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Abstract

It has been observed by researchers that periodic auditory stimuli can cause the ac-

tivities in different brain areas to be periodically synchronized. Fast auditory stimuli

have been shown to cause the brain sources to synchronize at the rate of stimuli.

Brain sources respond to them not only by increase in local synchronization, but

also in the global synchronization of cortical regions often regarded as functional

connectivity. Spectral power and coherence are often used to characterize such neu-

ral synchronization. Beta band oscillations have been reported to underlie the neural

mechanism during repetitive auditory stimuli. Cortical generators of these underlying

beta oscillations were investigated in several studies based on MEG measurements.

This research is intended to investigate (1) EEG can be used to detect and localize

neural sources changing in power and coherence and (2) beta oscillations underlie

such neural synchronization during fast repetitive auditory stimuli based on EEG

measurements. The procedure of this study consists of several steps. First, the mini-

mum variance (MV) scalar beamformer, an adaptive spatial filter, is used to estimate

the temporal signals in the brain source space, given EEG recordings. The analysis

of the estimated source temporal signals then consists of two stages firstly the power

analysis and secondly the coherence analysis. The dynamics of power and coher-

ence is investigated instantaneously over time and in the lower beta frequency band
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[14,20Hz]. This is done by detecting the most prominent changes in the two spectral

parameters through singular value decomposition (SVD). Two coherence measures

imaginary component (IC) and magnitude-squared coherence (MSC) are employed

and compared in terms of their performance both mathematically and experimen-

tally. In the simulations, we show the capability of using EEG to detect and localize

power co-variations and dynamic functional connectivity in the cortical regions. We

also perform the procedure on the recorded real data from subjects passively listen-

ing to rhythmic auditory stimuli. Beta oscillations are found to underlie the neural

activity to percept auditory stimuli. This is shown by localization of auditory cor-

tices and detection of power co-variation in this frequency band. We demonstrate

the feasibility of using EEG to identify coupled and co-activated brain sources similar

to those obtained from MEG signals in the previous studies. These include auditory

and motor regions which were found to be functionally coherent and have a functional

role in the auditory perception. The superiority of IC over MSC measure is proven

mathematically and validated in both simulations and real data experiments.
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Chapter 1

Introduction

1.1 Functional Interactions in the Brain

Local specialization of brain sources and long-range cortical and subcortical func-

tional interactions are necessary to study higher brain functions. Recent research

studies have focused more on task-related functional network [12], [38] instead of

only localizing activated, local brain areas. To study long-range functional interac-

tions, neurophysiological data are needed which can be obtained by recordings from

different parts of brain. These recordings can be Magnetoencephalography (MEG) or

Electroencephalography (EEG). They have higher temporal resolution to track neu-

ral responses in comparison to other techniques such as Functional MRI. However,

they lack spatial resolution to accurately identify task-related activity of anatomical

regions in contrast to fMRI which has higher spatial resolution. Moreover, in order to

study task-related neural responses millisecond temporal scale is of necessity making

the analysis of EEG/MEG signals crucial.
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Statistical interdependency of neurophysiological signals, characterized by func-

tional connectivity, should be assessed to localize correlated long-range network.

Functional connectivity has been observed in some studies with MEG and EEG [13,

39, 44]. Commonly, functional connectivity is defined in a specified frequency band.

Coherent activity has been found among primary sensorimotor area (SM1), premotor

cortex (PMC), supplementary motor area (SMA), and primary auditory cortex (A1)

during auditory-guided paced movements [32] in alpha frequency band (8-12 Hz).

MEG has higher spatial resolution than EEG but, unlike EEG, is less distorted by

conduction through the scalp and the skull. However, EEG is more easily available,

more economical, and also sensitive to both tangential and radial sources (whereas

MEG is not sensitive to radial sources). In a study with EEG [39], periodic power

covariation of induced beta oscillations at the rate of auditory stimuli was observed

in fronto-central surface channels. On the other hand, studies [13, 44] using surface

channel responses of EEG to investigate functional connectivity and power changes

during repetitive movement task have also been carried out. Identification of coherent

network with EEG was performed in a very recent study with integration of auditory

and visual stimuli in beta band (20 Hz) and gamma band (80 Hz) [20]. Fronto-

parieto-occipital network and centro-temporal network were found in the mentioned

frequency bands, respectively. In addition, localization of primary hand motor area

and primary visual cortex was performed with a measure of functional connectivity

based on EEG measurements [17].

Our hypothesis is that a stimulus may cause a coherent cortical and subcortical

network to form and interact with each other following the stimulus. This interaction

may be dynamic and in a periodic manner synchronized with periodic stimulus. The
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interaction may also predict the timing of next stimulus by responding earlier than the

next stimulus. In a recent MEG study [12, 39], dynamic interaction in fast auditory

stimuli rate could predict the next stimulus. Dynamic cortico-cortical functional

interaction with other stimuli have also been localized in both auditory and motor-

related areas in beta band frequency (20 Hz) when subjects were listening to repetitive

tone in a fast rate (1-3 Hz) without any movement. It has been suggested that beta

oscillations are the signals for communications in auditory-motor networks. (Beta

power reaches its maximum at the time of the stimuli and decreases immediately

after.) This dynamic change has not yet been localized with EEG. In this study,

we analyze neurophysiological data from all over the scalp with EEG recordings and

localize their activity if they have dynamic interactions during fast rate stimuli. The

methods are also implemented on real EEG data when subjects are listening to fast

repetitive tones.

Localization of functionally connected network with EEG studies can be performed

in either sensor space [13, 39, 44] or source space [17]. Field spread interference is a

major obstacle to interpret functional coupling among sensor pairs and to attribute

them to underlying brain sources. Spatial filtering is often performed to obtain source

time signals [17, 38, 7] when dealing with EEG or even MEG scalp measurements.

After extracting source time signals, a measure of identifying functional connectivity

is of necessity. Power and coherence are two useful statistical measures which charac-

terize how strongly a source is activated and how strongly sources are phase-locked in

response to stimuli, respectively. Brain sources may show a synchronized response to

stimuli by increasing in power or becoming phase-locked with other sources. There-

fore, the two mentioned measures are helpful and complementary.
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1.2 Spatial Filtering

Inverse algorithms can be used to map sensor measurements onto brain and can be di-

vided into two categories – discrete dipole analysis [33] and source imaging [9, 29, 45].

In discrete dipole analysis, the number of sources needs to be known in advance. In

source imaging, there is no need to know the number of sources. Therefore, we use

source imaging in this research and refer to it with a general term ”spatial filter-

ing” . Two classes of spatial filters used to map sensor data (here, EEG) onto brain

sources are adaptive or non-adaptive filters. A non-adaptive filter is defined as a

filter whose weights are computed independent of measurements. Weight-normalized

minimum-norm method [9] and standardized low-resolution electromagnetic tomog-

raphy (sLORETA)[29] are among the mostly used non-adaptive filters. In contrast,

adaptive spatial filters depend on measurements. The most famous adaptive filters

is Minimum Variance (MV) Beamformer. Weights of this filter are chosen so as to

maximize brain electrical signal from a specified location (in a region of interest) while

attenuating signals from other sources. The region of interest might be obtained from

structural MRI of the subjects. It is firstly segmented into grey and white matter.

Grey matter which is the most probable region for existence of source is then dis-

cretized. Afterwards, we compute weight vector for all predefined vertices. Finally, a

three-dimensional image of source is reconstructed and local maxima in the image is

considered to be the real source.

A comparison between MV beamfomer and sLORETA have been carried out in

[37]. The comparison was made between the localization ability of sLORETA and

MV beamformer and showed sLORETA source reconstruction was more sensitive to

Signal-to-Noise ratio (SNR), while normalized MV beamformer had no localization

4
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bias even in the presence of noise. In addition, MV beamformer has higher spatial

resolution than sLORETA. In this research, we have used MV scalar beamformer to

extract source time signals. We will discuss the aspects of beamforming in greater

details in Chapter 2.

1.3 Power Spectral Density

Power Spectral density is often used in the context of event-related synchronization

(ERS) or event-related desynchronization (ERD). ERD/ERS represent frequency spe-

cific increase or decrease of power, respectively, which might reflect increase or de-

crease of synchronism among underlying neural populations. It is said to be com-

plementary for Evoked Potential (EP) which is obtained by simple averaging (phase-

locked response), because it is useful when the events are not necessarily phased-

locked, but time-locked to the stimuli. ERD/ERS is often assessed with respect to a

baseline or reference, usually defined in the time interval before applying a stimulus

[31]. As an example, ERD was observed in the sensorimotor areas at 10 Hz and

20 Hz following a ERS during self-paced movements [23] with respect to a prede-

fined baseline. In the cases where the events turn out be predictable, it is difficult

to define an appropriate baseline. For instance, in a study on the response to fast

repetitive auditory stimuli, average of fronto-central sensor instantaneous power (in

gamma band frequency) showed peak around the time of stimuli and in some subjects

the same peak happened in a predictive manner sooner than the time of next stimuli

[39]. Similar results were found in more details about the origins in a counterpart

MEG study [12]. In this study, spatial filtering was employed to estimate source time

series in the first steps and then, analysis of dynamics of brain sources’ power was
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done in the next steps. In the mentioned studies, it is a difficult or maybe impossible

task to assign a baseline period. The reason is the fast periodic nature of stimuli

which may cause the power of some brain sources dynamically oscillates in the same

frequency as stimuli and might predict the next stimuli. In this case, ERD/ERS may

not be exactly time-locked to the stimuli. Therefore, we might expect the peak of

power occurring at any time between the stimuli. In Chapter 3, a method is proposed

to localize sources whose power dynamics co-varies and is synchronized with stimuli,

without determining a baseline period.

1.4 Coherence

Coherence is the second and complementary measure besides power spectral density

to study functional connectivity in the brain. It is often used to study long-range

coherence in brain cortical network in higher brain functions. Coherence shows how

consistent is the phase and magnitude relation between two neural signals. In other

words, it quantifies the statistical dependency between the two neural time series.

Generally, coherency is a complex-valued quantity and often magnitude-square of

coherency called magnitude-squared coherence (MSC) is alternatively regarded as the

measure of coherence. Coherence has been used to study functional connectivity from

scalp sensor measurements [44, 26, 40]. [44] has examined the effect of movement rate

on the functional connectivity of cortical motor areas. The problem with sensor-based

coherence analysis is that we cannot infer underlying source functional connectivity

because of volume conduction. Some solutions have been proposed by [26, 40]. [26]

proposed to use the imaginary component (IC) which eliminates interference due to

spatial spread of source activity on the scalp by canceling zero-phase lag coherence.
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[40] used surface Laplacian alternative to direct sensor measurements. Although

these methods have proved to be helpful, still they do not give information about

the underlying sources. More appropriate strategy is to project the sensor data onto

the brain and do coherence analysis in source domain and has been used in several

papers [12, 32, 30]. As power spectral density, coherence is also defined for a specific

frequency range.

