
`2 Optimized Predictive Image Coding

with `∞ Bound



`2 OPTIMIZED PREDICTIVE IMAGE CODING

WITH `∞ BOUND

BY

SCEUCHIN CHUAH, B.Eng.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Sceuchin Chuah, October 2012

All Rights Reserved



Master of Applied Science (2012) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: `2 Optimized Predictive Image Coding

with `∞ Bound

AUTHOR: Sceuchin Chuah

B.Eng., (Electrical Engineering)

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. Xiaolin Wu

NUMBER OF PAGES: xi, 52

ii



To My Mother and Father



Abstract

In many scientific, medical and defense applications of image/video compression, an

`∞ error bound is required. However, pure `∞-optimized image coding, colloquially

known as near-lossless image coding, is prone to structured errors such as contours

and speckles if the bit rate is not sufficiently high; moreover, previous `∞-based image

coding methods suffer from poor rate control. In contrast, the `2 error metric aims

for average fidelity and hence preserves the subtlety of smooth waveforms better than

the `∞ error metric and it offers fine granularity in rate control; but pure `2-based

image coding methods (e.g., JPEG 2000) cannot bound individual errors as `∞-based

methods can. This thesis presents a new compression approach to retain the benefits

and circumvent the pitfalls of the two error metrics.
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Chapter 1

Introduction and Problem

Statement

There are many important image compression applications in science, medicine, space

exploration, precision engineering, etc., where high fidelity of image reconstruction is a

crucial requirement. The ideal solution is lossless compression. However, this solution

demands a relatively high bit budget, since in spite of intense research in this area,

lossless compression rates have remained high (typically 3-4 bpp). The alternative

solution for reducing the bit rate is to accept some small loss, and this realization led

researchers to develop what became known as near-lossless compression algorithms.

Since such algorithms target applications where maintaining small image details in the

reconstruction is important, researchers have adopted, as a near-lossless compression

criterion, the requirement that a predefined upper bound on the reconstruction error

for each pixel be obeyed. In other words, near-lossless image compression became

synonymous with `∞-constrained image compression.
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An obvious and simple way to achieve `∞-constrained image compression is by pre-

quantizing first the pixel values via a uniform scalar quantizer, and then to losslessly

encode the pre-quantized image (Zandi et al., 1995; Said and Pearlman, 1996). To

achieve an `∞ bound equal to some value τ , a step size of 2τ + 1 is used in the scalar

quantizer. More efficient near-lossless coding algorithms however, utilize predictive

coding with the quantization of residuals (Chen and Ramabadran, 1994; Ke and

Marcellin, 1998; Wu et al., 1995; Wu and Bao, 2000; Wu et al., 2011). The algorithm in

(Chen and Ramabadran, 1994) is a DPCM coding technique which employs context-

based source modeling and arithmetic coding for lossless compression of quantized

prediction errors. In order to achieve an `∞ bound of τ = 1, two different scalar

midtread quantizers were suggested in (Chen and Ramabadran, 1994). One of them

is uniform with all step sizes equal to 3. The other one is nearly uniform with a bin of

size 3 around 0 and all the other bins of size 2. The system in (Ke and Marcellin, 1998)

is also based on the DPCM method, but it incorporates an additional mechanism to

minimize the entropy of the sequence of quantized prediction residues using a so-called

DPCM-trellis. The trellis state transitions restrict the possible pixel reconstructions

to those within a τ -error bound. An iterative algorithm determines the trellis path

corresponding to the minimum entropy sequence of quantized residuals for each image

row. Finally, `∞-constrained (or near-lossless) CALIC (Wu et al., 1995), which is a

variant of lossless CALIC (Wu and Memon, 1997), incorporates a uniform scalar

quantizer for the residual errors in the prediction loop. In particular, a step size of

(2τ + 1) is used for the quantizer in order to ensure an error bound no larger than τ .

Among the aforementioned `∞-constrained image coders, near-lossless CALIC

2
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achieves the highest compression performance when τ ≤ 3 (Wu et al., 1995). Fur-

ther enhancements of near-lossless CALIC were proposed in (Wu and Bao, 2000; Wu

et al., 2011) which led to superior performance in terms of bit rate and/or `2 distor-

tion. However, these techniques incur increased computational complexity either at

the encoder, in (Wu and Bao, 2000), where adaptive context modeling is used, or at

the decoder, in (Wu et al., 2011), where the hard decision decoding is followed by an

`2 image restoration step.

As seen from the above discussion existing `∞-constrained image coders generally

aim at reaching the smallest bit rate for each given error bound τ and disregard

other fidelity criteria. Thus, the number of achievable bit rates is small, only equal

to the number of possible values of small τ . Such a coarse rate granularity makes

it impossible to finely control the bit rate and image quality. Additionally, the `∞

constraint alone might not be sufficient to guarantee the necessary level of quality.

In particular, `∞-constrained image coders may introduce artifacts in the form of

structured errors even when the value of τ is as low as 4. Fig. 1.1 illustrates such

an example with comparisons between `∞-based image coding (near-lossless CALIC)

and `2-based image coding (JPEG 2000) when compression rates are the same. `∞-

constrained CALIC is seen to create unnecessary speckles and contours in Fig. 1.1c.

Though `2-based JPEG 2000 did not produce those artifacts, it smoothed out the

image by too much, removing fine details and distorting edges in Fig. 1.1b.

As seen in the above example the `2 distortion measure targets for average fi-

delity and therefore preserves better the smoothness of waveforms. We conclude that

it is desirable to include the `2 criterion in the code design. However, decreasing

the `2 error while maintaining the same bit-rate and error bound might be difficult

3
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Table 1.1: Achievable bit rates and PSNR values for image 4.5e using Near-lossless
CALIC

τ Bit Rate (bpp) PSNR (dB)

0 3.53 ∞
1 2.13 49.95
2 1.57 45.38
3 1.27 42.53
4 1.07 40.47
5 0.94 38.84
6 0.82 37.43
7 0.73 36.30
8 0.67 35.25

without increasing the coding complexity. In contrast, a coder with fine granular-

ity offers a trade-off between bit-rate and fidelity, making it possible to achieve a

higher fidelity at the expense of a small increase in the bit rate. Unfortunately, good

existing `∞-constrained image coders lack this ability. To exemplify, consider Table

1.1 which presents the achievable bit rates for the test image in Fig. 4.5e encoded

with near-lossless CALIC at τ = 0, 1, 2, . . . , 8, where the case τ = 0 corresponds

to lossless compression using CALIC. Notice the big gaps between consecutive bit

rates, especially as τ decreases, which is the case of interest. In order to improve

the reconstruction quality at τ = 2, the next available option, which is τ = 1, needs

a significant increase in bit rate of 0.56 bpp, while we would like to be able to do

this with only a small increase in bit rate. Therefore, we conclude that the ability to

achieve a finer rate granularity and the incorporation of the `2 metric in the design

would be beneficial features for `∞-constrained image coders.

