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Abstract 

Linear Programming (LP) has a wide range of industrial applications, including 

closed-loop systems such as real-time optimization and the steady-state economic 

optimization at each execution of Model Predictive Controllers. This thesis presents new 

metrics for monitoring the performance of linear closed-loop real-time optimization 

systems, as well as new methods for improving their performance when necessary. A 

novel diagnostic method for ranking parameter importance with respect to the objective 

function is also presented. 

Many standard methods are available for estimating the effects of parameter 

uncertainty on the objective function without a basis change, and more powerful existing 

methods require enumeration or sampling. This work introduces new sensitivity methods 

in LP problems with uncertain coefficients that can be correlated, appear in equality and 

inequality constraints, and have uncertainties with large enough magnitudes to lead to 

basis changes. 

The new monitoring approach measures the uncertainty effect as the range 

between the maximum and minimum profit in the plant under closed-loop optimization, 

termed the Profit Gap, and both its maximum and expected values can be determined. 

If the monitoring indicates a substantial Profit Gap could exist, the improvement 

step designs experiments to reduce parametric uncertainty. The unique experimental 

design maximizes the total profit during and after the experiment to the end of a 

production run. 

Both the monitoring and improvement methods involve the solution of bilevel 

optimization problems, which include complementarity constraints. Results of application 

to a closed-loop gasoline-blending problem demonstrate the power of the methods. The 
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studies include typical uncertainties and measurement nOise and show the economic 

benefits possible through the application of real-time monitoring and improvement. 
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Chapter 1 

Introduction 

1.1. Optimization in the Process Industries 
Optimization has been successfully applied in the process industries since the 

beginning of mathematical programming and digital computation (e.g., Symonds, 1955). 

Because of the many degrees of freedom in complex process applications, optimization 

can improve solutions obtained through experience or heuristics. Because of the large 

cash flows, the economic benefits are often substantial. Typical optimization applications 

involve models that contain uncertain parameters; therefore, the benefits of optimization 

can be eroded because of model uncertainty. This study develops methods for 

monitoring the performance of process optimization and for improving the performance 

when severe degradation is possible due to uncertainty. 

1.1.1 . General properties of optimization problems 

An optimization problem comprises an obje.::tive function which is to be 

minimized or maximized. In some cases, inequality and equality constraints must be 

added to the optimization problem. Inequality constraints may be of two types, Bounds or 

General. Bounds are used when the decision variables in the problem must be limited by 

upper and/or lower values. For example, in a process plant, individual flowrates cannot 

have negative values or be above the maximum pumping capacity. General constraints 

are used where some function of the variables (e.g. st;mmation of flowrates) must be 

limited (Williams, 1999). Equality constraints define the relationship between dependent 

and independent variables, such as in the case where the production rate has to be exactly 

equal to the demand. 
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There are two methods for optimizing an existing physical system. One method is 

through continuous perturbation of process variables in the plant, which is called 

Evolutionary Operations (EVOP) (Box and Draper, 1998). Besides requiring continual 

perturbations of the system, EVOP does not ensure satisfying process constraints in the 

dependent variables, and scales poorly with the number of manipulated variables. The 

second method is by optimizing a mathematical model cof the system and implementing 

the results in the system. Since mismatch will undoubtedly exist between the model and 

the real system, measurements can be used to provide updated estimates of model 

parameters. This research investigated the performance of model-based optimization. 

The optimization systems addressed in this thesi;;; include feedback of measured 

variables for model correction, which is a common optimization approach used in the 

process industries. Optimization models can be used in either an open-loop or closed­

loop manner. These two approaches are briefly explained in the following two 

subsections. 

1.1.2. Open-Loop Optimization 

In open-loop optimization systems, the model-based optimization results are 

implemented in the process, and no information from the process is used to update or 

correct the model or calculated results (Figure 1.1 a). In automatic control, this approach 

would be termed feedforward. We note that the decisions from open-loop optimization 

could be implemented automatically or could rely on a person for implementation. 

Naturally, the performance of an open-loop optimization can be strongly affected by 

model mismatch, but it is sometimes the only possible approach when timely 

measurements are not available. 

2 
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Process 
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McMaster University. Chemical Engineering 
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t 
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Figure 1.1. (a) Open-Loop and (b) Closed-Loop Optimization 

There are several typical applications of open-loop optimization problems in 

industry. As an example, one application is in plant design problems, in which one must 

determine what is the best set of design variables - e.g., tank volumes, number of trays in 

a column, and so on - in a process. 

1.1.3. Closed-Loop Optimization 

Closed-loop optimization is the term used to describe a system that contains some 

form of feedback information that modifies subsequent optimization calculations (Figure 

1.1 b). In plant operations, the information is provided by real-time sensors to measure 

selected physical variables. Naturally, the feedback has the potential for reducing the 

effects of model mismatch and disturbances, but in general, feedback cannot eliminate 

their effects. 

A wide variety of approaches are possible for m.ing measurements to update the 

model used in the optimization. The approach used in this study involves the Model­

Predictive Control (MPC) structure, which is widely employed in the process industries. 

In MPC, future values of selected manipulated variables are determined to optimize an 

objective function, which includes controlled and manipulated variables. The measured 

values of the controlled variables are used for the feedback. This control structure has 

several excellent properties; primary among these are zero-steady-state offset from the 
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Economic etpoint Measured variables 

optimizer 
Plant 

Predicted ariables - f) M del 
+ 

Updared Bias 

Figure 1.2. Structure of a Model Predictive Controller (MPC) 

setpoints (reference values) and flexible feedback compe1sation that is not restricted by a 

fixed control law, such as PID or other algorithm. The structure of an MPC controller can 

be seen in Figure 1.2, and details of the structure are given in Appendix A. 

As we will see, the applications in this study involve quasi-steady-state processes 

(note that the system is dynamic, because it takes several iterations to reach steady-state), 

so that dynamic performance is less of an issue 

This thesis concentrates on Closed-Loop Real-Time Optimization (CLRTO) using 

the MPC structure. In Real-Time Optimization (RTO), the economic optimization of a 

system is achieved by adjusting manipulated variable:s, which often are setpoints of 

controllers. The calculations involved in the feedback compensation in model updating 

will be presented in subsequent chapters. The extension to open-loop optimization is 

presented with examples in Appendix E. 

1.2. Linear Programming 
Many optimization problems III the process industries are based on linear 

equations; thus, linear programming is the natural choice for these optimization 

problems. Although processes are nearly always nonlim:ar, adequate optimization results 

can often be obtained by careful modelling, e.g. , disjunctive, separable, base-delta, etc. 

(Williams, 1999) and restricting operations within the linear region. Linear programming 

has mathematical properties that make it attractive for use in closed-loop optimization, 

where obtaining rapid and reliable solutions is important. 

4 
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This thesis concentrates on linear programming because of its importance in the 

process industries. While the selection might appear limiting, CLR TO using linear 

programming contains some of the most challenging aspects of the research project, 

which are monitoring the performance of closed-loop optimization of uncertain processes 

with the possibility of changing active inequality constraints. The extension of results to 

nonlinear problems is briefly introduced in Appendix E. 

1.3. Monitoring the Performance of Economic Optimization 
Optimizing a complex process using linear programming will perform well, i.e., 

achieve nearly the best possible objective in the real process, when model mismatch is 

small. Therefore, monitoring the performance of an optimizer involves determining a 

metric that measures the effect of model mismatch. Performance monitoring is 

complicated by the typical situation in which the objective achieved in the real plant 

cannot be measured exactly because of sensor inaccurac tes and in some cases" missing 

measurements. Therefore, monitoring requires two key elements: a description of the 

potential model mismatch, i.e ., the uncertainty, and a metric of the effect of uncertainty 

on optimization performance. 

Model mismatch can result from structural mismatch between the model and true 

plant and from parametric mismatch between the model and in the true plant. No 

structural mismatch between model and plant is considered in this work. All plant/model 

mismatch originates from the difference between parameters in the true plant and in the 

model. In this work, the parameter uncertainties are described using two different 

approaches: (1) interval model parameter uncertainty, which is used whenever there is 

little or no knowledge about the correlation structure of the system, and (2) ellipsoidal 

model parameter uncertainty, which uses the variance-covariance matrix of the system 

that represents either correlated or independent parameter variations. Ellipsoidal 

uncertainty could result from a multivariate normal dis1ribution, where parameters are 

assumed to vary within an ellipsoid with confidence regions delimited by the chi-square 

statistic. In some formulations in this work, only the boundary of this ellipse was taken 

5 
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into consideration, whereas in other formulations, an approximation of the parameter 

probability distribution was considered. 

The performance metric addresses the objective function. In process examples, 

the objective function is the profit of the operation, and if secondary items are important, 

such as changes to the manipulated variables, they can be included either in the objective 

function or as variable bounds. As previously noted, the objective function value in the 

true plant cannot be obtained in the general situation. A potential straightforward 

approach for improving the model would involve perturbing the process to compare the 

responses of the model and true plant; however, continual perturbations would be very 

costly. Therefore, this work presents monitoring methods that do not require plant 

perturhations. The monitoring method develops scalar measures on the performance of 

the uncertain system; for example, the greatest possible loss in profit due to mismatch or 

the expected value of the loss due to mismatch. 

When monitoring performance, the user must decidt> a criti<.:al value that 

distinguishes "good" from "poor" performance. Since th{! objective function is the metric 

in the monitoring method, the critical value will be profit , which is expressed in $/day in 

the examples in this work. The critical value is problem dependent. However, one 

generally would not strive for a metric value of $O.O/day because the effort for further 

improvement would not be worth the gain and because the monitoring methods provide 

only an estimate of the improvements, which are not exact. In this work, we will use a 

critical value of roughly $1 ~O/day for the maximum tolerable profit loss due to mismatch. 

When the metric is below the critical value, the system is deemed to be functioning 

acceptably. The threshold value should be defined based on the trade-off between the 

inherent achievable accuracy given the available sensors (which would be very 

significant for a production with a large cash flow), the true costs of changing operation, 

and organizational barriers. 

1.4. Optimizer Performance Diagnosis and Enhancement 
When the metric indicates unacceptable performance, the engineer would like to 

improve the performance of the CLRTO system, which requires reducing the model 

6 
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mismatch. There are a few approaches for improving parameter estimates. First, one can 

measure each uncertain parameter by onstream analysi~: or by sampling with subsequent 

offline analysis. These approaches definitely increase the process cost. Besides, onstream 

measurement might even be impossible, depending on the system. Second, a more 

accurate first-principles model can be developed in order to achieve better estimates of 

the model parameters. However, when the more accurat~: model is not readily available, it 

is expensive to develop and might not provide the required accuracy. Finally, a third 

option is to re-estimate model parameters by running d~~signed experiments in the plant, 

which can be costly. This thesis presents novel experim~ntal designs that minimize total 

cost, so that the experiment yields the optimum tradeoff between the costs of 

experimentation and the benefits of future (improved) operation after the experiment. 

In some systems, it is useful to obtain diagnostic information about the relative 

importance of parameter uncertainty with respect to the optimizer performance. This 

information can help in sensor location problems or in focusing fundamental model 

improvement efforts. This thesis presents a method for determining the relative 

importance of parameters with respect to the objective function that does not require a 

constant active constraint set. 

1.5. The Major Case Study and a Motivating Example 
The methods are developed for application to any CLR TO using linear 

programming. The case studies in this work demonstrate the efficacy of the methods on 

an industrial process. The blending of petroleum products to manufacture gasoline has 

been selected because it has the basic properties of the process systems being considered 

in this research, namely: 

..,. The process can be modeled with reasonable accuracy using linear programming; 

~ CLRTO has been applied to many industrial gasoline blending processes using the 

MPC structure; 

~ The process has significant uncertainty III constraint parameters that multiply 

variables, i.e., left-hand side coefficients in a linear program; 

7 
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Figure 1.3. Gasoline Blending Process 

~ The process is economically important and has 0ppo11unity for further improvements 

via monitoring and diagnosis; 

>- The process is representative of other CLRTO systems using an LP. 

In an oil refinery, there are several important blending processes, such as the 

blending of crude oil, gasoline and fuel oil. Most of the case studies in this thesis refer to 

the gasoline-blending process, which has great economic incentive for optimizer 

performance improvement. 

In the gasoline-blending process considered in this work, five components are 

blended to fonn the final gasoline product: Reformate, Light-Straight Run (LSR) 

Naphtha, n-Butane, FCC Gasoline and Alkylate (Figure 1.3). There are two property 

specifications that are very relevant to customers: octane number and Reid vapour 

pressure (RVP). These properties are only measured online for the final product. 

The five components are either purchased or obtained from upstream operation 

that has variable operating conditions, and are stored in large tanks; therefore, short-term 

violations of component properties are allowed. The component properties are only 

measured very infrequently, e.g., once a week (Mudt, 2005; Kelly, 2006). Also, due to 

occasional shortage of storage capacity, components may h;! pre blended into component 
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Figure 1.4. Result of Parametric Mismatch on CLRTO operation 

tanks (Kelly, 2006; Chin, 2006). Therefore, the octane numbers and RVP for each of the 

components are a significant source of uncertainty to this CLR TO system. Details on this 

process can be found in Appendix A. 

The closed-loop implementation of RTO has limited feedback information, since 

only the right-hand side of the constraints ("bias") is updated (Figure 1.2). This is a 

common feedback structure in industrial applications, such as MPC systems. The bias­

updating method, however, is only guaranteed to lead the system to the true plant 

optimum if the parametric mismatch between model and plant is small enough; Forbes 

and Marlin (1994) provide the mathematical definition for the needed size of uncertainty. 

If the parametric mismatch is too large, the CLR TO may operate at an optimum different 

from the true plant. 

To demonstrate the effect of parametric mismatch, Figure 1.4 shows the flowrates 

of gasoline components to the final blend during a blending batch. These flowrates were 

calculated by the CLR TO system for the same plant parameters using different CLR TO 

models; i.e., linear models with different parameter values The octane number and RVP 

quality specifications of the final product are met for bmh CLRTO models. However, 
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only one of the two models results in a system achieving its true plant optimum. With no 

additional information about this system, how is it possible to know which operation is 

better or whether either is close to the true plant optimum? Which model parameters 

should be re-estimated in order to achieve potentially more profitable operation? How 

should the parameters be re-estimated in order not to have major disruptions in plant 

operation? Such questions are answered by using the methods developed in this work. 

1.6. Importance and Contributions 
Perhaps the major question for the reader is: "Is this work important?" The value 

can be evaluated based on the importance for applications and on the contributions to 

technology. Both are addressed briefly in this section. 

1.6.1 . Useful applications 

In process industries, LP has been used in many applications, such as planning 

and scheduling models, which assign, time, size and sequence operations in productIOn. 

Yet another application of LPs is in selected CLRTO systems when the linear(ized) 

model provides adequate accuracy. This generally occurs when the optimum is known to 

occur at a comer point of the feasible region, which is assured in the LP solution. Linear 

CLRTO blending systems exist, for example, in cement manufacture and in coal mixing 

for use as fuel. The approaches in this research are tailored for application to CLRTO, 

and two important applications of LP-based CLRTO are discussed in this section. 

One of the earliest applications of closed-loop linear programming was to 

gasoline blending (Birchfield, 2002), which resulted from the enormous economic 

importance of this process. For example, the average gasoline demand in the USA is 

about 3.8x108 gal/day (Oak Ridge National Laboratory, 2004). At the current cost of 

gasoline (about 2.50 $/gal), the total cost to the US com;umer is about 3.5xl011 (350 

billion) $/year! Clearly, even small percentage improvements in the blending process can 

have significant benefit to refining companies and consumers. 

In addition, the LP in the widely used Model Predictive Controller (MPC) has the 

same structure as the systems considered in this thesis, so that the results of this work are 
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applicable to the steady-state optimization of MPC systems. Linear models are used in 

steady-state optimization to give the final conditions for MPC controllers (Qin and 

Badgwell, 1997). The final steady-state solution is requ:.red for (l) open-loop unstable 

processes, and (2) non-square control systems, where ex1ra degrees of freedom are used 

to improve the profitability of the plant operation. Besides blending processes, MPCs are 

a very significant application of the technology, since there are approximately 4,000 

MPC controllers currently installed worldwide, and MPC implementation growth rates 

are expected to increase in the next few years with the rel~ent rise in oil prices and due to 

growth in China, Eastern Europe, India and the Middle East (Wagler, 2006). Since MPC 

implementation costs for a single refinery process uni"t may range from $250,000 to 

$500,000 (Wagler, 2006), it is clear that methods are required to monitor the performance 

of the LP in the MPC, and that improve it if necessary. 

The formulations in this thesis were tailored to linear CLRTO systems, and were 

applied to a 5-manipulated-variable blending process. The extension of the methods to 

open-loop linear optimization problems is straightforward. Nonlinear optimization 

problems may also benefit frem the technology, although some post-solution checks must 

be made. The extensions to open-loop linear and nonllnear problems are discussed in 

Appendix E. The computational aspects of the application of the methods to larger 

optimization problems (20+ variables) should be evaluated in the future . 

1.6.2. Technical contributions 

This work concentrates on optimization of uncertain systems. The importance of 

this topic was identified by a recent NSF-funded workshop on Statistics and Operations 

Research (Robinson, 2005), where some of the key issu:!s in these fields were identified. 

Amongst those issues selected as high priority were (l) the design of profit-based 

experiments to reduce the uncertainty in key parameters, and (2) screening the uncertain 

model parameters to determine their importance on optimizer performance. This research 

addresses these two issues, along with a performance monitoring method to identify 

when these two technologies are needed for a specific application. 
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The work described III this thesis presents the following new technical 

contributions. 

~ Modelling the behaviour of the LP-based closed-loop real-time optimization system 

(CLRTO) in one simultaneous equation set 

~ Modelling the effect of uncertainty in CLRTO system on plant profit 

.,. Evaluating several metrics for the effect of parameter mismatch on CLRTO 

performance, i.e., profit 

., Developing a diagnostic method for ranking the effects of uncertain parameters 

.,. Designing novel, profit-based experimental designs appropriate for enhancing 

CLR TO performance in operating plants 

~ Applying the methods to several cases of an industrially-relevant blending process 

~ Extending the monitoring methods to open-loop linear problems and to a preliminary 

study of nonlinear problems 

A new sequential procedure for implementing the monitoring and enhancement of 

closed-loop linear RTO systems was also developed. The method is designed to monitor 

and diagnose CLRTO performance without plant perturbations. The sequential nature of 

the procedure enables its interruption whenever perfcrmance is deemed satisfactory. 

Also, it ensures that the cost-effective experiment~ are implemented only when 

necessary. 

1. 7. Overview of the Thesis 
The thesis is outlined as follows: 

., Chapter 2 gives an overview of technology related to this work, including related 

optimization problems and solution strategies . 

., Chapter 3 presents CLR TO performance monitoring approaches. One approach is 

based on the number of corner points, and four approaches are based on the Profit 

Gap. Monitoring CLRTO performance determines if model enhancements are 

necessary. 
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~ Chapter 4 contains different experimental design strategies for when there is the need 

for CLRTO model enhancement. Experiments are designed in a cost-efficient 

manner. This chapter also presents the diagnostic method for determining key model 

parameters whose uncertainty should be reduced in order to achieve a better R TO 

performance metric. 

~ Chapter 5 presents a sequential procedure for implementing the CLRTO monitoring 

and enhancement strategy, so that model/plant mismatch is assessed and the plant is 

perturbed (only if needed) by profit-based experiments. 

~ Finally, Chapter 6 summarizes the work with conclusions and future extensions to the 

technology developed in this thesis. 

A Nomenclature section contains all the symbols used throughout this thesis. 

1.8. Thesis Conventions 
In this work, closed-loop real-time optimization (CLRTO) and real-time 

optimization (RTO) refer to a steady-state constrained economic optimizer operated 

under closed-loop, where the term real time refers to how measurements are obtained 

(as opposed to computing). True plant properties refer to properties that occur in the 

real process, and that are not known by operating personnel. Model (or RTO or 

CLRTO) parameters or properties are properties used in the RTO model. 

Optimizer performance measures the potential economic loss due to 

parametric uncertainty. The Profit Gap is defined a~ , the difference between CLRTO 

operation under perfect knowledge of parameter val"Jes and CLRTO operation using 

nominal parameter values. It is an indication of the cost of uncertainty in a system. 

Optimizer Performance Enhancement aims at reducing the parameter 

uncertainty in order to decrease the potential economic loss (Profit Gap) in the 

optimization problem. In the extensions to open-loop problems, there are references 

to best-case (worst-case) properties. These properties are those that yield the best 

(worst) objective function value in an optimization problem (for instance, highest 

(lowest) profit). 
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Chapter 2 

Technology Survey 

Model-based optimization employs a mathematical model of a process when 

determining feasible values of the variables that yield the best objective function value. 

As a result, the performance of model-based optimization depends on the accuracy of the 

model. This research develops methods for quantifying the potential loss in performance, 

i.e., deviation in the true plant objective function from its optimum value, due to model 

errors. This chapter reviews the relevant state-of-the-att in formulation of optimization 

problems under uncertainty and solution methods. 

Linear programming problems have found wide application in the process 

industries, such as in blending processes and in the steady-state optimization within 

Model Predictive Control systems. Due to their practical importance, linear closed-loop 

RTO systems were considered in this work. More details are presented in Section 2.4. 

If the performance of a CLR TO system is deemed unacceptable, parameter 

uncertainty should be reduced. One of the ways to achieve this is through designed 

experiments in the plant. The formulations in this thesis differ from state-of-the-art 

experimental design strategies in that they take the cost of experimentation into account, 

as well as the CLRTO monitoring metric of choice. More details can be seen in Section 

2.2.2. 

Once plant data has been obtained, parameters should be re-estimated in order to 

improve CLRTO model accuracy. The parameter-updating method of choice was 

Bayesian estimation, since prior information about parameter uncertainty can be included 

(Section 2.2.3). This information is obtained from historical data from previous 

processing runs. 
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Finally, several formulations in this work involve bilevel optimization problems. 

Solving these problems is computationally very challenging, requiring special 

reformulations. An overview of this field is given in Section 2.3 .3. 

2.1. Sensitivity Analysis 

The work in this thesis concentrates on the sen:;itivity of the objective function 

with respect to parameter uncertainty, which may originate in any of the coefficients of 

the problem (including left-hand side coefficients of constraints). The parameter 

uncertainty may cause the active set to change, and the objective function values are 

compared at different optimal bases without the need for enumerative procedures. 

A natural topic when dealing with uncertain systems is to evaluate how much the 

problem is affected by parameter uncertainty. This is the goal of sensitivity analysis (SA). 

SA evaluates the sensitivity of the problem to change5 in variables after the decisions 

have been made, and therefore are not appropriate methods for integration into the 

optimization decisions. 

Traditional sensitivity analysis methods for linear programming provide valuable 

information about changes in selected single parameters (Winston, 1994; Nash and So fer, 

1996). They give the effect on the objective of changes in the right-hand side of 

inequalities and changes in cost coefficients. In addition, they give ranges for each 

coefficient over which the optimal basis (active set) does not change. Limited results are 

available for multiple coefficient changes via the 100% rules that give the maximum total 

changes for multiple coefficients for which the basis is guaranteed not to change. These 

methods find wide application in applied optimization. 

Unfortunately, these traditional methods are not applicable to the problems posed 

in this research. First, in addition to cost and right-hand side uncertainty, the problems in 

this research have uncertainty in the left-hand side coefficients, i.e. those that are 

multiplied by variables in the constraint equalities and inequalities. Second, many 

parameters have uncertainty simultaneously. Third, a key issue in this research is the 

evaluation of changes in parameters when the optimal basis changes. 
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Chinneck and Ramadan (2000) determined the sensitivity of LP problems to 

parametric interval uncertainty. They use interval mathematics to determine the worst­

case (best-case) value of each parameter, and then, they solve the resulting LP for the 

worse-case (best-case) objective value. Chinneck and Ramadan solve problems similar 

to those in this research; however, substantial differences exist. First, they address "open­

loop" systems without feedback correction. Second, they allow only independent 

parameter variations, i.e., no correlation among parameters is considered. Third, their 

solution method requires a combinatorial procedure to deal with uncertainty in equality 

constraints. However, the problems of Chinneck and Ramadan are of practical interest 

and therefore the solution methods developed in this research were applied to their 

problems to demonstrate the advantages of these new formulations. The results can be 

found in Appendix E. 

Finally, the effect of parameter variation can be determined by introducing 

changes to relevant parameters and re-solving the optimization problem. This approach 

might be attractive when few, discrete candidates are to be evaluated. However, the 

uncertain parameters are continuous within a defined region; therefore, a large number of 

cases would be required to estimate the effect of uncertainty (Sen and Higle, 1999). In 

addition, the evaluation of many cases, each requiring an LP solution, would be 

problematic when embedded in a sub-problem on a multi-level optimization, as discussed 

in Section 2.3.3. 

2.2. Problem Definition 

The problem defined in Section 1.5 is a linear optimization problem, with limited 

feedback. Model and plant are assumed to differ only in the parameter values, since no 

structural mismatch is considered. We seek a steady-state solution that is feasible, if 

possible, and at or close to the optimum of the true plant. 

Two descriptions of parameter uncertainty were used in this work: (1) Interval, 

where parameters vary within upper and lower bounds, and is used when there is no 

information about parameter distribution, and (2) Ellipsoidal , where the parameters are 
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assumed to be nonnally distributed, and vary within a multidimensional ellipsoid 

described by: 

(2.1 ) 

In the ellipsoidal description of uncertainty, parameters Q lie within the 

ellipsoidal contour defined by their variance-covari,mce matrix V(Q) at a given 

confidence level (a). The number of degrees of freedom (dofJ for the chi-square 

distribution is equal to the number of uncertain parameters (Rooney and Biegler, 2003; 

Draper and Smith, 1998). This description of uncertainty allows for the incorporation of 

correlation among parameters. 

An important class of optimization problems under uncertainty IS Stochastic 

Programming, which is discussed below. 

2.2.1. Stochastic Programming 

Stochastic Programming enables the integration of uncertainty into the solution of 

an optimization problem. Stochastic Programming can be classified into two main types 

of problems: Probabilistic Programming and Recourse Problems (Sahinidis, 2004). 

Probabilistic Programming 

Probabilistic Programming incorporates uncertainty by the use of chance 

constraints (Charnes and Cooper, 1963). Chance constraints occur in both steady-state 

and dynamic optimization problems. An example of a chance-constrained problem can be 

seen below. 

mm cx (2.2 ) 

s.t. P(Ax ~ b) ~ p 
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In Problem (2.2), the constraint Ax~ b is satisfied with a probability of at least p. 

As examples of steady-state chance-constraint applications, there is the work of Chames 

and Cooper (1963) that considers independent uncertainty in the right-hand side 

coefficients. More recent works related to robust feasib:i lity are Ben-Tal and Nemirovski 

(2000) and Lin el al. (2004), which take the uncertainty in the left-hand side coefficients 

(A) into account. These methods, however, cannot handIt: closed-loop systems directly. 

Dynamic robust MPC problems, on the other hand, consider the feedback 

structure of the problem when incorporating paramt!ter uncertainty to ensure that 

constraints remain feasible during transient operation (Kothare el aI., 1996; Warren and 

Marlin, 2004). Even though robust MPC technology guarantees a feasible trajectory to 

the final steady-state, it does not ensure that the final point of the trajectory is the true 

plant optimum because it is not part of the robust control definition. 

In this thesis, an inherently dynamic system is (:onsidered, but only the steady­

state performance is monitored. The trajectory that leads to steady-state operation is 

allowed to be infeasible due to the integrating properti(!s of batch processes with only 

end-point objectives. If necessary, the formulations developed in robust control 

technology could be applied to the dynamic transient system to ensure feasibility 

throughout the trajectory leading to steady-state operation. In fact, the combination of 

steady-state optimization with dynamic trajectory optimization is an example of this 

combined approach, although uncertainty has not been considered in this coordinated 

system to date. 

Recourse Problems 

The probabilistic programmmg approaches described previously limit the 

probability of infeasibility of an optimization problem. Another approach to optimization 

under uncertainty is to model the future response (recourse) of a model to the realizations 

of the uncertain parameters (Sen and Higle, 1999). In the two-stage recourse problem, the 

variables are named according to when they have to be implemented within the decision-
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making process: the decisions that have to be made before the realization of the uncertain 

variables are called first-stage decision variables, whereas the decisions that can be made 

after the realization ofthe uncertain variables are called second-stage decision variables. 

The classical case of recursion assumes "perfect" information about the second­

stage (inner) variables of the uncertain optimization problems. An example of a two-stage 

recourse problem is seen below (Sen and Higle, 1999). 

(2.3 ) 

In Problem ( 2.3 ), x/ and X2 are the first- and second stage decision variables, 

respectively. The subscript s corresponds to each of the S scenarios used in the 

evaluation, and E(1i' (XI)) is the expected value of the random variable Ii' (XI)' The 

expected value of this variable also known as the recourse function. From Problem 

( 2.3 ), it is possible to see that the inner problem (hsCx/)) depends on the realization of the 

outer problem (x/), i.e. , the decisions X2 are only made aft,er deciding on XI. 

There are two types of models associated with Rt:course Programming: the Here­

and-Now (HAN) and the Wait-and-See (WAS) models. HAN models relate to the first 

stage decision variables, where the decision must be made before knowing the outcome 

of the uncertain parameters in the second stage problems. If nominal parameter values are 

assumed for the second stage variables, the HAN solution may be infeasible for the 

uncertain problem (Sen and Higle, 1999). Therefore, one of the methods for handling 

HAN models by reformulating second stage decisions as chance constraints, as seen 

below. 
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min ex ( 2.4 ) 

s.t. Ajx ~ bj 

P(A2X ~ b2)~ P 

In WAS models, perfect information of parameter values is assumed when the 

optimization problem is performed, which corresponds to the optimization of the second 

stage variables. WAS models often require the solution of several scenarios for the 

different realizations of the second stage variables (Sen and Higle, 1999). Decision 

Analysis literature has WAS models in the form of, for example, Regret problems 

(Averbakh, 2000), which will be addressed in more detail in Section 2.5. Many 

applications of WAS models only consider interval uncertainty (with the exception of 

Rooney and Biegler, 2003). Most of the work in the literature can only handle inequality 

constraints, and the parameter space is usually discretized to solve the inner problems. 

These shortfalls were overcome with the methods presented in this thesis. 

Ierapetritou et al. (1996) studied the effect of unct:rtainty in a production planning 

problem through the use of the Expected Value of Perfect Information (EVPI). In 

Ierapetritou et al. (1996), EVPI is described as the difference between the HAN and the 

WAS model decisions. EVPI is further addressed in Section 2.5. 

The work in this thesis is a combination of HAN and WAS models in Recourse 

Programming. The HAN -model concept of making a decision before the realization of 

the uncertain variables in known is used. However, differently from the WAS approach 

of enumerating the different realizations, or from the chance-constrained approach of 

"backing-off" from constraints to ensure feasibility, feedback information was 

incorporated directly into the model by a novel modeling approach in order to predict the 

closed-loop response of the system. In addition, the ;~ystems in this research have 

"limited feedback', so that the uncertainty in some parameters is not reduced in spite of 

multiple recursion. 
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Other Related Problems in Stochastic Programming 

There are other problems in the literature of Optimization under Uncertainty that 

relate to the work in this thesis. Grossmann and Sargent (1978) developed a minmax 

optimization strategy to solve an open-loop plant design problem under uncertainty. The 

idea was to minimize the sum of design and operational costs subject to keeping process 

constraints feasible given the worst-case parameter disturbances. In their work, they 

assumed interval parameter uncertainty without any corrdation. Equality constraints were 

eliminated from the problem, and the constraints that were monotonic with respect to the 

parameters were fixed at the worst -case parameter bounds in order to eliminate the inner 

optimization problem. 

In another plant design problem, Rooney and Biegler (2003) considered uncertain 

model parameters and variable process parameters (disturbances). They suggested an 

iterative procedure for solving the design and feasibility problems, in which the (full) 

parameter space was discretized in the design stage, and then, for a fixed set of design 

variables, the problem was solved again for feasibility. A new set of critical (worst-case) 

parameters that yield the largest constraint violation was identified and added to the set of 

discretized parameters. The procedure continued until no constraint violation was found 

in the feasibility stage. In their work, complementarity constraints were replaced by a 

smoothing function, and ellipsoidal confidence regions \\ere used. The complementarity 

constraints originated from replacing the bilevel oJ:timization problems in their 

formulation with the corresponding optimality conditions. Even with efficient sampling, 

the problem complexity grows rapidly. Furthermore, their methodology was only applied 

to open-loop problems in which there were no explicit equality constraints. 

2.2.2. Model Improvement 

In Chapter 3, methods for monitoring CLR TO performance are presented. When 

the RTO performance metric indicates that the RTO is performing poorly, model 
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parameters should be re-estimated in order to reduce their uncertainty. Experiments are 

performed to obtain better parameter estimates. Note that the methods are not intended to 

discriminate between different model structures, since no structural mismatch is assumed. 

Traditional (fractional) factorial design of experiments (Montgomery and Runger, 

1994) predetermines the condition and size of experiments. This method tends to use 

extreme values of the variables during experiments, and no cost of experimentation is 

considered. As a result, there is likely an excessive number of (unfocused) experiments. 

In an attempt to reduce the number of experiments needed in the plant, "alpha"­

optimal design of experiments (such as A-optimal and D-optimal) forus on reducing the 

uncertainty in parameters such that the some metric of the parameter confidence region 

(volume, largest axis, etc.) becomes smaller (Fraleigh, 1999). These methods, however, 

do not take the cost of experimenting into account, and they may therefore result in very 

expensive experiments. 

Other methods for model Improvement have been proposed that do not require 

drastic changes in operation. One of these strategies is Dual Control (Wittenmark, 2002). 

This technology enables the controller (or CLRTO) to~each the desired setpoint while 

also improving the model by minimizing the expected loss over the remainder of the 

control horizon. However, the calculations can be very intensive because of the nested 

calculation of conditional expectation in the optimization. Evolutionary Operations 

(EVOP) (Box and Draper, 1969), on the other hand, continually excites the plant with 

small perturbations in order to continually improve the model. Both Dual Control and 

EVOP may introduce unnecessary perturbations in the plant because they do not include 

a monitoring phase; i.e., there is no established threshold on performance at which plant 

perturbation stops. 

Pinto (2001) recognized the importance of incorporating the cost of parameter 

uncertainty into the experimental design framework. In his work, the objective function 

in the experimental design procedure was characterized m: the cost of not operating at the 

true plant optimum due to uncertainty, and it was based on profit Hessian information 

and variances of the manipulated variables and parameter5. Besides only being applicable 
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to nonlinear problems, this method only considers open-loop optimization problems and 

independent parameter variations, and does not have a straightforward extension to 

constrained optimization problems. 

Yip and Marlin (2001) included the cost of experimentation into the design of 

experiments for nonlinear constrained RTO systems. The objective function for the 

design of experiments was subdivided in three parts : RTO profit given the current 

nominal model, profit during experimentation, and profit after experimentation. In his 

work, however, a constant active set was assumed. The method was limited to nonlinear 

RTO systems with second-order derivative information, and there was no possibility of 

incorporating constraints during the experiment. 

In this thesis, a profit-based experimental design strategy was developed for linear 

CLRTO systems. This method chooses experimental conditions to achieve the desired 

uncertainty bounds after experimentation, while obeying process constraints during the 

experiment. 

