
Modelling Fault Tolerance using Deontic Logic:

a case study

Modelling Fault Tolerance using

Deontic Logic: a case study

By

Jamil Ahmed Khan, B.Sc. Engg.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree of

Master of Science

Department of Computing and Software

McMaster University

© Copyright by Jamil Ahmed Khan, November, 2012

All Rights Reserved

ii

Master of Science (2012) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Modelling Fault Tolerance using Deontic Logic: a case

study

AUTHOR: Jamil Ahmed Khan

B.Sc. Engg.

(Computer Science and Information technology)

Islamic University of Technology,

Gazipur, Bangladesh

SUPERVISOR: Dr. T. S. E. Maibaum

NUMBER OF PAGES: xii, 115

To my mom and dad

Abstract

Many computer systems in our daily life require highly available applications

(such as medical equipment) and some others run on difficult to access places

(such as satellites). These systems are subject to a variety of potential failures

that may degrade their performance. Therefore, being able to reason about

faults and their impact on systems is gaining considerable attention. Existing

work on fault tolerance is mostly focused on addressing faults at the program-

ming language level. In the recent past, significant efforts have been made

to use formal methods to specify and verify fault tolerant systems to provide

more reliable software. Related with this, some researchers have pointed out

that Deontic Logic is useful for reasoning about fault tolerant systems due to

its expressive nature in relation to defining norms, used to describe expected

behaviour and prescribing what happens when these norms are violated.

In this thesis, we demonstrate how Deontic Logic can be used to model

an existing real world problem concerning fault tolerance mechanisms. We

consider different situations that a vehicle faces on the road and the conse-

quent reactions of the driver or vehicle based on good and bad behaviour. We

got the idea and motivation for this case study from the SASPENCE sub-

project, conducted under the European Integrated Project PReVENT. This

sub-project focuses on a vehicle’s behaviour in maintaining safe speed and safe

distance on the road. As our first modelling attempt, we use a Propositional

Deontic Logic approach, to justify to what extent we can apply this Logical

approach to model a real world problem. Subsequently, we use a First Or-

der Deontic Logic approach, as it can incorporate the use of parameters and

quantification over them, which is more useful to model real world scenarios.

iv

We state and prove some interesting expected properties of the models using

a First Order proof system. Based on these modelling exercises, we acquired

different engineering ideas and lessons, and present them in this thesis in order

to aid modelling of future fault tolerant systems.

v

Acknowledgements

This thesis would not have been possible without the support of many people.

First of all, many thanks to my supervisor, Dr. Thomas Maibaum, who has

always been very flexible to me and have guided me throughout the whole

research with his patience and knowledge. Without him this thesis would not

have been completed or written. Special thanks to Pablo Castro for his valu-

able advice and guidance during this thesis. I cannot help thanking Dr. Alan

Wassyng and Dr. Mark Lawford who offered valuable advice and comments

during our weekly group meeting. I also want to thank my colleagues, Ramiro

Demasi and Valentin Cassano for their help during my research work. Finally,

thanks to my parents and numerous friends who endured this long process

with me, always offering support and love.

vi

Contents

Abstract iv

Acknowledgements vi

Contents ix

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Why Deontic Logic . 2

1.3 Overview of the Problem . 2

1.4 Thesis Organization . 5

2 Fault Tolerance Mechanisms 7

2.1 Fault Tolerance . 7

2.2 General Techniques at the concrete level 8

2.3 Transformational Approaches 10

2.3.1 Program transformation for fault modeling 11

2.3.2 Specification transformation for fault modelling 12

2.4 Process Algebra . 14

2.5 Specification Language . 15

2.6 Deontic Logic . 17

2.7 Summary . 19

vii

viii CONTENTS

3 Deontic Logic 20

3.1 Deontic Logic . 20

3.2 Deontic Action Logics . 21

3.3 Deontic Temporal Logic: A new approach 23

3.4 A Propositional Deontic Logic (DPL) 24

3.4.1 DPL with Time . 28

3.5 First-Order Deontic action Logic 32

3.5.1 Syntax and Semantics 32

3.6 Summary . 35

4 Problem Description 36

4.1 Scenarios . 36

4.2 Problem Description . 40

4.2.1 Requirements . 42

5 Model in Propositional Deontic Logic 46

5.1 Assumptions . 47

5.2 Problem formalization . 47

5.2.1 Propositions . 47

5.2.2 Actions . 49

5.2.3 Violations . 49

5.2.4 Axioms . 49

5.2.5 Violations and Recovery Mechanisms 53

5.3 Summary . 59

6 Model in First Order Deontic Logic 60

6.1 Assumptions . 61

6.2 Some notation . 62

6.3 Problem formalization . 62

6.3.1 Types . 62

6.3.2 Constants . 62

6.3.3 Variables . 63

6.3.4 Functions . 63

6.3.5 Predicates . 64

CONTENTS ix

6.3.6 Actions . 66

6.3.7 Violations . 66

6.3.8 Axioms . 67

6.3.9 Violations and Recovery Mechanism 77

6.3.10 Cut-in and Cut-out vehicle 81

6.3.11 Properties . 84

6.4 Summary . 87

7 Engineering Lessons and Discussion 88

7.1 Engineering Lessons and Discussion 88

7.1.1 How easy is it to write the specifications? 88

7.1.1.1 Extracting requirements from the problem de-

scription . 89

7.1.1.2 Converting requirements into a high level spec-

ification . 90

7.1.2 How easy is it to define and prove properties? 92

7.1.3 Possible recovery scenarios from a violation state . . . 93

7.1.4 Modelling the interaction between the agent and the en-

vironment . 95

7.1.5 How can we model a scenario with multiple violations? 97

7.1.6 Comparing different sub-problems 99

7.1.7 The first order approach versus the propositional approach 99

7.2 Summary . 100

8 Conclusion and Future Work 102

8.1 Contribution . 102

8.2 Future Work . 103

A Properties and proofs 105

Bibliography 111

List of Tables

4.1.1 Scenarios for safe speed and safe distance 39

x

List of Figures

6.1 Distance after single action execution 73

6.2 Distance after parallel action execution 73

7.1 Multiple violations and different recovery action 97

7.2 Multiple violations and single recovery action 97

xi

Chapter 1

Introduction

1.1 Motivation

Existing systems are highly complex, have lots of components interacting with

each other and the environment and are highly susceptible to faults. These

faults disrupt the functionality and availability of software systems and some-

time generate serious consequences costing time, money and even human lives.

As a result, fault tolerance is, and has been, a field of active research in the

software industry. Fault tolerant systems can continue running even in the

presence of faults and have the capability to recover from any unexpected

behaviour during their execution. Most existing software systems implement

fault tolerance in low the level programming phase through code replication,

voting algorithms and exception mechanisms. But it has been demonstrated

that modelling and mathematical reasoning at the design level is very sig-

nificant and valuable for developing fault tolerant critical systems, generally

saving on costs as compared to the approach that introduces fault tolerance

at a later development stage. In this thesis we aim to undertake a case study:

high level modelling of an existing real world problem where fault tolerance is

a major concern.

1

2 1. Introduction

1.2 Why Deontic Logic

In recent years, several researchers have proposed to use formal methods with

fault tolerance techniques to ensure reliability of software systems. Extensive

work on formal specification and model checking has been done in this area

and demonstrated these methods are very useful to develop high quality soft-

ware. But mostly these methods are designed to deal with fault mitigation

or fault elimination in software systems and are not good enough to structure

fault tolerant application due to lack of modular reasoning over violations.

Consequently some researchers ([CJ96, WM93, MT84, KQM91, Kho98]) have

pointed out that deontic logic, a variation of logic designed for the study of

norms, is useful for reasoning abstractly about fault-tolerant systems. The

notion of permission and obligation is naturally embedded within this logic

and widely used by philosophers and lawyers to investigate reasoning about

norms. This logic is expressive enough to characterize faulty scenarios and

distinguish good and bad behaviour. Violations and recovery mechanisms can

be effectively defined within this logical formalism. In this thesis, we focus

on using this logical framework to specify a real world example, try to formu-

late different behaviours, model violation scenarios and recovery mechanisms

to overcome from these bad behaviours. Based on this work, we also try to

derive some engineering lessons about the obstacles to be overcome and the

ideas required to characterize and solve high level fault tolerance problems.

1.3 Overview of the Problem

In this thesis our case study focus is to model the behaviour of moving vehicles.

We have studied some real world examples related with automotive applica-

tions and found that the scenarios related with a moving vehicle exhibit very

interesting problems to formalize as there are lots of violation scenarios with

which deontic logic is very much capable to deal with. We got the idea and mo-

tivation for this problem from [MAH05], [FTO05]: SASPENCE sub-project

which ran under the European Integrated Project PReVENT . PReVENT is

supporting the European Commission actions that promote the development,

1. Introduction 3

deployment and use of Intelligent Vehicle Safety Systems in Europe. In PRe-

VENT, a number of sub-projects are proposed in different function fields: Safe

Speed and Safe Following, Lateral Support and Driver Monitoring, Intersec-

tion Safety, Vulnerable Road Users and Collision Mitigation [MAH05].

The PReVENT sub-project SASPENCE, following the common objectives

of the functional field named Safe Speed and Safe Distance, aims at devel-

oping and evaluating an innovative system able to implement the Safe Speed

and Safe Distance concept. The main motivation is to aid the driver in avoid-

ing accident situations related to excessive speed or too short ahead way. This

project develops an expert system with radars and sensors that help and assist

drivers in maintaining safe speed and distance. Thus, the system is supposed

to cooperate seamlessly with the driver, suggesting the proper speed for the

given conditions (such as: dangerous curve ahead, frontal obstacles, etc.) in

order to prevent risky and dangerous situations (due to incorrect and inappro-

priate distance or excessive speed) and, lastly, to avoid a collision [MAH05].

Being motivated by this sub-project, we want to apply the Deontic Logic

formalism to model the safe speed and safe distance concept of a moving

vehicle. This SASPENCE sub-project gave us ideas related to the safe speed

and safe distance feature in automotive system. This project defined safe

speed based on the road structure, weather conditions and road conditions

[FTO05]. Similarly we also see roads and highways have some speed limitations

like maximum speed limitation and minimum speed limitation and a

vehicle must follow or is bound to maintain those limitations. These limitations

often also depend on road conditions and road structure. Here in this thesis we

are not focusing on how to determine this speed limitations, rather our focus

is on how a vehicle adheres to these limitations, what may happen if they

violate these limitations and how they can recover from the violation. On the

other hand, the concept of safe distance relates to the distance that every

vehicle must maintain from its obstacles [FTO05] i.e., the immediate front

and rear vehicles. Maintaining safe distance ensures that a vehicle will not

crash with its front vehicle even if the front vehicle suddenly stops [FTO05].

The SASPENCE project presents a speed and safe distance relationship in

4 1. Introduction

[MAH05]. It defines the safety distance based on the current speed of a vehicle,

i.e., the safety distance of a vehicle when it is travelling at high speed and at

low speed differs. It can also happen that opponent (i.e. immediate front and

rear) vehicle’s speed may play an important role in defining the safe distance.

Like the safe speed concept, we will also use the safe distance concept in

our formulation and will see how vehicles maintain distance limitations with

respect to other vehicles and the consequences when the limitations are not

maintained.

Cut-in vehicle is another important concept which has a very close re-

lationship with safety distance. A vehicle that joins at the host vehicle’s (a

particular vehicle of our concern) lane from the adjacent lane and, takes im-

mediate front or rear position with respect to the host vehicle, is considered as

cut-in vehicle. The SASPENCE project implements a safety indication system

for cut-in vehicle and suggests the host vehicle about required actions based

on the cut-in vehicle’s speed and distance. In this work we will also try to

see how a cut-in vehicle changes the current condition of our focused (host)

vehicle.

The SASPENCE sub-project mostly implements the safety indication sys-

tem based on the current speed and distance with respect to other vehicles.

On the other hand, our focus in this work is to apply Deontic Logic to see

how a vehicle maintains the safe speed and safe distance restrictions, when

they violate these limitations, how they can recover from these violations and,

lastly, the possible situations that can arise if they cannot recover from some

violation.

The SASPENCE project defined some scenarios in [FTO05] related with

safe speed and safe distance. We have also obtained ideas about the situations

that vehicles may face on the road and how they should react from some

research work at the National Highway Traffic Safety Administration

(NHTSA). Many scenarios are described in [JJFN07] where they present

crash imminent test cases. They also analysed pre-crash scenarios in their

work. We have merged some of these ideas with the SASPENCE concept and

1. Introduction 5

also added our general ideas on vehicle motion to formulate our scenarios.

1.4 Thesis Organization

In chapter 1 we have presented a brief introduction to our work. We mentioned

the motivation of this work, the reasons for choosing deontic logic as our

modelling language and an overview of the problem that we are formulating

in this thesis. This problem overview also presents a brief history of how we

developed the concepts about scenarios that we are modelling.

Fault tolerance is the major concern of our work. We have studied some

background literature on fault tolerance mechanisms. Here we will see how

fault tolerance is currently achieved during the low level implementation phase

and, occasionally, at the high level design phase. In Chapter 2 we present a

brief discussion of these different fault tolerance approaches.

Deontic logic is very effective in modelling fault tolerant systems and in

this thesis we are using deontic logic for modelling a real world problem. In

chapter 3 we discuss deontic logic and mostly our focus in this chapter is to

present the propositional and first-order deontic logic approach that Pablo

Castro has developed in his Ph.D. thesis and subsequent work. We will use

both the propositional and first-order approach in our modelling.

In chapter 4 we describe in detail the problem that we are modelling is this

thesis. Here we discuss the scenarios in which a moving vehicle engages and

the features and requirements that our model should have.

Chapter 5 presents our first model using the propositional deontic logic

approach. This model is somewhat simpler than the model in the first order

deontic logic approach as in this model we only consider the motion of a

focused vehicle. Though sometimes a vehicle’s motion depends on another

vehicle, here we avoided those situations. Here our consideration is that a

vehicle is responsible for all the situations that it faces, but in reality it is not!

6 1. Introduction

Chapter 6 presents our second model in first order deontic logic. The reason

for choosing the first order deontic logic approach is that in the propositional

approach we cannot model complex concepts where quantification over param-

eter values is necessary. In this chapter we implement a much more advanced

model than the model in chapter 5. Here we consider both the motion of a

focused vehicle and the possible front and rear opponent vehicles. The idea

behind this consideration is that the situations a focused vehicle faces (for

example the violations) depend on both the focused vehicle and the other im-

mediate front or rear vehicles. In this chapter we also present some expected

properties of the system and prove that these properties are satisfied.

During these modelling exercises we have faced different obstacles and fol-

lowed different approaches to overcome them. We also found some merits and

demerits of our modelling approaches. In chapter 7 we present a description

of all the obstacles, ideas and lessons that we have encountered during our

modelling and analysis exercises. We are hoping that this knowledges will aid

others in modelling fault tolerant systems.

In chapter 8 we conclude our thesis. Here we present the contributions

that we have made in this work and present some ideas for future work.

Chapter 2

Fault Tolerance Mechanisms

2.1 Fault Tolerance

Many computer systems in our daily life require high availability of applica-

tions (for example, medical equipment) and some others run on difficult-to-

access places (for example, satellites). These systems are subject to a variety

of potential failures that may endanger their performance. We have seen in the

literature that there exist several techniques to implement fault-tolerance (e.g.,

code replication, voting algorithms and exception mechanisms), but most of

them are applied during the implementation phase. In fact, obtaining a fault

tolerant system cannot be achieved just by adding redundant modules to a

system at this stage, additionally, systematic techniques need to be used to

determine its correct behaviour at design time.

Existing work on fault tolerance is mostly focused on faults at the pro-

gramming language level, e.g., [Tp00, XSS, Ram07]. However, in the last

few decades, significant effort has been made to use formal methods such

as program transformations [Gär98, PJ94, AK98], process algebra based ap-

proaches [BFS00, JL93, GLM05], and specification languages [LM94, Abr06]

to specify and verify fault-tolerant systems to provide more reliable software.

Some researchers [CJ96,WM93,MT84,KQM91,Kho98] have proposed that de-

ontic logic is very useful for reasoning about fault-tolerant systems due to its

strong focus on dealing with norms.

7

8 2. Fault Tolerance Mechanisms

2.2 General Techniques at the concrete level

There are much work on fault tolerance techniques at the concrete level (such

as [Tp00], [XSS], [Ram07]). The author in [Tp00] categorizes software fault

tolerance in single-version and multi-version techniques.

Single-version fault tolerance techniques use redundancy on a single version

of software for error detection and recovery. He considers error detection,

exception handling, checkpoint and restart, process pairs and data diversity

as single-version fault tolerance techniques.

On the other hand, multi-version fault tolerance techniques use more than

one version of a software that execute either in parallel or sequentially. Re-

covery block, retry block, N-version programming, N-copy programming, N-

self checking programming are examples of multi-version fault tolerance tech-

niques. In [XSS] the above mentioned techniques are categorized in terms of

design diversity and data diversity. Separate design and implementation is

done to obtain the same service in the design diversity category. The goal is

to minimize the occurrence of identical errors from different modules. Data di-

versity uses related sets of points in the program data space. A decision system

determines the resulting output while same software uses those points in order

to find the changes in execution conditions. Recovery block, N-version pro-

gramming, N-self checking programming fall to the design diversity category

and retry block and N-copy programming fall to the data diversity category.

Now we will discuss some of these techniques.

Assertion.

An assertion is a predicate placed in a program with the intention that the

predicate is always true at that place. If the assertion becomes false, then it

has to be recognized that something erroneous has occurred and corresponding

action has to be taken for recovery [Ram07]. There are many programming

languages that support assertions (for example pre and post conditions) and

the major benefit is that it can be used to detect errors immediately and

directly.

2. Fault Tolerance Mechanisms 9

Checkpoint and Restart

This is a backward recovery approach where the variables of a system, its

environment, register values, and control information are saved periodically

[Tp00,Ram07] in store. The system restarts from a safe state if it detects any

fault. This approach is highly applicable in case of unanticipated faults and if

there is any unrecoverable action in the system. Restart can be done in static

and dynamic ways. A system restarts from a predetermined checkpoint in a

static restart system. And in a dynamic restart mechanism checkpoints are

taken dynamically based on some timing or optimization rules [Tp00].

Recovery block

Recovery block is a fault tolerance approach where more than one version

(normally two) of a segment of a software is used with check points and re-

covery ([Tp00], [XSS], [Ram07]). A check point is taken before the system

executes that specific segment. An activation module determines if the system

will take primary alternate execution (most efficient execution) or secondary

alternate execution (in case of error in the primary alternate block). The sys-

tem restores the checkpoint state if any fault occurs in the secondary alternate

block and there is no further block to execute.

N-version programming

In the N-version programming technique multiple versions of the same

program are implemented satisfying the same specification ([Tp00], [XSS],

[Ram07]). A task is executed in all the versions in parallel and a voting mech-

anism determines the result based on majority voting or some other selection

rules.

N-self Checking programming

N-self Checking programming was developed by Laprie et. al. where mul-

tiple versions of the same program are used as in N-version programming, but

10 2. Fault Tolerance Mechanisms

an additional self checking mechanism is added to those versions [Tp00], [XSS].

Separate acceptance tests can be added to each version [Tp00] or a single ac-

ceptance test can check the result of two versions at the same time [XSS] (if

N is even). A selection module determines the final result based on outputs

gathered from all the versions.

N-copy programming

This technique is a data diverse complement of N-version programming

where the programs run in parallel in several computers or run sequentially

in a single computer. This technique uses a decision mechanism and forward

recovery to accomplish fault tolerance ([XSS], [Ram07]).

Retry block

The retry block is a major data diversity technique which uses acceptance

tests and backward recovery to accomplish fault tolerance ([Tp00], [XSS],

[Ram07]) . A watchdog timer is added to the system module and triggers a

backup algorithm when the original algorithm fails to produce an acceptable

result in a specified time. This triggering approach ends if the system finds an

acceptable result or the time expires.

Some newer fault tolerance techniques are Adaptive N-version program-

ming, Fuzzy voting, Reconfiguration and Rejuvenation, etc. [XSS]. These are

either improvements of traditional fault tolerance techniques or based on some

new concepts.

2.3 Transformational Approaches

The use of transformations in fault tolerance usually built on the view that a

fault-tolerant system is composed of a basic, fault-intolerant system together

with a set of special fault-tolerant components [PJ94, AK98]. As transfor-

mations are often understood as change of appearance to improve properties,

adding fault tolerant components to a system to improve performance or ro-

bustness can be viewed as a system transformation.

2. Fault Tolerance Mechanisms 11

2.3.1 Program transformation for fault modeling

In Program transformation, a fault-intolerant program is transformed to a fault

tolerant program by adding necessary fault detection and correction compo-

nents.

Early work on transformation for fault tolerance has focused on recov-

ery mechanisms. For instance, in [PJ94, LJ92, LJ93], they used the method

of check-pointing with forward and backward recovery. For the detection of

faults, they assumed that this was accomplished by hardware mechanisms us-

ing a boolean flag which is raised indicating that a fault has been detected.

After the detection, a recovery action is invoked in order to handle this fault.

In this case, the first transformation for a given (fault-intolarent) program A

is to model the detection of faults via checkpoints and this is done by adding

additional variables and a timer to the program. The second transformation

is to model correction mechanisms to obtain a fault-tolerant program. Recov-

ery actions are invoked immediately to restore the program from a checkpoint

state when the boolean flag has been raised indicating the presence of a fault.

The associated recovery transformations R augments the original program P

with the appropriate recovery actions.

Kulkarni and Arora [AK98,AK] have defined detector and corrector com-

ponents in a certain way to separate the fault-tolerant mechanisms from the

underlying program. A detector is an abstract component which signals that

some predicate P holds on the system states. Similarly, a corrector compo-

nent is implemented using a predicate Q which is to be imposed on the system

state.

Cristian [Cri85] proposed the idea of transient fault which is modelled by

adding a state transition of the form

true → state := 〈random state〉

causing a transition to an arbitrary state. The method has been incorpo-

rated into a transformation approach by Liu and Joseph [LJ92,LJ93]. In this

12 2. Fault Tolerance Mechanisms

aproach the boolean flag f does not only signal a fault, but also disables all

the normal actions of the program. This results in a fault transformation F

as follows: a new “error” variable f is added to the set of variables of P and a

special set of fault actions is added to the set of actions of the program. The

guards of all original actions are augmented with ¬f as an additional conjunct.

So, applying the transformation F (A) resembles the program running under

the fault assumptions encoded in F . The new program A′ = F (A) is called

the fault-affected version of A.

2.3.2 Specification transformation for fault modelling

Usually specification transformations for fault modelling will weaken the speci-

fication. In [Gär99], the author defines this as enlarging the behaviour property

of faults. A behaviour over V (is a set of variables) is an infinite sequence of

states, σ = s0, s1, s2, ...; and, a property is a set of behaviours. In general, the

task of specifying a specification transformation given a failure mode is not

easy and it can affect the properties defined in the original program.

Shepers describes the notion of specification transformation and calls it a

fault hypothesis. This is defined as a reflexive relation χ on process behaviours.

Whenever a pair of behaviours σ1 σ2 is in χ, then σ2 is the fault affected version

of σ1. The specification transformation F (S) can then be easily defined as

F (S) = {σ2 | σ1 ∈ S ∧ (σ1, σ2) ∈ χ}

It is a well-known fact that the original specification S of a (fault-intolerant)

system may not be solvable under a sufficiently hostile fault assumption. Aug-

menting with fault-tolerant components may result in a system which satisfies

a property close or equal to S. So, a specification transformation F should re-

flect this, and also be able to derive the fault tolerant specification S ′ = F (S)

which is solvable under the fault assumption encoded in F .

Gärtner argues that the set of behaviours of a system can be described as

follows [Gär99]:

2. Fault Tolerance Mechanisms 13

Prop(A) = Prop(I) ∩ Prop(δ) ∩ L

where I is the initial predicate, δ is the transition relation and L is the

system’s liveness property. Given this formalization, fault assumptions can be

added as actions, as a consequence this will add new state transitions obtaining

an augmented transition relation δ′. In general, the fault assumption can be

considered as another system property like the conjunction between Gs a safety

property and Gl a liveness property which must hold. Thus, the properties of

the transformed program F (A) are calculated as: :

Prop(F (A)) = Prop(I) ∩ Prop(δ′) ∩ Gs ∩ Gl ∩ L

Lamport and Abadi argue that Gl can be incorporated into the system’s

liveness property L. Therefore, the fault assumption will be defined as a safety

property. As a result, the specification transformation F can be simplified:

Prop(F (A)) = Prop(I) ∩ Prop(δ′) ∩ Gs ∩ L

The fault tolerance specification S ′ may be equal to the original correctness

specification S for the fault-free case or some acceptable degraded version of

it. So different versions of S ′ can be defined. If S = S ′ then it is called masking

fault tolerance due to the fact that the effects of faults are transparent at the

system interface. If the case is that S ′ is weaker than S, then it is called

fail-softness or gracefull degradation.