As discussed above, to analyze brain functional connectivity, application of spatial

filtering is of necessity to estimate source time signals of brain, thereafter coherence

is subsequently computed among the pairs. The common problem of spatial filtering,

is the spatial leakage of the inverse algorithm. This leakage often causes spurious co-

herence in the reconstructed source image. In this thesis, this effect is called common

source effect. Some solutions have been proposed to avoid this problem including

use of IC [38] or use of lagged component [30] instead of MSC. These two measures

eliminate zero-phase coherence which comes from a common source between two neu-

ral sources. In this thesis, we use the imaginary component to localize the coherent

network among the sources, as explained in Chapter 3.

1.5 Dynamical Interactions

Two measures have already been proposed , power spectral density and coherence

, to examine frequency-specific ERS/ERD (Local interactions) and long-range func-

tional connectivity (global interactions), respectively. Dynamic changes of power and

coherence have been characterized in several studies and have been shown to play an

important role in temporal prediction during fast periodic auditory stimuli [12, 32, 39].

In this study, we use these measures to localize two kinds of neural network in the

7
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brain. The first one which is called power-based network (POW-NET) is based on

co-variation of power. In other words, this network contains sources which synchro-

nize and desynchrnize simultaneously when periodic stimuli is applied, as shown in

[12]. The second network is called coherence-based network (COH-NET): Given a

reference source, COH-NET consists of sources which become functionally connected

or disconnected at the same time with the reference source during periodic stimuli.

As described earlier, in the fast periodic stimulation it is a difficult or impossible task

to determine a constant baseline period to contrast with post stimuli neural activ-

ity. The reason is the ERS/ERD and functional connectivity have temporal dynamic

pattern in this situation [12] and state of some sources might change at any time

before stimuli (prediction) or any time even after stimuli [12, 39]. Particularly, it was

shown in a study with MEG that POW-NET included some regions of motor, frontal

and auditory cortices and some subcortical regions such as cerebellum and thalamus.

COH-NET included several frontal and temporal cortices given a reference source in

motor cortex. In this study, we show the feasibility of obtaining similar results during

fast auditory stimuli through proper EEG analysis. The proposed coherence measure

is IC. In Chapter 3, we show the advantage of using this measure over MSC used in

[12] to eliminate spurious coherence. The reference source for coherence estimation is

specified based on a priori knowledge. Firstly, we compute the instantaneous power

of all source time series itself and instantaneous coherence of all sources based on a

reference source. Then, we use Singular Value Decomposition (SVD) to detect the

principal temporal pattern in power and coherence during stimuli. A criterion is pro-

posed to maintain significant sources. Sources which have the same temporal pattern

8
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of power are included in POW-NET and those which have the same temporal pat-

tern of coherence with the reference source is considered as COH-NET. Simulations

are also performed to show the efficacy of method with synthetic data. In computer

simulations, several sources mimic the activity of POW and some other sources are

functionally connected and phase-locked with POW sources thereby making COH

group. The accuracy of the algorithm is then assessed. The two coherence measures

IC and MSC are also compared.

1.6 Main Features of the Thesis

• Preprocessing of EEG signals including artifact rejection, band pass filtering,

are firstly explained. Appropriate head model is chosen to construct a forward

model. This is a necessary step before spatial filtering. MV scalar beamformer

is mathematically derived and its different aspects are discussed (Chapter 2).

• To do source space feature extraction, Hilbert transform is used to obtain the

analytic signals, followed by the estimation of power and coherence. The vari-

ation of two coherence measures IC (proposed) and MSC with respect to SNR

of sources are compared. SVD is employed to obtain the principal temporal

pattern in power and coherence and subsequently localize them. POW-NET

and COH-NET were localized based on the sources having common temporal

pattern of power and coherence, respectively. An error-based criterion is used

as threshold for localization.

• In the simulations section, we show the performance of the proposed algorithm

to find POW-NET and COH-NET. The applicability of the method is shown on

9
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real data and confirms the feasibility of using EEG to track dynamic interaction

of sources.
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Chapter 2

Preprocessing and Spatial Filtering

Electroencephalogram (EEG) signals provide an indirect measurement of neural ac-

tivity in the brain. In this chapter, we explain the procedure to estimate neural

signals of brain, given EEG scalp measurements. The necessary step prior to every

analysis with EEG is preprocessing and artifact rejection. First, the durations of

signals consisting of the response to one or several stimuli are segmented. Channels

showing unusual behavior should be recognized and a proper strategy should be ap-

plied. The recorded EEG signals are mostly contaminated by muscle and eye blink

artifacts. The periods contaminated by these artifacts have to be removed. The re-

maining epochs of EEG data should then be band-pass filtered in the frequency band

of interest,which, in our case, is the lower beta frequency band [14, 20Hz].

In general, source localization consists of solving two kinds of problems: 1- the

forward problem 2- the inverse problem. The forward problem is to determine the

potential distribution on the scalp due to different source configurations in the brain.

The inverse problem is to estimate source position and characteristics given scalp

potential distribution. Therefore, source space reconstruction consists of two steps:
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1- choosing an appropriate head model to build a forward model 2- given the scalp

measurements and a head model, spatial filtering is performed to estimate brain

source time series. In this chapter, we explain this procedure in great details.

2.1 Preprocessing of EEG Signals

Figure 2.1 shows the typical components of EEG recording system. At the first

step, the scalp signals due to current sources shown by arrows are passed through a

differential amplifier. A low-pass analog filter is usually applied to keep the most of

signal power in the range of frequency less than 100 Hz. In addition, a high-pass filter

may also be used to eliminate the substantial power below 0.5 Hz. A notch filter may

or may not be used to remove power line frequency component (50 or 60 Hz). The

difference signal is then boosted with a certain gain and passed through an analog to

digital convertor (ADC). EEG data were then stored and further off-line analysis is

performed on them including time-frequency analysis, spatial filtering, and etc. The

difference signal consists of individual sensor signals and a reference sensor signal

usually chosen to be far from active region. The choice of reference is important and

may lead to wrong interpretation of the signals; the linked-ears or linked-mastoids is a

popular reference used in most cognitive laboratories [27]. No matter which reference

is to be chosen, EEG signals are better to be re-referenced to the average signal to

diminish the reference signal influence [27].

In this research, both real and simulated EEG data were recorded based on

Biosemi 128-channel system (BioSemi, Amsterdam, Netherlands). In this configu-

ration, 128 closely spaced sensors are placed on the scalp. There are some stages

of preprocessing on the average-referenced real EEG signals which should be taken

12
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before the source analysis. Initially, channels showing unusual behavior should be

eliminated from the further analysis. The common procedure is to omit these chan-

nels or to interpolate them based on all the other channels. The next step is to

segment EEG signals which cover the response to one or several repetitive auditory

stimuli. Then, segments including artifacts need to be rejected. The origin of these

artifacts is mostly eye blink or muscle activities. There are different approaches to

deal with these artifacts. Clinical experts use visual inspection to detect artifacts and

replace the samples of artifacts. One may use the concept of outliers in the statistical

data [28] and replace the artifacts with random samples having the same distribution

with data. Since this is not the issue of this study, we do not explain the artifact

rejection methods in great details. The method we have used for the real EEG data

is based on the amplitude threshold [44, 39]; artifacts usually have greater amplitude

in comparison to normal brain signals. In this manner, segments whose amplitude is

greater than a certain threshold are not used for the further analysis.

2.2 Head Model

As described at the beginning of this chapter, forward problem is the problem of

determining the potential distribution given any source configuration in the brain. To

solve an inverse problem, forward model should be determined in advance. To perform

forward modeling, a proper geometry and conductivity properties of different head

tissues need to be determined. The inaccuracy of determining these characteristics

can lead to the inaccuracy of forward model and subsequently mislocalization in

the inverse model. The most common head model is the three-concentric sphere

consisting of three layers brain, skull and scalp. In this model, the conductivity is
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Figure 2.1: EEG recording components.
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assumed to be homogeneous and isotropic in each layer. Given this spherical model,

the forward model has a closed-form solution [25]. Since head is not a sphere in shape,

realistic geometry of brain using MRI is often preferred to the spherical geometry.

The procedure of scanning subjects for the structural MRI in every EEG experiment

is becoming more common to obtain a more accurate geometry.

Given the realistic head geometry, the forward problem is solved using boundary

element method (BEM) and finite element method (FEM) [41, 3]. To implement

BEM, the boundary of tissues needs to be specified (skin, skull,cortex) which is ob-

tained by segmentation of subject’s anatomical MRI. The boundary surface is then

triangulated in 3-D space (see Fig 2.2). BEM is often regarded as a semi-realistic

piece-wise constant conductivity model. FEM is also based on the realistic geometry

of head, but it can also handle anisotropic, inhomogeneous tissue which is the case

for the bone tissue in the head model. To perform FEM, the discretization should

be carried out over the whole volume of tissues. The advantage of BEM over FEM

is its lower computational costs, because the unknowns of BEM are only in the in-

terfaces while in FEM they are within the whole discretized volume. On the other

hand, determination of anisotropic properties of the tissues is not a trivial task yet.

In our study, we use boundary element model for the above reasons. Most boundary

element methods suffer from accuracy issue, when the conductivity ratio between two

neighboring tissues is high. [16] has suggested a new method called symmetric BEM

to overcome this critical problem. We have used the software called OpenMEEG

which implements this technique and was also built by [16].

In order to make a forward model with the boundary element method, we need a
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realistic representation of the head geometry, electrode positions, conductivity prop-

erties of the tissues (assumed to be homogeneous and isotropic). To build an appro-

priate head model, we need to combine the anatomical information often obtained by

structural MRI with EEG measurements. Since MRI and EEG are two different brain

recording modalities defined in two separate coordinate systems, we need to express

both data in the same coordinate system . Coordinate system of EEG measurements

is often defined based on the anatomical landmarks outside of head, including nasion,

inion, left pre-auricular (LPA) point and right pre-auricular (RPA) point1, whereas

the coordinate system used for MRI is defined based on the internal landmarks such

as anterior and posterior commissure. We need to use a unified coordinate system

and explain the coordinates of EEG sensors and structural MRI voxels in this co-

ordinate system. The coordinate system we used in our study can be described as

follows: x-axis goes from the origin (midway on the line connecting LPA to RPA) to

the nasion, the y-axis goes from the origin through the LPA and intersects x-axis at

a right angle and the z-axis goes upward and is orthogonal to the xy-plane.

Now, we summarize the whole strategy to prepare the forward model. A structural

MRI with voxel size of 1×1×1mm3 is transformed into the coordinate system defined

above. Three landmarks the nasion and the left and right pre-auricular points are

found and marked in the structural MRI. A rotation and shift of the 3D-volume is

needed [11], so that all the 3-D points of MRI are expressed in the new coordinate

system defined by the three landmarks. The structural MRI is then segmented and

the outer layer of scalp and the inner and the outer layer of skull are extracted and

discretized into sufficient number of vertices. Then, given each segment’s conductivity,

1These anatomical landmarks are located surrounding a head, for instance inion is a prominent
point at the back of the head.
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Figure 2.2: Triangulated surface of head (left) and cortex (right) taken from brain-
storm (http://neuroimage.usc.edu/brainstorm) for boundary element method.

boundary element method is used to evaluate the potential distribution at given

electrode coordinates. In this research, we have used a default MRI (Colin 27) for

both simulations and real data. For the real data, 3D-coordinates of sensors were

obtained before the EEG experiments. Since the individual subjects’ MRI was not

available, the individual electrode coordinates were projected onto the default MRI.

