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ABSTRACT 

 
This Thesis details the design, fabrication and characterization of organic 

semiconductor field effect transistors with silicon oxide-nitride-oxide-semiconductor 

(SONOS) gates for use in spiking analog neural circuits. The results are divided into 

two main sections. First, the SONOS structures, parallel plate capacitors and field 

effect transistors, were designed, fabricated and characterized. Second, these results 

are used to model spiking analog neural circuits. The modeling is achieved using 

PSPICE based software. 

 

The initial design work begins with an analysis of the basic SONOS structure. The 

existence of the ultrathin layers of the SONOS structure is confirmed with the use of 

Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) 

scans of device stacks. Parallel plate capacitors were fabricated prior to complete 

transistors due to the significantly less processing required. The structure and 

behaviour of these capacitors is similar to that of the transistor gates which allows for 

the optimization of the structures prior to the fabrication of the transistors. These 

capacitors were fabricated using the semiconductor materials of; crystalline silicon, 

amorphous silicon, Zinc Oxide, copper phthalocyanine (CuPc) and tris 8-

hydroxyquinolinato aluminium (AlQ3). These devices are then subjected to standard 

capacitance voltage (C-V) analysis. The results of this analysis demonstrate that the 

inclusion of SONOS structures in the capacitors (and transistors) result in a hysteresis 

which is the result of charge accumulation in the nitride layer of the SONOS structure. 
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This effect can be utilized as an imbedded memory. Standard control devices were 

fabricated and analysed and no significant hysteresis effect was observed. The 

hysteresis effect is only observed after the SONOS devices are subject to high voltages 

(approximately 14 volts) which allows tunneling through a thin oxide layer into traps 

in the silicon nitride layer. This analysis was conducted to confirm that the SONOS 

structure causes the memory effect, not the existence of interface states that can be 

charged and discharged.  

 

The next step was to design and fabricate amorphous semiconductor field effect 

transistors with and without the SONOS structure. First FETs without the SONOS 

gates were fabricated using amorphous semiconductor materials; Zinc Oxide, CuPc 

and AlQ3 and then the devices were characterized. This initial step confirmed the 

functionality of these basic devices and the ability to fabricate working control 

samples. Next, SONOS gate TFTs were fabricated using CuPc as the semiconductor 

material. The characterization of these devices confirmed the ability to shift the 

transfer characteristics of the devices through a read and write mechanism similar to 

that used to shift the C-V characteristics of the parallel plate capacitors. Split gate 

FETs were also produced to examine the feasibility of individual transistors with 

multiple gates.  

 

The results of these characterizations were used to model spiking analog neural 

circuits. This modeling was carried out in four parts. First, representative transfer and 
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output characteristics were used to replicate analog spiking neural circuits. This was 

carried out using standard PSPICE software with the modification of the discrete TFT 

device characteristics to represent the amorphous CuPc organic transistors. The results 

were found to be comparable to circuits using crystalline silicon transistors. Second, 

the SONOS structures were modeled closely matching the characterized results for 

charge and voltage shift. Third, a simple Hebbian learning circuit was designed and 

modeled, demonstrating the potential for imbedded memories. Lastly, split gate 

devices were modeled using the device characterizations. 
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PREFACE 
 

 

This Thesis contains 6 chapters. Chapter 1 provides an introduction. Chapter 2 

provides relevant background information and Chapter 3 presents the experimental 

details. Chapters 4 and 5 present the main findings of this work. Chapter 6 provides a 

summary. 

 

As part of the background research outlined in Chapter 2,  several digital neural 

networks were developed on FPGAs. This work has been accepted for Publication in 

the SPIE Photonics North 2012 Proceedings. 

 

The investigation of SONOS capacitors as discussed in Chapter 4, was presented at 

Nano Ontario 2011. 

 

Material from Chapters 4 and 5 covering the use of organic transistors in spiking 

analog circuits has been accepted for publication in the Springer Series, ICANN 2012, 

Part I, Lecture Notes in Computer Science 7552.  

 

Material from Chapters 4 and 5 has been accepted for publication in the journal 

Organic Electronics.  

 

The main concept of this work, the identification of a novel circuit element for use in 

Analog Spiking Neural Circuits was my own. The development of the digital neural 

networks was done by me. The fabrication and testing of the SONOS devices and the 

transistors was conducted by me. The modeling of the Spiking Analog circuits was 

also conducted by me.  
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1 INTRODUCTION 

1.1 Overview 

The subject of artificial neural networks is an intense field of study with the bulk of the 

work being conducted in digital representations, either indirectly through software that 

runs on digital computers or directly in the use of digital devices such as the field 

programmable gate array. Study of analog devices that emulate neural networks, or 

discrete neurons, has been around for many years. A resurgence of this subfield is 

likely due to increases in the ease, including cost, of device fabrication. This work 

focuses on the design, fabrication and characterization of discrete analog circuit 

elements and the application of these elements to analog neuron models. The discrete 

elements of interest are a type of memory device that can be imbedded directly into the 

gates of transistors. These are silicon oxide-nitride-oxide-semiconductor (SONOS) 

gates. These devices have been studied using standard crystalline silicon processes. 

The fundamental mechanism of these gates, which provides them with a quasi-static 

memory, is tunneling of electrons (or holes) from a semiconductor material through a 

thin tunneling oxide and into a charge storage material. This tunneling occurs during 

the application of applied voltages that are above the normally operating voltage of the 

device. The charge in this layer then acts to shift the operating characteristics of the 

transistor. This provides the quasi-static memory. 

In the current work, we examine the feasibility of using these structures in transistors 

fabricated using amorphous materials such as copper phthalocyanine (CuPc) and tris 8-

hydroxyquinolinato aluminium (AlQ3). The use of these amorphous materials allows 
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for the fabrication of stacked devices, essentially three dimensional circuits, that will 

produce a high interconnection density, such as in a biological neural network. In this 

work, we also examine the feasibility of split gate transistors which can also be used to 

represent multiple synaptic connections. 

The results of the characterizations of these discrete devices are then used to model 

analog spiking neural circuits. 

 

1.2 Contributions to the Field 

This work has several novel contributions. The first contribution is the analysis of 

SONOS devices using organic amorphous semiconductor materials and the 

comparison to silicon based semiconductor devices. The second contribution is the use 

of the results of the characterizations of organic transistors to model spiking analog 

circuits. The results indicate that organic transistors can be used to effectively replicate 

neural circuits. This is important in the context of the ease of manufacture of stacked 

organic transistors. The third contribution is the demonstration of the feasibility of 

using organic SONOS transistors in spiking analog circuits. This includes the 

demonstration of a basic working Hebbian learning circuit. 

 

1.3 Thesis Outline 

The following is a brief outline of the thesis structure. Chapter 2 provides a 

background to the work which includes an overview of neural modeling, SONOS 

devices and organic electronics. Chapter 3 provides the experimental procedure with 
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an overview of the high vacuum deposition of various thin film layers to produce the 

capacitors and transistors characterized. Chapters 4 and 5 outline the results and 

discussion. Chapter 4 covers the characterization of the SONOS capacitors and the 

transistors. Chapter 5 outlines the use of the results of these characterizations in the 

modeling of spiking analog circuits. Chapter 6 concludes the thesis with a summary of 

the key results and suggestions for future work. 
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2 BACKGROUND 

2.1 Introduction 

This chapter provides a brief overview of the background of this research. The first 

sections outline the relevant points of current research, and understanding, in modeling 

neurons and their inclusion in neural networks. The overriding objective is to develop 

beneficial neural models and circuits. There are several approaches; weighted 

networks, stochastic firing rate models, spiking models, that can be represented in 

digital, analog or mixed mode. The focus of this current work is on analog 

representation of biological neurons in analog spiking circuits. The background section 

of this thesis attempts to outline the relevance of this approach in the greater context of 

neural research. To do this, we outline the approaches, noting that many researchers 

use software implementations which are inherently digital as they are implemented on 

digital hardware. There are also attempts to model neurons directly on field 

programmable gate arrays (FPGAs) [1-12], which are also digital implementations. 

There are also some researchers working in the field of analog FPGAs [13, 14]. 

Sections 2.3 and 2.4 give overviews of SONOS devices and organic electronics. 

 

2.2 Neural Models 

2.2.1 Biological Neurons 

A brief overview of biological neurons is included, with more extensive explanations 

available in literature. [15-17]. Biological neurons are an electro-chemical system in 

which the electrical state of the neuron is determined by the difference between the 
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interior charge and the charge of the extracellular fluid. These charges are the result of 

ion densities. The neuron produces electrical signals on through the ratio of these ion 

densities (positive and negative charge). At rest, the system has dynamic stability with 

ions being pumped into the system through channels in the cell membrane, to balance 

any leakage. If the total membrane potential of the neuron is raised above a threshold 

level, a positive feedback process starts and the neuron generates an action potential, 

an electrical spike. The ability of the neuron to produce a second spike after the first is 

time constrained by the bio-chemical nature of the system and results in a refractory 

period, during which time, a second spike is unlikely. In a neural system, information 

is contained within the firing rate and the spike timing. Information between any 2 

neurons is carried through chemical signals across the synapse. Learning and memory 

result from activity dependent synaptic plasticity. The basic Hebbian rule stipulates 

that if a neuron contributes to the firing of a second neuron then this synapse is 

strengthened. The nature of strengthening (or weakening) of the synapse is complex 

but is the result of changes in pre and post synaptic biochemical reactivity.  

 

2.2.2 Overview of Neural Networks and Digital Implementations 

A basic artificial neural network is a system that attempts to functionally represent 

biological neural networks. Typically, the artificial network connects a system of 

individual neurons and integrates these inputs. The result of this integration is then 

filtered through a threshold function. As the behaviour of a real biological neural 

system can be extremely complex, artificial systems out of necessity model the 

functionality by reducing the complexity. A simple form follows the configuration 
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shown in Figure 2-1. In this case, the inputs are factored by individual weights, which 

are defined by the connection path between the input layer and the hidden layer. These 

factored inputs are then integrated at each neuron. The output can then be dependent 

on some form of threshold function.  

 

The basic neural network is implemented in various ways. The most relevant in the 

present context (as the present work focuses on the development of analog hardware) 

are hardware implementations, with digital implementations being the most common. 

 

Figure 2-1: Basic Neural Network.  

An input layer is connected to an output layer through a hidden layer. Shown is a 

two neuron input layer, a four neuron hidden layer and a single output neuron. 

The straight lines represent the weights. In a more complex system, 

interconnections can exist between neurons in each layer. 

 

The field programmable gate array (FPGA) is a useful prototyping device in general 

for digital designs and is ideal for the development of a neural network based devices. 



 
Ph.D. Thesis – R. Wood; McMaster University – Engineering Physics 

 

 

 

7 

 

The FPGA is a digital electronic prototyping device in which complex digital circuits 

can be rapidly implemented through non-volatile programming of gates in the device. 

The device can be reprogrammed many times, allowing for the iterative development 

of these complex circuits. Neural networks have been designed in FPGAs with many 

examples available [1-12]. The nature of the FPGA development boards and chips, 

such as the DE2 Educational Development board using the Cyclone III FPGA chip, 

manufactured by Altera, allows for the development of firing rate based neural 

networks or standard weight based matrices (a combination of the two is also 

possible).  

