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ABSTRACT

This thesis investigates the effect of different levels of information content in se-
quence data from the mitochondrial gene, cytochrome c oxidase, subunit I (COI),
through the observed number of segregating sites, and a new Bayesian statistical
method on the accuracy of specimen assignments or delimitations to its species of
origin. There are four major parts of this thesis.

The first chapter examines the taxonomic accuracy of GenBanksequences for
specimen delimitation. In addition to sequence accuracy (i.e., errors), it is a poten-
tial error that may influence accurate specimen diagnoses. Using 5,179 barcode se-
quences from 590 species and 8,586 GenBank (non-barcode) sequences from 2,900
species, across twelve insect orders, we compared the performance of specimen
assignment between NCBI sequences labelled with and without the “BARCODE”
keyword (indicates both sequence accuracy and taxonomy aresupported) respec-
tively. We expect the two groups of sequences should have identical proportions
of unusually divergent (within-species sequences that maypotentially be different
species) and unusually similar (between-species sequences that may potentially be
the same species) sequences. In contrast, non-barcode records had a high propor-
tion of unusually divergent sequences, suggesting an errorin sequence accuracy or
taxonomy or both. However, there was no evidence of unusually similar sequences,
suggesting the correct sequence accuracy or taxonomy or the3% divergence thresh-
old used for delimition in this group may be inappropriate. This study highlights
that caution and a firm understanding of the data should be exercised when using
GenBank data for species diagnoses.

The second chapter examines the assignment performance of aBayesian statis-
tical assignment method, based on segregating sites, in sequence data that lack a
clear “barcoding gap” (a region defined by the maximum intraspecific distance and
minimum interspecific distance). To our knowledge, it is thefirst tree-less statisti-
cal approach that makes use of segregating sites for speciesassignments and is also
very fast (10,000 simulations in roughly 3 seconds with a 1.6GHz processor running
Linux). Sequences from the genusDrosophilawere used because its taxonomy is
well supported but some pairs of sibling species lack a barcoding gap. Using 616
DrosophilaCO1 sequences from 19 species and simulated sequences, the method
performed well in the absence of a barcoding gap. And only when the degree of
incomplete lineage sorting (despite species divergence, alineage from one species
may group more closely with a lineage of a less related species) is high does the
method falter, but even then the probability of assigning the unknown to its species
of origin is still high relative to a less closely related species.
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The third chapter focuses on the information content and sampling of reference
sequences from a geographically widespread species with migration. The assign-
ment of an unknown specimen to a species that is sufficiently sampled (adequate
representation of intraspecific variation) should improve. Using tiger moth (genus
Grammia) 179 sequences from 13 species and simulated sequences, theaddition of
at least one reference sequence from a different deme or region of a species dis-
tribution returns a greater proportion of results that correctly assign an unknown
specimen to its species of origin (e.g., inclusion of one dispersed, simulated, se-
quence resulted in an 18% increase, from 26% to 44%, in correct assignments).
Thus correct delimition depends on adequate representation of conspecific (within-
species) variation, particularly with species characterized by population subdivi-
sion and gene flow, highlighting the importance of proper sampling protocols to
construct complete reference libraries.

Often there is a disconnect between the assumptions made by amodel and the
true evolutionary signals of the data it is applied to. The final chapter seeks to
improve the segregating sites algorithm by incorporating terms to describe the role
that other biological phenomena, namely population subdivision, gene flow, and un-
equal base composition from transition bias may have in shaping genetic diversity.
A more comprehensive model should improve estimates of a population genetic
parameter,θ, used to measure the level of variation. The modified probability dis-
tributions (of observing a number of segregating sites in a number of sequences)
are similar but more accurate at resolving the true distribution of genetic variability
relative to those calculated under the original theory. Theresults reinforces that
subdivided populations with migration and heterogeneous base composition and
substitution rates for transitions and transversions shape patterns of variability and
should be considered in models used to describe genetic signals of groups undergo-
ing speciation.
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Part I

INTRODUCTION
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Species diversity is the main currency of nearly all disciplines of biology. Thus,
a good foundation and understanding of species diversity begins with accurate species
identifications. DNA barcoding is an initiative for speciesidentification that is based
on the surveillance of sequence diversity in a 648 bp region of the mitochondrial
gene coding for cytochrome c oxidase, subunit I (COI), a genethat plays an essential
role in energy production (Capaldi, 1990; Tsukiharaet al., 1996). In this approach,
the DNA barcode of an unknown sample or specimen is screened against a reference
sequence library and a species assignment is made when the query sequence can be
assigned to a species in the reference library. The improvement of sequencing tech-
nologies has resulted in an unprecedented amount of geneticinformation and to
fully ‘analyze’ the data takes a larger amount of time due to avariety of factors that
include insufficient models and methods, fewer taxonomic specialists, sequencing
error, and more complex data sets (e.g., of poorly known, underrepresented groups,
and degraded DNA). Since the success of biological research, conservation, foren-
sic, bio-security, economic and consumer policy efforts depend on correct species
identification, to avoid analysis gridlock, attention mustbe directed to overcoming
challenges that hamper accurate species identifications. In previous studies, the ef-
fect of some factors on barcoding accuracy, such as the number (one or more) and
type (mitochondrial or nuclear) of markers and sampling size (samples per species),
have been investigated. A comparision of the reliability ofexisting GenBank data,
relative to taxonomist-verified barcode data, for species identification had not been
investigated. And it is often not the number of loci or sequences that is important but
the number of informative sites (Simonet al., 2006). There are few, if any, studies
that use the pattern of segregating sites as a measure to delimit species. The theory
of segregating sites stems from a combination of theories byKimura (1969) and
Watterson (1975) stating that new mutations can only occur at sites not previously
mutated (that is, no two mutations ever occur at the same site), given an infinite
number of sites, and they are also not subject to recombination, respectively. There
are many species identification approaches (and new ones being developed) and per-
formance among them have been explored (Ross, Murugan and Li, 2008; Austerlitz
et al., 2009; Little, 2011; Parks, MacDonald and Beiko, 2011; Zhang et al., 2011).
The following are descriptions of several categories of methods. Molecular op-
erational taxonomic units or (MOTUs) and evolutionary significant units (ESUs)
estimate diversity but fail to connect delineated units with known species (Kizirian
and Donnelly, 2004; Blaxteret al., 2005). In ecological niche modelling, envi-
ronmental variables are identified and associated with the known distribution of a
species (Raxworthyet al., 2007). In character-based methods, a unique combination
of diagnostic characters are used to define a species (autopomorphic species con-
cept (ASC)-K.C. and Wheeler, 1990; population aggregationanalysis (PAA)-Davis
and Nixon, 1992; cladistic haplotype analysis (CHA)-Brower, 1999; Characteris-
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tic Attribute Organization System (CAOS)-Sarkar, Planet and Desalle, 2008). But
the constant change occuring within species (microevolution; Funk and Omland,
2003), reliance on a reference tree (Little, 2011), and lackor subtlety of informa-
tive molecular characters (Hudson and Coyne, 2002) may limit their use. By far,
the three categories of methods most embraced by the barcoding community are
distance-, tree-, or coalescent-based. The use of genetic distances and a threshold
(a region, dubbed the “barcoding gap”, that is defined by the maximum level of
intra- versus minimum level of inter-specific variation andhas taken on various val-
ues, notably 2%, 3%, 10x intraspecfic variation, and 1% Hebert et al., 2003, 2004;
Ratnasingham and Hebert, 2007) and variations of it (fuzzy-set-approach Zhang
et al., 2012; support vector machine (SVM)-Seo, 2010) are inadequate because they
fail to consider species specific evolutionary rates (Hickerson, Meyer and Moritz,
2006; Meier, Zhang and Ali, 2008; Lim, Balke and Meier, 2012), and a “barcoding
gap” is not necessarily a prerequisite for correct species assignment (Ross, Muru-
gan and Li, 2008; Virgilioet al., 2010; Hendrichet al., 2010). In phylogenetic-
or tree-based methods, the query belongs to the clade that itgroups with (Statistic
Assignment Package (SAP)-Munchet al., 2008; pplacer-Matsen, Kodner and Arm-
brust, 2010). Relative to a tree-based method, a coalescentmethod is more complex
because it models demographic information (population genetics) in conjunction
with backward-in-time evolutionary relationships (phylogenetic). An example is
the general mixed Yule-coalescent (GMYC) model that distinguishes population-
level processes within lineages from processes associatedwith speciation and ex-
tinction (Ponset al., 2006). However, the criterion of reciprocal monophyly (se-
quences of individuals forming their own clades to the exclusion of others) of tree-
and coalescent-based methods is arbitrary since a lack of monophyly does not pre-
clude speciation (Ross, Murugan and Li, 2008). Furthermore, most methods do not
provide a measure of statistical confidence or probability of the assignment. To ad-
dress this shortcoming, Abdo and Golding (2007) introduceda coalescent method
that operates within a Bayesian framework. In general, a Bayesian method is ideal
because it may attach probabilities to hypotheses (i.e., provides exact versus approx-
imate inferences) by considering the given data (i.e., likelihood) with other relevant
information (i.e., prior or past knowledge). However, a Bayesian method can suf-
fer computational problems if the data set is very large (Zhang et al., 2011). To
overcome computational demands, the coalescent or ‘tree’ step in Abdo and Gold-
ing (2007) was replaced with a population genetic parameter, Watterson (1975)’sθ,
that can be calculated using the number segregating sites. This slight modification
produced a faster algorithm and is, to our knowledge, the first Bayesian method,
based on the theory of segregating sites (Lou and Golding, 2010). Also lacking are
models and methods that account for the information contentof the data and how it
may affect identifications. There have been a number of ‘integrative’ studies advo-
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cating the inclusion of sequences representative of the intraspecific (within-species)
variation of geographically widespread species to improvebarcoding accuracy rates
(Cameron, Rubinoff and Will, 2006; Padialet al., 2010; DeWalt, 2011; Goldstein
and DeSalle, 2011). While Bergstenet al.(2012) did investigate geographical sam-
pling on barcoding, a threshold of 1% was used and no Bayesianapproaches were
evaluated. In addition to population substructure, heterogeneous substitution rates
for transitions and transversions shape genetic variation, especially in mitochondrial
DNA (mtDNA). It has been proposed that the infinite sites model (ISM) should also
be extended to account for different substitution rates fortransitions and transver-
sions (Davidet al., 2012).

While studies have shown the importance of a comprehensive library and firm
understanding and use of the sequence data and identification methods for barcod-
ing success, there still exists a lack of correspondence between data and model
assumptions made by barcoding methods. That is, data and methods do not suf-
ficiently model the evolutionary signals that describe dynamic species boundaries.
Ultimately, the main contribution of this thesis, to the body of knowledge that is
species delimitation, is to improve the use and modelling ofdata by integrating
different sources of relevant information.

The main purpose of this study was to investigate how to improve the species
assignment framework. This was attempted by investigatingthe effect of different
levels of informativeness (resolving power) of data and a new assignment method
on the accuracy of assignments. Specifically, the research questions driving this the-
sis are: Can GenBank sequences be used to make accurate assignments? Can using
a descriptor of variation that models the evolution of the sequences (population
mutation rate,θ) and including more informative sites (from sampling sequences
across the species geographical range) improve the number of correct assignments?
How does a method based onθ or the number of segregating sites perform relative
to comparable assignment methods? Does the modelling of biological forces in-
fluencing sequence diversity improve probability estimates of the observed level of
variation? Since we are investigating the performance of the data and assignment
methods, the units of analysis are the number of correct assignments of an unknown
query to its correct species or how well a proposed model represents the level of ge-
netic variation. Results will be generated through a seriesof assignments using
simulated and empirical data. The simulated sequence data will model the evo-
lutionary dynamics expected of animal mtDNA and evolutionary relationships of
recently and deeply diverged species. Empirical data will be drawn from the Class
Insecta because of easy access to a vast number of sequences that can describe
easy and hard assignment scenarios, even though the speciesrelationships are well
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defined. To perform the assignments within a statistical framework, attention was
focused on using and developing Bayesian methods.

The rest of the thesis is structured, in four chapters, as follows: The first chapter
investigates if GenBank data, using a species delimitationthreshold (3%), can gen-
erate accurate species assignments. The second chapter introduces a new Bayesian
statistical assignment method, based on a widely used population genetic parameter
(θ), to describe the level of observed variation in a set of sequences, and involves
a comparison of how it performs relative to a similar Bayesian method. This is
followed by a chapter to investigate if including informative sequences (to capture
sufficient intraspecific variation) from across the geographical range of species aids
the assignment of an unknown query back to this species. Finally, the last chapter
explores if an improvement in probability estimates of the observed genetic varia-
tion in a set of sequences can be achieved with a model of evolution that considers
sequences sampled from subdivided populations and heterogeneous base and sub-
stitution rates for transitions (purine to purine or pyrimidine to pyrimidine inter-
changes) and tranversions (purine to pyrimidine-and vice versa- interchanges).

5
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Chapter 1

Species identifications within
GenBank are not accurate enough
for barcoding

1.1 ABSTRACT

Many studies have used DNA barcoding for specimen identification. Some of these
studies have relied on sequences taken from GenBank even though problems with
sequence accuracy are well known. We tested the accuracy of GenBank records for
another potential source of error: species identification.Insect sequences were used
to examine the magnitude of this problem as this group is species rich and is well
characterized. In the absence of errors, a comparison of sequences with and without
the “BARCODE” designation should have identical characteristics. Non-barcode
records were found to have an unusually high proportion of divergent conspecific
sequences and expected proportion of similar congeneric sequences. These results
suggest the records within GenBank may have little to no errors or that the standard
3% percent sequence divergence cannot be used to distinguish species. The latter
explanation is more likely as it has been shown to fail to correctly diagnose insect
species for 45% of the cases.

6



Ph.D. Thesis - M. Lou; McMaster University - Biology

1.2 INTRODUCTION

The Barcode of Life project has the goal to find a single standard piece of DNA
that can be used to identify species. The success of this project depends on several
factors including the support of professional taxonomists, an agreement on a stan-
dardized segment of DNA, the accuracy of the DNA sequencing,the accuracy of
the identification for the specimens that supply reference barcode sequences, and
the statistical accuracy of matching a query sequence to reference taxa.

A 648 bp region near the 5′ end of mitochondrial cytochrome c oxidase, subunit
I (COI) has been successfully used for specimen identification (Hebertet al., 2003)
and resolving sequence diversity in fungi (Seifertet al., 2007), gastropods (Remigio
and Hebert, 2003), amphipod crustaceans (Witt, Threloff and Hebert, 2006), bats
(Clare et al., 2007), birds (Hebertet al., 2004), fishes (Wardet al., 2005), and
Lepidoptera (Hebertet al., 2004; Hajibabaeiet al., 2006).

To help ensure the accuracy of specimen identification, the Consortium for the
Barcode of Life has set up a collection of standards that should be met for bar-
code records. These standards include methods of DNA preparation, methods of
sequencing, availability of the sequence trace files to check accuracy, multiple sam-
ples for each species and the availability of voucher specimens to double check
species identifications and to match sequence information to the corresponding tax-
onomic information (http://www.barcodeoflife.org/content/resources/
standards-and-guidelines).

Recognizing the importance of these criteria and standards, NCBI has set up the
use of a reserved keyword to mark data records that adhere to these standards. The
“BARCODE” keyword indicates that the sequence data in the corresponding record
met the highest standards.

Several studies (Meieret al., 2006; Eliaset al., 2007; Wiemers and Fiedler,
2007) have used entries from GenBank to test and to explore the usefulness of the
barcoding concept. It is well known that the accuracy of DNA sequences deposited
in GenBank is often less than could be desired (Harris, 2003;Valkiunaset al., 2008).
This is understandable since GenBank is a data repository and is not a currated se-
quence database. However, while the accuracy of the sequencing has been tested
and found to be lacking, there are other aspects of the data inGenBank that have not
been rigorously examined. Foremost among these is the accuracy of species identi-
fications from which GenBank’s data originate. Most of the sequence information
comes from model organisms such asDrosophila melanogaster, Mus musculusand
Homo sapiens, and species identification in these cases is unlikely to be too far from
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the correct answer. However, there are many other taxa that have had portions of
their DNA sequenced that are much more difficult to identify.

A problem presented by these data is that for most of the sequences in Gen-
Bank, species identifications cannot be validated because no voucher specimens
are provided. To work around this problem, we have analyzed sequences from
insect species retrieved from GenBank with the goal to examine how similar or
how dissimilar sequences from a single species might be. Insects were chosen as a
well defined and yet diverse group of animals from which many barcode sequences
have been collected (Hebert, Ratnasingham and deWaard, 2003). Records with
the “BARCODE” keyword were compared to records within GenBank without this
keyword. If the accuracy, both for sequence correctness as well as species identi-
fication, are similar between GenBank entries with and without this keyword, then
current barcode studies can make uncritical use of the vast warehouse of data pre-
viously stored in GenBank.

1.3 MATERIALS AND METHODS

COI sequences were collected from NCBI in October/November2007. Among
the insects, a total of 6,505 barcode sequences from 747 species and 34,384 non-
barcode sequences from 11,385 species were obtained. All sequences were aligned
usingMUSCLE (Edgar, 2004); scaffold sequences from five different orders (Coleoptera,
Diptera, Hemiptera, Hymenoptera, and Lepidoptera) were included in the alignment
to prevent incorrect alignments caused by sequences with limited overlap. To ob-
tain a representation of the barcode region in the COI sequences, the region was
extracted from the aligned sequences using the NCBI barcodesequence (accession
ID: EF180877) as a reference sequence; this entry was chosenbecause it was the
longest barcode sequence available. It was assumed that theregion extracted does
not include gaps. Only sequences containing at least 85% of the original number
of residues were used. The reduced data set consisted of 5,179 barcode sequences
from 590 species and 8,586 non-barcode sequences from 2,900species (Table 1.1).
Another data set consisting of common species between barcode and non-barcode
data was generated (Table 1.2). For each sequence, taxonomic classification was
recorded according to the four following levels: order, family, genus, and species.