Finally, transformation is a general notion of change. Several works ap-

ply transformations to the original program, interfering with the “normal”

behaviour of the underlying program. Also, there are many works where the

original program is transformed in an elegant way via specialized components

for detection and correction of faults, and finally composed with all the original

components of the system.

14 2. Fault Tolerance Mechanisms

2.4 Process Algebra

Process algebra defines a system by defining a set of processes communicating

with each other. In the literature we have seen that conventional process alge-

bra defines a fault tolerant system where faulty actions are modelled like nor-

mal actions except that they introduce unexpected behaviour. Conventional

process algebra does not have any sort of specialized operators for modelling

faults and explicit fault recovery mechanisms are not discussed that much in

the literature. Most of the work done in this sector design fail safe systems by

encode fault tolerant mechanisms within the system design.

In [BFS00] [GLM05] the authors used replicas of the original system or the

possibly failing system (PFS) as a fault tolerance technique. In their approach

a system is composed of multiple identical components (called replicas) con-

nected with a voter. The idea of adding multiple replicas is to get correct

output from other components when a fault occurs in one or multiple compo-

nents. The voter works as a detector and corrector component in the system

and gets output from all the replicas including the faulty one. It is important

to mention that Bernardeschi considered only those faults that occur within

the system and did not include environmental effects generating faults.

In CCS/Meije process algebra a fault tolerant redundant system with n

replicas is defined as: (ξ1 ‖ . . . ‖ ξn ‖M) \A. Here ξi denotes the i-th replica

of the fault tolerant system; M = (mi , 1 ≤ i ≤ k) denotes the set of extra

components added by the fault tolerance technique and A = (aj, 1 ≤ j ≤ s),

aj /∈ F denotes the synchronization actions other than faulty actions (denoted

by F) between ξi and M .

As in the other process algebra approaches, the fault tolerance mecha-

nism is encoded within the system design, the verification of the fault tol-

erant system is performed based on the assumptions of fault occurrences.

Bernardeschi [BFG02] captured the additional possible ways of fault occur-

rences by a further process called the fault hypothesis (FH) where all the

2. Fault Tolerance Mechanisms 15

faulty actions of F are the actions of FH(P). So the fault tolerant sys-

tem design under a fault hypothesis (HFTSD) of a system P is defined as :

HFTSD(P) = FTSD(P) || FH(P) \F \ other− actions, where FTSD(P)

denotes the fault tolerance system design of a system P and other − actions
denotes the set of actions other than the faulty actions.

In [GLM05] Gnesi used the CCS process algebra for modelling a fault

tolerant system. In her approach the system works as an open system and

can interact with the environment. It is important to mention that she did

not impose any constraint on the fault assumption model and decided that it

would be characterized by the environment. The environment FF works as a

fault injector and it can inject any type of faults to the system via the actions

from F . So the scenario she proposed is: (P#
F ‖ FF) \F where P#

F is the

fault tolerant system. Here the occurrences of faults are always introduced

by the environment FF which is totally separate from the processes within

the system and this sort of separation might be helpful for model checking.

Unlike Bernardeschi, Gnesi used µ-calculus formulas for model checking of the

system.

2.5 Specification Language

Specification languages are formal languages that describe a system at a much

higher level of abstraction than programming languages and are mostly used

during system analysis, requirement analysis and system design. Several for-

mal languages and frameworks have been used to formalize and to prove prop-

erties of specific examples of fault-tolerant systems. These do not have any

special construct for modelling fault-tolerant systems in terms of differences

between correct, expected or ideal behaviour and incorrect, unexpected or ab-

normal behaviour. Hence, these features are encoded using ad-hoc mechanisms

as part of the general design.

Some of the well-known case studies formalized are the Byzantine problem

and a train system controller in TLA+ [LM94] and Even-B [Abr06] respec-

tively.

16 2. Fault Tolerance Mechanisms

TLA+, developed by Lamport and Merz, is a complete specification lan-

guage based on TLA (Temporal Logic of Actions). This was developed for

specifying and verifying concurrent and distributed systems enabling the ex-

pression of liveness and safety properties. The semantics of TLA is based on

states and behaviours. TLA+ has no special constructs that can be used to

specify fault tolerant systems explicitly. Rather it is a specification language

based on temporal formulae where fault tolerance mechanisms are encoded

within the specification. In [LM94] Lamport and Merz used TLA+ to specify

and verify a well known fault tolerance problem called the Byzantine Generals

problem where they encoded all the fault tolerance mechanisms in specifying

the system. Boolean flags and voting mechanisms are used in this work for

fault detection and recovery.

Another well-known example which is the object of active research ([HG93,

AB08, Abr06, ABH+10]) in the fault-tolerance community is about train sys-

tems. These are systems that control the movement of trains through a net-

work of rail segments. Fault-tolerance is a key aspect of these systems: a fault

in the system may cause a train collision and the loss of human life.

In [ABH+10], the authors present the development of a train system con-

troller using the specification language Event-B. The goal is to have trains

safely circulating in a certain network; moreover, this case study also exhibits

a very interesting case where the reliability of the final product is absolutely

fundamental: several trains have to be able to safely cross the network un-

der the complete automatic guidance of the software product. Moreover, the

external environment is taken to account and the train system is carefully

controlled. As a consequence, the formal modelling that the authors propose

contains not only a model of the software but also a detailed model of its

environment.

All these works on specification languages contain more material on fault

prevention than on fault tolerance. This is essentially due to the problem at

hand where faults have to be avoided at all means.

2. Fault Tolerance Mechanisms 17

2.6 Deontic Logic

Deontic logic has been proposed as an adequate logic for the study of fault-

tolerance, in particular since the notion of prescription and violation are natu-

rally embedded in these logics. This is based on the observation that normal vs.

abnormal behaviours can be treated as behaviours obeying and violating the

rules of correct system conduct, respectively. This leads to a straightforward

application of deontic operators (operators to express permission, obligation

and prohibition) for separating normal from abnormal behaviours, and thus

for expressing fault tolerant systems and their properties.

In [CJ96] an extension of standard deontic logic is proposed to reason about

integrity constraints in databases and to create a clear distinction between

hard (necessary) and soft (deontic) constraints. The soft integrity constraints

admit violations and then the notion of recovery (from violation of static or

state constraints) is characterized. The authors mentioned the static (or state)

integrity constraints as, the restrictions on the permitted instances or on the

states of a database schema. However, in this work, the notion of transition

constraint (permitted changes of database states) is not considered, i.e., only

norms regarding states are investigated.

In [LS04], a deontic interpreted logic is used to formalize a bit-transmission

protocol. In this approach, the authors classifies the agent states into green

and red, and a deontic machinery is developed using this classification. But

the investigation of how to divide the transitions into red and green is left for

further research.

In [KQM91] and [Kho98], Khosla and Maibaum propose a deontic logic to

specify systems, although fault-tolerance is not dealt with in this work. The

authors clearly mentioned that this logic can be used for the prescription and

description of systems. They defined the description of a system as: what the

system does, stated with pre and post conditions and, defined the prescription

of a system as: what the system should do, stated using deontic predicates.

18 2. Fault Tolerance Mechanisms

Khosla and Maibaum argue that the difference between prescription and de-

scription of a systems is important when specifying systems, and is useful for

characterizing abnormal executions.

In [SKQ93], the authors proposed a deontic logic and used it to model a

library system. Through this example, the authors tried to show how this logic

can be used to specify temporal constraints and error recovery. In [WM93],

the authors have stated that deontic systems are useful for reasoning about

fault-tolerance because of the similarity between faults in computer systems

and the situation in legal systems.

In more recent work, Castro and Maibaum in [CM09], [CM07b] investigated

the utilization of deontic logics to specify concepts related to fault-tolerance.

The main idea is to use axiomatic theories to specify computing systems at

the design level. While theories describe components or modules, translations

between them express the relationships between the different modules. The

standard logical operators allow us to describe the basic behaviour of the

system, while they use deontic predicates on actions to express prescriptions

about the system’s behaviour. These prescriptions of a system are highly

related to the notion of violation: a violation occurs since the system exhibits

a non-desired behaviour. They proposed a logic which is expressive enough for

modelling interesting examples (e.g., the Diarrheic Philosophers, the Muller

C-element, a Simple Train System, Processor Coolers, etc) and it differs from

the other deontic systems proposed in the literature in terms of modelling fault

tolerance mechanisms.

Following the above work in [CKAA11], the authors propose a logic es-

pecially tailored for describing fault tolerance properties based on the use of

deontic operators, with an emphasis on expressing intended (temporal) prop-

erties of fault tolerant systems, rather than (axiomatically) prescribing system

behaviour. This logic, which they refer to as dCTL, is composed of CTL

and deontic operators for distinguishing “good” (normal) from “bad” (faulty)

behaviors, as other deontic approaches, but the way in which temporal and

deontic operators are combined makes the logic suitable for analysis via model

2. Fault Tolerance Mechanisms 19

checking. Their proposed dCTL logic is more expressive than CTL, which as

they argue makes it useful for describing common properties of interest in the

context of fault tolerant systems.

2.7 Summary

In this chapter we presented different fault tolerance approaches at the con-

crete and abstract levels. The concrete level fault tolerance approaches are

mostly built on the ideas related with code replication, checkpointing and re-

covery and voting mechanisms. We have also discussed the transformational

approach and process algebra based approach for modelling fault tolerance.

The transformational approach covers both program transformation and spec-

ification transformation. We have presented a brief discussion on how low

level fault intolerant programs or high level fault intolerant specifications are

transformed to deal with faults. In process algebra based approaches we have

discussed some work where fail safe systems are designed through the encoding

of fault tolerance mechanisms. In this chapter we also discussed some spec-

ification languages like TLA+ and Event-B and described some of the well

known fault tolerance problems modelled in these languages. Most of these

approaches do not have any special construct to model faulty scenarios and

recovery mechanisms. Rather they encode fault tolerance mechanisms in the

system design level or implementation level. On the other hand, deontic logic

has the notions of permission, obligation and violation and abstract fault tol-

erance mechanisms can be easily built in this logical approach. In this chapter

we also presented some important work on fault tolerant systems using deontic

logic approach.

Chapter 3

Deontic Logic

3.1 Deontic Logic

Deontic logic is a branch of formal logic that tries to capture the notion of

reasoning on moral and ethical contexts. Philosophers and lawyers created this

logic many decades ago and the main intention was to express the notions of

permission and obligation in relation to the statement of a property. Naturally

the related concept of prohibition and violation were added to this logic. As

deontic logic is capable of using logical constructions to express normative

statements, predicates such as “ϕ is permitted ” or “ϕ is obligatory” can be

expressed easily.

We have seen that several deontic logics have been proposed in the litera-

ture and the most cited and studied is the so-called Standard Deontic Logic

(or SDL). It is built over propositional logic, and is a well known member of

“normal modal logic” family. The semantics of SDL is defined in terms of

Kripke Structures ([Mcn06], [Mcn]) and the axioms imply that the Kripke

structures are serial, i.e., every state has a successor state.

Deontic logics can be classified as an ought − to − be logics and ought −
to− do logics. The notion of deontic logic is applied to reason about different

situations in the former, while in the latter one deontic operators are applied

to actions, characterising them in terms of norms. An example of the former

20

3. Deontic Logic 21

one can be: it is allowed to have a “STOP” sign at the road intersection, where

the deontic operator is applied to define a situation that satisfies a norm. And

in the statement: a driver is obligated to stop at “STOP” sign, a deontic

operator is applied to an action. Though both versions of deontic logic are

very important and effective in formalizing different situations, it seems that

ought − to − do logic is more effective and expressive for computer science,

as in this formalism we can impose norms on actions and, consequently, on

behaviours.

3.2 Deontic Action Logics

In [Mey88] J. J. Meyer introduces an ought − to − do logic where he reduces

deontic logic to a well known dynamic logic. The justification of this reduc-

tion is that dynamic logic is used from the beginning to prove the properties

of computer programs and a computer program is a structured collection of

actions of a certain kind. In this work Meyer defines F(α) ↔ [α]V , i.e., an

action is forbidden if and only if execution of this action introduces a violation

V. And based on this definition he proposes other (derived) deontic opera-

tors. In his approach, from evaluating the truth value of a predicate, he was

trying to capture the result that an action can generate, and, gave more im-

portance than what happens during the action execution. That is why some

philosophers named his approach as goal-oriented approach.

In [Bro03], Broersen rejected the inter-definability of deontic operators in-

troduced by Meyer and describes other possible formulations of dynamic deon-

tic logic where different violation propositions are used for defining permission,

prohibition and obligation. In particular, Broersen uses a version of relative

complement in this logic, arguing that this approach is more appropriate for

computer science. In her approach, she considered the result of an action along

with what happens during the execution of an action. She named the latter

norms as process norms where she assumed that violation can occur in any

step of a process. She considers that all the steps in an action execution must

be allowed to make the whole action allowed.

22 3. Deontic Logic

In [KM87] Khosla and Maibaum propose a deontic action logic to specify

a system. The key feature of their approach was to define a clear distinction

between the description and prescription of a system. They argues against

some other goal − oriented approaches where the behaviour of a system was

defined implicitly in terms of defining changes, but no attempt at relating sys-

tem description and prescription was made. In their approach, they modelled

systems over a collection of global states called scenarios and assumed that

a system specification needs three types of information. They modelled the

space of a system by static information. Action description defined the infor-

mation regarding the changes of a state or scenario induced by the execution

of actions and were modelled by traditional pre and post condition formulae.

And action prescription defined when an action may or should occur and were

characterized by permissible and obligatory actions. They distinguished the

normative scenarios from the non-normative ones, where normative scenarios

are part of the desirable behaviours and non-normative scenarios are part of

the undesirable behaviours. Based on this distinction, they defined an ac-

tion to be permissible (or forbidden) if its execution leads the system to a

normative (respectively, non-normative) scenario. They use a constant n to

denote normativeness and defined permission as P(A,α) ↔ [A,α]n (similar

to Meyer’s violation concept) and forbidden as ¬ P(A,α) ↔ [A,α]¬n. This

approach is useful as the constant n can denote those system states which are

free of faults.

A Modal Action Logic (called MAL) was investigated by the FOREST

project in [KQM91]. An interesting feature introduced in that work is that

actions are interpreted as a set of “events”, i.e., n action represents those events

that it participates in during its execution. In [Cas09], Castro followed this

approach throughout his work in investigating deontic logic for fault tolerant

systems and assumed that considering actions in terms of events is useful for

concurrency. In the FOREST project a partial proof system is presented, but

the properties of the logic were not investigated in detail.

In [FM92] Fiadeiro and Maibaum used deontic predicates to define nor-

mative executions. In this work, they introduced obligations on sequences of

3. Deontic Logic 23

actions, which required that each action in the sequence had to be permitted

when it was due to be executed.

3.3 Deontic Temporal Logic: A new approach

Most of the logics mentioned above use the idea of dynamic logic where a

system is modelled using relational or functional interpretations of actions.

In his new approach [Cas09] Castro used an algebraic structure of events to

interpret actions which allows him to use the structure of the generated algebra

of events to define labelled transition systems corresponding to deontic logic

specifications. This approach also enabled him to prove meta logical properties

of the logic such as soundness and completeness. Castro also added appropriate

meta theorems in his logic which allows various sorts of analysis such as model

checking on the system specification.

This logic has some new operators that are not common in the literature.

It defines relative complement on actions, i.e., complement is based on the

universe of other actions available in a given state, not based on the universal

transition relation. A new operator Done is added to this logic where Done(α)

means that the last action executed was α. The operators on events that are

considered in this logic are those of boolean algebras and this logic has a sound,

complete and compact axiomatization [CM07a].

In his approach to defining this logic, Castro used strong and weak versions

of permission and tried to interrelate them in a new and novel manner. The

weak version of permission (Pw) says, of an action to which it is applied,

that there is some way of doing the permitted action from the current state

and has an exitential character. The normal or strong version of permission

(P) says that every possible way of doing the action from the current state.

In the literature there are several definitions of the obligation operator, but

Castro introduced this operator by using both versions of permissions for its

definition. He defined O as O(α)⇐⇒P(α)∧¬Pw(ᾱ), i.e., an action is obliged

if and only if every way of executing that action is allowed (permitted), and

any way of executing any other action is disallowed.

24 3. Deontic Logic

Reasoning about fault tolerant systems is a the main motivation for this

logic. Castro structured his logic to define obligatory, permitted and forbidden

actions along with fault tolerance properties and recovery actions. He followed

the approach introduced by Khosla and Maibaum [KM87], where both descrip-

tion and prescription of a system are major concerns. How violation occurs in

a system state and how recovery actions can take the system from a violation

state to a normal state can be defined in this logic. A notion of time is intro-

duced with this new deontic logic and the semantics of the temporal extension

of this logic is given in terms of traces.

3.4 A Propositional Deontic Logic (DPL)

Castro introduced a modal action logic where he defined a propositional version

of deontic logic (DPL) by introducing its syntax and semantics [Cas09]. He

uses boolean operators to combine action terms and represented an action as

a set of events i which the action participates [KQM91]. In his approach he

considered a finite (but arbitrarily large) set of atomic actions and assumed

that new actions can be defined using atomic actions and their combinators.

He claims that a system always performs a finite number of actions in any

execution step, which makes the axiomatic system of this logic compact and

strongly complete. Now we will present the key components and axiomatic

system of DPL defined in [Cas09]. We are presenting the logic here because

in the next couple of chapters we will use this logic to model our example.

The following definitions, axiomatization and results are from [Cas09].

Definition 1 (Deontic vocabulary): “A deontic vocabulary is a tuple

〈Φ0,∆0〉, Where:

• Φ0 is a set of atomic propositions {p1, p2, ...}

• ∆0 is a finite set of atomic actions {α1, α2, ..., αn} ”

Definition 2 (Action terms ∆): “Given a vocabulary 〈Φ0,∆0〉, we define

the set of action terms (called ∆) as follows:

3. Deontic Logic 25

- ∆0 ⊆ ∆

- ∅, U ∈ ∆

- If α, β ∈ ∆, then (α t β) ∈ ∆, (α u β) ∈ ∆

- If α ∈ ∆, then α ∈ ∆

- No other expression belongs to ∆”

Here ∅ denotes an impossible action and U denotes a non-deterministic

choice of any action from the set of all actions.

Definition 3 (Fomulae Φ): “Given the vocabulary 〈Φ0,∆0〉, we define

the set of well-formed formulae (Φ) as follows:

- Φ0 ⊆ Φ

- >,⊥ ∈ Φ

- If α, β ∈ ∆, then α =act β ∈ Φ

- If ϕ1, ϕ2 ∈ Φ, then ϕ1 → ϕ2 ∈ Φ

- If ϕ ∈ Φ, then ¬ϕ ∈ Φ

- If ϕ ∈ Φ and α ∈ ∆ then 〈α〉ϕ ∈ Φ and [α]ϕ ∈ Φ

- If α ∈ ∆ then P(α) ∈ Φ, Pw (α) ∈ Φ and O(α) ∈ Φ

- No other expression belongs to Φ”

Here 〈α〉ϕ intuitively means that α can be executed in some ways such

that ϕ holds after its execution. On the other hand [α]ϕ means ϕ holds after

every possible execution of α. Pw(α) imposes weak permission on the action α

and means α can be executed at least in some way without leading to a fault.

P(α) defines strong permission over α and means every way of executing α is

allowed.

Definition 4 (Structures): “An L-structure is a tuple M = 〈W ,R, E , I,P〉
over the vocabulary 〈Φ0,∆0〉, where W is a set of worlds or states, R is an E
labeled relation between states and E is non-empty set of events. The interpre-

tation function I returns the set of worlds (subset of W) for every proposition

p ∈ Φ0 (the worlds in which p holds) and the set of events (subset of E) for ev-

ery action α ∈ ∆0 (the set of events in which alpha participates or witnesses).

26 3. Deontic Logic

And lastly P represents the relation between events in E and states in W and

defines which event is permitted in which state.”

The reader can inform themselves of the properties of the interpretation

function I in [Cas09] . Castro defined the notation w
e−→ w′ when (w,w′, e) ∈ R

and used it in defining the relation between world and formulae.

Definition 5 (|=): “Given the vocabulary 〈Φ0,∆0〉 and a L-structure M

= 〈W ,R, E , I,P〉, the relation |=L between worlds and formulae is defined as

follows :

- w,M |=L p
def⇐⇒ w ∈ I(p)

- w,M |=L α =act β
def⇐⇒ I(α) = I(β)

- w,M |=L ¬α def⇐⇒ not w,M |= ϕ

- w,M |=L ϕ→ ψ
def⇐⇒ w,M |=L ¬ϕ or w,M |=L ψ or both

- w,M |=L 〈α〉ϕ def⇐⇒ there exists some w′ ∈ W and e ∈
I(α) such that

w
e−→ w′ and w′,M |=L ϕ

- w,M |=L [α]ϕ
def⇐⇒ for all w′ ∈ W and e ∈ I(α) if w

e−→ w′

then w′,M |=L ϕ

- w,M |=L P(α)
def⇐⇒ for all e ∈ I(α),P(w, e) holds

- w,M |=L Pw (α)
def⇐⇒ there exists some e ∈

I(α) such that P(w, e) holds

- w,M |=L O(α)
def⇐⇒ for all e ∈

I(α),P(w, e) holds, and for every e′ ∈ E −
I(α), we have ¬P(w, e′).”

M is a model of ϕ, i.e., M |=L ϕ, iff for all worlds w ∈ W we have

w,M |=L ϕ and |=L ϕ, if for all models M , M |=L ϕ.

Now we present a Hilbert Style deductive system for Castro’s logic. A

clear description of the underlying boolean algebra for the axiomatic system

and explanations about the following axioms are given in [Cas09], [CM07b]

and [CM07a].

3. Deontic Logic 27

Definition 6 (DPL Axioms): “Given the vocabulary 〈Φ0,∆0〉, the ax-

iomatic system for the Logic DPL is composed of following axioms:

1 The set of propositional tautologies.

2 A set of axioms for boolean algebras for action terms, including

standard axioms for equality.

3 The following set of axioms:

Ax1 [∅] ϕ
Ax2 〈α〉ϕ ∧ [α]ψ → 〈α〉(ϕ ∧ ψ)

Ax3 [α t β]ϕ↔ [α]ϕ ∧ [β]ϕ

Ax4 [α]ϕ → [α u β]ϕ

Ax5 P(∅)
Ax6 P(α t β) ↔ P(α) ∧ P(β)

Ax7 P(α) ∨ P(β) → P(α u β)

Ax8 ¬ Pw(∅)
Ax9 Pw (α t β) ↔ Pw(α) ∨ Pw(β)

Ax10 Pw (α u β) ↔ Pw(α) ∧ Pw(β)

Ax11 P(α) ∧ (α 6=act ∅) → Pw(α)

Ax12 (
∧

[α]BA∧αvα′ (Pw(α) ∨ (α =act ∅))) → P(α′)

Ax13 O(α) ↔ P(α) ∧¬ Pw(α)

Ax14 〈α〉ϕ↔ ¬[α]¬ϕ
Ax15 (a1 t ... t an) =act U

Ax16 (α =act α
′) ↔ [β](α =act α

′)

Ax17 Subs: ϕ[α] ∧ (α =act α
′) → ϕ[α/α′]

Duduction Rules:

MP if ` ϕ and ϕ → ψ, then ` ψ
GN if ` ϕ then ` [α]ϕ”

At this stage we are presenting the theorems that are used to prove sound-

ness and completeness of this logic. A full soundness and completeness proof

is given in [CM07b] and [Cas09] where theorems T1 - T7 are used to prove

soundness and theorems T8 - T15 are used to prove completeness of the ax-

iomatic system.

28 3. Deontic Logic

Theorem: “Theorems of DPL:

T1 P(α) ∧ α′ v α → P(α′)

T2 Pw(α′) ∧ α′ v α → Pw(α)

T3 [α]ϕ ∧ α′ v α → [α′]ϕ

T4 [α]ϕ ∧ [α′]ψ → [α t α′](ϕ ∨ ψ)

T5 [α]ϕ ∧ [α′]ψ → [α u α′](ϕ ∧ ψ)

T6 (
∧

[α]BA∈∆/ΦBA∧αvα′ (Pw(α) ∨ (α =act ∅))) → P(α′)

T7 (α =act α
′) ↔ [β](α =act α

′)

T8 α =act ∅ ↔ P(α) ∧ ¬ Pw(α)

T9 O(α)∧ O(α) ↔ U =act ∅
T10 O(α)∧ O(β) → O(α u β)

T11 P(U) → P(α) for every action α

T12 Pw(α) → Pw(U) for every action α

T13 O(U) ↔ P(U)

T14 O(∅) ↔ ¬ Pw(U)

T15 O(α) → P(α)”

3.4.1 DPL with Time

In his work Castro incorporated some notion of time into Deontic Proposi-

tional Logic and by adding a branching time temporal logic to DPL this new

Branching Time Logic is very close to CTL. In this approach the formulae

are evaluated with respect to fixed traces (representing executions). A new

predicate Done(α) is introduced using this new semantics, which is true if the

action α is executed in the immediate past (i.e., was used to reach the present

state) [Cas09]. We now present the modified definitions for this new logic.