A typical system structure follows that proposed by Savran et al. [1], as shown in 

Figure 2-2. Here, a state machine controls the mode that the system is in (learning, 

operating, etc.). It also controls the timing between network units (between aspect and 

decision space for example). This timing control is critical due to the overall system 

architecture. That is, this system uses the advantages of the digital FPGA by 

converting a parallel neural network into a sequential system. Although a true parallel 

system could be designed, it would be cumbersome and very difficult to implement as 

the nature of digital prototyping devices is inherently serial. In the system shown in 

Figure 2-2, in normal operating mode, each input is sequentially modified by a given 

synaptic weight with the result added to an accumulator. The output of the 

accumulator is then filtered through a thresholding function such as a sigmoid function 

as in Figure 2-3 [2]. All the data and the weights are digitized and will have a limited 

resolution based on this digitization. 
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Only when the entire layer is modified, can the system switch to the next layer. This 

makes the existence of the state machine and its control over timing, critical. This 

conversion to a sequential mode is feasible due to the high clock speed, in the GHz 

regime, of digital processors.  

 

Figure 2-2: Representative System Architecture for a Digital Neural Network.  

A state machine controls the sequencing of data and neural weights into 

individual neurons and between layers.  

 

 
 

Figure 2-3: Filtering through a Sigmoid Thresholding Function.  

After the state machine controls the accumulation of all the weight modified 

inputs to a single neuron, the result is filtered through the thresholding function, 

determining the output of the neuron. 
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A schematic of a single neuron is shown in Figure 2-4. 

 

Figure 2-4: Single Neuron Schematic.  

Each pixel is modified by the weights and is integrated in an accumulator.  

 

 

The digital neural network can be implemented in the form so far discussed which 

converts the parallel neural processor design into a sequential design. In this form of 

the design, the program will create virtual neurons and sequence through each with the 

use of some form of central processing unit and a memory controller. The memory 

controller will control the location of the weights and each neuron and is controlled by 

the state machine. However, the FPGA can also be used to design truly parallel 

designs. This is simple to design but highly inefficient for the compiler. A parallel 

system of three neurons is shown in Figure 2-5 which illustrates that individual 

neurons can be created in real space.  
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Figure 2-5: Three-Neuron System with Three Layers in True Parallel Form.  

The complexity of this simple model can be seen with the neural interconnect 

routing being extremely difficult. 

 

 

A basic learning configuration is shown in Figure 2-6 [4]. Here a separate module 

exists to modify the synaptic weights. This unit must also be controlled by the state 

machine, which can enable the learning cycle and back propagation. As shown in 

Figure 2-6, teaching signals can be taken from an external source. Unsupervised 

learning can also be used without the teaching signals. In this case an autocorrelation 

function of the output (and/or input) signals can be generated in the learning unit. 
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Figure 2-6: Learning Configuration.  

A learning unit controls the weight modification through control of teaching data 

(for supervised learning) or through control of the output data and an 

autocorrelation function (for unsupervised learning). 

 

 

As part of the background examination of digital neural networks, several digital 

versions were generated for the current analysis. In particular, a simple visual neural 

field was created that was able to identify simple objects, such as letters and numbers, 

using the serial implementation of a weighted neural matrix. This artificial network 

was implemented in the DE2 Altera FPGA Development Board.  

 

2.2.3 Overview of Spiking Models and Analog Neural Networks 

The present work focuses on analog artificial neurons with significant information 

available in the timing of the output signals, either discretely in each pulse, or in the 

firing rate. These can be found in several specific references [18-21] and also in 

extended references [22-65]. One strain of artificial neural network research contends 

that the important properties of a neural network can be predominantly described by 
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the firing rate. In these configurations, the average firing rate response of a neuron to 

its inputs and the average effect of this firing rate on the inputs to other neurons is the 

dominant property. Note that the neuron is said to fire if the sum of its inputs exceeds 

some threshold with the output being essentially digital (but analog in time as the spike 

train is analyzed.) A schematic representation is shown below in Figure 2-7. 

 

Figure 2-7: Firing Rate Model.  

The various input firing rates of the input neurons are combined in the output 

neuron and a new firing rate is produced and output. 

 

2.2.4 Spiking Neural Models 

It is believed that networks of spiking neurons may gain more computational power 

than traditional neural networks. A simple model is shown in Figure 2-8 [18]. Each 

input neuron emits a series of spikes. The weighted sum of decayed potentials is then 

computed. If the sum exceeds the threshold then an output spike is generated and over 
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time, a new series of output spikes results. In the simplest form, these spiking models 

follow the “integrate and fire” configuration as shown in Figure 2-9. Shown is a single 

neuron with a synaptic current that is integrated with capacitance C. Then, if the 

potential on C exceeds a threshold voltage, the neuron „fires‟. These models can 

become complicated when the intrinsic characteristics of the neuron are considered. 

An example of this is shown in Figure 2-10 [19], a circuit developed by Indiveri. 

 

 

Figure 2-8: Spiking Neural Model.  

Shown are three spike trains which are then integrated and processed to produce 

a resulting output spike train. 
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Figure 2-9: “Integrate and Fire” Neural Model.  

An input current I(t) is integrated on capacitor C, with leakage R. The output 

spike is created if the voltage across C exceeds some comparative voltage. 

  

 

 

 

 
Figure 2-10: Analog Neural Circuit Compartmental Model.  

Each functional unit (Refractory period, Adaptation, Positive Feedback, Leakage, 

Frequency Response) can be segmented within the circuit. 

 

 

In this design, the functionality of the circuit has been divided into clear subgroups 

(frequency response, leakage, adaptation, refractory period, positive feedback).  
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2.2.5 Learning 

There are various aspects to neural learning. A brief description is included here to 

illustrate the relevant aspects of Hebbian learning. In the simplest form, Hebbian 

learning will occur when a neuron fires and in turn a connected neuron fires in 

sequence, then the synapse between these neurons is strengthened, Figure 2-11. In the 

matrix shown in Figure 2-11, the weights are modified by the relation τw dw/dt = vu 

where the rate of change of the weights depends on whether the output neuron fires in 

time with the given input vu. The learning rate is controlled by the constant τw. 
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Figure 2-11. Simple neuron system with the Hebbian learning formula τw dw/dt = 

vu.  

Shown is one output neuron, B1, and 2 input neurons, A1 and A2. Neuron B1 

fires as a result of A1, so the weight between these, A1B1, is increased while 

weight A2B1 remains unchanged. 

 

 

In a modified Hebbian system, synapses can also be weakened between neurons that 

do not fire. In a system of neurons, the synapses will require some form of 

normalization to prevent a synaptic overload. Unsupervised learning for self-

organization is possible with this basic premise. This will require the system to operate 

under four simple rules, as shown in Figure 2-12. First, the system follows the basic 
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Hebbian premise. Second, the system follows a “winner take all” scenario. Third, there 

is cooperative interaction between neurons. Lastly, structured information is required 

in the training process.  

 

Figure 2-12. Self Organization.  

Requires structural information, lateral interaction and a winner take all system 

with Hebbian learning. 

 

 

2.3 SONOS Devices 

Silicon oxide nitride oxide semiconductor (SONOS) circuit elements have been 

previously studied [66-87] and found to be potentially useful structures for memory 

storage. As shown in Figure 2-13 [66], the devices are a thin film stack comprised of; a 

semiconductor substrate, followed by an oxide that is thin enough to allow electron or 
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hole tunneling. Next, there is a charge storage layer that has predominantly been made 

of silicon nitride. This is a matter of process convenience as this material is deposited 

in the same systems as the standard silicon semiconductor layer and the silicon based 

oxides but other materials can be used as the charge storage layer. Then there is a 

blocking oxide layer to prevent tunneling out of the charge storage layer. This is 

followed by a contact metal layer.  

These structures can be used as quasi-permanent memory devices simulating synaptic 

plasticity through a non-volatile memory structure that utilizes charge tunneling 

through a thin gate oxide and a quasi-permanent charge storage layer (SiN). When a 

high positive bias is applied to the top electrode, electrons tunnel from the bulk 

semiconductor into the SiN layer. When the applied bias is removed, the negative 

internal charge remains and there is a shift to depletion/inversion in the semiconductor. 

This causes a shift to the right in the CV curve of an n-type semiconductor capacitor as 

higher positive voltages are required to overcome the effects of the negative internal 

charge and to achieve accumulation. The opposite effect occurs with the introduction 

of a positive trapped charge in the SiN layer using an applied negative bias. This 

causes a shift to the left in the CV curve of an n-type semiconductor capacitor. These 

effects can also be regarded as write or erase mechanisms.  
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Figure 2-13. SONOS Gate Structure.  

A) A cross sectional view of a SONOS gate. This device uses n-type crystalline 

silicon as the semiconductor material. The blocking oxide is shown as 20 nm and 

the tunneling oxide is 2 nm. A SiN charge storage layer of 5 nm is used. B) The 

energy band diagram shows the approximate band alignment between the SiN 

and n-Si layers.  

 

The basis of the SONOS structure is the tunneling effect through the ultra thin silicon 

dioxide layer. This mechanism has been previously characterized [88-98]. Tunneling 

in this structure can actually be described as three separate processes, as shown in 

Figure 2-14 [88]. The first is electron tunneling from the conduction band (ECB). The 

second is electron tunneling from the valence band (EVB). The third is hole tunneling 

from the valence band (HVB). The following formula is used to calculate tunneling 

currents (A/cm
2
); 
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                                                                                                             (2.1) 

Where, coefficient A is, 

   
  

     
                                                                        (2.1.1) 

Coefficient B is,  

              
                                 (2.1.2) 

Eox is the electric field across the oxide defined as, 

                                                                          (2.1.3) 

 

Where, 

Tox is the oxide thickness, 

Mox is the effective mass in the oxide, 

Ǿb is the barrier height. 
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Figure 2-14. Tunneling Processes.  

Shown is a system of Si-SiO2-Si. tunneling proceeds through the thin oxide layer. 

Shown are 3 possible tunneling processes, electrons from the conduction band to 

the conduction band (ECB), electrons from the valence band to the conduction 

band (EVB), and holes from the valence band to valence band. 

 

In the proposed organic semiconductor based SONOS structure shown in Figure 2-15, 

electrons will tunnel through a thin tunnel oxide from the copper phthalocyanine 

(CuPc) Lowest Unoccupied Molecular Orbital (LUMO) level into traps in the SiN 

layer. The band alignment is important as this will determine the tunneling rates at 

given applied voltages. In the case shown with CuPc, the LUMO level is located at 3.2 

eV and the Highest Occupied Molecular Orbital (HOMO) level at 4.95 eV. Ideally, to 

act as an n-type device, efficient injection of electrons into the LUMO level of the 

CuPc from a contact layer is required. In this case, calcium is shown, with a work 
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function of 2.87 eV, which closely matches the CuPc LUMO level. This will be 

discussed further in the section below on organic electronics. 

 

Figure 2-15. Proposed SONOS Gate Structure.  

a) Cross section representation of the SONOS gate structure with an organic 

semiconductor. b) Energy band diagram for reference if the alignment of the 

conduction and valence bands of SiN to CuPc, and Calcium. 

