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ABSTRACT

This thesis investigates the effect of different levelsrdbrmation content in se-
guence data from the mitochondrial gene, cytochrome c sridsubunit | (COI),
through the observed number of segregating sites, and a agesin statistical
method on the accuracy of specimen assignments or deliomato its species of
origin. There are four major parts of this thesis.

The first chapter examines the taxonomic accuracy of GenBaglences for
specimen delimitation. In addition to sequence accuraey, @rrors), it is a poten-
tial error that may influence accurate specimen diagnossisaglb,179 barcode se-
guences from 590 species and 8,586 GenBank (non-barcaperszes from 2,900
species, across twelve insect orders, we compared therparige of specimen
assignment between NCBI sequences labelled with and witheuBARCODE”
keyword (indicates both sequence accuracy and taxonomsugmgorted) respec-
tively. We expect the two groups of sequences should haveiadd proportions
of unusually divergent (within-species sequences that poagntially be different
species) and unusually similar (between-species segsiémaemay potentially be
the same species) sequences. In contrast, non-barcoddséaa a high propor-
tion of unusually divergent sequences, suggesting an grsgquence accuracy or
taxonomy or both. However, there was no evidence of unussililar sequences,
suggesting the correct sequence accuracy or taxonomy 8#ttivergence thresh-
old used for delimition in this group may be inappropriatéisTstudy highlights
that caution and a firm understanding of the data should becisgd when using
GenBank data for species diagnoses.

The second chapter examines the assignment performandgayksian statis-
tical assignment method, based on segregating sites, ueseg data that lack a
clear “barcoding gap” (a region defined by the maximum iqteasfic distance and
minimum interspecific distance). To our knowledge, it is fingt tree-less statisti-
cal approach that makes use of segregating sites for sssggiments and is also
very fast (10,000 simulations in roughly 3 seconds with &H@ processor running
Linux). Sequences from the genDsosophilawere used because its taxonomy is
well supported but some pairs of sibling species lack a lalngogap. Using 616
DrosophilaCO1 sequences from 19 species and simulated sequencesgttiadm
performed well in the absence of a barcoding gap. And onlynwthe degree of
incomplete lineage sorting (despite species divergentieeage from one species
may group more closely with a lineage of a less related spe@ehigh does the
method falter, but even then the probability of assignirggihknown to its species
of origin is still high relative to a less closely related sjgs.



The third chapter focuses on the information content ancosamof reference
sequences from a geographically widespread species wghatitin. The assign-
ment of an unknown specimen to a species that is sufficieatlypted (adequate
representation of intraspecific variation) should improMsing tiger moth (genus
Grammig 179 sequences from 13 species and simulated sequencadditien of
at least one reference sequence from a different deme anmnregia species dis-
tribution returns a greater proportion of results that ectly assign an unknown
specimen to its species of origin (e.g., inclusion of ongelised, simulated, se-
guence resulted in an 18% increase, from 26% to 44%, in doassignments).
Thus correct delimition depends on adequate representaticonspecific (within-
species) variation, particularly with species charazegtiby population subdivi-
sion and gene flow, highlighting the importance of proper [@arg protocols to
construct complete reference libraries.

Often there is a disconnect between the assumptions madenoglel and the
true evolutionary signals of the data it is applied to. Thalfichapter seeks to
improve the segregating sites algorithm by incorporatergis to describe the role
that other biological phenomena, namely population susidin, gene flow, and un-
equal base composition from transition bias may have inisgagenetic diversity.
A more comprehensive model should improve estimates of alptipn genetic
parameterd, used to measure the level of variation. The modified pradityalolis-
tributions (of observing a number of segregating sites iualmer of sequences)
are similar but more accurate at resolving the true didtiobuwf genetic variability
relative to those calculated under the original theory. Téwalts reinforces that
subdivided populations with migration and heterogene@aselxomposition and
substitution rates for transitions and transversions slpapterns of variability and
should be considered in models used to describe genetialsighgroups undergo-
ing speciation.
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Species diversity is the main currency of nearly all disogs of biology. Thus,
a good foundation and understanding of species diversiiynbeavith accurate species
identifications. DNA barcoding is an initiative for specidsntification that is based
on the surveillance of sequence diversity in a 648 bp regfahe mitochondrial
gene coding for cytochrome c oxidase, subunit | (COIl), a gleagplays an essential
role in energy production (Capaldi, 1990; Tsukihatal., 1996). In this approach,
the DNA barcode of an unknown sample or specimen is screeyagast a reference
sequence library and a species assignment is made whenghesgguence can be
assigned to a species in the reference library. The impremenf sequencing tech-
nologies has resulted in an unprecedented amount of genéirtnation and to
fully ‘analyze’ the data takes a larger amount of time due vargety of factors that
include insufficient models and methods, fewer taxonomecigpists, sequencing
error, and more complex data sets (e.qg., of poorly knownetregresented groups,
and degraded DNA). Since the success of biological resgeoctservation, foren-
sic, bio-security, economic and consumer policy effortgehel on correct species
identification, to avoid analysis gridlock, attention mhstdirected to overcoming
challenges that hamper accurate species identification@elious studies, the ef-
fect of some factors on barcoding accuracy, such as the nmujmibe or more) and
type (mitochondrial or nuclear) of markers and sampling §&amples per species),
have been investigated. A comparision of the reliabilitgwisting GenBank data,
relative to taxonomist-verified barcode data, for spedestification had not been
investigated. And it is often not the number of loci or sequesthat is important but
the number of informative sites (Simea al., 2006). There are few, if any, studies
that use the pattern of segregating sites as a measuretatdgiecies. The theory
of segregating sites stems from a combination of theorieKibyra (1969) and
Watterson (1975) stating that new mutations can only octsit@s not previously
mutated (that is, no two mutations ever occur at the samg giteen an infinite
number of sites, and they are also not subject to recombmaespectively. There
are many species identification approaches (and new ongg teveloped) and per-
formance among them have been explored (Ross, Murugan ag@dQ8; Austerlitz
et al, 2009; Little, 2011; Parks, MacDonald and Beiko, 2011; Zhenal., 2011).
The following are descriptions of several categories ofhods. Molecular op-
erational taxonomic units or (MOTUSs) and evolutionary #igant units (ESUS)
estimate diversity but fail to connect delineated unitdwikihown species (Kizirian
and Donnelly, 2004; Blaxteet al., 2005). In ecological niche modelling, envi-
ronmental variables are identified and associated with tiosvk distribution of a
species (Raxworthgt al,, 2007). In character-based methods, a unique combination
of diagnostic characters are used to define a species (antophic species con-
cept (ASC)-K.C. and Wheeler, 1990; population aggregatmadysis (PAA)-Davis
and Nixon, 1992; cladistic haplotype analysis (CHA)-BrowE999; Characteris-
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tic Attribute Organization System (CAOS)-Sarkar, Plarmed Besalle, 2008). But
the constant change occuring within species (microevatytrunk and Omland,
2003), reliance on a reference tree (Little, 2011), and tackubtlety of informa-
tive molecular characters (Hudson and Coyne, 2002) may thmeir use. By far,
the three categories of methods most embraced by the bagcoadmmunity are
distance-, tree-, or coalescent-based. The use of genstiémdes and a threshold
(a region, dubbed the “barcoding gap”, that is defined by tlagimum level of
intra- versus minimum level of inter-specific variation drets taken on various val-
ues, notably 2%, 3%, 10x intraspecfic variation, and 1% Hedieal,, 2003, 2004;
Ratnasingham and Hebert, 2007) and variations of it (fismtyapproach Zhang
et al, 2012; support vector machine (SVM)-Seo, 2010) are inaaledaecause they
fail to consider species specific evolutionary rates (His&r, Meyer and Moritz,
2006; Meier, Zhang and Ali, 2008; Lim, Balke and Meier, 2Q#)d a “barcoding
gap” is not necessarily a prerequisite for correct spegsgament (Ross, Muru-
gan and Li, 2008; Virgilioet al, 2010; Hendrichet al,, 2010). In phylogenetic-
or tree-based methods, the query belongs to the clade taiips with (Statistic
Assignment Package (SAP)-Munehal., 2008; pplacer-Matsen, Kodner and Arm-
brust, 2010). Relative to a tree-based method, a coaleswthbd is more complex
because it models demographic information (populatioreties) in conjunction
with backward-in-time evolutionary relationships (phyémetic). An example is
the general mixed Yule-coalescent (GMYC) model that dégtishes population-
level processes within lineages from processes associtiedpeciation and ex-
tinction (Ponset al,, 2006). However, the criterion of reciprocal monophyly-(se
guences of individuals forming their own clades to the esidn of others) of tree-
and coalescent-based methods is arbitrary since a lack épiyly does not pre-
clude speciation (Ross, Murugan and Li, 2008). Furtherprast methods do not
provide a measure of statistical confidence or probabifithe assignment. To ad-
dress this shortcoming, Abdo and Golding (2007) introdueedalescent method
that operates within a Bayesian framework. In general, &Biay method is ideal
because it may attach probabilities to hypotheses (i.@evjges exact versus approx-
imate inferences) by considering the given data (i.e.lihked) with other relevant
information (i.e., prior or past knowledge). However, a Bsign method can suf-
fer computational problems if the data set is very large (et al, 2011). To
overcome computational demands, the coalescent or ‘treg’is Abdo and Gold-
ing (2007) was replaced with a population genetic paraméfatterson (1975)’8,
that can be calculated using the number segregating sites slight modification
produced a faster algorithm and is, to our knowledge, the Biayesian method,
based on the theory of segregating sites (Lou and Goldirn))2@\lso lacking are
models and methods that account for the information cormtethie data and how it
may affect identifications. There have been a number ofgnatieve’ studies advo-
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cating the inclusion of sequences representative of thaspécific (within-species)
variation of geographically widespread species to imphareoding accuracy rates
(Cameron, Rubinoff and Will, 2006; Padial al., 2010; DeWalt, 2011; Goldstein
and DeSalle, 2011). While Bergstenal.(2012) did investigate geographical sam-
pling on barcoding, a threshold of 1% was used and no Bayesiproaches were
evaluated. In addition to population substructure, hegeneous substitution rates
for transitions and transversions shape genetic variaggpecially in mitochondrial
DNA (mtDNA). It has been proposed that the infinite sites m¢k&M) should also
be extended to account for different substitution ratedrmsitions and transver-
sions (Davidet al., 2012).

While studies have shown the importance of a comprehenbirgy and firm
understanding and use of the sequence data and identificagthods for barcod-
ing success, there still exists a lack of correspondencedset data and model
assumptions made by barcoding methods. That is, data arftbdsetio not suf-
ficiently model the evolutionary signals that describe dagitaspecies boundaries.
Ultimately, the main contribution of this thesis, to the lpaaf knowledge that is
species delimitation, is to improve the use and modellinglath by integrating
different sources of relevant information.

The main purpose of this study was to investigate how to imptbe species
assignment framework. This was attempted by investigdtiageffect of different
levels of informativeness (resolving power) of data anda assignment method
on the accuracy of assignments. Specifically, the reseaiestigns driving this the-
sis are: Can GenBank sequences be used to make accurateressig? Can using
a descriptor of variation that models the evolution of thquamces (population
mutation ratef) and including more informative sites (from sampling seues
across the species geographical range) improve the nurhbairect assignments?
How does a method based émr the number of segregating sites perform relative
to comparable assignment methods? Does the modelling tfgital forces in-
fluencing sequence diversity improve probability estimatethe observed level of
variation? Since we are investigating the performance @fta and assignment
methods, the units of analysis are the number of correaasgnts of an unknown
guery to its correct species or how well a proposed modeéssmts the level of ge-
netic variation. Results will be generated through a sesfegssignments using
simulated and empirical data. The simulated sequence didtenadel the evo-
lutionary dynamics expected of animal mtDNA and evolutiyn@elationships of
recently and deeply diverged species. Empirical data willtawn from the Class
Insecta because of easy access to a vast number of sequieatearn describe
easy and hard assignment scenarios, even though the spatemships are well
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defined. To perform the assignments within a statisticahéaork, attention was
focused on using and developing Bayesian methods.

The rest of the thesis is structured, in four chapters, davist The first chapter
investigates if GenBank data, using a species delimitahiceshold (3%), can gen-
erate accurate species assignments. The second chapidugds a new Bayesian
statistical assignment method, based on a widely used atiguigenetic parameter
(9), to describe the level of observed variation in a set of sages, and involves
a comparison of how it performs relative to a similar Bayesiaethod. This is
followed by a chapter to investigate if including informegtisequences (to capture
sufficient intraspecific variation) from across the geobreal range of species aids
the assignment of an unknown query back to this speciesllyitiee last chapter
explores if an improvement in probability estimates of theearved genetic varia-
tion in a set of sequences can be achieved with a model of lemoltinat considers
sequences sampled from subdivided populations and hetaogs base and sub-
stitution rates for transitions (purine to purine or pymmie to pyrimidine inter-
changes) and tranversions (purine to pyrimidine-and vé&gsa+ interchanges).
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Chapter 1

Species identifications within
GenBank are not accurate enough
for barcoding

1.1 ABSTRACT

Many studies have used DNA barcoding for specimen identificaSome of these
studies have relied on sequences taken from GenBank evegltiproblems with
sequence accuracy are well known. We tested the accuracgrB@hk records for
another potential source of error: species identificatiogect sequences were used
to examine the magnitude of this problem as this group isiespeich and is well
characterized. In the absence of errors, a comparison nésegs with and without
the "“BARCODE” designation should have identical characteristics. Narzode
records were found to have an unusually high proportion eérdient conspecific
sequences and expected proportion of similar congeneagicesees. These results
suggest the records within GenBank may have little to nagwothat the standard
3% percent sequence divergence cannot be used to distirgpasies. The latter
explanation is more likely as it has been shown to fail toectty diagnose insect
species for 45% of the cases.
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1.2 INTRODUCTION

The Barcode of Life project has the goal to find a single stethgéce of DNA
that can be used to identify species. The success of thisgirdgpends on several
factors including the support of professional taxonomiatsagreement on a stan-
dardized segment of DNA, the accuracy of the DNA sequendhmgaccuracy of
the identification for the specimens that supply refereraxeddle sequences, and
the statistical accuracy of matching a query sequence ¢oate taxa.

A 648 bp region near thé &nd of mitochondrial cytochrome c oxidase, subunit
| (COI) has been successfully used for specimen identifingtiebertet al, 2003)
and resolving sequence diversity in fungi (Seitgral., 2007), gastropods (Remigio
and Hebert, 2003), amphipod crustaceans (Witt, Threladf ldebert, 2006), bats
(Clare et al,, 2007), birds (Heberet al,, 2004), fishes (Waret al, 2005), and
Lepidoptera (Hebewt al,, 2004; Hajibabaegt al., 2006).

To help ensure the accuracy of specimen identification, thes@rtium for the
Barcode of Life has set up a collection of standards that Ishioet met for bar-
code records. These standards include methods of DNA @é@ar methods of
sequencing, availability of the sequence trace files tolchecuracy, multiple sam-
ples for each species and the availability of voucher spexgro double check
species identifications and to match sequence informatitvetcorresponding tax-
onomic informationift t p: / / www. bar codeof | i f e. or g/ cont ent/ r esour ces/
st andar ds- and- gui del i nes).

Recognizing the importance of these criteria and stand&i@dBI has set up the
use of a reserved keyword to mark data records that adhenede standards. The
“BARCODE” keyword indicates that the sequence data in the correspgmedcord
met the highest standards.

Several studies (Meiegt al,, 2006; Eliaset al, 2007; Wiemers and Fiedler,
2007) have used entries from GenBank to test and to expleragéfulness of the
barcoding concept. It is well known that the accuracy of DN#jgsences deposited
in GenBank is often less than could be desired (Harris, 2@8&junaset al., 2008).
This is understandable since GenBank is a data repositorsarot a currated se-
guence database. However, while the accuracy of the seiggemas been tested
and found to be lacking, there are other aspects of the d@anBank that have not
been rigorously examined. Foremost among these is theaycaf species identi-
fications from which GenBank’s data originate. Most of thgusnce information
comes from model organisms such®sophila melanogasteMus musculusnd
Homo sapiensand species identification in these cases is unlikely tobéar from
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the correct answer. However, there are many other taxa #gvat lmad portions of
their DNA sequenced that are much more difficult to identify.

A problem presented by these data is that for most of the segsen Gen-
Bank, species identifications cannot be validated becaaseoucher specimens
are provided. To work around this problem, we have analyzephences from
insect species retrieved from GenBank with the goal to emarhiow similar or
how dissimilar sequences from a single species might bectasvere chosen as a
well defined and yet diverse group of animals from which masrgbde sequences
have been collected (Hebert, Rathasingham and deWaar@).2@0ecords with
the “BARCODE” keyword were compared to records within GenBank withoug th
keyword. If the accuracy, both for sequence correctnessedisag/ species identi-
fication, are similar between GenBank entries with and withbis keyword, then
current barcode studies can make uncritical use of the vasth@use of data pre-
viously stored in GenBank.