Definition 7 (Temporal Formulae): “Given a DPL vocabulary 〈Φ0,∆0〉,
the set of temporal deontic formulae ΦT is defined as follows :

- Φ ⊆ ΦT , i.e., the formulae defined in definition 3 are temporal

formulae.

- if α ∈ ∆, then Done(α) ∈ ΦT

3. Deontic Logic 29

- if ϕ, ψ ∈ ΦT and α ∈ ∆, then (ϕ→ ψ) ∈ ΦT , [α]ϕ ∈ ΦT and ¬ϕ ∈
ΦT

- if ϕ, ψ ∈ ΦT , then AGϕ ∈ ΦT , ANϕ ∈ ΦT , A(ϕ U ψ) ∈ ΦT and

E(ϕ U ψ) ∈ ΦT ”

Some explanation about some of these formulae will be useful. The formu-

lae ANϕ and AGϕ say that: in all executions ϕ is true at the next moment

and ϕ is always true, respectively. A(ϕ U ψ) means for every possible exe-

cution ϕ is true until ψ becomes true and E(ϕ U ψ) says there exists some

execution where ϕ is true until ψ becomes true.

A set of initial states is introduced in the semantics of this new temporal

extension. A initial state enables us to consider all the traces that start from

this state. And traces are infinite sequences of states starting from a initial

state. If there are a finite number of states in a trace , i.e., the execution

terminates after a finite number of steps, then a self transition is added in the

last state to make the trace infinite and this is called the completion of the

trace. The labelling event for this transition does not belong to the model and

the motivation for this transformation is to convey that if the system cannot

do any action, the environment still keeps running [CM07b].

Definition 8 (Temporal model): “Given a language L = 〈Φ0,∆0〉,
M = 〈W ,R, E , I,P , w〉 is called a temporal structure where:

• 〈W ,R, E , I,P〉 is a structure defined in definition 4

• w ∈ W is the initial state”

Definition 9 (Traces): “Given a model M = 〈W ,R, E , I,P , w〉, a trace

is a labelled path s0
e0→ s1

e1→ s2
e2→ ..., where for every i, si

ei→ si+1 ∈
R and s0 = w. The set of all traces starting from state w is Σ(w).”

Some notations are necessary to understand the |=L
DTL relation between

path, structure and formulae. The subpath πi of an infinite path π = s0
e0→

s1
e1→ s2

e2→ ... is denoted by πi = si
ei→ si+1

ei+1→ That is πi denotes the

30 3. Deontic Logic

subpath that starts at position i of the infinite path π. The notation πi = si

denotes the i − th state in the path. Castro used the notation π[i..j] for the

finite subpath si
ei→ ..

ej→ sj+1. And if we have a finite path π′ = s′0
e′0→ ..

e′n→ s′n+1

and an infinite path π = s0
e0→ s1

e1→ s2
e2→ ... where si = s′i and ei = e′i for

0 ≤ i ≤ n, then π′ is called the initial subpath of π and denoted by π′ � π. A

trace is called a maximal trace if it is not an initial subpath of any other trace

and the set of maximum traces is denoted by Σ∗(w) [Cas09].

Definition 10 (|=L
DTL) : “ Given a model M = 〈W ,R, E , I,P , w〉, a

maximal trace π = s0
e0→ s1

e1→ s2
e2→ ... ∈ Σ∗(w), the relation |=L

DTL is defined

as follows:

- π, i,M |=DTL ϕ
def⇐⇒ πi, 〈W ,R, E , I,P〉 |= ϕ, if ϕ ∈ Φ does not

contain any temporal predicates.

- π, i,M |=DTL ¬ϕ
def⇐⇒ not π, i,M |=DTL ϕ

- π, i,M |=DTL ϕ → ψ
def⇐⇒ either not π, i,M |=DTL

ϕ or π, i,M |=DTL ψ

- π, i,M |=DTL Done(α)
def⇐⇒ i > 0 and ei−1 ∈ I(α)

- π, i,M |=DTL [α]ϕ
def⇐⇒ ∀π′ = s′0

e′0→ s′1
e′1→ ... ∈ Σ∗(w) such that

π[0, i] � π′, if e′i ∈ I(α) then π′, i+ 1,M |=DTL ϕ

- π, i,M |=DTL ANϕ
def⇐⇒ ∀π′ = s′0

e′0→ s′1
e′1→ ... ∈ Σ∗(w) such that

π[0, i] � π′, we have π′, i+ 1,M |=DTL ϕ

- π, i,M |=DTL AGϕ
def⇐⇒ ∀π′ = s′0

e′0→ s′1
e′1→ ... ∈ Σ∗(w) such that

π[0, i] � π′, we have ∀j ≥ i : π′, j,M |=DTL ϕ

- π, i,M |=DTL A(ϕ U ψ)
def⇐⇒ ∀π′ = s′0

e′0→ s′1
e′1→ ... ∈ Σ∗(w) such

that π[0, i] � π′, we have ∃j ≥ i : π′, j,M |=DTL ψ and ∀i ≤ k <

j : π′, k,M |=DTL ϕ

- π, i,M |=DTL E(ϕ U ψ)
def⇐⇒ ∃π′ = s′0

e′0→ s′1
e′1→ ... ∈ Σ∗(w) such

that π[0, i] � π′, we have ∃j ≥ i : π′, j,M |=DTL ψ and ∀i ≤ k <

j : π′, k,M |=DTL ϕ”

M |=DTL ϕ if π, i,M |=DTL ϕ for all paths π and instants i and |=DTL ϕ if

ϕ holds for all models M .

3. Deontic Logic 31

Definition 11 (DTL Axioms): “Given a vocabulary 〈Φ0,∆0〉, the ax-

iomatic system is composed of the following axioms :

All the axioms in definition 6.

TempAx1 〈U〉> → (ANϕ↔[U]ϕ)

TempAx2 [U]⊥ → (ANϕ↔ ϕ)

TempAx3 AGϕ ↔ ¬ E(> U ¬ϕ)

TempAx4 E(ϕ U ψ) ↔ ψ ∨ (ϕ ∧ ENE (ϕ U ψ))

TempAx5 A(ϕ U ψ) ↔ ψ ∨ (ϕ ∧ ANA (ϕ U ψ))

TempAx6 [α]Done(α)

TempAx7 [α]¬Done(α)

TempAx8 ¬Done(∅)
TempAx9 ¬ Done(U) → ¬ Done(α)

Deduction rules including the rules of definition 6:

TempRule1 if ` ¬Done(U) → ϕ and ` ϕ → ANϕ, then ` ϕ
TempRule2 if ` ϕ, then ` AG ϕ

TempRule3 if ` ϕ → (¬ψ ∧ ENϕ), then ` ϕ → ¬A(ϑ U ψ)

TempRule4 if ` ϕ → (¬ψ ∧ AN(ϕ ∨ ¬E(ϑ U ψ))), then ` ϕ → ¬E(ϑ U ψ)

TempRule5 if ` ¬Done(U) → AG ϕ, then ` ϕ”

Explanations about these axioms and rules are given in [Cas09] and [CM07b].

We know that the operator Done(−) talks about immediate past and Done(α)

says that the last action executed is α. We exhibit some important properties

of the operator Done(-).

“T16 Done(α) ∧ α v α′ → Done(α′)

T17 Done(α t β) → Done(α) ∨ Done(β)

T18 Done(α u β) ↔ Done(α) ∧ Done(β)

T19 Done(α t β) ∧ Done(α) → Done(β)

T20 [α]ϕ ∧ [β]Done(α) → [β]ϕ”

Contrary-to-duty structures are a set of predicates where, a violation of

primary obligation introduces a secondary obligation. These kinds of formulae

are sometimes problematic for this logic as we can deduce falsehood from

32 3. Deontic Logic

Contrary-to-duty predicates, which is paradoxical in some sense. To overcome

this problem Castro introduced a convenient collection of different permissions

in this logic: P 1, ..., P n and P 1
w, ..., P

n
w .

3.5 First-Order Deontic action Logic

The propositional deontic logic approach may not be suitable for modelling

complex systems; for example, complex data structures may be necessary

where quantification might be useful. For this reason Castro defined a first

order version of deontic logic. This extended version has standard quantifiers

of first order logic and algebraic operators for actions similar to those of the

propositional deontic logic . In this section we will present a brief discussion

on this logic extension. Later on we will use this logic to model our example

and prove different properties about it.

3.5.1 Syntax and Semantics

Castro defined the language of the first order extension of his deontic logic

based on finite set of action symbols, a set of flexible function symbols (whose

extension may change from state to state, like that of a database relation) and

set of rigid function symbols (which have the same meaning in every state).

He assumed an enumerable set of variables denoted by X.

The following definitions, axiomatization and results are from [CM10].

Definition 12 (Language): “ A language or vocabulary is a tuple 〈∆0, F0, R0〉
where ∆0 is a finite set of action symbols, F0 is an enumerable set of flexible

functin symbols and R0 is an enumerable set of rigid function symbols. All

action symbols, flexible and rigid function symbols have an associated arity.”

Definition 13 (Terms): “ Given a language L = 〈∆0, F0, R0〉, the set of

terms TL(X) over the language L is as follows:

- If x ∈ X then x ∈ TL(X)

3. Deontic Logic 33

- If f ∈ F0 or f ∈ R0 with arity n and t1, ..., tn ∈ TL(X) then

f(t1, ..., tn) ∈ TL(X)

- No other element belongs to TL(X)”

Definition 14 (Formulae): “ Given a language L = 〈∆0, F0, R0〉, the set

of formulae over this language is defined as follows:

- If t1, t2 ∈ TL(X), then t1 = t2 ∈ Φ

- If α1, α2 ∈ ∆(X), then α1 =act α2 ∈ Φ

- If ϕ, ψ ∈ Φ, then ¬ϕ and ϕ −→ ψ ∈ Φ

- If ϕ ∈ Φ and α ∈ ∆(X), then [α]ϕ ∈ Φ, P (α) ∈ Φ and Pw(α) ∈ Φ

- If ϕ ∈ Φ and x ∈ X, then (∀x : ϕ) ∈ Φ”

In this logic Castro used two equalities, one for standard terms (=) and

another for actions (=act). The notion of free variables, bound variables and

sentence are the same as in first order logic.

Definition 15 (Action Terms): “ Given a language L = 〈∆0, F0, R0〉,
the set of action terms (∆(X)) over this language is defined as follows:

- ∅, U ∈ ∆(X)

- If a ∈ ∆0 with arity n and t1, ..., tn ∈ TL(X), then a(t1, ..., tn) ∈
∆(X)

- If α, β ∈ ∆(X), then α t β, α u β and α ∈ ∆(X)

- If α ∈ ∆(X), x ∈ X, then (
⊔
x

α) ∈ ∆(X)”

The advantage of using a first order version of deontic logic over the propo-

sitional version is that it allows to define actions with parameters, which is

more effective for modeling computer programs. A quantifier over a variable

in an action term allow for a non-deterministic choice among the values of

that parameter of the action term can take. An action term
⊔
xi
α(x1, ..., xn)

is considered as action α with x1, ..., xn as parameters where we can nondeter-

ministically choose the value of the i-th parameter. A complete description of

the action terms is given in [CM10].

34 3. Deontic Logic

Definition 16 (Structure): “Given a language L = 〈∆0, F0, R0〉, an L-

Structure is a tuple 〈W ,R,P , I, E ,D〉 where D is a domain of elements, W
is set of worlds, E is a non-empty set of events, R is the E-labelled relation

between states, I is an interpretation function that evaluates any term in a

given state and P is the relation between worlds W and events E and defines

which events are permitted in each state.”.

The interpretation function I has to satisfy several properties. A clear

description of these properties and how this interpretation function (I) works

on flexible function symbols, rigid function symbols and actions symbols for

any state (W) is given in [CM10].

Now we present the axiomatic system for the logic described above. This

system also includes the axioms and deduction rules of propositional deontic

logic.

“Axioms:

- Axioms of Propositional Deontic Logic.

A1 ∀x : α v
⊔
x α, for all actions α

A2 (∀x : α v β) →
⊔
x α v β, for all actions α and β, where x is not

free in β

A3 (∀x : P (α)) → P (
⊔
x α)

A4 (∃x : Pw(α)) → Pw(
⊔
x α)

A5 (∀x : [α]ϕ) → [
⊔
x α]ϕ

A6 ∀−→x ,−→y : −→x 6= −→y → a(−→x) u a(−→y) =act ∅, for all a ∈ ∆0

FOLSub. (∀x : ϕ) → ϕ[x\t]. where t is free for x in ϕ

Barcan. (∀x : [α]ϕ) → [α](∀x : ϕ)

Deduction Rues:

- MP. and GEN. Rules of Propositional Deontic Logic.

FOL-GEN If ` ϕ, then ` ∀x : ϕ”

The notation −→x denotes tuple of elements (x1, ..., xn) ∈ Xn and a(−→x)

defines the action term a with these elements as parameters.

3. Deontic Logic 35

3.6 Summary

In this chapter we have discussed deontic logic and described some important

extensions of this logic to deal with fault tolerant systems. The main intention

in this chapter is to discuss Castro’s extension of propositional and first order

versions of this logic. Here we have presented the logic structure, axioms and

theorems of these logics as we will use them in the later part of our thesis.

In some sections we avoid creating lengthy discussions and refer the reader

to [Cas09] and [CM10] to learn more about these logics.

Chapter 4

Problem Description

4.1 Scenarios

Our example focuses on some scenarios of a moving vehicle. The vehicle that

we are concerned with is designated the host vehicle and all other vehicles

are opponent vehicles. Our main focus is to capture the scenarios in which

the host vehicle participates i.e., how the vehicle changes its speed and dis-

tance to opponent vehicles, the violations that arise due to speed and distance

limitations and the recovery mechanisms. Using these scenarios, in chapter 5

we present our first model in propositional deontic logic, which is relatively

simple then the model in first order deontic logic presented in chapter 6. In

the first model we consider relatively simple scenarios and assume that the

host vehicle is only responsible for all the situations it encounters and that the

opponent vehicles are moving at a constant speed. On the other hand, in the

second model we will consider some complex cases where the host vehicle’s

situation also depends on what the opponent vehicle is doing. For example, it

might happen that the host vehicle faces a violation and the opponent vehicle

is actually responsible for it.

In our scenarios, the path or lane in which the host vehicle moves is called

the ego-path and there can be one or more adjacent lanes or no such lane at all.

Host vehicles can change speed or change lane based on different situations.

36

4. Problem Description 37

The changing speed operation of the host vehicle also changes the distance

with respect to the opponent vehicle(s) and an opponent vehicle is the one

immediately in front of and behind the host vehicle. The two main properties

with which we are concerned are safe speed and safe distance and the objective

of our model is to ensure that the host vehicle always satisfies these criteria.

We now list some sample scenarios from SASPENCE [FTO05] sub-project

and NHTSA [JJFN07] research works related with safe speed and safe dis-

tance. To formulate these scenarios, we have also added our general ideas

about vehicle motion.

Scenario Description Action

S1 -Lane: Single/Multiple

-Vehicle Speed: Safe

-Obstacle: NO

Increase or decrease speed

or maintain current speed.

S2 -Lane: Single/Multiple

-Vehicle Speed: Exceeded max limit

-Obstacle: NO

Host vehicle reduces speed

until it reaches a safe speed.

S3 -Lane: Single/Multiple

-Vehicle Speed: Safe

-Obstacle: Safe opponent vehicle on

Ego path

Host vehicle can increase or

decrease speed or maintain

current speed.

S4 -Lane: Multiple

-Vehicle Speed: Safe

-Obstacle: Opponent vehicle on the ad-

jacent lane

Increase or decrease speed

or maintain current speed.

38 4. Problem Description

S5 -Lane: Single

-Vehicle Speed: Anything

-Obstacle: Opponent vehicle on ego

path.

-Exceeded min safety distance: YES

-Relative speed with front opponent ve-

hicle:

Case 1: Positive

Case 2: Negative

Case 1: Reduce speed until

the host vehicle attains safe

distance from opponent ve-

hicle.

Case 2: Reduce OR main-

tain current speed until the

host vehicle keeps safe dis-

tance from opponent vehi-

cle.

S6 -Lane: Multiple

-Vehicle Speed: Anything

-Obstacle: Opponent vehicle on ego

path.

-Exceeded min safety distance: YES

-Relative speed with front opponent ve-

hicle: Positive

-Adjacent lane:

Case 1. Free or has no obstacle

Case 2. Has obstacle in min safety dis-

tance

Case 1: Reduce speed until

the host vehicle keeps safe

distance from opponent ve-

hicle OR change lane.

Case 2: Reduce speed until

the host vehicle keeps safe

distance from opponent ve-

hicle

S7 -Lane: Multiple

-Vehicle Speed: Anything

-Obstacle: Opponent vehicle on ego

path.

-Exceeded min safety distance: YES

-Relative speed with front opponent ve-

hicle: Negative

-Adjacent lane:

Case 1. Free or has no obstacle

Case 2. Has obstacle in min safety dis-

tance

Case 1: Reduce OR main-

tain current speed until the

host vehicle keeps safe dis-

tance from opponent vehicle

OR change lane.

Case 2: Reduce OR main-

tain current speed until the

host vehicle keeps safe dis-

tance from opponent vehicle

4. Problem Description 39

S8 -Lane: Single/Multiple

-Vehicle Speed: Anything

-Obstacle: Opponent vehicle on ego

path.

-Exceeded min collision distance: YES

Host vehicle has to stop in

order to avoid collision

Table 4.1.1: Scenarios for safe speed and safe distance

A short description of the scenarios may be useful. Scenario S1 says that

if a vehicle is moving at a safe speed and if it does not have any obstacle, then

it can increase or decrease speed or maintain its current speed. S2: if the host

vehicle exceeds the maximum speed limit, then it must decrease its speed until

it attains a safe speed. Scenarios S3 and S4 say that if the host vehicle has

a safe opponent vehicle on the ego path or adjacent lane, then it can execute

any action. S5 says that if a vehicle is moving in a single lane road and if it

exceeds the minimum safety distance in relation to the obstacle, then it has

to reduce speed if it has positive relative speed with respect to the obstacle

and it can either reduce speed or maintain current speed if it has negative

relative speed. S6 and S7 are like S5 except that they deal with the cases

for a multi-lane road and the host vehicle has the option to change lanes if

it is free. And other actions like reducing speed or maintaining current speed

remain the same.

Note: In our first model in propositional deontic logic we have considered

the possibility of having multiple lanes. But in the second model in the first

order deontic approach, we only focus on a single lane in order to capture more

in depth scenarios (violations and recovery mechanisms) in a lane. And in the

scenarios above we only focused on the recovery actions of the host vehicle,

but it should be noted that the opponent vehicle’s actions might recover the

host vehicle from a violation and we will see some of these cases in our second

model.

40 4. Problem Description

4.2 Problem Description

In our formalization we are trying to model a system where a vehicle moves

on a straight road and the scenarios are related with its speed and distance

in relation to other vehicle. Our assumption is that our focused host vehicle

can do five things on the road. They are increase speed, decrease speed,

maintain current speed (or continue speed), change lane and stop. In a normal

situation, the host vehicle can perform any of these five operations but there

are restrictions of certain kinds on executing an operation if the host vehicle

violates any rule. For example, we know that every road has a fixed maximum

speed limit and the vehicle must proceed under the limit. So, if the vehicle

violates the speed limit, then it must reduce its speed to be within the limit.

In this situation, the vehicle cannot increase its speed or continue its current

speed. Some important terminology for our example is as follows.

Maximum speed: This is the maximum allowed speed for the road.

Every vehicle must proceed within this speed limit and exceeding this limit is

considered a violation.

Minimum speed: This is the minimum allowed speed for a road. Vehicles

must proceed above this speed limit and having lower speed than this limit is

considered a violation.

Minimum safety distance: Every vehicle must maintain a fixed safety

distance with respect to its front and rear opponent vehicles. If a host vehicle

has less distance than the minimum safety distance with respect to the front

or rear opponent vehicle, then the host vehicle is in a violation situation.

Minimum collision distance: This is the least distance that every ve-

hicle must maintain with respect to an opponent vehicle and we are assuming

that the vehicle is about to collide with the opponent vehicle if it exceeds (gets

closer than) this distance.

Increase Speed: Increasing speed is an operation which increases the

vehicle’s speed from its current speed. Our host vehicle is always allowed to

4. Problem Description 41

increase speed unless it has exceeded the minimum safety distance or minimum

collision distance with respect to the front opponent vehicle or has exceeded

the maximum speed limit.

Decrease Speed: This is the operation which decreases the vehicle’s speed

from its current speed. The host vehicle can always decrease its speed if it has

sufficient distance from the rear opponent vehicle and its current speed is no

less than the minimum speed limit.

Continue Speed: This operation maintains the vehicle’s current speed.

The host vehicle can always maintain its current speed unless it has exceeded

the maximum or minimum speed limit or exceeded any distance limitations.

In some cases, the host vehicle can maintain its current speed even though

it has exceeded distance limitations, but it must ensure that maintaining the

current speed will increase the distance from the opponent vehicle.

Change Lane: This is the operation which changes the lane of the host

vehicle; the host vehicle moves to an adjacent lane after executing this opera-

tion.

Stop: This is the operation which stops the vehicle. This operation will

stop the host vehicle in any situation.

Violations: We have considered several violations here. Our first violation

is related with excessive speed where the host vehicle exceeds the maximum

speed limit. The host vehicle must decrease its speed to recover from this

violation.

The second violation is related with the distance from the front opponent

vehicle where the host vehicle exceeds the minimum safety distance. For this

violation we are considering two cases. For the first case, if the host vehicle has

greater speed than the front opponent vehicle, then it must decrease its speed

so that it can achieve a safe distance. The host vehicle also can change lane

to recover from this violation. If the host vehicle increases speed or continues

42 4. Problem Description

its current speed, then it cannot increase the distance between them, so it

cannot recover from the violation. The situation is also the same if the host

vehicle has the same speed as the opponent vehicle. On the other hand, if the

host vehicle has lower speed than the front opponent one, then it can decrease

speed or continue its current speed and any of these operations will create

more distance between the vehicles.

The third violation is the minimum collision distance violation which is the

worst case scenario. We are assuming that the host vehicle must stop to avoid

a collision when it is in this violation.

Note: In our model we have only considered the violations related with

the front opponent vehicle and the maximum speed limitation. In a similar

way, we can also model the speed violation related with the minimum speed

limitation, and the distance violation related with the rear opponent vehicle

or a combination of front and back opponents.

4.2.1 Requirements

In our modelling we will try to fullfill some requirements to ensure the safe

speed and safe distance conditions. Here we list these requirements:

• If the host vehicle executes the continue speed action, then the speed

after action execution and before action execution are the same.

• If the host vehicle executes the increase speed action, then it has greater

speed after action execution than before action execution.

• If the host vehicle executes the decrease speed action, then it has less

speed after action execution than before action execution.

• If the host vehicle executes the change lane action, then after action

execution it reaches an adjacent lane.

• Executing the stop action stops the host vehicle in any situation.

4. Problem Description 43

• The host vehicle cannot execute more than one action at a time, all

actions (except changing lane) are mutually exclusive.

• A stopped host vehicle cannot execute any action.

• If the host vehicle is stopped successfully, then it will not have collision

with front opponent vehicle.

• If the host vehicle is not stopped, and is not in a violation situation, then

it can execute any action from any state.

• If the opponent vehicle and the host vehicle have the same speed cur-

rently, then parallel execution of the continue speed action maintains the

same distance.

• If the host vehicle currently has a safe speed, then, after executing any

action, it has a safe speed or it violates the speed limitation.

• From a safe speed, the host vehicle violates the maximum speed limita-

tion by increasing speed and violates the minimum speed limitation by

decreasing speed.

• The host vehicle is not allowed to have a speed more than the maxi-

mum speed limitation and less than the minimum speed limitation. If it

exceeds either of these limitations then it is in a speed violation.

• The host vehicle must maintain at least a minimum safety distance with

respect to its front and rear opponent vehicles. If the actual distance is

less than this distance limitation, then it is in violation.

• If the host vehicle violates the maximum speed limitation, then it is

obliged to decrease its speed until it reaches a safe speed.

• If host vehicle violates the minimum speed limitation, then it is obliged

to increase speed until it reaches a safe speed.

• If the host vehicle violates the minimum safety distance limitation with

respect to the front vehicle and the host vehicle’s speed is more than

44 4. Problem Description

the front vehicle’s speed, then it must decrease speed until it achieves

a minimum safety distance. The host vehicle might recover from this

violation if the front vehicle executes an increase speed action.