Alignment of sequences within a species was done using the corresponding
amino acid sequence viaMUSCLE (Edgar, 2004) and then translated back to DNA
usingTRANALIGN. A scaffold sequence was included in all alignments to pre-
vent incorrect alignments caused by sequences with limitedoverlap. Kimura two-
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Table 1.1: Distribution of barcode and non-barcode sequences in 12 insect orders

Barcode Non-barcode

Order Sequences Species Sequences Species

Coleoptera 2 2 1017 446
Diptera 2698 123 1962 412
Ephemeroptera 0 0 229 80
Hemiptera 0 0 326 71
Hymenoptera 78 19 1294 540
Lepidoptera 2401 446 2566 969
Odonata 0 0 95 19
Orthoptera 0 0 423 71
Phthiraptera 0 0 122 13
Strepsiptera 0 0 7 6
Thysanoptera 0 0 195 42
Trichoptera 0 0 350 231

parameter distances (K2P; Kimura, 1980) between members within a species were
determined. Any species file containing a distance greater than or equal to 3% is
recorded as a species with a divergent member.

To analyze distances between congeneric species, a randomly chosen sequence
from each species was blasted against the NCBI database. Sequences were col-
lected from the first fifty BLAST results and aligned. Alignment and K2P distances,
between the random query and BLAST results, were determinedusing the same
metholodgy described above. If the K2P distance was less than 3% or if no distance
was generated and the query and blast result did not possess the same taxonomic
species designations, the blast result is recorded.

1.4 RESULTS

Considering all species, the number of species with divergent members (one or
more members that differ by more than 3% K2P distance) are shown in table 1.3.
Some of the “BARCODE” records contain divergent sequences. This is most notable
within Hymenoptera with 12.5%, but these sequences only form a small percentage
(less than 1%) of the data set. In contrast, Diptera sequences comprises 75% of
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Table 1.2: Distribution of barcode and non-barcode sequences in 2 insect orders,
common to both data sets

Barcode Non-barcode

Order Sequences Species Sequences Species

Diptera 2158 57 187 57
Lepidoptera 1425 214 789 214

the data set and only 3.8% Dipteran species have divergent members. With regard
to the non-barcode data set, the percentage of divergent species is much higher.
Consistently over 50% of the species without the “BARCODE” designation contain
divergent sequences except for Hemiptera, Lepidoptera, and Trichoptera. Not all
species had more than one sequence per species and hence it isnot possible for their
single sequence to differ. To determine the opportunity forspecies to be detected
in this manner, the last column in table 1.3 shows the averagenumber of sequences
per species with two or more sequences.

With reference to common species between barcode and non-barcode data, the
results were consistent with those of the all-species data set showing a higher per-
centage of divergent species among non-barcode records in comparison to barcode
records (Table 1.4).

In addition to finding members of a single species with divergent sequences, we
also looked for species with sequences that were similar to the sequences of other
species. With reference to the all-species data set, Coleopteran and Lepidopteran
barcode records have a smaller percentage of abnormally similar species in compar-
ison to their non-barcode neighbours (Table 1.5). However,this result is not entirely
unexpected since there is a greater chance that one may find more abnormally sim-
iliar species in these orders as indicated in the last columnof the table. In contrast,
there are more barcode records with similar congeneric species than non-barcode
records in the following two orders: Diptera and Hymenoptera.

With equal chance of finding ”similar” distinct species in the common-species
data set, we find similar percentages in barcode and non-barcode records (Table 1.6).

10



Ph.D. Thesis - M. Lou; McMaster University - Biology

Table 1.3: Species with one or more members that differ by more than 3% K2P
distance in 12 insect orders

Group
Divergent

species
Species with

≥ 2 seq Percent

Avg
sequences per

species with
≥ 2 seq

Barcode data (5,179 seq)
Diptera 4 105 3.8 25.52
Hymenoptera 1 8 12.5 8.38
Lepidoptera 0 359 0 6.45

Non-barcode data (8,586 seq)
Coleoptera 63 85 74.1 7.72
Diptera 96 164 58.5 10.45
Ephemeroptera 18 33 54.5 5.52
Hemiptera 10 27 37.0 10.44
Hymenoptera 79 127 62.2 6.94
Lepidoptera 173 428 40.4 4.73
Odonata 2 3 66.7 26.33
Orthoptera 15 20 75.0 18.6
Phthiraptera 3 5 60.0 22.8
Strepsiptera 1 1 100.0 2.0
Thysanoptera 9 17 52.9 10.0
Trichoptera 20 35 37.1 4.4

1.5 DISCUSSION

The data in table 1.3 and table 1.4 clearly indicate that morenon-barcode sequence
records have insect sequences that differ from conspecific sequences by more than
3%. This is not necessarily unexpected as, other than empirical evidence, there is
no reason to expect sequence divergences within a species tobe limited. However,
if the cause of the divergence were simply taxonomic divergence, then the barcode
and GenBank records should provide identical results. Theydo not. GenBank
records are more likely to be divergent by more than 3%. One possible cause of
this is that the barcode sequences are sampled from only a fewmembers of each
species and hence the opportunity for divergence is not as great simply because
there are fewer comparisons made within each species. The results for Diptera and
Hymenoptera in table 1.3 and Diptera and Lepidoptera in table 1.4 indicate that on

11



Ph.D. Thesis - M. Lou; McMaster University - Biology

Table 1.4: Species with one or more members that differ by more than 3% K2P
distance in 2 insect orders

Group
Divergent

species
Species with

≥ 2 seq Percent

Avg
sequences per

species with
≥ 2 seq

Barcode data (3,583 seq)
Diptera 2 57 3.5 39.91
Lepidoptera 0 173 0 8.00

Non-barcode data (976 seq)
Diptera 14 36 38.9 4.61
Lepidoptera 42 137 30.7 5.19

average the opposite is true, there are generally more sequences per species in the
barcode records and hence there is a greater opportunity fordivergent sequences to
be discovered. Another possible cause of this difference isthat the barcode records
are generally more modern records and as techniques have improved, sequencing
errors have decreased. An examination of the date of entry for each record did not,
however, reveal any apparent relationships between the number of divergent records
and the date of entry for the record. Hence, the most likely explanation for this data
is a larger level of sequence error in GenBank records. As stated above this is not
an unusual or unexpected result.

Unfortunately, the results were not consistent when it cameto identifying abnor-
mally similar congeneric species. Even though more GenBankrecords were found
to contain sequences that are unusually similar to sequences from other species
(particularly Coleoptera and Lepidopera) this was an expected result as there are
more species per genera in these two orders in GenBank data hence the chances of
finding similar congeneric species is greater. On the other hand, there was a greater
chance of finding similar congeneric species in barcode records for Diptera and Hy-
menoptera and this turned out to be the case. Either there is no sequence error in
GenBank sequences, as initially claimed, and there are species in barcode records
abnormally similar to other distinct species or the resultsare the product of an ar-
bitrary criterion cut-off value that has been known to have associated difficulties
(Moritz and Cicero, 2004; Meyer and Paulay, 2005; Hickerson, Meyer and Moritz,
2006) and cannot be applied equally across orders or even across species (Cognato,
2006). The latter explanation is more likely than the formeras Cognato (2006)
found that a standard percent sequence divergence has failed to correctly diagnose

12



Ph.D. Thesis - M. Lou; McMaster University - Biology

Table 1.5: Species within 3% K2P distance to other species in12 insect orders

Group No. sim spp (SS) No. spp. Percent No. genera Spp./Genera

Barcode data (5,179 seq)
Coleoptera 0 2 0 2 1.00
Diptera 75 123 60.1 17 7.24
Hymenoptera 6 19 31.6 2 9.50
Lepidoptera 87 446 19.5 170 2.62

All 168 590 28.5 191 3.10

Non-barcode data (8,586 seq)
Coleoptera 20 446 4.5 176 2.53
Diptera 162 412 39.3 92 4.48
Ephemeroptera 6 80 7.5 27 2.96
Hemiptera 9 71 12.7 41 1.73
Hymenoptera 87 540 16.1 236 2.29
Lepidoptera 488 969 50.4 323 3.00
Odonata 0 19 0 5 3.80
Orthoptera 22 71 31.0 37 1.92
Phthiraptera 2 13 15.4 5 2.60
Strepsiptera 2 6 33.3 4 1.50
Thysanoptera 2 42 4.8 16 2.63
Trichoptera 103 231 44.6 114 2.03

All 903 2,829 31.9 1,039 2.72

insect species for 45% of the cases. The use of specific thresholds or statistical
approaches of specimen assignment may be more appropriate.
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Table 1.6: Species within 3% K2P distance to other species in2 insect orders

Group No. sim spp (SS) No. spp. Percent No. genera Spp./Genera

Barcode data (3,583 seq)
Diptera 38 57 66.7 14 4.07
Lepidoptera 59 214 27.6 96 2.23

All 97 271 35.8 110 2.46

Non-barcode data (976 seq)
Diptera 40 57 70.2 14 4.07
Lepidoptera 61 214 28.5 96 2.23

All 101 271 37.3 110 2.46
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Chapter 2

Assigning sequences to species in the
absence of a interspecific
“barcoding” gap

Lou, M. and Golding, G.B. (2010)Molecular Phylogenetics and Evolution. 56:
187-194.

2.1 ABSTRACT

Barcoding is an initiative to define a standard fragment of DNA to be used to assign
unknown sequences to existing known species groups that have been pre-identified
externally (by a taxonomist). Several methods have been described that attempt to
place this assignment into a Bayesian statistical framework. Here we describe an
algorithm that makes use of segregating sites and we examinehow well these meth-
ods perform in the absence of an interspecific ‘barcoding gap’. When a barcoding
gap exists, that is when the data are clearly delimited, mostmethods perform well.
Here we have used data from theDrosophilagenus because this genus includes
sibling species and the species relationships within this genus while complex are,
arguably, better understood than in any other group. The results show that Bayesian
methods perform well even in the absence of a barcoding gap. The sequences from
Drosophilaare correctly identified and only when the degree of incomplete lineage
sorting is extreme in simulations or within theDrosophilaspecies do they fail in
their identifications and even then, the “correct” species has a high posterior proba-
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bility.

2.2 INTRODUCTION

DNA barcoding involves the use of a short DNA sequence as a means to taxonomi-
cally identify a specimen (Hebert, Ratnasingham and deWaard, 2003; Hebertet al.,
2003; Remigio and Hebert, 2003). The key to this concept is tostandardize the
segment of DNA used for barcoding and then to construct a database of this se-
quence from as many taxonomically identified species as possible. Storing these
data in a searchable database permits new or unknown specimens to be identified
via a comparison of their sequence with sequences from characterized species. The
recognized utility of this methodology has resulted in a global, synchronized effort
with more than 100 member organizations (including museums, zoos, botanical
gardens and universities) involved in setting a global standard in taxonomy and in
creating a database of DNA barcode sequences.

Although the usefulness of this approach is well established (see for example
Hebert, Ratnasingham and deWaard, 2003; Hebertet al., 2004; Hajibabaeiet al.,
2006), some taxonomic groups, such as cowries (Meyer and Paulay, 2005) and
tiger moths (Schmidt and Sperling, 2008), have shown an unacceptably high error
rate for identification by DNA barcodes. Part of the reason for this discrepancy
is due to similar levels of intra- and interspecific divergence. Under these condi-
tions there may be a small amount of divergence between species relative to the
amount of divergence within species. The difference between intra- and interspe-
cific divergences is known as the barcoding gap. Cognato (2006) found substantial
overlap between levels of intra- and interspecific variation within several orders of
insects resulting in the failure to correctly diagnose insect species for 45% of the
cases. Within Diptera, there are congeneric sequences whose distance is within 1%
(Meier, 2008). Similarly, the Lepidopteran family Lycaenidae showed an 18% over-
lap between intra- and interspecific COI divergence (Wiemers and Fiedler, 2007).
An overlap may occur for a number of reasons. It may occur whenthere is a wide
variation in rates of molecular evolution among lineages (Sparks and Smith, 2006;
Huanget al., 2008). The COI from some animals, such as coral (Huanget al.,
2008), evolves too slowly to be useful for barcoding. Incomplete lineage sorting
(paraphyly or polyphyly; Moritz and Cicero, 2004; Pollardet al., 2006; Wiemers
and Fiedler, 2007; Aliabadianet al., 2009) and poor taxonomy may also explain the
lack of a barcoding gap. An inference must be made as to which species (or other
taxonomic group) the sequence belongs. It is often difficultto discern whether or
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not differences between the query sequences and sequences within the database
are due to intraspecific differences or if they are an indication of interspecific dif-
ferences. The effectiveness of barcoding is associated with a clear distinction be-
tween levels of divergence with the level of interspecific divergence greater than
intraspecific divergence. Indeed it has been shown that the simplest of methods
performs well under these circumstances (Ross, Murugan andLi, 2008; Austerlitz
et al., 2009). Although it is not impossible to identify a species in the absence of a
barcoding gap, this deficiency makes it much more difficult.

However, these methods lack ways to measure the confidence with which an
assignment is made. Hence, there is a need for statistical methods to determine the
most appropriate assignment and the degree of confidence with which this assign-
ment can be made, particularly when a barcode gap might be small or nonexistent.
Frezal and Leblois (2008) note that population genetics theory is required to ac-
count for the level of uncertainty that is contributed by these processes. Here, only
Bayesian methods will be examined because these provide thenecessary statisti-
cal strength to distinguish between well supported assignments versus poor assign-
ments and to provide a strong statistical framework.

There are two Bayesian methods that have been proposed to date. The first is a
method that uses the coalescent (Abdo and Golding, 2007). This method calculates
the likelihood of coalescents for sequences known to originate from a particular
species and then calculates the change in the likelihood when the query sequence
is considered a member of this species. The assignment of an unknown individual
sequence is to the group,i, that minimizes the posterior risk,Ri. The posterior risk
of groupi reflects the posterior probability that the sequence belongs to a coalescent
with sequences from speciesi and the ‘loss’ of making the decision that the query
sequence originated from speciesi. Here, loss is defined as the difference between
the sequence of the unknown individual and the consensus sequence of the assumed
correct groupk. The mathematical details for calculating the posterior risk, loss and
posterior probability are given in Abdo and Golding (2007).

A coalescent method can be time consuming for data sets with alarge number
of sequences since it must generate enough coalescent treesto adequately sample
all possible coalescent events. Therefore, the coalescentmethod is amended in this
paper by replacing the coalescent-based Markov Chain MonteCarlo (MCMC) algo-
rithm with one that makes use of the number of segregating sites from the sequences
of a single species. A segregating sites method uses only sites at which there is a
nucleotide change. The theory behind segregating sites allows closed form solu-
tions to be used in place of time consuming MCMCs. It is therefore very rapid. It
does, however, involve a loss of information and compressesthe entire collection of
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sequence data into a single number. For barcoding sequences, which can generally
be assumed to be closely related sequences, the loss of information is usually minor.

Another Bayesian method is the SAP (statistical assignmentpackage) algorithm
that incorporates taxonomic information from NCBI and usesthis information to
impose topology constraints on the trees sampled from a MCMC. The probabil-
ity of assignment is the number of sampled trees showing the unknown sequence
branching with a sequence from speciesi (Munchet al., 2008, a,b). This approach
assumes that the branching pattern, as delimited by the taxonomy, is realistic and
accurate. It also does not take into account the variabilitythat might be expected
around this branching pattern due to unsampled intraspecific differences and it as-
sumes that the species are monophyletic. However, several studies have shown that
the expectation of monophyly for recently diverged speciesis not realistic (Knowles
and Carstens, 2007; Hickerson, Meyer and Moritz, 2006; Hudson and Coyne, 2002).
It is noted by Nielsen and Matz (2006) that false species assignments can be caused
by incomplete lineage sorting and by random mutation processes that can mimic
incomplete lineage sorting.

The comparison of population genetic methodologies to phylogenetic methods
done here suggests that the posterior probability of species identification is, in gen-
eral, much smaller for the former. This suggests that these methods are more con-
servative than phylogenetic methods. The underlying causeof these differences in
posterior probabilities are shown to be because these methods estimate the proba-
bilities of different quantities.

2.3 MATERIALS AND METHODS

2.3.1 Evaluating assignment with segregating sites

Following Abdo and Golding (2007), we evaluate the probability of assigning an
unknown sequence to a taxonomic grouping in a Bayesian context. For some un-
known DNA sequence,x, the goal is to assign the species from which this sequence
was taken to the correct taxonomic group,k. Hence, we wish to find:

Pr(x ∈ k|x,D, θ)

whereD is a database of known sequences withn distinct taxonomic groups and
θ is a known collection of evolutionary parameters. The assignment of sequencex
must be made to one of the taxonomic groups.
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Table 2.1:DrosophilaCOI sequences tested (Monophyly is taken from the diagram
in figure 2.1).