1.3 MATERIALS AND METHODS

COlI sequences were collected from NCBI in October/Noven2®€7. Among
the insects, a total of 6,505 barcode sequences from 74¥espatd 34,384 non-
barcode sequences from 11,385 species were obtained.cksees were aligned
usingMUSCLE (Edgar, 2004); scaffold sequences from five different @@@pleoptera,
Diptera, Hemiptera, Hymenoptera, and Lepidoptera) werleided in the alignment
to prevent incorrect alignments caused by sequences wwiiteli overlap. To ob-
tain a representation of the barcode region in the COI sempserthe region was
extracted from the aligned sequences using the NCBI barsegigence (accession
ID: EF180877) as a reference sequence; this entry was cliesause it was the
longest barcode sequence available. It was assumed thaggiloa extracted does
not include gaps. Only sequences containing at least 85%eodriginal number
of residues were used. The reduced data set consisted & Bat@ode sequences
from 590 species and 8,586 non-barcode sequences from&h80is (Table 1.1).
Another data set consisting of common species between daiaed non-barcode
data was generated (Table 1.2). For each sequence, taxootassification was
recorded according to the four following levels: order, figngenus, and species.

Alignment of sequences within a species was done using threspmnding
amino acid sequence VMJSCLE (Edgar, 2004) and then translated back to DNA
using TRANALI GN. A scaffold sequence was included in all alignments to pre-
vent incorrect alignments caused by sequences with linotediap. Kimura two-

8



Ph.D. Thesis - M. Lou; McMaster University - Biology

Table 1.1: Distribution of barcode and non-barcode seceeeimcl?2 insect orders

Barcode Non-barcode

Order Sequences Species Sequences Species
Coleoptera 2 2 1017 446
Diptera 2698 123 1962 412
Ephemeroptera 0 0 229 80
Hemiptera 0 0 326 71
Hymenoptera 78 19 1294 540
Lepidoptera 2401 446 2566 969
Odonata 0 0 95 19
Orthoptera 0 0 423 71
Phthiraptera 0 0 122 13
Strepsiptera 0 0 7 6
Thysanoptera 0 0 195 42
Trichoptera 0 0 350 231

parameter distances (K2P; Kimura, 1980) between membéngwa species were
determined. Any species file containing a distance grehter or equal to 3% is
recorded as a species with a divergent member.

To analyze distances between congeneric species, a randboden sequence
from each species was blasted against the NCBI databaseler8s$ were col-
lected from the first fifty BLAST results and aligned. Alignm@nd K2P distances,
between the random query and BLAST results, were determisetd) the same
metholodgy described above. If the K2P distance was less3¥eaor if no distance
was generated and the query and blast result did not possessaine taxonomic
species designations, the blast result is recorded.

1.4 RESULTS

Considering all species, the number of species with divdrggembers (one or
more members that differ by more than 3% K2P distance) areshotable 1.3.
Some of the BARCODE” records contain divergent sequences. This is most notable
within Hymenoptera with 12.5%, but these sequences oniy fosmall percentage
(less than 1%) of the data set. In contrast, Diptera seqeerm@prises 75% of
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Table 1.2: Distribution of barcode and non-barcode seqegent?2 insect orders,
common to both data sets

Barcode Non-barcode
Order Sequences Species Sequences Species
Diptera 2158 57 187 57
Lepidoptera 1425 214 789 214

the data set and only 3.8% Dipteran species have diverganbers. With regard
to the non-barcode data set, the percentage of divergeatespie much higher.
Consistently over 50% of the species without tBARCODE” designation contain
divergent sequences except for Hemiptera, Lepidopteih, Tachoptera. Not all
species had more than one sequence per species and hemo fassible for their
single sequence to differ. To determine the opportunitysfugcies to be detected
in this manner, the last column in table 1.3 shows the avemag®er of sequences
per species with two or more sequences.

With reference to common species between barcode and moodeadata, the
results were consistent with those of the all-species d#tal®wing a higher per-
centage of divergent species among non-barcode recordsnparison to barcode
records (Table 1.4).

In addition to finding members of a single species with dieatgequences, we
also looked for species with sequences that were simildraséquences of other
species. With reference to the all-species data set, Cleopand Lepidopteran
barcode records have a smaller percentage of abnormallasspecies in compar-
ison to their non-barcode neighbours (Table 1.5). Howekiexresult is not entirely
unexpected since there is a greater chance that one may firedafmieormally sim-
iliar species in these orders as indicated in the last colohtine table. In contrast,
there are more barcode records with similar congenericispéican non-barcode
records in the following two orders: Diptera and Hymenogter

With equal chance of finding "similar” distinct species iretbommon-species
data set, we find similar percentages in barcode and nomdb@records (Table 1.6).

10
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Table 1.3: Species with one or more members that differ byentioan 3% K2P
distance in 12 insect orders

Avg

Divergent  Species with sequences per

Group species > 2seq Percent species with
> 2 seq

Barcode data (5,179 seq)
Diptera 4 105 3.8 25.52
Hymenoptera 1 8 12.5 8.38
Lepidoptera 0 359 0 6.45
Non-barcode data (8,586 seq)
Coleoptera 63 85 74.1 7.72
Diptera 96 164 58.5 10.45
Ephemeroptera 18 33 54.5 5.52
Hemiptera 10 27 37.0 10.44
Hymenoptera 79 127 62.2 6.94
Lepidoptera 173 428 40.4 4.73
Odonata 2 3 66.7 26.33
Orthoptera 15 20 75.0 18.6
Phthiraptera 3 5 60.0 22.8
Strepsiptera 1 1 100.0 2.0
Thysanoptera 9 17 52.9 10.0
Trichoptera 20 35 37.1 4.4

1.5 DISCUSSION

The data in table 1.3 and table 1.4 clearly indicate that morebarcode sequence
records have insect sequences that differ from conspeeijeeices by more than
3%. This is not necessarily unexpected as, other than ezapevidence, there is
no reason to expect sequence divergences within a spedieditoited. However,
if the cause of the divergence were simply taxonomic divecgethen the barcode
and GenBank records should provide identical results. Tdeyot. GenBank
records are more likely to be divergent by more than 3%. Orssipte cause of
this is that the barcode sequences are sampled from only enawbers of each
species and hence the opportunity for divergence is not est gimply because
there are fewer comparisons made within each species. $hikgéor Diptera and
Hymenoptera in table 1.3 and Diptera and Lepidoptera ireta! indicate that on

11
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Table 1.4: Species with one or more members that differ byentioan 3% K2P
distance in 2 insect orders

Avg

Divergent  Species with sequences per

Group species > 2seq Percent species with
> 2seq

Barcode data (3,583 seq)
Diptera 2 57 3.5 39.91
Lepidoptera 0 173 0 8.00
Non-barcode data (976 seq)
Diptera 14 36 38.9 4.61
Lepidoptera 42 137 30.7 5.19

average the opposite is true, there are generally more segsi@er species in the
barcode records and hence there is a greater opportunitijengent sequences to
be discovered. Another possible cause of this differentteaisthe barcode records
are generally more modern records and as techniques havevieap sequencing

errors have decreased. An examination of the date of entsafth record did not,

however, reveal any apparent relationships between théeuof divergent records
and the date of entry for the record. Hence, the most likehfaexation for this data

is a larger level of sequence error in GenBank records. Asdtbove this is not

an unusual or unexpected result.

Unfortunately, the results were not consistent when it cemngentifying abnor-
mally similar congeneric species. Even though more GenBaodrds were found
to contain sequences that are unusually similar to seqaeinom other species
(particularly Coleoptera and Lepidopera) this was an ebguepesult as there are
more species per genera in these two orders in GenBank data tiee chances of
finding similar congeneric species is greater. On the otaedhthere was a greater
chance of finding similar congeneric species in barcoderdsdor Diptera and Hy-
menoptera and this turned out to be the case. Either theie sgquence error in
GenBank sequences, as initially claimed, and there areespecbarcode records
abnormally similar to other distinct species or the resatttsthe product of an ar-
bitrary criterion cut-off value that has been known to hassogiated difficulties
(Moritz and Cicero, 2004; Meyer and Paulay, 2005; Hickerddayer and Moritz,
2006) and cannot be applied equally across orders or evessaspecies (Cognato,
2006). The latter explanation is more likely than the forrasrCognato (2006)
found that a standard percent sequence divergence hastiaiberrectly diagnose

12
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Table 1.5: Species within 3% K2P distance to other speci&8 insect orders

Group No. sim spp (SS) No. spp. Percent No. genera Spp./&ener
Barcode data (5,179 seq)

Coleoptera 0 2 0 2 1.00
Diptera 75 123 60.1 17 7.24
Hymenoptera 6 19 31.6 2 9.50
Lepidoptera 87 446 195 170 2.62
All 168 590 28.5 191 3.10
Non-barcode data (8,586 seq)

Coleoptera 20 446 4.5 176 2.53
Diptera 162 412 39.3 92 4.48
Ephemeroptera 6 80 7.5 27 2.96
Hemiptera 9 71 12.7 41 1.73
Hymenoptera 87 540 16.1 236 2.29
Lepidoptera 488 969 50.4 323 3.00
Odonata 0 19 0 5 3.80
Orthoptera 22 71 31.0 37 1.92
Phthiraptera 2 13 15.4 5 2.60
Strepsiptera 2 6 33.3 4 1.50
Thysanoptera 2 42 4.8 16 2.63
Trichoptera 103 231 44.6 114 2.03
All 903 2,829 31.9 1,039 2.72

insect species for 45% of the cases. The use of specific thidssbr statistical
approaches of specimen assignment may be more appropriate.

13
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Table 1.6: Species within 3% K2P distance to other speci2snsect orders

Group No. simspp (SS) No. spp. Percent No. genera Spp./&ener
Barcode data (3,583 seq)

Diptera 38 57 66.7 14 4.07
Lepidoptera 59 214 27.6 96 2.23
All 97 271 35.8 110 2.46
Non-barcode data (976 seq)

Diptera 40 57 70.2 14 4.07
Lepidoptera 61 214 28.5 96 2.23
All 101 271 37.3 110 2.46

14
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Chapter 2

Assigning seguences to species in the
absence of a interspecific
“barcoding” gap

Lou, M. and Golding, G.B. (2010Molecular Phylogenetics and Evolutiorb6:
187-194.

2.1 ABSTRACT

Barcoding is an initiative to define a standard fragment oARQdIbe used to assign
unknown sequences to existing known species groups thatldesan pre-identified
externally (by a taxonomist). Several methods have beetrites that attempt to
place this assignment into a Bayesian statistical framlewblere we describe an
algorithm that makes use of segregating sites and we exdromevell these meth-
ods perform in the absence of an interspecific ‘barcoding. g&jpen a barcoding
gap exists, that is when the data are clearly delimited, meshods perform well.
Here we have used data from tBeosophilagenus because this genus includes
sibling species and the species relationships within tarsug while complex are,
arguably, better understood than in any other group. Thdtseshow that Bayesian
methods perform well even in the absence of a barcoding gags&quences from
Drosophilaare correctly identified and only when the degree of incotedlaeage
sorting is extreme in simulations or within tiosophilaspecies do they fail in
their identifications and even then, the “correct” specesdhigh posterior proba-
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bility.

2.2 INTRODUCTION

DNA barcoding involves the use of a short DNA sequence as astedaxonomi-
cally identify a specimen (Hebert, Ratnasingham and delly2803; Heberét al,,
2003; Remigio and Hebert, 2003). The key to this concept istaodardize the
segment of DNA used for barcoding and then to construct abdataof this se-
guence from as many taxonomically identified species asilgessStoring these
data in a searchable database permits new or unknown spectmée identified
via a comparison of their sequence with sequences from ciesized species. The
recognized utility of this methodology has resulted in aglo synchronized effort
with more than 100 member organizations (including musewuoss, botanical
gardens and universities) involved in setting a globaldiath in taxonomy and in
creating a database of DNA barcode sequences.

Although the usefulness of this approach is well estabtiglsee for example
Hebert, Ratnasingham and deWaard, 2003; Hedteal., 2004; Hajibabaeét al,,
2006), some taxonomic groups, such as cowries (Meyer anhRa2005) and
tiger moths (Schmidt and Sperling, 2008), have shown anaepaably high error
rate for identification by DNA barcodes. Part of the reasantligs discrepancy
is due to similar levels of intra- and interspecific divergen Under these condi-
tions there may be a small amount of divergence betweenespegiative to the
amount of divergence within species. The difference betweta- and interspe-
cific divergences is known as the barcoding gap. Cognatos)20dnd substantial
overlap between levels of intra- and interspecific variatiothin several orders of
insects resulting in the failure to correctly diagnose atspecies for 45% of the
cases. Within Diptera, there are congeneric sequencesvdigtance is within 1%
(Meier, 2008). Similarly, the Lepidopteran family Lycadae showed an 18% over-
lap between intra- and interspecific COI divergence (Wienagrd Fiedler, 2007).
An overlap may occur for a number of reasons. It may occur where is a wide
variation in rates of molecular evolution among lineaggsaf8s and Smith, 2006;
Huanget al,, 2008). The COI from some animals, such as coral (Huetnal,,
2008), evolves too slowly to be useful for barcoding. Inctetglineage sorting
(paraphyly or polyphyly; Moritz and Cicero, 2004; Pollagtial., 2006; Wiemers
and Fiedler, 2007; Aliabadiaet al., 2009) and poor taxonomy may also explain the
lack of a barcoding gap. An inference must be made as to wipiebias (or other
taxonomic group) the sequence belongs. It is often diffimutliscern whether or
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not differences between the query sequences and sequeithes the database
are due to intraspecific differences or if they are an inthcadf interspecific dif-
ferences. The effectiveness of barcoding is associatddaviiear distinction be-
tween levels of divergence with the level of interspecifiecetigence greater than
intraspecific divergence. Indeed it has been shown thatithplest of methods
performs well under these circumstances (Ross, Murugamia2@08; Austerlitz
et al, 2009). Although it is not impossible to identify a specieghe absence of a
barcoding gap, this deficiency makes it much more difficult.

However, these methods lack ways to measure the confiderniemvich an
assignment is made. Hence, there is a need for statisticabaeto determine the
most appropriate assignment and the degree of confidenbemith this assign-
ment can be made, particularly when a barcode gap might bk @nmenexistent.
Frezal and Leblois (2008) note that population geneticerihés required to ac-
count for the level of uncertainty that is contributed byst@rocesses. Here, only
Bayesian methods will be examined because these provideettessary statisti-
cal strength to distinguish between well supported assagmswversus poor assign-
ments and to provide a strong statistical framework.

There are two Bayesian methods that have been proposecdetoldiet first is a
method that uses the coalescent (Abdo and Golding, 20079 .mMé&thod calculates
the likelihood of coalescents for sequences known to oaigirirom a particular
species and then calculates the change in the likelihoodh wWieequery sequence
is considered a member of this species. The assignment aflarown individual
sequence is to the grouf that minimizes the posterior risk;. The posterior risk
of group:i reflects the posterior probability that the sequence baltmg coalescent
with sequences from specieéand the ‘loss’ of making the decision that the query
sequence originated from speciediere, loss is defined as the difference between
the sequence of the unknown individual and the consensugseeg of the assumed
correct groupgk. The mathematical details for calculating the postergk,fioss and
posterior probability are given in Abdo and Golding (2007).

A coalescent method can be time consuming for data sets Viattly@ number
of sequences since it must generate enough coalescentdradsquately sample
all possible coalescent events. Therefore, the coalesuethiod is amended in this
paper by replacing the coalescent-based Markov Chain Moate (MCMC) algo-
rithm with one that makes use of the number of segregatieg Bibm the sequences
of a single species. A segregating sites method uses oely &itwhich there is a
nucleotide change. The theory behind segregating sitewaitlosed form solu-
tions to be used in place of time consuming MCMC:s. It is theneery rapid. It
does, however, involve a loss of information and compretssesantire collection of
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sequence data into a single number. For barcoding sequevitiet can generally
be assumed to be closely related sequences, the loss ahation is usually minor.

Another Bayesian method is the SAP (statistical assignperkage) algorithm
that incorporates taxonomic information from NCBI and uses information to
impose topology constraints on the trees sampled from a MCM@ probabil-
ity of assignment is the number of sampled trees showing tk@awn sequence
branching with a sequence from speci€Munchet al, 2008, a,b). This approach
assumes that the branching pattern, as delimited by thedaxg is realistic and
accurate. It also does not take into account the varialiliédg might be expected
around this branching pattern due to unsampled intraspeffferences and it as-
sumes that the species are monophyletic. However, sevedis have shown that
the expectation of monophyly for recently diverged speisie®t realistic (Knowles
and Carstens, 2007; Hickerson, Meyer and Moritz, 2006; Badsd Coyne, 2002).
It is noted by Nielsen and Matz (2006) that false speciegassnts can be caused
by incomplete lineage sorting and by random mutation pseEeshat can mimic
incomplete lineage sorting.

The comparison of population genetic methodologies toqusmetic methods
done here suggests that the posterior probability of spéd@ntification is, in gen-
eral, much smaller for the former. This suggests that thesthoals are more con-
servative than phylogenetic methods. The underlying catifieese differences in
posterior probabilities are shown to be because these aetgiimate the proba-
bilities of different quantities.

