of parameter
uncertainty from previous batches is used. The performance metrics developed in this
work estimate the deviation of current operation from the true plant optimum due to
uncertainty in the RTO model parameters. The first metric developed was the largest
profit gap (MaxGap), calculated with interval or ellipsoidal uncertainty description of the
parameters. This metric corresponds to the Maximum Regret in Decision Analysis
theory. In this work, MaxGap is calculated in a single computation, and therefore does
not require the enumeration of scenarios, as is the case in traditional Decision Analysis
literature. This metric can be very relevant in some problems (other than gasoline
blending) in which the worst case involves a very undesirable incident, such as
bankruptcy of a company, failure of a building, explosion of a process, etc. MaxGap
defines an upper bound on the loss due to imperfect modeling of the plant. Due to its
computational tractability, it can also be embedded in the experimental design

formulation, where sampling would not have been computationally tractable.
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If more accuracy is required in assessing performance, an improved monitoring
metric was developed that incorporates information about the parameter distribution, i.e.,
the expected value of the largest profit gap, E(MaxGap). It is a less conservative, but
computationally more intensive method than MaxGap. It is still of manageable
computational complexity for monitoring purposes. For this metric, a method was
developed for approximating the integral needed for calculating the expected value of a
function based on parameter confidence level information.

The most meaningful monitoring metric for CLRTO systems is the expected
value of the profit gap, E(Gap), which corresponds to the Expected Value of Perfect
Information (EVPI) in Decision Analysis literature. It is a very expensive metric to
calculate even for monitoring-only applications, and it does not scale well with the
number of uncertain parameters. A method for eliminating large parameter regions was
developed that can potentially reduce the computational burden of calculating this metric.
In this work, the E(Gap) metric was only applied to a two-dimensional problem;
therefore more studies are needed in order to develop efficient strategies for larger-scale

systems.

Main Contributions:

’ Modeling CLRTO systems to identify performance loss due to uncertain
parameters. Because of its goals, modeling required a novel formulation, different
from the one required for (open-loop) evaluation of best- and worst-case
optimization of systems due to process disturbances;

Definition of useful measures of CLRTO performance;

Formulating and solving three novel real-time monitoring metrics;

Y YV V¥

All performance metrics can handle parameter uncertainty (and most of them,
correlation) in any parameter of the closed-loop system. The uncertain parameters

can be in equality or inequality constraints.
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6.1.3. Diagnosing CLRTO Performance

The purpose of diagnosing the performance of a CLRTO system is to rank
parameters for importance with respect to their effect on the objective function. If used in
real-time applications, it can direct unscheduled laboratory analyses, while in offline
applications, diagnosing can aid in model improvement and sensor location. Therefore,
diagnosing complements the monitoring problem in that monitoring determines the effect
of parameter uncertainty in the system, while diagnosing identifies the key parameters
responsible for such an effect.

The diagnostic method developed in this thesis determines parameter importance
at different values of the profit gap metric. As distinguished from conventional sensitivity
analysis literature, it is not limited by the assumption of a constant active set. The
CLRTO diagnosing formulation is a bilevel optimization problem that was solved with an
interior-point solver, IPOPT-C.

The calculations for the diagnosis procedure are much simpler than the ones for
experimental design. Therefore, it is expected that the diagnosis will find application as a
method for evaluating optimization systems, even when the complete sequential

procedure for CLRTO monitoring and enhancement has not been implemented.

Main Contribution:
> Formulation and solution of a CLRTO performance diagnostics method that
identifies key parameters at various levels of profit loss due to CLRTO parameter

uncertainty.

6.1.4. CLRTO Model Improvement

Whenever CLRTO performance is deemed unsatisfactory, experimental design
can be used in order to improve it. This new formulation provides a profit-based
objective, rather than an information-based objective as in conventional optimal design of

experiments. The objective of the experimental design formulation is to improve the total
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profit in the operation from the beginning of the experiment until the end of the batch.
The profit during experimentation was also considered.

The experimental design formulation considers the effect of parameter variance
on profit and provides flexibility in the experiments by incorporating constraints to
manipulated and dependent variables. More than one experiment may be required to
achieve acceptable CLRTO performance.

The experimental design is geared towards optimizing the overall profit of the
system, and it can be applied to small- to mid-sized problems. Since the performance
metric was an inner problem for the experimental design calculations, the largest profit
gap (MaxGap) was the metric of choice because it can be solved in a single optimization
problem.

The cost of experimenting is based on whether the manipulated variables involved
are basic or non-basic. Since batch processes are considered, the effects on the product
composition on changes in basic variables that are not at their bounds can be
compensated for ("blended out") after the experiment has been performed, and thus are
considered to have zero cost to operation. The same does not apply to variables at their
lower or upper bounds. Since the effect of experimentation will be felt at the final product

tank, modifying these values has a cost that is associated with their marginal values.

Main Contribution:

> Formulation and solution of the profit-based experimental design problem. The
challenging three-level optimization was solved by two methods, with the
Derivative-Free Optimization (DFO) method being more reliable in the case

studies.

6.1.5. Real-Time Method for Monitoring and Enhancing RTO

Performance

This thesis presented a systematic way of applying the monitoring and

enhancement methods to existing CLRTO systems. The first data rectification step
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employs existing technology to check that the key assumptions about the uncertainty
magnitudes are valid for the operating region. Then, the performance monitoring and
enhancement techniques developed in this work are applied until satisfactory
performance is achieved. The diagnostics methodology can be used for offline evaluation

of the process improvements.

Main Contribution:
> A stage-wise procedure that employs the simplest computations and least
intrusive procedures possible at the earlier stages of the CLRTO executions in a

process.

6.1.6. Monitoring Open-Loop Optimization

The methods developed for monitoring the performance of closed-loop systems in
this work can be extended in a straighiforward manner tc open-loop LP problems. In this
case, the monitoring methods determine the best- and worst-case performance of the
optimization of a system with no feedback or recourse. These cases may correspond to
the best and worst effect of process disturbances in a plant, for example. There was a

preliminary application to a nonlinear optimization problem, but further study is required.

Main Contribution:
’ Formulation and solution of monitoring open-loop linear optimization problems
with uncertain parameters in the objective function, equality and inequality

constraints. Stochastic correlation among parameters in also handled.

6.1.7. Limitations of the Methods

While the developments in the thesis have opened new avenues in the area of
closed-loop optimization under uncertainty, they are not without limitations. The
formulations for monitoring, diagnosing and designing experiments are nonlinear,

nonconvex optimization problems, so there is no guarantee of global optimality.

130



D. Zyngier, Ph.D. Thesis McMaster University, Chemical Engineering

There may be computational issues with larger-scale problems due to the rising
number of complementarity constraints if there are additional inequality constraints in the
original optimization problem, and/or due to the increasing number of uncertain
parameters. Complementarity constraints are particularly challenging because
singularities occur at each active set change.

The solvability of the problem is somewhat dependent on the solver being used.
[POPT-C has been reported to solve up to 1,748 complementarity constraints so far. Its
success is partly based on softening the complementarity constraints, as discussed in
Appendix D. With future developments in solver technology and in computational power,

application of methods in this thesis may broaden.

6.2. Future Work

This thesis presents new approaches for monitoring, diagnosing and enhancing
CLRTO performance. Several new research topics were addressed, such as monitoring
the performance of closed-loop systems, profit-based design of experiments and the
diagnosis of optimization systems (Robinson, 2005). Therefore, many potential research

topics stem from this work.

‘7

Larger LP Problems: The CLRTO performance monitoring, diagnosing and
enhancement methods can be applied to other relevant larger-scale (20+
manipulated variables) LP problems. Even though a small open-loop NLP case
study was presented in this thesis, a general methodology to handle nonlinear

CLRTO systems is also needed.

‘/

Mixed-Integer Problems with Uncertainty: It would be beneficial to extend the
methods to mixed-integer linear programming problems, such as the ones

encountered in the scheduling and planning problems.

‘/7

Performance Monitoring: Besides profit, other CLRTO performance metrics

exist, such as frequent switching between two corner points, as occurs in some
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Model-Predictive Controllers. The inclusion of these metrics in the monitoring
approaches should be assessed.

> Diagnosing: The formulation in this thesis minimizes the trace of the variance-
covariance matrix in order to achieve a user-specified profit gap threshold value.
Another possible formulation for the diagnosis problem is to minimize the
number of parameters that need to be updated so that the largest profit gap is
below a maximum acceptable value, which becomes a mixed-integer problem.

» Design of Experiments:

o The experimental design strategy could be altered in order to reduce its
computational burden. First, the system can be diagnosed in order to
determine the key parameters responsible for a user-specified profit gap
threshold. Then, experimentation could be performed only on the subset of
parameters identified by the diagnosis, thus reducing the computational
burden of designing experiments. Also, similarly to the extension for
diagnosing, the experimental design formulation could directly include the
number of parameters being re-estimated in its objective function, which
should be minimized. This would give the problem a mixed-integer
formulation.

o The design of experiments in this thesis has the maximization of profit
during the experiment as part of the objective function. This leads the
optimizer to increase the flowrates of profitable components during the
experiment as much as possible, instead of reducing the flowrates of
components that lead to experimental costs. In future work, the cost of
experimentation could be considered explicitly in the objective function,
which would possibly lead to a reduction in the production rate during the
experiments, if production rate were left unconstrained. A reduction in
production rate would lead to reduced costs of experimentation, although

sensor accuracy might be (negatively) affected.
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>

Improved CLRTO Design: An interesting extension of this work is to determine
which values of the nominal CLRTO model parameters would make the
performance of the closed-loop system least sensitive to uncertainty in the plant.
The methods developed in this thesis may also be applied to plant design
problems, in which sensors could be systematically placed in order to improve the
performance of the CLRTO system, balancing the capital/operating cost vs.
improvements.