Group Species Monophyletic Sequences

melanogaster D. mauritiana no 3
melanogaster D. melanogaster – 10
melanogaster D. simulans no 27
quadrisetata D. barutani – 6
quadrisetata D. beppui – 3
quinaria D. falleni – 15
quinaria D. innubila – 29
quinaria D. recens no 136
quinaria D. subquinaria no 136
repleta D. arizonae – 17
repleta D. mettleri – 24
repleta D. mojavensis – 47
repleta D. navojoa – 4
repleta D. nigrospiracula – 10
virilis D. montana – 42
virilis D. virilis – 11
– D. angor no 13
– D. daruma – 4
– D. pachea – 79

Total 616
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It is assumed that different groups that are potential targets of the assignment
are fully pre-specified. Each group is assumed to form a panmictic population that
follows a Wright-Fisher, neutral model of evolution that does not allow recombina-
tion, selection, or migration. Hence, the evolutionary process within each group is
governed by one parameter, which is the expected number of mutational events be-
tween sequences. This quantity is dependant upon a population measure,θ = 4Neµ,
and is in turn, reflected in the number of segregating sites between sequences.

Using Bayes rule, assuming that the presampled individualsare assigned cor-
rectly by external taxonomists, assuming independence of the evolutionary history
between groups and assuming uniform priors, this can be calculated as:

Pr(x ∈ k|x,D, θ) =

Pr(x,Dk|x ∈ k, θk)/Pr(Dk|θk)
∑

j Pr(x,Dj|x ∈ j, θj)/Pr(Dj|θj)

(see Abdo and Golding, 2007, for a derivation).

A risk function can be evaluated using this probability and traditionally, an as-
signment decision is based on the assignment with minimum risk. The risk function
can be defined as:

Ri =
∑

k

L(k, i)Pr(x ∈ k|x,D, θ)

whereRi is the risk of making the assignment to speciesi andL(k, i) is the loss
associated with an assignment to speciesi when the correct assignment should be
to speciesk andPr(x ∈ k|x,D, θ) is the posterior probability of membership of
the unknown sequencex to taxonomic groupk.

In Abdo and Golding (2007) a method to evaluatePr(x,Dk|x ∈ k, θk) using the
coalescent and an MCMC is implemented. However, it is also possible to evaluate
Pr(x,Dk|x ∈ k, θk) using the theory of segregating sites. If the sequence data
{x,Dk} hass segregating sites, then the probability of the data givenθk can be
approximated by the probability corresponding to the number of segregating sites,
s. Hence,

Pr(x,Dk|x ∈ k, θk) ∼ Pr(S = s|n, θk)

wheres is the number of sequences in{x,Dk}. The basic recursive definition for
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the probability that a sample ofn sequences will haves segregating sites is:

Pr(S = s|n, θk) =
n− 1

n− 1 + θk
Pr(S = s|n− 1, θk) +

θk
n− 1 + θk

Pr(S = s− 1|n, θk)

This recursion makes the assumption that an infinite sites model holds, that the pop-
ulations are equilibrium single random mating populationsof sizeNe with mutation
to new alleles at a rateµ.

This recursion has been solved by Tavare (1984) to yield a closed form solution
of:

Pr(S = s|n, θk) =

n− 1

θk

n−1
∑

i=1

(−1)i−1

(

n− 2

i− 1

)

(
θk

i+ θk
)s+1

Our implementation of this formula was found to occasionally be numerically un-
stable. Therefore, if the closed form solution did not satisfy the recursion with
numerical accuracy, we then did an evaluation of the complete recursion.

Attention is focused here on the posterior probability rather than risk (multiple
loss functions can be used to quantify risk as described in Abdo and Golding, 2007)
to make the results from the segregating sites algorithm comparable with those from
the SAP algorithm. To test the assignment of unknown queriesusing the segregating
sites algorithm, we conducted a simulation to test the performance of the algorithm
in the absence of a ‘barcoding gap’. The simulations use a multi-species coales-
cent (Degnan and Rosenberg, 2009) to model ten species with apectinate species
tree (Figure 2.2). Each of the ten species has five lineages. The ‘unknown’ query
sequence is simulated as the sixth sequence from the first species. Sequences of
length 600bp were simulated using the coalescent tree. The entire length of the se-
quences were allowed to accumulate substitutions at a constant rate, defined by the
parameterθ. This value ofθ is the total mutation rate for all sites in the length of
the sequence. At every time interval, defined byT , those sequences that had not yet
coalesced to a common ancestor were added to the sequences from other “species”.
The time intervalsT were scaled according to2Ne generations and represent the
time back to speciation events. However, the coalescents may extend beyond mul-
tiple speciation events depending on the size ofT . In these simulationsT , ranges
from 0.5 to 3.0. WhenT = 3.0, the level of interspecific divergence is greater

21



Ph.D. Thesis - M. Lou; McMaster University - Biology

than the level intraspecific divergence and this representsthe ideal situation where a
barcoding gap exists and each species is usually monophyletic and is distinct from
every other species; in this scenario, we expect a high proportion of correct as-
signments. WhenT = 0.5, there is a lack of a barcoding gap which may lead to
incomplete lineage sorting; we expect a lower proportion ofcorrect assignments.
The simulations were repeated 10,000 times and the results are given in table 2.2.

An advantage of the segregating sites algorithm is its speed. The method of
segregating sites obviously involves a loss of informationin moving from a full co-
alescent evaluation to an evaluation of a single number, thenumber of segregating
sites. However, it gains a great deal of speed compared to a coalescent method.
The analysis of 10,000 simulation runs took only seconds. Inaddition, for actual
data collected from nature, the sequences are from highly conserved genes. Such
sequences are anticipated to be very similar and the opportunity for multiple mu-
tations to arise at a single site is small. The results described below document the
efficacy of this method.

2.3.2 The SAP algorithm

SAP version 1.0.6 was downloaded and installed locally (Munch et al., 2008a).
An in-house database constructed from sequences from theDrosophilagenus were
used for searches conducted with a local version ofBLAST v. 2.2.17. The local
database was annotated using the taxonomic information from NCBI. The set of se-
quence homologues were aligned using a local copy ofClustalW v. 2.0 (Thomp-
son, Higgins and Gibson, 1994).

2.3.3 Drosophilasequences

TheDrosophilaspecies provide a good data set to test the ability of algorithms to
assign sequences to species in the absence of a barcoding gap. Many species are
sibling species with small interspecific differences and some have no barcoding gap
at all with identical sequences shared among species.

A Drosophila data set consisting of 1542 CO1 sequences from 314 species
was collected from NCBI and/or Flybase (Tweedieet al., 2009) February 2009.
Alignment of sequences within a species was done using the corresponding amino
acid sequence viaMUSCLE (Edgar, 2004) and then translated back to DNA using
TRANALIGN. Sequences with large indels (> 10 amino acids) were removed. The
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0.01 Substitutions

D. mauritiana − 27

D. simulans − 34

D. angor − 182

D. pachea − 61

D. virilis − 9

D. montana − 58

D. nigrospiracula − 9

D. navojoa − 5

D. mojavensis − 52

D. arizonae − 36

D. beppui − 9

D. barutani − 26

D. daruma − 0 

D. angor − 182

D. falleni − 26

136

136 D. recens − 27

D. subquinaria − 93

15

29 D. innubila − 3

12

4

6

3

3

27

10 D. melanogaster − 9

17

47

4

10

24 D. mettleri − 25

11

1

79

42

Figure 2.1: A diagram of the relationships of theDrosophilaCOI sequences. The
numbers in the triangle give the number of sequences used from each species and
the number after the species name is the number of segregating sites within these
sequences. 23
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sequences were trimmed to the barcode region (663bp). Sequences were deleted
entirely if they contained less than 650bp. Species with twoor fewer sequences
were removed. Sequences were ensured to originate from distinct strains, from
independent wild isolates or from different laboratories,as listed in the GenBank
annotation. If there were multiple copies from the same source, the longest se-
quence from a single strain, isolate, or laboratory was used(refer to supplementary
material for a listing of strains and isolates ofDrosophilaspecies used in the study
with, where available, references to literature containing information on where the
strain or isolate originates). The remaining data set comprised of 616 sequences
from 19 species. A summary of the sequences is shown in table 2.1 (the species
and group designations were taken from NCBI; groups are listed only if there are
multiple members present). Other commonly knownDrosophilaspecies have insuf-
ficient numbers of sequences or insufficient information that they represent distinct
samples to be included by these criteria.

A diagram of the topological relationships betweenDrosophilaspecies is shown
in figure 2.1. This diagram is patterned after a phylogeny constructed from Kimura
2-parameter distances (Kimura, 1980) using the Neighbor Joining method (Saitou
and Nei, 1987) and with the phylogeny from Flybase (http://flybase.org/)
with the exceptions of speciesD. angor, D. barutani, D. beppui, and D. daruma
(Wanget al., 2006) which are not listed in Flybase. Based on fossil, biogeographic,
and molecular clock data, subgeneraDrosophila (D. melanogaster, D. simulans,
andD. mauritiana) andSophophoraare estimated to have diverged approximately
62.9± 12.4 million years (MYA) (Powell, 1997; Tamura, Subramanian and Ku-
mar, 2004). Thus, there should be enough interspecific divergence to prevent the
assignment of unknown sequences to the incorrect subgenus.

Some of these species are considered sibling species and aredifficult to distin-
guish by anyone other than trained experts. Nevertheless, the species and their
relationships are well known (Kelly and Noor, 1996; Powell,1997). The abil-
ity of some taxa to create semi-sterile, usually uni-directional, hybrids has been
well documented (Noor, 1995). The species pairsD. arizonae& D. mojavensis,
D. mauritiana& D. simulans, andD. recens& D. subquinariaare considered sib-
ling species. In the case ofD. mauritianaand D. simulans, there is a haplotype
identified as originating fromD. mauritianathat is identical to that inD. simulans
(Satta and Takahata, 1990; Ballard, 2000a,b). The divergence date of these species
is estimated as 0.93± 0.49 MYA (Tamura, Subramanian and Kumar, 2004) and so
this phenomenon may be due to incomplete lineage sorting or introgression. Simi-
larly, 2 haplotypes (with 1 and 2 representative sequences respectively) out of 109
COI haplotypes fromD. subquinariaare identical to 2 haplotypes (containing 16
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101 98765432

Species 1 Species 2 Species 3

T

T

Figure 2.2: The simulation scheme used. Species are added tothe tree sequentially
up to a total of ten. Three species are expanded here. The length of time separating
the divergence of each species can be short,T << N , allowing incomplete lineage
sorting to occur (as illustrated here lineages within species #2 are more closely
related to lineages within species #3 than they are to species #1 despite the implied
species relationships).
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and 66 sequences respectively) out of 36 COI haplotypes fromD. recens. These are
the result ofWolbachia-mediated introgression (Shoemakeret al., 2004; Jaenike
et al., 2006). AlthoughD. arizonaeandD. mojavensisare sibling species with an
estimated divergence time of 1.91 to 2.97 MYA, their sequences are similar but they
do not share any haplotypes (Reed, Nyboer and Markow, 2007).

2.4 RESULTS

2.4.1 Simulation properties of a segregating sites algorithm

Simulations were conducted to test how well the segregatingsites algorithm will as-
sign queries when there is a known degree of similarity between the correct species
and its closest relative(s). In this case, each species is progressively more and more
distant from the first species (Figure 2.2). The first speciesis the origin of the query
sequence, and the branch length back to the common ancestor encompassing the
next species ranges fromT = 0.5 to 3.0. With the simulation, the degree to which
the histories of the individual species are distinct can be measured by examining
the degree to which lineage sorting is complete. The resultsof this simulation are
shown in table 2.2.

The first row for each simulation run in table 2.2 gives an indication of the ex-
tent of incomplete lineage sorting. When the interspecific distance between species
is very short (T = 0.5) lineage sorting is seldom complete within species 1. Only
15% of the 10,000 simulations have a distinct monophyletic lineage for the five se-
quences in species 1 while 28% have lineages that confuse species 1 and 2. Never-
the-less, the segregating sites method correctly assigns 44% of the queries to species
1. Given the short divergence time and the comparatively small opportunity for dis-
tinct substitutions to occur, it is not surprising that the average posterior probabili-
ties for these assignments are low. Because of the similarity between these species,
the degree of confidence in these assignments is low.

In general, assignments to species further and further awayfrom species 1 occur
in rapidly declining numbers and with declining posterior probabilities. In addition,
the estimated value ofθ increases. Thus, the assignments are made to more distantly
related species when the number of mutations is, by chance, larger and further blurs
the species level distinctions.

As T increases, the proportion of incomplete lineage sorting declines and the
assignments become more accurate. In every circumstance, however, the proportion
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Table 2.2
Simulation results based on the assignment of 10,000 queries. The query sequence
always originates from Taxon #1. The first row indicates how many coalescents
for Taxon #1 included sequences from other species (indicated by the column).
The second row gives the number of times each species had the highest posterior
probability.

Taxa
1 2 3 4 5 6 7 8 9 10

T = 3.0, θ = 2.0

No. of taxon 1 coalescents
including other taxa 9281 680 39 0 0 0 0 0 0 0
No.Assigned to each taxa 9388 564 32 14 2 0 0 0 0 0
Avg. Posterior 0.729 0.516 0.499 0.496 0.508 0 0 0 0 0
Avg. θ̂ 1.645 2.425 3.425 4.460 4.560 0 0 0 0 0

T = 2.0, θ = 2.0

No. of taxon 1 coalescents
including other taxa 7961 1744 249 43 2 1 0 0 0 0
No.Assigned to each taxa 8543 1245 173 27 7 3 2 0 0 0
Avg. Posterior 0.601 0.444 0.404 0.477 0.439 0.347 0.551 0 0 0
Avg. θ̂ 1.705 2.145 2.748 3.493 4.594 5.280 6.720 0 0 0

T = 1.0, θ = 2.0

No. of taxon 1 coalescents
including other taxa 4497 3497 1286 471 147 57 28 8 6 3
No.Assigned to each taxa 6468 2238 836 311 95 33 9 7 2 1
Avg. Posterior 0.394 0.322 0.286 0.265 0.254 0.244 0.277 0.306 0.303 0.203
Avg. θ̂ 1.834 2.136 2.303 2.323 2.752 3.423 4.329 5.011 3.140 2.880

T = 0.5, θ = 2.0

No. of taxon 1 coalescents
including other taxa 1522 2846 2176 1350 823 502 304 201 109 167
No.Assigned to each taxa 4431 2154 1367 849 520 308 162 114 61 34
Avg. Posterior 0.263 0.229 0.209 0.195 0.186 0.179 0.170 0.176 0.161 0.161
Avg. θ̂ 2.044 2.212 2.211 2.203 2.213 2.247 2.189 2.343 2.374 1.726
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Figure 2.3: Average posterior probability of assigning a query to each species group
in the local database using the segregating sites algorithm; (a) with D. angor and
(b) withoutD. angor. A grayscale ramp from white to black represents the average
posterior probability assignment from 0.0 to 1.0 respectively. The origin of the
query sequence is shown on the y-axis and the taxon for assignment is shown on the
x-axis. Shadings off the main diagonal indicate posterior probabilities to incorrect
taxon.

of correctly assigned query sequences is larger than the proportion of species #1
that have incomplete lineage sorting. Thus, the correct assignment of sequences
can occur even without a barcoding gap but the confidence in that assignment can
be variable.

2.4.2 The assignment ofDrosophilasequences

EachDrosophilasequence was removed in turn and then assigned to a member
species by the algorithms discussed here. The results for the segregating sites al-
gorithm are shown in figure 2.3. The figure gives the average posterior probability
that a query sequence (on the y-axis) is assigned to any one ofthe taxa (on the x-
axis). The assignments ofDrosophilasequences via the segregating sites algorithm
(Figure 2.3a) consistently suggest thatD. angorhas a strong posterior probability
for each and every one of the query sequences. Indeed, in manycases the posterior
probability of an assignment to this group can be larger thanthat for the correct
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taxon. For example the average posterior probability for elevenD. virilis sequences
is 0.4061 that they originated from a coalescent of theD. angorsequences and only
0.3908 that they originated from the coalescent formed by the remainingD. virilis
sequences.

The D. angor sequences are an odd collection. The phylogeny shown in fig-
ure 2.1 suggests that these sequences branch polyphyletically throughout the tree.
These thirteen sequences form roughly five groups. The first group of four se-
quences are identical among themselves but differ from the others by 60 to 115
substitutions (within a length of 663 bp; a rather large level of intraspecific di-
vergence). The second group of six sequences differ within the group by 2 to 46
substitutions. The third, fourth and fifth groups are each a single sequence that dif-
fers from every otherD. angorsequence by 75-121, 81-119, 110-121 substitutions.
That two sampled sequences from a single species should differ by fully a sixth of
their nucleotides in a highly conserved sequence is unusual.

The effect of this on the assignments is to suggest thatD. angorhas a huge (and
unrealistic) value ofθ and that the coalescent formed by theD. angorsequences can
encompass any query. The potential addition of a query sequence to theD. angor
group does not significantly alter the likelihood of the observed number of segregat-
ing sites. This is because only a comparatively few number ofadditional segregating
sites are added with an already very largeθ. But since another entire sequence is
added, the sample size has increased and, since the query is in the middle of this
coalescent, the addition of another sequence with less variation actually improves
the likelihood of the observation. This appears to be the cause of the high poste-
rior probabilities of assignment toD. angor independent of the query sequence. To
a lesser extent, this phenomenon also occurs withD. subquinariasince this taxon
also has a large amount of sequence variation. To eliminate this effect theD. angor
sequences were removed and the analysis redone as shown in figure 2.3b.