The procedure was performed with Brainstorm software [42], which is documented

and freely available for downloading online under the GNU general public license

(http://neuroimage.usc.edu/brainstorm).
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2.3 Spatial Filtering

2.3.1 Model Definitions

We denote the electric signal measured by M sensors at time t as a real vector

m(t) = [m1(t) · · · mM(t)]T . A source is defined by three parameters including spatial

location, magnitude and orientation (the latter two determine the source moment).

Spatial location of a source is given by a three dimensional vector q = [qx qy qz]
T . At

time t and at location q, the magnitude of the source is represented by a real quantity

s(q, t) and its orientation is given by µ(q) = [µx(q) µy(q) µz(q)]T whose components

are the cosine of angle between the source moment and three main axes, x, y, z. The

leadfield vector a(q,µ) comprising of M elements from the sensors can be conceived

as a combination of responses from unit sources at q in the directions x, y, z so that it

can be written as a(q,µ) = [ax(q) ay(q) az(q)]µ(q), where ax(q), ay(q), az(q) are

respectively the unit response vectors in the three dimensions x, y, z. Often this unit-

response matrix is written as A = [ax(q) ay(q) az(q)] which is called the leadfield

matrix.

By superposition law, we can compute sensor data given source moment s(q, t) at

time t as below

m(t) =

∫
a(q,µ)s(q, t)dq (2.1)

In a more realistic situation, measurement noise and errors due to modeling inac-

curacy are taken into account by adding an extra term n(t) to the above model as

additive noise. The signal model given by Eq.3.12 is often called the forward model.

The components of a(q,µ) are constructed by BEM given the geometry of head,

conductivity properties of head tissues, and sensor positions as described in previous
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section. Given the sensor measurements m(t), and given the forward model, our first

goal here is to recover the source moment. For this purpose, a linear spatial filter in

the form of a weight vector w(q) is applied to achieve an estimate of s(q, t) such that

ŝ(q, t) = wT (q)m(t) (2.2)

where ŝ(q, t) is the source magnitude (orientation is assumed to be known here) and

w(q) is a weight vector to be evaluated , where (.)T denotes the transpose sign.

2.3.2 Adaptive Spatial Filter

In order to estimate source magnitude, we employ an adaptive spatial filter called

minimum variance (MV) scalar beamformer (also called SAM) [45]. Generally, this

kind of spatial filtering aims to pass the corresponding source with unit gain and

suppresses the interference of other sources. For a MV scalar beamformer, the weight

vector w(q) is obtained for a source located at q by finding the solution to

min[w(q)TRmw(q)] (2.3)

subject to the following constraint

a(q,µ)Tw(q) = 1 (2.4)

where Rm is the covariance matrix of the sensor measurements obtained by Rm =

⟨(m(t) − m)(m(t) − m)T ⟩, where m is the mean value of m(t) and ⟨·⟩ denotes the

ensemble average which maybe replaced by time average in practice or the average
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over a number of trials. In our study, we obtain the average over several trials as well

as over time samples so that the variability and independency of data are increased.

We explain more about this in Section 4.1.3. Solution to Eq.2.3 can be found by the

method of Lagrange multipliers, we define Lagrangian as below

 L(w, κ) = wTRmw + κ(wTa− 1) (2.5)

where κ is the Lagrange multiplier and a and w are real-valued quantities and Rm

is a positive-definite matrix. Therefore, Lagrangian is a real-valued quantity. The

dependency of a(q,µ) to q and µ and the dependency of w(q) to q were dropped

for simplicity in the formulation. To minimize Lagrangian, we take the derivative of

Lagrangian with respect to w as below

d L(w, κ)

dw
= 2Rmw + κa (2.6)

We set the right hand-side to zero, then w is

w =
−κR−1

m a

2
(2.7)

We substitute w in the constraint (Eq. 2.4) and obtain κ

κ =
−2

aTR−1
m a

(2.8)

the final solution can be written as below

w =
R−1

m a

aTR−1
m a

(2.9)
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The constraint [aTw = 1] shows the fact that the norm of a weight vector depends

on the norm of a leadfield vector. Because of electromagnetic properties, the leadfield

vector depends on the location of the sources. Then, the closer is a source to the center

of the head, the lower is the norm of its leadfield vector and the weight vector may

go to a dramatic higher value and becomes unstable. For this fact, leadfield vector

is often normalized by replacing a with a
∥a∥ . Unit-norm constraint on w may also be

useful to derive a stable weight vector. For example, another form of beamforming is

called unit-noise gain minimum variance beamformer, the weight vector is obtained

as below

min[wTRmw] (2.10)

subject to the following constraints

aTw = τ

wTw = 1

To find the solution to Eq. 2.10, we should firstly find the solution to the first

constraint. Then, we obtain the value of τ by substituting the solution w in the

second constraint [34]. There is no need to normalize the leadfield vector in this case,

because the norm of the weight vector is already constrained.

Although the weight vector is built to suppress the interference as much as possi-

ble, it has been shown that it cannot fully block the interference of perfectly correlated

signals [35]. This may have influence on the reconstructed signal intensity or may

cause distortion in the source signals which is called signal cancellation. One remedy
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for this problem is the use of nulling constraints [21]. In the simple words, this prob-

lem can be handled by putting more constraints on the weight vector which blocks the

interference caused by the correlated sources. Such spatial filtering is called linearly-

constrained minimum-variance (LCMV) beamformer ; The weight vector is obtained

by minimizing the output power and at the same time blocking the signals of other

interfering sources

min[w(q)TRmw(q)] (2.11)

subject to the following constraints



a(q)Tw(q) = 1

a(q1)
Tw(q) = 0

...

a(qn)Tw(q) = 0

(2.12)

the weight vector is obtained by passing the source signal from a certain location

q with unit gain and imposing a null constraint on the other sources at locations

q1,q2, ...,qn. which are expected to be correlated with the source of interest. The

final solution is then derived in [34] and is expressed as below

w = R−1
m C[CTR−1

m C]
−1



1

0

...

0


(2.13)

where C is defined as C = [a(q) a(q1) . . . a(qn)]. As the location of correlated
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sources should be known in order to use these constraints, it is not widely employed.

In this research, we use MV scalar beamfomer as it is widely used and validated

by [37, 5]. It will be shown in the simulations that the problem of partly correlated

sources in time is solved by an appropriate choice of data to compute the covariance

matrix. In this manner, if the covariance matrix is properly estimated, there is no

signal cancellation in the reconstructed source time series.

The computation of w(q) in Eq.2.9 necessitates the knowledge of probable source

position q in the source space and the orientation parameter µ(q). The source space

is commonly constrained to the grey matter which is extracted from the individual

anatomical MRI and the region is discretized into a number of grids (as described in

Section 4.1.2). To determine the orientation, there are different methods to estimate

orientation vector µ(q such as the ones in [17] and [36]. In the next section, we

introduce the most important methods to determine orientation. The weight vector

w(q) is computed by Eq.2.9 for all vertices in the sources space and the source

waveforms are reconstructed.

2.3.3 Determination of Source Orientation

Several methods have been proposed to determine the source orientation [8, 36]. One

simple method is to use anatomical constraints. Since EEG sources are primarily

expected to be due to the apical dendrites of cortical pyramidal cells 2 and the cortex

has a columnar organization 3 , the local source would be perpendicular to the cortical

surface [8]. This is consistent with the results obtained by subdural and intracortical

2Pyramidal cells are a type of neuron distributed in the cerebral cortex, the hippocampus and
the amyglada and the apical dendrites are a dendrite that branches from the apex of it.

3Cortical pyramidal cells are located in a column-wise manner.

23



M.A.Sc. Thesis - McMaster - Electrical Engineering

recordings [1, 24]. In addition, There are several mathematical methods to obtain

the optimum orientation of sources which are based on the MV scalar beamformer.

One way is to maximize output power of spatial filtering [37]. Substitute the weight

vector Eq 2.9 into Eq 3.11. Then, the power of source can be described as below

⟨ŝ2(q, t)⟩ = [aTR−1
m a]

−1
= [µTATR−1

m Aµ]
−1

(2.14)

where µ and A are the orientation vector and the leadfield matrix at location q, re-

spectively (see Section 2.3.1 for more details). Then, we need to minimize [µTATR−1
m Aµ]

in order to maximize the power expression. The minimum corresponds to the mini-

mum eigenvalue of the matrix ATR−1
m A as shown in [36] and the µ which minimizes

the expression is the eigenvector corresponding to the minimum eigenvalue.

In this research, we assume that sources are perpendicular to the cortical surface

as validated by [8]. We obtain the anatomical information about the orientation of

the cortical surface after triangulation of it and use the information

2.3.4 Covariance Matrix

In the computation of w(q) in Eq. 2.9, additional consideration should be taken into

the covariance matrix Rm which may become unstable due to two reasons 1- insuffi-

cient number of trials and/or insufficient temporal data for averaging, 2- correlation

among sources. The number of data for averaging needed to make the covariance

matrix well-conditioned should be more than the number of electrodes [34]. There

are several solutions proposed to deal with this problem. Diagonal loading is a com-

mon procedure and typical approach. The idea of diagonal loading is to increase the

diagonals of covariance matrix by a pre-specified amount. This is done by replacing
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R−1
m with (Rm + αI)−1 where α is a regularization constant. Increasing α helps to

improve signal-to-noise (SNR), but spatial specificity is decreased. The value of α

is chosen to make a trade-off between SNR and the spatial resolution. A method

called Baysian Principal Component Analysis [46] has been proposed which gives an

objective solution to make a trade-off between the stable covariance matrix and the

spatial specificity. Beamspace processing [34] is another technique which reduces the

dimensionality by including a priori knowledge about source locations and maybe

their configurations.

In our study, we have used diagonal loading which is the most common approach.

The appropriate amount of α is chosen experimentally relative to the maximum eigen-

value of the covariance matrix. Furthermore, we see in the simulations that the corre-

lation among sources has a confounding effect on the reconstructed source waveforms.

This problem is solved, if the covariance matrix is computed from EEG data over time

besides trials.
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Chapter 3

Instantaneous Power and

Coherence

We have already explained the procedure to estimate the neural source time series

based on the scalp EEG measurements. After the source time series are extracted, two

kinds of stimulus-sensitive networks need to be characterized to localize and identify

dynamical cortical interactions. Firstly, power-based networks (POW-NET) consist

of sources whose power spectral density co-varies dynamically with stimuli. Secondly,

coherence-based networks (COH-NET) consist of sources whose consistency of phase

and amplitude relation (coherence) with a reference source co-changes dynamically

with stimuli.

In order to localize these networks, we need to extract instantaneous amplitude

and phase of sources based on their estimated time series at the very first stage. Then,

instantaneous power spectral density and an instantaneous coherency measure are

computed. The first quantity obtained for coherency is a complex number. Therefore,

often magnitude-squared coherence (MSC) quantifies the amount of coherency. MSC
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has been shown to give rise to spurious coherence caused by spatial leakage due

to spatial filtering methods (also called zero-phase coherence). In this study, we

will show that even subtraction by MSC’s mean over time cannot cancel the zero-

phase coherence in the low SNR situation. We propose an alternative coherence

measure imaginary component (IC) to study dynamical changes of coherence which

eliminates the zero-phase coherence even in the low SNR situation (see a mathematical

comparison between the two measures in Section 3.3.1).

