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Abstract	

Unexpected failures in rotating machinery can result in production 

downtime, costly repairs and safety concerns. Electric motors are commonly 

used in rotating machinery and are critical to their operation. Therefore, fault 

detection and diagnosis of electric motors can play a very important role in 

increasing their reliability and operational safety. This is especially true for safety 

critical applications.  

This research aims to develop a Fault Detection and Diagnosis (FDD) 

strategy for detecting motor faults at their inception. Two FDD strategies were 

considered involving wavelets and state estimation. Bearing faults and stator 

winding faults, which are responsible for the majority of motor failures, are 

considered. These faults were physically simulated on a Permanent Magnet 

Brushless DC Motor (PMBLDC). Experimental results demonstrated that the 

proposed fault detection and diagnosis schemes were very effective in detecting 

bearing and winding faults in electric motors. 
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Chaprter	1	 Introduction	

1.1 Overview	

Electric motors have become essential elements of modern production 

and manufacturing lines. In many applications, the motors are operated in 

unfavorable environments involving high temperature and overloading. These 

stresses together with the aging of parts may lead to motor faults. Once a failure 

occurs, it usually results in loss of productivity, downtime, and costly repairs. 

Condition monitoring leading to fault detection and diagnosis in electric motors is 

therefore of great value and has received much attention in the past few years.  

Fault Detection and Diagnosis (FDD) is a process where the condition of 

equipment is monitored for signs of faults or deterioration, so that the 

maintenance or repair can be performed to prevent system failures. 

Instrumentation is an important consideration in FDD. Ideally, the scheme should 

minimize the requirement of additional sensors and use existing signals. 

Furthermore, it needs to avoid false positive, be reliable and provide a clear 

indication of incipient faults in a timely manner. In this study, two FDD 

approaches were developed and implemented on a permanent magnet 

synchronous motor. To demonstrate their effectiveness, the FDD methods were 

validated by physically simulating fault conditions on a Permanent Magnet 

Brushless DC Motor.  
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1.2 Permanent	Magnet	Brushless	DC	Motor	

Permanent Magnet Brushless DC Motors (BLDC) are widely used in 

industrial applications. The BLDC motor usually consists of a stator with three-

phase armature windings and a rotor with permanent magnets. In BLDC motors, 

commutation is achieved by using power electronics coupled to feedback of rotor 

position from hall sensors. Compared with conventional brushed DC motors, the 

BLDC does not have a mechanical commutator which suffers from surface wear 

and electric arcing. The rare earth magnets on the rotor of the BLDC motor 

produce a constant magnetic field which lead to high efficiency and high power 

factor [1]. Particularly, the high torque-weight ratio of BLDC motors makes it very 

suitable for applications such as electric vehicles. The BLDC motors have many 

benefits over DC motors and induction motors, such as [2]:  

 better speed versus torque characteristics; 

 high dynamic response; 

 high efficiency; 

 long operating life; and 

 noiseless operation; 

However, it also suffers a few disadvantages, such as: 

 high cost due to rare-earth magnets; 

 limited constant power range; 

 demagnetization; 

 limited high-speed capability; and 

 risks of inverter failures 
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BLDC motors can be categorized as surface mounted or interior mounted, 

according to the position and orientation of rotor permanent magnets [3]. In the 

case of the stator windings, BLDCs can be categorized as trapezoidal or 

sinusoidal, based on the shapes of their back-Electromotive-Force (back-EMF) 

waveforms. In addition to the back-EMF, the phase current also has 

corresponding trapezoidal or sinusoidal variations. The one with sinusoidal back-

EMF is also called Permanent Magnet Synchronous Motor (PMSM). For PMSM, 

the back-EMF generated in each phase winding by the rotation of the magnet is 

also sinusoidal. 

In BLDCs, the magnetic fields generated in the stator and in the rotor are 

rotating synchronously. The stator of a BLDC motor consists of stacked steel 

laminations with windings kept in the slots that are axially cut along the inner 

periphery [2]. Most BLDCs have three stator star-connected windings [2].  

 

Figure	1			Simplified	equivalent	circuit	of	the	BLDC	motor	ሾ3ሿ.	

In terms of modeling, a simplified equivalent circuit of one phase is given 

in Figure 1, where ௧ܸ is the voltage of the power supply, ܴ௦ is the resistance of 
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the winding, ܮ௦  is the leakage inductance ( ௦ܮ ൌ ܮ െܯ , where ܮ  is the self-

inductance of the winding and ܯ is the mutual inductance), and ܧ௦ is the back-

EMF induced in the winding by the rotating PM field. 

Based on the equivalent circuit, the performance of the BLDC motor can 

be described by the following equations [3]: 

																																																										 ௧ܸ ൌ ܴ௦ܫ௦ ൅ ௦ܮ
௦ܫ݀
ݐ݀

൅  ௦                        Equation 1.2.1ܧ

௦ܧ																																																										 ൌ  ௘߱௥                                           Equation 1.2.2ܭ

																																																										 ௘ܶ ൌ  ௦                                             Equation 1.2.3ܫ்ܭ

																																																										 ௘ܶ ൌ ௅ܶ ൅ ܬ
݀߱௥
ݐ݀

൅  ௩௜௦߱௥                     Equation 1.2.4ܭ

where ܭ௘ is the back-EMF constant, ߱௥ is the angular velocity of the rotor, ்ܭ is 

the torque constant, ௅ܶ is the load torque, and ܭ௩௜௦ is viscous friction coefficient.  

 

1.3 Bearing	Fundamentals	

A. 		Generals	

Rolling bearings of various kinds are widely used in industrial machines. 

They provide fundamental mechanical support for rotating parts. Most rotating 

shafts use a rolling element bearing. In order to ensure the effectiveness and 
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robustness of these bearings, their performance under various and extremely 

demanding conditions have been extensively studied [4, 5]. 

While there are various kinds of rolling bearings in the market, their 

associated fault detection approaches are analogous. Therefore, one of the most 

commonly used type of bearings, the single-row deep-groove radial ball bearing, 

is selected in this research. These bearings have one row of balls (referred to as 

a single row), that revolves around the ball path [6], as shown in Figure 2. These 

bearings consist of an inner ring, an outer ring, rolling elements (balls) and a 

cage (retainer). The inner ring has a groove on its outside diameter with a smooth 

finishing surface and extremely tight tolerances to form a path for the balls [7]. 

The inner ring is mounted on the shaft of the motor and rotates with the shaft at 

the same speed. The outer ring is the counterpart of the inner ring and has a 

groove on its inside diameter with high precision finish [7]. The outer ring is 

placed into the housing on motor case and thus held stationary with respect to 

the motor. The rolling balls locate between the inner ring and outer ring. These 

balls have slightly smaller diameters than the grooved ball track which allows 

them to contact the rings at a single point [7]. This point contact enables the 

bearing to rotate with minimal friction. In order to achieve point contact, the 

tolerances are strictly controlled to a micro inch level, as well as the dimensions 

of the balls and rings [7].  
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load is distributed on about one third of the whole area, which is called bearing 

load zone [6]. Accordingly, the performance of a bearing is closely related to the 

critical surfaces, particularly those entering the load zone at a given time. 

 

B. 		Bearing	Faults	Categorization	

Many factors can influence the life of the bearing, including loading, 

temperature, and lubrication. The typical fatigue life of a bearing can be 

significantly shortened by manufacturing defects, faulty mountings, improper 

lubrication, contamination, improper handling, improper maintenance, and by 

applying loads or speeds that exceed their maximum carrying capacity. These 

conditions can result in localized and distributed defects of the bearing 

components, thus very quickly cause permanent damage and even premature 

bearing failure. As a result of these factors, an estimated 95% of all bearing 

failures are classified as premature bearing failures [6].  

The reason for bearing failure is often due to a combination of causes 

instead of just a single cause. Bearing defects may be categorized as localized or 

distributed. The localized defects include cracks, pits and spalls, while the 

distributed defects include surface roughness, waviness, misaligned races and 

off-size rolling elements [9]. Typical bearing faults and their causes are briefly 

summarized as follows.  
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 wear and fretting 

 

Figure	3			Fretting			ሾ10ሿ	

 

Figure	4 		Wear	ሾ10ሿ

Wear is caused mainly by sliding abrasion on parts including the balls and 

raceways. Major causes include improper lubrication, contamination by foreign 

matter and corrosion. It occurs not only to the sliding surface but also to the 

rolling surface. Fretting is a phenomena which occurs when slight sliding is 

repeatedly caused on the contact surface by vibration load [4]. In the early stages, 

wear is usually a localized fault but can quickly spread throughout other 

components. 

 flaking and pitting 

Flaking is the phenomenon in which the bearing surface turns scaly and 

peels off due to contact load repeatedly received on the raceway and rolling 

surface [4]. Pitting refers to the small holes that occur on the raceway surface 

caused by rolling fatigue. 
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Figure	5			Flaking	ሾ10ሿ	

	

Figure	6 		Pitting ሾ10ሿ	

Electric pitting happens when the bearing surface is partially melted by 

electric current passing through the bearing at the contact point [4]. Significant 

electric pitting causes flaking. Flaking and pitting are often found at an early stage 

as localized faults.  

 brinelling and smearing 

Brinelling indentation often appears in the raceways which come into 

contact with the rolling elements, and is due to plastic deformation. The external 

cause can be extremely heavy loads, vibrations, faulty mounts and solid foreign 

matters [4]. Another possible cause is the electric current due to leakage [4]. 

Smearing is caused by sliding or spinning of balls, often happen when the balls 

enter the load zone. Brinelling damage often starts as a localized fault and 

develops into a distributed one. 
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Figure	7			Brinelling	ሾ10ሿ	 Figure	8 		Smearing ሾ10ሿ

 rust and corrosion 

Corrosion is the phenomena of oxidation or dissolution occurring on the 

contacting surfaces of a bearing. Sealing failure and decomposition of lubricant 

additives under high temperature are two primary reasons of corrosion damage 

[4]. The corrosion of bearing can result in the rust particles wearing off from the 

balls and raceways, which will further aggravate mechanical abrasion. This type 

of defect is commonly found as distributed faults. 

