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Abstract

The study of Internet traffic behavior in a real IP network is the subject of this the-

sis. Traffic Matrix of a telecommunication network represents the exchanged traffic

volume between the source and destination nodes in the network and is a critical

input for network studies. However, in most cases, traffic matrices are not readily

available. Existing network management protocols such as the ‘Simple Network Man-

agement Protocol’ (SNMP) have been used to gather other observable measures, such

as link load observations. The first part of this thesis reviews famous methods and

approaches that try to infer and estimate the source-destination traffic matrix from

the observable link loads.

Another important subject in networks is to predict bandwidth requirements in the

future. The second part of this thesis reviews some existing methods and approaches

of traffic prediction. Recently a traffic prediction method which uses multiple Time-

Series analysis, each operating on a different time-scale, has been proposed. This

method uses multiple ‘AutoRegressive Integrated Moving Average’ (ARIMA) filters to

predict the future bandwidth requirements. Each ARIMA filter operates on a different

time scale, i.e., quarter-hour, hour, day, and week. The proposed method associates

a weight with each ARIMA filter, and adjusts the weights according to which filter
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is currently the most accurate predictor. A review of this newly proposed method is

presented. Extensive experimental results have been gathered to test the robustness

of the method. The filter coefficients of each ARIMA filter have been varied, and

the accuracy of the predicted traffic has been measured. Extensive experimental

measurements indicate that the model is very robust, and that large changes to each

filter’s coefficients have only a small effect on the accuracy. In all cases we evaluated,

the method is very robust, predicting short-term future traffic demands with typically

≈ 95% success rates.
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Notation and abbreviations

ACF AutoCorrelation Function

AIC Akaike Information Criterion

ARCH AutoRegressive Conditional Heteroskedasticity

ARIMA AutoRegressive Integrated Moving Average

BE Best-Effort

BIC Bayesian Information Criterion

COP Coefficient Of Preference

DCM Discrete Choice Model

DP Distance Parameter

EFC Exact Forecast Curve

EM Expectation Maximization

EWMA Exponentially Weighted Moving Average
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GARCH Generalized AutoRegressive Conditional Heteroskedasticity

IID Independent Identically Distributed

IP Internet Protocol

IPF Iterative Proportional Fitting

ISP Internet Service Provider

LPC Lower Probability Curve

MEB Mean Excess Bandwidth

MLE Maximum-Likelihood Estimation

MMSE Minimum Mean Square Error

MSB Mean Satisfied Bandwidth

MVUE Minimum-Variance Unbiased Estimator

NMSPE Normalized Mean Squared Prediction Error

OD Origin-Destination

PACF Partial AutoCorrelation Function

PDF Probability Distribution Function

PoP Point of Presence

QoS Quality of Service

RE Relative Error
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SNMP Simple Network Management Protocol

TE Traffic Engineering

TM Traffic Matrix

TSW Time Sliding Window

UPC Upper Probability Curve

VOQ Virtual Output Queue
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Chapter 1

Introduction

In the field of Traffic Engineering (TE), the knowledge of network traffic characteris-

tics has an important role to play. In Traffic Engineering, the capability to estimate

or predict future traffic demands can help improve our understanding of network. In

this chapter we introduce the concept of Traffic Matrix Estimation and Prediction.

We present a short background on the importance of having Traffic Matrix estimation

tools.

In a telecommunication network, traffic flows between source and destination

nodes, or Origin and Destination nodes. In a graph model of a network G(V,E),

the vertices v ∈ V typically denote routers, and the edges e ∈ E denote links between

routers. Let there be N routers in the network, i.e., |V | = N . A N×N Traffic Matrix

can be defined, where element X(s, d) represents the volume of the traffic between the

source s and the destination d. The Traffic Matrix can also be defined as a column

vector with N2 elements. Sources and Destinations can be defined at any granularity

level such as nodes, routers, or Point-Of-Presence (POP). In our work, we refer the

source and destinations as routers in a backbone (or wide-area) IP network.
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The Traffic Matrix can be an input to the many Traffic Engineering problems. The

knowledge of a Traffic Matrix can be used in tasks such as routing, load balancing and

QoS provisioning. The goal of a routing algorithm is typically to maximize the traffic

load which can be delivered. The goal of load balancing is typically to make the edge

loads throughout the network as even as possible. The goal of QoS provisioning in a

Differentiated Services network can be to determine the bandwidth requirements and

priorities associated with each Differentiated Services traffic class on each link. One

of the original design goals of the current INTERNET is to keep the complexity at

the intelligent endpoints [8], so that intermediate routers are relatively simple. This

goal allows the Internet to scale to a large number of relatively simple interconnected

routers. Traffic Engineering tools using knowledge of the Traffic Matrix can assist in

improving routing, load balancing and QoS provisioning.

The current Internet is not managed under the supervision of any single unity, or

‘Internet Service Provider’ (ISP). Each ISP faces different challenges in order to plan

for its own resources, topology configurations and equipments needed. The Traffic

Matrix (TM) plays an important role as an input to the design, management and

decision support tools in an ISP.

Management in the existing Internet is not an automated process. The traditional

management approach involves direct human monitoring of link loads and manual in-

tervention, in a centralized control approach of small networks. The large scale of the

current Internet makes the traditional managing approach less reliable, since the tra-

ditional approach involves direct human monitoring and intervention in a centralized

control model. As a consequence, the concept of a ‘Future Internet’ has been explored

by many researchers. The concept of a self-governing ‘Autonomic Future Internet’

2
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that governs itself in a decentralized approach, by removing human intervention, has

been proposed in recent years [7]. The self-governing loop typically consists of differ-

ent components, a monitoring component, and data analysis component, and finally

a decision-making component.

In general, we can categorize prior research into Traffic Matrices into two major

groups. Using figure 1.1, that is borrowed from [21], these concepts are explained.

Figure 1.1: TM vs Link Loads, [21]

The dashed lines represent the amount of traffic volume flowing through each

links. In traffic engineering context, they are called link loads. On the other hand,

the solid lines, show the amount of traffic volume between the source nodes and the

destination nodes. A column vector showing the traffic volume exchanged between

nodes, is called Traffic Matrix of the network. Two major subjects of research is

explained in the following sections.

3
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Traffic Matrix Estimation and Inference

As stated earlier, knowledge of the source-destination Traffic Matrix is not usually

available. The volume of traffic moving from a source to a destination can be expressed

as the number of bytes or packets in a given time interval, and can be called the ‘byte-

count’ or ‘packet-count’. Monitoring all network traffic between nodes to compute

a source-destination Traffic Matrix can be resource consuming, and it is not usually

done. As a result, there have been many research efforts to estimate the source-

destination Traffic Matrix by inference techniques.

One utility tool that nearly all networks have available is the ‘Simple Network

Management Protocol’ (SNMP). This utility reports the traffic volumes on the links

of the network. The source-destination Traffic Matrix can be inferred from the data

delivered by SNMP tool. If we denote collected link loads on the network as y(e), the

Traffic Matrix expressed as a column-vector to be x(e) and routing matrix as R, then

the general relation between Traffic Matrix column vector and measured link loads

can be written as:

y(e) = R× x(e)

We take a comprehensive look at different approaches used to infer TM from link

loads in chapter 2.

Traffic Matrix Forecast and Prediction

Another rich area of research is Traffic Matrix prediction methods. Given the ob-

servable link counts on the network and tools to infer the Traffic Matrix, another

4
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important goal will be to predict the TM in the near-term future, based on the his-

tory of previous Traffic Matrices and previous link loads on the network.

In chapter 3, we explain different methods of prediction, such as Kalman filters,

Flip-Flop filters and Time Series analysis.

However, these two areas of research (Traffic Matrix Inference and Traffic Ma-

trix Prediction) are close and they occasionally overlap and cannot be distinguished

clearly.

Contribution of the thesis

In our thesis, we review a recently-proposed Traffic Matrix and link-load prediction

algorithm, that can predict the near-term future traffic demands based upon the past

traffic history [37]. As shown in [9], at the packet-level Internet traffic often shows a

self-similar behaviour and long-range dependencies. Different approaches have been

proposed to model these dependencies and use them for prediction. One of the main

approaches for traffic prediction is the time series analysis.

The recently-proposed traffic prediction algorithm we review, uses multiple Au-

toregressive integrated Moving Average (ARIMA) filters [37]. Each filter operates on

a different time scale, i.e., quarter-hour, hour, day and week. The algorithm consid-

ers the traffic flow between each source-destination pair as a time series, and applies

multiple ARIMA filters to each time-series. A sequence of observed data that are

ordered in time is called a ‘time series’. One of the main characteristic of time series

is the importance of the order of observations [1]. While in other statistical analyses

the order of observed data is not considered, in time series analysis the order of ob-

servations is explicitly recognized. The general form of ARIMA filter can be written

5
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as:

Xn =

p∑
i=1

ϕrXn−i +

q∑
j=1

θrεn−j + εn, n > 0

where X is random variable, representing network traffic in our work, p and q

are autoregressive and moving average orders, respectively and ε is considered as a

sequence of uncorrelated random variable representing traffic changes. In literature ε

is called innovation [26].

In the recently-proposed traffic prediction algorithm that we review, each filter op-

erates on a different time scale, i.e., quarter-hour, hour, day and week. The algorithm

assigns a dynamic weight to each filter, and combines all the filter predictions accord-

ing to their weights, to yield a single predictor. The weights change dynamically,

according to how accurate each filter is.

The prediction algorithm is tested on real traffic demand matrices reported in 15-

minute intervals for the ‘Geant’ European backbone network, in a 4-month period.

One of the main goals of this thesis is to test the robustness of the proposed algorithm.

The filter coefficients for each filter have been varied, and the accuracy of the model

was then measured. Our experiments indicate that routers can estimate their future

link traffic demand with excellent precision.

Structure of the thesis

Chapter 2

In chapter 2, we review different methods for inferring the source-destination Traffic

Matrices from the link counts obtained from the SNMP tool.

6
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Figure 1.2: Geant Network Topology (Borrowed from http://sndlib.zib.de/)

Chapter 3

In chapter 3, we review several different forecasting approaches. Kalman filters are

discussed first and then flip-flop filters are introduced. Several different utilities used

in time series analysis are discussed.

We will also explain how prediction algorithms model can be used in a proposed

Future Internet structure in [36] and [29].

Chapter 4

In chapter 4, we will review the recently proposed traffic prediction algorithm in [37].

7
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Chapter 5

In chapter 5, we present our experimental results on evaluating the robustness of the

proposed algorithm. Several filter coefficients have been varied, and the accuracy of

the model has been evaluated. We use real measurements of the link loads reported

from Geant network to verify our model. Some of our experimental results have

been published in a conference paper in the 2012 IEEE ICC Workshop on the Future

Internet V (FutureNet V), held in Ottawa on June 2012 [37]. The conference paper

is entitled ‘Traffic Provisioning in a Future Internet’.

Chapter 6

Chapter 6 presents the conclusions, where we conclude our experiments.

8



Chapter 2

Traffic Matrix Estimation Methods

In this chapter, we will study different approaches to estimate the Traffic Matrix

from the Link Loads. We will explain different Traffic Matrix estimation and infer-

ence methods in detail. There has been numerous research conducted in this context,

and some effort has been made to classify these methods [6]. However we only con-

sider the most famous and basic approaches that have gained sufficient attention.

Methods such as Gravity models, Choice model, Tomogravity, Bayesian and Linear

Programming are reviewed. The key difference between these models is the source of

extra information they are using to make an estimate in an ill-posed situation.

2.1 Review of Estimation Methods

The Traffic Matrix (TM) is a crucial input for different applications ranging from con-

trol, measurement, QoS provisioning, to some other security applications like intrusion

detection. However, Traffic Matrices are not readily available in large operational IP

networks. In networks on the other hand, we can gather information of the traffic

9
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volume going through the links.

In a large-scale IP network, with n nodes and L links, there are N = n2 Origin-

Destination flows. The Traffic Matrix (TM) of a network represents the traffic

volume exchanged between Origin and Destination nodes of a network. The Link

Loads, however represent the load of traffic on each of the links. The Traffic Ma-

trix and Link Loads can be denoted as x(t) = (x1(t), x2(t), x3(t), . . . , xN(t))T and

y(t) = (y1(t), y2(t), ..., yL(t))T , respectively. xn(t) stands for the traffic volume, ex-

changed between OD pair n at time slot t, and yn(t) shows the traffic volume passing

through link n at time slot t [16]. In a large IP network, the Traffic Matrix and the

Link Loads are correlated to each other with the routing matrix, that can be shown as

R = (Rij)L×N , where Rij is equal to 1 if the OD pair j uses the link i in the network.

The ’Simple Network Management Protocol’ (SNMP) is used to gather the traffic

load on network links. On the other hand Routing Protocols can also be considered

as a known parameter, as we have the knowledge of the network configuration.

The relation between Link Loads and Traffic Matrices can be shown in the equa-

tion 2.1:

y(t) = Rx(t) (2.1)

By using the SNMP and gathering information of Link Loads, and also given the

knowledge of the routing algorithm from the network configurations, the only un-

known variable in the equation 2.1 appears to be Traffic Matrix, x(t). Therefore,

theoretically the TM and vector x, can be found by solving equation 2.1.

This process of calculating the TM based on Link Loads and routing protocols

cannot be trusted in the large-scale IP networks, when the number of the nodes is

much larger than the number of the links, i.e. N >> L. In that situation the equation

10
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y(t) = Rx(t) is considered as a highly under-constrained linear problem that can have

infinite solutions for the x(t). Fitting a TM into equation 2.1 makes this estimation

an ill-posed (under-constrained) problem. The main challenge in the literature is how

to overcome this problem. Different research has been conducted in academia to solve

this problem. The key difference between these methods is how they bring in and use

different extra information sources to make the problem identifiable.

2.2 Gravity Models

The simple Gravity Model is considered as the most basic estimation method [6]. We

know Newton’s famous gravity law:

F = K × M1 ×M2

D2

where F is the attraction force in Newtons between masses M1 and M2 in Kilo-

grams, D is the distance between these two masses in Meters, and K is the gravita-

tional constant which is approximately equal to 6.674× 10−11Nm2kg2.

In the field of networking, we can use this gravity law for TM estimation. This

model is therefore named after Newton’s Law of gravitation. Newton’s famous grav-

ity law states that the attractive force between two objects is proportional to the

product of the masses of the two objects individually, and is inversely proportional to

a function of the distance between those two objects. In networks we can also model

the data exchanged between two nodes (s,d) as proportional to the product of the

total volume of traffic transmitted from the source s and received by the destination d

individually, and inversely proportional by a function related to the distance between

11
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that OD pair.

Although this method looks a bit unfamiliar in the field of networks, the main

justification behind the Gravity Model is that if we have knowledge of the total

traffic patterns of individual nodes in the network, the gravity method can estimate

the exchanged traffic volume between pairs of nodes based on how busy nodes are,

and how nodes are connected.

The basic gravity model is proposed by Kowalski [10] as following:

xij = ki
OiTj
dαiij

(2.2)

with the Oi being whole traffic originating at node i, Tj the whole traffic termi-

nating at node j. dij is defined as a function of distance between node i and j. α is

called distance parameter. xij presents the amount of traffic exchanged between node

i, the source node, and node j, the destination node. k is the normalizing constant

that can be obtained as:

ki =
Oi − xii∑
j 6=i

OiTj
d
αi
ij

As we can see in equation 2.2, there are two attraction terms that are multiplied

together, and then divided by a distance factor.

At the second step, they try to fit the model to the real data of the network,

to find the only unknown part of the equation 2.2, i.e., the distance parameter. In

[10] they claim that if the equation 2.2 holds, then by substituting the real traffic

12
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measured from the network for xij, then we can write:

bij
Tj
≈ ki

Oi

dαiij
(2.3)

where bij is the real measurement of network traffic. They found the left-hand

side of equation 2.3 very scattered such that it cannot be used to fit a smooth curve.

Therefore they used another condition to fit their model to the real traffic mea-

surements. To fit the model to the data, they try to minimize equation in 2.4:

∑
i 6=j

|xij − bij| (2.4)

Alternatively:

∑
j 6=i

(xij − bij)2

xij + bij
(2.5)

where xij is the computed exchanged traffic between node i and j, and bij is the

real network traffic between source node i and destination node j.

The distance factor, αi that minimizes one of the 2.4 or 2.5 is the distance param-

eter (DP) of the exchange i. After obtaining αi, equation 2.2 can be used to calculate

xij mathematically.

In the last step, they define the COP (Coefficient of Preference) between node i

and j, cij, to find the perfect fit between the mathematical model and the measured

data:

cij =
xij
bij

(2.6)
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where cij is the COP between node i and j, xij is the mathematically calculated

traffic between node i and j using equation 2.2, and bij is the real measured traffic

between node i and j.

The final estimate of traffic exchanged between source node i and destination node

j can be calculated as:

x′ij = cijki
OiTj
dij

(2.7)

where the final estimate, x′ij, is the final fit between data and the model.

In [11] the authors consider the estimation process as a two-step process, the

first is to extend the gravity model by bringing in the ingress and egress link load

information and finding a Traffic Matrix estimate as the initial point for the second

step. In the second and more accurate step, they apply quadratic programming in

the potential solution space by using the tomography model (defined ahead). These

potential solutions are admitted by comparing to the gravity model solution.

To extend the gravity model, they use extra link load information. They first

categorize the nodes and links to two groups. All links and nodes internal to the

network are considered as backbone nodes and backbone links, while the other nodes

and links are counted as edge nodes and edge links. To exploit more information

they consider the network as connected to other autonomous systems via edge links.

An edge link itself can be in two states. The edge link can be an ’access link’ which

connects costumers to the network, or a ’peering link’ that connects non-costumer

autonomous systems to the network. This is illustrated in the figure 2.2.

The authors then assumed that the traffic going through the backbone of the

network from one peer to another is negligible. The main idea here is to form a friction

factor. They formed this by combining the normalizing and coefficient functions all
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Figure 2.3: Categorize Nodes and Links, [11]

together to have a simplified form of gravity model:

xij =
Oi × Tj
fij

(2.8)

where xij represents the traffic entering the network from source node i and leav-

ing the network from destination node j. fij is the matrix element representing the

friction factor. Comparing this equation with original gravity model equation 2.2, one

can observe that friction factor stands for the normalizing constant and the distance

function. As explained in [11] the friction factor contains the locality information
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specific to different source-destination pairs. It explains how different nodes are con-

nected with each other.

The authors noticed that inferring the R × R friction factor matrix between all

source-destination pairs is the equivalent problem of inferring the Traffic Matrix. As

a result, they try to estimate the friction factor. In the final gravity model they are

targeting to build, the exchanged traffic volume between nodes is proportional to the

traffic originating from the source node and exiting the destination node.

To estimate the friction matrix and build the final model, they incorporate the

link load information obtained by the aforementioned link classification. The authors

adapt the gravity model to treat customers and peering links differently.

Each peer Pi has a set of peering edge links connecting that peer to the network.

Each customer is connected to the network via access links a1, a2, . . . . Edge links

are labeled as p1, p2, ... . The set of all links connecting peer Pi to the network is P̄i.