In the Section 3.4, two sets of data features already collected including the instan-

taneous power and the instantaneous coherence (MSC and IC) are decomposed into

their principal components and the most significant locations are subsequently identi-

fied as the nodes of POW-NET and COH-NET. In addition, the associated dominant

temporal pattern of power and coherence is also identified to track dynamical changes

with stimuli.

3.1 Extraction of Spectral Parameters

In order to estimate power spectral density and coherence, we need to first achieve

a spectro-temporal representation of the source signals which is a complex-valued

quantity at a certain time and frequency. This is actually a two-dimensional repre-

sentation of a signal in time-frequency domain. At time t and at frequency f , ẑ(f, t) is

the spectro-temporal representation of a source signal ŝ(t) has phase ϕ̂z(f, t) and am-

plitude âz(f, t) as below (here, we dropped the dependency on the location parameter

q from ŝ(q, t) for simplification in the notations)

ẑ(f, t) = âz(f, t)e
iϕ̂z(f,t) (3.1)

27



M.A.Sc. Thesis - McMaster - Electrical Engineering

there are several common methods to achieve the spectro-temporal representation of

signals, including Fourier, wavelet and Hilbert approaches [4].

The Fourier-based analysis (called short-time Fourier analysis) uses a sliding win-

dow which usually has a certain window function (to avoid spectral leakage) with

smooth flanks. Each segment of signal is then multiplied by this window function

and the discrete Fourier transform is applied. The transform gives a complex-valued

time-frequency representation of the signal. The actual time-frequency resolution

solely depends on the length of the sliding window and to a lesser degree on the shape

function of it. The wavelet analysis is another technique to find the spectro-temporal

representation of the signal. In this analysis, the time-frequency representation is

obtained by convolving the signal with a number of kernels, called wavelets. The

temporal resolution depends on frequency dependant wavelet length.

The third technique is based on the Hilbert analysis. As in the Fourier analysis

in which a signal was segmented in time and the Fourier spectrum was computed for

each segment; in Hilbert approach, the signal is firstly transformed into neighboring

frequency components via a bandpass filter. Then, the analytic signal for each compo-

nent is computed which gives a spectro-temporal representation in different time and

frequencies. [4] showed that these three techniques are ”formally equivalent as long as

the relevant analysis parameters are matched with each other”. In this study, we use

the Hilbert method to represent the spectro-temporal properties of the reconstructed

source signals only in the lower beta frequency band from 14Hz to 20Hz shown in [12]

to underlie neural interactions in response to repetitive auditory stimuli. Therefore,

the signals are band-pass filtered in this frequency band of interest. In both real data

and simulations, this is applied to EEG data prior to spatial filtering. In the next
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step, the Hilbert transform is applied to the band-pass filtered signal ŝb(t) as below

(we replace f by b to emphasize the single lower beta frequency band considered in

this research)

ŝh,b(t) =
1

π
P.V.

∞∫
−∞

ŝb(t)

t− τ
dτ (3.2)

with P.V indicating the Cauchy principal values and ŝh,b(t) is the Hilbert transform of

ŝb(t) which is band-pass filtered at the frequency band [b−∆b, b+ ∆b] where b is the

center frequency of the lower beta band. In the frequency domain, this is equivalent

to

Ŝh,b(ν) = −jsgn(ν).Ŝb(ν) (3.3)

where Ŝb(ν) is the Fourier transform of ŝb(t) and sgn(.) denotes the sign function.

Then, the analytic signal (spectro-temporal representation) is written as below .

ẑ(b, t) = ŝb(t) + iŝh,b(t) = âz(b, t)e
iϕ̂z(b,t) (3.4)

The analytic signal of all the sources is computed subsequently in the same manner.

Once the spectro-temporal representation of the signals are built, a variety of statis-

tical measures such as power and coherence can be computed. From now on, we drop

the dependency of the analytic signal and statistical measures to b , but we know

that all the analysis is performed in the frequency band of interest.

3.2 Instantaneous Power

Power spectral density has been used for the analysis of event-related synchronization

or desynchronization (ERS or ERD) of neurophysiological signals [31, 39]. ERS/ERD
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commonly refers to increase/decrease of power spectral density of neural responses

after a particular task which the subject repetitively performs or after an external

stimuli is repetitively applied. It is often defined with respect to a predefined baseline

power. Often, ERS/ERD is represented for a specific frequency and the importance

of studying ERS/ERD lies in the fact that ERS/ERD of a neurophysiological signal

recorded from a cortical region reflects the increase or suppression in the neural syn-

chrony. This phenomenon has been observed in EEG and MEG measurements which

are indirect recorded signals of brain [39, 12, 32].

Not many different methods have been proposed to estimate power spectral den-

sity. One way is to square the signal samples and average it over several realizations

[31]. The most common method of estimating power spectral density is to square

the amplitude of the spectro-temporal representation of a signal . We use analytic

signal to compute power spectral density as follows: given ẑ(t) is the complex-valued

spectro-temporal representation of the estimated source signal ŝ(t) in the lower beta

frequency band, the instantaneous power of the source signal can be computed as

below

p̂(t) = ẑ(t)ẑ∗(t) = â2z(t) (3.5)

where ∗ denotes the complex conjugate. The average estimated power is given by

¯̂p(t) = ⟨ẑ(t)ẑ∗(t)⟩ = ⟨â2z(t)⟩ (3.6)

where ⟨·⟩ denotes the time average.

To track the fluctuation of power over time, we average the instantaneous power

over short time intervals and/or across trials. Temporal fluctuations of instantaneous
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power of different signals at different locations are investigated so that sources whose

power co-varies during a fast repetitive stimulus can be identified. In this study, we

compute the instantaneous power of all the source epochs which are the responses

to at least two stimuli moments. The stimulus is considered to be fast rate auditory

stimulus which has previously been shown to make an ERS in several brain regions

[12, 39] around the time of stimuli following a an ERD after the stimuli (ERD) in a

MEG study. However, the rise of power occurs gradually when the next stimulus is

approaching. This kind of source behavior may reflect the prediction of exact timing

of the stimuli [12]. In this situation, the determination of baseline is a difficult task

or may be impossible, because neural sources respond earlier than the stimuli during

the period which is conventionally chosen as a baseline period. In Section 3.4, we

will show how to localize dominant temporal power pattern in response to repetitive

stimuli and localize the sources fluctuating with the corresponding temporal power

pattern.

3.3 Coherence

A brain network may respond to stimuli by varying in the mutual phase informa-

tion. In this case, power is not helpful, since there is no information of phase in the

estimated power as in Eq 3.6. A complementary measure such as coherence, which

is based on the phase relation consistency of sources, should also be taken into ac-

count. The complex-valued coherency between two source signals ŝ1(t) and ŝ2(t) at

two different source locations with the corresponding analytic signals of ẑ1(t) and

31



M.A.Sc. Thesis - McMaster - Electrical Engineering

ẑ2(t), respectively, is defined as below,

ĉ(t) =
⟨ẑ1(t)ẑ∗2(t)⟩√

⟨|ẑ1(t)|2⟩⟨|ẑ2(t)|2⟩
(3.7)

Still an absolute measure is needed to quantify the coherence among sources. Magnitude-

squared coherence (MSC) was proposed by [2] and is computed as below

ĉms(t) = |ĉ(t)|2 =
|⟨ẑ1(t)ẑ∗2(t)⟩|2

⟨|ẑ1(t)|2⟩⟨|ẑ2(t)|2⟩
(3.8)

By this measure, the sources are said to be perfectly coherent, if they have con-

stant phase shift and constant amplitude ratio over a specified time interval/or trials.

Spatial leakage of the spatial filtering to compute source time series is said to make

artificial coherence due to zero phase shift (also called spurious coherence). Then,

the real coherence is said to exist between two sources, if they have non-zero constant

phase shift [38]. MSC cannot discriminate the coherence in terms of the value of the

phase shift. In an MEG study, it was proposed to eliminate the zero-phase coherence

with subtraction of MSC by its mean over time, which we call in this study as the

mean subtracted MSC. The assumption is that if two sources are zero-phase coherent,

their coherence has to remain constant. We show that this assumption is not true

in all occasions and it is dependant on the amount of independent interference (see

Section 3.3.1).

We propose to use the imaginary component IC of coherency ĉ(t) denoted by ĉic(t)

as an alternative to MSC measure. In our study, this measure is defined as the square

of imaginary component

ĉic(t) = (Im[ĉ(t)])2 (3.9)
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where Im[·] denotes the imaginary part of a complex quantity. IC was originally used

to remove volume conduction effect on the estimation of coherence of scalp sensor

measurements. Application of IC was validated in the analysis of source space co-

herence [38]. IC has only non-zero value when computed between non-zero phase

coherent signals and eliminates any spurious coherence due to zero-phase locked sig-

nals. It is shown mathematically in Section 3.3.1 and in the simulations (Chapter

4) that the imaginary component IC works superior to the mean subtracted MSC

(explained earlier) [12] to cancel zero-phase coherence and detection of real coher-

ence. The mathematical comparison of two measures are provided for the situation

where the instantaneous signal-to-interference ratio (SIR) dynamically varies. In this

research, we identify and localize the sources whose coherence with a reference source

dynamically co-varies by examining the temporal coherence characteristics of ĉic(t)

and ĉms(t). This kind of coherence identification is explained in Section 3.4.

3.3.1 Elimination of Common Source Coherence Effect

The ability of the two connectivity metrics MSC and IC to eliminate zero-phase

coherence and to elaborate non-zero phase coherence is mathematically assessed here.

The aim is to assess which measure is less sensitive to the artificial coherence due to the

third source leakage. Can we eliminate artificial coherence obtained by MSC through

subtracting off the MSC time average? This requires MSC caused by pure common

source leakage to be constant over time. We test this assumption and compare it

with the IC measure.
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Model definition to show common source effect

Due to spatial filtering, two sources ŝi and ŝj at two different locations which are

coherent due to a common source denoted by sn are defined as below (for simplicity,

we eliminate the dependency on time t)

ŝi = αnsn + n̂i

ŝj = βnsn + n̂j

(3.10)

where n̂i and n̂j are considered as the interference which may be due to the measure-

ment noise or the interference of the other sources after spatial filtering. To clarify

where the interference comes from, we use the original equations for the forward and

inverse modeling as follows: Eq.2.2 in Chapter 2 expresses a typical estimated source

located at q0 as in terms of measurements below

ŝ(q0) = wT (q0)m (3.11)

m is a linear combination of all sources (Eq.2.1) plus measurement noise n

m =

∫
a(q,µ)s(q)dq + n (3.12)

By substituting m into Eq.3.11, ŝ(q, t) can be re-written as

ŝ(q0) =

∫
wT (q0)a(q,µ)s(q)dq + wT (q0)n (3.13)

Then, the summation of wT (q0)a(q,µ) s(q) (q ̸= q0) and wT (q0)n are considered as

the total interference described in Eq.3.10 for each of the two sources separately.
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Computation of MSC and IC

Now, we compute the MSC and IC coherence measures between the two sources.