2.3 MATERIALS AND METHODS

2.3.1 Evaluating assignment with segregating sites

Following Abdo and Golding (2007), we evaluate the probgbdf assigning an
unknown sequence to a taxonomic grouping in a Bayesian xtorffer some un-

known DNA sequencey;, the goal is to assign the species from which this sequence

was taken to the correct taxonomic groépHence, we wish to find:
Pr(z € k|z, D, )

where D is a database of known sequences witdistinct taxonomic groups and
6 is a known collection of evolutionary parameters. The assignt of sequence
must be made to one of the taxonomic groups.
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Table 2.1:DrosophilaCOl sequences tested (Monophyly is taken from the diagram
in figure 2.1).

Group Species Monophyletic Sequences
melanogaster D. mauritiana no 3
melanogaster D. melanogaster - 10
melanogaster D. simulans no 27
guadrisetata D. barutani - 6
guadrisetata D. beppui - 3
quinaria D. falleni - 15
quinaria D. innubila - 29
quinaria D. recens no 136
quinaria D. subquinaria no 136
repleta D. arizonae - 17
repleta D. mettleri - 24
repleta D. mojavensis - 47
repleta D. navojoa - 4
repleta D. nigrospiracula - 10
virilis D. montana - 42
virilis D. virilis - 11
- D. angor no 13
- D. daruma - 4
- D. pachea - 79
Total 616

19



Ph.D. Thesis - M. Lou; McMaster University - Biology

It is assumed that different groups that are potential targethe assignment
are fully pre-specified. Each group is assumed to form a petroygopulation that
follows a Wright-Fisher, neutral model of evolution thaedaot allow recombina-
tion, selection, or migration. Hence, the evolutionarygess within each group is
governed by one parameter, which is the expected number w@itional events be-
tween sequences. This quantity is dependant upon a papulagasure] = 4N, p,
and is in turn, reflected in the number of segregating sitesdsn sequences.

Using Bayes rule, assuming that the presampled individar&@sassigned cor-
rectly by external taxonomists, assuming independenceeoévtolutionary history
between groups and assuming uniform priors, this can belesd as:

Pr(z € k|lx,D,0) =
Pr(z, Dy|z € k, 0i)/ Pr(Dy|0)
> Pr(z, Djlz € j,0;)/ Pr(D;|6;)

(see Abdo and Golding, 2007, for a derivation).

A risk function can be evaluated using this probability aradlitionally, an as-
signment decision is based on the assignment with minimskn Tihe risk function

can be defined as:
R; = L(k,i)Pr(z € k|z, D, 0)
k

whereR; is the risk of making the assignment to speciesd L(k, ) is the loss
associated with an assignment to speciefen the correct assignment should be
to speciest and Pr(x € k|x, D, ) is the posterior probability of membership of
the unknown sequencaeto taxonomic groug:.

In Abdo and Golding (2007) a method to evalu&t€ x, Dy|x € k, 6;) using the
coalescent and an MCMC is implemented. However, it is alssipde to evaluate
Pr(z, Dglx € k,0;) using the theory of segregating sites. If the sequence data
{z, D)} hass segregating sites, then the probability of the data gijenan be
approximated by the probability corresponding to the nuntlbsegregating sites,

s. Hence,
Pr(x, Di|z € k,0;) ~ Pr(S = s|n, 0)

wheres is the number of sequences{m, D, }. The basic recursive definition for
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the probability that a sample afsequences will havesegregating sites is:

Pr(S = s|n,0;) =
n—1
———Pr(S=sn—1,0
n—1+06y r(S=sln—1,60) +
O

mPT(S =S — 1‘n,¢9k)

This recursion makes the assumption that an infinite siteteimlds, that the pop-
ulations are equilibrium single random mating populatiohsize N, with mutation
to new alleles at a rate.

This recursion has been solved by Tavare (1984) to yieldsediéorm solution
of:

Pr(S = s|n,0;) =
n—1
n—1 ifn—2 Ok o1
(D)

i=1

Our implementation of this formula was found to occasignai numerically un-
stable. Therefore, if the closed form solution did not $atthe recursion with
numerical accuracy, we then did an evaluation of the corapktursion.

Attention is focused here on the posterior probability eatthan risk (multiple
loss functions can be used to quantify risk as described tofnd Golding, 2007)
to make the results from the segregating sites algorithnpeoable with those from
the SAP algorithm. To test the assignment of unknown quegeg) the segregating
sites algorithm, we conducted a simulation to test the perdmce of the algorithm
in the absence of a ‘barcoding gap’. The simulations use ai-spgcies coales-
cent (Degnan and Rosenberg, 2009) to model ten species \pithtaate species
tree (Figure 2.2). Each of the ten species has five lineages.'unknown’ query
sequence is simulated as the sixth sequence from the firsiespeSequences of
length 600bp were simulated using the coalescent tree. ftire éength of the se-
guences were allowed to accumulate substitutions at aaarstte, defined by the
parameter). This value off is the total mutation rate for all sites in the length of
the sequence. At every time interval, definedlhyhose sequences that had not yet
coalesced to a common ancestor were added to the sequestoastifier “species”.
The time intervals” were scaled according taV, generations and represent the
time back to speciation events. However, the coalescengeextand beyond mul-
tiple speciation events depending on the siz& oln these simulation%’, ranges
from 0.5 to 3.0. WhenT" = 3.0, the level of interspecific divergence is greater
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than the level intraspecific divergence and this repredbatsieal situation where a
barcoding gap exists and each species is usually monophatet is distinct from
every other species; in this scenario, we expect a high ptiopoof correct as-
signments. Whefl" = 0.5, there is a lack of a barcoding gap which may lead to
incomplete lineage sorting; we expect a lower proportiocaftect assignments.
The simulations were repeated 10,000 times and the resaltg\een in table 2.2.

An advantage of the segregating sites algorithm is its spddw method of
segregating sites obviously involves a loss of informatiomoving from a full co-
alescent evaluation to an evaluation of a single numbemtineber of segregating
sites. However, it gains a great deal of speed compared t@lasoent method.
The analysis of 10,000 simulation runs took only secondsadiition, for actual
data collected from nature, the sequences are from highlgarwed genes. Such
sequences are anticipated to be very similar and the opptyrfior multiple mu-
tations to arise at a single site is small. The results desdrbelow document the
efficacy of this method.

2.3.2 The SAP algorithm

SAP version 1.0.6 was downloaded and installed locally (dhuet al, 2008a).
An in-house database constructed from sequences froDrtdsophilagenus were
used for searches conducted with a local versioBIOAST v. 2.2.17. The local
database was annotated using the taxonomic informatiomfGBI. The set of se-
guence homologues were aligned using a local coft efst al Wv. 2.0 (Thomp-
son, Higgins and Gibson, 1994).

2.3.3 Drosophilasequences

The Drosophilaspecies provide a good data set to test the ability of alyostto
assign sequences to species in the absence of a barcodindylgay species are
sibling species with small interspecific differences antsdave no barcoding gap
at all with identical sequences shared among species.

A Drosophiladata set consisting of 1542 CO1 sequences from 314 species
was collected from NCBI and/or Flybase (Tweeéteal, 2009) February 2009.
Alignment of sequences within a species was done using tliesponding amino
acid sequence VIRIUSCLE (Edgar, 2004) and then translated back to DNA using
TRANALI GN. Sequences with large indets (L0 amino acids) were removed. The
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15‘ D. falleni — 26

— D. innubila - 3

| D. subquinaria — 93
D. recens - 27

12‘ D. angor - 182

4 ‘ D. daruma -0

6 ‘ D. barutani - 26

3 ‘ D. beppui - 9

D. mauritiana - 27

D. simulans - 34

D. melanogaster - 9

D. arizonae - 36

ﬂ D. mojavensis - 52

4 ‘ D. navojoa - 5

10‘ D. nigrospiracula - 9

24‘ D. mettleri - 25

42‘ D. montana - 58

11‘ D. virilis — 9

79‘ D. pachea - 61

1 ‘ D. angor - 182

0.01 Substitutions

Figure 2.1: A diagram of the relationships of theosophilaCOIl sequences. The
numbers in the triangle give the number of sequences useddexh species and
the number after the species name is the number of segregt@s within these
sequences. 23
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sequences were trimmed to the barcode region (663bp). Beegievere deleted
entirely if they contained less than 650bp. Species with tiwdewer sequences
were removed. Sequences were ensured to originate fromadistrains, from
independent wild isolates or from different laboratorias listed in the GenBank
annotation. If there were multiple copies from the same @®uthe longest se-
guence from a single strain, isolate, or laboratory was (s#dr to supplementary
material for a listing of strains and isolateslfosophilaspecies used in the study
with, where available, references to literature contanirformation on where the
strain or isolate originates). The remaining data set caagrof 616 sequences
from 19 species. A summary of the sequences is shown in tabléte species
and group designations were taken from NCBI; groups aredistly if there are
multiple members present). Other commonly kndvosophilaspecies have insuf-
ficient numbers of sequences or insufficient information they represent distinct
samples to be included by these criteria.

A diagram of the topological relationships betwéaEoesophilaspecies is shown
in figure 2.1. This diagram is patterned after a phylogenystiocted from Kimura
2-parameter distances (Kimura, 1980) using the Neighbiainipmethod (Saitou
and Nei, 1987) and with the phylogeny from Flybalset(p: / / f | ybase. or g/)
with the exceptions of specid3. angor, D. barutani D. beppuj and D. daruma
(Wanget al,, 2006) which are not listed in Flybase. Based on fossil, &oagaphic,
and molecular clock data, subgendéesophila (D. melanogasterD. simulans
andD. mauritiang and Sophophorare estimated to have diverged approximately
62.9+ 12.4 million years (MYA) (Powell, 1997; Tamura, Subramanand Ku-
mar, 2004). Thus, there should be enough interspecific givexre to prevent the
assignment of unknown sequences to the incorrect subgenus.

Some of these species are considered sibling species addfexdt to distin-
guish by anyone other than trained experts. Neverthelassspecies and their
relationships are well known (Kelly and Noor, 1996; Powé&®97). The abil-
ity of some taxa to create semi-sterile, usually uni-digewl, hybrids has been
well documented (Noor, 1995). The species p&irarizonae& D.mojavensis
D. mauritiana& D. simulans andD. recens& D. subquinariaare considered sib-
ling species. In the case @.mauritianaand D. simulans there is a haplotype
identified as originating fronD. mauritianathat is identical to that ifD. simulans
(Satta and Takahata, 1990; Ballard, 2000a,b). The divesgdate of these species
is estimated as 0.98 0.49 MYA (Tamura, Subramanian and Kumar, 2004) and so
this phenomenon may be due to incomplete lineage sortingti@gression. Simi-
larly, 2 haplotypes (with 1 and 2 representative sequeresgsectively) out of 109
COlI haplotypes fronD. subquinariaare identical to 2 haplotypes (containing 16
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r A 1 23456780910

Species 1 “Species.2 " Speres:

Figure 2.2: The simulation scheme used. Species are addleel tiee sequentially
up to a total of ten. Three species are expanded here. Thehlehgme separating
the divergence of each species can be sfiort< N, allowing incomplete lineage
sorting to occur (as illustrated here lineages within sgeéi2 are more closely
related to lineages within species #3 than they are to spédielespite the implied
species relationships).
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and 66 sequences respectively) out of 36 COI haplotypesBraecens These are
the result ofWolbachiamediated introgression (Shoemalaral., 2004; Jaenike
et al, 2006). AlthoughD. arizonaeandD. mojavensisare sibling species with an
estimated divergence time of 1.91 to 2.97 MYA, their seqesrare similar but they
do not share any haplotypes (Reed, Nyboer and Markow, 2007).

2.4 RESULTS

2.4.1 Simulation properties of a segregating sites algohtn

Simulations were conducted to test how well the segregatteg algorithm will as-
sign queries when there is a known degree of similarity betwhe correct species
and its closest relative(s). In this case, each speciesgggssively more and more
distant from the first species (Figure 2.2). The first spasiéise origin of the query
sequence, and the branch length back to the common ancestuimpassing the
next species ranges froim= 0.5 to 3.0. With the simulation, the degree to which
the histories of the individual species are distinct can leasared by examining
the degree to which lineage sorting is complete. The resilisis simulation are
shown in table 2.2.

The first row for each simulation run in table 2.2 gives ancdation of the ex-
tent of incomplete lineage sorting. When the interspecitathce between species
is very short T’ = 0.5) lineage sorting is seldom complete within species 1. Only
15% of the 10,000 simulations have a distinct monophyletiedge for the five se-
guences in species 1 while 28% have lineages that confuseesfdeand 2. Never-
the-less, the segregating sites method correctly ass#t$tiofithe queries to species
1. Given the short divergence time and the comparativelylsipportunity for dis-
tinct substitutions to occur, it is not surprising that tiverage posterior probabili-
ties for these assignments are low. Because of the sinyilzgtiveen these species,
the degree of confidence in these assignments is low.

In general, assignments to species further and further &eayspecies 1 occur
in rapidly declining numbers and with declining posteriooipabilities. In addition,
the estimated value dfincreases. Thus, the assignments are made to more distantly
related species when the number of mutations is, by chaarggrland further blurs
the species level distinctions.

As T increases, the proportion of incomplete lineage sortirgimes and the
assignments become more accurate. In every circumstamweeyhr, the proportion
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Table 2.2

Simulation results based on the assignment of 10,000 quélriee query sequence
always originates from Taxon #1. The first row indicates hoanyncoalescents
for Taxon #1 included sequences from other species (iretichy the column).
The second row gives the number of times each species hadgihesh posterior
probability.

Taxa

1 2 3 4 5 6 7 8 9 10
T=30,0=20
No. of taxon 1 coalescents
including other taxa 9281 680 39 0 0 0 0 0 0 0
No.Assigned to each taxa 9388 564 32 14 2 0 0 0 0 0
Avg. Posterior 0.729 0.516 0.499 0.496 0.508 0 0 0 0 0
Avg. 6 1.645 2425 3.425 4.460 4.560 0 0 0 0 0
T=200=20
No. of taxon 1 coalescents
including other taxa 7961 1744 249 43 2 1 0 0 0 0
No.Assigned to each taxa 8543 1245 173 27 7 3 2 0 0 0
Avg. Posterior 0.601 0.444 0.404 0.477 0.439 0.347 0.551 0 0 0
Avg. 0 1.705 2.145 2.748 3.493 4594 5280 6.720 0 0 0
T=1.0,0=2.0
No. of taxon 1 coalescents
including other taxa 4497 3497 1286 471 147 57 28 8 6 3
No.Assigned to each taxa 6468 2238 836 311 95 33 9 7 2 1
Avg. Posterior 0.394 0.322 0.286 0.265 0.254 0.244 0.277060.30.303 0.203
Avg. 0 1.834 2136 2.303 2.323 2.752 3.423 4.329 5.011 3.140 2.880
T=0.50=20
No. of taxon 1 coalescents
including other taxa 1522 2846 2176 1350 823 502 304 201 109 7 16
No.Assigned to each taxa 4431 2154 1367 849 520 308 162 114 614 3
Avg. Posterior 0.263 0.229 0.209 0.195 0.186 0.179 0.170760.10.161 0.161
Avg. 0 2.044 2212 2211 2203 2213 2247 2189 2343 2374 1.726
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Figure 2.3: Average posterior probability of assigning arguo each species group

in the local database using the segregating sites algarif@hwith D. angorand

(b) withoutD. angor. A grayscale ramp from white to black represents the average
posterior probability assignment from 0.0 to 1.0 respetyiv The origin of the
guery sequence is shown on the y-axis and the taxon for assigris shown on the
x-axis. Shadings off the main diagonal indicate posteriobpbilities to incorrect
taxon.

of correctly assigned query sequences is larger than thgogion of species #1
that have incomplete lineage sorting. Thus, the corredgmaisgent of sequences
can occur even without a barcoding gap but the confidenceainagsignment can
be variable.

2.4.2 The assignment oDrosophilasequences

EachDrosophilasequence was removed in turn and then assigned to a member
species by the algorithms discussed here. The resultsdéosdabregating sites al-
gorithm are shown in figure 2.3. The figure gives the averagéepior probability

that a query sequence (on the y-axis) is assigned to any die ¢éxa (on the x-
axis). The assignments Brosophilasequences via the segregating sites algorithm
(Figure 2.3a) consistently suggest titatangor has a strong posterior probability

for each and every one of the query sequences. Indeed, in caarg the posterior
probability of an assignment to this group can be larger than for the correct
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taxon. For example the average posterior probability fevehD. virilis sequences
is 0.4061 that they originated from a coalescent of@hangorsequences and only
0.3908 that they originated from the coalescent formed byrémainingD. virilis
sequences.