In this thesis we propose an `2-optimized `∞-constrained image coding algo-

rithm with fine rate granularity. The proposed coder is a modification of near-

lossless CALIC, which replaces the uniform scalar quantization of prediction errors

4
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by context-based `2-optimized quantization. Specifically, the scalar quantizers for

the different contexts are optimized to minimize the `2 distortion while obeying a

constraint on the average entropy over all quantizers and a specified `∞ error bound.

Optimization of the quantizer used in the prediction loop has been proposed in

the past in (Max, 1960; Netravali, 1977; Sharma, 1978) for the scalar case and in (Cu-

perman and Gersho, 1985; Khalil et al., 2001; Khalil and Rose, 2003) for the vector

case. One difficulty encountered when addressing this problem resides in obtaining a

distribution that accurately represents the distribution of the prediction errors. This

is because the statistics of the residuals depends on the quantizer. Most authors have

generated the training set of prediction errors by using the unquantized pixel values

in the prediction. This method is known as the open-loop (OL) approach. To address

the statistical mismatch of OL, the closed-loop (CL) and the asymptotic closed-loop

(ACL) approaches were proposed in (Cuperman and Gersho, 1985) and (Khalil et al.,

2001), respectively. They performed the design process iteratively, the quantizer op-

timized at each iteration being used to obtain the training set of residuals for the

next iteration.

In this thesis we adopt the OL approach. The reasoning behind this choice is

that, in near-lossless compression, small values of τ are of interest, and in this case,

the OL approach provides a good enough approximation of the true statistics of

prediction errors. We point out that in this thesis, after collecting the statistics of

residuals for each context from a training set of images, each conditional distribution

is approximated by a Laplacian distribution which is further used in the optimization.

What distinguishes our work from previous work on optimal quantizer design is

mainly the criterion used in the optimization. Most quantizer design algorithms aim

5
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at minimizing the `2 distortion for fixed number of quantizer levels, or for an en-

tropy constraint. We are not aware of any work which incorporates the `∞ constraint

alongside. Scalar quantizer design algorithms mainly fall into one of the following

categories: 1) Lloyd-Max method (Max, 1960; Lloyd, 1982), which iteratively opti-

mizes the encoder and the decoder respectively while keeping the other component

fixed, and 2) combinatorial algorithms (Bruce, 1964; Sharma, 1978; Wu, 1991; Wu

and Zhang, 1993; Dumitrescu and Wu, 2004, 2005, 2007; Muresan and Effros, 2008).

While the first approach ensures only a locally optimal solution, the latter algorithms

guarantees global optimality when the source alphabet is finite. Our optimization

problem requires simultaneous optimization of all quantizers corresponding to differ-

ent contexts under a common constraint on the average entropy and the `∞ error

bound. We first convert the problem to a Lagrangian formulation as is the common

practice in entropy-constrained quantizer design. Interestingly, the Lagrangian for-

mulation allows for separate optimization of each quantizer. We further show that the

latter problem can be modeled as a minimum weight path problem. This model is sim-

ilar in spirit to that used in (Muresan and Effros, 2008). However, we emphasize that

while in (Muresan and Effros, 2008) only the `2-optimization of entropy-constrained

quantizers were considered, our problem is more complex by additionally imposing

an `∞ constraint.

The proposed image coder is able to achieve a much denser set of bit rates than

near-lossless CALIC by using different values for the Lagrangian multiplier in the cost

function. As our experiments performed on images outside the training set show, the

`∞ constraint enforced in our algorithm allows us to achieve `∞ error bounds that

are always lower than those of JPEG 2000. Meanwhile, the minimization of the `2

6
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distortion incorporated in the design leads to better `2 performance than JPEG 2000

above a certain threshold bit rate for each image, a threshold which can be as low as

1.1 bpp. Furthermore, the fine granularity allows for the reconstruction quality to be

improved by having only small additions to the used bit rate. In particular, it can

be seen in Fig. 1.1d that the proposed coder eliminates the artifacts observed in Fig.

1.1c at the expense of only a very small increase in the bit rate.

The remainder of this thesis is organized as follows. In Chapter 2 we briefly

describe how near-lossless CALIC operates. Then in Chapter 3, we formulate the

problem of `2 optimization of the different context-based quantizers with a common

constraint on the average entropy and an `∞ error bound. Further, we describe

the solution algorithm based on the graph approach. We subsequently integrate

the optimal scalar quantizers obtained in Chapter 3 into near-lossless CALIC and

present extensive experimental results in Chapter 4. The results include performance

comparisons with JPEG 2000 and near-lossless CALIC. Finally, conclusions are given

in Chapter 5.

7
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(a) Original image (b) JPEG 2000

(c) Near-lossless CALIC (d) Proposed

Figure 1.1: Comparison using a computer-generated test image between (a) Original
image / Lossless image coding (Lossless CALIC at rate 1.27 bpp); (b) `2-based image
coding (JPEG 2000 at rate 0.38 bpp, PSNR 42.08dB, `∞ error bound 22) with details
blurred out; (c) `∞-based image coding (Near-lossless CALIC at rate 0.38 bpp, PSNR
39.45dB, `∞ error bound 4) with speckles and contours as artifacts; and (d) Proposed
method (at rate 0.47 bpp, PSNR 39.63dB, `∞ error bound 4) preserving details with
minimal artifacts.

8



Chapter 2

Near-lossless CALIC

As shown in the flow diagram in Fig. 2.1, l∞-constrained CALIC in (Wu et al.,

1995) consists of five main components: gradient-adjusted prediction (GAP), uniform

quantization, context formation and quantization, context modeling, and entropy

coding. We will only briefly describe the encoder since the decoder is just the encoder

process reversed.

Let I be the current pixel value to be encoded. The GAP module makes a predic-

tion Ī of I based on the knowledge of the reconstructed pixels Ĩ in a precisely defined

neighbourhood as shown in Fig. 2.2. We first estimate the horizontal gradient dh and

vertical gradient dv of the intensity function at current pixel I by the following:

dh = |Ĩw − Ĩww|+ |Ĩn − Ĩnw|+ |Ĩn − Ĩne|,

dv = |Ĩw − Ĩnw|+ |Ĩn − Ĩnn|+ |Ĩne − Ĩnne|. (2.1)

Then, the GAP module constructs the predictor Ī by comparing dh and dv with the

9
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Figure 2.1: Schematic description of near-lossless CALIC.

following procedure:

IF (dv − dh > 80) {sharp horizontal edge} Ī = Ĩw

ELSE IF (dv − dh < −80) {sharp vertical edge} Ī = Ĩn

ELSE {

Ī = (Ĩw + Ĩn)/2 + (Ĩne − Ĩnw)/4

IF (dv − dh > 32) {horizontal edge} Ī = (Ī + Ĩw)/2

10
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nn
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nnw

w ?ww

i

j

Figure 2.2: Labeling of neighbouring pixels used in prediction and modeling.