First, we derive the spectro-temporal representation as explained in the previous

sections. We use a different notation for the spectro-temporal representation (which

is a complex quantity) by replacing ŝ by ẑ for the source and n̂ by k̂ for the interference

and re-express Eqs.3.10 as below

ẑi = αnzn + k̂i

ẑj = βnzn + k̂j

(3.14)

MSC denoted by ĉms between the two sources is computed as below

ĉms = |
⟨ẑiẑ∗j ⟩√

⟨|ẑi|2⟩⟨|ẑj|2⟩
|2 (3.15)

We assume interferences and the source and also interferences themselves k̂i and k̂j

are independent of each other, then the following expressions can be found

|⟨ẑiẑ∗j ⟩| = αnβn⟨|zn|2⟩

⟨|ẑi|2⟩ = α2
n⟨|zn|2⟩ + ⟨|k̂2

i |⟩

⟨|ẑj|2⟩ = β2
n⟨|zn|2⟩ + ⟨|k̂2

j |⟩

(3.16)

Finally, ĉms is

ĉms =
α2
nβ

2
n⟨|zn|2⟩2

[α2
n⟨|zn|2⟩ + ⟨k̂2

i ⟩][β2
n⟨|zn|2⟩ + ⟨k̂2

j ⟩]
(3.17)
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We define signal-to-interference ratio as the ratio of signal power to the interference

power and define three signal-to-interference ratios as below

SIRi = ⟨|zn|2⟩
⟨|k̂2i |⟩

, SIRj = ⟨|zn|2⟩
⟨|k̂2j |⟩

, SIRij = ⟨|zn|2⟩√
⟨|k̂2j |⟩⟨|k̂2i |⟩

(3.18)

where
√

⟨k̂2
j ⟩⟨k̂2

i ⟩ is the geometric mean of the power of the two noise terms. ĉms in

Eq. 3.17 can be rewritten in terms of the three defined signal-to-interference ratios

as below

ĉms =
α2
nβ

2
nSIR2

ij

[α2
nSIRi + 1][β2

nSIRj + 1]
(3.19)

In the case of high signal-to-interference ratio (SIR) over the whole period of signals,

the MSC tends to unity and therefore, is constant over time. When SIR tends to

zero (high amount of interference), two signals become incoherent (MSC approaches

zero). Generally, when SIR dynamically changes for any reason for instance due to an

applied stimulus, thereby making MSC fluctuate. Then, elimination of the common

source coherence is not possible by only subtraction of the time average of MSC

(because of MSC fluctuation ). IC measure denoted by ĉic is a more rigorous measure

to eliminate zero-phase coherence and is computed as below

ĉic = [Im(
⟨ẑiẑ∗j ⟩√

⟨|ẑi|2⟩⟨|ẑj|2⟩
)]2 (3.20)

substitute Eq.3.16 into Eq.3.20 to find the final expression for ĉic,

ĉic = [Im(
αnβn⟨|zn|2⟩√
⟨|zi|2⟩⟨|zj|2⟩

)]2 (3.21)
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where ĉic goes to zero because the coherence does not have any imaginary component

because of common signal in both sources. This mathematical proof shows that zero-

phase coherence can be eliminated without any dependency on SIR, if IC is used,

while MSC depends on the amount of interference.

3.4 Localization of Network

So far, the methods to compute instantaneous power and coherence have been in-

troduced. In this section, the most dominant temporal power pattern and the most

dominant temporal coherence pattern are identified and the corresponding sources are

localized based on Singular Value Decomposition (SVD). In a similar way, few studies

have focused on the analysis of temporal dynamics of coherence and power during fast

rate stimuli [12, 39, 44]. In particular, common temporal pattern of power has been

identified in the beta frequency band among several specific cortical and subcortical

sources during fast repetitive auditory stimuli [12] based on MEG measurements. The

similar synchronization/desynchronization pattern in centro-frontal regions of brain

has been found in a surface EEG study. A periodic temporal pattern of coherence

at the frequency of stimuli has also been observed in a recent study with MEG [12],

where principal component analysis (PCA)was used to detect it. Here, we present the

steps to localize sources underlying common temporal pattern of power and coherence

in the source space solution estimated from EEG measurement during fast auditory

stimuli. For this purpose, SVD is directly applied to the power and coherence data

of source space to detect similar pattern networks. Such a technique was applied in

the same context as previously proposed [10] to detect the correlated network. This

is carried out as follows:
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Two feature matrices, denoted by D̂p,D̂iε consisting of samples of the power tem-

poral patterns and the coherence temporal patterns, respectively, are constructed.

Each row of D̂p consists of T time bins of power samples of each source obtained by

Eq.3.6. Since there are N number of sources, then, D̂p is a N × T matrix. Each

row of D̂iε consists of T time bins of coherence samples of each source with respect

to a fixed reference source with index i. Two different kinds of coherence measures

ĉms(t) (mean subtracted ε = ms) and ĉic(t) (ε = ic) as given by Eqs.3.8 and (3.9)

are employed. Since both D̂iε and D̂p are N × T matrices, for simplicity, we use a

common notation D̂s for both feature matrices in the following discussion. Singular

Value Decomposition is applied on D̂s as below

D̂s = ÛΛ̂V̂T (3.22)

where Û and V̂ contain left and right singular vectors, respectively. Λ̂ is a N × T

matrix consisting of the associated singular values. The first column of Û (û1) is

the first principal component coefficients corresponding to the first column of V̂ (v̂1).

In the principal component analysis (PCA), they are known as the first loading and

the first score, respectively. In this study, û1 refers to the first principal source

distribution corresponding to v̂1 the first principal and the most prominent temporal

pattern . We show below that how these quantities are related and why they provide

such information about the underlying source distribution and the temporal pattern.

First, multiply the two sides of Eq.3.22 by V̂. Since V̂ is an orthonormal matrix

(V̂T V̂ = I), we can write down as below, if the only first columns Û and V̂ are
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considered

D̂sv̂1 = û1λ̂1 (3.23)

where λ̂1 is the corresponding first singular value. Since the norm of û1 is unity, then

∥ D̂sv̂1 ∥2= λ̂1. As a result, û1 can be expressed as below

û1 = D̂sv̂1/ ∥ D̂sv̂1 ∥2 (3.24)

where ∥ . ∥2 denotes 2-norm of a matrix or vector. Eq.3.24 clarifies how coefficients of

û1 are simple dot product between the rows of feature matrix (containing temporal

power and coherence measure) and v̂1, the first principal temporal pattern, multiplied

by the reciprocal of the constant, ∥ D̂sv̂1 ∥2. Note that rows of the feature matrix

should not be normalized, because the strength of power and coherence need to be

considered besides their temporal fluctuations. Finally, thresholding û1 simply local-

izes sources with the most prominent temporal pattern either in spectral power or

coherence. The network consisting of sources detected based on power data is called

POW-NET and the one based on coherence data samples is called COH-NET.
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Chapter 4

Implementation

So far, we have explained the procedure to estimate brain source signals and identify

the similar power and coherence temporal patterns in the source space, given EEG

scalp measurements. In this Chapter, we present the results of method implemented

on simulated and real data. Firstly, a comparison is made between the mean sub-

tracted magnitude-squared coherence (MSC) and the imaginary component (IC) to

distinguish between nonzero phase-locked coherence and zero-phase locked coherence.

Synthetic EEG data is generated given simulated brain sources located in a template

head model. Spatial filtering is then performed on the scalp EEG data to estimate

source time series in a previously defined region known as source space, which is re-

stricted to grey matter (extracted from MRI). The effect of correlation among sources

on the output of the spatial filter is assessed and it is shown that the solution can be

improved by a proper choice of data samples in the calculation of covariance matrix.

POW-NET and COH-NET are then calculated based on Chapter 3 and the results

of procedure are illustrated for the computer generated data.

Recognition of dynamic neural responses which change in coherence and power is
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made using real EEG data. Data is recorded from three subjects who are passively

listening to repetitive tones at rates 1.2Hz,1.7Hz, and 2.5Hz. POW-NET and COH-

NET are recognized and compared to the previous studies. We will show that dynamic

coherence and power changes can be identified with EEG and localization can also

be made to recognize the neural sources at higher spatial resolution than as what is

found by scalp EEG data.

4.1 Simulation

4.1.1 Comparison of Coherence Measures

In Chapter 3, we have shown mathematically that imaginary component (IC) per-

forms superior to mean subtracted MSC to eliminate zero phase-locked coherency

irrespective of instantaneous SIR in this scenario. As it was shown, MSC remains

constant only if SIR stays constant over time or goes to infinity (where MSC tends

to unity and stays constant). We elaborate this fact in the computer simulations

and confirm the results of the theoretical comparison. Therefore, the aim here is

to compare the performance of the two coherence measures in the recognition of

nonzero phase-locked coherency and elimination of zero phase-locked coherency. For

this purpose, two signals are generated in two different conditions and coherence is

instantaneously computed with the two measures as illustrated in Figure 4.1. The

temporal envelope of the signals is the same and corresponds to the one shown in

Figure 4.4.(a), but their instantaneous phase varies in the following way. In the first

condition, the two signals are nonzero phase-locked at particular instants of time and

non phase-locked at other instants. To do so, coherency is made if the envelope of
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the signals becomes less than 0.8 and the phase difference is π/4. In the second

condition, the two signals are entirely zero phase-locked. The instantaneous phase of

non phase-locked instants for the first condition is randomly and uniformly chosen

from the range [0,2π]. Based on Eq.3.10, we add noise to the source signals to mimic

the interference of other sources due to spatial filtering. The total interference as

a result of other interfering source signals and the model noise is considered to be

independently, randomly distributed samples from Gaussian distribution. The noise

is assumed to follow the same distribution in both signals with zero mean and vari-

able standard deviation which leads to the variable instantaneous SIR as sketched in

Figure 4.1.(c). For each source, 100 trials are generated. Figure 4.1.(a) and Figure

4.1.(b) show the two instantaneous coherence measures (MSC (blue) and IC (red))

overlaid on each other for the first and the second conditions, respectively. As ex-

pected, both measures show fluctuations of coherence over time in the first condition,

so that the nonzero phase-locked activity is contrasted by having higher values with

respect to non phase-locked periods. But in the second condition, where the two sig-

nals are entirely zero-phase locked, the MSC does not remain constant and fluctuates

with changes in the instantaneous SIR illustrated in Figure 4.1.(c). Therefore, coher-

ence cannot be eliminated by just subtracting the mean of MSC. But, IC performs

superior to eliminate the zero phase-locked coherence and is not dependant on the

instantaneous SIR in this scenario. Figure 4.2 shows the magnitude-squared mea-

sure versus different values of signal-to-interference ratio based on Eq.3.19 derived in

Chapter 3,where the two signals are considered to be entirely zero phase-locked. To

plot this Figure, αn = βn = 1 and SIRi = SIRj = SIRij = SIR. Figure 4.1 and Figure

4.2 confirm the fact that magnitude-squared coherence between two zero-phase locked
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(a) Nonzero phase-locked
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(c) Instantaneous SIR

Figure 4.1: Instantaneous measure of coherence by MSC (blue) and IC (red). Bottom
is the instantaneous SIR of the two signals (see text for more details).
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Figure 4.2: Dependency of MSC on SIR when two signals are entirely zero phase
-locked.

signals will not be constant over time, if the signal-to-interference ratio varies.