Structural Mismatch: The effects of likely structural mismatch should be
investigated. One approach would be to pose multiple, disjunctive LP models
with different structures for a single model in the system. Then, the linear
combination of these models would provide a relaxation yielding a convex model
(for an LP) which would provide an upper bound on system profit. How tight

(useful) the bound is would need to be evaluated.
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Nomenclature

AR

BwW

CGapmin

cost

DOF

EVPI
EVSI

ES
Fw

Gapmin

#ineq

payoff

left-hand side parameters

actual rate

right-hand side parameters

backward difference approximation
objective function coefficients
concentration

largest confidence level that yields a profit gap of Gapin
cost of components available for blending
set of decisions

degrees of freedom

expected value of perfect information
expected value of sample information
objective function

flowrate

vector of flowrates

full scale

forward difference approximation
inequality constraints

minimum profit gap

equality constraints

number of inequality constraints
objective function

reaction rate
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L Lagrangean
MAP maximum achievable profit
Maxgap largest profit gap
Mingap smallest profit gap
n number of components available for blending
Nc number of constraints
p probability of constraint satisfaction
probability of each realization of the uncertain variables
Pr profit
0 properties of components available for blending
surrogate function
regret
T profit gap threshold
TR trapezoidal approximation
U variance-covariance matrix of model parameters
14 volume
value value of gasoline
x optimization variables
molar fraction
X input variables
Y interpolation set
Z output variables
Greek letters
a confidence level
recycle ratio of components A and B
Jij updated bias parameter
recycle ratio of components X and Y
) smallest Lagrange multiplier
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A change in value

trust region radius
€ bias
¢ basis in the space of quadratic polynomials
D coefficient matrix of surrogate model
@ error vector
A Lagrange multipliers
Y7, barrier parameter
c standard deviation
[ parameters
Subscripts
0 initial value
a set of active constraints

component A
A active inequality constraints
a0 initial value for component A
Alk alkylate
AP approach for calculating expected profit gap
b component B
BC best-case scenario
blend variables that refer to blended gasoline product
But n-Butane
BW backward difference approximation
CL closed-loop
conf confidence level (%)
dof degrees of freedom
ell ellipsoidal uncertainty description
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eq equality constraints

exp experiment

FCcC FCC Gasoline

Fw forward difference approximation

i index for components available for blending

index for decisions

1 inactive inequality constraints
in inequality constraints

int interval uncertainty description
i index for realizations of uncertain variables
LSR Light-Straight Run Naphtha
meas measured

min lower bound

max upper bound

nc number of confidence levels
nom nominal

OL open-loop

P number of uncertain parameters
r component R

Ref Reformate

t RTO execution time

TR trapezoidal approximation
true true value in the plant

wcC worst-case scenario

x component X

y component Y

Superscripts

0 initial value
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plant
oct

RVP

Operators
E()

L)

V()

\%

set of component properties (octane number, RVP)

plant
octane

Reid vapour pressure

expected value
trace of a matrix
variance-covariance matrix

gradient
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Appendix A

Gasoline Blending Process

Blending is a very important process in, among others, petroleum processing,
cement manufacturing and food processing. Because of its economic importance and
relatively simple models, blending was one of the first applications of Closed-loop, Real-
Time Optimization (CLRTO). As an example, CLRTO has been applied to commercial
gasoline-blending processes since the 1960’s (Birchfield, 2002). Gasoline blending was
selected as the industrial example for this study because of the following reasons.
> The process can be modeled with reasonable accuracy using linear programming
» CLRTO has been applied to many gasoline blending processes
> The process has significant uncertainty in parameters that multiply variables, i.c.,

left-hand side coefficients in a linear program
» The process is economically important and has opportunity for further

improvements via monitoring and diagnosis

> The process is representative of other CLRTO systems using an LP
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Figure A.1. Simplified Flowchart of an Oil Refinery (The tanks are indicated by a “T”.)
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A.1l. Process Description

A simplified flowchart of a petroleum refinery is presented in Figure A.l, in
which the five components for gasoline blending considered in this thesis are shown. The
refinery makes many products, and only the gasoline is shown on the diagram. Some of
the major process units are shown as blocks in the figure. Each block contains a very
complex set of process equipment involving physical separation and in some cases,
molecular modification by chemical reactions. The refinery operates continuously
making material that is stored in the componeni tanks. The goal is to maintain constant
qualities for materials going to component tanks, but this goal is not exactly achieved
because of disturbances in crude composition and variability in process operating
conditions. The potential for purchasing blending components from other companies also
exists, and these import streams are not shown in Figure A.1. Gasoline product is made
periodically by blending material from selected component tanks. The product is stored
in a product tank after the blender and is shipped to a distribution point after the gasoline
batch has been completed.

A typical gasoline blender may produce about 10,000 barrels of gasoline a day. At
the price of $50/barrel, the revenues are at around $180 million a year. Even if only a
very small improvement of 0.10% is made on this process, revenues will increase by
roughly $180,000 a year, which is substantial. Because of its wide application and
opportunity for high returns, gasoline blending was used as the case study in this work.
However, the techniques developed here are applicable to many other LP-based closed-

loop optimizations.
A.2. Modeling Assumptions

A batch gasoline-blending process is considered as the example process. The
components Reformate, Light Straight Run (LSR) Naphtha, n-Butane, FCC Gasoline and
Alkylate are blended to form the gasoline product. The properties of each component

change due to variations in feed material and upstream process operation, but the
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component properties do not change significantly during a batch because of the large
component tanks. This blending process has very fast dynamics and reaches steady-state
operation between CLRTO executions, which typically occur at every 15 minutes (Mudt,
2005). The gasoline batch process usually lasts anywhere from 8 to 16 hours. The
resulting production of gasoline is stored in a product tank. Achieving instantaneous
product quality specifications is not required: only the final outcome of the integrated
blending batch in the product tank must satisfy the specifications. It is assumed that the
mixing in the blend point is perfect by the use of static mixers (PetroMetrix, 2006), as
well as that no change in specific gravity occurs during mixing (i.e., volume flows add
linearly).

A typical gasoline-blending process has between 5 and 10 component streams
(Arwikar et al., 2002, Mudt, 2005), which are the variables adjusted for optimization.
One key goal is the production rate, which is naturally the sum of the component flow
rates. In addition, many product quality specifications must be satisfied, but only some
product qualities are measured onstream, in real time, such as octane number and RVP
(Zahed et al., 1993, Arwikar et al., 2002).

The two key component qualities measured onstream in this thesis were octane
number and Reid vapour pressure (RVP). Octane numbers characterize the anti-knock
properties of the fuel and can be calculated as the arithmetic mean between motor octane
number (MON) and research octane number (RON). Anti-knock is the characteristic of a
fuel to resist premature detonation when exposed to high pressures and temperatures in
the combustion chamber of an engine. MON represents the engine anti-knock
performance under severe operating conditions, while RON represents the engine anti-
knock performance under mild conditions of operation (ASTM D-2699, ASTM D-2700).
RVP is also a very important property of the fuel, since it affects engine startup and
warmup, and the tendency to vapour lock under high operating temperatures or high
altitudes (ASTM D-323). Vapour lock occurs whenever gas bubbles block the flow of

fuel to the carburetor.
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Gasoline blending is a (mildly) nonlinear process (Singh et al., 2000). However,
a linear model can be formulated when (1) blending indices compensate for some
nonlinearities (Gary and Handwerk, 1984), (2), the component flow ratios remain within
established limits where the blending indices provide acceptable accuracy and (3) models
are formulated using flow-quality units (Williams, 1999). If the flow ratios vary
significantly from a priori estimates, the linear model can be modified and the LP
resolved, until sufficient accuracy is achieved; this would be a form of sequential LP
(SLP). For the moderate changes typically made by an online optimizer, CLRTO
blending is typically implemented as a linear program (Zahed et al., 1993; Diaz and
Barsamian, 1996; Vermeer et al., 1996). The choice of linear programming is strongly
affected by the need for a very reliable optimization calculation in the closed-loop

optimization. Therefore, qualities are assumed to blend linearly in this thesis.

Fiend (ij/end )mm = ZF: o/ J = oct, RVP (A.la)
i=1

F blend (ijlend )m,-n = ZEQ,J (A.1b)
i=1

Qg[end s (Ql{/end )max (A.lc)

oS 1o (A.1d)

Where F blend (ijlend )= Z EQ'j ( A. le)

i=

The flow-quality formulation of blending is seen in the set of equations (A.1)
(Williams, 1999), where n is the number of components. The equality constraint in
equation (A.le) contains a nonlinear term because the flowrate and quality of the product
are variables. However, the linear inequalities in equations (A.la) and (A.1b) are
equivalent and can be used to impose the same relationships as equations (A.lc) and

(A.1d) in a linear program.
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The Chevron blending index (Gary and Handwerk, 1994) is used to predict the
RVP of blended products through a linear combination of the RVP blending indices
(RVPBI) shown below.

RVPBI = RVP'” (A2)

}7:‘>Ie'rr¢l(RI/})BIhIemI)= iRVPB[IF; (A3 )

i=1

The gasoline-blending process has important uncertainty in the parameters,
specifically the unmeasured component qualities, since the components are either
purchased or come from upstream operations, which have variable operating conditions.
In this thesis, the effects of changes in component qualities of streams entering the tanks
are considered insignificant over the time when the monitoring and diagnosis are
performed. This is a reasonable assumption, since components are stored in very large
tanks, which are assumed to be well mixed. The effect of heels in the product tank is not
considered explicitly; however, in practice it simply affects the targets for the
specifications at the blending point before the product tank.

If most component properties were measured accurately and without fault, there
would be much reduced need for a performance assessment of the CLRTO system.
However, quality analyzers are quite expensive (roughly US$ 300,000 for each Near
Infra-Red analyzer, which should be placed on each component stream)
(Measurementation Inc., 2004). Therefore, component properties are only measured off-
line very infrequently (once a week or even once a month) (Mudt, 2005; Kelly, 2006).
Nevertheless, production from the plant flows into the component tanks continuously.
Therefore, mismatch between model and plant parameters is likely, making this a very
good case study for the methods developed in this work.

The available measurements are considered to be the final gasoline octane number
and RVP properties and the flowrates for all streams. It is assumed that samples taken for
onstream analysers are representative. The accuracy of the octane and RVP

measurements are considered to be +0.2 octane and 0.15 psi, respectively, which
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correspond to the legal requirements for spark-ignition engine fuels (ASTM D-323;
ASTM D-2699; ASTM D-2700).