The D. angor sequences are an odd collection. The phylogeny shown in fig-
ure 2.1 suggests that these sequences branch polyphiyeticaughout the tree.
These thirteen sequences form roughly five groups. The fimipgof four se-
guences are identical among themselves but differ from thers by 60 to 115
substitutions (within a length of 663 bp; a rather large lexfeintraspecific di-
vergence). The second group of six sequences differ wittergtoup by 2 to 46
substitutions. The third, fourth and fifth groups are eacimgls sequence that dif-
fers from every otheb. angorsequence by 75-121, 81-119, 110-121 substitutions.
That two sampled sequences from a single species shoudd Difffully a sixth of
their nucleotides in a highly conserved sequence is unusual

The effect of this on the assignments is to suggesti?hahgorhas a huge (and
unrealistic) value of and that the coalescent formed by theangorsequences can
encompass any query. The potential addition of a query segui® theD. angor
group does not significantly alter the likelihood of the atved number of segregat-
ing sites. This is because only a comparatively few numbadditional segregating
sites are added with an already very lafdgeBut since another entire sequence is
added, the sample size has increased and, since the quarthis middle of this
coalescent, the addition of another sequence with lesati@riactually improves
the likelihood of the observation. This appears to be theseai the high poste-
rior probabilities of assignment 0. angorindependent of the query sequence. To
a lesser extent, this phenomenon also occurs @itsubquinariasince this taxon
also has a large amount of sequence variation. To elimihaeftfect theD. angor
sequences were removed and the analysis redone as showreZigb.

With the elimination ofD. angor, most of the query sequences show the high-
est posterior probability to the taxon from which they angfed. Missassign-
ments occur most noticeably in three locations. The miggasent ofD. recens
to D. subquinaria(and to a lesser extent, the reverse), a symmetrical camfurs-
tweenD. arizonaeandD. mojavensisand missassignments amdnpgsimulansand
D. mauritiana The missassignments Bf. recenssequences to the. subquinaria
species is because many of these sequences (82 from 2 thstplotypes) are iden-
tical to sequences labelled as originating frehmsubquinaria(Shoemakeet al.,
2004; Jaenikest al, 2006). The lack of resolution between tbearizonaeand
D. mojavensispecies is due to their sibling species status and receetgditice
time (Reed, Nyboer and Markow, 2007). The distinction betwe. simulansand
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D. mauritianais even less clear due both to their shared haplotypes ardtrdc
vergence (Tamura, Subramanian and Kumar, 2004).

The assignments by the SAP algorithm of query sequend@®tmphilaspecies
are shown in figure 2.4. This algorithm also had difficultyiwthe same group of
taxa that the segregating sites algorithm had difficultyhwior the most part, these
difficulties are not as apparent in the figure since a portibthe sampled trees
from the MCMC do not match the given taxonomy from NCBI, tedhieere non-
constrained trees. These trees, that do not match the NCBtatied taxonomy, are
classified separately. These trees represent an ambigooymoent of the assign-
ment.

The segregating sites algorithm spent roughly 3 secondagsgnment for
the whole 616 sequence data set on a computer with a 1.6Gldegsar, running
Linux. SAP spent roughly 8 minutes per assignment on the sgstem. A single
assignment of a single query to the 42 sequencé&s nfontanausing a coalescent
assigner takes many hours to run and even then it is doub#titthas reached sta-
tionarity. A single assignment to the 136 sequence3.oécensvould take orders
of magnitude longer. To complete the data set would reqghisetd be repeated for
each of the 616 queries. Hence it is not possible to providepewable results for
the coalescent assigner.

2.5 DISCUSSION

Barcoding involves the assignment of a sequence to a pseiggiaxonomic group.
This is done using information drawn from a short DNA seqeer@Ol in many
cases 1bcl and matK in the case of plants; Hollingswort al, 2009). The re-
lationships of the sequences among the taxa contains iat@mmregarding their
likelihood of being samples from a particular species. Wnioately, when a col-
lection of samples is first made, it is often difficult to detéme their taxonomic
species of origin. This is particularly the case if the graapttle studied and has
many sibling species. Therosophilaspecies have many sibling groups but have
the advantage that the true species relationships areajgneell known.

With the advent of better sequencing technologies, it igetqu that the number
of alternative species to which an assignment must be maltlenerease, conse-
guently making the task of assignment more difficult. Thias,gerformance of bar-
coding assignment methods, both in speed and accuracy, igieasing amounts
of information, is important.
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Figure 2.4: Average posterior probability of assigning arguo each species using
the SAP algorithm; (a) witlb. angorand (b) withoutD. angor. A grayscale ramp
from white to black represents a posterior probability gssient from 0.0 to 1.0
respectively. The origin of the query sequence is shown elythxis and the taxon
for assignment is shown on the x-axis. Shadings off the meigahal indicate
posterior probabilities to incorrect taxon.

In general, a method to calculate the probability that amomin sequence orig-
inated from a particular species, is desired. The segregating sites algorithm does
not calculate this probability; rather it estimates thebatuality that the query se-
guence could originate from a coalescent implied from the\adge of the current
database. The segregating sites algorithm considers thléafequences from each
species. The data from tH2. angor sequences illustrates this subtle difference.
Similarly, the SAP program also does not determine the e@grobability. Rather
it estimates the probability that a sequence consistem#lgdnes next to a single
member of species given the current database. The sequences BDoangordo
not generally alter these assignments.

The segregating sites algorithm, however, consistentiygest that for each
query sequence, there is a significant probability that skeiguence might have
arisen fromD. angor. The reason for this is that the given database and the given
species identifications are assumed to be correct and, lagguen the huge amount
of sequence divergence within the ‘hypervariable’ spebieangor, there is a very
real possibility that any of these sequences might havenaigd fromD. angor.

31



Ph.D. Thesis - M. Lou; McMaster University - Biology

Assuming that the given data is indeed accurate, this seerne the correct an-
swer. The taxonomic assignment of sequences to the speitign the database
(D. angor, for example) are assumed to be correct. This assumptioade rat the
species level for the segregating sites algorithm. It islaimy made for SAP at
deeper taxonomic levels.

If the classification of the sequences®@fangorinto a single species is cor-
rect then the segregating sites algorithm provides copesterior probabilities.
The further consideration of a risk measurement based ¢andiss (which can be
incorporated into a segregating sites algorithm) will hegrevarn against over in-
terpretation of the posterior probabilities. The preseoicsuch a hypervariable
species is also highlighted by the algorithm’s results amgiyests a possible al-
ternate interpretation; that the species might be a catelida further taxonomic
scrutiny.

Even if an unknown query sequence is a perfect match to a segua a
knowledge database, it does not imply that a perfect spat@asification has been
achieved. Other species identifications might have a higiven a higher posterior
probability. Therefore, given that a perfect match has deand in the database,
this alone does not justify the conclusion that the spediesigin has been identi-
fied.

The model-based methods analyzed here capitalize on wadensg the pro-
cess governing the system under study and result in moremiatove and powerful
tools to analyze sequence data generated from such syl gplying any sta-
tistical method it is important to understand the boundaaed limitations of its
application. The application of the segregating sitesraigm and the SAP algo-
rithm to Drosophiladata illustrates well that they calculate posterior pralieds
of somewhat different quantities. Which method is preféard should be applied
depends on which quantity is desired. The SAP algorithm oreaswhere a se-
guence branches while the segregating sites algorithmuresag a sequence can
‘fit’ into an existing species.

The results presented indicate that both Bayesian methods well to cor-
rectly identify species even in the absence of a ‘barcodé gafhen uncertainty
exists in the assignment, the methods correctly reflect epdrt this uncertainty.
The degree of uncertainty in these methods is directly refteim the accuracy of
the taxonomic reconstructions.

The segregating sites algorithm is available at httpg/micmaster.ca/TheAssigner/.
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Chapter 3

The effect of sampling population
substructure on species identification
with DNA barcodes using a Bayesian
statistical approach

Lou, M. and Golding, G.B. (2012Molecular Phylogenetics and Evolutior65:
765-773.

3.1 ABSTRACT

Barcoding is an initiative to define a standard fragment ofADIN be used to as-
sign sequences of unknown origin to existing known speciesse& sequences are
recorded in databases. This is a difficult task when specgslasely related and
individuals of these species might have more than one origsing a previously
introduced Bayesian statistical tree-less assignmeatithign based on segregating
sites, we examine how it functions in the presence of hidagulation subdivision
with closely related species. Not surprisingly, adding glesito the database from
a greater proportion of the species range leads to a contdystegher number of
accurate results. Without such samples, query sequenaesrtbinate from out-
side of the sampled range are easily misinterpreted as gofmdm other species.
However, we show that even the addition of a single sampla faifferent sub-
population is sufficient to greatly increase the probapditplacement of unknown
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gueries into the correct species group. This study higtditite importance of broad
sampling, even with five reference samples per speciesg icrédation of a reference
database.

3.2 INTRODUCTION

DNA barcoding has become a popular method for species fa=titon and de-
limitation due to advances in the speed and cost of sequgreid the difficulty
in delineating unknown specimens using traditional datein addition to proper
biodiversity assessment, barcoding has important imgodica in various areas such
as: effective monitoring of invasive and pest species, tileng disease vectors
and protecting consumers from market substitutions (Badl Armstrong, 2006;
Lowensteiret al,, 2010; Wonget al,, 2011).

Since its initial introduction (Hebert, Ratnasingham am\aard, 2003), the
initiative has evolved from using a distance-based threstwousing a variety of
different evolutionary signals to resolve species bouiedgiHebert, Ratnasingham
and deWaard, 2003; Hebettal,, 2004; Ratnasingham and Hebert, 2007; Davis and
Nixon, 1992; Abdo and Golding, 2007; Munehal., 2008; Sarkar, Planet and De-
salle, 2008; Lou and Golding, 2010). Futhermore, an inangasumber of studies
advocate the use of traditional lines of evidence (whetled&abioural, ecological,
geographical, morphological or reproductive) in combmmatvith sequence data to
provide further support by showing a correspondence betwe=two. This com-
bined use of barcoding data with other forms of informatias hesulted in several
well-supported studies that may not have been as reliatile delimitations had re-
lied solely on sequence data (Hebetrtl,, 2004; DeSalle, Egan and Siddall, 2005;
Siddall and Budinoff, 2005).

The use of additional information may become essential witebhlems occur
from reference sequence data with low information cont®me of the benefits of
using a mitochondrial marker is that we expect it to bettBece species boundaries
because the expected time to obtaining clear, distinctiepecoups (i.e., recipro-
cal monophyly) is short because of its small effective papah size (Neigel and
Avise, 1986). However, population subdivision with lindtgene flow can increase
the time to coalescence and, consequently, the time reftarachieve reciprocal
monophyly (Wakeley, 2000; Hudson and Coyne, 2002). Withngtleened time
to reciprocal monophyly, lineages between less closebtedl species may coa-
lesce before lineages within a species (a phenomenon knsvimcamplete lin-
eage sorting; Neigel and Avise, 1986), thus blurring spelo@indaries and imped-
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ing accurate species diagnoses and delimitations. Thiartecplarly problematic
with recently diverged species, a group already prone tonmpdete lineage sort-
ing, where the effects of subdivision and migration are nppomounced (Wakeley,
2000). Wonget al. (2011) suggested that some incorrect delimitations reftetite

failure to consider the geographic divergence of catfisimil&ily, Papadopoulou
et al. (2008) have shown that different rates of gene flow greathcatiivergences
and is one of the reasons that can cause DNA barcoding failMvéile the effects
of subdivision are explored here, it should be noted thatMAtls a not perfect
marker and may occasionally also show non-neutral evaiution-clonal inheri-
tence and variation in mutation rates (Gale¢al., 2009).

One way to acknowledge hidden population subdivision istoe sequences
from across a broad geographical range. Any within-spegigation is likely to be
widely distributed among several geographical localitiedemes and sampling this
variation is crucial to being able to correctly calculate grobability of origin and
distinguish between close sister species. Many barcodffiguities may, in part,
be due to the failure to choose an appropriate sampling seligleyer and Paulay,
2005; Meieret al,, 2006; Wiemers and Fiedler, 2007; Woegal.,, 2011). Inherent
within-species variation may be spread across local, ggtgeal populations of
individuals of one species and, by employing a broad samgltheme, the addition
of these dispersed individuals should aid barcoding ifieation, provided that the
sampled sequences sufficiently reflect variation withinsghecies.

The effect of sampling on identification and delimitatiors leen investigated
in distance, tree, and general mixed Yule-coalescent (GM¥€&thods (Meyer and
Paulay, 2005; Ross, Murugan and Li, 2008; Monagétzad., 2009; Hendriclet al.,
2010; Virgilioet al,, 2010; Zhanget al,, 2010; Bergsteet al,, 2012). Further com-
plexities have also been taken into account, for exampledenet al. (2012) have
investigated sampling strategies ranging from a local tbal scale and Zhang
et al. (2010) have investigated sampling from two different meds#l population
structure: a linear stepping-stone and an equilibriummslenodel with unequal
sample sizes in three subpopulations. However, no studyat®, has been con-
ducted using a Bayesian statistical method capable of girayian assessment of
identification confidence. While Bergsten al. (2012) used a threshold value to
calculate the proportion of ambiguous assignments (he.number of queries as-
signed to more than one reference species) as a measurehufdnatcertainty, it
is not as statistically accurate as a Bayesian method whergrobability of as-
signment describes the assignment to a particular speisies that it could also
assign to other species possibilities. Setting the claasidin within a statistical
framework to generate posterior probabilities is prefksance difficulties in the

36



Ph.D. Thesis - M. Lou; McMaster University - Biology

classification of sequences from very recently divergelibgjlspecies are expected
via any methodology. We previously introduced the segregatites algorithm,

a fast, Bayesian tree-less method that is able to calcliatgrtobability that the
sequence might originat®( Or ) from any one of the candidate species (Lou and
Golding, 2010). Due to its speed and the large body of theehyrd it, the segre-
gating sites algorithm is further explored in this papemiestigate the efficacy of
this algorithm when species have recently diverged and exsibdivided groups.

Here the identification performance of DNA barcodes withdoler samples is
analyzed using our Bayesian statistical method, the satinggsites algorithm (Lou
and Golding, 2010), in a population stucture model basedalation by distance.
To investigate the efficacy of barcoding in species with pafon substructure, we
simulated sequences based on three parameters: a sancpemgesof reference se-
guences (to represent differences in the number and locafidispersed samples
among demes), rates of migration between demes, and tindegetgence between
species. For various combinations of these parametersxaveieed the probabil-
ity that a query sequence originates from each species eslai@d by the segre-
gating sites algorithm. As an application, the same teginogedure was carried
out with cytochrome c oxidase, subunit@@1) sequences of the gen@ammia
(Lepidoptera: Noctuidae). The tiger moth species of thisugeprovides a good
case study where classical morpho- and ecological traiteotiagree with species
groupings based on mitochondrial DNA (mtDNA). As 54% of thenpled species
share haplotypes with at least one other species, undeatheding gap criterion
that no overlap between intra- and interspecies divergebegresent, this would
result in incorrect diagnoses for 32% of the species (Schamd Sperling, 2008).
Both our simulated results and the empirical findings shaat tincluding at least
one dispersed sample can aid sequence identification, ettemesently diverged
species and that including more dispersed samples furtipgoives these results.

Our results highlight the importance of considering popakasubdivision and
gene flow to the barcoding workflow, particularly for spedi@swn to have wide
distribution ranges, and to sample broadly whenever plesgiensure that repre-
sentative samples that contribute to describing the spdmandary are included.
Minimally, the results show that a single extra sample frarather locality goes a
long way to ensure accuracy.
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3.3 METHODS AND DATA

3.3.1 Population spatial substructure

The simulation is based on an isolation by distance pomuatiodel where ev-
ery individual is restricted in its local movement to neigbbing demes (two-
dimensional movement within & x d square lattice wheré x d represents the
number of demes). Therefore, individuals are much morestlaglated to nearby
individuals than to distant individuals. Lét= 4N,.u be the population mutation
rate (. is the mutation rate per locus per generatidd)= 4 N,m be the symmetric
migration rate between demes (s the proportion of the population that migrates
between two demes per generation) andis the effective population size. All
demes are assumed to be of constant and equal size. The taxohthe reference
sequence data is assumed to be correct.

3.3.2 Coalescent model with population substructure

Let each species exist within its own lattice and let eachedanthin the lattice

contain any number of sampled sequences from the speciggnkrating a coa-
lescent history of the lineages, the occurrence of a coabésar migration event
depends on where the lineages exist on the lattice. The Ipitdpaf a coalescent
event is more likely if many lineages are found within the sateme; otherwise a
migration event is more likely. Coalescent theory with asidaration for popula-
tion structure is well developed. The times until a coalasoe migration event are
exponentially distributed with means:

d
Lowl = dzw
and

Mdk
Imigr = T
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respectively (wherg; represents the number of lineages in deraedi = Zle k;
is the total number of lineages in all demes; Hein, Schiengp\&iuf 2005).

The sum of the above twd,,. + L., represents the total rate until the oc-
currence of an event and the probability that the next eseatdoalescent event or
migration event is:

Icoal . Z?:l ]{522 —k
Imigr + Icoal ]C(M — 1) + Z?:l ]{322
and
Imigr o kM
Imigr + Icoal ]C(M — 1) + Z?:l ]{?3

respectively. For further details, refer to Hein, Schieang Wiuf (2005).