They claim, based on the dominant INTERNET policies, that we can represent

the traffic in one of the following forms:

1. Outbound Traffic from access link to peering link:

Their first assumption is that the traffic from a single access link to a given peer

exits the network on the same peering link. They denote the peering link used for

traffic from access link to the peering link by X(ai, Pj). With this assumption in

mind they consider that the traffic exiting to a specific peer comes from each access

link proportional to the traffic originating at that access link. (The set of all access

links is denoted by A)

Therefore we can write the equation for the outbound traffic between the access

link aiεA to peering link pmεPj as:

16



M.A.Sc. Thesis - Shahrooz Behdin McMaster - Electrical Engineering

Toutbound(ai, pm) =
T inlink(ai)∑
aiεA

T inlink(ak)
T outpeer(Pj) (2.9)

if pm = X(ai, Pj).

In equation 2.9, Toutbound(ai, pm) is the outbound traffic from access link aiεA to

peering link pmεPj, T
in
link(ai) is the traffic entering the network from the access link

ai, T
out
peer(Pj) is the traffic exiting the peering link (pm).

2. Inbound traffic from peering link to access link:

Here they also assume the proportionality rule. Traffic entering the network from

each peer is split among the access links in proportion to the outbound traffic, which

can be written as:

Tinbound(pi, aj) = T inlink(pi)
T outlink(aj)∑
akεA

T outlink(ak)
(2.10)

where Tinbound(pi, aj) is the inbound traffic from peering link pi to access link aj,

T inlink(pi) is the traffic entering the network from peering link pi and T outlink(aj) is the

traffic exiting the network from link aj.

3. Internal traffic from access link to access link:

They consider the traffic going through the backbone and exiting an access link

as proportional to the traffic originating at the other access links.

The following equation represents the internal traffic model:

Tinternal(ai, aj) =
T inlink(ai)∑
akεA

T inlink(ak)
T outinternal(aj) (2.11)

where Tinternal(ai, aj) is the traffic entering the network from access link ai and

exiting the node aj, T
in
link(ai) is the traffic entering the network from access link ai

17



M.A.Sc. Thesis - Shahrooz Behdin McMaster - Electrical Engineering

and T outinternal(aj) is the portion of the whole traffic volume exiting the access link aj

excluding the portion originating at the peering links.

2.3 Tomogravity

The term ’Network Tomography’ was first introduced in [12] as determining the TM

in a network, by using the measured traffic volume flowing along directed links of the

network. The authors in [11] use this approach to fit the possible gravity solutions to

the equation 2.1. As mentioned in [6], the main deficiency of the gravity model is that

it doesn’t use the link count information. Therefore the authors in [12], proposed to

use the final gravity model, xg as a initial point for the Tomogravity model.

They then refine the gravity model solution by calculating a least-square function

and minimizing the Euclidean distance to the gravity model solution subject to the

tomographic constraint. The process is to solve the following quadratic programming

problem of the L2 norm of a vector.

min ||(x− xg)||

s.t. ||Rx− y || = 0

(2.12)

where ||.|| stands for L2 norm and xg is the gravity model solution. This equation

tries to find the closet solution to the gravity model, that also satisfies constraint

||Rx−y|| = 0. Another possible objective function is equation 2.13 where the weighted
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least squared solution are being considered:

min ||(x− xg)
w

||

s.t. ||Ax− y || = 0

(2.13)

w is the weight vector, and dividing is performed component-wise. They use

|| (x−xg)
w
|| as the objective function to minimize the distance to the gravity model

solution based on the Tomogravity constraint.

2.4 Linear Programming

The relationship between link counts and the OD traffic volumes can be sorted into a

set of linear equations. To find the Traffic Matrix, we need first to define an objective

function and then solve the problem with some standard techniques. However defining

a suitable objective function is a subject of much research. As a simple example, the

authors in [13] considered ||x|| as the objective function:

min ||x||2

s.t. y = Rx

(2.14)

They then mentioned that this approach is not efficient for the TM estimation

problem, since it deals mostly with the OD pairs that are have comparable sizes.

Another objective function has been proposed in [14]. We know that the load on a

link is the sum of all OD traffic volumes flowing through that link. Therefore they

built a weighted sum of all OD traffic volumes as the objective function:
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max

N∑
j=1

wjxj

s.t.
N∑
j=1

Rljxj ≤ yl

s.t.
∑
l=(i,j)

ylRlk −
∑
l=(j,i)

ylRlk =


xk if j is the source of k ,

−xk if i is the source of k ,

o otherwise.

(2.15)

where xj represents the traffic volume between OD pair j, and wj represents the

weight assigned to the OD pair j. N , is the number of OD pairs. R is the routing

matrix. The first constraint is the link constraint, which ensures that the volume of

traffic assigned to each link is less than or equal to the capacity of the link.

The second constraint is the flow conservation constraint. As explained in [6], it

makes sure that the amount of flow entering a node is equal to the amount of the

flow exiting that node, except for sources and destinations.

The main issue associated with this approach is finding the suitable weight set.

Weights assign a value to each of the OD pairs, based on the interaction between the

pair. Goldschmidt proposed weights representing the path length for each OD pair.

In [14] the author conclude that constant weights, i.e. wi = 1 ∀i, may not be suitable

as this approach gives more bandwidth to the closer nodes, while nodes with multiple

hops between them will get zero bandwidth.

the authors in [16] counted the link counts constraint as hard constraints, rather
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than statistical data. In other methods such as the Bayesian approach or EM meth-

ods, the link counts are used as statistical data. Here the objective function depends

on the weight function. For example, the function that is the linear combination of

all demands tries to maximize the load on all links in the network. As we are trying

to maximize the objective function, the model tries to assign more bandwidth to the

OD pairs with the larger weights.

2.5 Statistical Approach

The authors in [16] categorized the Bayesian and the Expectation Maximization as

statistical approaches, with different specific distributions for different Traffic Matrix

components. In the statistical approach, the procedure basically tries to find a specific

distribution for the OD flows.

2.5.1 Bayesian Approach

In the Bayesian approach, as explained in [16], the main idea is to find the condi-

tional probability distribution for the Traffic Matrix elements, given the knowledge

of the link counts and a prior distribution. To achieve that, we need to have a prior

distribution for the Traffic Matrix, p(X). In [17] they proposed a Poisson distribution

as the prior distribution for the traffic volumes between OD pairs:

xi ∼ Poisson(λi)

where xi is the i-th OD pair, and λi is the mean rate of OD pair i, xi.

After assuming a prior distribution for the traffic, the next step is to determine the
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parameters of that distribution. Usually, as in Bayesian approach, this step involves

the mean rates of the traffic between each OD pairs. The mean rates between OD

pairs can be denoted as a vector Λ = {λ1, λ2, .., λN}, where N is the number of OD

flows. Since Λ is unknown we need to define a prior value for the mean values, that

leads us to a joint model P (x,Λ), so that we can reach the distribution of OD pairs.

As a result the goal is to compute the P (x,Λ|y), that is the joint distribution of x

and Λ conditioned on the observed link counts, y.

It is, however, computationally hard to compute the posterior distribution P (x,Λ|y).

Therefore, iterative Markov Chain Monte Carlo methods are used to draw a large

number of samples to represent a complete histogram of the desired distribution [16].

This iterative approach starts with assuming a prior x0 for the Traffic Matrix,

that can be an outdated TM, and continues by taking two steps iteratively. First

step is to draw a value for Λ from equation 2.16:

Λi = p(Λ|xi, y) (2.16)

and then draw a value for xi+1 using equation 2.17:

xi+1 = p(x|Λi, y) (2.17)

using the obtained Λi, from equation 2.16. In equations 2.16 and 2.17, x represents

TM, Λ represents the vector of mean rates, and y represents observable link counts.

In equation 2.16 and 2.17, x represents traffic matrix, Λ = {λ1, . . . , λN} denotes

the vector of mean rates of OD flows and y is the observed link counts. Here i

represents the iteration step number.
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They continue this loop until a feasible solution is found. The feasibility here is

the positivity constraint on the Traffic Matrix elements.

The authors in [17] went further to compute the Traffic Matrix in an easier way.

They reordered the routing matrix columns as R = [R1R2] with R1 being a nonsingu-

lar r×r. With this approach, they also rewrite the Traffic Matrix as x = [x1 x2]. With

this formulation, it can be shown that x1 can be calculated using x1 = R−11 (y−R2x2),

[17]. So it only suffices to compute the estimate for the x2; p(x2|Λ, y). After that we

can compute the rest of the Traffic Matrix elements, x1, with straightforward algebra.

In the Bayesian approach, the whole model needs a good prior estimate for x.

In this approach the prior estimate is combined with the link count information,

therefore it has a large influence on the final solution. The authors, for example,

mentioned that choosing a uniform prior estimate may lead to a over-estimation of

low rates and vice vera, an under-estimation of higher rates.

2.5.2 Expectation Maximization Algorithm

Most of the Traffic Matrix estimation methods bring in some extra source of informa-

tion. In the Maximum likelihood Estimation (MLE) the source of extra information

is the second moment of the Traffic Matrix elements. The MLE approach usually is

in need of several consecutive link count measurements, therefore we can consider last

K link count observations. As the size of the Traffic Matrix is quite large, numerical

methods are used to find the likelihood estimate.

On the other hand, the EM algorithms are typically used in cases with missing

data. The authors in [6] explained why EM is applicable in this context. In the Traffic

Matrix estimation context, the TM cannot be observed, but a smaller set of linear
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combination of the traffic volumes can be observed in the link count measurements.

However, in the EM methods, a parametric distribution should be assumed for the

missing data.

The Expectation Maximization algorithm is a numerical method to solve the MLE

problems. Here we present the studies done in the [15]. We follow the EM method

with the same symbols and notation they used. In EM method, the distribution

considered for the traffic between OD pairs is Gaussian, i.e. x ∼ Normal(λ,Σ),

where λ is the mean rate and Σ denotes the covariance matrix. The traffic volumes

between each pair of nodes are considered as independent random variables with

Gaussian distribution. Also because of the relation between the link counts and OD

pairs, Rx = y, it implies the following formula for the link counts:

y ∼ Normal(RΛ, RΛR′)

The parameters here are Λ = (λ1, . . . , λc) that is again the vector of mean rates. The

covariance matrix, Σ, can be written as:

Σ = φ diag(σ2(λ1), . . . , σ
2(λc))

where φ is the scale parameter, and σ2(.) is a known relationship between mean and

variance. The authors considered the power law form for σ2 and define it as follows:

σ2(λ) = λb
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with that in mind, the covariance matrix, Σ, can be rewritten as:

Σ = φ diag(λb1, . . . , λ
b
c)

The assumption that the covariance of OD pairs is diagonal equates to the assumption

of independence of the OD pairs traffic volumes.

The authors in [15] believe b = 2 can fit their data well. Hence they consider it

throughout their researches. The scale parameter, φ, also is unknown and should also

be estimated along with λ to find the Σj = φ λbj. As a result, we have to estimate

two sets of parameters that can be shown as θ = (Λ, φ) together.

This method, considers multiple sets of link loads. If L is the number of links in

the network, then yt = (y1t , . . . , y
L
t ) is the loads of all the links at time t. This method

uses consecutive set of K SNMP measurements; (y1, y2, . . . , yK).

The log-likelihood of this set of observed link loads can be computed by the

following log-likelihood function:

l(θ|y1, y2, .., yk) = −K
2
log|RΣR′| − 1

2

K∑
k=1

(yk −RΛ)′(RΣR′)−1(yk −RΛ) (2.18)

where θ = (Λ, φ) is the set of unknown parameters λ and φ needed to be estimated,

K is the number of consecutive observed link counts, yk is the link loads at time k, R

is the routing matrix, Σ is the covariance matrix and Λ = (λ1, . . . , λc) is the vector

of mean rates.
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The maximum likelihood estimate, θ̂, can be computed as [19]:

θ̂ = argmaxl(θ|y1, y2, .., yk)

To solve this optimization problem, EM is used. It runs as an iterative procedure.

In this approach a conditional expectation function is defined and then at each step,

they try to optimize it [19]. The conditional expectation function is defined as:

Q(θ, θ(i)) = E(l(θ|x)|y, θ(i)) (2.19)

In this equation, Q(θ, θ(i)) is the conditional expectation function that we must

optimize at each iteration, y represents the set of observed link counts, θi is the i− th

estimate of our unknown parameters, and finally the complete data log-likelihood [19]

can be obtain from:

l(θ|x1, x2, .., xK) = −K
2
log|Σ| − 1

2

K∑
k=1

(xk − Λ)′(Σ)−1(xk − Λ)

where x’s stand for the OD flows.

Each step of EM algorithm consists of two steps, the Expectation step and Max-

imization step. At iteration i, it first calculates the conditional expectation function

Q(θ, θi) using the i− th estimate of θ. In the second step, we draw a new value θi+1

by optimizing the conditional expectation function Q(θ, θi).

θi+1 = argmaxQ(θ, θi)

In [19] they claim that it can be shown θi converges to a minima of the likelihood
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function.

To find the maximum of the Q function in terms of θ we need to take the derivate

of Q in terms of θ and equal it to zero, ∂Q
∂θ

= 0, to find the parameters that maximizes

the expectation.

After the final estimate obtained, θ̂, the traffic volume between OD pair j, at

time t can be estimated using x̂j,t = E[xj,t|θ̂, y]. They declared that by knowing

the parameter, θ, then E(x|y, θ, t > 0) has minimum square prediction error for

estimating the traffic volume between OD pairs, x.

2.6 Choice Model

The total amount of traffic leaving ingress node (source node) can be calculated by

determining all outgoing links’ counts. The outgoing traffic volume, that is denoted

as Oi, is split to different portions between different egress nodes (destination nodes).

The fraction of outgoing traffic initiated at POP i, and destined to POP j, can

be shown as αij. Therefore the traffic transferring from POP i to POP j can be

formulated as:

xij = Oiαij

with the constraint Σjαij = 1.

In this equation xij is the traffic between source node i and destination node j, Oi

is the traffic originating at the source node i and αij is a factor showing the fraction

of traffic originating at the source node i and ending at node j. In fact α explains how

the traffic is distributed across the egress POPs. Now the Traffic Matrix estimation
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can be reduced to estimating these factors. The authors in [16] and [18] proposed to

look at the ingress POPs as decision makers, so that we can use the Discrete Choice

Model (DCM) approach.

In general, there are many factors influencing the traffic across the network. But

all these factors can be classified in two general categories. One category describes the

user behavior, which describes how the users initiate the traffic. The other category is

based on the network design and configurations. Once the packet of data is required

to be transferred by the user, it is the network configuration that decides which path

should be chosen and which egress node is the destination.

As explained in [6] each ingress POP can be thought as a decision maker about

which egress node should be the destination. While obviously the ingress nodes

are not intelligent devices,this model can be interpreted such that the ingress nodes

are making decisions based on different factors and attributes to finally choose the

destination. These attributes (wji ) can be used to model the decision process. These

attributes describe the attractiveness of node j as a possible destination for the source

node i (i.e., how likely is it that node i will choose node j as the destination).

The decision process can be modelled using utility maximization criterion. A

utility function can be defined as a weighted sum of different attributes (wji ):

V s
d =

∑
m

µmw
s
d(m) + γd

In this equation, the utility function, Vd, to model the decision making process

is defined. w represents different attributes, µm is the relative importance of the

attribute w(m), γ is the scaling term representing the amount of attractiveness of the

egress j, not included in the weighted average of attributes.
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The authors proposed two models. First they only considered a single attribute

model, which is the total amount of traffic coming into the egress node. The second

model adds the total amount of traffic volume leaving the ingress node as the second

attribute. They claimed that the second model works better in their works. The

second model can be written down as:

V s
d = µ1w

s
d(1) + µ2w

s
d(2) + γd

or simply :

V s
d = µ1wd(1) + µ2w

s(2) + γd

where V represents the utility function used to model the decision making pro-

cess, and defined as the weighted average of different attributes. µ’s are weights of

attributes and w’s are attributes. In this model they consider only two attributes.

The probability that source node s will choose node d as the destination can be

modelled with a so-called multinomial logit or ’mlogit’ model [18]:

αsd =
eV

s
d∑

k e
V sk

Therefore the traffic volume between source and destination can be modelled as:

xsd = Os
eV

s
d∑

k e
V sk

(2.20)

where k is the number of alternative destinations for node s.

In [18] the authors believe the mlogit choice model solution and the gravity model

solution can be used as a starting point in the statistical approaches (EM). They

compared the outcome of two approaches in figure 2.4.
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Figure 2.4: Gravity Model, Choice Model, [18]

They compared the starting points produced by gravity model and mlogit choice

model with a synthetic traffic matrix. As shown in these figures, the blue circles are

prior estimates produced by the mlogit choice model and the gravity model. These

circles are scattered around the values of the target Traffic Matrix. Although they

are very similar to each other, the circles are closer to the target TM in the mlogit

choice model, and they are more variable in gravity model. This result is expected

because the mlogit model has free parameters that can be calibrated to get a better

accuracy, as opposed to the gravity model which has no free parameters. Given partial

direct measurements of the Traffic Matrix, we can find the parameters of this model,

µ1, µ2, γd.
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2.7 Conclusion of Chapter 2

In chapter 2, we took a comprehensive look on famous methods and approaches of

estimating the Traffic Matrix of a network. Although the Traffic Matrix of a network is

a crucial asset in various applications, it is either impossible or prohibitively expensive

to observe it directly from the network.

On the other hand, other available tools in the network such as the ‘Simple Net-

work Management Protocol’ (SNMP), can be used to gather Link Loads of the net-

work. Equation 2.1 relates the Link Loads and the TM of a network. In large IP

networks, the number of nodes is much larger than the number of links, therefore

equation 2.1 is highly under-constrained and we cannot directly compute a single TM

from this equation.

Different methods for estimating the Traffic Matrix have been reviewed in this

chapter. The basic Gravity model is the first and simplest approach that was reviewed.

The authors in [11] extended this approach and used it as an initial point for the

Tomogravity approach. Equation 2.1 can be thought as a set of linear equations.

As a result some research has been conducted to address the estimation problem

from the linear programming perspective. Two statistical approaches were reviewed

next. For the Bayesian method, as mentioned in [16], the goal is to find a conditional

probability distribution of the OD demands given the measured link counts. In the

EM method, a Gaussian distribution is considered for the OD pairs. Then EM is

used to estimate the model’s parameters. In the last step, an iterative proportional

fitting (IPF) algorithm is implemented.

The last reviewed method was choice model. In the choice model, the attrac-

tiveness of the destination node to the source node is modelled as a weighted sum
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of various attributes. The authors in [16] and [18] thought of the ingress node as a

decision maker to decide which node should be chosen as the destination node.
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Chapter 3

Traffic Prediction;

Methods and Applications

In this chapter we are going to explain Traffic Matrix prediction methods and appli-

cations. In general, estimation methods try to build the Traffic Matrix of the network

based on the link count information, while prediction methods usually try to predict

the TM of the network in the next time-slot or next provisioning interval, given a

set of past Traffic Matrix observations and past link count information. Estimation

methods were reviewed in chapter 2. Here, we first take a look at applying Kalman

filter in estimating the TM. An explanation of using ’flip-flop’ filters will be presented

next. Our main model is based on time series analysis and ARIMA filters; therefore

we take a comprehensive look at famous utilities used in time series analysis, such as

ARCH and GARCH filters.
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3.1 Traffic Prediction using Kalman filter

One of the famous tools in the prediction context is the Kalman filter. In [21], the

authors developed a Kalman filter to estimate and predict the Traffic Matrix. The

main idea of their approach is to consider the traffic demands as the state of the

system. Therefore the TM is the global state of the network. They define a model

for the OD flows to include both temporal and spatial correlation in flows. The

authors define a state-space system to incorporate both the OD flow model and the

observable link counts. As the OD flows are not directly observable, they call these

the ’hidden state’ of the network. Once we have a state-space model incorporating

both the OD flow model and the observables, the goal is to estimate the future state

of the system from the observable link counts. They propose using the Kalman filter

for both estimation and prediction. Here we follow their approach using the notation

they have developed.