 

 

2.4 Organic electronics 

The organic transistor differs from the standard silicon transistor in several ways, 

which has been previously analysed [99-111]. Of primary importance is the band 

alignment between the fermi level of contact metals and the LUMO or HOMO level of 

the organic semiconductor. The energy band structures for p and n-type devices made 

with the organic materials tris 8-hydroxyquinolinato aluminium (AlQ3) and CuPc, 

along with the amorphous material ZnO, are shown in Figure 2-16.  

The semiconductor is regarded as p or n-type according to the band alignment of the 

injecting contact to the semiconductor. A p-type device is defined as one that has high 

injection efficiency of holes into the HOMO level of the organic semiconductor. 
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Appropriate selection of contact metals will allow for the design of either an n or p-

type device.  

Although both carrier types will be present, the injection barriers will dictate that one 

carrier will dominate the device characteristics at reasonably low source-drain source 

voltages. At high voltages, this injection barrier will be reduced. Real devices have 

been shown to exhibit ambipolar behaviour. 

Of the devices shown, the most promising for the design of CMOS circuits are the 

CuPc devices. Here, we can get good alignment with the LUMO level using calcium 

as the contact metal to produce an n-type device, the only issue being the high 

reactivity of Ca. Using gold as the contact metal, we get good alignment with the 

HOMO level to produce a p-type device. In addition, the electron and hole mobilities 

of CuPc (7 x 10
-4

 and 2 x 10 
–3

 cm
2
/V s, respectively) are higher than Alq3 (5 x 10

-7 

and 1 x 10 
–7

 cm
2
/V s) [102].  

For Alq3, we can also produce „n‟ type devices using calcium as the metal contact but 

the alignment is not as close. The HOMO level is deeper than that of CuPc at 6.2 eV 

and requires gold contacts for closer band alignment. As mentioned, the mobility is 

also low. 

For ZnO, we can produce reasonable „n‟ type devices using aluminum contacts. The 

extreme depth of the valence band makes alignment with the metal Fermi level 

difficult, and „p‟ type devices are not efficient. ZnO oxide is a rugged material and is 

relatively easy to produce. Unfortunately the depth of the valence band makes the 

production of CMOS circuits difficult. 
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Doping of the organic devices is possible. However, in the field of organic electronics, 

doping typically refers to the creation of a dopant-host system and the creation of new 

energy bands due to high doping concentrations rather than the creation of carriers.  

 

Figure 2-16. Energy Band Structures  

of a) ZnO with aluminum contacts forming an n-type device. b) ZnO with gold 

contacts forming a p-type device. c) Alq3 with calcium contacts forming an n-type 

device. d) Alq3 with gold contacts forming a p-type device. e) CuPc with calcium 

contacts forming an n-type device. f) CuPc with gold contacts forming a p-type 

device. 
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The resulting transistor transfer characteristics will depend on the band alignment as 

well as the mobilities of the two carrier types. It will also depend on the internal fields 

created by the gates and will vary depending on the gate oxide thickness and materials 

and the gate metal. The expected transfer characteristics of the CuPc devices are 

shown in Figure 2-17. Due to the differences in electron and hole mobilities, to obtain 

balanced drain-source currents, either the applied voltages must differ or the gate 

lengths must be adjusted between the n and p-type transistors. The bias voltages of the 

devices must also be kept low to reduce the injection of „unwanted‟ electrons and 

holes. At higher applied voltages, we will observe ambipolar behaviour as the minority 

carrier concentration will become significant. 

 

Figure 2-17: CuPc TFT with gold contacts and CuPc TFT with Calcium contacts. 
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The interface states of organic devices are of particular interest. Of concern is the 

formation of dipoles when the organic materials are deposited. When the organics are 

deposited on top of metals, the electric field at the metal surface causes the formation 

of the organic dipoles, Figure 2-18 [99]. As shown, a dipole barrier can form. The 

dipole will form as a result of the electric field that will extend beyond a metal layer. 

When the organic is deposited after the metal, it will deposit in the presence of this 

field and may form a dipole. This barrier is of concern if it can form charging sites that 

will mimic the behaviour of the SONOS (charge/discharge). In the current work, the 

organic materials are always deposited on oxides. 

 

Figure 2-18. Band Structure of theoretical metal-organic semiconductor interface.  

The dipole layer can form as the organic molecules will align to the field that 

extends beyond the surface of the metal layer. This dipole layer will act to shift 

the alignment of the LUMO and HOMO levels of the organic layer relative to the 

metal work function.  
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2.5 Split Gates 

Split gate devices have also previously been studied [112-118] with an emphasis on 

dealing with short channel effects in silicon transistors. In this work, the split gate 

transistor is analyzed as applied to larger gates in amorphous semiconductor 

transistors. A schematic representation is shown in Figure 2-19. Here the device has 2 

inputs (plus the source drain voltage). The devices could have more than 2 gates. A 

stacked gate configuration is shown in the Figure. Here the gates are separated with a 

spacer oxide. There will necessarily be gate-gate capacitance but this gate overlap is 

required as the mobility of the organic material is low and the devices cannot have 

spacing between the gates. The gate to gate capacitance in this case will occur due to 

the physical overlap of the gate metals which will create a parallel plate capacitor. This 

is necessary as any spaces that are not directly under a gate will not be subject to a 

field effect, resulting in extremely low conductivity in this area.  
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Figure 2-19. Split Gate Amorphous Semiconductor MOSFET.  

Shown is a representative MOSFET structure with CuPc used as the 

semiconductor material. Some overlap of the gates and source drain is required 

to avoid „dead zones‟ in the device that would otherwise be outside of the gate 

field effect area.  

 

The SONOS gate structure shown in Figure 2-13 can be added to this amorphous 

semiconductor split gate MOSFET 

.
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3  EXPERIMENTAL DETAILS 

3.1 Introduction 

This chapter provides the details on the fabrication of SONOS parallel plate capacitors 

and field effect thin film transistors. The devices were fabricated using standard high 

vacuum deposition techniques and semiconductor processing. 

 

 

3.2 Fabrication of MOS Capacitors 

Metal-Oxide Semiconductor (MOS) capacitors with the SONOS structure were 

designed, fabricated and characterized first due to the simpler processing requirements 

as compared to the fabrication of complete thin film transistors. For all device types, 

the SONOS layers were deposited using an Inductively Coupled Plasma Chemical 

Vapour Deposition (ICP CVD) high vacuum deposition system [119]. All devices 

utilized two-inch n-type silicon wafer substrates. Devices were made with several 

semiconductor materials; crystalline silicon, amorphous silicon, zinc oxide (ZnO), 

AlQ3, and CuPc. The SONOS structure was; 1. A tunneling layer of silicon dioxide in 

3 thicknesses 1 nm, 2 nm and 3 nm; 2. A silicon nitride layer of 5 nm; and, 3. A 

blocking silicon dioxide of 20 nm. The tunneling oxide thickness was varied to 

examine the effect on tunneling. 

3.2.1 Crystalline Silicon 

For the crystalline silicon devices, the SONOS layers were deposited directly on the 

crystalline silicon substrate. The control oxide devices were produced with 20 nm 
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silicon dioxide only. Metal contacts were then deposited through a shadow mask to 

produce varying areas from 1 to 5 mm
2
. 

3.2.2 Amorphous Silicon 

For the amorphous silicon devices, a thick amorphous silicon layer (200 nm) was first 

deposited on the silicon wafer followed by the SONOS layers. The control oxide 

devices were produced with 20 nm silicon dioxide only. Metal contacts were then 

deposited through a shadow mask to produce varying areas from 1 to 5 mm
2
.  

3.2.3 Zinc Oxide 

Only control devices were produced for zinc oxide with a 30 nm silicon dioxide layer. 

Metal contacts were then deposited through a shadow mask to produce varying areas 

from 1 to 5 mm
2
. 

3.2.4 AlQ3 and CuPc 

For the AlQ3 and CuPc devices, a thick buffer oxide was deposited on top of the 

crystalline silicon wafers. This was followed by the deposition of aluminium strip 

contact pads, followed by the SONOS layer deposition. Next, 200 nm AlQ3 or CuPc 

was deposited followed by top contacts of calcium followed by aluminium. The top 

metal contacts were deposited in strips at 90 degrees to the bottom contacts to give 

defined areas for the parallel plate capacitors. To reduce exposure to moisture and 

oxygen, the devices were then coated with a thick layer of a thermally deposited oxide 

using a silicon monoxide thermal source. These devices were then encapsulated in a 

nitrogen glove box using a cover glass and UV epoxy. 
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3.3 Transistors  

Several transistor types were produced. 1. Single gate zinc oxide n-type. 2. AlQ3 

single gate n-type. 3. CuPc single gate p and n-type. 4. CuPc single gate n-type with 

SONOS gates. 5. CuPc split gate p-type. The patterning of the metal contacts was 

achieved with standard positive photolithographic techniques. The gate lengths were 

varied from 10 μm to 50 μm. The organic materials were deposited through shadow 

masks. 

 

3.3.1 Zinc Oxide Single Gate Transistors 

Single gate n-type transistors were fabricated. Devices were fabricated on ultra flat 

glass substrates. The substrates were cleaned using an ultrasonic bath of acetone 

followed by methanol. The devices were transferred to a high vacuum system for the 

deposition of titanium. The titanium was patterned and etched to produce the gates. 

Next the gate dielectrics, 100 nm SiO2, were deposited using the IPCVD system. 

Titanium was deposited using ebeam deposition, patterned and etched to produce the 

source drain contact pads. The devices were then pre-cleaned and etched and a 200 nm 

layer of ZnO was deposited using electron beam evaporation. The devices were then 

coated with a thick layer of thermally deposited silicon dioxide from a silicon 

monoxide source as a thin film encapsulant. The devices were then sealed in a nitrogen 

atmosphere using a glass cover plate and UV curable epoxy. 
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3.3.2 AlQ3 Single Gate p-Type Transistors 

Single gate p-type transistors were fabricated. Devices were fabricated using the same 

method as the ZnO devices. Aluminium was deposited, patterned and etched to 

produce the source drain contact pads. The devices were then pre-cleaned and etched 

and a thin metal (5 Å) contact layer was deposited (Calcium for n-type) followed by 

the deposition of a 200 nm layer of AlQ3. The devices were then encapsulated using 

the method used for the ZnO transistors. 

3.3.3 CuPc Single Gate Transistors 

Single gate n and p-type transistors were fabricated to act as control devices 

(references points for standard device performance). Devices were fabricated as above. 

The devices were then pre-cleaned and etched and a thin metal (5 Å) contact layer was 

deposited (calcium for n-type and gold for p-type devices) followed by the deposition 

of a 200 nm layer of CuPc. The devices were then encapsulated using the method used 

for the ZnO transistors. 

3.3.4 CuPc Transistors, p-Type, with Split Gates 

Split gate devices were prepared as shown in Figure 2-19 above. Devices were 

fabricated as above. The intermediate gate dielectrics, 30 nm SiO2, were deposited 

using the IPCVD system. Titanium was deposited, patterned and etched to produce the 

second set of gates. The second gate dielectrics, 30 nm thick SiO2, were deposited 

using the IPCVD system. Titanium was deposited, patterned and etched to produce the 

source drain contact pads. The devices were then pre-cleaned and etched and a thin 

metal (5 Å) contact layer was deposited (gold for p-type devices) followed by the 
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deposition of a 200 nm layer of CuPc. The devices were then encapsulated using the 

method used for the ZnO transistors. 