With the elimination ofD. angor, most of the query sequences show the high-
est posterior probability to the taxon from which they originated. Missassign-
ments occur most noticeably in three locations. The missassignment ofD. recens
to D. subquinaria(and to a lesser extent, the reverse), a symmetrical confusion be-
tweenD. arizonaeandD. mojavensis, and missassignments amongD. simulansand
D. mauritiana. The missassignments ofD. recenssequences to theD. subquinaria
species is because many of these sequences (82 from 2 distinct haplotypes) are iden-
tical to sequences labelled as originating fromD. subquinaria(Shoemakeret al.,
2004; Jaenikeet al., 2006). The lack of resolution between theD. arizonaeand
D. mojavensisspecies is due to their sibling species status and recent divergence
time (Reed, Nyboer and Markow, 2007). The distinction betweenD. simulansand
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D. mauritianais even less clear due both to their shared haplotypes and recent di-
vergence (Tamura, Subramanian and Kumar, 2004).

The assignments by the SAP algorithm of query sequences toDrosophilaspecies
are shown in figure 2.4. This algorithm also had difficulty with the same group of
taxa that the segregating sites algorithm had difficulty with. For the most part, these
difficulties are not as apparent in the figure since a portion of the sampled trees
from the MCMC do not match the given taxonomy from NCBI, termed here non-
constrained trees. These trees, that do not match the NCBI annotated taxonomy, are
classified separately. These trees represent an ambiguous component of the assign-
ment.

The segregating sites algorithm spent roughly 3 seconds perassignment for
the whole 616 sequence data set on a computer with a 1.6GHz processor, running
Linux. SAP spent roughly 8 minutes per assignment on the samesystem. A single
assignment of a single query to the 42 sequences ofD. montanausing a coalescent
assigner takes many hours to run and even then it is doubtful that it has reached sta-
tionarity. A single assignment to the 136 sequences ofD. recenswould take orders
of magnitude longer. To complete the data set would require this to be repeated for
each of the 616 queries. Hence it is not possible to provide comparable results for
the coalescent assigner.

2.5 DISCUSSION

Barcoding involves the assignment of a sequence to a pre-existing taxonomic group.
This is done using information drawn from a short DNA sequence, COI in many
cases (rbcl andmatK in the case of plants; Hollingsworthet al., 2009). The re-
lationships of the sequences among the taxa contains information regarding their
likelihood of being samples from a particular species. Unfortunately, when a col-
lection of samples is first made, it is often difficult to determine their taxonomic
species of origin. This is particularly the case if the groupis little studied and has
many sibling species. TheDrosophilaspecies have many sibling groups but have
the advantage that the true species relationships are generally well known.

With the advent of better sequencing technologies, it is expected that the number
of alternative species to which an assignment must be made will increase, conse-
quently making the task of assignment more difficult. Thus, the performance of bar-
coding assignment methods, both in speed and accuracy, given increasing amounts
of information, is important.

30



Ph.D. Thesis - M. Lou; McMaster University - Biology

D
.fa

lle
ni

D
.in

nu
bi

la
D

.s
ub

qu
in

ar
ia

D
.r

ec
en

s
D

.b
ar

ut
an

i
D

.b
ep

pu
i

D
.d

ar
um

a
D

.s
im

ul
an

s
D

.m
au

rit
ia

na
D

.m
el

an
og

as
te

r
D

.a
riz

on
ae

D
.m

oj
av

en
si

s
D

.n
av

oj
oa

D
.n

ig
ro

sp
ira

cu
la

D
.m

et
tle

ri
D

.m
on

ta
na

D
.v

iri
lis

D
.p

ac
he

a
D

.a
ng

or
N

on
.C

on
st

ra
in

.T
re

es

D.angor
D.pachea
D.virilis

D.montana
D.mettleri

D.nigrospiracula
D.navojoa

D.mojavensis
D.arizonae

D.melanogaster
D.mauritiana

D.simulans
D.daruma
D.beppui

D.barutani
D.recens

D.subquinaria
D.innubila

D.falleni

Taxa groups

(a)

D
.fa

lle
ni

D
.in

nu
bi

la
D

.s
ub

qu
in

ar
ia

D
.r

ec
en

s
D

.b
ar

ut
an

i
D

.b
ep

pu
i

D
.d

ar
um

a
D

.s
im

ul
an

s
D

.m
au

rit
ia

na
D

.m
el

an
og

as
te

r
D

.a
riz

on
ae

D
.m

oj
av

en
si

s
D

.n
av

oj
oa

D
.n

ig
ro

sp
ira

cu
la

D
.m

et
tle

ri
D

.m
on

ta
na

D
.v

iri
lis

D
.p

ac
he

a
N

on
.C

on
st

ra
in

.T
re

es

Taxa groups

0

0.5

1

(b)

Figure 2.4: Average posterior probability of assigning a query to each species using
the SAP algorithm; (a) withD. angorand (b) withoutD. angor. A grayscale ramp
from white to black represents a posterior probability assignment from 0.0 to 1.0
respectively. The origin of the query sequence is shown on the y-axis and the taxon
for assignment is shown on the x-axis. Shadings off the main diagonal indicate
posterior probabilities to incorrect taxon.

In general, a method to calculate the probability that an unknown sequence orig-
inated from a particular species,x, is desired. The segregating sites algorithm does
not calculate this probability; rather it estimates the probability that the query se-
quence could originate from a coalescent implied from the knowledge of the current
database. The segregating sites algorithm considers all ofthe sequences from each
species. The data from theD. angor sequences illustrates this subtle difference.
Similarly, the SAP program also does not determine the desired probability. Rather
it estimates the probability that a sequence consistently branches next to a single
member of speciesx given the current database. The sequences fromD. angordo
not generally alter these assignments.

The segregating sites algorithm, however, consistently suggest that for each
query sequence, there is a significant probability that thissequence might have
arisen fromD. angor. The reason for this is that the given database and the given
species identifications are assumed to be correct and, as such, given the huge amount
of sequence divergence within the ‘hypervariable’ speciesD. angor, there is a very
real possibility that any of these sequences might have originated fromD. angor.
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Assuming that the given data is indeed accurate, this seems to be the correct an-
swer. The taxonomic assignment of sequences to the species within the database
(D. angor, for example) are assumed to be correct. This assumption is made at the
species level for the segregating sites algorithm. It is similarly made for SAP at
deeper taxonomic levels.

If the classification of the sequences ofD. angor into a single species is cor-
rect then the segregating sites algorithm provides correctposterior probabilities.
The further consideration of a risk measurement based on distances (which can be
incorporated into a segregating sites algorithm) will however warn against over in-
terpretation of the posterior probabilities. The presenceof such a hypervariable
species is also highlighted by the algorithm’s results and suggests a possible al-
ternate interpretation; that the species might be a candidate for further taxonomic
scrutiny.

Even if an unknown query sequence is a perfect match to a sequence in a
knowledge database, it does not imply that a perfect speciesidentification has been
achieved. Other species identifications might have a high oreven a higher posterior
probability. Therefore, given that a perfect match has beenfound in the database,
this alone does not justify the conclusion that the species of origin has been identi-
fied.

The model-based methods analyzed here capitalize on understanding the pro-
cess governing the system under study and result in more informative and powerful
tools to analyze sequence data generated from such systems.In applying any sta-
tistical method it is important to understand the boundaries and limitations of its
application. The application of the segregating sites algorithm and the SAP algo-
rithm to Drosophiladata illustrates well that they calculate posterior probabilities
of somewhat different quantities. Which method is preferred and should be applied
depends on which quantity is desired. The SAP algorithm measures where a se-
quence branches while the segregating sites algorithm measures if a sequence can
‘fit’ into an existing species.

The results presented indicate that both Bayesian methods work well to cor-
rectly identify species even in the absence of a ‘barcode gap’. When uncertainty
exists in the assignment, the methods correctly reflect and report this uncertainty.
The degree of uncertainty in these methods is directly reflected in the accuracy of
the taxonomic reconstructions.

The segregating sites algorithm is available at http://info.mcmaster.ca/TheAssigner/.

32



Ph.D. Thesis - M. Lou; McMaster University - Biology

2.6 ACKNOWLEDGMENTS

This research was funded by an NSERC discovery grant, an NSERC Barcode net-
work grant and an CRC award to GBG. ML is funded by an NSERC Barcode net-
work grant, grants from McMaster University and scholarships.

2.7 SUPPLEMENTAL DATA

Supplementary data associated with this article can be found, in the online version,
at doi:10.1016/j.ympev.2010.01.002.

33



Ph.D. Thesis - M. Lou; McMaster University - Biology

Chapter 3

The effect of sampling population
substructure on species identification
with DNA barcodes using a Bayesian
statistical approach

Lou, M. and Golding, G.B. (2012)Molecular Phylogenetics and Evolution. 65:
765-773.

3.1 ABSTRACT

Barcoding is an initiative to define a standard fragment of DNA to be used to as-
sign sequences of unknown origin to existing known species whose sequences are
recorded in databases. This is a difficult task when species are closely related and
individuals of these species might have more than one origin. Using a previously
introduced Bayesian statistical tree-less assignment algorithm based on segregating
sites, we examine how it functions in the presence of hidden population subdivision
with closely related species. Not surprisingly, adding samples to the database from
a greater proportion of the species range leads to a consistently higher number of
accurate results. Without such samples, query sequences that originate from out-
side of the sampled range are easily misinterpreted as coming from other species.
However, we show that even the addition of a single sample from a different sub-
population is sufficient to greatly increase the probability of placement of unknown
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queries into the correct species group. This study highlights the importance of broad
sampling, even with five reference samples per species, in the creation of a reference
database.

3.2 INTRODUCTION

DNA barcoding has become a popular method for species identification and de-
limitation due to advances in the speed and cost of sequencing and the difficulty
in delineating unknown specimens using traditional criteria. In addition to proper
biodiversity assessment, barcoding has important implications in various areas such
as: effective monitoring of invasive and pest species, identifying disease vectors
and protecting consumers from market substitutions (Ball and Armstrong, 2006;
Lowensteinet al., 2010; Wonget al., 2011).

Since its initial introduction (Hebert, Ratnasingham and deWaard, 2003), the
initiative has evolved from using a distance-based threshold to using a variety of
different evolutionary signals to resolve species boundaries (Hebert, Ratnasingham
and deWaard, 2003; Hebertet al., 2004; Ratnasingham and Hebert, 2007; Davis and
Nixon, 1992; Abdo and Golding, 2007; Munchet al., 2008; Sarkar, Planet and De-
salle, 2008; Lou and Golding, 2010). Futhermore, an increasing number of studies
advocate the use of traditional lines of evidence (whether behavioural, ecological,
geographical, morphological or reproductive) in combination with sequence data to
provide further support by showing a correspondence between the two. This com-
bined use of barcoding data with other forms of information has resulted in several
well-supported studies that may not have been as reliable ifthe delimitations had re-
lied solely on sequence data (Hebertet al., 2004; DeSalle, Egan and Siddall, 2005;
Siddall and Budinoff, 2005).

The use of additional information may become essential whenproblems occur
from reference sequence data with low information content.One of the benefits of
using a mitochondrial marker is that we expect it to better reflect species boundaries
because the expected time to obtaining clear, distinct species groups (i.e., recipro-
cal monophyly) is short because of its small effective population size (Neigel and
Avise, 1986). However, population subdivision with limited gene flow can increase
the time to coalescence and, consequently, the time required to achieve reciprocal
monophyly (Wakeley, 2000; Hudson and Coyne, 2002). With a lengthened time
to reciprocal monophyly, lineages between less closely related species may coa-
lesce before lineages within a species (a phenomenon known as incomplete lin-
eage sorting; Neigel and Avise, 1986), thus blurring species boundaries and imped-
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ing accurate species diagnoses and delimitations. This is particularly problematic
with recently diverged species, a group already prone to incomplete lineage sort-
ing, where the effects of subdivision and migration are morepronounced (Wakeley,
2000). Wonget al. (2011) suggested that some incorrect delimitations reflected the
failure to consider the geographic divergence of catfish. Similarly, Papadopoulou
et al. (2008) have shown that different rates of gene flow greatly affect divergences
and is one of the reasons that can cause DNA barcoding failures. While the effects
of subdivision are explored here, it should be noted that mtDNA is a not perfect
marker and may occasionally also show non-neutral evolution, non-clonal inheri-
tence and variation in mutation rates (Galtieret al., 2009).

One way to acknowledge hidden population subdivision is to sample sequences
from across a broad geographical range. Any within-speciesvariation is likely to be
widely distributed among several geographical localitiesor demes and sampling this
variation is crucial to being able to correctly calculate the probability of origin and
distinguish between close sister species. Many barcoding difficulties may, in part,
be due to the failure to choose an appropriate sampling scheme (Meyer and Paulay,
2005; Meieret al., 2006; Wiemers and Fiedler, 2007; Wonget al., 2011). Inherent
within-species variation may be spread across local, geographical populations of
individuals of one species and, by employing a broad sampling scheme, the addition
of these dispersed individuals should aid barcoding identification, provided that the
sampled sequences sufficiently reflect variation within thespecies.

The effect of sampling on identification and delimitation has been investigated
in distance, tree, and general mixed Yule-coalescent (GMYC) methods (Meyer and
Paulay, 2005; Ross, Murugan and Li, 2008; Monaghanet al., 2009; Hendrichet al.,
2010; Virgilio et al., 2010; Zhanget al., 2010; Bergstenet al., 2012). Further com-
plexities have also been taken into account, for example, Bergstenet al.(2012) have
investigated sampling strategies ranging from a local to global scale and Zhang
et al. (2010) have investigated sampling from two different models of population
structure: a linear stepping-stone and an equilibrium island model with unequal
sample sizes in three subpopulations. However, no study, todate, has been con-
ducted using a Bayesian statistical method capable of providing an assessment of
identification confidence. While Bergstenet al. (2012) used a threshold value to
calculate the proportion of ambiguous assignments (i.e., the number of queries as-
signed to more than one reference species) as a measure of method uncertainty, it
is not as statistically accurate as a Bayesian method where the probability of as-
signment describes the assignment to a particular species given that it could also
assign to other species possibilities. Setting the classification within a statistical
framework to generate posterior probabilities is preferred since difficulties in the
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classification of sequences from very recently diverged sibling species are expected
via any methodology. We previously introduced the segregating sites algorithm,
a fast, Bayesian tree-less method that is able to calculate the probability that the
sequence might originate (PrOr) from any one of the candidate species (Lou and
Golding, 2010). Due to its speed and the large body of theory behind it, the segre-
gating sites algorithm is further explored in this paper to investigate the efficacy of
this algorithm when species have recently diverged and exist in subdivided groups.

Here the identification performance of DNA barcodes with broader samples is
analyzed using our Bayesian statistical method, the segregating sites algorithm (Lou
and Golding, 2010), in a population stucture model based on isolation by distance.
To investigate the efficacy of barcoding in species with population substructure, we
simulated sequences based on three parameters: a sampling scheme of reference se-
quences (to represent differences in the number and location of dispersed samples
among demes), rates of migration between demes, and times todivergence between
species. For various combinations of these parameters, we examined the probabil-
ity that a query sequence originates from each species as calculated by the segre-
gating sites algorithm. As an application, the same testingprocedure was carried
out with cytochrome c oxidase, subunit 1 (CO1) sequences of the genusGrammia
(Lepidoptera: Noctuidae). The tiger moth species of this genus provides a good
case study where classical morpho- and ecological traits donot agree with species
groupings based on mitochondrial DNA (mtDNA). As 54% of the sampled species
share haplotypes with at least one other species, under the barcoding gap criterion
that no overlap between intra- and interspecies divergences be present, this would
result in incorrect diagnoses for 32% of the species (Schmidt and Sperling, 2008).
Both our simulated results and the empirical findings show that including at least
one dispersed sample can aid sequence identification, even with recently diverged
species and that including more dispersed samples further improves these results.

Our results highlight the importance of considering population subdivision and
gene flow to the barcoding workflow, particularly for speciesknown to have wide
distribution ranges, and to sample broadly whenever possible to ensure that repre-
sentative samples that contribute to describing the species boundary are included.
Minimally, the results show that a single extra sample from another locality goes a
long way to ensure accuracy.
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3.3 METHODS AND DATA

3.3.1 Population spatial substructure

The simulation is based on an isolation by distance population model where ev-
ery individual is restricted in its local movement to neighbouring demes (two-
dimensional movement within ad × d square lattice whered × d represents the
number of demes). Therefore, individuals are much more closely related to nearby
individuals than to distant individuals. Letθ = 4Neµ be the population mutation
rate (µ is the mutation rate per locus per generation),M = 4Nem be the symmetric
migration rate between demes (m is the proportion of the population that migrates
between two demes per generation) andNe is the effective population size. All
demes are assumed to be of constant and equal size. The taxonomy of the reference
sequence data is assumed to be correct.

3.3.2 Coalescent model with population substructure

Let each species exist within its own lattice and let each deme within the lattice
contain any number of sampled sequences from the species. Ingenerating a coa-
lescent history of the lineages, the occurrence of a coalescent or migration event
depends on where the lineages exist on the lattice. The probability of a coalescent
event is more likely if many lineages are found within the same deme; otherwise a
migration event is more likely. Coalescent theory with a consideration for popula-
tion structure is well developed. The times until a coalescent or migration event are
exponentially distributed with means:

Icoal = d
d

∑

i=1

ki(ki − 1)

2

and

Imigr =
Mdk

2
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respectively (whereki represents the number of lineages in demei andk =
∑d

i=1
ki

is the total number of lineages in all demes; Hein, Schierup and Wiuf 2005).