Figure	9			Rust	ሾ10ሿ	 Figure	10 		Corrosion ሾ10ሿ

 



Master’s Thesis                                                                       McMaster University                       
Wanlin Zhang                                       Department of Mechanical Engineering 

  
 

11 
 

In general, rolling bearings produce very little vibration when they are free 

of faults and have distinctive characteristic frequencies under faulty conditions 

[11]. Typical bearing faults usually begin as single defects, such as a spall on a 

raceway, and are normally dominated by impulsive events at the raceway pass 

frequency, resulting in a narrow band frequency spectrum, which can be captured 

by vibration sensor. As the damage increases, the characteristic defect 

frequencies and sidebands tend to spread over wider ranges, followed by a drop 

in these amplitudes and an increase in the broadband noise with considerable 

vibration at shaft rotational frequency [11]. 

 

 

1.4 Objectives	of	Research	

 

Figure	11			The	proposed	fault	detection	and	diagnosis	scheme	for	BLDC	motor	

This objective of this research has been to develop a Fault Detection and 

Diagnosis (FDD) strategy for detecting motor faults at their inception. Bearing 
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faults and stator winding faults, which are responsible for the majority of motor 

failures, were considered. These faults were physically simulated on a 

Permanent Magnet Brushless DC Motor (BLDC). The vibration and power 

measurements were then obtained for analysis, as shown in Figure 11. Two FDD 

strategies involving wavelets and state estimation were successfully implemented 

on the BLDC motor. Experimental results demonstrated that the proposed fault 

detection and diagnosis schemes were very effective in detecting bearing and 

winding faults in BLDC motors.  

 

	

1.5 Outline	of	Thesis	

This thesis is organized as follows. Chapter 2 reviews the main literature 

on the fault diagnosis of electric motors, including mechanical and electrical faults. 

In Chapter 3, the concepts of wavelet-based signal processing and feature 

extraction approach are described in detail. A proposed signal processing 

scheme based on wavelet denoising is also provided. Chapter 4 introduces the 

popular Kalman Filter and the Smooth Variable Structure Filter with varying 

boundary layer (EK-SVSF). It is also shown how these filters can be implemented 

on a BLDC motor for state and parameter estimation. In Chapter 5, experimental 

results are presented with comparisons and discussions on the performance of 

the proposed methods. It is shown that all simulated fault conditions were 
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successfully detected, which demonstrates the effectiveness of the proposed 

methods in motor fault detection and diagnosis. Recommendations for future 

research and concluding remarks are provided in Chapter 6.  
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Chaprter	2	 Literature	Review	

2.1 Overview	

This section focuses on the literature of fault detection and diagnosis and 

their application to motors, particularly in BLDC motors. Although the vast 

majority of past research has been focused on induction machines, diagnostic 

approaches can be easily extended to other type of motors, such as PMSMs and 

BLDCs. Motors in many applications are operated under environmental stresses 

that often include high ambient temperature. As a key component, their 

malfunction can do harm to the production line, or even have severe 

consequences and cause heavy financial losses. For that reason, the 

development of fault detection and diagnosis tools for electric motors has 

received much attention since the 1920s [12]. A number of survey papers have 

been published and can be found in [13-16]. 

The major faults of electric motors can be broadly classified into two 

groups: mechanical faults such as the bearing faults, broken rotor bar and bent 

shaft; and electrical faults such as opening and shorting of a stator phase winding. 

A recent study revealed that the main causes of failure in electric motors are: 

bearing (69%), stator windings (21%), rotor bar (7%) and shaft/coupling (3%) [17].  
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2.2 Mechanical	Faults	

Mechanical faults in motors can be broadly classified into two groups: 

bearing faults and rotor faults. The rotor fault typically is a broken rotor bar or an 

eccentricity fault [18-23]. The bearing fault, according to industrial surveys [17], 

has caused far more motor failures than any other kind. Thus, the detection and 

diagnosis of bearing faults is chosen to be a primary focus of this study.  

The bearing failure mechanism has been studied for almost four decades 

[24, 25]. As such, the theoretical foundation of bearing failure modes has been 

considered comprehensively [26]. While there are monitoring techniques based 

on different measurement sources, such as acoustic emission (AE) and motor 

current signature analysis (MCSA), vibration monitoring is probably the most 

widely used approach.  

Vibration in an electric motor can come from many sources including 

bearings, electromagnetic forces, unbalanced rotors, etc. Each will have its own 

signature in the frequency domain that can manifest itself as discrete frequency 

bands. In order to extract fault signatures buried in vibration signals from the 

machine, advanced signal processing techniques are commonly used. These 

include filtering and feature extraction of the vibration data.  

In terms of bearings, previous studies show that 90% of faults that occur in 

rolling bearings are due to cracks in inner and outer races, and the rest are 
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cracks in the balls and the cage [8]. In a defective bearing, a shock is generated 

when a rolling element passes over the defective surface of an inner race or an 

outer race. The frequency of these shocks is referred to as characteristic defect 

frequency or Ball Passing Frequency (BPF), and can be calculated using the 

parameters of the bearing. Meanwhile, these shocks can also be captured by 

vibration sensors. Thus, the bearing faults can be detected and diagnosed by 

matching the measured vibration spectrum with the calculated BPFs. The BPFs 

are computed based on the construction parameters of the bearing and the 

rotating speed of the shaft. The calculation of BPFI (Ball Passing Frequency 

Inner Race) and BPFO (Ball Passing Frequency Outer Race) are provided in 

Equation 2.2.1 and Equation 2.2.2 respectively. 

BPFI ൌ
௕ܰ ቀ1 ൅

݀
ܦ ቁߠݏ݋ܿ

2
∙ ߱௥                    Equation 

BPFO ൌ
௕ܰ ቀ1 െ

݀
ܦ ቁߠݏ݋ܿ

2
∙ ߱௥                   Equation 2.2.2 

where ௕ܰ is the number of rolling balls, ߠ is angle of load from the radial plane, ݀ 

is the inner diameter of the bearing, ܦ is the outer diameter of the bearing, and ߱ 

is the rotating speed. The parameters of the test bearing used in this research 

are provided in Appendix 1. 

 In the analysis of vibration measurement, signal modulation effect and 

noise are two major barriers in detecting the presence of bearing faults at early 
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stages. Due to the amplitude-modulated effect, the BPFs usually appear as 

sidebands of resonance frequency in the spectrum. This makes identifying the 

specific frequency components difficult. Thus, an effective signal demodulation 

technique should be used. Meanwhile, weak signatures produced by incipient 

bearing faults can easily be masked by noise in a real environment, making the 

fault detection even more difficult. Hence, a denoising algorithm is also necessary 

in order to enhance the extraction of characteristic features of bearing faults. To 

overcome these barriers, numerous studies have been conducted on signal 

processing techniques for bearing diagnosis.  

In [27], an improved Hilbert-Huang transform (HHT) was combined with 

wavelet packet transform (WPT). The WPT was used as a preprocessor to 

decompose the signal into a set of narrow band signals, and then the 

decomposed signals were generated and selected by using empirical mode 

decomposition (EMD) on the signals. The EMD is a time adaptive decomposition 

operation developed to decompose a signal into some individual signals with 

‘Hilbert-friendly’ waveforms [28].  The performance of the improved HHT was 

compared to wavelet-based scalograms. Experimental results showed that the 

proposed method had better resolution in time and frequency domain, as well as 

better computing efficiency. However, this approach had a distinct drawback, 

which was the ripple in the estimated frequency. That means the estimated 

frequency reflected the true frequency component only in the mean sense, and 

this could mislead the analysis.  



Master’s Thesis                                                                       McMaster University                            
Wanlin Zhang                                       Department of Mechanical Engineering 

  
 

18 
 

In [8], the wavelet analysis was used to decompose the vibration signal, 

and a support vector machine (SVM) was utilized as a classifier for the multi-fault 

diagnosis of bearings in an electric motor. Results showed that all simulated 

bearing faults were successfully detected. A similar combination of methods was 

provided in [29], where the DWT was applied together with hidden Markov 

Models (HMMs) for pattern recognition. 

 In [30], an Improved Wavelet Packet Decomposition (IWPD) was 

proposed and combined with Support Vector Data Description (SVDD) in order to 

detect bearing faults. Essentially, the measured signal was decomposed using 

the IWPD. The energy of each element in these decomposed signals was 

computed to form the feature vectors. The feature vectors were then fitted into a 

hyper-sphere to train the SVDD, and used to create a health index for fault 

diagnosis.  

In [31], spectral kurtosis (SK) was combined with autoregressive linear 

prediction filtering and minimum entropy deconvolution (MED), to extract 

transients buried in noisy measurements. MED was utilized to deconvolve the 

effect of transmission paths and obtain characteristic impulses, in order to 

achieve a high value of SK. The results indicated that this method was capable of 

effectively sharpening impulses, thus making fault features more evident. 

With the occurrence and deterioration of a fault in a bearing, the number of 

frequency peaks contained in a measured vibration signal will increase [32]. This 



Master’s Thesis                                                                       McMaster University                       
Wanlin Zhang                                       Department of Mechanical Engineering 

  
 

19 
 

can be quantified by approximate entropy (ApEn). In [32], the ApEn was used as 

a statistical criteria to measure the degradation of the health condition of bearings. 

The results showed that the proposed method can robustly characterise the 

severity of structural defects. 

In [33], the intrinsic mode function (IMF) envelope spectrum is proposed to 

overcome the limitations of conventional envelope analysis such as the choice of 

filter central frequency. The approach utilized the empirical mode decomposition 

(EMD) to create the IMFs. Then, the fault features at the envelope spectra of the 

IMFs were marked, which were finally ported into a support vector machine for 

fault pattern recognition.  

In [34], a denoising scheme was proposed to enhance weak signature of 

faults in bearing vibration signals. The denoising scheme utilized the Gabor 

wavelet transform to filter the measured signal, which was pre-processed by the 

spectral subtraction method. Spectral subtraction is a method for restoration of 

the spectrum of a signal observed in additive noise, where an average signal 

spectrum and average noise spectrum are estimated independently from the 

measurements, and are subtracted from each other to obtain an improvement in 

average signal-to-noise ratio [35]. The parameters of the wavelet function, such 

as scale and shape factors were selected based on a resonance estimation 

algorithm and a smoothness index respectively. The various cases of bearing 
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faults simulated in that study showed that the detectability of bearing faults were 

evidently improved. 