3.3.5 CuPc Transistors, p-type, with SONOS Gates 

CuPc transistors, p-type, with SONOS gates were prepared as in 3.3.3, with the 

modification of the gate dielectric to include a SONOS structure of 30 nm SiO2, 5 nm 

SiN, and 1 nm SiO2.  



 
Ph.D. Thesis – R. Wood; McMaster University – Engineering Physics 

 

 

 

34 

 

4 RESULTS AND DISCUSSION 

4.1 Introduction 

The results of the measurement and analysis follow. The first section deals with the 

measurement procedures. The following sections cover the analysis of SONOS parallel 

plate capacitors. The initial analysis confirms the existence of the thin film stack 

through Transmission Electron Microscopy (TEM) and Energy Dispersive 

Spectroscopy (EDS). The CV analysis begins with the behaviour of crystalline and 

amorphous silicon which have been evaluated in literature. With the general SONOS 

behaviour demonstrated, AlQ3 and CuPc devices are analyzed. Field Emission 

Scanning Electron Microscope (FESEM) of an AlQ3 interface is examined. ZnO is 

included as a possible transistor semiconductor material as its amorphous nature would 

allow it to be deposited in three dimensional stacks. The last sections deal with the 

output and transfer characteristics of the transistors fabricated with AlQ3, ZnO, and 

CuPc. 

4.2 Measurement Procedures 

4.2.1 Capacitors 

The parallel plate capacitors were measured using an HP 4280 Capacitance meter. The 

exact procedure was developed to examine the devices for hysteresis. Control devices 

without the SONOS structure, were examined to ensure that any future hysteresis 

could be attributed to the SONOS structure. The devices were mounted in an isolated 

probing station with contacts to the each side of the capacitors. The HP 4280 was then 

set to scan from positive or negative voltages. For all of the devices tested, the 14 volt 
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point was determined to be a consistent applied voltage that would allow charging 

through the tunneling oxide of the SONOS device. Below 6 volts, no SONOS 

behaviour was observed. For applied voltages between 6 and 14 volts, some behaviour 

was indicated depending on the exact device.  

A description of the exact analysis follows. The device was set to scan from +14 volts 

to – 14 volts and the capacitance-voltage behaviour was recorded. This was repeated. 

Next, the device was scanned from +6 to -14 volts. This would examine a device for 

positive charging from the previous scan. The reverse procedure would be conducted 

to examine negative charging. The exact scan values changed depending on the exact 

device. This shift in the C-V characteristics is a result of several factors that serve to 

shift the device behaviour independently of the SONOS structure. These are primarily 

the contact potentials and charge imbedded in the oxides and the semiconductor 

materials.  

A simple representation of the C-V scan is shown below, in Figure 4-1. Here, an 

observed shift of the capacitance is the result of the charging between scans. This 

charging, tunneling into the SiN layer, only occurs when the applied voltage exceeds 6 

volts. The time for charge transfer is dependent on the tunneling current magnitude, so 

that lower applied charging voltages will still result in tunneling. The 14 V charging 

voltage was found to consistently result in maximum charge transfer into or out of the 

SiN layer. 
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Figure 4-1. Capacitance-Voltage Scan Illustration.  

Charging voltages (positive and negative 14 volts) will allow for tunneling of 

electrons or holes into or out of the charge storage layer. Charge in this layer will 

shift the C-V characteristics of the device. 

 

 

4.2.2 Transistor Measurement  

The transistor characteristics were measured using an HP 6242 Semiconductor 

Parameter Analyser. The output and transfer characteristics were examined. The 

applied gate voltages and source drain voltages varied depending on the exact 

transistor examined.  

 

4.3 SONOS Parallel Plate Capacitors 

TEM was conducted on a representative parallel plate capacitor sample to confirm the 

existence of the separate SONOS layers and to verify the approximate layer 
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thicknesses. The TEM image of a calibration device is shown in Figure 4-2 below. 

Here the target layers can be identified (30 nm amorphous silicon, 2 nm SiO2, 5 nm 

SiN, 1.5 nm SiO2).  

 

 

Figure 4-2: Transmission Electron Microscopy Image of SONOS Gate.  

Shown is a device with the structure (from left to right); crystalline silicon 

substrate, amorphous silicon (30 nm), silicon dioxide (2 nm), silicon nitride (5 

nm), silicon dioxide (1.5 nm). 
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In addition, as shown in Figure 4-3, an Energy-dispersive X-ray spectroscopy (EDS) 

scan was performed. In this case, the oxygen content of the layers is shown as a 

function of depth. This scan also supports the existence of a distinct structure of SiO2, 

SiN and SiO2 as indicated by the dip in oxygen content at the expected depth of the 

SiN film. 

 

Figure 4-3: Energy-Dispersive X-ray Spectroscopy Scan of the Oxygen Content 

of a Calibration Sample.  

The scan shows (from left to right), an oxide layer to a depth of 4 nm, a low 

oxygen content layer from 4 nm to 6 nm, an oxide layer from 6 nm to 10 nm, and 

a low oxygen content layer from 10 nm. This corresponds to a structure grown as; 

4 nm silicon dioxide, 2 nm silicon nitride, 4 nm silicon dioxide, on a crystalline 

silicon substrate. 
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The C-V results are separated into sections covering the behaviour of each of the 4 

types of SONOS capacitors fabricated; crystalline silicon, amorphous silicon, AlQ3, 

and CuPc. A zinc oxide control sample is also included. The crystalline and 

amorphous silicon device behaviour is consistent with previous work on SONOS 

structures [61-82]. It must be noted that the measurements of high impedance 

transistor gate structures using this meter will be affected by the high RC time 

constants. The low mobility of the carriers in the organic materials will reduce the 

response time of carriers making high frequency capacitance measurements unstable in 

devices that are not parallel plates (such as making CV measurements on standard 

transistors). Lower frequency CV measurements could be conducted on other 

structures. This variation in behaviour can be seen in literature analysis of standard 

TFT gate capacitance. 

4.3.1 Crystalline Silicon Capacitors 

The CV characteristics of the crystalline silicon control sample (30 nm blocking oxide 

only) is shown in Figure 4-4 below and are compared to scans of a device with a 1 nm 

thick tunneling layer in Figure 4-5. Here the CV scans are shown before and after an 

applied bias charge of +-14 V. There is negligible shift/hysteresis in these control 

device scans, supporting the conclusion that the effects of interface state charging and 

oxide charges are minimal and will not result in the large shifts that will be observed in 

SONOS devices. The majority carrier density was found through a least squares curve 

fit to be 2 x 10
19

 cm
-3

and is consistent with the expected density. 
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Figure 4-5 shows the CV scans of a 1 nm tunneling oxide SONOS device. The 

maximum shift in effective voltage due to charging of the SONOS device is 

approximately 3.5 volts. This is shown in the variation in the CV curves when the 

device was subjected to first a -14 volt charging voltage and then scanned to + 1V. 

Then the device was subjected to a +14 volt charging voltage and scanned from -6 

Volts to +1 V. The devices were also examined for possible low voltage hysteresis. 

This was accomplished as follows. For the -14V charge behaviour, the device was 

scanned from -14 volts to 1 volt. This was repeated and the scans are shown as Neg 1 

and Neg 2 in Figure 4-5. The device was then subjected to a +14 volt charging voltage 

and then scanned from -6 volts to +14 V. The scans are shown in Figure 4-5 as Pos 1 

and Pos 2. No measureable shift in the threshold voltage was observed for this low 

voltage biasing. The control sample as shown in Figure 4-4 is included for reference.  

The CV curves for the 2 nm device in Figure 4-6 illustrates the effect of varying the 

charging voltage from –8 V to +14 V. This supports the results of previous work [66, 

71] that indicates that the threshold shifts can be controlled through variations in the 

applied charging bias voltages.  

These CV characteristics of the crystalline SONOS parallel plate capacitors and 

control are consistent with results reported in the literature [85-87] and support the 

conclusion that the SONOS structure acts as a tunneling charge trap. This is evident in 

the voltage shift of the CV behaviour. When the charging voltage is reversed, the CV 

voltage shift is reversed. When low voltages are applied (below +/-14V), little to no 
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hysteresis is observed, suggesting that significant tunneling through the thin oxide 

layer occurs only with high applied voltages. 

 

Figure 4-4: CV Characteristics of a Crystalline Silicon Control Sample with DC, 

Scan After positive 14 V charging voltage, scan after negative 14 V charging 

voltage.  

The positive and negative scans are almost identical, indicating that no significant 

charge storage occurs.  
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Figure 4-5: CV Characteristics of a Crystalline Silicon Sample with 1 nm 

Tunneling Oxide Layer.  

Includes: 2 sample scans after 14 V negative charging bias, 2 sample scans after 

14 V positive charging bias, comparison to control scan. 
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Figure 4-6: CV Characteristics of a Crystalline Silicon Sample with 2nm 

Tunneling Oxide Layer.  

Scans after 14 V negative charging bias, 8 V negative charging bias, and 14 V 

positive charging bias. The C-V characteristics shift along the horizontal axis as a 

result of the charge trapped in the silicon nitride layer. The shifts are reversible. 

 

 

4.3.2 Amorphous Silicon 

The CV curves for the amorphous silicon control device are shown in Figure 4-7. As 

with the crystalline Si control device, there is negligible hysteresis between curves 

after the devices have been positively and negatively biased (at +14 V and – 14 V). 

Again, this suggests that there is little memory effect without the SONOS structure. 

Interface traps can from and will act to trap charge. These traps could result in 

hysteresis. The lack of any significant shift in the C-V curves suggests that interface 
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states will not produce the large shifts in behavior expected with the amorphous 

SONOS devices. 

The shift in threshold voltage for the 1 nm a-Si:H device is shown in Figure 4-8. The 

device was subjected to a -14 volt charging voltage and then scanned from -14 volts to 

+ 14 volts. The device was then scanned from zero to + 14 volts. The average shift in 

voltage behaviour is approximately 3 volts as seen between the curves when 

comparing the CV characteristics of the device having applied voltages of -14V to the 

device after an applied charging voltage of +14V. (There is a shift in the position of 

the C-V curves along the horizontal axis by 3 volts when measured at the 0.9 

normalized capacitance points of the two curves). The hysteresis in the devices was 

examined by the following method. The device was subject to a negative 14 V bias 

and then scanned to positive 14V. The device was then reset and scanned from -14 V 

to + 14V. This is shown as the scans Neg 1 and Neg 2, in Figure 4-8. Then the device 

was subject to a positive applied voltage of +14 V. The devices were then scanned 

from zero to + 14V. This scan was then repeated. This is shown as the scans Pos 1 and 

Pos 2, in Figure 4-8. There is little observed shift as shown by the minimal variation in 

the first and second curves for each of the scan sets (Positive and negative charging 

voltages). There is a shift to the right of all of the curves with respect to the crystalline 

silicon devices (Figures 4-4 to 4-6). This shift is likely a result of the internal trapped 

charge in the amorphous Si layer. The devices also exhibit metastability when 

subjected to large applied voltages (above 30 V). (Metastability is a shift in the 
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threshold voltage caused by changes in the amount of trapped charge in the a-Si 

caused by breaking and re-forming of bonds under high applied fields.) 