3.3.3 Simulation

We simulated a multi-species coalescent (Degnan and Resger2009), based on
a total of ten species. Each species has five sampled seguéine is the recom-
mended minimum by the Consortium for the Barcode of Life (CBHajibabaei
et al, 2007) and via simulation study (Ross, Murugan and Li, 200Bje first
species has one additional sampled sequence, which is siskd anknown query
sequence. Each of the remaining nine species are progelssemore and more
distant from the first species (in a pectinate or asymmetitem). Other patterns
were simulated with qualitatively similar results. Thesawdations permit incom-
plete lineage sorting but do not address introgression. liiveages can coalesce
only if their sequences exist within the same deme. Going lreitme, the lineages
will coalesce at a rate determined by the population sizenaigdation rates. At a
predetermined time/, speciation is assumed to occur. At this time, lineages-of ei
ther species, whether coalesced to a single ancestor areatandomly placed on
this new lattice and thereafter treated as a single spetias.process is repeated
until a full coalescent history of all ten species is obtdine

Once the full coalescent is constructed, random substitatare placed on the
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branches of the coalescent, according to the&asad the resulting sequence data
at the leaves are taken as the simulated data.

Given 51 simulated reference sequence data, the query resjige removed
from the reference data set and it, along with the remainmglsted sequences, are
tested by the segregating sites algorithm (Lou and Gold@8g0) to determine the
probabilities of origin Pr Or ) for the query from each of the ten species. We have
previously shown that the segregating sites algorithm edally assign unknown
specimens even in the absence of a barcoding gap (a sepdratigeen intra- and
interspecific variation).

We hypothesize that the probability that the query sequenicgnated from
the first species should be greater when at least one or meperded sequences
are included in the analysis. A sequence from the correatispdut located in
a spatially distinct deme adds important intraspecificateon that would not be
obtained if all the reference samples originate from a siggime. At a minimum,
the number of simulations where tRe O is highest for the first species should be
at least equal to the number where the first species is moietghyThis should
represent a minimum expectation.

3.3.4 Simulated data

The sampling scheme of reference sequences on the lattecapmber of demes,
time to coalescence, and rates of migration are allowedp \We set the DNA
sequence length equal to 600 IBpto 2.0, and modelled ten species, each repre-
sented by 5 lineages. The sequence length chosen is apjtekmhe length of
the 648 bp barcoding region (Hebettal., 2004) and the level of sequence variation
(7) was chosen to be sufficient so that it mimics a marker Gkl that is able to
discriminate at the species level and yet remain relatigelyserved given its in-
dispensable role in energy production (Capaldi, 1990). u&itions show that the
number of alleles sampled per locus does not have a sigrtigfi@et on the time to
coalescents that exhibit reciprocal monophyly (Hudson@oyghe, 2002; Knowles
and Carstens, 2007).

Table 3.1 shows the various sampling schemes for the refespecies; all con-
figurations are placed in a lattice containing 4 demes (2) or 9 demes (3<3).
The schemal | represents a sampling situation where all the referenagesegs
are from one deme or base region. The schebho¢sher and2ot her represent
situations where one or two dispersed samples, respagiarelincluded in the ref-
erence species. We were also interested in the effect ofjerl&attice or sampling
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Table 3.1: Lattice sampling schemes analyzed. Eacbpresents a reference se-
guence belonging to the species from which the query seguénoriginates. By
default,d x d = 4 while the suffix ‘L’ setsd x d =9 (seeal | L, 1ot her _L,
2ot her _L).

Sampling scheme Lattice layout Description

ror
r
all rr al | reference sequences from one, base, sampling region ang Q& region
Q | furthestfrom the base
r
r r
lother rr One dispersed reference sequence adjacent to the base regio
Q
" r
2other r Two dispersed reference sequences in independent regidjagent to the base
r Q | region
T
('
all_L al | reference sequences from base regibr;d =9
Q
Frr
lotherL One dispersed reference sequence from a region furthestifr®basey x d =9
Q r
{r
2otherL r Two dispersed reference sequences in independent regimesis in the center
Q p deme of the lattice and the other is in from a region furthesnfthe basej x d =
9
"
withQ rr One dispersed reference sequence in the same region astiye qu
rQ
" r
closerlother ne dispersed reference and query sequence in indeperdemnts, adjacent to the
Qcloserloth rr Oned d ref d d s, ad tto th
Q base region
" r
Qcloser2other r Two dispersed reference and query sequences in indepemgdgms, adjacent to
Q| r the base region; the query is closer to the base region
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area @l | _L, 1ot her _L and2ot her _L whered x d = 9). We also investigated
the effect of query placement, relative to the base redioh ¢ser _1ot her and

Qx| oser 2ot her) and, lastly, a configuration where a reference and query sam
ple originate from the same dema ¢ hQ).

The time to speciation (backward-in-timé), was set to 10 and 3 (scaled in
units of2N.d x d generations). The symmetric rate of migratid, ranged from
0.1 to 1000 (/ up to 10 shown here), to model different rates of movementramo
demes within a lattice. When the time to speciation is long) e migration rate
is high, the lineages within each species should coalestteeach other first and
the level of variation within a species should be less thawéen species; this
represents the ideal situation where each population istendi and monophyletic
species (Avise, 1989), and we expect most of these simuokatichaved’r Or largest
for the first species. When the time to speciation is shorhermigration rate is
low, there will be more incomplete lineage sorting and thaaild result in a lower
proportion of the simulations where tie Or is largest for the first species. Each
combination of parameters are based on 10,000 simulatit ru

Since these simulations are conducted within a statidtiaaiework, we have
the advantage of not only identifying correct assignmentsalso those that occur
with high confidence. Thus, to be conservative, we additipansidered analyses
of simulations where ther O is > 80%. Due to difficulties with obtaining sim-
ulations that satisfied this criterion, these results aseté@n 100 simulation runs.
The difficulty arises because conspecific lineages will takeng time to coalesce
if they are spread among many demes that seldom migrate \Wkenigration rate
is low, thereby increasing the chance of paraphyletic coallets (Wakeley, 2000).

3.3.5 Empirical data: Grammia

Species of th&srammiagenus have a large geographic range, exhibit interspecific
hybridization and incomplete lineage sorting, making treemdeal data set to ex-
plore the use of dispersed samples on assignment fidelityse@ralGrammia
species for which sequence information is available, wesefByammia nevaden-
sisas our focal species because of the paraphyly of its lineagfesthose from
most of the species in the Western clade. It has been widelplsa from 16 lo-
cations spanning several provinces of Canada and norteimddt states (Schmidt
and Sperling, 2008; Schmidt, 2009).

All 225 Grammiasequences from 33 species (Schmidt and Sperling, 2008;
Schmidt, 2009) were downloaded from NCBI. Species repteseby at least 5
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Table 3.2: Summary o£O1data for 12Grammiaspecies (Schmidt and Sperling,
2008; Schmidt, 2009) and fatolarctia obliteratawhich served as an outgroup.

Species Monophyletic Sequences
Grammia arge yes 5
Grammia celia no 5
Grammia figurata no 11
Grammia nevadensis no 18
Grammia ornata no 9
Grammia parthenice no 13
Grammia phyllira yes 7
Grammia quenseli no 10
Grammia virgo no 9
Grammia virguncula no 37
Grammia williamsii no 44
Grammia williamsii tooele no 6
Holarctia obliterata yes 5
Total - 179

individuals were kept for further analysis. This criteriamited our reference data

set to 179Grammiasequences from 13 species (Table 3.2). For sampling scheme
al |, G. nevadensisontained sequences only from British Columbia, and theyque
was chosen to be from Utah. Dispersed sequences for scHarhégr - 50t her

are sampled from two provinces in Canada (Alberta, Saskaigh) and three states

in the US (Washington, Oregon, Colorado). The inclusionref or more dispersed
sequence(s) was compensated by a reduction of sequenceBifitish Columbia

to maintain a total of five reference sequences for the specie

3.4 RESULTS

3.4.1 Simulation

Using the segregating sites algorithm, an assignment isidered correct when
thePr O is highest for the first species. A multi-species coalescensisting of

distinct and monophyletic species should possess suffidieergence within and
among species to permit the correct assignment of the gogheftfirst species. So
we expect a higher proportion of correct assignments wheareophyletic coales-
centis recovered for the first species relative to a coateshat is paraphyletic and
includes sequences from other species (i.e., when the digygetciation is short and
when the migration rate is low). In other words, the promortof correct assign-
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ments should be at least equal to the proportion of monophbytees for the first
species.

Q Q r.Q
1 T T T &l Monophyly
0.75 - 1r ar | w————m Assighment
0.5 - 1 .
0.25 | A —
0
D. E.
1 T
0.75 1 1 .
05 | 1 1 .
S I
0
T T T
S 15T A 1L R L
rQ Q, Q
1 T T T
0.75 1 1 .
05 | 1 1 .
Har RIF RN B
0
0.1 0.1 0.1

Migration (M)

Figure 3.1: Inclusion of dispersed samples aids correcttifieation with recently
diverged species. Each histogram is based on 10,000 siondavhen? = 3.0
and M = 0.1. Each subfigure, A-l, has a specific placement of reterér) and
guery (Q) sequences for the correct species (Table 3.1). optorly represents
the proportion of monophyletic coalescents for the firstcgge (double-hatched
bars). Assignment represents the proportion of corregasgnts where the query
assigned to the first species (solid bars).

Effect of population subdivision. Here we focus on the results of simulations
where the sampling is largely restricted to one deald () and the species bound-
aries are not yet clearly distinct’'(= 3.0). When the migration rate is low\{ =
0.1; Figure 3.1A), the proportion of correct assignments, 38%gss than the pro-
portion of simulations with the first species monophyle2i@%. This indicates that
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at this level of divergence and migration the assignmennafrgknown query se-

guence is difficult and/or misleading when the referenceiseces of the species
are sampled from just one location. In a larger sampling, dheadistance between
the base region and the query is larger and we would expectaase in the propor-

tion of correct assignments reflecting the lengthened teqaired for coalescence.
While the result is approximately the same (38% correctgassents versus 42%
monophyletic coalescents; Figure 3.1D), additional satiahs with an even larger
lattice (d x d = 16) confirmed the prediction (data not shown).

When one dispersed sequence was included in the referetasetéot her,
lot her _.L andQxcl oser _1lot her ; Table 3.1), the number of simulations where
Pr O was largest for the first species increased whether sampladimall (44%
Vs 26%; Figure 3.1B) or large sampling area (39% vs 14%; Ei@utE) or when
the query is sampled closer to the base region (56% vs 24%rd-8)1H).

When two dispersed sequences were included in the refedataset?ot her ,
2ot her L andQcl oser 2ot her ; Table 3.1), the proportion of simulations with
Pr O largest for the first species increased further: in a smald%ys 14%; Fig-
ure 3.1C) or large sampling area (46% vs 8%; Figure 3.1F) dnehwhe query is
closer to the base region (57% vs 15%; Figure 3.11).

The sampling scenario that returned the highest propodfarorrect assign-
ments (90% vs 31%) is when the query and a reference sampsaamgled from
the same deme (Figure 3.1G).

Effect of migration. To examine the effect of migration, simulations were repeat
with 10-fold increases in the rate of migration. A high migva rate allows lin-

eages to move with greater ease among the demes of a latboseQuently, con-
specific lineages will coalesce sooner and in turn increlsechances of mono-

phyly.

When the rate of migration was 1, close to 100% of the simulations were
monophyletic for the first species and theCQr was, correctly, largest for the first
species (Figures 3.2 and 3.3). If the rates of migration amgel and there is suf-
ficient variation to distinguish species then employing empeehensive sampling
scheme is not necessary.

Conservative assessmentsWhen we restrict our analyses to simulations where
the Pr O is strongly supportedRf O > 80%), there is a large increase in the
number of correct assignments when discrete species asdeoed (from 46%
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Figure 3.2: Inclusion of dispersed samples aids correcttifieation with recently
diverged species. Each histogram is based on 10,000 siondathern” = 3.0 and
M = 1. See figure 3.1 for simulation and legend detalils.

(A) to 83% (C), Figure 3.4 (L)ower7" = 10) but the effect disappears for newly
divergent species (Figure 3.4 (L)owé&r;= 3).

Sampling schemes with two dispersed sequences often drétooh any simu-
lation runs where thBr O was larger than 80%. (Figure 3.4 C,F, and | of (L)ower;
T = 3). When the migration rate is low and the time to speciaisoshort, any
additional variation at some point cannot compensate ®irtbreased levels of pa-
raphyly. However, for every sampling scheme, the numbeinafigtions where the
Pr O is largest for the first species increase relative to the amofumonophyly.

It is simply that the degree of certainty for these has beduaed.

Performance. We wanted to investigate how the probability changes asdhe c
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Figure 3.3: Inclusion of dispersed samples aids correcttifieation with recently
diverged species. Each histogram is based on 10,000 siondathern” = 3.0 and
M =10. See figure 3.1 for simulation and legend details.

position of the first species is changed to more accuratdlgctethe variation of
species with a wide distribution range when both gene flowthadime to specia-
tion are low (/ = 0.1 andl’ = 3.0 respectively). To do this, we began with a simu-
lation in which all sequences from the first species areiotstt to one demeg( | ;
Table 3.1) and then repetitively change the sequence catigmot increasingly
reflect a species with a wider distribution (that is, all tegences are randomly
dispersed on the lattice, each individual in its own demedchEsimulation was
repeated 10,000 times. Performance is measured as thefrgt®number of sim-
ulations observed whefer Or is largest to the first species relative to the number
where the first species is monophyletic.

As expected, as more dispersed sequences are includesljgleedecrease in
monophyletic coalescents with a corresponding increatbesinumber wherBr O
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Figure 3.4: Simulations based ad = 0.1 andT is scaled in units oRN.d * d
generations. The upper row of histograms (U) is based or00GDnulations and
the lower row of histograms (L) is based on 100 simulationgngtthePr O is
> 80%. Monophyly represents the proportion of monophyletialescents for the
first species (double-hatched bars). Assignment repregamproportion of correct
assignments where the query assigned to the first species lfaos). The inclu-
sion of dispersed samples aids correct identification witfin ltonfidence. This
is not confirmed for recently diverged species (C,E,F,l)abse of a lack of high
confidence assignments due to a higher level of paraphyly.

is largest for the first species. This strongly supports #eeaf dispersed sequences
to form the reference datasets. However, when the correciespis entirely com-
posed of dispersed sequences, the performance decreased3rto 13 correct
assignments/monophyletic tree (Figure 3.5, number ofedsga samples = 5) sug-
gesting that the number of correct assignments returnedotdoe expected to do
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much better when the correct species consists entirelyspietdsed sequences be-
cause of the greater level of paraphyly.

1 20
Monophyly Exxxs
Assignment ==

0.8 -

0.6

Proportion (%)

0.4

1
i
o
Assignment/Monophyly

0 ) 1 | 2 - 3 - 4 - 5
Number of dispersed samples in correct species
Figure 3.5: Increasing performance in assignment whendfrea species is com-
posed of more dispersed sequences. Each histogram is ba6¢60 simulations
when M = 0.1 and7T" = 3.0. When the correct species is entirely composed of
dispersed sequences, performance decreases becauds thgreater level of pa-

raphyly.

3.4.2 Grammia(Tiger moth) example

Our analysis of all possible assignments concerning theposition ofG. nevaden-
sis(Figure 3.6) shows that the probability of correctly assigrthe query increases
when at least two dispersed sequences are included (Téahleddumns ‘% Max’
and ‘Max P(CA)).

Low probabilities are largely attributed to the extensiaegphyly among west-
ernGrammiaspecies and, to a lesser extent, the nature of the segrggaés algo-
rithm which calculates high probabilities of assignmendistantly related taxa if
they have extensive sequence variation. As expected, tite@Jihevadensiguery
sequence had highr O to species found in the Weste@rammiahaplogroup.
However, the query consistently had the highestOr to Grammia williamsii
There is extensive sequence variation among th&5Williamsi specimens that
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broadly span the US, with some sequences in both Westernastdri haplotype
clades (Schmidt, 2009). Among the 23 haplotypes, some agaieiho subspecies
G. williamsii tooele some share haplotypes with a few Eastern clade species, and
some have introgressed with other species (Schmidt andirgpez008; Schmidt,
2009). Because of its hyper-variabilitg, williamsiacts as a single, morphological
species that is capable of generating a coalescent thadexlany query. In all
cases, however, the statistical risk is always lowestdonevadensi§Table 3.4).
Minimal statistical risk (a metric included in the segreggtsites algorithm) tds.
nevadensisuggests that the ‘loss’ of assigning the quergtonevadensjsgiven
that it could assign to other species, is small and that fi@sspecies of origin (see
Abdo and Golding, 2007, for a further details).

Figure 3.6: Geographical locations@f nevadensisamples (stars) and query (Q).
Samples are from (with number of sequences in parentheséshBEColumbia (6),
Alberta (4), Saskatchewan (2), Washington (1), OregonGtjorado (3).

3.5 DISSCUSSION

Barcoding with the mitochondri& O1gene sequence has been successful in many
groups of animals (Hebeet al., 2004) but has proved less successful in some other
groups (Meyer and Paulay, 2005; Monaglearml., 2005). The problem is the lack

of correspondence between sequence-delimited groupsaanddmically recog-
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Table 3.3: Including dispersed sequences for the corretispincreases the num-
ber of correct assignments. See footnote for details.

Sampling scheme Total P(CA) % Max MaxP(CA) Mis-assigned tovg R

al | 1 0.111 O 0.000 G. williamsii 0.174
lot her 66 0.015 O 0.000 G. williamsii 0.192
2ot her 825 0.142 59 0.178 G. williamsii 0.178
3ot her 3300 0.158 50 0.173  G. williamsii 0.168
40t her 4950 0.161 52 0.170 G. williamsii 0.166
5ot her 2772 0.162 63 0.168 G. williamsii 0.166

Values are based on assignment among 10 species.

