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Abstract

This thesis is concerned with particle subgrid scale (SGS) modeling in large-eddy

simulation (LES) of particle-laden turbulence. Although most particle-laden LES

studies have neglected the effect of the subgrid scales on the particles, several particle

SGS models have been proposed in the literature. In this research, the approximate

deconvolution method (ADM), and the stochastic models of Fukagata et al. (2004),

Shotorban and Mashayek (2006) and Berrouk et al. (2007) are analyzed. The particle

SGS models are assessed by conducting both a priori and a posteriori tests of a peri-

odic box of decaying, homogeneous and isotropic turbulence with an initial Reynolds

number of Reλ = 74. The model results are compared with particle statistics from

a direct numerical simulation (DNS). Particles with a large range of Stokes numbers

are tested using various filter sizes and stochastic model constant values. Simulations

with and without gravity are performed to evaluate the ability of the models to ac-

count for the crossing trajectory and continuity effects. The results show that ADM

improves results but is only capable of recovering a portion of the SGS turbulent

kinetic energy. Conversely, the stochastic models are able to recover sufficient energy,

but show a large range of results dependent on Stokes number and filter size. The

stochastic models generally perform best at small Stokes numbers. Due to the random

component, the stochastic models are unable to predict preferential concentration.

iii



Acknowledgements

First and foremost, I would like to thank my supervisors Dr. Lightstone and Dr. Tullis

for their support and guidance throughout my graduate studies. I am also thankful

for the financial support of the Natural Sciences and Engineering Research Council

of Canada, the Ontario Graduate Scholarship program, and the Queen Elizabeth

II Graduate Scholarships in Science and Technology program. Finally, this work

was made possible by the computing facilities of the Shared Hierarchical Academic

Research Computing Network.

iv



Contents

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables xv

Nomenclature xvi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Literature Review 4

2.1 Fluid phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Direct numerical simulation (DNS) . . . . . . . . . . . . . . . 5

2.1.3 Reynolds-averaged Navier-Stokes equations (RANS) . . . . . . 6

2.1.4 Large-eddy simulation (LES) . . . . . . . . . . . . . . . . . . 7

2.2 Particle phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Particle equation of motion . . . . . . . . . . . . . . . . . . . 10

2.2.2 Taylor’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Particle phenomena . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Particle-laden turbulence modeling . . . . . . . . . . . . . . . 19

v



2.3 Particle subgrid scale modeling . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Approximate deconvolution method (ADM) . . . . . . . . . . 23

2.3.2 Model of Fukagata et al. (2004) . . . . . . . . . . . . . . . . . 24

2.3.3 Model of Shotorban and Mashayek (2006) . . . . . . . . . . . 26

2.3.4 Model of Berrouk et al. (2007) . . . . . . . . . . . . . . . . . . 27

2.3.5 Other particle SGS models . . . . . . . . . . . . . . . . . . . . 30

2.3.6 Relevant studies . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Methodology 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Testing methodology . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Fluid phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 LES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Particle phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Particle tracking . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Particle parameters . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.4 Selection of t0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.5 Particle statistics . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.6 DNS fluid particle results . . . . . . . . . . . . . . . . . . . . 55

3.4 Particle subgrid scale models . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 ADM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Gaussian random numbers . . . . . . . . . . . . . . . . . . . . 60

3.4.3 Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.4 Lagrangian fluid SGS timescale . . . . . . . . . . . . . . . . . 61

3.4.5 SGS turbulent kinetic energy and dissipation rate . . . . . . . 61

3.4.6 Model of Fukagata et al. (2004) . . . . . . . . . . . . . . . . . 62

3.4.7 Model of Shotorban and Mashayek (2006) . . . . . . . . . . . 63

3.4.8 Model of Berrouk et al. (2007) . . . . . . . . . . . . . . . . . . 64

vi



3.4.9 DNS pressure gradient . . . . . . . . . . . . . . . . . . . . . . 65

3.4.10 Model constants . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Results and Discussion 71

4.1 A priori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Standard tests with zero gravity . . . . . . . . . . . . . . . . . 72

4.1.2 Standard tests including gravity . . . . . . . . . . . . . . . . . 87

4.1.3 Filter size test . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1.4 Model constants test . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 A posteriori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Conclusions and Recommendations 125

5.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . . 130

A ADM Theory 132

B DNS Fluid Results and Validation 135

C Particle Independence Tests 144

Bibliography 147

vii



List of Figures

2.1 Example of a fluid velocity time trace at a point in space in DNS,

RANS and LES simulations. . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Coordinate system for the dispersion of a particle in a turbulent flow.

The particle is shown at its initial time t = 0, and at some later time t′. 13

2.3 Illustration of a cloud of particles initially released from a point source

in a turbulent flow. Dispersion is reduced when a mean drift velocity

exists due to the crossing trajectory and continuity effects. The con-

tintuiy effect causes dispersion to be further reduced in the transverse

directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Dispersion in the mean drift and transverse directions, normalized by

fluid particle dispersion, as a function of mean drift velocity. Dis-

persion is reduced due to crossing trajectory and continuity effects.

Reproduced from Csanady (1963). . . . . . . . . . . . . . . . . . . . . 17

2.5 Snapshot of the particle field from a particle-laden DNS with (a) fluid

particles and (b) intermediate sized particles (Strutt et al., 2011). . . 19

3.1 Diagram illustrating a priori and a posteriori testing methods. . . . . 37

3.2 Turbulent kinetic energy of the FDNS fluid fields normalized by the

turbulent kinetic energy of the DNS. . . . . . . . . . . . . . . . . . . 41

3.3 Turbulent kinetic energy spectra of the FDNS fluid fields at t = 2.5s. 42

3.4 Turbulent kinetic energy of the LES and FDNS fluid fields normalized

by the turbulent kinetic energy of the DNS. The LES and FDNS filter

size is ∆ = 8hDNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Turbulent kinetic energy spectra of the LES, FDNS and DNS fluid

fields at various times. The LES and FDNS filter size is ∆ = 8hDNS. 44

viii



3.6 Stokes number as a function of time for the nine different types of

particles listed in Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Time development of ud/u
′
f,rms for ud = 0.1 m/s. The importance

of the crossing trajectory and continuity effects increases as ud/u
′
f,rms

increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Mean squared relative velocity of P7 type particles in the ∆ = 16hDNS

FDNS flow field with zero gravity, using three different sets of par-

ticle initial conditions. The particles are independent of their initial

conditions once the lines converge. . . . . . . . . . . . . . . . . . . . . 51

3.9 Dispersion of fluid particles in the DNS flow field compared with Tay-

lor’s theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Time development of the particle and seen turbulent kinetic energies

(left), and fractal dimension (right) for fluid particles in the DNS flow

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Ratio of ADM to FDNS turbulent kinetic energies as a function of Van

Cittert series truncation level. FNDS field is ∆ = 8hDNS at time t = 0. 58

3.12 Turbulent kinetic energy spectra of the DNS, FDNS, and ADM velocity

fields at time t0 = 0.5 s for the four different filter sizes. . . . . . . . . 59

3.13 Model constant C0 calculated from the DNS and FDNS velocity fields

using equation (3.36). . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.14 Model constant C0 calculated from the DNS and FDNS velocity fields

using the Lagrangian structure function. . . . . . . . . . . . . . . . . 69

3.15 Model constant Cε calculated from the DNS and FDNS velocity fields

using equation (3.42). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Turbulent kinetic energy of the fluid seen by the particles at time t =

4.0 s. A priori testing with filter size ∆ = 16hDNS, standard model

constants, and zero gravity. . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Turbulent kinetic energy of the particles at time t = 4.0 s. A priori

testing with filter size ∆ = 16hDNS, standard model constants, and

zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



4.3 Turbulent kinetic energy of the filtered fluid velocity at the particles’

position at time t = 4.0 s. A priori testing with filter size ∆ = 16hDNS,

standard model constants, and zero gravity. . . . . . . . . . . . . . . 75

4.4 Lagrangian autocorrelation coefficient function of seen fluid velocity

in direction x3 along a particle’s path, for various particle types with

initial time t = t0. A priori testing with filter size ∆ = 16hDNS,

standard model constants, and zero gravity. . . . . . . . . . . . . . . 77

4.5 Lagrangian autocorrelation coefficient function of particle velocity in

direction x3, for various particle types with initial time t = t0. A

priori testing with filter size ∆ = 16hDNS, standard model constants,

and zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Particle mean square dispersion in direction x3 at time t = 4.0 s. A

priori testing with filter size ∆ = 16hDNS, standard model constants,

and zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Time development of particle mean square dispersion in direction x3

for various particle types. A priori testing with filter size ∆ = 16hDNS,

standard model constants, and zero gravity. . . . . . . . . . . . . . . 81

4.8 Time development of particle turbulent diffusivity in direction x3 for

various particle types. A priori testing with filter size ∆ = 16hDNS,

standard model constants, and zero gravity. . . . . . . . . . . . . . . 82

4.9 Fractal dimension at time t = 4.0 s. A priori testing with filter size

∆ = 16hDNS, standard model constants, and zero gravity. . . . . . . . 84

4.10 RDF for various separation distances at time t = 4.0 s. A priori test-

ing with filter size ∆ = 16hDNS, standard model constants, and zero

gravity. The variable (ηK)0 is the Kolmorov length scale at time t0. . 85

4.11 Particle and seen fluid turbulent kinetic energy at early and late times.

A priori testing with filter size ∆ = 16hDNS, standard model constants,

and drift velocity ud = 0.1 m/s. . . . . . . . . . . . . . . . . . . . . . 88

4.12 Time development of particle turbulent kinetic energy for particle type

P1. A priori testing with filter size ∆ = 16hDNS, standard model

constants, and drift velocity ud = 0.1 m/s. . . . . . . . . . . . . . . . 89

x



4.13 Lagrangian autocorrelation coefficient function of seen fluid velocity in

directions x1 (transverse direction) and x3 (mean drift direction) along

a particle’s path, for two particle types with initial time t = t0. A

priori testing with filter size ∆ = 16hDNS, standard model constants,

and drift velocity ud = 0.1 m/s. . . . . . . . . . . . . . . . . . . . . . 91

4.14 Lagrangian autocorrelation coefficient function of particle velocity in

direction x1 for two particle types with initial time t = t0. A priori

testing with filter size ∆ = 16hDNS, standard model constants, and

drift velocity ud = 0.1 m/s. . . . . . . . . . . . . . . . . . . . . . . . . 92

4.15 Time development of DNS particle dispersion and dispersion rate nor-

malized by the zero gravity results for particle type P5 with drift ve-

locity ud = 0.1 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.16 Time development of particle mean square dispersion in directions x1

(transverse direction) and x3 (mean drift direction) normalized by the

DNS zero gravity results for two particle types. A priori testing with

filter size ∆ = 16hDNS, standard model constants, and drift velocity

ud = 0.1 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.17 Time development of particle turbulent diffusivity in directions x1

(transverse direction) and x3 (mean drift direction) normalized by the

DNS zero gravity results for two particle types. A priori testing with

filter size ∆ = 16hDNS, standard model constants, and drift velocity

ud = 0.1 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.18 Fractal dimension at time t = 4.0 s. A priori testing with filter size

∆ = 16hDNS, standard model constants, and drift velocity ud = 0.1 m/s. 96

4.19 Turbulent kinetic energy of the particles at time t = 4.0 s. A priori

testing with filter size ∆ = 16hDNS, standard model constants, and

drift velocity ud = 0.1 m/s. Superscript * denotes model of Berrouk

et al. (2007) with particle inertia correction neglected. . . . . . . . . . 97

4.20 Turbulent kinetic energy of the particles as a function of resolved en-

ergy at time t = 4.0 s. A priori testing with standard model constants

and zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xi



4.21 Turbulent kinetic energy of the fluid seen by the particles for particle

type P5 as a function of resolved energy at time t = 7.0 s (left), and as

a function of time for filter size ∆ = 8hDNS (right). A priori testing

with standard model constants and drift velocity ud = 0.1 m/s. . . . . 100

4.22 Lagrangian autocorrelation coefficient function of particle velocity in

direction x3, for particle type P5 with initial time t = t0. A priori

testing with various filter sizes, standard model constants, and zero

gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.23 Particle mean square dispersion in direction x3 as a function of re-

solved energy at time t = 7.0 s. A priori testing with standard model

constants and zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . 104

4.24 Particle turbulent diffusivity in direction x3 as a function of resolved

energy at time t = 7.0 s. A priori testing with standard model con-

stants and zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.25 Time development of the fractal dimension for particle type P5. A

priori testing with various filter sizes, standard model constants, and

zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.26 Relationship between the parameters λ, α and β in the model of Fuka-

gata et al. (2004). Mathematical relationship is given in equation (2.39).108

4.27 Turbulent kinetic energy of the particles at time t = 4.0 s from the

model of Shotorban and Mashayek (2006). A priori testing with filter

size ∆ = 16hDNS, various model constants, and zero gravity. . . . . . 111

4.28 Time development of the turbulent kinetic energy of the fluid seen

by the particles for particle type P5 from the model of Shotorban and

Mashayek (2006). A priori testing with filter size ∆ = 16hDNS, various

model constants, and drift velocity ud = 0.1 m/s. . . . . . . . . . . . . 112

4.29 Lagrangian autocorrelation coefficient function of seen fluid velocity

in direction x3 along a particle’s path, for various particle types with

initial time t = t0 using the model of Shotorban and Mashayek (2006).

A priori testing with filter size ∆ = 16hDNS, various model constants,

and zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xii



4.30 Particle mean square dispersion in direction x3 at t = 7.0 s from the

models of Shotorban and Mashayek (2006) and Berrouk et al. (2007).

A priori testing with filter size ∆ = 16hDNS, various model constants,

and including/neglecting gravity. . . . . . . . . . . . . . . . . . . . . 115

4.31 Particle turbulent diffusivity in direction x3 at t = 4.0 s from the models

of Shotorban and Mashayek (2006) and Berrouk et al. (2007). A priori

testing with filter size ∆ = 16hDNS, various model constants, and

including/neglecting gravity. . . . . . . . . . . . . . . . . . . . . . . . 116

4.32 SGS turbulent kinetic energy of the LES and FDNS fluid fields normal-

ized by the turbulent kinetic energy of the DNS. The LES and FDNS

filter size is ∆ = 8hDNS. . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.33 Turbulent kinetic energy spectra of the DNS, LES, and ADM velocity

fields at time t0 = 0.5 s. The LES filter size is ∆ = 8hDNS. . . . . . . 119

4.34 Particle and seen fluid turbulent kinetic energy at time t = 4.0 s. A pos-

teriori testing with filter size ∆ = 8hDNS, standard model constants,

and zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.35 Lagrangian autocorrelation coefficient function of seen fluid velocity

in direction x3 along a particle’s path, for various particle types with

initial time t = t0. A posteriori testing with filter size ∆ = 8hDNS,

standard model constants, and zero gravity. . . . . . . . . . . . . . . 121

4.36 Particle mean square dispersion in direction x3 at time t = 4.0 s. A pos-

teriori testing with filter size ∆ = 8hDNS, standard model constants,

and zero gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.37 Fractal dimension at time t = 4.0 s. A posteriori testing with filter size

∆ = 8hDNS, standard model constants, and zero gravity. . . . . . . . 124

A.1 Filtering and ADM of the function y = sin(x) on a coarse grid. The

variable y is the original unfiltered function, ỹ is the filtered function,
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Chapter 1

Introduction

1.1 Background

Particle-laden turbulent flows are encountered in many engineering applications. Some

of the most common examples include the delivery of aerosol medications, liquid

droplets of fuel in combustion systems, aerosol sprays, and atmospheric flows, such

as pollutant dispersion from a chimney. Therefore, engineers and scientists require

mathematical models that predict the motion of particulates in turbulent flows.

Modeling of particle-laden turbulent flows first requires calculation of the flow

field, followed by the particle phase. Often, the turbulent velocity field is obtained

using Reynolds-averaged Navier-Stokes equations (RANS). This is by far the most

commonly used methodology in industry due to its relatively low computational ex-

pense. In RANS the entire range of turbulent scales are modeled, and thus additional

modeling is required to account for the effect of the turbulence on the particles.

Alternatively, direct numerical simulation (DNS) can be used to solve for the

turbulent flow field without any modeling. In DNS the governing equations are solved
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directly and the entire range of turbulent scales are fully resolved. Consequently, the

computational expense is extremely high, and as such DNS is impractical for flows of

industrial interest. However, DNS can be a valuable research tool since it yields very

accurate results that do not contain any errors due to modeling.

The focus of this thesis is modeling of particle-laden turbulence using large-eddy

simulation (LES) to solve for the turbulent velocity field. LES is a compromise

between RANS and DNS. In LES, the large turbulent structures are resolved, and only

the small turbulent motions, which are named the subgid scales (SGS), are modeled.

Compared to RANS, LES with particles would be expected to yield superior results,

including the ability to account for the interactions between particles and turbulent

structures. Furthermore, due to the lower computational expense, LES can be used

to simulate some flows of industrial interest for which DNS is infeasible. For many

particle LES simulations, the effect of the small turbulent motions on the particles

must be accounted for using particle SGS modeling. In this investigation, several

particle SGS models are analyzed and tested using numerical simulations.

1.2 Objective and scope

Several models that account for the influence of the subgrid scales on the particles

have been proposed in the literature. However, existing particle SGS models have

not been extensively tested. For the most part, particle SGS models have only been

tested in a limited capacity by those researchers who developed them, and the models

have not been thoroughly compared to one another. The objective of this thesis is

to evaluate and compare a few of the particle SGS models that have been proposed

in the literature. The models that are examined in this work are the approximate
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deconvolution method (ADM), and the stochastic models of Fukagata et al. (2004),

Shotorban and Mashayek (2006) and Berrouk et al. (2007).

The particle SGS models are tested using numerical simulations of particles in

a periodic box of decaying, homogeneous and isotropic turbulence. In addition to

being compared to one another, the model results are evaluated against DNS particle

results, and results of particles tracked in a LES flow field without any particle SGS

model. Both a priori and a posteriori testing methodologies are used. For the a

posteriori tests particles are tracked in a LES flow field, but the in the a priori tests

the particles are tracked in a flow field that does not contain any LES fluid modeling

errors. Particles with various amounts of inertia are considered with and without

gravity, and a range of LES filter sizes and stochastic model constant values are used.

Based on the results, conclusions and recommendations are made that will assist in

the development of superior particle SGS models in the future.

This research is limited to dilute particle-fluid flows consisting of small spherical

particles with densities much greater than that of the fluid.

1.3 Thesis outline

This thesis consists of five chapters. Chapter 2 presents a literature review of tur-

bulence modeling, modeling of the particle phase including important phenomena,

and particle SGS modeling. Chapter 3 describes the methodologies used to test the

models, calculate the fluid phase, calculate the particle phase, and implement the

particle SGS models. The results and discussion of the numerical simulations using

the different particle SGS models are given in Chapter 4. Finally, Chapter 5 presents

the conclusions from the research, as well as recommendations for future work.
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Chapter 2

Background and Literature Review

This chapter presents a background on particle behaviour in turbulence, and modeling

of subgrid scale (SGS) effects on particles in a large-eddy simulation (LES). A solu-

tion to the fluid field must be obtained before particle trajectories can be calculated.

Three approaches to turbulence modeling are reviewed: direct numerical simulation

(DNS), Reynolds-averaged Navier-Stokes equations (RANS) and large-eddy simula-

tion (LES). These different methods are characterized by the amount of description

they provide, the level of modeling and the relative computational expense. Next,

calculation of the particle phase is reviewed, including Taylor’s theorem for particle

dispersion and important particle phenomena. Lastly, a literature review of particle

SGS modeling is presented. Particular attention is paid to models that are examined

in this thesis.
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2.1 Fluid phase

2.1.1 Governing equations

Fluid motion is governed by conservation equations for mass and momentum (Navier-

Stokes equations). For an incompressible fluid with constant viscosity these equations

can be expressed as

∂uf,i
∂xi

= 0 (2.1)

∂uf,i
∂t

+ uf,j
∂uf,i
∂xj

= − 1

ρf

∂p

∂xi
+ ν

∂2uf,i
∂xj∂xj

(2.2)

where uf,i is the fluid velocity in the direction xi, ρf is the fluid density and ν is the

kinematic viscosity of the fluid.

Numerous methodologies exist to obtain a solution to the Navier-Stokes equations.

Direct Numerical Simulation yields an exact instantaneous solution by numerically

solving the conservation equations without any modeling. A computationally less ex-

pensive method is solving Reynolds-averaged Navier-Stokes equations, which involve

modeling all of the turbulence and solving for the time averaged flow field. A compro-

mise between DNS and RANS is large-eddy simulation. In LES the larger turbulent

motions are resolved by solving for the instantaneous volume averaged velocity field,

and only the smaller turbulent structures are modeled.