 

 

 
 

Figure 4-7: CV Characteristics of an Amorphous Silicon Control Sample.  

Scans were obtained after 14 V negative charging voltage and after 14 V positive 

charging voltage. There is little shift in the C-V characteristics along the 

horizontal axis. This suggests that the SONOS structures are required to induce 

the large shifts expected. 
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Figure 4-8: CV Characteristics of an Amorphous Silicon Sample with 1 nm thick 

Tunneling Oxide.  

Two scans were taken after 14 V negative charging bias, and 2 scans after 14 V 

positive charging bias. 

 

The CV characteristics of the 2 nm device are shown in Figure 4-9. Here, the shift in 

the curve is approximately 1.5 V (when measured at the 0.9 point of normalized 

capacitance), smaller than for the 1 nm devices due to the thicker tunneling oxide 

layer. Little hysteresis is evident when the scans are repeated after reversing the charge 

voltage. As previously noted, significant internal negative charge was observed in the 

a-Si layer. Significant parasitic capacitance was also observed through the high 

minimum capacitance observed in the inversion regime, a ratio of 0.85 compared to 

0.20 for the silicon devices. This is likely due to the thin film nature of the devices, 
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which does not allow for the full depletion/inversion depth. The amorphous silicon 

semiconductor is only 300 nm thick as compared to a calculated penetration depth of 

900 nm.  

 
 

Figure 4-9: CV Characteristics of an Amorphous Silicon Sample with 2 nm thick 

Tunneling Oxide.  

Two scans were taken after 14 V negative charging bias, and 2 scans after 14 V 

positive charging voltage. 

 

4.3.3 Alq3 

The CV characteristics for the organic (Alq3) capacitor control device are shown in 

Figure 4-10. As with the other control devices, no significant shift in the curves is 

observed for applied charging voltages of ± 14 V. The results for the 1 nm tunneling 
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oxide organic device are shown in Figure 4-11. Here there is a clear average shift in 

the voltage behaviour of approximately 3.1 volts (at the 0.9 normalized capacitance 

points) between the two applied charging voltages of ± 14 V. The curve for the 2 nm 

Alq3 device is shown in Figure 4-12. Here the shift is approximately 1.8 volts. As with 

the amorphous Si devices, significant parasitic capacitance and internal fields were 

observed. Some hysteresis is observed as indicated by the dashed lines.  

 

 
 

Figure 4-10: Alq3 Parallel Plate Capacitor Control Sample.  

The solid line is the scan after a +14 volt applied voltage and the dashed line is the 

CV scan after a -14 volt applied voltage. 
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Figure 4-11: CV Characteristics of an Alq3 Sample with a 1 nm thick Tunneling 

Oxide Layer.  

Two scans were taken after 14 V negative charging bias, 2 scans after 14 V 

positive charging voltage. Also shown is the theoretical minimum (dashed line) 

based on MOS capacitor characteristics. This theoretical minimum is defined as 

the point at which the depletion region extends all the way to the bottom of the 

AlQ3 layer (100 nm thick) to the interface with the bottom metal contact. 
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Figure 4-12: CV Characteristics of an Alq3 Device with a 2 nm thick Tunneling 

Oxide.  

Two scans were taken after 14 V negative charging bias, and 2 scans after 14 V 

positive charging voltage. 

 

The energy diagram for the SiN/Oxide/Alq3 system is shown in Figure 4-13. The 

lowest unoccupied molecular orbital (LUMO) level of the Alq3 (3.4 eV) is 1.3 eV 

below the conduction band of the SiN (2.1 eV). There is also a 1.0 eV separation 

between the Alq3 highest occupied molecular orbital (HOMO) level (6.2 eV) and the 

valence band of the SiN (7.2 eV). The applied charging voltage was varied from +/- 

5V up to +/- 14 Volts. No charging/discharging of the SiN layer was observed for 

voltages below +/- 6V. The range of 6 to 14 volts corresponds to a Vox across the 
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tunneling oxide of 230 to 540 meV. Based on this Vox range, tunneling is likely into 

interfacial traps 500 meV below the SiN conduction band rather than directly into the 

SiN conduction band itself. Furthermore, the maximum entrapped charge in the SiN 

layer was found to be on the order of 0.1 C/m
2
 (approximately 78 nC for the device 

shown). This was calculated using a simple capacitor model with the measured applied 

voltage shift of 3.1 V resulting from the charge imbedded in the SiN charge storage 

layer, and Q = V/C, where Q is the charge, V the voltage, and C the capacitance. At an 

effective Vox of 540 meV, the theoretical maximum tunneling current density is on the 

order of 150 µA/cm
2
, indicating that a 1 µm

2
 TFT device has a charging time on the 

order of 1 ns. 

 

Figure 4-13: Energy Band Diagram for SiN-SiO2-AlQ3 Structure. 
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The following series of figures (Figures 4-14 to 4-17) show FESEM images of the 

interface between an underlying oxide layer and a 200 nm Alq3 layer. The Alq3 was 

deposited on top of the oxide layer. This examination was conducted to investigate the 

possible presence of an interface zone between these two layers. From the images, no 

interface zone can be seen and the Alq3 appears to be amorphous throughout. This is 

consistent with the observed CV characteristics of the control parallel plate Alq3 

capacitors shown in Figure 4-10 and also with literature reports [99] that indicate that a 

dipole region forms only when the organics are deposited on top of a metal layer.  

 

Figure 4-14: FESEM Image of Alq3 Deposited on SiN (x 7,000) 
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Figure 4-15: FESEM Image of Alq3 Deposited on SiN (x 65,000) 

 

 

Figure 4-16: FESEM Image of Alq3 Deposited on SiN (x 85,000) 
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Figure 4-17: FESEM Image of Alq3 Deposited on SiN. (x 120,000) 

 

The results of the capacitance-voltage measurements of the Alq3 parallel plate 

semiconductor capacitors demonstrate that Alq3 acts like a semiconductor material 

with minority and majority carriers. The SONOS devices also exhibit the same charge 

and discharge behaviour as shown in the silicon SONOS capacitors. This suggests that 

carriers are tunneling from the Alq3, through the thin tunnel oxide and into the silicon 

nitride layer. 

4.3.4 CuPc 

The CV characteristics for the organic (CuPc) capacitor control device are shown in 

Figure 2-18. As with the other control devices, no significant shift in the curves is 

observed for applied charging voltages of ± 14 V. The results for the 1 nm tunneling 
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oxide CuPc device are shown in Figure 4-19. Here there is a clear average shift in the 

capacitance-voltage behaviour of approximately 4.6 volts (between the 0.9 normalized 

capacitance points) between applied charging voltages of ± 14 V. The curve for the 2 

nm CuPc device is shown in Figure 4-20. Here the shift is approximately 1.6 volts.  

 
Figure 4-18: CV Characteristics of a CuPc Thin Film Parallel Plate Capacitor 

Control Sample (device without SONOS structure).  

There is little observed hysteresis indicating that the SONOS structure is 

required for the large expected shifts. 
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Figure 4-19: CV Characteristics of a CuPc Sample with 1 nm thick Tunneling 

Oxide.  

Scans are shown after 14 V negative charging bias and 14 V positive charging 

voltage, compared to a control sample. 
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Figure 4-20: CV Characteristics of a CuPc Device with a 2 nm thick Tunneling 

Oxide.  

Scans are shown after 14 V negative charging bias and after 14 V positive 

charging voltage, compared to a control sample. 

 

As with the Alq3 devices, the results of the capacitance-voltage measurements of the 

CuPc parallel plate semiconductor capacitors demonstrate that CuPc acts like a 

semiconductor material with minority and majority carriers. The SONOS devices also 

exhibit the same charge and discharge behaviour as shown in the silicon SONOS 

capacitors. This suggests that carriers are tunneling from the CuPc layer, through the 

thin tunnel oxide and into the silicon nitride layer. 
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4.3.5 ZnO 

ZnO devices have been tested as indicated in Figure 4-21. A scan of a control device is 

shown. There are significant shifts in the curves after positive and negative charging. 

In this case there is some interface or material effect that allows for charging at low 

applied voltages. This is in contrast to the control devices of crystalline silicon, 

amorphous silicon, Alq3 and CuPc. This is most likely a result of free charge in the 

form of mobile ions being present in the ZnO. 

 
Figure 4-21: CV Characteristics of a ZnO MOS Capacitor. 

Significant hysteresis is shown by the shift between the positive and negative 

charging cycle curves.  

The shift is approximately 2 volts as measured at the 0.9 normalized capacitance 

point. 
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4.4 Thin Film Field Effect Transistors 

The transistor characteristics were measured using an HP 6242 Semiconductor 

Parameter Analyser. The transfer and output characteristics are shown for Alq3, ZnO, 

and CuPc devices. Split gate and SONOS CuPc transistors are also shown. It should be 

noted that Alq3 and CuPc are not commonly used as semiconductor materials in thin 

film transistors. This is a result of the low mobility and low carrier density. The 

majority of research into organic transistors is focused on higher performance 

materials that will produce transistors with higher current carrying performance and 

higher on/off ratios. However, as will be shown in the modeling section, in the present 

case, the performance of these proof-of-concept devices is sufficient for the design of 

analog spiking circuit. 

4.4.1 Alq3 Transistors 

The output characteristics of the Alq3 control TFTs are shown in Figure 4-22. This is a 

single gate device with a single SiO2 gate dielectric layer. The device shows low on/off 

characteristics; at 20 volts Vds, the current is 1 nA at a Vgs of -10 volts and drops to 

0.2 nA at 0 volts Vgs. This is an on/off ratio of 5, or half an order of magnitude. The 

transfer characteristics are shown in Figure 4-23. For low voltage, and low current 

operation, the primary area of interest is in the linear regime (less than 10 volts) for 

gate voltages of –5V. In this particular device, there is a „ledge‟ between +5 volts and -

10 volts Vgs with a low slope and low on/off ratio. The Ids shifts from 0.1 nA to 0.9 

nA over the 15 volt gate voltage shift. By comparison, the Ids shifts from .01 nA to 

0.11 nA between +10 volts to + 5 volts. These initial results suggest that the Alq3 
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based transistor is suitable for low voltage analog neural circuits, which will be 

demonstrated is Chapter 5. 

 

Figure 4-22: Output Characteristics of a p-type Alq3 transistor at Vgs = 0, 5,  

and 10 V.  

The device shows low on/off characteristics; at 20 volts drain-source voltage 

(Vds), the drain source current (Ids) is 1 nA at a gate voltage (Vgs) of -10 volts 

and drops to 0.2 nA at 0 Vgs. This is an on/off ratio of 5, or half an order of 

magnitude. 
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Figure 4-23: Transfer Characteristics of an Alq3 p-type TFT at Vds = 80 V.  