The main advantage of envelope analysis is its ability to extract the weak 

periodic impacts which are modulated by structural resonance in machine, 

especially when the signal from the defective part is relatively low in energy. In 

[36], a multi-scale enveloping spectrogram was proposed as an improvement of 

conventional enveloping spectral analysis. In the conventional method, the signal 

bandwidth of interest must be known for consistent results. In this improved 

approach, different frequencies can be simultaneously extracted and separated. 

The complex wavelet transform was used to combine bandpass filtering and 

enveloping into one operation. The experimental results on bearings with 

localized defects showed the effectiveness of this technique. 

In [37], The Morlet wavelets were investigated for the envelope detection 

and demodulation of vibration signals. A key contribution in the study was the 

systematic description of selection criteria for automated selection of wavelet 

parameters, which could have great influence on the performance of wavelet 

transforms. 

The denoising approach based on wavelet shrinkage was also shown to 

be effective in many papers. Meanwhile, the selection of thresholding function 

attracted lots of interest. Since the quasi-optimal value of threshold was often 

unknown, in [38], a recursive algorithm was proposed to estimate the variance of 
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the noise with proved convergence. It was claimed that given the wavelet 

representation of the signal was sufficiently sparse (means a signal is efficiently 

encoded in only relatively few wavelet coefficients), the calculated limit threshold 

based on probability density function (PDF) of noisy signal equaled the 

theoretical value. Numerical comparison between the proposed method and 

Median Absolute Deviation (MAD) method was provided to demonstrate the 

effectiveness of the given approach. The MAD is a standard method that 

estimates the level of the noise in a signal by taking the median of the modulus of 

the finest-scale wavelet coefficients [39]. 

In [40], a customized wavelet denoising method that exploited intra-scale 

(neighbouring coefficients within one scale) and inter-scale (coefficients between 

different scales)  dependency of wavelet coefficients was proposed. Similarly, a 

denoising scheme which takes into account the statistical dependencies among 

wavelet coefficients was proposed in [41]. Numerical simulation showed the 

Bivariate method had significant improvement over traditional methods such hard 

and soft thresholding in increasing the signal-to-noise ratio (detailed descriptions 

of Bivariate shrinkage method are provided in Chapter 3). The improvement was 

shown through simulated bearing vibration signals. The results of the proposed 

approach and conventional soft-thresholding and hard-thresholding were then 

compared. Similarly, in [42], a kurtosis-based hybrid thresholding method was 

proposed to dynamically adjust the thresholding values, and was shown to be 

effective in increasing signal-to-noise ratio. In [43], the kurtosis was used as an 
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optimization and evaluation criteria for the selection of parameters of wavelet 

transforms. The experimental results presented in the form of envelope spectra 

clearly indicated the bearing faults. 

In [44], a denoising scheme based on dual-tree complex wavelet transform 

(DTCWT) was proposed for the feature enhancement of vibration signal from 

faulty bearing. The DTCWT was a complex-valued extension of the standard 

discrete wavelet transform (DWT), and was proved to have better shift invariance 

and reduced spectral aliasing than the DWT and the second-generation wavelet 

transform (SGWT) [45, 46]. A detailed description of DTCWT can be found in 

Chapter 3. After the decomposition of signal, a wavelet coefficient shrinkage 

approach was adopted to remove noise while retain important fault features. It 

was shown that the method was capable of detecting multiple faults 

simultaneously, with good robustness and computational efficiency. The 

experimental results based on a crack gear demonstrated the superiority of this 

method over SGWT and DWT for online surveillance and diagnosis. 

Besides vibration-based techniques, fault detection methods based on 

Motor current signature analysis (MCSA) were also shown to be effective in 

bearing diagnosis. It is advantageous in the sense that they are readily available 

in the power converter and for signal processing, which means they are 

intrinsically non-invasive. There are a number of papers dealing with the 

detection and diagnosis of bearing faults based on current analysis [5, 47-52]. 
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The approach relies on interpretation of the frequency components in the current 

spectrum that are related to bearing vibration. In [53], wavelet packet analysis 

was applied to the motor stator current to identify the modulation of stator current 

caused by bearing defects induced vibration. It was also shown that frequency 

bands can accommodate the rotational speed dependence providing a useful 

diagnostic for incipient bearing fault detection. In [54], an online diagnosis system 

using MCSA is proposed, with the ability of optimal-slip-estimation and 

frequency-auto-search. In [55], it was shown that mechanical imbalances caused 

harmonics in currents and voltages. It was also shown that mechanically induced 

speed oscillations give rise to sidebands components of the fundamental stator 

current frequency, and shaft misalignment causes modulation of the current by 

the shaft rotational frequency [16]. However, the current spectrum is influenced 

by many factors, such as electrical supply, static, and dynamic load conditions, 

noise, and motor geometry, all of which may lead to errors in fault detection [22]. 

Meanwhile, the majority of these papers consider steady-state machine operation 

at a constant supply frequency [50]. It should also be noted that internal 

vibrations caused by faults when coupled with external load vibrations can 

produce new harmonic components in the stator current, hence potentially 

leading to misdiagnosis. 

Methods based on Acoustic Emission (AE) have also been extensively 

researched for bearing fault detection. The AE can be defined as the generation 

of transient elastic waves produced by a sudden redistribution of energy from 
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localized sources within a material [56-59]. One of the advantages of AE 

technology over the well-established vibration analysis is that it can detect the 

growth of sub-surface cracks before they appear in the vibration measurements 

[57], and at low speeds [11]. Some research claims that AE offers earlier fault 

detection than vibration analysis [60]. However, as a complementary diagnostic 

tool, the AE still has limitations due to the difficulty in processing, interpreting and 

classifying the acquired data. Furthermore, AE may detect a change in condition 

but has limited diagnostic capability [11]. 

 

2.3 Electrical	Faults	

For BLDC motors, the permanent magnets replace the rotor windings, thus 

the electrical faults are mostly stator-related. Two mains classes of stator winding 

fault are: (i) the open-phase fault; and (ii) the shorted turns or the turn-to-turn 

insulation fault [50]. The former may allow the machine to operate with a reduced 

torque, while the latter one can quickly develop into an insulation failure and the 

complete breakdown of the machine. An insulation failure normally starts with an 

interturn short-circuit, which induces high current and much heat that burns the 

insulation. If left undetected, turn-to-turn faults will propagate to stator core, and 

lead to phase-phase or phase-ground failure [13]. This failure can occur within 60 

seconds for small low-voltage motors, and usually lead to irreversible damage to 

the machine [61]. 
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Model-based approaches are among the most commonly used techniques 

for the studying of short-circuit faults in electric motors. In [62], a parametric 

model was developed to simulate the operating conditions of a PMSM. As a 

novelty, the variation of spatial harmonics in back-EMFs due to the PM flux 

distribution was taken into account by the model. A similar approach was also 

used in [63]. 

In [64], a model-reference based method was proposed for the estimation 

of phase resistance and inductance in a PMSM. It was claimed that the 

performance of that approach was comparable to that of the Extended Kalman 

Filter [65], but was less computationally expensive. The method was applied with 

a decoupling control technique to improve convergence rate and overall stability. 

The implementation of EKF on PMSM was also found in [66], where the speed 

and position of the rotor were estimated using EKF. In that research, a self-tuning 

procedure was also proposed. 

In [67], a fault diagnosis algorithm was proposed which considered 

modeling errors caused by process uncertainties, which were reflected by a time-

varying stator resistance and inductance. The approach utilized the “adaptive 

residual generators” to improve the robustness of the algorithm. This was 

achieved by applying a decoupling block in feedback loop. However, the 

assumption that the stator winding resistance of all three phases are equal to 

each other is not practical under faulty winding conditions.  
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In [68], an online monitoring method was formulated for a PMSM in 

closed-loop drive system. The method combined a multi-model approach with the 

recursive least squares algorithm (RLS). The machine parameters estimated by 

the RLS were compared with the ones in a healthy condition. The interturn fault 

was detected when a residual exceeded a certain threshold. The challenge of 

model-based methods is the modeling uncertainties that might lead to incorrect 

detection of fault, as well as the nonlinearities that may be taken into account in 

the mathematical model [15]. 

In [69], the parameters of a brushless DC motor was estimated through a 

model-based approach. The faults in the stator winding resistance and the friction 

coefficient of the rotor were physically simulated. The results demonstrated that 

the increase of averaged winding resistance by 10% was successfully tracked.  

Among various signal processing techniques, the motor current signature 

analysis (MCSA) has also drawn much interest. One of the reasons is that the 

current measurement is readily available in the drive, making this method non-

invasive and not requiring any additional sensors. In [70], the MCSA was 

successfully applied to the motor current, by analyzing the spectrogram using the 

short-time Fourier transform (STFT) and a combined wavelet and power-spectral-

density (PSD) approach. The method was shown to be able to effectively extract 

the frequencies produced by inter-turn shorts in the stator current. Yet, a good a 
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priori knowledge of the signals is needed in order to find the proper sampling 

frequency and wavelet basis.  

The harmonics contained in the stator currents were also explored for the 

inter-turn fault detection [71]. It was proposed that search coils be installed on the 

motor rotor to improve accuracy. The advantage of this method is that only one 

signal needs to be monitored. Similar approaches were shown in [72-74].  

In [75], positive and negative sequence third harmonics of line currents are 

used to find the signatures of interturn faults. It was shown that by utilizing the 

predefined information on sequence components, the influence of voltage 

unbalance and inherent asymmetries could be largely removed, thus providing 

more reliable fault signals.  

A multiple reference frames theory was proposed in [76], which was 

shown to be immune to voltage unbalances. In this approach, the positive 

sequence of the stator currents was assumed to be the superposition of healthy 

machine currents and faulty machine currents. The healthy part of the signal was 

estimated using motor parameters and was removed from the measurements. 