2.2.3. Parameter Estimation 

Once there is process data available for updating the model, a parameter 

estimation strategy must be chosen. A traditional methDd of estimating parameters is 

Least-Squares regression (Montgomery and Runger, 1994; Robertson and Lee, 2002). In 

this method, the sum of squares of the deviations between measured and predicted 

outputs are minimized, weighted by the inverse of the measurement variance-covariance 

matrix. Least-squares estimation, however, assumes error-free input variables. In order 

to account for errors in the input variables 'of a system, the Error-in-Variables method 

(EVM) was developed (Keeler and Reilly, 1992). 

Kalman filtering is an online recursive method for updating states, which could be 

physical variables or model parameters. For linear systems, the Kalman filter and the 

least-squares estimator are equivalent if the weighting matrices are tuned appropriately 

(Robertson et aI., 1996). Since it is very difficult to incorporate constraints in a Kalman 

filter, it is not often used in CLRTO applications. 
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When updating a model with (very) limited amounts of data, Least-Squares and 

EVM should be used with caution: even though the parameter estimates may be closer to 

the true plant parameters, the estimates of parameter variances will be very large until a 

sufficient number of data points are considered. In an operating production unit, however, 

there may be prior knowledge (from past operation) on the "usual" variability of some 

process parameters. Even when there is no information available from previous 

operation, prior information can be obtained from using efficient sampling techniques, 

such as Latin Hypercube. This information on the prior parameter distributions can be 

incorporated into the parameter estimation in order to decrease the number of 

experiments needed to bring the parameters to a small uncertainty region. 

The incorporation of the prior distributions can be done by using Bayesian 

estimation (Box and Tiao, 1973). In this technique, the prior knowledge about the 

parameter distribution is multiplied by the likelihood of lhe new observation in order to 

obtain the ne\', parameter distribution. Reilly (1973) derived the Least-Squares parameter 

estimation in a Bayesian framework. Due to its ability t,) incorporate prior knowledge, 

the Bayesian approach to least-squares estimation was used to update parameters in this 

thesis. 

When parameters are initially a8sumed unknown (i.e., with an "infinite-valued" 

variance-covariance matrix. or in traditional least-squares estimation), the system is very 

susceptible to ill-conditioned parameter estimates. This occurs due to the inversion of the 

variance-covariance matrix of parameters in the estimation procedure. Because the 

Bayesian approach to Least Squares incorporates (reasonable, slightly greater-than­

expected-value) prior variances of the uncertain paramf:ters, the parameter estimation 

becomes numerically more stable. More details on Bayesian Estimation can be found in 

Appendix B. 

2.3. Solution Methods 

In order to solve an optimization problem, there are two common solution 

approaches: model-based and direct-search methods. Model-based optimization is based 
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on using a model of the system and its curvature information (from derivatives) in order 

to find a search direction. In direct-search optimization methods, the manipulated 

(optimization) variables in a system are perturbed, and the objective function value is 

assessed for improved values. In the following subse;::tions, some model-based and 

direct-search methods are briefly discussed. For a more detailed discussion on each of the 

optimization methods described below, the reader is referred to Appendix D. 

2.3.1. Model-Based Optimization 

This section briefly presents the optimization methods used in this work. One of 

the first model-based optimization methods for finding a search direction for nonlinear 

optimization models was the Newton method (Nash and Sofer, 1996). It is based on 

finding the next point in the search by approximating a function by its tangent line at the 

current point. 

Many optimization methods are based on Ne\\-ton's method. One of them is 

Sequential Quadratic Programming (SQP), in which the Lagrangian of the original 

problem is approximated by a quadratic function, and the original constraints are 

linearized. The "approximated" quadratic programming (QP) problem is then solved by 

either an active set-based method. or by an interior-point method. One of the commercial 

solvers with an active set-based SQP is Matlab'sfmincon ;;olver (Mathworks, 1999). 

Active-set methods are based on considering only the active inequality constraints 

at each iterate of the QP subproblem in order to compute a search direction based on an 

equality-constrained problem (Wachter, 2002). Interior-point methods, as its name 

suggests, ensure that the iterates will remain in the interior of the feasi ble region. One of 

the methods used in interior-point algorithms are barrier methods, in which the 

constraints g(x) ~ 0 are satisfied at every iteration by making constraint violations 

infeasible. This is done by adding a barrier function - mch as inverse (11 g(x)) or the 

logarithm (log(g(x))) operator - in the objective function of the original problem. 

IPOPT -C is a solver based on solving the internal QP of the SQP algorithm by an 

interior point method (Raghunathan and Biegler, 2003 ; Wachter, 2002). In path-
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following interior point methods such as the one used in IPOPT -C, a trust region 1S 

assigned around the starting point, and a search direction is found within that region. 

Then, a (Newton) step is taken along the central path and the procedure is repeated 

around the new point (Nash and Sofer, 1996). More details on SQP and IPOPT -C can be 

found in Appendix D. 

2.3.2. Direct-Search Optimization 

Direct search methods were first proposed in the 1950's and continued being used 

since the 1960's (Wright, 1996). Although having been available for a few decades, no 

theoretical results on the convergence properties of these methods were available until 

1980's, with the thesis of Torczon (1989) on multidirectional searches. This interest was 

sparked 20 years after the initial development of direct search methods due to the 

possibility of parallel computing. 

Direct-search methods are based on finding the maX1mum or m1mmum of a 

(possibly) nonlinear and non-smooth function, using only function evaluations. There is 

no need for calculating derivatives or Hessians. Direct .. search methods can be useful 

when the function evaluations are computationally very expensive, and/or when 

derivatives either do not exist or are not continuous over the feasible region. 

One of the most famous and widely used direct··search methods is the Nelder­

Mead simplex method. It is based on defining a sequence of (n+ 1 )-dimensional simplexes 

that adapt to the surface of the n-dimensional function. The simplexes may reflect, 

expand, contract (outside or inside) or shrink at each step. In the NeIder-Mead simplex, 

an iteration succeeds when it finds a point that has a better objective function than the 

worst simplex vertex. It was shown that, even for relatively well-behaved functions, , 
convergence to a local optimum for a Neider-Mead simplex method can be slow (Wright, 

1996). 

Dennis and T orczon (1991) proposed a Parallel Direct Search algorithm to take 

advantage of parallel computing environments. Each iteration of this algorithm succeeds 

whenever it finds a better point than the best vertex of tf e simplex, which is a stronger 
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assumption than the one in the Nelder-Mead simplex method. However, this 

multidirectional search method requires a larger number of (expensive) iterations. 

In order to reduce the number of evaluations needed in the optimization, Conn et 

al. (1996) developed a Derivative-Free Optimization (DFO) method, which exploits (but 

does not require) smoothness in the objective function. DFO is based on approximating 

the objective function by a (simpler) smooth, quadratic surrogate model within a trust 

region, and then optimizing the surrogate model to obtain an improved point. A more 

detailed description of DFO can be found in Appendix D. Due to its good reported 

performance and global convergence characteristics, DFO was used in this work (see 

Chapter 4). 

2.3.3. Bilevel Optimization 

Multilevel programming problems are structured in such a way that there is a 

decision-making hierarchy defined. An example of a bilevel programming problem can 

be seen below. 

(2.5 ) 

The upper-level decision variables (Xl) affect not only the objective functions, but 

also the feasible set of the lower-level decision variables (X2) , and vice-versa. An 

extensive survey of bilevel programming applications is given by Vicente and Calamai 

(1994). 

Bilevel optimization problems are mathematically very challenging due to this 

interacting nature between variables in different levds. One of the complicating 

characteristics of this class of problems is that even if each one of the levels is a convex 
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optimization problem, the overall bilevel formulation is inherently non-convex due to the 

optimality conditions of the lower-level problem (Clark and Westerberg, 1990). This 

implies that there is no guarantee of global optimality, unless a global optimization 

method is used. 

One of the methods to solve bilevel optimization problems is to substitute the 

inner problem by algebraic equations that correspond tO lts Karush-Kuhn-Tucker (KKT) 

optimality conditions. If the inner problem of Problem {2.5) is substituted by its KKT 

conditions, the following (single-level) optimization problem is obtained: 

s.t. g,(X"Xl)~O 

V T, 12 (X I ,X2 )+ -tV ., g z(x"x2) = 0 

g2(X"X2)~0 

A~O 

A·gz(X"x2)=0 

( 2.6a ) 

( 2.6b ) 

( 2.6c ) 

( 2.6d ) 

( 2.6e ) 

(2.6f) 

It is known that inequality constraints that are not at their bounds must have zero 

Lagrange multipliers (A) associated with them. This is the origin of equation (2.6f), also 

known as a complementarity constraint, where either g2(X I,Xl ) or A must be equal to zero. 

Due to its discontinuous characteristic, these constraints introduce a type of nonlinearity 

that leads to nonconvexity of the overall problem, and that most NLP solvers cannot 

handle easily due to degeneracy. In linear programming, degeneracy occurs when some 

basic variable is at one of its bound values (INFORMS, 2006). 

Algorithms to solve bilevel problems usually differ in the manner in which the 

complementarity constraints in equation (2.6f) are handled (Clark and Westerberg, 1990). 

For example, mixed-integer programming reformulations may be used to define the 

active set. However, these reformulations may result in very large computation times. 
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Another method for solving bilevel optimization problems is by enumerating 

scenarios or by using sampling approaches (A verbakh, ~ :OOO). However, a prohibitively 

large number of scenarios (or samples) is needed as the problem size increases. If a 

direct-search method is used on the overall problem, the inner optimization problem can 

be viewed as an expensive, discontinuous function with unavailable derivatives. 

Parametric programming (Ryu et al., 2004) transforms the bilevel problems into 

many single-level optimization problems, which are solved at once. Clearly, this 

approach results in a very large optimization problem. Furthermore, the parameterization 

depends upon the (single level) LP problem formulation, which may change frequently. 

Raghunathan and Biegler (2003) developed a method for handling 

complementarity constraints based on an interior point solver (lPOPT-C). Their method 

relaxes the equality constraints to g2(X I,X2). A. ~ c, so that they are satisfied to successively 

smaller tolerances c until the user-specified tolerance is achieved. So far, IPOPT-C has 

been reported to handle problems with up to 1,748 complementarity constraints 

(Raghunathan and Biegler, 2003). Due to ability to handle complementarity constraints in 

a computationally-efficient manner, IPOPT -C was applied extensively to the 

fOlmulations in this work. 

2.4. Closed-Loop Blending Technology 

The choice of LP blending processes as case studies in this research was made 

because they have numerous and important industrial applications. In the petroleum 

industry, gasoline, diesel, fuel oils and lubricating oils are blended from multiple 

intermediate products. Some of the earliest applications of linear programming were to 

gasoline blending (Symonds, 1955). 

Optimal blending is also important in other industries. Some examples include 

iron ore processing (Long, 1981; Zhou et aI., 2003), coal processing (Shih and Frey, 

1993; Liao et aI., 2005) and in the cement industry (SakI' et aI., 1988, ABB, 2006). In 

fact, one of the very early published papers on industrial closed-loop LP blending 

optimization describes an application to cement blending (Bay et aI., 1969). Therefore, 
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the monitoring and improvement of closed-loop LP optimization can have wide 

application in many industries. 

It is very often the case where the component properties blend linearly (e.g., % 

lumps and fines in mineral processing, °Brix in fruit juice processing). In other cases, 

such as gasoline blending, the relationship between flow ratios and product qualities is 

nonlinear. There are nonlinear blend models available for calculating the octane 

properties of the final blend, such as the Ethyl RT-70 method (Healy et aI. , 1959), the 

DuPont interaction method (Snee, 1981) and the Mobil transformation method (Rusin et 

aI. , 1981). Even when nonlinear blend laws are used, the solution will be at the comer 

point of the feasible region for economic reasons; i.e., the blend properties and total 

production rate will be at their upper or lower bounds. Some component flowrates will be 

between their bounds to satisfy the quality and production constraints, while the 

remaining ones will be at their bounds. Therefore, the nonlinear blend models can be 

linearized around the current operation, resulting in a linear blending model that can be 

used for octane ranges of up to around ±0.4 octane numbers (Snee, 1981). If the variation 

range of component properties is larger, there can be several linear models available, one 

for each region of interest. 

Many technology vendors provide hardware and software for closed-loop optimal 

blending, e.g., Yokogawa (Sasaki et aI. , 1997), ABB's OptimizeIT Raw Mix Preparation 

(ABB, 2006), Invensys's Blend Optimization and Supervi:;ory System - BOSS (Foxboro, 

2006), Aspen Technology's ASPEN BLEND (AspenTech" 2006), Honeywell's OpenBPC 

(Open Blend Property Control) (Honeywell, 2006). In all cases, the structure of the 

optimizer is the same as the MPC structure described in Chapter I and Appendix A, 

where the manipulated variables are the component flows (or flow ratios) and the 

measured output variables are blend product properties. In no case are the component 

qualities measured or estimated from the measured component flow rates and product 

qualities. As demonstrated in this research, the data from typical plant operation does not 

have sufficient information, i.e. , variation, to enable lhe estimation of component 

compositions. 
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The models used in these commercial blending applications vary from linear to 

nonlinear. For example, Honeywell's OpenBPC uses nonlinear models directly. In 

contrast, others use a nonlinear model to provide the conposition coefficients in the LP 

coefficient matrix. These systems usually solve an LP at each iteration (Vermeer et aI. , 

1996). As the system converges, the step where the LP I;oefficients are calculated based 

on the current blend ratios does not change the coefficients. Therefore, the optimizer is an 

LP when converged to a steady state, even though the qualities used for each component 

in the linearized model are calculated in a (separate) nonlinear optimization. Because a 

linear programming problem is commonly applied in gasoline-blending systems, linear 

blend models were considered in this study. For more details on the gasoline-blending 

process model, data, and on-line optimizer, the reader is referred to Appendix A. 

At the present time, we know of no systematic manner for monitoring or 

diagnosing the performance of closed-loop blending optimization available in either 

industrial practice or technical publications. One heuristic approach is to determine 

whether the active set of inequality constraints in the plant operation conforms to 

guidelines based on experience (Chin, 2006). This approach has shortcomings. First, the 

proper active set depends upon the scenario, which changes daily. Second, the active set 

of output (quality and production rate) variables does not uniquely determine the 

operation or profit. Third, the heuristic does not estimatt: the cost for not achieving the 

expected good operation. 

2.5. Relationship to Decision Analysis Th1eory 

Decision Analysis (DA) literature poses questions that are very relevant to the 

work in this thesis. The most relevant topics from Deci:;ion Analysis for this research 

address the effect of uncertainty on decision making and introduce the concepts of Regret 

and Expected Value of Information. These concepts are used throughout the thesis to 

monitor, diagnose and improve closed-loop optimization systems. 

Regret is defined as the opportunity loss identified after the uncertain variable 

realizations have been determined. In other words, Regret can be seen as the deviation of 
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the current objective function value from the one that would have been achieved if the 

information on the realization of the uncertain variables of a system had been known at 

the time of the decision-making (A verbakh, 2000). The Maximum Regret, therefore, is 

the decision based on the worst possible parameter realization in the system. For each 

realizationj of the uncertain variables, the Regret (r) with respect to the decision i E D 

can be defined as (Drezner, 2001): 

r . = max{a)- a · 
" iEfJ IJ IJ 

( 2.7 ) 

In equation (2.7), aij corresponds to the payoff of decision i ; i. e., the objective 

function value, which is maximized. 

The Expected Value of Perfect Information (EVPI) is similar to Regret in that it is 

also a measure of the cost of uncertainty in a system. EVPI can be interpreted as the 

expected objective function improvement if the informc:.tion on the future realization of 

uncertain variables (including the probability Pi of each realization) were known in 

advance (Drezner, 2001). 

( 2.8 ) 

The Expected Value of Sample Information (EVSI) evaluates the potential 

benefits (in terms of objective function value) of a sample that provides improved 

information about a system (Winston, 1994). If the EVSI is less than the cost for gaining 

new information to reduce (eliminate) uncertainty, e.g., by performing a test or 

measurement, such an evaluation is not performed. In traditional Decision Analysis 

literature, the cost of obtaining the information is known (e.g., cost of performing a 

market evaluation or of taking samples to a laboratory), as is the improvement in 

information content due to the added information. This is a realistic description of many 

decision-making systems, but the scenario in this research is very different. In the real-

32 



D. Zyngier, Ph.D. Thesis McMasteeUniversity, Chemical Engineering 

time optimization system, the current scenario and the experimental design affect the cost 

of experimentation. Also, the improvement after the experiment depends upon the 

problem scenario and the experimental design. Therefore, the evaluation of the EVSI in 

this research is more challenging. 

Finally, Decision Analysis often optimizes over a set of discrete options that are 

the decision variables. These could be laboratory analysis, hiring a consultant, etc. In the 

real-time optimizer, the decision variables are continuous and the uncertain parameters 

are continuous over known regions. Therefore, the solution approaches required to 

evaluate the problems in this thesis are significantly differen t from, and more challenging 

than, those in common use in Decision Analysis. 

2.6. Summary 

This chapter presented the aspects of optimization literature that are relevant to 

this work. The methods for diagnosing and enhancing CLRTO performance developed in 

this work cover technological gaps in the Model Improvement and Screening 

Experiments areas. The following table shows some of the ;;hallenges of state-of-the-art 

optimization technology, and summarizes the contributions made by this thesis . 

Table 2.1. Challenges in State-of-the-Art Optimiz.ation Technology 

2.1. Sensitivity Analysis 

Monitoring 
and 
Diagnosing 
Optimization 
Systems 

S tate-of-the-Art 

Sensitivity analysis literature, 
restricted to a single active set of 
constraints, or requiring 
enumeration of scenarios. 

This Thesis 

Not restricted to a constant active 
set. Solution is obtained in a single 
optimization run. 

Sensitivity Analysis has not been Closed-loop optimization systems 
applied to closed-loop are considered, with "limited 
optimization systems. feedback" information 

Regret, EVPI and EVSI used in 
decision analysis 
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Table 2.1. Challenges in State-of-the-Art Optimization Technology (continued) 

2.2.1 Model Formulation I Stochastic Programming 

Types of 
Optimization 
Problems 

Sources of 
Parameter 
Uncertainty 

Continuous 
Parameter 
Distributions 

State-of-the-Art 

Chance constraint established for 
open-loop optimization with 
uncertainty 

Recursion methods for perfect 
information and sampling 
uncertainty well established 

Existing worst-case techniques 
concentrate on formulations for 
open-loop optimization 

Many techniques do not handle all 
possible sources of parameter 
uncertainty (especially left-hand 
side coefficients and coefficients in 
equality constraints) 

Currently, there is great reliance on 
sampling and scenarios to represent 
continuous distributions 

2.2.2 Model Enhancement 

Experimental 
Design 

State-of-the-Art 

Experimental design technology 
based on information (parameter 
variance) is mature. However, a gap 
exists in considering the cost of 
experimentation 
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This Thesis 

Closed-loop optimization 
systems are considered, in which 
the best- and worst-case 
parameter realizations are 
obtained as a "byproduct" of the 
performance evaluation 

All sources of parameter 
uncertainty are considered: left­
and right-hand side coefficients 
cf any constraint type and 
cbjective function coefficients. 
Parameter correlation is also 
randled. 

No evaluation of scenarios or 
sampling. 

This Thesis 

Cost of (possibly constrained) 
t:xperimentation is considered 
t:xplicitly. Experiment improves 
the new performance metric. 
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Table 2.1. Challenges in State-of-the-Art Optimization Technology (continued) 

2.3. Solution Methods 

Solver 
Technology 

State-of-the-Art 

Extensive range of technology and 
software packages available 

2.4. Closed-Loop Optimization 

LP-Based 
CLRTO 

State-of-the-Art 

Mature technology widely applied to 
blending processes and to 
optimizing the steady-state for MPC 
dynamic controllers 
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This Thesis 

Because of diverse problems, 
lP, SQP, IPM, and direct search 
methods are employed. 
No novel contribution is made to 
the algorithms in this work 

This Thesis 

Novel, integrated five-step 
procedure for monitoring, 
diagnosing and enhancing 
developed that is compatible 
with the installed base of 
CLRTO 



Chapter 3 

RTO Performance Monitoring 

This chapter introduces new methods for performance monitoring In process 

optimization. The basic scenario considered involves a nominal model, uncertain plant 

parameters and estimates for the uncertainty regions of these parameters. In all but one 

short example in Appendix E, the model structure is linear, thus yielding a linear 

programming optimization problem. The uncertain parameters can appear anywhere in 

the linear program, i.e., the objective, equalities and inequalities, right hand side bounds, 

and the left hand side coefficients multiplied by the variables. The uncertainty 

descriptions can be either individual intervals or correlated ellipsoidal regions. 

The goal of the monitoring is to determine the effect of the parameter uncertainty 

on the optimization solution when it is implemented in the true plant, which is not known 

exactly. The results of the monitoring analysis determine whether the true plant optimum 

is achieved, or if it is not achieved, these results give a measure of the deviation from the 

true plant optimum; the deviation measure is different depc~nding on the method applied, 

as described in the chapter. 

The methods in this chapter are designed to provide capabilities beyond current 

technology, specifically: sensitivity analysis allowing changes in the active set of 

inequality constraints, automatic selection of worst-case plant parameter realizations 

without guidance from the engineer, and assessment of uncertainty for closed-loop 

systems. Importantly, the methods achieve their results in the numerical solution of one 

optimization problem, rather than through Monte Carlo pre·cedures. This feature not only 

greatly speeds the solution to the problems addressed in this chapter, but it also is 

essential for these methods to be effectively integra':ed with the diagnostic and 
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improvement methods introduced in Chapter 4. In addition, monitoring IS achieved 

without interfering with typical plant operation. 

Several monitoring methods are presented in this chapter, with each subsequent 

method providing more valuable information at the cost of more computation. The first 

method in Section 3.2 determines whether or not the true plant optimum will be achieved 

for all realizations of the uncertain parameters. The second method in Section 3.3 

determines the maximum decrease in profit due to interval uncertainty. Then, this method 

is extended to ellipsoidal uncertainty in Section 3.4. Since the problem is stochastic in 

nature, Sections 3.5 and 3.6 introduce methods for evaluating the expected value of the 

cost of uncertainty. Finally, in Appendix E, the methods are applied to monitoring the 

performance of open-loop optimization for both linear and nonlinear models. 

A Pentium 4, 1700MHz, 523 Gb was used in the sir1ulations. All problems in the 

thesis were solved to the 10-8 tolerance levels of IPOPT -C (version 2.0.1) solver. In 

fmincon (Mathworks, 1999) (in Matlab version 6.5.0.180913a Release 13), tolerances of 

10-3 for constraint violations and absolute values of the variables and objective function 

values were set. All of the closed-loop optimization methods will be applied to an 

industrially important, closed-loop blending system. Therefore, we begin with a 

description of the gasoline-blending process in the next section. 

3.1. Gasoline-Blending Case Study 

One of the first industrial applications of real-time optimization was the gasoline 

blending processes (Birchfield, 2002). Since these processe:i have a very high throughput, 

even small improvements in operation have a large economic impact. The components 

that are blended to form the final gasoline product come from very large storage tanks, so 

that fluctuations in their (unmeasured) properties can be asmmed to be much slower than 

the RTO execution periods. Nevertheless, since the components are made from variable 

upstream refinery operations or are purchased from suppliers, their properties vary from 

one batch to another, justifying the need for real-time optimization. Since this is a batch 

blending process, transient violations of blended properties ,:;an be compensated for, if 
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Figure 3.1. Gasoline Blending Process 

necessary. Very large deviations from the specifications should be avoided, however, 

since stratification of material can occur due to the large vol ume of gasoline stored in the 

product tank, which is not mixed. 

In the gasoline-blending process considered in tilis work, five components 

(Reformate, LSR Naphtha, n-Butane, FCC Gasoline and Alkylate) are blended to form 

the final gasoline product. Component properties are assumed to blend linearly due to the 

use of blending indexes. A schematic of this process can be seen in Figure 3.1. 

All uncertainty in this system is parametric and occurs in the octane and Reid 

vapour pressure (RVP) properties of the five components in the tanks, which are not 

measured. The parameter uncertainty is described by either intervals (Sections 3.2 and 

3.3) or ellipsoids (Sections 3.4 and 3.5). In Sections 3.2 to 3.5, the parameters are 

assumed to lie within intervals of ± 1.0 (octane numbers or psi) for the interval 

description of uncertainty, or to have variances of 0.0546 (octane numbers2 or psi2
) for 

ellipsoidal description of uncertainty. For parameter values used in the case studies and 
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more detailed information about the gasoline-blending process, the reader is referred to 

Appendix A. 

In many industrial blending applications of RTOs, bias updating is chosen as the 

model updating strategy, since it leads the model to the 1rue plant optimum whenever the 

parametric mismatch is sufficiently small (Diaz and Barsamian, 1996; Vermeer et al., 

1996; Forbes and Marlin, 1994; Zahed et al., 1993). The closed-loop RTO that uses a 

bias-updating strategy obeys the set of equations described in Problem 3.1. 

Problem 3.1: Closed-Loop RTO 

II 

Prnom,CL = max L {value - cost; )F;.1I0111 
'",.no", ;=1 

s.t. 

" " L F; .1I0111 (Q!1I0111 + &J ) ~ Qt'elldlll ill L F; .1I0/'/ 
/~ ~ I 

" II L F;,1I0111 (Q!IIOIII + &J ) ~ Qt'end.lll fU L F;,IIOIII 
I I 1. 1 

II 

Fhlelld ,min ~ L F;,1I0111 ~ Fhlelld,max 
;=1 

o ~ F;,IWIII ~ F;,m.x 

j = oct, RVP 

where the bias term &J is constant during the optimization. This term corrects the model 

prediction of each product quality and is calculated prior to the optimization at each 

CLRTO execution using the following equation. 

Jf. F - ~ F (QJ.PIUIII QJ ) 
& L...J ; ,110m - L...J i .IIo m I - i ,110111 

;=1 ;=1 

j = oct, RVP 
( 3.1 ) 
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In cases where the model mismatch in the component quality parameters is large, 

the closed-loop system will converge to a comer point that is different from the true plant 

optimum. In the following sections in this chapter, monitoring methods for the 

performance of CLRTO systems are developed that do not rely on any information about 

the true plant optimum. 

3.2. Method Based on the Number of Optimal Corner Points 

As an initial monitoring criterion of a CLRTO system, the Maximum Achievable 

Profit (MAP) is calculated by solving the following prob;,em. 

Problem 3.2 

n 

MAP = max "(value - cos I; )F; 
F Q J. pla., ~ . 

" , i=1 

s.t. 

n n 

" FQJ ,Plant > QJ " F L..J ;; - blend,min L..J ; 
1=1 ;=1 

n n 

" FQJ,plant < QJ " F L..J ;; - blend ,max L..J ; 
;=1 ;=1 

n 

Fblend ,min S I F; S Fblend ,max 
;=1 

F; min S F; S F; max . , 

Q J . < QJ ,plant < QJ 
I ,mm - I - I,max 

j = oct. RVP 

This metric indicates the optimum operation for the best possible scenario of 

component qualities in the plant, given the parameter L.ncertainty. If the current profit 

achieved by the CLRTO is close in value to MAP, the system is deemed to be functioning 

properly. If not, the possibility of improvement exists, and a subsequent monitoring 

metric needs to be calculated. This additional metric is based on determining if more than 
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one corner point is possible given the parameter uncertainty, and is presented in Section 

3.2.1. 

3.2.1. Point-Wise Model Adequacy 

If only one corner point is possible within the parameter uncertainty, such a 

corner point corresponds to the true plant optimum, because the parameter uncertainty is 

small enough so that the bias-updating strategy of the CLRTO will be able to achieve the 

true plant optimum (Forbes and Marlin, 1994). Forbes and Marlin (1994) have defined 

the point-wise model accuracy for RTO models. Consider the following optimization 

problem. 

Problem 3.3: 

max Pr(F;) 
(.j 

S.t. 

h( F; ,Q! ) - flI = 0 

gAr F;,Q;' ) - flu = 0 

g d F; ,Q;' ) - fl2.1 < 0 

In Problem 3.3, h, gA and g[ correspond to equality constraints, active inequality 

constraints and inactive inequality constraints, respectively. For this problem, the model 

is deemed point-wise adequate if, at the true process optimum, there exists a vector of 

adjustable bias parameter values fl (the difference between measured and predicted 

values) for which the optimality conditions are satisfied (Forbes and Marlin, 1994). 

T 
V'F Pr- A V'J.g A =0 

h( F; , Q;' ) - flI = 0 

gd F; ,Q;' ) - P2.1 < 0 

g A ( F;, Q;' ) - flu = 0 

A; ~O 
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The optimality conditions are given in the set of equations ( 3.2 ), where the 

Lagrange multipliers Ai are for the active inequality constraints of the original CLRTO 

model. By using the bias-updating strategy, the adjustable parameters fJ (which are 

equivalent to the bias terms &i in equation (3 .1)) only playa part in ensuring feasibility of 

the solution (equations (3.2b) to (3.2d)), but do not influence its optimality (equation 

(3.2a)). The parameters that influence the optimality are the uncertain parameters in the 

model-based optimizer, Q/ , which appear in the first-orc.er optimality condition, equation 

( 3.2a). Note that no feedback terms fJ appear in this equation. 

If the model is adequate for a given uncertainty legion, the Lagrange multipliers 

Ai will be positive at the solution, since this indicates that the same optimal bases is 

maintained. This verification can be done by using the following formulation. 

Problem 3.4: 

,. Pr lr _ ).TV,. gA IF=O 
0 .1 . < 0 ' < Q.I 
_' . 11 11 11 - _I - I .max 

Problem 3.4 is the basis of the first monitoring strategy developed in this chapter: 

if the smallest Lagrange multiplier is positive over the range of uncertain parameters, 

only one corner point is optimal. This criterion is used to determine whether there is a 

possibility of different optimal bases occurring in the system given the uncertainty 

information. 

In order to compute S, the minimization sub-problem in Problem 3.4 was solved 

successively for each element i in the vector of Lagrange multipliers. This sub-problem 

was solved using thefmincon software in Matlab. For more details onfmincon and SQP, 

the reader is reterred to Appendix D. The following section illustrates the results of 

applying this monitoring strategy to the gasoline-blending process. 
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Table 3.1. Solution ofProblt:m 3.2 

Q;OCI .plulIl (octane) Q;RVP • plum (psi) 

Reformate 
LSRNaphtha 
n-Butane 
FCC Gas 
Alkylate 

CPU seconds (lPOPT) : 
# obj fun / constr evals : 

3.2.2. Case Study 

94.10 
65.30 
93.50 
84.78 
96.62 

< le-3 
14 

1.70 
9.90 

137.00 
6.26 
6.68 

F; (bbl / day) 
5258.2 
1353.0 
388.8 

0.0 
0.0 

We begin by determining whether the current profit is close to the maximum 

achievable profit. By using the nominal parameter values in Tables A. I to A.3 (Appendix 

A) with an interval uncertainty of ±1.0 octane or psi for each of the ten parameters in 

Table A.3, a Maximum Achievable Profit (MAP) of$ 14,09004 / day is obtained from the 

solution of Problem 3.2. The component properties at the steady-state solution of 

Problem 3.2 (from "perfect" RTO) can be seen in Table 3.1. 

Since Problem 3.2 is nonconvex due to the bilinear terms In the inequality 

equations, solutions of this problem from different startbg points were compared (Table 

3.2). A starting point of Q/'o = Q/,'/O/II was used in both cases. The same value of MAP 

($ 14,09004/day) was obtained by using Starting Point 1 or Starting Point 2, but different 

values for FCC Gasoline and Alkylate octane and RVP properties were found at the 

solution. This is because there are infinite combinations of values for these component 

properties and flow rates that will yield the same objective function value. The existence 

of alternative solutions in this problem does not affect the analysis, as expected, because 

the assessment is based on the objective function. 
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Table 3.2. Starting Points Used in Problem 3.2 

Reformat 
L R aphtha 
n-Butane 
F Gas 
Alkylat 

Starting Point 1 
= (1/5)* Fblend.max 

F;0 (bbl/day) 

1,400.0 
1,400.0 
1,400.0 
1,400.0 
1,400.0 

Starting Point 2 
:= current CLRTO 

operation 

F;0 (bbl/day) 

5,695.6 
942.5 
361.0 
0.0 
0.0 

Suppose that the CLRTO has reached a steady-state operation yielding a profit of 

$1O,257.2/day. Since the current profit is significantly lower than the MAP, Problem 3.4 

is used to check if multiple optima are possible in this system. When assessing alternative 

optimal bases within the uncertainty description of the parameters, a value of 0= -0 .7665 

$/bbl/day was obtained in 5.7 CPU seconds. Since ois negative, more than one optimal 

basis for the CLRTO exists given the parameter uncenainty description. For example, 

given "true" plant parameters of 92.3 and 64.0 oc tane for Reforrnate and LSR, 

respectively, different nominal model parameter values for these properties in the RTO 

model (within the uncertainty description) will yield two different optimal bases at the 

closed-loop steady state operation reached by the CLRTO after 10 executions. Table 3.3 

contains the "true" plant parameters, while Table 3.4 shows the two different bases that 

result from solving Problem 3.1 with different nominal parameter values in the RTO 

model for Reforrnate and LSR octane numbers. The nominal model parameters for the 

remaining components and properties used in this comparison are the same as the true 

plant parameters in Table 3.3. 
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Table 3.3. Values of Q/,plalll used in the Case Study 

QtC1,plalll (octane) Q:Vp,plal1l (psi) 

Reformate 92.30 2.70 
LSRNaphtha 64.00 10.90 
n-Butane 92.50 138.00 
FCC Gas 84.60 6.40 
Alkllate 96.60 6.70 

Table 3.4. Two Different Optimal Bases within Uncertainty Description 

Wrong Basis Correct Basis 
F; (bbl / day) F; (bbl / day) 

Q;:~ ,IIOnt = 93.1 octane Q;:~ ,110111 = 92.9 octane 

Q;~~ ,/lOIII = 64.3 octane Q;l~ 110m = 64.0 octane 

Reformate 5,695.6 3,212.7 
LSR Naphtha 942.5 0.0 
n-Butane 361.9 324.4 
FCC Gas 0.0 3,463.0 
Alkylate 0.0 0.0 

Prnom,CL $ 10,257.2 / day $ 10,680.1 / day 

The CLRTO profit at each of these two different optimal bases (Prnom.cd is lower 

than MAP because the latter represents the best possible plant scenario (Reformate octane 

= 94.1 octane), which in this case does not correspond to the true plant parameter 

realization (Reformate octane = 92.3 octane) considered in this case study. The transient 

flowrates and blended qualities can be seen in Figure 3.2(a-c). 
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Figure 3.2. Transient CLRTO behaviour for the case with two possible corner points: 

(a) Flowrates converging to the wrong basis; (b) Flowrates converging to the correct 

basis; (c) Blend properties for both cases 
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Table 3.5. Values of Q/,plalll used in the Comparison 

Q;oCI ,plalll (octane) Q;RVp,plalll (psi) 

Refonnate 93.12 2.70 
LSR Naphtha 64.30 10.90 

n-Butane 92.50 138.00 
FCC Gas 84.60 6.40 
Alkrlate 96.60 6.70 

In order to further illustrate the monitoring procedure, a different case study is 

presented (Table 3.5). In this case, all the parameter intervals are defined as ±0.02 (octane 

or psi), which is smaller than the original case of ±1.0 (octane or psi). The Maximum 

Achievable Profit (MAP from Problem 3.2) in this case, is equal to $ 11,385.1/day, 

whereas the current profit is $11,354.4/day. The variable values at the solution can be 

seen in Table 3.6. The same two starting points were used as in the previous case studies. 