In this particular device, there is a „ledge‟ between +5 volts and -10 volts Vgs with 

a low slope and low on/off ratio. The Ids shifts from 0.1 nA to 0.9 nA over the 15 

volt gate voltage shift. By comparison, the Ids shifts from .01 nA to 0.11 nA 

between +10 volts to + 5 volts.  

 

 

3.3.2  ZnO Transistors 

The output characteristics of the control ZnO TFT are shown in Figure 4-24. At 30 V 

Vds, the drain-source (Ids) current is 20 uA at a gate voltage (Vgs) of 80 volts 

compared to 5 uA at 60 V Vgs. This represents an on/off ratio of 4.The transfer 

characteristics are shown in Figure 4-25. The slope of the Ids-Vgs curve is nearly 
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constant below 20 volts Vgs, with an approximate on/off ratio of 10 for every 10 volts 

Vgs. 

 

 
 

 

Figure 4-24: Output Characteristics of a ZnO n-type TFT at Vgs = 80, 60, and 40 

V.  

At 30 V Vds, the drain-source (Ids) current is 20 uA at a gate voltage (Vgs) of 80 

volts compared to 5 uA at 60 V Vgs. This represents an on/off ratio of 4. 
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Figure 4-25: Transfer Characteristics of a ZnO n-type TFT at Vds = 40 V.  

Below 20 volts Vgs, the slope of the Ids-Vgs curve is nearly constant.  

 

4.4.2 CuPc Single Gate Transistors 

The output characteristics of the control n-type CuPc TFT are shown in Figure 4-26. 

At 25 volts drain source voltage (Vds), the drain source current (Ids) is 353 nA at a 

gate voltage (Vgs) of 10 volts. The Ids is 153 nA at 0 V Vgs. This is an on/off ratio of 

only 2.3. The transfer characteristics are shown in Figure 4-27. Between +10 volts and 

-10 volts Vgs, the drain-source current ranges from 340 nA to 140 nA. This is an 

on/off ratio of only 2.4. The output characteristics of the p-type CuPc TFT are shown 

in Figure 4-28. At 25 volts drain source voltage (Vds), the drain source current (Ids) is 
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25.2 nA at a gate voltage (Vgs) of -10 volts. The Ids is 10 nA at -5 V Vgs. This is an 

on/off ratio of only 2.5.The transfer characteristics are shown in Figure 4-29. Between 

-10 volts and 0 volts Vgs, the drain-source current ranges from 22 nA to 6.5 nA. An 

inflection point is observable at 10 volts Vgs. This is indicative of ambipolar 

behaviour as above 10 volts gate voltage, electrons (minority, negative carrier) begins 

to have an observable effect. 

 

Figure 4-26: Output Characteristics of an n-type CuPc TFT at Vgs = 0, 5 and 10 

V.  

At 25 volts drain source voltage (Vds), the drain source current (Ids) is 353 nA at 

a gate voltage (Vgs) of 10 volts. The Ids is 153 nA at 0 V Vgs. This is an on/off 

ratio of only 2.3.  
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Figure 4-27: Transfer Characteristics of an n-type CuPc TFT at Vds = 20 V. 

Between +10 volts and -10 volts Vgs, the drain-source current ranges from 340 

nA to 140 nA. 
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Figure 4-28: Output Characteristics of a p-type CuPc TFT at Vgs = 0, -5, and -10 

Volts.  

At 25 volts drain source voltage (Vds), the drain source current (Ids) is 25.2 nA at 

a gate voltage (Vgs) of -10 volts. The Ids is 10 nA at -5 V Vgs. This is an on/off 

ratio of only 2.5. 
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Figure 4-29: Transfer Characteristics of a p-type CuPc TFT at Vds = 20 V. 

Between -10 volts and 0 volts Vgs, the drain-source current ranges from 22 nA to 

6.5 nA.  

 

4.4.3 Split Gate Transistors 

The transfer characteristics of the split gate CuPc transistor is shown in Figure 4-30 

below with Vds at 20 V. The peak drain-source current of the device shown was 

measured at23 nA with both gates biased to -15 volts. This compares well to the single 

gate device produced and shown in Figure 4-29 which had a current of 22 nA at 20 V 

drain source voltage at a gate bias of -10 volts. This device requires further 
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optimization but the results are sufficient for the modeling which is reviewed in 

Chapter 5. 

 

 

Figure 4-30: Split Gate Transfer Characteristics.  

The normalized output current is shown, at 20 V, as a function of the Gate 1 and 

Gate 2 applied voltages. The peak current was found to be 23 nA at 20 Vds and 

with both gates biased at -15 volts.  

 

4.4.4 SONOS TFTs 

The transfer characteristics of a single gate TFT are shown in Figure 4-31 below 

before and after an applied gate voltage of + 14 and -14 V. The effective gate voltage 

is shifted by an average of 2.3 volts over the range shown, Vgs from 15 to –5 Volts. 

The shift between charging is the result of charge tunneling into and out of the SiN 

charge storage layer, effectively creating an imbedded memory in the transistor. In this 
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case, the effect on Ids is small due to the small on/off ratio inherent to the CuPc 

transistor. Looking at a vertical line at 10 volts Vgs, the shift is about 3 x 10 
-8

 A, 

which is on the order of 14%.  

 

 

Figure 4-31: CuPc p-type SONOS FETFT Device Transfer Characteristics.  

Shown are the scans after a charging voltage of +14 volts and – 14 volts. The shift 

between charging is the result of chargetunneling into and out of the SiN charge 

storage layer, effectively creating an imbedded memory in the transistor. In this 

case, the effect on Ids is small due to the small on/off ratio inherent to the CuPc 

transistor. Looking at a vertical line at 10 volts, the shift is about 3 x 10 -8, which 

is on the order of 14%. 



 
Ph.D. Thesis – R. Wood; McMaster University – Engineering Physics 

 

 

 

70 

 

5 NEURAL SIMULATIONS 

5.1 Introduction  

This section gives the details on modeling of spiking analog neural circuits. The first 

stage was to reproduce a spiking circuit from literature. The circuit designed by van 

Schaik [20] was found to be a good starting point as it is a simple spiking circuit. 

Further modeling would develop the concepts identified by Indiveri [19] but the circuit 

is too complicated for initial analysis. This first circuit was developed (without the 

benefit of knowledge of component properties as these are not specified in the original 

work.) and was found to produce a spiking response to an input current. This 

procedure ensured that the base model used was working properly and would be an 

appropriate starting point for the development of a circuit using organic transistors 

with SONOS structures.  

In the next step, the results of the characterization of the organic transistors, as covered 

in Chapter 4, were used to generate transistor models. These new transistor models 

were then used to replace the standard silicon transistors used in the literature models. 

This is significant as no previous work was identified that utilized organic transistors 

in this manner and is therefore a novel application of organic transistors. Lastly, the 

SONOS structures and the split gate transistors were used to further develop the 

spiking analog circuit model. 
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5.2 Base Spiking Model 

The spiking analog circuit described by van Schaik [20] and shown in Figure 5-1 is 

used as a starting point to model a spiking circuit. The circuit used standard transistor 

properties. This circuit represents a single neuron and is an “integrate and fire” circuit. 

The current source, I1, represents a sum of synaptic currents. In a more detailed circuit 

model, the current source, I1, is replaced by many (100s to 1000s) of synaptic 

transistors. The response of each of these transistors will be similar to a synaptic 

weight. 

In the circuit in Figure 5-1, the membrane potential (at C Mem) is compared (through 

circuit Q1, Q2, Q3, Q4) to a threshold voltage (V2) and sets a local output voltage, at 

Q3, to high or low. A following circuit (Q6 and Q5) inverts this voltage and drives a 

current (through Q10), that simulates a sodium current, that charges the membrane 

capacitor (C Mem). A second inverter (Q7, Q8) controls the current (through Q9) that 

discharges the membrane through a potassium-like current. This basic circuit has a 

variable threshold and a variable refractory period. A simulation of the membrane 

potential from this circuit is shown in Figure 5-2. Here, the general synaptic current is 

simulated by I1 which represents a resultant sum of synaptic currents. In the 

simulation shown in Figure 5-2, the input current is a broad, 1 second, 500 µA input 

current pulse. Here we can see a sloped charge of the membrane and then an abrupt 

spiking as the threshold voltage (at V2) is exceeded. This is caused by charging of the 

membrane with the current from Q10. This is followed by the quick activation of Q9 

and the abrupt discharge of the membrane. The cycle then repeats as the input current 
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at I1 flows and the membrane recharges. Transistors Q12, Q 13, Q 14 and Q15 are 

current sources that control the current through the circuit and improve power 

efficiency. 

In this version, the circuit is modeled with standard crystalline silicon MOSFETs 

which have fast response and low internal resistance. In designing and manufacturing a 

practical circuit, the manufacturing parameters of the transistors can be changed but 

the circuit performance can be realistically adjusted through changing the leakage 

resistance, R2, the membrane capacitance, C Mem, and the refractory capacitance, C2. 

The leakage resistance can be replaced by a transistor and varied dynamically. As 

previously mentioned, more complicated intrinsic properties can also be added 

(adaptation, frequency response, etc.) and have been modeled by Indiveri [19].  
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Figure 5-1: A van Schaik Circuit. 

This is a basic circuit that models integrate and fire behaviour. The main 

composite synaptic input is represented by the current I1. The membrane 

capacitance is represented by C1 with R2 being the leakage resistance. The 

membrane capacitance is compared (comparator comprised of Q1, Q2, Q3, and 

Q4) to the voltage at V2. If the membrane potential exceeds the threshold voltage, 

V2, then Q10 turns on and the circuit spikes. Eventually Q9 turns on to discharge 

the membrane capacitance.  
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Figure 5-2: Membrane Potential in Original van Schaik Circuit.  

This is the output from the circuit shown in 5-1, with an input current at I1 of 500 

µA for 1s. The circuit pulses until the input current stops and the membrane 

capacitance discharges. The spiking abrupt upward spike occurs as transistor 

Q10 turns on. The abrupt drop in membrane potential occurs when transitor Q9 

turns on and discharges the membrane. 

 

 

5.3 Organic Transistor Spiking Analog Neural Model 

The first modification of the original van Schaik circuit is to reconfigure it to use 

amorphous organic transistors with output and transfer characteristics that have been 

extracted from real devices [100-103]. There is a large variation in amorphous 

transistor characteristics depending on the design details. The gate length and width 

can be varied and the selection of contact metals also has a significant effect on the 
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device performance. Proper selection of the semiconductor materials and contact 

metals can produce n or p-type MOSFETs. These transistors are typically fabricated to 

operate in the accumulation region. The transistors are n or p-type in the desired 

operating gate voltage range as a result of the band alignment between the organic 

semiconductor and the contact metal. CuPc has been shown to have reasonable current 

characteristics for both n and p-type devices in the desired gate voltage range (below 

10 volts). Pentacene based devices are commonly studied and optimized due to the 

relatively high current control characteristics. However, the performance of CuPc 

transistors is sufficient for spiking analog neural circuits. Representative transfer 

characteristics are shown in Figure 5-3 and represent the TFTs that were used for the 

modeling in this paper. As shown, these devices have extremely low current carrying 

characteristics. Representative output characteristics of an n-type device are shown in 

Figure 5-4. 
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Figure 5-3: Modeled Vgs Characteristics of an Amorphous TFT.  