The sum of the above two,Icoal + Imigr, represents the total rate until the oc-
currence of an event and the probability that the next event is a coalescent event or
migration event is:

Icoal
Imigr + Icoal

=

∑d

i=1
k2
i − k

k(M − 1) +
∑d

i=1
k2
i

and

Imigr

Imigr + Icoal
=

kM

k(M − 1) +
∑d

i=1
k2
i

respectively. For further details, refer to Hein, Schierupand Wiuf (2005).

3.3.3 Simulation

We simulated a multi-species coalescent (Degnan and Rosenberg, 2009), based on
a total of ten species. Each species has five sampled sequences. Five is the recom-
mended minimum by the Consortium for the Barcode of Life (CBOL) (Hajibabaei
et al., 2007) and via simulation study (Ross, Murugan and Li, 2008). The first
species has one additional sampled sequence, which is used as the unknown query
sequence. Each of the remaining nine species are progressively more and more
distant from the first species (in a pectinate or asymmetric pattern). Other patterns
were simulated with qualitatively similar results. These simulations permit incom-
plete lineage sorting but do not address introgression. Twolineages can coalesce
only if their sequences exist within the same deme. Going back in time, the lineages
will coalesce at a rate determined by the population size andmigration rates. At a
predetermined time,T , speciation is assumed to occur. At this time, lineages of ei-
ther species, whether coalesced to a single ancestor or not,are randomly placed on
this new lattice and thereafter treated as a single species.This process is repeated
until a full coalescent history of all ten species is obtained.

Once the full coalescent is constructed, random substitutions are placed on the
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branches of the coalescent, according to the rateθ, and the resulting sequence data
at the leaves are taken as the simulated data.

Given 51 simulated reference sequence data, the query sequence is removed
from the reference data set and it, along with the remaining simulated sequences, are
tested by the segregating sites algorithm (Lou and Golding,2010) to determine the
probabilities of origin (PrOr) for the query from each of the ten species. We have
previously shown that the segregating sites algorithm can reliably assign unknown
specimens even in the absence of a barcoding gap (a separation between intra- and
interspecific variation).

We hypothesize that the probability that the query sequenceoriginated from
the first species should be greater when at least one or more dispersed sequences
are included in the analysis. A sequence from the correct species but located in
a spatially distinct deme adds important intraspecific variation that would not be
obtained if all the reference samples originate from a single deme. At a minimum,
the number of simulations where thePrOr is highest for the first species should be
at least equal to the number where the first species is monophyletic. This should
represent a minimum expectation.

3.3.4 Simulated data

The sampling scheme of reference sequences on the lattice, the number of demes,
time to coalescence, and rates of migration are allowed to vary. We set the DNA
sequence length equal to 600 bp,θ to 2.0, and modelled ten species, each repre-
sented by 5 lineages. The sequence length chosen is approximately the length of
the 648 bp barcoding region (Hebertet al., 2004) and the level of sequence variation
(θ) was chosen to be sufficient so that it mimics a marker likeCO1 that is able to
discriminate at the species level and yet remain relativelyconserved given its in-
dispensable role in energy production (Capaldi, 1990). Simulations show that the
number of alleles sampled per locus does not have a significant effect on the time to
coalescents that exhibit reciprocal monophyly (Hudson andCoyne, 2002; Knowles
and Carstens, 2007).

Table 3.1 shows the various sampling schemes for the reference species; all con-
figurations are placed in a lattice containing 4 demes (2× 2) or 9 demes (3×3).
The schemeall represents a sampling situation where all the reference sequences
are from one deme or base region. The schemes1other and2other represent
situations where one or two dispersed samples, respectively, are included in the ref-
erence species. We were also interested in the effect of a larger lattice or sampling
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Table 3.1: Lattice sampling schemes analyzed. Eachr represents a reference se-
quence belonging to the species from which the query sequence,Q, originates. By
default,d × d = 4 while the suffix ‘L’ setsd × d = 9 (seeall L, 1other L,
2other L).

Sampling scheme Lattice layout Description

all r
r

r
r
r

Q

all reference sequences from one, base, sampling region and query, Q, in region
furthest from the base

1other r
r

r
r

r

Q

One dispersed reference sequence adjacent to the base region

2other r
r

r r

r Q

Two dispersed reference sequences in independent regions,adjacent to the base
region

all L
r
rrr

r

Q

all reference sequences from base region;d× d = 9

1otherL
r
rrr

rQ

One dispersed reference sequence from a region furthest from the base;d× d = 9

2otherL
r
rr

r

rQ

Two dispersed reference sequences in independent regions:one is in the center
deme of the lattice and the other is in from a region furthest from the base;d × d =
9

withQ r
r

r
r

r Q

One dispersed reference sequence in the same region as the query

Qcloser1other r
r

r
r

r

Q

One dispersed reference and query sequence in independent regions, adjacent to the
base region

Qcloser2other r
r

r r

rQ

Two dispersed reference and query sequences in independentregions, adjacent to
the base region; the query is closer to the base region
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area (all L, 1other L and2other L whered × d = 9). We also investigated
the effect of query placement, relative to the base region (Qcloser 1other and
Qcloser 2other) and, lastly, a configuration where a reference and query sam-
ple originate from the same deme (withQ).

The time to speciation (backward-in-time),T , was set to 10 and 3 (scaled in
units of2Ned ∗ d generations). The symmetric rate of migration,M , ranged from
0.1 to 1000 (M up to 10 shown here), to model different rates of movement among
demes within a lattice. When the time to speciation is long and the migration rate
is high, the lineages within each species should coalesce with each other first and
the level of variation within a species should be less than between species; this
represents the ideal situation where each population is a distinct and monophyletic
species (Avise, 1989), and we expect most of these simulations to havePrOr largest
for the first species. When the time to speciation is short or the migration rate is
low, there will be more incomplete lineage sorting and this would result in a lower
proportion of the simulations where thePrOr is largest for the first species. Each
combination of parameters are based on 10,000 simulation runs.

Since these simulations are conducted within a statisticalframework, we have
the advantage of not only identifying correct assignments but also those that occur
with high confidence. Thus, to be conservative, we additionally considered analyses
of simulations where thePrOr is ≥ 80%. Due to difficulties with obtaining sim-
ulations that satisfied this criterion, these results are based on 100 simulation runs.
The difficulty arises because conspecific lineages will takea long time to coalesce
if they are spread among many demes that seldom migrate when the migration rate
is low, thereby increasing the chance of paraphyletic coalescents (Wakeley, 2000).

3.3.5 Empirical data: Grammia

Species of theGrammiagenus have a large geographic range, exhibit interspecific
hybridization and incomplete lineage sorting, making theman ideal data set to ex-
plore the use of dispersed samples on assignment fidelity. OfseveralGrammia
species for which sequence information is available, we choseGrammia nevaden-
sis as our focal species because of the paraphyly of its lineageswith those from
most of the species in the Western clade. It has been widely sampled from 16 lo-
cations spanning several provinces of Canada and northwestern US states (Schmidt
and Sperling, 2008; Schmidt, 2009).

All 225 Grammiasequences from 33 species (Schmidt and Sperling, 2008;
Schmidt, 2009) were downloaded from NCBI. Species represented by at least 5
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Table 3.2: Summary ofCO1data for 12Grammiaspecies (Schmidt and Sperling,
2008; Schmidt, 2009) and forHolarctia obliteratawhich served as an outgroup.

Species Monophyletic Sequences

Grammia arge yes 5
Grammia celia no 5
Grammia figurata no 11
Grammia nevadensis no 18
Grammia ornata no 9
Grammia parthenice no 13
Grammia phyllira yes 7
Grammia quenseli no 10
Grammia virgo no 9
Grammia virguncula no 37
Grammia williamsii no 44
Grammia williamsii tooele no 6
Holarctia obliterata yes 5

Total - 179

individuals were kept for further analysis. This criterionlimited our reference data
set to 179Grammiasequences from 13 species (Table 3.2). For sampling scheme
all, G. nevadensiscontained sequences only from British Columbia, and the query
was chosen to be from Utah. Dispersed sequences for schemes1other-5other
are sampled from two provinces in Canada (Alberta, Saskatchewan) and three states
in the US (Washington, Oregon, Colorado). The inclusion of one or more dispersed
sequence(s) was compensated by a reduction of sequences from British Columbia
to maintain a total of five reference sequences for the species.

3.4 RESULTS

3.4.1 Simulation

Using the segregating sites algorithm, an assignment is considered correct when
thePrOr is highest for the first species. A multi-species coalescentconsisting of
distinct and monophyletic species should possess sufficient divergence within and
among species to permit the correct assignment of the query to the first species. So
we expect a higher proportion of correct assignments when a monophyletic coales-
cent is recovered for the first species relative to a coalescent that is paraphyletic and
includes sequences from other species (i.e., when the time to speciation is short and
when the migration rate is low). In other words, the proportion of correct assign-
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ments should be at least equal to the proportion of monophyletic trees for the first
species.
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Figure 3.1: Inclusion of dispersed samples aids correct identification with recently
diverged species. Each histogram is based on 10,000 simulations whenT = 3.0
andM = 0.1. Each subfigure, A-I, has a specific placement of reference (r) and
query (Q) sequences for the correct species (Table 3.1). Monophyly represents
the proportion of monophyletic coalescents for the first species (double-hatched
bars). Assignment represents the proportion of correct assignments where the query
assigned to the first species (solid bars).

Effect of population subdivision. Here we focus on the results of simulations
where the sampling is largely restricted to one deme (all) and the species bound-
aries are not yet clearly distinct (T = 3.0). When the migration rate is low (M =
0.1; Figure 3.1A), the proportion of correct assignments, 35%,is less than the pro-
portion of simulations with the first species monophyletic,39%. This indicates that
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at this level of divergence and migration the assignment of an unknown query se-
quence is difficult and/or misleading when the reference sequences of the species
are sampled from just one location. In a larger sampling area, the distance between
the base region and the query is larger and we would expect a decrease in the propor-
tion of correct assignments reflecting the lengthened time required for coalescence.
While the result is approximately the same (38% correct assignments versus 42%
monophyletic coalescents; Figure 3.1D), additional simulations with an even larger
lattice (d× d = 16) confirmed the prediction (data not shown).

When one dispersed sequence was included in the reference dataset (1other,
1other L andQcloser 1other; Table 3.1), the number of simulations where
PrOr was largest for the first species increased whether sampled in a small (44%
vs 26%; Figure 3.1B) or large sampling area (39% vs 14%; Figure 3.1E) or when
the query is sampled closer to the base region (56% vs 24%; Figure 3.1H).

When two dispersed sequences were included in the referencedataset (2other,
2other L andQcloser 2other; Table 3.1), the proportion of simulations with
PrOr largest for the first species increased further: in a small (56% vs 14%; Fig-
ure 3.1C) or large sampling area (46% vs 8%; Figure 3.1F) and when the query is
closer to the base region (57% vs 15%; Figure 3.1I).

The sampling scenario that returned the highest proportionof correct assign-
ments (90% vs 31%) is when the query and a reference sample aresampled from
the same deme (Figure 3.1G).

Effect of migration. To examine the effect of migration, simulations were repeated
with 10-fold increases in the rate of migration. A high migration rate allows lin-
eages to move with greater ease among the demes of a lattice. Consequently, con-
specific lineages will coalesce sooner and in turn increase the chances of mono-
phyly.

When the rate of migration was≥ 1, close to 100% of the simulations were
monophyletic for the first species and thePrOr was, correctly, largest for the first
species (Figures 3.2 and 3.3). If the rates of migration are large and there is suf-
ficient variation to distinguish species then employing a comprehensive sampling
scheme is not necessary.

Conservative assessments.When we restrict our analyses to simulations where
the PrOr is strongly supported (PrOr ≥ 80%), there is a large increase in the
number of correct assignments when discrete species are considered (from 46%
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Figure 3.2: Inclusion of dispersed samples aids correct identification with recently
diverged species. Each histogram is based on 10,000 simulations whenT = 3.0 and
M = 1. See figure 3.1 for simulation and legend details.

(A) to 83% (C), Figure 3.4 (L)ower;T = 10) but the effect disappears for newly
divergent species (Figure 3.4 (L)ower;T = 3).

Sampling schemes with two dispersed sequences often did notreturn any simu-
lation runs where thePrOr was larger than 80%. (Figure 3.4 C,F, and I of (L)ower;
T = 3). When the migration rate is low and the time to speciationis short, any
additional variation at some point cannot compensate for the increased levels of pa-
raphyly. However, for every sampling scheme, the number of simulations where the
PrOr is largest for the first species increase relative to the amount of monophyly.
It is simply that the degree of certainty for these has been reduced.

Performance. We wanted to investigate how the probability changes as the com-
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Figure 3.3: Inclusion of dispersed samples aids correct identification with recently
diverged species. Each histogram is based on 10,000 simulations whenT = 3.0 and
M = 10. See figure 3.1 for simulation and legend details.

position of the first species is changed to more accurately reflect the variation of
species with a wide distribution range when both gene flow andthe time to specia-
tion are low (M = 0.1 andT = 3.0 respectively). To do this, we began with a simu-
lation in which all sequences from the first species are restricted to one deme (all;
Table 3.1) and then repetitively change the sequence composition to increasingly
reflect a species with a wider distribution (that is, all the sequences are randomly
dispersed on the lattice, each individual in its own deme). Each simulation was
repeated 10,000 times. Performance is measured as the ratioof the number of sim-
ulations observed wherePrOr is largest to the first species relative to the number
where the first species is monophyletic.

As expected, as more dispersed sequences are included, there is a decrease in
monophyletic coalescents with a corresponding increase inthe number wherePrOr
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Figure 3.4: Simulations based onM = 0.1 andT is scaled in units of2Ned ∗ d
generations. The upper row of histograms (U) is based on 10,000 simulations and
the lower row of histograms (L) is based on 100 simulations where thePrOr is
≥ 80%. Monophyly represents the proportion of monophyletic coalescents for the
first species (double-hatched bars). Assignment represents the proportion of correct
assignments where the query assigned to the first species (solid bars). The inclu-
sion of dispersed samples aids correct identification with high confidence. This
is not confirmed for recently diverged species (C,E,F,I) because of a lack of high
confidence assignments due to a higher level of paraphyly.

is largest for the first species. This strongly supports the use of dispersed sequences
to form the reference datasets. However, when the correct species is entirely com-
posed of dispersed sequences, the performance decreases from 15 to 13 correct
assignments/monophyletic tree (Figure 3.5, number of dispersed samples = 5) sug-
gesting that the number of correct assignments returned cannot be expected to do
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much better when the correct species consists entirely of dispersed sequences be-
cause of the greater level of paraphyly.

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5
 0

 5

 10

 15

 20
P

ro
po

rt
io

n 
(%

)

A
ss

ig
nm

en
t/M

on
op

hy
ly

Number of dispersed samples in correct species

Monophyly
Assignment

Assignment/Monophyly

Figure 3.5: Increasing performance in assignment when the correct species is com-
posed of more dispersed sequences. Each histogram is based on 10,000 simulations
whenM = 0.1 andT = 3.0. When the correct species is entirely composed of
dispersed sequences, performance decreases because thereis a greater level of pa-
raphyly.

3.4.2 Grammia(Tiger moth) example

Our analysis of all possible assignments concerning the composition ofG. nevaden-
sis(Figure 3.6) shows that the probability of correctly assigning the query increases
when at least two dispersed sequences are included (Table 3.3, columns ‘% Max’
and ‘Max P(CA)’).

Low probabilities are largely attributed to the extensive paraphyly among west-
ernGrammiaspecies and, to a lesser extent, the nature of the segregating sites algo-
rithm which calculates high probabilities of assignment todistantly related taxa if
they have extensive sequence variation. As expected, the UtahG. nevadensisquery
sequence had highPrOr to species found in the WesternGrammiahaplogroup.
However, the query consistently had the highestPrOr to Grammia williamsii.
There is extensive sequence variation among the 50G. williamsi specimens that
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broadly span the US, with some sequences in both Western and Eastern haplotype
clades (Schmidt, 2009). Among the 23 haplotypes, some are unique to subspecies
G. williamsii tooele, some share haplotypes with a few Eastern clade species, and
some have introgressed with other species (Schmidt and Sperling, 2008; Schmidt,
2009). Because of its hyper-variability,G. williamsiacts as a single, morphological
species that is capable of generating a coalescent that includes any query. In all
cases, however, the statistical risk is always lowest forG. nevadensis(Table 3.4).
Minimal statistical risk (a metric included in the segregating sites algorithm) toG.
nevadensissuggests that the ‘loss’ of assigning the query toG. nevadensis, given
that it could assign to other species, is small and that it is the species of origin (see
Abdo and Golding, 2007, for a further details).

Figure 3.6: Geographical locations ofG. nevadensissamples (stars) and query (Q).
Samples are from (with number of sequences in parentheses) British Columbia (6),
Alberta (4), Saskatchewan (2), Washington (1), Oregon (1),Colorado (3).

3.5 DISSCUSSION

Barcoding with the mitochondrialCO1gene sequence has been successful in many
groups of animals (Hebertet al., 2004) but has proved less successful in some other
groups (Meyer and Paulay, 2005; Monaghanet al., 2005). The problem is the lack
of correspondence between sequence-delimited groups and taxonomically recog-
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Table 3.3: Including dispersed sequences for the correct species increases the num-
ber of correct assignments. See footnote for details.