We discussed the relation between observed link counts based on SNMP and OD

flows in previous chapter:

yt = At × xt + Vt

where yt is the observed link count vector, At is the routing matrix, and xt is a vector

of OD flow rates. To capture the errors of data collection, the new term Vt has been

added; it represents a stochastic process capturing the measurement errors.

The next step is to define a model for the OD flows. In [20], the authors considered

a combination of a deterministic diurnal pattern and a zero-mean fluctuation process

around it. However, the authors in [21] explained that this model fails to track the

Traffic Matrix, due to changes of the traffic demands. That is because their model

34



M.A.Sc. Thesis - Shahrooz Behdin McMaster - Electrical Engineering

neither can be calibrated for the large changes nor allows for little changee.

Conversely, in [21] they considered more flexible model for the OD flows as a

combination of three terms:

xt = x̂t + δt + ηt

x̂t is the predictable term, while δt is the random noise and the ηt is the ’innovation

process’ that is introduced to capture the unpredictable behavior of traffic. This term

is explained in detail shortly.

Thinking of the OD flows as network states, the authors considered a linear dy-

namic system to model the TM:

xt+1 = Ctxt +Wt

The diagonal elements of the state transition matrix Ct captures the temporal

correlations within a single flow, while the off-diagonal elements capture spatial cor-

relations across different flows. The whole system model can be written as:


xt+1 = Ctxt +Wt

yt = Atxt + Vt

(3.21)

with state noise Wt and measurement noise Vt being uncorrelated zero-mean Gaus-

sian white-noise with covariance matrices Qt and Rt. In this equation yt represents

the link counts and At is the routing matrix. To find the optimal prediction of the

network state for next time slot, xt+1, given the past observations, {y1, . . . , yt}, they

follow two steps recursively, the prediction step and the update step.

In the first step, based on the linearity of the system, they predict the next time
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slot Traffic Matrix, x̂t+1|t, based on the current state estimate of the network, x̂t|t.

Also as the linear system is affected by noise, it is reasonable to determine the variance

of the prediction, Pt+1|t, based on the updated variance of prediction and Qt, noise

covariance at time t:


x̂t+1|t = Ctx̂t|t

Pt+1|t = CtPt|tC
T
t +Qt

(3.22)

where x̂t+1|t is the predicted TM for time t+ 1 based on the information available

up to time t, x̂t|t is the updated estimate of TM at time t, Pt+1|t is the variance of

prediction for time t + 1 based on all information available up to time t, and Pt|t is

the updated variance of prediction. Ct represents the state transition matrix.

In the next step, as time advances and new observations arrive, yt+1, they update

the state and prediction variance. This update is based on the innovation process

that is the difference between observed value and predicted value, that is:

ηt = At+1x̂t+1|t − yt+1

where ηt is the innovation process, A represents the routing matrix, x̂t+1|t is the

predicted TM of time t+ 1 based on all information available up to time t, and yt+1

is the link loads observed at time t+ 1.

They update the estimate and the variance of prediction at time t+1 by following

equation:
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
x̂t+1|t+1 = x̂t+1|t +Kt+1[yt+1 − At+1x̂t+1|t]

Pt+1|t+1 = (I −Kt+1At+1)Pt+1|t(I −Kt+1At+1)
T +Kt+1Rt+1K

T
t+1

(3.23)

These updated values, are used in predicting the TM in the next time slot and

the prediction variance.

In equation 3.22, K is the Kalman gain matrix. The Kalman filter guarantees

that the optimal prediction will be found. The optimality here is defined as min-

imizing E[||xt+1 − x̂t+1||2]. Therefore, the estimator can be categorized as a ’Min-

imum Variance Unbiased Error Estimator’ (MVUE). This can be used to compute

the Kalman gain matrix, Kt+1. First they compute the estimation error at time t,

x̃t|t = x̂t|t − xt, and then try to minimize the conditional mean-squared estimation

error, i.e. E[x̃Tt+1|t+1x̃t+1|t+1|yt].

To execute the Kalman filter we need the matrices A,C,Q and R. matrix A

can be obtained from the routing scheme of the network. For the other matrices,

the authors proposed a stationary situation in which we can drop the t subscript

of these matrices. For obtaining the other matrices, they assume that Netflow is

available in the network but expensive to turn on. Netflow is a protocol developed by

Cisco System that collects information of the IP packets flowing through the network

interfaces [24]. Interfaces where Netflow is enabled can gather the statistics of IP

traffic, and send this statistical information to a central Netflow collector. NetFlow

is designed to process all IP packets on an interface. On Internet backbones where

a large number of simultaneous flows exist this statistic observation process can be

costly, because of the processing required for each packet, and because of the overhead
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of transferring the information to a central Netflow collector.

As a result, the authors in [21] use Netflow for only limited periods of time to get

a set of Traffic Matrices. Having these matrices and implementing the EM algorithm,

they calculate the C,Q,R matrices. Afterwards, they use these matrices in their

Kalman filter equations based on the stationary assumption. The authors claimed

that these matrices can be used for several days with a good accuracy, before the

model degrades. However they defined a threshold for the time after which the

estimator does not work very well. Once the accuracy degrades sufficiently, they

can turn on the Netflow tool to get a new set of statistical data from the network

to re-calibrate their matrices. To determine when the system needs calibration, they

monitor the innovation process. The innovation process was previously defined as:

ηt+1 = yt+1 − At+1x̂t+1|t

The variance of the innovation process can be determined as:

St+1 = E[ηt+1η
T
t+1]

Under the Gaussian hypothesis for the noise Wt and Vt, the innovation process

at each time slot should within an interval of ±2
√
SjjT with the probability of more

than 95%. The authors use this as the innovation process threshold, meaning that a

re-calibration is needed when the innovation process exceeds this threshold, ||ηjt || ≥

2
√
SjjT , for more than ten consecutive time slots.

They show that using calibration in their model helps achieve better tracking

and estimation of the traffic matrix. In the following two images they illustrate how
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calibration improves the accuracy. In figure 3.5 calibration is applied only once at

the beginning of the experiment. In figure 3.6, calibration is allowed during the

experiment too.

Figure 3.5: Applying Calibration Once, Real (light grey)
and inferred OD (dark grey) flows, [21]

Figure 3.6: Multiple Calibration applied,Real (light grey)
and inferred OD (dark grey) flows, [21]

As shown in figures 3.5, after day 5 the system needs to be re-calibrated for flow

14. However, re-calibration may degrade the tracking ability of system for other flows.

As shown in figure 3.7, the system can track flow 9 very well, given one calibration

applied at the beginning. However, if we recalibrate the system on day 5 then flow

9 cannot be tracked as before, as shown in figure 3.7. It appears difficult to track all

flows with sufficient accuracy, as the calibration process to improve the tracking of

one flow can degrade the tracking of another flow.

3.2 Recursive Flip-Flop Estimator Filters

The authors in [23] proposed an approach to combine two recursive rate-estimators

to have a single estimator that can be both agile and stable over time. Agility
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Figure 3.7: Applying Calibration Once, Real (light grey)
and inferred OD (dark grey) flows, [21]

Figure 3.8: Multiple Calibration applied,Real (light grey)
and inferred OD (dark grey) flows, [21]

is the ability to track the quick changes of the traffic rates in the network, while

stability is the ability to ignore short term transient changes. They used Exponen-

tially Weighted Moving Average (EWMA) and Time Sliding Window (TSW) filters.

EWMA is an ideal maximum likelihood estimator while TSW is a rectangular data

weighting method used in traffic prediction.

The traffic rate is defined by two metrics, the packet length, b and the inter-arrival

time, τ , as x = b/τ . In EWMA the memory is shaped exponentially while in TSW

the memory is shaped with a simple rectangular window.

In EWMA, they first determine the difference between the contracted ’ideal’ inter-

arrival time (contracted in the Service Level Agreement or SLA) and the current

observed inter-arrival time. If w denotes the allocated bandwidth, s the current

packet size and t is the time between current and previous packet arrivals, then the

difference between the contracted and the current inter-arrival times is d = t− (s/w).

They apply the EWMA filter to estimate the next average value for this difference

based on the current average and last observed d:
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dave = (1− ω)dave + ωd (3.24)

where ω is the EWMA time constant and d is the current difference. Equation

3.24 recursively updates the dave based on its previous value and current d. ω is the

time constant of the EWMA. It determines how stable or agile the estimator is. The

larger ω, the more stable the estimator will be.

The estimated rate can be determined as:

rest =
s

s
r

+ dave
(3.25)

where s is the packet size, r is the current rate and dave is calculated with equation

3.24.

In equation 3.25, an EWMA filter is used to estimate the next arrival time. How-

ever, it can be used to estimate the packet size too. They showed that the performance

of this method in a system with two EWMA filters with same weight factors, where

one filter estimated the packet size and the other filter estimated the inter-arrival

times. In their simulation they called this approach as SE.

The other method they used is called TSW, the Time Sliding Window. In this

approach, the Window Length, WL, decides the agility or stability of the estimator.

Again the larger WL, the more stable the estimator will be. The concept of the WL

is shown in figure 3.9. Using the same notation, the estimated rate is defined as:

rest =
rest,old ×WL + s

now − T +WL

(3.26)

WL considered how mush information from the past we need to include. Obviously
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the larger the WL the more stable the estimates will be. The concept of T and WL

are shown in figure 3.9. s represents the packet size.

Figure 3.9: Window Length in TSW, [23]

By increasing the WL, the TSW filter gets more stable. It is obvious as WL goes

to infinity, the estimated rate is always equal to the old estimated rate.

The main contribution of authors in [23] is creating a ’flip-flop’ filter. They con-

sider two TSW filters, one with a small WL, the agile filter, and one with large WL,

the stable filter.

In the normal situation, the output of the stable filter is being used. However if

the difference between the estimated rate of these two filters becomes more than a

preset value (i.e., more than C1 times in a row), then there is a non-transient change

in traffic rate that should be considered. At this point they use the output of agile

filter for the next time slot. On the other hand, if the difference between output of

these two filters becomes more than a preset value (i.e., more than C2 times in a

row), then the change is persistent, and the algorithm sets the average rate of the

stable filter to the average rate of the agile filter:
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Ave Rate Stable = Ave Rate Agile

They denote this method in their simulations as the ’Flipflop’ filter.

In figure 3.10 they compare their proposed Flipflop filter, with a single TSW filter

and the SE filter that is composed of two EWMA filters. The synthetic traffic that

is produced with OPNET’s built-in traffic tools is shown in solid dotted line.

The two EWMA filters which build the SE filter have a same weight factor of 0.002.

It seems the final SE filter performs better when traffic is not changing. However,

when the traffic doubles in 30 minutes, the SE filter cannot follow the changes of the

traffic.

The single TSW filter has a window length of 80 seconds. Because it is less stable,

it works better in case of rapid traffic changes than the SE filter.

Their proposed filter consists of two TSW filters, one with window length of 15,

and the other with window length of 80. The Flipflop filter is shown with solid line.

The Flopflop filter has an even better performance when a dramatic change in traffic

rates happens at 30 minutes. Before that change, however, the Flipflop uses the stable

TSW filter with a window length of 80.

3.3 ARCH-Based Traffic Prediction

Time series analysis will be explained throughly in the next chapter where we explain

the recently proposed model [37]. In this section we take a comprehensive look at

some famous time series utilities, and their applications in previous works. ARCH

filters have been in used in econometrics schemes for a long time, [4] [5].
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Figure 3.10: Comparing Flip-Flop filter and SE with Real Traffic, [23]

In general in a network with n nodes there are N = n2 OD flows. These OD

flows and link loads can be considered as time series. In Time Series analysis the

goal is to characterize these flows with different mathematical models. Different ap-

proaches have been proposed. In [22] authors use seasonal Autoregressive Conditional

Heteroskedasticity (ARCH) to characterize these flows for forecasting.

ARCH can be viewed as an extended form of ARIMA filters. The general form of
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ARIMA filters is:

xt =

p+d∑
i=1

ϕixt−i +

q∑
k=1

θkεt−k + εt

with {ϕi}p+di=1 and {θk}qk=1 being the autoregressive and moving average parameters,

respectively. Here the p + d and q are autoregressive and moving average orders,

respectively. εt is considered as a random variable and is called the innovation.

The main difference between ARIMA and ARCH is how to model the innovation.

In ARIMA the εt is considered as independent and identically distributed normal

random variables with mean 0 and variance σ2 [22]. In an ARIMA filter the innova-

tion variance is independent or E[ε2t |Ft−1] = σ2; where Ft−1 includes all information

available at time t − 1. In an ARIMA filter the variance of the innovation doesn’t

change over time.

In ARCH however, the innovation is considered dependent to the past information,

so the variance of the innovation changes over time. This can be shown mathemati-

cally as E[ε2t |Ft−1] = σ2
t . ARCH is a utility that models the changing variance.

To better understand these models, we can start by looking at ARCH(1). In [2],

the authors write the innovation part of a ARCH with order 1 as:

εt = σtηt

σ2
t = α0 + α1ε

2
t−1

where σ2
t is the variance of the innovation, σt is the standard deviation of the

innovation, ηt is a sequence of independent and identically distributed (iid) random

variables with zero mean and unit variance and α0 > 0 and α1 ≥ 0 should be chosen

in a way to ensure that the unconditional variance of εt is finite.
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ηt can have a standard normal or a standardized Student-t distribution or a gen-

eralized error distribution [2]. The General form of innovation in a ARCH filter with

order of m can be written as:

εt = σtηt

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + · · ·+ αmε

2
t−m

where εt represents the innovation at time t, σ2
t is the variance of the innovation

and ηt represents a sequence of independent and identically distributed (iid) random

variables.

The authors in [22] extend the ARIMA model by rewriting the innovation, ε, as:

xt =

p+d∑
i=1

ϕixt−i +

q∑
k=1

θkεt−k + εt

εt = ηtσt

σ2
t = α0 +

m∑
k=1

αkε
2
t−k

(3.27)

By addingm+1 parameters, {αi}mi=0, to the original ARIMA model, the innovation

becomes dependent to the past information. In fact, E[ε2t ε
2
t−1] 6= 0, while

E[εtεt−1] = 0, [22].

They use the data collected in the period of 10 days, shown in figure 3.11, to char-

acterize traffic volume. The authors notice the periodic effect that arises at different

times in different days. They extend their model by adding the additive or multi-

plicative seasonal components to take these periodic effect into account. Assuming
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the period of these effects is T then:

xt =

p+d∑
i=1

ϕixt−i +
s∑
j=1

φjzt−jT +

q∑
k=1

θkεt−k + εt

where T is the period of these periodic effects, {ϕj}sj=1 are additive seasonal

autoregressive parameters and s is the seasonal autoregressive order.

Figure 3.11: 10 Days Traffic Volume, [22]

As explained earlier, in an ARCH filter the variance of the innovation is not con-

stant over time. Innovation can be written as a multiplication of a random variable,

ηt and the standard deviation of the innovation, σt. Authors in [22], claim that

the conditional distribution of innovation process is not normal; in fact it follows a

more general distribution. They claim that a heavy-tailed distribution should be con-

sidered to accommodate the innovation process. Therefore they consider student’s

t-distribution for the ηt.

The Student’s t-distribution has Probability Distribution Function (PDF) similar
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to the PDF of the Normal distribution. The main difference between these two distri-

butions, however, is that the Student’s t-distribution has a thicker tail. Authors in [22]

use this distribution as they claim the network traffic shows characteristics of heavy-

tail processes. In figure 3.12 we used MATLAB to generate the PDF of these two

distribution for comparison. As the degree of freedom in the Student’s t-distribution

increases, it approaches the Normal distribution. In fact the Normal distribution is

queivalent to a Student’s t-distribution with degree of freedom of infinity.

Figure 3.12: PDF of Student’s t-Distribution with different Degrees of Freedom vs
Normal Distribution

As shown in figure 3.12, the Student’s t-distribution has a heavy tail in compari-

son with the Normal distribution.

The authors in [22] considered the Student’s t-distribution instead of Normal

Distribution. The model can be summarized as:
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xt =

p+d∑
i=1

ϕixt−i +
s∑
j=1

φjxt−jT +

q∑
k=1

θkεt−k + εt

εt = ηt
√
Mt

Mt = σt(
ν − 2

ν
)

σ2
t = α0 +

m∑
k=1

αkε
2
t−k

(3.28)

As we had in previous equations, xt represents an observable random variable,

i.e., the traffic demands. {p + d} and q are the autoregressive and moving average

orders, respectively. s is the seasonal autoregressive order, with T being the period of

those seasonal effects. εt represents the innovation, with σ2 being its variance. {α}m0

are coefficients, m is the ARCH order. ηt is Student-t distribution random variable

with unit scale, and with ν degrees of freedom. Mt is the scale parameter.

It is observable in figure 3.11 that there are some peak values, for example in

days 1, 6 and 8. These peaks can distort the innovation distribution and statistical

estimate of the parameters. To smooth these effects, the authors perform a natural

logarithmic transformation to stabilize the data points. The transformation can be

written as wt = lnxt.

The new series, shown in figure 3.13, is clearly more stable in comparison with

the original network traffic shown in 3.11.

Since there is a slow decay of the autocorrelation at integer multiples of T of the

series w in figure 3.13, the series cannot be considered as stationary. In the last step
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Figure 3.13: Log Transformed Data, [22]

they perform a subtraction to get a stationary series s:

st = (wt − wt−1)− (wt−T − wt−T−1)

where T , as explained before, is the seasonal lag. The obtained time series st

is shown in figure 3.14. As shown in this figure, the mean of series st seems to be

stationary.

To identify the statistical model of st they used the Akaike Information Criterion

(AIC), Bayesian Information Criterion (BIC) and likelihood ratio test. They found

values for p, s, q and m to be 4, 2, 0 and 1, respectively. With this, the unknown

50



M.A.Sc. Thesis - Shahrooz Behdin McMaster - Electrical Engineering

Figure 3.14: First-Differenced log Transformed Data, [22]

parameters will be {ϕi}4i=1, {φj}2j=1, α0, α1 and ν in the equation 3.29.

st =
4∑
i=1

ϕist−i +
2∑
j=1

φjst−jT + εt

εt = ηt
√
Mt

Mt = σt(
ν − 2

ν
)

σ2
t = α0 + α1ε

2
t−1

(3.29)

In equation 3.29, the autoregressive order is 4, the seasonal order is 2, the order of

moving average is 0. Also the ARCH order, m, is 1. Therefore they need to estimate

the autoregressive parameters {ϕi}4i=1, seasonal autoregressive parameters {φj}2j=1,

the degree of freedom of the student-t distribution ν, and finally α0, α1.

These unknown parameters can be estimated based on the sample maximum like-

lihood function for the first 10 days of observations, to identify the statistical model
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for st. For computing the forecast of xt based on the time series model of st, au-

thors proposed two methods, the MMSE forecast computation and Probability-Hop

forecasting method. Here we describe how they compute the MMSE forecast.

In Minimum Mean Square Error forecast method, it is known that the forecast

is given by the conditional expectation E[st|Ft−1]. Recalling that wi = lnxt and

st = (wt − wt−1)− (wt−T − wt−T−1) we can write:

wt = lnxt =
5∑
i=1

Ki lnxt−i +
T+5∑
j=T

Kj lnxt−j +
2T+1∑
k=2T

Kk lnxt−k +
3T+1∑
s=3T

Ks lnxt−s + εt

where K’s are constants that can be computed from the estimates of ϕ and φ.