The negative-sequence currents were also removed. The remaining faulty 

currents were then used for fault identification. 

In [77], a fault diagnosis approach based on the variation of impedance 

ܼ௡௣	was proposed, with special focus on closed-loop inverter drive that was 
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connected to multiple motors. The approach slightly differed from most methods 

in the sense that it took advantage of the current regulating effect of the motor 

controller. It was claimed that the robust and fast detection of turn-to-turn faults 

can be detected. However, the interaction of parallel motors in the presence of 

faults needed the independent measurement of each motor, and it didn’t consider 

nonlinearities associated with the inverter. 

High frequency (HF) signal injection has also been applied in fault 

detection of stator windings [78-83]. In [78], fault diagnosis was achieved by 

injecting a high frequency carrier signal to the motor, and measuring the resulting 

high frequency negative sequence current. The imbalance in the windings 

caused by faulty turns would lead to different direct and quadrature axis leakage 

inductances, and then the dc component was used as the fault indicator. This 

approach was shown to be advantageous in the sense that the results were 

almost independent of the excitation frequency, thus less sensitive to the 

variation of operating conditions. Similarly in [83], the negative-sequence currents 

induced from the high-frequency voltages were used to investigate the 

asymmetry fault in the machine. In [81], the HF injection and the space-

modulation profiling (SMP) technique were used to monitor the phase inductance 

of the motor, which was believed to be related to electrical faults. The residual 

between a healthy inductance signature and faulty one was investigated to 

identify the faults. In [82], a similar approach was taken on a PMSM. The SMP 

technique was used to obtain the magnetic signature of healthy operating 
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scenario and stored in a look-up table. Then this pre-stored signature was utilized 

as a comparison for online measurements to identify faults.  

In [84], a method was proposed based on the three-phase stator current 

envelopes through reconstructed phase-space transforms. A Gaussian mixture 

model and a Bayesian maximum likelihood classifier were used for the extraction 

and diagnosis of the short-circuit turns and broken rotor bar. It was shown that 

the approach had high accuracy in detecting a signal shorted turn under 50% 

rated load. 

Meanwhile, the artificial neural network (ANN) has also proved to be 

effective in motor fault detection according to numerous studies. ANN strategies 

include supervised [85-88] and unsupervised methods [89-91]. In [91], an 

unsupervised ANN algorithm was proposed, together with principal component 

analysis (PCA), to extract the principal components of the ߚߙ stator currents. The 

results were then used to classify the faults as well as their severity. The merit of 

this method was that it did not require a priori system identification procedures.  

 

2.4 Summary	

Condition monitoring and fault diagnosis of electric motors are important 

features that can improve the reliability of industrial machinery. This chapter 

provided an overview of the mechanical faults and the electrical faults of electric 
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motors, with a special focus on bearing and stator winding faults. In terms of 

bearing faults, vibration-based techniques have been found to be most reliable. In 

order to enhance the characteristic features of a fault, a number of signal 

processing techniques have been proposed. Among them, the wavelet analysis 

has shown its superiority in signal denoising and feature extraction. In terms of 

stator winding faults, the model-based parameter estimation techniques were 

found to be most promising. These methods are non-intrusive and have the 

ability of tracking the variation of actual physical parameters.  

Most of the reviewed literature, however, only considers the bearing faults 

or the stator winding faults exclusively. A combined strategy that can handle both 

of these faults would be more capable for practical use. Besides, for the wavelet-

based methods applied on bearing diagnosis, the merits of complex wavelet 

transform in improving the signal denoising performance are not fully exploited. 

Moreover, the influence of modeling uncertainties on the parameter estimation of 

electric motors should be considered in order to provide a robust fault diagnosis 

scheme. Accordingly, a fault detection and diagnosis strategy based on wavelet 

analysis and robust state estimation techniques was proposed in this research; 

the implementation of the proposed methods on a BLDC motor was also 

investigated. Details of the proposed strategy and its implementation will be 

discussed in the following chapters.  
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Chaprter	3	 Bearing	 Fault	 Diagnosis	 Using	 Wavelet	

Transforms	

In this study, bearing faults were detected by using wavelet-based signal 

processing techniques as shown in Figure 12. Signal denoising methods based 

on wavelet shrinkage and Dual-Tree Complex Wavelet Transform (DTCWT) are 

described. Some comparisons are provided to demonstrate the effectiveness of 

DTCWT in feature extraction and vibration signal denoising. Moreover, the 

kurtosis and the envelope analysis are introduced, both of which are essential 

tools in bearing fault diagnosis. The implementation of these tools on the fault 

diagnosis of bearings is discussed. 

 

Figure	12			Fault	diagnosis	scheme	
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3.1 Kurtosis	

Kurtosis is a mathematical representation that describes the impulsive 

features of time domain signals. It is defined as the fourth standardized moment: 

ݏ݅ݏ݋ݐݎݑܭ ൌ
1
ܰ
෍ቀ

௜ݔ െ ߤ
ߪ

ቁ
ସ

ே

௜ୀଵ

                    Equation 3.1.1 

where ݔ௜  is the measured acceleration in time domain, ߤ and ߪ are mean and 

variance respectively, and ܰ is the number of samples. Although kurtosis does 

not give any direct indication of the fault type, it provides a quantitative 

measurement of the degradation in health of a machine. As an example, a 

measured vibration signal from a healthy bearing is given in Figure 13. 

 
Figure	13			Typical	vibration	signal	measured	from	a	normal	bearing	

In contrast, Figure 14 shows the vibration signal of a motor with a 

defective bearing. The increase of kurtosis from 2.6 to 8.1 detects the bearing 

fault. 
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Figure	14			Typical	vibration	signal	measured	from	a	faulty	bearing	

 

 

3.2 Envelope	Analysis	

A. Amplitude	Modulation	

The concept of envelope analysis relates to amplitude modulation. 

Amplitude modulation is defined as the multiplication of one signal by another in 

time-domain. Either of the signals may contain harmonics, and since the 

modulation is inherently a non-linear process, it always gives rise to new 

frequency components that do not exist in the original signals. For example, the 

signal created according to Equation 3.2.1 have a time domain waveform shown 

in Figure 15. 
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Figure	15			A	simulated	signal	with	amplitude	modulation	phenomenon	

The signal shown in Figure 15 is amplitude modulated and is the 

multiplication of two sinusoidal waves with frequencies of 200 Hz and 2000 Hz. 

The higher frequency component is called the carrier frequency, and the lower 

one is the modulating frequency. The corresponding frequency spectrum is given 

in Figure 16. Ideally, two peaks should appear in the spectrum at 200 Hz and 

2000 Hz. However, the spectrum only shows the carrier frequency at 2000 Hz 

with two symmetrical sidebands at 1800 Hz and 2200 Hz, and the 200 Hz 

component is not found.  

This is analogous to the circumstances in bearing fault detection. A rolling 

element bearing with a defect on the outer race will produce a series of impacts 

occurring at the rate of ball passing. This is called Ball Passing Frequencies (BPF) 

or bearing defective frequency. These impacts, which are used as indicators of 

bearing faults, are amplitude modulated. The BPF is the modulating frequency 

and the structural resonance of the motor is the carrier frequency. Due to the 
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amplitude modulation effect, the he BPFs are usually not found in the spectrum of 

raw vibration measurement.  

 

Figure	16			Frequency	spectrum	of	the	simulated	signal	

Meanwhile, the presence of sidebands can also mislead our analysis since 

these frequencies are not actually contained in the signal. Accordingly, the 

amplitude demodulation or envelope analysis is necessary for the extraction of 

BPFs in bearing fault detection. 

B. Envelope	Analysis	Steps	

Envelope analysis, also known as High Frequency Resonance Technique 

(HFRT), is an amplitude demodulation technique used to obtain the bearing 

defect harmonics from the spectrum for fault diagnosis purposes [92]. One of the 

most widely used methods to perform envelope analysis is to pass the signal 

through a band-pass filter to remove low-frequency components. Then perform 

rectification so that the defect frequency components can be determined in the 
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envelope spectrum [92]. The rectification here means to take the absolute value 

of a signal. The procedure of envelope analysis is given in Figure 17. 

 

Figure	17			Diagram	of	signal	processing	steps	in	envelope	analysis	

As shown in Figure 17, the vibration signal is firstly passed through a 

band-pass filter around the resonance frequency in order to increase the signal-

to-noise ratio (SNR). In this research, the band-pass filter used was a digital IIR 

filter of Butterworth type, with parameters given in Table 1 and bode plot shown 

in Figure 18. The filter was implemented in forward and reverse manner to 

remove the phase shift. 

 

Figure	18			Bode	plot	of	the	digital	IIR	filter	

The next step is rectification, which turns negative parts of the signal to 

positive. In traditional envelope analysis, the rectified signal is then processed 
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using low-pass filter to enhance the low-frequency features and leave out high-

frequency noise. In this study, the low-pass filter is replaced by a wavelet 

denoising method based on Dual-Tree Complex Wavelet Transform (as 

described later in Section 3.3). The reason is that the DTCWT showed excellent 

performance in preserving the impulsive features at low frequency while filtering 

out noise [44-46]. Finally, the frequency spectrum of the denoised signal is 

created. The frequency components of periodic impulses that characterize the 

bearing faults (BPFs) can be found in the frequency spectrum, along with higher 

harmonics of it. As described in Section 2.2, the BPFs are calculated based on 

the speed of the motor and the construction parameters of the bearing. 