Since MAP is very close to the current profit (within $30/day), no further 

diagnostics would be needed. However, for illustration purposes, Problem 3.4 was solved 

to detennine if other optimal bases existed. This problem yielded a value of 0 of 

+0.00735 $/bbllday in 3.1 CPU seconds. Since 0 is positive, only one optimal basis 

exists given the parameter uncertainty (Table 3.7), indicating that the CLRTO is 

perfonning adequately, i.e., the CLRTO system is achieving the maximum profit 

achievable in the plant, as expected. The results can be seen in Figure 3.3. 

Table 3.6. Solution of Problem 3.2 

Refonnate 
LSR Naphtha 
n-Butane 
FCC Gas 
Alkylate 
CPU seconds (lPOPT) 
# obj fun / constr evals : 

Q;CI ,plalll (octane) 

93.12 
64.32 
92.52 
84.60 
96.60 

<le-3 
12 
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Q;RVp,plalll (psi) 

2.68 
10.88 
137.98 
6.40 
6.70 

F; (bblldar 
5,531.9 
1,115.6 
352.5 
0.0 
0.0 
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Table 3.7. One Optimal Basis within Uncertainty Description 
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Figure 3.3. Closed-Loop RTO behaviour for the case with one possible comer point: (a) 

Transient behaviour of the flowrates; (b) Transient blend properties. 

3.2.3. Conclusions 

The monitoring method described in this section provides the definitive answer 

regarding achieving the maximum plant profit; if only on~ comer point exists, the system 

is at its best possible operation. However, this method is only applicable to linear 

programming problems, since it is based on comer point information. 
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Furthermore, there is no indication of the number of alternative corner points 

when the smallest Lagrange multiplier found by solving Problem 3.4 is negative, or of 

how large the difference in profit between the alternative corner points is. If the profit 

difference is small, the system may already be operating very close to the best possible 

operation. A negative Lagrange mUltiplier in Problem 3 4 could trigger overly aggressive 

model improvement actions, as shown in the Chapter 4. Therefore, a method that 

determines the profit loss that can occur due to model mismatch is shown in Section 3.3. 

3.3. Method Based on the Largest ]~rofit Gap - Interval 

Uncertainty (MaxGapint) 

Since the method in Section 3.2 does not evaluate RTO performance based on 

profit information, it is likely that in some cases, model (~nhancement will be performed -

possibly with substantial costs to operation -- with only very small (or no) performance 

improvement possible. 

In this section, the potential profit loss due to mismatch is considered. It can be 

represented by the maximum profit difference (gap) between the "best case" and "worst 

case" CLRTO operations. The best case involves a CLRTO with no model mismatch, so 

that it achieves the true plant optimum for the given parameter values. The worst case 

involves a CLRTO using a nominal model, which differ~. from the true plant in a manner 

that yields the largest profit loss. Recall that the feedback affects the "biases" in the 

model, so that the behaviour is determined by Problem 3.1 with the nominal model used 

by the CLRTO controller and the plant model having parameters within the uncertainty 

description. 

~ Best CLRTO - Since the best performance occurs with no model error, the model 

of the CLRTO in Problem 3.1 can be simplified The feedback error is always 

zero for no mismatch, and the CLRTO can be modelled as an optimization 

without feedback. 
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~ Nominal CLRTO - Because of model mismatch between plant and (nominal) 

model parameters, the closed-loop RTO using nominal parameter values can 

result in an operation (component flows) that yields a profit that is lower than the 

true plant optimum. The worst-case scenario occurs when the component qualities 

in the true plant maximize the profit difference due to plant/model mismatch. 

~ Uncertainty - In this sub-section, the model uncertainty is represented by intervals 

for each model parameter. 

The difference between best CLR TO and nominal CLRTO is the maxImum 

benefit than can be achieved for reducing CLR TO mode.! mismatch. This is the measure 

used for performance monitoring, with a small value being good and a large value being 

bad. 

The formulation for evaluating the largest profi t gap given interval parameter 

uncertainty description is presented in the following problem. 

50 



D. Zyngier, Ph.D. Thesis McMasterUniversity, Chemical Engineering 

Problem 3.5: 

MaxGap;nl= max 

subject to 

n 

Pr nom,CL = Wax L (value - cost; )F;,nom 
1._ i=1 

S.t. 

n n 

L F;;nom (Q!.nom + &J) ~ Qt;end,min L F;,nom 
i=1 ;=1 

n n 

L F;,nOJll (Q!.nom + &1) ~ Qt'end,max L F;,nom 
;=1 i=1 

n 

Fblend,min ~ LF;,nom ~ Fb1efWi,max 
i=1 

F;,min ~ F;"nom ~ F;,max 
n . n 

&1 L F;,nom = L F;,nom (Q/ - Q/,nom ) 
;=1 ;=1 

n 

PrBC = 1}?ax L {value - cost;}F;,BC 
I.Be i=1 

s.t. 

n n 

L F;.BC .Q/ ~ Qi'end,min L F;,BC 
i=] ,-I 
n n 

L F;,BC ·Qf ~ Qt'end,max L F;,BC 
;=1 ;=] 

n 

Fblend,rrUn ~ LF;,BC ~ Fblend,max 
i-I 
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We note that the best- and nominal CLRTO cases are evaluated at the same 

values of the uncertain plant parameters, so that the optimal value of MaxGapint is due 

entirely to model mismatch. Also, we note that Problem 3.5 maximizes the difference 

between the results of two optimizations; therefore, Problem 3.5 is a bilevel optimization 

problem. Problem 3.5 was solved by replacing the inner optimization problems PrBC and 

Prnom.CL with their respective optimality conditions. This formulation can be seen in 

Appendix F. The resulting nonlinear optimization problem was solved using an interior­

point solver tailored to handle complementarity constra ints, IPOPT-C (Raghunath an and 

Biegler, 2003). Details on this interior-point method can be found in Appendix D. 

3.3.1. Case Study 

Problem 3.5 was applied to the gasoline-blending case study using the nominal 

parameter values in Tables A.I to A.3. All parametric intervals for the uncertain plant 

qualities in Table A.3 were equal to ± 1.0 (octane or p;~i) around the nominal values. In 

this case, a value of MaxGapint = $ 3,024.9/day is found., where PrBC = $II,845.lIday and 

Prnom.CL = $ 8,820.2/day. MaxGapint corresponds to the largest potential profit loss due to 

model mismatch under the parametric uncertainty assumptions. The variable values at the 

solution are given in Table 3.8. 

Since Problem 3.5 is nonconvex, there is no guarantee of global optimality of the 

solution when standard nonlinear solvers are used. In order to search for better local 

optima, different starting points were used to solve this problem, as can be seen in Table 

3.9. 

Table 3.8. Parameter Values and Flowrates at the Solution of Problem 3.5 

Q;)('( (octane numbers) QIII'I' ( .) 
i pSI Pi.BC (bbllda}:) Fi.nom (bbllda}:) 

Reformate 92.10 3.70 2,731.1 5,791.5 
LSR Naphtha 63.30 11.90 0.0 890.5 
n-Butane 93.50 137.00 322.5 318.1 
FCC Gas 85.60 5.40 3,946.4 0.0 
Alkylate 96.58 6.72 0.0 0.0 
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Reformate 
LSR Naphtha 
n-Butane 
FCC Gas 
Alkylate 

McMaster University, Chemical Engineering 

Table 3.9. Starting points for Problem 3.5 

F;~ 
= (115)* Fblend.max 

(bbllday) 
1,400.0 
1,400.0 
1,400.0 
1,400.0 
1,400.0 

= current CLRTO operation 
(bbllday) 
5,695.6 
942.5 
361.0 
0.0 
0.0 

The results found by solving Problem 3.5 for di1ferent starting points can be seen 

in Table 3.10. Initial quality values Q/"o were assumed equal to Q/"'Olll. In this table, Anom 

are the Lagrange multipliers obtained from the initial CLRTO system (with mismatch) 

after it converges to steady operation. "Good" solutions correspond to the same local 

optimum as the one found in Table 3.8, whereas "Bad" solutions correspond to the 

(worse) local optimum of MaxGaPint = O. Since the same two solutions were found given 

four different initial starting points, the procedure was considered completed, and the 

results, valid. Again, since this is a non convex op-:imization problem, there is no 

guarantee that the solutions found correspond to global optima. 

As previously mentioned, Problem 3.5 was solved using an interior point solver, 

IPOPT -C (Raghunath an and Biegler, 2003). When the reduction in the barrier parameter 

in the interior point solver is too aggressive and the solution approaches comer points of 

the optimization prematurely (where Lagrange multipliers switch from zero to non-zero 

values, or vice versa), and depending on the initial points and initial value of the 

Table 3.10. Computational Results for Problem 3.5 

Starting Points CPU sec t! func. eval # restarts Solution 

F;~HC = F;~/(}/11 = F~ I . 
. AD - AO 
' 11(' - nom =0 1.16 570 0 Good 

F;0'J(" == F;~10111 - F O 
- i.1 . AO 

- AO 
- A , IiC - 110111 - nom 6.45 12,682 0 Good 

F;~/C = F O 
1.11011/ 

= FO) 
1.- ; A~c = A~f1111 =0 0.75 460 0 Bad 

FiD/1(" = FO 
1.11001 

- F O 
- ;.2 ~ A~~(' == A~olll == A..nOfll 3.86 13,310 0 Bad 
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barrier parameter, IPOPT-C sometimes fails, and the optimization is aborted (Nocedal et 

al., 2005). Even though different values of the barrier parameter and line search (using a 

merit function) were tuned, this problem could not be diminated. In order to overcome 

this failure, the optimization problem was warm-started at the point at which it failed, 

initializing the barrier parameter at its default initial (larger) value. This procedure 

provides the algorithm with a broader search space, sinc,:! the complementarity constraints 

are relaxed. Very recently, Nocedal et al. (2005) developed an improved (adaptive) 

barrier reduction strategy that may be able to avoid such a problem from occurring. 

Nocedal's new method, however, was not tested in this work. 

3.3.2. Conclusions 

By using the MaxGapinl approach for a defined parameter uncertainty, a one-step 

optimization determines the largest profit gap possible and the values of the parameters 

and variables for the cases giving the MaxGapinl' This approach handles closed-loop 

optimization systems, equality and inequality constraints and uncertainty in any model 

coefficient directly, and it is computationally efficient for the case study in this work. 

There are a few drawbacks to the use of this approach. Problem 3.5 is a 

nonconvex optimization problem, so global optimal solutions cannot be guaranteed 

unless a global solver is used. For large-scale problems, the formulation may become 

computationally expensive due to the increasing number of complementarity constraints. 

So far, IPOPT-C has been reported to handle up to 1. 748 complementarity constraints 

(Raghunathan and Biegler, 2003). 

Also, the method in this section uses interval description of uncertainty, which is 

simple and easily defined but may not accurately represent parameter uncertainty where 

the physics and chemistry dictate correlation in parameter variation. The interval 

description can only be extended to deterministic relationships between parameters (e.g., 

all = 0.5*ad but cannot address statistical correlation among parameters. In order to 

address this challenge, a method based on ellipsoidal description of uncertainty was 

developed and is presented in Section 3.4. 
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3.4. Method Based on the Largest Profit Gap - Ellipsoidal 

Uncertainty (MaxGapeu) 

In order to overcome the difficulties associated with the interval uncertainty in 

MaxGapint, a monitoring method using an ellipsoidal description of parameter uncertainty 

(MaxGapell) was developed. This allows for the incorporation of correlation among 

parameters, which often occurs in process models. The formulation for calculating 

Max Gape II is shown in Problem 3.6. 

One should note that the number of equations in Problem 3.6 is smaller than in 

Problem 3.5, since the parameter region in Problem 3.6 can be represented by a single 

ellipsoid equation instead of requiring 2* P bound constraints as in Problem 3.5 (where P 

is the number of uncertain parameters). 

As in Problem 3.5, the potential profit loss due to mismatch is calculated as the 

maximum profit gap between the "best case" and "wont case" CLRTO operations. As 

previously mentioned, the "best case" CLRTO has the same parameters as the true plant 

(no mismatch), whereas the "worst case" CLRTO uses a nominal model that differs from 

the true plant and thus a smaller profit than the "best case" CLRTO may be achieved. 

,. Best CLRTO - Similarly to Problem 3.5, the f,;:edback term in Problem 3.1 is 

always zero for the "best case" CLRTO (no mismatch), and therefore the CLRTO 

can be modelled as an optimization without feedback. 

, Nominal CLRTO - Also as in Problem 3.5, model mismatch between plant and 

(nominal) model parameters may result in CLRTO profit that is lower than the 

true plant optimum. The worst-case scenario occurs when the component qualities 

in the true plant maximize the profit difference due to plant/model mismatch. 

, Uncertainty - In this sub-section, an ellipsoidal description of model uncertainty is 

used. 
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Problem 3.6: 

MaxGapeu= max 

PrBC,Prnom CL,e J ,Q( 

subject to 

n 

Prnom,CL = Wax. L(value - cost; )F;,nom 
l ,notII i_I 

s.t. 

n n 

L F;,nom (Qf.nom + e
j
) ~ Q£end.m;n L F;,nom 

;=1 ;=1 

n n 

L F;,nom (Q;'nom + e
j
) ~ Qt'elld.max L F;,nom 

~I ;~ 

n 

Fblend ,min ~ L F;,nom ~ Fblend,max 
;=1 

F;,min ~ F;,nom ~ F;,max 

ejtF;,nom = tF;.nom(Q/ -Q/'nom) 
;~ I ;=1 

II 

PrBC = 1}?ax. L (value - cost;)F;,BC 
•. Be ;=1 

s.t. 

II n 

L F;,BC .Q( ~ Q£end.m;n L F;,BC 
,: 1 ;=1 

II n 

L F;.BC .Q/ ~ Qt'end,max L F;.BC 
1=1 ;=) 

II 

Fblend,min ~ LF;.BC ~ Fblend .max 
;=1 

F;.min ~ F;.BC ~ F;,1'lW( 

(Q - Qnom Y V-I (Q)(Q - Qnom ) ~ X;.dO! 
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3.4.1. Case Study 

Problem 3.6 was applied to the gasoline-blending; case study using the nominal 

parameter values in Tables A.l to A.3. The uncertainty region was assumed to be that of 

a 10-dimensional distribution with independent parameter variances of 0.0546 (octane2 of 

psi2
). Therefore, at 95% confidence levels, the largest variation possible for each 

individual parameter would be ±1.0 octane or psi. In thi:; case, the chi-squared statistic 

used in Problem 3.6 is equal to 18.31 (with a= 0.95 and :to degrees-of-freedom). For the 

independent parameter case evaluated in this section, the parameter variance-covariance 

matrix V(Q) = 0.0546*1/0, where ho is the 10-dimensional identity matrix. 

When applying Problem 3.6 to this case study, a value of MaxGape/l = 

$1,314.0/day is found, where PrBc = $ 11,813.7/day and Prnom.cL = $ 10,499.7/day. The 

variable values at the solution of Problem 3.6 are presented in Table 3.11. 

As in Section 3.3, different starting points were used, and the computational 

experience can be found in Tables 3.12 and 3.13. For these cases, the nominal parameter 

values (Q/""'I/) were used as starting points for the component qualities. Again, "good" 

solutions correspond to the same solution found in Table 3 .11, and "bad" solutions 

correspond to the optimum at which MaxGapell = SO/day. 

Table 3.11. Case Study Results (Problem 3.6) 

Q;,"' (octane) Q/vP (psi) Fj BC (bbl/da~:) Fi.nom (bbl/day) 
Reformate 92.74 3.04 2,696.1 5,622.9 
LSRNaphtha 64.15 11.02 0.0 1,035.8 
n-Butane 92.51 138.00 316.9 341.3 
FCC Gas 85.31 5.94 3,987.0 0.0 
Alkylate 96.60 6.70 0.0 0.0 
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Table 3.12. Starting Points for Problem 3.6 

Reformate 
LSRNaphtha 
n-Butane 
FCC Gas 
A Lkylate 

F;~ 
= (1/5)* Fb1end.max 

(bbl/day) 
1,400.0 
1,400.0 
1,400.0 
1,400.0 
1,400.0 

= current CLRTO operation 
(bbl/day) 
5,695.6 
942.5 
361.0 

0.0 
0.0 

F O 
; .3 

= same basis as F i.Be 
(bbl/day) 
3,000.0 

0.0 
300.0 

3,700.0 
0.0 

The computational results show that this approach is computationally very 

efficient (convergence is obtained in mostly small CPU times compared to the 9-hour 

batch runs and requires up to three restarts, if any at all). The value of MaxGapeli obtained 

from Problem 3.6 was confirmed by applying the parameter settings obtained from the 

monitoring method (Table 3.11) to a CLRTO simul ator. In this case, a gap of 

$1,312,6/day is obtained after the system reaches steady operation, which is very close to 

the value of MaxGapell ($1 ,314.0/day). The difference is ] ikely due to round-off errors in 

the parameters. For example, when using a value of reformate octane of 92.738 (instead 

of 92.74), a gap of $1,313.6/day was found by solving Problem 3.6, illustrating the 

sensitivity of this system to small parameter changes. 

Table 3.13. Computational Results for Problem 3.6 

Starting Points CPU sec # func . eval # restarts Solution 
FO - F O - F O 

i ,IJC ' - i."om - i .1 
• ,,10 
, 11(' = ,,1~/l1II = 0 3.625 5,913 3 Good 

F O F O F O 
i . JJC = I . llom = i .1 

. ,,10 
, 11(' == A.~(}m = Anom 25.766 123,374 Bad 

F;~IC = F;0,,,1/,, - F O 
- ; .2 ; ,,1~iC = ,,1~()1II = 0 0.109 48 0 Bad 

F; ~IIC = F; ~/(1I11 = F O) 
1.-

, ,,1~1C = ,,1~"1II = ,,1nom 1.156 664 Good 
FO

IJ
(, = F0

1
; FO = FO, 

I . I. . 1, 11(1111 1 . _ 
, ,,1~J( = ,,1~"1II = 0 0.859 306 Good 

F O - F O • F O - FO 
I ,He' - I , ~ I ,,,,,m - 1.2 : ,,1;1l' = A.~(1111 = ~101/l 0.031 37 0 Good 
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Another way to evaluate the results in Table 3.11 is to run Monte Carlo 

simulations on the system. The largest profit gap found in 8,768 Monte Carlo runs with 

the same ellipsoidal uncertainty region was $1,053.6/day. This value is within 20% of the 

result from Problem 3.6 ($1,314.0/day). The fact that t:ven 8,768 runs were not able to 

find the largest value of the profit gap at the 95% confidence level shows the strength of 

the monitoring method developed in this section. The number of Monte Carlo runs 

(8,768) was deemed sufficient because there were no ~,ignificant changes in the results 

from when approximately 5,000 runs were made. 

In this case study, MaxGapell ($ 1,314.0/day) is much less conservative than 

MaxGapinl ($3,024.9/day), as expected because the box description of uncertainty 

encompasses a larger parameter region than the ellipsoid, as can be seen in Figure 3.4. 

The solution of the MaxGapel1 problem does not appear to be at the boundary in 

Figure 3.4 because this is a two-dimensional projection of the 10-dimensional object. and 

there is parameter variation in the remaining 8 dimensions of the ellipsoid. Actually, it is 

on the boundary of the 10-dimensional ellipsoid, since th~ ellipsoidal constraint is active 

at the solution. 

8 -.5 

'IJ 85 
c: 
~ 
u o 
'" <.3 84.5 
u 
u 
t..:... 

84 

83.5 

92 92.5 93 93.5 94 
Reformate Octane 

Figure 3.4. Interval Uncertainty versus Ellipsoidal Uncertainty Results (0 - interval, 

• - ellipsoidal) 
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3.4.2. Conclusions 

The monitoring of closed-loop RTO systems using MaxGapell as a criterion has 

the same advantages as the ones presented in Section 3.3.2 for MaxGapint; namely, it is a 

one-step optimization problem that handles closed-loop systems and parametric sources 

of uncertainty appearing in all types of constraints. In addition, MaxGapell uses a 

description of uncertainty that also enables the establishment of correlation among 

parameters, which exists in many applications in the pro;;ess industries. Therefore, it is a 

more realistic monitoring criterion than MaxGapint . 

On the other hand, it suffers from some of the drawbacks mentioned in Section 

3.3.2. The computation of MaxGapell still requires a solution of a non-convex 

optimization problem, where a global solution can only be guaranteed by the use of a 

global solver. Also, for large-scale problems, the formulation may become 

computationally very expensive due to the increasing number of complementarity 

constraints. 

Since lv1axGapel/ is still a conservative estimate of the potential economic ioss due 

to parametric uncertainty , Sections 3.5 and 3.6 introduce extensions for obtaming a better 

estimate of potential profit loss to be used for monitoring CLRTO. 

3.5. Method Based on the Expected Value of the Largest Profit 

Gap 

In order to obtain an improved estimate of the largest profit gap, its expected 

value is calculated over a range of confidence levels. It is important to note that this 

approach considers the distribution of the parameter:; instead of only considering 

parameter ranges or bounds of an ellipsoidal region. For illustration purposes, a bivariate 

normal distribution of two random variables, X and Y, is presented in Figure 3.5. 
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frx,y) 

Figure 3.5. Joint Probability Density of Nonnally Distributed Random Variables X and 

Y, with Respective Marginal Distributions 

The method in Section 3.4 calculates the Largest Profit Gap for a fixed confidence 

level. The expected value of a function Z that depends on X and Y is calculated by 

integrating over the entire surface in Figure 3.5; for example, for two variables, the 

integration is given in the following (Montgomery and Runger, 1994). 

0000 

E(Z) = J JZ(x,Y)fX,y(x,y)dxdy (3.3 ) 
-00-«) 

In equation (3.3), /x,y(x,y) is the joint probability density function. For discrete 

random variables, the summation operator replaces the integrals: 

E(Z) = IIZ(x,y)fx,y(x,y) (3.4 ) 
x y 
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In order to approximate the expectation operator, the probability distribution was 

discretized at a number of different confidence levels, and the expected value of the 

largest profit gap was calculated according to equation ( 3.4 ). When there are n random 

variables, this equation becomes 

( 3.5 ) 

Equation (3.5) provides a method for evaluating the expected value of a function. 

If Z = Profit Gap, each sample would entail the solution of two convex optimization 

problems: one for the CLRTO model with no mismatch, and another for a CLRTO 

system with model mismatch. The difference between the objective function of these two 

optimization problems is defined as the Profit Gap. However, this approach may require a 

very large number of samples depending on the number of uncertain parameters. 

When considering Z = MaxGapell, the bilevel Problem 3.6 is solved for a few 

different levels of significance. This approach requires few evaluations of Problem 3.6. 

Even though a nonconvex optimIzation problem has to be solved at each evaluation, this 

approach was selected because it scales well as the number of parameters increases. The 

method is developed in detail and applied in subsequent sections. 

3.S.1. Determination of Smallest Confidence Level that Yields 

M axGapel/ ~ T 

The first step is to determine the confidence level below which the MaxGapeli is 

zero. At very small confidence levels, the uncertain parameters lie in a very small region 

around the nominal parameters. Therefore, up to a given confidence level, the largest 

profit gap may be zero for the linear programming CLR TO problem being considered. If 

the value of the largest confidence level that yields a zero largest profit gap is determined, 

fewer discretization points are needed for a good approxi mation of the expected value of 
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the largest profit gap. The formulation to determine the largest confidence level that still 

yields a maximum profit gap of zero is stated in Problem 3.7. 

Problem 3.7 : 

min CGapmin 

subject to 

II 

Prnom.CL =IJ1ax L (value - cost; )F;,nom 
,.,'om ;:) 

s.t. 
n n 

L F;,nom (Q/nom + £i) ~ Qtlend.m;n L F;,lIom 
;:J ;:J 

II n 

L F;.nom (Q/nom + £ j) ~ Qtlend.max L F;,nom 
;:) /:1 

n 

FhlenJ.min ~ L F;.nom ~ Fh/~nd,max 
;=1 

F"mm s F;,nom ~ F;,max 

£ j t F;,nom = t F;,nom (Q/ - Q/nom) 
;=J ;=J 

n 

PrBC = max L {value - cost;)F;,BC 
r;.8(" ;:J 

s.t. 
n n 

L F;.BC .Q/ ~ Qtlend.m;n L F;,BC 
~1 ;~ 

n n 

L F; ,BC .Q( ~ Q~end.max L F;,BC 
;:1 ;:J 

n 

Fh/end.min S L F;,BC ~ Fblend,max 
;:J 

F;,min ~ F;,HC ~ F;,max 

{Q - Qnom YV-J (Q)(Q - Qnom) = CUapmin 
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Table 3.14. Solution of Problem 3.7 for Different Values of Gapmin 

Gapmin ($/day) 
o 

500 
1314.0 

CGapmin 
0.07959 
3.459 

18.3106 

0.0 
0.0315 
0.9501 

The case study considered was the same as the one in Section 3.4.1. From the 

results in Table 3.14, since the largest a that yields Gapmin = $O/day was zero, and even 

very small confidence levels of 3.15% yielded a significant value of the largest profit gap 

($500/day), the approximation ofthe integral was made ~ :tarting at zero confidence level. 

The next step is to formulate a series of problems that can be used to approximate 

the expected value. To calculate the expected value of profit, three approximations to the 

integral were used: backward difference equation ( 3.6 ), forward difference equation 

( 3.7 ) and trapezoidal approximation equation ( 3.8 ), which are illustrated in Figure 3.6. 

lit ' 

E(MaxGaPell)nw = ~)ak -ak_I)MaxGapd/(ak) 
~ ~ I 

lie 

E(MaxGaPell)Fw = I (ak+1 -ak)MaxGaPell(ak) 
k~1 

(3.6 ) 

(3.7 ) 

( 3.8 ) 

MaxGapell in equations (3.6) to (3.8) is obtained by solving Problem 3.6. The 

backward difference provides an upper bound to the estimate of the area below the curve. 

The forward difference provides a lower bound to this estimate, and the trapezoidal 

approximation is the average ofthe two previous estimates, as illustrated in Figure 3.6. 
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Figure 3.6. Integration using (a) backward difference, (b) forward difference and (c) 

trapezoidal approximation 

The importance of using the three approximation approaches simultaneously is to 

assess the error in the estimate. If the three areas are similar, the number (and location) of 

approximation points is deemed appropriate. If the results differ above a user-defined 

threshold, more points can be added to the discretization, in the region where the values 

of the areas differ by unacceptable amounts. 

Because it is likely to be the closest approximatiop. to this curve, the trapezoidal 

approach is taken as the best estimate of the expected profit gap for comparing with the 

other approaches. 
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Table 3.15. Results for the Approximatton of the Integral 

a:s;0.50 a ~ 0 .50 a~ 0.75 a ~ 0.90 a :::: 0.95 a~ 0 .99 E(MaxGapell} 
a:S; 0.75 a:S; 0.90 a:S;0.95 a~ 0.99 ($ / da~::) 

BW 447.2 264.7 182.4 65.7 60.2 1,020.3 
FW 223.6 158.8 60.8 52.6 15.0 510.9 
TR 223 .6 244.2 170.6 63.2 56.4 758.0 

3.5.2. Case Study 

The same case study as in Section 3.4.1 was considered. Table 3.15 shows the 

three different approximations of the expected values for each confidence level interval, 

and the final expected value of the largest profit gap E(MaxGapell}. Details on the 

computational experience can be found in Appendix C. 

From Table 3.15, at least one additional point should be added between a = 0.0 

and a = 0.50 due to the large difference between the areas for the three approximations. 

If another point is added at a = 0.25 , the results in Ta ble 3.16 are obtained. After the 

addition of another discretization point of the confidence region, the difference betwet:n 

the expected largest profit gap calculated by the three methods decreased significantly. 

The results in Table 3.16 were confirmed by running 8,768 Monte Carlo simulations. The 

expected largest profit gap using trapezoidal approximation from the simulated data was 

$685.7/day, which is roughly $140/day less than E(MaxGapelJrR and $10/day less than 

E(MaxGapeI/JFW. Even though E(MaxGapellJFw is a lower bound for the integral , it is 

based on calculating the largest Profit Gap. It is important to point out that although over 

8,000 Monte Carlo runs were performed, a larger number of realizations might increase 

the 

Table 3.16. Results for the Refined Approximation of the Integral 

a ~ 0.25 a ~ 0.25 a ~ 0.50 a ~ 0 . 75 a ~ 0.90 a ~ 0.95 a ~ 0.99 E(MCLyGap,·,u 

a ~ 0.50 a ~ 0.75 a ~ 0.90 a ~ 0.95 a ~ 0.99 ($ I day) 

BW 185 .2 223.6 264 .7 182.4 65 .7 60.2 981.9 
FW 185.2 223.6 158.8 60.8 52.6 15.0 696.1 
TR 92.6 204.4 244 .2 170.6 63.2 56.4 831 .5 
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value of the expected largest profit gap coming from simulated data, since local optimal 

points may have been found during the Monte Carlo simulations. Also, the discretization 

of the parameter region may have been too coarse. If more accuracy in the estimate were 

required, another point could be added between a = 0.0 and a = 0.25. However, since the 

inconsistencies were considered small, further computation was not justified. 

As anticipated, the integration of MaxGapel/ over several confidence levels 

provides a smaller estimate of the economic impact of parametric uncertainty on the 

objective function ($831.5/day) than does Max Gapell ($ 1,314.0/day) or MaxGapinl 

($3,024.9/day) for the same system. However, this evaluation requires the solution of 

several non-convex optimization problems. In this case, obtaining E(MaxGapelJTR 

required 7 times more computational time than the obtaining MaxGapel/. Therefore, there 

is a trade-off between the improved representation of the monitoring goal and its 

computational demands. 

The expected value of the largest profit gap E(MaxGap~/JTR is a more accurate 

criterion for determining the potential profit loss in the closed-loop system due to 

parametric mismatch, but it is still conservative (an overestimate) when compared to the 

expected value of the profit gap. Section 3.6 presents a method for determming upper­

and lower-bounds on the expected value of the profit gap . 

3.6. Method Based on the Expected Value of the Profit Gap 

In most applications of monitoring uncertain plaLt operations, the expected value 

of the profit gap (E(Gap», the difference between the best and worst profits for CLRTO 

over the uncertainty range of the parameters is the best estimate of the effect of parameter 

uncertainty on the objective function. Calculating the expected value of a function 

usually requires computationally expensive methods such as function integration or 

sampling from the parameter space. In this section, a method is presented that reduces the 

size of the parameter space based on bounds of the objective function in a subspace. The 

result is a reduction in the computational burden of the calculations. 
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The approach taken here is similar to the previolls section, in that equation (3.5) is 

applied to estimate the expected value, and the function "Z" is the MaxGapell (Problem 

3.6). In this section, we take advantage of the insight that the MaxGapell depends 

strongly on "direction", i.e., the worst case MaxGapell in a ellipse will usually be much 

worse (larger) than the average Gap in the ellipse. Therefore, the regions in this section 

are divided by confidence level and "direction"; here, angles are used to define the 

direction. In addition, since we seek the expected value of the Gap (profit loss), and not 

the MaxGapell, we evaluate the expected values of both the maximum and the minimum 

profit gaps in each region. 

A case study with only two uncertain parameters is considered so that a graphical 

interpretation can be presented. The parameter values f()r this case study can be seen in 

Tables A.I to A.3. The only uncertain parameters in this case are Reformate octane and 

LSR Naphtha octane, each with a variance of 0.167 octane2
. In a two-dimensional 

multivariate distribution, this variance allows for maximum variations of ±I.O octane in 

each parameter. 

The method divides the parameter space into several regions and determines the 

expected largest profit gap (E(}.1axGapel/) from Section 3.5) in each region. If the 

expected largest gap in a region is small (near zero), there is no reason to sub-divide the 

region further, since the Gap in the region is also very small. 

If the expected largest gap is significant, the value of the expected smallest profit 

gap is also evaluated: in order to obtain a lower bound of E(Gap) in a parameter region, 

the profit gap in the objective function of Problem 3.6 was minimized for that region. 

This objective function will be denoted as MinGapel/. A!; in the calculation of the upper 

bound ofE(Gap) (E(MaxGapell», the lower bound ofE(Gap) was calculated by using the 

forward difference approximation to obtain the expected smallest profit gap 

(E(MinGapell» over large regions of the parameter space. 

When the values of the expected largest and smallest profit gaps in a region are 

sufficiently close, an estimate of the Gap has been determined, and there is no reason to 

sub-divide the region further. If the difference is large, the region can be sub-divided 
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Figure 3.7. First Division of Parameter Space 

until the difference in the expected profit gaps is sufficiently close. When all regions 

have been evaluated, the total expected value is the sum cfthe profit gaps for each region 

weighted by its probability. 

In the two-dimensional case study, this method was initially applied to each of the 

four quadrants, as shown in Figure 3.7. As a first step, the calculations were performed 

without any concern for direction with 6 confidence levds: 25%, 50%, 75%, 90%, 95% 

and 99% .. The value for the upper bound of E(Gap), E(MaxGapell)BW was $275.8/day. 

The value of E(MinGapell)FW (lower bound of E(Gap)) for the entire parameter region 

was $O.O/day. This is too large a difference, so the method proceeded by subdivisions 

according to direction within each confidence region. 

After dividing the parameter space in four quadrants shown in Figure 3.7, the 

upper and lower bounds of E(Gap) became $131.3/day and $3.7/day, respectively (Table 

3.17). Since the difference between the bounds was still considered too large, further 

divisions were warranted. Since Quadrants 1 and 4 had $O.O/day values for 

E(MaxGapell)BW (upper bound), they did not need to be further evaluated, thus reducing 

the computational requirements substantially. The values in Quadrants 2 and 3 were 

significantly different and were subdivided in 45° halves. From Table 3.18 to Table 3.20, 
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Table 3.17. First division of parameter space 

E(MaxGapel/)BW E(MinGapeU)FW 
($/day) ($/day) 

Quadrant 1 0.0 0.0 
Quadrant 2 249.5 0.0 
Quadrant 3 275.8 14.6 
Quadrant 4 0.0 0.0 

Bounds on E{ GapJ 131.3 3.7 

Table 3.1S. Second division of parameter space 

E(MaxGapel/)BW E(MinGapel/)FW 
($/day) ($/day) 

Quadrant 1 0.0 0.0 
Quadrant 2 (90°-135°) 59.9 0.0 
Quadrant 2 (135°-180°) 249.5 14.4 
Quadrant 3 (180°-225°) 275.8 86.4 
Quadrant 3 (225°-270°) 250.1 14.6 
Quadrant 4 0.0 0.0 
Bounds on E( Gap) 104.4 14.4 

Table 3.19. Third division of parameter space 

E(MaxGapellhw E(MinGapel/)FW 
($/day) ($/day) 

Quadrant 1 0.0 0.0 
Quadrant 2 (90°-112.5°) 0.0 00 
Quadrant 2 (112.5°-135°) 59.9 0.0 
Quadrant 2 (135°-157.5°) 173.9 14.4 
Quadrant 2 (157.5°-180°) 249.5 56.8 
Quadrant 3 (180°-202.5°) 275.8 86.4 
Quadrant 3 (202.5°-225°) 275.8 86.6 
Quadrant 3 (225°-247.5°) 250.1 57.0 
Quadrant 3 (247.5°-270°) 174.5 14.6 
Quadrant 4 0.0 0.0 
Bounds on E( Gap) 91.2 19.7 
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the angles are considered to originate on the intersection between Qadrant 1 and 

Quadrant 4, and to increase counter-clockwise. After the second subdivision of the 

parameter space, E(Gap) was determined to be bet\\een $14.4/day and $104.4/day 

(Table 3.18). Even though E(MaxGapell)BW in sub-quadrant 2, from 90° to 135° was fairly 

small ($59.9/day), it was further subdivided because it was adjacent to a large parameter 

region (Quadrant I), which had a $O.O/day E(MaxGapell)BW. 