The target is to compute the forecast of E[xt|Ft−1]. They approximated the expected

value of the one-step ahead forecast, E[xt|Ft−1], using equation 3.30:

ln(
xt
xt−1

) ' (
xt
xt−1

− 1) (3.30)

In the second method, they explain the Probability-Hop Forecasting method,

which involves considering the probability limits. Here we follow the exact nota-

tion of the authors. If x̂t−1 is the one-step forecast of xt−1 at time t − 1, then they

consider the 3.31 as the confidence limit for the forecast:

x̂±t−1 = x̂t−1 ± tν,β
2

√
Mtxt−1 (3.31)

where tν,β
2

is the deviate from the student-t distribution with ν degrees of freedom

corresponding to the 100(1 − β
2
) probability limit. In this equation, x̂t−1 represents

the one-step exact forecast of the xt−1. As an example, they considered β = 0.2 that
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corresponds to the 90% probability limit.

Based on which sign is being used there are two curves, the Upper Probability

Curve (UPC) and the Lower Probability Curve (LPC), corresponding to the 90%

probability limits. The term x̂t−1 is the Exact Forecast Curve (EFC) that is the

MMSE forecast curve. All these curves along with the real data itself are shown in

figure 3.15.

Figure 3.15: Real traffic of part of a day , along with EFC , UPC and LPC, [22]

The authors in [22] used 10 days to build their model. In figure 3.15, they show

how their model can track the traffic in day 11. In this figure the observed traffic

rates have been found to stay within the 90% probability limits UPC and LPC most

of the time [22]. However, they only showed 8 hours of their simulation.
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3.4 GARCH-Based Traffic Prediction

In [25] the authors proposed another approach to model the Traffic Matrix as time

series. In [22] they used a specific model for the innovation process, while the authors

in [25] considered the generalized form of the ARCH to take the innovation process

changes into account. They describe their model to capture the variance of the

innovation over time. For smoothing the Traffic Matrix, they first performed a log-

transformation similar to [22] wi(t) = ln(xi(t)). This makes the traffic volumes more

stable. The auto-correlation function showed that the obtained series is not yet

stationary, so they went further and defined a function to make a stationary trend,

slightly different from what we had before in [22]. We use the same notation and call

the obtained series as s:

si(t) = wi(t)− wi(t− 1) (3.32)

where s and w are the obtained stationary series and the log-transformed series

of OD flow i, respectively.

The authors in [2] describes the general form of the GARCH. In GARCH, simi-

lar to ARCH, the conditional variance of the innovation is considered variable, and

dependent to the past information. In ARCH, however, a specific model is consid-

ered for the variance, but in the GARCH a more general form is being used. The

innovation can be described as:

εt = ηtσt

σ2
t = α0 +

m∑
i=1

αiε
2
t−k +

s∑
j=1

βjσ
2
t−j

(3.33)

where the innovation εt is considered as a random variable with zero mean and
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conditional variance of σ2
t , ηt is a sequence of independent and identically distributed

(iid) random variables. ηt can be considered as a normally distributed random variable

or as an alternative, the Student-t distribution can be used to model it. As shown in

equation 3.33, the conditional variance σ2
t evolves over time.

Because past values of the σt process are fed back into the present value, the

conditional standard deviation can exhibit more persistent periods of high or low

volatility than seen in an ARCH process.

In [25] authors used GARCH to characterize the traffic. They used a slightly

different notation. The general form of the GARCH can be written as 3.34. The

main difference with the ARCH is the definition of the variance of the innovation

process:

st =

p∑
k=1

ϕkst−k +

q∑
h=1

φhεt−h + εt

εt = ηtσt

σ2
t = α0 +

m∑
i=1

αiε
2
t−k +

s∑
j=1

βjσ
2
t−j

m∑
i=1

αj +
s∑
j=1

βs < 1

σεi > 0, αi,j ≥ 0, βi,s ≥ 0,

(3.34)

where series s is the obtained stationary series, defined in equation 3.32. ϕk, φh, αi

and βj are the factors to be estimated. In equation 3.34, εt is the random variable

representing the innovation with σ2
t being its variance. It shows that the innovation

process is a zero mean random variable with a variance that evolves over time. As

explained before, ηt is a sequence of independent and identically distributed (iid)
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random variables, with two possible distributions, either the Normal distribution or

Student-t distribution.

Similar to [22], they ran the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC) to determine p, q, m and s. They assume a Student-t

distribution for the εi(t).

The series s was obtained from equation 3.32, and w is the log transformation

of x. Therefore by using equation 3.30, they approximate the final model for the

network traffic as:

x̂t ≈ xt−1(1 +
r+1∑
k=1

hk lnxt−k)

where x̂t is the final estimate of the network traffic, and hk’s can be computed

based on the estimated values of ϕk and φh. They decided to compare their work with

Tomogravity and the 1-Inverse methods of Traffic Matrix estimation. For comparison

they use four-day real data/ The first three days of real data is used for building the

model, and the last day of data is used to test their model. Figure 3.16 illustrates

the results of their model along with the real traffic and with other approaches.

The real traffic has been measured every 5 minutes. In figure 3.16, the GARCH

result is shown in grey. We can observe that it has more ability to track the real traffic

matrix, in comparison with 1-Inverse and Tomogravity models which are shown in

purple and pale black respectively.

To mathematically evaluate the model, they defined Spatial Relative Errors as:

errsp(n) =
||x̂T (n)− xT (n)||2
||xT (n)||2

n = 0, 1, . . . , N ; t = 1, 2, . . . , T ;
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Figure 3.16: Comparing Garch (gray) , 1-inverse (dotted) , Tomogravity (pale black) and Real
traffic (black), [25]

where ||.|| stands for the L2 norm, N is the number of nodes and T is the number

of measurements. They compared the Cumulative Distribution Function (CDF) of

these three methods in figure 3.17.

Figure 3.17: CDF of Spatial Relative Error of three methods, [25]

Basically figure 3.17 demonstrates the probability of having a spatial relative error

less than or equal to a specific value. For example, in [25] they declare that based on
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this figure, 92.8% of the OD flows can be tracked with SREs less than 0.8, while this

number for the Tomogravity and 1-Inverse model is 72% and 69%, respectively.

3.5 ARIMA-Based Traffic Prediction

We will discuss ARIMA model in detail in the next chapter where we describe the

recently proposed prediction and provisioning algorithm. In [26] the authors use the

ARIMA model to capture the traffic volume in order to forecast the Traffic Matrix

for the next time slot. An ARIMA Filter can be thought of as a transformation tool

with a general extended form of:

xt = ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕp+dxt−p−d

εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q
(3.35)

where xt is random variable representing network traffic in our work. εt as ex-

plained in details in the previous sections, represents the innovation process. ϕ’s and

θ’s are the autoregressive and moving average coefficients, respectively.

To gain a stationary series they generate wt = xt − xt−1, (d would be equal to 1

for w). They use the Autocorrelation Function (ACF) and Partial Autocorrelation

Function (PACF) to determine the order of auto-regressive and moving average. They

consider two values for autoregressive order, p = 1 & 2. They also found q = 1 would

be the best for the moving average order.

Autoregressive and moving average parameters are estimated by a maximum like-

lihood approach.

To forecast the traffic volume, xt for the next l step ahead they follow a recursive
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approach. Being at time t, for predicting traffic at time t+ l we first need to have a

prediction of all traffic before that time. Based on the equation 3.35 the forecast of

the traffic in l step ahead would be:

x̂t(l) =ϕ1[xt+l−1] + · · ·+ ϕp+d[xt+l−p−d] + ε[t+ l]

− θ1[εt+l−1]− · · · − θq[εt+l−q]
(3.36)

where x’s are either the already observed real values or predicted values, and

ε’s are either measured real values or 0, i.e. assigning 0 to unknown ε’s. As time

advances, the unknown ε can be computed by:

εt+1 = xt+1 − x̂t(1)

where xt+1 is the real measured traffic at time t + 1, and x̂t(1) is its predicted value

at time t.

Also to have a better prediction, they recursively update the estimates until the

real data can be measured:

x̂t+1(l) = x̂t(l + 1) + Ψlεt+1

Ψ’s are the parameters computed based on ϕ’s and θ’s:

Ψ0 = 1;

Ψj = ϕ1Ψj−1 + · · ·+ ϕp+dΨj−p−d − θj

The calculated estimation of the traffic in equation 3.36 can be considered as the
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Minimum Mean Square Error (MMSE) for the exact forecast. The authors in [26]

take this as the Exact Forecast Curve (EFC). To have a boundary for their prediction

they used a method called Probability-Hop Forecasting method. They explain that

by considering ε’s to be normally distributed, the conditional probability distribution

of the future value xt+l, p(xt+1|xt, xt−1, . . . ), will be normal with the mean x̂t(l) and

standard deviation of 1 + (
∑l−1

j=1 Ψ2
j)

1/2σε; where l is the number of step forecasts

ahead. σε is the variance of εt. Therefore the two curves (The Upper and Lower

Probability Curves) representing the probability limits of the forecast with desired

level of probability h can be written as:

x±t+1 = x̂t(l)± uh/2(1 +
l−1∑
j=1

Ψ2
J)1/2σε (3.37)

where uh/2 is the deviate exceeded by a portion h/2 of the standard normal dis-

tribution. The positive and negative signs determine the Upper Probability Curve

(UPC) and Lower Probability Curve (LPC), respectively. x̂t(l) is the exact prediction

of t + l when we are at time t. In their work, however, they considered l = 1, i.e.,

they are only interested in predicting the next time slot traffic estimate.

In Figure 3.18 they show the results of their simulations for a probability limit

of 50%. The total time of the experiment is 18 hours, and they used the first 8

hours of the observations to do the time series model fitting. The next 10 hoursof

observations is split into 4 equal parts of 2.5 hours each. Figure 3.18 shows the real

traffic demands along with the EFC, UPC and LPC curves for the second 2.5-hour

period. The samples are taken every 5 minutes. Therefore there are 30 samples in a

2.5-hour period of the experiment.

In figure 3.18, we can see that the model can track the traffic narrowly often with
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Figure 3.18: UPC , LPC , Exact Forecast Curve along with the Real Data, [26]

a lag time. However it fails to follow the traffic when some sudden changes happen

in the system. Especially around time instance 125 this lack of traceability is more

obvious.

3.6 Traffic Prediction Application

Todays ’Best-Effort’ INTERNET is based on the Best-Effort delivery approach.

However, Best-Effort delivery has relatively poor performance. Therefore, a signifi-

cant Over-Provisioning of bandwidth is used in order to achieve better QoS guarantees
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and to reduce the congestion o f the Best-Effort Internet[27]. Poor resource utiliza-

tion and poor energy efficiency are the results of significant over-provisioning, and

they establish the ineffectiveness of the Best-Effort INTERNET platform. The poor

utilization of the available resources and bandwidth in the Best-Effort Internet cost

Internet Service Providers excess capital costs annually.

To address these problems, the research community is exploring new network

architectures called the Future Internet Network [30] [31] [32]. Recently a new frame-

work for Autonomic Future INTERNET has been proposed that supports multiple

service classes; the existing Best-Effort service class and a newly proposed Essentially-

Perfect QoS service class [29]. The traffic flows in the Future Internet can be split to

two different classes. The traffic flows categorized into the new QoS service class will

never experience delays or congestion. These flows will receive Essentially-Perfect

end-to-end QoS guarantees with negligible queuing delays within the routers.

The design of the existing Best-Effort routers need to change only incrementally to

support the new QoS servuce class. In [29], the author shows how to alter the router

design to achieve the propose dFuture Internet network. Figure 3.19 illustrates the

router design.

Figure 3.19 shows an M ×M Input-Queued switch used in a Best-Effort Internet

router. A DeMux logic block is for directing the traffic to the appropriate VOQ buffer.

A Best-Effort Scheduler is used to schedule each VOQ buffer for service at each time

slot. A heuristic BE scheduler can achieve low efficiency and as a result Best-Effort

Internet routers need very large buffer sizes, which contributes to excessive queuing

delays and excessive energy consumption.

On the other hand, when a new QoS service class is added to the Internet routers,
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Figure 3.19: Current Best Effort-Router design. [29]

one goal is to provision enough bandwidth for this QoS class. In [29], the author

proposed a new Future-Internet router design to support both the BE class and the

new QoS service class. The existing VOQs in the BE router shown in 3.19 are logically

partitioned into the two service classes, the QoS and BE classes. Incoming traffic can

be directed to the appropriate class, BE or QoS, by examining the packet headers or

the traffic flow’s traffic specification.
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3.7 Conclusion of Chapter 3

In this chapter different methods of the Traffic Matrix prediction have been reviewed.

First, the use of the famous Kalman filter for predicting the future Traffic Matrix was

explored. To predict the future Traffic Matrix given the past Link Loads observations,

the authors in [21] first built a state-space model for the Traffic Matrix and Link

Loads. To have an optimal prediction of the Traffic Matrix, they follow the prediction

and update steps, recursively. In the prediction step, they use the updated TM to

predict the future TM. In the update step, based on the new observation, they update

the current TM for the future predictions.

The explanation of two recursive filters came next. The authors in [23] took

advantage of two EWMA and TSW filters to design an estimator that can be adjusted

to be both agile and stable. The main contribution in that paper was the design of a

’flip-flop’ filter, containing two TSW filters. One of those filters is agile and the other

is stable. The system can switch between these two based on the prediction accuracy.

In [22] the authors characterized the OD flows using ARCH filters. They used

ARCH to consider the dependency of innovation term to the past information. The

innovation itself is considered as a function of the past innovations. The authors in

[22] picked the Student-t distribution for the innovation process. Another way of

modelling the OD traffic flows is discussed in [25]. This method is a generalized form

of ARCH and is called GARCH. In this method the variance of the innovation process

varies over time.

In [26] the authors used ARIMA filters to model the traffic behavior. In ARIMA

filters, the innovation process is considered as an independent and identically dis-

tributed random variable with mean 0 and standard deviation of σ.
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In the last section, the application of traffic prediction in a network was reviewed.

The prediction method can be used in a recently proposed Future-Internet router

structure [29], to provide enough bandwidth to satisfy the future QoS demands.
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Chapter 4

Model Description

In this chapter we will describe the model to forecast and predict the future traffic

demands in a network. The algorithm can be used to predict traffic demands in a

Future Internet network that supports 2 traffic classes, a Best-Effort class and a QoS

class. An Autonomic Controller can use the predicted traffic demands for the QoS

traffic class to configure each router, to provide enough bandwidth on each link for

the future QoS traffic.

Here we first introduce an ARIMA filter that is the basis of the model. The novel

idea of the model is to build multiple ARIMA-like filters which operate in parallel,

and at different time-scales, to fully capture the traffic history.

4.1 ARIMA Filters and Traffic Cycles

Traffic prediction has been an interesting area of research. Different models and ap-

proaches have been proposed to forecast traffic. However many of these approaches
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do not consider the cyclical behavior of traffic. On the other hand it has been ob-

served that traffic demands show properties of self-similarity over different time scales

[9]. These long range dependencies inherent in self-similar processes can be used for

further prediction and traffic forecasting.

The data rate in a network is influenced by many different factors such as rout-

ing policy, user usage patterns, and even management related packets flowing in a

network. The underlying nature of network traffic is stochastic. AutoRegressive In-

tegrated Moving Average (ARIMA) filters can be used as a powerful utility to model

the stochastic traffic in a network.

A sequence of observed data that are ordered in time is called a time series. The

main characteristic of time series is the importance of the order of observations [1].

While in other statistical analyses the order of observed data is not crucial, in time

series analysis the order in which the observations are made is explicitly recognized.

Another difference between time series analysis and other statistical analysis is that

in time series analysis, the observations are considered as dependent [3].

In time series analysis the collected samples are seen as a realization of a stochastic

process. The stochastic process properties can be captured using ARIMA filters. As

stated in [26], ARIMA filters have the general form of:

Φ(B)5d xt = θ(B)εt (4.38)

ε represents shock (innovation) to the system at different steps. These shocks or

innovations are considered as Independent and Identically Distributed (IID) random

variables.
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In equation 4.38, Φ(B) is the autoregressive operator of order p with the form:

Φ(B) = 1− Φ1B − · · · − ΦpB
p (4.39)

In this equation, B is the backward shift operator, i.e. Bxt = xt−1 to include

the earlier time series samples. Also 5d is difference operator of order d such that

5d = (1 − B)d, with the role of making the series stationary. On the other hand,

function θ(B) is the moving average operator of order q:

θ(B) = 1− θ1B − · · · − θqBq (4.40)

This filter can be considered as a transformation function that transforms the

stochastic process into a sequence of uncorrelated random variables.

The linear format of equation 4.38 can be written as:

xt =ϕ1xt−1 + ϕ2xt−2 + ϕ3xt−3 + · · ·+

εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q

or

xt =

p+d∑
i=1

ϕixt−i +

q∑
k=1

θkεt−k + εt

(4.41)

where ϕ(B) = Φ(B)5d is the stationary autoregressive operator:

ϕ(B) = 1− ϕ1B − · · · − ϕp+dBp+d
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and θ(B) is the moving average operator of order q, defined in 4.40.

In both types of equations 4.41 and 4.38, the value of the series at time t, xt is

composed of two parts; the prediction and the error part. The error part here is the

εt and the other part is the prediction part. Except for the error value, εt, all other

values can be observed and calculated. Traffic prediction can be accomplished based

on these values; i.e., after observing traffic rate in each step, the value of the traffic

rate in the next step is being predicted.

In the model we explore in this chapter, several ARIMA-like filters are created,

each operating on a different time horizons. The logic behind this approach is that

traffic flows show high auto-correlation properties. The time-axis is divided into time-

intervals, also called provisioning-intervals, which are assumed to equal 15 minutes

in this discussion. The similarities in traffic behavior at the same hour in preceding

days, and preceding weeks can be used to predict the traffic rate between two nodes

in the next provisioning interval.

We use the real inter-city traffic measurements taken from in the ‘Geant’ backbone

network [33]. The network topology is shown in figure 4.20. There are 22 nodes in the

network. Traffic flows over each link were collected every 15 minutes. Therefore four

samples are taken per hour, and 96 samples are taken per day. (The results reported

in this thesis use the measurements for a period of 1 month.)

As an example in figure 4.21 the real traffic volume between a pair of nodes for a

period of 14 days in the network is shown. As time advances, the traffic rate changes.

This change in a 15 minute interval is closely related to the traffic change in the last

15-minute interval. However, we can confirm the similarity of changes in the traffic

rates in the same intervals in the last hour, or last day or last week.
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Figure 4.20: The ‘Geant’ European Backbone Network

Autocorrelation of Traffic

Mathematically, autocorrelation of a random process describes the correlation of val-

ues of process at different times [3]. If we consider the traffic demand in a network as

a repeatable random process, we can define the autocorrelation of two different times

in equation 4.43:

auto correlation(t, s) =
E[(xt − µt)(xs − µs)]

σtσs
(4.42)
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Figure 4.21: Traffic Flows between two nodes in the network

where xs and xt are the traffic value of two time scales. For example xt can

represent traffic demands of a week starting today, while xs can show traffic demands

of a week with lag of l relative to the xt. µ’s and σ’s represent the mean and the

standard deviation of traffic demands at different time scales s and t. This equation

can also be a function of l where l = t − s, that shows the autocorrelation of two

times, with l time slots difference. With l = 0 and s = t auto correlation is equal to

1 that shows the maximum of the correlation.