Turbine flowmeters are often used in gasoline-blending processes because of their
better accuracy and wider range than standard orifice flow meters (Mudt, 2005). Their
principle of operation is that the speed of rotation of a turbine within the meter is
proportional to the volumetric flowrate through the pipe. This type of flowmeter has a
typical accuracy of £0.5% of the actual (flow)rate (4R) over a 10:1 flow range (Omega,

2005); that is, this accuracy is valid for flowrates from 10-100% of the largest flowrate.
A.3. Blending Model

The behaviour of the "true" gasoline blending model can be seen described by the

following set of linear equations:

n M
ol J.plam J 2 Ad
z ‘F idrue Qi 2 leend.miu Z E Jrue g oct, RVP ( )
i=] i=1
n n AS
J.plamt v .
Z F; Arue Qi = theml, max Z E,Ime ( )
i=| i=1
3 A6
F, blend ,min = Z E true - blend ,max ( ) )
i=1
UL Fp SF ( A7)

Therefore, the "true" plant optimum for this system would be to maximize the
objective function (profit ): Z(value—costi )F,,,,,m, subject to the constraints ( A.4 ) to
i=l

( A7).
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A.4. Blending Model Uncertainty Description

For most of the case studies in the thesis, the octane and RVP properties of each
of the five component streams were assumed uncertain, giving ten uncertain parameters.
Two uncertainty descriptions were used, ellipsoidal and interval. The uncertainty was

taken symmetrically around the nominal parameter values.

> For cases with interval description of uncertainty, bounds of * 1.0 (octane or psi)

were used. (Szoke and Kennedy. 1984, Mudt, 2005)

‘//,’

For cases with ellipsoidal description of uncertainty, the largest variation possible
at the 95% confidence level for any parameter in the ellipse was taken to be +1.0
(octane or psi). Therefore, the uncorrelated variances of each of the ten
parameters were calculated as 1/% 79510 = 0.0546 (octane2 or psiz). Any different
values for parameter uncertainty are defined in the chapters where the cases are

presented.

In Chapters 3 through 5, several case studies are presented. Cases with two and
ten uncertain parameters are shown, as well as examples with interval and ellipsoidal
uncertainty description. The different results and computational experience are discussed
as the case studies are presented.

Regardless of the octane and RVP specifications, the typical optimum lies at the
maximum RVP and minimum octane. However, depending on the individual properties,
different combinations of components could meet the specifications. Due to different
component properties between blends, the results of specific case studies could change.
This justifies the need for implementing optimization online, rather than simply analyzing

the system once offline.
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Figure A.2. MPC Structure

A.5. Model Predictive Control Structure

As mentioned in Chapter 1, the CLRTO systems considered in this work have a
Model-Predictive Control (MPC) structure (Qin and Badgewell, 2003). This structure
calculates manipulated variable moves based on an estimate of future plant behaviour for
a finite time horizon. Only the calculated change in manipulated variable for the first time
increment is implemented. The controller repeats its calculations periodically.
implementing a rolling horizon controller. For the blending process, the plant (and
model) dynamics are fast compared with the controller execution; therefore, the
controller performs an optimization of a steady-state model.

At each execution period, some process variables are measured, and the
measurements are compared with the respective model predictions (Figure A.2). The
difference between the measured and predicted variable values is the prediction of future
disturbances. It is called the "bias" when the future disturbances are assumed to equal the
current disturbances and the bias for each measured output is added to the model
equations for that predicted output.

In the gasoline-blending problem, the "Plant" is equivalent to the problem in

Section A.3. The updated bias in Figure A.2 is calculated as:
8’ z F;_llﬂl'l = Z E.I'l)l’l (Ql:i.ph"” il Ql{"t"" ) j = OCt’ R VP ( A.8 )
i=l i=

Finally, the "LP" in this case corresponds to the following problem:
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H A.9
max Z (value - cost,)F, ( )

; i,nom
i.nom i=1

S.t.

"

n
J J J
Z E,fwm (Ql nom +é ) 2 theml,min Z E,nom
i=1

i=l

" n
J J J

Z F;.nom (Qi,nom +é ) = leend,max Z E.rrom

i=1 i=1

n
F'hlend.min = Z E,nom = Fblend,max
i=l

0<F

inom

<F

i,max

The flowrates Fj,on obtained from solving the LP in problem ( A.9 ) are the

setpoints that are sent to the controllers in the plant.
A.6. Nominal Parameter Values in Case Studies

The nominal values for the blending mode! and economics are presented in here.
These are the values used in the CLRTO. The monitoring calculations use the uncertainty
descriptions described in Section A.4. The true plant blending component qualities were
taken to be different from the nominal, using either an interval or ellipsoidal range that
has the nominal values as the midpoint. The uncertainty descriptions for each case are
described with the cases in the body of the thesis.

The values for all model and plant parameters are shown in the following tables.
Currency denoted by $ corresponds to US Dollars. Barrels are units often used in the oil
industry, even in countries using SI units. One barrel (bbl) corresponds to approximately

0.159 m® or 159 liters (SPE, 2006).
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Table A.1. Production Requirements

value
F, blend min (bbl/ da)’)
Fienamax (bbl/day)

oct
blend .min

oct
blend max

RVP

blend ,min

RVP

blend ;max

($/bbl)

(octane)

(octane)
(psi)
(psi)

33.0
6,999.0
7,000.0

88.5

100.0
4.5
10.8

Table A.2. Component Availability and Cost

Components F; min (bbl/day) F; max (bbl/day) cost; ($/bbl)
Reformate 0.0 12,000.0 33.8
LSR Naphtha 0.0 6,500.0 26.0
N-Butane 0.0 3,000.0 10.3
FCC Gasoline 0.0 4,500.0 31.3
Alkylate 0.0 7,000.0 37.0 ~
Table A.3. Plant Component Quality Data
Components O om O
(octane) (psi)

Reformate 93.1 2.7

LSR Naphtha 64.3 10.9

N-Butane 92.5 138.0

FCC Gasoline 84.6 6.4

Alkylate 96.6 6.7

The values in Table A.1 and in Table A.2 were iaken from Forbes and Marlin

(1994). The gasoline production rate was bounded between 6,999-7000 bbl/day in order

to achieve a practically constant gasoline production rate. All case studies led the system

to the upper flowrate bound Fjjenqmax because the objective of the CLRTO was to achieve

the highest operation profit, which in the case studies considered in this work,

corresponded to the highest gasoline production rate. The component qualities in Table

A.3 were calculated based on the tables in Gary and Handwerk (1984).
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Figure A.3. Pricing of Crude Oil and Gasoline (CTA, 2006)

The price of petroleum crude oil and products is volatile (see Figure A.3). The
case study provides consistent economics for 1988 when the crude price was $14.7/bbl.
Therefore, the question arises regarding whether the case studies are characteristic of
typical situations, or specific to a particular time. The prices of all components and
gasoline are essentially proportional to the cost of crude oil. Therefore, volatility in
pricing changes all cost coefficients by approximately the same factor, which would
require multiplying the LP objective function by a constant (for example, doubling crude
cost would incur in multiplying the objective function by 2). Consequently, the results for
the case studies regarding multiple bases, importance of parameters and experimental
designs would be unaffected by pricing volatility, since the economic effect of any
improvement would be multiplied by the same constant as the objective function.
However, other changes that affect only individual components or the gasoline price

could change the results of case studies. This, along with frequently changing bounds on
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component flow rates and model mismatch, justifies the need for implementing the
performance evaluations online, rather than simply analyzing offline for one single time

and scenario.
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Appendix B

Bayesian Parameter Estimation

In traditional parameter estimation literature (Montgomery and Runger, 1994), it
is assumed that there is enough data available in order to estimate parameters and their
variances. At the beginning of a blending batch, however, even though there are often
vast amounts of historical data from previous batches, the current batch does not usually
contain enough data points to obtain good estimates of model parameters.

In the gasoline-blending case study, the parameters that need to be estimated are
the octane and RVP properties of each component. The quality equations can be

expressed as:

Q!{Iena' = 90] + iQi{nom nCF; (Bl )
i=l ZF

U]

ih=l

where 6] are the intercepts included in order to account for deviations from linearity.

Bayesian estimation (Box and Tiao, 1973) provides a framework in which
informative prior parameter distributions can be used. Bayes’ theorem states that the
posterior distribution of a parameter will be equal to its prior distribution multiplied by
the likelihood function, where the latter represents information that originates from
experimental data. The inclusion of prior information prevents unnecessarily large
experiments in the plant. In the case of gasoline blending, periodic lab samples are taken
from the component tanks, and their properties are measured and stored in a database.
Therefore, it is thus possible to obtain a good estimate of parameter uncertainty

(historical variability) before data is first measured in the process. The parameter
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estimation formulation derived from least-squares estimation and Bayesian theory is

presented in the following equation (Reilly, 1973).

Qr{nom,l = (V(Q)_I |t—| +X:;‘pV(Z)_I Xexp )—I (V(Q)—l II—] l{nom,l—l £3 Xe,l)‘(pv(z)~l Z) ( B2 )

This formulation assumes zero mean, normal, randomly distributed measurement

noise and no structural mismatch between model and plant. In equation ( B.2 ), V(Q)|.; is
the matrix of parameter uncertainty from the previous time step, and 0/, ,,, and O/, .,
are the matrices with parameter estimates of the current and previous time steps (the
parameter estimate Q/,,, att =1 uses the values of initial parameter estimates and their
prior uncertainties).

The matrix X.,, containing input variables (in this case, flowrates) and the output

(measurement) vector z are defined as:

oct
blend .meas

[N

RYVP
blend .meas
And
. _[1 NF O 0
“* 10 0 1 NF
NF = FR:'/ exp E’,.\'R,exp Fnl»‘m.«:\p F,‘/'j(.(‘-exp F”‘*“n

YFioe XFive DFiee O Fieo 2P

The ones in the X,,, matrix correspond to the intercepts &, that are included in

the octane and RVP equations in the parameter estimation step. Since the “perfect” model
is not known for the blending of octane and RVP properties, an intercept can be included
in order to account for slight model mismatch. The effect of including the intercept in the
quality equations is discussed through case studies in Chapter 5. The measurements (z)

considered were the blend qualities. The remaining measured variables (flowrates) were
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assumed to be known perfectly, which is reasonable for gasoline blending because the
flows are measured using turbine meters or other highly accurate flow sensors (Mudt,
2005; Omega, 2005). V(z) is the variance-covariance matrix of the output variables (z).
When using the method in equation ( B.2 ), the parameter uncertainty can be shown to

decrease with the experiments according to the following equation (Reilly, 1973).