Sampling scheme Total P(CA) % Max Max P(CA) Mis-assigned to Avg P

all 1 0.111 0 0.000 G. williamsii 0.174
1other 66 0.015 0 0.000 G. williamsii 0.192
2other 825 0.142 59 0.178 G. williamsii 0.178
3other 3300 0.158 50 0.173 G. williamsii 0.168
4other 4950 0.161 52 0.170 G. williamsii 0.166
5other 2772 0.162 63 0.168 G. williamsii 0.166

Values are based on assignment among 10 species.
In all, the composition of the correct species,G. nevadensis, contains 6 samples
strictly from British Columbia. The composition ofG. nevadensisis modified to
contain one or more dispersed samples (1other-5other). The dispersed samples
are sampled from two provinces in Canada (Alberta, Saskatchewan) and three states
in the US (Washington, Oregon, Colorado). The query is from Utah. See figure 3.6
for the geographical locations of the sampled sequences andthe query.
Total indicates the total number of possible combinations for assignment. Correct
assignment (CA) indicates assignments to the first species (G. nevadensis). P(CA)
is the averagePrOr from G. nevadensis. % Max is the proportion of assignments
when P(CA) is the largest forG. nevadensis. Max P(CA) is the average P(CA) when
it is the largest forG. nevadensis. If the query is incorrectly assigned, the incorrect
species (Mis-assigned to) and the averagePrOr from this species (Avg P) is given.

nized species. This lack of agreement is attributable to a variety of phenomena
such as incomplete lineage sorting (Hudson and Coyne, 2002), allopatric specia-
tion (Coyne and Orr, 2004), gene- and species-tree discordance (Funk and Omland,
2003) and the criteria used to determine species boundaries(Mayr, 1942). Other
practical problems include incomplete reference databases with insufficient within-
species sampling, which is required for accurate species authentication (Meyer and
Paulay, 2005; Siddall and Budinoff, 2005).

When gene flow is high and when species divergence times are large, methods
to classify sequences to species groups should be relatively straightforward. How-
ever, when gene flow is low and species divergence times are small the ability to
correctly classify sequences will then be impaired. In these situations, methods that
determine the posterior probability that the sequence originates from each species
become critical.

We would expect that the number of simulations with the highest probability of
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Table 3.4: For all assignments, correct or incorrect, the statistical risk of assigning
to the correct species is always the lowest. This suggests that the query originates
from the correct species. See footnote for details.

Sampling scheme Total Risk(CA) % Min Min risk(CA)

all 1 0.007 100 0.007
1other 66 0.011 100 0.011
2other 825 0.011 100 0.011
3other 3300 0.012 100 0.012
4other 4950 0.013 100 0.013
5other 2772 0.013 100 0.013

See table 3.3 for simulation details.
Total indicates the total number of possible combinations for assignment. Cor-
rect assignment (CA) indicates assignment to the first species (G. nevadensis).
Risk(CA) is the average statistical risk of assignment toG. nevadensis. % Min
is the proportion of assignments when Risk(CA) is the lowestfor G. nevadensis.
Min risk(CA) is the average Risk(CA) of assignment when it isthe lowest forG.
nevadensis.

origin (PrOr) to the first species should be at least equal to or larger thanthe num-
ber with a monophyletic relationship among the reference sequences. However, our
results suggest that this is not always true. Whenever, significant population subdi-
vision exists and reference sequences have not been collected from different demes,
a query sequence from a different deme will appear sufficiently different from the
reference sequences to prevent correct identification (Figure 3.1A). On the other
hand, adding just a single reference sequence from a divergent deme can reverse
this, and thePrOr will be higher than the proportion of monophyletic reference
species (Figure 3.1B). This is a result of the increased estimate of conspecific vari-
ation as represented by increasedθ values. Continuing to add more samples from
divergent demes further improves the relative ratios (Figure 3.5).

The tiger moth species of theGrammiagenus are an example of a group with
geographically widespread populations connected by gene flow. Despite extensive
non-monophyly among these species, thePrOr from G. nevadensisincreased when
the database contained dispersed samples spanning the geographic locales between
the base sampling region (British Columbia) and the origin of the query (Utah)
(Figure 3.6).

Both the simulation and empirical results suggest that the success of mtDNA
barcodes depend on sufficient reference sequences that are representative of the
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within-species variation and when it is undersampled, fromsubstructured genetic
variation (population subdivision) or newly divergent species or both, inaccurate
species identifications and delimitations may result. Thisreflects the requirement
from traditional taxonomy to ensure that sufficient variation is sampled in order
to determine if characters are taxonomically useful (DeWalt, 2011; Trewick, 2007;
Wong et al., 2011). Thus, mtDNA sequence is a valuable tool but only witha
comprehensive database consisting of complete conspecificreference sequences,
especially from species with wide geographical distributions or that have recently
diverged, and our study attests to the need for methods to consider adequate repre-
sentation of the natural variation within the species.

Futhermore, accurate species delimitations have important implications in the
development of proper guidelines and policies used to manage and protect both
biodiversity and consumer interests. This includes areas such as, but not limited to,
conservation and disease biology and aquaculture.

Our methods could be expanded to allow the coalescent-speciation transitions to
vary in space (e.g., along different branches of the tree; Monaghanet al., 2009) and
in time (e.g., unsampled lineages in demes that have gone extinct; Lohse, 2009).
The examination of peripheral populations is of particularimportance for recently
speciated groups. We also assumed that lineages migrate in adiscrete and symmet-
ric fashion but it would be more accurate to model continuousmovement among
demes. A recent method by Lemeyet al. (2010) uses a continuous spatial diffusion
model to identify the ancestral geographical history of a sample of sequences but
may not be applicable in our simulations since it is not meantto infer population-
based spatial histories (Bloomquist, Lemey and Suchard, 2010). Although the
current model is limited in these respects, it is sufficient to illustrate how broad
sampling of within-species divergence is essential for accurate barcoding identifi-
cations, how this variation affects identifications, and that even minimal sampling
goes a long way.

While it is important to include singletons (species described by a single sample;
Lim, Balke and Meier, 2012) in the biodiversity inventory, asingleton cannot cap-
ture any of the variation or complexity of a species (Ross, Murugan and Li, 2008).
This variation is critical for any population genetic method, such as segregating sites
algorithm, that describes the conspecific variation via a summary statistic (θ) and
this calculation requires multiple samples. For this reason, singletons are excluded
from the reference data set used here. However, despite their exclusion, if extra-
neous information is used to estimate this variation then a Bayesian method such
as the segregating sites algorithm algorithm should be ableto identify queries that
originate from singletons in the reference database. One such source of extraneous
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information might be to assume that the singleton species has a level of variation
(θ) equal to that of sibling species. At the other end of the sampling size spectrum,
Bergstenet al. (2012) recommended a minimum of 20 samples per species for any
sampling strategy. However, the authors also note that the choice of the identifica-
tion algorithm will determine acceptable sample sizes, identification performance,
and error rates. Furthermore, Zhanget al.(2010) found that a universal sample size
is unrealistic for different species and that it ultimatelydepends on the evolutionary
history of the species. By evaluting the segregating sites algorithm via simulations,
we assess its general performance across a range of evolutionary scenarios without
particular focus on theCO1 gene and we find that while more samples will pro-
vide better results, a large improvement in the number of correct assignments can
be achieved with even a single dispersed sample from a total of five samples per
species.

3.6 CONCLUSION

Using the segregating sites algorithm and a minimum five samples per species, both
simulated andGrammia(tiger moth) analyses show that ensuring at least one refer-
ence sequence is sampled from a different region or deme of a species distribution
returns a greater proportion of results that correctly assign an unknown specimen
to its species of origin. Our results highlight the importance of broad sampling to
improve the information content of reference samples and that a single dispersed
sample can greatly improve the identification of sequences to species.
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Chapter 4

An extended theory of segregating
sites: effect of subdivided populations
and heterogeneous substitution rates

4.1 ABSTRACT

Often there is a disconnect between the assumptions made by amodel and the true
evolutionary signals of the data it is applied to. For instance, current theory as-
sumes that the pattern of segregating sites sufficiently describes the observed level
of variation in a set of sequences. However the pattern may beinfluenced by vari-
ous phenomena that are unaccounted for, such as population subdivision with gene
flow and unequal base composition from transition bias. Thisstudy seeks to im-
prove the theory of segregating sites by incorporating terms to account for these
biological proccesses. A more comprehensive model should improve probability
estimates of the observed level of genetic diversity. The modified probability dis-
tributions (of observing a number of segregating sites in a number of sequences)
are similar but more accurate at resolving the true distribution of genetic variability
relative to those calculated under the original theory. Additionally, the results rein-
force the important role subdivided populations with migration and heterogeneous
base composition and substitution rates have on shaping polymorphism and should
be considered in models used to describe genetic signals of groups undergoing spe-
ciation.
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4.2 INTRODUCTION

The pattern of variation that permits discrimination between species is produced
by dynamic processes, which may be influenced by many factors. And each of
the many available methods of the barcoding initiative capitalizes on one or more
genetic signatures useful for the accurate assignment of specimens to species. The
central assumption across all strategies for molecular species recognition is that
within-species individuals are more similar to each other than to individuals from
other species. However, barcoding failures usually stem from a violation of this
basic assumption. For instance, genetic distances and thresholds, also known as the
“barcoding gap” (a region defined by the maximum level of intra- versus minimum
level of inter-specific variation) and the criterion of reciprocal monophyly (a group
of sequences or individuals under one species name or forming their own clade to
the exclusion of others) are arbitrary and a lack of either property does not preclude
speciation (Hickerson, Meyer and Moritz, 2006; Meier, 2008; Ross, Murugan and
Li, 2008; Virgilio et al., 2010). Microevolution (constant change in within-species
variation; Funk and Omland, 2003), the reliance on a reference tree (Little, 2011)
and lack of informative molecular characters (Hudson and Coyne, 2002) limit the
use of character-based methods.

Often, the lack of correspondence between the data and modeloccurs because
the model is too simple: it fails to sufficiently describe complex biological events
governing levels of genetic variation. Both Avise (1992) and Soltiset al. (2006)
found that species exhibit distinct intraspecific (within-species) mitochondrial DNA
(mtDNA) patterns associated with geography. A dynamic evolutionary history, con-
sisting of repeated colonizations, extinctions, periods of isolation in refugia, spatial
and ecological barriers, can give rise to regional, species-specific genetic patterns
(Soltis et al., 2006; Trewick, 2007; Lohse, 2009; Tavares, de Kroon and Baker,
2010; Carret al., 2011). Thus, failing to sample from each locale in describing a
geographically dispersed species may lead to biased barcoding inferences. For in-
stance, failure to include samples from multiple bio-localities substantially underes-
timated the level of variation found within a species, reducing the “barcoding gap”
and correct specimen identifications (Lukhtanovet al., 2009; Zhouet al., 2011).
And when conspecific variation is properly sampled, accurate barcoding rates have
been achieved (Allcocket al., 2011; Zhouet al., 2009; Tavares, de Kroon and Baker,
2010; Zhouet al., 2010, 2011; Pappalardoet al., 2011). In a previous study, the in-
clusion of at least one dispersed sequence not only increased the number of correct
specimen assignments but also increased both the proportion of segregating sites in
a set of sequences and the estimated population mutation rate, θ (Lou and Gold-
ing, 2012). The inferredθ values were unusually high because the method does not
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attribute the added intraspecfic variation as originating from a distinct geographic
locale or deme.

Different types of nucleotide substitutions may have different rates, allowing
for different patterns of variation to be observed in different species and this may
negatively impact barcoding inferences (Yang, 1996; Roe and Sperling, 2007). In
mtDNA, the number of polymorphisms that result from transitions will be higher
than those that are transversions, but this excess is only evident in very closely re-
lated or recently diverged species. For instance, all (100%) 7 substitutions of 112
COI base positions are transition differences between two closely related members
of theEquusgenus, the extant mountain zebra and extinct quagga (Higuchi et al.,
1984). With increased sequence divergence, the proportionof observed transition
differences is expected to decrease. This has been observedin invertebrate COI
(fruit flies, the spruce budworm pest, and ground bettles; Satta, Ishiwa and Chigusa,
1987; Sperling and Hickey, 1994; Martinez-Navarro, Galianand Serrano, 2005)
as well as other genetic segments (e.g., COII, NADH dehydrogenase, ribosomal
RNA) and organisms (e.g., insects, rat versus both cow and human and between
cow and mouse; Brownet al., 1982; Brown and Simpson, 1982; DeSalleet al.,
1987; Liu and Beckenbach, 1992). The disappearance of transitions (or accumula-
tion of transversions) may be due to multiple substitutionsat the same site, perhaps
resulting in eventual saturation (no change in sequence divergence despite increas-
ing time or a poor signal-to-noise ratio) (Brownet al., 1982). It is possible that the
observed base difference may not have been achieved in one step and may be the
result of two or more base substitutions (an observed transition may mask, previous,
multiple tranversions or is the result of transversions that have erased themselves;
Holmquist, 1983). Using COII data, Jukes (1987) showed thatmost of the accu-
mulated transversions occurred at previously unsubstituted sites (also observed in
other genes and organisms) and multiple hits and saturationis likely neglible in
recently diverged or closely related species. The lack of correspondence between
observed patterns and true substitution mechanisms at worksuggest that the mod-
elling of heterogeneous base composition, from a high proportion of transitions, is
warranted.

Since both population subdivision with gene flow and heterogeneous base com-
position from transition bias influence the evolutionary history and genetic signa-
tures in data, the theory of segregating sites should be modified to reflect the influ-
ence of these forces on the observed level of variation. The modified model should
provide a more realistic representation of the evolutionary dynamics of species and
improve the metric for accurate species identification.

Here we attempt to develop an extended mathematical model ofthe theory of
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segregating sites under the joint effect of population structure with migration and
unequal base composition and substitution rates in mtDNA. The modified model
should produce more realistic probability estimates of thegenetic variability in a set
of sequences (relative to the original model). The model will compare the structure
of variation observed in 1 to 3 subdivided populations and when segregating sites
are categorized as transitions and transversions.

We will first briefly describe the original theory of segregating sites. This is fol-
lowed by a description of the model for population subdivision with migration and
the modified recursion equations adopting this model. This description format is re-
peated for modelling transitions and transversions. Finally the modified probabilty
distributions of the genetic diversity expected under the influence of each biological
phenomenon are presented and discussed.

4.3 THEORY

4.3.1 A review of the basic theory of segregating sites

The goal is to assign an unknown DNA sequence,x, to the correct taxonomic group,
k. The probability of this assignment (PrOr) is

Pr(x ∈ k|x,D, θ)

whereD is a database of known sequences with distinct taxonomic groups andθ
(= 4Neµ) is a known collection of population mutation rates. The assignment of
sequencex must be made to one of the taxonomic groups.

Each taxonomic group is represented byn sequences. According to the theory
of segregating sites,θ is reflected in the number of segregating sites,s, between a
set of sequences. Using Bayes rules,PrOr is calculated as:

Pr(x ∈ k|x,D, θ) ∼
Pr(sk|nk, x ∈ k, θk)/Pr(sk|θk)

∑

j Pr(sj|nj, x ∈ j, θj)/Pr(sj|θj)
(4.1)

where the probability of membership of the unknown sequencex to taxonomic
groupk is

Pr(sk|nk, x ∈ k, θk)

Following Lou and Golding (2010), the basic recursive definition for the proba-
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bility that a sample ofnk sequences will havesk segregating sites is:

Pr(sk|nk, x ∈ k, θk) =
θk

θk + nk − 1
Pr(sk − 1|nk, x ∈ k, θk)

+
nk − 1

θk + nk − 1
Pr(sk|nk − 1, x ∈ k, θk) (4.2)

This recursion assumes an infinite sites model (Kimura, 1969), the samples are
equilibrium single random mating populations of sizeNe andµ mutations occur per
locus per generation.

4.3.2 Modelling population spatial substructure

The methodology will follow Golding (1984, 2002) and Lou andGolding (2010)
to calculate equilibrum recursion equations to describe the number of segregating
sites between 2 or more populations.

To extend the theory to the number of segregating sites that might be obtained
in a sample that originates from a subdivided population, each taxonomic group,k,
has its sample of sequences,Nk, divided into a total ofd subpopulations or demes.
For each demei,Ni is the number of diploid sequences that undergo random mating
internally andni is the number of sampled sequences.

Let mst designate the probability of migration, per generation, from demes to
demet. We will assume that migration is reciprocal or symmetric (∀s∀t : mst ≡
mts) and that it is irreducible (no isolated subsets of demes).

To maintain constant population sizes, within each deme, over time, it is neces-
sary that the migration parameters satisfy a detailed balance,

∑

t

mstNs =
∑

r

mrsNr

such that the number leaving is equal to the number entering the sth deme.
Generations are assumed to be discrete and non-overlapping. The model is depicted
in figure 4.1.
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Figure 4.1: A subdivided population represented as a lattice (dashed lines) withd
demes (e.g., four demes). Each deme consists ofNi diploid sequences and each
sequence is permitted to migrate to and from each deme at an equal rate ofm
sequences/deme/generation. Letni be the number of sampled sequences from deme
i.

4.3.3 Modified theory of segregating sites with population spa-
tial substructure

Equilibrium recursion equations can be derived to describethe number of expected
segregating sites between 2 or more populations from one generation to the next.