2.1.2 Direct numerical simulation (DNS)

Direct numerical simulation consists of solving equations (2.1) and (2.2) by discretiz-

ing and numerically solving for the time dependent velocity and pressure fields for

given initial and boundary conditions. This method provides a complete solution to
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the Navier-Stokes equations without any modeling which makes it the most accurate

method. However, the computational cost of DNS is extremely high since all tur-

bulent scales must be resolved. In order to resolve the smallest scales of the flow

(Kolmogorov scales) the grid spacing and time step must be sufficiently small. As

the Reynolds number increases the Kolmogorov scales become smaller which substan-

tially increases the required number of nodes. The computational cost of a DNS is

proportional to Re3L (Pope, 2000), where ReL is the Reynolds number based on the

integral length scale. Therefore, DNS is limited to low Reynolds number flows of

simple geometry, and cannot generally be used to simulate flows of practical interest.

2.1.3 Reynolds-averaged Navier-Stokes equations (RANS)

The most common approach to turbulence modeling is to average the Navier-Stokes

equations over time. Reynolds-averaging consists of decomposing the velocity and

pressure into mean and fluctuating components:

uf,i = uf,i + u′f,i (2.3)

p = p+ p′ (2.4)

Substituting these relationships into the Navier-Stokes equations and time-averaging

each term yields the Reynolds-averaged Navier-Stokes equations:

∂uf,i
∂xi

= 0 (2.5)

∂uf,i
∂t

+ uf,j
∂uf,i
∂xj

= − 1

ρf

∂p

∂xi
+ ν

∂2uf,i
∂xj∂xj

−
∂u′f,iu

′
f,j

∂xj
(2.6)
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The RANS and Navier-Stokes equations differ due to the addition of the Reynolds

stress term u′f,iu
′
f,j. This additional term leads to a closure problem and therefore the

Reynolds stresses must be modeled. The classic approach to modeling the Reynolds

stresses is to relate them to the mean strain using a turbulent eddy viscosity. Com-

pared to other approaches, RANS simulations have relatively low computational cost

which allows for industrial flows with high Reynolds numbers and complex geometries

to be simulated.

2.1.4 Large-eddy simulation (LES)

In large-eddy simulation the Navier-Stokes equations are averaged in space by de-

composing the velocity into filtered (spatially averaged) and residual components:

uf,i = ũf,i + u′′f,i (2.7)

where the tilde represents a filtered variable, and u′′f is the subgrid scale (SGS) fluid

velocity which is associated with the residual field. The filtered Navier-Stokes equa-

tions are obtained by substituting (2.7) into the conservation equations (2.1) and

(2.2), and applying the filtering operation to each term.

∂ũf,i
∂xi

= 0 (2.8)

∂ũf,i
∂t

+ ũf,j
∂ũf,i
∂xj

= − 1

ρf

∂p̃

∂xi
+ ν

∂2ũf,i
∂xj∂xj

− ∂τij
∂xi

(2.9)
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τij is the subgrid stress tensor and represents the effects of the unresolved scales.

τij = ˜uf,iuf,j − ũf,iũf,j (2.10)

To close the equations the SGS stress term must be modeled. The Smagorinsky

model (Smagorinsky, 1963) is one of the simplest and most commonly used fluid SGS

models. It uses an eddy viscosity assumption to model the anisotropic SGS stress

tensor τ rij.

τij = τ rij +
2

3
ksgsδij (2.11)

τ rij = −2νtS̃ij (2.12)

ksgs is the fluid SGS turbulent kinetic energy, νt is the turbulent or eddy viscosity and

S̃ij is the filtered rate of strain tensor. The SGS turbulent kinetic energy is included

in the pressure term using a modified filtered pressure p̃∗:

p̃∗ = p̃+
2

3
ρfksgs (2.13)

The filtered pressure (p̃) in equation (2.9) is replaced by the modified filtered pressure

(p̃∗). A mixing length assumption is used to model the turbulent viscosity as

νt = (Cs∆)2|S̃| (2.14)

where Cs is the Smagorinsky constant and ∆ is the filter size. In the standard

Smagorinsky model the constant is usually taken to be 0.17 (Pope, 2000) based on

isotropic turbulence in the inertial subrange. The dynamic version of the model

proposed by Germano et al. (1991) improves upon the standard Smagorinsky model
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Figure 2.1: Example of a fluid velocity time trace at a point in space in DNS, RANS
and LES simulations.

by dynamically calculating the local constant based on the smallest resolved scales.

LES lies between DNS and RANS in terms of the level of description, amount of

modeling and computational cost. The differences between the three methodologies

are well demonstrated in Figure 2.1. The time trace from the DNS shows all tur-

bulent velocity fluctuations since the entire flow field is resolved. In RANS only the

time averaged velocity is determined and all of the scales of turbulence are modeled.

Consequently, the time trace is equal to the mean velocity and does not change in

time. The LES time trace looks like a smoothed version of the DNS. In LES the large

turbulent structures are explicitly represented so the low frequency fluctuations are

still present in the time trace. However, the high frequency fluctuations have been

removed since the small scale structures are modeled.

The motivation for LES is that in DNS almost all of the computational effort

arises from the resolution of the smallest scales. However, it is the large scales that
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contain the majority of the turbulent kinetic energy and are generally of more interest

than then the small scales. The large scales are responsible for motion, are affected

by geometry and can be anisotropic. In contrast, the small scales are more universal,

contain little energy and are only important for viscous dissipation. The small scales

are also better suited to modeling since assumptions of isotropy are more valid for

the small scale motions than they are for large turbulent structures.

2.2 Particle phase

2.2.1 Particle equation of motion

The trajectory of an individual spherical particle is governed by the particle equation

of motion (Maxey and Riley, 1983):

mp
dup,i
dt

=
1

8
πCDρfd

2
p| ~uf − ~up|(uf,i − up,i) +mpgi −mfgi

+mf
Duf,i
Dt

+
1

2
mf (

Duf,i
Dt

− dup,i
dt

)

+
3

2
d2p
√
πρfµ

∫ t

0

d
dt

(uf,i − up,i)√
t− t′

dt′ +
3

4
mfCLLi| ~uf − ~up|2 (2.15)

where up is the particle velocity, m is the mass, CD is the drag coefficient, dp is the

particle diameter, gi is gravitational acceleration, µ is the dynamic viscosity, CL is

the lift coefficient and Li is the direction cosine. The forces on the right hand side of

(2.15), from left to right, are the drag, gravity, buoyancy, fluid acceleration, virtual

mass, Basset and Saffman lift forces.

Dividing (2.15) by mp reveals that some of the forces can be neglected when the

particle density is much greater than that of the fluid (ρp >> ρf ). In this case only the
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drag and gravity forces are important since the term ρp/ρf appears in the denominator

of all other forces. Numerical experiments have confirmed that these other forces are

negligible when the density ratio is very large, such as ρp/ρf ∼ O(1000) (Elghobashi

and Truesdell, 1992) (Armenio and Fiorotto, 2001). For very large density ratios the

particle equation of motion simplifies to

dup,i
dt

=
3

4

ρf
ρp

1

dp
CD| ~uf − ~up|(uf,i − up,i) + gi (2.16)

For small particles, the particle Reynolds numbers remains sufficiently low such

that the drag coefficient can be expressed as Stokes drag with a modification factor

f (Clift et al., 1978).

CD =
24

Rep
f (2.17)

where the modification factor is

f = 1 + 0.15Re0.687p for Rep < 800 (2.18)

and the particle Reynolds number is defined as

Rep =
dp| ~uf − ~up|

ν
(2.19)

Substitution of these relationships into (2.16) and simplifying gives

dup,i
dt

=
f

τp
(uf,i − up,i) + gi (2.20)
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where τp is the particle relaxation time and is defined as

τp =
ρp
ρf

d2p
18ν

(2.21)

The particle relaxation time is a measure of how long a particle takes to adjust to a

change in the fluid velocity.

2.2.2 Taylor’s theorem

The mathematical basis of particle dispersion in turbulent flow is well described by

the classic work of Taylor (1921). Taylor considered the dispersion of fluid particles

in statistically stationary, homogeneous turbulence released from a point source. Fig-

ure 2.2 illustrates the trajectory of a single particle released at t = 0 in a turbulent

flow, and its position at some later time t = t′. The final result of Taylor’s work is

d
〈
x2fp
〉

dt
= 2
〈
u′

2
f

〉 ∫ t

0

RL,fp(τ)dτ (2.22)

where
〈 〉

brackets denote an ensemble average over all particles and xfp is the position

of a fluid particle. RL,fp(τ) is the fluid particle Lagrangian velocity autocorrelation

coefficient and for stationary turbulence is defined as

RL,fp(τ) =

〈
u′f (t)u

′
f (t+ τ)

〉〈
u′2f
〉 (2.23)

Considering the asymptotes of Taylor’s final result can provide insight into particle

dispersion. For very short times the autocorrelation coefficient is unity and (2.22)
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Figure 2.2: Coordinate system for the dispersion of a particle in a turbulent flow.
The particle is shown at its initial time t = 0, and at some later time t′.

becomes
d
〈
x2fp
〉

dt
= 2
〈
u′

2
f

〉
t for very short times (2.24)

and the dispersion is

〈
x2fp
〉

=
〈
u′

2
f

〉
t2 for very short times (2.25)

The long time behaviour is found by integrating the autocorrelation coefficient to

obtain the fluid particle Lagrangian integral timescale

τL,fp =

∫ ∞
0

RL,fp(τ)dτ (2.26)
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Using this relationship, Taylor’s result for very long times becomes

d
〈
x2fp
〉

dt
= 2
〈
u′

2
f

〉
τL,fp for very long times (2.27)

〈
x2fp
〉

= 2
〈
u′

2
f

〉
τL,fpt for very long times (2.28)

Taylor’s work shows that at short times particle dispersion has a parabolic re-

lationship with time, and for long times particle dispersion increases linearly with

time. It is also important to note which properties of the turbulence and particles

affect dispersion. At short times dispersion is only influenced by the turbulent kinetic

energy of the fluid particles. At long times dispersion is determined by both the fluid

particle turbulent kinetic energy and Lagrangian integral timescale.

The results of Taylor’s work can be extended to real particles by making use of real

particle Lagrangian velocity autocorrelation coefficients and statistically stationary

particle velocities.
d
〈
x2p
〉

dt
= 2
〈
u′

2
p

〉 ∫ t

0

RLp(τ)dτ (2.29)

Based on this result, all conclusions from Taylor’s work for fluid particles are also

valid for inertial particles. Therefore, at long times the dispersion of real particles

is determined by both the particle turbulent kinetic energy and the particle velocity

Lagrangian integral timescale.

2.2.3 Particle phenomena

The trajectories of real particles differ from fluid particles. This deviation in particle

paths leads to several important effects that inertial particles experience. Particle

phenomena that are relevant to the current work are discussed in this section.

14



M.A.Sc. Thesis - Matthew Cernick McMaster - Mechanical Engineering

Inertia effect

High inertia particles have smaller velocity fluctuations and are unable to follow all of

the high frequency turbulent velocity fluctuations of the surrounding fluid (Shirolkar

et al., 1996). This is well demonstrated by the particle relaxation time (defined in

equation 2.21), which characterizes the size and inertia of a particle. A small particle

with little inertia is able to respond very quickly to the fluid and behaves similar to

a tracer particle. In contrast, if a particle is large and heavy it will take a significant

amount of time to respond to changes in the fluid, and will be unable to follow the

high frequency fluid velocity fluctuations.

Since inertial particles take time to respond to the fluid, an inertial particle is

correlated to its initial velocity for a longer length of time. A particle with very

small inertia will have a Lagrangian timescale approximately equal to the Lagrangian

integral timescale of the fluid. Conversely, the Lagrangian timescale of a particle

with very high inertia will be similar to the fluid Eulerian integral timescale (Berrouk

et al., 2007).

Taylor’s work (Section 2.2.2) shows that dispersion depends on particle velocity

fluctuations and the particle Lagrangian integral timescale. Inertia decreases particle

velocity fluctuations but increases a particle’s Lagrangian timescale. Therefore, it is

not clear if inertia increases or decreases particle dispersion.

Crossing trajectory effect

The crossing trajectory effect (CTE) is a reduction in dispersion due to particles

migrating out of eddies before they decay (Csanady, 1963). Unlike a fluid particle, a

real particle may or may not remain in a turbulent eddy for the eddy’s entire lifetime.
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The primary reason that a particle prematurely leaves an eddy is its drift velocity due

to gravity, which can cause it to transverse the eddy before it dies. Fluid velocities

in a turbulent eddy are highly correlated. Thus, when a particle leaves on eddy it

is exposed to fluid velocities that are less correlated to the previous fluid velocities.

As a result, the particle Lagrangian integral timescale is reduced. This reduction in

particle Lagrangian timescale causes a decrease in dispersion.

Figure 2.3: Illustration of a cloud of particles initially released from a point source in
a turbulent flow. Dispersion is reduced when a mean drift velocity exists due to the
crossing trajectory and continuity effects. The contintuiy effect causes dispersion to
be further reduced in the transverse directions.

16



M.A.Sc. Thesis - Matthew Cernick McMaster - Mechanical Engineering

Continuity effect

The continuity effect causes dispersion to be reduced in the transverse directions

(directions perpendicular to the mean drift) (Csanady, 1963). The continuity effect

is a result of the CTE, but it is a distinct phenomenon. When a particle falls out of

an eddy, due to the CTE, it enters the eddy’s back flow in order to satisfy continuity.

As a result, the correlation coefficients of the fluid velocity seen by the particles in the

transverse directions contain negative loops. In the asymptotic case of very high drift

velocity, the work of Csanady (1963) shows that particle dispersion in the mean drift

direction should be twice that of the two transverse directions ((Dp)‖ ∼ 2(Dp)⊥).

The influence of the crossing trajectory and continuity effects is demonstrated in

Figure 2.3 and Figure 2.4.

Figure 2.4: Dispersion in the mean drift and transverse directions, normalized by
fluid particle dispersion, as a function of mean drift velocity. Dispersion is reduced
due to crossing trajectory and continuity effects. Reproduced from Csanady (1963).
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Preferential concentration

Intermediate sized particles accumulate in certain regions of a turbulent flow field due

to coherent structures. This phenomenon is called preferential concentration (Eaton

and Fessler, 1994). Preferential concentration is most significant for Stokes numbers

of approximately unity. The Stokes number is defined as the ratio of the particle

response time to a characteristic fluid timescale.

St =
τp
τf

(2.30)

The Kolmogorov timescale is commonly used as the fluid timescale in (2.30) for sim-

ple turbulent flows. In homogeneous isotropic turbulence, particles with either very

small or very high inertia tend to have particle distributions with uniform probability

density functions (equally likely at all points in space). This is because very small in-

ertia particles behave like tracer particles, and very high inertia particles easily travel

through turbulent structures due to their inertia. However, coherent structures cause

intermediate sized to have some organized motions. Particles with Stokes numbers

of approximately unity are flung out of high vorticity structures, which causes them

to accumulate in regions of low vorticity and high strain. A non-uniform particle

distribution resulting from preferential concentration is shown in Figure 2.5(b). In

Figure 2.5(a) the fluid particles have a uniformly random distribution throughout the

entire domain. However, in Figure 2.5(b) the particles are highly concentrated in

turbulent structures with low vorticity and high strain, and high vorticity structures

contain very few particles.
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Figure 2.5: Snapshot of the particle field from a particle-laden DNS with (a) fluid
particles and (b) intermediate sized particles (Strutt et al., 2011).

2.2.4 Particle-laden turbulence modeling

Modeling particle-laden turbulence requires solutions to both the fluid field and the

particulate phase. The fluid phase is generally treated in an Eulerian frame of refer-

ence and a solution is obtained using one of the methods reviewed in Section 2.1. To

solve for the particle phase either a Langrangian or Eulerian frame of reference may

be used.

Eulerian models are the simplest approach to particle-laden turbulence modeling.

In this approach, the particle phase is treated as a continuum and a set of conservation

equations are used to solve for particle concentrations and velocities. The simplest

Eulerian particle dispersion model is the locally homogeneous flow model. This model

assumes that the particles have the same velocity as the fluid, which results is a pseudo

single phase (Shirolkar et al., 1996). A more advanced Eulerian approach is the two-

fluid model. The two-fluid model treats the particles as a distinct phase that is mixed

into the fluid phase. The difficulty with this approach is that the effective particle
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turbulent diffusivity must be modeled (Shirolkar et al., 1996).

Lagrangian particle models track a large number of individual particles in a La-

grangian reference frame. Lagrangian dispersion models have the potential to account

for non-continuum and particle history effects that cannot be accounted for with Eu-

lerian methods. Individual particle trajectories are determined by solving the particle

equation of motion. Depending on the method used to solve for the fluid field, further

modeling may be required.

In particle-laden DNS the complete turbulent flow field is available, and as a result

no modeling is required to solve the particle equation of motion.

RANS turbulence models provide only the time-averaged flow field, but it is the

instantaneous turbulent velocity that is required to evaluate the particle equation of

motion. Therefore, Lagrangian particles coupled with RANS solvers require addi-

tional modeling to account for the turbulence. The most common approach is to use

a stochastic model to modify the fluid velocity based on the local turbulent kinetic

energy (Shirolkar et al., 1996). The fluctuating velocity is commonly assumed to be

constant during the time that a particle interacts with a turbulent eddy. The eddy

lifetime is usually estimated using the turbulent kinetic energy and dissipation rate

from the RANS turbulence model. RANS particle models do not fully capture the

physics of particle-laden turbulence. Some RANS models do account for the CTE, but

many particle effects cannot be accounted for. It is particularity difficult to capture

the effects of turbulent structures on particles since in RANS all turbulent scales are

modeled. For instance, RANS particle models are unable to account for the effects

that coherent structures have on particle distributions.

The focus of this thesis is Lagrangian particle tracking with LES. Particle-laden
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LES has the potential to overcome some of the problems associated with particle-

laden RANS, and have significantly less computational expense than particle-laden

DNS. In LES the larger turbulent motions are solved for but the smaller turbulent

scales are modeled. In order to simulate particle-laden turbulence using LES the

effect of the SGS fluid motions on the particles may have to be accounted for. A

literature review of SGS particle modeling is given in Section 2.3.

2.3 Particle subgrid scale modeling

LES is a promising tool for simulation of particle-laden turbulence. LES can be used

to simulate particle-laden flows of industrial interest with high Reynolds numbers

and complex geometries for which DNS is impractical. LES can also provide supe-

rior accuracy with more description than RANS simulations. Additionally, LES can

explicitly capture the interactions between particles and turbulent structures. RANS

is incapable of this since it does not resolve any of the turbulence.

Yeh and Lei were the first, to the author’s knowledge, to investigate particle-laden

turbulence using LES. They performed LES particle simulations in homogeneous

isotropic turbulence (Yeh and Lei, 1991a), and in homogeneous turbulent shear flow

(Yeh and Lei, 1991b). They assumed that the effect of the SGS fluid field on the

particles was negligible, and therefore solved the particle equation of motion using

the filtered fluid velocities provided by LES. This has been the standard practice for

the majority of particle-laden LES studies.

Depending on the particle properties and LES resolution, the effect of the SGS

fluid on the particles may be significant. This was studied by Armenio et al. (1999)

who performed DNS and LES of particle-laden channel flow and determined that
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neglecting SGS effects can lead to inaccurate particle statistics. The authors found

that the SGS effects on particles are most significant when the particle relaxation

time is small and the LES resolution is coarse (a large filter size). Furthermore, it

was shown that particle statistics could be considerably affected by the fluid LES

model.

Particle SGS models account for the effect of the SGS fluid field on the particles

through modeling. Several different particle SGS models have been proposed, many

of which are based on applying RANS particle modeling concepts to LES. One of the

earliest and simplest is the model of Wang and Squires (1996). Wang and Squires

proposed to calculate the SGS fluid velocity based on the local SGS kinetic energy:

u′′f,i =

√
2

3
ksgsξ (2.31)

where ξ is a Gaussian random number with zero mean and unit variance. The modeled

SGS fluid velocity is added to the filtered velocity provided by the LES.

us,i = ũf,i + u′′f,i (2.32)

us is the fluid velocity seen by the particle and is used in the particle equation of

motion to calculate the particle’s velocity. The authors did not explicitly state how

frequntly u′′f,i was sampled, but it was likely every timestep. The results of the author’s

tests using turbulent channel flow showed that the model had minimal influence on

particle statistics.

There are two main types of particle SGS models. The first type is the approximate

deconvolution method (ADM) which attempts to apply an inverse filter to obtain
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the correct fluid velocity. Alternatively, stochastic models make use of a random

component to model the effect of the residual fluid field. The model of Wang and

Squires (1996) is an example of a stochastic particle SGS model. In the current work

the stochastic particle SGS models of Fukagata et al. (2004), Shotorban and Mashayek

(2006) and Berrouk et al. (2007), and the approximate deconvolution method are

tested and compared.