• If the host vehicle violates the minimum safety distance limitation with

respect to the front vehicle and the host vehicle’s speed is less than the

front vehicle’s speed then it must maintain its current speed or decrease

its speed until it achieves the minimum safety distance. The host vehicle

might recover from this violation if the front vehicle executes the increase

speed action.

• If the host vehicle violates the minimum safety distance limitation with

respect to the rear vehicle and the host vehicle’s speed is less than the rear

vehicle’s speed, then it must increase speed until it achieves a minimum

safety distance. The host vehicle might recover from this violation if the

rear vehicle executes the decrease speed action.

• If the host vehicle violates the minimum safety distance limitation with

respect to the rear vehicle and the host vehicle’s speed is more than

the rear vehicle’s speed, then it must maintain current speed or increase

speed until it achieves a minimum safety distance. The host vehicle might

recover from this violation if the rear vehicle executes the decrease speed

action.

• If the host vehicle gets too close to the front vehicle and if a collision is

imminent, then it is in the minimum collision distance violation, and is

obliged to stop.

• If the host vehicle is in multiple violations, for example, speed and dis-

tance violations at the same time, then it must execute required actions

until it recovers from both violations.

• If the host vehicle cannot recover from a violation after executing a

recovery action, then it must execute that recovery action again or a

different recovery action in order to recover from the violation.

4. Problem Description 45

• A cut-in vehicle does not improve the violation situation of a host vehicle.

If the host vehicle is currently in a minimum safety distance violation

with respect to its front opponent vehicle, then after a cut-in vehicle

joins in front of the host vehicle, it either remains in the minimum safety

distance violation or goes to the minimum collision distance violation.

• A cut-out vehicle may improve the violation situation and recover the

host vehicle from distance violations. For example, if the host vehicle

is currently in a minimum safety distance violation with respect to its

front opponent vehicle, and if that front opponent vehicle changes the

ego path and goes to an adjacent lane, then new the front opponent

vehicle of the host vehicle will be the one which was the front vehicle of

that cut-out vehicle before the action execution, and the actual distance

between the host vehicle and the new front opponent vehicle might be

greater than the minimum safety distance.

Chapter 5

Model in Propositional Deontic

Logic

We have presented a brief discussion of Propositional Deontic Logic (PDL) in

Chapter 3. Now in this chapter we will use this logic to build the first model of

our example. We have presented sample scenarios and features of the problem

in chapter 4. Now we will try to apply the PDL approach to model the safe

speed and safe distance concept for a host vehicle.

The model in Deontic Propositional Logic is simpler, compared with the

model in Deontic First Order Logic, and will help us to familiarize ourselves

with the problem, as well as with the Logic. We also want to see to what

extent we can use this more restricted logic approach to model a real world case

study related with fault tolerance mechanisms. In the literature [Cas09], we

have seen several fault tolerance modelling examples using the Propositional

approach, but none of them are based on a real case study, focusing on a

broader scenario. This model will also help us to understand the deficiencies

of this logic that we can overcome through the First Order version.

In the PDL approach, we cannot define actions or propositions with param-

eters. So, in this model we are focusing on very basic actions and propositions.

We have actions named vh.incspeed and vh.decspeed which increases and de-

creases speed of host vehicle, respectively, by some set amount that is not

46

5. Model in Propositional Deontic Logic 47

specified. Here we are only concerned with incrementing and decrementing

speed after executing this action; we are not capturing the time to execute

these actions or the value of the speed achieved. For example, decreasing the

speed by 10Kmh−1 cannot be captured in our initial model.

5.1 Assumptions

We have made some of assumptions for this basic example.

ASM1 In this formalization, we are considering only the motion of the host

vehicle. We are assuming that only the speed of the host vehicle increases

or decreases and the opponent vehicle is moving at a constant speed.

That is, only the host vehicle is responsible for all the violations that it

creates with respect to the (front or rear) opponent vehicle.

ASM2 In this model, we are assuming that normal actions regarding increas-

ing and decreasing speed will take the host vehicle from a violation state

to a normal state.

ASM3 We are assuming that the host vehicle and the opponent vehicle are

moving in the same direction on a straight road; any curvature of the

road is not considered here. Multiple lanes are possible.

5.2 Problem formalization

5.2.1 Propositions

The following are the basic propositions used to characterise the scenarios we

will encounter. The current state of the vehicles are represented in the model

using these propositions.

• vh.speedcont: Host vehicle maintains its speed.

• vh.speedinc: Host vehicle’s speed is increased.

48 5. Model in Propositional Deontic Logic

• vh.speeddec: Host vehicle’s speed is decreased.

• vh.speedsafe: Host vehicle’s speed is safe.

• vh.stopped: Host vehicle is stopped.

• vh.reachedaddlane: Host vehicle reaches an adjacent lane after executing

lane changing action.

• road.clearfront: No obstacle in front of the host vehicle.

• road.clearrear: No obstacle in rear of the host vehicle.

• vh.exceedmaxspeed: Host vehicle exceeded maximum speed.

• vh.exceedminsafedistfront: Host vehicle exceeded minimum safety distance

with respect to the front vehicle.

• vh.exceedminsafedistrear: Host vehicle’s distance with rear opponent vehi-

cle is less than minimum safety distance.

• vh.onsamelane(vo): Host and opponent vehicle are on the same lane.

• vh.hasadjlane: Host vehicle has adjacent lane.

• vh.onadjlane(vo): Opponent vehicle is in the adjacent lane of the host

vehicle.

• vh.posrelspeed(vo): Host vehicle has positive relative speed with oppo-

nent vehicle.

• vh.negrelspeed(vo): Host vehicle has negative relative speed with oppo-

nent vehicle.

5. Model in Propositional Deontic Logic 49

5.2.2 Actions

• vh.incspeed: Host vehicle increases speed.

• vh.decspeed: Host vehicle decreases speed.

• vh.contspeed: Host vehicle maintains or continues current speed.

• vh.changelane: Host vehicle changes its lane.

5.2.3 Violations

• vh.v1: This violation is true when the host vehicle exceeds the maximum

speed limit.

• vh.v2: Denotes the violation when the host vehicle exceeds the minimum

safety distance with respect to its front opponent vehicle.

• vh.v3: Denotes the violation when the host vehicle’s distance with respect

to the rear opponent vehicle is less than the minimum safety distance.

5.2.4 Axioms

SAS1 ¬Done(U) −→ vh.speedsafe ∧ road.clearfront ∧ road.clearrear ∧
¬vh.v1 ∧ ¬vh.v2 ∧ ¬vh.v3

SAS1 defines the initial state of the host vehicle and says that at the beginning

the host vehicle’s speed is safe, the front and rear end of the host vehicle is

clear, i.e., it has not exceeded the minimum safety distance with respect to any

vehicle in its ego path and the host vehicle is moving without any violation.

SAS2 vh.speedinc ⊕ vh.speeddec ⊕ vh.speedcont

SAS3 vh.speedsafe ⊕ vh.exceedmaxspeed

50 5. Model in Propositional Deontic Logic

SAS4 vh.stopped −→
[vh.incspeed t vh.decspeed t vh.contspeed t vh.changelane]⊥

SAS5 (road.clearfront ←→ ¬vh.v2) ∧ (road.clearrear ←→ ¬vh.v3)

SAS6 vh.speedinc ∨ vh.speeddec ∨ vh.speedcont −→
[vh.decspeed t vh.incspeed t vh.contspeed]>

The first axiom SAS2 expresses a disjointness condition about the host

vehicle’s increase, decrease and continuing speed. We know that a vehicle

executes an action either to increase or decrease or continue its speed. So in

any state, more than one of these propositions cannot be true. Axiom SAS3

says the host vehicle cannot be in a state where it has a safe speed and it also

exceeds the maximum speed. For our model, we are assuming that if the host

vehicle exceeds the maximum speed limit, then its speed is not safe. SAS4

says a stopped host vehicle cannot increase, decrease or continue its speed or

change lane. SAS5 expresses that the front road is clear when the host vehicle

is not in violation vh.v2 and the rear road is clear when the host vehicle is not

in violation vh.v3. And SAS6 shows when actions of increase, decrease or

continue speed can occur.

Now we model the action vh.changelane.

SAS7 ([vh.changelane]vh.reachedaddlane)

∧ (¬vh.reachedaddlane −→ [vh.changelane]¬vh.reachedaddlane)
SAS8 ¬vh.exceedmaxspeed ∧ vh.hasadjlane ∧ ¬vh.onadjlane(vo) −→

Pw(vh.changelane)

SAS7 expresses the effect of action vh.changelane, i.e., after executing this

action, the host vehicle goes to an adjacent lane. Axiom SAS8 expresses that

the host vehicle is permitted to change lane if there is no opponent vehicle

in the adjacent lane and it has a safe speed. Here the action is given weak

permission because, in some cases (like violation vh.v1), the host vehicle is not

permitted to change lane.

5. Model in Propositional Deontic Logic 51

The following axioms model the action vh.contspeed and specify the sce-

narios when host vehicle maintains its current speed.

SAS9 ([vh.contspeed]vh.speedcont)

∧ (¬vh.speedcont −→ [vh.contspeed]¬vh.speedcont)
SAS10 (¬vh.exceedmaxspeed −→ P (vh.contspeed)) ∧

(¬vh.exceedminsafedistfront −→ P (vh.contspeed))

SAS11 vh.speedsafe −→ [vh.contspeed]vh.speedsafe

SAS12 (¬vh.exceedminsafedistfront ∨ ¬vh.exceedminsafedistrear) −→
[vh.contspeed](¬vh.exceedminsafedistfront ∨ ¬vh.exceedminsafedistrear)

Axiom SAS9 models the action vh.contspeed. Axiom SAS10 says that

the host vehicle is permitted to maintain its speed if it has not exceeded the

maximum speed limitation or the minimum safety distance limitation. Axioms

SAS11 and SAS12 require that the continue speed action preserves safe speed

and safe distance. As we are assuming that the opponent vehicle always goes

at a constant speed, so if the host vehicle currently has safe distance from the

opponent vehicle, then executing this action will maintain the same distance

with respect to an opponent vehicle.

The following axioms model the action vh.incspeed and specify the scenar-

ios when the speed is increasing.

SAS13 ([vh.incspeed]vh.speedinc) ∧
(¬vh.speedinc −→ [vh.incspeed]¬vh.speedinc)

SAS14 road.clearfront ∧
(vh.speedcont ∨ vh.speedinc ∨ vh.speeddec) −→ 〈vh.incspeed〉>

SAS15 vh.speedinc ∧ ¬vh.speedsafe −→ O(vh.decspeed)

SAS16 P (vh.incspeed) U (vh.exceedmaxspeed ∨ vh.exceedminsafedistfront)

SAS17 vh.speedsafe −→ EN([vh.incspeed]¬vh.speedsafe)
SAS18 ¬vh.exceedminsafedistfront −→

EN([vh.incspeed]vh.exceedminsafedistfront)

52 5. Model in Propositional Deontic Logic

SAS13 expresses the effect of action vh.incspeed and says that the host

vehicle’s speed increases after executing this action. SAS14 indicates when

the host vehicle can increase speed and SAS15 says if the host vehicle has

increased speed and if the speed is not safe, then it is obliged to decrease speed.

SAS16 imposes permission on vh.incspeed to state that the host vehicle is

permitted to increase speed until it exceeds the maximum speed limit or the

minimum safety distance limit. Axiom SAS17 says that, in some execution

path, the host vehicle’s speed is unsafe after executing this action, i.e., the host

vehicle exceeds the maximum speed limitation. Similarly, axiom SAS18 says

that executing the increase speed action can bring about an unsafe distance

from the front vehicle in some execution path.

The following axioms model the action vh.decspeed and specify the scenar-

ios when speed is decreasing.

SAS19 ([vh.decspeed]vh.speeddec) ∧
(¬vh.speeddec −→ [vh.decspeed]¬vh.speeddec)

SAS20 ¬vh.stopped −→ EN([vh.decspeed]vh.stopped)

SAS21 road.clearrear ∧
(vh.speedcont ∨ vh.speedinc ∨ vh.speeddec) −→ 〈vh.decspeed〉>

SAS22 P (vh.decspeed) U (vh.exceedminsafedistrear ∨ vh.stop)

SAS23 ¬vh.exceedminsafedistrear −→
EN([vh.decspeed]vh.exceedminsafedistrear)

SAS24 vh.exceedminsafedistfront −→
EN([vh.decspeed]¬vh.exceedminsafedistfront)

Axiom SAS19 expresses the behaviour of action vh.decspeed and says that

the host vehicle’s speed decreases after executing this action. Axiom SAS20

indicates that, in some execution path, the host vehicle is stopped after de-

creasing speed. SAS21 says when the host vehicle can decrease speed. Axiom

SAS22 shows that the host vehicle can decrease speed until it exceeds the

minimum safety distance with respect to the rear vehicle or it has stopped.

Axiom SAS23 says that, in some execution path, after executing the decrease

speed action, the host vehicle can achieve an unsafe distance with respect to

5. Model in Propositional Deontic Logic 53

the rear opponent vehicle. And the last axiom indicates that, in some execu-

tion path, host vehicle overcomes the front distance violation after executing

this action.

5.2.5 Violations and Recovery Mechanisms

Finally we present a collection of axioms for modelling violations. Our vi-

olations are mainly categorized based on the speed limitations and distance

limitations with respect to the front and rear opponent vehicles.

The first violation predicate vh.v1 is true when the host vehicle exceeds the

maximum speed limit. To recover from this violation, the host vehicle must

decrease its speed. In this formalization we are assuming that host vehicle can

recover from any violation by the time it reaches the next state by executing

an obligatory action in that one step. So by executing the decrease speed

action, the host vehicle recovers from this violation in the next state.

The other violation vh.v2 defines cases when the host vehicle exceeds the

minimum safety distance limitation with respect to the front opponent vehicle.

We are considering two different situations: (1) The host vehicle has positive

relative speed with respect to the front opponent vehicle and (2) the host

vehicle has negative relative speed with respect to the front opponent vehicle.

The host vehicle and the front opponent vehicle can have the same speed, i.e.,

a zero relative speed. Having the same speed can be considered as having a

positive relative speed in case of this violation, because when the host vehicle

is in violation vh.v2 with positive relative speed, it has to decrease its speed

to recover from the violation. Similarly, to recover from violation vh.v2 with

zero relative speed, the host vehicle has to decrease speed as the only option.

It cannot recover from this violation situation if it increase speed or maintains

current speed. As we said before, in this model we are assuming that the

opponent vehicle’s speed is constant, so only host vehicle’s action can recover

it from violation. But in our next model we will see that the opponent vehicle’s

action can also recover the host vehicle from a violation.

54 5. Model in Propositional Deontic Logic

Now we model the speed violation vh.v1 and the recovery actions to over-

come from this violation.

VS1 ¬vh.v1 ∧ ¬vh.exceedminsafedistfront ∧ O(vh.decspeed) −→
[vh.decspeed]vh.v1

VS2 vh.v1 ∧ O(vh.decspeed) −→ [vh.decspeed]¬vh.v1

VS3 ¬vh.v1 ∧ ¬O(vh.decspeed) −→ [U]¬vh.v1

VS4 vh.speedsafe ⊕ vh.v1

The first axiom defines when vh.v1 can be true, that is when the host

vehicle has not yet exceeded the minimum distance limitation with respect to

the front opponent vehicle and is obliged to reduce the speed but does not do

that. Axiom VS2 indicates that the host vehicle recovers from violation vh.v1

after executing the action to decrease speed. VS3 says that the other actions

do not affect vh.v1, i.e., if the host vehicle is not currently in violation vh.v1

and is not obliged to decrease speed, then after executing any action it will

not be in that violation. And axiom VS4 says that violation vh.v1 and safe

speed are mutually exclusive.

Now we model violation vh.v2 with both positive and negative relative

speed with the front opponent vehicle. At first we are defining the violation

and showing the possible and obligated actions from a state where violation

vh.v2 is true. The axioms are as follows:

VD1 ¬vh.v2 ∧ O(vh.decspeed t vh.contspeed t vh.changelane) −→
([vh.decspeed t vh.contspeed t vh.changelane]vh.v2 ∧
[vh.decspeed t vh.contspeed t vh.changelane]¬vh.v2)

VD2 ¬vh.v2 ∧
¬O(vh.decspeed t vh.contspeed t vh.changelane) −→ [U]¬vh.v2

VD3 vh.v2 ∧ vh.posrelspeed(vo)

∧ (¬vh.hasadjlane −→ O(vh.decspeed))

∧ (vh.hasadjlane ∧ vh.onsamelane(vo) ∧ ¬vh.onadjlane(vo) −→
O(vh.decspeed t vh.changelane))

∧ (vh.hasadjlane ∧ vh.onsamelane(vo) ∧ vh.onadjlane(vo) −→
O(vh.decspeed))

5. Model in Propositional Deontic Logic 55

VD4 vh.v2 ∧ vh.negrelspeed(vo)

∧ (¬vh.hasadjlane −→ O(vh.decspeed t vh.contspeed))

∧ (vh.hasadjlane ∧ vh.onsamelane(vo) ∧ ¬vh.onadjlane(vo) −→
O(vh.decspeed t vh.changelane t vh.contspeed))

∧ (vh.hasadjlane ∧ vh.onsamelane(vo) ∧ vh.onadjlane(vo) −→
O(vh.decspeed t vh.contspeed))

Here VD1 expresses that violation vh.v2 can be true if the host vehicle

is obliged to reduce speed or maintain current speed or change lane but does

not do that and is false otherwise. VD2 says actions other than reducing or

continuing speed or changing lane do not affect vh.v2. VD3 defines different

actions that the host vehicle is obliged to execute when it is in violation vh.v2

and it has positive relative speed with respect to the front opponent vehicle.

This axiom clarifies three different situations for that violation. (1) It says that

the host vehicle is obliged to reduce speed if it does not have any adjacent lane

available. (2) The host vehicle is obliged to reduce speed or change lane if it

has an adjacent lane and there is no opponent vehicle within the minimum

safety distance in that adjacent lane. And (3) The host vehicle is obliged to

reduce speed if it has an adjacent lane but there is an opponent vehicle within

the minimum safety distance in that adjacent lane. Axiom VD4 is similar to

axiom VD3 and indicates the obligated actions when the host vehicle is in

violation vh.v2 with negative relative speed with respect to the front opponent

vehicle.

Now we describe the recovery mechanism when the host vehicle is in viola-

tion vh.v2. The host vehicle recovers from this violation when it changes lane

or creates more distance than the minimum safety distance limitation with

respect to the front opponent vehicle. The axioms are as follows:

VD5 vh.v2 ∧ vh.posrelspeed(vo) ∧ O(vh.decspeed t vh.changelane) −→
[vh.decspeed t vh.changelane]¬vh.v2

VD6 vh.v2 ∧ vh.negrelspeed(vo) ∧
O(vh.decspeed t vh.contspeed t vh.changelane) −→
[vh.decspeed t vh.contspeed t vh.changelane]¬vh.v2

56 5. Model in Propositional Deontic Logic

Axiom VD5 says that if the host vehicle is in violation vh.v2 with positive

relative speed, then after executing the decrease speed or change lane action it

recovers from the violation. Axiom VD6 is similar to axiom VD5 and shows

the recovery mechanism for the same violation with negative relative speed.

The only difference between these two situations is that when the host vehicle

has negative relative speed, it can continue or maintain its current speed to

recover from the violation vh.v2, because as the host vehicle has less speed

than the front opponent vehicle, maintaining current speed will increase the

distance.

Axioms VS2, VD5 and VD6 describes the recovery mechanisms from

the violations vh.v1 and vh.v2. In all these cases the recovery mechanism

takes only one transition according to our assumption and after executing

the recovery action from the violation state the system goes to the next state

where the system is safe. But it might happen that the recovery mechanism

takes multiple transitions, i.e., after executing the recovery action multiple

times, the system goes to a safe state. The temporal operator U can help us

to formalize these sorts of scenarios. Using this operator, we can express that

until the system reaches a safe state from a violation state, the recovery action

has to be executed. Though, according to our assumption for this model,

recovery mechanisms take only one step, but here we present same recovery

mechanisms in multiple steps using the operator U , in order to understand

that how multi step recovery mechanisms can be defined in this logic.

VS2* vh.v1 ∧ (O(vh.decspeed) U vh.speedsafe) −→
((vh.speeddec U vh.speedsafe) −→ ¬vh.v1)

VD5* vh.v2 ∧ vh.posrelspeed(vo) ∧
((O(vh.decspeed) U ¬vh.exceedminsafedistfront) ∨ O(vh.changelane))

−→ (((vh.speeddec U ¬vh.exceedminsafedistfront) −→ ¬vh.v2) ∨
([vh.changelane]¬vh.v2))

5. Model in Propositional Deontic Logic 57

VD6* vh.v2 ∧ vh.negrelspeed(vo) ∧
((O(vh.decspeed t vh.contspeed) U ¬vh.exceedminsafedistfront)
∨ O(vh.changelane)) −→
((((vh.speeddec ∨ vh.speedcont) U ¬vh.exceedminsafedistfront) −→
¬vh.v2) ∨ ([vh.changelane]¬vh.v2))

VD7 vh.v2 ∧ vh.posrelspeed(vo) −→
EN([vh.decspeed](vh.v2 ∧ vh.negrelspeed(vo)))

Here axiom VS2* says that the host vehicle has to decrease speed until it

attains a safe speed to recover from violation vh.v1. Axiom VD5* and VD6*

describes the recovery mechanism from violation vh.v2. The first one says that

if the host vehicle is in violation vh.v2 with positive relative speed, then to

recover from this violation it has to change lane or decrease speed until it

attains a safe distance. Axiom VD6* is similar to axiom VD5* and indicates

that the host vehicle can also maintain its current speed until it attains safe

distance to recover from violation vh.v2 with negative relative speed. And the

last axiom describes how violation vh.v2 improves to a better state as we are

assuming that having negative relative speed with this violation is a better

situation than having positive relative speed.

Now we consider situations where the host vehicle is in both violation vh.v1

and vh.v2. That is the host vehicle is in a state where it has exceeded both the

maximum speed and the minimum safety distance limit. When both violations

are true, the reducing speed action will eventually lead the host vehicle out of

both violations. In normal cases, when the host vehicle is in violation vh.v2,

it can also execute the continue speed or the change lane action to recover

from this violation. But in this scenario, the host vehicle cannot continue its

current speed to recover from this violation as it has exceeded the maximum

speed limitation. Also we are assuming that changing lanes with excessive

speed can be dangerous, so in this scenario the host vehicle cannot execute

the change lane action. But if after decreasing speed the host vehicle recovers

from violation vh.v1 and still vh.v2 is true (though for this model they should

recover at the same time), then the host vehicle can decrease or continue speed

or change lane to recover from the second violation.

58 5. Model in Propositional Deontic Logic

VSD1 vh.v1 ∧ vh.v2 −→ O(vh.decspeed)

VSD2 vh.v1 ∧ vh.v2 −→
([vh.decspeed]((vh.speedsafe ∧ vh.exceedminsafedistfront) −→
(¬vh.v1 ∧ vh.v2)) ∨
[vh.decspeed]((negvh.speedsafe ∧ ¬vh.exceedminsafedistfront) −→
(vh.v1 ∧ ¬vh.v2)))

Axiom VSD1 says that if the host vehicle is in both violations vh.v1 and

vh.v2, then it is obliged to decrease speed. Axiom VSD2 describes the recovery

mechanism from violation vh.v1 and vh.v2. Though this axiom shows recovery

from one violation after executing one decrease speed action, it can also happen

that the host vehicle recovers from both violations after executing just one

recovery action.

Now we describe the recovery mechanism mentioned in VSD1 and VSD2

requiring multiple states, using the temporal operator U . Here recovery can

also take multiple states and the until operator is useful to deal with this

situation.

VSD1* vh.v1 ∧ vh.v2 −→
O(vh.decspeed)U(vh.speedsafe ∧ ¬vh.exceedminsafedistfront)

VSD2* vh.v1 ∧ vh.v2 −→
(((vh.speeddec U vh.speedsafe) −→ ¬vh.v1 ∧ vh.v2)

∧ ((vh.speeddec U ¬vh.exceedminsafedistfront) −→ vh.v1 ∧ ¬vh.v2))

Axiom VSD1* says that if the host vehicle is in violations vh.v1 and vh.v2,

then it must decrease its speed until it attains a safe speed or safe distance.

Axiom VSD2* indicates that reducing speed until attaining a safe speed takes

the host vehicle out of violation vh.v1 and reducing speed until the host vehicle

reaches the minimum safety distance from the front opponent vehicle will

recover from the violation vh.v2.

Up-to this point, we have modelled violation vh.v2 and the related recovery

mechanisms. In a similar approach we can also model violation vh.v3 where

5. Model in Propositional Deontic Logic 59

the host vehicle exceeds the minimum safety distance limitation with respect

to its rear opponent vehicle.