Terms denoted by a prime represent an equivalent probability in the next gener-
ation. The population substructure of sequences is denotedwithin square brackets;
for example,Pr(s|[2, 1]) denotes a total of three sequences (2 are found in the first
subpopulation and 1 is found in second subpopulation).

Pr(s|n) ′ = (1−
∑

i

niµ−
∑

i

ni

∑

j 6=i

mji −
∑

i

ni(ni − 1)
1

4Ni

) · Pr(s|n)

+
∑

i

niµ · Pr(s− 1|n)

+
∑

i

ni

∑

j 6=i

mji · Pr(s|...ni − 1, nj + 1, ...)

+
∑

i

ni(ni − 1)
1

4Ni

· Pr(s|...ni − 1, ...) (4.3)

If N ≡ Ni, m ≡ mji then at equilibrium,
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Pr(s|n) = (1−
∑

niµ−
∑

nim−
∑

ni(ni − 1)
1

4N
) · Pr(s|n)

+
∑

niµ · Pr(s− 1|n)

+
∑

nim ·
∑

j

Pr(s|...ni − 1, nj + 1, ...)

+
∑

ni(ni − 1)
1

4N
· Pr(s|...ni − 1, ...) (4.4)

Combining like terms on the left side,

(
∑

niµ+
∑

nim+
∑

ni(ni − 1)
1

4N
) · Pr(s|n)

=
∑

niµ · Pr(s− 1|n)

+
∑

nim ·
∑

j

Pr(s|...ni − 1, nj + 1, ...)

+
∑

ni(ni − 1)
1

4N
· Pr(s|...ni − 1, ...) (4.5)

If θ = 4Nµ andM = 4Nm then,

(
∑

niθ +
∑

niM +
∑

ni(ni − 1)) · Pr(s|n)

=
∑

niθ · Pr(s− 1|n)

+
∑

niM ·
∑

j

Pr(s|...ni − 1, nj + 1, ...)

+
∑

ni(ni − 1) · Pr(s|...ni − 1, ...) (4.6)

and the probability that a sample ofn sequences will haves segregating sites in
a subdivided population with migration is:
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Pr(s|n) =

∑

niθ
∑

niθ +
∑

niM +
∑

ni(ni − 1)
· Pr(s− 1|n)

+

∑

niM
∑

niθ +
∑

niM +
∑

ni(ni − 1)
·
∑

j

Pr(s|...ni − 1, nj + 1, ...)

+

∑

ni(ni − 1)
∑

niθ +
∑

niM +
∑

ni(ni − 1)
· Pr(s|...ni − 1, ...) (4.7)

Note that whenn = n1 = n, with all otherni = 0 and withm = 0, equa-
tion (4.3) reduces to,

Pr(s|n) ′ = (1− nµ− n(n− 1)
1

4N
) · Pr(s|n)

+ nµ · Pr(s− 1|n)

+ n(n− 1)
1

4N
· Pr(s|n− 1) (4.8)

and ifθ = 4Nµ, M = 4Nm then at equilibrium,

(θ + n− 1) · Pr(s|n) = θ · Pr(s− 1|n) + (n− 1) · Pr(s|n− 1) (4.9)

or

Pr(s|n) =
θ

θ + n− 1
· Pr(s− 1|n)

+
n− 1

θ + n− 1
· Pr(s|n− 1) (4.10)

which is the familiar recursion equation for the number of segregating sites in a
single population (4.2).
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4.3.4 Modelling transitions and tranversions

The number of segregating sites may be categorized into two or more substitutional
categories. Here we will consider transitions and transversions. However, more
information may be captured by categorizing even further: transitions may be de-
scribed as interchanges between purines (A and G) or pyrimidines (C and T). And, if
not symmetric, purine-purine interchanges may be recordedas ‘A-to-G’ or ‘G-to-A’
interchanges. Each category is described by a unique rate ofsubstitution. The most
appropriate number and type of categories to use depends on the level of resolution
desired.

4.3.5 Modified theory of segregating sites considering heteroge-
neous substitution rates

For a sample ofn sequences, letS = [sxy] be a matrix of observed differences
(segregating sites) wheresxy is a difference that records a change from nucleotide
x to nucleotidey and

x, y = {A,G,C, T}

For example,[sxy ≡ 0] indicates 0 segregating sites;[sAG = 3] indicates 3
segregating sites (A→ G); and[sAG = 3, sAT = 2] indicates 5 segregating sites (3
of A → G and 2 of A→ T).

The proportion of segregating sites is categorized by all possible nucleotide
interchanges and each is characterized by a unique substitution rate,µxy.

Pr(S|n) ′ = (1− n
∑

x

∑

x 6=y

µxy − n(n− 1)
1

4N
) · Pr(S|n)

+ n
∑

x

∑

x 6=y

µxy · Pr([sxy − 1]|n)

+ n(n− 1)
1

4N
· Pr(S|n− 1) (4.11)

Let µS be a matrix of the rates of substitution for each category. Then let
∑

x

∑

x 6=y µxy ≡ µS,
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Pr(S|n) ′ = (1− nµS − n(n− 1)
1

4N
) · Pr(S|n)

+ nµS · Pr([sxy − 1]|n)

+ n(n− 1)
1

4N
· Pr(S|n− 1) (4.12)

If µS ≡ µ (the rates of substitution for each category are equal) thenat equilib-
rium we have (4.2).

More generally, assuming symmetry (between interchanges of the same bases,
such as A2G = G2A), letα andβ represent the substitution rate for transitions,P
(purine-purine, pyrimidine-pyrimidine interchanges), and transversions,Q (purine-
pyrimidine interchanges), respectively.

Pr(S|n) ′ = (1− nα− nβ − n(n− 1)
1

4N
) · Pr(S|n)

+ nα · Pr([sP − 1]|n)

+ nβ · Pr[(sQ − 1]|n)

+ n(n− 1)
1

4N
· Pr(S|n− 1) (4.13)

Assuming equilibrium and combining like terms on the left side,

(α + β + (n− 1)
1

4N
) · Pr(S|n) = α · Pr([sP − 1]|n)

+ β · Pr[(sQ − 1]|n)

+ (n− 1)
1

4N
· Pr(S|n− 1) (4.14)

Let θα = 4Nα andθβ = 4Nβ,
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(θα + θβ + n− 1) · Pr(S|n) = θα · Pr([sP − 1]|n)

+ θβ · Pr([sQ − 1]|n)

+ n− 1 · Pr(S|n− 1) (4.15)

and the probability that a sample ofn sequences will haves segregating sites
partitioned into two substitution categories is:

Pr(S|n) =
θα

θα + θβ + n− 1
· Pr([sP − 1]|n)

+
θβ

θα + θβ + n− 1
· Pr([sQ − 1]|n)

+
n− 1

θα + θβ + n− 1
· Pr(S|n− 1) (4.16)

4.4 RESULTS

4.4.1 Expectations of a modified theory of segregating sites

The equilibrium recursion equations calculate the probability of obtaining a certain
number of segregating sites in samples from subdivided populations with migration
and samples that exhibit heterogeneous substitution rates.

In the absence of population substructure with migration and heterogeneous
substitution rates, using equation (4.2) and assumingθ = 2.0, the probabilities of 0
and 1 segregating sites in 2 sequences arePr(0|2) = 0.33 (Figure 4.2A,θ=2.0) and
Pr(1|2) = 0.22 (Figure 4.2B,θ=2.0) respectively.

Given population substructure and migration, when the rateof migration is zero,
it is expected that the probability of obtaining a number of segregating sites should
be the same as the probability seen in a population without substructure. At inter-
mediate rates of migration, that are neither zero nor infinite, the probability of ob-
serving a number of segregating sites differs depending on the population structure
of the sampled sequences. Among sequences sampled from the same population
(e.g., [2,0]), the probability should decrease to reflect the decreasing chance that all
the observed variation originates from sequences in one deme in light of migration.
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Figure 4.2: Probability ofs segregating sites inn sequences whenθ = 2.0 and 4.0.
The probability values are calculated using equation (4.2).
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Among sequences sampled from 2 or more populations (e.g., [2,1]), the probability
of variation should increase to reflect the greater chance that the variation may stem
from sequences found in different demes. When the rate of migration is very large
or infinite, the probability of variation reflects a metapopulation that acts as a single
population. Thus, the probability of variation is expectedto reflect a larger number
of sampled sequences.

In the case of unequal base substitutions, in the most general case of categoriz-
ing the proportion of segregating sites as transitions and tranversions, the modified
probability value reflects the chance that the observed variation is due to different
combinations of each substitution type; this is accomplished by incorporating dif-
ferent rates for each substitution type. For example,θ is then expressed asθα +
θβ. Then the probabilities of 0 and 1 segregating sites, based on the original and
modified recursion equations, are:

Pr(0|2) =
1

θ + 1
Pr(1|2) =

θ

θ + 1
· Pr(0|2)

Pr([0]|2) =
1

θα + θβ + 1
Pr([1]|2) =

θα
θα + θβ + 1

· Pr(0|2)

+
θβ

θα + θβ + 1
· Pr(0|2)

respectively, whereS = [sxy] = [s] = [sP , sQ] is a matrix of observed segregating
sites partitioned into transitions,P , and tranversions,Q. While the probability
values of the modified and original recursion equations remain the same, the left and
right terms, or component probabilities, ofPr([1]|2) should differ depending on the
number and substitution rate of each type of substitution. In general, probability of
a transition should be greater if the observed number of transitions are greater than
the number of transversions and vice versa.

4.4.2 Effect of population spatial substructure and migration

We focus on the results where sequences are sampled from a total of 2 subpopula-
tions.

Sequences in 1 subpopulation

Migration is zero. The probabilities of 0 and 1 segregating sites in 2 sequencesin
1 (of 2) subpopulation arePr(0|[2, 0]) = 0.33 andPr(1|[2, 0]) = 0.22, respectively
(Figure 4.3A and B,M ∼ 0). The samples or individuals remain in their respective
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Figure 4.3: Probability ofs segregating sites in 2 sequences from 2 subpopula-
tions when0.0001 ≥ M ≥ 100. The probability values are calculated using equa-
tion (4.7).

demes and the 2 sequences found in the same subpopulation acts as a single popula-
tion with no hidden substructure. So all of the variation is entirely attributed to the
sequences in that 1 subpopulation. As expected, the resultsprovided by our recur-
sion equations agree with theoretical probability values in the absence of population
substructure (△ in figure 4.3A and B,M ∼ 0, correspond to those in figure 4.2A
and B,θ = 2.0).

Intermediate migration. When the migration rate is greater than zero but less than
being infinitely large (i.e.,0 < M < ∞) the probability decreases for 2 sequences
(Figure 4.3A and B). As the rate of migration increases, samples are permitted to
move among subpopulations more easily. Thus, the probability of observing segre-
gating sites in a sample of sequences decreases because the variation may originate
from samples in other demes. Thus, the decrease in probability suggests that the
number of segregating sites in sequences of 1 subpopulationis less likely if varia-
tion is permitted to come from other subpopulations via migration.

Migration is very large. When migration is very large (i.e.,M = 100), the proba-
bilities of observing 0 and 1 segregating sites in 2 sequences in 1 (of 2) subpopula-
tions arePr(0|[2, 0]) = 0.20 andPr(1|[2, 0]) = 0.16, respectively (Figure 4.3A and
B, M = 100). Sequences are permitted to move easily between subpopulations,
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allowing the metapopulation to act as a single population but it is characterized by
more individuals or a higher level of variation (i.e., doubling of θ to 4.0). So it
is not surprising that the results from our modified recursion equations should and
do approach the values expected from equations describing asingle population (△
correspond to those in figure 4.2A and B,θ = 4.0).

Sequences in more than 1 subpopulation

Migration is zero. Sampling 1 sequence from each of 2 (of 2) subpopulations,
the probabilities of 0 and 1 segregating sites arePr(0|[1, 1]) = 0 andPr(1|[1, 1])
= 0, respectively (Figure 4.3C and D,M ∼ 0). At equilibrium, when the sampled
sequences are in different demes, the probability of observing segregating sites is 0
because segregating sites cannot be observed among sequences in different demes.
Provided that we do not consider an infinite number of sequences, the result is true
for any number of sequences (Figure 4.4C and D,M ∼ 0).

Intermediate migration. When sequences are spread out among several demes, an
increasing migration rate permits mixture among samples orindividuals confined
to distinct demes. Since we expect that there is a greater chance that the variation
is attributed to samples from distinct demes, with increasing migration rate, there
should be a corresponding increase in the probability of observing segregating sites
among sequences found in subdivided populations and this iswhat is observed (Fig-
ures 4.3C and D).

Migration is very large. Whether sequences are in 1 subpopulation (i.e., [2,0]) or
both (i.e., [1,1]), the probabilities are the same (Figure 4.3, M = 100) and agree
with the theoretical outcome of a metapopulation acting as asingle population (Fig-
ure 4.2A and B,θ = 4.0).

Increasing the number of sequences sampled from subdividedpopulations

The probability patterns of 0 and 1 segregating sites observed for 3 sampled se-
quences from 2 subdivided populations are similar to those observed for 2 sampled
sequences but smaller (Figure 4.4). Across increasing migration rates, assuming
θ = 2.0, the probabilities are consistently smaller than probabilities based on 2 se-
quences because observing 0 and 1 segregating sites in more sequences is less likely.

Increasing the number of subdivided populations

When the total number of subpopulations increase, the pattern of probability
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Figure 4.4: Probability ofs segregating sites in 3 sequences from 2 subpopula-
tions when0.0001 ≥ M ≥ 100. The probability values are calculated using equa-
tion (4.7).

values expected with 2 sampled sequences in 3 subpopulations should be similar
to the pattern observed in 2 subpopulations. For example, the trend of probability
values forPr(0|[2, 0, 0]) are similar to those seen forPr(0|[2, 0]) except that the
slope declines steeply as the migration rate becomes very large (Figure 4.5A versus
Figure 4.3A). With the addition of a third subpopulation, when the migration rate is
very large, the probability of observing 0 segregating sites is smaller because it is
expected that, in 3 subpopulations, the variation will reflect a larger number of sam-
pled sequences (that is, 3θ). The same reasoning can be applied toPr(0|[1, 1, 0])
except that its probability slope increases mildly as the migration rate becomes very
large (Figure 4.5B versus Figure 4.3C).

Probability distribution of the modified theory of segregating sites

We examine the probability distributions of the number of segregating sites in
samples from a single or subdivided population.

To avoid ambiguity, definitions of several terms used to describe a probability
distribution are provided:

tail region of least frequent occurring values in a distribution
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Figure 4.5: Probability of 0 segregating sites in 2 sequences from 3 subpopula-
tions when0.0001 ≥ M ≥ 100. The probability values are calculated using equa-
tion (4.7).

skew measure of asymmetry of the probability distribution

negative skew left tail of the probability distribution is longer than theright (i.e.,
there are few low values) and the bulk of the mass (values) lieto the right
of the distribution. Synonymous terms include left-skewed, left-tailed, and
skewed to the left.

positive skew right tail of the probability distribution is longer than the left (i.e.,
there are few high values) and the bulk of the mass lie to the left of the distri-
bution. Synonymous terms include right-skewed, right-tailed, and skewed to
the right.

Sequences in 1 subpopulation.For 2 sequences, when the migration rate is zero,
the mass of the distribution is concentrated on the left (i.e., positively skewed). In
other words, the probability decreases as the number of segregating sites increases.
The trend is true and the probability values are the same for sequences sampled
from a single or subdivided population (Figure 4.6A, C M=0.0001,©).

When migration is very large, the probability distributionis positively skewed
for samples from a single and subdivided population. But, relative to a single pop-
ulation, the probabilities from the subdivided data set arelower when s>=3 (Fig-
ure 4.6A, C, M=100,△).

Sequences in more than 1 subpopulation.As expected, when migration is near
zero, the probability distribution is left-tailed (i.e., the probability is 1 when the
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Figure 4.6: Probability distributions ofs segregating sites inn sequences without
(A and B) and with (C-F) subdivided populations when0.0001 ≥ M ≥ 100. The
probability values are calculated using equations (4.2) and (4.7)
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number of segregating sites is infinite; Figure 4.6E, M=0.0001,©).

When migration is very large, the probability distributionis similar, but with
lower values, relative to the positive skew seen with samples in 1 subpopulation
(Figure 4.6E, M=100,△).

More sequences in 1 subpopulation.For 3 sequences, the probability distribution
mass is, similarly, positively skewed but slightly peaks when there are 1 and 2
segregating sites. This trend is the same for sequences froma single or subdivided
population (Figure 4.6B, D M=0.0001,©).

When migration is very large in a single population, the peakof the positively-
skewed distribution occurs when there are 2 segregating sites (Figure 4.6B, s=2,
M=100, △). However, with population substructure, the peak is relatively flat
(Figure 4.6D, M=100,△). When there are greater than 5 segregating sites, the
probabilities from a subdivided population are greater (i.e.,Pr(10|3) = 0.037 <
Pr(10|[3, 0]) = 0.090; Figure 4.6B vs D, s=10, M=100,△).

More sequences in more than 1 subpopulation.Similar toPr(s|[1, 1]), when the
migration rate is zero, the tail of the probability is longeron the left and the proba-
bility is 1 when the number of segregating sites is infinite (Figure 4.6F, M=0.0001,
©).