(Open circles for n-type material, closed squares for p-type material). 
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Figure 5-4: Modeled Generic p-Type Organic Transistor Output Characteristics 

for Applied Gate Voltages from 0 to 10 volts. 

 

The transistors with transfer and output characteristics shown in Figure 5-3 and 5-4 

were used to replace the transistors in the circuit designed by van Schaik. For this 

circuit a level 11 transistor model was used with the following parameters; zero bias 

threshold voltage (VTO) 3.0 volts, source resistance (RS) 100 K ohm, 

transconductance (KP) 0.543e-4 amps/volts
2
, drain resistance (RD) 100 K ohm, gate 

resistance (RG) 7.5 ohms, bulk saturation current (IS) 1e-64 amps, gate drain 

capacitance (CGD) 1.70e-9 Farads/meter. The modified circuit is shown in Figure 5-5. 

The current regulating transistors have been removed due to the low currents in the 
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amorphous TFTs. A typical output is shown in Figure 5-6, together with an example of 

the variation in the refractory period. As in the test of the original circuit, the synaptic 

input sum is represented by current source I1. In the simulation shown in Figure 5-6, 

the input current is a broad, 1 second, 500 µA input current pulse. Again we can see a 

sloped charge of the membrane and then an abrupt spiking as the threshold voltage (at 

V2) is exceeded. The slope of the charging profile is shallow compared to the original 

simulation due to the internal resistance of the charging transistor, Q9. This is followed 

by the activation of Q10 and the discharge of the membrane. The cycle then repeats as 

the input current at I1 continues to flow and the membrane recharges. The shoulders 

that appear in Figure 5-6 are a result of the timing of the on/off of the charge/discharge 

transistors, Q9 and Q10 in Figure 5-5. The ledge occurs as Q9 stays on, charging the 

membrane while Q10 starts to discharge the membrane. The final ledge/drop off 

occurs when Q9 shuts off, and stops charging the membrane capacitor, and Q10 stays 

on and continues to discharge the membrane capacitor. At the peaks, Q9 has turned on, 

to charge the membrane but there is a delay in the turn on of Q10. Once Q10 turns on, 

the discharge begins and the membrane voltage drops abruptly. This is shown in 

Figure 5-7. Shown are the charge and discharge currents and the membrane potential. 

The ledge in the membrane potential aligns with the final shut off of Q9, the charging 

transistor. 

 

The shape of the membrane potential can be further refined by adjustment of the TFT 

structure (for example, a shift of the TFT threshold voltages). Modifications of the 
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membrane capacitance, the leakage resistance and the input current I1 in the circuit 

result in a modified membrane potential pulse shape and response as shown in Figure 

5-8. The duration of the shoulder has been reduced. The output behaviour more closely 

matches that of the original circuit shown in Figure 5-2. 

 

Figure 5-5: Modified Neuron Circuit with Amorphous TFTs.  

The current regulating transistors, Q12, Q13, Q14 and Q15 are removed (as 

shown in Figure 5-1). The standard transistors have been replaced with models of 

the organic transistors as defined by the properties in Figures 5-3 and 5-4. 
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Figure 5-6: Output of the Modified Circuit with Variable Refractory Period. 

Two differing Refractory Periods are Shown (Solid and Dashed Lines). 
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Figure 5-7. Analysis of Shoulder Effect.  

Shown are the membrane potential, and the charge and discharge currents.  

The shoulder at 0.2 s results when as the charge transistor turns on at 0.11 s, but 

does not turn off until 0.2 s, opposing the discharge current. Only when the 

charge current is turned off (Q9) does the membrane potential drop to a 

minimum. 
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Figure 5-8: Modified Membrane Response of the Organic Transistor-based 

Spiking Analog Neural Circuit.  

The element properties of the circuit shown in Figure 5-5 have been modified 

from the output shown in Figure 5-6. The duration of the shoulder has been 

reduced. The behaviour more closely matches that of the original circuit shown in 

Figure 5-2. 

 

 

5.4 SONOS Model 

A model of the SONOS gate is shown in Figure 5-9. The primary components are 

modeled by the opposed Zener diodes (D3 and D4) and the charge storage layer (C2). 

The diode parameters used are; saturation current (IS) 9.19e-16 Amps, zero bias 

junction capacitance (CJO) 300 Pico Farads, and ohmic resistance (RS) 0.57 ohms. 

This simple model was developed based on the measured behaviour of the SONOS 
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gates outlined in Chapter 4. Although further optimization of devices is required, the 

initial results support the development of this model. The properties of the Zener 

diodes and the charge storage capacitor can be further modified to reflect these 

optimizations. The ability to store charge is shown in Figure 5-10 which represents a 

functional simulation of the SONOS circuit model. Here, there is an imposed voltage 

across the SONOS gate capacitor (C2) resulting from an applied negative voltage (8 

volts, pulse width 5 ms, at t=430 ms) pulse. This pulse is provided by source V5. 

Source V4 is the source of the input signal, a square wave pulse of period 50 ms. This 

quasi-permanent voltage is the result of stored charge in the capacitor and acts to shift 

the threshold of the transistor as it shifts the effective applied gate voltage (1 volt in 

the case shown). The gate potential of Q1 is shown and can be seen to shift after the 

learning pulse is applied at 420 ms. This shift mimics a shift in synaptic response of 

the neuron model. A decay in the charge/voltage is also evident as the gate potential 

decays from 430 ms to 1 s. This decay results from leakage through the diodes and can 

be adjusted through the design of the tunneling and blocking layers in actual devices.  
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Figure 5-9: SONOS Gate Model.  

The circuit represents a single transistor, Q1, with the SONOS gate modeled by 

the capacitor C2 and diodes D4 and D3. The high voltage learning pulse is 

provided by source V5. Source V4 provides the input signal.  
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Figure 5-10: SONOS Gate Charging Behavior.  

The gate potential is shown with an applied input square wave with a 50 ms 

period (20 pulses shown). A learning pulse is imposed at 430 ms. The gate 

potential shifts after the learning pulse as a result of charge storage in the 

SONOS gate capacitor. The gate potential is increased by the charge storage after 

the learning pulse and then decays as the charge leaks out of the storage capacitor 

through the diodes. 

 

 

5.5 Hebbian Learning Model 

A schematic representation of a learning circuit for the SONOS TFT is shown in 

Figure 5-11. Shown is a single transistor representing a single synapse. The single 

transistor feeds into a main neuron which integrates a series of other synaptic inputs 

provided by other transistors (not shown). If the main neuron fires, a pulse is seen at 
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the Output. If this output occurs within a specified time as the Input pulse, then an 

AND circuit with a time delay will apply a 14 volt learning pulse to the SONOS 

transistor. 

The learning circuit model for the SONOS TFT is shown in Figure 5-12. In this simple 

circuit, an output pulse from the neuron combines with the „synaptic‟ input pulse to 

drive an AND circuit which in turn drives a learning pulse. This can be seen to be a 

Hebbian-like modification process. The learning rate (charging rate) is adjustable 

either from the pulse height or width. This charge behavior mimics the tunneling 

current charging behavior in the SONOS device. The learning circuit can be modified 

to add a propagation delay as required. In this circuit, the propagation/timing circuitry 

is not shown but is imposed by the voltage sources V6 and V7. These voltage sources 

model the synaptic input and output of the single neuron. Each drives one input of an 

AND gate, so that when both are activated, the AND operates and will apply a large 

negative voltage to the gate (C2) of SONOS transistor Q2. A residual charge is left on 

across the gate capacitor, C2. The functionality of the circuit is shown in Figure 5-13. 

A negative learning pulse results when the input and output pulses are simultaneously 

present on the learning control circuit, the AND gate. These circuits show only 

induction of potentiation. Induction of depression can be achieved through the design 

of a circuit with positive pulses (or changing the synaptic transistors to n-type). 
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Figure 5-11: Schematic of Learning Circuit.  

Shown is a single transistor representing a single synapse. The single transistor 

feeds into a main neuron which integrates a series of other synaptic inputs 

provided by other transistors (not shown). If the main neuron fires, a pulse is seen 

at the Output. If this output occurs within a specified time as the Input pulse, 

then an AND circuit with a time delay will apply a 14 volt learning pulse to the 

SONOS transistor. 
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Figure 5-12: SONOS Learning Circuit.  

A single SONOS transistor is shown (Q1, D4, D3 and C2). An AND circuit is 

provided by Q12, Q13, Q14 and Q15. The input signal, V6, is combined with the 

simulated output signal, V7. When both are present, a learning pulse (magnitude 

set by V1) is applied to the SONOS gate at C2. 
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Figure 5-13. Input and Output of Learning Circuit.  

Shown is the control of the learning circuit (AND gate). When the Gate input 

pulse (V6 in the circuit in 5-12) and the output signal (simulated by V7) are 

simultaneously present, a learning pulse (magnitude set by V1) is applied to the 

gate. 

 

5.6 SONOS Split Gate 

The SONOS split gate learning circuit is shown in Figure 5-14. Shown is a two-gate 

configuration. This circuit can be combined with the learning circuit shown in Figure 

5-12. Each gate is controlled by a separate learning circuit.  
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Figure 5-14: Split Gate SONOS with Learning Circuit.  

Shown is a two gate configuration represented by two separate transistors, Q3 

and Q7 (with SONOS 2 sets of SONOS circuitry, C1, C2, D1, D2, D3, D4). The 

transistors are models of organic TFTs. 

 

 

5.7 Single Synapse SONOS Circuit Model 

The circuit shown in Figure 5-15 incorporates the SONOS transistor into the modified 

spiking analog circuit of Figure 5-5. The transistors are all organic TFTs, including the 

SONOS transistor of Q11. The SONOS transistor provides a single synapse and 

replaces the input current source of I1. Voltage source V3 controls the SONOS input 

behavior and source V4 provides the learning signal. The circuit is otherwise the same 

as in Figure 5-5. In a full device, numerous synapses will exist in parallel and will be 

integrated by the membrane capacitance. A simulation of the membrane potential from 

this circuit is shown in Figure 5-16. Q11 is driven by the voltage pulses of V3 and V4. 

For the simulation shown, the input voltage pulse is an alternating square wave, of 1s 
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period, on from 0s to 0.5s, off from 0.5s to 1.0s. The synaptic current comes from the 

SONOS organic TFT at Q11. Here we can see the spiking behavior as well as short 

term adaptation as the response to the second input pulse at 1s is insufficient to reach 

the threshold voltage.  

 

 
Figure 5-15. Spiking Analog Neural Circuit with SONOS OTFT.  

SONOS TFT is at Q11 and includes capacitor C3 and opposing diodes D3 and D4. 

This circuit is a modification of the circuit in Figure 5-5 with the current source 

I1 replace by a single SONOS transistor. 
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Figure 5-16. Output Spiking Behaviour and Adaptation of the Basic Analog 

Spiking Neural Circuit.  

Input voltage pulses controlled the SONOS synapse. The response to two input 

pulses (0s to 0.5 s, and 1 s to 1.5 s) are shown. The response of the circuit to the 

second pulse is insufficient to reach the threshold voltage and cause spiking.  
 