5.3 Summary

In this chapter we have modelled a fault tolerance problem in Deontic Propo-

sitional Logic. During this modelling we have found that it is not possible

or feasible to model some real aspects in this logical formalism as the no-

tion of quantification is missing. So our main focus was to define very basic

actions and model some simple cases. Here we have mainly focused on one

step recovery mechanisms, though we have presented some multi step recov-

ery approaches using the temporal operator U . We also focused only on cases

where the agent’s action implements the recovery mechanism and omitted any

environmental effect on the recovery process.

Chapter 6

Model in First Order Deontic

Logic

In this chapter we will present a model in Deontic First Order Logic. We

have already discussed this logical formalism in Chapter 3. Here we are also

modelling the same problem discussed in Chapter 4, but in a more extended

form than the model in Chapter 5. In our previous formalization in Proposi-

tional Deontic Logic, we captured actions only of the host vehicle. But here in

this formalization we will focus on both the host and the opponent vehicle’s

actions. In another sense, we can say that in this example we are considering

environmental effects (effects of an opponent vehicle) on the agent (host vehi-

cle). In our last model, we basically focused on one step recovery, but here we

will see how a vehicle recovers from violation in multiple steps. We know that

Deontic First Order Logic (DFOL) allows us to quantify on data and we can

define actions with parameters. So this Logical approach helps us to model

complex real world scenarios where quantification is necessary. To make the

example more realistic, we are considering another distance limitation called

the minimum collision distance limitation. In real situations, vehicles crash

when they get too close to the opponent vehicle and cannot control the dis-

tance. This minimum collision distance limitation represents the least distance

necessary to avoid a collision.

60

6. Model in First Order Deontic Logic 61

6.1 Assumptions

Now we list all the assumptions that we have made for this basic example.

QASM1 Stopping the host vehicle is considered as the last recovery action

if other recovery actions cannot recover the host vehicle from the viola-

tion(s).

QASM2 We are assuming that the host vehicle and the opponent vehicle

are moving in the same direction on a straight road, any curvature of

the road is not considered here. Multiple lanes can be possible in our

scenarios, but, host vehicle does not change its lane. Other vehicles can

come in or can go out from host vehicle’s lane. The reason is we want to

see how cut-in and cut-out vehicles affect different scenarios. Moreover,

as we are assuming that the host vehicle does not change its lane, so in

this respect, this model is not as general as the PDL one, where changing

lanes to recover was possible.

QASM3 In our model, we are considering one particular road which has a

fixed maximum speed limit and a fixed minimum speed limit. The host

vehicle is not allowed to have a speed over the maximum limit and under

the minimum limit.

QASM4 The host vehicle is bound to maintain certain safety distances from

the opponent vehicle for safety purposes. We are assuming that the

distance limitations are not fixed and depend on the current speed of

the host and the opponent vehicles. For example, the minimum safety

distance between the host and the front opponent vehicle are not the

same when they move at a very high speed and at a slower speed. The

host vehicle can execute any action (within a limited speed change) if it

does not exceed this minimum safety distance.

QASM5 We are considering another distance limitation called the minimum

collision distance, which is the least distance that the host vehicle must

maintain with the opponent vehicle to avoid collision. If the distance

between the host and the opponent vehicles is less than this distance,

then host vehicle must stop to avoid collision.

62 6. Model in First Order Deontic Logic

QASM6 A vehicle can be stopped in two ways. One is the regular stop by

decreasing speed (over time) and the other one is the emergency stop.

6.2 Some notation

We will use the notation vh, vof and vor to denote the host vehicle, the front

opponent vehicle and the rear opponent vehicle, respectively. In some cases

(to define predicates, actions and axioms), instead of writing vh, vof or vor

separately, we will use the notation vh(of,or) where the notions of host, front and

rear opponent vehicle are applicable. Also, to mention the non-deterministic

execution of any action by the host, front or rear opponent vehicle, we will use

the notation vh.U , vof .U and vor.U respectively.

6.3 Problem formalization

Here in this problem formalization, we are considering types or sorts to make

the specification more appealing and realistic. As usual, we can express them

using predicates. We have the following types:

6.3.1 Types

• Speed : denotes the set of values that both host or opponent vehicle

can take as its speed. Speed is the set of real numbers R.

• Distance : denotes the set of values of the distance between the host

and opponent vehicle. Distance is the set of real numbers R.

6.3.2 Constants

• maxspeed : Speed denotes the constantmaxspeed which is the maximum

allowed speed for the road.

6. Model in First Order Deontic Logic 63

• minspeed : Speed denotes the constant minspeed which is the minimum

allowed speed for the road.

6.3.3 Variables

• curntspeedh : Speed variable denotes the current speed of the host vehi-

cle.

• curntspeedof : Speed variable denotes the current speed of the front

opponent vehicle.

• curntspeedor : Speed variable denotes the current speed of the rear op-

ponent vehicle.

• curntdistfront : Distance variable denotes the current distance between

the host and the front opponent vehicle.

• curntdistrear : Distance variable denotes the current distance between

the host and the rear opponent vehicle.

6.3.4 Functions

• minsafedistfront(curntspeedh : Speed, curntspeedof : Speed)→ Distance

: denotes the function minsafedistfront(−,−) that takes the current

speed of both the host and front opponent vehicles as parameters and

returns the minimum safety distance that the host vehicle must main-

tain with respect to the front opponent vehicle. Here we are using

curntspeedh and curntspeedof as parameters which are of type Speed

to indicate that the first parameter is the host vehicle’s current speed

and the second one is the front opponent vehicle’s current speed.

• minsafedistrear(curntspeedh : Speed, curntspeedor : Speed)→ Distance

: denotes the functionminsafedistrear(−,−) that returns the minimum

safety distance between the host and the rear opponent vehicles.

64 6. Model in First Order Deontic Logic

• mincoldistfront(curntspeedh : Speed, curntspeedof : Speed)→ Distance:

denotes the function mincoldist(−,−) which returns the minimum col-

lision distance between the host and front opponent vehicles which we

assume is the least distance that has to be maintained to avoid collision.

This function also takes the current speed of the host and front opponent

vehicles in sequence as parameters.

• mincoldistrear(curntspeedh : Speed, curntspeedor : Speed)→ Distance:

denotes the function mincoldist(−,−) which returns the minimum col-

lision distance between the host and rear opponent vehicles.

6.3.5 Predicates

• greaterSpeed(i : Speed,maxspeed : Speed) : Speed i is greater than the

maximum speed maxspeed.

• lesserSpeed(i : Speed,minspeed : Speed) : Speed i is less than the

minimum speed minspeed.

• greaterDistance(i : Distance, j : Distance) : Distance i is greater than

distance j.

• vh(of,or).stopped: Host (front or rear opponent) vehicle is stopped.

• vh(of,or).speedcont: Host (front or rear opponent)vehicle continues or

maintains current speed. The predicate is true in all those states where

the vehicle’s speed is equal to that in the previous state.

• vh(of,or).speedinc(i : Speed): Host (front or rear opponent) vehicle’s speed

is increased by amount i in a transition. This predicate is true in all those

states where the vehicle’s speed is i more than the previous state.

• vh(of,or).speeddec(i : Speed): Host (front or rear opponent) vehicle’s speed

is decreased by amount i in a transition. This predicate is true in all

those states where the vehicle’s speed is i less than the previous state.

6. Model in First Order Deontic Logic 65

• vh(of,or).speedcurnt(i : Speed): Host (front or rear opponent) vehicle’s

current speed is i.

• vh.speedsafe(i : Speed): Host vehicle has safe speed i. This predicate is

true when the host vehicle’s speed i is neither more than the maximum

speed limitation, nor less than the minimum speed limitation.

• vh.roadclearfront: No obstacle in front of the host vehicle.

• vh.roadclearrear: No obstacle is behind of the host vehicle.

• vh.exceedmaxspeed: Host vehicle exceeded maximum speed limit.

• vh.speedlowerthanminspeed: Host vehicle’s speed is lower than minimum

speed limit.

• vh.exceed(d : Distance): Host vehicle exceeded distance d with respect

to the (front or rear) opponent vehicle.

• vhvof .posrelspeed: Host vehicle’s current speed is more than the front

opponent vehicle’s current speed.

• vhvof .negrelspeed: Host vehicle’s current speed is less than the front

opponent vehicle’s current speed.

• vhvor.posrelspeed: Host vehicle’s current speed is more than the rear

opponent vehicle’s current speed.

• vhvor.negrelspeed: Host vehicle’s current speed is less than the rear op-

ponent vehicle’s current speed.

• collision(vh, v(of,or)): Host vehicle has a collision with front or rear op-

ponent vehicle.

66 6. Model in First Order Deontic Logic

6.3.6 Actions

• vh(of,or).incspeed(i : Speed): Action to increase the host (opponent) ve-

hicle’s speed by amount i.

• vh(of,or).decspeed(i : Speed): Action to decrease the host (opponent)

vehicle’s speed by amount i.

• vh(of,or).contspeed: Action to maintain the host (opponent) vehicle’s cur-

rent speed.

• vh(of,or).stop: Host (opponent) vehicle stops in emergency. Executing

this action causes the vehicle to stop in one step.

6.3.7 Violations

Now we list the violations for this model. This will help to understand the

axioms clearly.

• vh.v1: This violation is true when the host vehicle exceeds the maximum

speed limit.

• vh.v2: This violation is true when the host vehicle’s current speed is lower

than the minimum speed limit.

• vh.v3: The host vehicle exceeds minimum safety distance with respect to

the front opponent vehicle.

• vh.v4: The host vehicle exceeds minimum collision distance with respect

to the front opponent vehicle.

• vh.v5: The host vehicle exceeds minimum safety distance with respect to

the rear opponent vehicle.

• vh.v6: The host vehicle exceeds minimum collision distance with respect

to the rear opponent vehicle.

6. Model in First Order Deontic Logic 67

6.3.8 Axioms

QSAS1 ∀i ∈ Speed : ¬Done(vh.U) −→
(vh.speedsafe(i) ∧ vh.roadclearfront ∧ vh.roadclearrear ∧ ¬vh.v1 ∧
¬vh.v2 ∧ ¬vh.v3 ∧ ¬vh.v4 ∧ ¬vh.v5 ∧ ¬vh.v6)

∨ (vh.speedsafe(i) ∧ (¬vh.roadclearfront ∨ ¬vh.roadclearrear) ∧
¬vh.v1 ∧ ¬vh.v2 ∧ ¬vh.v3 ∧ ¬vh.v4 ∧ ¬vh.v5 ∧ ¬vh.v6)

∨ (vh.speedsafe(i) ∧ ¬vh.roadclearfront ∧ ¬vh.roadclearrear ∧
¬vh.v1 ∧ ¬vh.v2 ∧ ¬vh.v3 ∧ ¬vh.v4 ∧ ¬vh.v5 ∧ ¬vh.v6)

∨ (¬vh.speedsafe(i)∧(vh.v1∨vh.v2)∧¬vh.v3∧¬vh.v4∧¬vh.v5∧¬vh.v6)

∨ (vh.speedsafe(i)∧¬vh.v1 ∧¬vh.v2 ∧ (vh.v3 ∨ vh.v4 ∨ vh.v5 ∨ vh.v6))

∨ (vh.speedsafe(i)∧¬vh.v1∧¬vh.v2)∧((vh.v3∨vh.v4)∧(vh.v5∨vh.v6)))

∨ (¬vh.speedsafe(i)∧ (vh.v1∨ vh.v2)∧ (vh.v3∨ vh.v4∨ vh.v5∨ vh.v6))

∨ (¬vh.speedsafe(i)∧(vh.v1∨vh.v2)∧((vh.v3∨vh.v4)∧(vh.v5∨vh.v6)))

QSAS1 sets the initial state of the host vehicle. We are considering several

situations that can happen at the beginning.

1. Host vehicle has safe speed, it has no front and rear opponent vehicle (i.e.,

front and rear road is clear) and it is not in any violation.

2. Host vehicle has safe speed, it has front or rear (or both) opponent vehicles,

but it is not in any violation.

3. Host vehicle is in a single violation, i.e., there is a speed or distance (safety

distance or collision distance) violation.

4. Host vehicle is in multiple violations, i.e., it is in a state where a speed

violation and any or both of the distance violations are true.

QSAS2 ∀i ∈ Speed :

(vh(of,or).speedinc(i)⊕ vh(of,or).speeddec(i)⊕ vh(of,or).speedcont) ∧
(vh(of,or).speedinc(i)⊕ vh(of,or).speedcont ⊕ vh(of,or).stopped)

QSAS3 ∀i ∈ Speed :

vh(of,or).stopped −→ [vh(of,or).incspeed(i) t vh(of,or).decspeed(i)

t vh(of,or).contspeed]⊥ ∧ ¬collision(vh, v(of,or))

68 6. Model in First Order Deontic Logic

QSAS4 (vh.roadclearfront −→ ¬vh.v3 ∧ ¬vh.v4) ∧
(vh.roadclearrear −→ ¬vh.v5 ∧ ¬vh.v6)

QSAS5 ([vh(of,or).stop]vh(of,or).stopped)

∧ (¬vh(of,or).stopped −→ [vh(of,or).stop]¬vh(of,or).stopped)

The first axiom QSAS2 expresses that the host (or opponent) vehicle

cannot be in a state where it has done more than one of increase, decrease

or continue speed. Axiom QSAS3 says a stopped host (or opponent) vehicle

cannot increase, decrease or continue speed. It also says that if the host vehicle

is stopped, then it did not have a collision with its opponent vehicle. Axiom

QSAS4 says that if the road in front is clear, then the host vehicle is not in a

safety distance or collision distance violation with the front opponent vehicle,

and, if the road in rear is clear, then the host vehicle is not in a safety distance

or collision distance violation with the rear opponent vehicle. QSAS5 models

the stopping action of the host and opponent vehicles.

QSAS6 ∀i ∈ Speed : vh.speedcurnt(i)

∧ (greaterSpeed(i,maxspeed) ←→ vh.exceedmaxspeed)

∧ (lesserSpeed(i,minspeed) ←→ vh.speedlowerthanminspeed)

QSAS7 ∀i, j ∈ Speed, ∀k ∈ Distance :

curntspeedh = i ∧ curntspeedof = j ∧ curntdistfront = k −→
((greaterDistance(minsafedistfront(i, j), k) ←→
vh.exceed(minsafedistfront(i, j)))

∧ (greaterDistance(mincoldistfront(i, j), k) ←→
vh.exceed(mincoldistfront(i, j))))

QSAS8 ∀i, j ∈ Speed, ∀k ∈ Distance :

curntspeedh = i ∧ curntspeedor = j ∧ curntdistrear = k −→
((greaterDistance(minsafedistrear(i, j), k) ←→
vh.exceed(minsafedistrear(i, j)))

∧ (greaterDistance(mincoldistrear(i, j), k) ←→
vh.exceed(mincoldistrear(i, j))))

QSAS9 ∀i ∈ Speed :

¬vh.exceedmaxspeed ∧ ¬vh.speedlowerthanminspeed → vh.speedsafe(i)

6. Model in First Order Deontic Logic 69

Axiom QSAS6 characterizes when the host vehicle exceeds the maximum

and minimum speed limits based on its current speed. QSAS7 shows when

the host vehicle exceeds the minimum safety distance and minimum collision

distance with respect to the front opponent vehicle, based on the current dis-

tance and minimum distance limit . The function minsafedistfront(−,−)

and mincoldistfront(−,−) takes the current speed of both the host and the

front opponent vehicles and returns the minimum safety distance and min-

imum collision distance. Axiom QSAS8 is similar to axiom QSAS7 and

defines when the host vehicle exceeds the minimum safety distance and mini-

mum collision distance with respect to the rear opponent vehicle. And axiom

QSAS9 says that if the host vehicle’s speed is not more than the maximum

speed limitation and not less than the minimum speed limitation, then it has

a safe speed.

The following axioms model the action vh.contspeed and specify the sce-

narios when speed is increasing.

QSAS10 [vh.contspeed]vh.speedcont ∧ [vh.contspeed]¬vh.speedcont
QSAS11 ∀i ∈ Speed :

(curntspeedh = i) −→
[vh.contspeed](curntspeedh = i) ∧ [vh.contspeed](curntspeedh 6= i)

QSAS12 ∀i ∈ Speed :

vh.speedcont ∨ vh.speedinc(i) ∨ vh.speeddec(i) −→ 〈vh.contspeed〉>
QSAS13 ∀i ∈ Speed :

¬vh.exceedmaxspeed ∨ ¬vh.speedlowerthanminspeed −→
P 1(vh.contspeed)

QSAS14 ∀i, j, k ∈ Speed :

(curntspeedh = i) ∧ (curntspeedof = j) ∧ (curntspeedor = k) ∧
(¬vh.exceed(minsafedistfront(i, j)) ∨
¬vh.exceed(mincoldistfront(i, j)) ∨
¬vh.exceed(minsafedistrear(i, k)) ∨
¬vh.exceed(mincoldistrear(i, k))) −→ P 1(vh.contspeed)

QSAS15 (¬vh.exceedmaxspeed ∧ ¬vh.speedlowerthanminspeed) −→
[vh.contspeed](¬vh.exceedmaxspeed ∧ ¬vh.speedlowerthanminspeed)

70 6. Model in First Order Deontic Logic

Axiom QSAS10 models the action vh.contspeed and axiom QSAS11

shows how the current speed of the host vehicle varies based on the action

vh.contspeed. This action maintains the current speed after execution. Ax-

ioms QSAS12 says that this action can be executed from any state where it

has increased, decreased or maintained the current speed. Axiom QSAS13

and QSAS14 shows the permissions associated with this action, based on the

speed and distance limitation. The action is not permitted to execute when it

violates any of the speed or distance limitations as this action maintains cur-

rent speed. The last axiom says that if the host vehicle is in a state where it

has not exceeded the maximum or minimum speed limits, then after executing

the action vh.contspeed it will not exceed those limitations.

The following axioms model the action vh.incspeed(−) and specify the

scenarios when speed is increasing.

QSAS16 ∀i ∈ Speed :

[vh.incspeed(i)](vh.speedinc(i)) ∧ [vh.incspeed(i)](¬vh.speedinc(i))
QSAS17 ∀i, j ∈ Speed :

(curntspeedh = i) −→ [vh.incspeed(j)](curntspeedh = i+ j) ∧
[vh.incspeed(j)](curntspeedh = i)

QSAS18 ∀i, j ∈ Speed :

vh.speedcont ∨ vh.speedinc(i) ∨ vh.speeddec(i) −→ 〈vh.incspeed(j)〉>
QSAS19 ∀i ∈ Speed : ¬vh.exceedmaxspeed −→ P 1(vh.incspeed(i))

QSAS20 ∀i, j, k ∈ Speed : (curntspeedh = i) ∧ (curntspeedof = j) ∧
¬vh.exceed(minsafedistfront(i, j)) −→ P 1(vh.incspeed(k))

QSAS21 ∃i ∈ Speed :

(¬vh.exceedmaxspeed −→ [vh.incspeed(i)]EN(vh.exceedmaxspeed))

∧ (vh.speedlowerthanminspeed −→
[vh.incspeed(i)]EN(¬vh.speedlowerthanminspeed))

The axioms QSAS16 and QSAS17 expresses the behaviour of the action

vh.incspeed(−) and shows how the current speed changes after executing this

action. QSAS19 says the host vehicle is permitted to increase speed if it has

not exceeded the maximum speed limit. Now, as we assign permissions to this

6. Model in First Order Deontic Logic 71

action, it might happen that executing this action can exceed the maximum

speed limit. In that case, the host vehicle has to take a recovery action to

overcome that situation. Axiom QSAS20 says the host vehicle is permitted

to increase speed if it has not exceeded the minimum safety distance. And the

last axiom shows that if the host vehicle has not yet exceeded the maximum

speed limit in a state, then after executing the increase speed action with some

parameter value, it can exceed that limit in the next state. This axiom also

shows that, this action takes the host vehicle from a state where the current

speed of the host vehicle is less than the minimum speed limit, to a state where

the current speed is more than the minimum speed limit.

The following axioms model the action vh.decspeed(−) and specify the

scenarios when speed is decreasing.

QSAS22 ∀i ∈ Speed :

[vh.decspeed(i)](vh.speeddec(i)) ∧ [vh.decspeed(i)](¬vh.speeddec(i))
QSAS23 ∀i, j ∈ Speed : (curntspeedh = i) −→

[vh.decspeed(j)](curntspeedh = i− j)
∧ [vh.decspeed(j)](curntspeedh = i)

QSAS24 ∀i, j ∈ Speed :

vh.speedcont ∨ vh.speedinc(i) ∨ vh.speeddec(i) −→ 〈vh.decspeed(j)〉>
QSAS25 ∀i ∈ Speed : ¬vh.speedlowerthanminspeed −→ P 1(vh.decspeed(i))

QSAS26 ∀i, j, k ∈ Speed : (curntspeedh = i) ∧ (curntspeedor = j) ∧
¬vh.exceed(minsafedistrear(i, j)) −→ P 1(vh.decspeed(k))

QSAS27 ∃i ∈ Speed :

(¬vh.speedlowerthanminspeed −→
[vh.decspeed(i)]EN(vh.speedlowerthanminspeed)) ∧
(vh.exceedmaxspeed −→ [vh.decspeed(i)]EN(¬vh.exceedmaxspeed)) ∧
(¬vh.stopped −→ [vh.decspeed(i)]EN(vh.stopped))

The axioms QSAS22 to QSAS27 are similar to the axioms QSAS16 to

QSAS21 and express the behaviour of action vh.decspeed(−). But we want

to clarify the last three axioms. Axiom QSAS25 says that the host vehicle is

permitted to decrease speed if its current speed is not less than the minimum

72 6. Model in First Order Deontic Logic

speed limit. Axiom QSAS26 assigns permission to execute this action when

the host vehicle has not exceeded the minimum safety distance limitation with

a rear opponent vehicle. And the last axiom shows that in some execution

path after executing this action, the host vehicle recovers from exceeding the

maximum speed limitation and sometimes the host vehicle’s speed gets lower

than the minimum speed limitation and sometimes it ends up stopped.

In the previous axioms we saw how the current speed changes after execut-

ing actions of increasing, decreasing and continuing the speed. In the following

axioms we will see how the distance changes after executing actions of the host

and opponent vehicles.

QSAS28 ∀i, j ∈ Speed, ∀k ∈ Distance : i = j ∧
curntspeedh = i ∧ curntspeedof = j ∧ curntdistfront = k −→
[vh.U u vof .U]curntdistfront = k

QSAS29 ∀i, j ∈ Speed, ∀k ∈ Distance :

curntspeedh = i ∧ curntspeedof = j ∧ curntdistfront = k −→
(([vh.U]curntdistfront = k − i) ∧
([vof .U]curntdistfront = k + j) ∧
([vh.U u vof .U]curntdistfront = k − i+ j))

Axiom QSAS28 says that if the host and front opponent vehicle’s current

speed is the same, then parallel execution of any action (not necessarily the

same actions) will maintain the current distance. Axiom QSAS29 shows the

change of distance after single or parallel execution of action(s) in host and

front opponent vehicle.

The change of distance after executing actions(s) (single or parallel) always

depends on the current speed of the host and opponent vehicle. We know that

the execution of an action takes one instant of time (according to our Deontic

Action Logic framework), so after executing an action, a vehicle covers the

distance that it can go at one time instant by its current speed. The following

figures will make the previous two axioms clearer where front opponent vehicle

is followed by host vehicle.

6. Model in First Order Deontic Logic 73

Figure 6.1: Distance after single action execution

Figure: 6.1 shows the situation where the host vehicle executes an action

to increase its speed, but the front opponent vehicle (FO) is not executing

any action. Here we can see that the initial distance (before execution of

an action) between the host and front opponent vehicles is 100m (shown by

the dark left-right arrow). In state S 0, the host vehicle’s current speed is

30ms−1. Then it executes an action to increase the speed by amount 20ms−1

and reaches state S 1 where the vehicle’s current speed is 50ms−1. As the

action takes one instant of time, for example 1s in this case, then the distance

covered by the host vehicle in reaching state S 1 from S 0 is 30m (30ms−1×1s).

So the distance between the host and opponent vehicles after executing action

INC(20ms−1) is 70m (shown by the dashed left-right arrow).

Figure 6.2: Distance after parallel action execution

74 6. Model in First Order Deontic Logic

Figure: 6.2 is similar to the Figure: 6.1 but here both the host and

front opponent vehicles execute actions in parallel and step from state S 0 to

S 1. The distance between the host and front opponent vehicles after parallel

execution of two actions depends on the speed which was the current speed

of the host and opponent vehicles before executing the actions. So the equa-

tion to calculate the distance between the host and front opponent vehicle

after parallel execution of actions is: DistanceInit− [CurntSpeedH ×Time] +

[CurntSpeedFO×Time]. In our picture the dark left-right arrow shows the

initial distance (100m) between the host and front opponent vehicles before

executing the parallel actions. The figure shows that in state S 0 the host and

front opponent vehicles have initial speeds 30ms−1 and 40ms−1, respectively.