In al | , the composition of the correct speci€s, nevadensjontains 6 samples
strictly from British Columbia. The composition &. nevadensigs modified to
contain one or more dispersed samplest(her -50t her ). The dispersed samples
are sampled from two provinces in Canada (Alberta, Saskatah) and three states
in the US (Washington, Oregon, Colorado). The query is fraahUSee figure 3.6
for the geographical locations of the sampled sequencetharglery.

Tot al indicates the total number of possible combinations foigassent. Correct
assignment (CA) indicates assignments to the first speGiesdvadens)s P(CA)

is the averag®r O from G. nevadensis% Max is the proportion of assignments
when P(CA) is the largest f@s. nevadensidMax P(CA) is the average P(CA) when
it is the largest foiG. nevadensidf the query is incorrectly assigned, the incorrect
species (Mis-assigned to) and the averBg€r from this species (Avg P) is given.

nized species. This lack of agreement is attributable toreetyaof phenomena
such as incomplete lineage sorting (Hudson and Coyne, 2@08patric specia-
tion (Coyne and Orr, 2004), gene- and species-tree disooed&unk and Omland,
2003) and the criteria used to determine species bounddigg, 1942). Other
practical problems include incomplete reference databag insufficient within-

species sampling, which is required for accurate speciteatication (Meyer and
Paulay, 2005; Siddall and Budinoff, 2005).

When gene flow is high and when species divergence timesge, lmethods
to classify sequences to species groups should be relasitraightforward. How-
ever, when gene flow is low and species divergence times aaél #ma ability to
correctly classify sequences will then be impaired. In¢é@tiations, methods that
determine the posterior probability that the sequencdratgs from each species
become critical.

We would expect that the number of simulations with the hagjipeobability of
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Table 3.4: For all assignments, correct or incorrect, tagstical risk of assigning
to the correct species is always the lowest. This suggestdhb query originates
from the correct species. See footnote for details.

Sampling scheme Total Risk(CA) % Min Min risk(CA)
al | 1 0.007 100 0.007
lot her 66 0.011 100 0.011
2ot her 825 0.011 100 0.011
3ot her 3300 0.012 100 0.012
4ot her 4950 0.013 100 0.013
5ot her 2772  0.013 100 0.013

See table 3.3 for simulation details.

Tot al indicates the total number of possible combinations foigassent. Cor-
rect assignment (CA) indicates assignment to the first spe. nevadens)s
Risk(CA) is the average statistical risk of assignmenGtonevadensis % Min

is the proportion of assignments when Risk(CA) is the lowesiG. nevadensis
Min risk(CA) is the average Risk(CA) of assignment when ithis lowest forG.

nevadensis

origin (Pr Or) to the first species should be at least equal to or largertttenum-
ber with a monophyletic relationship among the referengeseces. However, our
results suggest that this is not always true. Wheneverifgignt population subdi-
vision exists and reference sequences have not been edlfieom different demes,
a query sequence from a different deme will appear suffigietfferent from the
reference sequences to prevent correct identificatioru(€i§.1A). On the other
hand, adding just a single reference sequence from a diviedgene can reverse
this, and thePr O will be higher than the proportion of monophyletic referenc
species (Figure 3.1B). This is a result of the increasedasti of conspecific vari-
ation as represented by increagedalues. Continuing to add more samples from
divergent demes further improves the relative ratios (FEdu5).

The tiger moth species of tHt@rammiagenus are an example of a group with
geographically widespread populations connected by gene Despite extensive
non-monophyly among these species,Rh€r from G. nevadensismcreased when
the database contained dispersed samples spanning th@feicdocales between
the base sampling region (British Columbia) and the oridinhe query (Utah)
(Figure 3.6).

Both the simulation and empirical results suggest that tleeess of mtDNA
barcodes depend on sufficient reference sequences that@esentative of the
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within-species variation and when it is undersampled, fsarstructured genetic
variation (population subdivision) or newly divergent sigs or both, inaccurate
species identifications and delimitations may result. Tefkects the requirement
from traditional taxonomy to ensure that sufficient vadatis sampled in order
to determine if characters are taxonomically useful (DeV2411; Trewick, 2007;
Wong et al, 2011). Thus, mtDNA sequence is a valuable tool but only with
comprehensive database consisting of complete conspegificence sequences,
especially from species with wide geographical distritmsi or that have recently
diverged, and our study attests to the need for methods widemadequate repre-
sentation of the natural variation within the species.

Futhermore, accurate species delimitations have impoirtgslications in the
development of proper guidelines and policies used to newaagl protect both
biodiversity and consumer interests. This includes areels as, but not limited to,
conservation and disease biology and aquaculture.

Our methods could be expanded to allow the coalescentagpmciransitions to
vary in space (e.g., along different branches of the treendgbaret al., 2009) and
in time (e.g., unsampled lineages in demes that have gomecextohse, 2009).
The examination of peripheral populations is of particumaportance for recently
speciated groups. We also assumed that lineages migratisarate and symmet-
ric fashion but it would be more accurate to model continumasyement among
demes. A recent method by Lemetal. (2010) uses a continuous spatial diffusion
model to identify the ancestral geographical history of m@e of sequences but
may not be applicable in our simulations since it is not méarmbfer population-
based spatial histories (Bloomquist, Lemey and Suchar@lQ20 Although the
current model is limited in these respects, it is sufficientliustrate how broad
sampling of within-species divergence is essential foueate barcoding identifi-
cations, how this variation affects identifications, analtteven minimal sampling
goes a long way.

While it is important to include singletons (species ddssaliby a single sample;
Lim, Balke and Meier, 2012) in the biodiversity inventorysiagleton cannot cap-
ture any of the variation or complexity of a species (Rosstuigan and Li, 2008).
This variation is critical for any population genetic medhsuch as segregating sites
algorithm, that describes the conspecific variation viararsary statistic ) and
this calculation requires multiple samples. For this reasingletons are excluded
from the reference data set used here. However, despiteetkdusion, if extra-
neous information is used to estimate this variation therageBian method such
as the segregating sites algorithm algorithm should betakiientify queries that
originate from singletons in the reference database. Ocie Source of extraneous
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information might be to assume that the singleton speciesaavel of variation
(9) equal to that of sibling species. At the other end of the daggize spectrum,
Bergsteret al. (2012) recommended a minimum of 20 samples per speciesyor an
sampling strategy. However, the authors also note thathibiee of the identifica-
tion algorithm will determine acceptable sample sizeshtifieation performance,
and error rates. Furthermore, Zhagtal. (2010) found that a universal sample size
is unrealistic for different species and that it ultimatégpends on the evolutionary
history of the species. By evaluting the segregating sitgsridhm via simulations,
we assess its general performance across a range of emalytiecenarios without
particular focus on th€01 gene and we find that while more samples will pro-
vide better results, a large improvement in the number afecbrassignments can
be achieved with even a single dispersed sample from a tbfaleosamples per
species.

3.6 CONCLUSION

Using the segregating sites algorithm and a minimum five $esyer species, both
simulated andsrammia(tiger moth) analyses show that ensuring at least one refer-
ence sequence is sampled from a different region or demepéaes distribution
returns a greater proportion of results that correctlygsain unknown specimen

to its species of origin. Our results highlight the impodarf broad sampling to
improve the information content of reference samples aatdhsingle dispersed
sample can greatly improve the identification of sequenzepécies.
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Chapter 4

An extended theory of segregating
sites: effect of subdivided populations
and heterogeneous substitution rates

4.1 ABSTRACT

Often there is a disconnect between the assumptions madenbgel and the true
evolutionary signals of the data it is applied to. For ins&gncurrent theory as-
sumes that the pattern of segregating sites sufficientlgries the observed level
of variation in a set of sequences. However the pattern magfluenced by vari-
ous phenomena that are unaccounted for, such as populabdivision with gene
flow and unequal base composition from transition bias. Fhigly seeks to im-
prove the theory of segregating sites by incorporating setonaccount for these
biological proccesses. A more comprehensive model shoudave probability
estimates of the observed level of genetic diversity. Thelifreml probability dis-
tributions (of observing a number of segregating sites iumlmer of sequences)
are similar but more accurate at resolving the true didtiobuf genetic variability
relative to those calculated under the original theory. iddally, the results rein-
force the important role subdivided populations with migma and heterogeneous
base composition and substitution rates have on shapiggyobhism and should
be considered in models used to describe genetic signategpg undergoing spe-
ciation.
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4.2 INTRODUCTION

The pattern of variation that permits discrimination begwespecies is produced
by dynamic processes, which may be influenced by many factarsl each of
the many available methods of the barcoding initiative tedigies on one or more
genetic signatures useful for the accurate assignmentegigens to species. The
central assumption across all strategies for moleculatispeecognition is that
within-species individuals are more similar to each othantto individuals from
other species. However, barcoding failures usually stemmfa violation of this
basic assumption. For instance, genetic distances arghtiids, also known as the
“barcoding gap” (a region defined by the maximum level ofantrersus minimum
level of inter-specific variation) and the criterion of n@@cal monophyly (a group
of sequences or individuals under one species name or fgrtheir own clade to
the exclusion of others) are arbitrary and a lack of eithepprty does not preclude
speciation (Hickerson, Meyer and Moritz, 2006; Meier, 20R88ss, Murugan and
Li, 2008; Virgilio et al, 2010). Microevolution (constant change in within-specie
variation; Funk and Omland, 2003), the reliance on a refardree (Little, 2011)
and lack of informative molecular characters (Hudson angn€p2002) limit the
use of character-based methods.

Often, the lack of correspondence between the data and roodets because
the model is too simple: it fails to sufficiently describe quex biological events
governing levels of genetic variation. Both Avise (1992¥ &oltiset al. (2006)
found that species exhibit distinct intraspecific (witlsipecies) mitochondrial DNA
(mtDNA) patterns associated with geography. A dynamicewahary history, con-
sisting of repeated colonizations, extinctions, periddsaation in refugia, spatial
and ecological barriers, can give rise to regional, spespegific genetic patterns
(Soltis et al,, 2006; Trewick, 2007; Lohse, 2009; Tavares, de Kroon andeBak
2010; Carret al,, 2011). Thus, failing to sample from each locale in desngla
geographically dispersed species may lead to biased bagcoderences. For in-
stance, failure to include samples from multiple bio-ldted substantially underes-
timated the level of variation found within a species, radgthe “barcoding gap”
and correct specimen identifications (Lukhtareival, 2009; Zhouet al., 2011).
And when conspecific variation is properly sampled, aceubaircoding rates have
been achieved (Allcocgt al, 2011; Zhowet al,, 2009; Tavares, de Kroon and Baker,
2010; Zhouwet al,, 2010, 2011; Pappalarda al., 2011). In a previous study, the in-
clusion of at least one dispersed sequence not only inaeasaumber of correct
specimen assignments but also increased both the prapoftgegregating sites in
a set of sequences and the estimated population mutatiergrétou and Gold-
ing, 2012). The inferred values were unusually high because the method does not
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attribute the added intraspecfic variation as originatnognfa distinct geographic
locale or deme.

Different types of nucleotide substitutions may have dédfe rates, allowing
for different patterns of variation to be observed in diffier species and this may
negatively impact barcoding inferences (Yang, 1996; Rak3werling, 2007). In
MtDNA, the number of polymorphisms that result from traisis will be higher
than those that are transversions, but this excess is oidgravin very closely re-
lated or recently diverged species. For instance, all ()0D%ubstitutions of 112
COl base positions are transition differences between togety related members
of the Equusgenus, the extant mountain zebra and extinct quagga (Higuci,
1984). With increased sequence divergence, the proparfiobserved transition
differences is expected to decrease. This has been obserwagertebrate COI
(fruit flies, the spruce budworm pest, and ground bettleaSshiwa and Chigusa,
1987; Sperling and Hickey, 1994; Martinez-Navarro, Galnad Serrano, 2005)
as well as other genetic segments (e.g., COIl, NADH dehyatrage, ribosomal
RNA) and organisms (e.g., insects, rat versus both cow anthhuand between
cow and mouse; Browet al., 1982; Brown and Simpson, 1982; DeSadeal.,
1987; Liu and Beckenbach, 1992). The disappearance oftitarss(or accumula-
tion of transversions) may be due to multiple substitutiaithe same site, perhaps
resulting in eventual saturation (no change in sequenegbwvce despite increas-
ing time or a poor signal-to-noise ratio) (Browhal, 1982). It is possible that the
observed base difference may not have been achieved in emeaistl may be the
result of two or more base substitutions (an observed tiangnay mask, previous,
multiple tranversions or is the result of transversions tzve erased themselves;
Holmquist, 1983). Using COII data, Jukes (1987) showed ithast of the accu-
mulated transversions occurred at previously unsubstltsites (also observed in
other genes and organisms) and multiple hits and saturatibkely neglible in
recently diverged or closely related species. The lack aofespondence between
observed patterns and true substitution mechanisms at sugtest that the mod-
elling of heterogeneous base composition, from a high ptagoof transitions, is
warranted.

Since both population subdivision with gene flow and hetenegus base com-
position from transition bias influence the evolutionargtbry and genetic signa-
tures in data, the theory of segregating sites should befraddo reflect the influ-
ence of these forces on the observed level of variation. Téaifrad model should
provide a more realistic representation of the evolutigilginamics of species and
improve the metric for accurate species identification.

Here we attempt to develop an extended mathematical modbedheory of
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segregating sites under the joint effect of populationcstme with migration and

unequal base composition and substitution rates in mtDN#A& modified model

should produce more realistic probability estimates ofgieetic variability in a set

of sequences (relative to the original model). The moddlaginpare the structure
of variation observed in 1 to 3 subdivided populations an@énvbegregating sites
are categorized as transitions and transversions.

We will first briefly describe the original theory of segreggtsites. This is fol-
lowed by a description of the model for population subdoisivith migration and
the modified recursion equations adopting this model. Téssdption format is re-
peated for modelling transitions and transversions. Birtaé modified probabilty
distributions of the genetic diversity expected under tiileience of each biological
phenomenon are presented and discussed.

4.3 THEORY

4.3.1 A review of the basic theory of segregating sites

The goal is to assign an unknown DNA sequengég the correct taxonomic group,
k. The probability of this assignmer®(Or ) is

Pr(z € k|lx, D, )

where D is a database of known sequences with distinct taxonomigpgrand?
(= 4N.u) is a known collection of population mutation rates. Theigrement of
sequence must be made to one of the taxonomic groups.

Each taxonomic group is representedrbgequences. According to the theory
of segregating sited, is reflected in the number of segregating sitedhetween a
set of sequences. Using Bayes rulas(r is calculated as:

Pr(sk\nk,x € k,&k)/Pr(sk\Gk)

P klz,D,0) ~

(4.1)

where the probability of membership of the unknown sequertoetaxonomic
groupk is
Pr(sg|ng, x € k, 6)
Following Lou and Golding (2010), the basic recursive dé&bnifor the proba-
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bility that a sample of;, sequences will have, segregating sites is:

0
Pr($k|nk,x € k’,ek) = mpr(Sk — 1|nk,x c k,ek)
ng. —1
— P —1 k.0 4.2
Op +ny — 1 r(slne — 1w €k, 0r) (4.2)

This recursion assumes an infinite sites model (Kimura, 1,968 samples are
equilibrium single random mating populations of siveandyu mutations occur per
locus per generation.

4.3.2 Modelling population spatial substructure

The methodology will follow Golding (1984, 2002) and Lou a@alding (2010)
to calculate equilibrum recursion equations to descrilgenilimber of segregating
sites between 2 or more populations.

To extend the theory to the number of segregating sites tigiitrhe obtained
in a sample that originates from a subdivided populatioché¢axonomic group,
has its sample of sequences,, divided into a total ofl subpopulations or demes.
For each demg NV, is the number of diploid sequences that undergo random ghatin
internally andn; is the number of sampled sequences.

Let m; designate the probability of migration, per generatioonfrdemes to
demet. We will assume that migration is reciprocal or symmetvig\t : my =
mys) and that it is irreducible (no isolated subsets of demes).

To maintain constant population sizes, within each demey;, tine, it is neces-
sary that the migration parameters satisfy a detailed balan

Z msth = Z mrsNr
t T

such that the number leaving is equal to the number entehieg’t deme.
Generations are assumed to be discrete and non-overlagdiagnodel is depicted
in figure 4.1.
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Figure 4.1: A subdivided population represented as a éaftiashed lines) with
demes (e.g., four demes). Each deme consists;afiploid sequences and each
sequence is permitted to migrate to and from each deme atwal exie ofm
sequences/deme/generation. hgbe the number of sampled sequences from deme
1.

4.3.3 Modified theory of segregating sites with population -
tial substructure

Equilibrium recursion equations can be derived to desdahbawumber of expected
segregating sites between 2 or more populations from onergeon to the next.

Terms denoted by a prime represent an equivalent probaibilihe next gener-
ation. The population substructure of sequences is demathih square brackets;
for example,Pr(s|[2, 1]) denotes a total of three sequences (2 are found in the first
subpopulation and 1 is found in second subpopulation).