V) =)l +XL V"X, ) (B3)

The judicious use of prior knowledge about the parameter distribution may reduce
the number and/or magnitude of experimentation in the plant, especially in situations
where not enough data points exist for a reasonable initial estimate of parameter
uncertainty. By using the method in equation ( B.3 ), parameter variance can only
decrease at each update. If a parameter is assumed to have a much smaller variance than
the measurement errors around an incorrect initial value, its estimate will likely not
change considerably with the new updates (Box and Tiao, 1973). As a safeguard against
underestimating prior parameter variance, a larger variance than estimated by prior

historical data can be used.
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Appendix C

Solution Details for Section 3.5

This appendix presents the solution details of Problem 3.6 for the CLRTO
performance monitoring method based on the Expected Value of the Largest Profit Gap
(Section 3.5). All of these solutions were obtained using IPOPT-C, with 10* tolerance.
Note that the solution details for the case with a = 0.95 is shown in Chapter 3 (Tables
3.11-3.13).

For all cases, Q/° = Q/ . The following starting points for the flowrates were

inom *

used:

Table C.1. Flowrate Starting Points

F}, F},
= (1/5)*Fptendmax = current CLRTO operation
(bbl/day) (bbl/day)
Reformate 1,400.0 5,695.6
LSR Naphtha 1,400.0 942.5
n-Butane 1,400.0 361.0
FCC Gas 1,400.0 0.0
Alkylate 1,400.0 0.0
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C.1. Solution with = 0.25 and dof =10 (»2,;,,= 6.737)
Table C.2. Solution of Problem 3.6 - oo = 0.25 and dof =10

Q7 (octane numbers) Q" (psi) Fgc (bbl/day) Fi..m (bbl/day)

Reformate 92.86 2.91 2,807 9 5,593.4
LSR Naphtha 64.20 10.98 0.0 1,061.0
n-Butane 92.50 138.00 317.0 345.6
FCC Gas 85.01 6.11 3,875.1 0.0
Alkylate 96.60 6.70 0.0 0.0 -
Maxgap.y $ 740.9 / day
Pch $ 11,5381 /day
PI"nom.CL $ 10,7972 / day
Table C.3. Computational Results for Problem 3.6

Starting Points B CPU sec # func. evéT_# restarts Solution
F:'?B(' = Iri?}mm = ‘F;f)l : /’{’(I)f( = ﬂ'?mm = 0 3781 8,056 4 GOOd
Fisc = Fiuom = Fiy 5 Anc = Apom = Jnom 1,593 639 2 Good
F;OH( = F‘Igmm = EOZ ; ﬂ’(l)i( = ﬂ’?mm = 0 0297 169 0 Bad
F‘i?lf(' = Egl()nl = EOZ ) Z'(I)i( = j"201}1 - /1"0’" 1370 494 1 GOOd

C.2. Solution with o= 0.50 and dof =10 (x.,,,,= 9.342)

Table C.4. Solution of Problem 3.6 - oo = 0.50 and dof =10

oct RVP

Q" (octane numbers) Q,"" (psi) F, sc (bbl/day) F; om (bbl/day)

Reformate 92.83 2.94 2,780.7 5,602.0
LSR Naphtha 64.18 10.99 0.0 1,053.6
n-Butane 92.50 138.00 317.0 344 .4
FCC Gas 85.09 6.06 3,902.3 0.0
Alkylate 96.60 6.70 0.0 0.0
Maxgap,; $ 894.4 / day
Pryc $ 11,606.4 / day
Prnom.cL

$10.711.9 / day
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Table C.5. Computational Results for Problem 3.6

Starting Points CPU sec # func. eval # restarts Solution
Foc = Fouu =B i 23 =4 =0 12217 487733 7 Good
Foc = Floon = F} 3 Age = Ao =%nom 8890 37517 9  Good
Foc=Fou=F) s e =20 =0 6578 29252 1 Bad
Foc = Fow = F 3 Aae = A = oo 0297 108 0 Bad

C.3. Solution with @ = 0.75 and dof =10 (»;,,,,= 12.55)

Table C.6. Solution of Problem 3.6 - o = 0.75 and dof =10

O (octane numbers) Q" (psi) F, y- (bbl/day) Finom (bbl/day)

Reformate 92.79 2.98 2,749.2 5,610.6
LSR Naphtha 64.17 11.00 0.0 1,046.2
n-Butane 92.50 138 00 317.0 343.2
FCC Gas 85.18 6.01 3,933.8 0.0
Alkylate 96.60 6.70 0.0 0.0

Maxgapen $1,059.0 / day
Prgc $ 11,684.1 /day
Prnom,CL $ 10,6252 / day

Table C.7. Computational Results for Problem 3.6

Starting Points CPU sec # func. eval # restarts Solution
Fioe = Fouu = F) 3 e =20 =0 2687 7181 2 Bad
Froe = Boa = 0 s Ape™ Aoy = hoiin 313 178 0 Good
e =Fo =B s o =4, =0 5781 20974 3 Good
Fioc = Fouw = B § g = X =Amom 0,641 894 0 Bad
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C.4. Solution with = 0.90 and dof =10 (1, .= 15.99)

Table C.8. Solution of Problem 3.6 - o =0.90 and dof =10

O/ (octane numbers) Q" (psi) F, 5 (bbl/day) Finem (bbl/day)
Reformate 92.76 3.02 2,717.1 5,618.4
LSR Naphtha 64.15 11.01 0.0 1,039.6
n-Butane 92.50 138.00 316.9 342.0
FCC Gas 85.26 5.97 3,966.0 0.0
Alkylate 96.60 6.70 0.0 0.0

Maxgap.y $1,216.1/ day
Prge $ 11,762.7 / day
Pruomct. $ 10,546.6 / day

Table C.9. Computational Results for Problem 3.6

‘Starting Points CPU sec # func. eval # restarts Solution
Fioe = Foom = Fip 34 = 4 =0 2797 4,409 3 Good
B = Fe = B s A = A = 310 189 0  Good
Floc = Fous = B 3 Ape = A =0 o812 333 1 Bad
Foc = Fooow = F3 5 Ay = 2o =2nom 1577 2.408 1 Bad

C.S. Solution with = 0.99 and dof =10 (»2,, ,=23.21)

Table C.10. Solution of Problem 3.6 - o = 0.99 and dof = 10

O (octane numbers) Q" (psi) F, ;- (bbl/day) Fom (bbl/day)

Reformate 92.71 3.08 2,653.0 5,631.3
LSR Naphtha 64.13 11.03 0.0 1,028.7
n-Butane 92.51 138.00 316.7 339.9
FCC Gas 85.41 5.89 4,030.3 0.0
Alkylate 96.60 6.70 0.0 0.0

Maxgap.y $1,505.3 / day
Prpc $11,917.8/ day
Pruomct $10,412.5 / day
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Table C.11. Computational Results for Problem 3.6

Starting Points CPU sec # func. eval # restarts Solution
Foc=Fom=F) 5 Ac =% =0 2516 4350 1 Good
Fioc = Fioom = Fi} 5 X3¢ = Zpon =Znom 0984 418 1 Good
Foc=Fp =F) i e =40 =0 3109 33858 10  Bad
Foc = Fom = F 3 Xoc = Zes =mom 0250 87 0 Bad
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Appendix D

Summary of Optimization Technology

In order to assess, diagnose and enhance the closed-loop performance of RTO
systems, this thesis relies heavily on optimization theory and specific software
implementations. In this appendix, optimization methods that are the most relevant to this
work are presented.

Small linear programming (LP) problems were solved in the closed-loop RTO
simulations. To solve these problems, the (default) primal simplex algorithm in CPLEX
was used in the GAMS modeling environment. The primal simplex algorithm is one in
which the simplex tableau is generated for the primal optimization problem.

The tormulations in this work generated different types of nonlinear ptogramming
(NLP) problems. A very efficient algorithm to solve NLPs is Sequential Quadratic
Programming (SQP). SQP is used in this thesis (in Matlab's fmincon function). Therefore,
Section D.1 presents an introduction to this optimization method.

In optimization literature, there is a class of optimization problems called
Mathematical Programs with Equilibrium Constraints (MPECs). These problems contain
constraints of the form x.y = 0, also known as complementarity constraints. This type of
constraint poses a significant challenge to active-set optimization methods, since they
render the feasible region nonconvex and even disjoint, and they cause the problem to be
ill-conditioned (Raghunathan and Biegler, 2003). Due to the combinatorial nature of
active-set methods (such as the one used within standard SQP methods), active set
methods do not usually perform well for MPECs. Therefore, interior-point solvers such

as [POPT are more appropriate for this class of problems. Section D.2 presents IPOPT
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and its version tailored to handle MPECs (IPOPT-C), which are based on an interior
path-following, interior-point method.

The experimental design formulations in Chapter 4 contained gradient evaluations
that did not have smooth properties. These formulations required the solution of three-
level optimization problems. While the solutions of bilevel optimization were achieved
using the IPOPT-C, this software did not reliably solve the three-level problems. Hence,
a direct search method was used to solve the outer problem. The selected approach was
the Derivative-Free Optimization (DFO) method developed by Conn et al. (1996) and
implemented in MATLAB by Fan (2002). An overview of this method can be seen in
Section D.3.

A Pentium 4, 1700MHz, 523 Gb was used in the simulations. All problems in the
thesis were solved to the 10™ tolerance levels of IPOPT-C (versicn 2.0.1) solver. In
fmincon (Mathworks, 1999} (in Matlab version 6.5.0.180913a Release 13), tolerances of
107 for constraint violations and absolute values of the variables and objective function
values were set. AMPL was used for the modeling environment for problems solved
using IPOPT-C. It provides first and second derivatives through symbolic processing. An
overview of the software structure used in the various simulations can be see in Section

D.4.
D.1. Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) has been successfully applied to
nonlinear constrained optimization problems with continuous first- and second-order
derivatives. It is based on solving a quadratic program, i.e., an optimization problem with
a quadratic objective function and linear constraints. Consider the following nonlinear

optimization problem (Nash and Sofer, 1996):

min f(x) (D.1)
st h(x)=0

170



D. Zyngier, Ph.D. Thesis McMasterUniversity, Chemical Engineering

where f{x) and A(x) are nonlinear functions. The Lagrangian L(x, A) for problem ( D.1 ) is
given by:

L(x, A, )= f(x) = A h(x) (D.2)

The first-order optimality conditions of problem ( D.1 ) can be expressed as a

function of the derivatives of the Lagrangian, as can be seen below.

V,L(x,A)=V, f(x)- AV h(x)=0 (D.3)

V,L(x,A)=-h(x)=0 (D4)

Newton's method can be applied to find a solution to equations ( D.3 ) and ( D.4).