As can be seen in Table 3.19, the third subdivision of Quadrant 2 showed that 

25% of the area in Quadrant 2 (90°-112.5°) yielded a $O.O/day E(MaxGapell)BW, which 

leads to a less conservative estimate of E( Gap). After the third subdivision of the 

parameter space, E(Gap) was determined to be between $19.7/day and $91.2/day. Only 

the regions of the parameter space that yielded a E(MaxGapell)BW larger than $200.0/day 

were then further subdivided. 

Table 3.20. Fourth division of parameter space 

E(MaxGapell)BW E(.MinGapel!)FW 
($/day) ($/day) 

Quadrant 1 0.0 0.0 
Quadrant 2 (90°-112.5°) 0.0 0.0 
Quadrant 2 (112.5°-135°) 59.9 0.0 
Quadrant 2 (135°-157.5°) 173.9 14.4 
Quadrant 2 (157.5°-168.8°) 218.8 56.8 
Quadrant 2 (168.8°-180°) 249.5 73.8 
Quadrant 3 (180°-191.3°) 269.1 86.4 
Quadrant 3 (191.3°-202.5°) 275.8 94.1 
Quadrant 3 (202.5°-213.8°) 275.8 86.4 
Quadrant 3 (213.8°-225°) 269.4 86.6 
Quadrant 3 (225°-236.3°) 250.1 74.0 
Quadrant 3 (236.3°-247.5°) 218.1 57.0 
Quadrant 3 (247.5°-270°) 174.5 14.6 
Quadrant 4 0.0 0.0 
Bounds on E( Gap) 88.8 21.0 
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Figure 3.8. Estimation of Upper and Lower Bounds ofE(Gap) 

The fourth subdivision of the parameter space can be seen in Table 3.20, and 

resulted in E(Gap) bounds of $21.0/day and $88.8/day. Since the additional subdivision 

did not change the upper and lower bound estimation significantly, and since the bounds 

are only $67.8/day apart, no further subdivisions of the parameter space were made. 

Figure 3.8 shows the estimation of upper and lower bounds of E(Gap) with the 

number of required solutions of Problem 3.6 (MaxGapell). Between the 3rd and 4 th 

divisions of the parameter space, the rate of change of the bounds was very small, being 

another indication that the procedure could be interruptd. In order to verify the results, 

1,103 Monte Carlo simulations were performed on this system, resulting in an estimated 

E(Gap) of$27.2/day, which lies within the estimated upper and lower bounds. 

For higher-dimensional systems, regions of the parameter space should be divided 

by hyper-planes, and the procedure of estimating bounds for E(Gap) should be applied to 

the areas divided by these hyper-planes. Depending on the problem structure, this could 

be computationally more efficient than sampling the parameter space to determine the 

expected value of the profit gap, since large areas 'Jf the parameter space could 

potentially be eliminated. This is especially true for large-scale systems in which large 
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parameter regions yield very small profit gaps. Furthermore, since upper and lower 

bounds are calculated, the procedure of estimating E(Gap) only needs to be applied until 

the bounds are close enough to each other. 

3.7. Relationship to Decision Analysis Theory 

The methods in this chapter deal with monitor: ng optimization systems under 

uncertainty, and thus, they are related to problems of decision-making under uncertainty. 

Therefore, they have similarities to some of the technology developed in the Operations 

Research (OR) field. The most relevant topics in OR that are related to this chapter are 

(Maximum) Regret and Expected Value of Perfect Infomlation 

Regret is defined as the deviation of the object lve function at any given point 

from the best possible one (Averbakh, 2000). Typically, OR methods determine the 

Regret by solving the problem for samples of uncertam parameters from the allowable 

space. This method can he appropriate when the uncertainty contains a small number of 

discrete variables, such as options for a process technology (e .g., distillation, membrane, 

no recovery). However, sampling can impose a substantial computational burden when 

the region of uncertain parameters is large. By using the approach in this thesis, the 

maximum Regret is evaluated by solving one problem, which can be more 

computationally efficient and is essential for the experirrental design method introduced 

in Chapter 4. 

The Expected Value of Perfect Information (EVP'I) is the difference between the 

results of the decision made with perfect information and the decision made with original 

information (Winston, 1994). This problem is typically solved by Monte Carlo 

simulations, scenario enumerations or decision trees in literature, which scale poorly for 

large-dimensional systems. Section 3.6 presented a method for determining bounds on 

the value of the EVPI, which corresponds to the expected value of the profit gap. 
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3.8. Conclusions 

Model-based optimization of plant operations is susceptible to mismatch between 

the model used for optimization and the true plant. Thi:; chapter has presented methods 

for estimating the effect of model mismatch on optimization performance, where 

performance is the deviation from the maximum achievable profit. The methods monitor 

the performance without interfering with the operation of the process, i.e., no experiments 

are required. 

The mismatch IS characterized by a range of parameter values in a linear 

programming optimization model. Depending upon the method used, the monitoring 

method determines one of the following metrics. 

~ The maximum achievable profit, including the most favourable parameters that 

could exist in the plant 

~ Whether the current optimal corner point is the only possible optimal corner point 

within the parameter uncertainty (assured optimality) 

--;, The maximum profit loss due to model mismatch ·:Maximum Regret) 

~ The expected value of the maximum profit loss due to model mismatch 

~ Bounds on the expected value of the profit loss (E VPI) 

Each subsequent method provides more information and better monitoring; 

however, the computational demands increase as well Importantly, the method that 

evaluates the maximum profit loss due to mismatch requires the solution to a single 

optimization problem. This method is integrated into the experimental design for process 

improvement in the next chapter. 

The key application addressed is closed-loop, linear real-time optimization, which 

has found wide application to blending over that last 20 years. Therefore, a new 

formulation that represents the behaviour of the closed-loop system has been developed. 

In contrast, many applications of optimization in operations optimization are referred to 
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as "open-loop", indicating that no feedback information is used in subsequent 

optimization executions. In reality, many of these applications include some form on 

periodic model correction based on measurements; therefore, many applications referred 

to as "open-loop" are really "closed-loop" with a slow period on the feedback. This 

situation is demonstrated, for instance, by the existence of reactive scheduling problems 

(Herroelen and Leus, 2005). The results in this chapter can be applied to both automated 

CLRTO and "manual" optimization with model correct: ons introduced by the engineer, 

as long as the linear programming model contains only continuous variables (not 

discrete) and the feedback is applied consistently as modelled. 

Nevertheless, the methods in this chapter can also be applied to truly open-loop 

decisions with little modification. Some extensions to open-loop systems are presented in 

Appendix E with applications to previously published ca~:e studies. 

The formulations in this chapter required the solution of optimality conditions as 

constraints in an "outer" optimization problem. The method builds on recent advances in 

optimization methods and software, using the IPOPT-C solver for the non-convex 

problems involving complementarity constraints. Even with this software. several restarts 

and selection of the best of several local solutions were required to achieve reliable 

monitoring results. 

The case studies in the chapter are representative of the on-line gasoline and fuel 

oil blending in industry, as well as other industries such LS cement production. However, 

these are not necessarily large-scale problems, and further investigation is required to 

establish the limits of application of the method. In terms of the complementarity 

constraints that arise in the formulation, IPOPT has been reported to handle up to 1,748 

complementarity constraints so far (Raghunathan and Biegler, 2003). Certainly, further 

work is required to refine the method developed for the expected value of the profit loss. 

When monitoring indicates a significant potential profit loss, the engineer would 

like to understand the likely cause(s) and take actions to improve process operations. 

These topics are addressed in the next chapter. 
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Chapter 4 

RTO Performance Enhanc,ement and 

Diagnostics 

4.1. RTO Performance Enhancement 

In Chapter 3, methods were developed that monitor closed-loop RTO 

performance. If the optimizer performance is deemed unacceptable, i.e., the largest profit 

gap is considered excessive, uncertainty in key model parameters needs to be reduced. 

This chapteI introduces methods for diagnosing and improving optimization 

performance. 

There are several ways to obtain a more accurate process model. In some 

processes, parameters may be physically measurable, so sensors can be installed in order 

to obtain an accurate estimate of their true values. In gasoline-blending processes, for 

instance, octane number and Reid vapour pressure (RVP) are potentially measurable 

parameters. Sensors, however, can be very expensive. The cost of a single near infrared 

(NIR) sensor that can measure different properties for on::! component stream costs in the 

order of US$300,000, without considering maintenance costs (Measurementation Inc., 

2004). An alternative to measuring parameters is to rely on a more accurate process 

model than the one used in the RTO. However, if not available, such a model may be 

very expensive to develop. In the blending application, the linear model would have been 

developed by local linearization of a more accurate nonlinear model, if one existed. 
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Finally, model parameters can be re-estimated based on existing process measurements 

available during plant operation. Since typical variation in the plant is limited, significant 

improvement in parameter accuracy will usually require designed experiments in the 

plant. The experimental approach to model improvement is selected for model 

improvement. 

Two different approaches to experimental design were developed in this work 

One approach requires the number of optimal bases to be no more than one given the 

parametric uncertainty while minimizing cost. The second approach maximizes the profit 

during the remaining batch duration by improving the performance monitoring metric 

(reducing the largest profit gap) while also performing low-cost experiments. The latter 

approach was solved using two different optimization methods: model-based methods 

and direct search methods using Derivative-Free Optimization (DFO). 

All of the experimental design formulations proposed in this chapter have a 

flexible constraint structure that can be tailored to the specific plant situation. For 

example, the user may choose constraints on product quality, component and blended 

product flowrates, and changes in flowrates between contiguous steady states, among 

others. 

The parameter-updating strategy embedded In the experimental design 

formulations is Bayesian Estimation, which allows for the direct incorporation of 

estimates of the uncertainty in the model parameters based on prior information, which 

includes previous experiments. The inclusion of prior in£)rmation prevents unnecessarily 

large experiments in the plant. As a safeguard against underestimating prior parameter 

variance, a larger variance than assumed by plant personnel can be used (Box and Tiao, 

1973). The effect of different prior variances on the intercepts of the equations is 

discussed in Chapter 5. More details on Bayesian parameter estimation can be found in 

Appendix B. 

As discussed in Chapter 2, conventional experimental design methods reduce the 

size of the parameter confidence region. The formulations in Sections 4.1.1 and 4.1.2 are 

focused on improving the performance of the CLR TO sy~;tem. These new designs reduce 
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parametric uncertainty in the constraints that most influence the potential loss in profit. 

Another contribution is the fact that the cost of experimentation is considered, building 

on the work of Yip and Marlin (2001). 

In the following section, the model enhancement based on comer point 

information is presented, followed by the method based on the largest profit gap. 

4.1.1. Performance Enhancement Based on Corner Point Information 

As mentioned in Chapter 3, if there is only one possible comer point in a linear 

closed-loop RTO system with parametric uncertainty between the plant and optimizer, 

that comer point corresponds to the true plant optimum (Forbes and Marlin, 1994). 

Therefore, the first approach to designing experiments 10 improve CLRTO performance 

requires that the final parameter uncertainty lie within the parameter region that yields a 

single comer point. In this formulation, the experiments are performed to achieve this 

goal at the lowest possible cost to plant operation. The experiments for the gasoline­

blending problem are determined by solving the following bilevel mathematical program. 
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Problem 4.1: 
nexp II 

min I I Pi (F';.k - F';,min ) 
F ., k=1 i=1 

subject to 

n II 

I F';,expJ< (Q!lIom + &!xp) ~ Q£,end,mill I F';,expJ< 
i=1 i=1 

" " I F'; ,expJ< (Q(IIOIII + &;xp) ~ Q£'elld,max I F'; ,expJ< 
i=1 i=1 

F'; ,lIIill ~ F'; .expJ< ~ F';,max. 

II 

Fhlelld,mill ~ I F'; ,expJ< ~ Fhlelld,max 
i=1 

V(Q) = (V(Q) l-I +X:~pV(zrl Xexpt 

min8 ~ O. 

8 = minAi 
/..,Q/ 

McMaster University, Chemical Engineering 

,V i, j 

k= 1 .. nexp 

j = oct, RVP 

Guarantees 
unique optimum 
basis using 
quality bounds 
after 
experimentation 

The solution of the "inner problem" ensures that only one optimal corner point is 

possible for all realizations of the uncertain parameters after the experiments. Therefore, 

an estimate of the variance is required. As mentioned in the introduction of this chapter, 

the parameter-updating strategy of choice was Bayesian Estimation, which allows for the 

incorporation of estimates of the uncertainty in the model parameters based on prior 

information. The prior information will be plant experit:nce for the fi rst experiment in a 

batch and will combine experience and ' experimentation for later iterates. In this way, the 

estimate of the variance-covariance matrix of the parameters V(Q) will rely on prior 

knowledge of V(Q)I/-J (equation (B.3) in Appendix B). 

Even though this problem presents discontinuous derivatives, the Sequential 

Quadratic Programming (SQP) method in fmincon was able to find locally optimal 

solutions. The good performance is likely due to two facwrs. First, the (multiple) starting 
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points used were reasonably close to the optimum (Biegler and Grossmann, 2004). 

Second, for these problems, sudden changes in the directionality of decision variables 

should not occur with the discontinuity due to the ne,;!d to reduce uncertainty in key 

component properties by using the same key component flowrates. 

In Problem 4.1, the parameters s:xp correspond 10 the bias values in the CLRTO 

before running the experiment. The parameters J.1.i in the objective function correspond to 

the marginal costs (Lagrange multipliers) of each component flow at the current RTO 

run. These costs will be zero for variables between their bounds (basic variables). In the 

gasoline-blending process, the product quality specifications are for the total, integrated 

product. Therefore, changes to the basic flows that are not at their bounds can be 

compensated after the experiment to have no net effect on the product qualities or total 

flows used to produce the blend. Changes to any component flow that is at its upper or 

lower bound results in a cost because the integrated flo\\ will deviate from the predicted 

best value due to the experiment. The objective function of Problem 4.1 shows costs on 

flows at their lower bounds (Fi.min ). In the case of flows at their upper bounds, the 

objective function should be J.1.i.(Fi,max - Fi,k). 

Since the experimental design is formulated as a mathematical program, many 

options exist in the definition of the constraints in the experimental design to satisfy 

specific problem requirements. For the experimental design defined in Problem 4.1, the 

flows of components and final product and the blended qualities can vary within their 

bounds. Since the blended gasoline product is stored in a large tank before being shipped 

to customers, no requirement exits for strict control of instantaneous product qualities 

during the experiment (Diaz and Barsamian, 1996; Sakr e t aI., 1988). Because of this, the 

experimental design formulation in Problem 4.1 only requires feasibility of the nominal 

model during the experiment. Other strategies for experimental designs, such as 

restricting changes in the flow rates from the current operation or introducing chance 

constraints (Ben-Tal and Nemirovski, 1998) that would require the uncertain model to be 
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Table 4.1. Description of Case for Approach Based on Comer Points 

QOCI RVp 
V(Q/:~:ml) 

RVp Q(}CI Rf'p costj 
i,"OIll Q;,1I0fll V(Q,lIom) i./nu: Q;,lnlf! 

(octane) (Esi) (octane2) (psi2) (octane) (psi) ($/bbl) 

Reformate 92.33 2.6 0.0256 le-8 92.3 2.6 34.2 

LSR Naphtha 63.90 10.9 0.664 le-8 64.0 10.9 26.5 

n-Butane 92.5 138.8 le-8 le-8 92.5 138.8 10.3 

FCC Gas 84.6 6.4 le-8 le-8 84.6 6.4 31.8 

Alkylate 96.6 6.7 le-8 le-8 96.6 6.7 34.4 
(Variances are before an experiment) 

feasible during experimentation could be easily incorporated at the cost of introducing 

nonlinear, conic constraints. 

An additional variable in the design is the nexp number of experiments. When 

considering multiple experiments, the process constraints in Problem 4.1 have to be 

repeated for each experiment. Also, the new experiments are included in matrix X exp and 

affect Problem 4.1 through V(Q) (See (B.3) in Appendix B). To demonstrate the 

experimental design method, a case study involving uncertain Reformate and LSR 

Naphtha octane numbers is presented. All other component properties were assumed to 

have very small uncertainties, as can be seen in Table 4.1. During the experiment, Q;/~:'d 

was required to be above or equal to 80.0 octane and Q~~:;~:/' below or equal to 10.8 psi. 

These bounds were included to prevent large deviations in product quality from occuring 

in the product tank that is not perfectly mixed. 

The steady-state CLRTO was operating with the flowrates F; seen in the left-most 

column in Table 4.2 with a profit of $10,257 /day. After a single experiment Fj,exp, 

parameter uncertainty was reduced so that only one corner point was possible, and with 

the updated parameters obtained from the experiment, tte CLRTO system converged to a 

different comer point, that had a profit of $1 0,680/day. Its flowrates can be seen in the 

right-most column of Table 4.2. Note that the objective function for the experimental 

design (i.e., the cost of the experiment) was 0.0, since only basic variables of the original 

basis were changed during the experiments. 
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Table 4.2. Results - CLRTO Flowrates in Experimenta l Design Based on Comer Points 

Fi Fi.exp F; 
V( Q"u ) CLRTO before CLRTO after ; ,110111 

experiments (bbl/day) experiment after experiment 
(bbl/da~} (bbl/day) (octane2 

Reformate 5696.0 5620.7 3212.7 0.0176 

LSR Naphtha 942.0 1421.3 0.0 0.330 

n-Butane 362.0 293.0 324.4 le-8 

FCC Gas 0.0 0.0 3463.0 le-8 

Alkylate 0.0 0.0 0.0 le-8 
Computational Experience: 
CPU seconds - 1 ,500 

Additional scenarios are discussed in Zyngier and Marlin (2003). Generally, as 

the number of experiments is increased, the deviation from the nominal flow rates for 

each experiment decreases. Each individual experiment may be smaller since the multi.ple 

experiments can provide the equivalent information as a single, large experiment. Also, 

in some cases, a single experiment would not be able to generate enough information for 

the simultaneous update of several parameters, so tha t the design problem would be 

infeasible. Naturally, the time for experimentation will increase as the number of 

experiments increases. 

The approach developed in this section reduces the uncertainty in the coefficients 

of the linear programming problem to levels where only one comer point is possible, thus 

guaranteeing that the "true" plant optimum has been lchieved. However, in systems 

where comer points adjacent to the optimum have similar profits, this approach will 

likely be too expensive; i.e., many experiments might be required in exchange for 

potentially small (even negligible) economic benefits. Since the experimental design 

strategies presented in the following sections are improved approaches that take into 

account the difference in profit between comer points .. the additional case studies in 

Zyngier and Marlin (2003) are not shown in detail. 
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4.1.2. Performance Enhancement Based on Lnrgest Profit Gap 

Since the method in Section 4.1.1 will cause excessive experimentation in some 

cases, a different experimental design strategy was deve loped that considers the potential 

improvement in the system measured by the objective function (profit). This is done by 

applying a CLRTO performance metric developed in Chapter 3. Since the cost of model 

uncertainty becomes a sub-problem in the experimental design, a metric that can be 

obtained from a single optimization is embedded in the experimental design formulation. 

The performance metric chosen for use in the experimental design was the largest 

profit gap with ellipsoidal description of parameter uncertainty (MaxGape//). It is a better 

representation of the monitoring goal than the metrlc with interval description of 

uncertainty (MaxGapinl) since it allows for the incorporation of correlation among 

parameters, while being computationally more tractable than expected value 

approximations that require enumeration of several segments. In the gasoline-blending 

process, correlation among component properties may occur due to disturbances in 

upstream operation. Some of these disturbances are imperfect separation in distillation 

columns (resulting in correlated octane and RVP properties, for example), or different 

feed properties and operations of upstream reactors, which also affects component 

properties in a correlated manner. 
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Problem 4.2: 

min (/*[ MaxGapell] - t2*[ Prexp ] 
Fexp 

Subject to 
II 

Prexp = ~)value - costJF;,exp 
i=l 

" n n 

Qi'md,mill L Fi .• xP ~ L F; .• xp (Q(nom + c!xp)~ Qf'mdmux L F;.exp 
i=l i=l i=l 

II 

Fhlend,min ~ L F;,exp ~ Fhlelld,max 
i=l 

F;,min ~ F;.exp ~ F;,max 

MaxGapell ~ details in Problem 3.6 

j = oct, RVP 

The formulation of the experimental design based on the largest profit gap is 

given in Problem 4.2, The objective function is a time-weighted average of the 

performance metric and the cost of the experiment: the weighting factors t/ and t2 

correspond to the batch time remaining after the experiment and the time to run an 

experiment, respectively. Therefore profit is being maximized over the remaining batch 

duration. 

The formulation in Problem 4.2 is a three-Ie-vel optimization problem, smce 

Problem 3.6 consists of a bilevel programming problem. In this work, two different ways 

of solving this problem have been evaluated. The first one consists of replacing the 

MaxGapell problem by its optimality conditions, and sol ving Problem 4.2 as a one-level 

optimization problem using a gradient-based, interior point method. The second approach 

considers Problem 3.6 to be a black-box function. The inner problem (MaxGapell) is 

solved as a bilevel problem using methods explained in Chapter 3, with the uncertainty 

V(Q) value calculated after the experiment, and the "outer" optimization problem is 

solved using a direct-search optimization method. The selection of a direct search method 
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for the outer problem is based on the discontinuities in derivatives that occur as the active 

set changes. 

The first approach to solving Problem 4.2 is to replace Problem 3.6 by its KKT 

conditions and solve the overall problem with IPOPT-C (Raghunathan and Biegler, 

2003). Details about IPOPT-C can be found in Appendix D. Since Problem 4.2 is ill­

conditioned due to the change in corner points (where different Lagrange multipliers and 

slack variables reach values of zero) and highly nonlinear due to the complementarity 

constraints and the embedded Bayesian parameter estimation, its solution benefits from 

"good" starting points. In this work, a "good" starting point is considered to be any point 

that leads the optimization problem to a local minimizer, with delays due to computation 

times that do not result in significant economic loss in the system. This will be discussed 

in Section 4.1.2.2. 

A drawback to the first approach to solving Problem 4.2 is that, since the 

substitution of the innermost optimization problem with its KKT conditions introduces 

nonlinearities in the system, the next optimization level is not guaranteed to achieve a 

local optimum of the problem unless the second-order optimality conditions of the 

innermost problem (Problem 3.6) are included in the formulation. This approach, 

however, causes the problem to be computationally intractable. Another option is to not 

include the second-order optimality conditions within the optimization problem, but to 

verify if they are satisfied at the solution of the problem (Clark and Westerberg, 1990). If 

they are not satisfied, the problem should be re-solv·~d from another starting point. 

Alternatively, the solution could be perturbed to verify optimality (Forbes el aI., 1994). 

Since these are all computationally intensive alternatives, a direct search method 

known as Derivative-Free Optimization (DFO) (Conn et al., 1997) was also applied to 

Problem 4.2. This method is based on approximating the objective function by a 

(simpler) surrogate model within a trust region, and then optimizing the surrogate model 

to obtain an improved point. Then, the size of the trust region is increased or decreased, 

according to a new point being a better or worse objectiv~ function value than the current 

point, until the convergence tolerances are met. 
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It is well known in the literature that the traditional direct-search NeIder-Mead 

simplex method can have poor convergence propertles (Wright, 1996). Preliminary 

studies were performed in this work that confirmed that DFO converged faster than 

NeIder-Mead for all cases. More details about the DFO algorithm can be found in 

Appendix D. DFO, however, cannot handle constraints directly. These have to be 

replaced in the objective function as penalty terms. The reformulation of Problem 4.2 so 

that DFO can be applied is seen in Problem 4.3 . 

Problem 4.3: 

mm 1/*[ MaxGape/J] - 12*[ Prexp ] + sum(penalty terms) 
Fexp 

MaxGapell is determined by the solution of Problem 3.6, and the profit during 

experiment is defined in the first constraint of Problem 4.2. In order to increase the 

chances of finding "good" local optima for MaxGapell during DFO implementation, at 

each DFO iteration, Problem 3.6 was solved for two different starting points (different 

sets of Lagrange multipliers), with several restarts. Of course, the formulation and restart 

procedures increased computation times for this approach. 

The penalty term for each constraint was defined as: 103*(lI-norm of constraint 

violation). The following constraints were considered during the design of experiments: 

II" " 

Qt'end.III;1I I F; .exp ~ I F; .exp (Q!.IIOII/ + e;xp) ~ Qi'el/{I,II/ux I F;.exp 
'~I 1;1 1=1 

II 
Fh/end ,min ~ I F;.exp ~ Fhlelld ,max 

;; 1 

F;,min ~ F;,exp ~ F;.max 

j = oct, RVP ( 4.1 ) 

( 4.2) 

(4.3 ) 

Before each function evaluation, the parameter varIances were re-estimated 

according to the following equation, derived from Bayesian parameter estimation (for 

details, see Appendix B). 
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( 4.4 ) 

4.1.2.1. Case Study Description 

Next, we illustrate the methods proposed in Section 4.1.2 through a case study. 

The description of the case study before experimentation can be seen in Table 4.3. Note 

that the "true" values are not used in the calculations for the experimental design. 

The monitoring results yield the following: MaxGapel/ = $1,456.8/day, where PrBc 

= $8,895.9/day and Prnom.cL=$7,439.1I day. 

4.1.2.2. Solution Using Optimality Conditions 

The first solution strategy is the substitution of the imler MaxGapel/ problem with its 

optimality conditions. Naturally, this approach benefit~: from good starting points. A 

method for obtaining a good starting point (for convergence) for Problem 4.2 is outlined 

as follows. First, Problem 4.2 with ellipsoidal uncertainty is modified (Modified Problem 

4.2) so that the flowrates during the experiment are not taken into account in the overall 

profit, and that they are not used to update the model parameters. This implies that the 

cost of experimentation is not taken into account in the objective function, and that the 

parameter variances are fixed . 

Table 4.3. Description of Case Study 

Quel RVl' 
V(Q~~~III) R' I' QOCI RVl' cost; 

i ,lIum Q;,lIom V( Qi.I.U/II) i,lnu! Qi .lnJt~ 
(octane2

) (ph (octane) (Esi) ($/bbl) 

Reformate 0.0546 0.05 ~6 92.3 2.7 34.2 

LSR Naphtha 0.0524 0.0524 64.0 10.9 26.5 

n-Butane 92.40 0.0546 0 .05L~6 92.5 138.0 to.3 

FCC Gas 84.90 6.50 0.0546 0.05~·6 85.3 6.4 31.8 

Alkylate 97.08 6.62 0.0373 0.0370 97.0 6.7 34.4 
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Modified Problem 4.2: 

~ Change objective function of Problem 4.2 to: Maximize (PrBc -Prnom,CL): the 

experiment is not considered in the overall profit 

~ Solve the problem with this new objective function and fixed parameter variances 

(the flowrates during experiment are not used to update the model parameters) 

The following variable values were used as starting points to the Modified 

Problem 4.2: 

~ Fi.BC, F;.nom and ...t, from solution of MaxGapell problem 

~ F;,exp = [1,400.0 1,400.0 1,400.0 1,400.0 1,400.0] 

~ Remaining Lagrange multipliers = 1.0. Thesl~ variables correspond to the 

additional multipliers created by the replacement of the inner (bilevel) problem 

with its optimality conditions. 

The solution of the Modified Problem 4.2 seen in Table 4.4 is then used as a 

starting point for Problem 4.2. The results can be seen in Table 4.5. 

Table 4.4. Results of Modified Problem 4.2 

Reformate 
LSR Naphtha 
n-Butane 
FCC Gas 

F;.BC 
(bbl/day) 

0.0 
1,860.8 
177.3 
0.0 

4,961.9 

Computational Experience: 
CPU seconds 2.0 
# function evaluations 124 
# restarts 0 
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F;.nom 
(bbl/day) 

0.0 
71.0 

214.2 

F i.exp 

(bbl/day) 
2877.3 
1,119.1 
372.0 

4,500.0 2,634.0 
2.2 ]4.7 2,997.5 

= $7,861.1/day 
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Table 4.5. Solution of Problem 4.2 for Method using Optimality Conditions 

Q/)('f Qt'·p Fi.BC Fi.nom F I.exp 
(octane) (Qsi) (bbl/day) (bbl/da~) (bbl/day) 

Reformate 91.90 2.60 0.0 0.0 2,857.3 
LSR Naphtha 64.15 10.81 1,858.4 71.4 1,114.1 
n-Butane 92.40 137.90 175.2 214.3 369.0 
FCC Gas 84.29 6.96 0.0 4,500.0 2,63l.7 
Alkylate 97.47 6.31 4,966.4 2,214.4 3,027.9 

Prexp = $11,l07.9.0/day*(FbJ.cLRToIFbl.exp) = $7,775.5/day. 

Computational Experience: 
CPU seconds 
# function evaluations 
# restarts 

56.3 
42,010 
3 

After this experiment, the predicted MaxGape/l = $1,4 76.3/day. Since the total 

blend flowrate during the experiment was allowed to vary (and in this case was different 

from the flowate during normal operation), a "normalized" profit during experiment 

(Prexp ) was calculated. This was done in order to compare Prexp to the current CLRTO 

profit. 

In this case, the predicted value of MaxGape/l after experimentation is slightly 

larger than its original value, which is not an expected result because the cost of the 

experiment should be offset by the reduction in MaxGap .. /I. This result is likely due to the 

fact that the second order conditions were not included in the optimization problem when 

substituting Problem 3.6 with its KKT conditions. This experiment will be further 

discussed in the next section. 

4.1.2.3. Solution Using a Direct Search Method 

The second solution strategy is to use DFO to solve the problem in Table 4.3. The 

parameter values and initial starting point used in the ca~e study are given in Table 4.6. 

The solution is given in Table 4.7. The predicted JlaxGapell after experiment is 

$1,357.7/day, which is smaller than the original MaxGapelJ of$I,456.8/day, as expected. 
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Table 4.6. Parameter Values Used in Problem 4.3 

Octane (octane) 
RVP (psi) 

80.0 
4.5 

100.0 
10.8 

Fble/ld./111f1 (bbl/day) Fble"d.max (bbllday 
, ,500.0 10,000.0 

The normalized profit during experiment (Prexp) was equal to [$1,917.0/day 

*(FbI.CLRTdFbl.exp)=] $2,349.0/day. 

Even though the number of function evaluations was much smaller than in the 

model-based method in Section 4.1.2.2, each function evaluation when using DFO is 

more expensive. This is because, in this case, each function evaluation involves the 

solution of the MaxGapell problem in Chapter 3 from a few different starting points in 

order to increase the chances of finding a "good" local optimum. Thus, the CPU time was 

much larger for the direct-search method. 

Table 4.7. Solution of Problem 4.3 

Fi,exp (bblld& 
Reformate 1,707.7 
LSR Naphtha 690.2 
n-Butane 21.9 
FCC Gas 1,382.0 
Alkylate 1,910.8 

Prexp = $1,917.5/day*(FbI,cLRTdFbl,elp) = $2,349.6/day. 

Starting point: F;.exp = [1,000.01,000.0 1,000.01,000.01,000.0] 

Computational Experience: 
CPU seconds : 1,839.6 
# function evaluations : 267 
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Table 4.8. Solution of Problem 4.3 - Different Starting Point 

Fi.exp (bbllday) 
Reformate 2,855.9 
LSR Naphtha 1,112.8 
n-Butane 371.6 
FCC Gas 2,632.1 
Alkylate 3,027.6 

Prexp = $11,161.3/day*(Fbl.CLRTdFbl.exp) = $7,812.9/day. 

Starting point from Table 4.5: F;,exp = [2,857.3 1,114.1 369.02,631.73,027.9] 

Computational Experience: 
CPU seconds : 589.7 
# function evaluations : 170 

The predicted MaxGapell after the experiment in Table 4.8 was $ 1,415.7,' day, 

which is smaller than the original MaxGapell, as expected. The normalized profit during 

the experiment (Prexp) was [$11,161.0/day *(Fbl.CLRTdFbI.e~p)=] $7,812.7/day. 

When using the starting point for F;.exp from Table 4.5, the computational effort of 

the direct-search method decreased significantly in comparison with the starting point of 

all flowrates equal to 1,000 bbllday (seen in Table 4.7). Also, since the "black-box" 

function of the method based on DFO is a bilevel optimization problem with a linear 

inner problem (with no second-order optimality conditions), it is guaranteed that a local 

optimum is found for Problem 3.6, if one exists. 

The profit during experimentation (Prexp) was much higher when using the results 

of the model-based method as a starting point for DFO. It is worth mentioning that the 

experiment in Table 4.8 was very similar to the starting point obtained from the model­

based method, indicating that the optimization variable values in Table 4.5 were already 

very close to a local optimum. 

There are a few options in designing experiment~ .. One possibility is to calculate 

nexp experiments simultaneously. This allows for the incorporation of constraints on 

integrated rather than instantaneous product qualities, thus permitting instantaneous 
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infeasibility in the process and consequently a smaller number of experiments. However, 

this approach does not take into account the information that is being generated by each 

experiment before all nexp experiments are completed. Also, calculating nexp 

experiments increases the size of the experimental design problem thus increasing the 

computational demands. 

Another option is to adopt a receding horizon strategy in designing the 

experiments. In this approach, an initial nexp experiments are designed, and only the first 

one is implemented. Then, using parameter values updated from the first experiment, 

(nexp-l) experiments are designed, and only the first one is implemented. The procedure 

continues until the nexpth experiment is implemented. This approach is likely to provide 

the best experimental designs, since the time horizon of the blending batch is taken into 

account and recently updated parameters are used in the design of each experiment. 

However, the computational burden of this method is very high, since several large 

experimental design problems must be solved. 

Finally, each experiment can be designed individually, and its results can be 

implemented in the plant before calculating the subsequent experiment. This avoids the 

design of a large number of experiments simultaneously, thus easing the computational 

burden during each of the calculations for designing the {:xperiments. Also, this approach 

uses updated parameter information in each design of experiment, and allows for the 

interruption of experimentation as soon as the stopping criterion (size of MaxGapell) is 

met. For its computational advantages, the sequential calculation of individual 

experiments was the chosen approach in this work. 

During the experiments, the RTO system is turned off; I.e. , no new feedback 

information is being used by the model. This could resull: in quality violations if process 

disturbances were to occur while experiments were being run. Either of the following 

modifications ensures that feedback information would be considered during the 

experimental design step: (1) Alternate experimentation with CLRTO runs. Therefore, 

one experiment would be implemented, followed by a single CLR TO run, followed by an 

experiment, and so on. (2) Update the bias parameter before each experiment, without 
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having a CLR TO run between experiments. The latter approach would be preferable 

because it would lead to a shorter model enhancement stage of a system. 

The next section presents a new method for diagnosing CLRTO performance. 

This is a good tool for understanding the effect of specific parameter changes on the 

objective function value. 

4.2. RTO Performance Diagnostics 

Screening the importance of model parameters for a particular problem is very 

useful. With the performance monitoring strategies in Chapter 3, it is possible to 

determine the parameter values in the plant that result in the largest difference in profit 

during closed-loop operation. In the solution of the m:mitoring problem with interval 

uncertainty in Chapter 3, all parameters that influence the objective function are equal to 

their upper or lower bounds, so there is no insight as to which is the most relevant 

parameter. At best, the user obtains information about the directionality of the problem. 