2.3.1 Approximate deconvolution method (ADM)

The approximate deconvolution method (ADM) has been used in several previous

studies to model the effect of SGS motions on particles (Kuerten and Vreman, 2005)

(Shotorban and Mashayek, 2005) (Kuerten, 2006) (Shotorban et al., 2007). Back-

ground on the theory of ADM and a simple one-dimensional example can be found in

Appendix A. ADM is a deterministic approach that tries to reconstruct the instan-

taneous velocities from the filtered field using an inverse filter:

us,i = G−1 ∗ ũf,i (2.33)

where G is the filter kernel. This reconstructed velocity is then used in the particle

equation of motion to track particles. Typically, the inverse filter is approximated

with a truncated Van Cittert series expansion:

us,i =
m∑
α=0

(1−G)α ∗ ũf,i (2.34)
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This formula can be evaluated by consecutively applying the filter:

us,i = ũf,i + (ũf,i − ˜̃uf,i) + (ũf,i − 2 ˜̃uf,i +
˜̃̃
uf,i) + ... (2.35)

Using (2.35) the reconstructed velocity can be obtained by explicitly filtering the LES

field.

Previous studies have shown that ADM often improves particle results compared

to LES with no particle SGS model. However, there are some disadvantages of the

ADM approach. ADM is never capable of recovering the true instantaneous velocities

since the filtered velocities are solved for on an LES grid. ADM is only able to enhance

scales that are near the cut-off and are larger than the LES grid. It cannot reconstruct

scales that are smaller than the grid, and therefore ADM can only recover a portion

of the SGS kinetic energy. As a result, ADM is probably best suited to fine LES and

may not be appropriate for coarse LES. Another problem with ADM is the type of

filter that is used for the inverse filtering operation. In LES the filter is implicit, so

any filter type that is selected for the inverse filtering operation will have no relation

to the LES filter. To perform a true deconvolution the original filter and inverse filter

must be the same.

2.3.2 Model of Fukagata et al. (2004)

The stochastic particle SGS model of Fukagata et al. (2004) accounts for the influence

of the SGS with a “SGS Brownian” force. This “SGS Brownian” force is added to
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the right hand side of the particle equation of motion.

dup,i
dt

=
Fsgs,i
mp

+
{

Standard Particle Forces
}

(2.36)

The standard forces in the particle equation of motion are evaluated using the filtered

fluid field velocities. The SGS force is modeled similarly to Brownian motion:

Fsgs,i
mp

=
σs
∆t
ξi (2.37)

where σs is the increase in standard deviation of particle velocity due to SGS velocity

fluctuations during the simulation timestep ∆t, and ξ is a Gaussian random number

with zero mean and unit variance. The quantity σs is modeled using the kinetic

theory for particle motion in isotropic turbulence (Reeks, 1991).

σs =

√
2

3
ksgsλ (2.38)

where the parameter λ is defined as

λ =

(
1

1 + θ

)[
1− exp(−α(1 + θ))

]
−

(
1

1− θ

)
exp(−2α)

[
1− exp(α(1− θ))

]
(2.39)

and the parameters α and θ are defined as

α =
∆t

τp
and θ =

τp
T ∗L,sgs

(2.40)

Further modeling is required to evaluate the SGS turbulent kinetic energy, and the

SGS fluid Lagrangian integral timescale along an inertial particle’s path (T ∗L,sgs).
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Fukagata et al. tested their model with LES of turbulent channel flow. They examined

particle deposition rates and the magnitude of different forces in the viscous sublayer

and logarithmic region. They had minimal conclusions regarding their particle SGS

model.

2.3.3 Model of Shotorban and Mashayek (2006)

Shotorban and Mashayek (2006) developed a stochastic particle SGS model by start-

ing with the Navier-Stokes equations for the acceleration of a fluid particle, broken

up into filtered and SGS components.

Duf,i
Dt

=

[
− ∂P̃

∂xi
+ ν

∂2ũf,i
∂xj∂xj

]
+

[
− ∂P ′′

∂xi
+ ν

∂2u′′f,i
∂xj∂xj

]
(2.41)

where P is the pressure normalized by the fluid density:

P =
p

ρf
(2.42)

The first two terms on the right hand side of (2.41) can be calculated from the LES

field, but the last two terms must be modeled. Shotorban and Mashayek modeled

these terms using a Langevin equation. The generalized Langevin equation originally

developed by Pope (1994) has been used extensively for particle-laden RANS simu-

lations (Minier and Peirano, 2001). Shotorban and Mashayek extended the RANS

concepts to modeling of particle-laden LES. The Langevin equation that they used

for the fluid velocity seen by the particles is:

dus,i =

[
− ∂P̃

∂xi
+ ν

∂2ũf,i
∂xj∂xj

− (us,i − ũf,i)
T ∗L,sgs

]
dt+

√
C0εsgsdWi (2.43)
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where C0 is a model constant, εsgs is the SGS fluid dissipation rate and Wi denotes a

Wiener process.

The timescale and SGS dissipation are modeled using relationships given by Gic-

quel et al. (2002) and Heinz (2003):

T ∗L,sgs =

(
1

2
+

3

4
C0

)−1
ksgs
εsgs

(2.44)

εsgs = Cε
(ksgs)

3/2

∆
(2.45)

where Cε is a model constant. Equation (2.44) is based on the assumption the SGS

fluid Lagrangian integral timescale along an inertial particle’s path is equal to that

of a fluid particle. The SGS kinetic energy must be modeled to close the equations.

The authors tested their model using decaying isotropic turbulence in a box. They

found that the model performed best for small time constant particles. For large

particles the model added too much turbulent kinetic energy, and particle dispersion

was overpredicted.

2.3.4 Model of Berrouk et al. (2007)

The model of Berrouk et al. (2007) is similar to the model of Shotorban and Mashayek

(2006), but includes additional complexities to account for particle inertia, the cross-

ing trajectory effect, the continuity effect, fluid anisotropy and non-stationary turbu-

lence. The Langevin equation that they used has a direction specific timescale and a
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modified diffusion term constant:

dus,i =

[
− ∂P̃

∂xi
+ ν

∂2ũf,i
∂xj∂xj

− (us,i − ũf,i)
T ∗i

]
dt+

√
C∗0εsgsdWi (2.46)

The diffusion term is closed by specifying the direction specific SGS fluid La-

grangian integral timescale along an inertial particle’s path. To begin, the fluid

particle timescale is calculated using the same method as Shotorban and Mashayek

(2006):

TL,sgs =

(
1

2
+

3

4
C0

)−1
ksgs
εsgs

(2.47)

A correlation developed by Wang and Stock (1993) is used to account for particle

inertia:

T ∗L,sgs =
TL,sgs
β

[
1− (1− β)(1 + StE,sgs)

−0.4(1+0.01StE,sgs)

]
(2.48)

StE,sgs is the Stokes number based on the Eulerian SGS timescale, and β is the ratio

of the Lagrangian and Eulerian fluid SGS timescales.

β =
TL,sgs
TE,sgs

(2.49)

The correlation in (2.48) was developed for the large turbulent scales using a numerical

simulation that generated turbulence using Fourier modes. Berrouk et al. chose to

apply (2.48) to the subgrid scales. They also assumed that β does not vary across

different scales of turbulence and used a constant value of 0.356 based on the numerical

work of Wang and Stock (1993). However, the authors state that it has been shown

that β is a function of Reynolds number and that a large range of values have been

reported in the literature. Equation (2.48) has the correct asymptotic behaviour that
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for very small inertia particles T ∗L,sgs → TL,sgs, and for very high inertia particles

T ∗L,sgs → TE,sgs.

The particle Lagrangian SGS timescales in the direction of mean drift (‖) and

transverse directions (⊥) are calculated using the correction factors proposed by

Csanady (1963):

T ∗i =
T ∗L,sgs
bi

(2.50)

bi =


b‖ =

√
1 + β2

|
〈
ur

〉
|2

(2/3)
〈
ksgs

〉
b⊥ =

√
1 + 4β2

|
〈
ur

〉
|2

(2/3)
〈
ksgs

〉 (2.51)

where
〈
ur
〉

is the mean slip velocity between the particles and the fluid. Csanady’s

factors are used to account for the crossing trajectory and continuity effects.

Closure of the diffusion term is accomplished by modeling the SGS dissipation

rate and the modified model constant C∗0 . The modified model constant is modeled

by extending RANS particle Langevin equation concepts to LES (Minier and Peirano,

2001). It accounts for fluid anisotropy and non-stationary turbulence.

C∗0 = C0bi
k̂sgs
ksgs

+
2

3

(
bi
k̂sgs
ksgs
− 1

)
(2.52)

where k̂sgs is a modified SGS kinetic energy which is weighted by the Csanady factors

to account for anisotropy.

For certain cases the models of Shotorban and Mashayek (2006) and Berrouk et al.

(2007) have minimal or no differences between them. For instance, the two models

are identical for fluid particles in isotropic turbulence. In the case of inertial particles

with zero mean drift, such as the case of no gravity, the only difference between the
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two models is the particle inertia correction in equation (2.48).

The authors tested their model using turbulent pipe flow (Berrouk et al., 2007)

(Berrouk et al., 2008) and turbulent flow around a 90 degree bend (Berrouk and

Laurence, 2008). Concentration profiles and particle deposition statistics for small

particles using the model of (Berrouk et al., 2007) agreed well with experimental

data, and were superior to the results of RANS simulations. For large particles the

statistics were shown to be sensitive to the value of β.

2.3.5 Other particle SGS models

In addition to the models considered in this thesis, several other particle SGS models

have been proposed. Amiri and Hannani (2006) extended the model of of Fukagata

et al. (2004) to account for fluid anisotropy by making use of damping functions

to evaluate the SGS fluid velocities in the three principal directions. Their model

improved particle turbulent intensities in turbulent channel flow compared to the

isotropic model of Fukagata et al. (2004). Another “SGS Brownian” force model was

proposed by Bini and Jones (2007). They introduced non-linearity into the SGS force

term, which the authors argue is appropriate since experimental results have shown

particle acceleration to be non-Gaussian.

Fede et al. (2006) proposed a stochastic model based on the earlier work of Simonin

et al. (1993). Their model has many similarities with the model of Shotorban and

Mashayek (2006). Both models use a Langevin equation and do not account for

particle inertia, the crossing trajectory effect, the continuity effect or fluid anisotropy.

The main difference between the two models is that Shotorban and Mashayek use a

Langevin equation for the seen fluid velocity (us), while Fede et al. use a Langevin
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equation for the SGS fluid velocity along an inertial particle’s path (u′′f ). Another

difference is that Fede et al. chose to transport us using the particle velocities, but

Shotorban and Mashayek used the fluid velocities to transport us. Both sets of authors

used identical relationships to model the particle SGS Lagrangian integral timescale

and the diffusion term. The results of Fede et al. (2006) showed their model improved

particle kinetic energy statistics compared to LES with no model, but the random

component of the model caused inferior particle distribution results.

The stochastic particle SGS model of Pozorski and Apte (2009) is similar to the

model of Berrouk et al. (2007). Both models use a Langevin equation for the seen fluid

fluid velocity and account for the crossing trajectory and continuity effects. However,

the model of Pozorski and Apte (2009) neglects the fluid convective term and does

not account for particle inertia. Pozorski and Apte’s tests showed improved particle

statistics relative to LES with no model, but also found results to be sensitive to the

values of model constants.

Weil et al. (2004) and Vinkovic et al. (2006) each proposed a stochastic particle

SGS model with the purpose of simulating particle dispersion in atmospheric flows.

Both models used a Langevin equation and tracked inertial particles by treating them

as fluid particles. Both sets of authors tested their model using a turbulent boundary

layer and found that results agreed well with experimental data.

Khan et al. (2010) applied kinematic simulation (Fung et al., 2006) to LES of

particle-laden turbulence to model the SGS effects on particles. Based on a prescribed

turbulent kinetic energy spectrum, a fluid SGS velocity field is generated using a large

number of random orthogonal Fourier modes. The advantage of this method is that

the generated fluid SGS velocity field can have an underlying structure. Therefore,
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turbulent structures that are smaller than the filter size can possibly be accounted

for. This is not possible for most stochastic models which treat the SGS field as white

noise. The authors tested their model using LES of turbulent channel flow with a

ribbed wall.

Spectrally Optimised Interpolation (SOI) is a rather unique particle SGS model

that has been proposed by Gobert and Manhart (2011). SOI tries to model the SGS

effects by taking advantage of the fluid velocity interpolation error. The concept

is similar to using implicit LES as a fluid SGS model. In SOI, fluid velocity inter-

polation is optimized such that the particles see a specified energy spectrum. The

goal of this method is that the correct spectrum is represented all the way down to

the Kolmogorov scales, which is not possible for ADM. Gobert and Manhart tested

SOI using forced isotropic turbulence in a box, and found that SOI generally yields

superior particle results compared to ADM.

2.3.6 Relevant studies

Fede and Simonin (2006) and Jin et al. (2010) studied the influence of filtering on

a variety of fluid and particle timescales, and other particle statistics. Some of the

results of Jin et al. are of particular interest with respect to the model of Berrouk

et al. (2007). Jin et al. determined that the assumption that β is constant across

different scales of turbulence is not always valid, and that β can be a function of

filter size. Their results showed that at the cut-off β can be greater than unity, which

would drastically change the qualitative behaviour of the particle inertia correction

given in equation (2.48).

The effect of filtering on preferential concentration was examined by Ray and
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Collins (2011). Their results showed that filtering reduces particle clustering for small

Stokes number particles, but increases particle clustering for high Stokes number

particles. They explain both of these phenomena as follows. For small particles,

preferential concentration is mostly due to the smallest eddies, so when these eddies

are removed by filtering particle clustering is reduced. For large particles, the particle

timescale is greater than that of the smallest eddies. Consequently, the smallest eddies

randomize the motion of large particles which reduces preferential concentration, so

when these eddies are removed clustering increases. The authors also found that

filtering increases the particle timescale at which maximum particle clustering occurs.

Gobert (2010) and Gobert and Manhart (2010) assessed particle SGS models using

analytical and numerical methods, respectively. They tested ADM and the stochastic

models of Shotorban and Mashayek (2006) and Fede et al. (2006). For the numerical

study (Gobert and Manhart, 2010) the models were tested using forced isotropic

turbulence in a box with zero gravity. The authors examined fluid turbulent kinetic

energy seen by the particles, particle turbulent kinetic energy and particle diffusivity.

The authors did not test velocity autocorrelations and timescales, particle clustering,

crossing trajectory and continuity effects, or the influence of filter size, all of which

are considered in the current thesis. Gobert and Manhart found that ADM only

recovered a portion of the SGS turbulent kinetic energy and underpredicted the rate

of dispersion. The stochastic models that they tested performed poorly, especially

for high inertia particles. There were no consistent differences between the stochastic

models of Shotorban and Mashayek (2006) and Fede et al. (2006).
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2.4 Summary

The chapter reviewed modeling of particle-laden turbulent flows, with a particular

emphasis on particle-laden LES and modeling of SGS effects on particles. LES can

be used to simulate industrial flows with high Reynolds numbers for which DNS is

not practical due to the computational expense, and can provide superior accuracy

compared to RANS methods. LES is particularly attractive for particulate flows since

the interaction between turbulent structures and particles can be accounted for.

The physics of particles in turbulence was discussed in Section 2.2. There are

numerous forces that act on a spherical particle in a turbulent flow. However, most

forces are negligible when the particle density is much greater than that of the fluid,

which is the case in this investigation. Only the drag and gravitational forces are

considered in the current work. Important particle phenomena are the inertia effect,

the crossing trajectory effect, the continuity effect and preferential concentration.

The mathematical description of particle dispersion in a turbulent flow is given

by the work of Taylor (1921), who showed that at long times dispersion is dependent

on the product of particle turbulent kinetic energy and the particle’s Lagrangian in-

tegral timescale. Relating this result to LES, Taylor’s work suggests that long term

dispersion may not be significantly different in LES since filtering should decrease the

particle turbulent kinetic and increase the Lagrangian integral timescale. However,

all previous particle LES studies have found that LES causes a reduction in parti-

cle dispersion. This indicates that filtering has a more significant effect on particle

turbulent kinetic energy than it does on the particle Lagrangian integral timescale.

Particle SGS models account for the effects of the small turbulent motions, which
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are not resolved in LES, on particles. Several particle SGS models have been pro-

posed in the literature. The goal of this thesis is to evaluate and compare some of the

different models that exist. The particle SGS models tested here are the approximate

deconvolution method (ADM), and the stochastic models of Fukagata et al. (2004),

Shotorban and Mashayek (2006) and Berrouk et al. (2007). These models were se-

lected based on the differences in their formulation, and how frequently they have

been referenced in the literature. The model of Shotorban and Mashayek (2006) was

selected instead of the model of Fede et al. (2006) since it is more closely related to

the model of Berrouk et al. (2007), and the results of Gobert and Manhart (2010)

showed similar performance between the two models. The particle statistics that are

used to evaluate the models are turbulent kinetic energy of the particles and seen

fluid, particle dispersion, Lagrangian autocorrelations of particle velocity and seen

fluid velocity, and preferential concentration statistics. The models are tested under

a variety of conditions by varying the following parameters: particle timescale, gravity

(importance of CTE and continuity effect), filter size and model constant values.
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Chapter 3

Methodology

3.1 Introduction

Details of the numerical solution techniques used to calculate the fluid field, calculate

particle trajectories, implement particle SGS models and calculate relevant particle

statistics are discussed in this chapter. Calculation of the carrier phase is done by

using both LES and DNS. The particle SGS models are evaluated by comparing

the model results to particle statistics obtained from tracking particles in the DNS

velocity field.

3.1.1 Testing methodology

Particle SGS models are validated and tested using either a posteriori or a priori

testing methods. A schematic of the two methods is presented in Figure 3.1. In a

posteriori tests particles are tracked using the LES velocity field with the particle

SGS models applied, and the results are compared with DNS or experimental data.
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Figure 3.1: Diagram illustrating a priori and a posteriori testing methods.

The advantage of this method is that it tests how particle SGS models perform in a

true LES simulation. Discrepancies between the DNS and LES particle statistics are

due to errors in both the particle SGS and fluid SGS models. However, this can be

undesirable for evaluating particle SGS models since it is very difficult to distinguish

between the two types of errors. This complication is overcome by using a priori

testing.

A priori tests involve tracking particles in a filtered DNS (FDNS) flow field. The

FDNS velocity field is obtained by first performing a DNS, and then explicitly filtering

the DNS to obtain a FDNS velocity field that does not contain any fluid SGS modeling

errors. Therefore, a priori testing isolates the error that is caused by the particle SGS

model. Both testing methods are used in the current work, but much more emphasis

is put on the a priori results since they are superior for evaluating model formulation

37



M.A.Sc. Thesis - Matthew Cernick McMaster - Mechanical Engineering

and the ability of the models to capture SGS physics.

3.2 Fluid phase

3.2.1 OpenFOAM

Calculation of the DNS and LES velocity fields is done using the open source CFD

package OpenFOAM. OpenFOAM is a collection of finite-volume method CFD solvers

that are written in C++, and it is distributed for free under the GNU General Public

License (OpenFOAM Foundation, 2011). OpenFOAM is well suited for very large

simulations, such as DNS, since it runs in parallel using domain decomposition and

is not subject to license constraints.

Many previous studies have been reported in the literature that have used Open-

FOAM to simulate and model a variety of different fluid and energy processes. Open-

FOAM has been used for LES
[
(Baba-Ahmadi and Tabor, 2008) (Tabor and Baba-

Ahmadi, 2010) (Renze et al., 2011) (Wang et al., 2011)
]
, particle tracking (Macpher-

son et al., 2009), multiphase flows with the two-fluid model (Silva et al., 2008), bubbly

flows
[
(Selma et al., 2010) (Renze et al., 2011)

]
and water turbines (Nilsson, 2007).

Excellent agreement has been reported between OpenFOAM and other CFD pack-

ages, such as ANSYS CFX and ANSYS Fluent, giving confidence that the code has

been implemented correctly. The present study requires only basic components of

OpenFOAM to solve the Navier-Stokes equations (2.1) and (2.2) for DNS, and the

filtered Navier-Stokes equations (2.8) and (2.9) for LES.
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3.2.2 DNS

The fluid phase is simulated using a DNS to solve the incompressible three-dimensional

time-dependent Navier-Stokes equations for decaying, isotropic turbulence in a peri-

odic box. This simple turbulent flow is a logical starting point for evaluating particle

SGS models. The Eulerian velocity field is solved for in physical space on a Cartesian

equidistant grid with 256 nodes in each direction. All spatial derivatives are eval-

uated using a fourth order scheme, and the simulation is advanced in time using a

second order Crank-Nicolson method. The pressure term is treated using the Pressure

Implicit Split Operator (PISO) method (Issa, 1986).