 

This learning behavior of this circuit, as outlined in Figure 5-11, is simulated using the 

learning pulse from V4. This is shown by the output in Figure 5-17, as the synaptic 

current through Q11 is increased after a learning pulse from V4 at 0.7 s. The 

adaptation can be seen by the gradual decrease in the synaptic current. 
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Figure 5-17. Synaptic Current Modification of the Organic SONOS TFT 

Incorporated into the Circuit in Figure 5-15.  

A learning pulse is applied at t = 0.75 s to the SONOS TFT at Q11. The synaptic 

current increases from 1.8 uA to 2 uA after the learning pulse. 

 

5.8 Chapter Summary 

The modeling in this chapter covered the initial demonstration of; 1. The use of 

organic transistors in spiking analog neural circuits. 2. The model of an organic 

SONOS transistor. 3. A simple Hebbian learning circuit. 4. The organic SONOS 

transistor in a spiking analog neural circuit. 
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6 SUMMARY AND OUTLOOK 

6.1 Summary 

6.1.1 SONOS Capacitors 

We have successfully demonstrated that SONOS capacitors can be fabricated using 

either an amorphous silicon or an organic semiconductor material (AlQ3) and 

compared these to control samples and crystalline silicon SONOS devices. The 

memory effect of charging in the SONOS capacitors is demonstrated through the 

hysteresis in the C-V plots. This hysteresis is shown to be a result of the SONOS 

structure rather than any interface effects. This is achieved by comparison to devices 

using crystalline silicon with and without the SONOS structure. These structures have 

been previously analyzed with the current results matching those of the previous 

works. No hysteresis was shown in devices without the SONOS structure.  

The SONOS structure was also examined using TEM and EDS. This confirmed that 

the expected structures were present rather than some unknown structure (such as a 

mixed layer with various interface states). 

Then with the demonstrated ability to reproduce the SONOS structures in crystalline 

silicon, structures were produced using amorphous silicon, AlQ3 and CuPc as the 

semiconductor material. These results demonstrated that the SONOS structures also 

resulted in a hysteresis effect in the devices. They also confirmed that the organic 

materials behaved as semiconductor materials in the CV analysis. 
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6.1.2 Field Effect Thin Film Transistors 

The next stage of analysis involved the design, fabrication and characterization of 

amorphous transistors. The main objective was to determine if organic field effect 

transistors could be produced with SONOS gates and exhibit a memory effect. 

Functional organic transistors were produced, followed by the design, fabrication and 

characterization of SONOS TFTs using CuPc as the semiconductor material. These 

devices showed a memory effect in the induced shift in the transfer characteristics. 

SONOS capacitors, as opposed to complete transistors, could also be used as discrete 

elements in a more complicated spiking analog circuit. 

Simple split gate CuPc FETFTs were also produced to demonstrate the feasibility of 

these devices in a spiking analog circuit. 

6.1.3 Modeling of Analog Spiking Circuits with Embedded Memory 

Using the results of the characterization of the organic TFTs, spiking analog circuits 

were modeled. First an existing spiking circuit using standard crystalline silicon FETs 

was analysed. This circuit was then re-developed to work with organic transistors. This 

is significant in that the amorphous nature of the organic transistor allows them to be 

produced in stacks as they do not require a crystalline substrate. This allows for the 

potential design and manufacture of three dimensional circuits with high interconnect 

density. These circuits were then modified to include the memory effect in the SONOS 

gate organic FET. This memory effect is similar to synaptic plasticity. A simple 

Hebbian learning circuit was also designed and shown to be capable of unsupervised 

learning. The ability to adjust the TFT characteristics of amorphous transistors 
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combined with the manufacture-ability of the devices makes these transistors aptly 

suitable for use in the design of complex analog neural networks with high 

connectivity and unsupervised learning capability. The embedded Hebbian learning 

circuits and the ability to stack amorphous organic cells in 3-dimensional circuits 

allows for the design and manufacture of high-density circuits. 

 

6.2 Outlook 

The main area for further research is in the design, fabrication and characterization of 

complete and advanced analog neural spiking circuits using the techniques outlined in 

this thesis. The recent advances and economic shifts in the semiconductor processing 

industry have opened the door to the development of specialty analog circuits. The 

reduction in cost, and the ease of manufacture of amorphous electronics including 

organic devices allows for the research and development of specialty circuits without 

the requirement of enormous research budgets. Up until now, the bulk of 

implementation and research has been in the areas of digital, serial neural circuits. 

These serial circuits are convenient implementations that leverage the existing design 

of FPGAs and basic digital circuitry. New areas of research will allow for the analysis 

of more advanced analog and mixed analog-digital circuits. This will likely reveal new 

device artifacts that will have potential in further iterations of circuits. It is also of 

particular interest that in biological neural systems, the dominant development process 

proceeds through evolution. Rapid semiconductor prototyping techniques will allow 
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for a measure of this same evolutionary process in artificial neural circuit 

development.  

 

6.3 Concluding Remarks 

This work is intended as a general overview of the use of Organic field effect thin film 

transistors with tunneling gates in spiking analog neural circuits. Organic electronics is 

a relatively new field of study and the interface effects, including tunneling from and 

to organic layers requires more study. The long term stability of organic SONOS 

devices is also required. There is significant potential for these, and similar, devices 

for use in neural circuits. 
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8 APPENDIX A. DIGITAL NEURAL NETWORKS 

This appendix contains a paper accepted for publication at the time of writing for 

the SPIE conference proceedings for Photonics North 2012. Significant background 

investigations of the implementation of digital neural networks were undertaken as 

part of this research. This paper covers some of this background work. 
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8.1 Digital Implementation of a Neural Network for Imaging 
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This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with 

unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The 

primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the 

information density of streaming images so that objects can be readily identified by a limited set of primary parameters 

and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical 

imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested 

using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the 

networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited 

object sets with rotational and positional invariance. The results also show that limited visual fields form with only local 

connectivity.  

 

Keywords: Neural Network, imaging, digital, FPGA, parameter space, human machine interface, HMI 

 

 

Introduction 

 
The field programmable gate array (FPGA) is a useful prototyping device in general for digital designs and is ideal for 

the development of a neural network device. Neural networks have been designed in FPGAs with many examples 

available [1-12]. These provide a reasonable starting point. The nature of the boards allows for the development of firing 

rate based neural networks or standard weight based matrices (a combination of the two is also possible).  

 

The cited previous work [1-12] has been used as the initial template for the design of the present neural processing 

system and a brief overview of these systems is given. The overall system structure follows that proposed by Savran et 

al. [1], as shown in Figure 1. Here, a state machine controls the mode that the system is in (learning, operating, etc.). It 

also controls the timing between network units (between aspect and decision space for example). This timing control is 

critical due to the overall system architecture. That is, the system uses the advantages of the digital FPGA by converting 

a parallel neural network into a sequential system.  Although a true parallel system could be designed, it would be 

cumbersome and difficult to implement as the nature of digital prototyping devices is inherently serial. In the system 

shown in Figure 2 [1], in normal operating mode, each input is sequentially modified by a given synaptic weight with the 

result added to an accumulator. The output of the accumulator is then filtered. All the data and the weights are digitized 

and will have a limited resolution based on this digitization (Typically 0-127 settings, although resolution higher than 8 

bits is possible if required). Only when the entire layer is modified, can the system switch to the next layer, hence, the 

criticality of the aforementioned timing via the state machine. This conversion to a sequential mode is feasible due to the 

high clock speed of digital processors (GHz).  



 
Ph.D. Thesis – R. Wood; McMaster University – Engineering Physics 

 

 

 

112 

 

 

 
 

 

 

 

 

 

The basic learning configuration is shown in Figure 3 [2]. Here a separate module exists to modify the synaptic weights. 

This unit must also be controlled by the state machine, which can enable the learning cycle and back propagation.  As 

shown in Figure 3, teaching signals can be taken from an external source. Unsupervised learning can also be used 

without the teaching signals. In this case an autocorrelation function of the output (and or input) signals can be generated 

in the learning unit. 

 

 

 

Figure 1. Digital Neural System Architecture. A state machine controls the sequencing between neural layers.  

Figure 2. Single Neuron Schematic. Each pixel is modified by the weights and is integrated in 

an accumulator.  
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There are various aspects to neural learning. A brief description is included here to illustrate the relevant aspects of 

Hebbian learning. In the simplest form, Hebbian learning will occur when a neuron fires and in turn a connected neuron 

fires in sequence, then the synapse between these neurons is strengthened. In the matrix shown in Figure 4, the weights 

are modified by the relation τw dw/dt = vu where the rate of change of the weights depends on whether the output neuron 

fires in time with the given input u. The learning rate is also modified by the constant τw. 

 

In a modified Hebbian system, synapses can also be weakened between neurons that do not fire. In a system of neurons, 

the synapses will require some form of normalization to prevent a synaptic overload. Unsupervised learning for self-

organization is possible with this basic premise. This will require the system to operate under four simple rules, Figure 5 

[13]. First, the system follows the basic Hebbian premise. Second, the system follows a winner take all scenario. Third, 

there is cooperative interaction between neurons. Lastly, structure information is required in the training process. This 

simple Hebbian  

Figure 1. Learning Configuration. Teaching data required for supervised learning.  

Figure 2. Simple neuron system with the Hebbian learning formula τw dw/dt = vu .  Shown is one output 

neuron and 5 input neurons, Un and 5 weights, W. 
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Methodology 

 
As part of the background examination of digital neural networks, several digital versions were generated for the current 

analysis. In particular, a simple visual neural field was created that was able to identify simple objects, such as letters and 

numbers, using the serial implementation of a weighted neural matrix. A 20 x 20 pixel imaging space was designed and 

implemented on an Altera DE2 prototyping FPGA board with a simple paired (both inhibitory and excitatory neurons) 

layer to convert streaming images into parameter space(s).  Several parallel processing units were produced to examine 

the ability of the system to learn to identify various parameters such as texture, color, and edges. Each neural processing 

unit was compared in parallel to standard image processing routines for texture, color and edge detection. In addition, a 

character identification system was constructed to convert letter images into parameter space, Figure 6. In this case, the 

26 letters of the Roman alphabet are converted into 10 parameters (Table 1). In this case the parameters are imposed but 

could also be self-assigned by the system. 

 

The learning of the system was conducted by exposing the neural network to randomly selected images (from a limited 

set of rotated images of individual characters). Both supervised and unsupervised learning was examined. 

Figure 1. Self-Organization. Requires structural information, lateral interaction and a winner take all system 

with Hebbian learning.  
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     Table 1. Parameters for Roman Characters 

 

 

 
Results and Discussion 

 
A representative plot of a single 20 x 20 neural mesh is shown in Figure 7. Shown is a mesh from a character space to a 

single parameter space routine (there are 10 sets of these in the case of the character space conversion). Our initial results 

indicate that the network can be used to identify characters through the conversion to parameters, which are 

predominantly orientationally invariant. The network was found to be generally comparable to human recognition of 

characters, limited by extremes of orientation. 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

small curve 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0

2 vertical ends 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0

cross 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0

one diagonal line 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1

2 horizontal line 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1

2 line segments 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0

large curve 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

external point 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1

horizontal ends 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

intersection-3 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0

Figure 1. Character Space Conversion to Parameter Space. 
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