ELSE IF (dv − dh > 8) {weak horizontal edge} Ī = (3Ī + Ĩw)/4

ELSE IF (dv − dh < −32) {vertical edge} Ī = (Ī + Ĩn)/2

ELSE IF (dv − dh < −8) {weak vertical edge} Ī = (3Ī + Ĩn)/4

} (2.2)

The prediction Ī is further improved to Î by adding the conditional sample mean

of the quantized prediction errors µ(ê|ć) conditioned on the error modeling context

ć. The number of error modeling contexts ć considered in CALIC is 576 or higher

and they are formed based on both the energy level and image texture. The resulting

prediction error (or residue) e = I−Î is then quantized with a uniform scalar quantizer

generating ê. The reconstructed pixel value Ĩ = Î + ê and the quantized prediction

residue ê are fed back into the system to be used in the encoding of future pixels in

the image.

11
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Finally, the sequence of quantized prediction residues is losslessly entropy coded

by means of a context-based arithmetic coder. Only eight coding contexts c ∈

{1, 2, . . . , 8} are used for this purpose. They are formed by quantizing an error energy

estimator ∆ into eight bins based on a criterion to minimize the conditional entropy

of prediction errors −∑e p(e) log p(e|c), where p(e) and p(e|c) are respectively the

probability and conditional probability of prediction residue e when a uniform quan-

tizer of step size 2τ + 1 is used. ∆ is more specifically the weighted sum of gradients

of the reconstructed pixel values in the neighbourhood and is computed as follows:

∆ = dh + dv + |êw|. (2.3)

The quantization intervals used for quantizing ∆ are shown in Table 2.1 below.

Table 2.1: Quantization intervals for error energy estimator ∆ to form eight coding
contexts c

τ
c

1 2 3 4 5 6 7 8

0 [0,7] (7,17] (17,28] (28,46] (46,65] (65,91] (91,148] >148
1 [0,2] (2,6] (6,11] (11,23] (23,47] (47,72] (72,140] >140
2 [0,3] (3,6] (6,15] (15,30] (30,53] (53,81] (81,159] >159
3 [0,2] (2,5] (5,21] (21,45] (45,67] (67,116] (116,300] >300
4 [0,4] (4,13] (13,39] (39,68] (68,94] (94,127] (127,165] >165
5 [0,6] (6,62] (62,89] (89,124] (125,172] (173,230] (230,300] >300
6 [0,5] (5,18] (18,56] (56,98] (98,138] (138,184] (184,219] >219
7 [0,4] (4,18] (18,53] (53,89] (89,124] (124,183] (183,300] >300
8 [0,2] [0,13] (13,47] (47,100] (100,140] (140,188] (188,300] >300

12



Chapter 3

Optimal Context-based

Quantization of Prediction Errors

The proposed image coder shown in Fig. 3.1 replaces the uniform quantizer of predic-

tion errors in near-lossless CALIC by scalar quantizers optimized for each individual

coding context. The optimization problem aims at minimizing the average `2 distor-

tion over all eight coding contexts while preserving a maximum error bound for each

prediction error and a limit on the average output entropy over all eight quantizers.

The optimization is performed assuming known distributions of prediction errors and

coding contexts.

In this chapter we will address this optimization problem. Section 3.1 presents the

definitions and notations pertinent to `∞-constrained scalar quantizers. Section 3.2

introduces the mathematical statement of the problem and converts it to an uncon-

strained Lagrangian minimization problem which, it turns out, can be carried out by

separately optimizing the quantizer for each coding context. Section 3.3 presents the

solution to the latter problem by modeling it as a minimum weight path problem in a

13
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Figure 3.1: Schematic description of proposed method.

weighted directed acyclic graph. Section 3.4 gives an evaluation of the computational

complexity of solving the problem. Finally, Section 3.5 explains how the optimal so-

lution is obtained for a wide range of bit rates by varying the Lagrangian multiplier,

and the attainable range of bit rates for each `∞ constraint of τ .

3.1 `∞-constrained Scalar Quantizer

A quantizer maps the source alphabet into a smaller set of reproduction values. In

our case, the source alphabet is a finite set of prediction residues E = {en}Nn=1,

where {e1 < e2 < · · · < eN}. For raw input images using B bits per pixel, the

set of prediction residues E has N = 2B+1 − 1 possible integer values ranging from

e1 = −(2B − 1) to eN = 2B − 1.

The encoder of a scalar quantizer is described by the partition that segments the

source alphabet into a set of non-overlapping contiguous codecells. In other words,

14
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the encoder partition P can be defined as follows

P = {C1, C2, . . . , CK} for some 1 ≤ K ≤ N, (3.1)

where

Ci = (ai−1, ai] = {en | ai−1 < n ≤ ai}

with 0 ≤ ai−1 < ai ≤ N, 1 ≤ i ≤ K, (3.2)

and a0 = 0 and aK = N .

The decoder of the quantizer, on the other hand, is described by the set of repro-

duction codewords {xi | 1 ≤ i ≤ K}. Every alphabet symbol in codecell Ci is mapped

to the reproduction codeword xi. In an `∞-constrained quantizer with a maximum

error bound of τ per symbol, the reproduction codeword must satisfy the condition

|en − xi| ≤ τ , for all en ∈ Ci. On the other hand, keeping in mind the optimization

criterion of minimizing the `2 distortion we determine xi as follows

xi = arg min
x∈E,|en−x|≤τ,en∈Ci

∑
en∈Ci

p(en)(en − x)2, (3.3)

where p(en) is the probability of the prediction residue en.

We know that without the `∞-constraint of |en − x| ≤ τ for all en ∈ Ci in (3.3),

the solution to the above minimization problem is simply equal to the centroid of the

codecell (Max, 1960; Lloyd, 1982), i.e.,

µ(Ci) =
∑
en∈Ci

p(en)
en
p(Ci)

, (3.4)
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where p(Ci) =
∑
en∈Ci p(en) is the probability of codecell Ci.

First of all, for the solution to (3.3) to exist, the size of all codecells must be

limited to at most (2τ + 1). This means that for each codecell Ci = (ai−1, ai], the

condition (ai − ai−1) ≤ (2τ + 1) has to be satisfied. Furthermore, to achieve the

`∞-constraint requirement, we must also ensure that the reproduction codeword xi of

codecell Ci is at distance at most τ from the values at the boundaries of the codecell.