The initial velocity field is generated using a spectral method that produces a

periodic box of isotropic, incompressible turbulence that is solenoidal and corresponds

to a specified energy spectrum. The specified initial turbulent kinetic energy spectrum

is the same as that used by Shotorban and Mashayek (2006):

E(κ) = Ea

[
κ

κm

]
exp

[
− κ

κm

]
(3.1)

where κ is the wavenumber, E(κ) is the energy density, Ea is a constant, and κm is

the wave number at which E(κ) is maximum. In this study the parameters in (3.1)

are set to the values Ea = 800 and κm = 10. Starting with the generated initial

velocity field, the Navier-Stokes equations are advanced in time until an appropriate

turbulent energy spectrum is obtained with a −5/3 spectrum in the inertial subrange.

At this point the particles are inserted into the flow. Plots of the energy spectrum

can be found in Appendix B. In this thesis, the initial time (t = 0) denotes the time

at which the particles are inserted, and the DNS is run until a final time of t = 7.5 s.
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Grid size N3 2563

Domain length (m) L0 1.0
Time (s) t 0.0→ 7.5
DNS timestep (s) ∆t 0.00025
Kinematic viscosity (m2/s) ν 6× 10−5

Minimum wave number κ0 2π
Maximum wave number κmax 256π
Taylor scale Reynolds number Reλ 74→ 39
Fluid turbulent kinetic energy (m2/s2) k 0.0889→ 0.0027
RMS turbulent velocity (m/s) u′rms 0.243→ 0.043
Dissipation rate (m2/s3) ε 0.16030→ 0.00054
Eulerian integral length scale (m) LE,f 0.087→ 0.152
Eulerian integral timescale (s) TE,f 0.36→ 3.56
Taylor microscale (m) λ 0.018→ 0.055
Kolmogorov length scale (m) ηK 0.0011→ 0.0045
Kolmogorov timescale (s) τK 0.019→ 0.332
Spatial resolution κmaxηK 0.87→ 3.59

Table 3.1: DNS fluid properties. Properties with two values are at the initial (t =
0.0 s) and final (t = 7.5 s) simulation times.

Properties of the DNS are listed in Table 3.1. More extensive details of the

DNS results are given in Appendix B. In order to evaluate particle SGS models,

it is essential that we have confidence in the DNS. The following were considered to

verify the correctness of the DNS: sufficient spatial resolution, timestep independence,

appropriate turbulent kinetic energy spectrum, temporal evolution of the skewness

of the streamwise velocity derivative, isotropy, and rate of decay of turbulent kinetic

energy and dissipation rate.

3.2.3 Filtering

Explicit filtering is performed to obtain the FDNS flow fields, and for the ADM model.

In a priori, the FDNS field is obtain by explicitly filtering the DNS velocity field. The
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Figure 3.2: Turbulent kinetic energy of the FDNS fluid fields normalized by the
turbulent kinetic energy of the DNS.

three-dimensional filtering operation using a filter kernel G is defined as

φ̃(~x, t) =

∫
V

G(~r)φ(~x− ~r, t)d~r (3.2)

where φ is the variable to be filtered and V is entire domain volume. The most com-

monly used filter functions are the top-hat and Gaussian filters. The sharp spectral

filter function is often used when performing LES in spectral space. Previous a pri-

ori particle-laden LES studies have shown that the filter type has little influence on

particle statistics (Armenio et al., 1999) (Shotorban and Mashayek, 2006).

In this study, all filtering operations are performed using the Gaussian filter func-

tion. The Gaussian filter kernel is:

G(~r) =
3∏
i=1

(
α

π∆2

)1/2

exp

[
− α r

2
i

∆2

]
(3.3)
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Figure 3.3: Turbulent kinetic energy spectra of the FDNS fluid fields at t = 2.5s.

In this thesis the constant α is set to α = 6, which is often used in the literature

(Geurts, 2004). To perform the filtering operation, the Gaussian filter is clipped so

that only nodes within |~r| ≤ 3∆ are included in the numerical integration.

Four different FDNS fluid fields, which are generated using different filter sizes,

are used in the a priori testing. The filter sizes are ∆ = 4hDNS, ∆ = 8hDNS,

∆ = 16hDNS, and ∆ = 32hDNS, where hDNS is the DNS grid spacing. In all cases the

FDNS grid spacing is half of the filter size hFDNS = 1
2
∆, which ensures that turbulent

scales at the filter cut-off are properly represented.

The amount of energy resolved in each of the FDNS fluid fields is shown Figure 3.2.

The percentage of resolved energy increases with time since the smallest turbulent

scales get larger but the size of the cut-off scale remains constant. In practice, resolv-

ing about 80% of the bulk energy is considered to be a fairly well resolved LES. The

turbulent kinetic energy spectra of the FDNS and DNS fields at t = 2.5s are shown
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Figure 3.4: Turbulent kinetic energy of the LES and FDNS fluid fields normalized by
the turbulent kinetic energy of the DNS. The LES and FDNS filter size is ∆ = 8hDNS.

in Figure 3.3. As the filter size is increased the cut-off wavenumber is decreased and

less turbulent kinetic energy is resolved.

3.2.4 LES

LES of decaying isotropic turbulence in a periodic box was performed for the a poste-

riori study. The dynamic Smagorinsky model proposed by Germano et al. (1991) and

later modified by Lilly (1992) was used as the fluid SGS model. The filtered Navier-

Stokes equations were solved on a 643 grid with a single filter size of ∆ = 8hDNS.

The initial condition was obtained in two steps. Firstly, a DNS field prior to the ini-

tial time (t < 0) was filtered. Secondly, starting with this filtered field the LES was

advanced in time until the resolved turbulent kinetic energy was equal to that of the

corresponding FDNS velocity field at time zero (k̃LES = k̃FDNS(∆ = 8hDNS, t = 0)).
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Figure 3.5: Turbulent kinetic energy spectra of the LES, FDNS and DNS fluid fields
at various times. The LES and FDNS filter size is ∆ = 8hDNS.

This resulting LES field was used as the initial condition for the particle-laden LES.

The timestep used in the LES is twice that of the DNS ((∆t)LES = 0.00050s), but

the LES Courant is much lower since ũf is solved for instead of uf .

The LES filtered kinetic energy normalized by the DNS kinetic energy is shown

in Figure 3.4, and the LES energy spectrum at multiple times is shown in Figure 3.5.

Throughout the simulation the LES filtered kinetic energy is greater than that of the

FDNS since the LES has a smaller rate of decay, particularly at early times. This is
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caused by differences in the energy spectra of the resolved scales, and due to errors

with the fluid SGS model for scales smaller than the cut-off. The LES energy spectra

are similar to what a sharp spectral filter would produce, with more energy contained

at scales near the cut-off. If forced turbulence was simulated then the kinetic energy

of the LES and FDNS fields would be identical and constant in time. However,

differences could still exist between the energy spectra and dissipation rates.

3.3 Particle phase

3.3.1 Particle tracking

The particles are assumed to be perfectly spherical with a density much greater than

that of the fluid, and as a result only the drag force and gravity force are important. It

also assumed that the particles are small and the mixture is dilute such that particle-

particle interactions can be ignored, and the particles have no effect on the carrier

fluid. Therefore, the particle equation of motion that is used in this work, which was

previously given in (2.20), is:

dup,i
dt

=
f

τp
(uf,i − up,i) + gi (3.4)

It is solved numerically using a fourth order Adams-Bashforth method:

up,i(tn) = up,i(tn−1) +

[
55

24

dup,i
dt

(tn−1)−
59

24

dup,i
dt

(tn−2)

+
37

24

dup,i
dt

(tn−3)−
3

8

dup,i
dt

(tn−4)

]
∆t (3.5)
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where tn is the current timestep and tn−1 is the previous timestep. The equation for

particle position is

dxp,i
dt

= up,i (3.6)

A fourth order Adams-Bashforth method is used to numerically solve the particle

position equation:

xp,i(tn) = xp,i(tn−1) +

[
55

24
up,i(tn−1)−

59

24
up,i(tn−2)

+
37

24
up,i(tn−3)−

3

8
up,i(tn−4)

]
∆t (3.7)

The particle equation of motion and position equation are solved using Euler, sec-

ond order Adams-Bashforth, and third order Adams-Bashforth methods for the first,

second and third timesteps of the simulation, respectively.

The fluid field is solved using OpenFOAM and the output is written to disk.

The particles are tracked in a separate Fortran program with the fluid field from

OpenFOAM read in from disk. The particles are injected into the flow at t = 0 on

a uniform grid, and initially their velocities are set to the local fluid velocity up,i(t =

0) = uf,i[xp,i(t = 0), t = 0]. All spatial interpolations, such as interpolating fluid

velocities to the particle’s position, are done using a third order Hermite polynomial

interpolation scheme as recommended by Strutt et al. (2011). A particle timestep of

∆t = 0.001s was selected based on a particle timestep independence test. Details of

the particle timestep independence test are given in Appendix C.
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Type ID P1 P2 P3 P4 P5 P6 P7 P8 P9
dp (µm) 100 163 209 267 302 341 436 557 910
ρp/ρf 2000 2000 2000 2000 2000 2000 2000 2000 2000
τp (s) 0.019 0.049 0.081 0.132 0.169 0.215 0.352 0.575 1.534
StηK (t = t0) 0.50 1.32 2.17 3.53 4.52 5.76 9.42 15.38 41.04
dp/ηK(t = t0) 0.07 0.11 0.14 0.18 0.20 0.23 0.29 0.37 0.61

Table 3.2: Particle properties. t0 = 0.5 s.

3.3.2 Particle parameters

The Stokes number based on the Kolmogorov timescale is defined as StηK = τp/τK . A

range of Stokes numbers are tested by using nine different types of particles, which are

listed in Table 3.2. The type ID notation is used in this thesis to identify the type of

particle. In the table, the Stokes number and size ratio are specified for time t = 0.5 s,

which is the earliest time that particle statistics are considered (this will be discussed

in Section 3.3.4). For all particle types the density ratio is set to ρp/ρf = 2000, and

the particle diameter is varied among the different groups. The particle diameters

were selected to create an acceptable distribution of Stokes numbers, which is shown

in Figure 3.6. The Stokes numbers decrease with time since τp remains constant

but τK increases as the Kolmogorov scales get larger with time. A greater number

of particle types with Stokes number close to unity were tested since preferential

concentration is most significant for these particles. The assumption that particles

are small (dp/ηK ≤ 1) is valid for all particle types throughout the entire simulation.

Each particle group consists of Np = 262, 144 particles initially placed on a 643

uniform grid at time t = 0. This was determined to be a sufficient number of particles

based on an independence test. The independence test consisted of tracking particles

in the DNS flow field and examining particle statistics that are used in this study.
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Figure 3.6: Stokes number as a function of time for the nine different types of particles
listed in Table 3.2.

Further details of the independence test are given in Appendix C.

3.3.3 Gravity

Simulations with and without gravity were conducted. Including gravity is required

to evaluate the ability of particle SGS models to predict the crossing trajectory and

continuity effects.

The choice of the gravitational constant used in the particle equation of motion is

restricted by the time it takes a particle to traverse the domain, and the total length

of time simulated. If a particle travels the length of the domain then it ends up in

roughly the same location as it started since periodic boundary conditions are used. If

this occurs too quickly, then the particle will enter the same turbulent structure that

it started in. As a result, the particle will see fluid velocities that are highly correlated
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to the initial conditions, which is unphysical and incorrect. Therefore, the mean drift

velocity must be limited so that this does not occur. The maximum acceptable value

for the mean drift velocity was determined to be ud = 0.1 m/s. This value was

determined by examining the Eulerian temporal autocorrelation coefficient function

of the fluid velocity, and running particle-laden flow tests with various gravitational

constant values.

For each particle type the mean drift velocity was chosen to be ud = 0.1 m/s, and

this was set by using a different gravitational constant value for each type of particle.

Ideally, the same gravitational constant should be used for all particle types. If the

gravity value was set based on the largest particles and the maximum allowable mean

drift velocity, then the CTE and continuity effect would be insignificant for the small

and medium sized particles. Wells and Stock (1983) determined that the CTE is fairly

insignificant if ud/u
′
f,rms < 1. The parameter ud/u

′
f,rms as function of time is plotted

in Figure 3.7 for ud = 0.1 m/s, which shows that for the majority of the simulation

ud/u
′
f,rms > 1. Using this method of setting ud = 0.1 m/s for all particle types allows

for the CTE and continuity effect to be examined for a range of Stokes numbers, and

for the effect of particle inertia in the presence of gravity to also be tested.

Calculation of the gravitational constant for each particle type is done by setting

the particle acceleration and fluid velocity to zero (since there is no mean fluid flow)

in the particle equation of motion:

0 =
f

τp
(0− ud) + g (3.8)
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Figure 3.7: Time development of ud/u
′
f,rms for ud = 0.1 m/s. The importance of the

crossing trajectory and continuity effects increases as ud/u
′
f,rms increases.

Substituting in the appropriate relationships for τp and f , and rearranging gives:

g =
18udν

(ρp/ρf )d2p

[
1 + 0.15

(
dpud
ν

)0.687
]

(3.9)

For ud = 0.1 m/s and the nine particle types used in this work, (3.9) gives gravita-

tional constant values ranging from 0.078 to 5.6 m/s2. The direction of gravitational

acceleration is selected to be in the negative x3 direction.

For simulations with gravity, the initial particle velocity is set to the local fluid

velocity plus the mean drift velocity up,i(t = 0) = uf,i[xp,i(t = 0), t = 0] + (ud)i.

3.3.4 Selection of t0

The variable t0 is the earliest time that particle statistics are examined and used to

compare the different particle SGS models. Ideally, t0 should be chosen to be the time

when the particles become independent of their initial conditions, which is denoted by
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Figure 3.8: Mean squared relative velocity of P7 type particles in the ∆ = 16hDNS
FDNS flow field with zero gravity, using three different sets of particle initial condi-
tions. The particles are independent of their initial conditions once the lines converge.

t∗. In the large majority of the literature, t∗ is determined using a method first used by

Riley and Patterson (1974). They used the time at which the mean squared relative

velocity reached a maximum value to indicate when the particles are independent of

their initial conditions. The mean squared relative velocity is defined as:

〈
u2p,i,rel

〉
=
〈
[up,i − uf@p,i]2

〉
(3.10)

Riley and Patterson did not provide any insight into why the peak of
〈
u2p,i,rel

〉
would

indicate that the particles are independent of their initial conditions, nor have any

subsequent researchers.

Strutt et al. (2011) showed that the traditional peak mean squared relative ve-

locity method may not be sufficient to indicate independence of initial conditions
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Particle type P1 P5 P7 P8 P9

t∗ (s)
∆ = 8hDNS 0.111 0.666 1.172 1.533 3.726
∆ = 16hDNS 0.128 0.725 1.428 1.754 4.378

Table 3.3: Time required for particles to become independent of initial conditions
(t∗) using the method proposed by Strutt et al. (2011). Results are for two different
filter size FDNS flow fields with zero gravity.

for particles. They proposed another method which is used in this work. In their

method, t∗ is found by tracking multiple sets of particles with different initial condi-

tions, and observing the time at which particle statistics, such as
〈
u2p,i,rel

〉
, become

identical for the different particle sets. Three sets of different initial conditions are

used in this work: up(t = 0) = 0, up(t = 0) = 1
2
uf and up(t = 0) = uf . This method

is demonstrated in Figure 3.8. The results for various particle types and filter sizes

are summarized in Table 3.3. The time t∗ is taken to be the time when the difference

between the up(t = 0) = 1
2
uf and up(t = 0) = uf results is less than 1.0%. The

time for particles to become independent of initial conditions increases with both the

particle relaxation time and filter size. Gravity had a small influence on t∗, but no

consistent trend was observed.

The earliest time that particle statistics are considered was chosen to be t0 = 0.5 s

for the particle simulations in this study. Comparing this to the t∗ values listed in

Table 3.3, the larger particles are not yet independent of their initial conditions at

this time. There are difficulties with choosing t0 for particles in decaying turbulence.

Ideally, the Reynolds number and time frame during which particle statistics are

examined should be maximized. However, both of these parameters would be unac-

ceptably small if t0 was selected so that t0 ≥ t∗ for all particle types. The goal of this

work is to examine and compare various particle SGS models. To test if the selected
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value of t0 = 0.5 s is acceptable, a second set of model simulations was run using

t0 = 1.8 s. This corresponds to the smallest eight particle sizes being independent

of their initial conditions. The results from the t0 = 1.8 s simulations yielded the

same conclusions regarding the particle SGS models as the t0 = 0.5 s simulations.

This indicates that the selection of t0 = 0.5 s should be acceptable and not influence

conclusions regarding the particle SGS models.

3.3.5 Particle statistics

This section reviews the particle statistics that are considered in this work. The

turbulent kinetic energy of the particles (kp), the seen fluid velocity (ks), and the

filtered fluid velocity at the particles’ position (k̃f@p) are defined as:

kp =

〈
1

2
u′p,iu

′
p,i

〉
(3.11)

ks =

〈
1

2
u′s,iu

′
s,i

〉
(3.12)

k̃f@p =

〈
1

2
ũf@p,iũf@p,i

〉
(3.13)

The particle mean square dispersion
〈
x2p,i
〉
, and rate of dispersion Dp,i (also known

as dispersion coefficient or particle turbulent diffusivity) are calculated as:

〈
x2p,i
〉

=
〈
[xp,i(t)− xp,i(t0)]2

〉
(3.14)

Dp,i =
1

2

d

dt

〈
x2p,i
〉

(3.15)
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For (3.14) only turbulent dispersion is considered. Therefore, when gravity is in-

cluded the distance a particle travels due to the mean particle velocity is subtracted

from xp,i(t). The time derivative in (3.15) is calculated using a fourth order central

difference scheme.

The Lagrangian autocorrelation coefficient functions of the particle velocity

RLp,i(t, τ) and seen fluid velocity along a particle’s path RLus,i(t, τ) are examined

in this thesis.

RLp,i(t, τ) =

〈
up,i(t)up,i(t+ τ)

〉
[
〈
u2p,i(t)

〉
]1/2[

〈
u2p,i(t+ τ)

〉
]1/2

(3.16)

RLus,i(t, τ) =

〈
us,i(t)us,i(t+ τ)

〉
[
〈
u2s,i(t)

〉
]1/2[

〈
u2s,i(t+ τ)

〉
]1/2

(3.17)

where t is start time for calculation of the autocorrelation function, and τ is the time

that has elapsed since t. In statistically stationary turbulence the autocorrelation

functions are independent of the choice of t. However, for decaying turbulence the

autocorrelation functions depend on the choice of t since the turbulent kinetic en-

ergy of the fluid and of the particles are not constant in time. In this study, only

autocorrelation functions with t = t0 are considered.

The fractal dimension dpc, also called the correlation dimension, and the radial

distribution function g(ri) are measures of preferential concentration. The fractal

dimension measures the spatial dimension of the particle distribution. It is evaluated

by first calculating the number of particles Np(ri) within a sphere of radius ri, with

its origin at some base particle. The fractal dimension is then found by calculating

the slope of log[Np(ri)] vs. log[ri]. A fractal dimension of dpc = 2 corresponds to

particles aligned on a surface, and dpc = 3 corresponds to a random distribution with

uniform probability throughout the volume of the domain. Particle clustering due to
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preferential concentration causes the fractal dimension to be less than three (dpc < 3).

The radial distribution function (RDF) g(ri) is the ratio of the number of particle

pairs with a separation distance ri to the expected number if the particles had a

uniformly random distribution. It is calculated as:

g(ri) =
Pi/Vi
P/V

(3.18)

where Pi is the number of particle pairs within a separation distance between (ri −

∆r/2) and (ri + ∆r/2), P = Np(Np − 1)/2 is the total number of particle pairs,

Vi = 4
3
π[(ri + ∆r/2)3 − (ri − ∆r/2)3] is volume of the elemental shell, and V is the

total domain volume. In this study, the shell thickness used for binning the particles

is chosen to be ∆r = 0.3hDNS. The radial distribution function and fractal dimension

are calculated at every multiple of t = 0.5 s during the particle simulation.

3.3.6 DNS fluid particle results

The results of fluid particles tracked in the DNS fluid field were examined to ensure

that the code has been implemented correctly. Firstly, fluid particle dispersion is

compared with Taylor’s theorem, which is shown in Figure 3.9. The two lines plotted

for Taylor’s result are
〈
x2p,i
〉
∝ t2 for short times and

〈
x2p,i
〉
∝ t for long times. For

short times the fluid particle results have identical behaviour to Taylor’s theorem. At

long times the agreement is also good, but the fluid particle results are not perfectly

linear. This discrepancy is because Taylor’s result is for stationary turbulence, not

decaying turbulence. This long time behaviour for particles in decaying turbulence

has also been observed in previous studies (Elghobashi and Truesdell, 1992).