Pr(s|n)':(1—zniu—znzzmﬂ an n; — Z) Pr(s/n)

i j#

+ an - Pr(s —1|n)
+ Zni ijl- -Pr(sl..n;—1,n;+1,...)

i j#i

+an

(s]--mi —1,...) (4.3)

If N = N;, m =mj then at equilibrium,
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=(1- an - an’m - an(nz — 1)5) - Pr(sn)
+Zn,~u-Pr(s—1|n)
+ Znim : ZPT(S|...TL,~ —1,n;+1,..)

+) il —1)— ~  Prlslmi—1,..) (4.4)

Combining like terms on the left side,

(Z nip + Znim + Zn,(nZ - 1)%) - Pr(s|n)
= Zniu - Pr(s — 1|n)
+ Znim : Z Pr(s|..n;—1,n; +1,...)

+3 i (n = Vg Prislni —1,.) (4.5)

If & = 4Ny andM = 4Nm then,

Znﬂ—l—ZmM—i-Zm n; ) - Pr(s/n)
= anﬂ - Pr(s — 1|n)

+ Zn,M : Z Pr(s|..n;—1,n;+1,...)
+ an(nz — 1) Pr(s]..n; — 1, ...) (4.6)

and the probability that a sample@sequences will havesegregating sites in
a subdivided population with migration is:
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Pr(sn) = Sl -5 M 1S na(ns — 1) . Pr(s—1[n)
" d>onb+ > nM4+> ni(n; — 1) ' ZPT(S‘---W —1,n;+1,..)

J

> ni(ni — 1)
+ S0+ S M+ S ng(n; — 1) - Pr(s|..m; —1,...) 4.7)

Note that whem = n; = n, with all othern; = 0 and withm = 0, equa-
tion (4.3) reduces to,

Pr(sln)" = (1 — np —n(n — 1>ﬁ> +Pr(sin)
+nu- Pr(s—1|n)

+n(n— 1)5 Pr(sin—1) (4.8)

and if60 = 4N u, M = 4Nm then at equilibrium,

(@+n—1)-Pr(sjn)=0-Pr(s—1n)+ (n—1)- Pr(sjn—1) (4.9)

or
Pr(sln) = 79 Pr(s —1|n)
e Ch+n—1
n—1
+m'P’F(S‘n— 1) (410)

which is the familiar recursion equation for the number @fregating sites in a
single population (4.2).
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4.3.4 Modelling transitions and tranversions

The number of segregating sites may be categorized into twwee substitutional
categories. Here we will consider transitions and trarseas. However, more
information may be captured by categorizing even furthemditions may be de-
scribed as interchanges between purines (A and G) or pyinesdC and T). And, if
not symmetric, purine-purine interchanges may be recoadeél-to-G’ or ‘G-to-A
interchanges. Each category is described by a unique ratébstitution. The most
appropriate number and type of categories to use depentie devel of resolution
desired.

4.3.5 Modified theory of segregating sites considering hatege-
neous substitution rates

For a sample of. sequences, let = [s,,] be a matrix of observed differences
(segregating sites) whesg, is a difference that records a change from nucleotide
x to nucleotidey and

x?y = {A7 G7 C7 T}

For example|s,, = 0] indicates O segregating site;sc = 3] indicates 3
segregating sites (A> G); and[s4¢ = 3, sar = 2] indicates 5 segregating sites (3
of A— Gand 2 of A~ T).

The proportion of segregating sites is categorized by adisiide nucleotide
interchanges and each is characterized by a unique sutostitate, .

Pr(Sin) =1 =n> > fizy —n(n — 1)5) - Pr(S|n)

T xFy
+ HZZNW - Pr([sey — 1]In)
T zFy
+n(n — 1)% - Pr(Sn—1) (4.11)

Let us be a matrix of the rates of substitution for each categoryenTlet

Z:p Em;éy Hay = HS,
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Pr(SIn)" = (1 — nus — n(n — l)i) - Pr(S|n)

N
+ npg - Pr([szy — 1]n)
+n(n— 1)%-Pr(5|n— 1) (4.12)

If us = u (the rates of substitution for each category are equal) @hequilib-
rium we have (4.2).

More generally, assuming symmetry (between interchanfjgeessame bases,
such as A2G = G2A), letv and 3 represent the substitution rate for transitioRs,
(purine-purine, pyrimidine-pyrimidine interchangeg)ddransversiong) (purine-
pyrimidine interchanges), respectively.

Pr(Sn)" = (1 — na —nB —n(n — 1)5) - Pr(S|n)

+na - Pr([sp —1]|n)
+np- Pri(sg — 1]|n)

+n(n — 1)% - Pr(Sin —1) (4.13)

Assuming equilibrium and combining like terms on the leftesi

(a+B8+(n— 1)&) - Pr(S|n) = a - Pr([sp — 1]|n)
+ B Pr(sq — 1]|n)

+(n— 1)& Pr(Sln—1)  (4.14)

Letd, = 4Na andfs = AN,
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(0o +05+n—1)-Pr(Sn) =0, - Pr([sp — 1]|n)
+ 05 - Pr([sg — 1]|n)
+n—1-Pr(Sln—1) (4.15)

and the probability that a sample nfsequences will have segregating sites
partitioned into two substitution categories is:

ea
Pr(S|n) = R prr— - Pr([sp — 1]|n)
S —
e Zﬁ;ln —  Pr(Sln—1) (4.16)
4.4 RESULTS

4.4.1 Expectations of a modified theory of segregating sites

The equilibrium recursion equations calculate the prdiglmf obtaining a certain
number of segregating sites in samples from subdividedlptpaos with migration
and samples that exhibit heterogeneous substitution rates

In the absence of population substructure with migratiod heterogeneous
substitution rates, using equation (4.2) and assurmn@.0, the probabilities of O
and 1 segregating sites in 2 sequencesrar®|2) = 0.33 (Figure 4.2A9=2.0) and
Pr(1]2) = 0.22 (Figure 4.2B§=2.0) respectively.

Given population substructure and migration, when theoheigration is zero,
it is expected that the probability of obtaining a numberegjregating sites should
be the same as the probability seen in a population withdagtaucture. At inter-
mediate rates of migration, that are neither zero nor ijrilie probability of ob-
serving a number of segregating sites differs depending@paopulation structure
of the sampled sequences. Among sequences sampled frorantteep®pulation
(e.g., [2,0]), the probability should decrease to refleetdbcreasing chance that all
the observed variation originates from sequences in on@ defight of migration.
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Pr(# of segregating sites | # of sequences)

2 4
| | |
A. Pr(0]2) B. Pr(1]2)
A
N 0.333 - 03
| A A - 0.2
02 0.222 A
= — i 0.16 — 0.1
a . - 0.0
P
T% C. Pr(0]3) D. Pr(1]3)
3 03 i
O 02+ S A =
0.1 - 0.167 A 0.194 A —
0.0 0.067 0.098 —
T T T
2 4

Figure 4.2: Probability of segregating sites in sequences wheh= 2.0 and 4.0.
The probability values are calculated using equation (4.2)
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Among sequences sampled from 2 or more populations (e,#]),[the probability
of variation should increase to reflect the greater charaddltle variation may stem
from sequences found in different demes. When the rate ofatigg is very large
or infinite, the probability of variation reflects a metaptaiion that acts as a single
population. Thus, the probability of variation is expectedeflect a larger number
of sampled sequences.

In the case of unequal base substitutions, in the most gezeea of categoriz-
ing the proportion of segregating sites as transitions eant/érsions, the modified
probability value reflects the chance that the observedtian is due to different
combinations of each substitution type; this is accomplishy incorporating dif-
ferent rates for each substitution type. For exam@les then expressed &5 +
5. Then the probabilities of 0 and 1 segregating sites, barati@original and
modified recursion equations, are:

1 0

1 0o
Pr([0]]2) = bt 0,11 Pr([1]]2) = bt 0,11 - Pr(0[2)
05
o o

respectively, wher& = [s,,| = [s] = [sp, sg] IS @ matrix of observed segregating
sites partitioned into transitiong;, and tranversions;). While the probability
values of the modified and original recursion equations reth& same, the left and
right terms, or component probabilities, Bf ([1]|2) should differ depending on the
number and substitution rate of each type of substitutiomgeneral, probability of
a transition should be greater if the observed number o$ttians are greater than
the number of transversions and vice versa.

4.4.2 Effect of population spatial substructure and migraton

We focus on the results where sequences are sampled froml aft@ subpopula-
tions.

Sequences in 1 subpopulation

Migration is zero. The probabilities of 0 and 1 segregating sites in 2 sequeances
1 (of 2) subpopulation ar€r(0|[2, 0]) = 0.33 andPr(1|[2,0]) = 0.22, respectively
(Figure 4.3A and B)M ~ 0). The samples or individuals remain in their respective
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Pr(# of segregating sites | [2 sequences & 2 subpopulations], 6= 2.0)

0.001 0.1 10

A Pr(0||[2,0]) | B. Pr(1||[2,0]) |

“lo.333 SN - 03
- A—G—Q-—Q\H—A - 0.2
P B 02 0.222 016 01
a 4 L
2 Subdivided EXP 0
;U C. Pr(0|[1,1]) D. Pr(1][1,1]) Single EXP A
S 03 L
o 0.2 - |
0.1 1 J Ms o
0.0 L

Migration (M)

Figure 4.3: Probability ok segregating sites in 2 sequences from 2 subpopula-
tions when0.0001 > M > 100. The probability values are calculated using equa-
tion (4.7).

demes and the 2 sequences found in the same subpopulas@sacsingle popula-
tion with no hidden substructure. So all of the variationnsirely attributed to the
sequences in that 1 subpopulation. As expected, the rgsoltgled by our recur-
sion equations agree with theoretical probability valmeté absence of population
substructureA\ in figure 4.3A and BM ~ 0, correspond to those in figure 4.2A
and B,d = 2.0).

Intermediate migration. When the migration rate is greater than zero but less than
being infinitely large (i.e.) < M < o) the probability decreases for 2 sequences
(Figure 4.3A and B). As the rate of migration increases, samare permitted to
move among subpopulations more easily. Thus, the probabflobserving segre-
gating sites in a sample of sequences decreases becausg#tien may originate
from samples in other demes. Thus, the decrease in prdiyatuljgests that the
number of segregating sites in sequences of 1 subpopulatiess likely if varia-

tion is permitted to come from other subpopulations via atign.

Migration is very large. When migration is very large (i.el/ = 100), the proba-
bilities of observing 0 and 1 segregating sites in 2 sequeince (of 2) subpopula-
tions arePr(0[[2, 0]) = 0.20 andPr(1|[2,0]) = 0.16, respectively (Figure 4.3A and
B, M = 100). Sequences are permitted to move easily between subpiomsia
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allowing the metapopulation to act as a single populatidriths characterized by
more individuals or a higher level of variation (i.e., douigl of § to 4.0). So it
is not surprising that the results from our modified recurgquations should and
do approach the values expected from equations descrilsimgke populationf
correspond to those in figure 4.2A andéBs 4.0).

Sequences in more than 1 subpopulation

Migration is zero. Sampling 1 sequence from each of 2 (of 2) subpopulations,
the probabilities of 0 and 1 segregating sites 8r€0|[1, 1]) = 0 and Pr(1]|[1, 1))

= 0, respectively (Figure 4.3C and B/ ~ 0). At equilibrium, when the sampled
sequences are in different demes, the probability of olisgsegregating sites is 0
because segregating sites cannot be observed among sesjueddferent demes.
Provided that we do not consider an infinite number of seqegrbe result is true
for any number of sequences (Figure 4.4C and Dy 0).

Intermediate migration. When sequences are spread out among several demes, an
increasing migration rate permits mixture among sampldaadividuals confined

to distinct demes. Since we expect that there is a greatecehthat the variation

is attributed to samples from distinct demes, with incnegignigration rate, there
should be a corresponding increase in the probability ofdisg segregating sites
among sequences found in subdivided populations and thisasis observed (Fig-

ures 4.3C and D).

Migration is very large. Whether sequences are in 1 subpopulation (i.e., [2,0]) or
both (i.e., [1,1]), the probabilities are the same (Figu& 4/ = 100) and agree
with the theoretical outcome of a metapopulation actingsiagle population (Fig-
ure 4.2A and B¢ = 4.0).

Increasing the number of sequences sampled from subdividgabpulations

The probability patterns of 0 and 1 segregating sites oleseir 3 sampled se-
guences from 2 subdivided populations are similar to thbsexwed for 2 sampled
sequences but smaller (Figure 4.4). Across increasingatiigr rates, assuming
0 = 2.0, the probabilities are consistently smaller than proli@sl based on 2 se-
guences because observing 0 and 1 segregating sites inegoienges is less likely.

Increasing the number of subdivided populations

When the total number of subpopulations increase, therpatteprobability
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Pr(# of segregating sites | [3 sequences & 2 subpopulations], 6= 2.0)

0.001 0.1 10

A Pr(0||[3,0]) | B. Pr(1||[3,0]) |

- - 03
- - 0.2
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Figure 4.4: Probability ok segregating sites in 3 sequences from 2 subpopula-
tions when0.0001 > M > 100. The probability values are calculated using equa-
tion (4.7).

values expected with 2 sampled sequences in 3 subpopdatimuld be similar
to the pattern observed in 2 subpopulations. For examptetréimd of probability
values forPr(0|[2,0,0]) are similar to those seen fa@tr(0|[2,0]) except that the
slope declines steeply as the migration rate becomes uggy (Rigure 4.5A versus
Figure 4.3A). With the addition of a third subpopulation,emthe migration rate is
very large, the probability of observing O segregatingssisesmaller because it is
expected that, in 3 subpopulations, the variation will féelarger number of sam-
pled sequences (that is§)3 The same reasoning can be applied*g0|[1, 1, 0])
except that its probability slope increases mildly as thgration rate becomes very
large (Figure 4.5B versus Figure 4.3C).

Probability distribution of the modified theory of segregating sites

We examine the probability distributions of the number ajrsgating sites in
samples from a single or subdivided population.

To avoid ambiguity, definitions of several terms used to dbsa probability
distribution are provided:

tail region of least frequent occurring values in a distribution
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Pr(0 segregating sites | [2 sequences & 3 subpopulations], 6= 2.0)

0.001 0.1 10

A Pr(0|[|2,0,0]) | B Pr(0|[|1,1,0]) |
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0.1 0.143 MS_
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Migration (M)
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Figure 4.5: Probability of O segregating sites in 2 sequerican 3 subpopula-
tions when0.0001 > M > 100. The probability values are calculated using equa-
tion (4.7).

skew measure of asymmetry of the probability distribution

negative skewleft tail of the probability distribution is longer than thight (i.e.,
there are few low values) and the bulk of the mass (valuedplibe right
of the distribution. Synonymous terms include left-skewedt-tailed, and
skewed to the left.

positive skew right tail of the probability distribution is longer thandHeft (i.e.,
there are few high values) and the bulk of the mass lie to thefi¢he distri-
bution. Synonymous terms include right-skewed, rightthiand skewed to
the right.

Sequences in 1 subpopulationFor 2 sequences, when the migration rate is zero,
the mass of the distribution is concentrated on the left, (pesitively skewed). In
other words, the probability decreases as the number oégatjng sites increases.
The trend is true and the probability values are the sameeiguences sampled
from a single or subdivided population (Figure 4.6A, C M£DQ, ().

When migration is very large, the probability distributisnpositively skewed
for samples from a single and subdivided population. Budtires to a single pop-
ulation, the probabilities from the subdivided data setlaveer when s-=3 (Fig-
ure 4.6A, C, M=100A).

Sequences in more than 1 subpopulationAs expected, when migration is near
zero, the probability distribution is left-tailed (i.ehe probability is 1 when the
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Probability distribution of segregating sites (s)
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Figure 4.6: Probability distributions of segregating sites in sequences without

(A and B) and with (C-F) subdivided populations whefA001 > M > 100. The
probability values are calculated using equations (4.8)(4rv)
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number of segregating sites is infinite; Figure 4.6E, M=010)).

When migration is very large, the probability distributi@nsimilar, but with
lower values, relative to the positive skew seen with sampiel subpopulation
(Figure 4.6E, M=100A).

More sequences in 1 subpopulationf-or 3 sequences, the probability distribution
mass is, similarly, positively skewed but slightly peaksewthhere are 1 and 2
segregating sites. This trend is the same for sequencesafgingle or subdivided
population (Figure 4.6B, D M=0.0001)).

When migration is very large in a single population, the pefthe positively-
skewed distribution occurs when there are 2 segregatieg éiigure 4.6B, s=2,
M=100, A). However, with population substructure, the peak is netty flat
(Figure 4.6D, M=100,A). When there are greater than 5 segregating sites, the
probabilities from a subdivided population are greates. (iPr(10[3) = 0.037 <
Pr(10][3,0]) = 0.090; Figure 4.6B vs D, s=10, M=10Q)).

More sequences in more than 1 subpopulationSimilar to Pr(s|[1, 1]), when the
migration rate is zero, the tail of the probability is longerthe left and the proba-
bility is 1 when the number of segregating sites is infinitg(ife 4.6F, M=0.0001,

Q).