4.1.2 Head Model and Spatial Filtering

From this point to end, we present the results of simulations and analysis of real data

to study the dynamic changes of statistical coherence and power of neural sources.

In this section, we explain the procedure taken to prepare the forward and inverse

model which are the same for simulations and real data. The anatomy used for

the simulations is MNI/Colin27 with 1mm resolution. The cortex, cerebellum and

white matter surfaces are extracted with BrainVISA software. The vertices of the

cortex surface were triangulated and resampled leading to 5005 vertices defined as

possible source positions. 128 evenly distributed sensors based on Biosemi config-

uration are used to simulate EEG sensors. The location of sensor array is fitted

to the standard anatomy. Forward model is built with Brainstorm [42], which is
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documented and freely available for download online under the GNU general public

license (http://neuroimage.usc.edu/brainstorm). In this software, boundary element

method (BEM) is used to build the electric leadfield matrix [16]. To implement BEM,

1082 vertices and 642 vertices are used for the scalp and the skull, respectively. The

conductivity ratio of skull to scalp is set to 0.0125. Further analysis including spatial

filtering is performed with MATLAB. To perform spatial filtering, appropriate calcu-

lation of the covariance matrix is needed. In the next section, we show the effect of

correlated sources on the reconstructed waveforms.

4.1.3 Effect of Correlated Sources

We simulate two sources in the left and right auditory cortices 1 with Talairach

coordinates (-42,-22,2mm) and (40,-24,2mm) having a signal waveform such as the

one shown in Figure 4.4.(a) (To know about Talairach coordinate system 2 , please

see Figure 4.3 and refer to [43] for more information). The orientation of the two

sources is constrained to be normal to the cortical surface. EEG data is generated

based on forward model explained above. Gaussian noise is added to the EEG signals

to make SNR=5 dB. SNR is computed as the ratio of average signal power to the

average noise power. A total of 130 trials are generated, each consists of a window

in the range [-300,1000ms] with the sampling frequency set to 200Hz. We show the

effect of source correlation on the reconstructed source signals obtained by the spatial

filtering method explained in Chapter 2. The source waveforms of the two auditory

1a region of cerebral cortex which processes sound and is located in the temporal lobe (one of
the four lobes of cerebral cortex).

2Talairach coordinate system is established by Jean Talairach to define anatomical structures
of brain, regardless of individual differences in brain size and shapes. It is based on two points
named anterior commissure (AC) and posterior commissure (PC), and also a vertical plane called
midsagittal plane illustrated in Figure 4.3.
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sources correspond to Figure 4.4.(a) which change in power maybe due to several

repetitive auditory stimuli. The left column in this figure shows the reconstructed

source waveform of the right auditory source when it is perfectly correlated (zero

phase-locked) with the source in the left auditory cortex during the period when the

envelope of signals is less than 0.8 (in a periodic manner). The right column is the

reconstructed source waveform for the case where the sources have nonzero phase-

locked correlation at the same moments (phase difference= π/4). Figures 4.4.(b,c,d)

show the reconstructed source waveform for different windows chosen to estimate

covariance matrix. In Figure 4.4.(b), the covariance matrix is calculated by a snapshot

of data over trials within the period that two sources are correlated either zero phase-

locked or nonzero phase-locked. In Figures 4.4.(c), the covariance matrix is estimated

by choosing a data snapshot outside the correlated period. In Figures 4.4.(d), the

covariance matrix is calculated over all snapshots and trials. As it is clear, the source

waveform is preserved and not distorted in the two situations if the covariance is

computed over all snapshots and trials including both correlated and uncorrelated

periods. In the same way, we use all snapshots over trials to compute the proper

covariance matrix for the analysis of simulated and experimental data.

Regularization constant is the other important parameter affecting the spatial

filtering solution. Care must be taken to choose an appropriate value for regularization

constant. It will be explained in more details in Section 4.1.6.

4.1.4 Analysis of Performance

We test the localization ability of the explained procedure in Chpater 3 to localize

power-based and coherence-based distributed networks (POW-NET and COH-NET).
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Figure 4.3: Talairach coordinate system, three main components of it are AC, PC and
the vertical midsagittal plane. The image is from Center for Information Technology
(CIT) (http://mipav.cit.nih.gov).

Two parameters localization error (El) and normalized burring index (NBI) are em-

ployed to assess localization accuracy and spatial resolution. The localization error

is defined here as the distance between the source of maximum strength and the true

simulated source within a sphere surrounding the simulated source. The normalized

burring index measures how an estimated source is spatially spread within a sphere

surrounding the true simulated source [18]. The formula to calculate NBI is expressed

as below

NBIk =

√∑
i ∥ri−rk∥2u2(i)∑

i u
2(i)√∑

i ∥ri−rk∥2∑
i 1

(4.1)

where rk is the position of true source with index k, ri is the position of estimated

source with index i within the sphere and u(i) is the intensity of the estimated source.

As the estimated source is spread in the region of interest, the NBI is closer to 1 and

if sharply distributed, the NBI is close to zero. El and NBI are calculated in a sphere
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Figure 4.4: (a) Original waveform of the right auditory source. (b,c,d) the recon-
structed waveform by different estimated covariance matrices. Covariance matrix is
computed (b) at the snapshot when the sources are correlated, (c) uncorrelated, (d)
over the whole period. Left column: correlation due to zero phase-locked coherency,
and right column: correlation due to nonzero phase-locked coherency.
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surrounding the true source location where the radius of sphere is chosen to be 26mm.

4.1.5 Detection and Localization of Power Response to Repet-

itive Stimulation

In this section, we want to examine the ability of the explained procedure to detect

dynamic changes in power and the accuracy of the corresponding spatial localization

(POW-NET). To do so, three sources are simulated in three different locations in

brain as explained below. They all have the same waveform corresponding to the one

showed in Figure 4.4.(a). Their instantaneous phase difference is considered to be

constant where the amplitude of signals is less than 0.8 and random otherwise. EEG

signals are simulated with BEM and source waveforms are estimated as explained in

the section 4.1.2. Instantaneous power of sources is then estimated after applying

Hilbert transform and obtaining associated analytic signals. The data matrix D̂s is

then formed and the first principal temporal pattern and the corresponding source

distribution is obtained by Eq.3.23 and Eq.3.24. Two configurations, found in the

previous studies to be involved in the mechanism of dynamic power co-changes with

fast repetitive auditory stimuli [12, 32], are chosen to assess the method. Figure 4.5

displays the localization results of estimated POW-NET locations based on the the

first principal component explained in Chapter 3. The first configuration consists

of superficial sources located in the left and right superior temporal gyrus, and left

precentral gyrus (Figure 4.5.(a)). Figure 4.5.(a) (upper row) shows the true source

locations and the lower row of this figure consists of the first estimated principal source

distribution. Figure 4.5.(b) (lower row) shows the localization results of the second

configuration where the sources are located in deeper regions including supplementary
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motor area, left and right insula (true source locations are displayed in the upper

row). The figures show the efficiency of the algorithm to identify true POW-NET

locations (as shown in the upper rows of both figures). Both figures give almost a focal

distribution of the estimated sources around the true sources locations. Localization

error El is obtained zero in both configurations and the value of NBI is 0.0059,

0.0017, and 0.0042 respectively for the precentral, left and right temporal sources in

the superficial source configuration and is 0.0178, 0.0048, and 0.1105 for the left and

right temporal sources, and SMA in the deep source configuration.

Figure 4.6 shows the results of the localization algorithm implemented for a mixed

configuration. Upper row of Figure 4.6.(a) shows the true source locations. The sec-

ond and third rows of it show a comparison of results in different additive noise

situations making SNR=5dB and SNR=-5dB, respectively. The second row corre-

sponding to the higher SNR illustrates a higher resolution image of the first principal

component source. When the SNR is lower as in the third row, a wider spread of

source activity is obtained. The localization error is obtained zero again for the

three sources and NBI is found to be 0.1137, 0.011, and 0.0037 for the SMA, the left

and right temporal lobe sources respectively in the higher SNR situation and 0.3424,

0.0191, and 0.0549 in the lower SNR situation. The results of NBI and estimated

source image show that in a high noise condition, the sources are wider spread over

the true source region specially for the source located in SMA for its higher SNR.

The first principal temporal pattern of the estimated source and the instantaneous

power of true source are computed as explained in Chapter 3. Instantaneous power

of true sources is computed in the same way as done for estimated sources. The true

power signal (solid, red curve) is overlaid on the first principal component of estimated
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(a) Superficial sources

(b) Deep sources

Figure 4.5: Results of the localized sources obtained by power estimation and the
subsequent singular value decomposition in two different configurations. Two views
of MRI, coronal (view from back) and sagittal (view from side), are displayed.

power signals (dashed, black curve) as shown in Figure 4.6.(b) (for SNR=5dB) and

Figure 4.6.(c) (for SNR=-5dB). The true power signal is projected onto the estimated

power pattern. The two figures, Figure 4.6.(b) and Figure 4.6.(c), correspond to the

second and the third rows in the estimate image of POW-NET. Dynamic changes of

power can be properly reconstructed with the procedure to localize the POW-NET.

No serious distortion in the waveforms is observable, even when the amount of noise

changes.
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Figure 4.6: Effect of SNR on the reconstructed mixed configuration of superficial and
deep sources in power analysis. (a) Upper : true source locations shown by yellow
spots and source distribution for Middle : SNR = 5dB , and below: SNR = −5dB
(the same MRI views as Figure 4.5 displayed).(b,c) Dominant temporal pattern of
estimated power (solid, red curve) when (b) SNR = 5dB (c) SNR = −5dB overlaid
by true power pattern (dashed, black curve).
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4.1.6 Detection and Localization of Coherency Response to

Repetitive Stimulation

The second type of localization as discussed in this thesis is based on coherence anal-

ysis and the associated network is called COH-NET. We simulated three superficial

sources in the same locations as shown in Figure 4.5.(a) (upper row) for power-based

localization (right precentral gyrus, left superior temporal gyrus, right superior tem-

poral gyrus). The source waveforms are the same as the ones used in the power

analysis. We made a periodically dynamic coherency between the sources in the right

precentral gyrus and in the left superior temporal gyrus. In addition, a non-coherency

between the source in the right superior temporal gyrus and the two other sources is

made. To do these, the phase difference between the two periodically coherent source

signals is maintained constant over trials as the envelope of the waveforms falls less

than 0.8 and otherwise the individual phase is chosen randomly from a uniform distri-

bution [0, 2π]. The instantaneous phase of the right temporal gyrus is entirely chosen

randomly from the uniform distribution at all moments and trials, thereby making it

entirely non-coherent with the other two sources. This kind of source configuration

simulates stimuli dependant neural responses, that the coherent periods may be the

time when cortical and subcortical networks interact in response to repetitive stimuli.