Table	1			Parameters	of	the	designed	Butterworth	digital	IIR	filter	

Filter Parameter              Values 

     First Stopband Frequency              500 [Hz] 

     First Passband Frequency              1000 [Hz] 

     Second Passband Frequency              3000 [Hz] 

     Second Stopband Frequency              3500 [Hz] 

     First Stopband Attenuation              30 [dB] 

     Passband Ripple              1 [dB] 

     Second Stopband Attenuation              40 [dB] 

 

C. An	Example	of	Envelope	Analysis	

To show the effectiveness of envelope analysis, a simulated signal is 

created using Equation 3.2.2 as shown in Figure 19.  
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																															݂ሺݐሻ ൌ ሺ݅ݏ ݊ሺ0.04ߨ ∙ ሻݐ ൅ 1ሻ ∙ ߨሺ0.4݊݅ݏ ∙ ሻݐ ൅  ሻ        Equation 3.2.2ݐሺߝ

	

Figure	19			A	simulated	signal	with	modulating	frequency	at	200	Hz	and	carrier	frequency	at	
2000	Hz	

The signal is sampled at 10 kHz and is the multiplication of two sinusoidal 

waves at frequencies 2000 Hz and 200 Hz respectively. The 2000 Hz wave is the 

carrier frequency representing the natural resonance frequency of the motor, and 

the 200 Hz wave is a modulating frequency, representing the BPFO. A small 

amount of noise εሺtሻ is added to the wave to better imitate practical conditions. 

Figure 20 shows the spectrum of the simulated signal. It is very clear that 

the major component in the spectrum is the carrier frequency at 2000 Hz. As 

expected, the modulating frequency of 200 Hz cannot be found in the spectrum. 

Instead, it appears as two small sidebands spaced apart from the carrier 

frequency by 200 Hz. This is very confusing in practical situations and may result 

in overlooking of the bearing faults. 
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Figure	20			Frequency	spectrum	of	simulated	signal	without	any	processing	

Figure 21 shows the spectrum after applying envelope analysis. A 

frequency component of exactly 200 Hz appears, and the sidebands disappear. 

As we can see from the results, envelope analysis is very effective in discovering 

hidden frequency components, which is particularly suitable for bearing fault 

diagnosis. 

 

 
Figure	21			Frequency	spectrum	of	simulated	signal	after	amplitude	demodulation	
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3.3 Dual‐Tree	Complex	Wavelet	Transform	(DTCWT)	

As discussed in Chapter 2, the discrete wavelet transform (DWT) has 

been widely used in signal processing applications due to its favorable time-

frequency resolution. The DWT however suffers a few limitations, and one of 

them is the lack of shift-invariance property. The Dual-Tree Complex Wavelet 

Transform (DTCWT) is a relatively new enhancement to the DWT with a nearly 

shift-invariant property [45], which makes DTCWT particularly suitable for signal 

denoising.  

The lack of shift invariance in conventional DWT means that a small shift 

in the input signal causes large changes in the wavelet coefficients, large 

variations in the distribution of energy at different scales, and possibly large 

changes in reconstructed signal. In the wavelet denoising process, the 

thresholding operation alters the value of wavelet coefficients. Thus, when the 

signal reconstruction is performed using the altered wavelet coefficients, the lack 

of shift invariance will lead to unfavorable artifacts in the reconstructed signal, 

and degrade the signal denoising performance. Accordingly, wavelet-based 

signal denoising methods will perform better when implemented with a shift-

invariant transform. Since the DTCWT has approximate shift-invariance property, 

it is very suitable for wavelet denoising applications. 

In DTCWT, the signal ݔሺݐሻ is decomposed and reconstructed by two sets 

of filter banks, namely the real tree and imaginary tree. Both of the real and 
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imaginary trees consist of low-pass scaling functions ߶ሺݐሻ  and high-pass 

wavelets ߰ሺݐሻ at each scale.  

Let ߰௛ሺݐሻ and ߰௚ሺݐሻ denote two real wavelets used in the DTCWT. The 

complex-valued wavelet ߰஼ሺݐሻ is defined as: 

߰஼ሺݐሻ ൌ ߰௛ሺݐሻ ൅ ݆߰௚ሺݐሻ                     Equation 3.3.1 

The wavelet coefficients ݀௟
Ը௘ሺ݇ሻ and the scaling coefficients ௃ܿ

Ը௘ሺ݇ሻ (for the 

real tree) are computed via inner products: 

																											݀௟
Ը௘ሺ݇ሻ ൌ 2௟/ଶ න ݐሻ߰௛ሺ2௟ݐሺݔ െ ݇ሻ݀ݐ

ାஶ

ିஶ
,			݈ ൌ 1,… ,  Equation 3.3.2        ܬ

																											 ௃ܿ
Ը௘ሺ݇ሻ ൌ 2௃/ଶ න ݐሻ߶௛ሺ2௃ݐሺݔ െ ݇ሻ݀ݐ

ାஶ

ିஶ
                           Equation 3.3.3 

where ݈  denotes the scale of decomposition, and ܬ  is the maximum scale. 

Similarly, the corresponding wavelet coefficients ݀௟
Ա௠ሺ݇ሻ  and ௃ܿ

Ա௠ሺ݇ሻ	 (for 

imaginary tree) can be computed by replacing the ߰௛ሺݐሻ and ߶௛ሺݐሻ with ߰௚ሺݐሻ and 

߶௚ሺݐሻ respectively, as given below: 

																									݀௟
Ա௠ሺ݇ሻ ൌ 2௟/ଶ න ݐሻ߰௚ሺ2௟ݐሺݔ െ ݇ሻ݀ݐ

ାஶ

ିஶ
,				݈ ൌ 1,… ,  Equation 3.3.4        ܬ

																									 ௃ܿ
Ա௠ሺ݇ሻ ൌ 2௃/ଶ න ݐሻ߶௚ሺ2௃ݐሺݔ െ ݇ሻ݀ݐ

ାஶ

ିஶ
                            Equation 3.3.5 

A detailed description of the selection of wavelet functions for DTCWT is 

provided in [93]. It was also claimed in [44] that similar results can be achieved 
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using different wavelet basis provided in [93]. In this research, the 14-tap Q-shift 

filters provided in [94] were used, as shown in Figure 22. 

 

Figure	22			Scaling	function	and	wavelet	function	of	the	14‐tap	Q‐shift	filters	

The wavelet coefficients ݀௟
஼ሺ݇ሻ and scaling coefficients ௃ܿ

஼ሺ݇ሻ of DTCWT 

are then obtained by combining the output of the dual trees: 

																																	݀௟
஼ሺ݇ሻ ൌ ݀௟

Ը௘ሺ݇ሻ ൅ ݆݀௟
Ա௠ሺ݇ሻ,										݈ ൌ 1,… ,  Equation 3.3.6              ܬ

																																	 ௃ܿ
஼ሺ݇ሻ ൌ ௃ܿ

Ը௘ሺ݇ሻ ൅ ݆ ௃ܿ
Ա௠ሺ݇ሻ                                       Equation 3.3.7 

Figure 23 illustrates a two-stage decomposition and reconstruction 

process. The 	݄ሺ݉ሻ and ݃ሺ݊ሻ represent the real and imaginary filters respectively, 

where ݉	and ݊ denote the length of the filter. The subscript “1” denotes a high-

pass filter, and the subscript “0” denotes a lowpass filter. As shown in Figure 23, 

the decomposition and reconstruction of DTCWT is an iterative process similar to 

that of the DWT [95], except for the fact that two sets of filter banks (real and 

imaginary) are used simultaneously.  
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Figure	23			The	dual‐tree	filter	banks	for	decomposition	and	reconstruction	ሾ44ሿ.	

The reconstruction of the signal ݔሺ݇ሻ can be obtained from the wavelet 

coefficients and the scaling coefficients by following equations: 

	ܿ௟ାଵ
Ը௘ ሺ݇ሻ ൌ෍	݄଴ሺ݉ െ 2݇ሻܿ௟

Ը௘ሺ݉ሻ
௠

                                                      Equation 3.3.8 

	݀௟ାଵ
Ը௘ ሺ݇ሻ ൌ෍	݄ଵሺ݉ െ 2݇ሻܿ௟

Ը௘ሺ݉ሻ
௠

                                                      Equation 3.3.9 

	ܿ௟
Ը௘ሺ݇ሻ ൌ෍	෨݄଴ሺ݇ െ 2݉ሻܿ௟ାଵ

Ը௘ ሺ݉ሻ
௠

൅෍	෨݄ଵሺ݇ െ 2݉ሻ݀௟ାଵ
Ը௘ ሺ݉ሻ

௠

           Equation 3.3.10 

Similarly, the reconstruction of the imaginary part is given as: 

	ܿ௟ାଵ
Ա௠ሺ݇ሻ ൌ෍	݃଴ሺ݊ െ 2݇ሻܿ௟

Ա௠ሺ݊ሻ
௡

                                                     Equation 3.3.11 

	݀௟ାଵ
Ա௠ሺ݇ሻ ൌ෍	 ଵ݃ሺ݊ െ 2݇ሻܿ௟

Ա௠ሺ݊ሻ
௡

                                                     Equation 3.3.12 

	ܿ௟
Ա௠ሺ݇ሻ ൌ෍	 ෤݃଴ሺ݇ െ 2݊ሻܿ௟ାଵ

Ա௠ሺ݊ሻ
௡

൅෍	 ෤݃ଵሺ݇ െ 2݊ሻ݀௟ାଵ
Ա௠ሺ݊ሻ

௡

              Equation 3.3.13 
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In addition, if necessary, the scaling and wavelet coefficients can be 

reconstructed independently using following equations: 

݀௟ሺݐሻ ൌ 2ሺ
௟ିଵ
ଶ ሻ ൥෍݀௟

Ը௘ሺ݇ሻ߰௛ሺ2௟ݐ െ ݊ሻ ൅෍݀௟
Ա௠ሺ݇ሻ߰௚ሺ2௟ݐ െ ݉ሻ

௠௡

൩     Equation 3.3.14 

௃ܿሺݐሻ ൌ 2ሺ
௃ିଵ
ଶ ሻ ൥෍ ௃ܿ

Ը௘ሺ݇ሻ߶௛ሺ2௃ݐ െ ݊ሻ ൅෍ ௃ܿ
Ա௠ሺ݇ሻ߶௚ሺ2௃ݐ െ ݉ሻ

௠௡

൩     Equation 3.3.15 

The ݀௟ሺݐሻ and ௃ܿሺݐሻ are real and have the same length as the signal ݔሺݐሻ. 