In figure 4.22 the autocorrelation of a traffic flow between one pair of nodes in

the ‘Geant’ network is illustrated. The experimental time is 7 days (There are 96

samples in each day). The maximum correlation is scaled to 1. This figure shows
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some interesting properties. For example, for the small l’s, close time scales, the

autocorrelation function is about 0.7 to 0.8, which shows that the traffic is highly

correlated to the near past.

Figure 4.22: Autocorrelation of a traffic flow in the ’Geant’ IP Backbone Network

Also, peak values in the figure, show the correlation of the traffic to the same time

in previous days. We can infer that the traffic is heavily correlated to the same time

in previous days. Another interesting point is the correlation value of the traffic to

the same time last week. As each day contains 96 samples, the last week is roughly

700 samples back. We can see for this flow, the traffic is also heavily correlated to the

same time last week. The autocorrelation value for the last week, is about 0.9 that

proves this thought.

Autocorrelation can also be computed in a similar way computed in [37]. In the
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signal processing context [38] [39], the autocorrelation is defined as:

auto correlation(l) =
T+N∑
t=T

x(t)× x(t− l) (4.43)

with the l ranging from 0 to the period of measurement, N .

In figure 4.23 the traffic samples of 3 hours between two nodes, along with the

same samples shifted by 25 time-slots, is illustrated. Multiplying these two series, we

will have the autocorrelation for l = 25.

Figure 4.23: Real Traffic volume and 25 time-slot shifted traffic volume

In figure 4.24 the autocorrelation of traffic flows between some pair of nodes in

the ‘Geant’ network is illustrated (before normalization). The time of measurement
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is 14 days. The spikes in the figures show high correlations. This figures also confirms

the traffic is highly correlated over several different time scales. (The autocorrelation

of an uncorrelated signal smoothly decreases to zero). In figure 4.24, the changes in

traffic rates are also correlated daily.

Figure 4.24: Autocorrelation of 4 traffic flows in the ‘Geant’ backbone network

To have a good prediction for the next time slot, we have to capture all the

similarities of the past traffic history, over short-term (immediate) and long-term

trends. In this model, multiple ARIMA filters are used to capture the traffic flow over

different time scales. The general model consists of a combination of four ARIMA

filters operating over four different time scales. These four filters are used separately to
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find four separate traffic predictions, which are then combined to create a ‘lightweight’

(i.e., computationally-efficient) prediction model.

These four time scales are:

1. Quarter-Hour : Exploiting last quarter-hour trend of traffic

2. Hour : Exploiting last hour trend of traffic

3. Day : Exploiting last day same time trend of traffic

4. Week : Exploiting last week same day same time trend of traffic

Network traffic measurements may show transient behaviour that is not related

to any long term pattern. Therefore, it may be desirable to eliminate these transient

changes in the network, by low-pass filtering the traffic measurements. By doing so,

the transient high-frequency changes can be eliminated. The resulting signal may be

more stable and more accurate.

A simple digital filter can be applied to filter traffic rates. The general form of a

digital filter is shown in equation 4.44:

a(1)× x̄t =b(1)× xt + b(2)× xt−1 + · · ·+ b(nb+ 1)× xt−nb

− a(2)× x̄t−1 − · · · − a(na+ 1)× x̄t−na
(4.44)

where nb is the order of the filter.

In our work we only use the polynomial b as the active coefficient to build a filtered

data based on the past traffic history, and we don’t take the past filtered data into

account. That is a(n) = 1 and all other a are zero. More complex filtering schemes

will be defined and tested in chapter 5.
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We also tested different window lengths for the polynomial b in our model. Figure

4.25 shows different filter lengths chosen for the b(n). Filters with larger nb will

eliminate high frequency elements more; as a result some changes which are not

transient may be eliminated. However, a small window size is not desirable in a sense

it cannot efficiently eliminate the high frequency terms. We found that a window size

of 4 is reasonable in our experimental results reported in chapter 5 (if a filter is used

at all).

Figure 4.25: Different Window sizes of Low Pass Filters. Black = Real traffic, Green
= window size 2, Blue = window size 4, Red = window size 8
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4.2 Model Formulation

In this part we explain the model to predict the traffic rate. We use real traffic

measurements from the ‘Geant’ European Backbone network to verify our model,

and as mentioned before, the traffic rates are collected every 15 minutes.

The real traffic volume in the network between a pair of nodes i and j at the

time-slot t, is shown as x(i, j)t. Here t represents the discrete number of samples

gathered from the ‘Geant’ network, starting from 0. The variable t represents the

current time-interval, in multiples of 15-minutes. For example, x(i, j)t with t = 3

represents the traffic volume between node i and j at time t = 45 minutes.

We denote the filtered traffic data, as x̄(i, j)t. As mentioned before, we may use

low-pass filters to remove transients. The ARIMA-like filters will then be used to

estimate and predict the traffic rates in the next time interval between each pair of

nodes. We denote the estimated traffic rate for time t as x̂(i, j)t.

After applying four ARIMA filters, the estimates can be combined to yield the

prediction for the next 15 minutes. If an ISP has a good estimate of the bandwidth

required for a traffic class on a specific link for a specific time slot, they can provision

the bandwidth on that link for that time slot to meet the estimated needs. The model

also estimates the provisioning bandwidth for the next time slot, by adding some

‘excess’ bandwidth to account for transients. The provisioning traffic rate estimate is

denoted as ẋ(i, j)t.

ARIMA filters exploit the past history of traffic flows. The four ARIMA filters

in the model work on different time scales. Therefore, it is necessary to work with

different samples of traffic from different time scales. Define the window function w

in equation 4.45:
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v = w(ts, tf , s) (4.45)

This window function collects the relevant traffic samples over different time scales.

This function operates on the traffic flow vectors [x(i, j)t]. It returns a vector v which

consists of a sequence of traffic samples, where v(1) here is the value of x(i, j) at the

smallest time t ≥ ts. The last element v(k) is the value of x(i, j) at the largest time

t ≤ tf . Elements of v are separated with the step size s in the vector[x(i, j)t]. There

are four different ARIMA filters. We describe each of them in the next sections.

4.2.1 Traffic Estimation exploiting Quarter-Hourly history

The first ARIMA filter works on the traffic change in the current 15-minute interval.

It predicts the next traffic demand based on the current traffic rate and the current

change, which happened in the last quarter-hour. To reduce transient effects, the

traffic samples may be low-pass filtered initially. The change in traffic in the current

15-minute interval is shown in equation 4.46:

4q = x̄(i, j)t − x̄(i, j)t−1 (4.46)

Based on the predicted traffic change, we can estimate the traffic rate for the next

time slot as in equation 4.47:

x̂(i, j)t+1
q = x(i, j)t +4q (4.47)

This equation assumes the same traffic change in the last 15-minutes interval will

happen again in the next 15-minute time interval. We can intuitively observe the
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logic of this filter by looking at figure 4.21.

Equation 4.47 can also be rewritten as 4.48:

x̂(i, j)t+1
q = x(i, j)t +

τ=3∑
τ=0

w(τ)x(i, j)t −
4∑

τ=1

w(τ)x(i, j)t−1 (4.48)

where w explicitly represents the initial low-pass filtering. Until now, we have a

prediction of the traffic for the next 15-minute time slot. Each router or node can

use this estimate to provision enough bandwidth for the QoS traffic demands. To

compute how much extra traffic is needed to provide for the QoS traffic class, the

variance of the traffic over a short-term window is computed. In our experiments the

variance over the last 8 samples of traffic flows is determined:

σ2
q = V ar(w(t− 8, t, 1)) (4.49)

where the w is the window function that returns the last 8 samples (2 hours).

A node may wish to add some excess bandwidth to the estimate, to account for

transients. A node can determine the standard deviation of the traffic over the recent

short term (i.e., 2 hours), and add some multiple of the standard deviation as ‘excess

bandwidth’, as follows:

ẋ(i, j)t+1 = x̂(i, j)t+1 + kqσq

That is

ẋ(i, j)t+1 = x(i, j)t +4q + kqσq

(4.50)
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It is obvious that by increasing the kq the provisioning bandwidth provided for

the next time slot can cover more transient changes in the QoS traffic.

4.2.2 Traffic Estimation Exploiting Hourly history

The previous ARIMA filter exploiting the last quarter-hour information cannot cap-

ture the traffic changes that happened over the last hour. Therefore another filter

can be used to get another estimate. Here a second ARIMA filter is introduced to

capture the traffic information over the last hour. Based on this information, a second

estimate can be made.

The process is similar to the previous ARIMA filter design. First step is to com-

pute several recent changes in traffic history. The second step is to predict the next

change by computing a weighted-moving-average of these recent traffic changes. De-

note the predicted change based on the history of the last hour as 4h, and it can be

obtained as follows:

4h =
3∑

τ=0

zh(τ)(x̄(i, j)t−τ − x̄(i, j)t−τ−1) (4.51)

In equation 4.51 the traffic changes that occurred over the last hour are computed.

The final prediction of the next change in traffic, 4h is the moving average of the

these changes. Therefore the estimate of the next traffic volume at time t+ 1 can be

computed as:

x̂(i, j)t+1
h = x(i, j)t +4h (4.52)

Equation 4.52 delivers the prediction of the traffic rate, based on the observations
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of the last hour. To combine the quarter-hourly estimate and hourly estimates, a

weighted average of these two can be used to compute a final traffic rate estimate.

The weighted average of these two models is determined as follows:

x̂(i, j)t+1 = wtq × x̂(i, j)t+1
q + wth × x̂(i, j)t+1

h (4.53)

To provision enough QoS bandwidth for the next time slot, the variance of the

traffic over the last 4 samples (last hour) is computed, as follows:

σ2
h = V ar(w(t− 4, t, 1)) (4.54)

The amount of excess bandwidth provisioned for the QoS traffic can also be cal-

culated by a weighted average of the standard deviations of these two models.

ẋ(i, j)t+1 = x̂(i, j)t+1 + wtqkqσq + wthkhσh (4.55)

The weights play an important role in the equation 4.53 to find the final estimate.

It is sensible that the prediction model with more accuracy should have a larger

weight and larger influence on the future prediction. As time advances the real traffic

demand will be measured, and the accuracy of each model can be computed. The

weights can then be adjusted based on the accuracy of each model. The accuracy of

each model can be determined by computing the difference between the estimate and

the real traffic demand:

εq = |x̂t+1
q − x(i, j)t+1|

εh = |x̂t+1
h − x(i, j)t+1|

(4.56)
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The error term computed in 4.56 can be used to update the weights after observing

the real traffic demand. The weights are updated as follows:

wt+1
q = εh/(εq + εh)

wt+1
h = εq/(εq + εh)

(4.57)

The sum of the these weights is unity. The weights add more emphasis to the

better estimate.

4.3 Traffic Estimation Exploiting Daily history

The first two ARIMA filters compute the traffic changes over the short term, i.e., the

last quarter-hour and the last hour. But the traffic in figure 4.21 confirms intuitively

that similarities exist with the same time in the last day (96 samples ago) or days.

This similarity can also be used in the prediction process. Here, a third ARIMA filter

is introduced which exploits the traffic changes in the same hour in the last day(s).

The moving average of changes over several day(s) helps to predict the future change

of traffic demand.

The real traffic of the ‘Geant’ backbone network is gathered every 15 minutes.

Consequently there are 96 samples of traffic rates in a day. A weighted-moving-average

of the changes that happened in the same hour in the last day can be computed as

follows:

4d =
3∑

τ=0

zd(τ)(x̄(i, j)t−96−τ+1 − x̄(i, j)t−96−τ ) (4.58)

82



M.A.Sc. Thesis - Shahrooz Behdin McMaster - Electrical Engineering

Here again the filtered data is used. Equation 4.58 calculates the change in traffic

in the same time interval in last day as a prediction for the future change. Similarly,

the estimate of the third ARIMA filter is computed using:

x̂(i, j)t+1
d = x(i, j)t +4d (4.59)

After computing the estimation for the future change of traffic volume, based on

the observation in the last day, the final traffic estimate can be computed using a

weighted average of all these three ARIMA filters, as shown in equation 4.60:

x̂(i, j)t+1 = wtq × x̂(i, j)t+1
q

+ wth × x̂(i, j)t+1
h

+ wtd × x̂(i, j)t+1
d

(4.60)

The weighted average of the different estimations’ models creates a combined

model that puts more emphasis on the model with the best accuracy. The last step is

to provide excess bandwidth for the QoS traffic class. The variance of the traffic over

a 1 hour interval in the last day is computed. We call it σd and it can be computed

as:

σ2
d = V ar(w(t− 96− 3, t− 96, 1)) (4.61)

ẋ(i, j)t+1 = x̂(i, j)t+1 + wtqkqσq

+ wthkhσh

+ wtdkdσd

(4.62)
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The weights used when combining these 3 filters should be adjusted based on

their accuracy. As time advances, the real traffic is measured and compared with the

estimated value of each model. We can the determine the accuracy of each model.

εq = |x̂t+1
q − x(i, j)t+1|

εh = |x̂t+1
h − x(i, j)t+1|

εd = |x̂t+1
d − x(i, j)t+1|

(4.63)

Equation 4.63 measures the accuracy of each model. The weights are updated as

shown in equation 4.64, letting θ ∈ (q, d, h):

wt+1
θ = (1/εθ)/(1/εq + 1/εh + 1/εd) (4.64)

Again the sum of all weights is unity. This weight updating method puts more

emphasis on the more accurate model. We can also extend the filter length in this

daily ARIMA filter, and call it the Multi-Day ARIMA filter (see chapter 5).

4.4 Traffic Estimation Exploiting weekly history

The fourth and final ARIMA filter is created to capture changes that happened in

the traffic in the same hour over the last week(s). Comparing the traffic rate of the

present time and the same time in the last week(s), in figure 4.21, we can observe the

long-term correlation between traffic behavior on the weekly time scale.

Similar to the daily model, ARIMA filter here computes the traffic changes in an

hour interval at the same time in the last week(s). The future change can be predicted

by a weighted-moving-average of the changes over the last week(s):
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4w =
3∑

τ=0

zw(τ)(x̄(i, j)t−96×7−τ+1 − x̄(i, j)t−96×7−τ ) (4.65)

The estimate of this filter is computed as follows:

x̂(i, j)t+1
w = x(i, j)t +4w (4.66)

The final estimation is the combined estimation of all ARIMA filters, and it can

be computed using a weighted average of the 4 filter estimates. This is shown in

equation 4.67.

x̂(i, j)t+1 = wtq × x̂(i, j)t+1
q

+ wth × x̂(i, j)t+1
h

+ wtd × x̂(i, j)t+1
d

+ wtw × x̂(i, j)t+1
w

(4.67)

To provision excess bandwidth for the next QoS traffic demand based on the traffic

behavior in the same hour in the last week, the variance of the traffic in the last week

is computed:

σ2
w = V ar(w(t− 96× 7− 3, t− 96× 7, 1)) (4.68)

The provisioning bandwidth based on all four filters has two terms. The final term is

the combination of all estimations. The second term is the excess bandwidth that is

added to account for transients. It is a combination of standard deviations of traffic
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trends in the four different time scales. It is shown in equation 4.69.

ẋ(i, j)t+1 = x̂(i, j)t+1 + wtqkqσq

+ wthkhσh

+ wtdkdσd

+ wtwkwσw

(4.69)

When combining all four filter models, the weights put more emphasis on the most

accurate model. As time advances, the accuracy of each model is computed and the

weights are updated for the next prediction interval. To update the weights, we first

calculate the accuracy of each filter. By letting θ ∈ (q, d, h) we have:

εθ = |x̂t+1
θ − x(i, j)t+1| (4.70)

To update the weights we have:

wt+1
θ = (1/εθ)/(1/εq + 1/εh + 1/εd + 1/εw) (4.71)

In the next chapter, the experimental results of this model will be presented.
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4.5 Conclusion of Chapter 4

This chapter has summarized a traffic provisioning model based upon several ARIMA-

like filters operating in parallel. Each filter operates in a different time scale, i.e.,

quarter-hour, hour, day or week. The model is very general, as the number of mea-

surements considered in each filter can be changed by adjusting the filter lengths,

and the filter weights can also be adjusted. The estimates of each filter are then

combined using a weighted average to yield a single estimate. When computing the

combined estimate, the filter with the highest accuracy has the highest weight, and

the weights change dynamically. Several experiments of the model are presented in

the next chapter.
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Chapter 5

Algorithm Evaluation

5.1 Chapter Organization

In this chapter we explore the robustness of the model described in chapter 4, to

changes in filter parameters. Several different metrics to evaluate the model are

reviewed. As described in chapter 4, the model consists of several individual ARIMA

filters, each operating at a different time-scale. Each of these individual filters can

be evaluated separately for its prediction ability. Alternatively, all the models can be

combined as described in chapter 4, in order to present a weighted average prediction.

To evaluate these models, we use real traffic demand matrices measured every 15

minutes in the Geant European backbone network, as the input for our model.

Two types of filters are used in the model, and each filter can be adjusted to

measure the robustness of the model. First, an ‘Input Filter’ can be used to low-

pass filter all the measured traffic demand matrices, to remove short-term transients.

Second, the filter parameters for each individual ARIMA filter can be adjusted. In

this chapter, several different types of digital low-pass filters are tested as the Input
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Filter. In addition, several different filter parameters can be used in each ARIMA

filter. In particular, the length and the weights of the individual ARIMA filters can

be adjusted.

In the next section, several different metrics of evaluation are reviewed.

5.2 Metrics of Evaluation

Several different metrics are used to evaluate the algorithm. These metrics are re-

viewed.

5.2.1 Mean Satisfied Bandwidth

The first metric is the Mean Satisfied Bandwidth (MSB). This metric quantifies the

ability of the prediction algorithm to meet the future bandwidth demands of the QoS

traffic class. The goal of the prediction algorithm is to provision enough bandwidth to

meet the future traffic demands of the QoS traffic class, while minimizing the amount

of ‘excess bandwidth’ in the provisioned bandwidth. The Mean Satisfied Bandwidth

is defined as the fraction of the traffic demand in the next time slot, that is satisfied

by the traffic estimate, as shown in Eq. 5.72:

α =
1

t

t∑
τ=1

[min(ẋ(i, j)τ , x(i, j)τ )/(x(i, j)τ ] (5.72)

In Eq. 5.72, ẋ(i, j) is the provisioning bandwidth for flow (i,j) and x(i, j) is the

real traffic demand for flow (i,j), at time t. The equation yields a fraction between

0 and 1. In the tables to be presented later in this chapter, we report the Mean

Satisfied Bandwidth as a percentage. If the prediction algorithm can provision enough
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bandwidth in the next time-slot to completely satisfy the QoS traffic demand, i.e.

ẋ(i, j)t+1 ≥ x(i, jt+1), then 100% of the QoS traffic is satisfied and the MSB is 100%.

However, if the provisioned bandwidth is less than the QoS bandwidth demand, then

the fraction of the QoS demand that is satisfied is given by ẋ(i, j)t+1/x(i, j)t+1.

5.2.2 Mean Excess Bandwidth

The Mean Excess Bandwidth (MEB) is defined as the unused excess bandwidth pro-

visioned for the next time slot, in excess of the actual traffic demand in the next time

slot. It is expressed as a fraction of the actual traffic demand. This excess bandwidth

is not used by the QoS-class traffic, and can be used by the Best-Effort traffic class.