We use the same procedure for forward model as in the previous simulations.

Then, we apply the spatial filtering to estimate source time series of all 5005 sources

in the brain. Thereafter source waveforms are computed, instantaneous coherence

is obtained between all sources with a reference source, where here it is chosen to

be the precentral gyrus source. All the coherence waveforms are stacked in the rows

of data matrix D̂s and then based on Eq.3.23 and Eq.3.24, the coherence temporal
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waveforms and the first principal temporal pattern of coherence and the corresponding

source positions are obtained and displayed in Figure 4.7 and Figure 4.8. We use two

coherence measures (1)- mean subtracted magnitude-squared coherence (MSC), (2)-

imaginary component (IC). We analyze the localization performance with localization

error and NBI, as used for the power analysis section.

In Figure 4.7, each subfigure corresponds to the source distribution of the first

principal component (right obtained by IC and left by MSC). Figure 4.7.(a) shows

the results of singular value decomposition on the coherence data obtained from true

source signals. We have added random Gaussian samples (zero mean and standard

deviation of 0.01 times the amplitude of truce source) to all the vertices, which makes

it possible to use singular value decomposition on the coherence temporal samples of

all defined as source space. The reference source is shown with a white solid circle

overlaid on the coefficients of the first principal component and the true coherent

source location is indicated with a cross hair. Now, we assess the performance of

the localization method to localize the coherent source and detect the true coherence

waveform. Figure 4.7 (b,c) and Figure 4.7 (d,e) show the results of reconstructed

source image corresponding to the first principal component, where SNR is equal to

15 dB and 5 dB, respectively. Two different regularization constants (α) are used in

the inverse method to show the role of regularization in the localization results besides

the effect of SNR. As shown in this figure, in higher SNR, the coherent source is more

accurately and focally obtained (El = 0, NBI = 0.67) by IC measure in comparison

to MSC (El = 12.90mm, NBI = 0.97), if α is low enough. If α is greater in the same

SNR case, both measures have a localization bias and spatially spread representation

of the true source (for IC El = 17mm, NBI = 0.98) and (for MSC El = 14mm,
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NBI = 0.99). However, it can be visually found that a more concentrated patten is

formed around the source when obtained with IC metric rather than MSC, in this

case more (more observable in the sagittal view). In the lower SNR situation and

lower regularization, the true source position is more accurately detected with IC

measure and is less spread (El = 0, NBI = 0.71) than what is obtained by MSC

(El = 23mm, NBI = 0.99). When α is increased, both measures do not localize the

source in its true position leading to a bias expressed by El which is 18mm for IC

and 12mm for MSC. The two reconstructed source images show widely spread of

activity around the true coherent source where NBI is 0.99 for IC and 0.98 for MSC.

However, the source image again represents a more concentrated distribution around

the true source, when obtained by IC measure rather than MSC (again more obvious

in the sagittal view).

Figure 4.8 illustrates the first principal temporal pattern of coherence correspond-

ing to the source distribution shown in Figure 4.7. The first row shows the principal

temporal pattern of coherence obtained from original source waveforms. As in Figure

4.7, left corresponds to MSC temporal pattern and right corresponds to IC temporal

pattern. The same fluctuations as the original coherence waveform are observable

with the two coherence measures IC and MSC in all cases except for the case where

the SNR is low and regularization constant is chosen to be low relative to λmax. It

confirms the precious role of regularization constant in a low SNR situation to im-

prove signal-to-noise ratio of the spatial filtering output. But, we need to note that

α always makes a trade-off between output SNR and spatial resolution. We clarify

this fact by comparing the last row of Figure 4.7 (source distribution) and Figure 4.8

(the corresponding temporal pattern of coherence). By IC-based localization, a focal
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source activity is obtained with zero localization error in the position of original source

in the low regularization. However, the coherence waveform is strongly distorted in

this case. In contrast, high regularization constant leads to less spatial resolution but

preserves the source coherence temporal pattern with seed source. By MSC-based

localization, although the result of low regularization constant is not as focal as the

one obtained IC, but still has focal distribution of source around the true source

position when compared with higher regularization. Also with lower regularization,

the coherence waveform is distorted with both MSC and IC measures. Therefore,

higher regularization helps to improve the reconstruction of periodic fluctuations of

coherence but it also leads to biased localization error. In addition, low amount of

regularization has led to zero localization error with IC metric, but MSC measure

always resulted in a biased localization error. In summary, we should choose an ap-

propriate amount of alpha to make a compromise between output signal-noise-ratio

and the spatial resolution.

4.2 Real EEG Data

As we have already shown in the Section 4.1, implementation of beamforming method

and subsequent source analysis such as power and coherence on EEG signals can lead

to detection and localization of power-based and coherence-based networks in response

to a certain stimulus. An EEG experiment is performed to show how dynamic changes

in power and coherence can be detected based on EEG signals. In this experiment,

repetitive auditory stimuli are played and subjects are passively listening to them.

The time interval between stimuli is around the tempo which is optimum for musical

perceptions 1.2,1.7, and 2.5Hz [44]. Previous studies have shown that motor regions

56



M.A.Sc. Thesis - McMaster - Electrical Engineering

(a) Coherent sources

(b) SNR = 15dB, α = 0.001λmax

(c) SNR = 15dB, α = 0.01λmax

Figure 4.7: Continued on the next page.
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(d) SNR = 5dB, α = 0.001λmax

(e) SNR = 5dB, α = 0.01λmax

Figure 4.7: Source distribution corresponding to the first principal component ob-
tained by IC and MSC metrics. In each subfigure, left: corresponding MSC and
right: corresponding IC. (a): True distribution (reference source shown by a white
solid circle and the coherent source by a cross hair), (b,c): Reconstructed source dis-
tribution for SNR = 15 and the varying regularization constant, (d,e): Reconstructed
source distribution for SNR = 5 and also the varying regularization constant. Color-
bar shows the intensity of the first principal component coefficients. The same MRI
views as Figure 4.5 are displayed.
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(d) SNR = 5dB, α = 0.001λmax
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(e) SNR = 5dB, α = 0.01λmax

Figure 4.8: The first principal coherence waveform of the source distributions shown
in Figure 4.7.
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of brain are recruited in perception of musical rhythms [6],[15],[12], even when no

movement is performed. The recent study with MEG [12] showed dynamic coherency

exist between auditory and motor regions. The aim of this study is to show such

dynamic coherence based on the explained procedure to extract principal pattern

of coherence, only based on EEG data. We choose auditory source as the most

probable source in response to auditory stimuli and analyze the coherence of other

sources with respect to this source. Therefore, we need to find the position of such

a source as the first step. The source of auditory potential has been localized and

in various studies [33],[14] or [19]. These studies used auditory evoked potential

measured from scalp surface and localized the auditory source by different localization

methods such as spatio-temporal algorithm [14], synthetic aperture magnetometry

(SAM) [19], and dipole source analysis [33]. Evoked potential is obtained by averaging

channel responses over enough number of trials. The averaging filters out noise and

all the other responses which are not phase locked to stimuli and leads to several

important peaks known as P1 ( 50ms) and N1 ( 100ms). The method we use to

localize the auditory source or sources is somewhat similar to SAM and is based on

finding the prominent source or sources with similar dynamic power changes, as will

be described in Section 4.2.2. The similarity with SAM comes from the fact that

beamforming is used in this method as is also used in SAM. After auditory source

is detected, we will compute the instantaneous coherence between this source and

all the other sources and detect the major coherence pattern and the corresponding

sources by singular value decomposition (see Section 4.2.3). We apply this procedure

with two coherence metrics IC and MSC and compare the results of the two metrics

with the previous studies on the perception of musical beats. We show the the power
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of IC to cancel out spurious coherence and compare the coherence temporal pattern

of both metrics. To the best of author’s knowledge, this is the first study with EEG

to localize dynamic changes of coherence with auditory source in response to a train

of musical beats.

4.2.1 Procedure of Experiment and Preprocessing

Three students from McMaster University, aged 19-28 (mean 24.7, 1 left-handed, all

female) volunteered to participate in the experiment. All participants gave informed

consent by signing a consent form approved by the Research Ethics Board of McMas-

ter University. Normal hearing status is verified via threshold audiometry (GSI-61

audiometer) to 8kHz for each participant. Participants sat in a chair placed 1.4m in

front of a computer monitor in a sound attenuated (ambient noise 16dBA) electrically

shielded booth. Participants watched a silent video of their choice with subtitles en-

abled for the duration of the experiment. Individual stimuli are pure tones at 264Hz,

duration 45ms including an 8ms rise/fall time, presented binaurally at 80dB SPL (C-

weighted) via Etymotic ER-2 ear insert drivers. Stimuli are generated by a PC sound

card (Creative Audigy 2 Platinum) under the control of a Presentation stimulus de-

livery program (Neurobehavioural Systems) running under Windows XP. Stimuli are

presented as isochronous beats in three conditions: 390ms (condition 1), 585ms (con-

dition 2) and 780ms (condition 3), in blocks of 350 repetitions with each block being

presented twice for a total of 700 repetitions of each condition. One of the two blocks

which had less amount of artifact is chosen for subsequent analysis. Blocks are pre-

sented in one of 4 different random orders to each participant. The total experiment
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duration is approximately 1h30m including instrumentation of the subject.The elec-

troencephalogram (EEG) is recorded using 128 electrodes with a Biosemi ActiveTwo

amplifier. EEG is sampled at 2048Hz low pass filtered at 417Hz. The electrode array

is digitized for each participant (Polhemus Fastrak). EEG is stored as continuous

data referenced to the vertex electrode converted offline to average reference.

EEG responses to each stimulus are epoched −300ms to +600ms using BESA

software (version 5.3, MEGIS Software GmbH, Grfelfing, Germany), and epochs in-

cluding large artifacts (> 120µv) are rejected from analysis, leaving 181±14,169±35,

and 129± 9 (MEAN± STD) accepted epochs for conditions 1, 2, and 3, respectively.

Epoched data is then exported to Matlab for further analysis. To start analysis, fil-

tering should be applied in the frequency band of interest, where lower beta frequency

from 14Hz to 20Hz is chosen. Lower beta frequency has been demonstrated to under-

lie the neural mechanism in coordination and timing of responses to repetitive tones

[12]. The same head model is built as used in the simulations and BEM method is

implemented. To perform spatial filtering, covariance matrix is calculated over the

whole data and the regularization constant is fixed at 0.01 of the largest eigenvalue

of covariance matrix. After source signals of different brain regions have been ex-

tracted, we compute appropriate statistical features and further source analysis steps

are taken as described in the next sections.

4.2.2 Power Analysis

In this section, we study dynamics of power of cerebral sources obtained from evoked

responses in lower beta frequency. Figure 4.9 shows the temporal pattern of the first

principal temporal pattern of power given by Eq.3.23. The first principal component
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explains 62±12 (MEAN±STD) percent of the temporal power signal over all subjects

and conditions. As it is obvious, the phase-locked beta power increases after stimuli

with maximum around 100ms and follows a decrease between 200 and 300ms. The

peak of power around 100ms is expected, as it corresponds to the time when N1 peak

occurs. The time corresponding to decrease of beta power is close to the previous

finding with MEG [12], where event-related power (results from time-locked activity)

desynchronized at all conditions around 200ms. Figure 4.10 shows the source dis-

tribution computed by Eq.3.24 corresponding to the first principal temporal power

patten, which is averaged over three subjects (since a general view of sources is of

interest in this research) and normalized to be within the the same range from 0 to 1.