 

 

3.4 Application	of	Wavelet	Transform	in	Signal	Denoising	

3.4.1 Shrinkage‐based	Wavelet	Denoising	

The wavelet shrinkage [96] is a signal denoising technique based on the 

operation of thresholding the wavelet coefficients. During the shrinkage process, 

the wavelet coefficients having small absolute value are considered to encode 

mostly noise, while the wavelet coefficients having large absolute value are 

believed to encode important information. The denoising is thus achieved by 

setting the small absolute value coefficients to zero, and then reconstructing the 

signal with thresholded coefficients. As such, a higher signal-to-noise ratio can be 

achieved in the reconstructed signal. 
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The general steps followed in a wavelet denoising process are illustrated 

in Figure 24, and are summarized as follows [97]: 

(1). Obtain the wavelet coefficients by applying the wavelet transform to the 

noisy signal. 

(2). Estimate a threshold value and apply the threshold function to remove (zero 

out) the coefficients that are smaller than the threshold. 

(3). Reconstruct the signal by applying the inverse wavelet transform.  

Wavelet 
Transform

Apply 
Thresholding 

Function

Inverse 
Wavelet 

Transform
Output SignalInput Signal

 

Figure	24			The	Wavelet	Shrinkage	Procedues	

Finding an appropriate threshold value and threshold function are the keys 

to wavelet shrinkage. Lots of studies have been conducted on these aspects [98]. 

Some of the classical threshold functions are hard thresholding and soft 

thresholding [96]. The idea of hard thresholding and soft thresholding are 

illustrated by Figure 25. Basically, the hard thresholding function sets the input 

coefficients smaller than the threshold to zero, and leave the input coefficients 

larger than the threshold unchanged. In contrast, the soft thresholding function 

not only sets the small coefficients to zero, but also scales the large ones. 
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Figure	25			Hard	and	Soft	Thresholding	ሺ࢞	–	input	coefficient,	y	–	thresholded	coefficientሻ	

 

3.4.2 Bivariate	Shrinkage	

In [41], a wavelet shrinkage method named Bivariate shrinkage was 

proposed. It was shown that the Bivariate shrinkage offered significant 

improvements in denoising performance over the conventional thresholding 

functions such as hard thresholding and soft thresholding. In traditional 

thresholding functions, a fixed threshold is applied to wavelet coefficients in a 

term-by-term fashion. In Bivariate shrinkage, however, the threshold is 

dynamically adjusted for each wavelet coefficient by taking into account the 

statistical dependencies among wavelet coefficients of different scales.  

Let ݕ௜,௝  represent a wavelet coefficient at position ݅  and scale ݆ . Then, 

௜ିଵ,௝ݕ  and ݕ௜ାଵ,௝  are neighbouring coefficients in the same scale as ݕ௜,௝ , while 

 ௜,௝ but in neighbouring scales. Theݕ ௜,௝ାଵ are at the same position asݕ ௜,௝ିଵ andݕ

core concept of Bivariate shrinkage is that, if the neighbouring coefficients, such 
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as ݕ௜ିଵ,௝  and ݕ௜ାଵ,௝ , contain much information (coefficients with large absolute 

value), then it is likely that ݕ௜,௝ will also do, thus a small threshold should be used 

for shrinking ݕ௜,௝. Similarly, if  ݕ௜,௝ିଵ and ݕ௜,௝ାଵ contain much information, then it is 

likely that ݕ௜,௝ will also do, thus a small threshold should be used for shrinking ݕ௜,௝. 

By incorporating the intra- scale and inter-scale dependency information, a locally 

adaptive shrinkage function can be realized which achieves better denoising 

performance [41].  

The procedures of Bivariate Shrinkage are summarized as follows. More 

details on the derivation and theoretical proof can be found in [41]. 

(1).  Transform the noisy signal vector ࢄ ൌ ሾݔ௞ሿ௞∈ሾଵ,௄ሿ into a matrix of wavelet 

coefficients ࢅ	  using DTCWT (as described in Section 3.3), where ࢅ	 ൌ

௜,௝ݕ	௜,௝൧௜∈ሾଵ,ூሿ,௝∈ሾଵ,௃ሿ. Theݕൣ is individual wavelet coefficient at position ݅ and scale	݆. 

(2).  Estimate the variance of the noise contained in the wavelet coefficients ݕ௜,௝ 

based on coefficients of the finest scale ݕ௜,௃, using a robust median estimator 

[99],  

ොே௝ߪ
ଶ ൌ

݉݁݀݅ܽ݊ሺหݕ௜,௃หሻ
0.6745

                      Equation 3.4.1 

and the variance of noisy coefficients ߪො௒௜,௝
ଶ  is calculated as, 

ො௒௜,௝ߪ
ଶ ൌ

1
ܮ
∙ ෍ ௜,௝ݕ

ଶ

௜∈ሾ௜ି௅ ଶൗ ,			௜ା௅ ଶൗ ሿ

                     Equation 3.4.2 
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The variance ߪො௒௜,௝
ଶ  is calculated using the coefficients within a square-shaped 

window centered at the ݅th coefficient, where ܮ is the size of the window. Then, 

the estimated variance ߪොௐ௜,௝
ଶ  of the wavelet coefficients can be obtained as 

ොௐ௜,௝ߪ
ଶ ൌ ො௒௜,௝ߪሺ	ݔܽ݉

ଶ െ ොே௝ߪ
ଶ, 0ሻ                    Equation 3.4.3 

(3).  The Bivariate Shrinkage factor ߚ௜,௝ is obtained as: 

௜,௝ߚ ൌ

ݔܽ݉ ൭ඥݕ௜,௝ଶ ൅ ௜,௝ିଵଶݕ െ
√3 ∙ ොே௝ߪ

ଶ

ොௐ௜,௝ߪ
, 0൱

ඥݕ௜,௝ଶ ൅ ௜,௝ିଵଶݕ
         Equation 3.4.4 

(4).  For each noisy wavelet coefficient ݕ௜,௝, the estimated wavelet coefficient 

 :௜,௝ is obtained using the Bivariate Shrinkage factorݓ

ෝ௜,௝ݓ                                                      ൌ ௜,௝ߚ ∙  ௜,௝                               Equation 3.4.5ݕ

 

(5).  Finally, the denoised signal vector ࢄ෡	is obtained from the estimated 

wavelet coefficients ݓෝ௜,௝  via the inverse DTCWT transform (as described in 

Section 3.3). 
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3.5 The	Proposed	Denoising	Scheme	

The proposed signal denoising scheme is shown in Figure 26. The raw 

vibration signal is firstly processed by the envelop analysis method (bandpass 

filtering and rectification). Then, the resulting signal is transformed into wavelet 

coefficients using DTCWT. Next, the noisy wavelets coefficients are filtered via 

Bivariate shrinkage method, as described in Section 3.4.2. The denoised wavelet 

coefficients are then inversely transformed back to time domain to obtain the 

denoised signal. After the denoised signal is obtained, the frequency spectrum 

and wavelet scalogram of the denoised signal are produced, where the Ball-

passing Frequencies present as the signatures of bearing faults. 

 

Figure	26			The	proposed	signal	denoising	scheme	

The Matlab Code of the denoising scheme is provided in the Appendix 3. 
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An	Example	of	DTCWT‐based	Signal	Denoising	

The DTCWT has better performance over conventional DWT in terms of 

better shift invariance property and reduced aliasing effect [44-46, 93], which 

make it very effective for extracting periodic shocks and enhancing harmonic 

features [44]. An example of DTCWT-based signal denoising is provided as 

follows, where a digital filter is used as a comparison to the DTCWT-based 

denoising method.  

In this example, a signal was created to simulate the impulses generated 

by the defective part of a bearing. The signal contained a sinusoidal component 

that was attenuated by an exponential function, with additive Gaussian noise. 

The simulated signal ݂ሺݐሻ can be expressed as: 

																													݂ሺݐሻ ൌ 0.006 ∙ ݁஽ሺ௧ሻ ∙ sinሺ1000 ∙ ߨ2 ∙ ሻݐ ൅ εሺtሻ            Equation 3.5.1 

where   ܦሺݐሻ ൌ 1000 ∙ ,൫0ݔܽܯ 0.01 െ ,ݐሺ݀݋ܯ 0.02ሻ൯ െ 1; 

The ݀݋ܯ was a function that takes the modulus after division, and the ݔܽܯ was 

to compare a given number with 0 and take the larger one. The εሺtሻ was additive 

noise. The sampling frequency was 10 kHz. The periodic impacts generated by 

the faulty bearing had a frequency of 200 Hz. The designed low-pass digital filter 

had a cut-off frequency of 200 Hz, with detailed parameters listed in Table 2. The 

phase delay of the digital filter had been removed. The DTCWT denoising 

parameters were kept the same as those used in the processing of experimental 
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results in Chapter 4. As listed in Table 5, the number of scales (ܬሻ is 5, and the 

window size (ܮ in Equation 3.4.2) is set as 200. 

Table	2			Design	parameters	of	the	digital	IIR	filter	

Filter Type Passband Stopband 
Passband 

ripple 
Stopband 

attenuation
Order

Butterworth (IIR), 
Direct-Form II 

200 [Hz] 250 [Hz] 1 [dB] 80 [dB] 45 

 

Table	3			DTCWT	parameters		

Number of Scales (ܬሻ Window Size (ܮሻ 

5 200 [samples] 

 

The signal displayed in Figure 27 (a) was the simulated vibration signal, 

and was input into the DTCWT and the digital filter for denoising respectively. 

The four impulses shown in Figure 27 (a) are caused by bearing faults. An ideal 

denoising approach would preserve these impulses while filtering out noise. 

The denoising results are given in Figure 27 (b) and (c). Apparently, the 

DTCWT successfully filtered out the noise while keeping the impulsive features to 

a great extent. The IIR filter, however, produced an over-smoothed signal where 

the peaks could hardly be distinguished. This example demonstrates the 

advantages of DTCWT in signal denoising and feature extraction, particularly for 

bearing fault diagnosis. 
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Figure	27			ሺaሻ	Simulated	vibration	signal	from	a	faulty	bearing;	ሺbሻ	Denoised	signal	using	
DTCWT;	ሺcሻ	Denoised	signal	using	digital	IIR	filter	

It is worth pointing out that the sparseness of wavelet representation is 

one of the most important reasons for using wavelet transform for bearing fault 

diagnosis. Wavelet transforms have an energy compaction property. That means 

the transforms of the signal consists of a few large coefficients representing 

primary signal features, and many small coefficients that are considered to be 

noise. By keeping the large coefficients and suppressing the small coefficients, 

the noise can be filtered out without losing the important features of the signal. 