When the migration is very large, the probability distribatis the same as
Pr(s|3) and Pr(s|[3,0]) when there are O and 1 segregating sites, intermediate
when 2<=s<=3 (e.g.,Pr(2|3) = 0.106 < Pr(2|[2,1]) = 0.105 < Pr(2|[3,0]) =
0.098), smaller when 4=s<=8 (e.g.,Pr(8|3) = 0.054 > Pr(8|[2,1]) = 0.052 <
Pr(8|[3,0]) = 0.093), and intermediate wher>$8 (e.g., Pr(10|3) = 0.037 <
Pr(10][2,1]) = 0.043 < Pr(10][3,0]) = 0.090) (Figure 4.6F, M=100A).

4.4.3 Effect of heterogeneous transition and transversiorates
in MtDNA

The original recursion equations (4.2) give the followimglpabilities that a sample
of n sequences has 0 tsegregating sites:

0 0°

Pr(sln) = Pr(s—1|n) = @r= (4.17)

0+1
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For n number of sequences, the sum @®f(s|n), wheres ranges from 0 to
infinity, is 1.

Under the modified recursion equations (4.16), each prébals the sum of
component probabilities and each component probabiligciilees a possible ar-
rangement of the observed segregating sites partitiorteccategories. Fon se-
quences and two substitution categories, namely transitiad tranversion®r([1]|n)
is composed of two component probabilities: the probahiliait 1 segregating site
is either a transition (i.e.Pr([1,0]|n)) or a transversion (i.ePr([0, 1]|n)). The
number of possible arrangements increases as the numbegrefgating sites in-
crease. With two substitution categories, each increatbeinumber of segregating
sites introduces an additional component probability. iRetance, there are three
possible arrangments for 2 segregating sites: both seigrggites are either 2 tran-
sitions ([2,0]) or 2 transversions ([0,2]) or 1 transitiamdal transversion ([1,1]).

The following equations describe the breakdownPof[s]|n) into its compo-
nent probabilities for observing up to 5 segregating sitessequences:

Pr([0]|2) = Pr(02)

Pr([1)]2) = Pr([1,0]|2) + Pr([0,1]]2)

Pr([2]|2) = Pr([2,0]|2) + Pr([0,2]]2) + Pr([1,1]|2)

Pr([3)[2) = Pr([3,0]|2) + Pr([0,3]]2) + Pr([1,2]|2) + Pr([2,1]|2)

Pr([4)|2) = Pr([4,0]|2) + Pr([0,4]]2) + Pr([1,3]|2) + Pr([3,1]|2) + Pr([2,2]]2)

Pr([5)|2) = Pr([5,0]|2) + Pr([0,5]12) + Pr([1,4]|2) + Pr([4,1]|2) + Pr([2,3]2)
+ Pr([3,2]|2)

In general, forn number of sequences, the sum/f([s||n), where[s| ranges
from O to infinity, is 1.

At equilibrium, the probabilities that a sampleofequences has 0 [g seg-
regating sites are:

(0o + 05)°
(6a + 95 + 1)S+1

Pr(fs)ln) = 22+ 0

—m'ﬂ’([s—l“n):

(4.18)

A comparison of the solved probabilities for the originall(Ad) and modified
recursion equations (4.18) show that the probability valale the same. But the
values for each component probability will depend on thesstuiion rates for each
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category.

For instance, ifl, = 1,65 = 1, then

PrR) = g - PrOIR) + g P
Pr(1)2) =+ - Pr0l12) + 1 - Pr(0]]2

Pr([1]]2) = 0.111 + 0.111

The first and second terms &fr([1]|2) are the probabilities that 1 segregat-
ing site is either a transitionAr([1, 0]|2)) and or transversionHr([0, 1]|2)) in 2
sequences.

If 6, =2.0,05 = 0.0, then

Pr(1)i2) = 55— - Pr0]2) + 55— - Pr(0]]2
PrU) =25 +0 3
Pr([1]]2) = g +0

Pr([1]]2) = 0.222 + 0

If 6, =1.5,05=0.5, then

Pr(1)12) = 15— Pr0D) + oo Pr(0]]2)
1.5 1 05 1
Pr([1]]2) = 3 3733
Pr([1]]2) = % + 095

Pr([1]|2) = 0.167 + 0.0556
The distribution for 2 component probabilitieBy ([s, 0]) and Pr([0, s]), are
shown in figure 4.7.

The shape of the distributions are similar #o(s|n). For instance, for each
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Distribution of component probabilities [s,0] & [0,s]

- 0.3

- 0.2

— 0.1

a

e _ L P,

> 0o [RQ]

£ C D [s0] &
3 [0s] ©
Qo

e

o

0.3 ~

0.2 ~

0.0 ~
T T T T T T T T T T T T

# of segregating sites (s)

Figure 4.7: Component probabilities efsegregating sites in 2 sequences with
heterogeneous substitution rates. Let the substituti@s far transitions ) and
transversions®) bed, andé; respectively. Af, = 1.0 andfz = 1.0, B. 4, = 2.0
andfs = 0.0, C.6, = 1.5andds = 0.5, and D.6,, = 0.5 andfz = 1.5. Whend,, =

1.0 andfz = 1.0 (A), the probabilities of observing transitions or transiens are
equal. Ifd, > 603 (B, C), the probability of observing a transition is greatsan
observing a transversion.df, < 65 (D), the probability of observing a transversion
is greater than observing a transition.
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unique pair of heterogeneous substitution rates, Botfis, 0]|2) and Pr(]0, 2]|2)
are right-tailed (that is, there are few high probabilityues as the number of
segregating sites increase). A similar trend is observedfds|2) (Figure 4.6A,
M=0.0001,0).

The probability of observing 0 segregating sit€s ([0, 0]|n)) is independent of
whether heterogeneous transition and tranversion rateasidered (e.gRr(0[2)
= Pr([0,0]|2) = 0.333). With 1 or more segregating sites, the probabiliytserv-
ing a transition or transversion depends on the number aedofaeach type of
substitution. Wher#, = 1.0 andéz = 1.0, the probability of 1 or more transi-
tions (Pr([s, 0]|2)) is identical to the chance of observing 1 or more transvessi
(Pr([0, s]|2); Figure 4.7AA vs O respectively). Whert, > 63z and there are
more observed transitions than transversions, the priityadifiobserving a transi-
tion is higher than observing a transversion (Figure 4.78@n This is especially
true wherd, = 2.0 andds = 0.0; the chance that the variation originates from 1 or
more transversions is 0 (Figure 4.7B. When the transversion substitution rate
is greater than the rate for transitions, the probabilit tthe observed variation
originates from transversions is greater than the lattigu¢e 4.7D).

Similar, flattened, distribution patterns are observedwheor 2 segregating
sites are fixed as transitions or transversions (Figures4dd4.9). The flattened
distributions occur because the chance of observing hilgivets of variation is
smaller with 2 sequences. The flattened effect is strongér2iixed transitions or
transversions; the probability of observing variationiisually O with 1 additional
segregating site (Figure 4.9C).

4.5 DISCUSSION

An important and consistently used population geneticrpatar to describe the
diversity pattern of a set of sequencegliand it is the product of the effective
population size and mutation rate. The Watterson (1975atsmu describes the
relationship betweefi and the expected number of segregating sites (total number
of substitutions observed in the data).

Inaccurated estimates may result when the assumptions of the model afe vi
lated. For example, violations may arise from sequencepleahirom geograph-
ically dispersed species or sequences that exhibit heteeagis base composition
from a transition bias.

This study investigated the effect of modelling populasobstructure with mi-

77



Ph.D. Thesis - M. Lou; McMaster University - Biology

Distribution of component probabilities [s,1] & [1,S]
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Figure 4.8: Component probabilities efsegregating sites, given 1 transition or
transversion, in 2 sequences with heterogeneous sulmstitates. Let the substi-
tution rates for transitions{) and transversiong)) bed, andds, respectively. A.
0, =1.0andds = 1.0, B. 0, = 2.0 andds = 0.0, C.0, = 1.5 anddz = 0.5, and D.

0, = 0.5 andfz = 1.5. The distributions are similar, but flattened, relativeltode
seen in figure 4.7.
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Distribution of component probabilities [s,2] & [2,S]
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Figure 4.9: Component probabilities efsegregating sites, given 2 transitions or
transversions, in 2 sequences with heterogeneous stiostitates. Let the substi-
tution rates for transitionsH) and transversiongy) bef, andf; respectively. A.
0, = 1.0andds = 1.0, B. 0, = 2.0 andds = 0.0, C.0, = 1.5 anddz = 0.5, and D.

0, = 0.5 anddz = 1.5. The distributions are similar, but flattened, relativeltode
seen in figures 4.7 and 4.8.
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gration and heterogeneous substututions rates on estgtag probability of ob-
serving a number of segregating sites in a sample of segsiehc®ur knowledge,
this is the first study that attempts to modify the theory afregating sites to ac-
count for biological phenomena known to affect levels ofatawn and an estimate
of an important measure of genetic diversftyfor a sample of sequences or popu-
lation.

Our results highlight the importance of considering vasibiological forces as
potential sources of variation when describing genetierdiy in a set of sequences
or population. Specifically, the recursion equations ofrtiadified theory of seg-
regating sites generate probability values that more atelyrreflect the chance of
observing a number of segregating sites when processesothtaibbute to variation,
previously assumed to have little effect and were not medehlre accounted for.

Representative probability values of the observed levietequence diversity
should be able to improve the assignment of an unknown qaétytorrect species.
An unknown query should assign to a species that it is mosiasito or shares the
least number of differences with. Given the current thedrgegregating sites,
assuming informative sequences (that is, the data suffigieapture intraspecific
variation), there should be more observed differencesdmtveequences from dif-
ferent subpopulations thus resulting in an unusually lighlue, even though the
sequences originate from a single species. And an assidmfremunknown query
to this group will likely be rejected, even though the queogsl belong. Under the
modified theory, which allows for the possibility of variati from other sources,
the estimated value df, if modelled correctly, should more closely resemble the
true value and a correct assignment might be made. This isanlith our previ-
ous study where inflate@ values were observed when species were composed of
one or more conspecific sequences sampled from distinctgjemggesting that the
system was not modelled correctly and the increase in vami&, falsely, from a
higher population mutation rate rather than populatiorssuloture (Lou and Gold-
ing, 2012).

Different substitution pressures may exist between difiespecies. Upon ex-
amining counts of each type of change, the pattern of eacd$titution type should
be similar between conspecifics. Therefore, a similar patié substitution types
andd values should exist between an unknown query and its spet@#gin and
allow for accurate specimen identification. Yang (1996 &b that failing to ac-
count for among-site rate variation (ASRV) or different stifution rates at dif-
ferent sites will severely underestimate levels of genedigation and transition-
transversion rate ratios. While our study explored theii@mntof segregating sites
as transitions and tranversions, depending on the datahandksired level of res-
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olution, a different choice of partitions may be more appiatp. For sequences
with low divergences, it may be sufficient to simply count tluenber of transitions

and transversions and similar proportions of each pantitpe would be expected
among conspecifics. For a finer level of resolution, the alstregegy may be ap-
plied to particular sites since the transition/trans\w@rsatio has been shown to dif-
fer among nondegenerate, twofold degenerate, and foudégdnerate sites in COI
(Xia, Hafner and Sudman, 1996; Martinez-Navarro, Galiash &errano, 2005).

Confidence in our results could be strengthened by conduetiocomparison
study between the original and modified theories on the pmdace of specimen
identification. Specifically, under the modified model, thregortion of correct
assignments should increase @restimates should be closer to the true value. The
methodology follows from Lou and Golding (2012).

While our method may be used with all types of genetic dataniddtion of our
method an the assumption associated with the use of thetenéiies model. That
is, each mutation always occurs in a new position in a long B¥4uence with a
low mutation rate (Kimura, 1969). To accommodate this aggion, our modified
method should be used with species data that have short tovsgseciation (i.e.,
recently diverged or closely related species) or where tlweimence of multiple
hits and saturation is very small or neglible (e.g., lack ofoplasy or similarity
arising from parallel or convergent evolution). While ougtimod may be less robust
when these assumptions are not met, other factors, that megyehgreater effect,
may be more likely to confound the results first.

In fact, these other factors may serve as significant sowteariation that
may be used to further refine the model and provide potentethzes for future
research. Our current research investigated differergtgution biases (transitions
and transversions), each with different rates. It is pdssitat the rates may change
over time. That is, positions may evolve at different ratedifferent lineages. The
term used to describe this phenomenon is among-lineagevaatgion (ALRV)
or heterotachy (Simoet al, 2006). Though Schwartz and Mueller (2010) have
shown that ALRV may have a limited effect on phylogenetiareation. Other
confounding factors may include introgression (an extréone of hybridization
where the genetic content of one species is completelyaeglay that in another)
and selective sweeps (the favoured mutation and its neighigpneutral variation
become more prevalent, reducing total genetic variatibmrogression has been
documented irDrosophilamtDNA (Ballard, 2000b) and, along with heterotachy,
can cause different species to look prematurely similazohitrast, selective sweeps
may artificially increase reciprocal monophyly and may rdiecct the evolutionary
relationships among populations (Ballard and Rand, 2005).
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In addition to the biological or biotic factors mentioneldete are potential abi-
otic sources affecting polymorphism levels that model$ makd to address. These
include machine-read errors (i.e., sequencing) and systerrors (e.g., storage,
preparation, and computational processing). Each errbhrlikely increase the
number of rare variant sites (i.e., polymorphic positiortsere one sampled se-
guence, or singleton, exhibits a unique base relative teshia@ed nucleotide of
others) thus it is especially problematic for approachestdan segregating sites.
The impact of error on parameter estimation is not new anckased sequence
coverage may lessen error bias but only if it is able to oveetow signal-to-noise
ratio, common to low diversity sequences (Clark and Whitta892). If the error
rate is unknown, using only shared polymorphisms is an agiid this will result
in a loss of information because singletons and other ranelmors are ignored
(Knudsen and Miyamoto, 2009). If the error rate is known, @ynbe incorpo-
rated using Phred quality scores (sequence error rate;gzavid Green, 1998) or
an error rate for each nucleotide site (lgtial, 2010). However, it is important to
note that different sequencing platforms, and individuakron each platform, may
have different error distributions. Thus, the theory ofrsggting sites may benefit
from including terms for the accurate modelling of sequesizer when it is not
negligible (that is, when the error rate is high or the sarspe is large or both).

Ultimately, our modified theory of segregating sites hetpsihitangle the true
source of variation, allows for better estimates of the gerdiversity seen in a
sample of sequences and confirms our hypothesis that it isrtant to account for
biological phenomena that can affect the accuracy of deecs used to summarize
the level of genetic variation.
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Part Il

CONCLUSION
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This thesis describes the usability of a standardized mnitodrial marker and
Bayesian methods or models to reflect the evolutionary dycegat species for ro-
bust identifications. Specifically, chapters one and thoeéhe integrity and usabil-
ity of existing sequence data for robust identificationgg®st that caution should
be exercised when using GenBank (nhon-barcode) sequeratestipl evidence for
sequence and taxonomic errors from unusually divergehinvipecies sequences),
and data informativeness (level of within-species vasigtican be improved with
the addition of a single sample from a different region of ecéps distribution. In
chapter two, a new Bayesian tree-less statistical mettas#don segregating sites,
provided fast, high probability assignments, even in diffiassignment scenarios
characterized by an absence of a “barcoding gap” (overldparevel of within-
and between-species variation). In conjuction with chajte, chapters three and
four show that the pattern of segregating sites (via pojulajenetic parameter,
Watterson (1975)'9) is an informative measure of genetic diversity. The perfor
mance of both the segregating sites algorithm (for assigitnand the modified
theory of segregating sites (to predict the true level ofegjerdiversity in a set of
sequences or population) improved when accounting foobiodl proccesses (i.e.,
population substructure with migration and unequal basgposition and substitu-
tion rates) that influence genetic heterogeneity.

Overall, the derived analyses and models reveal and protin@ienportance of
integrating different sources of information to obtainuebspecies identifications.
This is achieved by improving the correspondence betweerd#ta and model
assumptions by understanding the properties of the mark#ata and accommo-
dating these properties in the model or method used.

These findings do not argue that segregating site or Bayapjamaches should
replace the use of other methodologies, but rather shouleled as supplemen-
tary tools for reflecting species dynamics and may be useiffatetht phases of the
barcoding workflow (i.e., use more-conservative methodsnuilding reference
libraries and less-conservative methods once the intitrdarspecific variation is
sufficiently sampled) or in conjunction with other lines @fmmolecular evidence
(e.g., ecological and behavioural).

For simulated and empirical data, the assignment of spstiass was based
on the genetic divergence of a single mitochondrial genéssare that has been the
subject of much criticism. However, the analyses need no¢ui@ on the gene used
- it depends on the number of informative sites and this diflanong genes and
at different evolutionary depths (i.e., times). Thus, teory and methods may be
applied for any set of informative sites.
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Broadly, the culmination of the work presented in this thesids the task of
describing and quantifying diversity and highlights théenconnectively that ex-
ists between different evolutionary processes at the geaatl ecosystem level.
Though the standard marker and methods described herergke sepresentations
of complex processes at work, they have shown to be effefdivepecies identifi-
cation and are steps in the right direction.
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