The normalized turbulent kinetic energies of the particles and seen fluid velocity,
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Figure 3.9: Dispersion of fluid particles in the DNS flow field compared with Taylor’s
theorem.

and the fractal dimension are shown in Figure 3.10. For fluid particles, the turbulent

kinetic energy of the particles and of the seen fluid velocity should be equal to the

fluid turbulent kinetic energy at all times, which is the case in Figure 3.10. Fluid

particles should have a uniform spatial distribution. Therefore, there should be no

particle clustering and the fractal dimension should be dpc = 3. This behaviour is

observed in Figure 3.10. Furthermore, the RDF for the fluid particles (not shown) is

approximately unity for all separation distances and at all times.

3.4 Particle subgrid scale models

This section details the implementation of the particle SGS models that are tested

in this work. These models are the approximate deconvolution method (ADM), and

the stochastic models proposed by Fukagata et al. (2004), Shotorban and Mashayek
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Figure 3.10: Time development of the particle and seen turbulent kinetic energies
(left), and fractal dimension (right) for fluid particles in the DNS flow field.

(2006), and Berrouk et al. (2007). All of these models were previously reviewed in

Section 2.3.

3.4.1 ADM

ADM is implemented by consecutively filtering the FDNS field and then using the

truncated Van Cittert series expansion previously given in equation (2.34), which is :

us,i =
m∑
α=0

(1−G)α ∗ ũf,i (3.19)

The filtering operations are performed as described in Section 3.2.3, and the same

grid is used as that of the FDNS field.

The truncation level (m) used for the Van Cittert series expansion must be se-

lected. Previous studies have used m = 1 and m = 2 (Shotorban and Mashayek,

2005) (Shotorban et al., 2007), and m = 5 (Kuerten, 2006). In this work, ADM is
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Figure 3.11: Ratio of ADM to FDNS turbulent kinetic energies as a function of Van
Cittert series truncation level. FNDS field is ∆ = 8hDNS at time t = 0.

performed using both m = 2 and m = 11. ADM with m = 2 was chosen to repre-

sent a realistic implementation that could be used in practical applications. At this

truncation level the FDNS field must only be filtered two additional times, which is

reasonable. ADM with m = 11 was chosen to represent a “perfect” ADM implemen-

tation (m→∞). Figure 3.11 shows the amount of energy that is added to the ADM

flow field, for ∆ = 8hDNS and at time t = 0, by including additional terms in the

series expansion up to m = 14. The marginal amount of energy that is added for

larger m values is very small. A horizontal asymptote for Figure 3.11 was estimated

by fitting an exponential function using a least squares method. Using a criteria of

at least 99% of the added energy associated with the asymptotic value, m = 11 was

selected as the “perfect” case.

Turbulent kinetic energy spectra for the ADM velocity fields are shown in Fig-

ure 3.12. The corresponding DNS and FDNS spectra are also shown for comparison.
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Figure 3.12: Turbulent kinetic energy spectra of the DNS, FDNS, and ADM velocity
fields at time t0 = 0.5 s for the four different filter sizes.

Figure 3.12 shows that ADM enhances scales near the cut-off by mimicking the be-

haviour of a sharp spectral filter. However, ADM only recovers a portion of the SGS

turbulent kinetic energy since it cannot recover any energy associated with scales

smaller than the LES grid.
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3.4.2 Gaussian random numbers

All three of the stochastic particle SGS models require random numbers with a Gaus-

sian distribution. The Box-Muller algorithm (Box and Muller, 1958) is used to gen-

erate a Gaussian random number (ξ) with zero mean and unit variance:

ξ =
[
− 2ln(U1)

]1/2
cos(2πU2) (3.20)

where U1 and U2 are independent random variables with uniform distributions in the

interval (0, 1).

3.4.3 Wiener process

The Wiener process Wi is present in both of the models that are based on a Langevin

equation. The Wiener process is a Gaussian stochastic process that is continuous in

time, and is frequently used to model Gaussian white noise. The increment in the

Wiener process dWi is a Gaussian random variable with zero mean and variance dt

(Pope, 1994). In three dimensional space, the directional Wiener process increments

are calculated as (Pope, 2000):

∆Wi =
√

∆t ξi (3.21)

where i = 1, 2, 3, ∆t is the simulation timestep, and ξ is a Gaussian random num-

ber with zero mean and unit variance. The Wiener process increment ∆Wi is an

independent random variable.
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3.4.4 Lagrangian fluid SGS timescale

The stochastic particle SGS models require the Lagrangian fluid SGS timescale. In

this study TL,sgs is calculated using the relationship given by Gicquel et al. (2002)

and Heinz (2003):

TL,sgs =

(
1

2
+

3

4
C0

)−1
ksgs
εsgs

(3.22)

For the models of Fukagata et al. (2004) and Shotorban and Mashayek (2006) the

SGS fluid Lagrangian timescale along an inertial particle’s path (T ∗L,sgs) is calculated

using (3.22) since these models assume T ∗L,sgs = TL,sgs.

3.4.5 SGS turbulent kinetic energy and dissipation rate

The SGS turbulent kinetic energy at the particle’s location is needed for each of the

stochastic particle SGS models. For the a priori testing the ksgs field is calculated

directly from the DNS and FDNS velocity fields without the use of any modeling.

This is done by taking the trace of the SGS stress tensor (Meneveau and O’Neil,

1994):

ksgs =
1

2
τii =

1

2

( ˜uf,iuf,i − ũf,iũf,i) (3.23)

The goal of this thesis is to evaluate the performance and formulation of particle

SGS models. Testing models used for estimating ksgs is therefore out of scope of

the current work. Calculating ksgs using (3.23) in the a priori testing allows for the

particle SGS models to be tested without any modeling errors due to the calculation

of ksgs.

The SGS turbulent kinetic energy must be calculated with a model for the a pos-

teriori testing. Numerous models have been proposed in the literature. In this work
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ksgs is calculated using a method that is consistent with the dynamic Smagorinsky

model (Lilly, 1992):

ksgs = CI∆
2|S̃|

2
(3.24)

The constant CI is calculated dynamically based on the smallest resolved scales (Moin

et al., 1991). The filtered pressure field is calculated as:

P̃ = P̃ ∗ − 2

3
ksgs (3.25)

where P̃ ∗ is the modified filtered pressure normalized by the fluid density, which is

given by the LES.

For both the a priori and a posteriori testing the SGS dissipation rate is calculated

using the relationship from Gicquel et al. (2002):

εsgs = Cε
(ksgs)

3/2

∆
(3.26)

3.4.6 Model of Fukagata et al. (2004)

The implementation of the particle SGS model proposed by Fukagata et al. (2004) is

very straightforward. The SGS Brownian force is calculated using equation (2.37):

Fsgs,i
mp

=
σs
∆t
ξi (3.27)

The parameter σs is evaluated using equations (2.38) to (2.40), and the SGS Brownian

force is then added to the right-hand side of the particle equation of motion. The

Lagrangian timescale and turbulent kinetic energy are evaluated using the methods
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described in the Sections 3.4.4 and 3.4.5.

It should be noted that Fukagata et al. used a different method to calculate T ∗L,sgs.

They estimated T ∗L,sgs using the inverse of the the resolved local vorticity magnitude.

This quantity represents a timescale associated with the filtered fluid field, not the

residual fluid field. Consequently, it was decided to use (3.22) instead of the method

used by Fukagata et al..

3.4.7 Model of Shotorban and Mashayek (2006)

The Langevin equation proposed by Shotorban and Mashayek (2006) for the seen

fluid velocity, previously given in (2.43), is:

dus,i =

[
− ∂P̃

∂xi
+ ν

∂2ũf,i
∂xj∂xj

− (us,i − ũf,i)
T ∗L,sgs

]
dt+

√
C0εsgsdWi (3.28)

This equation is solved numerically using an explicit Euler-Maruyama scheme (Kloe-

den and Platen, 1992). The discretized version of (2.43) is

(us,i)n = (us,i)n−1 + ∆t

[
− ∂P̃

∂xi
+ ν

∂2ũf,i
∂xj∂xj

− (us,i − ũf,i)
T ∗L,sgs

]
n−1

+
√
C0(εsgs)n−1∆t ξ (3.29)

The subscripts n and n − 1 denote the current and previous timesteps, respectively.

The pressure and viscous terms are calculated by numerically differentiating the fil-

tered flow field using a fourth order central difference scheme.
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3.4.8 Model of Berrouk et al. (2007)

An explicit Euler-Maruyama scheme (Kloeden and Platen, 1992) is used to solve the

Langevin equation included in the model of Berrouk et al. (2007):

dus,i =

[
− ∂P̃

∂xi
+ ν

∂2ũf,i
∂xj∂xj

− (us,i − ũf,i)
T ∗i

]
dt+

√
C∗0εsgsdWi (3.30)

(us,i)n = (us,i)n−1 + ∆t

[
− ∂P̃

∂xi
+ ν

∂2ũf,i
∂xj∂xj

− (us,i − ũf,i)
T ∗i

]
n−1

+
√

(C∗0)n−1(εsgs)n−1∆t ξ (3.31)

The spatial derivatives are calculated using a fourth order central difference scheme.

Equations (2.48) to (2.51) are used to evaluate the direction specific timescale. The

modified model constant is calculated as

C∗0 = C0bi +
2

3

(
bi − 1

)
(3.32)

The term k̂sgs/ksgs is neglected in (3.32) since this term accounts for anisotropy of

the turbulence, but the current simulations are isotropic.

The value of β used is β = 0.356, which is the same value that was used by

Berrouk et al. (2007). Different values of β are not tested, although the results of

Berrouk et al. (2007) showed sensitivity to its value. The timescale TE,sgs, which is

required to calculate StE,sgs, is calculated using (2.49) and the prescribed value of β.
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3.4.9 DNS pressure gradient

Analysis of the DNS output from OpenFOAM revealed that the pressure is written to

disk incorrectly when running the code in parallel. However, it was confirmed that the

code correctly handles the pressure in parallel since the velocity fields obtained when

running the code in serial or parallel were identical. It is only the pressure output

which is incorrect, the internal calculation is treated properly. Using the velocity field

from the parallel simulation, the DNS pressure gradient was obtained by rearranging

the Navier-Stokes equations:

∂P

∂xi
= −∂uf,i

∂t
− uf,j

∂uf,i
∂xj

+ ν
∂2uf,i
∂xj∂xj

(3.33)

The right-hand side of (3.33) was calculated by numerically differentiating the DNS

velocity field. The time and spatial derivatives were computed using a second order

and a fourth order central difference scheme, respectively. This method was validated

by comparing the pressure gradient output from a serial run, with the pressure gradi-

ent calculated from the velocity field output of a parallel run. The pressure gradient

fields from the two different methods were identical.

The gradient of the filtered pressure is required for the models of Shotorban and

Mashayek (2006) and Berrouk et al. (2007). Filtering commutes with differentiation

for uniform filter sizes (Pope, 2000), which is the case here. For the a priori testing,

the gradient of the filtered pressure was obtained by explicitly filtering the pressure

gradient calculated using (3.33):

∂P̃

∂xi
=

˜(∂P
∂xi

)
(3.34)
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No special treatment is required for the a posteriori testing since the LES is run in

serial and the correct filtered pressure field is output. Therefore, the filtered pressure

output can be spatially differentiated and the calculation of (3.33) is not required for

the LES testing.

3.4.10 Model constants

The model constants C0 and Cε must be specified to close the three stochastic par-

ticle SGS models. Turbulence modeling using a Langevin equation was originally

developed for RANS and was later applied to LES. Gicquel et al. (2002) were the

first to apply the generalized Langevin model to LES. The Langevin model constant,

C0, relates the Lagrangian fluid SGS timescale to the turbulent kinetic energy and

dissipation rate:

C0 =
4

3

[
1

TL,sgs

ksgs
εsgs
− 1

2

]
(3.35)

The standard value of the Langevin model constant reported in the literature is

C0 = 2.1, and this value has been frequently used for stochastic particle SGS models.

The value C0 = 2.1 was determined by Anand and Pope (1985), who developed a

probability density function equation for turbulent dispersion based on the Langevin

equation. They applied this equation to a thermal wake and compared it with the

experimental data of Warhaft (1984), for which they found C0 = 2.1 to be the optimal

value.

The constant C0 is not expected to be universal, but instead should be a function

of the turbulence, and in the case of LES a function of the filter size. The Langevin

66



M.A.Sc. Thesis - Matthew Cernick McMaster - Mechanical Engineering

model constant can be calculated directly from the DNS and FDNS as:

C0(t) =
4

3

[
1

TL,sgs(t)

〈
ksgs(t)

〉〈
εsgs(t)

〉 − 1

2

]
(3.36)

The difficulty with calculating C0 in decaying turbulence is that the various parame-

ters in (3.36) are a function of t, which would not be the case with forced turbulence.

The Lagrangian fluid SGS timescale is found by integrating the Lagrangian autocor-

relation coefficient of the SGS fluid velocity fluctuations along a fluid particle’s path

RLu′′f@fp
(t, τ) (Fede and Simonin, 2006).

TL,sgs(t) =

∫ ∞
0

RLu′′f@fp
(t, τ)dτ (3.37)

RLu′′f@fp,i
(t, τ) =

〈
u′′f@fp,i(t)u

′′
f@fp,i(t+ τ)

〉
[
〈
u′′f@fp,i

2(t)
〉
]1/2[

〈
u′′f@fp,i

2(t+ τ)
〉
]1/2

(3.38)

The value of C0 for this simulation was found by calculating TL,sgs(t),
〈
ksgs(t)

〉
and〈

εsgs(t)
〉

from the DNS and FDNS, and then using (3.36). The effect of decaying

turbulence on RLu′′f@fp
(t, τ) was not accounted for. The calculated C0 values as a

function of time and filter size are plotted in Figure 3.13. The results show a large

range for C0, but the data is roughly centered around the standard value of C0 = 2.1.

Several authors have noted that the formulation of the Langevin model is consis-

tent with the Kolmogorov hypothesis, and that the Langevin model constant C0 is

consistent with the Kolmogorov constant (Pope, 2000). The Kolmogorov hypothesis

predicts

DLu′′f@fp
(t, τ) = C0

〈
εsgs
〉
τ for τK << t << TL,f (3.39)
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Figure 3.13: Model constant C0 calculated from the DNS and FDNS velocity fields
using equation (3.36).

where DLu′′f@fp
(t, τ) is the Lagrangian structure function which is defined as

DLu′′f@fp
(t, τ) =

〈[
u′′f@fp,i(t+ τ)− u′′f@fp,i(t)

]2〉
(3.40)

Pope (2000) explains that although the formulations are consistent with one another,

the two constants are not necessarily equivalent. The two constants would be expected

to be identical for high Reynolds number turbulence with a very well defined inertial

subrange, which has not been tested experimentally or with DNS. Low Reynolds

number experiments have shown discrepancies between the two constants.

As a comparison, the constant C0 was also calculated from the DNS and FDNS

using the Lagrangian structure function method. Least squares linear regression was

used to determine C0 from (3.39) and (3.40). Figure 3.14 shows that this method

leads to a larger range of C0 with somewhat smaller values, although the standard
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Figure 3.14: Model constant C0 calculated from the DNS and FDNS velocity fields
using the Lagrangian structure function.

value C0 = 2.1 is still within the range of results.

The constant Cε is the LES dissipation coefficient and has no relation to RANS.

It relates the SGS dissipation rate to the SGS turbulent kinetic energy:

Cε =
εsgs∆

(ksgs)3/2
(3.41)

The LES dissipation coefficient has been used in the past for modeling of atmospheric

flows with LES (Deardorff, 1973), and more recently has been used in LES Langevin

modeling Gicquel et al. (2002). The standard value that has been adopted for SGS

particle modeling is Cε = 1.0. Using the DNS and FDNS, Cε can be calculated

directly as:

Cε(t) =

〈
εsgs(t)

〉
∆[〈

ksgs(t)
〉]3/2 (3.42)
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Figure 3.15: Model constant Cε calculated from the DNS and FDNS velocity fields
using equation (3.42).

The calculated Cε values are shown in Figure 3.15. The large majority of calculated

values are greater than the standard value of Cε = 1.0.

In this thesis, various values of model constants C0 and Cε are used to test the

sensitivity and influence of the constants on the stochastic particle SGS models. Based

on the values calculated from the DNS and FDNS (Figures 3.13 and 3.15), low,

medium and high values were selected for each of the constants, with the standard

values included. The values selected were C0 = 1.0, 2.1, 3.2 and Cε = 1.0, 1.4, 1.8.

Table 3.4 lists the different combinations of model constants that were selected for

testing.

C0 1.0 2.1∗ 2.1 2.1 3.2
Cε 1.4 1.0∗ 1.4 1.8 1.4

Table 3.4: Combinations of model constants C0 and Cε selected for testing. Super-
script ∗ denotes standard constant values.
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Chapter 4

Results and Discussion

This chapter presents the results of the a priori and a posteriori tests for assessment

of the particle SGS models. The particle SGS models that are tested are ADM, the

stochastic models of Fukagata et al. (2004), Shotorban and Mashayek (2006) and

Berrouk et al. (2007), and the case of no model (tracking particles in the FDNS or

LES flow fields without any particle SGS modeling). The model results are compared

to particle statistics obtained by tracking particles in the DNS flow field.

The majority of the results focus on the a priori testing. The first results presented

are for a single filter size of ∆ = 16hDNS with the standard model constants (C0 = 2.1

and Cε = 1.0), which are referred to as the standard tests in this thesis, with both

gravity neglected and included. Next, a priori results analysing the significance of

filter size and model constant values are included. Lastly, the a posteriori results are

examined.
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Figure 4.1: Turbulent kinetic energy of the fluid seen by the particles at time t = 4.0 s.
A priori testing with filter size ∆ = 16hDNS, standard model constants, and zero
gravity.

4.1 A priori

4.1.1 Standard tests with zero gravity

This section contains the results of the a priori analysis with standard test parameters

(∆ = 16hDNS, C0 = 2.1 and Cε = 1.0) and zero gravity. The turbulent kinetic

energy (TKE) at time t = 4.0 s of the fluid seen by the particles and of the particles

themselves are shown in Figures 4.1 and 4.2, respectively. Both plots are normalized

by the TKE of the fluid, and are plotted as a function of Stokes number based on

the Kolmogorov timescale at the current time. The TKE plots are only shown at a

single time since the conclusions regarding the ability of the particle SGS models to

predict TKE were found to be independent of time.

The DNS results of the TKE of the fluid seen by the particles shows a dependence
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Figure 4.2: Turbulent kinetic energy of the particles at time t = 4.0 s. A priori testing
with filter size ∆ = 16hDNS, standard model constants, and zero gravity.

on Stokes number. This is due to particle clustering, which causes inertial particles to

have spatial distributions that differ from fluid particles. The shape of the seen fluid

TKE DNS results as a function of Stokes number agree well with the DNS results of

Gobert and Manhart (2010). The seen TKE of the DNS fluid particles is equal to

the fluid TKE (ks/kf ∼ 1.0), as previously shown in Section 3.3.6.

The ks and kp results from the FDNS simulations are much less than the DNS

since filtering removes the fluid subgrid scale TKE. The discrepancy between the

FDNS and DNS particle TKE results is reduced at larger Stokes numbers since large

inertia particles are not significantly affected by small turbulent scales.

The TKE results from ADM are superior to FNDS but are still smaller than the

DNS. This is expected since ADM is only capable of improving scales near the cut-off,

and cannot recover energy associated with scales that are smaller than the LES grid.

The ADM results using truncation levels m = 2 and m = 11 are denoted by ADM-2
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and ADM-11, respectively, in the plot legends. The ADM results with truncation level

m = 11 are superior to m = 2, but the discrepancy between the two is fairly small.

These ADM results are representative of the general trend that will be observed for

most of the a priori results in this work; ADM is superior to FDNS but is unable to

match the DNS, and the ADM-11 results are slightly better than the ADM-2 results.

The seen TKE from the stochastic model of Fukagata et al. (2004) is almost

identical to the FNDS. In the model of Fukagata et al. (2004) the particles see the

filtered fluid velocity, so any discrepancy with the FNDS for the seen TKE is due

to differences in particle distributions. Figure 4.2 shows that the kp results from

the model proposed by Fukagata et al. have good agreement with the DNS for

intermediate sized particles, but too much energy is added for the smallest and largest

particles. The excess energy for the smallest particles is due to the particle SGS force

becoming very large as τp →∞, which can be seen by analysing equations (2.38) to

(2.40). It is not clear why kp is overpredicted for the large particles.