In other words, we must have eai − τ ≤ xi ≤ (eai−1
+ 1) + τ . Notice that when

the centroid µ(Ci) exceeds distance τ from the boundaries of the codecell, taking the

reproduction codeword xi as the closest point to the centroid within distance τ is the

optimal solution to (3.3). This is because the objective function in (3.3) is a quadratic

function that is symmetrical around its point of minimum, i.e., around the centroid

µ(Ci). Therefore, the optimal solution to (3.3) is given by

xi =



(eai−1
+ 1) + τ, if (µ(Ci)− (eai−1

+ 1)) > τ

eai − τ, if (eai − µ(Ci)) > τ

µ(Ci), otherwise.

(3.5)

To ease coding and save on memory resources, we round xi to the nearest integer

and limit xi such that eai−1
+ 1 ≤ xi ≤ eai . The algorithmic version of the codeword

optimization is also provided in Appendix A.2 for further clarification.

3.2 Optimization Problem Formulation

By optimizing the reproduction codewords for each encoder partition via (3.5), the `2

distortion and the output entropy corresponding to a quantizer become only functions

16



M.A.Sc. Thesis - Sceuchin Chuah McMaster - Electrical Engineering

of the encoding partition. Let us denote the `2 distortion and the output entropy for

each codecell Ci as

d(Ci) =
∑
en∈Ci

p(en)(en − xi)2 (3.6)

and r(Ci) = −p(Ci) log2 p(Ci) (3.7)

respectively. Then the `2 distortion and the output entropy corresponding to a quan-

tizer with encoder partition P are

D(P) =
∑
C∈P

d(C) (3.8)

and R(P) =
∑
C∈P

r(C) (3.9)

Now let us denote by Pm the encoder partition corresponding to the scalar quantizer

for coding context cm, where 1 ≤ m ≤ M and M = 8 for near-lossless CALIC.

Subsequently, let DT and RT respectively be the expected `2 distortion and rate of

all quantizers over all M contexts as follows

DT =
M∑
m=1

q(cm)D(Pm) (3.10)

and RT =
M∑
m=1

q(cm)R(Pm) (3.11)

where q(cm) is the probability of context cm. It is important to note that in the

computation of D(Pm) and R(Pm) using (3.8) and (3.9), respectively, the probability

p(en) has to be replaced by the conditional probability of residual en conditioned on

context cm.
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After having established the above notations we can now formulate our task as a

constrained optimization problem that minimizes the total `2 distortion DT subject

to an upper bound ρ on the average rate RT . In other words,

min
{P1,P2,...,PM}

DT

subject to RT ≤ ρ (3.12)

where the optimization is performed over all possible M -tuples of partitions P1,

P2, . . . ,PM with codecells of maximum size 2τ + 1.

As it is common practice in the literature on entropy-constrained quantizer design,

we convert the constrained problem (3.12) to the unconstrained problem of minimizing

the associated Lagrangian (Muresan and Effros, 2008; Chou et al., 1989). Thus, to

achieve an optimal M-tuple of partitions {P∗1 ,P∗2 , . . . ,P∗M} , we solve

{P∗1 ,P∗2 , . . . ,P∗M} = arg min
{P1,P2,...,PM}

{DT + γRT}. (3.13)

The solution to problem (3.13) corresponds to a point (RT
∗, DT

∗) on the lower convex

hull of the set RD of all possible planar points of coordinates (RT , DT ), such that the

slope of a tangent to the set RD drawn through (RT
∗, DT

∗) is equal to −γ (Luenberg,

1969).

Substituting (3.10) and (3.11) back into (3.13) and rearranging, it follows that

(3.13) is equivalent to

M∑
m=1

{
q(cm) min

Pm

J(Pm, γ)
}
, (3.14)
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where J(Pm, γ) = D(Pm)+γR(Pm). This shows that we can minimize {DT +γRT} in

(3.13) by individually minimizing J(Pm, γ) for each context cm. Note also that since

the `2 distortion D(Pm) =
∑
C∈Pm

d(C) and rate R(Pm) =
∑
C∈Pm

r(C) are additive

over codecells, the Lagrangian J(Pm, γ) is also additive over codecells, in other words,

the following holds

J(Pm, γ) =
∑
C∈Pm

j(C, γ), (3.15)

where j(C, γ) = d(C) + γr(C). (3.16)

3.3 Solution Using the Minimum Weight Path

Model

Due to the additive nature of the Lagrangian cost shown in (3.15), the task of mini-

mizing (3.15) can simply be viewed as a single-source minimum weight path problem

in a weighted directed acyclic graph (WDAG). Each n ∈ {0, 1, . . . , N} represents a

node in the graph, and each pair (x, y) represents an edge that extends from node

x to node y. The edge (x, y) symbolizes a possible codecell C = (x, y], thus only

edges (x, y) with y − x ≤ 2τ + 1 are allowed. The Lagrangian cost j(C, γ) obtained

using (3.16) determines the weight of the edge designating codecell C. We denote by

w(x, y] the weight of the edge (x, y), i.e., w(x, y] = j(C, γ), where C = (x, y]. A simple

example of a WDAG for constraint τ = 1 is shown in Fig. 3.2. The arrows repre-

sent the directed edges for all possible codecells and are labeled with their respective

weights. Note that an edge from node 0 to node 4 is not possible because the codecell

it represents would exceed the maximum size of 2τ + 1 = 3.
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0 1 2 3 4
w(0,1]

w(0,3]

w(0,2]

w(1,4]

w(1,3]

w(1,2]

w(2,4]

w(2,3]

w(3,4]

Figure 3.2: All possible edges for τ = 1 in a WDAG with nodes n ∈ {0, 1, 2, 3, 4}.

0 1 2 3 4

w(0,1] w(8,9]w(1,4] w(4,6] w(6,8] w(9,12]

5 6 7 8 9 10 11 12GRAPH

QUANTIZER n
0 1 2 3 4 5 6 7 8 9 10 11 12

C 1 C 2 C C C C3 4 5 6

Figure 3.3: An example of a path, made out of a sequence of six edges in a graph,
and its corresponding quantizer partition, made out of six contiguous codecells
{C1, C2, . . . , C6}.