This metric is defined in equation 5.73:

γ =
1

t

t∑
τ=1

[max(ẋ(i, j)τ − x(i, j)τ , 0))/(x(i, j)τ ] (5.73)

The MEB is a fraction between 0 and 1. In the following tables, it will be reported

as a percent of the actual traffic demand in each time-slot.

5.2.3 Error

The previous metrics evaluate the ability of the prediction algorithm to provide

enough bandwidth to meet the future demands. The error metric presented in this

section aims to quantify the accuracy of the prediction algorithm. First the Absolute

Error can be expressed as:

E =
t∑

τ=1

|x̂(i, j)τ − x(i, j)τ | (5.74)
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where x̂ is the predicted value. This metric yields the sum of the absolute errors,

and its unit is Megabits per second. The absolute error of one prediction equals the

absolute value of the difference between the predicted value from the real value. The

Relative Error can be defined in equation 5.75, with respect to the mean value of real

traffic rates:

ER.E. =
1
t

∑t
τ=1 |x̂(i, j)τ − x(i, j)τ |

1
t

∑t
τ=1 x(i, j)τ

(5.75)

The relative error is the absolute error, normalized by the value of the actual

traffic demand at time t. The value of this metric is a fraction between 0 and 1. In

the following tables, it will be reported as a percent of the actual traffic demand in

each time-slot.

Another error term that is useful in evaluating the prediction accuracy is the

Mean-Squared-Prediction-Error (MSPE). It is a well-known metric in evaluating pre-

diction algorithms. It can be defined in equation 5.76:

M.S.P.E. =
1

t

t∑
τ=1

[x̂(i, j)τ − x(i, j)τ ]2 (5.76)

It is desirable to normalize the MSPE, relative to the actual traffic demand at time

t, as shown in equation 5.77. Equation 5.77, yields the Normalized-Mean-Squared-

Prediction-Error, ENMSE:

EN.M.S.P.E. =

√
(1/t)

∑t
τ=1(x̂(i, j)τ − x(i, j)τ )2

1/t
∑t

τ=1 x(i, j)τ
(5.77)

The value of this metric is usually between 0 and 1.
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5.3 Input Filter

As described in the introduction to Chapter 5, there are 2 types of filters in the

model. The Input Filters can be used to low-pass filter the traffic demand matrices,

to remove transient changes. In this section, we evaluate several different input filters,

to explore the robustness of the model. In the next section, we will evaluate several

different ARIMA filters.

5.3.1 A Simple Digital Input Filter

At the first step, we will experiment with very simple Input Filters with equal filter

weights. These filters are being used to smoothen the traffic demands and decrease

the transient changes. The general form is as follows:

x̄(n) = w(1) ∗ x(n) + w(2) ∗ x(n− 1) + · · ·+ w(nw)x(n− nw)

X̄ = [x̄1, x̄2, . . . , x̄n]

X = [x1, x2, . . . , xn]

W = [w1, w2, . . . , wnw ]

(5.78)

In equation 5.78, X̄ is the vector of filtered traffic demands of flow (i, j), X is

the vector of real traffic demands of that flow, and W is the vector of Input Filter

weights, where nw is the order of the filter. It is obvious that by increasing the nw,

we can have better smoothing low-pass filters. It is obvious that nw = 1 implies no

filtering. Here the weight vector plays a key role in the filter performance. We can

run the experiment for the case of no Input Filtering, and for 3 different sets of Input
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Filters with different orders; nw = 4, 8, 16;

W = ones(1, nw)/nw (5.79)

For example, nw = 8, implies an 8-element vector with equal weightsW = [1/8, 1/8, . . . , 1/8].

The results of the experiments with these three vectors is shown next.

Mean Satisfied Bandwidth

The MSB with different length choices of Input Filters is shown in table 5.1. It can

be inferred from the table 5.1 that, in general the individual ARIMA filters perform

slightly better when Input Filtering is applied. However, when all these individual

ARIMA filters are combined to produce a weighted prediction in the model ARIMA

(Q,H,D,W), the Mean Satisfied Bandwidth is maximized when no Input Filter is

applied. These results suggest that the combined ARIMA model is the best model

and that it is relatively robust to changes in the Input Filters.

Mean Excess Bandwidth

Table 5.2 shows the MEB for different length choices of Input Filters. It can be

inferred from the table 5.2 that, in general the individual ARIMA filters perform

slightly better when Input Filtering is applied. However, when all these individual

ARIMA filters are combined to produce a weighted prediction, the Mean Excess

Bandwidth is minimized when no Input Filter is applied. These results suggest that

the combined ARIMA model is also the best model and that it is relatively robust to

changes in the Input Filters.
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MSB ARIMA Filters Unfiltered Data Filtered Filtered Filtered
W L=4 W L=8 W L=16

K=0 ARIMA(Q) 83.72 86.44 87.19 87.58
ARIMA(H) 85.62 86.9 87.4 87.69
ARIMA(D) 86.28 87.25 87.61 87.8
ARIMA(W) 86.45 87.24 87.58 87.76

ARIMA(Q,H,D,W) 89.1 88.55 88.32 88.16
K=1 ARIMA(Q) 91.57 94.15 94.44 94.39

ARIMA(H) 93.77 94.36 94.43 94.42
ARIMA(D) 93.49 94.14 94.37 94.49
ARIMA(W) 93.57 94.12 94.33 94.43

ARIMA(Q,H,D,W) 94.82 94.66 94.62 94.57
K=2 ARIMA(Q) 95.3 96.67 96.76 96.7

ARIMA(H) 96.52 96.73 96.73 96.71
ARIMA(D) 96.15 96.54 96.67 96.74
ARIMA(W) 96.19 96.52 96.64 96.69

ARIMA(Q,H,D,W) 96.9 96.84 96.81 96.78

Table 5.1: Mean Satisfied Bandwidth (PERCENT); Filtering with Different Weight
Length

MEB ARIMA Filters Unfiltered Data Filtered Filtered Filtered
W L=4 W L=8 W L=16

K=0 ARIMA(Q) 19.53 14.35 13.12 12.54
ARIMA(H) 15.46 13.61 12.82 12.4
ARIMA(D) 14.79 13.2 12.56 12.23
ARIMA(W) 14.85 13.44 12.84 12.52

ARIMA(Q,H,D,W) 11.48 11.81 11.87 11.93
K=1 ARIMA(Q) 40.1 36.34 36.05 36.18

ARIMA(H) 36.73 36.13 36.08 36.14
ARIMA(D) 37.63 36.62 36.25 36.06
ARIMA(W) 37.73 36.83 36.49 36.32

ARIMA(Q,H,D,W) 35.98 36.09 36.04 36.04
K=2 ARIMA(Q) 66.02 64.39 64.31 64.43

ARIMA(H) 64.54 64.33 64.34 64.41
ARIMA(D) 65.42 64.75 64.49 64.37
ARIMA(W) 65.51 64.92 64.7 64.59

ARIMA(Q,H,D,W) 64.41 64.48 64.42 64.4

Table 5.2: Mean Excess Bandwidth (PERCENT); Filtering with Different Weight
Length
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Relative Error

Table 5.3 shows the relative error (RE) for different choices of Input Filters. Based

on the results of this table, the same conclusion can be drawn; that using Input

Filters can decrease the prediction error of each individual ARIMA filter, while the

combination of ARIMA filters has a better accuracy when no Input Filter applied.

RE ARIMA Filters Unfiltered Data Filtered Filtered Filtered
W L=4 W L=8 W L=16

K=0,1,2 ARIMA(Q) 28.23 20.67 18.91 18.08
ARIMA(H) 22.31 19.59 18.47 17.87
ARIMA(D) 21.29 19 18.1 17.64
ARIMA(W) 20.67 18.85 18.04 17.63

ARIMA(Q,H,D,W) 16.31 16.84 16.99 17.13

Table 5.3: Relative Error (PERCENT); Filtering with Different Weight Length

Normalized Mean Squared Prediction Error

In table 5.4, the NMSPE for different choices of Input Filters is shown. Based on

the results of this table, using Input Filters can slightly reduce the NMSPE, in the

individual ARIMA filters and in the combined ARIMA filter. The differences however,

are limited to 3 percent, which is not too large. For example, comparing different

columns of this table one can notice that using an Input Filter with length 16 yields

a slightly lower NMSPE. Unfortunately, the most important metrics are the Mean

Satisfied Bandwidth and Mean Excess Bandwidth, and the use of Input Filters slightly

decreases the performance of those metrics.
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NMSPE ARIMA Filters Unfiltered Data Filtered Filtered Filtered
W L=4 W L=8 W L=16

K=0,1,2 ARIMA(Q) 79.59 57.01 52.99 51.19
ARIMA(H) 62.09 54.02 51.74 50.58
ARIMA(D) 54.54 50.91 50.03 49.68
ARIMA(W) 52.87 50.67 49.96 49.69

ARIMA(Q,H,D,W) 52.83 51.16 50.44 50.02

Table 5.4: Normalized Mean Squared Prediction Error (PERCENT);Filtering with
Different Weight Length

5.3.2 Using More Complex Input Filters

To decrease the effects of transients, we can take advantage of more complex digital

Input Filters with different filter weights. In this section we describe the design and

use of more complex digital filters. Here we take advantage of low-pass Butterworth

digital filters. By changing the order and cutoff frequency of the filter we can get

different results. The use of simple digital Input Filters in the previous section showed

mixed results. The use of Input Filters results in a slight improvement in the NMSPE

metric, while it results in a slight reduction in the MSB and MEB metrics. In this

section we explore more complex digital filters to see how they influence the overall

performance.

Cutoff frequency is the frequency where the magnitude response of the filter is√
1/2 of the nominal passband value. The Order of the filter is the highest term of

the numerator and denominator. Comparing two Butterworth filters, the one with

higher order will result in more attenuation of the terms with higher frequencies.

As mentioned in [35], Butterworth digital filters have a flat frequency response

in the passband, and its response magnitude decays monotonically as the frequency

increases. Other filters could also be used such as Chebyshev filters type one and two.

96



M.A.Sc. Thesis - Shahrooz Behdin McMaster - Electrical Engineering

However those filters have more ripples in the passband than Butterworth filters. The

frequency response of two Butterworth filter is shown in figures 5.26 and 5.27.

The general transfer function form of the Butterworth digital filter is as follows:

H(z) =
a(1)zn + · · ·+ a(n+ 1)

zn + b(2)zn−1 + · · ·+ b(n+ 1)
(5.80)

Where n is the order of the filter, A = [a(1), . . . , a(n + 1)] is the numerator’s coeffi-

cients, B = [1, b(2), . . . , b(n+ 1)] is the denominator’s coefficients.

We can use the general form of the Butterworth digital filter to design a low-pass

digital filter with a desired order and cutoff frequency. Frequency responses of two

low-pass filters with same cutoff frequency but different orders are shown in figures

5.26 and 5.27. Comparing the magnitude response of these two filters, its is noticeable

that the magnitude decreases more rapidly.

We performed experiments on Input Filters with different orders and cutoff fre-

quencies, with orders being n = 1, 2, 3 and cutoff frequencies being fs = 0.7, 0.8, 0.9

relative to the Nyquist frequency. Nyquist frequency equals half of the sampling fre-

quency. We consider traffic demands as a constitutions function, and we sampled this

function every 15 minutes. As a result the Nyquist frequency is the highest frequency

of the samples. By designing different filters in terms of order and cutoff frequency,

we can apply different Butterworth digital filters as the Input Filters. The results are

shown next.

Mean Satisfied Bandwidth, using Butterworth Input Filters

The Mean Satisfied Bandwidth for different types of Butterworth Digital Input Filters,

with different orders and cutoff frequencies, is shown in table 5.5.
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Figure 5.26: Frequency Response of Butterworth low-pass filter with order =1 and
Cutoff freq = 0.7 relative to Nyquist Frequency

Figure 5.27: Frequency Response of Butterworth low-pass filter with order =3 and
Cutoff freq = 0.7 relative to Nyquist Frequency
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Filter Order = 1 Filter Order = 2 Filter Order = 3 Unfiltered
Cutoff freQ Cutoff freQ Cutoff freQ

MSB ARIMA Filters 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9
K=0 ARIMA(Q) 84.64 84.26 83.87 84.71 84.28 83.75 84.57 84.29 83.72 83.72

ARIMA(H) 86 85.88 85.75 86.03 85.89 85.75 86.08 85.9 85.75 85.62
ARIMA(D) 86.61 86.51 86.4 86.58 86.49 86.38 86.56 86.46 86.37 86.28
ARIMA(W) 86.68 86.6 86.5 86.61 86.55 86.48 86.56 86.5 86.45 86.45
ARIMA(Q,H,D,W) 88.95 89.04 89.13 89.07 89.17 89.23 89.13 89.25 89.28 89.1

K=1 ARIMA(Q) 92.53 92.22 91.92 92.39 92.02 91.7 92.44 91.95 91.57 91.57
ARIMA(H) 93.95 93.88 93.82 93.95 93.82 93.75 94 93.84 93.7 93.77
ARIMA(D) 93.71 93.63 93.55 93.66 93.58 93.51 93.63 93.54 93.48 93.49
ARIMA(W) 93.71 93.64 93.58 93.63 93.57 93.53 93.59 93.51 93.5 93.57
ARIMA(Q,H,D,W) 94.73 94.76 94.79 94.74 94.77 94.8 94.75 94.78 94.8 94.82

K=2 ARIMA(Q) 96.05 95.89 95.7 95.96 95.69 95.58 96.06 95.66 95.43 95.3
ARIMA(H) 96.59 96.56 96.53 96.6 96.55 96.51 96.62 96.56 96.49 96.52
ARIMA(D) 96.28 96.23 96.19 96.25 96.19 96.16 96.22 96.17 96.13 96.15
ARIMA(W) 96.27 96.23 96.19 96.22 96.18 96.15 96.18 96.14 96.13 96.19
ARIMA(Q,H,D,W) 96.86 96.87 96.89 96.86 96.86 96.88 96.86 96.86 96.87 96.9

Table 5.5: Mean Satisfied Bandwidth with different order and cutoff frequencies (PER-
CENT)

It can be inferred from the table 5.5 that, in general the individual ARIMA filters

perform slightly better when Input Filtering is applied. However, when all these in-

dividual ARIMA filters are combined to produce a weighted prediction, the MSB is

maximized when no Input Filter is applied (for parameters k= (1,2)). For parameter

k=0, the MSB is slightly higher with Input Filtering, but the Mean Excess Band-

width is also slightly higher, so there is no net improvement due to Input Filtering.

These results tend to confirm the results in the previous section, and suggest that the

combined model is also the best model and that it is relatively robust to changes in

the Input Filters.
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Mean Excess Bandwidth, using Butterworth Input Filters

Table 5.6 shows the MEB for different choices of Input Filters.

Filter Order = 1 Filter Order = 2 Filter Order = 3 Unfiltered
Cutoff freQ Cutoff freQ Cutoff freQ

MEB ARIMA Filters 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9
K=0 ARIMA(Q) 17.83 18.56 19.35 18.04 18.87 19.78 18.29 19.1 20 19.53

ARIMA(H) 14.96 15.16 15.35 15.01 15.26 15.45 15 15.3 15.52 15.46
ARIMA(D) 14.29 14.47 14.67 14.41 14.61 14.77 14.49 14.69 14.84 14.79
ARIMA(W) 14.45 14.61 14.78 14.6 14.77 14.89 14.7 14.87 14.96 14.85
ARIMA(Q,H,D,W) 11.73 11.69 11.6 11.73 11.73 11.64 11.64 11.71 11.67 11.48

K=1 ARIMA(Q) 38.38 38.78 39.25 38.7 39.28 39.59 38.56 39.42 39.93 40.1
ARIMA(H) 36.54 36.61 36.68 36.53 36.67 36.75 36.49 36.66 36.81 36.73
ARIMA(D) 37.32 37.44 37.57 37.43 37.57 37.67 37.48 37.64 37.74 37.63
ARIMA(W) 37.47 37.59 37.71 37.6 37.73 37.81 37.68 37.82 37.87 37.73
ARIMA(Q,H,D,W) 36.17 36.16 36.09 36.27 36.29 36.19 36.2 36.33 36.27 35.98

K=2 ARIMA(Q) 65.01 65.18 65.41 65.11 65.44 65.57 65 65.51 65.82 66.02
ARIMA(H) 64.47 64.5 64.53 64.46 64.51 64.56 64.43 64.5 64.58 64.54
ARIMA(D) 65.21 65.3 65.38 65.3 65.4 65.46 65.34 65.45 65.52 65.42
ARIMA(W) 65.33 65.41 65.49 65.43 65.52 65.57 65.49 65.58 65.61 65.51
ARIMA(Q,H,D,W) 64.58 64.58 64.52 64.68 64.72 64.63 64.63 64.76 64.71 64.41

Table 5.6: Mean Excess Bandwidth with different orders and cutoff frequencies (PER-
CENT)

It can be inferred from table 5.6 that, in general the individual ARIMA filters

yield a slightly better MEB when no Input Filtering is used. When all these indi-

vidual ARIMA filters are combined to produce a weighted prediction, the MEB is

also minimized when no Input Filter is used. These results tend to confirm the re-

sults in the previous section, and suggest that the Input Filters do not improve the

predictions, according to the MEB metric.
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Relative Error, using Butterworth Input Filters

Table 5.7 shows results of the Relative Error metric, when we use different digital

filters with different orders and cutoff frequencies. In terms of relative error, table

5.7 reports interesting results. The use of Input Filters yields a lower Relative Error

metric for the combined ARIMA filter. However, for each individual ARIMA filter

alone, the Relative Error is reduced when no Input Filter is applied.

Filter Order = 1 Filter Order = 2 Filter Order = 3 Unfiltered
Cutoff freQ Cutoff freQ Cutoff freQ

RE ARIMA Filters 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9
K=0, ARIMA(Q) 25.74 26.81 27.96 26.04 27.25 28.58 26.39 27.58 28.9 18.08
1,2 ARIMA(H) 21.57 21.85 22.14 21.63 22.01 22.28 21.62 22.05 22.39 17.87

ARIMA(D) 20.57 20.82 21.1 20.74 21.02 21.25 20.86 21.15 21.36 17.64
ARIMA(W) 20.19 20.4 20.61 20.4 20.61 20.76 20.53 20.75 20.86 17.63
ARIMA(Q,H,D,W) 16.59 16.5 16.39 16.5 16.45 16.35 16.4 16.37 16.33 17.13

Table 5.7: Relative Error for filters with different orders and cutoff frequencies (PER-
CENT)

Normalized Mean Squared Prediction Error, using Butterworth Input Fil-

ters

Table 5.8 shows results of metric NMSPE when we use different Input Filters. Based

on the results represented in table 5.8, in terms of NMSPE, the use of more complex

Butterworth Input Filters does not result in any improvement.