The model of Shotorban and Mashayek (2006) predicts that the TKE of the fluid

seen by the particles is relatively constant for different Stokes numbers with a value

of ks/kf ∼ 1.0. The independence of ks with respect to Stokes number is a result

of the SGS kinetic energy being calculated directly from the DNS, the timescale

calculations being independent of particle size (fluid particle assumptions), and zero

particle clustering (which will be shown later). All of these factors imply that the

TKE of the seen fluid velocity should not be dependent on the particle relaxation

time. Using the model proposed by Shotorban and Mashayek the particle TKE is

well predicted for small and intermediate sized particles, but is overpredicted for

large particles. This result has been observed previously by Shotorban and Mashayek
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Figure 4.3: Turbulent kinetic energy of the filtered fluid velocity at the particles’
position at time t = 4.0 s. A priori testing with filter size ∆ = 16hDNS, standard
model constants, and zero gravity.

(2006). The error for the large particles can likely be attributed to the fluid particle

timescale assumptions.

When gravity is neglected the only difference between the stochastic models of

Shotorban and Mashayek (2006) and Berrouk et al. (2007) is the timescale correction

to account for particle inertia, given in (2.48). Therefore, in this case of zero gravity

the results for the smallest particles using the two models should be identical, which

is shown to be true in Figures 4.1 and 4.2. Far too much energy is added for the large

particles when using the model of Berrouk et al. (2007), which indicates that the

particle inertia correction actually worsens particle results. As discussed in Sections

2.3.4 and 2.3.6, the value of constant β has been shown to have a significant influence

on model results, and a wide range of values have been reported in the literature. It is

possible that an optimal value of β could improve TKE results and lead to a superior
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prediction of TKE compared to the model of Shotorban and Mashayek (2006).

The TKE of the filtered fluid velocity at the particles’ position is shown in Fig-

ure 4.3. As expected, the results from the different models all collapse to the FDNS

result. The small discrepancies are due to differences in particle distributions, which

will be discussed later.

The Lagrangian autocorrelation coefficient functions of the seen fluid velocity

along a particle’s path RLus,3(t0, τ) and of the particle velocity RLp,3(t0, τ) for various

particle types are shown in Figures 4.4 and 4.5, respectively. Only the autocorrela-

tion functions in the direction x3 are presented since the turbulence is isotropic and

therefore the autocorrelation functions in the three principal directions are nearly

identical.

The autocorrelation coefficients RLus and RLp from the FDNS are much greater

than the DNS for all particle types. Consequently, the particles in the FDNS sim-

ulations have larger Lagrangian particle integral timescales. This result is expected

since filtering removes the smallest turbulent velocity fluctuations which contribute

to fluid and particle velocities becoming uncorrelated in time.

The autocorrelation coefficients from ADM are between the FDNS and DNS func-

tions for all particle types, with ADM-11 being slightly better than ADM-2.

The model of Fukagata et al. (2004) produces Lagrangian particle velocity au-

tocorrelations that decrease very quickly at early times. This can be attributed to

the particle SGS force which causes particle velocities to change very quickly due to

the random component. However, this sharp drop at early times does not occur for

RLus when using the model of Fukagata et al. (2004). Although the particle velocity

changes abruptly, the particles do not travel far in such short times. Thus, the local
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Figure 4.4: Lagrangian autocorrelation coefficient function of seen fluid velocity in
direction x3 along a particle’s path, for various particle types with initial time t = t0.
A priori testing with filter size ∆ = 16hDNS, standard model constants, and zero
gravity.
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Figure 4.5: Lagrangian autocorrelation coefficient function of particle velocity in di-
rection x3, for various particle types with initial time t = t0. A priori testing with
filter size ∆ = 16hDNS, standard model constants, and zero gravity.
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filtered fluid velocity does not change rapidly. For the smallest particles the RLus

results are almost identical to the DNS, and as Stokes number increases the RLus

function moves towards the DNS.

For small particles the autocorrelation coefficients RLus and RLp predicted from

the models of Shotorban and Mashayek (2006) and Berrouk et al. (2007) are in close

agreement with the DNS, which is consistent with the findings of Shotorban and

Mashayek (2006). As the Stokes number is increased the two stochastic models tend

to overpredict the autocorrelation functions at early times and underpredict at later

times. For large particles the results of Shotorban and Mashayek (2006) are superior

to Berrouk et al. (2007), which again shows that the particle inertia correction does

not necessarily improve model performance.

Shown in Figures 4.6 to 4.8 are the particle mean square dispersion and rate of dis-

persion results for the standard tests without gravity. The work of Taylor (1921) tells

us that the rate of particle dispersion is dependent on the product of particle TKE

and the particle Lagrangian integral timescale, as shown in equation (2.27). There-

fore, the particle dispersion results can be explained using the previously analyzed

particle TKE and particle velocity Lagrangian autocorrelation function results.

The previous DNS results showed that as Stokes number was increased, kp de-

creased and RLp increased. These two trends have opposing influences on dispersion,

and therefore the DNS particle dispersion results do not monotonically increase or

decrease with Stokes number. The shape of the DNS particle dispersion results as

a function of Stokes number agree well with the DNS results of Gobert and Man-

hart (2010). As a comparison, the DNS results yield fluid particle dispersion of〈
x2p,3
〉

= 0.0499 m2 at time t = 4.0 s.
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Figure 4.6: Particle mean square dispersion in direction x3 at time t = 4.0 s. A priori
testing with filter size ∆ = 16hDNS, standard model constants, and zero gravity.

The previous FDNS results showed a decrease in kp and an increase in RLp relative

to the DNS. Based on this, it is not obvious if the FDNS particle dispersion should

be less than or greater than that of the DNS. The particle dispersion and turbulent

diffusivity plots in Figures 4.6 to 4.8 reveal that filtering causes a reduction in particle

dispersion, which is consistent with the results of all previous particle LES studies.

This implies that for the FDNS the reduction in particle TKE is more significant than

the increase in the particle Lagrangian integral timescale.

The ADM particle dispersion results are generally between the FDNS and DNS

results, as expected. This behaviour for particle dispersion using ADM was also found

by Gobert and Manhart (2010).

The model of Fukagata et al. (2004) tends to underpredict dispersion for small par-

ticles due to the smaller particle Lagrangian integral timescale, and for large particles

dispersion is overpredicted due to the large particle TKE. Overall, particle dispersion
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Figure 4.7: Time development of particle mean square dispersion in direction x3 for
various particle types. A priori testing with filter size ∆ = 16hDNS, standard model
constants, and zero gravity.
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Figure 4.8: Time development of particle turbulent diffusivity in direction x3 for
various particle types. A priori testing with filter size ∆ = 16hDNS, standard model
constants, and zero gravity.
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and rate of dispersion statistics obtained using the model of Fukagata et al. (2004)

are generally inferior to the FDNS.

The small particle dispersion and rates of dispersion predicted using the stochastic

models of Shotorban and Mashayek (2006) and Berrouk et al. (2007) have very good

agreement with the DNS results. This was also observed by Shotorban and Mashayek

(2006), but is in disagreement with Gobert and Manhart (2010) who found small

particle dispersion to be underpredicted using the model proposed by Shotorban and

Mashayek (2006). Model constant values, which will be examined in Section 4.1.4,

may be the cause of this discrepancy. Due to the excess particle TKE for the large

particles, both of the Langevin based stochastic models overpredict large particle

dispersion and dispersion rates. This also agrees with the findings of Shotorban and

Mashayek (2006).

The ability of the particle SGS models to predict preferential concentration is

determined by analysing the fractal dimension and radial distribution function (RDF)

results, which are plotted in Figures 4.9 and 4.10, respectively. The RDF results are

plotted as a function of Stokes number at specific separation distances ri.

Preferential concentration should be most significant for intermediate sized par-

ticles, and this can be seen in the DNS results as the fractal dimension is reduced

for Stokes numbers of approximately unity. Fractal dimension values less than three

(dpc < 3) are caused by particle clustering, and a fractal dimension equal to three

(dpc = 3) represents a random distribution without any preferential concentration.

The DNS results exhibit zero particle clustering for the smallest and largest particles

since dpc = 3 as StηK → 0 or StηK →∞.

Figures 4.9 and 4.10 show that the FDNS simulations are able to partially predict
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Figure 4.9: Fractal dimension at time t = 4.0 s. A priori testing with filter size
∆ = 16hDNS, standard model constants, and zero gravity.

preferential concentration. The FDNS results show that filtering reduces particle

clustering at low Stokes numbers, and increases particle clustering at high Stokes

numbers. This agrees with the findings of Ray and Collins (2011), who also gave

an explanation for this phenomenon which was reviewed in Section 2.3.6. Another

notable result of the FDNS simulations is that filtering causes an increase in the

Stokes number at which maximum particle clustering occurs (fractal dimension and

RDF curves are shifted to the right). The reason for this is that the smallest turbulent

vortices which drive preferential concentration in the DNS are removed by filtering. In

the FDNS simulations preferential concentration is driven by the vortices at the cut-off

scale, which have a larger timescale and therefore correspond to particles with larger

particle relaxation times. Particle clustering in FDNS should be most significant for

particles with an effective Stokes number of approximately unity, where the effective

Stokes number is based on the cut-off timescale.
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Figure 4.10: RDF for various separation distances at time t = 4.0 s. A priori testing
with filter size ∆ = 16hDNS, standard model constants, and zero gravity. The variable
(ηK)0 is the Kolmorov length scale at time t0.
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The idea of ADM is to enhance the smallest resolved scales, which would be

expected to improve preferential concentration statistics. The particle clustering re-

sults show that ADM improves predictions of preferential concentration compared to

FDNS, but is unable to match the DNS results.

All three of the stochastic particle SGS models predict zero particle clustering

for all Stokes numbers. This uniform particle distribution is caused by the random

component in each of the stochastic models, which evidently has a much more sig-

nificant influence on particle distributions than do the resolved turbulent structures.

The preferential concentration results from the stochastic models are inferior to the

FDNS since the random component smooths particle distributions. One of the main

motivations for performing particle-laden LES is that it is possible to account for the

interaction between particles and turbulent structures. Unfortunately, stochastic par-

ticle SGS models have the potential to prevent particle-turbulent interactions from

being properly captured due to their tendency to smooth particle distributions.

The RDF results plotted in Figure 4.10 show that the Stokes number at which

the RDF is maximum increases with separation distance. This result was previously

reported by Ray and Collins (2011), who postulated that at larger separation distances

particle clustering is driven by larger vortices that “resonate” with higher Stokes

number particles. All other conclusions from the RDF regarding the particle SGS

models and preferential concentration are the same as from the fractal dimension

results.
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4.1.2 Standard tests including gravity

The a priori tests with standard conditions and gravity included are analyzed in

this section. The gravitational constant for each particle type was selected such that

the drift velocity is ud = 0.1 m/s for all particle types. The main purpose of the

gravity simulations is to study the ability of the particle SGS models to account

for the crossing trajectory and continuity effects. Without particle SGS modeling

these effects are partially captured in particle-laden LES since the large turbulent

eddies are resolved. However, particle SGS modeling is required to account for the

crossing trajectory and continuity effects associated with the subgrid scale turbulent

structures. It is important to note that for decaying turbulence the significance of the

crossing trajectory and continuity effects increases with time since the drift velocity

remains constant as the turbulence decays, as shown in Figure 3.7.

The FDNS and ADM results compared to the DNS results have very similar

behaviour for both the gravity and zero gravity simulations. The trends from the

FDNS gravity simulations are the same as those in the zero gravity case, such as

FNDS dispersion is less than DNS. Once again, the ADM results are always between

DNS and FDNS, with ADM-11 being slightly superior to ADM-2. However, the

results of the stochastic particle SGS models do exhibit some different behaviour in

the presence of gravity, and therefore the majority of the discussion in this section

is focused on these models. Particular interest is paid to the comparison between

the models of Shotorban and Mashayek (2006) and Berrouk et al. (2007). In the

zero gravity case the only difference between these two models is the particle inertia

correction, but in the presence of a mean drift velocity the model of Berrouk et al.

(2007) also accounts for the crossing trajectory and continuity effects.
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Figure 4.11: Particle and seen fluid turbulent kinetic energy at early and late times.
A priori testing with filter size ∆ = 16hDNS, standard model constants, and drift
velocity ud = 0.1 m/s.
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Figure 4.12: Time development of particle turbulent kinetic energy for particle type
P1. A priori testing with filter size ∆ = 16hDNS, standard model constants, and
drift velocity ud = 0.1 m/s.

The TKE results are presented in Figures 4.11 and 4.12. Figure 4.11 shows ks and

kp at both early and late times so that the performance of the models with different

values of the parameter ud/u
′
f,rms can be examined. Compared to the zero gravity

case, the DNS results for the seen TKE are less dependent on Stokes number due to

less particle clustering, and the particle TKE is reduced.

The TKE of the particles predicted by the model of Fukagata et al. (2004) is

largely unchanged from the zero gravity case, particularly for the small particles.

Consequently, the particle TKE is overpredicted since the DNS particle TKE is re-

duced due to gravity. The SGS Brownian force is unaffected by gravity, and since it

is this force that is dominant for the smaller particles their TKE is unchanged in the

presence of gravity.

The particle TKE predicted by the model proposed by Shotorban and Mashayek
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(2006) compared to the DNS is fairly similar to the zero gravity results. Conversely,

the model of Berrouk et al. (2007) exhibits some significant improvements as a result

of the corrections for crossing trajectory and continuity effects. For small particles

the kp results using the model of Berrouk et al. (2007) are superior to the model of

Shotorban and Mashayek (2006) at all times. As shown in Figure 4.11, kp for large

particles from the model of Berrouk et al. (2007) is inferior to the model of Shotorban

and Mashayek (2006) at early times, but the opposite is true at later times. At early

times the particle inertia correction is the main source of error, but at later times

the crossing trajectory and continuity effects are more significant significant and have

a larger influence than the particle inertia correction. Figure 4.12 shows the time

development of the particle TKE for particle type P1, which allows for the crossing

trajectory and continuity effects to be examined without the problematic particle

inertia correction since P1 has very small inertia. The plot clearly demonstrates the

superiority of the model of Berrouk et al. (2007) for flows including gravity since

the results improve relative to the model of Shotorban and Mashayek (2006) as the

crossing trajectory and continuity effects become more significant.

The Lagrangian autocorrelation function results are shown in Figures 4.13 and

4.14. The RLus results plotted in Figure 4.13 are given in both the direction of mean

drift (x3) and one of the two transverse directions (x1).

The DNS Lagrangian autocorrelation functions from the gravity simulations de-

crease faster, and therefore have smaller Lagrangian integral timescales compared to

the zero gravity case. This is a result of the CTE, which causes particles to spend less

time in regions with highly correlated velocities since a particle with a drift velocity

will often traverse an eddy before it dies. Additionally, the RLus and RLp results are
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Figure 4.13: Lagrangian autocorrelation coefficient function of seen fluid velocity in
directions x1 (transverse direction) and x3 (mean drift direction) along a particle’s
path, for two particle types with initial time t = t0. A priori testing with filter size
∆ = 16hDNS, standard model constants, and drift velocity ud = 0.1 m/s.
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Figure 4.14: Lagrangian autocorrelation coefficient function of particle velocity in
direction x1 for two particle types with initial time t = t0. A priori testing with filter
size ∆ = 16hDNS, standard model constants, and drift velocity ud = 0.1 m/s.

less dependent on Stokes number in the gravity case. However, this may be partially

due to the drift velocity being constant for all particle types, which would obviously

not be the case if the gravitational constant was the same for all particles. Lastly,

the autocorrelation coefficient functions in the direction of mean drift always remain

positive, but in the transverse directions they contain negative loops. The nega-

tive values are caused by particles entering an eddy’s back flow in order to satisfy

continuity (Csanady, 1963).

The Lagrangian autocorrelation functions from the gravity simulations show much

less variation among the DNS, FDNS and particle SGS models than in the zero

gravity tests. When gravity is included, the mean drift velocity is the primary factor

that causes particles to become uncorrelated with their initial velocities, causing the

different models to have much more similar RLus and RLp functions. The model
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Figure 4.15: Time development of DNS particle dispersion and dispersion rate normal-
ized by the zero gravity results for particle type P5 with drift velocity ud = 0.1 m/s.

results generally lag the DNS, with the main exception being RLp from the model of

Fukagata et al. (2004) due to the random component as explained in Section 4.1.1.

The results from ADM and the stochastic models of Shotorban and Mashayek (2006)

and Berrouk et al. (2007) are similar in the transverse directions, but the stochastic

models are superior in the mean drift direction. For small and medium sized particles

the model proposed by Berrouk et al. (2007) is superior to that of Shotorban and

Mashayek (2006) due to the corrections for crossing trajectory and continuity effects.

Figure 4.15 shows DNS time development of the particle dispersion and rate of

dispersion normalized by the DNS zero gravity results for particle type P5. The

overall rate of dispersion is reduced due to the CTE, and the rate of dispersion in the

transverse directions is much less than in the gravity direction due to the continuity

effect. Dispersion rates are further reduced with time as the crossing trajectory and

continuity effects become more significant. The normalized dispersion plots for all

particle types are similar to the P5 particle type plots shown in Figure 4.15 since the
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Figure 4.16: Time development of particle mean square dispersion in directions x1
(transverse direction) and x3 (mean drift direction) normalized by the DNS zero
gravity results for two particle types. A priori testing with filter size ∆ = 16hDNS,
standard model constants, and drift velocity ud = 0.1 m/s.
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Figure 4.17: Time development of particle turbulent diffusivity in directions x1 (trans-
verse direction) and x3 (mean drift direction) normalized by the DNS zero gravity
results for two particle types. A priori testing with filter size ∆ = 16hDNS, standard
model constants, and drift velocity ud = 0.1 m/s.
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Figure 4.18: Fractal dimension at time t = 4.0 s. A priori testing with filter size
∆ = 16hDNS, standard model constants, and drift velocity ud = 0.1 m/s.

drift velocity is the same for all particles.

Normalized dispersion and rates of dispersion from the particle SGS models are

plotted in Figures 4.16 and 4.17, respectively. As in the no gravity case, FDNS

underpredicts dispersion and ADM is between the FDNS and DNS dispersion results.

The model of Fukagata et al. (2004) also shows similar behaviour to the zero gravity

simulations. Unlike the zero gravity case, the models of Shotorban and Mashayek

(2006) and Berrouk et al. (2007) overpredict dispersion for all particle sizes. The

model of Berrouk et al. (2007) better predicts particle dispersion than the model of

Shotorban and Mashayek (2006) in the presence of gravity, except for the absolute

largest particles (P9) at early times due to the error prone particle inertia correction.

Including gravity does not significantly alter the preferential concentration results,

as shown by the fractal dimension plotted in Figure 4.18. Gravity causes a small

overall decrease in particle clustering and a slight increase in the Stokes number at
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Figure 4.19: Turbulent kinetic energy of the particles at time t = 4.0 s. A priori
testing with filter size ∆ = 16hDNS, standard model constants, and drift velocity
ud = 0.1 m/s. Superscript * denotes model of Berrouk et al. (2007) with particle
inertia correction neglected.

which maximum particle clustering occurs. However, there are no differences between

the gravity and zero gravity tests when comparing the preferential concentration

results from the DNS, FDNS and particle SGS models to one another.

The gravity simulation results have shown that the model of Berrouk et al. (2007)

is able to account for the crossing trajectory and continuity effects, but the particle

inertia correction causes significant errors for large particles. In order to isolate the

gravity aspects of the model, additional tests were done using the model of Berrouk

et al. (2007) but excluding the particle inertia correction. This modified model of

Berrouk et al. (2007) had identical results as the original model for small particles

as expected, but for intermediate and high inertia particles all statistics, apart from

preferential concentration, were significantly improved. This is well exemplified by
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Figure 4.19, which shows that for the largest Stokes numbers the TKE of the particles

predicted by the model of Shotorban and Mashayek (2006) is better than the original

model of Berrouk et al. (2007), but the modified model is superior to both. With the

correct value of β and other model constants, the model of Berrouk et al. (2007) may

be capable of accurately predicting many different types of particle statistics.

4.1.3 Filter size test

The particle SGS models were tested using four filter sizes to evaluate the performance

of the models with different amounts of resolved fluid TKE. Standard model constants

were used for the filter size tests which were conducted with and without gravity.

The four filter sizes tested were ∆ = 4hDNS, ∆ = 8hDNS, ∆ = 16hDNS, and ∆ =

32hDNS, where hDNS is the DNS grid spacing. Only particle types P2, P5 and P8

were tested, which were selected to represent small, intermediate and large inertia

particles, respectively. Many of the results in this section are plotted as a function

of resolved fluid TKE for a single particle type and at a single time. In these plots

the filter size increases in the negative x-axis direction, and the DNS results are a

horizontal line since they are independent of filter size. Most of the results shown are

for zero gravity since the effect of filter size was usually the same with and without

gravity, unless otherwise noted.