A path in the graph is a sequence of connected edges and the weight of a path is the

sum of the weights of all edges which make up that path. It is clear that any path in

the graph from 0 to N is in unique correspondence with a partition Pm. Furthermore,

from (3.15), we see that the Lagrangian cost J(Pm, γ) of the partition equals the

weight of the path. Hence, a path signifies a partition, the weight of a path equals

the Lagrangian cost of the partition the path signifies, and minimizing the weight of

a path is equivalent to minimizing the Lagrangian cost of the partition in (3.15) that

corresponds to that path. Fig. 3.3 illustrates an example of a path in a graph from

node 0 to node 12 to partition prediction errors {en | 0 < n ≤ 12}. In the example,
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the path is made out of six edges, representing six codecells {C1, C2, . . . , C6}, and the

resulting weight of the path is w(0, 1] +w(1, 4] +w(4, 6] +w(6, 8] +w(8, 9] +w(9, 12].

Let W (x, y] be the weight of the minimum weight path from x to y for 0 ≤ x <

y ≤ N . It is important to observe that if a minimum weight path from 0 to z stops at

intermediate node y, then its path from 0 to y must also be a minimum weight path.

We can thus find W (0, z], the weight of the minimum weight path from 0 to z, by

first computing the minimum weight path from 0 to y. In our case, since all codecells

have a size limit of 2τ+1 to obey our `∞ constraint, we need only to compare at most

2τ + 1 number of weights to obtain W (0, z] for any value of z. Hence, the weight of

the minimum weight path from 0 to z is simply

W (0, z]

=



w(0, z], if z = 1

min
{
w(0, z],miny>0,z−(2τ+1)≤y<z {W (0, y] + w(y, z]}

}
, if 1 < z ≤ (2τ + 1)

minz−(2τ+1)≤y<z {W (0, y] + w(y, z]}, otherwise.

(3.17)

Finally, to obtain the minimum weight W (0, N ] we compute all minimum weights

W (0, z] in increasing order of z, from 1 to N , by using (3.17). A partition P∗m with

nodes {ai}Ki=0 from the minimum weight path of weight W (0, N ] would therefore give

the optimal quantizer required for every context cm. To avoid any ambiguity in our

explanation, the algorithm is formally described in Appendix A.1.
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3.4 Computational Cost

The computation time to obtain the weight of each edge depends linearly on the size

of the codecell represented by each edge . With a size limit of 2τ+1 on every codecell,

the complexity is therefore O(τ).

Since there are at most (2τ+1) possible edges ending at N nodes, the weights of at

most N(2τ + 1) edges are computed and stored. Subsequently, the minimum weight

path to N nodes are found by considering (2τ + 1) weights for every node, except for

the first 2τ nodes, where for every n-th node, only n weights are considered.

For all purposes of this thesis however, only Laplacian distributions that are sym-

metrical around zero are considered. The symmetric distributions give symmetric

distortion and entropy measures, and hence, the optimal quantizers achieved should

also be symmetric (Sullivan, 1996). To obtain the optimal midtread scalar quantizer

with symmetrical codecells with respect to zero, we need only to compute and store

the weights of (2τ + 1)
(
N+1
2
− 1

)
+ (τ + 1) edges, and find the minimum weight path

to
(
N+1
2

+ τ
)

nodes by considering (2τ + 1) path weights for each node, except for

the first 2τ nodes and the last (τ + 1) nodes after zero, where fewer number of path

weights are considered.

Thus for all M contexts, at most M(τ+1)
[
(2τ + 1)(N+1

2
) + τ

]
loops are executed

resulting in O(τ 2MN) complexity. Since τ and M are upper bounded by a constant

much smaller than the value of N , we can further approximate the complexity to be

linear, O(N).
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3.5 Effects of Varying γ and τ

For each `∞ error bound of τ , γ in (3.13) controls the tradeoff between the two terms

of the Lagrangian cost function, the total `2 distortion DT and the total output

entropy RT , which cannot both be minimized simultaneously. A lower value of γ

leads to a smaller weight on RT , and consequently shifts the minimization priority to

minimizing DT . Therefore, a lower value of γ allows us to achieve lower `2 distortion

(or a higher PSNR) at a higher rate, and vice versa.

As observed in our experiments, to obtain the smallest total output entropy RT

for an `∞ constraint of τ , the optimal quantization solutions {P∗1 ,P∗2 , . . . ,P∗M} are

very close or even identical to the uniform quantizers in near-lossless CALIC, which

have the largest possible step size of (2τ + 1).

The bigger the value of τ , the larger the maximum step size (2τ + 1) of the

quantizers, the lower the smallest attainable total output entropy R0(τ); hence R0(τ+

1) < R0(τ). This also means that an entropy target of R, for some R ≥ R0(τ), is

achievable by the M -tuple of quantizers optimized with any `∞ error bound of τ ∗ ≥ τ .

Note that though the quantizers are optimized to obtain the same average entropy

R, the different `∞ constraints might give different M -tuple of optimal quantizers.
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Chapter 4

Experimental Results and Remarks

A training set of four 8-bit high resolution continuous-tone images, shown in Fig.

4.1, were used to obtain the probability distributions of prediction errors for every

context cm and every value of τ ∈ {1, 2, · · · , 8}. We point out that the distributions

corresponding to different values of τ are generally different since the contexts are

obtained differently for each τ .

Further, each of those distributions was approximated with a Laplacian distri-

bution centered at zero. The approximations were done by choosing the Laplacian

probability mass functions (pmfs) with the smallest average difference from the actual

pmfs of the training set, i.e., by solving

min
b>0

{
1

N

N∑
n=1

[plap(en)− ptset(en)]

}
,

where plap(en) =


1
T

[
1− e− 1

2b

]
, if en = 0

1
2T

[
e−
|en|−0.5

b − e−
|en|+0.5

b

]
, otherwise

T = 1− e−
N
2b . (4.1)
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(a) 1800× 1800 pixels (b) 1701× 1701 pixels

(c) 1700× 1700 pixels (d) 1601× 1601 pixels

Figure 4.1: Training set images.
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Figure 4.2: Laplacian distributions approximating the distributions of prediction er-
rors from the training set for τ = 5.

ptset(en) denotes the actual probability of en from the training set. An example of the

approximations for τ = 5 are shown in Fig. 4.2, and it can be seen that the Laplacian

distributions very closely approximate the distributions of prediction errors. The

approximations are necessary to obtain more generalized distributions which take

into account random or outlying residue values not found in the training set.

For each τ ∈ {1, 2, · · · , 8}, we have solved (3.13) for a decreasing sequence of γ

values. The pairs (RT ,PSNRT ) corresponding to these solutions are plotted in Fig.

4.3, where PSNRT = 20 log10
255√
DT

. Notice that, for each τ , rates in the interval

[R0(τ), R0(0)] can also be achieved with τ ′ > τ , as claimed in Section 3.5 of Chapter

3. Further, in order to proceed to testing the proposed coder on real images, we have

selected for each τ , only those M -tuples of codebooks corresponding to entropies RT

satisfying the condition R0(τ) ≤ RT < R0(τ −1). Fig. 4.4 plots the resulting PSNRT
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versus RT of the M -tuples of codebooks selected from Fig. 4.3.