5.4 Testing the Individual ARIMA Filters

In this section, we will experiment with different filter coefficients, for the individual

ARIMA filters. First we will summarize each of these individual ARIMA filters, and
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Filter Order = 1 Filter Order = 2 Filter Order = 3 Unfiltered
Cutoff freQ Cutoff freQ Cutoff freQ

NMSPE ARIMA
Filters

0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

K=0, ARIMA(Q) 70.27 72.93 75.89 69.56 73.02 76.22 68.43 72.46 76.06 51.19
1,2 ARIMA(H) 59.35 60.26 61.19 58.71 60.01 61.14 57.91 59.47 60.92 50.58

ARIMA(D) 53.16 53.59 54.05 53.33 53.79 54.19 53.4 53.86 54.22 49.68
ARIMA(W) 52.17 52.44 52.71 52.41 52.68 52.88 52.54 52.8 52.96 49.69
ARIMA(Q,H, 52.54 52.67 52.76 52.17 52.48 52.67 51.7 52.19 52.58 50.02
D,W)

Table 5.8: Normalized Mean Squared Prediction Error for filters with different orders and
cutoff frequencies (PERCENT)

then we will present the results of the experiments. Here we give a short explanation

on each individual ARIMA filter. Also, we are going to examine a variation of the

ARIMA(D) filter which exploits more daily history. It is similar to ARIMA(D) filter,

but instead of using just one prior day in the filter, the filter weights have been

adjusted so that it uses several previous days in the filter.

Quarter-Hourly ARIMA Filter

A simple version of the ARIMA(Q) model is based on the last 15-min traffic change.

Assuming something similar is going to happen at the present time, we can model

the traffic rate as follows.

xt+1 = xt +4q

Or:

xt+1 = xt + x̄− x̄t−1
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where x̄ is the filtered data, which by default is the low-pass filtered traffic demands,

using the last traffic demands samples.

x̄ =
n∑
τ=1

w(τ)xt−(τ−1)

This filter as shown above estimates the next change in the traffic rate based on the

observed change in the last quarter-hour. By changing the ARIMA(Q) filter length

and weights, the changes in traffic rates observed over several previous quarter-hour

intervals can be included into the estimated change in the next quarter-hour interval.

Hourly ARIMA Filter

This filter computes an estimated change in the traffic rate in the next quarter hour,

based on the 4 samples in the last hour. A Weighted-Moving-Average of the changes

of traffic rates over the last hour is used to predict the traffic change in the next time

slot. As mentioned before, the estimated traffic change can be computed using the

following equation :

xt+1 = xt +4h

4h =
3∑

τ=0

zh(τ)(x̄(i, j)t−τ − x̄(i, j)t−τ−1)

where zh is a vector of ARIMA filter weights that assigns weighs to the changes of

traffic rates in the last hour. By changing the ARIMA(H) filter length and weights,

the changes observed over several previous hours can be included into the estimated

change in the next quarter-hour interval. To better understand the Hourly ARIMA

filter, please refer to figure 5.28.

Figure 5.28 shows where the ARIMA(H) filter focuses its attention, when the
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Figure 5.28: Hourly ARIMA Filter Exploits traffic trend over the last hour;in red

length of the filter vector is 4. For example, letting the arrows point to the present

time, then the red line shows where this filter works on.

The Daily ARIMA Filter

The Daily ARIMA(D) filter will predict the future traffic change based on the traffic

changes occurring in the same time interval in the last day. A Weighted Moving

Average of the traffic differences in the same hour in the last day is used to model

the traffic. By changing the ARIMA(D) filter length and weights, observations over

multiple days can be included into the estimate of the change in the next quarter-hour
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interval.

xt+1 = xt +4d

4d =
3∑

τ=0

zd(τ)(x̄(i, j)t−96−τ+1 − x̄(i, j)t−96−τ )

where zd is the filter for averaging the past changes of the traffic in the last day.

Figure 5.29: Daily ARIMA Filter Exploits traffic trend over the same time last day;
in red

Figure 5.29 shows the times where the ARIMA(D) focuses on, when the filter

length is 4. As an example, if the arrow points to the present time-slot t = 1300,

and because in each day there are 96 samples, then the same hour in the last day

will occur at time-slots 1201 to 1205 (where start point and end point arrows show).
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Using a ARIMA(D) filter of length 4, the traffic observed in this period is being used

to predict the change of traffic in the future interval.

The Multi-Day ARIMA(D) Filter

In this sub-section we change the single day ARIMA(D) filter length and weights, to

examine the traffic changes that occur over several previous days. We call this the

Multi-Day ARIMA(MD) filter, as it takes observations over multiple days to predict

the next time slot traffic rate. Here we use observations taken over the last four days.

The traffic rate of the next time slot can be predicted based on observations in the

same hour over the last 4 days. The form of the Multi-Day ARIMA(MD) filter that

considers the last 4 days is :

x̂t+1 = xt +4Md

4md =
4∑

md=1

H(md)
3∑

τ=0

zmd(τ)(x̄(i, j)t−24∗4∗md−τ+1 − x̄(i, j)t−24∗4∗md−τ )
(5.81)

where md = 4 implies that this filter exploits the information of the last 4 days. zmd

is the vector of filter weights similar to the previous ARIMA filters. Basically this

filter first exploits the information of the traffic changes of the same hour in the last

4 days. It then computes a final estimate by weighted averaging of the results of each

individual day. The weighted averaging is performed with H(md) filter. H(md) is a

4 element vector to merge the results of the 4 days.

After predicting the next traffic bandwidth change, we can provide bandwidth
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with the following equations:

σ2
md = V ar(w(t− 8, t, 1)) (5.82)

ẋt+1 = xt+1 + kmdσmd (5.83)

Figure 5.30 shows the intervals where this Multi-day ARIMA(MD) filter is working

on. In this figure, let the present time be time-slot 900. The red parts of the traffic

trend are used in this ARIMA(MD) filter. The previous equations show a 2 step

computation, to aid in the explanation. This filter first computes an estimated change

due to the traffic trend observed in the same hour over the last 4 days separately (each

of the red lines in the picture). Then, it merges the 4 estimated changes together to

find the ultimate prediction. This two-step computation can be rearranged to yield

a single ARIMA(MD) filter with the appropriate filter length and filter coefficients.

Observations of many different hours over many different days can be included in the

estimate by changing the ARIMA(MD) filter length and weights.

The Weekly ARIMA Filter

The weekly ARIMA filter exploits the information observed in the traffic trend over

the last week. As explained in chapter 4 the weighted moving average of the traffic

differences of the same time last week can be used for prediction. By changing the

ARIMA(W) filter length and weights, observations over multiple days over multi-

ple weeks can be included into the estimate of the change in the next quarter-hour

interval.

xt+1 = xt +4w
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Figure 5.30: Multi-Daily ARIMA Filter Exploits traffic trend over the same time last
days; in red

4w =
3∑

τ=0

zw(τ)(x̄(i, j)t−96×7−τ+1 − x̄(i, j)t−96×7−τ )

where zw is a vector of filter weights.

Figure 5.31 shows the window that the ARIMA(W) filter focuses on to predict

the future change of the traffic, using a filter of length 4. However, by changing

the ARIMA(W) filter length and weights, we can run the experiment for different

situations.
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Figure 5.31: Weekly ARIMA Filter Exploits traffic trend over the same time last
week;in red

5.4.1 Applying Different ARIMA filters

In the last section, we described the terminology of the ARIMA filters. We observe

that the ARIMA filter vector z is a vector that tells the algorithm what samples of the

traffic rates will influence the next prediction. This vector also specifies the different

weights to be associated with those samples.

In this sub-section, we will change the weights and length of the individual ARIMA

filters to see the result. We will test two situations: In case (a) no Input Filtering is

used. In case(b) simple Input Filter is used.

In our previous experiments, the ARIMA filter we used, was a simple 4-element
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filter as follows:

zh = [1/2, 1/4, 1/8, 1/8] (5.84)

For the individual ARIMA filters in our experiments, we can use a technique called

Exponential Smoothing. The ARIMA filters can use exponentially decreasing weights

to compute a moving average of the traffic changes. This exponential smoothing is

summarized next.

Exponential Smoothing

Authors in [34] show how to use the exponential smoothing for predicting. The

general form of the exponential smoothing is shown as:

s1 = q0

st = αqt−1 + (1− α)st−1

(5.85)

Where q’s are the past traffic changes, st is the predicted change of the traffic for the

next time slot, and α is called the smoothing factor, which 0 < α < 1. st−1 also, can

be written as a function of last traffic changes. Therefore the predicted value of the

traffic change, for the time t based on the last k observations would be:

sk = αqk−1 + α(1− α)qk−2 + α(1− α)2qk−3 + · · ·+ (1− α)k−1q0 (5.86)

That is the reason this approach is called Exponential. q0 is the first observed traffic

change. Here the length of the filter is k. A small value of k will have a less smoothing

effect, and be more responsive to the recent changes of the traffic demands, while a

110



M.A.Sc. Thesis - Shahrooz Behdin McMaster - Electrical Engineering

large value of k will bring in more samples and consequently have a greater smoothing

effect.

Another parameter that we need to determine is the smoothing factor, α. Values

of α close to 1 have less smoothing effect and put more emphasis on the recent changes.

On the other hand, values of α close to zero have more smoothing effect by assigning

larger weights to the distant past samples.

In this section, we run experiments on three different smoothing factors α, for

two different filter lengths k. Table 5.9 summarizes these wights. The first set is the

default set.

Weights α K
Z 1 [1/4, 1/4, 1/4, 1/4] - -
Z 2 [3/4, 3/16, 3/64, 1/64] 3/4 4
Z 3 [1/2, 1/4, 1/8, 1/8] 1/2 4
Z 4 [1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/128] 1/2 8
Z 5 [1/4, 1/4*(3/4), 1/4*(3/4)2,1/4*(3/4)3,1/4*(3/4)4,1/4*(3/4)5,1/4*(3/4)6,(3/4)7] 1/4 8

Table 5.9: Different ARIMA Filtering Weights

In the following, the results of different choices of ARIMA filters are shown in 2

sets of tables. In the first table, the traffic demands use Input Filters. The Input

Filter we used, is a Butterworth low-pass filter with order of 1 and relative cutoff

frequency of 0.7. The second table shows the results when traffic demands do not use

an Input Filter.

We first examine with the Daily ARIMA(D) filter and then we show the results

for the Multi-Day ARIMA(D) filters.
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Mean Satisfied Bandwidth

Tables 5.10 and 5.11 show the MSB for different sets of ARIMA filters. In 5.10 the

Input Filter is a digital Butterworth filter with relative cutoff frequency 0.7 and filter

order of 1.

Butterworth Filter Used
Filter order = 1 ; Cutoff FreQ = 0.7

ARIMA Filter Size = 4 ARIMA Filter Size = 8
MSB ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0 ARIMA(Q) 84.64 84.64 84.64 84.64 84.64

ARIMA(H) 86.59 85.33 86 85.98 86.83
ARIMA(D) 87.03 86 86.61 86.59 87.26
ARIMA(W) 87.01 86.14 86.68 86.64 87.24

ARIMA(Q,H,D,W) 89.09 89.12 88.95 88.94 88.81
K=1 ARIMA(Q) 92.53 92.53 92.53 92.53 92.53

ARIMA(H) 94.23 93.28 93.95 93.96 94.3
ARIMA(D) 93.96 93.15 93.71 93.71 94.18
ARIMA(W) 93.93 93.19 93.71 93.7 94.15

ARIMA(Q,H,D,W) 94.77 94.79 94.73 94.73 94.7
K=2 ARIMA(Q) 96.05 96.05 96.05 96.05 96.05

ARIMA(H) 96.7 96.37 96.59 96.59 96.7
ARIMA(D) 96.43 95.92 96.28 96.28 96.57
ARIMA(W) 96.4 95.91 96.27 96.27 96.54

ARIMA(Q,H,D,W) 96.87 96.89 96.86 96.86 96.84

Table 5.10: Different ARIMA filters, with Input Filter of order 1 and relative cutoff
frequency of 0.7 (PERCENT)

Referring to both tables, it appears that the MSB is slightly maximized when

no Input Filters are used. This result is consistent with the previous sections, which

showed no improvement when Input Filtering was used. Referring to the second table

(when no Input Filtering is used), the MSB is slightly maximized when the 1st or

2nd ARIMA filters are used. The differences however are typically a few hundreds

of a percent, which is insignificant. These results suggest that no Input Filters are
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Unfiltered Data
ARIMA Filter Size = 4 ARIMA Filter Size = 8

MSB ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0 ARIMA(Q) 83.72 83.72 83.72 83.72 83.72

ARIMA(H) 86.44 84.67 85.62 85.59 86.65
ARIMA(D) 86.96 85.36 86.28 86.25 87.13
ARIMA(W) 86.97 85.68 86.45 86.41 87.15

ARIMA(Q,H,D,W) 89.22 89.29 89.1 89.1 88.96
K=1 ARIMA(Q) 91.57 91.57 91.57 91.57 91.57

ARIMA(H) 94.15 92.79 93.77 93.77 94.3
ARIMA(D) 93.91 92.67 93.49 93.48 94.1
ARIMA(W) 93.89 92.85 93.57 93.56 94.1

ARIMA(Q,H,D,W) 94.86 94.89 94.82 94.82 94.8
K=2 ARIMA(Q) 95.3 95.3 95.3 95.3 95.3

ARIMA(H) 96.67 96.16 96.52 96.52 96.72
ARIMA(D) 96.4 95.6 96.15 96.15 96.52
ARIMA(W) 96.38 95.67 96.19 96.18 96.51

ARIMA(Q,H,D,W) 96.91 96.93 96.9 96.9 96.88

Table 5.11: Different ARIMA filters, with Unfiltered Traffic Demands(PERCENT)

necessary, and that fairly simple filters can be used for the individual ARIMA filters.

The combined ARIMA filter seems to be very robust with respect to the choice of

the individual ARIMA filter lengths and weights, and it consistently yields very good

performance.

Mean Excess Bandwidth

Tables 5.12 and 5.13 show the Mean Excess Bandwidth (MEB), for cases where

Input Filters are used and not used. Referring to both tables, it appears that the

MEB is slightly minimized when no Input Filters are used. This result is consistent

with the previous sections, which showed no improvement when Input Filtering was

used. Referring to the second table (when no Input Filtering is used), the MEB is

slightly minimized when the 2nd, 3rd and 4th ARIMA filters are used. The differences
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however are typically a few hundreds of a percent, which is insignificant. These results

suggest that no Input Filters are necessary, and once again that fairly simple filters

can be used for the individual ARIMA filters. The combined ARIMA filter seems to

be very robust with respect to the choice of the individual ARIMA filter lengths and

weights, and it consistently yields very good performance.

Butterworth Filter Used
Filter order = 1 ; Cutoff FreQ = 0.7

ARIMA Filter Size = 4 ARIMA Filter Size = 8
MEB ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0 ARIMA(Q) 17.83 17.83 17.83 17.83 17.83

ARIMA(H) 14.13 16.29 14.96 14.98 13.59
ARIMA(D) 13.65 15.59 14.29 14.29 13.1
ARIMA(W) 13.91 15.71 14.45 14.42 13.26

ARIMA(Q,H,D,W) 11.62 11.78 11.73 11.73 11.74
K=1 ARIMA(Q) 38.38 38.38 38.38 38.38 38.38

ARIMA(H) 36.26 37.3 36.54 36.53 36.21
ARIMA(D) 36.94 38.33 37.32 37.31 36.53
ARIMA(W) 37.14 38.51 37.47 37.42 36.63

ARIMA(Q,H,D,W) 36.24 36.23 36.17 36.15 36.19
K=2 ARIMA(Q) 65.01 65.01 65.01 65.01 65.01

ARIMA(H) 64.37 64.68 64.47 64.47 64.37
ARIMA(D) 64.97 65.93 65.21 65.2 64.68
ARIMA(W) 65.13 66.09 65.33 65.27 64.73

ARIMA(Q,H,D,W) 64.69 64.65 64.58 64.56 64.6

Table 5.12: Different ARIMA filters, with Input Filter of order 1 and relative cutoff
frequency of 0.7(PERCENT)

Relative Error

Tables 5.14 and 5.15 show the result for the relative error for different sets of ARIMA

filters. Referring to both tables, it appears that the Relative Error (RE) is slightly

minimized when no Input Filters are used. Referring to the second table (when no
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Unfiltered Data
ARIMA Filter Size = 4 ARIMA Filter Size = 8

MEB ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0 ARIMA(Q) 19.53 19.53 19.53 19.53 19.53

ARIMA(H) 14.35 17.28 15.46 15.5 13.82
ARIMA(D) 13.79 16.71 14.79 14.81 13.31
ARIMA(W) 14.02 16.65 14.85 14.84 13.42

ARIMA(Q,H,D,W) 11.52 11.48 11.48 11.48 11.55
K=1 ARIMA(Q) 40.1 40.1 40.1 40.1 40.1

ARIMA(H) 36.34 37.99 36.73 36.73 36.19
ARIMA(D) 37.03 39.14 37.63 37.63 36.65
ARIMA(W) 37.22 39.21 37.73 37.69 36.73

ARIMA(Q,H,D,W) 36.2 35.96 35.98 35.96 36.05
K=2 ARIMA(Q) 66.02 66.02 66.02 66.02 66.02

ARIMA(H) 64.39 64.9 64.54 64.53 64.34
ARIMA(D) 65.03 66.5 65.42 65.41 64.75
ARIMA(W) 65.18 66.62 65.51 65.46 64.8

ARIMA(Q,H,D,W) 64.68 64.39 64.41 64.39 64.49

Table 5.13: Different ARIMA filters, with Unfiltered Traffic Demands(PERCENT)

Input Filtering is used), the RE is slightly minimized when the 1st ARIMA filters

are used. The differences however are typically a few hundreds of a percent, which is

insignificant. These results suggest that no Input filters are necessary, and once again

that fairly simple filters can be used for the individual ARIMA filters. The combined

ARIMA filter seems to be very robust with respect to the choice of the individual

ARIMA filter lengths and weights, and it consistently yields very good estimates.

Normalized Mean Square Error

Tables 5.16 and 5.17 show the result for the Normalized Mean Squared Prediction

Error for different weight sets of ARIMA filters.

Referring to both tables, it appears that the NMSPE is slightly minimized when
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Butterworth Filter Used
Filter order = 1 ; Cutoff FreQ = 0.7

ARIMA Filter Size = 4 ARIMA Filter Size = 8
RE ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)

K=0,1,2 ARIMA(Q) 25.74 25.74 25.74 25.74 25.74
ARIMA(H) 20.35 23.5 21.57 21.6 19.59
ARIMA(D) 19.65 22.43 20.57 20.57 18.87
ARIMA(W) 19.46 21.84 20.19 20.2 18.72

ARIMA(Q,H,D,W) 16.34 16.54 16.59 16.6 16.63

Table 5.14: Relative Error for Different ARIMA filters, with Input Filter of order 1
and relative cutoff frequency of 0.7(PERCENT)

Unfiltered Data
ARIMA Filter Size = 4 ARIMA Filter Size = 8

RE ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0,1,2 ARIMA(Q) 28.23 28.23 28.23 28.23 28.23

ARIMA(H) 20.67 24.96 22.31 22.36 19.93
ARIMA(D) 19.83 24.05 21.29 21.31 19.17
ARIMA(W) 19.6 23.02 20.67 20.71 18.92

ARIMA(Q,H,D,W) 16.16 16.21 16.31 16.3 16.39

Table 5.15: Relative Error for Different ARIMA filters, with Unfiltered Traffic De-
mands(PERCENT)

Butterworth Filter Used
Filter order = 1 ; Cutoff FreQ = 0.7

ARIMA Filter Size = 4 ARIMA Filter Size = 8
NMSPE ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0,1,2 ARIMA(Q) 70.27 70.27 70.27 70.27 70.27

ARIMA(H) 55.66 64.57 59.35 59.39 54.37
ARIMA(D) 51.72 56.58 53.16 53.14 50.77
ARIMA(W) 51.33 54.65 52.17 52.18 50.51

ARIMA(Q,H,D,W) 51.76 52.93 52.54 52.56 51.88

Table 5.16: Different ARIMA filters, with Input Filter of order 1 and relative cutoff
frequency of 0.7(PERCENT)
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Unfiltered Data
ARIMA Filter Size = 4 ARIMA Filter Size = 8

NMSPE ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0,1,2 ARIMA(Q) 79.59 79.59 79.59 79.59 79.59

ARIMA(H) 57.01 69.71 62.09 62.15 55.56
ARIMA(D) 52.12 60.32 54.54 54.54 51.18
ARIMA(W) 51.5 56.82 52.87 52.91 50.68

ARIMA(Q,H,D,W) 51.94 53.22 52.83 52.84 52.03

Table 5.17: Different ARIMA filters, with Unfiltered Traffic Demands(PERCENT)

Input Filters are used. The differences however are typically a few hundreds of a per-

cent, which is insignificant. These results suggest that no Input Filters are necessary,

and once again that fairly simple filters can be used for the individual ARIMA filters.