The TKE of the particles in zero gravity is shown in Figure 4.20. The seen fluid

TKE results (not shown) are similar to the particle TKE results. As expected, the

FDNS particle TKE decreases substantially with filter size. Figure 4.20 shows that

TKE is poorly predicted by ADM for large filter sizes, which is expected since ADM

can only improve scales that are larger than the LES grid. Although it always remains
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Figure 4.20: Turbulent kinetic energy of the particles as a function of resolved energy
at time t = 4.0 s. A priori testing with standard model constants and zero gravity.
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Figure 4.21: Turbulent kinetic energy of the fluid seen by the particles for particle
type P5 as a function of resolved energy at time t = 7.0 s (left), and as a function of
time for filter size ∆ = 8hDNS (right). A priori testing with standard model constants
and drift velocity ud = 0.1 m/s.

fairly small, the difference between ADM-2 and ADM-11 increases with filter size. For

most particle types the TKE of the particles predicted by the stochastic models shows

little dependence on filter size. This is likely because the fluid SGS TKE, which is

used in the stochastic models, is calculated directly from the FDNS and DNS velocity

fields. If the fluid SGS TKE was calculated using a model (which is necessary in a real

LES) then the particle TKE may be more dependent on the filter size. Nevertheless,

the results demonstrates that stochastic models have the potential to recover all of

the SGS energy no matter the filter size, which cannot be said of ADM.

An unexpected result is that for the gravity simulations with small filter sizes the

TKE of the seen fluid predicted by the models of Shotorban and Mashayek (2006)

and Berrouk et al. (2007) is less than the FDNS at long times. This can be seen in
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in Figure 4.21 for particle type P5, but this result occurs for all nine particle types

tested. This result is difficult to explain. Figure 4.21 displays a clear trend that ks

decreases with time for the stochastic models of Shotorban and Mashayek (2006) and

Berrouk et al. (2007), but this only occurs when gravity is included. The problem is

worse for the model of Shotorban and Mashayek (2006) than the model proposed by

Berrouk et al. (2007), which indicates that the problem is related to the value of the

fluid SGS Lagrangian integral timescale along an inertial particle’s path, or to the

random component coefficient. This suggests that the problem may be resolved, or at

least lessened, with proper model constant values. The fact that this result occurs for

all particle types suggests that it cannot be attributed to preferential concentration.

Conversely, the k̃f@p results (not shown) indicate that there may be some differences

in the spatial distributions of the largest particles among the different models. For

large particles at long times, the models of Shotorban and Mashayek (2006) and

Berrouk et al. (2007) predict slightly larger values of k̃f@p than FDNS and the other

models. This discrepancy can only be caused by differences in particle distributions.

Particle velocity Lagrangian autocorrelation coefficient functions for the four dif-

ferent filter sizes are shown in Figure 4.22. For simplicity only RLp,3(t0, τ) for particle

type P5 in zero gravity results are presented. The results for other Lagrangian au-

tocorrelation functions (RLus , other particle types, including gravity) are largely the

same regarding the effect of filter size. For the smallest two filter sizes all of the

models and the FDNS produce RLp results that agree well with the DNS, but clear

differences exist between the DNS, FDNS and models for the two largest filter sizes.

As expected, the FDNS and ADM Lagrangian particle timescales increases with filter
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Figure 4.22: Lagrangian autocorrelation coefficient function of particle velocity in
direction x3, for particle type P5 with initial time t = t0. A priori testing with
various filter sizes, standard model constants, and zero gravity.
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size since a larger range of turbulent scales are removed which would otherwise con-

tribute to particle velocities becoming uncorrelated in time. The small filter results

for the model of Fukagata et al. (2004) are excellent. However, as the filter size is

increased RLp drops very quickly at short times, as seen in the previous sections, since

the random component becomes more significant as the SGS TKE becomes greater.

Overall the stochastic models of Shotorban and Mashayek (2006) and Berrouk et al.

(2007) yield the best particle velocity Lagrangian autocorrelation coefficient function

results. These two models are excellent for the three smallest filters, but tend to

slightly overpredict RLp in the case of the largest filter size, particularly for the larger

particles. A notable result from the gravity simulations is that the negative loops in

the transverse direction FDNS Lagrangian autocorrelation functions become larger

with increasing filter size. This can be explained by the filtered fields containing only

large turbulent structures, which therefore have larger back flows associated with

them.

The influence of filter size on particle dispersion and turbulent diffusivity is shown

in Figures 4.23 and 4.24, respectively. The FDNS and ADM dispersion results for

small filer sizes agree well with the DNS, but as the filter size increases dispersion

is underpredicted since the FDNS and ADM particle TKE decreases with filter size.

Particle dispersion and rate of dispersion from the model of Fukagata et al. (2004)

also decrease as less energy is resolved, but the cause is different than in the case of

FDNS and ADM. For the model of Fukagata et al. (2004) the particle TKE is well

predicted for all filter sizes, but for larger filter sizes the particle velocity Lagrangian

integral timescale is underpredicted, and therefore dispersion is reduced. For small

and intermediate sized particles the models of Shotorban and Mashayek (2006) and
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Figure 4.23: Particle mean square dispersion in direction x3 as a function of resolved
energy at time t = 7.0 s. A priori testing with standard model constants and zero
gravity.
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Figure 4.24: Particle turbulent diffusivity in direction x3 as a function of resolved
energy at time t = 7.0 s. A priori testing with standard model constants and zero
gravity.
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Berrouk et al. (2007) yield good results for both the particle TKE and Lagrangian

integral timescale for the three smallest filter sizes, which leads to dispersion results

that agree well with the DNS. However, these two models overpredict dispersion for

the large filter sizes due to the large particle Lagrangian integral timescales. In sum-

mary, increasing the filter size causes FDNS, ADM and the model of Fukagata et al.

(2004) particle dispersion to decrease, and conversely dispersion from the Langevin

based models tends to increase with filter size.

Fractal dimension plots as a function of time for particle type P5 and the four

different filter sizes are shown in Figure 4.25. Particle type P5 was chosen since it

is an intermediate sized particle that experiences significant particle clustering. As

previously observed, filtering causes a decrease in preferential concentration for small

Stokes numbers and an increase in preferential concentration for large Stokes numbers.

In Figure 4.25 particle clustering is overpredicted at early times (StηK > 1.0) and is

underpredicted at later times (StηK < 1.0) by FDNS and ADM. These effects become

more pronounced as the filter size is increased. The stochastic models predict zero

preferential concentration for all filter sizes as a result of the randomizing effect. The

only exception is that the model of Fukagata et al. (2004) predicts a small amount of

particle clustering for the smallest filter size.

4.1.4 Model constants test

The final set of a priori tests were conducted with the purpose of determining the

importance and sensitivity of the stochastic particle SGS model constants C0 and Cε,

which are the Langevin model constant and LES dissipation coefficient, respectively.

The parameters of the model constants test were chosen to be similar to the standard
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Figure 4.25: Time development of the fractal dimension for particle type P5. A priori
testing with various filter sizes, standard model constants, and zero gravity.
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Figure 4.26: Relationship between the parameters λ, α and β in the model of Fukagata
et al. (2004). Mathematical relationship is given in equation (2.39).

test parameters. For the model constants test, a single filter size of ∆ = 16hDNS

was used, all particle types were tested, and simulations were run with and without

gravity. The different model constants tested were reviewed in Section 3.4.10 and are

listed in Table 3.4.

The model constant tests revealed the results from the model of Fukagata et al.

(2004) to be independent of model constant values. Different model constants pro-

duced nearly identical results with extremely minor differences in all cases. This

model behaviour can be explained by analysing the role of the constants in the for-

mulation of the model of Fukagata et al. (2004). In this model the constants C0 and

Cε are only used to evaluate the Lagrangian fluid SGS timescale along an inertia par-

ticle’s path (T ∗L,sgs). The timescale T ∗L,sgs is then used to evaluate the dummy variable

θ as shown in equation (2.40), which in turn is used to evaluate the dummy variable

λ with the relationship given in (2.39). Finally, the dummy variable λ is used to
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evaluate the SGS Brownian force using (2.38). Therefore, the model constant values

are only important if λ is dependent on θ. Figure 4.26 is a plot of λ as a function

of θ for a range of α values. For the current simulations the maximum parameter

values experienced are α = 0.054 and θ = 22. These maximum values never occur

simultaneously since α and θ share an inverse relationship. Figure 4.26 clearly shows

that for the current range of α and θ values the dummy variable λ is independent of

θ, which explains why different model constants yield identical results. The dummy

variable λ is only dependent on θ when both α and θ are large, which would only

occur in the unrealistic condition of a simulation with a large timestep and a small

filter size. This demonstrates that for reasonable simulation and particle parameters,

the Lagrangian fluid SGS timescale along an inertia particle’s path has minimal effect

on the model of Fukagata et al. (2004).

The influence of the model constants C0 and Cε is largely the same for the stochas-

tic models of Shotorban and Mashayek (2006) and Berrouk et al. (2007) since these

models are formulated similarly. The effects of the model constants can be more easily

understood by defining the dummy variables ω and γ, and rearranging the equations

from the model of Shotorban and Mashayek (2006) to give:

ω = Cε

(
1

2
+

3

4
C0

)
T ∗L,sgs =

(
1

ω

)
∆√
ksgs

(4.1)

γ = CεC0 C0εsgs = γ

(
ksgs
)3/2

∆
(4.2)

The dummy variables ω and γ are functions only of model constants C0 and Cε.

Equations (4.1) and (4.2) show that both of the constants have the same type of

behaviour. Increasing either constant causes the SGS fluid Lagrangian timescale
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C0 Cε ω γ
1.0 1.4 1.75 1.40
2.1∗ 1.0∗ 2.08 2.10
2.1 1.4 2.91 2.94
2.1 1.8 3.74 3.78
3.2 1.4 4.06 4.48

Table 4.1: Values of dummy variables ω and γ for the different combinations of
model constants C0 and Cε used in the model constant testing. Superscript ∗ denotes
standard constant values, which were the values used in the previous tests.

along a particle’s path (T ∗L,sgs) to decrease, and the random component of the model

(C0εsgs) to increase. The values of the dummy variables ω and γ for the different

combinations of model constants tested are given in Table 4.1. In regard to the

effects of the model constants, the only differences with the model of Berrouk et al.

(2007) is extra complexities for particle inertia and the Csanady correction factors,

but the trends that result from changing the constant values would be expected to

be the same for both models.

The TKE of the particles from the model of Shotorban and Mashayek (2006) in

the case of zero gravity are shown in Figure 4.27. The general trend for the seen fluid

TKE (not shown) from either model with or without gravity is that ks is increased

as the model constant values are increased. This is due to the random component

adding more energy as the variable γ is increased. However, this is not always the

case for the TKE of the particles since reducing the timescale T ∗L,sgs appears to have

a significant effect. As seen in Figure 4.27, the larger model constants better match

the DNS kp trend with respect to Stokes number, whereas the small constants yield

flatter kp results. The TKE results are not very sensitive to the model constant values

considering the large range of values tested. Furthermore, a rather large amount of
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Figure 4.27: Turbulent kinetic energy of the particles at time t = 4.0 s from the model
of Shotorban and Mashayek (2006). A priori testing with filter size ∆ = 16hDNS,
various model constants, and zero gravity.

energy is filtered out in the current tests, which creates larger discrepancies between

the simulations with different constant values. For smaller filter sizes the values of

the model constants would be even less significant.

Figure 4.21 in Section 4.1.3 showed the unexpected result that ks can be less than

k̃f@p for small filter sizes using the models of Shotorban and Mashayek (2006) or

Berrouk et al. (2007) when gravity is included. In order to examine if this result

could be attributed to values of the model constants, the seen fluid TKE of particle

type P5 is plotted in Figure 4.28 for the different combinations of Cε and C0 tested.

The plot shows that the model constants have little influence on the rate at which ks

decreases with time. In particular, changing the value of the Langevin model constant

C0 does not have any effect at all. However, increasing the LES dissipation coefficient

Cε slightly decreases the rate at which ks decreases with time.
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Figure 4.28: Time development of the turbulent kinetic energy of the fluid seen by the
particles for particle type P5 from the model of Shotorban and Mashayek (2006). A
priori testing with filter size ∆ = 16hDNS, various model constants, and drift velocity
ud = 0.1 m/s.

The Lagrangian autocorrelation coefficient functions of the seen fluid velocity

from the model of Shotorban and Mashayek (2006) with zero gravity are shown in

Figure 4.29. The conclusions regarding the Lagrangian autocorrelation functions and

the model constants are the same for both RLus and RLp (not shown) using either of

the Langevin models. From the previous analytical analysis of the model constants

for the Langevin models, it is known that increasing the values of constants C0 and

Cε causes the timescale T ∗L,sgs to decrease and the random contribution to increase.

Both of these effects would be expected to reduce the Lagrangian integral timescales

of particle velocity and seen fluid velocity. For the small and intermediate inertia

particles the Lagrangian autocorrelation functions are not sensitive to the model

constants, and the results are excellent for all constant values tested. However, the
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Figure 4.29: Lagrangian autocorrelation coefficient function of seen fluid velocity in
direction x3 along a particle’s path, for various particle types with initial time t = t0
using the model of Shotorban and Mashayek (2006). A priori testing with filter size
∆ = 16hDNS, various model constants, and zero gravity.
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larger particles do show some dependence on the constant values as RLus and RLp are

reduced as C0 and Cε increase. The Lagrangian autocorrelation functions from the

simulations that use the largest constants best match the results of the DNS.

The particle dispersion and rate of dispersion results for both of the Langevin

models with and without gravity are shown in Figures 4.30 and 4.31. The plots show

that for all cases dispersion is reduced as the model constant values are increased.

This indicates that particle dispersion for the Langevin models is more affected by

the reduction in the SGS fluid Lagrangian timescale along a particle’s path than by

the increase in the random component. When gravity is included all combinations

of constants overpredict dispersion, and therefore the largest constants perform best.

For the case of zero gravity the smaller constants perform best for small particles, and

the larger constants perform best for large particles. These results indicate that the

ideal model constant values are a function of particle properties and the drift velocity.

Compared to other particle statistics, the particle dispersion and rate of dispersion

results show more sensitivity to the values of the model constants.

Preferential concentration results are not shown since all three of the stochastic

particle SGS models predict zero particle clustering for all of the different combina-

tions of model constants tested.

Overall, for most of the particle statistics examined the results are not very sen-

sitive to model constant values considering the large range of values tested, and that

the filter size of the current simulations is relatively large. Most of the results show

that the largest combination of model constants tested (C0 = 3.2 and Cε = 1.4) best

agree with the DNS results. However, it must be noted that although these constants

perform best in this work, this should not be considered to be a universal result.
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Figure 4.30: Particle mean square dispersion in direction x3 at t = 7.0 s from the
models of Shotorban and Mashayek (2006) and Berrouk et al. (2007). A priori test-
ing with filter size ∆ = 16hDNS, various model constants, and including/neglecting
gravity.
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Figure 4.31: Particle turbulent diffusivity in direction x3 at t = 4.0 s from the models
of Shotorban and Mashayek (2006) and Berrouk et al. (2007). A priori testing with
filter size ∆ = 16hDNS, various model constants, and including/neglecting gravity.
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For a given simulation the ideal model constant values will be a function of many

simulation parameters.

4.2 A posteriori

This section presents the results from the a posteriori testing. All nine particle

types were tested in zero gravity, with standard model constant values, and a filter

size of ∆ = 8hDNS. This filter size was selected based on the amount of resolved

fluid TKE, as well as considering the fluid velocity field errors between the LES and

FDNS simulations. LES simulations with a filter size of ∆ = 16hDNS had very large

discrepancies with the FDNS fluid fields.

The majority of the differences between the a priori and a posteriori particle

results can be explained by analysing the LES fluid results, some of which were

presented in Section 3.2.4. The conclusions regarding the performance of the particle

SGS models in LES from these tests are specific to the current LES fluid field, and

they should not be considered to be universal. The particle LES results could change

considerably if a different fluid SGS model is used since the particle LES results are

dependent on the LES fluid field. For example, compared to the current work the

LES velocity fields used by Shotorban and Mashayek (2006) and Gobert and Manhart

(2010) had energy spectra that better matched the FDNS, which would be expected

to yield superior particle LES results. Instead of drawing specific conclusions about

the performance of particle SGS models in LES, the a posteriori tests are mainly used

to demonstrate that for LES of particle-laden turbulence the particle and fluid SGS

models can be equally significant.

As shown in Figure 3.4, the TKE of the LES filtered velocity field is greater
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Figure 4.32: SGS turbulent kinetic energy of the LES and FDNS fluid fields normal-
ized by the turbulent kinetic energy of the DNS. The LES and FDNS filter size is
∆ = 8hDNS.

than the FDNS. This would be expected to increase the seen fluid and particle TKE

for the LES and all particle SGS models. The stochastic particle SGS models are

significantly effected by the SGS TKE, which is plotted in Figure 4.32. As explained

in Section 3.4.5, the a posteriori SGS TKE is calculated with a method that is

consistent with the dynamic Smagorinsky model, whereas the a priori SGS TKE

is calculated directly from the DNS and FDNS velocity fields. Figure 4.32 reveals

that the LES significantly underpredicts the SGS TKE compared to the FDNS. This

results in very similar particle results from the LES and the model of Fukagata et al.

(2004) since the reduced ksgs values cause the SGS Brownian force to be small. For the

models of Shotorban and Mashayek (2006) and Berrouk et al. (2007) the reduced SGS

TKE will cause the SGS fluid Lagrangian timescale along a particle’s path (T ∗L,sgs) to

increase and the random contribution to decrease, as shown in equations (4.1) and

(4.2), respectively. It is important to note that compared to the FDNS, the LES

filtered TKE is increased and the SGS TKE is reduced, but the sum of these two
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Figure 4.33: Turbulent kinetic energy spectra of the DNS, LES, and ADM velocity
fields at time t0 = 0.5 s. The LES filter size is ∆ = 8hDNS.

quantities is less than the DNS TKE
(
k̃f + ksgs

)
LES

<
(
kf
)
DNS

at all times.

Figure 3.5 shows that the LES energy spectrum does not match the FDNS spec-

trum, and instead resembles a spectrum that would be produced from a sharp spectral

filter. This excess energy at scales near the cut-off will affect the LES particle results.

It also leads to very incorrect LES ADM energy spectra since ADM adds energy to

scales near the cut-off, as shown in Figure 4.33. The a posteriori ADM velocity of

the smallest resolved scales is far too great. Furthermore, not only is the shape of

the ADM spectra incorrect, but the overall amount of energy added is too large such

that the ADM TKE is always greater than the DNS
(
kf
)
ADM

>
(
kf
)
DNS

.

The a posteriori seen fluid and particle TKE results are shown in Figure 4.34. The

LES results have more energy but the same trends as the FDNS, which is expected

since the LES filtered TKE is greater than the FDNS. The ADM ks and kp functions

are overpredicted compared to the DNS since the ADM flow field contains too much

energy. The only exception is that the TKE of the largest particles is slightly less
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Figure 4.34: Particle and seen fluid turbulent kinetic energy at time t = 4.0 s. A
posteriori testing with filter size ∆ = 8hDNS, standard model constants, and zero
gravity.

than the DNS. The reason for this is that ADM adds most of the excess energy to

the smallest resolved scales, but the small scales do not significantly effect the larger

particles. The larger particles are mostly effected by the large scales, and Figure 4.33

shows that the discrepancy between ADM and DNS energy spectra is minimal for

the large scales. As expected, the TKE of the particles from the model of Fukagata

et al. (2004) is only slightly greater than the LES due to the small ksgs field. This

demonstrates the sensitivity of the model to the SGS TKE field. The TKE from

the models of Shotorban and Mashayek (2006) and Berrouk et al. (2007) show more

dependence on Stokes number compared to the a priori testing, and the TKE of the

larger particles is further overpredicted in the a posteriori simulations. Since the sum

of the LES k̃f and ksgs is less than the DNS, the excess seen fluid and particle TKE

must be related to the increase in timescale T ∗L,sgs.
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Figure 4.35: Lagrangian autocorrelation coefficient function of seen fluid velocity in
direction x3 along a particle’s path, for various particle types with initial time t = t0.
A posteriori testing with filter size ∆ = 8hDNS, standard model constants, and zero
gravity.
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The Lagrangian autocorrelation coefficient functions of the seen fluid velocity

along a particle’s path for various particle types are shown in Figure 4.35. The

particle velocity Lagrangian autocorrelation coefficient functions are not shown since

the differences between the a posteriori RLp and RLus results are minimal. The LES,

ADM and model of Fukagata et al. (2004) Lagrangian autocorrelation functions are

all reduced compared to the a priori tests. This is caused by the larger energy of

the smallest resolved scales which act to randomize particle motion, and therefore

contribute to particle velocities becoming uncorrelated in time. In particular, ADM

has very large energy levels for wavenumbers near the cut-off, which results in ADM

Lagrangian particle timescales that are much less than those of the DNS. Opposite

to the other models, the a posteriori RLp and RLus functions from the models of

Shotorban and Mashayek (2006) and Berrouk et al. (2007) are slightly increased

relative to the a priori results. Although the increased energy of the small scales

reduces the Lagrangian autocorrelation functions, the reduced SGS TKE increases

the timescale T ∗L,sgs and decreases the random component of the model. Both of

these effects inhibit a particle from changing its velocity, and therefore increase both

RLp and RLus .