This method can be expressed as:

AN AN (D.5)
A A ) A4
The updates Ax; and A4y are obtained as follows. For a problem of the form:

min f{x) (D.6)

The (full) Newton step is given by

V) (D.7)
Vi)

Xpsl = X

Therefore, when applying the Newton step in equation ( D.7 ) to the system of

equations ( D.5 ), the following relationship is obtained:
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V2L(x,. 4, )(2: ) = VLt 4) (D8)

This is equivalent to expressing the linear system as:

V2 L(x,,A,) -Vh(x,)' (Axk ) _ (— V L(x,» 4 )] (D.9)
~Vh(x,)" 0 A4, h(x,) )

The system of equations in ( D.9 ) corresponds to the first-order optimality

conditions of the following optimization problem.

nAqxip%Ax[ V2 L(x, A0 |, + AT [V L(x, . 4] (D.10)

st [VA)] Ax, +h(x,)=0

In problem ( D.10 ), it is possible to see that the objective function is a Taylor
series approximation of the Lagrangian at (x;, A4), and the constraints are linear
approximations of the original constraints in problem ( D.1 ). The vector A4, corresponds
to the Lagrange multipliers of problem ( D.10 ). At each SQP iteration, problem ( D.10 )
is solved using a quadratic programming approach (QP) with an active set or barrier
method, and yields the updates (Axx, A4x). In the case of a problem with inequality

constraints g(x) = 0, problem ( D.10 ) can be expressed as:

r&ltm%Ax,f [VixL(xk’/Ik )]A"k +Ax, [V, L(x,, 4,)] (D.11)

[Va(x)] Ax, +h(x,) =0
[Ve)] Ax, +g(x,) 20

SQP is the basis of the nonlinear solver fmincon found in Matlab (Mathworks,

1999). An active-set method is used to solve the QP; i.e., only the equality constraints
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and active inequality constraints (at the current iterate) from problem ( D.11 ) are
considered in the iteration. In active-set methods, an equality-constrained problem based
on the current active set is solved at each iteration. If a constraint is encountered during
the course of a line search when optimizing this problem, it is added to the constraint set
for the following iteration. After optimizing the equality-constrained problem, the
Lagrange multipliers for all constraints in the active set of the current iteration are
computed at the solution. If there are no negative multipliers, the solution is also deemed
to be a solution to the original inequality-constrained problem. If there is a negative
Lagrange multiplier, the corresponding constraint is removed from the active set for the
following iteration (Nash and Sofer, 1996).

The fmincon line search uses a merit function, which is described in Han (1977).
The basic idea is to find a step size that leads to a point that will both improve the
objective function value and reduce the constraint violations (expressed as exact penalty
functions) in the QP. In this particular implementation, the exact penalty function is
defined as the /,-norm. The Hessian information in fimincon is obtained from BFGS

updates.
D.2. Interior-Point Methods

Interior-point methods have been developed since the 1980's in order to provide
an efficient polynomial-time method for solving mathematical programming problems
(Nash and Sofer, 1996). A crucial aspect of these methods is that all points generated by
interior-point methods leading to the optimal solution are strictly feasible; i.e., they
satisfy all model constraints.

Barrier functions are very useful for solving constrained optimization problems,
and they are sometimes adopted in interior-point algorithms. Consider the following

constrained optimization problem.

min f(x) (D.12)
st g(x)=>0
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The constrained problem is replaced by an approximate unconstrained problem;
this is achieved by replacing the constraints g(x) > 0 with additional terms in the
objective function that become very large as the functions g(x) approach their bounds and
are unbounded in the limit of attaining a bound from the interior of the set. Two common
types of barrier functions are (1) the logarithm and (2) the inverse of g(x). The

reformulation of problem ( D.12 ) using the logarithmic barrier function is seen below.
mjn{f(x)—#zlog(g,(x))} (D13}
i=l

In problem ( D.13 ), nc is the number of constraints and y is called the barrier
parameter. An option in solving the original problem ( D.12 ) is to reduce u after each
solution of the unconstrained optimization problem ( D.13 ) until x is sufficiently close to
zero. As u decreases, a differentiable solution trajectory x(x) (also known as barrier
trajectory) is formed.

The existence of this barrier trajectory x(u) enables the development of central
path-following algorithms. In these methods, iterates stay close to the barrier trajectory.
The steps of the path-following interior-point algorithm with a barrier sub-problem can

be summarized as follows (Nash and Sofer, 1996):

Step 1. Update the barrier parameter 4 — L+

Step 2. Solve the barrier subproblem ( D.13 ) so that the point x; is close enough to the
path (given a stopping criterion)

Step 3. Use a damped Newton Method to update x; — x4/

Step 4. Go to Step 1 until a convergence criterion is met for the path-following method.
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In this thesis, IPOPT (Wéchter, 2002) was used to solve several of the nonlinear
formulations in Chapters 3, 4 and 5. In IPOPT, the primal-dual interior-point barrier
method is used. It is based on finding feasible solutions for both the primal and the dual
optimization problem equations simultaneously using a Newton-type approach (Wiachter,
2002). The existence of the barrier parameter in the original problem relaxes the
complementarity constraints to the form x. A = g, where x and A are the primal and dual
variables, respectively.

After a search direction has been found by the primal-dual method, it is necessary
to determine the size of the step that should be taken by the iterate in that direction, since
a full Newton step may be too large and render the next iterate infeasible. Merit functions
can be used in determining the step length. The underlying strategy in this method is to
extend the original objective function to include an additional term that penalizes
infeasibility in the constraints. This penalty term may be, for instance, exact penalty
functions such as the /;-, [- or /.-norms. Another method for finding step lengths are
filter line searches. The filter line search in [POPT ensures that the new point improves
the original objective function or the constraint violations (instead of requiring both, as in
merit function approaches). With this filter line search procedure, IPOPT has been proven
to be globally convergent to a stationary point (Wéchter, 2002).

More recently, Raghunathan and Biegler (2003) developed IPOPT-C, an
enhancement to IPOPT that handles complementarity constraints. In their work,
Raghunathan and Biegler (2003) relaxed the complementarity constraints to x.4 < dy,
where 5> 0 is a fixed constant and x> 0 is the barrier parameter which was successively
tightened until sufficiently close to zero (within a user-specified tolerance). It was shown

that the conditioning of the overall problem was greatly improved by this reformulation.
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D.3. Derivative-Free Optimization (DFO)

DFO is based on approximating the objective function by a (simpler) smooth,
quadratic surrogate model within a trust region, and then optimizing the surrogate model
to obtain an improved point. Fitting a surrogate model smoothes the discontinuities in the
derivatives of the function, while retaining the dominant local characteristics of the
response surface of the original problem.

Given a set of interpolation points Y={y;}, j = 1..p, the surrogate function Q(x) can
be considered an interpolation of the original function f{x) if the following holds
(Scheinberg, 2000):

o0y =) . Jj=l.p (D.14)
Suppose that ¢(x) is a basis in the space of quadratic polynomials (in the one-

dimensional space, ¢(x) could be equal to {1, x, x’}). The equality in equation ( D.14 )

can then be expressed as

Q(y,)=ia.¢,-(y,)=f(y,), j=l.p (D.15)

where ¢ is the number of terms in the basis for the n-dimensional space. The coefficient

matrix of the system of equations ( D.15 ) is:

g6y - 6,) (D.16)
oY)=| :

¢l(yp) ¢q(yp)
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The linear system of equations ( D.15 ) has a unique solution for & = (ay, ...,0)
if the coefficient matrix in equation ( D.16 ) is square and nonsingular. The procedure for

implementing DFO can be summarized as follows (Conn et al., 1997; Scheinberg, 2000):

Step 1. Build a surrogate model around the current point using the current interpolation
set Y; and the current trust region radius A4 Determine which of the original
starting points has the best objective function value by evaluating:

Sxo) = minyicy Ayi)

Step 2. Build the surrogate model Qi(x) from the interpolation set ¥ and solve the
optimization problem using the surrogate model within the trust region
(I X, —x«|| < Ax) to obtain x, . Then, compute the ratio:

g = L= SG)
Qi (%)= O (x;)

Step 3. Update the interpolation set Yy — Yi+;. Depending on the value of o and the

number of points currently available in the set, X, is included into the

interpolation set Y and one of the existing points is dropped from the set, if
necessary.

Step 4. Update the trust-region radius Ay — Ay+;. Also depending on the value of gy, the
trust region may be expanded, contracted, or remain the same. If the iteration
generated a large enough ratio g, accept the new point and increase the size of the
trust region. If the ratio p, was too small, reject the iterate and decrease the size of
the trust region.

Step 5. Update the current iterate. Determine the new point x; with the best objective

function value f{xx) = minyicy, yizxk A¥i), and recalculate

), = f(x)—f(x,)
=& O, ()0, (%)

If the improvement in is deemed sufficient (g is large enough), x4+, = x4. If not,

Xk+] = Xk

177



D. Zyngier, Ph.D. Thesis McMasterUniversity, Chemical Engineering

Step 6. Set k= k+1 and return to Step 1 until convergence

The main challenge in the DFO algorithm is in Step 3: updating the interpolation
set Y that is used to obtain the polynomial surrogate model. This is because, depending on
which point is removed from the interpolation set, the coefficient matrix in equation
( D.16 ) may become ill-conditioned.

Two of the approaches for maintaining or improving the poisedness of the
interpolation set Y are by using the Lagrange interpolation polynomials (LIP) or the
Newton fundamental polynomials (NFP). A poised set X is defined for a given subspace
of polynomials if, at the points X, the original function can be interpolated uniquely by
polynomials from this subspace. A well-poised set is defined as one that remains poised
under small perturbations; i.e., one that will yield a well-conditioned coefficient matrix
for the surrogate model (Fan, 2002).

The idea behind both approaches is to maintain or improve the geometric
properties of the set ¥ even when modifications are made to it. The LIP approach is based
on comparing the determinant of the coefficient matrix in equation ( D.16 ) using the
current interpolation set with the one using the new iterate. The geometry of Y is deemed
adequate when all the points in Y are within 2A; of the new iterate x;, and when the
determinant of ( D.16 ) cannot be doubled by replacing one of the points in the set with
another which is distant from x; by a value of A;. This approach is a trust-region problem
in itself, and therefore is computationally very demanding (Conn et al., 1997).