In the case of monitoring CLRTO performance given {:llipsoidal uncertainty, the most 

influential parameters are singled out, since they are taken to the bound of the (multi­

dimensional) ellipsoid, while the remaining parameters do not deviate much from their 

nominal values. In this case, the monitoring approach may indicate which parameters are 

the most important ones for a particular case, but there is no insight as to a ranking of 

their importance with respect to the objective function value. 

Knowledge of the parameters whose uncertainty affects CLRTO profit can be 

used to select measurements for the system; i.e., detect which process variables should 

have their samples analyzed at a laboratory or determ:ne which on-stream analyzers 

should be installed. The diagnostics can also be used to guide laboratory experiments for 

model improvement, in that it indicates the importance of each parameter. Also, LP 

model structure improvements such as disjunctive moddling, separable programming, 

base-delta, etc ., can be more easily made if there is information on parameter relevance to 

the optimization problem (Williams, 1999). The diagnostics formulation in Problem 4.4 

finds the smallest trace of the parameter variance-covariance matrix that yields a profit 
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gap of at least the threshold value T. Thus, the diagnostic finds the smallest parameter 

uncertainty that yields a specified profit gap. 

Problem 4.4: 

min Tr(V(Q)) 

Pr BC ,Prnom,C1. ,cJ ,Q/ , "V;; (Q) 

subject to 
n 

Prnom,CL =rpax L(value - cost; )F;,nom 
/.oom ;=1 

s.t. 
n n 

L F;,nom (Q;~nom + c i
) ~ Qtlend.m;n L F;,nom 

~ ;~ 

n n 

L F;,nom (Q/,nom + c i
) ~ Q~end.max L F;,nom 

;:) ;:) 

n 

Fh/end ,min ~ L F;,nom ~ Fh/cnd,max 
;:) 

F; ,min ~ F; ,nom ~ F; ,max 

cit F;,nom = t F; ,nom (Q/ - Q/nom ) 
;:) ;:) 

n 

PrBC = ll1ax L (value - cost; )F;,BC 
I,.H<" ;:) 

s.t. 
n n 

" F B( ,·QJ > Qb.l,· d "F B(' L..J I, . I - en ,mm L..J I, . 

;:) ;:) 

n n 

L F;,BC .Q/ ~ Qilend.mar L F;,B( ' 
;:1 ;:1 

n 

Fh'elld,min ~ L F;,BC ::; Fblend ,max 
;:1 

F"min ~ F;,BC ~ F;,max 

(Q - Qnom YV-) (Q)(Q - Qnom) ~ X~ ,dOj 

V,; ,min (Q) ~ "V;; (Q) ~ v,; ,max (Q) 

Nominal CLRTO for 
any plant realization 

Q/ 

Best result for CLRTO 
for any plant realization 

Q;' 

} Ellipsoidal bounds 

} Bounds on variances 

PrBC - Prnom,CL ~ T } Profit gap threshold 
This problem is solved for various values of T, and as T is reduced, a smaller 

number of (more important) parameters must have non-zero variances (be uncertain) so 

that the specified profit gap (1) is achieved. Therefore, the parameters whose variances 
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are last reduced as T is decreased are deemed to be the most relevant to the optimization 

problem. The smallest trace when T = 0 $/day is also zero, since all variances must be 

non-negative. 

In the case studies considered in the following section, all the off-diagonal 

elements of V(Q) are equal to zero (i .e., there is no correlation among parameters). In 

cases in which there is correlation among parameters, th~ off-diagonal (covariance) terms 

can be explicitly set as a function of the diagonal terms (variances), with fixed 

correlation. For example, if correlation exists between the first and second parameters, 

the off-diagonal terms of V(Q) can be expressed as VJ2 = V21 = correlation* V/J* V22 . 

It is important to note that this method does not assume a constant active set for 

the diagnostics. In the following section, this diagnostic method is applied to the 

gasoline-blending case study in Section 4.1.2.1. 

4.2.1. Case Study 

Given the parameter values in Table 4.3 , the user may be interested in gaining 

insight into which are the most important parameters, and in which order. Therefore, the 

diagnostic method in Problem 4.4 was used. The results are shown in Figure 4.1. 
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Figure 4.1. LRTO P dorman e Diagn I t ic Results 
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The original variances from Table 4.3 (that yield a MaxGapeli of $1,456.8/ day) 

are seen in the far left of the graph, under "original". This is the situation when the 

monitoring has been completed and no improvement through experimentation has been 

performed. When the value of the threshold T is reduced to $1,450/day, Reformate 

octane and RVP, and n-Butane octane and RVP parameters have their variances reduced 

to zero in the solution of Problem 4.4. Therefore, for this case study, they are the least 

important parameters. For a value of T of $1 ,400/day, the variance of LSR Naphtha RVP 

is reduced to zero and the variance of LSR Naphtha octane is decreased from its original 

value. This indicates that the uncertainty in LSR Naphtha RVP has a smaller effect on the 

objective function than LSR Naphtha octane, which in tum has a smaller effect than the 

remaining parameters. 

The same analysis applies to the subsequent values of T. As T is assigned a value 

of $1,1 OO/day, the variance of FCC gasoline RVP starts to decrease, while the variance of 

FCC gasoline octane still retains its original value. This indicates that, for this case study, 

FCC gasoline octane is the parameter whose uncertainty has the largest effect on the 

objective function, followed by FCC gasoline RVP, Alkylate octane, Alkylate RVP, LSR 

Naphtha octane, and so on. As long as T is greater than zero, at least one parameter (in 

this case, FCC gasoline octane) will have a nonzero variance in order to achieve a 

positive value of profit gap. 

The results in Figure 4.1 depend on the uncertainty scenario in the plant. For 

example, if before the diagnostics, laboratory experiments had been run on FCC gasoline 

thereby dramatically reducing the variances on its properties, these parameters (FCC 

gasoline octane and RVP) would not be considered the most important by the diagnostic 

method. In addition, the variances would have to be scaled by the nominal measurement 

values (or its expected range of variation), which was not necessary in this example 

because of the similarity in the scaling factors . 

The most likely application of this diagnostic method is in improving 

measurements available for the CLRTO. The parameters most frequently isolated as the 

most important in the system would be chosen for evaluation, with the final selection of 
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measurements based on an economic analysis. In the case study, the FCC RVP and 

octane have been identified as the most important parameters. 

4.3. Relationship to Decision Analysis Theory 

As discussed in Chapter 3, the experimental design approaches in this chapter 

have similarities to Operations Research technology. Section 3.7 discussed the 

similarities between the monitoring approaches developed in this thesis and Regret and 

EVPI problems. The monitoring approaches provide the answer to the questions of what 

are the minimum- and maximum regrets (or expected value of the regret) under the 

current parametric uncertainty and which parameter scenarios lead to these regret values. 

By using the experimental design strategies in Section 4.1, it is then possible to 

answer the questions "What is the lowest cost experiment(s) that reduces the regret to 

zero?" (Section 4.l.1) and "What is the economically optimal policy of experimentation 

and production to the end of the production run?" (Section 4.1.2). A parallel can be 

drawn between the experimental design approaches in this chapter and the Expected 

Value of Sample Information (EVSI), which is defined as the value of information from 

testing or sampling the system (Winston, 1994). When the costs for obtaining information 

and values for improved information are easily determined, the existing enumeration 

methods for EVSI are appropriate. However, in this work, the cost of experiment and 

possible economic improvement depend upon the values of the decision variables (the 

flows during the experiments) so that existing solution methods are not applicable. The 

approach in Section 4.1 provides a solution to the more challenging scenario, in which 

the expected value of improvement is replaced with (l) the maximum profit loss after 

experimentation and (2) the nominal profit during the experiment. 
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4.4. Conclusions 

Key issues in the Statistics and Operation Research fields (Robinson, 2005) were 

addressed in this chapter; namely, screening the model parameters in order to determine 

their importance and designing profit-based experiments in order to reduce the 

uncertainty in key parameters. 

The two novel approaches to experimental design based on comer point 

information and based on profit achieve improvement of the CLRTO system performance 

rather than information (reduction of the size of the parameter confidence region). The 

approaches provide technology that complements CLRTO monitoring in Chapter 3, in 

that a monitoring criterion is embedded into the experimental design formulation . Also, 

the experiments would not be initiated unless the monitoring indicated the possibility for 

significant improvement. 

Two methods were evaluated to solve the experimental design formulation based 

on the largest profit gap (Problem 3.6). One was based on substituting the inner 

optimization problem in Problem 4.2 with its optimality conditions, while the other was 

based on a direct-search method, which approached the inner optimization problem in 

Problem 4.2 as an expensive, black-box function. 

The first method resulted in a nonlinear optimization problem with 177 decision 

variables (which includes Lagrange multipliers), 289 constraints and 91 complementarity 

constraints, resulting in (289 + 91) 380 constraints. The solution of this formulation in the 

case study shown took approximately 1 CPU minute. However, the solution found is only 

a stationary point of the inner problem and has to be further tested for local optimality by 

probing the parameter space, or by evaluating the second-order derivatives at the 

solution. Results in the case study indicated that a valid solution is not reliably achieved. 

The second method based on direct-search optimization consisted of only n 

decision variables, where n IS the number of manipulated variables during the 

experiment, which was equal to five in the case study shown in this chapter. The 

constraints during the experiment were replaced by penalty functions in the objective 
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function. At each direct-search step, however, the inner "black-box" function evaluation 

corresponded to solving the MaxGapel/ formulation in Problem 3.6, with 117 decision 

variables, 75 constraints and 30 complementarity constraints, resulting in (75 + 30) 115 

constraints. As reported in Chapter 3, each solution of Problem 3.6 took about 2.0 CPU 

seconds, and the design of the experiment took approximately 10.0 CPU minutes with a 

penalty-free starting point. 

Since the direct-search method solves the bilevel optimization Problem 3.6 as an 

inner problem, the equation-oriented approach to designing experiments was simplified 

to a bilevel optimization problem. This strategy also requires fewer function evaluations 

than the experimental design strategy based on optimality conditions. However, because 

of the relatively high computational requirement of each function evaluation (Problem 

3.6), computation times of designing experiments based on DFO are higher. 

Nevertheless, the case study results using a direct-search method produced better results. 

A new diagnostics method was also developed in order to rank parameter 

importance with respect to their effect on the objective function. This approach is not 

limited to a single active set and it does not require pre-selection of key variahles. It 

could be used to simplify computational demands in the design of experiments by 

reducing the number of parameters included in its formulation. Alternatively, it can serve 

as a guide to improving the CLR TO system via laboratory measurements, on-stream 

sensors, or improved models. 

All experimental design strategies and diagnostics were successfully implemented 

in a gasoline-blending case study. In Chapter 5, the monitoring methods from Chapter 3 

and the diagnostics and enhancement methods from Chapter 4 are integrated into an 

overall scheme for application to an online closed-loop RTO system. 
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Chapter 5 

Sequential Procedure for Implementation 

In Chapter 3, methods were presented for monitoring the performance of CLRTO 

systems under parameter uncertainty. These methods may serve as an independent tool 

for detecting the degradation of the systems. Once a performance issue has been found in 

an RTO system, steps should be taken in order to eliminate it. Therefore, new 

experimental design and diagnostic strategies were developed and presented in Chapter 4. 

A systematic integration of the previously presented monitoring, diagnosing and 

enhancing methods into a sequential procedure for closed-loop RTO systems is presented 

in this chapter. The goals of the sequential procedure are to achieve the following: 

~ To base the performance on the CLRTO objective, which is profit; 

>- Reduce the likelihood that a sensor failure or unexpected model mismatch will lead to 

poor monitoring performance; 

". Interfere with the normal process operation as little as possible; 

". Utilize all available information about the current situation (e.g., economics, bounds, 

a priori uncertainty estimates, etc.) ; 

~ Use formulations that are computationally tractable within the time available in 

typical industrial processes. For gasoline blending, computations ranged from a few 

seconds to 20 minutes, while the total batch time is approximately 10 hours. 

The sequential procedure consists of the following five steps. First, the plant data 

IS checked for consistency with the model structure and the uncertainty description. 

Second, performance monitoring is performed to provide information about the 

performance status of the CLRTO system. If monitoring indicates the potential for 
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significant improvement, the procedure proceeds to the third step. In the third step, plant 

operating data from the current blend is used to provide better estimates of the plant for 

use in the CLRTO model. If monitoring indicates that opportunity exists for further 

performance improvement after step three, the procedure proceeds to the fourth step, 

where designed experiments are introduced in the plant. This step is repeated until the 

best tradeoff between experimentation and model uncertainty is achieved. The fifth and 

final step involves implementing the final operating conditions. Note that the first two 

steps are performed prior to every CLRTO execution and that the first three steps require 

no perturbation in process operation. 

In the following sections, details are given on each of the steps in the sequential 

procedure for CLRTO performance monitoring and enhancement. Three case studies are 

presented, The first two demonstrate the importance of the thorough method, since they 

start from the same initial condition and yet conclude at very different operations: clearly, 

heuristics would not suffice for these cases. A third case study emphasizes the importance 

of the experimental design. Since all steps in the sequential procedure, except for data 

checking, have already been presented in previous chapters, we proceed directly to the 

case studies. 

5.1. Definition of Case Studies 1 and 2 

In order to demonstrate the full potential of the sequential procedure, the two case 

studies in Table 5.1 and Table 5.2 are considered. All parameters representing the physics 

and chemistry of the true plant and of the CLRTO model are the same for both cases. In 

addition, the initial parameter uncertainties are the same, namely 0.0546 octane number2 

or psi2
, which, in a 10-degree-of-freedom multivariate normal distribution corresponds to 

a maximum variation of ±1.0 (octane number or psi) in a single parameter. The only 

differences between the case studies are the component costs, which vary by a maximum 

of 2.1 %. Cost variation of this (or much greater) magnitude could occur due to, for 

example, fluctuations in the prices of crude oil, purchased intermediate material (e.g., 

FCC gasoline) or short-term plant inventory. 
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Table 5.1. Description of Case Study 1 

Qoel 
i.nom 

QRVP 
i,nom 

QOc/ 
i,lroe 

QRVP 
i,lnle cost; F; 

(octane) (psi) (octane) (Esi) ($/bbl) (bbl/da}:) 

Reformate 91.9 2.6 92.3 2.7 34.0 0.0 

LSR Naphtha 63.9 11.0 64.0 10.9 26.0 1,781.0 

n-Butane 92.4 137.9 92.5 138.0 10.3 161.6 

FCC Gas 84.9 6.5 85.3 6.4 32.5 0.0 

Alk}:late 97.1 6.6 97.0 6.7 34.5 5,057.4 

Current Profit 
($/day) 8,549.5 

Table 5.2. Description of Case Study 2 

Que/ Qi~:' QOCI RVP 
;.110111 i,lMle Q;,lnlt! cost; F; 

(octane) (Esi) (octane) (Esi) ($/bbl) (bblJday) 

Reformate 91.9 2.6 92.3 2.7 34.2 0.0 

LSR Naphtha 63.9 11.0 64.0 10.9 26.5 1,78l.0 

n-Butane 92.4 137.9 92.5 138.0 10.3 16l.6 

FCC Gas 84.9 6.5 85.3 6.4 31.8 0.0 

Alkylate 97.1 6.6 97.0 6.7 34.4 5,057.4 

Current Profit 
($/da}:) 8,164.7 

The last column in Table 5.1 and Table 5.2 represents the steady-state flowrates 

achieved under CLR TO prior to beginning the monitoring process, which are the same 

for both cases; therefore, these two cases would appear to be essentially the same to 

operating personnel. 

5.2. Data Rectification 

This first step in the sequential procedure is executed at every CLR TO execution 

after the flowrates have reached the values at which they can be accurately measured by 

the flow sensors. In this step, real-time measurements are checked for gross errors and 

model inconsistencies. If these inconsistencies exceed the expected random variation, 

performance monitoring is interrupted, and a warning is provided to plant personnel. The 
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situation should then be analyzed and corrected by the personnel before optimization 

proceeds. Typical causes for gross errors could be sensor failures (gross errors in the 

measurements) or improper connection of component tanks to pipes and meters (gross 

errors in the model structure). In addition, a component quality could differ a great deal 

from typical values because of unusual variation in plant operation or because the 

component has been purchased from an outside supplier. The personnel will troubleshoot 

the problem and restore the CLRTO to closed-loop operation when the data and model 

agree within the typical range of mismatch, at which point monitoring can resume. 

The method for data rectification has not been explained in previous sections, and 

therefore, is introduced here. The model is used to predict some variables that are also 

measured; therefore, opportunity exists to compare the predictions with measurements. In 

traditional gross error detection methods, rigorous mass and energy balances provide the 

basis for evaluating the consistency of redundant measurements (Crowe, 1 (96). Data 

rectification, on the other hand, can be applied using not only the fundamental balance 

equations, but also component quality predictions for octane and RVP (Johnston and 

Kramer, 1995). Note that this step doesn't include new technology, but it is included to 

provide some assurance that the uncertainty bounds are valid for subsequent steps. 

The total mass balance and the balances for octane and RVP are given in the 

following equations. 

II 

I F, . IIUIII - Fhl""" ./1"111 = 0 
( 5.1 ) 

j ;:::. ; 

/I F 0 ' 
, 1 . 1I/J III ~iJ/u1II _ Q' = 0 
~ h/end.llom 
;=; F hk/U/ JIOII/ 

j = Octane, RVP ( 5.2 ) 

All flowrates and the blended product qualities ((1 blend) are measured in real time 

but the component qualities (Q;'/IO//I) are not measured. Substituting the measurements 

and nominal values for the flowrates and component qualities in equations ( 5.1 ) and 

( 5.2 ) will not result in a zero right-hand side because of variation in component 

qualities, as shown in the following equations. 
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II 

I F';,mea" - Fblelld,mea.> = lpl ( 5.3 ) 
1= 1 

II F QJ 
~ i ,meas ;,110111 _ QJ = 
L..J F blend ,meas lp k 
;=; blmd ,mea.> 

k= 2,3 ( 5.4 ) 

The second and third elements of the variance-covariance matrix V(qJ) of the error 

vector qJ = [lpl Cf>l ipJ]T are calculated by linearizing equations ( 5.4 ) around the nominal 

point used in the model equations (Narasimhan and Mah, 1989), This method assumes 

zero mean, independent, normally distributed measurement errors in the flows and in the 

blend octane and RVP properties. 

Y(lpk)=I( F; ,num )2 Y (Q/,Plant)+I( Q/nom i2
Y(F; Plunt)+ 

i Fhlend ,110m i Fhlend ,nom ) 

( 5.5 ) 

+ ,,( F;,IIomQ/nnm)2 Y( Fplant) + Y(QJ,plunt) 
L.J F 2 ' blend hlend 

I hlend,nom 

k = 2, 3 

The first element of the variance-covariance matrix V(qJ) is calculated as follows . 

Y(lpl) = I V(F'; ,mea.,) + V(Fblelld,mea,,) (5.6 ) 

If a "perfect" model with "perfect" measurements were used, the value of the 

residual vector rp would be zero. Assuming zero-mean, independent, normally distributed 

noise in the errors, the magnitude of qJ can be evaluated with respect to the expected 

range of error by comparing the value M from the following equation against the X2 

statistic. 

( 5.7 ) 
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From equation ( 5.7 ), if M::; Xlx)F .a the model mismatch is deemed within the 

expected range, the monitoring procedure continues; if M ~ X~oF .a' a warning message 

should be sent to operating personnel, who can identify and correct the gross error by re­

calibrating instruments, re-sampling purchased material to obtain correct composition 

information, etc. Three degrees-of-freedom (DOF) were used in this study because fP is 3-

dimensional (one material balance and two component balances). In all calculations, the 

confidence level is a = 0.95 . 

The data rectification step requires information on the uncertainty in the model 

parameters, as well as the measurement uncertainty. The variances of all octane and RVP 

model parameters V( Q/,PlulII ) would be based on historical plant data, and for this case 

study were taken to be 0.0546 (octane number2 or psi2
, respectively). According to 

ASTM standards, the accuracies required for the final blend octane and RVP 

measurements are ±O 2 octane and ±O.l5 psi, respectively (ASTM D-323; ASTM D-

2699; ASTM D-2700). Interpreting these bounds as 95% confidence intervals, the 

variances of octane and RVP measurements used in this work were 0.01 octane2 and 

0.0056 pse, respectively. 

Turbine flowmeters are sometimes used in gasoline-blending processes (Mudt, 

2005). Their principle of operation is that the speed of rotation of a turbine within the 

meter is proportional to the volumetric flowrate through the pipe. This type of flowmeter 

has a typical accuracy of ±0.5% of the actual (flow)rate (AR) over a 10: 1 flow range 

(Omega, 2005); that is, this accuracy is valid for flowrates from 10-100% of the largest 

flowrate. 
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Table 5.3. Variance of Flowrate Measurements (Accuracy = ±0.5% AR) 

AR 0.5%*AR V (Fj ) 

Reformate 0.0 0.0 le-8 

LSR Naphtha 1,781.0 8.9 19.8 

n-Butane 161.6 0.8 0.2 

FCC Gas 0.0 0.0 le-8 

Alkylate 5,057.4 25.3 159.9 

Blend 7,000.0 35.0 306.3 

The current CLRTO flowrates were used to estimate turbine meter accuracy. In 

Table 5.3, the variance was calculated assuming the variation in flowrates corresponds to 

two standard deviations. 

Since the only difference between the case studies lies in economics, the data 

rectification step is the same for both Case 1 and Case 2. A Monte Carlo study was 

performed in order to identify the rate of false alarms in this system; i.e., when M is 

larger than the chi-square statistic (Table 5.4). In order to mimic the real plant more 

closely, the sampled flowrates were not allowed to have negative values. 

In practice, false alarms are expected to happen. If the value of M in equation 

( 5.7 ) is slightly above the chi-square statistic, thus indicating that the model is 

inconsistent with the data, the data rectification check should be repeated at several 

additional CLRTO executions to reduce false alarms. Since the likelihood that three 

adjacent measurements will be above the 95% confidence limits under normal operation 

is very small (0.05*0.05*0.05 = 0.0125%), if the third consecutive data point still 

indicates inconsistencies, the sequential procedure should be interrupted in order to 

perform offline troubleshooting. In order to proceed with the case studies, it will be 

assumed that the model has been deemed consistent with the data. 

Table 5.4. Data Rectification - 5,000 Monte Carlo Runs 

2 
X 3.0.95 

Number of false alarms 214 (4.3%) 
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5.3. Monitoring RTO Performance 

After verifying that plant measurements are consistent with the model and 

parameter uncertainty descriptions, the potential cost of uncertainty to the CLR TO is 

determined. In Chapter 3, five different methods were presented to determine the effect 

of uncertainty on the objective function. Here, the method based on the largest profit gap, 

considering ellipsoidal uncertainty (MaxGape/l, Section 3.4) is used due to the good trade­

off between the quality of the description of the monitoring goal and the computational 

burden of the method. 

The performance monitoring can begin when the CLRTO has reached steady 

state. When applying Problem 3.6 to Case Study 1, a MaxGapef/ of $2,205 4/day was 

found, where PrBC =, $9,810.31 day and Prnom,CL = $7,604.91 day. The results can be seen 

in Table 5.5. 

Table 5.5. Monitoring Results (Problem 3.6) - Case Study 1 

Q;'c/ (octane) QRVP ( .) 
i pSl F;,BC {bbl/da~2 F;,nom {bbl/da~) 

Reformate 92.47 2.16 5,648.7 0.0 
LSR Naphtha 63.82 11.06 969.2 1,702.8 
n-Butane 92.42 137.88 382.1 150.1 
FCC Gas 84.90 6.50 0.0 0.0 
Alkylate 96.56 7.01 0.0 5,147.2 

Table 5.6. Monitoring Results (Problem 3.6) - Case Study 2 

Q;"'/ (octane) QRVP ( .) 
i pSl F;.BC (bbl/da~) F;.nom (bbl/day) 

Reformate 91.90 2.60 0.0 0.0 
LSR Naphtha 63.69 11.17 194.4 1,734.3 
n-Butane 92.41 137.89 235.0 154.0 
FCC Gas 85.55 5.97 4,500.0 0.0 
Alkylate 96.80 6.84 2,070.7 5,111.6 
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For Case Study 2, Problem 3.6 resulted in a MaxGapell of $1,484.9/day, where 

PrBc = $9,098.2/ day and Prnom,CL = $7,613.3/ day. The results can be seen in Table 5.6. 

Since the potential profit losses (MaxGapell) for both case studies are 

unacceptably large, enhancement actions are taken in order to improve the estimates of 

the model parameters. 

5.4. Updating RTO Model Parameters using Available Data 

Section 5.3 indicates that economic improvement might be possible. Therefore, 

RTO model parameters are re-estimated in order to reduce their uncertainty. Recent 

historical data offers some additional information at essentially no cost. CLRTO systems 

change plant operation as a response to process disturbances (including model 

mismatch); therefore, data in the current batch is likely to provide an opportunity for 

parameter estimation. Note that this "transient" data is actually a series of steady states as 

the CLRTO approaches its final steady-state operation. 

The Bayesian approach to parameter estimation presented in Appendix B is 

employed to update the model parameters due to the use of prior knowledge about 

parameter values and variances, We note that the estimation using recent data without 

perturbations might often not improve the estimates, i.e. , reduce the confidence intervals, 

sufficiently to achieve the desired small monitoring metric MaxGapell. The variation in 

the transient CLRTO data used in this section is a result of achieving the predicted 

optimum operation. This variation might not change the key flowrates by large enough 

magnitudes to improve the estimates of the component qualities. However, since this data 

Table 5.7. Transient CLRTO flowrates 

Reformate 
LSR Naphtha 
n-Butane 
FCC Gas 
Alkylate 

Fi (bbl/day) Fi (bbl/day) Fi (bbl/day) 
RTO run 1 RTO run 2 RTO run 3 

o 0.0 0.0 
1,790.0 
163.9 
0.0 

5,046.0 
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161.6 
0.0 
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1,781.0 
161.6 
0.0 

5,057.4 



D. Zyngier, Ph.D. Thesis McMaslerUniversity, Chemical Engineering 

provides valid process information and is free of cost to operation and since the 

parameter updating method is very fast, it is suggested that the updating step using 

available closed-loop data be performed in case the model improvement is sufficient. 

Results from using equations (B.2) and (B.3) to update model parameters using 

the available closed-loop data from Table 5.7 can be seen in Table 5.8 . In these case 

studies, the intercepts in the model equations were assumed known and equal to zero (a 

case with uncertain intercepts will be shown later in this chapter). The transient CLRTO 

flowrates are the same for both Case Studies 1 and 2, since model and plant parameters 

are initially the same. 

After the parameters were updated using the closed-loop data in Table 5.7, the 

CLRTO system in Case Studies 1 and 2 converged to different optimal bases (Table 5.9), 

with profits of $9,l18.lIday and $8,678.5/day, respectively. This corresponds to an 

improvement of $568.6/day (Case Study 1) and $513.8/day (Case Study 2) in comparison 

with the initial basis seen in the last column of Table 5.1. 

Table 5.8. Parameter Update with Available Data 

QOCI NI 'I' V ·Q(IL( ) /(1'/' 
i ~JlOIII Qi.lJom ( i .Jw m V( Q,."om) 

(octane) (Qsi) (octane2
) (Qsi1

} 

Reformate 91.90 2.60 0.0546 0.0546 
LSR Naphtha 63 .88 11.02 0.0491 0.0489 
n-Butane 92.40 137.90 0.0546 0.0546 
FCC Gas 84.90 6.50 0.0546 0.0546 
Alkylate 97.05 6.66 0.0107 0.0088 

Table 5.9. New optimal CLRTO bases 

F; (bbllday) F; (bbllday) 
Case Study 1 Case Study 2 

Reformate 5695.6 0 
LSR Naphtha 942.5 177.1 
n-Butane 361.9 223.2 
FCC Gas 0.0 4500 

0.0 209 .7 
9118.1 8678.5 
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MaxGapell (Problem 3.6) was calculated again after the parameter update in order 

to determine if further model enhancement was necessary. For Case Study I, MaxGapell 

was equal to $1,78S.6/day (with PrBc = $ 8,837.S/day and Prnom,CL = $7,OS1.9/day), while 

for Case Study 2, a MaxGapel/ of $1,304.3/day was obtained (where PrBC = $8,474.0/day 

and Prnom.cL = $7, 1 69.7/day). Since MaxGapel/ was still deemed large for both cases, 

additional model improvement was required, and cost-efficient experiments were 

designed. 

5.5. RTO Performance Enhancement 

Since the monitoring metric after the parameter update using normal operating 

data was still large in Section S.4, experimentation was deemed necessary in order to 

improve CLR TO performance in both case studies. The experimental design calculations 

were performed using Derivative-Free Optimization (Appendix D), since it is a more 

reliable method for the proposed experimental design formulation than model-based 

methods. The following constraints were included in the design using the data in Table 

5.10; they were implemented as penalty functions in the design calculations in the outer 

problem. 

n " " 

QLIU~lIIill I F;,exp ~ I F;,exp (Q/1I0nl + E:!xp ) ~ Qllelll},lIIat I F;,exp 
~I ~I ~ I 

II 

FbI.lUl .min S I F;,exp s FhlelllJ,max 
i=1 

F;.min s F;,exp S F;,max 

j = oct, RVP 

Table 5.10. Parameter Values Used in Case Studies 1 and 2 

Octane (octane) 
RVP (psi) 

Q.I 
hielld,lIIill 

88.S 
4.S 

Q.I 
blel/d,lIIax 

100.0 
10.8 

Fblend,min (bbllday) Fblendmax (bbllday) 
6,999.0 7,000.0 
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The experiments were calculated sequentially, as discussed in Chapter 4. After 

each experiment and parameter update, MaxGapell was calculated in order to check the 

improvement in performance due to experimentation. If the performance was deemed 

satisfactory (i.e., if the largest profit gap was below a user-defined threshold), no 

additional experiments were designed. The results for the design of experiments are 

discussed separately for each case study in Sections 5.5.1 and 5.5.2. In Section 5.5.3, a 

case study with uncertain intercepts is presented. 

5.5.1. Case Study 1 

The trend plot of the flowrates for Case Study 1 during the entire sequential 

procedure for RTO performance monitoring and enhancement is given in Figure 5.1. 

Table 5.11 presents the seven experiments calculated for this case study. After 

experiment 7, the CLRTO system performance was deemed satisfactory since MaxGapell 

was small ($82.1 /day). 

The total cost of experimentation was calculated as the marginal costs associated 

with variables (flowrates) at their lower- or upper bounds, times the deviation of the 

7000 
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~ 4000 
~R f(m~te 

:g --<>-- LSR Naphtha 
..c 
..c -t::r- Il-Butane --- 3000 w: ~FCCGas 

2000 -0- Alkylate 

1000 

0 

Figure 5.1. Results for Case Study I 
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Reformate 
LSR Naphtha 
n-Butane 
FCC Gas 
Alkylate 
MaxGapell 
($/day) 
Reduction of 
initial 
AJax Gapell 

Table 5.11. Experiments for Case Study I 

Fj,expl Fj.exp2 Fj.exp3 Fj.exp4 F j,exp5 Fj.exp6 Fj.exp7 

(bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day) ( bbl/day) 
6,498.0 5,736.0 5,705.8 84.7 5,690.6 95.0 5,677.1 

92.3 755.2 734.8 1,545.2 705.8 1,518.9 744.0 
137.6 300.1 354.5 172.2 369.1 160.2 367.2 
118.4 103.9 91.5 123.3 113.5 149.8 90.9 
153.6 104.6 113.3 5,074.3 121.0 5,076.2 120.7 
494.5 365.0 308.2 216.3 173.8 117.2 82.1 

78% 83% 86% 90% 92% 95% 96% 

variables from those bounds, as defined in Problem 4.1. The cost was also multiplied by 

the ratio between the duration of the experiment (15 minutes) and total batch time (9 

hours) as in Problem 4.2. The total cost of experimentation in Figure 5.1 was $7.0. This 

value is very small because the original system has nearly alternative solutions (i.e., its 

marginal costs are close to zero). In a real plant, however, there would be additional 

resistance to changing plant operation, especially due to the transients involving pump 

startups and shutdowns. This could be avoided by adding constraints in the design of 

experiments to keep flowrates within bounds defined by operations personnel. 

The parameter variances after the update with available CLR TO data and their 

variances after the i h experiment are shown in Table 5.12. Note that the experiments 

focused on reducing the variances mainly of Reformate octane and RVP, and of Alkylate 

octane and RVP. These parameters were determined automatically by the experimental 

design problem, without input from the user. By analyzing the results in Table 5.12 

together with Figure 5.1, it is clear that the key decision in this case study is whether 

Reformate or Alkylate should be added to the blend. Note that both contribute high 

octane to the product, but are costly. 

If the diagnosis procedure presented in Chapter 4 were used in this system after 

the parameter update with CLRTO data (Table 5.8), it would be possible to determine the 

parameter importance in this system before any experiments were run. Figure 5.2 shows 
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Table 5.12. Diagnosis and Experimental Design Results (Case Study 1) 

After Update After ih Exp 

V(Q;':~:}m) 
RV/, V( QOo QRVI' 

Ordering According V(Qi .llom) ;.1If1m) V( ;.11(111) 

to Diagnosis (octane2) (psi2) (octane2) (psi2) 
Reformate 0.0546 0.0546 0.0029 0.0016 
Alkylate 0.0107 0.0088 0.0055 0.0039 
LSR Naphtha 0.0491 0.0489 0.0334 0.0276 
n-Butane 0.0546 0.0546 0.0524 0.0510 
FCC Gas 0.0546 0.0546 0.0543 0.0540 

that the single most important parameter in this case study is Reformate Octane, followed 

by Alkylate Octane, Reformate RVP and Alkylate RVP. This matches the results 

obtained in Table 5.12, since the experiments reduced the variances of the most important 

parameters more than the variances of the remaining parameters. 
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Figure 5.2. Diagnosing Case Study 1 
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5.5.2. Case Study 2 

The same procedure was applied to Case Study 2. The flowrates for the entire 

sequential procedure can be seen in Figure 5.3, and the flowrates during experimentation 

are in Table 5.13. The total cost of experimentation was $28.5. After experiment 10, the 

CLRTO system performance was deemed satisfactory since MaxGapell was small 

($103.2/day). 

The reason why MaxGapell increased slightly after Experiment 5 was because 

initially there was significant mismatch in Reformate octane. Since Experiment 5 

improved the estimate in this parameter substantially, the largest profit gap was 

calculated with smaller parameter variances, but around a different nominal model. 