 

3.6 Summary	

The signal-based denoising techniques are important tools in fault 

detection and diagnosis. This chapter provided some of the most effective signal 
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processing tools for the bearing fault diagnosis. The Dual-Tree Complex Wavelet 

Transform was introduced and its appealing properties over conventional DWT 

were discussed. The shrinkage-based wavelet denoising method that utilized the 

DTCWT was then explained. Meanwhile, the envelope analysis was introduced 

with examples that demonstrated its effectiveness in extracting the bearing 

characteristic frequencies. Furthermore, the implementation steps of this 

denoising approach were summarized. The corresponding experimental results 

of this approach on the test motor are provided in the following chapters.  
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Chaprter	4	 Experimental	Results	of	Bearing	Fault	Diagnosis	

This chapter provides experimental results of the fault detection and 

diagnosis (FDD) methods applied to a test motor, for the bearing faults and the 

stator winding faults. In terms of bearings, previous studies show that 90% of 

faults that occur in rolling bearings are due to cracks in the inner and the outer 

races [8]. Accordingly, four bearing conditions were considered in this study, 

namely the normal condition, the outer race fault, the inner race fault and the 

presence of both the inner and outer race faults. The vibration of the machine 

was measured, and the DTCWT-based signal processing techniques were 

applied for the diagnosis of these faults.  

The FDD results were obtained using the proposed signal denoising 

scheme described in Section 3.5. The flowchart of this denoising scheme is 

shown in Figure 28. The denoising scheme consists of three processes, namely 

envelop analysis, wavelet denoising and fault identification. The core of this 

scheme is the wavelet denoising process, where the input signal is firstly 

transformed into wavelet coefficients via DTCWT. Then, the wavelet coefficients 

are thresholded using Bivariate Shrinkage in order to denoise the coefficients. 

Finally, the denoised coefficients are inversely transformed back to time domain 

to obtain the denoised signal. In following part of this chapter, the FDD results 

obtained using the aforementioned methods will be presented.  
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Figure	28			The	proposed	signal	denoising	scheme	ሺsame	as	Figure	26ሻ	

 

4.1	 Outer	Race	Fault	

 

Figure	29			Inventor	model	of	the	test	bearing	with	an	outer	race	defect	

In an attempt to physically simulate the outer race fault, a small dent was 

created on the outer race of the bearing using electro-chemical etching method, 
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as highlighted in Figure 29. As described in Section 2.2, when the rolling balls 

passed over the defective area, periodic shocks were produced. These shocks 

were captured by vibration sensors for fault diagnosis. Details of the experimental 

setup are provided in Appendix 1. 

 

4.1.1 Case	1:	1200	RPM	

During this test, the motor was running at 1200 RPM, and the data 

collection lasted for 10 seconds each time. The corresponding Ball Passing 

Frequency Outer Race (BPFO) at 1200 RPM was calculated according to 

Equation 2.2.2 as	 ௢݂ ൌ 71.28	Hz	.  

 

Figure	30			Raw	vibration	signal	from	the	faulty	bearing	at	1200	RPM	
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The measured vibration signal is shown in Figure 30. As described in 

Section 2.2, the BPFO was calculated based on the motor speed and the 

parameters of the bearing, and was used as an indicator of bearing faults. 

 

Figure	31			Partial	enlarged	signal	from	the	faulty	bearing	at	1200	RPM	

In Figure 31, the vibration signal in time-domain is partially enlarged. 

Figure 32 is the demodulated and denoised signal after applying the DTCWT-

based processing algorithm. It is clear that the noise has been greatly reduced 

compared to Figure 31. The periodic impulses can be easily identified on this plot. 

The time period of them is 14.03 ms, corresponding to 71.3 Hz, which correctly 

matches with the calculated BPFO at 71.28 Hz. 

Figure 33 is the denoised signal from the normal bearing. Compared with 

Figure 32, the denoised signal from a healthy bearing is usually a smooth one 

with much smaller amplitude and minor fluctuations, and most important of all, 
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shows no sharp impulse. By comparing the time domain signals such as Figure 

32 and Figure 33, it is very easy to distinguish a faulty bearing and a normal one. 

 

Figure	32			DTCWT‐denoised	signal	from	the	faulty	bearing	at	1200	RPM	

 

Figure	33			DTCWT‐denoised	signal	from	the	normal	bearing	at	1200	RPM	
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Figure	34			Frequency	spectrum	of	raw	signal	from	the	faulty	bearing	at	1200	RPM	

 

Figure	35			Frequency	spectrum	of	denoised	signal	from	the	faulty	bearing	at	1200	RPM	

The Figure 34 and Figure 35 are the frequency spectrum of the raw 

vibration signal and the denoised one, respectively. Dashed boxes are used to 
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find that no peaks appear in the highlighted area in Figure 34, which means the 

BPFO is not found in the spectrum of the raw signal. This is due to the amplitude 

modulation effect that covers the actual characteristic frequencies. After applying 

the envelope analysis and DTCWT-based denoising algorithm, we can see the 

BPFO appears on the spectrum of denoised signal in Figure 35. 

As a comparison, the spectrum of the denoised signal from the normal 

bearing is also given in Figure 36. As expected, no peak appears near the 

highlighted area, which means no fault exists in the outer race of the bearing. 

 

Figure	36			Frequency	spectrum	of	denoised	signal	from	the	normal	bearing	at	1200	RPM	

Table 4 compares the raw signal and the denoised signal using the 

kurtosis as a quantitative criterion. The kurtosis depicts how spiky the signal is. 

The kurtosis values listed in the table are the averaged kurtosis of ten repeated 

tests. As we can see, the kurtosis of the raw signal from the faulty bearing is 

0 15 30 45 60 75 90 105 120 135 150
-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

Frequency (Hz)

P
ow

e
r/

fr
e

qu
e

nc
y 

(d
B

/H
z)



Master’s Thesis                                                                       McMaster University                       
Wanlin Zhang                                       Department of Mechanical Engineering 

  
 

61 
 

much larger than that from the normal bearing. The signal denoising further 

amplifies the kurtosis of the faulty bearing by about 8 times. The kurtosis of the 

denoised signal from the faulty bearing is about 50 times larger than that from the 

normal bearing, which clearly indicates the presence of machine fault. 

Table	4			Kurtosis	of	signals	from	faulty	and	normal	bearings	at	1200	RPM	

Signal source  Raw faulty Raw normal Denoised faulty Denoised normal

Kurtosis Mean  23.12 2.63 176.46 3.31 

 

Figure	37			Scalogram	of	denoised	signal	from	the	faulty	bearing	at	1200	RPM	
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In Figure 37, the marked horizontal line appears around 71.6 Hz, which 

perfectly matches the calculated BPFO. This clearly indicates the presence of 

faults in the outer race of the bearing. 

 

4.1.2 Case	2:	2100	RPM	

 

Figure	38			Partial	enlarged	vibration	signal	from	the	faulty	bearing	at	2100	RPM	
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Figure	39			DTCWT‐denoised	signal	from	the	faulty	bearing	at	2100	RPM	

 

Figure	40			Frequency	spectrum	of	denoised	signal	from	the	faulty	bearing	at	2100	RPM	
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corresponding to 125.3 Hz. This matches with the calculated BPFO at 124.74 Hz. 

Thus, the result suggests an outer race fault in the test bearing.  

Meanwhile, the periodic shocks produced by the faulty bearing can also be 

identified through the frequency spectrum. As shown in Figure 40, a distinct peak 

appears at 125.3 Hz, which is about 20 dB higher than the noise floor. This again 

suggests the fault on the outer race of the bearing.  

In Table 5, the kurtosis of the faulty bearing is more than 40 times higher 

than that of a normal bearing, which clearly indicates the underlying machine fault. 

Table	5			Kurtosis	of	signals	from	faulty	and	normal	bearings	at	2100	RPM	

Signal source  Raw faulty Raw normal Denoised faulty Denoised normal

Kurtosis Mean  34.58 2.86 142.37 3.51 

 

Figure 41 shows the scalogram of the denoised signal from the faulty 

bearing. The marked line around 124 Hz matches the BPFO very well. Compared 

with Figure 37, the marked line in Figure 41 is more consecutive and the overall 

figure is much cleaner. This means the signature of bearing faults under higher 

motor speeds is more distinct.  

Note that the second order harmonic of the BPFO also appears near the upper 

edge of Figure 41. It contains much less amount of energy compared with the 

first order harmonic. The appearance of higher order harmonics of the BPFO in 
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the spectrum is a typical phenomenon in envelope analysis, and can be regarded 

as an auxiliary indicator of bearing faults. 

 

Figure	41			Scalogram	of	denoised	signal	from	the	faulty	bearing	at	2100	RPM	
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In this test, the motor with the faulty bearing was driven following the 

speed trajectory of Figure 42. Since the machine under test was an electric motor 

rather than an engine, the Extra Urban Driving Cycle had been scaled 

accordingly. Figure 42 shows the actual speed measurement in the testing.  

 

Figure	42			Measured	motor	speed	in	the	Extra	Urban	Driving	Cycle	test	

Figure 43 shows the BPFO corresponding to outer race fault of the bearing. 

Since the BPFO is proportional to the rotating speed of the motor, the trajectory 

in Figure 42 and Figure 43 are of the same shape.  Figure 44 shows the wavelet 

scalogram of the denoised signal, where a trajectory is presented of the same 

shape with respect to Figure 43. This curve indicates the outer race fault of the 

bearing during the driving cycle test. 
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Figure	43			Ball	Passing	Frequency	Outer	Race	ሺBPFOሻ	in	EUDC	test	

 

Figure	44			Scalogram	of	denoised	signal	from	the	faulty	bearing	in	EUDC	test	

This example demonstrates the effectiveness of the diagnosis approach 

for bearing monitoring in practical applications, such as for hybrid vehicles. 
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4.2	 Inner	Race	Fault	

In an attempt to physically simulate the inner race fault, a small dent was 

created on the inner race of the bearing using electro-chemical etching method, 

as shown in Figure 45. When the rolling balls passed over the defective area, 

periodic shocks were produced. These shocks were then captured by vibration 

sensors for fault diagnosis. Details on experimental setup are provided in 

Appendix 1. 