When the migration is very large, the probability distribution is the same as
Pr(s|3) andPr(s|[3, 0]) when there are 0 and 1 segregating sites, intermediate
when 2<=s<=3 (e.g.,Pr(2|3) = 0.106 < Pr(2|[2, 1]) = 0.105 < Pr(2|[3, 0]) =
0.098), smaller when 4<=s<=8 (e.g.,Pr(8|3) = 0.054 > Pr(8|[2, 1]) = 0.052 <
Pr(8|[3, 0]) = 0.093), and intermediate when s>8 (e.g.,Pr(10|3) = 0.037 <
Pr(10|[2, 1]) = 0.043 < Pr(10|[3, 0]) = 0.090) (Figure 4.6F, M=100,△).

4.4.3 Effect of heterogeneous transition and transversionrates
in mtDNA

The original recursion equations (4.2) give the following probabilities that a sample
of n sequences has 0 tos segregating sites:

Pr(s|n) =
θ

θ + 1
· Pr(s− 1|n) =

θs

(θ + 1)s+1
(4.17)
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For n number of sequences, the sum ofPr(s|n), wheres ranges from 0 to
infinity, is 1.

Under the modified recursion equations (4.16), each probability is the sum of
component probabilities and each component probability describes a possible ar-
rangement of the observed segregating sites partitioned into categories. Forn se-
quences and two substitution categories, namely transitions and tranversions,Pr([1]|n)
is composed of two component probabilities: the probability that 1 segregating site
is either a transition (i.e.,Pr([1, 0]|n)) or a transversion (i.e.,Pr([0, 1]|n)). The
number of possible arrangements increases as the number of segregating sites in-
crease. With two substitution categories, each increase inthe number of segregating
sites introduces an additional component probability. Forinstance, there are three
possible arrangments for 2 segregating sites: both segregating sites are either 2 tran-
sitions ([2,0]) or 2 transversions ([0,2]) or 1 transition and 1 transversion ([1,1]).

The following equations describe the breakdown ofPr([s]|n) into its compo-
nent probabilities for observing up to 5 segregating sites in 2 sequences:

Pr([0]|2) = Pr(0|2)

Pr([1]|2) = Pr([1, 0]|2) + Pr([0, 1]|2)

Pr([2]|2) = Pr([2, 0]|2) + Pr([0, 2]|2) + Pr([1, 1]|2)

Pr([3]|2) = Pr([3, 0]|2) + Pr([0, 3]|2) + Pr([1, 2]|2) + Pr([2, 1]|2)

Pr([4]|2) = Pr([4, 0]|2) + Pr([0, 4]|2) + Pr([1, 3]|2) + Pr([3, 1]|2) + Pr([2, 2]|2)

Pr([5]|2) = Pr([5, 0]|2) + Pr([0, 5]|2) + Pr([1, 4]|2) + Pr([4, 1]|2) + Pr([2, 3]|2)

+ Pr([3, 2]|2)

In general, forn number of sequences, the sum ofPr([s]|n), where[s] ranges
from 0 to infinity, is 1.

At equilibrium, the probabilities that a sample ofn sequences has 0 to[s] seg-
regating sites are:

Pr([s]|n) =
θα + θβ

θα + θβ + 1
· Pr([s− 1]|n) =

(θα + θβ)
s

(θα + θβ + 1)s+1
(4.18)

A comparison of the solved probabilities for the original (4.17) and modified
recursion equations (4.18) show that the probability values are the same. But the
values for each component probability will depend on the substitution rates for each
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category.

For instance, ifθα = 1, θβ = 1, then

Pr([1]|2) =
θα

θα + θβ + 1
· Pr([0]|2) +

θβ
θα + θβ + 1

· Pr([0]|2)

Pr([1]|2) =
1

1 + 1 + 1
· Pr([0]|2) +

1

1 + 1 + 1
· Pr([0]|2)

Pr([1]|2) =
1

3
·
1

3
+

1

3
·
1

3
=

1

9
+

1

9
Pr([1]|2) = 0.111 + 0.111

The first and second terms ofPr([1]|2) are the probabilities that 1 segregat-
ing site is either a transition (Pr([1, 0]|2)) and or transversion (Pr([0, 1]|2)) in 2
sequences.

If θα = 2.0,θβ = 0.0, then

Pr([1]|2) =
2

0 + 2 + 1
· Pr([0]|2) +

0

0 + 2 + 1
· Pr([0]|2)

Pr([1]|2) =
2

3
·
1

3
+ 0 ·

1

3

Pr([1]|2) =
2

9
+ 0

Pr([1]|2) = 0.222 + 0

If θα = 1.5,θβ = 0.5, then

Pr([1]|2) =
1.5

1.5 + 0.5 + 1
· Pr([0]|2) +

0.5

1.5 + 0.5 + 1
· Pr([0]|2)

Pr([1]|2) =
1.5

3
·
1

3
+

0.5

3
·
1

3

Pr([1]|2) =
1.5

9
+

0.5

9
Pr([1]|2) = 0.167 + 0.0556

The distribution for 2 component probabilities,Pr([s, 0]) andPr([0, s]), are
shown in figure 4.7.

The shape of the distributions are similar toPr(s|n). For instance, for each
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Distribution of component probabilities [s,0] & [0,s]
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Figure 4.7: Component probabilities ofs segregating sites in 2 sequences with
heterogeneous substitution rates. Let the substitution rates for transitions (P ) and
transversions (Q) beθα andθβ respectively. A.θα = 1.0 andθβ = 1.0, B. θα = 2.0
andθβ = 0.0, C.θα = 1.5 andθβ = 0.5, and D.θα = 0.5 andθβ = 1.5. Whenθα =
1.0 andθβ = 1.0 (A), the probabilities of observing transitions or transversions are
equal. Ifθα > θβ (B, C), the probability of observing a transition is greaterthan
observing a transversion. Ifθα < θβ (D), the probability of observing a transversion
is greater than observing a transition.
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unique pair of heterogeneous substitution rates, bothPr([s, 0]|2) andPr([0, 2]|2)
are right-tailed (that is, there are few high probability values as the number of
segregating sites increase). A similar trend is observed for Pr(s|2) (Figure 4.6A,
M=0.0001,©).

The probability of observing 0 segregating sites (Pr([0, 0]|n)) is independent of
whether heterogeneous transition and tranversion rates are considered (e.g.,Pr(0|2)
= Pr([0, 0]|2) = 0.333). With 1 or more segregating sites, the probability of observ-
ing a transition or transversion depends on the number and rate of each type of
substitution. Whenθα = 1.0 andθβ = 1.0, the probability of 1 or more transi-
tions (Pr([s, 0]|2)) is identical to the chance of observing 1 or more transversions
(Pr([0, s]|2); Figure 4.7A△ vs � respectively). Whenθα > θβ and there are
more observed transitions than transversions, the probability of observing a transi-
tion is higher than observing a transversion (Figure 4.7B and C). This is especially
true whenθα = 2.0 andθβ = 0.0; the chance that the variation originates from 1 or
more transversions is 0 (Figure 4.7B�). When the transversion substitution rate
is greater than the rate for transitions, the probability that the observed variation
originates from transversions is greater than the latter (Figure 4.7D).

Similar, flattened, distribution patterns are observed when 1 or 2 segregating
sites are fixed as transitions or transversions (Figures 4.8and 4.9). The flattened
distributions occur because the chance of observing higherlevels of variation is
smaller with 2 sequences. The flattened effect is stronger with 2 fixed transitions or
transversions; the probability of observing variation is virtually 0 with 1 additional
segregating site (Figure 4.9C).

4.5 DISCUSSION

An important and consistently used population genetic parameter to describe the
diversity pattern of a set of sequences isθ and it is the product of the effective
population size and mutation rate. The Watterson (1975) equation describes the
relationship betweenθ and the expected number of segregating sites (total number
of substitutions observed in the data).

Inaccurateθ estimates may result when the assumptions of the model are vio-
lated. For example, violations may arise from sequences sampled from geograph-
ically dispersed species or sequences that exhibit heterogeneous base composition
from a transition bias.

This study investigated the effect of modelling populationsubstructure with mi-
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Distribution of component probabilities [s,1] & [1,s]
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Figure 4.8: Component probabilities ofs segregating sites, given 1 transition or
transversion, in 2 sequences with heterogeneous substitution rates. Let the substi-
tution rates for transitions (P ) and transversions (Q) beθα andθβ , respectively. A.
θα = 1.0 andθβ = 1.0, B. θα = 2.0 andθβ = 0.0, C.θα = 1.5 andθβ = 0.5, and D.
θα = 0.5 andθβ = 1.5. The distributions are similar, but flattened, relative to those
seen in figure 4.7.
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Distribution of component probabilities [s,2] & [2,s]
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Figure 4.9: Component probabilities ofs segregating sites, given 2 transitions or
transversions, in 2 sequences with heterogeneous substitution rates. Let the substi-
tution rates for transitions (P ) and transversions (Q) beθα andθβ respectively. A.
θα = 1.0 andθβ = 1.0, B. θα = 2.0 andθβ = 0.0, C.θα = 1.5 andθβ = 0.5, and D.
θα = 0.5 andθβ = 1.5. The distributions are similar, but flattened, relative to those
seen in figures 4.7 and 4.8.

79



Ph.D. Thesis - M. Lou; McMaster University - Biology

gration and heterogeneous substututions rates on estimating the probability of ob-
serving a number of segregating sites in a sample of sequences. To our knowledge,
this is the first study that attempts to modify the theory of segregating sites to ac-
count for biological phenomena known to affect levels of variation and an estimate
of an important measure of genetic diversity,θ, for a sample of sequences or popu-
lation.

Our results highlight the importance of considering various biological forces as
potential sources of variation when describing genetic diversity in a set of sequences
or population. Specifically, the recursion equations of themodified theory of seg-
regating sites generate probability values that more accurately reflect the chance of
observing a number of segregating sites when processes thatcontribute to variation,
previously assumed to have little effect and were not modelled, are accounted for.

Representative probability values of the observed levels of sequence diversity
should be able to improve the assignment of an unknown query to its correct species.
An unknown query should assign to a species that it is most similar to or shares the
least number of differences with. Given the current theory of segregating sites,
assuming informative sequences (that is, the data sufficiently capture intraspecific
variation), there should be more observed differences between sequences from dif-
ferent subpopulations thus resulting in an unusually highθ value, even though the
sequences originate from a single species. And an assignment of an unknown query
to this group will likely be rejected, even though the query does belong. Under the
modified theory, which allows for the possibility of variation from other sources,
the estimated value ofθ, if modelled correctly, should more closely resemble the
true value and a correct assignment might be made. This is in line with our previ-
ous study where inflatedθ values were observed when species were composed of
one or more conspecific sequences sampled from distinct demes, suggesting that the
system was not modelled correctly and the increase in variation is, falsely, from a
higher population mutation rate rather than population substructure (Lou and Gold-
ing, 2012).

Different substitution pressures may exist between different species. Upon ex-
amining counts of each type of change, the pattern of each substitution type should
be similar between conspecifics. Therefore, a similar pattern of substitution types
andθ values should exist between an unknown query and its speciesof origin and
allow for accurate specimen identification. Yang (1996) showed that failing to ac-
count for among-site rate variation (ASRV) or different substitution rates at dif-
ferent sites will severely underestimate levels of geneticvariation and transition-
transversion rate ratios. While our study explored the partition of segregating sites
as transitions and tranversions, depending on the data and the desired level of res-
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olution, a different choice of partitions may be more appropriate. For sequences
with low divergences, it may be sufficient to simply count thenumber of transitions
and transversions and similar proportions of each partition type would be expected
among conspecifics. For a finer level of resolution, the abovestrategy may be ap-
plied to particular sites since the transition/transversion ratio has been shown to dif-
fer among nondegenerate, twofold degenerate, and fourfolddegenerate sites in COI
(Xia, Hafner and Sudman, 1996; Martinez-Navarro, Galian and Serrano, 2005).

Confidence in our results could be strengthened by conducting a comparison
study between the original and modified theories on the performance of specimen
identification. Specifically, under the modified model, the proportion of correct
assignments should increase andθ estimates should be closer to the true value. The
methodology follows from Lou and Golding (2012).

While our method may be used with all types of genetic data, a limitation of our
method an the assumption associated with the use of the infinite sites model. That
is, each mutation always occurs in a new position in a long DNAsequence with a
low mutation rate (Kimura, 1969). To accommodate this assumption, our modified
method should be used with species data that have short timesto speciation (i.e.,
recently diverged or closely related species) or where the occurrence of multiple
hits and saturation is very small or neglible (e.g., lack of homoplasy or similarity
arising from parallel or convergent evolution). While our method may be less robust
when these assumptions are not met, other factors, that may have a greater effect,
may be more likely to confound the results first.

In fact, these other factors may serve as significant sourcesof variation that
may be used to further refine the model and provide potential avenues for future
research. Our current research investigated different substitution biases (transitions
and transversions), each with different rates. It is possible that the rates may change
over time. That is, positions may evolve at different rates in different lineages. The
term used to describe this phenomenon is among-lineage ratevariation (ALRV)
or heterotachy (Simonet al., 2006). Though Schwartz and Mueller (2010) have
shown that ALRV may have a limited effect on phylogenetic estimation. Other
confounding factors may include introgression (an extremeform of hybridization
where the genetic content of one species is completely replaced by that in another)
and selective sweeps (the favoured mutation and its neighbouring neutral variation
become more prevalent, reducing total genetic variation).Introgression has been
documented inDrosophilamtDNA (Ballard, 2000b) and, along with heterotachy,
can cause different species to look prematurely similar. Incontrast, selective sweeps
may artificially increase reciprocal monophyly and may not reflect the evolutionary
relationships among populations (Ballard and Rand, 2005).
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In addition to the biological or biotic factors mentioned, there are potential abi-
otic sources affecting polymorphism levels that models will need to address. These
include machine-read errors (i.e., sequencing) and systemic errors (e.g., storage,
preparation, and computational processing). Each error will likely increase the
number of rare variant sites (i.e., polymorphic positions where one sampled se-
quence, or singleton, exhibits a unique base relative to theshared nucleotide of
others) thus it is especially problematic for approaches based on segregating sites.
The impact of error on parameter estimation is not new and increased sequence
coverage may lessen error bias but only if it is able to overcome low signal-to-noise
ratio, common to low diversity sequences (Clark and Whittam, 1992). If the error
rate is unknown, using only shared polymorphisms is an option but this will result
in a loss of information because singletons and other randomerrors are ignored
(Knudsen and Miyamoto, 2009). If the error rate is known, it may be incorpo-
rated using Phred quality scores (sequence error rate; Ewing and Green, 1998) or
an error rate for each nucleotide site (Liuet al., 2010). However, it is important to
note that different sequencing platforms, and individual runs on each platform, may
have different error distributions. Thus, the theory of segregating sites may benefit
from including terms for the accurate modelling of sequenceerror when it is not
negligible (that is, when the error rate is high or the samplesize is large or both).

Ultimately, our modified theory of segregating sites helps to untangle the true
source of variation, allows for better estimates of the genetic diversity seen in a
sample of sequences and confirms our hypothesis that it is important to account for
biological phenomena that can affect the accuracy of descriptors used to summarize
the level of genetic variation.
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Part II

CONCLUSION
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This thesis describes the usability of a standardized mitochondrial marker and
Bayesian methods or models to reflect the evolutionary dynamics of species for ro-
bust identifications. Specifically, chapters one and three,on the integrity and usabil-
ity of existing sequence data for robust identifications, suggest that caution should
be exercised when using GenBank (non-barcode) sequences (potential evidence for
sequence and taxonomic errors from unusually divergent within-species sequences),
and data informativeness (level of within-species variation) can be improved with
the addition of a single sample from a different region of a species distribution. In
chapter two, a new Bayesian tree-less statistical method, based on segregating sites,
provided fast, high probability assignments, even in difficult assignment scenarios
characterized by an absence of a “barcoding gap” (overlap inthe level of within-
and between-species variation). In conjuction with chapter two, chapters three and
four show that the pattern of segregating sites (via population genetic parameter,
Watterson (1975)’sθ) is an informative measure of genetic diversity. The perfor-
mance of both the segregating sites algorithm (for assignment) and the modified
theory of segregating sites (to predict the true level of genetic diversity in a set of
sequences or population) improved when accounting for biological proccesses (i.e.,
population substructure with migration and unequal base composition and substitu-
tion rates) that influence genetic heterogeneity.

Overall, the derived analyses and models reveal and promotethe importance of
integrating different sources of information to obtain robust species identifications.
This is achieved by improving the correspondence between the data and model
assumptions by understanding the properties of the marker or data and accommo-
dating these properties in the model or method used.

These findings do not argue that segregating site or Bayesianapproaches should
replace the use of other methodologies, but rather should beviewed as supplemen-
tary tools for reflecting species dynamics and may be used at different phases of the
barcoding workflow (i.e., use more-conservative methods when building reference
libraries and less-conservative methods once the intra- and interspecific variation is
sufficiently sampled) or in conjunction with other lines of non-molecular evidence
(e.g., ecological and behavioural).

For simulated and empirical data, the assignment of speciesstatus was based
on the genetic divergence of a single mitochondrial gene, anissue that has been the
subject of much criticism. However, the analyses need not depend on the gene used
- it depends on the number of informative sites and this differs among genes and
at different evolutionary depths (i.e., times). Thus, the theory and methods may be
applied for any set of informative sites.
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Broadly, the culmination of the work presented in this thesis aids the task of
describing and quantifying diversity and highlights the interconnectively that ex-
ists between different evolutionary processes at the genetic and ecosystem level.
Though the standard marker and methods described here are simple representations
of complex processes at work, they have shown to be effectivefor species identifi-
cation and are steps in the right direction.
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