In this case, MaxGapel/ around the new nominal model was larger than around the 

original nominal model. With a few additional experiments as shown in these results, the 

performance metric was reduced to acceptable levels. 
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Figure 5.3. Results for Case Study 2 
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Table 5.13. Experiments for Case Study 2 

F j.exp , Fj.exp2 Fi.exfJJ Fi.exp.J F i.exp5 Fi.exp6 Fi.exp - Fi.expll Fi.exp9 F, .cxplll 

ebb l /da~) {bb IIda~) {bbJ/da~) (bb IIda~) bb IIda~) (bbllda~)(bb IIda~) (bb II da~) (bb IIda~) (bb lid a ~) 
Reformate 305 .2 279.6 915.8 27.4 5,882.7 90.2 835.0 838.4 131.1 179.7 
LSR Naphtha 218.6 244.5 136.2 48.6 638.9 81.7 58.3 57.8 148.7 1,590.9 
n-Butane 229.9 224.5 53.4 40.5 361.8 42.5 32.6 27.2 227.3 65.5 
FCC Gas 4,205 .1 4,151.1 949.9 3,941.2 73.8 3,917.3 4,370.4 4,371.5 4,447.0 140.6 
Alk~late 2,040.1 2,099.5 4,944.7 2.9 2.2 42.9 2,868.3 1,703.6 1,705.1 2,045.5 5,023.3 

MaxGapell 540.7 371.3 335.3 277.4 283.3 245.5 204.4 173.4 156.8 103.2 
($/day) 
Reduction of 64% 75% 77% 81% 81% 83% 86% 88% 89% 93% 
initial 
MaxGa/l.ell 

The results from Case Studies 1 and 2 show that the sequential procedure is able 

to determine the sources of uncertainty in the R TO model and reduce the variances In the 

key model parameters through focused experiments. Even though the two case studies 

had exactly the same initial optimal basis (same flowrates) and used the same RTO 

model on the same true plant, different economics resulted in different requirements for 

model enhancement in each case. This difference was recognized by the sequential 

procedure, and Case Studies 1 and 2 converged to different optimal bases for Cases 1 and 

2 (Table 5.9)! 

5.5.3. Case Study IB: Intercept in Parameter Estimation 

In the previous studies, the product quality model intercepts have been assumed to 

be exactly zero. For example, in the quality equations ( B.I ) shown in Appendix B, a 

linear blending model with intercepts 86 equal to zero is assumed for octane and RVP 

properties in the component streams. The use of uncertain model intercepts can playa 

significant role in Bayesian parameter estimation. 

Many refineries use a linear model without intercept for calculating blended 

gasoline octane (Zahed et aI., 1993), since it only needs a small amount of data and 

produces simpler correlations between component properties (Muller, 1992). Since it is 
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known that octane does not blend linearly (Singh et aI., 2000), model mismatch must be 

handled by this linear model. 

Reid vapour pressure blends linearly on a molar basis. When blending on a 

volumetric basis as done in ( B.l ), practitioners often use the Chevron RVP blending 

index (Gary and Handwerk, 1984). Even though the index allows vapour pressure to 

blend in an approximately linear fashion without intercept, it does not provide a perfect 

correlation. Therefore, there may also be some residual nonlinearity in the linear blending 

model for this property. 

The intercepts m equation ( B.l ) can account for some of the linearization error 

incurred by approximating the nonlinear process model by a linear model one. The proper 

choice of whether to include intercepts in the model depends 0;] plant experience: one 

should evaluate the effect of linearization for the range of operating conditions in the 

plant. This evaluation could be performed using laboratory blending data or by 

implementing the real-time monitoring and diagnosis system with an intercept and 

observing if the intercept is significantly different from zero. 

The prior variances of the intercepts in equation ( B I ) playa signiticant role in 

the parameter estimation: the larger these variances are, the smaller the effect of new data 

points on the estimated octane and RVP coefficients. However, too small a prior variance 

on the intercepts is equivalent to not using intercepts at all in the formulation. 

In order to illustrate the effect of uncertainty in the intercept, Case Study 1 was 

repeated using the same prior variance in the intercepts as in the estimated parameters. 

Since there were 12 degrees of freedom in this system (10 octane and RVP properties and 

2 intercepts), all variances were assumed to be 0.0476 (octane2 or psi2
) so that the 

individual parameter variations did not exceed ±1.0 (octane2 or psi2
) at the 95% 

confidence level. The results can be seen in Table 5.14. 

116 



D. Zyngier, Ph.D. Thesis McMaster University, Chemical Engineering 

Table 5.14. Experiments for Case Study 1 with Uncertain Intercepts 

Reformate 

LSR Naphtha 

n-Butane 

FCC Gas 

Alkylate 

MaxGapel/ ($/day) 
Reduction of initial 
MaxGapel/ 

Fi,expl Fi.exp2 Fi.exp3 Fi.exp4 Fi.exp5 Fi.exp6 F i,exp 7 

(bbl/day) (bbl/day) (bbl/day)(bbl/day) (bbl/day) (bbl/da y)(bbllday) 
5,725.6 191.5 5,684.8 551.6 5,700.7 5,705.1 5,686.2 
722.4 1,583.1 742.4 1,045.7 719.7 709.3 752.5 
310.8 151.8 363.4 140.5 350.5 282.1 337.9 
106.3 66.5 105.3 179.3 122.9 184.7 105.9 
134.9 5,007.1 104.1 5,082.6 106.1 118.2 117.5 

1,378.6 1,096.2 814.2 629.6 477.2 398.0 357.1 
37% 50% 63% 71% 78% 82% 84% 

The initial monitoring step yielded the same metric value as shown previously 

(MaxGapeli = $2,205.4/day). Aftel the update with closed-loop data, MaxGapell had a 

value of $2.l23.6/day (with PrBe = $ 9,288 .8 /day and Prnom.CL ~ $7, 165. lIday). Since 

MaxGapell was still large ($2,123 .6/day), experiments .vere designed. In this case., 

because of the uncertain intercepts in the quality balance equations. the reduction of the 

initial profit gap wasn't as substantial as in the case with no intercepts, as expected. In 

fact, after Experiment 7, the reduction of the initial MaxGapeil was of 84%, instead of the 

96% obtained in the case with the known, zero intercepts. 

By applying the diagnostics method from Chapter 4 on this system, it is evident 

from Figure 5.4 that the most important parameter is Reformate octane, followed by 

Alkylate octane, Reformate RVP and Alkylate RVP. It is assumed that if a sensor is 

placed to measure a given component quality, the quality's uncertainty is considered to be 

reduced to zero. The effect of installing sensors in this system after the i h experiment can 

be seen in Table 5.15. 
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Figure 5.4. Diagnosing Case Study 1 with Uncertain Intercepts 

The evaluation of whether sensors should be installed or not is problem­

dependent. For example in this case study, sensors may be useful if the system remains 

very sensitive to information on Reformate and Alkylate properties, i.e. , if the MaxGapeil 

remains large after several experiments. Based on an analysis of substantial amount of 

historical data, if this situation occurs frequently, onstream analyzers could be 

appropriate. If this situation occurs only infrequently, offline lab samples may be more 

appropriate for these key component qualities. 

Table 5.15. Effect of sensors 

Sensor Location 

No sensors 

Qoc:l.plalll 

r4 

Qo(,l.plam Qocl.p/a", 
rei ' /Ilk 
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The cost of installing a Near Infra-Red (NIR) analyzer, which is capable of 

measuring several component qualities including octane and RVP, is roughly $300,000 

(Measurementation, Inc., 2004). In order to decide how many sensors should be installed, 

if any at all, one should note that MaxGapell corresponds to a conservative estimate of the 

profit gap: a more realistic estimate could be obtained by using the more refined 

approaches in Chapter 3 (the expected value of MaxGapell, or ideally, the expected value 

of the profit gap). Also, maintenance and installation costs of the sensors should be taken 

into consideration before making the decision to purchase the sensor. The decision would 

be based on an economic analysis using standard time-value of money measures, e.g., net 

present value (NPV). 

5.6. Two-Parameter Case Study 3 

In the case studies shown in the previous sections, the use of closed-loop RTO 

data was sufficient for the system to attain the correct basis, and the experiments were 

performed in order to achieve a small enough largest profit gap This means that for these 

cases, the experiments did not increase profit; they increased the probability that the 

highest profit had been achieved. However, this does not occur in all situations. As an 

example, we present a case study with two uncertain parameters, defined in Table 5.16. 

Table 5.16. Description of Two-Parameter Case Study 

Q0l'1 HIP QO('f H/'I' 
i.llom Q;.IIom i.lntl! Q;.lrue cost; F; 

(octane) (Esi) (octane) (psi) ($/bbl) (bbllda~) 

Reformate 91.9 2.6 92.3 2.7 34.2 0.0 
LSR Naphtha 64.0 11.0 64.0 10.9 26.5 1796.3 
n-Butane 92.5 137.9 92.5 138.0 10.3 161.1 
FCC Gas 84.8 6.5 85.3 6.4 31.8 0.0 
Alkylate 97.0 6.6 97.0 6.7 34.4 5042.5 
Current Profit 
($/day) 8,274.1 

119 



D. Zyngier, Ph.D. Thesis McMaster University, Chemical Engineering 

The varIances of Reformate octane and FCC Gas octane parameters were 

assumed to be 0.1280 octane2
, which, in a 3-degree-of-freedom multivariate normal 

distribution (2 octane parameters and one intercept for the blended octane equation) 

corresponds to a maximum variation of ±1 .0 octane in each parameter. 

When monitoring the performance of the system, a value of$897.7/day was found 

for MaxGapel/, where PrBC = $ 9,123.0/ day and Prnom,CL = $ 8,225.3/ day. Since this 

value is considered too high, transient RTO data without experimentation (Table 5.17) 

was used to update model parameters. 

Since the initial transient data contained no information on the component streams 

with uncertain parameters, the largest profit gap MaxGapelf remained the same 

($897.7/day) after model updating using the initial data. Two designed experiments were 

required to reduce the profit gap to an acceptable level, as shown in Table 5.18. 

Table 5.17. Transient RTO runs 

F; (bbllday) Fi (bbllday) 
RTO run 1 RTO run 2 ----------------

Reformate 0 0.0 
LSRNaphtha 1,796.4 1,796.3 
n-Butane 161.1 161.1 
FCC Gas 0.0 0.0 
Alkylate 5,042.5 5,042.5 

Table 5.1S. Experiments for Two-Parameter Case Study 

Reformate 
LSR Naphtha 
n-Butane 
FCC Gas 
Alkylate 
MaxGapell ($/day) 
Reduction of initial MaxGapell 
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Fi.expl F j ,exp2 

(bbl/day) (bbllday) 
55.8 27.4 
9.3 60.0 
19.5 61.3 

3,974.9 3,953.5 
2,940.5 2,897.8 
213.9 53.1 
76% 94% 
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Figure 5.5. Results for Two-Parameter Case Study 

The profile of the flowrates during the sequential procedure for this case study 

can be seen in Figure 5.5. In this example, the total cost of experimentation was $1.0. 

Note that the optimal basis of this system after the update with initial CLRTO 

data remained was the same as the initial basis. After the second experiment, the CLRTO 

system performance was deemed satisfactory since MaxGapell was small ($53.l/day). 

After experimentation, the system converged to a new optimal basis, with a profit of 

$8,626.6/day. This represented an improvement of ($8,626.6/day - $8,274.I/day =) 

$352.5/day to plant operation. 

5.7. Conclusions 

In this chapter, the new methods presented in previous chapters were integrated 

into a sequential procedure for monitoring, diagnosing and improving the performance of 

linear CLRTO systems. The sequential nature of this procedure allows for its interruption 

as soon as CLRTO performance is deemed satisfactory. 

The monitoring method does not interfere with the closed-loop RTO. It checks 

data for validity before performance monitoring is performed, and it evaluates the 
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potential profit loss in the system based on prior information about model uncertainty. 

From the results in Chapter 3, MaxGapell was the monitoring metric that possessed the 

best trade-off between quality of representation of monitoring goal and computational 

expense; therefore, it was the chosen metric for the sequential procedure. The monitoring 

strategy allows for the incorporation of correlation among parameters and handles all 

types of constraints (equality and inequality) directly in closed- or open-loop systems. It 

can also handle uncertainty in any coefficient of the original CLRTO problem. 

Experimentation is only performed when uncertainty (based on prior information) 

and current batch data do not provide sufficient model accuracy to reduce the monitoring 

metric (MaxGapell) to acceptable levels. Derivative-Free Optimization is used to solve the 

experimental design formulation due to its greater reliability in comparison to the 

optimality-based methods. The experiments are designed to maximize the overall profit 

during the process batch and to have a very flexible constraint structure. The 

experimental design can be iailored to plant requirements by defining additional 

constraints, such as limitations to the changes in variables from their current values or on 

final product quality. This is desired since blended gasoline is usually stored in large 

tanks with no agitation, so stratification of material could occur. 

The sequential procedure provides a clear record of the key parameters whose 

uncertainty might influence profit tracking. The diagnosis method presented in Chapter 4 

can effectively rank parameters in terms of importance with respect to the objective 

function of the original problem without assuming a constant LP basis. This information 

could be used to simplify the design of experiments by determining variables that should 

have improved estimates, or for determining process sensor location. 

The case studies in this chapter have demonstrated the efficacy of the sequential 

method for CLRTO performance monitoring, diagnosing and enhancement. The 

experimentation and diagnosing reduced the uncertainty as predicted and resulted in the 

closed-loop RTO system converging to the true plant optimum in all cases. 
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Chapter 6 

Conclusions and Future Work 

Real-time optimization systems use an updated model in order to track optimum 

operation in a plant. In all commercial real-time optimization systems with feedback only 

some of the model parameters are updated at every CLR TO execution. Therefore, some 

process parameters such as component properties, prices and costs are not known exactly, 

but instead, within some uncertainty region. The CLR TO system determines the 

operating conditions in the system by optimizing the uncertain model. A s a result, there 

is generally no guarantee that the optimum of the true plant has been achieved and no 

straightforward manner for estimating the deviation from the true plant optimum. 

This thesis focuses on determining the cost of the uncertainty in closed-loop LP 

problems under limited feedback. Methods were developed for diagnosing the 

optimization system by calculating measures of the profit loss due to parameter 

uncertainty and by identifying parameters that affect the objective function the most. In 

addition, novel formulations were developed for designing profit-based experiments to 

update model parameters when their uncertainty needs to be reduced. None of these 

methods assumes knowledge about the true values of unmeasured process variables in the 

plant. The only assumptions are that their uncertainty ranges (or in some cases, 

distributions) are known and that there is no significant structural mismatch between 

model and plant. 

In the following sections, some conclusions and contributions of this work are 

presented in more detail. 
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6.1. Conclusions 

6.1.1. Problem Definition 

This thesis addressed monitoring, diagnosis and improvement of the performance 

of a class of closed-loop optimization systems. The key assumptions and characteristics 

of the models considered in this research are stated in the following paragraphs. 

')i> Linear Programming: The systems in this work can be adequately modeled using 

linear programming, including linearization of properties and quality-flow 

constraints in the gasoline-blending process. All variables are continuous 

between their bounds, and no significant structural mismatch exists. 

')i> Closed-loop optimization: The optimization is performed periodically after the 

model has been updated using selected measurements of output variables. In this 

study, only the steady stale behaviour of the system is monitored. The transient to 

the steady state is not evaluated because the material is mixed prior to being 

shipped to the customers, and therefore deviations from specifications are 

moderated by mixing and deviations in the mean can be can be corrected by 

modifying the target of qualities at the mixing point. 

". Measurements: Measurements for use in the real-time system are assumed to be 

limited. 

);;> Uncertain feedback parameters: The plant parameters are not known exactly, and 

some may not be observable using commonly available data. At least some of the 

uncertain parameters are multiplied with variables in the LP model. 

);- Correlated parameters: The uncertain parameters may be correlated due to the 

chemistry and physics of the upstream processes. 

')i> Limited interference: The monitoring and enhancement system developed in this 

thesis introduces as little change as possible to the process operation, so as to 

reduce modifications of product qualities, production rate and economic 

performance. 
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Real-time implementation: Uncertainty, input variable bounds, output constraint 

limits, and economic coefficients define a scenario, and the scenario can change 

from day to day. Therefore, the system Ehould be implemented in real time. 

The research addresses the performance of the closed-loop real-time optimization. 

Therefore, methods were developed to determine how close a real-time optimizer is to the 

best possible closed-loop operation for a given plant realizatlOn. For a closed-loop 

system, this metric represents the effect of uncertainty on the system for a single plant 

realization. For open-loop systems, however, this metric represents the effect of 

disturbances such as the properties of the blending components, which have a strong 

effect on profit. This topic is further discussed in Appendix E. 

Linear CLRTO with limited feedback i5 applied to relevant industrial problems, 

such as blending of components into a final product. Examples of such blending 

problems are present in the cement industry, coal industry and in refinery operations, 

such as the blending of crude oil, diesel and gasoline. In the gasoline-blending process, it 

is common to have a bias model updating strategy, which can lead to the wrong corner 

point if the mismatch between plant and model parameters is too large. Because of its 

economic relevance, this process was used in several case studies throughout the thesis. 

Other types of problems to which the technology in this work is applicable are: 

>- The steady-state LP in every MPC controller (at least 4,000 installed worldwide) . 

The monitoring and diagnosis is directly applicable, while the experimentation 

would require modification: in this case, the experimentation process would be 

dynamic. where the experimental design would perturb the dynamic system to 

obtain improved estimates for the steady-state gains. Depending on the goals of 

the design (improved estimates of steady-state gains, dynamic performance), the 

experimental design would be substantially different, requiring design of the input 

forcing (magnitude, frequency content, etc.), consideration of constraints in the 

dynamic variables during the experiment, and model building diagnostics (Box 

and Jenkins, 1970). 
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Any production planning problem that can be re-solved periodically using updates 

from recent measurements. This could be a daily re-optimization performed "off­

line", which would emulate the CLRTO implementation. 

6.1.2. Monitoring CLRTO Performance 

In most processes, the condition of the true plant relative to its optimum cannot be 

determined by measurements. There may be too few measurements available to update 

all of the uncertain parameters, or, in the gasoline blending process, some flows may not 

be in the current optimal basis (i. e., their flows may be zero), and therefore do not have 

any effect on the output measurements. 

The CLRTO performance measure was based on the value of the objective 

function, i. e., profit, in the gasoline case study. Variability of the optimization variables 

(flows in the blending problem) was not considered important in terms of performance. 

The methods in this research could be applied to optimization including other terms in the 

objective function, which would be a form of goal programming. 

In order to assess CLRTO performance, an a priori estimate of parameter 

uncertainty from previous batches is used. The performance metrics developed in this 

work estimate the deviation of current operation from the true plant optimum due to 

uncertainty in the R TO model parameters. The first metric developed was the largest 

profit gap (MaxGap) , calculated with interval or ellipsoidal uncertainty description of the 

parameters. This metric corresponds to the Maximum Regret in Decision Analysis 

theory. In this work, MaxGap is calculated in a single computation, and therefore does 

not require the enumeration of scenarios, as is the case in traditional Decision Analysis 

literature. This metric can be very relevant in some problems (other than gasoline 

blending) in which the worst case involves a very undesirable incident, such as 

bankruptcy of a company, failure of a building, explosion of a process, etc. MaxGap 

defines an upper bound on the loss due to imperfect modeling of the plant. Due to its 

computational tractability, it can also be embedded in the experimental design 

formulation, where sampling would not have been computationally tractable. 
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If more accuracy is required in assessing performance, an improved monitoring 

metric was developed that incorporates information about the parameter distribution, i.e., 

the expected value of the largest profit gap, E(MaxGap). It is a less conservative, but 

computationally more intensive method than MaxGap. It is still of manageable 

computational complexity for monitoring purposes. For this metric, a method was 

developed for approximating the integral needed for calculating the expected value of a 

function based on parameter confidence level information. 

The most meaningful monitoring metric for CLRTO systems is the expected 

value of the profit gap, E(Gap), which corresponds to the Expected Value of Perfect 

Information (EVPI) in Decision Analysis literature. It is a very expensive metric to 

calculate even for monitoring-only applications, and it does not scale well with the 

number of uncertain parameters. A method for eliminating large parameter regions was 

developed that can potentially reduce the computational burden of calculating this metric. 

In this work, the E(Gap) metric was only applied to a two-dimensional problem; 

therefore more studies are needed in order to develop efficient strategies for larger-scale 

systems. 

Main Contributions: 

,- Modeling CLR TO systems to identify performance loss due to uncertain 

parameters. Because of its goals, modeling required a novel formulation, different 

from the one required for (open-loop) evaluation of best- and worst-case 

optimization of systems due to process disturbances; 

.,. Definition of useful measures of CLR TO performance; 

>- Formulating and solving three novel real-time monitoring metrics; 

>- All performance metrics can handle parameter uncertainty (and most of them, 

correlation) in any parameter of the closed-loop system. The uncertain parameters 

can be in equality or inequality constraints. 

127 



D. Zyngier, Ph.D. Thesis McMaster University, Chemical Engineering 

6.1.3. Diagnosing CLRTO Performance 

The purpose of diagnosing the performance of a CLR TO system is to rank 

parameters for importance with respect to their effect on the objective function. If used in 

real-time applications, it can direct unscheduled laboratory analyses, while in offline 

applications, diagnosing can aid in model improvement and sensor location Therefore, 

diagnosing complements the monitoring problem in that monitoring determines the effect 

of parameter uncertainty in the system, while diagnosing identifies the key parameters 

responsible for such an effect. 

The diagnostic method developed in this thesis determines parameter importance 

at different values of the profit gap metric. As distinguished from conventional sensitivity 

analysis literature, it is not limited by the assumption of a constant active set. The 

CLRTO diagnosing formulation is a bilevel optimization problem that was solved with an 

interior-point solver, IPOPT -C. 

The calculations for the diagnosis procedure are much simpler than the ones for 

experimental design. Therefore, it is expected that the diagnosis will find application as a 

method for evaluating optimization systems, even when the complete sequential 

procedure for CLRTO monitoring and enhancement has not been implemented, 

Main Contrihution: 

~ Formulation and solution of a CLRTO performance diagnostics method that 

identifies key parameters at various levels of profit loss due to CLRTO parameter 

uncertainty. 

6.1.4. CLRTO Model Improvement 

Whenever CLRTO performance is deemed unsatisfactory, experimental design 

can be used in order to improve it. This new formulation provides a profit-based 

objective, rather than an information-based objective as in conventional optimal design of 

experiments. The objective of the experimental design formulation is to improve the total 
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profit in the operation from the beginning of the experiment until the end of the batch. 

The profit during experimentation was also considered. 

The experimental design formulation considers the effect of parameter variance 

on profit and provides flexibility in the experiments by incorporating constraints to 

manipulated and dependent variables. More than one experiment may be required to 

achieve acceptable CLR TO performance. 

The experimental design is geared towards optimizing the overall profit of the 

system, and it can be applied to small- to mid-sized problems. Since the performance 

metric was an inner problem for the experimental design calculations, the largest profit 

gap (MaxGap) was the metric of choice because it can be solved in a single optimization 

problem. 

The cost of experimenting is based on whether the manipulated variables involved 

are basic or non-basic. Since batch processes are considered, the effects on the product 

composition on changes in basic variables that are not at their bounds can be 

compensated for ("blended out") after the experiment has been performed, and thus are 

considered to have zero cost to operation. The same does not apply to variables at their 

lower or upper bounds. Since the effect of experimentation will be felt at the final product 

tank, modifying these values has a cost that is associated with their marginal values. 

Main Contribution: 

~ Formulation and solution of the profit-based experimental design problem. The 

challenging three-level optimization was solved by two methods, with the 

Derivative-Free Optimization (DFO) method being more reliable in the case 

studies. 

6.1.5. Real-Time Method for Monitoring and Enhancing RTO 

Performance 

This thesis presented a systematic way of applying the monitoring and 

enhancement methods to existing CLR TO systems. The first data rectification step 
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employs existing technology to check that the key assumptions about the uncertainty 

magnitudes are valid for the operating region. Then, the performance monitoring and 

enhancement techniques developed in this work are applied until satisfactory 

performance is achieved. The diagnostics methodology can be used for offline evaluation 

of the process improvements. 

Main Contribution: 

>- A stage-wise procedure that employs the simplest computations and least 

intrusive procedures possible at the earlier stages of the CLRTO executions in a 

process. 

6.1.6. Monitoring Open-Loop Optimization 

The methods developed for monitoring the performance of closed-loop systems in 

this work can be extended in a straightforward manner to open-loop LP problems. In this 

case, the monitoring methods determine the best- and worst-case performance of the 

optimization of a system with no feedback or recourse. These cases may correspond to 

the best and worst effect of process disturbances in a plant, for example. There was a 

preliminary application to a nonlinear optimization problem, but further study is required. 

Main Contribution: 

).- Formulation and solution of monitoring open-loop linear optimization problems 

with uncertain parameters in the objective function, equality and inequality 

constraints. Stochastic correlation among parameters in also handled. 

6.1.7. Limitations of the Methods 

While the developments In the thesis have opened new avenues in the area of 

closed-loop optimization under uncertainty, they are not without limitations. The 

formulations for monitoring, diagnosing and designing experiments are nonlinear, 

nonconvex optimization problems, so there is no guarantee of global optimality. 
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There may be computational issues with larger-scale problems due to the rising 

number of complementarity constraints if there are additional inequality constraints in the 

original optimization problem, and/or due to the increasing number of uncertain 

parameters. Complementarity constraints are particularly challenging because 

singularities occur at each active set change. 

The solvability of the problem is somewhat dependent on the solver being used. 

IPOPT-C has been reported to solve up to 1,748 complementarity constraints so far. Its 

success is partly based on softening the complementarity constraints, as discussed in 

Appendix D. With future developments in solver technology and in computational power, 

application of methods in this thesis may broaden. 

6.2. Future Work 

This thesis presents new approaches for monitoring, diagnosing and enhancing 

CLRTO performance. Several new research topics were addressed, such as monitoring 

the performance of closed-loop systems, profit-based design of experiments and the 

diagnosis of optimization systems (Robinson, 2005). Therefore, many potential research 

topics stem from this work. 

" Larger LP Problems: The CLRTO performance monitoring, diagnosing and 

enhancement methods can be applied to other relevant larger-scale (20+ 

manipulated variables) LP problems. Even though a small open-loop NLP case 

study was presented in this thesis, a general methodology to handle nonlinear 

CLR TO systems is also needed. 

Mixed-Integer Problems with Uncertainty: It would be beneficial to extend the 

methods to mixed-integer linear programming problems, such as the ones 

encountered in the scheduling and planning problems. 

Performance Monitoring: Besides profit, other CLRTO performance metrics 

exist, such as frequent switching between two comer points, as occurs in some 
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Model-Predictive Controllers. The inclusion of these metrics in the monitoring 

approaches should be assessed. 

Diagnosing: The formulation in this thesis minimizes the trace of the variance­

covariance matrix in order to achieve a user-specified profit gap threshold value. 

Another possible formulation for the diagnosis problem is to minimize the 

number of parameters that need to be updated so that the largest profit gap is 

below a maximum acceptable value, which becomes a mixed-integer problem. 

~ Design of Experiments: 

o The experimental design strategy could be altered in order to reduce its 

computational burden. First, the system can be diagnosed in order to 

determine the key parameters responsible for a user-specified profit gap 

threshold. Then, experimentation could be performed only on the subset of 

parameters identified by the diagnosis, thus reducing the computational 

burden of designing experiments. Also, simi.larly to the extension for 

diagnosing, the experimental design formulation could directly include the 

number of parameters being re-estimated in its objective function, which 

should be minimized. This would give the problem a mixed-integer 

formulation. 

o The design of experiments in this thesis has the maximization of profit 

during the experiment as part of the objective function. This leads the 

optimizer to increase the flowrates of profitable components during the 

experiment as much as possible, instead of reducing the flowrates of 

components that lead to experimental costs. In future work, the cost of 

experimentation could be considered explicitly in the objective function, 

which would possibly lead to a reduction in the production rate during the 

experiments, if production rate were left unconstrained. A reduction in 

production rate would lead to reduced costs of experimentation, although 

sensor accuracy might be (negatively) affected. 
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Improved CLRTO Design: An interesting extension of this work is to determine 

which values of the nominal CLRTO model parameters would make the 

performance of the closed-loop system least sensitive to uncertainty in the plant. 

The methods developed in this thesis may also be applied to plant design 

problems, in which sensors could be systematically placed in order to improve the 

performance of the CLRTO system, balancing the capital/operating cost vs. 

improvements. 

Structural Mismatch: The effects of likely structural mismatch should be 

investigated. One approach would be to pose multiple, disjunctive LP models 

with different structures for a single model in the system. Then, the linear 

combination of these models would provide a relaxation yielding a convex model 

(for an LP) which would provide an upper bound on system profit. How tight 

(useful) the bound is would need to be evaluated. 
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Nomenclature 

a 

A 

AR 

b 

BW 

c 

C 

COapmin 

cost 

D 

DOF 

EVPI 

EVSI 

f 
F 

F 

FS 

FW 

g 

Gapmin 

h 

#ineq 

J 

k 

payoff 

left-hand side parameters 

actual rate 

right-hand side parameters 

backward difference approximation 

objective function coefficients 

concentration 

largest confidence level that yields a profit gap of Gapmin 

cost of components available for blending 

set of decisions 

degrees of freedom 

expected value of perfect information 

expected value of sample information 

objective function 

fiowrate 

vector of flowrates 

full scale 

forward difference approximation 

inequality constraints 

minimum profit gap 

equality constraints 

number of inequality constraints 

objective function 

reaction rate 
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L 

MAP 

Maxgap 

Mingap 

n 

Nc 

p 

Pr 

Q 

r 

T 

TR 

U 

V 

value 

x 

x 
y 

z 

Lagrangean 

maximum achievable profit 

largest profit gap 

smallest profit gap 

number of components available for blending 

number of constraints 

probability of constraint satisfaction 

probability of each realization of the uncertain variables 

profit 

properties of components available for blending 

surrogate function 

regret 

profit gap threshold 

trapezoidal approximation 

variance-covariance matnx of model. parameters 

volume 

value of gasoline 

optimization variables 

molar fraction 

input variables 

interpolation set 

output variables 

Greek letters 

a 

fJ 

confidence level 

recycle ratio of components A and B 

updated bias parameter 

recycle ratio of components X and Y 

smallest Lagrange multiplier 
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change in value 

trust region radius 

e bias 

McMasterVniversity, Chemical Engineering 

t/J basis in the space of quadratic polynomials 

f/J coefficient matrix of surrogate model 

rp error vector 

A Lagrange multipliers 

J.l barrier parameter 

a standard deviation 

B parameters 

Subscripts 

o initial value 

a set of active constraints 

component A 

A 

aO 

Alk 

AP 

b 

BC 

blend 

But 

BW 

CL 

coni 

dol 

ell 

active inequality constraints 

initial value for component A 

alkylate 

approach for calculating expected profit gap 

componentB 

best-case scenario 

variables that refer to blended gasoline product 

n-Butane 

backward difference approximation 

closed-loop 

confidence level (%) 

degrees of freedom 

ellipsoidal uncertainty description 
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eq equality constraints 

exp experiment 

FCC FCC Gasoline 

FW forward difference approximation 

i index for components available for blending 

index for decisions 

1 

in 

int 

j 

LSR 

meas 

min 

max 

nc 

nom 

OL 

P 

r 

Ref 

t 

TR 

true 

we 
x 

y 

inactive inequality constraints 

inequality constraints 

interval uncertainty description 

index for realizations of uncertain variables 

Light-Straight Run Naphtha 

measured 

lower bound 

upper bound 

number of confidence levels 

nominal 

open-loop 

number of uncertain parameters 

component R 

Reformate 

RTO execution time 

trapezoidal approximation 

true value in the plant 

worst-case scenario 

component X 

component Y 

Superscripts 

o initial value 
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j set of component properties (octane number, RVP) 

plant plant 

oct octane 

R VP Reid vapour pressure 

Operators 

E(.) expected value 

Tr(.) trace of a matrix 

V (.) variance-covariance matrix 

V' gradient 
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Appendix A 

Gasoline Blending Process 

Blending is a very important process in, among others, petroleum processing, 

cement manufacturing and food processing. Because of its economic importance and 

relatively simple models, blending was one of the first applications of Closed-loop, Real­

Time Optimization (CLRTO). As an example, CLRTO has been applied to commercial 

gasoline-blending processes since the 1960's (Birchfield, 2002). Gasoline blending was 

selected as the industrial example for this study because of the following reasons. 

~ The process can be modeled with reasonable accuracy using linear programming 

~ CLR TO has been applied to many gasoline blending processes 

~ The process has significant uncertainty in parameters that multiply variables, i.e., 

left-hand side coefficients in a linear program 

~ The process is economically important and has opportunity for further 

improvements via monitoring and diagnosis 

The process is representative of other CLRTO systems using an LP 

Light products (including butane) 

Crude oil tankers 

Figure A.1. Simplified Flowchart of an Oil Refinery (The tanks are indicated by a "T".) 
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A.I. Process Description 

A simplified flowchart of a petroleum refinery is presented in Figure A.l, in 

which the five components for gasoline blending considered in this thesis are shown. The 

refinery makes many products, and only the gasoline is shown on the diagram. Some of 

the major process units are shown as blocks in the figure. Each block contains a very 

complex set of process equipment involving physical separation and in some cases, 

molecular modification by chemical reactions. The refinery operates continuously 

making material that is stored in the componenl tanks. The goal is to maintain constant 

qualities for materials going to component tanks, but this goal is not exactly achieved 

because of disturbances in crude composition and variability in process operating 

conditions. The potential for purchasing blending components from other companies also 

exists, and these import streams are not shown in Figure A.I. Gasoline product is made 

periodically by blending material from selected component tanks. The product is stored 

in a product tank after the blender and is shipped to a distribution point after the gasoline 

batch has been completed. 

A typical gasoline blender may produce about 10,000 barrels of gasoline a day. At 

the price of $50/barrel, the revenues are at around $180 million a year. Even if only a 

very small improvement of 0.10% is made on this process, revenues will increase by 

roughly $180,000 a year, which is substantial. Because of its wide application and 

opportunity for high returns, gasoline blending was used as the case study in this work. 

However, the techniques developed here are applicable to many other LP-based closed­

loop optimizations. 

A.2. Modeling Assumptions 

A batch gasoline-blending process is considered as the example process. The 

components Reformate, Light Straight Run (LSR) Naphtha, n-Butane, FCC Gasoline and 

Alkylate are blended to form the gasoline product. The properties of each component 

change due to variations in feed material and upstream process operation, but the 
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component properties do not change significantly during a batch because of the large 

component tanks. This blending process has very fast dynamics and reaches steady-state 

operation between CLRTO executions, which typically occur at every 15 minutes (Mudt, 

2005). The gasoline batch process usually lasts anywhere from 8 to 16 hours. The 

resulting production of gasoline is stored in a product tank. Achieving instantaneous 

product quality specifications is not required: only the final outcome of the integrated 

blending batch in the product tank must satisfy the specifications. It is assumed that the 

mixing in the blend point is perfect by the use of static mixers (PetroMetrix, 2006), as 

well as that no change in specific gravity occurs during mixing (i.e. , volume flows add 

linearly). 

A typical gasoline-blending process has between 5 and 10 component streams 

(Arwikar et aI. , 2002, Mudt, 2005), which are the variables adjusted for optimization. 

One key goal is the production rate, which is naturally the sum of the component flow 

rates. In addition, many product quality specifications must be satisfied, but only some 

product qualities are measured onstream, in real time, such as octane number and RVP 

(Zahed et al., 1993, Arwikar et aI., 2002). 

The two key component qualities measured onstream in this thesis were octane 

number and Reid vapour pressure (RVP). Octane numbers characterize the anti-knock 

properties of the fuel and can be calculated as the arithmetic mean between motor octane 

number (MaN) and research octane number (RON). Anti-knock is the characteristic of a 

fuel to resist premature detonation when exposed to high pressures and temperatures in 

the combustion chamber of an engine. MaN represents the engine anti-knock 

performance under severe operating conditions, while RON represents the engine anti­

knock performance under mild conditions of operation (ASTM D-2699, ASTM D-2700). 