The a posteriori particle dispersion as a function of Stokes number is plotted in

Figure 4.36. The a posteriori LES and ADM particle dispersion results are less than

the a priori results due to the reduced Lagrangian particle timescales. On the other

hand, particle dispersion predicted by the models of Shotorban and Mashayek (2006)

and Berrouk et al. (2007) is increased compared to the a priori tests. This is caused

by the increased Lagrangian particle timescales for all particles, and the increased

particle TKE for the larger particles.
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Figure 4.36: Particle mean square dispersion in direction x3 at time t = 4.0 s. A
posteriori testing with filter size ∆ = 8hDNS, standard model constants, and zero
gravity.

Figure 4.37 presents the a posteriori fractal dimension results. The fractal dimen-

sion plot reveals that the large particle results are similar for the a posteriori and

a priori tests. Preferential concentration of large inertia particles is most influenced

by the largest turbulent scales, and the FDNS and LES energy spectrum plots are

very similar at the large scales. However, the FDNS and LES energy spectrum plots

have significant discrepancies at scales near the cut-off. In the a posteriori tests the

excess energy for the smallest resolved scales causes a significant increase in preferen-

tial concentration of the small and intermediate inertia particles for LES and ADM.

ADM in particular exhibits very large amounts of particle clustering that are much

greater than DNS for small and medium sized particles. As in the a priori testing,

the stochastic models of Shotorban and Mashayek (2006) and Berrouk et al. (2007)

predict zero particle clustering. However, the a posteriori results for the model of
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Figure 4.37: Fractal dimension at time t = 4.0 s. A posteriori testing with filter size
∆ = 8hDNS, standard model constants, and zero gravity.

Fukagata et al. (2004) show some preferential concentration due to the combination

of increased energy for scales near the cut-off, and the reduced SGS TKE.

It must be stressed that all of the particle LES resulted presented in this section

are specific to the current LES fluid simulation. If a different fluid SGS model was

used then the a posteriori results compared to the a priori results may have been

quite different. The important conclusion to take away from these a posteriori tests

is that the fluid SGS model can have just as significant of influence on the particle

results as does the particle SGS model.
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Chapter 5

Conclusions and Recommendations

5.1 Summary and conclusions

This research was focused on analyzing models that account for the influence of the

subgrid scales on particles in LES of particle-laden turbulence. In Lagrangian parti-

cle modeling, particle trajectories are calculated by numerically solving the particle

momentum equation. In order to evaluate the particle drag force, a solution to the

turbulent flow field is required. Using LES to solve for the flow field in the modeling

of particle-laden turbulence has many benefits compared to RANS or DNS. Since

the large turbulent scales are resolved, LES with particles has the potential to yield

superior particle statistics compared to RANS, including the ability to properly cap-

ture the interactions between particles and turbulent structures. Furthermore, the

computational cost of LES is much less than that of DNS, such that LES can be used

to solve for some flows of practical interest.

Previous researchers have shown that for many circumstances the effects of the

SGS motions on particles in LES cannot be neglected. Particle SGS models introduce
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additional modeling to account for the effects of SGS turbulent motions on particles.

In this work several particle SGS models have been analyzed and tested. The ap-

proximate deconvolution method (ADM) is a mathematical technique that enhances

scales larger than the LES grid. The stochastic models of Fukagata et al. (2004),

Shotorban and Mashayek (2006) and Berrouk et al. (2007) model the SGS effects by

introducing a random component.

The models were assessed using numerical simulations of inertial particles in a

periodic box of homogeneous, isotropic turbulence. The turbulence had an initial

Taylor scale Reynolds number of Reλ = 74 and decayed to a value of Reλ = 39 by the

end of the simulations, which were performed on a 2563 grid for the DNS. The particle

SGS models were evaluated using both a priori and a posteriori methodologies, and

the model results were compared to that of DNS and no model (FDNS or LES). A

range of Stokes numbers were tested with and without gravity, and a variety of filer

sizes and model constant values were used. The particle statistics used to analyze the

models were particle and seen fluid turbulent kinetic energies, Lagrangian autocor-

relation functions of particle velocity and seen fluid velocity, particle dispersion, and

preferential concentration statistics.

The ADM results from the a priori tests were superior to the FDNS results for

all particle statistics and Stokes numbers. However, the ADM results were unable to

match the DNS. This behaviour of ADM yielding results between FDNS and DNS

is because ADM is not capable of recovering all of the fluid SGS turbulent kinetic

energy. This was clearly observed in the ADM energy spectra, which added energy

to the resolved scales by moving towards a sharp spectral filter spectrum. However,
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ADM cannot recreate scales that are smaller than the LES grid. Although the ADM-

11 results were slightly superior to ADM-2, the ADM Van Cittert series truncation

level did not significantly affect the ADM results.

Overall, the stochastic particle SGS model of Fukagata et al. (2004) did not nec-

essarily improve particle results compared to the FDNS. The model of Fukagata et al.

(2004) generally overpredicted particle turbulent kinetic energy and underpredicted

the particle Lagrangian integral timescale, leading to a large range of dispersion re-

sults. The a posteriori results showed that the model is sensitive to the fluid SGS

turbulent kinetic energy field.

The results from the model of Shotorban and Mashayek (2006) had good agree-

ment with the DNS for particles with small relaxation times in the zero gravity a

priori tests. However, the large inertia particles had too much turbulent kinetic en-

ergy and dispersion, likely due to the fluid particle assumptions. In the case of zero

gravity, the only difference between the two models that are based on a Langevin

equation is that the model of Berrouk et al. (2007) contains an additional timescale

correction to account for particle inertia. As expected, the results of the small in-

ertia particles were identical for the two models. The large inertia particle results

were inferior for the model of Berrouk et al. (2007) compared to the model proposed

by Shotorban and Mashayek (2006), indicating that the particle inertia correction

worsened particle results. It is possible that the particle inertia correction could be

improved using a different value of the model constant β.

The FDNS was able to partially predict preferential concentration. As previously

observed by Ray and Collins (2011), filtering decreased particle clustering at low

Stokes numbers and increased particle clustering at high Stokes numbers. ADM was

127



M.A.Sc. Thesis - Matthew Cernick McMaster - Mechanical Engineering

able to improve preferential concentration results for all Stokes numbers, but could

not equal the results of the DNS. All three of the stochastic models predicted zero

particle clustering for almost all cases, and therefore performed much worse than the

FDNS. This was caused by the random component of the stochastic models, which

smooths particle distributions. This is a highly undesirable result since one of the

major motivations for LES with particles is the ability to capture the interactions

between particles and turbulent structures, but the random contribution inhibits the

ability of the stochastic models to account for these interactions.

A priori tests with gravity were conducted to evaluate the ability of the particle

SGS models to capture the crossing trajectory and continuity effects. The DNS results

clearly demonstrated the influence of these effects on particle dispersion and on the

Lagrangian autocorrelation functions. The FDNS and all of the particle SGS models

showed some ability to account for these effects since in LES the large eddies are

directly represented. Compared to the model of Shotorban and Mashayek (2006),

the model of Berrouk et al. (2007) showed good ability to account for the crossing

trajectory and continuity effects.

The filter size tests showed that the stochastic models have the capability to re-

cover the correct amount of turbulent kinetic energy for any filter size, whereas ADM

cannot recover sufficient turbulent kinetic energy for large filter sizes. All of the parti-

cle SGS models, including FDNS, generally performed very well for the smallest filter

size, but model errors became larger as less energy was resolved. Particle dispersion

decreased with filter size for FDNS, ADM and the model of Fukagata et al. (2004),

but the opposite trend existed for the models of Shotorban and Mashayek (2006) and

Berrouk et al. (2007).
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Calculation of the Langevin model constant (C0) and LES dissipation coefficient

(Cε) directly from the DNS and FDNS yielded a large range of values, which were

dependent on the amount of resolved energy. The standard values for both constants

were within the calculated range. The particle results from the model of Fukagata

et al. (2004) were independent of the model constant values. Analysis revealed that

the SGS Lagrangian timescale has minimal effect on the model of Fukagata et al.

(2004) for reasonable simulation and particle parameters. For the models of Shotorban

and Mashayek (2006) and Berrouk et al. (2007), the analytical work showed that

increasing the value of either constant increases the SGS Lagrangian timescale and

decreases the random component. Increasing these constants resulted in reduced

particle dispersion for both models. For the specific simulations in this thesis, the

largest model constant values tested (C0 = 3.2 and Cε = 1.4) performed best. Overall,

the results from the two models were not very sensitive to the constant values.

The a posteriori particle results had significant errors resulting from discrepancies

between the LES and FDNS fluid fields. The differences between the LES and FDNS

velocity fields were primarily due to fluid SGS modeling errors. If a different fluid

SGS model was used then the particle results could be quite different. Therefore,

conclusions regarding the particle SGS models from the a posteriori tests should not

be considered to be universal. Instead, the important conclusion to take from the a

posteriori tests is that in a real LES of particle-laden turbulence, the particle results

can be affected significantly by both the particle and fluid SGS models.
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5.2 Recommendations for future work

Based on the results and conclusions of this research, the recommendations for future

work are as follows. The most important recommendation is for particle SGS models

to be developed that are capable of recovering sufficient SGS turbulent kinetic energy,

and can properly account for the interactions between particles and turbulent struc-

tures. ADM is only able to recover a portion of the SGS energy, and the interactions

between particles and turbulent structures cannot be properly accounted for using

stochastic models that treat the SGS field as white noise. Particle SGS models that

allow particles to see a SGS fluid field with an underlying structure, similar to the

model of Khan et al. (2010), should be investigated. Development of such models

should focus on the physics of the subgrid scales.

The stochastic models tested in this thesis could be improved by investigating dif-

ferent modeling techniques for the parameters ksgs, εsgs and T ∗L,sgs. Without changing

their formulation, the stochastic models may be improved by altering the methods

used to evaluate these variables. For example, using a transport equation for ksgs

may prove to be superior to the method based on the dynamic Smagorinsky fluid

SGS model.

Additional testing of the model proposed by Berrouk et al. (2007) should be done

using range of β values, with and without gravity. The model showed good ability

to account for the crossing trajectory and continuity effects, but suffered a loss of

accuracy at high Stokes numbers due to the particle inertia correction. The particle

inertia correction may be substantially improved using a different value of β.

The particle SGS models should be tested for a variety of other conditions not con-

sidered in this research, such as inhomogeneous and anisotropic turbulent flows with
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more complex geometries. Also, particles with lower density ratios such that other

particle forces are important, and less dilute flows in which turbulence modulation

and particle-particle collisions are important should be examined. Lastly, additional

a posteriori tests using different fluid SGS models should be conducted.

Finally, it is recommended that any future simulations of isotropic turbulence in

a box should be forced to avoid the numerous complications associated with decaying

turbulence. Although forcing introduces some artificiality, this should not be an issue

if there is a large separation between the large and small scales, and it is scales in the

inertial subrange and smaller that are of primary interest.
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Appendix A

ADM Theory

The concept of the approximate deconvolution method (ADM) is to obtain the correct

velocity field by defiltering the LES fluid field. Filtering is defined as the convolution

of a function f(x) with a filter kernel G:

f̃(x) =

∫ ∞
−∞

G(r)f(x− r)dr (A.1)

If the filter kernel G has an inverse filter kernel G−1, then a deconvolution can be

performed (Stolz et al., 2001). The deconvolution is defined as:

f(x) =

∫ ∞
−∞

G−1(r)f̃(x− r)dr = G−1 ∗ f̃(x) (A.2)

The inverse filter kernel is often approximated using a truncated Van Cittert series

expansion (Van Cittert, 1931):

G−1 =
m∑
α=0

(1−G)α (A.3)
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where m is the truncation level (a non-truncated Van Cittert series has m→∞).

In general, if an inverse filter kernel exists then a convolution is fully invertible.

However, this requires that f(x) be filtered continuously with respect to x so that the

filtered function, f̃(x), is continuous. If the filtered function is projected onto a grid,

which is the case in LES, then the filtered function is not formally invertible since

information is fundamentally lost. This is why ADM is not capable of recovering the

correct unfiltered fluid field.

A simple one-dimensional example is used to demonstrate why ADM is unable

to recover the correct unfiltered function. The function y = sin(x) was computed

on a very fine grid, such that it can be considered to be almost continuous. The

function was filtered using a top-hat filter with a width of ∆ = π, and ADM was

performed using a truncated Van Cittert series expansion with m = 20 to ensure that

the truncation would not affect any results. The filtering and ADM were carried out

using a coarse grid and a fine grid. The coarse grid had a grid spacing of ∆x = 0.25π,

and the fine grid had the same grid spacing as the original function y = sin(x). The

results of both are shown in Figure A.1 and Figure A.2, where y∗ is the ADM result.

Figure A.1 shows that using the coarse grid ADM is unable to correctly reproduce

the original function. However, Figure A.2 shows that ADM performed on the fine

grid perfectly reproduces the original function (the y and y∗ lines are coincident).
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Figure A.1: Filtering and ADM of the function y = sin(x) on a coarse grid. The
variable y is the original unfiltered function, ỹ is the filtered function, and y∗ is the
approximation of y from ADM.
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Figure A.2: Filtering and ADM of the function y = sin(x) on a fine grid. The
variable y is the original unfiltered function, ỹ is the filtered function, and y∗ is the
approximation of y from ADM.
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Appendix B

DNS Fluid Results and Validation

The fluid results of the DNS are presented in this appendix. As discussed in Sec-

tion 3.2.2, the initial velocity field is generated using a spectral method that creates

a periodic box of isotropic turbulence. The simulation is then advanced in time until

an acceptable turbulent kinetic energy spectrum is obtained. This velocity field is

then used as the initial DNS fluid field (t = 0), and the simulation is run for 7.5s.

The evolution of the turbulent kinetic energy spectrum is shown in Figure B.1.

For comparison, a line proportional to κ−5/3 is also plotted, which according to Kol-

mogorov’s five-thirds power law should be the slope of the energy spectrum in the

inertial subrange (Pope, 2000). As the turbulence decays the turbulent kinetic energy

decreases, the range of turbulent scales is reduced, and the inertial subrange becomes

smaller.
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Figure B.1: Turbulent kinetic energy spectrum of the DNS fluid field.

The time development of the turbulent kinetic energy and dissipation rate are

shown in Figure B.2. These quantities are calculated directly from the velocity field

using:

k =

〈
1

2
u′f,iu

′
f,i

〉
(B.1)

ε = 2ν
〈
SijSij

〉
(B.2)

The strain rate is given by:

Sij =
1

2

(
∂uf,i
∂xj

+
∂uf,j
∂xi

)
(B.3)

The turbulent kinetic energy and rate of decay were compared with analytical rela-

tionships for decaying turbulence. The agreement between the analytical and DNS

was excellent, as shown in Figure B.2, and the decay exponent was within the range

of reported experimental values for grid generated turbulence. The RMS turbulent
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Figure B.2: Time development of the fluid turbulent kinetic energy (left) and dissi-
pation rate (right) of the DNS fluid field. The analytical solutions are also included.

velocity fluctuations in the three principal directions are presented in Figure B.3.

Based on the turbulent kinetic energy and the decay rate, the Taylor microscale

and Reynolds number can be calculated.

λ =

√
15ν(u′rms)

2

ε
(B.4)

Reλ =
u′rmsλ

ν
(B.5)

The evolution of the Taylor-scale Reynolds number is shown in Figure B.4.
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Figure B.3: Time development of the fluid RMS turbulent velocity components of
the DNS fluid field.
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Figure B.4: Time development of the Taylor microscale Reynolds number of the DNS
fluid field.
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Figure B.5: Time development of the Kolmogorov length and time scales of the DNS
fluid field.

The Kolmogorov length and time scales are plotted in Figure B.5. They are

calculated from the dissipation rate and kinematic viscosity.

ηK =

(
ν3

ε

)1/4

τK =

(
ν

ε

)1/2

(B.6)

To properly perform a DNS the smallest turbulent scales must be adequately

resolved. The general consensus in the literature is that sufficient spatial resolution

is achieved if κmaxηK ≥ 1.0 (Yeung and Pope, 1988). As shown in Figure B.6, the

initial value of κmaxηK was 0.87, and κmaxηK = 1.0 occurred at t = 0.1995 s. It

is acceptable that κmaxηK < 1.0 at very early times since particle statistics are not

considered until t = 0.5 s, and it is desired that the Reynolds number be maximized

during the particle simulations.

The temporal resolution was determined to be sufficient by performing timestep

independence tests for early simulation times. The timestep independence test results

are shown in Figure B.7. The results are presented using the dissipation rate since
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Figure B.6: Time development of the DNS spatial resolution.

compared to other fluid statistics, ε was found to be sensitive to the value of ∆t.

Figure B.7 shows that the ∆t = 0.000250 s and ∆t = 0.000125 s results are identical.

Figure B.8 presents the Eulerian integral length and timescales, which are calcu-

lated as:

Lii =

∫ ∞
0

〈
uf,i(~x+ ~ei · r)uf,i(~x)

〉〈
u2f,i
〉 dr (B.7)

LE,f = (L11 + L22 + L33)/3 (B.8)

TE,f =
LE,f
u′rms

(B.9)

where ~ei is a unit vector in the direction i. The Eulerian integral length scale (LE,f ) is

taken to be the average of the three longitudinal integral length scales (Lii). For DNS

of turbulence in a box it must be ensured that the computational box is large enough

to properly represent the energy containing eddies. There is a lack of consensus in

the literature as to how large the domain should be, but Pope (2000) recommends
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Figure B.7: DNS timestep independence test.

L0/LE,f ≥ 8. For decaying turbulence the larger scales grow in time, and therefore

it can be difficult to maintain L0/LE,f ≥ 8 at long times. In the current DNS

L0/LE,f = 11.49→ 6.58.

The skewness of the streamwise velocity derivative (Su) is used to determine if

the turbulence is fully developed.

Su =

[
− 1

3

∑3
i=1

〈(
∂uf,i
∂xi

)3〉]
[
1
3

∑3
i=1

〈(
∂uf,i
∂xi

)2〉]3/2 (B.10)

Tavoularis et al. (1978) compiled the results of many studies and found that Su is

dependent on Reynolds number. For the range of Reynolds numbers in this DNS the

skewness of the streamwise velocity derivative should be between 0.33 and 0.52. As

shown in Figure B.9, during the simulation Su has a relatively constant value of 0.50,

indicating that the turbulence is fully developed. This also ensures that the solution
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Figure B.8: Time development of the fluid Eulerian integral length and time scales
of the DNS fluid field.

to the Navier-Stokes equations is appropriate, and does not contain any artificial

characteristics due to the original generated velocity field.

For the present work it is desired that the turbulence be isotropic. This is mea-

sured using the anisotropic tensor, which is plotted in Figure B.10.

Bij =
uf,iuf,j
uf,kuf,k

− 1

3
δij (B.11)

In a perfectly isotropic flow field, all elements of the anisotropic tensor would be

zero. Figure B.10 shows that all components of the anisotropic tensor are less than

5% throughout the entire DNS. Some anisotropy can also be observed in Figure B.3,

which shows that the turbulent velocity fluctuations in three principal directions are

not identical. These deviations from isotropy are acceptable since they are sufficiently

small, but they should be considered when analysing the particle results.
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Figure B.9: Time development of the skewness of the fluid velocity derivative in the
streamwise direction of the DNS fluid field.
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Figure B.10: Time development of the anisotropic tensor components of the DNS
fluid field.
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Appendix C

Particle Independence Tests

The number of particles and particle timestep independence tests are presented in

this appendix using the particle diffusivity results. Many different particle statistics

were examined, but the particle dispersion rates showed the most sensitivity to ∆t

and Np.

The independence tests for the number of particles were done using the DNS and

FDNS (∆ = 16hDNS) flow fields with and without gravity. Figure C.1 shows that the

Np = 262, 144 and Np = 512, 000 DNS results are identical, as are the FDNS results.

Gravity did not influence the number of particles required for independence. However,

filtering was found to decrease the number of particles required for independence.
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Figure C.1: Particle number independence tests for particle type P5 in the DNS
and FDNS flow fields with zero gravity. The FDNS flow field has a filter size of
∆ = 16hDNS.
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The particle timestep independence tests were conducted with slightly different

particle parameters than those listed in Table 3.2, but a large range of Stokes num-

bers were considered. The particle timestep independence test results are plotted

in Figure C.2, which shows that the ∆t = 0.00025 s and ∆t = 0.00100 s results are

identical. Including gravity did not effect the value of the particle timestep required

for independence.
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Figure C.2: Particle timestep independence tests for the DNS with zero gravity. These
results are for particles with Stokes number StηK = 1.44 at time t = t0.
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