Then after executing parallel actions INC(20ms−1) and DEC(10ms−1), re-

spectively, the host and front opponent vehicles reach state S 1 where they have

resultant speeds 50ms−1 and 30ms−1. But the distance (shown by dashed

left-right arrow) after parallel execution of actions in state S 1 is 110m.

QSAS30 ∀i, j ∈ Speed, ∀k ∈ Distance : i = j ∧
curntspeedh = i ∧ curntspeedor = j ∧ curntdistrear = k −→
[vh.contspeed u vor.contspeed]curntdistrear = k

QSAS31 ∀i, j ∈ Speed, ∀k ∈ Distance :

curntspeedh = i ∧ curntspeedor = j ∧ curntdistrear = k −→
(([vh.U]curntdistrear = k + i) ∧
([vof .U]curntdistrear = k − j) ∧
([vh.U u vof .U]curntdistrear = k + i− j))

Axiom QSAS30 and QSAS31 are similar to the axioms QSAS28 and

QSAS29 and show the change of distance between the host and rear opponent

vehicles after executing an action.

Now we describe axioms modelling the situations when the front opponent

vehicle changes speed. Any opponent vehicle is not potentially dangerous if

there is sufficient distance between the host and opponent vehicles after the

opponent vehicle executes any action. For example, if the front opponent ve-

hicle decreases its speed but after decreasing speed the distance between the

host and front opponent vehicles is no less than the minimum safety distance

6. Model in First Order Deontic Logic 75

or minimum collision distance, then the host vehicle can execute any action.

Otherwise, there must be some restriction imposed on the host vehicle’s ac-

tions.

QSAS32 ∀i, j ∈ Speed : i 6= j ∧
vh.speedcurnt(i) ∧ vof .speedcurnt(j)

∧ (greaterSpeed(i, j) −→ vhvof .posrelspeed)

∧ (¬greaterSpeed(i, j) −→ vhvof .negrelspeed)

QSAS33 ∀i, j, k ∈ Speed :

vh.speedcurnt(i) ∧ vof .speedcurnt(j) ∧ vhvof .posrelspeed

∧ (¬vh.exceed(minsafedistfront(i, j)) −→ [vh.incspeed(k) t
vh.decspeed(k) t vh.contspeed]>)

∧ (vh.exceed(minsafedistfront(i, j)) ∧
¬vh.exceed(mincoldistfront(i, j)) −→ ¬P 2(vh.incspeed(k) t
vh.contspeed))

∧ (vh.exceed(mincoldistfront(i, j)) −→ ¬P 4(vh.incspeed(k) ∧
vh.decspeed(k) ∧ vh.contspeed))

QSAS34 ∀i, j, k ∈ Speed :

vh.speedcurnt(i) ∧ vof .speedcurnt(j) ∧ vhvof .negrelspeed

∧ (¬vh.exceed(minsafedistfront(i, j)) −→ [vh.incspeed(k) t
vh.decspeed(k) t vh.contspeed]>)

∧ (vh.exceed(minsafedistfront(i, j) ∧
¬vh.exceed(mincoldistfront(i, j)) −→ ¬P 2(vh.incspeed(k))

∧ (vh.exceed(mincoldistfront(i, j)) −→ ¬P 4(vh.incspeed(k) ∧
vh.decspeed(k) ∧ vh.contspeed)

QSAS35 ∀i, j ∈ Speed : vh.speedcurnt(i) ∧ vof .speedcurnt(j) ∧
¬vh.exceed(minsafedistfront(i, j)) −→
∃k ∈ Speed : ([vh.incspeed(k) t vof .decspeed(k)]

EN(vh.exceed(minsafedistfront(i+ k, j)) ∨
vh.exceed(minsafedistfront(i, j − k))))

76 6. Model in First Order Deontic Logic

QSAS36 ∀i, j ∈ Speed : vh.speedcurnt(i) ∧ vof .speedcurnt(j) ∧
vh.exceed(minsafedistfront(i, j)) ∧
¬vh.exceed(mincoldistfront(i, j)) −→
∃k ∈ Speed : ([vh.incspeed(k) t vof .decspeed(k)]

EN(vh.exceed(mincoldistfront(i+ k, j)) ∨
vh.exceed(mincoldistfront(i, j − k))))

QSAS37 ∀i, j ∈ Speed : i = j ∧ vh.speedcurnt(i) ∧ vof .speedcurnt(j)

∧ (vh.exceed(minsafedistfront(i, j))

∨ vh.exceed(mincoldistfront(i, j))) −→
([vh.contspeed u vof .contspeed]

AN(vh.exceed(minsafedistfront(i, j))

∨ vh.exceed(mincoldistfront(i, j))))

Axiom QSAS32 describes situations in which there is positive or negative

relative speed between the host and front opponent vehicles, and says that if

the host vehicle’s speed is more than the front opponent vehicle’s speed, then

the host vehicle has positive relative speed and if the host vehicle’s speed is less

than the front opponent vehicle’s speed, then it has negative relative speed.

Here we are not measuring how much positive or negative relative speed the

host vehicle has in comparison with the front opponent vehicle’s speed, rather

we are only trying to find out whether it has positive or negative relative speed.

Axiom QSAS33 shows the permitted or possible actions of the host vehicle

when it has positive relative speed with the front opponent vehicle. When the

host vehicle has positive relative speed but has not exceeded the minimum

safety distance with respect to the front vehicle, then the host vehicle can ex-

ecute any action to increase, decrease and continue speed. If the host vehicle

exceeds the minimum safety distance and has positive relative speed, then it

is not permitted to increase or continue speed. And if it exceeds the minimum

collision distance, then all actions regarding increasing, decreasing and con-

tinuing speed are prohibited. Axiom QSAS34 is similar to axiom QSAS33

and model the possible actions when the host vehicle has negative relative

speed. The only difference is that if the host vehicle exceeds the minimum

safety distance with the front opponent vehicle with negative relative speed,

then the host vehicle has permission to continue speed along with decreasing

6. Model in First Order Deontic Logic 77

speed. Axiom QSAS35 says that if the host vehicle increases speed or the

front opponent vehicle decreases speed with some value, then the host vehicle

may exceed the minimum safety distance in the next state. Axiom QSAS36

shows how the host vehicle exceeds the minimum collision distance in the next

state from a state where it already exceeded the minimum safety distance.

And the last axiom says that in the current state if the host and the front

opponent vehicles have same speed and if they have exceeded the minimum

safety distance or minimum collision distance limitation, then; after parallel

execution of the continue speed actions they reach the next state where they

still exceed those limitations.

6.3.9 Violations and Recovery Mechanism

Now we present a collection of axioms for modelling violations, i.e., the occur-

rence of faults. First we are modelling violation vh.v1 where the host vehicle

exceeds the maximum speed limit. The host vehicle must decrease its speed

to recover from this violation.

QVS1 ∀j, k,∃i ∈ Speed : ¬vh.v1 ∧ ¬(vh.exceed(minsafedistfront(j, k)) ∧
vh.exceed(mincoldistfront(j, k))) ∧O1(vh.decspeed(i)) −→
[vh.decspeed(i)]vh.v1

QVS2 ∀i ∈ Speed : ¬vh.v1 ∧ ¬O1(vh.decspeed(i)) −→ [vh.U]¬vh.v1

QVS3 vh.exceedmaxspeed ←→ vh.v1

QVS4 ∀i ∈ Speed : vh.v1 −→ ¬P 2(vh.contspeed) ∧ ¬P 2(vh.incspeed(i))

QVS5 vh.v1 −→ ∃i ∈ Speed : (O2(vh.decspeed(i)) ∧
[vh.decspeed(i)](¬vh.exceedmaxspeed ←→ ¬vh.v1))

QVS6 vh.v1 −→ ∃i ∈ Speed : (O2(vh.decspeed(i)) ∧
[vh.decspeed(i)](vh.v1 −→ O2(vh.decspeed(i))))

QVS7 ∀i ∈ Speed :

vh.v1 −→ [vh.decspeed(i)](vh.v1 ∧ O3(vh.decspeed(i)))

QVS8 vh.v1 −→ ∃i ∈ Speed : EN([vh.decspeed(i)]¬vh.v1)

QVS9 ∀i ∈ Speed : vh.speedsafe(i) ⊕ vh.v1

The first axiom defines when vh.v1 can become true, that is, when the

host vehicle has not yet exceeded the minimum safety distance or minimum

78 6. Model in First Order Deontic Logic

collision distance with respect to the front opponent vehicle and is obliged to

reduce the speed, but does not do that. QVS2 says that executing the other

actions does not affect vh.v1. QVS3 shows the relation between exceeding

the maximum speed limit and violation vh.v1 and QVS4 expresses that the

host vehicle is not permitted to continue at the same speed or to increase

speed by any amount if it is in this violation state. Axiom QVS5 describes

how the host vehicle can recover from the violation vh.v1 after executing the

decrease speed action by a specified amount. It says that if after executing the

decrease speed action, the host vehicle is in a state where it does not exceed

the maximum speed limit, then it is not in violation vh.v1. Axiom QVS6

imposes an obligation on further execution of the decrease speed action if the

previous decrease speed action has not caused recovery from violation vh.v1.

Axiom QVS7 shows how the level of obligation changes when the obligated

action is not performed. It says that if an obligation of level 2 (to decrease

speed) is not fulfilled (i.e., any action other than the obligated action has been

executed) when host vehicle is in violation vh.v1, then an obligation of level 3

is assigned on the same action in the next state. Axiom QVS8 says that in

some execution path, after decreasing speed with some specified amount, the

host vehicle recovers from the violation vh.v1 in the next state. And the last

axiom shows the disjointness between maintaining a safe speed and violation

vh.v1.

In a similar approach, we can also model the violation vh.v2, where host

vehicle’s current speed is less than the minimum speed limit. As a recovery

mechanism from this violation state, host vehicle is obliged to increase its

speed.

Now we model the distance violations vh.v3 and vh.v4. The violations

vh.v3 or vh.v4 are true when the host vehicle exceeds the minimum safety

distance or the minimum collision distance, respectively, with respect to the

front opponent vehicle. If the host vehicle is in violation vh.v3, then, because of

the situation, it has to decrease speed or continue the current speed to recover

from this violation. If the host vehicle has negative relative speed when it is

6. Model in First Order Deontic Logic 79

in this violation, then it can decrease or continue the speed, otherwise it must

decrease speed as the recovery action. When the host vehicle is in violation

vh.v4, which we assume to be the worst case scenario, the host vehicle must

stop to recover from that violation. As we have stated in axiom QVS6, for

violation vh.v3, if one recovery action cannot the take host vehicle from a

violation state to a safe state, then host vehicle must execute another recovery

action. But for vh.v4, we are assuming that only one emergency stop action

will take the host vehicle from this violation state to a safe state (even if vehicle

has excessive speed). Here we model both violations together as they are both

distance violations of a certain kind.

QVD1 ∀i ∈ Speed : ¬vh.exceedmaxspeed ∧
(vhvof .posrelspeed∧O1(vh.decspeed(i))→ [vh.decspeed(i)]vh.v3) ∧
(vhvof .negrelspeed ∧ O1(vh.decspeed(i) ∨ vh.contspeed) −→
[vh.decspeed(i) t vh.contspeed]vh.v3) ∧

QVD2 ∀i ∈ Speed :

¬vh.v3 ∧ ¬O1(vh.decspeed(i) ∨ vh.contspeed) −→ [vh.U]¬vh.v3

QVD3 ¬vh.v4 ∧ O1(vh.stop) −→ [vh.stop]¬vh.v4 ∧ [vh.stop]vh.v4

QVD4 ¬vh.v4 ∧ ¬O1(vh.stop) −→ [vh.U]¬vh.v4

QVD5 ∀i, j ∈ Speed : vh.speedcurnt(i) ∧ vof .speedcurnt(j)

∧ (vh.exceed(minsafedistfront(i, j)) ←→ vh.v3)

∧ (vh.exceed(mincoldistfront(i, j)) ←→ vh.v4)

QVD6 (¬vh.v3 −→ ¬vh.v4) ∧ (vh.v3 ∧ vh.v4 −→ vh.v4)

QVD7 vh.v3 ∨ vh.v4 −→ vhvof .posrelspeed ∨ vhvof .negrelspeed

Axiom QVD1 - QVD4 define when violation vh.v3 and vh.v4 can be true.

Axiom QVD5 says that if the host vehicle is in a state where it has exceeded

the minimum safety distance, then it is in violation vh.v3 and if it has exceeded

the minimum collision distance, then it is in violation vh.v4. Axiom QVD6

shows the relation between violations vh.v3 and vh.v4. As we know that the

minimum collision distance is less than the minimum safety distance, if any

vehicle has exceeded the minimum collision distance, then it has also exceeded

the minimum safety distance and, again, if any vehicle has not exceeded the

minimum safety distance, then it has not exceeded the minimum collision

80 6. Model in First Order Deontic Logic

distance. In our model, if both violations vh.v3 and vh.v4 are true in a state,

then we will deal with violation vh.v4 as it describes the more severe situation.

And axiom QVD7 says that the host vehicle has either positive relative speed

or negative relative speed with respect to the opponent vehicle when it is in

violation vh.v3 or vh.v4.

QVD8 ∀i ∈ Speed :

(vh.v3 ∧ vhvof .posrelspeed −→ ¬P 2(vh.contspeed) ∧
¬P 2(vh.incspeed(i)))

∧ (vh.v3 ∧ vhvof .negrelspeed −→ ¬P 2(vh.incspeed(i)))

QVD9 ∃i, ∀j, k ∈ Speed :

vh.v3 ∧ O2(vh.decspeed(i) ∨ vh.contspeed) −→
[vh.decspeed(i) t vh.contspeed](vh.speedcurnt(j) ∧ vof .speedcurnt(k) ∧
(¬vh.exceed(minsafedistfront(j, k)) −→ ¬vh.v3) ∧
(vh.exceed(minsafedistfront(j, k)) −→
O2(vh.decspeed(i) ∨ vh.contspeed)))

QVD10 vh.v4 −→ ¬P 4
w(vh.stop)

QVD11 vh.v4 ∧ O4(vh.stop) −→ [vh.stop]¬vh.v4

QVD12 ∀i ∈ Speed : vh.v3

∧ (vhvof .posrelspeed −→ [vh.decspeed(i)](vh.v3 ∧
O3(vh.decspeed(i)))

∧ (vhvof .negrelspeed −→ [vh.decspeed(i) t vh.contspeed]

(vh.v3 ∧ O3(vh.decspeed(i) ∨ vh.contspeed)))

QVD13 vh.v4 −→ [vh.stop](vh.v4 ∧ O5(vh.stop))

QVD14 ∃i ∈ Speed : vh.v3

∧ (vhvof .posrelspeed −→ [vh.decspeed(i)]EN(vh.v3)

∧ (vhvof .negrelspeed −→ [vh.decspeed(i) t vh.contspeed]EN(vh.v3)

QVD15 vh.v4 −→ ∀i ∈ Speed :

[vh.stop u (vof .incspeed(i) t vof .decspeed(i) t vof .contspeed t
vof .stop)]EN(collision(vh, vof))

Axiom QVD8 defines the actions that are not permitted for violation

vh.v3, based on having positive and negative relative speed with respect to the

front opponent vehicle. Axiom QVD9 shows how the host vehicle can recover

6. Model in First Order Deontic Logic 81

from violation vh.v3. If after executing the obligatory action to decrease or

continue speed, the host vehicle creates more distance between itself and the

front opponent vehicle than the minimum safety distance, then it recovers from

that violation. Otherwise, it is obliged to perform those actions again. Axiom

QVD10 says that all actions except stopping the vehicle are not permitted

when the vehicle is in violation vh.v4. Axiom QVD11 says that after executing

the stop action the host vehicle recovers from violation vh.v4. Axioms QVD12

and QVD13 show that the level of obligation changes when the host vehicle

does not perform the obligated action when it is in violation vh.v3 or vh.v4.

QVD14 states that, after executing the obligated action, the vehicle recovers

from violation vh.v3 in the next state in some execution path. The last axiom

says that in some execution path, in the next state the host vehicle can have a

collision with the front opponent vehicle if the front opponent vehicle executes

any action and host vehicle does not stop.

In this formalization we have described the violations and recovery mecha-

nisms for the front opponent vehicle. In a similar approach, we can also model

violations vh.v5 and vh.v6, where the host vehicle fails to maintain the min-

imum safety distance and minimum collision distance, respectively, with the

rear opponent vehicle.

6.3.10 Cut-in and Cut-out vehicle

In this section we will examine the scenarios when a vehicle comes into or goes

out from the host vehicle’s lane. In our model our main focus is on the host

vehicle, along with the front and rear opponent vehicles. The opponent of our

host vehicle is changed when a vehicle comes into or goes out from the host

vehicle’s lane. This sort of action also changes the current speed and distance

of the opponent vehicle from the host vehicle. To formalize this scenario, we

add a few more actions, predicates, functions etc. to our model.

Type:

• Vehicles: denotes the set of vehicles.

82 6. Model in First Order Deontic Logic

Constants:

• host : V ehicles denotes the constant host which is the host vehicle in

our formalization.

Predicates:

• opponentfront(x : V ehicle, y : V ehicle) denotes that x is the front op-

ponent of vehicle y.

• opponentrear(x : V ehicle, y : V ehicle) denotes that x is the rear oppo-

nent of vehicle y.

Functions:

• opponentf (x : V ehicle) : returns the front opponent vehicle of x.

• opponentr(x : V ehicle) : returns the rear opponent vehicle of x.

• distanceof(x : V ehicle) : returns the current distance of the opponent

vehicle from the host vehicle.

• speedof(x : V ehicle) : returns the current speed of the opponent vehicle

.

Actions:

• cutinfront(x : V ehicle) : vehicle x moves in front of the host vehicle

from another lane.

• cutoutfront(x : V ehicle) : vehicle x moves from in front of the host

vehicle.

• cutinrear(x : V ehicle) : vehicle x comes in directly behind the host

vehicle.

6. Model in First Order Deontic Logic 83

• cutoutrear(x : V ehicle) : vehicle x leaves from behind the host vehicle.

Axioms:

C1 ∀i, j ∈ V ehicle : opponentfront(i, host) −→
[cutinfront(j)](opponentfront(j, host) ∧ opponentfront(i, j))

C2 ∀i, j ∈ V ehicle,∀s ∈ Speed, ∀l ∈ Distance :

opponentfront(i, host) ∧ (curntdistfront = l) −→ [cutinfront(j)]

((curntdistfront = distanceof(j)) ∧ (curntspeedof = speedof(j)))

C3 ∀i ∈ V ehicle : opponentfront(i, host) −→
[cutoutfront(i)](opponentfront(opponentf (i), host)

C4 ∀i ∈ V ehicle,∀s ∈ Speed, ∀l ∈ Distance :

opponentfront(i, host) ∧ (curntdistfront = l) −→
[cutoutfront(i)]((curntdistfront = distanceof(opponentf (i))) ∧
(curntspeedof = speedof(opponentf (i))))

Axiom C1 states that the cut-in vehicle becomes the new front opponent of

the host vehicle. C2 says that when a new cut-in vehicle appears just in front

of the host vehicle, the current speed and distance of the front opponent vehicle

changes according to the newly appearing vehicle. C3 shows the change of

front opponent vehicle when the immediate front vehicle leaves the lane. And

the last axiom is the same as axiom C2 but shows the changes of the front

vehicle’s speed and distance when one front opponent vehicle cuts out of the

lane.

C5 ∀i ∈ V ehicle :

¬vh.v3 ∨ ¬vh.v4 −→ [cutinfront(i)](EN(vh.v3 ∨ vh.v4))

C6 ∀i ∈ V ehicle :

(vh.v3 −→ [cutinfront(i)](AN(vh.v3 ∨ vh.v4))) ∧
(vh.v4 −→ [cutinfront(i)](AN(vh.v4)))

C7 ∀i ∈ V ehicle :

¬vh.v3 ∨ ¬vh.v4 −→ [cutoutfront(i)](AN(¬vh.v3 ∨ ¬vh.v4))

C8 ∀i ∈ V ehicle :

vh.v3 ∨ vh.v4 −→ [cutoutfront(i)](EN(¬vh.v3 ∨ ¬vh.v4))

84 6. Model in First Order Deontic Logic

Axiom C5 says that if the host vehicle is not in violation vh.v3 or vh.v4,

then, in some execution path, it can be in any of these violations after a cut-

in vehicle comes in front of the host vehicle. Axiom C6 states that distance

violations are preserved after a cut-in vehicle comes in front of the host vehicle.

It says that, if the host vehicle is in violation vh.v3, then in all execution paths

it will be either in violation vh.v3 or in vh.v4 after that event happens. In

another case, if the host vehicle is in violation vh.v4, then it will still be in that

violation after a vehicle comes in front of that vehicle. Axiom C7 shows that

cut-out vehicles do not introduce any violation for the host vehicle. The last

axiom states how the host vehicle recovers from a violation or improves the

violation condition when the front opponent vehicle leaves the lane.

6.3.11 Properties

In this section, we present some expected system properties and demonstrate

that they can be proven from the axioms of the model presented above. Here

we exhibit one proof and the rest of the proofs can be found in the Appendix

of this thesis.

Property 1 The host vehicle cannot recover from violation vh.v1 after exe-

cuting the increase speed action.

1. vh.v1 −→ ∃i ∈ Speed : EN [vh.decspeed(i)]¬vh.v1 QVS8

2. vh.v1 −→ EN [vh.decspeed(s)]¬vh.v1 FOL, 1

3. ∀i ∈ Speed :

vh.v1 ∧ O2(vh.decspeed(i)) −→ [vh.decspeed(i)]vh.v1

QVS7

4. vh.v1 ∧ O2(vh.decspeed(s)) −→ [vh.decspeed(s)]vh.v1 FOL, 3

5. ∀i ∈ Speed : AN([vh.decspeed(i)]vh.speeddec(i)) TempRule2,

QSAS21

6. AN([vh.decspeed(s)]vh.speeddec(s)) FOL, 5

7. vh.v1 −→ AN([vh.decspeed(s)]vh.speeddec(s)) PL, 6

8. vh.v1 −→ EN([vh.decspeed(s)]vh.speeddec(s)) CTL, 7

9. vh.v1 −→ EN([vh.decspeed(s)](vh.speeddec(s) ∧ ¬vh.v1)) ML, 8, 2

6. Model in First Order Deontic Logic 85

10. vh.v1 −→ EN([vh.decspeed(s)]vh.speeddec(s)) PL, 9

11. vh.v1 −→ AN([vh.decspeed(s)](vh.speeddec(s) ∨ vh.v1)) PL, 7

12. vh.v1 ∧ O2(vh.decspeed(s)) −→
AN([vh.decspeed(s)](vh.speeddec(s) ∨ vh.v1))

PL, 11

13. vh.v1 ∧ O2(vh.decspeed(s)) −→
AN([U](vh.speeddec(s) ∨ vh.v1))

BA, 4, 12

14. ∀i ∈ Speed : vh.speeddec(i) −→ ¬∃j ∈ Speed : vh.speedinc(j) QSAS2

15. ∀i ∈ Speed : vh.speeddec(i) −→ ∀j ∈ Speed : ¬vh.speedinc(j) FOL, 14

16. vh.speeddec(s) −→ ¬vh.speedinc(s) FOL, 15

17. vh.v1 ∧ O2(vh.decspeed(s)) −→ AN([U](¬vh.speedinc(s) ∨
vh.v1))

PL, 13, 16

18. vh.v1∧O2(vh.decspeed(s)) −→ AN([U](vh.speedinc(s) −→
vh.v1))

PL, 17

19. ∀i ∈ Speed : (vh.v1 ∧O2(vh.decspeed(i)) −→
AN([U](vh.speedinc(i) −→ vh.v1))

PL, FOL,

18

Property 2 If the host vehicle is in a minimum collision distance violation,

then, after executing any action, the host vehicle either recovers from

the violation or stays in that violation or has a collision with the front

opponent vehicle.

vh.v4 ∧ O4(vh.stop) −→
[vh.U u vof .U](vh.v4 ∨ ¬vh.v4 ∨ EN(collision(vh, vof)))

Property 3 After executing any action, the host vehicle either has a safe

speed or it violates the maximum or minimum speed limitations.

∀i ∈ Speed : vh.speedsafe(i) −→
[U]AN(vh.speedsafe(i) ∨ vh.exceedmaxspeed ∨ vh.speedlowerthanminspeed)

Property 4 If the host vehicle increases speed from a state where it is in a

minimum safety distance violation with respect to the front opponent

vehicle, then in the next state it is not permitted to increase speed or is

obliged to stop.