RVP is also a very important property of the fuel, since it affects engine startup and 

warmup, and the tendency to vapour lock under high operating temperatures or high 

altitudes (ASTM D-323). Vapour lock occurs whenever gas bubbles block the flow of 

fuel to the carburetor. 
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Gasoline blending is a (mildly) nonlinear process (Singh et al., 2000). However, 

a linear model can be formulated when (I) blending indices compensate for some 

nonlinearities (Gary and Handwerk, 1984), (2), the component flow ratios remain within 

established limits where the blending indices provide acceptable accuracy and (3) models 

are formulated using flow-quality units (Williams, 1999). If the flow ratios vary 

significantly from a priorj estimates, the linear model can be modified and the LP 

resolved, until sufficient accuracy is achieved; this would be a form of sequential LP 

(SLP). For the moderate changes typically made by an online optimizer, CLRTO 

blending is typically implemented as a linear program (Zahed et aI. , 1993; Diaz and 

Barsamian, 1996; Vermeer et al., 1996). The choice of linear programming is strongly 

affected by the need for a very reliable optimization calculation in the closed-loop 

optimization. Therefore, qualities are assumed to blend linearly in this thesis. 

Fblend(Qt'end ten Z IF;Q( 
i=1 

Fb/end (Qtlend Lin ~ t F; Q( 
;=1 

Qb~end ~ k2i'end )max 

Qilend z k2i'end Lin 
where Fblend(Qt'end)= IF;Q/ 

i=1 

j = oct, RVP (A.la) 

( Alb) 

( A.le) 

( Aid) 

(A.le) 

The flow-quality formulation of blending is seen in the set of equations (AI) 

(Williams, 1999), where n is the number of components. The equality constraint in 

equation (AI e) contains a nonlinear term because the flowrate and quality of the product 

are variables. However, the linear inequalities in equations (AI a) and (A.1 b) are 

equivalent and can be used to impose the same relationships as equations (AI c) and 

(Aid) in a linear program. 
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The Chevron blending index (Gary and Handwerk, 1994) is used to predict the 

RVP of blended products through a linear combination of the RVP blending indices 

(RVPBJ) shown below. 

RVPBI = RVp1.25 

II 

Fhlellli (RVPBlhlelld ) = L RVPBI;F'; 
;=1 

(A.2 ) 

(A.3 ) 

The gasoline-blending process has important uncertainty III the parameters, 

specifically the unmeasured component qualities, since the components are either 

purchased or come from upstream operations, which have variable operating conditions. 

In this thesis, the effects of changes in component qualities of streams entering the tanks 

are considered insignificant over the time when the monitoring and diagnosis are 

performed. This is a reasonable assumption, since components are stored in very large 

tanks, which are assumed to be well mixed. The effect of heels in the product tank is not 

considered explicitly; however, in practice it simply affects the targets for the 

specifications at the blending point before the product tank. 

If most component properties were measured accurately and without fault, there 

would be much reduced need for a performance assessment of the CLRTO system. 

However, quality analyzers are quite expensive (roughly US$ 300,000 for each Near 

Infra-Red analyzer, which should be placed on each component stream) 

(Measurementation Inc., 2004). Therefore, component properties are only measured off­

line very infrequently (once a week or even once a month) (Mudt, 2005; Kelly, 2006). 

Nevertheless, production from the plant flows into the component tanks continuously. 

Therefore, mismatch between model and plant parameters is likely, making this a very 

good case study for the methods developed in this work. 

The available measurements are considered to be the final gasoline octane number 

and RVP properties and the flowrates for all streams. It is assumed that samples taken for 

onstream analysers are representative. The accuracy of the octane and RVP 

measurements are considered to be ±0.2 octane and ±0.15 psi, respectively, which 
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correspond to the legal requirements for spark-ignition engine fuels (ASTM D-323; 

ASTM D-2699; ASTM D-2700). 

Turbine flowmeters are often used in gasoline-blending processes because of their 

better accuracy and wider range than standard orifice flow meters (Mudt, 2005). Their 

principle of operation is that the speed of rotation of a turbine within the meter is 

proportional to the volumetric flowrate through the pipe. This type of flowmeter has a 

typical accuracy of ±0.5% of the actual (flow)rate (AR) over a 10: 1 flow range (Omega, 

2005); that is, this accuracy is valid for flowrates from 10-100% of the largest flowrate. 

A.3. Blending Model 

The behaviour of the "true" gasoline blending model can be seen described by the 

following set of linear equations: 

" n 
"F Q }. plalll > QJ " F L... i .In'" i - hI"lIlt.mill L... i .ln," 
i=1 i=1 

II II 

"F Q J. plalll < QJ " F L... i .lnJe; - hlemJ,mllx L... i ,lnle 

i=1 i=1 

II 

FbI""d.mil ~ I F: .In1" ~ Fh/end.mlL. 
i =1 

j = oct, RVP ( A.4 ) 

( A.S) 

( A.6) 

( A.7) 

Therefore, the "true" plant optimum for this system would be to maximize the 

II 

objective function (profit ): I {value - cos tJF:.,nle subject to the constraints ( A.4) to 
i=1 

( A.7). 
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A.4. Blending Model Uncertainty Description 

For most of the case studies in the thesis, the octane and RVP properties of each 

of the five component streams were assumed uncertain, giving ten uncertain parameters. 

Two uncertainty descriptions were used, ellipsoidal and interval. The uncertainty was 

taken symmetrically around the nominal parameter values. 

);Po For cases with interval description of uncertainty, bounds of ± 1.0 (octane or psi) 

were used. (Szoke and Kennedy. 1984, Mudt, 2005) 

);Po For cases with ellipsoidal description of uncertainty, the largest variation possible 

at the 95% confidence level for any parameter in the ellipse was taken to be ± 1.0 

(octane or psi). Therefore, the uncorrelated variances of each of the ten 

parameters were calculated as 1/:{09510 = 0.0546 (octane2 or psi2
). Any different 

values for parameter uncertainty are drfined in the chapters where the cast';s are 

presented. 

In Chapters 3 through 5, several case studies are presented. Cases with two and 

ten uncertain parameters are shown, as well as examples with interval and ellipsoidal 

uncertainty description. The different results and computational experience are discussed 

as the case studies are presented. 

Regardless of the octane and RVP specifications, the typical optimum lies at the 

maximum RVP and minimum octane. However, depending on the individual properties, 

different combinations of components could meet the specifications. Due to different 

component properties between blends, the results of specific case studies could change. 

This justifies the need for implementing optimization online, rather than simply analyzing 

the system once offline. 
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setpoints Measured variable 
LP Plant 

Predicted variables -J 
Model 

+ 

Updated Bias 

Figure A.2. MPC Structure 

A.S. Model Predictive Control Structure 

As mentioned in Chapter 1, the CLR TO systems considered in this work have a 

Model-Predictive Control (MPC) structure (Qin and Badgewell, 2003). This structure 

calculates manipulated variable moves based on an estimate of future plant behaviour for 

a finite time horizon. Only the calculated change in manipulated variable for the first time 

increment is implemented. The controller repeats its calculations periodically. 

implementing a rolling horizon controller. For the blending process, the plant (and 

model) dynamics are fast compared with the controller execution; therefore, the 

controller performs an optimization of a steady-state model. 

At each execution period, some process variables are measured, and the 

measurements are compared with the respective model predictions (Figure A.2). The 

difference between the measured and predicted variable values is the prediction of future 

disturbances. It is called the "bias" when the future disturbances are assumed to equal the 

current disturbances and the bias for each measured output is added to the model 

equations for that predicted output. 

In the gasoline-blending problem, the "Plant" is equivalent to the problem In 

Section A.3. The updated bias in Figure A.2 is calculated as: 

II II 

.i" F -" F (Q.i .P/UIII Q.i ) G ~ i ,l1om - ~ ;."0111; - i.lwm j = oct, RVP (A.8 ) 
i = l 1= 1 

Finally, the "LP" in this case corresponds to the following problem: 
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II 
Jl.lax L {value - cost; )F;,IIom 
/ '/. ' 10", ;=1 

s.t. 

II II 
L F;,II0/ll (Q!,IIom + sJ) ~ Qi'elld,/II;n L F;,IIom 
;=1 ;=1 

" n L F;"w/II (Q/llom + sJ) ~ Q/,,""d,/IIUX L F;,IIom 
;=1 ;=1 

II 
F"'elld ,min ~ L F;,tlO/ll ~ Fbletld,max 

;=1 

McMaster University, Chemical Engineering 

(A.9 ) 

The flowrates F;,nom obtained from solving the LP in problem ( A.9 ) are the 

setpoints that are sent to the controllers in the plant. 

A.6. Nominal Parameter Values in Case Studies 

The nominal values for the blending mode! and economics are presented in here. 

These are the values used in the CLRTO. The monitoring calculations use the uncertainty 

descriptions described in Section A.4. The true plant blending component qualities were 

taken to be different from the nominal, using either an interval or ellipsoidal range that 

has the nominal values as the midpoint. The uncertainty descriptions for each case are 

described with the cases in the body of the thesis. 

The values for all model and plant parameters are shown in the following tables. 

Currency denoted by $ corresponds to US Dollars. Barrels are units often used in the oil 

industry, even in countries using SI units. One barrel (bbl) corresponds to approximately 

0.159 m3 or 159 liters (SPE, 2006). 
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Table A.l. Production Requirements 

value ($/bbl) 
Fblend,m;n (bbllday) 
Fblend,max (bbl/day) 

Q:/~'d min (octane) 

Q :::',d ,max (octane) 

Q RVP (') 
blelld,min pSI 

Q RVP ( . ) 
Mend ,max pSI 

33.0 
6,999.0 
7,000.0 

88,5 

100.0 

4.5 

10.8 

Table A.2. Component Availability and Cost 

Components F;"m;n (bbllday) F;"max (bbllday) 
Reformate 
LSR Naphtha 
N-Butane 
FCC Gasoline 
Alkylate 

0.0 12,000.0 
0.0 6,500.0 
0.0 3,000.0 
0.0 4,500.0 
O. 7,000.0 

Table A.3. Plant Component Quality Data 

Components 

Reformate 
LSRNaphtha 
N-Butane 
FCC Gasoline 
Alkylate 

QOC/ 
i,lIom 

(octane) 
93.1 
64.3 
92.5 
84.6 
96.6 

1<1'/' 
Q ;.IIom 

(p i) 

2.7 
10.9 
13 .0 
6.4 
6.7 

cost; ($/bbl) 
33.8 
26.0 
10.3 
31.3 
37.0 

The values in Table A.I and in Table A.2 were taken from Forbes and Marlin 

(1994). The gasoline production rate was bounded between 6,999-7000 bbllday in order 

to achieve a practically constant gasoline production rate. All case studies led the system 

to the upper flowrate bound Fblend,max because the objective of the CLRTO was to achieve 

the highest operation profit, which in the case studies considered in this work, 

corresponded to the highest gasoline production rate. The component qualities in Table 

A.3 were calculated based on the tables in Gary and Handwerk (1984). 
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Figure A.3. Pricing of Crude Oil and Gasoline (CTA, 2006) 

The price of petroleum crude oil and products is volatile (see Figure A.3). The 

case study provides consistent economics for 1988 when the crude price was $14.7/bbl. 

Therefore, the question arises regarding whether the case studies are characteristic of 

typical situations, or specific to a particular time. The prices of all components and 

gasoline are essentially proportional to the cost of crude oil. Therefore, volatility in 

pricing changes all cost coefficients by approximately the same factor, which would 

require multiplying the LP objective function by a constant (for example, doubling crude 

cost would incur in multiplying the objective function by 2). Consequently, the results for 

the case studies regarding multiple bases, importance of parameters and experimental 

designs would be unaffected by pricing volatility, since the economic effect of any 

improvement would be multiplied by the same constant as the objective function. 

However, other changes that affect only individual components or the gasoline price 

could change the results of case studies. This, along with frequently changing bounds on 
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component flow rates and model mismatch, justifies the need for implementing the 

performance evaluations online, rather than simply analyzing offline for one single time 

and scenario. 
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Appendix B 

Bayesian Parameter Estimation 

In traditional parameter estimation literature (Montgomery and RungeI', 1994), it 

is assumed that there is enough data available in order to estimate parameters and their 

variances. At the beginning of a blending batch, however, even though there are often 

vast amounts of historical data from previous batches, the current batch does not usually 

contain enough data points to obtain good estimates of model parameters. 

In the gasoline-blending case study, the parameters that need to be estimated are 

the octane and RVP properties of each component. The quality equations can be 

expressed as: 

ne F 
QLnd = B~ + L Q!nom ne ; 

( B.1 ) 

;=1 "F 
~ ' 2 

where Bt are the intercepts included in order to account for deviations from linearity. 

Bayesian estimation (Box and Tiao, 1973) provides a framework in which 

informative prior parameter distributions can be used. Bayes' theorem states that the 

posterior distribution of a parameter will be equal to its prior distribution multiplied by 

the likelihood function, where the latter represents information that originates from 

experimental data. The inclusion of prior information prevents unnecessarily large 

experiments in the plant. In the case of gasoline blending, periodic lab samples are taken 

from the component tanks, and their properties are measured and stored in a database. 

Therefore, it is thus possible to obtain a good estimate of parameter uncertainty 

(historical variability) before data is first measured in the process. The parameter 
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estimation formulation derived from least-squares estimation and Bayesian theory IS 

presented in the following equation (Reilly, 1973). 

(B.2 ) 

This formulation assumes zero mean, normal, randomly distributed measurement 

noise and no structural mismatch between model and plant. In equation ( B.2 ), V(Q)I,_J is 

the matrix of parameter uncertainty from the previous time step, and Q('JOIIIJ and Q(lIomJ-1 

are the matrices with parameter estimates of the current and previous time steps (the 

parameter estimate Q/'1I01ll,l at t = 1 uses the values of initial parameter estimates and their 

prior uncertainties). 

The matrix Xexp containing input variables (in this case, flowrates) and the output 

(measurement) vector z' are defined as: 

ble"d .mea.< [Qot ] 
Z = RIP 

Q bl.' IIr) ,//leas 

F,.'('C',exp 

' F. ~ I .<xp L F;.exp 
I 

The ones in the Xexp matrix correspond to the intercepts B6 that are included in 

the octane and RVP equations in the parameter estimation step. Since the "perfect" model 

is not known for the blending of octane and RVP properties, an intercept can be included 

in order to account for slight model mismatch. The effect of including the intercept in the 

quality equations is discussed through case studies in Chapter 5. The measurements (z) 

considered were the blend qualities. The remaining measured variables (flowrates) were 
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assumed to be known perfectly, which is reasonable for gasoline blending because the 

flows are measured using turbine meters or other highly accurate flow sensors (Mudt, 

2005; Omega, 2005). V (z) is the variance-covariance matrix of the output variables (z). 

When using the method in equation ( B.2 ), the parameter uncertainty can be shown to 

decrease with the experiments according to the following equation (Reilly, 1973). 

(B.3) 

The judicious use of prior knowledge about the parameter distribution may reduce 

the number and/or magnitude of experimentation in the plant, especially in situations 

where not enough data points exist for a reasonable initial estimate of parameter 

uncertainty. By using the method in equation ( B.3 ), parameter variance can only 

decrease at each update. If a parameter is assumed to have a much smaller variance than 

the measurement errors around an incorrect initial value, its estimate will likely not 

change considerably with the new updates (Box and Tiao, 1973). As a safeguard against 

underestimating prior parameter variance, a larger variance than estimated by prior 

historical data can be used. 
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Appendix C 

Solution Details for Section 3.5 

This appendix presents the solution details of Problem 3.6 for the CLRTO 

performance monitoring method based on the Expected Value of the Largest Profit Gap 

(Section 3.5). All of these solutions were obtained using IPOPT -C, with 10-8 tolerance. 

Note that the solution details for the case with a = 0.95 is shown in Chapter 3 (Tables 

3.11-3.13). 

used: 

For all cases, Q/'o = Q;~'lOm' The following starting points for the flowrates were 

Reformate 
LSR Naphtha 
n-Butane 
FCC Gas 
Alkylate 

Table c.l. Flowrate Starting Points 

FO, 
I , 

= (1I5)*Fblend.max 
(bbl/day) 
1,400.0 
1,400.0 
1,400.0 
1,400.0 
1,400.0 
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F;~2 
= current CLRTO operation 

(bbllday) 
5,695.6 
942.5 
361.0 

0.0 
0.0 
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C.l. Solution with a= 0.25 and dof= 10 (Xg.25,IO= 6.737) 

Table C.2. Solution of Problem 3.6 - a = 0.25 and dof= 10 

Q;OC/ (octane numbers) Q;RVP (psi) F;,BC (bbl/day) Fj,nom (bbl/day) 
Reformate 
LSR Naphtha 
n-Butane 
FCC Gas 
Alkylate 

92.86 2.91 2,8079 
0.0 

317.0 
64.20 10.98 
92.50 138.00 
85.01 
96.60 

Maxgapell 
PrBC 

Prnom,CL 

6.11 3,875.1 
6.70 0.0 

$ 740.9/ day 
$ 11,538.1 / day 
$10,797.2/day 

5,593.4 
1,061.0 
345.6 

0.0 
0.0 

Table C.3. Computational Results for Problem 3.6 

_~tru.:ting Points CPU sec # func. eval # restarts Solution 

F;~H(, = F;~WIII ::::; F;~ ; A~JC = A~"'/I = 0 3.781 8,056 4 Good 
FO 

; ,H(, 
- FO 
- i .JJnllJ 

- FO 
- ' I I , ; A~c = A~olll = Anom 1.593 639 2 Good 

II F O FO F;.H(, = 1,110111 = ;.2 
, AO - AO - 0 
., R(' - nO/ll- 0.297 169 0 Bad 

FO - FO - FO 
i,J1C - ; , 110111 - ; 2 ; A~(' = A~olll = Anom 1.370 494 1 Good 

C.2. Solution with a= 0.50 and dof= 10 (Xg,50.10= 9.342) 

Table C.4. Solution of Problem 3.6 - a = 0.50 and dof= 10 

Q;OCI (octane numbers) Q;RVP (psi) Fj.nom (bbl/da~ 
Reformate 92.83 2.94 5,602.0 
LSR Naphtha 64.18 10.99 1,053.6 
n-Butane 92.50 138.00 344.4 
FCC Gas 85.09 6.06 0.0 
Al k~ l ate 96.60 6.70 0.0 0.0 

Maxgapell $ 894.4 / day 
PrBc $ 11,606.4 / day 

Prl1o m_ L $ 10,711.9/ da. 
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Table C.S. Computational Results for Problem 3.6 

Starting Points CPU sec # func. eval # restarts Solution 

F;°Be = F;~IOIII = F;~ · AO - AO - 0 12.217 48,733 7 Good . , , ' BC- /10111-

F;~BC = F;~lOni = F;~ · AO - AO - A ' BC- /10111- nom 8.892 37,517 9 Good 

F; one = F; ~lOni = F; °2 · AO - AO - 0 6.578 29,252 Bad , , , ' RC- /lOll/- I 

F; ~HC = F; ~lOm = F; ~2 · AO - AO - A ' HC - /1011/ - nom 0.297 108 0 Bad 

C.3. Solution with a= 0.75 and dof= 10 (Xg75.10= 12.55) 

Table C.6. Solution of Problem 3.6 - a = 0.75 and dof= 10 

Qoel C b ) QRVP C .) ________ i_ o_c_t_an_e_nu_m __ er_s ___ i __ P_S_I_Fi,BC (bb_lI_d---,aY,,-,·),--F-,I=·.n=om"--'-..Cb_b_lI_d_a,,-Y)<-
Reformate 
LSR Naphtha 
n-Butane 
FCC Gas 
Alkylate 

92.79 2.98 2,749.2 5,610.6 
64.17 11.00 0.0 1,046.2 
92.50 13800 317.0 343.2 
85.18 6.01 3,933.8 0.0 
96.60 6.70 0.0 0.0 

Maxgapel/ $ 1,059.0 / day 
PrBC $ 11,684.1 / day 

Prnom.CL $ 10,625.2 / day 

Table C.7. Computational Results for Problem 3.6 

Starting Points CPU sec # func. eval # restarts Solution 
FO - FO - FO i.HC - i.llmll - i,l ; A~c = A~'J/II = 0 2.687 7,181 2 Bad 

F;~HC = F;~'O/ll = F;~ ; A~c = A~o/ll = Anom 0.313 178 a Good 
FO - FO - FO i.HC - i,II0/ll - i.2 · AO - A,0 - 0 ' HC - 1I0m- 5.781 20,974 3 Good 
FO - FO - FO 

i ,He - i .lwm - ;.2 ; A~c = A~{)II/ = Anom 0.641 894 0 Bad 
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C.4. Solution with a= 0.90 and dof= 10 (Xg9010= 15.99) 

Table e.S. Solution of Problem 3.6 - IX = 0.90 and dof= 10 

Qt C1 (octane numbers) Q;RVP (psi) Fi,Re {bbllda~2 F;,nom {bbllda~2 
Reforrnate 92.76 3.02 2,717.l 5,618.4 
L RNaphlha 64.15 11.01 0.0 1,039.6 
n-Butan 92.50 138.00 316.9 342.0 
FC Gas 85.26 5.97 3,966.0 0.0 
Alkylat 96.60 6.70 0.0 0.0 -------

Maxgapell $ 1,216.1 / day 
PI'B ' $ 11,762.7 I day 

Prnolll,cL $ 10,546.6 / day 

Table C.9. Computational Results for Problem 3.6 

Starting Points CPU sec # fune. eval # restarts Solution 
FO - F O - Fa 

i.8(' - 1.110111 - i ,l 
.}.,o - AO - 0 
' 8('- 110111- 2.797 4,409 3 Good 

F O - FO - FO 
i.fJ( ' - i.1I0111 - i .1 ; A~(' = A~olll = Anom 0.310 189 0 Good 

F;~B(, = F;~I0111 = F;~2 . AO - AO - 0 
' H( .' - n01ll- 0.812 333 1 Bad 

F U FO FO 
i.BC - i .1I0111 - i .2 

. AO - AO - A 
' 8(' - 110111 - nom 1.577 2.408 Bad 

C.5. Solution with a= 0.99 and dof= 10 (Xg.99.10= 23.21) 

Table C.IO. Solution of Problem 3.6 - IX = 0.99 and dof= 10 

Qt' (octane numbers) QRVI' ( .) 
i pSI F"Be (bblldal: Fi.nom (bbllda~ 

Reformate 92.71 3.08 2,653.0 5,631.3 
LSR Naphtha 64.13 11 .03 0.0 1,028.7 

n-Butane 92.51 138.00 316.7 339.9 
FCC Gas 85.41 5.89 4,030.3 0.0 

Ikl:late 96.60 6.70 0.0 0.0 
Maxgapell $ 1,505.3/ day 

Pro $ 11,917.8/ day 

PI'1I0111 CL $ 10,412.5 / da~ 
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Table C.II. Computational Results for Problem 3.6 

Starting Points CPU see # fune. eval # restarts Solution 

F O 
- F O 

- F O 
i,Be - i,nom - ;,1 

',to -,to - 0 , BC- nom- 2.516 4,350 1 Good 

FO 
- F O 

- F O 
i,BC - i,nom - i,1 

',to -,to - An , BC- nom- om 0.984 418 1, Good 

F O 
- F O 

- F O 
i,BC - i,nom - i,2 

',to =,to = 0 , BC nom 3.109 3,858 10 Bad 
F O - FO - F O ',to -,to - An 0.250 87 0 Bad iBC - ino", - i2 , BC- nom- om , , , 
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Appendix D 

Summary of Optimization Technology 

In order to assess, diagnose and enhance the closed-loop performance of RTO 

systems, this thesis relies heavily on optimization theory and specific software 

implementations. In this appendix, optimization methods that are the most relevant to this 

work are presented. 

Small linear programming (LP) problems were solved in the closed-loop RTO 

simulations. To solve these problems, the (default) primal simplex algorithm in CPLEX 

was used in the GAMS modeling environment. The primal simplex algorithm is one in 

which the simplex tableau is generated for the primal optimization problem. 

The formulations in this work generated ditTerent types of nonlinear plOgramming 

(NLP) problems. A very efficient algorithm to solve NLPs is Sequential Quadratic 

Programming (SQP). SQP is used in this thesis (in Matlab'sfmincon function). Therefore, 

Section 0 .1 presents an introduction to this optimization m(!thod. 

In optimization literature, there is a class of optimization problems called 

Mathematical Programs with Equilibrium Constraints (MPECs). These problems contain 

constraints of the form x.y = 0, also known as complementarity constraints. This type of 

constraint poses a significant challenge to active-set optimization methods, since they 

render the feasible region nonconvex and even disjoint, and they cause the problem to be 

ill-conditioned (Raghunathan and Biegler, 2003). Due to the combinatorial nature of 

active-set methods (such as the one used within standard SQP methods), active set 

methods do not usually perform well for MPECs. Therefore, interior-point solvers such 

as IPOPT are more appropriate for this class of problems. Section 0.2 presents IPOPT 
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and its version tailored to handle MPECs (IPOPT-C), which are based on an interior 

path-following, interior-point method. 

The experimental design formulations in Chapter 4 contained gradient evaluations 

that did not have smooth properties. These formulations required the solution of three­

level optimization problems. While the solutions of bilevel optimization were achieved 

using the IPOPT-C, this software did not reliably solve the three-level problems. Hence, 

a direct search method was used to solve the outer problem. The selected approach was 

the Derivative-Free Optimization (DFO) method developed by Conn et al. (1996) and 

implemented in MA TLAB by Fan (2002). An overview of this method can be seen in 

Section D.3 . 

A Pentium 4, 1700MHz, 523 Gb was used in the simulations. All problems in the 

thesis were solved to the 10-8 tolerance levels of IPOPT-·C (version 2.0.1) solver. In 

fmincon (Mathworks, 1999) (in Matlab version 6.5.0.180913a Release 13), tolerances of 

10-3 for constraint violations and absolute values of the variables and objective function 

values were set. AMPL was used for the modeling environment for problems solved 

using IPOPT-C. It provides first and second derivatives through symbolic processing. An 

overview of the software structure used in the various simulations can be see in Section 

D.4. 

0.1. Sequential Quadratic Programming 

Sequential Quadratic Programming (SQP) has been successfully applied to 

nonlinear constrained optimization problems with continu.ous first- and second-order 

derivatives. It is based on solving a quadratic program, i.e., an optimization problem with 

a quadratic objective function and linear constraints. Consider the following nonlinear 

optimization problem (Nash and Sofer, 1996): 

min/ex) 

s.t hex) = 0 
(D. 1 ) 
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wherej{x) and h(x) are nonlinear functions. The Lagrangian L(x, A) for problem (D.I ) is 

given by: 

L(X,A,.u) = f(X)-ATh(x) (D.2 ) 

The first-order optimality conditions of problem ( D.l ) can be expressed as a 

function of the derivatives of the Lagrangian, as can be seen below. 

v xL(X,A)= V xf(x) - AV.,h(x) = 0 

V "L(X,A)=-h(xj =0 

(D.3 ) 

(D.4) 

Newton's method can be applied to find a solution to equations ( D.3 ) and ( D.4 ). 

This method can be expressed as: 

(D.5 ) 

The updates tllk and ~Ak are obtained as follows. For a problem of the form: 

minj{x) (D.6 ) 

The (full) Newton step is given by 

Vf(x) 
x = x - ---=---=-----
hi k V2 f(x) 

(D.7 ) 

Therefore, when applying the Newton step in equation ( D.7 ) to the system of 

equations ( D.5 ), the following relationship is obtained: 
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(D.8 ) 

This is equivalent to expressing the linear system as: 

(D.9 ) 

The system of equations in ( D.9 ) corresponds to the first-order optimality 

conditions of the following optimization problem. 

min ~ &:- [V;xL(xk, Ak) ~k + &: [V xL(Xk' Ak )] 
Mk 2 

(D.lO) 

S.t [Vh(x)Y &k + h(xk) = 0 

In problem ( 0.10 ), it is possible to see that the objective function is a Taylor 

senes approximation of the Lagrangian at (Xk, Ak), and the constraints are linear 

approximations of the original constraints in problem (D.l ). The vector ,1.Ak corresponds 

to the Lagrange multipliers of problem ( D.1O ). At each SQP iteration, problem ( D.1O ) 

is solved using a quadratic programming approach (QP) with an active set or barrier 

method, and yields the updates (&k, ,1.Ak). In the case of a problem with inequality 

constraints g(x) ;::: 0, problem ( D.1O ) can be expressed as: 

( D.ll ) 

SQP is the basis of the nonlinear solver fmincon found in Matlab (Mathworks, 

1999). An active-set method is used to solve the QP; i.e., only the equality constraints 
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and active inequality constraints (at the current iterate) from problem ( 0.11 ) are 

considered in the iteration. In active-set methods, an equality-constrained problem based 

on the current active set is solved at each iteration. If a constraint is encountered during 

the course of a line search when optimizing this problem, it is added to the constraint set 

for the following iteration. After optimizing the equality-constrained problem, the 

Lagrange multipliers for all constraints in the active set of the current iteration are 

computed at the solution. If there are no negative multipliers, the solution is also deemed 

to be a solution to the original inequality-constrained problem. If there is a negative 

Lagrange multiplier, the corresponding constraint is removed from the active set for the 

following iteration (Nash and Sofer, 1996). 

The fmincon line search uses a merit function, which is described in Han (1977). 

The basic idea is to find a step size that leads to a point that will both improve the 

objective function value and reduce the constraint violations (expressed as exact penalty 

functions) in the QP. In this particular implementation, the exact penalty function is 

defined as the too-norm. The Hessian information in fmincon is obtained from BFGS 

updates. 

D.2. Interior-Point Methods 

Interior-point methods have been developed since the 1980's in order to provide 

an efficient polynomial-time method for solving mathematical programming problems 

(Nash and Sofer, 1996). A crucial aspect of these methods is that all points generated by 

interior-point methods leading to the optimal solution are strictly feasible; i.e., they 

satisfy all model constraints. 

Barrier functions are very useful for solving constrained optimization problems, 

and they are sometimes adopted in interior-point algorithms. Consider the following 

constrained optimization problem. 

minf(x) 

S.t g(x) ~ 0 
( D.12 ) 
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The constrained problem is replaced by an approximate unconstrained problem; 

this is achieved by replacing the constraints g(x) ~ 0 with additional terms in the 

objective function that become very large as the functions g(x) approach their bounds and 

are unbounded in the limit of attaining a bound from the interior of the set. Two common 

types of barrier functions are (1) the logarithm and (2) the inverse of g(x). The 

reformulation of problem (D.l2 ) using the logarithmic barrier function is seen below. 

(D.l3 ) 

In problem ( D.13 ), nc is the number of constraints and f..I is called the barrier 

parameter. An option in solving the original problem ( D.l2 ) is to reduce f..I after each 

solution of the unconstrained optimization problem ( D.13 ) until f..I is sufficiently close to 

zero. As f..I decreases, a differentiable solution trajectory x(f..l) (also known as barrier 

trajectory) is formed. 

The existence of this barrier trajectory x(f..I) enables the development of central 

path-following algorithms. In these methods, iterates stay close to the barrier trajectory. 

The steps of the path-following interior-point algorithm with a barrier sub-problem can 

be summarized as fo llows (Nash and Sofer, 1996): 

Step 1. Update the barrier parameter f..Ik ~ f..Ik+1 

Step 2. Solve the barrier subproblem ( D.13 ) so that the point Xk is close enough to the 

path (given a stopping criterion) 

Step 3. Use a damped Newton Method to update Xk ~ Xk+1 

Step 4. Go to Step 1 until a convergence criterion is met for the path-following method. 
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In this thesis, IPOPT (Wachter, 2002) was used to solve several of the nonlinear 

formulations in Chapters 3, 4 and 5. In IPOPT, the primal-dual interior-point barrier 

method is used. It is based on finding feasible solutions for both the primal and the dual 

optimization problem equations simultaneously using a Newton-type approach (Wachter, 

2002). The existence of the barrier parameter in the original problem relaxes the 

complementarity constraints to the form x. A.. = j..I., where x and A.. are the primal and dual 

variables, respectively. 

After a search direction has been found by the primal-dual method, it is necessary 

to determine the size of the step that should be taken by the iterate in that direction, since 

a full Newton step may be too large and render the next iterate infeasible. Merit functions 

can be used in determining the step length. The underlying strategy in this method is to 

extend the original objective function to include an additional term that penalizes 

infeasibility in the constraints. This penalty term may be, for instance, exact penalty 

functions such as the 11-, 12- or [«,-norms. Another method for finding step lengths are 

filter line searches. The filter line search in IPOPT ensures that the new point improves 

the original objective function or the constraint violations (instead of requiring both, as in 

merit function approaches). With this filter line search procedure, IPOPT has been proven 

to be globally convergent to a stationary point (Wachter, 2002). 

More recently, Raghunathan and Biegler (2003) developed IPOPT-C, an 

enhancement to IPOPT that handles complementarity constraints. In their work, 

Raghunathan and Biegler (2003) relaxed the complementarity constraints to x.A.. :s; OJ..l., 

where 0> 0 is a fixed constant and j..I. > 0 is the barrier parameter which was successively 

tightened until sufficiently close to zero (within a user-specified tolerance). It was shown 

that the conditioning of the overall problem was greatly improved by this reformulation. 
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D.3. Derivative-Free Optimization (DFO) 

DFO is based on approximating the objective function by a (simpler) smooth, 

quadratic surrogate model within a trust region, and then optimizing the surrogate model 

to obtain an improved point. Fitting a surrogate model smoothes the discontinuities in the 

derivatives of the function, while retaining the dominant local characteristics of the 

response surface of the original problem. 

Given a set of interpolation points Y={Yj},j = l..p, the surrogate function Q(x) can 

be considered an interpolation of the original function fix) if the following holds 

(Scheinberg, 2000): 

j= l..p (D.14 ) 

Suppose that ¢i...x) is a basis in the space of quadratic polynomials (in the one­

dimensional space, ¢i...x) could be equal to {t, X, x2
}). The equality in equation ( D.14 ) 

can then be expressed as 

q 

Q(y) = I a, ¢; (y ) ) = f (y ) ) , j = l..p (D.l5 ) 
;=1 

where q is the number of terms in the basis for the n-dimensional space. The coefficient 

matrix of the system of equations ( D .15 ) is: 

(D.l6) 
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The linear system of equations ( D.15 ) has a unique solution for a = (aI, .. . ,aq) 

if the coefficient matrix in equation ( D.16 ) is square and nonsingular. The procedure for 

implementing DFO can be summarized as follows (Conn el a!., 1997; Scheinberg, 2000): 

Step 1. Build a surrogate model around the current point using the current interpolation 

set Y k and the current trust region radius tlk. Determine which of the original 

starting points has the best objective function value by evaluating: 

j{xo) = minyiE Y fly;) 

Step 2. Build the surrogate model Q~x) from the interpolation set Y and solve the 

optimization problem using the surrogate model within the trust region 

(II xk - Xk II ::; tlk) to obtain xk • Then, compute the ratio: 

Step 3. Update the interpolation set Yk ~ Yk+l. Depending on the value of PIc and the 

number of points currently available in the set, xk is included into the 

interpolation set Y and one of the existing points is dropped from the set, if 

necessary. 

Step 4. Update the trust-region radius tlk ~ tlk+l. Also depending on the value of Ph the 

trust region may be expanded, contracted, or remain the same. If the iteration 

generated a large enough ratio Pk, accept the new point and increase the size of the 

trust region. If the ratio Pk was too small, reject the iterate and decrease the size of 

the trust region. 