37.00

39.00

41.00

43.00

45.00

47.00

49.00

51.00

53.00

55.00

0.7000 1.2000 1.7000 2.2000 2.7000 3.2000 3.7000

PS
N

R
 (d
β)

 

Entropy (bpp) 

τ = 8 

τ = 7 
τ = 6 

τ = 5 

τ = 4 

τ = 3 

τ = 2 

τ = 1 

Figure 4.3: PSNR vs. entropy plots of optimal quantizers trained on training set
images for different values of τ .

The test images used in our simulations are shown in Fig. 4.5. They were chosen

such that a wide range of textures are covered. We point out that the last three

images were cropped out of images from the training set.

Fig. 4.6 plots the `∞ error bound versus output entropy to demonstrate the

superiority of the `∞ error bound of our proposed solution, which is always lower than

that of JPEG 2000 for all achievable bit rates. Fig. 4.7 plots the PSNR versus output

entropy to further demonstrate the `2 performance in terms of PSNR as compared to

the original near-lossless CALIC and JPEG 2000. The original near-lossless CALIC

was only able to achieve a small discrete set of (R,D) points for each value of τ . We

have proven that when rate flexibility is allowed for a given `∞ error bound of τ , the
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Figure 4.4: PSNR vs. entropy plot of optimal quantizers chosen from Fig. 4.3.

`2 performance of our proposed solution surpasses that of near-lossless CALIC. The

resulting plot also demonstrates that our proposed solution outperforms JPEG 2000

above certain threshold bit rates, which can be as low as 1.1 bpp.

The authors of (Wu and Bao, 2000) experimented on incorporating the DPCM

trellis implemented in (Ke and Marcellin, 1998) into near-lossless CALIC, and con-

cluded that it did not offer appreciable compression gains despite the high com-

putational complexity incurred. Since our work is able to achieve the compression

performances of near-lossless CALIC and better with many more bit rates, we will

not further attempt to compare our work to the work in (Ke and Marcellin, 1998).
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(a) Hair (256× 256 pixels) (b) Plant (400× 600 pixels)

(c) Flowers (256× 256 pixels) (d) Plants (256× 256 pixels)

(e) Fruits (600× 400 pixels)

Figure 4.5: Test images.

29



M.A.Sc. Thesis - Sceuchin Chuah McMaster - Electrical Engineering

0

5

10

15

20

25

30

35

0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000

l ∞
 E

rr
or

 B
ou

nd
 

Bit Rate (bpp) 

Near-lossless CALIC

Proposed

JPEG 2000

(a) Hair

0

5

10

15

20

25

30

35

1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000

l ∞
 E

rr
or

 B
ou

nd
 

Bit Rate (bpp) 

Near-lossless CALIC

Proposed

JPEG 2000

(b) Plant

Figure 4.6: `∞ error bound of images (a) Hair and (b) Plant compressed at different
rates.
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Figure 4.6: `∞ error bound of images (c) Flowers and (d) Plants compressed at
different rates.
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Figure 4.6: `∞ error bound of image (e) Fruits compressed at different rates.
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Figure 4.7: PSNR of image (a) Hair compressed at different rates.
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Figure 4.7: PSNR of images (b) Plant and (c) Flowers compressed at different rates.
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Figure 4.7: PSNR of images (d) Plants and (e) Fruits compressed at different rates.
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4.1 Probability Distribution for Optimization

A difficulty in the optimization lies in the problem of finding the best possible dis-

tribution to optimize to. While the training set may be chosen to be generic enough

to represent all possible images, the distribution of each input image will still vary

to some degree from the distribution of the training set. As such, we cannot guaran-

tee optimality for each input image as much as we can for the training set used for

optimization.

We have thus experimented on adaptively optimizing the scalar quantizers based

on the probability distributions of the input image, which are approximated by Lapla-

cian distributions. However, the results, as displayed in Fig. 4.8, showed little to no

improvement over using scalar quantizers optimized on a training set.

Another main statistical mismatch in the probability distribution for optimization

is due to the nature of the predictive coding in near-lossless CALIC. Each prediction

error e is computed based on a knowledge of reconstructed neighbouring pixels as

shown below.

e = I −
{

GAP(Ĩneighbour) + µ(ê|ć)
}
, (4.2)

where Ĩneighbour is the set of reconstructed neighbouring pixels {Ĩn, Ĩne, Ĩnn, Ĩnne, Ĩnw,

Ĩw, Ĩww} with positions shown in Fig. 2.2, GAP is the gradient-adjusted predic-

tion operator, and µ(ê|ć) is the conditional sample mean of the quantized predic-

tion errors; all previously described in Chapter 2. Each neighbouring pixel is recon-

structed from their respective predicted value and quantized prediction error, i.e.,

Ĩneighbour = Îneighbour + êneighbour, where Ĩneighbour ∈ Ĩneighbour. Therefore, the distribu-

tion of prediction errors e changes depending on the quantizers in the algorithm.
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Figure 4.8: Performance comparison for test image 4.5d coded with quantizers op-
timized with distributions from the input image and distributions from the training
set for τ = 3 and τ = 8.
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We have implemented the most straightforward approach in obtaining the proba-

bility distribution of prediction errors, known as the Open-Loop (OL) approach, that

ignores the dependence of the distribution on the quantizers, and simply generates

the distribution of prediction errors e using only the original pixel values I of the

training set.

e = I −GAP(Ineighbour), (4.3)

where Ineighbour is the set of original neighbouring pixels.

In hopes of finding a better representation of the actual distribution for optimiza-

tion, we proceeded to test other approaches, the Closed-Loop (CL) approach proposed

in (Cuperman and Gersho, 1985) and the Asymptotic Closed-Loop (ACL) approach

proposed in (Khalil et al., 2001). The CL approach starts off with the OL approach

for the first iteration i = 1 to obtain the first set of M optimal quantizers, which we

will denote as Q(1). Then, with those quantizers, further iterations i = 2, 3, . . . are

preformed with the CL approach as shown below in (4.4) to obtain a hopefully more

accurate distribution of prediction errors e.

e(i) = I −GAP(Ĩ
(i)
neighbour),

where Ĩ
(i)
neighbour = {Ĩ(i)n , Ĩ(i)ne , Ĩ

(i)
nn, Ĩ

(i)
nne, Ĩ

(i)
nw, Ĩ

(i)
w , Ĩ(i)ww}

Ĩ(i) = GAP(Ĩ
(i)
neighbour) +Q(i−1)

(
I −GAP(Ĩ

(i)
neighbour)

)
Q(i−1) ∈ Q(i−1)

i = 2, 3, . . . (4.4)

For each iteration i > 1, Q(i−1) is the set of optimal quantizers found for distribution

e(i−1). The ACL approach, on the other hand, only generates prediction errors e(i)
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using predictions from the previous iteration (i− 1) as shown in Fig. 4.9 below and

(4.5).