86 6. Model in First Order Deontic Logic

vh.v3 ∧ (vhvof .negrelspeed ∨ vhvof .posrelspeed) −→
∃i, j,∀k : [vh.incspeed(i) u vof .incspeed(j)]

(AN(¬P 2(vh.incspeed(k))) ∧ EN(¬P 4
w(vh.stop)))

Property 5 The host vehicle cannot change the current situation after exe-

cuting a continue speed action unless the host vehicle is in a minimum

safety distance violation with negative relative speed.

∀i ∈ Speed :

((vh.speedsafe(i) ∨ vh.v1 ∨ vh.v4 ∨
(vh.v3 ∧ vhvof .posrelspeed)) −→
[vh.contspeed](vh.speedsafe(i) ∨ vh.v1 ∨ vh.v4 ∨
(vh.v3 ∧ vhvof .posrelspeed)))

∧
((vh.v3 ∧ vhvof .negrelspeed) −→ [vh.contspeed]EN(vh.v3))

In this formalization, we have modelled the scenarios that the host vehicle

encounters with the front opponent vehicle, the violations that occur when

the host vehicle fails to maintain the maximum speed limitation and the min-

imum safety distance or minimum collision distance limitations, respectively,

with respect to the front opponent vehicle; and the recovery mechanisms for

these violations. Accordingly, we have chosen properties that relates with

the violations, related with the maximum speed limitation and the minimum

safety distance or minimum collision distance limitation. Based on our model,

we have tried to prove that, in what conditions the host vehicle cannot recover

from a violation; what are the possible situations arise for the host vehicle,

from a safe state or a violations state after executing any action or a specified

action. In a similar approach, we can also prove system properties related with

the violations regarding minimum speed limitation, or the distance violations

with respect to the rear opponent vehicle. We can also take into account of

proving properties, related with the scenarios that cut-in and cut-out vehicles

exhibit.

6. Model in First Order Deontic Logic 87

6.4 Summary

In this chapter we have modelled an automotive example concerning safe speed

and safe distance properties with Deontic First Order Logic. We could not rep-

resent some real world aspects in Propositional Deontic Logic, such as change

of speed and distance. But the Deontic First Order Logic approach helped

us to overcome this obstacle. In this example we also took into account the

environment’s effect on the agent to model fault tolerance mechanisms. Here

we have exhibited multi step recovery mechanisms which also provide a clear

understanding of different levels of deontic operators and different levels of vi-

olation resulting from faults. As an extension of our last model, we have also

modelled the cut-in and cut-out vehicle concept and saw how it effects different

violations. And finally, we have presented some properties of our model and

their proofs. The properties that presented here, are proved in hand, which is

relatively a hard task. So, automated tool to prove system properties in this

logic would be very interesting and effective.

Chapter 7

Engineering Lessons and

Discussion

7.1 Engineering Lessons and Discussion

One of the major objectives defined for this work was to determine the ob-

stacles that arise during high level modelling of fault tolerant systems and

ideas for possible ways to overcome them. In this chapter, we describe some

important lessons that we have learned during our analysis and modelling of

the case study problem.

7.1.1 How easy is it to write the specifications?

In this thesis, we have examined an existing real world problem and defined

some high level specifications. Obviously, a very general and important ques-

tion is: how easy was it to write the specifications? Based on our work, we

can say that writing specifications from a problem description is not an easy

task, as formal specifications must reflect the details of a system which encodes

many design decisions. Our specification writing stage can be broken down

into two stages: (1) Extracting requirements from the problem description,

(2) Converting requirements into a high level specification.

88

7. Engineering Lessons and Discussion 89

7.1.1.1 Extracting requirements from the problem description

The first stage of writing specifications starts with obtaining the requirements

of the problem. In some cases, it is possible to get the requirements correct,

concrete and organized, make the specification process much easier. But in

most cases, the specifier faces problems to generate the specifications from the

requirements, because the requirements can be ambiguous, and understanding

of the requirements may vary from the requirement writer to the specifier.

As the requirements are usually composed of natural language sentences, the

same concept can be written in completely different ways, which can be mis-

leading for the specifier. Moreover, the specifier may not get all the related

requirements together. So, even if the specifier obtains the requirements with-

out extracting them from the problem description, organise them in terms of

related task can be vital.

On the other hand, we had to start modelling our problem from scratch

with a problem description, and did not have any specific or well defined set of

requirements. So, as a first step in specification writing, we had to determine

the requirements of the problem. To do this, we broke down the problem into

smaller sub-problems (based on scenarios) to analyse and to determine the

sub-problem requirements. Isolating all the sub-problems from the problem

description is useful to obtain all the related requirements together.

The way we generated the requirements was based on the problem analysis,

and we followed some defined steps to produce requirements from the problem

description:

1. At first, we tried to find the defining set of scenarios from the problem

description, and considered them as sub-problems. A sub-problem can be the

details of any operation (e.g., the process of increasing speed), or a violation

(e.g., speed violation) etc.

2. We tried to understand what the sub-problem is all about, in order to

get the possible requirements of that sub-problem.

3. We tried to find all the events that occur within the sub-problem.

4. We tried to isolate the components that participate in an event, and

90 7. Engineering Lessons and Discussion

the interaction between the components.

5. We elicited the requirements of the sub-problem based on the asso-

ciated event(s). In most cases, each requirement consists of three pieces of

information: (a) the current situation of the system, (b) the possible next

action(s) based on the current situation and (c) the result(s) of each such

action.

Though we tried to write requirements based on sub-problems, still our

requirements lacked any modularisation, and the requirements can be still

ambiguous to other people. More in depth analysis of the sub-problems to

create (much) better isolation between them, and, more analysis of language

construction and strong documentation can potentially overcome these prob-

lems.

Refining or improving requirements in order to make them more correct

and consistent in terms of properties is very important. In this thesis, we could

not focus that much on improving requirements, as we had to prove required

properties of the system by hand, and as we could not attempt to prove all the

required properties, finding inconsistencies in requirements was a hard task.

Some automated tool to discharge proofs of the required properties will be

very effective for a large model; from the interactive proving with the tool and

attempting to discharge all the proof obligations, we can detect missing and

wrong requirements, this will be very interesting future work.

7.1.1.2 Converting requirements into a high level specification

In our modelling stage, we did not use any tool, and had to write the speci-

fications by hand. Therefore, we had to be very focused to maintain proper

syntax and semantics of Deontic Logic, so that (in later stage) we can effec-

tively prove the desired properties of the system. Though requirements are

written in natural language, converting them to specifications is a difficult

task. As our modelling approach was Deontic Logic, we had to address several

key issues while writing specifications :

7. Engineering Lessons and Discussion 91

1. Assigning the right normative property to an action, i.e., defining

whether an action (occurring in a requirement) is permitted or forbidden was

a major task. We know that a permitted action can be executed in every

possible way and should lead the system to a good successor state (the re-

sulting expected behaviours), while execution of a forbidden action will take

the system to a bad successor state (the resulting unexpected behaviours). So

while defining specification, we had to be aware of assigning the normative

modalities to actions in order to isolate good and bad behaviours.

2. From the description of our requirements, we had to distinguish the

events of single and parallel action(s) executions and their effects. We know

that when an action is not affected by another parallel action, the behaviour

of the system when the relevant action is executed as a single action and

in parallel with other action(s) are the same. But, if execution of another

action affects the relevant action, (like, an action neutralizes or does something

negative of the relevant action) then the resulting behaviour of the single and

parallel action(s) execution could be different. So, defining the effects of single

and parallel execution of action(s) in the specification was a critical task.

3. Violation and recovery are major issues for a fault tolerant system’s

specification. While writing the specification of a violation scenario, we tried

to capture the possible (single and multi step) recovery mechanisms, and,

distinguished them in terms of different priorities of violation and levels of

obligation (on recovery action(s)). It is also important to isolate single and

multiple violations on the basis of the requirement, as the required recovery

mechanisms for a single violation V1 and multiple violations V1 and V2 may

be different. Moreover, in case of multiple violations, each violation may re-

quire a different recovery action, or all violations may require the same single

recovery action. So, it was our prime concern to obtain the violation(s) and

the corresponding recovery mechanism(s), to convert into the specification.

4. The behaviours that an agent exhibits while it is isolated from the

environment, compared to when it interacts with the environment, can be

different. Moreover, the environment can create a violation for the agent. So,

from the requirements, we tried to capture the effects of the environment on

92 7. Engineering Lessons and Discussion

the agent, and then, in the specification, we draw a clear distinction on the

agent’s behaviour based on when it interacts with the environment, and when

it does not.

5. During specification, we ourselves had to analyse each requirement to

extract the essence, so that we could write axioms with the correct syntax

incorporating proper connectives and quantifiers. Moreover, we had to in-

corporate temporal operators in our axioms in order to reason about states

and the execution paths. We know that, writing axioms with wrong connec-

tors, quantifiers or temporal operators can make it harder to prove desired

system properties. Subsequently, this will also create problem in improving

requirements.

So, we can summarise by saying that writing specifications is a systematic

task with some prerequisite steps and prerequisite knowledge, and requires an

extensive analysis on the problem description and the requirements. Moreover,

while writing a specification in Deontic Logic, a modeller must be always aware

of some key aspects, concerning violation and recovery, the environment etc.

Therefore, converting natural language to high level specifications is a difficult

task. In future, we also want to work on improving specifications, to create

stronger and more solid through improving the requirements, making them

more specific and concrete.

7.1.2 How easy is it to define and prove properties?

Every system must have some obvious and expected properties that can be

proved from the system specifications. In this thesis we had to find some ex-

pected properties of the system from the problem description, so that we could

prove them and gain confidence that our model is correct in terms of the re-

quirements captured in the specification. Finding and defining properties that

a system must satisfy relies on the proper analysis of the problem description,

and requires considerable effort. Moreover, discharging all the required prop-

erties related with each sub-system is important in building an effective model

in terms of improving requirements.

7. Engineering Lessons and Discussion 93

In this thesis, we had to prove our desired properties by hand, and un-

doubtedly proving properties of a real world problem by hand is a difficult

and error-prone task. Moreover, this effort is time consuming and finding er-

rors in a hand written proof is hard. To produce an efficient proof in this logic,

a specifier must have a solid grasp of several topics in logic: propositional logic,

first order logic, modal logic etc., along with deontic and temporal operators.

Therefore, an automatic or semi-automatic tool for proving system properties

would be very effective. These software tools guide a modeller during the task

of proving system properties; sometimes they are fully automated, and some-

times they are automated for simple cases, but require human intervention for

more difficult ones. Another interesting outcome of using tools is to obtain

counterexamples in the case of unsuccessful proofs. These counterexamples

can be used to investigate which possible runs of the system (to be built) can

be dangerous and must be taken into account to improve the requirements.

The current theorem provers can be useful to prove properties in this logical

formalism, but this requires a significant effort to encode the logic in the

theorem prover, and this can be a very interesting future exercise. Moreover,

Castro described a tableaux deductive system in [Cas09] and conjectured that

this system would be useful for automatic theorem proving. An automatic or

semi-automatic tool based on the tableaux system will be very effective and

helpful for modelling systems, and will encourage modellers to use this logic

in practice.

7.1.3 Possible recovery scenarios from a violation state

Having a solid understanding of the possible scenarios arising from a violation

state is useful in term of analysing the problem requirement, and high level

modelling of a fault tolerant system. Based on our work, we have come to the

conclusion that there are four possible scenarios that can arise from a violation.

1. If the obligatory action (for recovery purposes) is executed successfully

in one step after a violation arises, then after the step the system recovers from

94 7. Engineering Lessons and Discussion

that violation state and goes to a safe state, perhaps fully recovering from a

fault.

2. But, in some cases, the obligated recovery mechanism has to be per-

formed in multiple steps to recover from the violation. In those cases, after

executing the obligated actions in one or more steps the system goes from a

violation state to a “better” state. The recovery transaction constitutes sev-

eral actions until the system goes into a safe state and, finally, in a future state

the system recovers (partly or wholly) from the violation(s).

3. In some situations it can also happen that, after executing the obligated

recovery action from a violation state, the system remains in the same level of

violation. These situations occur when the action is not performed successfully

or one component depends on or is interrupted by another component. Even

if the component successfully executes the recovery action, it (the action) will

not remain successful if the system does not show the expected behaviour, or

the expected outcome is altered for the environmental intervention; will result

the system to remain in the same level of violation.

4. The last possibility arises when a system does not execute the obligated

action at all from a violation state. In that case, the system can go to a state

where the level of violation in the next state is (much) higher than in the

previous state.

Now, how can we use these recovery scenarios to model and analyse a

fault tolerant system? To model the recovery scenarios discussed above, we

have to apply different levels of obligation during the recovery process. If

the system recovers from any violation after executing a recovery action, the

corresponding obligation has to be removed from the relevant component. If

the component executes the required recovery action, (or if it executes any

action other than the required recovery action), and after execution the system

moves to a (much) worse state; then in the next state, we have to assign a

(much) higher level of obligation to the recovery action. Contrarily, If the

execution of a recovery action takes the system to a better state, and the

system has not fully recovered from the violation, then in the next state, we

7. Engineering Lessons and Discussion 95

have to assign a much lower level of obligation to the recovery action. So, the

process is: as long as the system’s current condition is getting worse in each

transition, in specification, we have to keep incrementing the obligation level,

and when the opposite happens, we have to decrement the obligation level.

If the level of violation remains same after execution of an action from the

violation state, then we have to keep the same level of obligation in the next

state.

In a general way, we can classify the states of a fault tolerant system as:

normal, degraded and critical. Reasoning about a fault tolerant system’s cur-

rent state, i.e., when the system is in safe, degraded or critical condition is

very crucial. During execution, a system shifts between these states, and,

by analysing the various recovery scenarios we can reason about the transi-

tion between good and bad states, and the current condition of the system.

Sometimes, these scenarios are also useful to analyse the environmental effect

on the system. Moreover, in most cases, obtaining all the possible recovery

mechanisms from a system requirement may not be possible; therefore, these

scenarios can help a modeller to reason about all the paths starting from a

violation state.

7.1.4 Modelling the interaction between the agent and

the environment

Every component must execute obligated action(s) to recover from a violation,

and in the next or some future state, the component reaches a safe situation.

But, from our modelling experience, we have come to realise that, in case of

environmental effects or interaction between components, the relevant com-

ponent might recover from a violation without even executing any recovery

action.

1. This situation might introduce a confusion while writing a specifica-

tion. Questions may arise: should we always consider a recovery action as an

obligation? We have to say “yes”. If the violation depends on two or more

components, then every component must have its own obligated action(s) for

96 7. Engineering Lessons and Discussion

recovery, and one component should not rely on another one, because it cannot

be guaranteed that the other component’s recovery action(s) will recover the

relevant component from a violation, and the reliance of one component on

the other to bring the system to a safe state may be unwarranted (e.g., the

other component may violate it’s own obligation).

2. What happens to the obligation (imposed on a component) when the vio-

lation is fixed by another component? Generally, when an obligation imposed

on a component is not fulfilled, the obligation (on the relevant component)

should be retained or a new obligation should be introduced. But, in some

cases of environmental effect, even if the relevant component cannot fulfil the

assigned obligation (in order to recover from the violation), the system might

withdraw that obligation without assigning a new one.

The above two issues are important when writing specifications of a fault

tolerant system that interact with their environment. By analysing the re-

quirement, we can capture the interaction between the environment and the

system, but, a requirement does not explicitly express the assignment and

removal of an obligation, and the change of violation, considering the environ-

ment. Moreover, to effectively prove a desired system property which focuses

on an intervention of the environment or interaction between components,

assigning and withdrawing normative modalities (in the specification) in the

correct way (based on the environmental effect) is very essential, and generally

a complicated issue.

Moreover, while modelling the interaction between the agent and the envi-

ronment, it is also important to determine how and to what extent the agent’s

action is interrupted by the other action(s), as parallel execution of action(s)

might alter the expected behaviour (of the agent).

We know that, the effects of the environment on the agent is an area of

common interest in fault tolerance community. As Deontic Logic is equipped

enough to model fault tolerant system, by using proper deontic operators

(based on the situation) and changing the level of violation, we can effectively

model the environmental effect on the agent.

7. Engineering Lessons and Discussion 97

7.1.5 How can we model a scenario with multiple vio-

lations?

We know that a system can be in multiple violations in a given system state,

and executing a single recovery action might not recover the system from all

the violations at the same time. Moreover, it can also happen that a system

cannot execute multiple parallel recovery actions from a violation state. In

this sort of case, we have to prioritize the violations for recovery purposes.

Figure 7.1: Multiple violations and different recovery action

The figure 7.1 above shows two violations VH (higher priority) and VL

(lower priority) being true in a state. There are two recovery actions, where

action α and β recover the system from violation VH and VL, respectively. Here

we are assuming that the system cannot execute parallel recovery actions. So

the system executes the recovery actions α and β in sequence, in order to

recover from the violations VH and VL, respectively.

Figure 7.2: Multiple violations and single recovery action

98 7. Engineering Lessons and Discussion

Figure 7.2 shows three cases where a single recovery action α recovers the

system from two violations VH and VL. In the first case the system recovers

from both violations at the same time. The second case shows that the system

recovers from the higher priority violation first, as is expected; and in the

last case, in an unintended way the system recovers from the lower priority

violation, before it recovers from the higher priority violation.

So, we can say that, if a system is in multiple violations, different violations

have different recovery actions and the system can execute them in parallel,

then prioritization of violations is not necessary. But, if the system cannot ex-

ecute different recovery actions in parallel to recover from multiple violations,

or, a single recovery action cannot recover the system from all the violations

at the same time, then prioritization of violations is important.

Now, the obvious question is: how to specify multiple violations based

on prioritization? By analysing a system requirement, we can effectively de-

termine the level of severity of each violation, and the individual or parallel

recovery process. Therefore, we can determine the priority level of each vio-

lation. Now, if the system can execute single action from a violation state,

and the recovery action for each violation is different, then the specification

should reflect that, the system at first executes the recovery action for the

higher priority violation; when it recovers from that violation, it executes the

recovery action for the lower priority violation. On the other hand, if all vi-

olations have the same recovery action, then the specification should reflect

two things: (1) in case of expected execution, the system at first recovers from

the higher priority violation, then it recovers lower priority violation, and (2)

if the execution is unexpected, then the system might recover from the lower

priority violation before it recovers from the higher priority violation.

Finally we can say that, the discussion above is useful to analyse the sce-

narios of multiple violations, and to decide when and how to prioritize them

based on single and parallel recovery action(s), and to convert the requirements

of multiple violations to the specifications.

7. Engineering Lessons and Discussion 99

7.1.6 Comparing different sub-problems

While converting requirements to the high level specifications, we might gen-

erate many redundant specifications. By comparing and matching different

sub-problems while specifying a system, we can significantly reduce the redun-

dant specifications. So, while writing specifications (of a new sub-problem) we

might ask ourselves: how can we compare and match the new sub-problem

with an earlier one (which is already being specified)?

A possible solution is to try to match the possible actions, that can happen

from possible states of these sub-problems. Usually while modelling different

sub-problems, we will see that the execution paths of two sub-problems are

different, i.e., the states and the actions (to be executed) cannot be matched.

But sometimes by analysing the requirement, we can directly match the pos-

sible, permitted and forbidden actions of two sub-problems, even though they

represent two different situations (in the problem description); and in both

cases, the execution of each possible action from a state takes the system to

the same next state. In this sort of case, in order to avoid redundant specifi-

cations, we can specify one sub-problem and can encode the new sub-problem

in the earlier one in a way that the same specifications can represent both

sub-problems.

The benefit of comparing sub-problems and minimising redundant speci-

fication is, it makes the proving process (of desired system properties) much

easier, as we can achieve better control and focus on the specifications. More-

over, having concrete specifications can help us to avoid confusions during

system analysis. Also, modification of specifications becomes easier and re-

duces the chance of introducing inconsistency.

7.1.7 The first order approach versus the propositional

approach

The First Order Deontic Logic approach introduced in [CM10] incorporates

standard quantifiers of First Order Logic, and has similar algebraic operators

100 7. Engineering Lessons and Discussion

for actions as for the Propositional Deontic Logic described in [Cas09]. In

the Propositional Deontic Logic approach, we can define very basic actions

and propositions and these actions cannot take a range of values as param-

eters. But in real world situations, an action has to take some value as a

parameter and sometimes an infinite range of values. To formalize this sort of

cases, in particular when we need to reason about infinite domain or complex

data structures, we have to use the First Order Deontic Logic. This logic ap-

proach allows us to capture the usual notion of commands and procedures of

programming languages.

In the literature, we have seen several examples of specifications and proofs

in the Deontic Propositional Logic. But, no proof using the First Order ap-

proach is presented in the literature based on any case study. As a result, to

structure proofs in the First Order approach, we had to follow the proofs of

the Propositional approach along with incorporating quantifier over variables.

In addition to this, we applied the generalisation and elimination rules (over

quantifiers) of first order logic in our proving process. So based on our expe-

rience we can say that, a modeller can study the proofs of the Propositional

Deontic Logic presented in the literature, in order to effectively produce future

proofs in the First Order Deontic Logic approach, and undoubtedly an auto-

matic or semi-automatic tool will make the proving process (of desired system

properties) much easier.

7.2 Summary

In this chapter we have presented a discussion on: how we obtained the re-

quirements from the problem description, what was our approach to convert

the requirements to the high level specification, how did we define and prove

different desired properties of our system, and how can we improve all these

process in future. We have also discussed on the modelling approach of the

environmental effect on the agent, different levels of violation and single and

multi step recovery approaches. Here we also demonstrated, when and how

7. Engineering Lessons and Discussion 101

can we achieve violation prioritisation, and how can we reduce redundant spec-

ifications by comparing sub-problems. The motivation of discussing all these

engineering lessons is to assist future modelling of fault tolerance systems.

Chapter 8

Conclusion and Future Work

8.1 Contribution

This thesis presents a practical case study of an existing fault tolerance prob-

lem in Deontic Logic. Our main intention in this thesis is to test the strengths

of Deontic Logic for modelling fault tolerant systems, i.e., how it deals with

different kinds of violations and a variety of recovery mechanisms. This thesis

is made up of three parts.

The first part of this thesis is the background knowledge description, which

includes a discussion of different fault tolerance mechanisms in the low level

implementation phase and the high level design phase. Here we have seen that

existing work mostly focuses on implementation level fault tolerance mecha-

nisms through the use of replication and voting. We have also presented some

high level fault tolerance mechanisms along with some modelling examples.

This part also presents an overview of Deontic Action Logic and mostly fo-

cuses on Propositional and First Order versions of Deontic Logic presented

in [Cas09] and [CM10]. This part also covers a brief description of our case

study problem. We have chosen a real world example of a moving vehicle and

captured the scenarios based on the its speed and distance with respect to the

immediate front and rear vehicles. We have applied Deontic Logic approach

to model scenarios exhibiting faults from this example, as we have strong evi-

dence that this logic has strong support for designing fault tolerance systems

102

8. Conclusion and Future Work 103

at an abstract design level.

The second part of the thesis focuses on the usage of Deontic Logic in a

practical example of a fault tolerant system. The main contributions of this

thesis is described in this section. Here we have presented two models. One is

in Propositional Deontic Logic, which is significantly simpler than the model in

First Order Deontic Logic. The reason for using the First Order version of the

logic after the Propositional version is that we could not express some practical

aspects in the latter language. In our first model in Propositional Deontic

Logic, we omitted the effects of the environment on the agent, while in the

second model we presented how the environment presents different situations

for the agent to deal with. In these models we have shown how violations occur

at different stages of a system’s behaviour and how recovery actions take the

system from a violation state to a safe state. In the first model, we mostly

focused on one step recovery, but in the second model we exhibited multi step

recovery mechanisms. Here we have also modelled situations where the agent

is in multiple violations in a system state and the related sequential recovery

mechanism. At the end of this section, we have presented some expected

system properties along with their proofs.

The last part of this thesis focuses on the engineering lessons and ideas that

we have gained through this work. During the modelling phase, we have faced

many obstacles in designing fault tolerance mechanisms and applied different

ideas to overcome them. In this section we have discussed those approaches

that we followed to deal with these situations. The motivation of this part is

to help and assist in abstract fault tolerant system modelling.

8.2 Future Work

As we said before, we have performed our fault tolerance modelling in Deontic

Logic and found some disadvantages in this logic that became obstacles during

specification of the system. The existing Deontic Logic deals with atomic

actions and we can model and reason about situations that occur after one time

instant. But for modelling some practical scenarios, we might need actions or

104 8. Conclusion and Future Work

transitions that execute over a time period and the current logic cannot model

this sort of action. So it is important to investigate if the current logic can be

extended in some ways to define transactions that have some duration.