Visually, the left auditory cortex can be identified in the three conditions as the active

brain region, stronger than the right auditory source. The local maxima in the audi-

tory region is identified among the vertices having the same anatomical label based

on their talairach coordinates. Statistical t test is applied to the identified source

across all conditions and subjects. Its activity is found to be significant (p < 0.001).

(p denotes p-value which is defined as the probability of obtaining a test statistic as

extreme as possible, given null hypothesis is true.) In the next section, this source in

the left auditory region is defined as the reference in the analysis of cortico-cortical

coherence.

4.2.3 Coherence based Network

The instantaneous coherence is calculated between the reference source identified in

the phase-locked response and all the other sources by the two coherence metrics

MSC and IC. The temporal coherence values forms the data matrix and the first
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Figure 4.9: The temporal pattern of the first principal component of power fluctu-
ations obtained from the phase-locked activity of brain sources. Overlayed power
patterns of three subjects in A:390ms , B:585ms, and C:780ms conditions.
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Figure 4.10: The source distribution corresponding to temporal patterns shown in
Fig.4.9, averaged over subjects and projected onto the standard brain (sagittal and
coronal views). Results are normalized and shown for the three conditions.
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principal component and the corresponding source distribution are calculated using

Eq.3.23 and Eq.3.24 in Chapter 3. The first principal component explains 62 ± 12

(MEAN±STD) percent for the combined two coherence measures over conditions and

subjects, in this experiment. The first principal component of the three individual

subjects for the three conditions are shown in Figure 4.11. The figure shows the

main dynamic changes in coherence among brain sources based on the two coherence

measures. Right column corresponding to MSC and left column corresponding to IC

show following results.

A peak of coherence reduction occurs just after stimuli for conditions 390ms and

580ms. This peak occurs around the same time in 390ms for three subjects but with

some shifts for condition 580ms. The maximum peak after stimuli occurs for 390ms

condition around 300ms for three subjects. But, in 580ms condition, the maximum

peak occurs at different shifts 100 to 350ms for three subjects. In 780ms condition,

the coherence waveform is different from the other two conditions, the maximum peak

occurs around the time of stimuli [−100,100ms] consistent for three subjects.

A peak of coherence reduction is not clearly observable around the time of stimuli

by IC measure , as can been seen by MSC, except for a few subjects in conditions

390ms and 585ms. However, a peak of increase in coherence is consistently seen for

three subjects in both conditions between 100 and 300ms. This maximum peak almost

coincides with the results of MSC. In condition 780ms, except for one subject, the

local maximum peak after stimuli is observable around the same time as the other two

conditions. Furthermore, in this condition, the maxima around the time of stimuli

are consistent with finding by MSC. The coherence decrease after 250ms is obvious

for all conditions and subjects by IC measure, comparable to the results of MSC (in
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which this reduction occurs after 300ms).

We can conclude several points by comparing the two coherence measures. The

coherence increase around the time of stimuli is mainly due to zero phase-locking,

since it is absent when IC measure is used instead of MSC . Zero phase-locking may

be caused by spatial filtering or the original activity of sources. This is not clear

yet. But, if the former is true, IC can eliminate it considerably. In contrast, the

peak of coherence after stimuli is mainly due to nonzero phase-locked coherency of

neural sources, as it is elaborated by both of coherence measures. The consistency of

reduction in two coherence measures after 300ms also emphasizes the suppression of

nonzero phase-locking behavior of sources in response to stimuli.

Figure 4.12 illustrates the source distribution corresponding to the first principal

coherence pattern which belongs to one of the subjects in three different conditions.

This figure is top view of cerebral cortex obtained from the standard MRI. The top row

shows the results of MSC and illustrate several regions dynamically coherent with the

left auditory source. The below row is the source distribution obtained by IC metric,

a scattered distribution around the sensorimotor area 3 is observable. All figures are

normalized to be within the same range [0,1] for illustration purpose. An average of

absolute value of source distribution over conditions and subjects is computed and

local maxima are detected. The average is projected on the cerebral cortex and is

displayed in Figure 4.13. Statistical t test is applied to find the significant local

maxima whose average is significantly greater than zero. A list of anatomical labels

based on talairach coordinates [22], resulted from each measure is described in Table

4.1. Comparing the two source distributions from two coherence metrics can result in

3A region of cerebral cortex, located around central sulcus and performs sensorimotor-related
functions. Central sulcus separates parietal lobe from frontal lobe.
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Coherence metric Anatomical labels p-value

MSC Superior temporal gyrus (R) 0.0002
Superior parietal lobule (LR) 0.0001

Inferior parietal lobule (L) < 0.0001
Precentral, postcentral gyrus (R) < 0.0001

Precuneus (LR) < 0.0001
Superior frontal gyrus (L) < 0.0001

Superior, inferior temporal gyrus (L) < 0.0001
Precentral gyrus (L) < 0.0001

Parahippocampal gyrus (R) < 0.0001
Fusiform gyrus (LR) < 0.0001

Middle frontal gyrus (LR) < 0.0001
IC Middle temporal gyrus (L) 0.0008

Middle temporal gyrus (L) 0.0008
Precentral gyrus (L) 0.0002

Superior, inferior temporal gyrus (L) 0.0001

Table 4.1: Anatomical labels of significant sources found by the first principal com-
ponent (significance level (α)=0.001). The test is performed over conditions and
subjects. L refers to left, R refers to right, and LR refers to both left and right.

following observations. The right sensorimotor area is common in the results of two

coherence metrics, as table information and highest intensity in Figure 4.13 (shown by

the red color) indicate. This is in accordance with the previous findings [6],[12],[15],

and [32], regarding recruitment of motor region in repetitive tone perception. The

other regions found by MSC indicated in Table 4.1 are also consistent with recent

MEG results [12], which used MSC. These regions include superior, inferior temporal

gyrus (L), and precentral gyrus (L) found to be coherent with left auditory source.

Other anatomical regions found by MSC in our research can also be found in other

related networks in auditory rhythm perception detected in [12].
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Figure 4.11: The first principal temporal coherence with left auditory source, shown
for three individual subjects for A:390ms , B:585ms, and C:780ms conditions. Right
column contains IC results and Left column contains MSC results.
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Figure 4.12: Source distribution corresponding to the first principal component nor-
malized to be in the range from 0 to 1 as shown in a color bar. Source distribution
belongs to one of the subjects.
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Figure 4.13: Normalized average of source distribution (absolute values) correspond-
ing to the first principal component. The average is made over all subjects and
conditions.
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Chapter 5

Summary,Future Work, and

Conclusion

5.1 Summary and Conclusion of Thesis

This study provided a framework to study dynamics of power and coherence based

on EEG signals as follows. We applied spatial filtering to estimate neural time series

of brain, given scalp EEG signals. This was to avoid volume conduction effect in the

interpretation of neural source behavior if studied directly by scalp measurements.

Instantaneous power (power analysis) and coherence (coherence analysis) were subse-

quently calculated and dynamics of population’s neural responses was analyzed with

singular value decomposition. In the coherence analysis, we used imaginary compo-

nent (IC) besides the conventional measure magnitude-squared coherence (MSC) to

suppress cross-talk of spatial filtering solution.

It was shown mathematically and with computer simulations that the elimination

of mean from MSC cannot completely avoid the cross-talk problem in the low SNR
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situation. Further, in the simulations, power analysis results showed the ability of

the explained method to localize sources whose power is periodically changing with

stimuli. It could localize them in their true locations and also identify the true cor-

responding power pattern. In addition, we discussed the effect of regularization of

the spatial filtering on the coherence results and showed that regularization constant

may distort the coherence waveform if chosen to be very low proportion of the highest

eigenvalue of covariance matrix in the low SNR situation. Higher amount of regu-

larization generally ensures higher amount of output SNR thereby implicitly leading

to a more reliable coherence representation, but the lower spatial resolution of the

corresponding output source image is the cost of it. This fact was confirmed and

clarified with the simulations.

Then, we applied the procedure to real EEG recordings made from three subjects

who were listening to repetitive auditory stimuli in three different but close rates.

The EEG data were filtered from 14 Hz to 20 Hz (beta1 band), as shown in previous

studies [12],[32] to under neural mechanism in response to these stimuli. We took into

account our simulation findings with regard to the regularization constant; we used

higher amount of regularization in the real data to make sure that we obtained output

signal-to-noise-ratio as high as possible. The study of the real data was performed

in the aspect of phase-locked power and coherence. In the power analysis, power of

the evoked response was calculated and in coherence analysis, coherence based on

the two measures IC and MSC was calculated on the trial basis. The source of left

auditory cortex was detected by the power analysis and had the maximum power in

all subjects and conditions approximately 100ms after stimuli (the same time as N1

peak usually occurs). Then, it was considered as the reference in coherence analysis.
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The IC and MSC results were compared in terms of the first principal coherence

waveform and their corresponding source image with respect to the reference source.

Also, the results of previous finding in the role of motor regions to coordinate with

auditory cortex in the perception of rhythmic auditory tones were presented and were

shown to be comparable with our results. The sources detected in the real data were

also found in other studies with fMRI and MEG [12],[6],[15], and [32], which explored

the sources underlying auditory rhythm perception.

5.1.1 Main Aspects of Research and Future Work

This study can be considered as a part of a big step to spatially and temporally localize

with high resolution brain sources functionally recruited to perceive any stimuli trains

causing dynamic changes in brain. We mainly focused on the effect of rhythmic

auditory stimuli on brain and how neural sources process these stimuli. It was shown

that EEG signals can be used to track neural responses dynamically co-changing in

power and in coherence. The advantage of using EEGs is that they have a superior

temporal resolution to fMRI and on the other hand they are more available and

economical than MEGs.

In this study, the source in the auditory cortex was correctly identified in the power

analysis of evoked response in beta1 frequency band, where the source is consistent

with the previous studies on the neural sources of the evoked response components

[33], [19]. The results also confirm the previous finding with MEG and fMRI regarding

the involvement of sensorimotor area in the perception of the auditory stimuli trains

and its coherency with the auditory source. This research shows the superiority of

IC to MSC coherence metric in terms of canceling zero-phase locked coherency which
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is mainly due to spatial filtering. However, the reason for the inconsistency of IC

and MSC over time with respect to stimuli needs to be more clarified. This may be

possible by applying IC to MEG signals or employing direct measurements of cerebral

cortex and compare them with the EEG results. The reason for individual differences

in the coherence waveforms and the associated differences in their anatomical regions

need be studied in more details. Therefore, a higher number of subjects needs to be

experimented in order to see if their anatomical regions of activity have any correla-

tion with the individual differences in the coherence waveforms. Finally, improving

accuracy of forward model, for instance considering the anisotropic properties of brain

tissues and using individual head geometries instead of a standard MRI, may have a

considerable improvement on the inverse solutions and thereby power and coherence

results.
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