The NFP approach, on the other hand, does not require an optimization
subproblem, and therefore is not as computationally intensive as LIP. It is based on
creating or updating a polynomial basis function and checking if the normalization step
within the procedure generates a zero pivot for the current iterate. If no zero pivots exist,
the iterate is included, and the set is deemed well-poised. Another main difference
between LIP and NFP is that the first requires the entire set of polynomials to be built at
each iteration, whereas the latter enables the user to simply update the polynomial set

(Conn et al., 1997).
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DFO has been shown to be globally convergent to a local optimum and to be
computationally cheaper than other direct search methods, such as the Parallel Direct
Search method (Torczon, 1991) and Nelder Mead simplex methods (Wright, 1996; Conn
et al., 1996). Because it is not a derivative-based optimization method, DFO is very
robust to process noise, which is very common in process-related problems, until the trust
region radius approaches the noise levels. Because of its better performance with respect
to other direct-search methods, DFO was applied to the experimental design formulations
in this thesis.

DFO addresses unconstrained optimization of continuous variables. Since
constraints are not considered in the algorithm, they were included by using introducing
(external) penalty functions in the objective for constraint violations. Care should be
taken when choosing penalty weights for a particular problem, since ill-conditioning can
result when the penalty weights are too large (Nash and Sofer, 1996). In this work, values
for these weights were found by trial and error that gave reasonable optimization

performance.

D.4. Software Structure

This section gives an overview of the software structure used to solve the

formulations in this thesis.
Closed-Loop RTO Simulations
The simulations for CLRTO were done within GAMS using the "LOOP"

function. For Monte Carlo simulations, the GAMS/MATLAB interface was used. (Figure
D.1).
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Parameter
realizations

Matlab GAMS

I

Results
(for visualization)

Figure D.1. Framework for Monte Carlo Simulations

GAMS: Active set Matlab
Single CLRTO (fmincon)
simulation

X

Figure D.2. Framework for Monitoring: Number of Corner Points

Monitoring.: Approach Based on the Number of Corner Points

The monitoring approach based on the number of corner points used the
Matlab/GAMS interface to automatically provide the active set based on the nominal

parameter values to determine active set (Figure D.2).
Monitoring: MaxGapn, MaxGap., E(MaxGap.), E(Gap)
All monitoring approaches based on the profit gap were calculated in AMPL,

using IPOPT-C as a solver. The approaches based on expected value consisted in solving

the MaxGap.,, problem in AMPL a few times, which was done manually.
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Performance diagnostics / Ranking parameters

The CLRTO performance diagnostics method was solved in AMPL, using
IPOPT-C as a solver.

Experimental Design:
The experimental design calculations for the model-based method were done in

AMPL, using IPOPT-C as a solver. A Matlab implementation of the DFO method (Fan,

2002) was used for the other experimental design strategy.

Decision
variables
F
Matlab: ‘__(._.,)__, AMPL
DFO 2 (IPOPT-C)
MaxGapey

Figure D.3. Framework for Experimental Design Using DFO

Since the "expensive" function evaluation, in this case, consisted of the MaxGap.

problem, a Matlab/AMPL interface was used. A schematic can be seen in Figure D.3.
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Appendix E

Open-Loop Optimization Results

Methods developed in Chapter 3 on CLRTO monitoring can be applied to other
problem classes. In this appendix, we investigate one important issue in optimization of
uncertain systems: the range of possible outcomes when the system is subject to
measured disturbances. In this case, the term disturbance is used to indicate a realization
of an uncertain variable. In a process plant, a typical disturbance is feed composition,
which will vary about an average or nominal value. We assume that the model structure
is correct and disturbances are characterized by parameter uncertainty described by
intervals or an ellipsoid. We seek the range of objective function values {e.g., profit) that
would be achieved by optimizing each realization when we know the parameter values
without error during each optimization. Thus, we consider a sequence of realizations in
which (1) we measure the feed composition disturbance (without error), (2) we optimize
the model, which is perfect when the uncertain parameters have been measured, and (3)
we implement the results of the optimization perfectly.

The best and worst cases considered in the open-loop problems are due solely to
the variation of the disturbances when the best possible response is made to each
disturbance in a perfect feedforward (open-loop) manner. This is in contrast to the
monitoring method in Chapter 3, which determines the loss due to model mismatch in
CLRTO when the disturbances are not measured and a specific feedback control system
acts upon the process. The idealized scenario considered in this appendix would be useful
in many engineering analyses. For example, we would be able to determine if a proposed
plant would be profitable under the best and worst feed composition conditions. If the
profit for both scenarios were greater than the corporate minimum acceptable rate of
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return on investment (MARR), the project would be deemed acceptable. If the profit for
both scenarios were less than the corporate minimum acceptable rate of return on
investment (MARR), the project would be deemed unacceptable. If the worst-case profit
were less and the best case greater than the MARR, the expected value would have to be
evaluated. Naturally, the sensitivity of the results to model error would have to be
investigated as well before a final decision was made.

In this appendix, a method for determining the effect of parameter uncertainty on
the objective function of open-loop systems will be introduced. Then, it will be applied
to several problems that have been published by other authors. For linear programs, the
uncertain parameters appear in the objective function, right hand side of constraints and
left hand side (technological) coefficients multiplied by the variables. Finally, we apply

the method to a simple nonlinear problem to demonstrate the generality of the method.
E.1. Description of Method

Consider the maximization optimization problem in Problem E.1.

Problem E.1
z =max J(¢,x)
X
subject to
8(6n x) <0
h(B.q, x) = [

In Problem E.1, ¢ and @ are the model parameters for the objective function and
constraints. The subscripts “in” and “eq” correspond to inequality and equality
constraints, respectively. Note that the inequality constraints can also be bounds on x. The
following problem will be solved to determine the best and worst cases resulting from

disturbances that are perfectly measured.
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Problem E.2

MaxGapor, = max (J(cBe,xBo)—zwe)
X ¢ Zwe € e € »Oum e 1 O » oeq,ﬂ(.‘ ) eeq.W(,'

subject to

Constraints of best-
case realization for
Problem E.1

8(6in Bc, XBC)
h(6.q Bc, xBC)

I IA
o O
——

Zwe = max J(cw(_' s Xpwe )
Xwe Worst-case realization
S.1. for Problem E.1

gOnwe, xwc) < 0
W(Begwe, Xwe) = 0
cmin & ch‘(.‘ ’ CH’(' £ cmax ] b d
Interval bounds
efn,mm —< em,B(' ’ gin,W(’ = ein,max
ecq,min = ec'q,B(.' ’Beq,w( < geqmax

In order to solve Problem E.2, the optimality conditions of the inner maximization
problem zy are substituted into the formulation, similarly to in the bilevel formulations
in Chapter 3. Since the parameter values in Problem E.2 are completely independent for
the best- and worst-case scenarios, it is not necessary to derive the optimality conditions
of the best-case scenario: the original best-case constraints are placed directly in the
outermost optimization layer of the bilevel problem, thus easing the computational
burden of Problem E.2.

Given an optimization problem of the form:

min f(x)
St
gx) =20
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the Karush-Kuhn-Tucker (KKT) optimality conditions can be stated as (Nash and Sofer,
1996):

V.L(x,A)=V f(x)—AV g(x)=0 (E.la)
gix)> 0 (E.1b)
Ag(x)=0 (E.lc)
A20 (E.1d)
V2, L(x,A) is positive semi-definite (E.le)

For linear programming problems, the first-order optimality conditions (E.la-d)
are sufficient to ensure optimality. For nonlinear problems, however, the first-order
optimality conditions used in the monitoring approach are not sufficient to ensure that a
local optimal solution has been found. In order to check for local optimality, one may
check if the Hessian of the Lagrangean function is positive semi-definite at the solution
found (Clark and Westerberg, 1990). Another option is to make a grid search around the
solution in order to determine if there are "better" solutions in the vicinity (Forbes et al.,
1994). In the nonlinear case study with independent parameter variations, the formulation
using first order optimality conditions was used and the results were confirmed by Monte

Carlo simulations.
E.2. Linear Programming Problems

E.2.1. Uncertain RHS and LHS of Constraints

In some situations, the user may wish to determine the effect of uncertainty in the
parameters appearing in the right-hand side (RHS) and left-hand side (LHS) of the
constraints. The goal of the formulation shown in this appendix is to calculate the
maximum objective function values for the best-case and worst-case optimization
scenarios given this uncertainty. Since the uncertain parameter values are different in
Problem E.2, both the best- and worst-cases are determined in the solution, along with the

parameter values.
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Problem E.3 was taken from Chinneck and Ramadan (2000). In this problem,
there are uncertain parameters in the LHS coefficients and in the RHS coefficients of

both equality and inequality constraints simultaneously.

Problem E.3

min (x; +x2)
A A
subject to
- X + x; 26
Gx; + x =6
X7 Z 0
0 £ x, £3

where the interval uncertainty regions are given in the following (with the symbol 8 used

for uncertain parameters to be consistent with the original paper):

2 < 6 <£-1
2 < 6, <3
3 < 6; <4

The formulation in Problem E.2 was used to solve Problem E.3. The worst-case
scenario sub-problem was replaced by its KKT conditions (first-order optimality
conditions), and the overall problem was then solved with IPOPT-C. Since Problem E.3
is a minimization problem, Maxgapo, was calculated as worst case minus best case. At
the solution given in Table E.1, Maxgapo, is 1.33, where the best case objective is 1.0
and the worst case objective is 2.33. The values obtained for the parameter and variable
values at the best- and worst-case solutions agree with the results in Chinneck and
Ramadan (2000). The different starting points used for this case study can be seen in
Table E.2.
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Table E.1. Solution of Problem with Uncertain LHS and RHS Coefficients

Best-Case Scenario Worst-Case Scenario

(x;+ x2) 1.0 2.33
X] 1.0 1.67
X2 0.0 0.67
6, -1.67 1.0
6, 3.0 2.0
0 3.0 4.0

This example has demonstrated the application of the method to a system with

uncertainty in right- and left-hand side coefficients in equality and inequality constraints.

E.2.2. Uncertain Objective Function Coefficients

Another application of the method is to systems with uncertain objective function
coefficients. This situation is common in process applications where the costs of feed and
energy and the sales price are uncertain, or when evaluating projects that will begin
operation in months to years in the future. Another problem taken from Chinneck and

Ramadan (2000) is used to illustrate this situation.