The combined ARIMA filter seems to be very robust with respect to the choice of

the individual ARIMA filter lengths and weights, and it consistently yields very good

estimates.

The Multi-Day ARIMA(MD) Filter

In this section, we evaluate the Multi-Day ARIMA(MD) filter, that exploits the traffic

trend over last 4 days. The traffic rate of the next time slot can be predicted based

on the observations in the same hour in the last 4 days. Therefore, the length and

weights of the original ARIMA(MD) filter are modified, to implement this model. We

run the experiments for traffic demands with 2 cases, (a) no Input Filtering, and (b)

with Butterworth Input Filters.

Mean Satisfied Bandwidth, using the Multi-day ARIMA(MD) filter

Table 5.19 shows the MSB for the Multi-day ARIMA(MD) filter, when no Input

Filtering is used. The table 5.18 shows the MSB for the Multi-day ARIMA(MD)
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filter, when Input Filtering is used. The Input Filter is a Butterworth digital filter

with relative cutoff frequency of 0.7 and order of 1.

Butterworth Filter Used
Filter order = 1 ; Cutoff FreQ = 0.7

ARIMA Filter Size = 4 ARIMA Filter Size = 8
MSB ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0 ARIMA(Q) 84.64 84.64 84.64 84.64 84.64

ARIMA(H) 86.59 85.33 86 85.98 86.83
ARIMA(MD) 87.44 86.83 87.21 87.2 87.58
ARIMA(W) 87.01 86.14 86.68 86.64 87.24

ARIMA(Q,H,D,W) 88.99 89.01 88.86 88.84 88.75
K=1 ARIMA(Q) 92.53 92.53 92.53 92.53 92.53

ARIMA(H) 94.23 93.28 93.95 93.96 94.3
ARIMA(MD) 94.27 93.85 94.14 94.14 94.38
ARIMA(W) 93.93 93.19 93.71 93.7 94.15

ARIMA(Q,H,D,W) 94.74 96.05 94.7 94.7 94.68
K=2 ARIMA(Q) 96.05 96.05 96.05 96.05 96.05

ARIMA(H) 96.7 96.37 96.59 96.59 96.7
ARIMA(MD) 96.61 95.91 96.53 96.53 96.68
ARIMA(W) 96.4 95.91 96.27 96.27 96.54

ARIMA(Q,H,D,W) 96.86 96.05 96.85 96.85 96.83

Table 5.18: Using Multiday ARIMA filter, with Input Filter of order 1 and relative
cutoff frequency of 0.7

Referring to both tables, it appears that the MSB is slightly maximized when

no Input Filters are used. The differences however are typically a few hundreds of

a percent, which is insignificant. These results suggest that no Input Filters are

necessary.

We can now compare the combined ARIMA filters, using the original single-day

ARIMA(D) model, tables 5.10 and 5.11, and the multi-day ARIMA(MD) model,

tables 5.18 and 5.19. The Multi-day ARIMA(MD) filter works better than the single-

day ARIMA filter, but the combined ARIMA filters using the single-day ARIMA(D)
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Unfiltered Data
ARIMA Filter Size = 4 ARIMA Filter Size = 8

MSB ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0 ARIMA(Q) 83.72 83.72 83.72 83.72 83.72

ARIMA(H) 86.44 84.67 85.62 85.59 86.65
ARIMA(MD) 87.4 86.43 87.4 87 87.51
ARIMA(W) 86.97 85.68 86.45 86.41 87.15

ARIMA(Q,H,D,W) 89.13 89.2 89.02 89.01 88.9
K=1 ARIMA(Q) 91.57 91.57 91.57 91.57 91.57

ARIMA(H) 94.15 92.79 93.77 93.77 94.3
ARIMA(MD) 94.25 93.57 94.25 94.03 94.34
ARIMA(W) 93.89 92.85 93.57 93.56 94.1

ARIMA(Q,H,D,W) 94.83 94.85 94.79 94.79 94.78
K=2 ARIMA(Q) 95.3 95.3 95.3 95.3 95.3

ARIMA(H) 96.67 96.16 96.52 96.52 96.72
ARIMA(MD) 96.6 96.19 96.47 96.47 96.65
ARIMA(W) 96.38 95.67 96.19 96.18 96.51

ARIMA(Q,H,D,W) 96.9 96.92 96.89 96.89 96.88

Table 5.19: Using Multiday ARIMA filter, with Unfiltered Traffic Demands

model has a slightly better MSB. The differences however are typically a few hundreds

of a percent, which is insignificant. These results suggest that no Input Filters are

necessary, and once again that fairly simple filters can be used for the individual

ARIMA filters. The combined ARIMA filter seems to be very robust with respect

to the choice of the individual ARIMA filter lengths and weights, and it consistently

yields very good estimates.

Mean Excess Bandwidth, using the Multi-day ARIMA(MD) filter

Tables 5.20 and 5.21 show the Mean Excess Bandwidth when we use Multi-daily

ARIMA(MD) filter.

Referring to both tables, it appears that the MEB is slightly minimized when

no Input Filters are used. The differences however are typically a few hundreds of
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Butterworth Filter Used
Filter order = 1 ; Cutoff FreQ = 0.7

ARIMA Filter Size = 4 ARIMA Filter Size = 8
MEB ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0 ARIMA(Q) 17.83 17.83 17.83 17.83 17.83

ARIMA(H) 14.13 16.29 14.96 14.98 13.59
ARIMA(MD) 12.86 13.94 13.2 13.21 12.55
ARIMA(W) 13.91 15.71 14.45 14.42 13.26

ARIMA(Q,H,D,W) 11.72 11.91 11.86 11.86 11.83
K=1 ARIMA(Q) 38.38 38.38 38.38 38.38 38.38

ARIMA(H) 36.26 37.3 36.54 36.53 36.21
ARIMA(MD) 36.37 37.03 36.54 36.54 36.17
ARIMA(W) 37.14 38.51 37.47 37.42 36.63

ARIMA(Q,H,D,W) 36.28 36.31 36.25 36.23 36.24
K=2 ARIMA(Q) 65.01 65.01 65.01 65.01 65.01

ARIMA(H) 64.37 64.68 64.47 64.47 64.37
ARIMA(MD) 64.56 65.93 64.67 64.67 64.42
ARIMA(W) 65.13 66.09 65.33 65.27 64.73

ARIMA(Q,H,D,W) 64.71 64.65 64.64 64.63 64.64

Table 5.20: Using Multiday ARIMA filter, with Input Filter of order 1 and relative
cutoff frequency of 0.7

a percent, which is insignificant. These results suggest that no Input Filters are

necessary, and once again that fairly simple filters can be used for the individual

ARIMA filters. The combined ARIMA filter seems to be very robust with respect

to the choice of the individual ARIMA filter lengths and weights, and it consistently

yields very good estimates.

We can now compare the combined ARIMA filters, using the original single-day

ARIMA(D) model, tables 5.12 and 5.13, and the Multi-day ARIMA(MD) model,

tables 5.20 and 5.21. The Multi-Day ARIMA(MD) filter works slightly better than

the single-day ARIMA filter, but the combined ARIMA filters using the single-day

ARIMA(D) model has a slightly better MEB.
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Unfiltered Data
ARIMA Filter Size = 4 ARIMA Filter Size = 8

MEB ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0 ARIMA(Q) 19.53 19.53 19.53 19.53 19.53

ARIMA(H) 14.35 17.28 15.46 15.5 13.82
ARIMA(MD) 12.94 14.58 12.94 13.49 12.66
ARIMA(W) 14.02 16.65 14.85 14.84 13.42

ARIMA(Q,H,D,W) 11.61 11.61 11.67 11.62 11.66
K=1 ARIMA(Q) 40.1 40.1 40.1 40.1 40.1

ARIMA(H) 36.34 37.99 36.73 36.73 36.19
ARIMA(MD) 36.41 37.48 36.41 36.7 36.23
ARIMA(W) 37.22 39.21 37.73 37.69 36.73

ARIMA(Q,H,D,W) 36.23 36.07 36.17 36.06 36.12
K=2 ARIMA(Q) 66.02 66.02 66.02 66.02 66.02

ARIMA(H) 64.39 64.9 64.54 64.53 64.34
ARIMA(MD) 64.59 65.29 64.77 64.76 64.46
ARIMA(W) 65.18 66.62 65.51 65.46 64.8

ARIMA(Q,H,D,W) 64.7 64.47 64.49 64.48 64.55

Table 5.21: Using Multiday ARIMA filter, with unfiltered traffic demands

Relative Error, using the Multi-day ARIMA(MD) filter

Tables 5.22 and 5.23 represent the result of the Relative Error for using Multi-Daily

ARIMA(D) filter.

Referring to both tables, it appears that the RE is slightly minimized when no

Input Filters are used. The differences however are typically a few hundreds of a per-

cent, which is insignificant. These results suggest that no Input Filters are necessary,

and once again that fairly simple filters can be used for the individual ARIMA filters.

We can now compare the combined ARIMA filters, using the original single-day

ARIMA(D) model, table 5.14 and 5.15, and the Multi-day ARIMA(MD) model, tables

5.22 and 5.23. The Multi-day ARIMA(MD) works better in terms of prediction error,

however the combined ARIMA filters using the single-day ARIMA(D) model has a
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Butterworth Filter Used
Filter order = 1 ; Cutoff FreQ = 0.7

ARIMA Filter Size = 4 ARIMA Filter Size = 8
RE ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)

K=0,1,2 ARIMA(Q) 25.74 25.74 25.74 25.74 25.74
ARIMA(H) 20.35 23.5 21.57 21.6 19.59

ARIMA(MD) 18.49 20.02 18.98 18.99 18.07
ARIMA(W) 19.46 21.84 20.19 20.2 18.72

ARIMA(Q,H,D,W) 16.49 16.7 16.74 16.75 16.74

Table 5.22: Using Multiday ARIMA filter, with Input Filter of order 1 and relative
cutoff frequency of 0.7

Unfiltered Data
ARIMA Filter Size = 4 ARIMA Filter Size = 8

RE ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0,1,2 ARIMA(Q) 28.23 28.23 28.23 28.23 28.23

ARIMA(H) 20.67 24.96 22.31 22.36 19.93
ARIMA(MD) 18.59 20.92 19.38 19.4 18.22
ARIMA(W) 19.6 23.02 20.67 20.71 18.92

ARIMA(Q,H,D,W) 16.3 16.35 16.47 16.47 16.51

Table 5.23: Different ARIMA filters, with Unfiltered Traffic Demands
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slightly better RE. The differences however are typically a few hundreds of a percent,

which is insignificant. These results suggest that no Input Filters are necessary, and

once again that fairly simple filters can be used for the individual ARIMA filters.

The combined ARIMA filter seems to be very robust with respect to the choice of

the individual ARIMA filter lengths and weights, and it consistently yields very good

estimates.

Normalized Mean Square Prediction Error, using the Multi-Day ARIMA(MD)

filter

Tables 5.24 and 5.25 show the results of the NMSPE metric when we use Multi-Day

ARIMA(D) filter.

Butterworth Filter Used
Filter order = 1 ; Cutoff FreQ = 0.7

ARIMA Filter Size = 4 ARIMA Filter Size = 8
NMSPE ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0,1,2 ARIMA(Q) 70.27 70.27 70.27 70.27 70.27

ARIMA(H) 55.66 64.57 59.35 59.39 54.37
ARIMA(MD) 50.23 51.62 50.62 50.62 49.91
ARIMA(W) 51.33 54.65 52.17 52.18 50.51

ARIMA(Q,H,D,W) 51.85 53.06 52.65 52.67 51.94

Table 5.24: Using Multiday ARIMA filter, with Unfiltered Traffic Demands

Referring to both tables, it appears that the NMSPE is slightly minimized when

Input Filters are used. The differences however are typically a few hundreds of a per-

cent, which is insignificant. These results suggest that no Input Filters are necessary,

and once again that fairly simple filters can be used for the individual ARIMA filters.

We can now compare the combined ARIMA filters, using the single-day ARIMA(D)

model, tables 5.16 and 5.17 and the Multi-Day ARIMA(MD) model, tables 5.24
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Unfiltered Data
ARIMA Filter Size = 4 ARIMA Filter Size = 8

NMSPE ARIMA Filters Z set(1) Z set(2) Z set(3) Z set(4) Z set(5)
K=0,1,2 ARIMA(Q) 79.59 79.59 79.59 79.59 79.59

ARIMA(H) 57.01 69.71 62.09 62.15 55.56
ARIMA(MD) 50.32 52.78 50.32 51.01 50.01
ARIMA(W) 51.5 56.82 52.87 52.91 50.68

ARIMA(Q,H,D,W) 52.03 53.33 52.92 52.94 52.09

Table 5.25: Different ARIMA filters, with Unfiltered Traffic Demands

and 5.25. Multi-Day ARIMA filter individually performs better than the single-day

ARIMA filter, however the combined ARIMA filters using the single-day ARIMA(D)

model has a slightly better NMSPE. The differences however are typically a few hun-

dreds of a percent, which is insignificant. These results suggest that no Input Filters

are necessary, and once again that fairly simple filters can be used for the individual

ARIMA filters. The combined ARIMA filter seems to be very robust with respect

to the choice of the individual ARIMA filter lengths and weights, and it consistently

yields very good estimates.

5.5 Conclusion of Chapter 5

In chapter 5, we explored the robustness of the model described in chapter 4, to

changes in filter parameters. Several different metrics to evaluate the model were

reviewed. As described in chapter 4, the model consists of several individual ARIMA

filters, each operating at a different time-scale. All the models can be combined as

described in chapter 4, to present a combined prediction. To evaluate the models, we

use real Traffic Demand matrices measured every 15 minutes in the ‘Giant’ European

IP Backbone Network as the input for our model.
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Two types of filters are used in the combined model, and each type of filter was

adjusted to measure the robustness of the model. First, several different ‘Input Filter’

can be used to low-pass filter all the measured traffic demand matrices, to remove

short-term transients. Second, the filter parameters for each individual ARIMA filter

can be adjusted.

In a first set of experiments, several variations of Input Filters were used, including

no Input Filtering, some very simple equal-weight Input Filters, and more complex

Butterworth low-pass filters. It is concluded that the combined ARIMA filter consis-

tently outperforms the individual ARIMA filters, over several different performance

metrics. It is also concluded that there is no noticeable improvement when Input Fil-

tering was used. The differences however are typically a few hundreds of a percent,

which is insignificant. These results suggest that no Input filters are necessary, and

that the combined ARIMA filter is consistently better than the individual ARIMA

filters. The combined ARIMA filter consistently yields very good estimates.

In fact in traditional ARIMA models, innovations or shocks to the systems, are

considered as noise. In our work, these innovations stand for the traffic changes over

time. In our model these innovation are all traffic measurements and they are precise

and exact. Therefore we cannot count them as noise. By filtering out the high

frequencies, the combined ARIMA(Q,H,D,W) model becomes less accurate, which

proves we are losing valid information.

In a second set of experiments, the filter lengths and weights used in the individual

ARIMA filters ere varied. It is concluded once again that the combined ARIMA filter

consistently outperforms the individual ARIMA filters, over several different perfor-

mance metrics. It is also concluded that there is no noticeable improvement when
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the individual ARIMA filters were varied. The differences between various individual

ARIMA filters are typically a few hundreds of a percent, which is insignificant. The

combined ARIMA filter consistently yields very good estimates.

In summary, the experiments in Chapter 5 demonstrate that the combined ARIMA

filter seems to be very robust with respect to the choice of the individual ARIMA

filter lengths and weights, and it consistently yields very good estimates.
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Chapter 6

Conclusion

In this thesis, a recently proposed algorithm for predicting traffic demands in a real

IP network has been studied [37]. This algorithm uses multiple ARIMA filters, each

working on different time scales, to estimate future traffic demands. Network traffic

has a periodic characteristic which can be viewed on multiple time-scales, i.e., quarter

hours, hours, days and weeks. Each ARMIA filter has an associated weight, and the

weights change dynamically according to the accuracy of the filter in predicting the

traffic. The final traffic estimate is the weighted average of the individual estimates of

each of these filters. The weights are updated dynamically, based on the most recent

estimate accuracy of each filter.

One of the main goals of this thesis is to evaluate the robustness of the proposed

model. To evaluate the robustness, the filter coefficients for each ARIMA filter were

varied, and the accuracy of the model was evaluated. Extensive experimental results

were collected to evaluate the robustness of the model. To test the algorithm, real

traffic measurements reported every 15 minutes for Geant European IP Backbone

Network over a period of one month is used. To eliminate the short-term transient
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changes of the traffic over time, different low-pass filters have been implemented

to pre-process all the traffic measurements. The output of these low-pass filters

was then processed by the proposed algorithm, using multiple ARIMA filters. Our

extensive experimental results indicate that the prediction model is very robust. The

use of different low-pass filters to pre-process the traffic measurements did not have a

significant effect on accuracy. Variations of each ARIMA filter’s coefficients did not

have a significant effect on accuracy. In all our experiments, the proposed algorithm

can predict short-term future traffic demands with accuracies of ≈ 90% or more.

We summarize a recently proposed Autonomic Future Internet network model,

which can use the proposed traffic estimation model [36] and [29]. We summarize how

the final traffic estimate can be used in an autonomic controller of a Future-Internet

router to provision bandwidth for the future traffic demands. In the Future-Internet

model proposed in [36] and [29], two different traffic classes are defined, the traditional

Best-Effort traffic class, and a new Smooth-QoS traffic class. The Best-Effort traffic

class consists of traditional bursty Internet traffic. The Smooth-QoS traffic class

consists of relatively low-jitter traffic flows, which typically have been smoothened

using a token-bucket based traffic shaper at the source.

In the proposed Future Internet network, it is desirable to provision bandwidth

for Smooth-QoS traffic class, to allow for deterministic end-to-end QoS guarantees

[36] and [29]. The proposed traffic estimation algorithm can be used to estimate

future traffic demands for the Smooth-QoS traffic class in the next 15 minute interval,

based upon the past history. The traffic estimates can then be used to provision

bandwidth for the Smooth-QoS traffic class, in anticipation of their arrival. Our

extensive experimental results illustrate that the proposed traffic estimation algorithm
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can typically satisfy up to 95% of the future Smooth-QoS traffic demands. Bandwidth

that is provisioned for the Smooth-QoS class, but remains unused, can be used by

the Best-Effort class, so there is no penalty for provisioning a small excess bandwidth

for the Smooth-QoS class.
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