Optimized
Quantization, Q

Gradient-Adjusted
Predictor (GAP)

Context Formation
& Quantization

-

+

e ê

ć

c

I

Ĩ

Î

ENCODER

Î

(i)

(i-1)

(i)
(i)

(i)

(i)

Figure 4.9: Schematic description of how the distribution of prediction errors e(i) is
obtained for each iteration i of the ACL approach, where Î(i) = GAP(Ĩ

(i)
neighbour).

e(i) = I −GAP(Ĩ
(i−1)
neighbour),

where Ĩ
(i−1)
neighbour = {Ĩ(i−1)n , Ĩ(i−1)ne , Ĩ(i−1)nn , Ĩ(i−1)nne , Ĩ(i−1)nw , Ĩ(i−1)w , Ĩ(i−1)ww }

Ĩ(i) = GAP(Ĩ
(i−1)
neighbour) +Q(i)

(
I −GAP(Ĩ

(i−1)
neighbour)

)
Q(i) ∈ Q(i)

i = 1, 2, . . . (4.5)

The approach starts off with Ĩ
(0)
neighbour = {In, Ine, Inn, Inne, Inw, Iw, Iww}, which are the

original pixel values I from the training set, and Q(1) as the set of quantizers optimized

for the distribution from the OL approach. For subsequent iterations i > 1, Q(i) is

the set of quantizers optimized for distribution e(i).

Table 4.1 displays the performance comparisons between the OL, CL and ACL

approaches for test image 4.5e with τ = 6 and γ = 20.2. It can be seen that the OL
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approach still gives the best distribution of prediction errors for optimization.

Table 4.1: Performance comparison for test image 4.5e coded with quantizers op-
timized based on distributions from the Open-Loop (OL), Closed-Loop (CL) and
Asymptotic Closed-Loop (ACL) approaches for τ = 6 and γ = 20.2.

Iteration i PSNR(dB) Rate(bpp) `2 distortion Weight

OL 1 38.40 0.86 9.40 26.8478

CL
2 38.29 0.87 9.64 27.1899
3 38.15 0.87 9.96 27.5892

ACL
1 38.18 0.86 9.89 27.3448
2 38.05 0.87 10.18 27.8477
3 38.15 0.87 9.96 27.5892

4.2 Context Quantization Optimization

As previously mentioned in Chapter 2, the scalar quantization performed on error

energy estimator ∆ to form coding context c was optimized to minimize the condi-

tional entropy of prediction errors. Rather than just minimizing the entropy, we also

considered a scheme to optimize the context quantization such that the Lagrangian,

i.e. the weighted sum of both the `2 distortion and the entropy, is minimized.

We optimize the context quantizer with a WDAG method similar to that described

in Section 3.3 with the exception of the `∞ constraint, and the addition of a limit to the

number of codecells to only M to obtain M coding contexts c. The nodes of the graph

now represent all possible values of ∆ to be quantized, where 0 ≤ ∆ ≤ N . Without

the `∞ constraint, there is no longer a size limit to each codecell. For a progressively

increasing number of codecells c, from 1 to M , the weights of the smallest weighted

paths Wc(0, z] are found for all endpoint nodes z, from c to N + 1− (M − c). In other
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words,

FOR all c from 1 to M

FOR each endpoint z from c to N + 1− (M − c)

IF c = 1

Wc(0, z] = w(0, z];

ELSE

Wc(0, z] = min
c−1≤y<z

{Wc−1(0, y] + w(y, z]};

ENDIF

ENDFOR

ENDFOR (4.6)

where M = 8 and w(a, b] is the Lagrangian weighted sum J(P , γ) of the scalar

quantizer optimized for all prediction errors e with conditional probabilities {p(e|∆) |

a < ∆ ≤ b}.

As discussed in Section 3.4, the weight of each edge w(a, b] can be computed

in linear time O(N), where N = 2B+1 − 1. To optimize the context quantization

however, we need to compute N2 weights, where N = 7(2B − 1) + 1 as the largest

possible value of ∆ calculated from (2.3). The computation of the weights of all

the edges thus requires O(N3) time. In addition to that, the inner loop in (4.6)

that computes the minimum weight paths runs M(N −M + 2) times, out of which,

(M − 1)(N − M + 2) times are required to compare (N − M + 2) path weights

when c > 1. With M as a constant much smaller than N , the computation time

to obtain the minimum weight path is therefore O(N2). This then yields a very
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high total complexity of O(N3 + N2), or simply O(N3) for the entire new context

quantizer optimization algorithm. Nevertheless, the huge additional complexity did

not offer an improved performance in PSNR or bit rate for most images as compared

to the original simpler context quantization in near-lossless CALIC. Tables 4.2 and 4.3

display the performance comparisons at τ = 3 for γ = 1.5 and γ = 2.0 respectively.

Table 4.2: Performance comparison between the original and new context quanti-
zation for τ = 3 and γ = 1.5, where the weights in bold indicate better overall
performance.

Test Image
Original Context Quantization New Context Quantization
`2 Distortion Rate Weight `2 Distortion Rate Weight

Hair 1.3247 1.8996 4.1741 1.4128 1.8751 4.2255
Plant 1.1573 2.4617 4.8499 1.1956 2.4471 4.8663

Flowers 0.9912 2.6197 4.9208 1.0428 2.6048 4.9501
Plants 0.7501 3.6666 6.2501 0.7438 3.6646 6.2408
Fruits 1.3244 1.8114 4.0415 1.4135 1.7910 4.1000

Table 4.3: Performance comparison between the original and new context quanti-
zation for τ = 3 and γ = 2.0, where the weights in bold indicate better overall
performance.