Table E.2. Starting Points for the Problem with Uncertain LHS and RHS Coefficients

Starting Points CPU sec # func. eval # restarts Solution
xsc=%Xwc=0; 0" = Guom* Ay = Ay =0 1281 2,969 0 Good
XBC = XWC = Xnom 5 0° = Gpom™ Ape = Ay = A 1,562 3,129 0 Good

* 6,0m Was taken as the average value of the interval for each 6,
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Problem E.4

min (Gx; + Ox3)

X5 Xy

subject to
3x; - 5x; >-15
4X1 = 2.5x2 >-10
x; + 0.5x, =>-1
Xy €2
x; =2 -3

where:

-1 < 6 <1

-1< 6 <1

The worst-case scenario subproblem was replaced by its KKT conditions, and the
overall problem was then solved with [IPOPT-C. In the solution (Table E.3), Maxgapor
was equal to 7.38, where the best case objective is -7.38 and the worst case objective is
0.0. These results are consistent with the values reported by Chinneck and Ramadan
(2000).

In Chinneck and Ramadan (2000), optimal values for x1, x2, 81 and 62 are not
reported. The authors point out that the challenge associated with this test problem is that
the worst-case scenario of cost coefficients lies in the center of the uncertainty region, at
(0,0), which coincides with the results in Table E.3. The computational experience can be

seen in Table E.4.

Table E.3. Solution of the Problem with Uncertain Cost Coefficients

Best-Case Scenario Worst-Case Scenario

Xy -4.38 -0.74
X2 -3.0 -0.46
6 1.0 0.0
6, 1.0 0.0
(9})&'} %+ 92.7&‘2) -7.38 0.0
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Table E.4. Starting Points for the Problem with Uncertain Cost Coefficients

Starting Points CPU sec # func. eval # restarts Solution
xpc=xwc=10; 0" = Guon™ Ay = Xy =0 2016 3298 0 Good
X80 = Xwe = Xnom; 0° = Guom™; Ao = Ay = Ao 2.906 5,729 0 Good

*6.om Was taken as the average value of the interval for each 6;

E.2.3. Gasoline-Blending Problem

This section presents the application of the method to a linear programming

problem with uncertainty in the LHS coefficients. Even though this topic has been
covered in Chapter 3, the application of the open-loop method to the gasoline-blending
problem is shown to emphasize the difference between finding profit bounds due to
measured disturbances and closed-loop performance monitoring, which finds the profit
loss due to model mismatch.
For the gasoline-blending problem, this analysis would be useful for assessing the effect
of uncertainty in purchased component properties prior to the purchase; i.e., before the
material was delivered and the properties were (exactly) measured. For this case study,
intervals of +1.0 (octane numbers, psi) were assigned to all parameters. After applying
Problem E.2 to this case study (without the feedback information), the results in Table
E.5 are obtained, where Prgc = $ 14,090.4 / day (which is the same value as the MAP
calculated in Section 3.2.2), and Pryc=$ 8,569.3 / day.

Table E.5. Gasoline-Blending Problem: Open-Loop Results

Q,“;x& Qil.{fl;(l : Figc Q/“;fl( Q:R;i : Fiwe
(octane numbers) (psi) (bbl/day) (octane numbers) (psi) (bbl/day)
Reformate 94.1 1.7 5,258.2 92.1 3.7 5,815.0
LSR Naphtha 65.3 9.9 1,353.0 63.3 11.9 867.7
n-Butane 93.5 137.0  388.8 91.5 139 314.7
FCC Gas 84.6 6.4 0.0 83.7 o 0.0
Alkylate 96.6 6.7 0.0 96.6 6.7 0.0
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Due to the nonconvexity of Problem 3.5, it was solved for different starting points
in order to attempt to detect better local optima. The starting points can be seen in Table
E.6.

All starting points yielded the same objective function value. The difference
between best- and worst case scenarios of ($14,090.4/day - $8,569.3/day =) $5,521.1/day
obtained in this section is much larger than the closed-loop maximum profit gap
(Maxgapn) of $ 3,024.9/day in Chapter 3. However, we recall that the two approaches
have very different goals. The goal in Chapter 3 was to determine what would be the
largest profit loss for the closed-loop system with nominal parameter values in the
CLRTO model. In that case, the uncertain plant parameters were assumed unmeasured,
and the two cases were evaluated using the same uncertain parameter values. In this
problem, the goal is to determine the largest difference between a "perfect" optimization
given the best-case plant parameter scenario, and a "perfect" optimization model given
the worst-case plant parameter scenario. The two cases involve different values of the

uncertain parameters. This would be the case if the plant parameters were measured.

llf)?( o= QIJ,W?( . i{num
F,.f),=[1,400.0 1,400.0 1,400.0 1,400.0 1,400.0]

F%=1[5,695.6 942.5 361.0 0.0 0.0]

Table E.6. Starting Points for the Open-Loop Gasoline-Blending Problem

Starting Points CPU sec # func. eval # restarts Solution
Fooc = Fope = Fi) 3 Ay = A =0 14500 7,973 0  Good
Fioo = Fowe = F0 5 A = Ay =Anom 14594 7.953 0 Good
Fone = Fipu = By 5 dgp = Ao =0 15375 8,849 0 Good
Fooe = P = By 3 App = Ao =M. V4350 7076 0  Good
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E.2.4. Summary

In the previous sections, the open-loop applications of the monitoring criteria
developed in this work to linear problems present some advantages over the best
published method to date on evaluating the effects of parameter uncertainty on linear

programming problems (Chinneck and Ramadan, 2000).

o First, several cases were solved in a single optimization problem, where no
enumeration was required. These cases involved: LHS and RHS parameter
uncertainty, uncertain equality constraints, and uncertain cost coefficients in problems
where the worst-case values were not at the bounds of the interval.

e Second, the monitoring methods provide objective function and optimization variable
values for the best- and worst-case scenarios, as well as their respective parameter
realizations.

e Third, uncertainty using deterministic (interval) or stochastic correlation (ellipsoidal)
characterizations can be handled. This will be demonstrated in the following section

for a nonlinear system, but the method can also be applied to linear problems.

The method for evaluating the effects of measured disturbances on optimal results

is applied to a nonlinear system in the following section.

E.3. Nonlinear Programming Problems: Reactor-Separator

System

Consider the reactor-separator system shown in Figure E.1, which represents a
problem from Grossmann and Sargent (1978). The isothermal continuous flow stirred
tank reactor (CSTR) with volume V is fed with fresh feed and a recycle stream with
different compositions. The flow and concentration of A in the fresh feed are F 4y and C .
The components leave the reactor with flow F' and with molar fractions x,, xs, x,, x, and

x,. It is assumed that the desired product R only leaves the system through the top of the
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F*xz
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Figure E.1. Reactor-Separator System

distillation column and that pure R is obtained at the rate of F,. The flowrate at the
bottom of the column is the reactor effluent that is not recycled. Fraction a of
components A and B and fraction £ of components X and Y are recycled back to the inlet
stream of the reactor. The separation required by the model would require several stages;
however, Figure E.1 does not show the separation units in detail to be consistent with the
figure in the original paper from Grossmann and Sargent (1978).

The goal of the nominal optimization problem is to minimize the design and
operating costs, which in this case are comprised of the design cost (assumed to be
proportional to reactor volume) and the cost for recycle (pumping equipment and
operating cost for pumping and heating/cooling). The uncertain optimization problem
handles variation in reaction rate constants, therefore, the volume of the reactor V, flow F
and fractions x,, xp, X», Xx, X,, & and S must be calculated subject to the worst-case
realization of the uncertain parameters. The formulation for this problem is simpler than
in Problem E.2 since only the set of KKT conditions corresponding to the worst-case
scenario needs to be included. The steady-state problem and uncertainty in the rate

constants are given in the following problem.
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Problem E.5

min 10V + 0.125 [aF(xa + xp) + fF(xx + x) ]
x,,,x,,,x,,x_‘,xy,F,V,a,,B
subject to

Il
(e

Fa0—xaF (1-0) = V Cao (ks + kx) x,
~xpF (I-a) + V Cog [kexa — (kg + kv)xp] =0

—xF (1-) + V Cap kxxa =0
—xF (1-f) + V Cap kyxs =0
—x,F+V Cyp kixp =0
F,—xF < 10
Xqtxptxpt+txytxy-1 =0

where the uncertain parameters have the following ranges.

0.32 h'! £ ke < 0.48 h’!
0.08 h! < k, < 0.12h
0.016 h™! < ks < 0.024h’
0.008 h™! < k, < 0.012h’

The model structure takes advantage of the conservation of moles in the specific
reaction stoichiometry in Figure E.1. As a result, the reactor inlet and outlet molar flows
rates are equal, and the inlet and outlet total molar concentrations are the same, at Cy.
The results for the nominal optimization model (using the nominal parameter values from

Table E.7) can be seen in Table E.8.

Table E.7. Fixed Parameters and Nominal Values of Uncertain Parameters for the
Reactor-Separator System

Parameter Nominal Values~

Fa 100 mole/h
F, 70 mole/h
Cao 100 mole/m’
ks 0.4h"

k, 0.1h"

ky 0.02h™

k, 0.01 h
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Table E.8. Results for Reactor-Separator System — Nominal Parameter Values

Objective=$151.916  k,=0.40h" x,=0.1841
V= 123477 m’ k.=0.10 h xp=0.5669
F= 327.506 mole/h k. =0.0020 h’! x,=0.2137
a=0.9250 k,=0.010 h™ x; =0.0139
S=9.6%-10 x, = 0.0214

In this case study, there was no need to determine the best-case scenario, since the
goal was to determine the overdesign needed due to parametric uncertainty. By
overdesign, we mean the increase in reactor volume (from the nominal value in Table
E.8) and changes in plant operating conditions that yields the lowest (optimal) cost when
the uncertain parameters are within their uncertainty bounds. Naturally, excessive
overdesign of the reactor volume will result in unjustified costs.

Grossmann and Sargent (1978) calculated the gradients of equations numerically
in order to simplify the solution strategy. In their work, uncertain coefficients in equality
constraints were fixed at the values that were selected to be worst case based on
“engineering knowledge” in order to simplify the solution strategy. The method outlined
in Section E.1 determines these worst case coefficient values automatically.