Step 5. Update the current iterate. Determine the new point !Jc with the best objective 

function value j{!Jc) = minyiE Y, yi,txk fly;), and recalculate 

f(xk ) - f(!k) 

fl.k = Qk(Xk)-Qk(Xk) 

If the improvement in is deemed sufficient (i1Jc is large enough), Xk+l = !Jc. If not, 
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Step 6. Set k = k+ I and return to Step 1 until convergence 

The main challenge in the DFO algorithm is in Step 3: updating the interpolation 

set Y that is used to obtain the polynomial surrogate model. This is because, depending on 

which point is removed from the interpolation set, the coefficient matrix in equation 

( D.16 ) may become ill-conditioned. 

Two of the approaches for maintaining or improving the poisedness of the 

interpolation set Yare by using the Lagrange interpolation polynomials (LIP) or the 

Newton fundamental polynomials (NFP). A poised set X is defined for a given subspace 

of polynomials if, at the points X, the original function can be interpolated uniquely by 

polynomials from this subspace. A well-poised set is defined as one that remains poised 

under small perturbations; i.e., one that will yield a well-conditioned coefficient matrix 

for the surrogate model (Fan, 2002). 

The idea behind both approaches IS to maintain or Improve the geometric 

properties of the set Yeven when modifications are made to it. The: LIP approach is based 

on comparing the determinant of the coefficient matrix in equation ( D.16 ) using the 

current interpolation set with the one using the new iterate. The geometry of Y is deemed 

adequate when all the points in Yare within 2I':J.k of the new iterate Xk, and when the 

determinant of ( 0.16 ) cannot be doubled by replacing om: of the points in the set with 

another which is distant from Xk by a value of I':J.k. This approach is a trust-region problem 

in itself, and therefore is computationally very demanding (Conn et al., 1997). 

The NFP approach, on the other hand, does not require an optimization 

subproblem, and therefore is not as computationally intensive as LIP. It is based on 

creating or updating a polynomial basis function and checking if the normalization step 

within the procedure generates a zero pivot for the current iterate. If no zero pivots exist, 

the iterate is included, and the set is deemed well-poised. Another main difference 

between LIP and NFP is that the first requires the entire set of polynomials to be built at 

each iteration, whereas the latter enables the user to simply update the polynomial set 

(Conn et al., 1997). 
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DFO has been shown to be globally convergent to a local optimum and to be 

computationally cheaper than other direct search methods, such as the Parallel Direct 

Search method (Torczon, 1991) and Nelder Mead simplex methods (Wright, 1996; Conn 

et aI., 1996). Because it is not a derivative-based optimization method, DFO is very 

robust to process noise, which is very common in process-related problems, until the trust 

region radius approaches the noise levels. Because of its better performance with respect 

to other direct-search methods, DFO was applied to the experimental design formulations 

in this thesis. 

DFO addresses unconstrained optimization of continuous variables. Since 

constraints are not considered in the algorithm, they were included by using introducing 

(external) penalty functions in the objective for constraint violations. Care should be 

taken when choosing penalty weights for a particular problem, since ill-conditioning can 

result when the penalty weights are too large (Nash and SofeL 1996). In this work, values 

for these weights were found by trial and error that gave reasonable optimization 

performance. 

D.4. Software Structure 

This section gives an overview of the software structure used to solve the 

formulations in this thesis. 

Closed-Loop RTO Simulations 

The simulations for CLRTO were done within GAMS using the "LOOP" 

function. For Monte Carlo simulations, the GAMS/MATLAB interface was used. (Figure 

0.1). 
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Matlab I ~ ~I GAM 

Results 
(for visualization) 

Figure 0.1. Framework for Monte Carlo Simulations 

Matlab 
(fmincon 

Figure 0.2. Framework for Monitoring: Number of Comer Points 

1vlonitoring: Approach Based on the Number of Corner Points 

The monitoring approach based on the number of comer points used the 

Matlab/GAMS interface to automatically provide the active set based on the nominal 

parameter values to determine active set (Figure D.2). 

Monitoring: MaxGapint. MaxGapell. E(MaxGapeIJ. E(Gap) 

All monitoring approaches based on the profit gap were calculated in AMPL, 

using IPOPT-C as a solver. The approaches based on expected value consisted in solving 

the MaxGapell problem in AMPL a few times, which was done manually. 
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Performance diagnostics / Ranking parameters 

The CLRTO performance diagnostics method was solved in AMPL, using 

IPOPT -C as a solver. 

Experimental Design: 

The experimental design calculations for the model-based method were done in 

AMPL, using IPOPT-C as a solver. A Matlab implementation of the DFO method (Fan, 

2002) was used for the other experimental design strategy. 

Matlab: 
DFO 

Decision 
variables 

(Fj ) 

-, 
Max Gapel/ 

.. AMPL 
IPOPT-C) 

Figure D.3. Framework for Experimental Design Using DFO 

Since the "expensive" function evaluation, in this case, consisted of the MaxGapel/ 

problem, a Matlab/AMPL interface was used. A schematic can be seen in Figure D.3. 
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Appendix E 

Open-Loop Optimization Results 

Methods developed in Chapter 3 on CLRTO monitoring can be applied to other 

problem classes. In this appendix, we investigate one important issue in optimization of 

uncertain systems: the range of possible outcomes when the system is subject to 

measured disturbances. In this case, the term di5turbance is used to indicate a realization 

of an uncertain variable. In a process plant, a typical disturbance is feed composition, 

which will vary about an average or nominal value. We assume that the model structure 

is correct and disturbances are characterized by parameter uncertainty described by 

intervals or an ellipsoid. We seek the range of objective function values (e.g., profit) that 

would be achieved by optimizing each realization when we' know the parameter values 

without error during each optimization. Thus, we consider a sequence of realizations in 

which (1) we measure the feed composition disturbance (without error), (2) we optimize 

the model, which is perfect when the uncertain parameters have been measured, and (3) 

we implement the results of the optimization perfectly. 

The best and worst cases considered in the open-loop problems are due solely to 

the variation of the disturbances when the best possible response is made to each 

disturbance in a perfect feedforward (open-loop) manner. This is in contrast to the 

monitoring method in Chapter 3, which determines the loss due to model mismatch in 

CLRTO when the disturbances are not measured and a specific feedback control system 

acts upon the process. The idealized scenario considered in this appendix would be useful 

in many engineering analyses. For example, we would be able to determine if a proposed 

plant would be profitable under the best and worst feed composition conditions. If the 

profit for both scenarios were greater than the corporate minimum acceptable rate of 
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return on investment (MARR), the project would be deemed acceptable. If the profit for 

both scenarios were less than the corporate minimum acceptable rate of return on 

investment (MARR), the project would be deemed unacceptable. If the worst-case profit 

were less and the best case greater than the MARR, the expected value would have to be 

evaluated. Naturally, the sensitivity of the results to model error would have to be 

investigated as well before a final decision was made. 

In this appendix, a method for determining the effect of parameter uncertainty on 

the objective function of open-loop systems will be introduced. Then, it will be applied 

to several problems that have been published by other authors. For linear programs, the 

uncertain parameters appear in the objective function, right hand side of constraints and 

left hand side (technological) coefficients multiplied by the variables. Finally, we apply 

the method to a simple nonlinear problem to demonstrate the generality of the method. 

E.l. Description of Method 

Consider the maximization optimization problem in Problem E.l. 

Problem E.1 

z=max 
x 

subject to 

J(c,x) 

g((}in, x) ~ 0 
h(Beq, x) = 0 

In Problem E.l, c and B are the model parameters for the objective function and 

constraints. The subscripts "in" and "eq" correspond to inequality and equality 

constraints, respectively. Note that the inequality constraints can also be bounds on x. The 

following problem will be solved to determine the best and worst cases resulting from 

disturbances that are perfectly measured. 
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Problem E.2 

MaxGapOL = max (J(CBC,XBc)-zwd 

subject to 

x He' zwc ' C HC' CWC ' Bin .HC ' Bin .we , Beq .Hc , Bcq .wc 

g(~nBe, xBd 
h(BeqBC, xBd 

~ 0 
= 0 

zwc = max J(c wc ' , xwc ) 
Xwc 

S. t. 

g( Bin. we, Xwd 
h(Beq we, Xwd 

C min ~ C I!C , Cwe ~ Crnax 

~ 0 
= 0 

Bin."'In S Bm.Hc , Bin .we ~ Bin .max 

B e" .min ~ Beq .Hc , Bcq•wc ~ Be'l ,max 

} 

} 

Constraints of best­
case realization for 
Problem E.1 

Worst-case realization 
for Problem E.1 

Interval bounds 

In order to solve Problem E.2, the optimality conditions of the inner maximization 

problem Zwc are substituted into the formulation, similarly to in the bilevel formulations 

in Chapter 3. Since the parameter values in Problem E.2 are completely independent for 

the best- and worst-case scenarios, it is not necessary to derive the optimality conditions 

of the best-case scenario: the original best-case constraints are placed directly in the 

outermost optimization layer of the bilevel problem, thus easing the computational 

burden of Problem E.2. 

Given an optimization problem of the form: 

minf(x) 
x 

S.t. 

g(X) ~ 0 
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the Karush-Kuhn-Tucker (KKT) optimality conditions can be stated as (Nash and Sofer, 

1996): 

VxL(x,;{) = V,J(x)-;{Vxg(x) = 0 

g(x) ~ 0 
;{l"g(x) = 0 

;{~O 

V~.< L(x,;{) is positive semi-definite 

( E.1a) 

( E.1 b) 
( E.lc ) 

(E.1d) 
( E.l e ) 

For linear programming problems, the first-order optimality conditions (E.1a-d) 

are sufficient to ensure optimality. For nonlinear problems, however, the first-order 

optimality conditions used in the monitoring approach are not sufficient to ensure that a 

local optimal solution has been found. In order to check for local optimality, one may 

check if the Hessian of the Lagrangean function is positive semi-definite at the solution 

found (Clark and Westerberg, 1990). Another option is to make a grid search around the 

solution in order to determine if there are "better" solutions in the vicinity (Forbes et af. , 

1994). In the nonlinear case study with independent parameter variations, the formulation 

using first order optimality conditions was used and the results were confirmed by Monte 

Carlo simulations. 

E.2. Linear Programming Problems 

E.2.I. Uncertain RHS and LHS of Constraints 

In some situations, the user may wish to determine the effect of uncertainty in the 

parameters appearing in the right-hand side (RHS) and left-hand side (LHS) of the 

constraints. The goal of the formulation shown in this appendix is to calculate the 

maximum objective function values for the best-case and worst-case optimization 

scenarios given this uncertainty. Since the uncertain parameter values are different in 

Problem E.2, both the best- and worst-cases are determined in the solution, along with the 

parameter values. 
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Problem E.3 was taken from Chinneck and Ramadan (2000). In this problem, 

there are uncertain parameters in the LHS coefficients and in the RHS coefficients of 

both equality and inequality constraints simultaneously. 

Problem E.3 

XPX2 

subject to 
-XI + X2 ;?: OJ 
O2 XI + X2 = 03 

XI ;?: 0 
o $; X2 $; 3 

where the interval uncertainty regions are given in the following (with the symbol 0 used 

for uncertain parameters to be consistent with the original paper): 

-2 $; 01 $;-1 

2 $; 02 $; 3 

3 $; 03 $; 4 

The formulation in Problem E.2 was used to solve Problem E.3. The worst-case 

scenario sub-problem was replaced by its KKT conditions (first-order optimality 

conditions), and the overall problem was then solved with IPOPT-C. Since Problem E.3 

is a minimization problem, MaxgapoL was calculated as worst case minus best case. At 

the solution given in Table E.l, MaxgapoL is 1.33, where the best case objective is 1.0 

and the worst case objective is 2.33. The values obtained for the parameter and variable 

values at the best- and worst-case solutions agree with the results in Chinneck and 

Ramadan (2000). The different starting points used for this case study can be seen in 

Table E.2. 
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Table E.1. Solution of Problem with Uncertain LHS and RHS Coefficients 

Best-Case Scenario Worst-Case Scenario 
(x} + X2) 1.0 2.33 

x} 1.0 1.67 

X2 0.0 0.67 
(}} -1.67 -1.0 

(}2 3.0 2.0 

(}3 3.0 4.0 

This example has demonstrated the application of the method to a system with 

uncertainty in right- and left-hand side coefficients in equality and inequality constraints. 

E.2.2. Uncertain Objective Function Coefficients 

Another application of the method is to systems with uncertain objective function 

coefficients. This situation is common in process applications where the costs of feed and 

energy and the sales price are uncertain, or when evaluating projects that will begin 

operation in months to years in the future. Another problem taken from Chinneck and 

Ramadan (2000) is used to illustrate this situation. 

Table E.2. Starting Points for the Problem with Uncertain LHS and RHS Coefficients 

Starting Points CPU sec # func. eval # restarts Solution 
x - x - 0 . (}O - e. *. AO - ~ - 0 BC - IVC -, - nom, Be - e- 1.281 2,969 0 Good 

X - X - X • (}II - e. *. AO - AO - A BC - WC - nom, - nom, 8e - we - 1/0111 1.562 3.129 0 Good 

* (}nom was taken as the average value of the interval for each (); 
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Problem E.4 

X!,X2 

subject to 

where: 

3Xl - 5X2 ~ -15 
4Xl - 2.5x2 ~-to 

-Xj + 0.5X2 ~-1 

Xl ~ 2 
X2 ~ -3 

-1 ~ OJ ~ 1 
-1 ~ 02 ~ 1 

McMasterUniversity, Chemical Engineering 

The worst-case scenario subproblem was replaced by its KKT conditions, and the 

overall problem was then solved with IPOPT-C. In the solution (Table E.3), MaxgapOl. 

was equal to 7.38, where the best case objective is -7.38 and the worst case objective is 

0.0. These results are consistent with the values reported by Chinneck and Ramadan 

(2000). 

In Chinneck and Ramadan (2000), optimal values for xl, x2, 81 and 82 are not 

reported. The authors point out that the challenge associated with this test problem is that 

the worst-case scenario of cost coefficients lies in the center of the uncertainty region, at 

(0,0), which coincides with the results in Table E.3. The computational experience can be 

seen in Table E.4. 

Table E.3. Solution of the Problem with Uncertain Cost Coefficients 

Best-Case Scenario 
-4.38 
-3.0 
1.0 
1.0 

-7.38 
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Worst-Case Scenario 
-0.74 
-0.46 
0.0 
0.0 
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Table EA. Starting Points for the Problem with Uncertain Cost Coefficients 

Starting Points CPU sec # func. eva 1 # restarts Solution 
x - x - 0 . (}o - e. *. AD - AD - 0 BC - WC -, - nom, He '- we- 2.016 3,298 0 Good 

X - X - X . (}o - e. *. AD - AD - A BC - WC - nom, - nom , He - W(' - 'Will 2.906 5,729 0 Good 

*(}nom was taken as the average value of the interval for each (}i 

E.2.3. Gasoline-Blending Problem 

This section presents the application of the method to a linear programming 

problem with uncertainty in the LHS coefficients. Even though this topic has been 

covered in Chapter 3, the application of the open-loop method to the gasoline-blending 

problem is shown to emphasize the difference between finding profit bounds due to 

measured disturbances and closed-loop perfonnance monitoring, which finds the profit 

loss due to model mismatch. 

For the gasoline-blending problem, this analysis would be useful for assessing the effect 

of uncertainty in purchased component properties prior to the purchase; i.e. , before the 

material was delivered and the properties were (exactly) measured. For this case study, 

intervals of ± 1.0 (octane numbers, psi) were assigned to all parameters. After applying 

Problem E.2 to this case study (without the feedback information), the results in Table 

E.5 are obtained, where PrBc = $ 14,090.4 / day (which is the same value as the MAP 

calculated in Section 3.2.2), and Prwc = $ 8,569.3 / day. 

Table E.S. Gasoline-Blending Problem: Open-Loop Results 

Qm.·, Q/II'/' Q Oc/ Iii'I' 
i. liC i. IiC Fi.BC UJ'( ' Qi.JI'C Fi.wc 

(octane numbers) (2si) (bbl / da~) octane numbers) ~si ) (bbl / da~) 
Reformate 94.1 1.7 5,258.2 92.1 3.7 5,815.0 
LSR Naphtha 65.3 9.9 1,353.0 63.3 11.9 867.7 
n-Butane 93 .5 137.0 388.8 91.5 139 314.7 
FCC Gas 84 .6 6.4 0.0 83.7 7.3 0.0 
Alkvlate 96.6 6.7 0.0 96.6 6.7 0.0 

t 
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Due to the nonconvexity of Problem 3.5, it was solved for different starting points 

in order to attempt to detect better local optima. The starting points can be seen in Table 

E.6. 

All starting points yielded the same objective function value. The difference 

between best- and worst case scenarios of ($ 14,090.4/day - $8,569.3/day = ) $5,521.1/day 

obtained in this section is much larger than the closed-loop maximum profit gap 

(Maxgapint) of $ 3,024.9/day in Chapter 3. However, we recall that the two approaches 

have very different goals. The goal in Chapter 3 was to determine what would be the 

largest profit loss for the closed-loop system with nominal parameter values in the 

CLR TO model. In that case, the uncertain plant parameters were assumed unmeasured, 

and the two cases were evaluated using the same uncertain parameter values. In this 

problem, the goal is to determine the largest dIfference between a "perfect" optimization 

given the best-case plant parameter scenario, and a "perfect" optimization model given 

the worst-case plant parameter scenario. The two cases involve different values of the 

uncertain parameters. This would be the case if the plant parameters were measured. 

Q } ,O _ QJ.o _ QJ 
i.HC - i,WC - i,lImll 

F;~ = [1,400.0 1,400.0 1,400.0 1,400.0 1,400.0] 

F;°2 = [5,695.6 942.5 361.0 0.0 0.0] 

Table E.6. Starting Points for the Open-Loop Gasoline-Blending Problem 

Starting Points CPU sec # func. eval # restarts Solution 
FO - FO - FO ' Be - 'we - ' 1 I . I . I, ; A~e = ~e = 0 14.500 7,973 0 Good 
FO - FO - FO . He - . we - . 1 I. I . I . ; 2~c = ~e = 2nom 14.594 7.953 0 Good 

F; ~H(, = Fi ~rolll = F; ~2 . 2° - 2° - 0 ' lJe - 110111- 15.375 8,849 0 Good 
FO - FO - FO i,Be - i.IIOIII - i.2 . 2° - 2° - 2 ' Be - 110111 - nom 14.250 7,976 0 Good 
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E.2.4. Summary 

In the previous sections, the open-loop applications of the monitoring criteria 

developed in this work to linear problems present some advantages over the best 

published method to date on evaluating the effects of parameter uncertainty on linear 

programming problems (Chinneck and Ramadan, 2000). 

• First, several cases were solved in a single optimization problem, where no 

enumeration was required. These cases involved: LHS and RHS parameter 

uncertainty, uncertain equality constraints, and uncertain cost coefficients in problems 

where the worst-case values were not at the bounds of the interval. 

• Second, the monitoring methods provide objective function and optimization variable 

values for the best- and worst-case scenarios, as well as their respective parameter 

realizations. 

• Third, uncertainty using deterministic (interval) or stochastic correlation (ellipsoidal) 

characterizations can be handled. This will be demonstrated in the following section 

for a nonlinear system, but the method can also be applied to linear problems. 

The method for evaluating the effects of measured disturbances on optimal results 

is applied to a nonlinear system in the following section. 

E.3. Nonlinear Programming Problems: Reactor-Separator 

System 

Consider the reactor-separator system shown in Figure E.l , which represents a 

problem from Grossmann and Sargent (1978). The isothermal continuous flow stirred 

tank reactor (CSTR) with volume V is fed with fresh feed and a recycle stream with 

different compositions. The flow and concentration of A in the fresh feed are F.-Jo and c.~ o. 

The components leave the reactor with flow F and with molar fractions Xa , X b, Xn Xy and 

xy. It is assumed that the desired product R only leaves the system through the top of the 
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(1-/11,:\: }, 

Figure E.1. Reactor-Separator System 

distillation column and that pure R is obtained at the rate of F,., The flowrate at the 

bottom of the column is the reactor effluent that is not recycled. Fraction a of 

components A and B and fraction fJ of components X and Y are recycled back to th~ inlet 

stream of the reactor. The separation required by the model would require several stages; 

however, Figure E.l does not show the separation units in detail to be consistent with the 

figure in the original paper from Grossmann and Sargent (1978). 

The goal of the nominal optimization problem is to minimize the design and 

operating costs, which in this case are comprised of the design cost (assumed to be 

proportional to reactor volume) and the cost for recycle (pumping equipment and 

operating cost for pumping and heating/cooling). The uncertain optimization problem 

handles variation in reaction rate constants; therefore, the volume of the reactor V, flow F 

and fractions Xa, Xb, X,., Xx, xY' a and f3 must be calculated subject to the worst-case 

realization of the uncertain parameters. The formulation for this problem is simpler than 

in Problem E.2 since only the set of KKT conditions corresponding to the worst-case 

scenario needs to be included. The steady-state problem and uncertainty in the rate 

constants are given in the following problem. 
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Problem E.S 

mm 10V + 0.125 [aF(xa + Xb) + {3F(xx + Xy)] 
Xu ,xb ,Xr,X. ,Xy ,F, V,a, {3 

subject to 
FAO -xaF (i-a) - V CaO (kb + kx) Xa = 0 
-XbF(l-a)+VCao[kbXa-(ki?+ky)Xb] = 0 
- XxF (1-/1) + V CaO kxXa = 0 
- XyF (i -/1) + V CaO ¥b = 0 
-xrF+ VCAok,xb = 0 
Fr -x,F ~ 0 
XA+XB+XR+XX+Xy -1 = 0 

where the uncertain parameters have the following ranges. 
0.32 h-1 ~ kb ~ 0.48 h- 1 

0.08 h-1 ~ k, ~ 0.12 h- I 

0.016 h-1 ~ kx ~ 0.024 h-1 

0.008 h- 1 ~ ky ~ 0.012 h- J 

The model structure takes advantage of the conservation of moles in the specific 

reaction stoichiometry in Figure E.1. As a result, the reactor inlet and outlet molar flows 

rates are equal, and the inlet and outlet total molar concentrations are the same, at CAO. 

The results for the nominal optimization model (using the nominal parameter values from 

Table E.7) can be seen in Table E.8. 

Table E.7. Fixed Parameters and Nominal Values of Uncertain Parameters for the 
Reactor-Separator System 

Parameter Nominal Values 
Fao 100 mole/h 
Fr 70 molelh 
CaO 100 mole/m3 

kb 0.4 h- 1 

kr 0.1 h- 1 

kx 0.02 h- 1 

ky 0.01 h-1 
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Table E.S. Results for Reactor-Separator System - Nominal Parameter Values 

Objective = $ 151.916 
V = 12.3477 m3 

F = 327.506 molelh 
a= 0.9250 
(3 = 9.6ge-1O 

kb = 0.40 h-1 

kr = 0.10 h-1 

kx = 0.0020 h-1 

ky = 0.010 h-1 

Xa = 0.1841 
Xb = 0.5669 
Xr = 0.2137 
Xx = 0.0139 
Xv = 0.0214 

In this case study, there was no need to determine the best-case scenario, since the 

goal was to determine the overdesign needed due to parametric uncertainty. By 

overdesign, we mean the increase in reactor volume (from the nominal value in Table 

E.8) and changes in plant operating conditions that yields the lowest (optimal) cost when 

the uncertain parameters are within their uncertainty bounds. Naturally, excessive 

overdesign of the reactor volume will result in unjustified costs. 

Grossmann and Sargent (1978) calculated the gradients of equations numerically 

in order to simplify the solution strategy. In their work, wlcertain coefficients in equality 

constraints were fixed at the values that were selected to be worst case based on 

"engineering knowledge" in order to simplify the solution strategy. The method outlined 

in Section E.l determines these worst case coefficient values automatically. 

The results are consistent with expectations. The recycle of unreacted A and B is 

nearly maximized (a::::::l), while the recycle of undesired X and Y is essentially zero 

Table E.9. Results for Reactor-Separator System - Independent Parameters, Interval 

Uncertainty 

Objective = $ 185.115 
V=15.1188 m3 

F = 371.4 molelh 
a= 0.9552 

{3 = 2.25e-12 

kb = 0.32 h- 1 

kr = 0.08 h- 1 

kx = 0.0024 h- 1 

ky = 0.012 h-1 
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Table E.I0. Starting Points Used for Obtaining the Solution in Table E.9 

CPU 
Starting Points sec # func. eval # restarts Solution 

x = 0.2 ; V,F= 1.0; a, /3= 0.5, k() = knom *; AO = 0 0.031 46 0 Good 
Alll!..aramelers and variables at nominal values 0.047 29 0 Good 

* knom was taken as the average value of the interval for each k; 

( ~:::::O). The solution was clearly obtained at the worst-case scenarIO of the parameter 

values, which is the most unfavourable to the generation of desired product R (ke and kr -­

reaction rates on the main product route- at their lower bounds, and kx and k} - reaction 

rates on side-reaction routes - at their upper bounds). 

The values obtained for the reaction rate constants In Table E.9 match those 

selected by Grossmann and Sargent (1978), which indicates that their judgements were 

good. Grossmann and Sargent (1978) reported an objective function of $18566 and a 

volume V=15.5854 m3
. Table E.9 shows a smaller volume (k~IS.1188 m3

) and lower 

cost ($185.115). Our results were verified by running 10,000 Monte Carlo simulations 

(optimizations) on uniformly distributed unceItain parameters, which yielded a worst­

case objective function of $185.115 and V -= 15.119 m3
. In the next sections, the effect of 

deterministic and stochastic correlation among the parameters is presented. 

E.3.1. Deterministic Parameter Correlation 

The approach in Section E.l can be easily modified to incorporate deterministic 

knowledge about parameter correlation. In order to illustrate this, we defined a 

modification to the Reactor-Separator problem that was not defined in the original paper. 

If reactions A~B and B~R use the same catalyst active sites, the total number of these 

sites is constant, and the catalyst manufacturing process has variability in the production 

of the ratio of sites, there would be negative correlation between reaction rate constants 

kB and kR. When adding the deterministic correlation structure given in equation ( E.2 ) as 

another equality constraint in the original problem, the results in Table E.l l are obtained. 
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Table E.1t. Results for Reactor-Separator System - Worst-Case Scenario with 
Deterministic Correlation 

Objective = $ 172.4 
V = 14.0522 m3 

F = 354.8 molelh 
a= 0.9442 
[3= 3.2e-13 

kb = 0.48 h- I 

kr = 0.08 h- I 

k.y = 0.024 h- I 

kv = 0.012 h- I 

(k ll - k1i .l/om)= 
(k ll .max - kn.min )(k _ k ) 
(k _ k . ) R R.I/om 

R.max /l .mon 

xa=0.1374 
Xb = 0.6227 
Xr = 0.1972 
Xx = 0.0131 
Xy = 0.0296 

(E.2 ) 

Since the parameters kB and kR are negatively correlated, the method identified the 

worst-case scenario as having kB at its upper bound and kR at its lower bound. This 

indicates that, when compared to the nominal case, A. would have a faster conversion to 

B, while B would take longer to be converted to R. fhe results in 1 ahle E. j 1 were 

confirmed by running 1,000 Mont~ Carlo simulations, in which the largest (worst-case) 

objective function found was of$171.9 with a corresponding volume of V= J4.0321 m i. 

This would support the fact that th~ parameter settings in Table E.l1 correspond 

to lhe worst-case scenario can also be confirmed by simulating the opposite, besH.:ase, 

scenario (giving the largest kR and the smallest kB possible), which yields a much smaller 

reactor volume (V = 11.583 mJ
) and a lower cost ($143.7). 

The reason why the best-case reactor volume is smaller than the nominal one 

(11.583 m' versus 12.3477 m3
) is because the negative correlation structure requires one 

of the reaction rates to be below its nominal value, thus resulting in a faster conversion of 

reactants. Even though the other rate is above its nominal value, in this case, the 

reduction in one of the rates made the overall conversion (A ~ R) higher, leading to a 

smaller residence time. 

E.3.2. Stochastic Parameter Correlation 

In this case, we introduce ellipsoidal correlation in the uncertain parameters that 

was not in the original paper. We assume that the four reaction rate constants [kh kr k.t 
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ky]T are multivariate nonnally distributed with the variance-covariance matrix shown 

below. 

6.746. 10 -1.670.10-4 0 0 

V(k ) -= 
- 1.670.10- 4.216.10-5 0 0 

0 0 1.687.10-6 0 

0 0 0 4.216.10- 7 

In order to obtain the values used in the variance-covariance matrix In this 

example. the reaction rates were assumed to belong to a multivariate normal distribution 

with 4 degrees-of-freedom, at 95% confidence levels. The largest deviation allowed for 

each individual reaction rate was the absolute deviation from the nominal value reported 

in Problem E.5, which are the interval bounds given by Grossmann and Sargent (1978). 

Note that the rate constants kb and kr have a negative correlation (= -0.99), so that the 

uncertainty is qualitatively similar to Section E.3.I . In a true plant, the correlation 

structure in V(k) could be obtained from designed laboratory or plant experiments. This 

correlation infonnation is included in the problem as the additional inequality constraint ( 

E.3 ). 

(E.3 ) 

In equation ( E.3 ), k is the vector of uncertain parameters, a is the confidence 

level, and do! is the number of degrees of freedom. which is equal to the number of 

uncertain parameters in the ellipsoid (Rooney and Biegler, 2001). In this example, a = 

95% and the number of degre"es-of-freedom is four. 

A projection of the four-dimensional parameter distribution on the kb, kr plane can 

be seen in Figure E.2. The circles correspond to a diagonal matrix V(k), when there is no 

correlation between kb and kn and the fi lled dots correspond to the correlated case. The 

bold rectangle corresponds to the interval description of uncertainty used in Problem E.2. 
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Figure E.2. Parameter Uncertainty Descriptions - Reactor-Separator Case Study (0 - no 

correlation; • - correlation = -0.99) 

Table E.I2. Results for Reactor-Separator System - Stochastic Correlation 

Objective = $ 171.2 kb = 0.4789 h- I 
Xa = 0.1385 

V = 14.0132 m3 kr = 0.0800 h- I 
Xb = 0.6242 

F = 348.6 molelh kx = 0.020 h- I 
Xr = 0.2008 

a = 0.9350 ky = 0.0100 h-1 
Xx = 0.0112 

/1= 5.1e-l0 Xy = 0.0253 

The solution for the worst-case is given in Table E.12. As can be observed in 

Table E. 12, the directionality of the results was the same as when considering 

deterministic correlation between kb and kr; i.e., kb was above its nominal value, while kr 

was below its nominal value. The design for the system with ellipsoidal uncertainty 

contains a slightly smaller reactor volume and lower cost than the interval uncertainty 

with deterministic correlation, thus being less conservative. 

The computational experience for the cases with deterministic and stochastic 

parameter correlation was very similar to the one with no correlation: very short 

computation times were needed « 0.1 CPU seconds), no restarts were required, and the 

same optimal solution was obtained given different starting points for both cases. 
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E.4. Summary 

This appendix demonstrates the application of the monitoring methods developed 

in Chapter 3 to open-loop systems. In these systems, the method detennines the worst­

(best-) case scenario of an optimization problem (without feedback) for uncertain 

parameters described by intervals, deterministic correlation or statistical correlation. 

There are likely many industrial "open-loop" applications in this category for process 

design and process operations, where the effects of decisions cannot be measured until 

the operation has been completed. 

Previously published methods for evaluating the effect of uncertainty on the 

objective function of linear programming problems require multiple enumerations for 

equality constraints and cannot deal with stochastic parameter correlation. The methods 

presented in this thesis require only a single solve and provide not only the best- and 

worst-case objective function values, but also the variable values and uncertain parameter 

values at the solution. The advantages of the methods developed in this work are 

achieved by accepting the additional burden of solving a bilevel optimization problem, 

which is refonnulated as a non-convex, single-level problem. 

A small nonlinear problem was solved to confirm that the method can be 

extended to nonlinear systems. However, in this case, first-order conditions are not 

sufficient to guarantee local optimality. The use of first order conditions is consistent 

with Clark and Westerberg (1990). After a solution is obtained, the second order 

conditions must be verified in order to establish that a locally optimal solution has been 

found. 
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Appendix F 

Full Formulation of MaxGapint 

This appendix presents the complete formulation of Problem 3.5 (MaxGapm') as a 

single-level optimization. When substituting the inner optimization problems of Problem 

3.5 with their optimality conditions, the following optimization problem is obtained: 

Problem F.l: 

Maxgapinl = max (PrBe -Prnom,CL) 

subject to 
#illeq 

_. V . Pr - " A V : g . = 0 I i no", lI(1m .< I. ~ 1I0011 ,k I i ncllfl /rOJJl ,k 

A..mJIII .kgl1olll .k = 0 

gllolll,k ~ 0 

A"OII1 .k ~ 0 

hi 

#illeq 
- V /.; Be Pr HC - L AHC .k V j ' ; 8(' g BC,k = 0 

k =1 

AIJc'k g BC .k = 0 

gJiC,k ~ 0 

ABC .k ~ 0 
II II 

£ i I F.llo/ll = I F.''''III (Q! - Q/"Olll ) 
i=1 i=1 

QJ < Q.I < QJ 
i .min - ; - i .max 

, k = I. .. #ineq 

, k = l... # ineq 

, j = oct, RVP 

, j = oct, RVP 

2 0 

KKT ondi1ion 

for ominal 

CLRT 

KKT condition 

~ r "Be t" 

CLRTO 

} Interval Bounds 
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where, for the KKT conditions of the nominal CLRTO model: 

n 

Prnom,CL = ~)value-cost;)F;'/IOIII 
;=1 

n n 

gnom,l = - L.F;,nom{Qt:m + c ael 
) + Q:"",max L.F;,nom ~ 0 

I ~ I I- I 

n n 

gnom,2 = - L. F;,nom (Qt::.. + c RVP 
) + Q~~max L. F;,nom ~ 0 

/:1 ,a l 

n n 

gnom,3 = L. F;,nom (Q;~m + c ael 
) - Q::"",min L. F;.nolll ~ 0 

""I 1=1 

n n 

g~m,4 -- L.F;,nom(QI~nv:", + c RVP 
) - Q~:m;nL.F;,nom ~ 0 

;=1 1=1 

n 

gnom,5 = - L. F;.nom + Fb1end,maJt ~ 0 
;=1 

n 

gnom,6 = L.F;,no", - Fb1end,m;n ~ 0 
;=1 

gnom,7 = - FRef,nom + FRef,mtB ~ 0 

gnom,8 = FRef,nom - FRef ,m;n ~ 0 

gnom,9 = - F LSR.nom + F LSR .1IIlDt ~ 0 

gnom,ll = - FBUI.nO", + FBuI,,,,ax ~ 0 

gnom,12: FBuI,nom - FBuI.m;n ~ 0 
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gnom,14 : FFcc.nom - FFcc,min ~ 0 (F. IS) 

gnom,15 : - FAlk,nom + FAlk,max ~ 0 (F.16 ) 

gnom,16 : FAlk.nom - FAlk ,min ~ 0 (F.17 ) 

For the KKT conditions of the "best" CLRTO, the equations are very similar to equations 

(F.l) to (F.17). The only differences are that (1) the sUbscript nom is replaced by the 

subscript Be, and (2) in equations (F.2) to (F.S), there is no feedback term e, since in this 

case, there is no mismatch between the model and the plant. 
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