Test Image
Original Context Quantization New Context Quantization
`2 Distortion Rate Weight `2 Distortion Rate Weight

Hair 1.7576 1.6712 5.1001 1.8485 1.6421 5.1326
Plant 1.8554 2.1020 6.0594 1.8753 2.0968 6.0690

Flowers 1.6970 2.2597 6.2163 1.7605 2.2532 6.2669
Plants 1.8460 3.0825 8.0110 1.8112 3.0905 7.9922
Fruits 1.7696 1.5938 4.9572 1.8636 1.5803 5.0241

4.3 Practical Considerations

The proposed approach implies optimization of the quantizers, but performing it on-

line increases the complexity of the encoder. Therefore, in order to keep the encoding
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complexity low, one option is to perform the optimization offline on a training set

and store a number of such optimized M -tuples of quantizers at the encoder. The

number of values of τ and rates covered can be chosen taking in consideration par-

ticular requirements of the application. For each M -tuple of quantizers, the entropy

RT achieved on the training set or the average bit rate obtained on coded images can

be additionally stored in order to help estimate the achievable rate for a particular

image. If there are some Km number of codecells for each context cm, we only need

to store the eight values of {(Km − 1)/2}8m=1, and half the number of codewords

and codecell upper boundaries,
∑8
m=1 (Km − 1)/2 each, due to the symmetry of the

quantizer. For an 8-bit image, the constant values stored in memory thus occupy

(8 +
∑8
m=1 (Km − 1)) bytes in total, where Km ≤ N . So an 8-bit image would only

require at most a 4kB look-up table for each allowable rate.

Out of the stored M -tuples of codebooks the user chooses one according to the

specifications of the applications. This raises the question of how to accurately and

effectively estimate the bit rate achieved for a particular image from the value RT .

Unfortunately, we do not have yet a low complexity solution to this problem, which

is left for future work. On the other hand, if the specification on the target bit rate

is rather a looser qualitative requirement, such as ”low”, ”medium” or ”high” bit

rate, then selecting an appropriate M -tuple of quantizers could easily be done. For

instance, if the specified `∞ constraint is τ and the used bit rate has to be low, the

obvious choice is the M -tuple operating at the smallest rate, i.e., with RT = R0(τ)

or close to this rate. On the other hand, if we can afford a high bit rate, the M -tuple

operating at rate RT ≈ R0(τ − 1) can be chosen, while for moderate bit rate, a value

RT ≈ (R0(τ) +R0(τ − 1)) /2 can be selected.
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In some applications, such as image archiving, however, the encoder can afford

high complexity while decoding complexity still has to be low. In such cases, the

proposed technique can be used with an accurate rate control by trying several M -

tuples of quantizers among the stored ones in a bisection search fashion until a rate

close enough to the target rate is achieved. The online optimization with a training

set collected from the image at hand can also be incorporated at the encoder.
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Chapter 5

Conclusion

To improve upon the higher bit rate performances of both `2 and `∞-based image

coding techniques already existing in literature, we proposed a new `2-optimized

variant of near-lossless CALIC, which is a benchmark of good image codecs with an

`∞ bound. Our proposed codec allows for a wide range of achievable rates for each

`∞ bound, unlike pure `∞-based image coding methods with only one achievable rate

per `∞ bound. At the cost of only slight increases in bit rate, the `2 optimization

gives our codec the ability to significantly reduce structured errors, such as speckles

and contours commonly found in pure `∞-based decoded images. Not only are struc-

tured artifacts smoothed out by the `2 optimization, the `∞ bound in our codec also

maintains a maximum error bound on each pixel that is always lower than that of

pure `2-based coded images at the same bit rate.

Near-lossless CALIC employs context-based predictive coding followed by uniform

scalar quantization of residual errors. The idea of our proposed approach is to replace

the uniform quantizer by context-based `2-optimized quantizers. The optimization

criterion is to minimize the `2 distortion subject to a constraint on the entropy while
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maintaining a strict `∞ error bound. The proposed approach greatly increases the rate

granularity while guaranteeing both high `2 and minmax fidelity for the whole range

of achievable bit rates at no additional computational cost. Experimental results

demonstrate that the technique noticeably outperforms JPEG 2000 in minmax fidelity

for all achievable bit rates. Furthermore, above certain bit rates, even bit rates as low

as 1.1 bpp, the code also outperforms JPEG 2000 in `2 fidelity without compromising

its superior `∞ error bound.

While our proposed coding method can achieve a wide range of bit rates, it does

not guarantee the same bit rate for every image. For each set of `2-optimized quan-

tizers, the `∞ error bound is fixed, but the attainable bit rate varies depending on

the image being coded. Images with many smooth regions tend to achieve lower rates

than images with many sharp contrasts and gradients. Even though the sets of quan-

tizers can easily be ordered based on attainable bit rates, the complexity in searching

for the best set of quantizers to obtain the rate closest to a target rate is high. A

better solution to accurately and effectively estimate or set the bit rate of each coded

image is thus left for future research.
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Appendix A

Context-based Quantizer

Optimization Algorithm

A.1 Quantizer Optimization

FOR each context cm

{Calculate Lagrangian j(C, γ) = w(a, b] for each codecell C}

INIT array of codewords x(C), distortions d(C) and entropies r(C)

for all possible codecells C to 0

READ array of p(en|cm) for all en ∈ E

FOR each cell size s from 0 to 2τ

FOR each lower boundary a from 0 to N − 1− s

b = a+ 1 + s;
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p(C) =
∑
en∈C

p(en|cm);

IF p(C) 6= 0

x(C) = CODEWORD(a, b, p(C), p(en|cm), τ);

d(C) =
∑
en∈C

p(en|cm)(en − x(C))2;

r(C) = −p(C) log2 p(C);

ELSE

x(C) = b(b+ a+ 1)/2c;

d(C) = 0;

r(C) = 0;

ENDIF

w(a, b] = d(C) + γr(C);

ENDFOR

ENDFOR

{Find minimum weight paths from − (2B − 1) to en}

INIT array of N minimal path weights W (0, b] and lower boundaries a to 0

FOR each z from 1 to N

IF z > 1

W (0, z] = min
y>0, z−(2τ+1)≤y<z

{W (0, y] + w(y, z]};

a(z) = y; {where y is the value achieving the above minimum}

IF z ≤ (2τ + 1) AND w(0, z] < W (0, z]
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W (0, z] = w(0, z];

a(z) = 0;

ENDIF

ELSE

W (0, z] = w(0, z];

a(z) = 0;

ENDIF

ENDFOR

{Find optimal partitions}

INIT number of codecells Km = 0

INIT upper boundary b = N

WHILE upper boundary b > 0

STORE upper boundary b

STORE codeword x

Km = Km + 1;

b = a(b);

ENDWHILE

STORE number of codecells Km

ENDFOR (A.1)
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A.2 Codeword Optimization

FUNCTION x = CODEWORD (a, b, p(C), p(en|cm), τ)

x =
b∑

n=a+1

p(en|cm)
en
p(C)

;

x = round(x);

IF (x− ea+1) > τ

x = ea+1 + τ ;

ELSEIF (eb − x) > τ

x = eb − τ ;

ENDIF

IF x < ea+1

x = ea+1;

ELSEIF x > eb

x = eb;

ENDIF

ENDFUNCTION (A.2)
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