The results are consistent with expectations. The recycle of unreacted A and B is

nearly maximized (o~1), while the recycle of undesired X and Y is essentially zero

Table E.9. Results for Reactor-Separator System — Independent Parameters, Interval

Uncertainty
Objective=$ 185.115  k,=0.32h’ X, =0.1863
V=15.1188 m’ k,=0.08 h xp=0.5788
F=371.4 mole/h k.=0.0024 h x. =0, 1885
a=10.9552 k,=0.012h" X =0.0182
f=2.25¢-12 x, = 0.0283
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Table E.10. Starting Points Used for Obtaining the Solution in Table E.9

CPU
Starting Points B sec  # func. eval # restarts Solution
x=02;V,F=1.0;0 B=05K =kon*; =0 (031 46 0 o
All parameters and variables at nominal values ~ 0.047 29 0 Good

*k.om Was taken as the average value of the interval for each k;

(B=0). The solution was clearly obtained at the worst-case scenario of the parameter
values, which is the most unfavourable to the generation of desired product R (ks and &, —
reaction rates on the main product route— at their lower bounds, and &, and k, — reaction
rates on side-reaction routes — at their upper bounds).

The values obtained for the reaction rate constants in Table E.9 maich those
selected by Grossmann and Sargent (1978), which indicates that their judgements were
goond. Grossmann and Sargent (1978) reported an objective function of $185.66 and a
volume #=15.5854 m’. Table E.9 shows a smaller volume (}=15.1188 m’) and lower
cost ($185.115). Our results were verified by running 10,000 Monte Catlo simulations
{optimizations) on uniformly distributed uncertair parameters, which vielded a worst-
case objective function of $185.115 and ¥ = 15.119 m>. In the next sections, the effect of

deterministic and stochastic correlation among the parameters is presented.
E.3.1. Deterministic Parameter Correlation

The approach in Section E.1 can be easily modified to incorporate deterministic
knowledge about parameter correlation. In order to illustrate this, we defined a
modification to the Reactor-Separator problem that was not defined in the original paper.
If reactions A—B and B—R use the same catalyst active sites, the total number of these
sites is constant, and the catalyst manufacturing process has variability in the production
of the ratio of sites, there would be negative correlation between reaction rate constants
kp and kg. When adding the deterministic correlation structure given in equation ( E.2 ) as
another equality constraint in the original problem, the results in Table E.11 are obtained.
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Table E.11. Results for Reactor-Separator System — Worst-Case Scenario with
Deterministic Correlation

Objective=$172.4  k,=0.48 h’ X, =0.1374
V=14.052m’ k.=0.08 h’! xp = 0.6227
F=354.8 mole/h ke=0.024 h! % =10.1972
a=0.9442 k,=0.012 k" x,=0.0131
B=3.2e-13 xy = 0.0296

(kh'.max - kli.min) ( E.2 )

(kls‘ - kll.mml ) == kk‘miD (kR . kR.umu )

- (kR.max -

Since the parameters kp and kg are negatively correlated, the method identified the
worst-case scenario as having kg at its upper bound and kg at its lower bound. This
indicates that, when compared to the nominal case, A would have a faster conversion to
B, while B would take longer to be converted to R. The results in Table E.i1 were
confirmed by running 1,000 Monte Carlo simulations, in which the largest (werst-case)
objective function found was of $171.9 with a corresponding volume of ¥ = 14.0321 m".

This would support the fact that the parameter settings in Table E.11 correspond
to the worst-case scenario can also be confirmed by simulating the opposite, best-case,
scenario (giving the largest kg and the smallest kg possible), which yields a much smaller
reactor volume (¥ = 11.583 m®) and a lower cost ($143.7).

The reason why the best-case reactor volume is smaller than the nominal one
(11.583 m* versus 12.3477 m’) is because the negative correlation structure requires one
of the reaction rates to be below its nominal value, thus resulting in a faster conversion of
reactants. Even though the other rate is above its nominal value, in this case, the
reduction in one of the rates made the overall conversion (A — R) higher, leading to a

smaller residence time.
E.3.2. Stochastic Parameter Correlation

In this case, we introduce ellipsoidal correlation in the uncertain parameters that

was not in the original paper. We assume that the four reaction rate constants [k, &, k.
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k)" are multivariate normally distributed with the variance-covariance matrix shown

below.

6.746.10" -1.670.107* 0 0
-1.670.10" 4.216.10°° 0 0
V(k)= .
0 1.687.10° 0
0 0 0 4216.1077

In order to obtain the values used in the variance-covariance matrix in this
example, the reaction rates were assumed to belong to a multivariate normal distribution
with 4 degrees-of-freedom, at 95% confidence levels. The largest deviation allowed for
each individual reaction rate was the absolute deviation from the nominal value reported
in Problem E.5, which are the interval bounds given by Grossmann and Sargent (1978).
Note that the rate constants k;, and %, have a negative correlation (= -0.99), so that the
uncertainty is qualitatively similar to Section E.3.1. In a true plant, the correlation
structure in V(k) could be obtained from designed laboratory or plant experiments. This
correlation information is included in the problem as the additional inequality constraint (

E3)

(k - kmml )T V(k)_l (k - krmm ) .- li‘doj ( E.3 )

In equation ( E.3 ), k is the vector of uncertain parameters, a is the confidence
level, and dof is the number of degrees of freedom, which is equal to the number of
uncertain parameters in the ellipsoid (Rooney and Biegler, 2001). In this example, a =
95% and the number of degrees-of-freedom is four.

A projection of the four-dimensional parameter distribution on the k;, &, plane can
be seen in Figure E.2. The circles correspond to a diagonal matrix V(k), when there is no
correlation between &, and k,, and the filled dots correspond to the correlated case. The

bold rectangle corresponds to the interval description of uncertainty used in Problem E.2.
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Figure E.2. Parameter Uncertainty Descriptions — Reactor-Separator Case Study (o - no

correlation; e - correlation = -0.99)

Table E.12. Results for Reactor-Separator System — Stochastic Correlation

Objective=$1712  k,=0.4789h™ x,=0.1385
V=14.0132 m’ k,=0.0800 h’' xp = 0.6242
F = 348.6 mole/h k.=0.020 b x, = 0.2008
a=0.9350 k,=0.0100 h™ x=0.0112
B=5.1e-10 x, = 0.0253

The solution for the worst-case is given in Table E.12. As can be observed in
Table E.12, the directionality of the results was the same as when considering
deterministic correlation between &, and k,; i.e., k, was above its nominal value, while &,
was below its nominal value. The design for the system with ellipsoidal uncertainty
contains a slightly smaller reactor volume and lower cost than the interval uncertainty
with deterministic correlation, thus being less conservative.

The computational experience for the cases with deterministic and stochastic
parameter correlation was very similar to the one with no correlation: very short
computation times were needed (< 0.1 CPU seconds), no restarts were required, and the

same optimal solution was obtained given different starting points for both cases.
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E.4. Summary

This appendix demonstrates the application of the monitoring methods developed
in Chapter 3 to open-loop systems. In these systems, the method determines the worst-
(best-) case scenario of an optimization problem (without feedback) for uncertain
parameters described by intervals, deterministic correlation or statistical correlation.
There are likely many industrial “open-loop” applications in this category for process
design and process operations, where the effects of decisions cannot be measured until
the operation has been completed.

Previously published methods for evaluating the effect of uncertainty on the
objective function of linear programming problems require multiple enumerations for
equality constraints and cannot deal with stochastic parameter correlation. The methods
presented in this thesis require only a single solve and provide not only the best- and
worst-case objective function values, but also the variable values and uncertain parameter
values at the solution. The advantages of the methods developed in this work are
achieved by accepting the additional burden of solving a bilevel optimization problem,
which is reformulated as a non-convex, single-level problem.

A small nonlinear problem was solved to confirm that the method can be
extended to nonlinear systems. However, in this case, first-order conditions are not
sufficient to guarantee local optimality. The use of first order conditions is consistent
with Clark and Westerberg (1990). After a solution is obtained, the second order
conditions must be verified in order to establish that a locally optimal solution has been

found.
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Appendix F

Full Formulation of MaxGap,,,

This appendix presents the complete formulation of Problem 3.5 (MaxGap,,,) as a

single-level optimization. When substituting the inner optimization problems of Problem

3.5 with their optimality conditions, the following optimization problem is obtained:

Problem F.1:

Maxgapin, =
Prye, Pr,

nom.CL €

subject to
#ineq

=V L rnom v z : ‘nom, k

z'nom.k g nom k = O

gnnm,k = O
j’mm.k 2 O

I

#ineq

max (P rgc —Pr, nom,CL)

Q num '

g:omk = 0

y k=1...#ineq

Vb Toe— Z’imzkvlv}.m 8k =0

k=1

j’li(',kgli(',k =0
s 20
Apex 20

z : inom Z inom (
Oimin <G/ <
imin — i max

y k=1...#ineq

,..,m,) , j=oct, RVP

, J=oct, RVP
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where, for the KKT conditions of the nominal CLRTO model:

Prpomct = Z(value —cost,)F, - (F.1)
i=1
8nom1 = Z inom rnom +&™ ) 5 lemdmaxz inom = 20 ( F2 )
i=1
8nom2 = z ,,,o,,, ,m,,,, g"" ) + leend,maxz — >0 (F.3)
gnom,3 B Z ’"0’" I"OM Lo e""’) leendmmz inom = 0 ( F'4 )
ghom,4 = Z lnom inom RVP) Q Izndmmz inom = 20 (F5 )
8noms = Z soiom T Pt 20 (F.6)
8rnom6 = ZF;',nom - Fblend,min 20 ( F.7 )
i=1
8nom,7 = _FRej,nom+FRej.m¢n 20 (FS)
8Enom8 = FRef.nom - FRej,min 2 0 ( F9 )
8nom9 = — Fispuom + Frspma 20 (F.10)
8nom,10 = FLSR,nom - FLSR.min 20 (Fll )
8nom,11 = — FBuI.nom AP FBul.max 20 ( F.12 )
8nom,12 - FBm,nam _FBul,min 20 ( Fl3 )
8nom13*  ~ Froc pom + Frocma 20 (F.14)
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8rom14:  Frccpom = Frocmin 20 (F.15)
8nom 15— F o pom + Fag max 20 (F.16)
8rom16:  Fyn nom — Fanmin 20 (F.17)

For the KKT conditions of the "best" CLRTO, the equations are very similar to equations
(F.1) to (F.17). The only differences are that (1) the subscript nom is replaced by the
subscript BC, and (2) in equations (F.2) to (F.5), there is no feedback term &, since in this

case, there is no mismatch between the model and the plant.
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