At this stage, Deontic Logic is not equipped to deal with faults related to

strong timing constraints of real time systems. Real Time Logic [Lan98] has

strong mechanisms for modelling real time systems as it can define an action

with duration that associates an action with a Request Time, an Activation

Time and a Termination Time. But this logic has no special construct to deal

with faults. It would be very interesting to see if it is possible to relate Deontic

Logic with Real Time Logic to model fault tolerance of real time systems.

In this thesis we have not used any automated tool for specifying the sys-

tem in Deontic Logic and we proved properties by hand, not an easy task.

Automated tools and techniques for defining specifications and proving sys-

tem properties will make the modelling easier and faster. Extensive research

is necessary to develop efficient tools to make the logic more easily applicable

and acceptable.

Appendix A

Properties and proofs

Property 2 If the host vehicle is in a minimum collision distance violation,

then, after executing any action, the host vehicle either recovers from

the violation or stays in that violation or has a collision with the front

opponent vehicle.

1. vh.v4 ∧ O4(vh.stop) −→ [vh.stop]¬vh.v4 QVD10

2. vh.v4 ∧ O4(vh.stop) −→ [vh.stop u vof .stop]¬vh.v4 ML, 1

3. vh.v4 −→ ∃i ∈ Speed :

[vh.stop u vof .incspeed(i)]EN(collision(vh, vof))

QVD15

4. vh.v4 −→ [vh.stop u vof .incspeed(s)]EN(collision(vh, vof)) FOL, 3

5. [vh.stop]vh.stopped QSAS5

6. [vof .stop]vof .stopped QSAS5

7. vh.v4 ∧ O4(vh.stop) −→
[vh.stop u vof .stop](¬vh.v4 ∧ vh.stopped ∧ vof .stopped)

T5, 2, 5, 6

8. ∀i ∈ Speed : vof .stopped −→ ¬vof .speedinc(i) QSAS2

9. vof .stopped −→ ¬vof .speedinc(s) FOL, 8

10. ∀i ∈ Speed : [vof .incspeed(i)](¬vof .speedinc(i)) QSAS15

11. [vof .incspeed(s)](¬vof .speedinc(s)) FOL, 10

12. [vof .stop]> −→ [vof .incspeed(s)]⊥ ML 6, 9, 11

13. vh.v4 ∧ O4(vh.stop) −→
[vh.stop u vof .incspeed(s)](¬vh.v4 ∧ vh.stopped ∧ vof .stopped)

PL, 7, 12

105

106 A. Properties and proofs

14. vh.v4 ∧ O4(vh.stop) −→ [vh.stop u vof .incspeed(s)](¬vh.v4) PL, 13

15. vh.v4 ∧ O4(vh.stop) −→
[vh.U u vof .U](¬vh.v4 ∨ EN(collision(vh, vof)))

BA, PL, 4,

14

16. vh.v4 ∧ O4(vh.stop) −→ [vh.stop](vh.v4 ∧ O5(vh.stop)) QVD13

17. vh.v4 ∧ O4(vh.stop) −→ [vh.stop u vof .U]vh.v4 PL, A4, 16

18. vh.v4 ∧ O4(vh.stop) −→
[vh.U u vof .U](vh.v4 ∨ ¬vh.v4 ∨ EN(collision(vh, vof)))

PL, 15, 17

Property 3 After executing any action, the host vehicle either has a safe

speed or it violates the maximum or minimum speed limitations.

1. ¬vh.exceedmaxspeed −→ [vh.contspeed]AN(¬vh.exceedmaxspeed) QSAS15

2. ∃i ∈ Speed :

¬vh.exceedmaxspeed −→ [vh.incspeed(i)]EN(vh.exceedmaxspeed)

QSAS21

3. ¬vh.exceedmaxspeed −→ [vh.incspeed(s1)]EN(vh.exceedmaxspeed) FOL, 2

4. ∀i ∈ Speed : vh.speedinc(i) −→ ¬vh.speedcont QSAS2

5. vh.speedinc(s1) −→ ¬vh.speedcont FOL, 4

6. [vh.contspeed]vh.speedcont ∧ [vh.contspeed]¬vh.speedcont QSAS10

7. ∀i ∈ Speed : [vh.incspeed(i)]vh.speedinc(i) QSAS16

8. [vh.incspeed(s1)]vh.speedinc(s1) FOL, 7

9. Done(vh.incspeed(s1)) −→ ¬Done(vh.contspeed) ML, DTL, 5, 6, 8

10. ¬vh.exceedmaxspeed −→ [vh.incspeed(s1)](Done(vh.incspeed(s1))

∧ EN(vh.exceedmaxspeed))

ML, 3, 9

11. ¬vh.exceedmaxspeed −→ [vh.incspeed(s1)](¬Done(vh.contspeed)

∧ EN(vh.exceedmaxspeed))

PL, 9, 10

12. ¬vh.exceedmaxspeed −→ ([vh.contspeed]EN(vh.exceedmaxspeed) ML, 11

13. ¬vh.exceedmaxspeed −→
[U]AN(¬vh.exceedmaxspeed ∨ vh.exceedmaxspeed)

BA, PL, 1, 12

14. ¬vh.speedlowerthanminspeed −→
[vh.contspeed]AN(¬vh.speedlowerthanminspeed)

QSAS15

15. ∃i ∈ Speed : ¬vh.speedlowerthanminspeed −→
[vh.decspeed(i)]EN(vh.speedlowerthanminspeed)

QSAS27

A. Properties and proofs 107

16. ¬vh.speedlowerthanminspeed −→
[vh.decspeed(s2)]EN(vh.speedlowerthanminspeed)

FOL, 15

17. ∀i ∈ Speed : [vh.decspeed(i)]vh.speeddec(i) QSAS22

18. [vh.decspeed(s2)]vh.speeddec(s2) FOL, 17

19. ∀i ∈ Speed : vh.speeddec(i) −→ ¬vh.speedcont QSAS2

20. vh.speeddec(s2) −→ ¬vh.speedcont FOL, 19

21. Done(vh.decspeed(s2)) −→ ¬Done(vh.contspeed) ML, DTL, 6, 18

22. ¬vh.speedlowerthanminspeed −→ [vh.decspeed(s2)](

¬Done(vh.contspeed) ∧ EN(vh.speedlowerthanminspeed))

ML, PL, 16, 21

23. ¬vh.speedlowerthanminspeed −→
[vh.contspeed]EN(vh.speedlowerthanminspeed)

ML, 22

24. ¬vh.speedlowerthanminspeed −→
[U]AN(¬vh.speedlowerthanminspeed ∨ vh.speedlowerthanminspeed)

BA, PL, 14, 23

25. ¬vh.exceedmaxspeed ∧ ¬vh.speedlowerthanminspeed −→
[U]AN((¬vh.speedlowerthanminspeed ∨ vh.speedlowerthanminspeed)
∧ (¬vh.exceedmaxspeed ∨ vh.exceedmaxspeed))

PL, 13, 24

26. ¬vh.exceedmaxspeed ∧ ¬vh.speedlowerthanminspeed −→
[U]AN((¬vh.speedlowerthanminspeed ∧ ¬vh.exceedmaxspeed)
∨ (¬vh.speedlowerthanminspeed ∧ vh.exceedmaxspeed)

∨ (vh.speedlowerthanminspeed ∧ ¬vh.exceedmaxspeed)
∨ (vh.speedlowerthanminspeed ∧ vh.exceedmaxspeed))

PL, 25

27. Assmp: [vh.speedlowerthanminspeed ∧ vh.exceedmaxspeed → F]

∀i ∈ Speed : vh.speedsafe(i) −→ [U]AN(vh.speedsafe(i)

∨ (¬vh.speedlowerthanminspeed ∧ vh.exceedmaxspeed)

∨ (vh.speedlowerthanminspeed ∧ ¬vh.exceedmaxspeed))

QSAS9, PL, 26

28. ∀i ∈ Speed : vh.speedsafe(i) −→
[U]AN(vh.speedsafe(i) ∨ vh.exceedmaxspeed ∨ vh.speedlowerthanminspeed)

PL, 27

Property 4 If the host vehicle increases speed from a state where it is in a

minimum safety distance violation with respect to the front opponent

vehicle, then in the next state it is not permitted to increase speed or is

obliged to stop.

108 A. Properties and proofs

1. ∀i, j ∈ Speed : vh.speedcurnt(i) ∧ vof .speedcurnt(j) ∧
vh.exceed(minsafedistfront(i, j)) −→ ∃k ∈ Speed :

([vh.incspeed(k)]EN(vh.exceed(mincoldistfront(i+ k, j))))

QSAS36

2. vh.speedcurnt(s1) ∧ vof .speedcurnt(s2) ∧
vh.exceed(minsafedistfront(s1, s2)) −→
[vh.incspeed(c1)]EN(vh.exceed(mincoldistfront(s1 +c1, s2)))

FOL, 1

3. vh.speedcurnt(s1) ∧ vof .speedcurnt(s2) ∧
vh.exceed(minsafedistfront(s1, s2)) −→ [vh.incspeed(c1) u vof .incspeed(c2)]

EN(vh.exceed(mincoldistfront(s1 + c1, s2)))

ML, 2

4. ∀i, j ∈ Speed : (curntspeedh(of) = i) −→
[vh(of).incspeed(j)](curntspeedh(of) = i+ j) ∧
[vh(of).incspeed(j)](curntspeedh(of) = i)

QSAS17

5. ((curntspeedh = s1) −→
[vh.incspeed(c1)](curntspeedh = s1 + c1)) ∧
((curntspeedof = s2) −→
[vof .incspeed(c2)](curntspeedof = s2))

FOL, 4

6. vh.speedcurnt(s1) ∧ vof .speedcurnt(s2) ∧
vh.exceed(minsafedistfront(s1, s2)) −→ [vh.incspeed(c1) u vof .incspeed(c2)]

EN((curntspeedh = s1 + c1) ∧ (curntspeedof = s2) ∧
vh.exceed(mincoldistfront(s1 + c1, s2)))

PL, 3, 5

7. ∀i, j ∈ Speed :

(vh.exceed(minsafedistfront(i, j)) ←→ vh.v3)

∧ (vh.exceed(mincoldistfront(i, j)) ←→ vh.v4)

QVD5

8. ∀i, j ∈ Speed : vh.speedcurnt(i) ∧ vof .speedcurnt(j) ∧
(vh.exceed(minsafedistfront(i, j)) ←→ vh.v3)

∧ (vh.exceed(mincoldistfront(i, j)) ←→ vh.v4)

PL, 7

9. vh.speedcurnt(s1) ∧ vof .speedcurnt(s2) ∧
(vh.exceed(minsafedistfront(s1, s2)) ←→ vh.v3)

∧ (vh.exceed(mincoldistfront(s1 + c1, s2)) ←→ vh.v4)

FOL, 8

10. vh.v3 −→ [vh.incspeed(c1) u vof .incspeed(c2)]EN(vh.v4) PL, 6, 9

11. vh.v3 −→
[vh.incspeed(c1) u vof .incspeed(c2)]EN(¬P 4

w(vh.stop))

PL, 10,

QVD9

A. Properties and proofs 109

12. ∀i ∈ Speed :

vh.v3 ∧ (vhvof .posrelspeed ∨ vhvof .negrelspeed) −→ ¬P 2(vh.incspeed(i))

QVD7

13. vh.v3 ∧ (vhvof .negrelspeed ∨ vhvof .posrelspeed) −→
¬P 2(vh.incspeed(c1))

FOL, 12

14. vh.v3 ∧ (vhvof .negrelspeed ∨ vhvof .posrelspeed) −→
[vh.incspeed(c1)]AN(vh.v3)

DPL, 13,

QVD12

15. vh.v3 ∧ (vhvof .negrelspeed ∨ vhvof .posrelspeed) −→
[vh.incspeed(c1) u vof .incspeed(c2)](AN(vh.v3) ∧ EN(¬P 4

w(vh.stop)))

ML, 11, 14

16. vh.v3 ∧ (vhvof .negrelspeed ∨ vhvof .posrelspeed) −→
∃i, j,∀k : [vh.incspeed(i) u vof .incspeed(j)]

(AN(¬P 2(vh.incspeed(k))) ∧ EN(¬P 4
w(vh.stop)))

FOL,

QVD7,

QVD8

Property 5 The host vehicle cannot change the current situation after exe-

cuting a continue speed action unless the host vehicle is in a minimum

safety distance violation with negative relative speed.

1. (¬vh.exceedmaxspeed ∧ ¬vh.speedlowerthanminspeed) −→
[vh.contspeed](¬vh.exceedmaxspeed ∧ ¬vh.speedlowerthanminspeed)

QSAS15

2. ∀i ∈ Speed :

¬vh.exceedmaxspeed ∧ ¬vh.speedlowerthanminspeed −→ vh.speedsafe(i)

QSAS9

3. ¬vh.exceedmaxspeed ∧ ¬vh.speedlowerthanminspeed −→
vh.speedsafe(s1)

FOL

4. vh.speedsafe(s1) −→ [vh.contspeed]vh.speedsafe(s1) PL , 1, 3

5. ∀i ∈ Speed :

vh.v1 −→ [vh.decspeed(i)](vh.v1 ∧ O3(vh.decspeed(i)))

QVS7

6. vh.v1 −→ [vh.decspeed(s2)]vh.v1 PL, FOL, 5

7. [vh.contspeed]vh.speedcont ∧
[vh.decspeed(s2)]vh.speeddec(s2)

QSAS10,

FOL,

QSAS22

8. ∀i ∈ Speed : (vh.speeddec(i) ←→ ¬vh.speedcont) QSAS2

9. ¬vh.speeddec(s2) −→ vh.speedcont FOL, 8

10. ¬Done(vh.decspeed(s2)) −→ Done(vh.contspeed) DTL, 7, 9

110 A. Properties and proofs

11. vh.v1 −→ [vh.decspeed(s2)](¬Done(vh.decspeed(s2)) ∧ vh.v1) ML, DTL,

6

12. vh.v1 −→ [vh.decspeed(s2)](Done(vh.contspeed) ∧ vh.v1) PL, 10, 11

13. vh.v1 −→ [vh.contspeed](Done(vh.contspeed) ∧ vh.v1) ML, DTL,

12

14. vh.v4 −→ [vh.stop](vh.v4 ∧ O5(vh.stop)) QVD13

15. ¬vh.stopped −→ vh.speedcont QSAS2

16. ¬Done(vh.stop) −→ Done(vh.contspeed) DTL,

QSAS5,

7, 15

17. vh.v4 −→ [vh.contspeed]vh.v4 ML, DTL,

14, 16

18. (vh.speedsafe(s) ∨ vh.v1 ∨ vh.v4) −→
[vh.contspeed](vh.speedsafe(s) ∨ vh.v1 ∨ vh.v4)

PL, 4, 13,

17

19. vh.v3 ∧ vhvof .posrelspeed −→ ¬P 2(vh.contspeed) QVD8

20. ∀i ∈ Speed : vh.v3

∧ vhvof .posrelspeed −→ [vh.decspeed(i)](vh.v3 ∧O3(vh.decspeed(i))

QVD12

21. vh.v3 ∧ vhvof .posrelspeed −→
[vh.decspeed(s2)](vh.v3 ∧ O3(vh.decspeed(s2))

FOL

22. vh.v3 ∧ vhvof .posrelspeed −→
[vh.contspeed](vh.v3 ∧ O3(vh.decspeed(s2))

ML, 16, 21

23. vh.v3 ∧ vhvof .negrelspeed −→ [vh.contspeed]EN(vh.v3) QVD14

24. ∀i ∈ Speed :

((vh.speedsafe(i) ∨ vh.v1 ∨ vh.v4 ∨
(vh.v3 ∧ vhvof .posrelspeed)) −→
[vh.contspeed](vh.speedsafe(i) ∨ vh.v1 ∨ vh.v4 ∨
(vh.v3 ∧ vhvof .posrelspeed)))

∧
((vh.v3 ∧ vhvof .negrelspeed) −→ [vh.contspeed]EN(vh.v3))

FOL, 18,

22, 23

Bibliography

[AB08] Zair Abdelouahab and Isaias Braga. An adaptive train traffic con-

troller. In Springer Netheralands, pages 550–555, 2008.

[ABH+10] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede,

Thai Son Hoang, Farhad Mehta, and Laurent Voisin. Rodin:

an open toolset for modelling and reasoning in Event-B. STTT,

12(6):447–466, 2010.

[Abr06] Jean-Raymond Abrial. Train systems. In RODIN Book. Springer,

2006.

[AK] Anish Arora and Sandeep S. Kulkarni. Detectors and correctors:

A theory of fault-tolerance components.

[AK98] Anish Arora and Sandeep S. Kulkarni. Component based design

of multitolerant systems. IEEE Trans. Software Eng., 24(1):63–78,

1998.

[BFG02] Cinzia Bernardeschi, Alessandro Fantechi, and Stefania Gnesi.

Model checking fault tolerant systems. Softw. Test., Verif. Reliab.,

12(4):251–275, 2002.

[BFS00] Cinzia Bernardeschi, Alessandro Fantechi, and Luca Simoncini.

Formally verifying fault tolerant system designs. Comput. J.,

43(3):191–205, 2000.

[Bro03] Jan Broersen. Modal Action Logics for Reasoning about Reactive

Systems. PhD thesis, Vrije University, August 2003.

111

112 BIBLIOGRAPHY

[Cas09] Pablo F. Castro. DEONTIC ACTION LOGICS FOR SPECIFI-

CATION AND ANALYSIS OF FAULT-TOLERANCE. PhD the-

sis, McMaster University, 2009.

[CJ96] José Carmo and Andrew J. I. Jones. Deontic database constraints,

violation and recovery. Studia Logica, 57(1):139–165, 1996.

[CKAA11] Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno

Aguirre. dctl: A branching time temporal logic for fault-tolerant

system verification. In SEFM, pages 106–121, 2011.

[CM07a] Pablo F. Castro and T. S. E. Maibaum. A complete and compact

propositional deontic logic. pages 109–123, 2007.

[CM07b] Pablo F. Castro and T. S. E. Maibaum. An ought-to-do deontic

logic for reasoning about fault-tolerance: the diarrheic philoso-

phers. In SEFM, pages 151–160, 2007.

[CM09] Pablo F. Castro and T. S. E. Maibaum. Reasoning about system-

degradation and fault-recovery with deontic logic. In Methods,

Models and Tools for Fault Tolerance, pages 25–43. 2009.

[CM10] Pablo F. Castro and T. S. E. Maibaum. Towards a first-order

deontic action logic. In WADT, pages 61–75, 2010.

[Cri85] F. Cristian. A rigorous approach to fault-tolerant programming.

IEEE Trans. Softw. Eng., 11:23–31, January 1985.

[FM92] Jose Luiz Fiadeiro and T.S.E. Maibaum. Temporal theories as

modular- ization units for concurrent system specification. Formal

Aspects of Computing, 4:239–2172, 1992.

[FTO05] M. Alonso F. Tango, A. Saroldi and A. Oyaide. Towards a new

approach in supporting drivers function: Specifications of the

saspence system. PReVENT, 2005.

[Gär98] Felix C. Gärtner. Specifications for fault tolerance: A comedy of

failures. Technical report, 1998.

BIBLIOGRAPHY 113

[Gär99] Felix C. Gärtner. Transformational approaches to the specification

and verification of fault-tolerant systems: Formal background and

classification. Technical report, 1999.

[GLM05] Stefania Gnesi, Gabriele Lenzini, and Fabio Martinelli. Logical

specification and analysis of fault tolerant systems through partial

model checking. Electr. Notes Theor. Comput. Sci., 118:57–70,

2005.

[HG93] Claude Hennebert and Gérard D. Guiho. Sacem: A fault tolerant

system for train speed control. In FTCS, pages 624–628, 1993.

[JJFN07] Sandor Szabo John J. Ference and Wasim G. Najm. Objective

test scenarios for integrated vehicle based safety systems. National

Highway Traffic Safety Administration, National Institute of Stan-

dards and Technology and Volpe National Transportation Systems

Center, 2007.

[JL93] Mathai Joseph and Zhiming Liu. Specifying and verifying re-

covery in asynchronous communicating systems. J. (ed), Formal

Techeniques in Real-Time and Fault Tolerant Systems, 1993.

[Kho98] Samit Khosla. System Specification: A Deontic Approach. PhD

thesis, Imperial College, 1998.

[KM87] Samit Khosla and T. S. E. Maibaum. The prescription and descrip-

tion of state based systems. In Temporal Logic in Specification,

pages 243–294, 1987.

[KQM91] S. Kent, B. Quirk, and T.S.E. Maibaum. Specifying deontic be-

haviour in modal action logic. Technical report, Forest Research

Project, 1991.

[Lan98] Kevin Lano. Logical specification of reactive and real-time systems.

J. Log. Comput., 8(5):679–711, 1998.

[LJ92] Zhiming Liu and Mathai Joseph. Transformation of programs for

fault-tolerance. Formal Asp. Comput., 4(5):442–469, 1992.

114 BIBLIOGRAPHY

[LJ93] Zhiming Liu and Mathai Joseph. Specification and verification

of recovery asynchornous communication systems. In J. Vytopil,

editor, Formal techniques in real-time and fault-tolerant systems,

6:137–145, 1993.

[LM94] Leslie Lamport and Stephan Merz. Specifying and verifying fault-

tolerant systems. In FTRTFT, pages 41–76, 1994.

[LS04] Alessio Lomuscio and Marek J. Sergot. A formalisation of violation,

error recovery, and enforcement in the bit transmission problem.

J. Applied Logic, 2(1):93–116, 2004.

[MAH05] Pedro Garayo Maria Alonso and Loli Herran. Defining safe speed

and safe distance towards improved longitudinal control using ad-

vanced driver assistance systems: Functional requirements of the

saspence system. PReVENT, 2005.

[Mcn] Paul Mcnamara. Kripke-style semantics for sdl. Technical report,

Stanford Encyclopedia of Philosophy.

[Mcn06] Paul Mcnamara. Deontic logic. Technical report, Stanford Ency-

clopedia of Philosophy, April 2006.

[Mey88] J. J. Meyer. A different approach to deontic logic: Deontic logic

viewed as variant of dynamic logic. Notre Dame Journal of Formal

Logic, 29:109–136, 1988.

[MT84] T. S. E. Maibaum and Wladyslaw M. Turski. On what exactly is

going on when software is developed step-by-step. In ICSE, pages

528–533, 1984.

[PJ94] Doron Peled and Mathai Joseph. A compositional framework for

fault tolerance by specification transformation. Theor. Comput.

Sci., 128(1&2):99–125, 1994.

[Ram07] Bruno L. C. Ramos. Challenging malicious inputs with fault tol-

erance techniques. Black Hat Europe, 2007.

BIBLIOGRAPHY 115

[SKQ93] T.S.E. Maibaum S. Kent and W. Quirk. Formally specifying tem-

poral constraints and error recovery. In Proceedings of IEEE Inter-

national Symposium on Requirements Engineering, pages 208–215,

1993.

[Tp00] Wilfredo Torres-pomales. Software fault tolerance: A tutorial.

Technical report, 2000.

[WM93] Roel J. Wieringa and John-Jules Meyer. Applications of deontic

logic in computer science: A concise overview. In Deontic Logic in

Computer Science, Normative System Specification, 1993.

[XSS] Zaipeng Xie, Hongyu Sun, and Kewal Saluja. A survey of

software fault tolerance techniques. University of Wisconsin-

Madison/Department of Electrical and Computer Engineering.

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Why Deontic Logic
	Overview of the Problem
	Thesis Organization

	Fault Tolerance Mechanisms
	Fault Tolerance
	General Techniques at the concrete level
	Transformational Approaches
	Program transformation for fault modeling
	Specification transformation for fault modelling

	Process Algebra
	Specification Language
	Deontic Logic
	Summary

	Deontic Logic
	Deontic Logic
	Deontic Action Logics
	Deontic Temporal Logic: A new approach
	A Propositional Deontic Logic (DPL)
	DPL with Time

	First-Order Deontic action Logic
	Syntax and Semantics

	Summary

	Problem Description
	Scenarios
	Problem Description
	Requirements

	 Model in Propositional Deontic Logic
	Assumptions
	Problem formalization
	Propositions
	Actions
	Violations
	Axioms
	Violations and Recovery Mechanisms

	Summary

	Model in First Order Deontic Logic
	Assumptions
	Some notation
	Problem formalization
	Types
	Constants
	Variables
	Functions
	Predicates
	Actions
	Violations
	Axioms
	Violations and Recovery Mechanism
	Cut-in and Cut-out vehicle
	Properties

	Summary

	Engineering Lessons and Discussion
	Engineering Lessons and Discussion
	How easy is it to write the specifications?
	Extracting requirements from the problem description
	Converting requirements into a high level specification

	How easy is it to define and prove properties?
	Possible recovery scenarios from a violation state
	Modelling the interaction between the agent and the environment
	How can we model a scenario with multiple violations?
	Comparing different sub-problems
	The first order approach versus the propositional approach

	Summary

	Conclusion and Future Work
	Contribution
	Future Work

	Properties and proofs
	Bibliography