 

Figure	45			Inventor	model	of	the	test	bearing	with	an	inner	race	defect	

 

4.2.1	 Case	1:	1000	RPM	

In this test, the faulty bearing in the test motor was replaced by another 

bearing of the same type, but with an inner race defect instead of the outer race 

defect. The inner race fault was physically simulated by creating a small dent on 

the inner race of the bearing. Figure 46 shows the measurement of raw vibration 

signal for 10 seconds.  



Master’s Thesis                                                                       McMaster University                       
Wanlin Zhang                                       Department of Mechanical Engineering 

  
 

69 
 

Compared with the outer race fault, the characteristic impulses produced 

by the inner race fault are usually weaker. The reason relates to the structure of 

ball bearings. The outer race and the inner race are connected by rolling balls. 

The outer race fits into the bearing housing which connects to the sensor. Since 

the vibration is transmitted by the contact of rolling balls, part of the energy 

produced by impulses is damped during that transmission process. This results in 

weak fault signatures and makes the detection of inner race defect more difficult 

than that of the outer race defect. 

 

Figure	46			Raw	vibration	signal	from	the	faulty	bearing	at	1000	RPM	

In this case, the motor was running at the speed of 1000 RPM. The 

corresponding Ball Passing Frequency Inner Race (BPFI) was calculated 

according to Equation 2.2.1 as	 ௜݂ ൌ 90.6	Hz . Figure 47 shows the spectrum of 

raw vibration signal. The dashed boxes are used to highlight the areas where the 

BPFI may appear.  
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Figure	47			Frequency	spectrum	of	raw	signal	from	the	faulty	bearing	at	1000	RPM	

 

Figure	48			Frequency	spectrum	of	denoised	signal	from	the	faulty	bearing	at	1000	RPM	

The spectrum of raw vibration signal is shown in Figure 47, where no 

distinct frequency component appears within that highlighted area. This is due to 

the amplitude modulation effect that covers the characteristic frequencies of 

bearing faults. 
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After applying the signal denoising procedures, the resulting spectrum is 

shown in Figure 48. The frequency component of 90.49 Hz amongst a few other 

peaks is observed, which matches perfectly with the calculated BPFI at 90.6 Hz. 

The result thus proves the existence of an inner race fault in the bearing. 

Besides, as shown in Figure 48, the inner race fault also excited a few 

other frequency components in the spectrum. These frequency components are 

not directly related to the bearing fault under investigation. Since a complete 

analysis of the vibration spectrum needs comprehensive knowledge of the whole 

system and is beyond the scope of this study, only those calculated within the 

expected fault frequency window were considered as indication of the specific 

fault conditions of this study. 

 

Figure	49			Frequency	spectrum	of	raw	signal	from	the	normal	bearing	at	1000	RPM	
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In Table 6, the kurtosis of the signal from the faulty bearing is doubled 

after the denoising. In this case, the kurtosis does not reflect the bearing fault 

very well. This is due to the presence of multiple harmonics and weak signature 

of the inner race fault. 

Table	6			Kurtosis	of	signals	from	faulty	and	normal	bearings	at	1000	RPM	

Signal source  Raw faulty Raw normal Denoised faulty Denoised normal

Kurtosis Mean  3.38 2.75 6.82 3.37 

 

Figure 50 shows the wavelet scalogram, which clearly shows the BPFI. It 

can be seen that there is also more noise present in the scalogram, compared to 

Figure 41. 

 

Figure	50			Scalogram	of	denoised	signal	from	the	faulty	bearing	at	1000	RPM	
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4.2.2	 Case	2:	2800	RPM	

This test was carried out using the same bearing and set up as the 

previous test, except for a higher motor speed of 2800 RPM.  

 

Figure	51			Partial	enlarged	signal	from	the	faulty	bearing	at	2800	RPM	

A partially enlarged plot of the raw vibration signal is shown in Figure 51. 

Apparently, the signal consists of a lot of frequency components and noise. The 

denoised signal shown in Figure 52 is much cleaner than the original one. The 

period of the impulses is approximately 3.94 ms, corresponding to 253.9 Hz. This 

perfectly matches with the BPFI at 253.7 Hz. Thus the results clearly indicate the 

inner race fault of the bearing. 
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Figure	52			DTCWT‐denoised	signal	from	the	faulty	bearing	at	1200	RPM	

 

Figure	53			Frequency	spectrum	of	denoised	signal	from	the	faulty	bearing	at	2800	RPM	
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Figure	54			Scalogram	of	denoised	signal	from	the	faulty	bearing	at	2800	RPM	

Table	7			Kurtosis	of	signals	from	faulty	and	normal	bearings	at	2800	RPM	

Signal source  Raw faulty Raw normal Denoised faulty Denoised normal

Kurtosis Mean  16.10 2.77 22.39 3.24 

 

In Table 7, the kurtosis of the denoised signal from the faulty bearing is 

about 7 times larger than that of a normal bearing. The difference reveals the 

abnormal operating condition of the motor. Moreover, the figures also 

demonstrate the effectiveness of the denoising algorithm in enhancing the 

characteristic features of the fault. 
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4.2.3	 Case	3:	Urban	Driving	Cycle	

The Extra Urban Driving Cycle (EUDC) [100] is a driving cycle devised to 

represent typical driving conditions of a car. As described in Section 4.1.3, this 

test was designed in an attempt to demonstrate the effectiveness of the fault 

diagnosis scheme in practical situations. Since the machine under test was an 

electric motor rather than an engine, the Extra Urban Driving Cycle had been 

scaled accordingly. Figure 55 shows the measured speed trajectory in the testing. 

 

Figure	55				Measured	motor	speed	in	the	Extra	Urban	Driving	Cycle	test	ሺsame	as	Figure	40ሻ	

Figure 43 shows the BPFO corresponding to inner race fault of the bearing. 

Since the BPFO is proportional to the rotating speed of the motor, the curve in 

Figure 42 and Figure 43 are of the same shape.  Figure 44 shows the wavelet 

scalogram of the denoised signal, where a trajectory is presented of the same 

shape with respect to Figure 43. This curve indicates the inner race fault of the 

bearing during the driving cycle test.  
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Figure	56				Ball	Passing	Frequency	Inner	Race	ሺBPFIሻ	in	EUDC	test	

 

 

Figure	57				Scalogram	of	denoised	signal	from	the	faulty	bearing	in	EUDC	test	

This example demonstrates the effectiveness of the diagnosis approach 
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4.3	 Multiple	Faults	

In an attempt to physically simulate the multiple faults condition, a small 

dent was created on both of the inner and outer races of the bearing using 

electro-chemical etching method, as shown in Figure 45. When the rolling balls 

pass over the defective area, periodic shocks would be produced. These shocks 

were then captured by vibration sensors for fault diagnosis. Details on 

experimental setup are provided in Appendix 1. 

   

Figure	58			Inventor	model	of	the	test	bearing	with	multiple	defects:	ሺaሻ	Outer	race	defect;	ሺbሻ	
Inner	race	defect	

 

4.3.1	 Case	1:	RPM	=	1500	

In this case, the motor was running at the speed of 1500 RPM. The 

corresponding BPFO and BPFI are 89.1 Hz and 135.9 Hz, respectively. Figure 59 

shows the raw vibration signal in the time-domain. Figure 60 is the partially 

enlarged view of Figure 59, where some characteristic impulses are presented. In 

(a) (b) 
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multiple faults diagnosis, the mixture of impulses at different frequencies 

increases the difficulty of signal denoising and fault diagnosis. 

 

Figure	59			Raw	vibration	signal	from	the	bearing	with	multiple	faults	at	1500	RPM	
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Figure	60			Partial	enlarged	signal	from	the	bearing	with	multiple	faults	at	1500	RPM	

 

Figure	61			DTCWT‐denoised	signal	from	the	bearing	with	multiple	faults	at	1500	RPM	
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shows the second order harmonic of the BPFO at 179 Hz, which further confirms 

the presence of the outer race fault. 

Figure 64 shows the scalogram of the denoised signal, where the area 

representing the inner and outer race faults are marked. It can be seen from the 

figure that the impulses produced by the inner race fault is intermittent and 

contains much less energy compared to that of the outer race defect. In addition, 

compared with signal fault cases, the presence of two faults greatly increases the 

harmonics and noise in the signal. 

 

Figure	62			Frequency	spectrum	of	raw	signal	from	the	bearing	with	multiple	faults	at	1500	
RPM	
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Figure	63			Frequency	spectrum	of	denoised	signal	from	the	bearing	with	multiple	faults	at	
1500	RPM	

 

 

Figure	64			Scalogram	of	denoised	signal	from	the	bearing	with	multiple	faults	at	1500	RPM	
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Table	8			Kurtosis	of	signals	from	faulty	and	normal	bearings	at	1500	RPM	

Signal source  Raw faulty Raw normal Denoised faulty Denoised normal

Kurtosis Mean  12.36 2.69 59.48 3.05 

In Table 8, the kurtosis of the denoised signal from the faulty bearing is 

about 20 times larger than that from the normal bearing, which suggests the 

presence of machine faults. It is also found that the combination of two faults at 

the same bearing does not give a larger kurtosis than a signal bearing a single 

fault would.  

 

4.3.2	 Case	2:	RPM	=	2500	

In this test, the motor was running at the speed of 2500 RPM. The faulty 

bearing was the same as the one used in the previous case, with both an inner 

race fault and an outer race fault. Figure 65 gives an example of the raw signal in 

time-domain. In Figure 66, the denoised signal is much cleaner and it depicts two 

distinct patterns. The time periods of these two sets of impulses are 4.42 ms and 

6.69 ms, corresponding to 226.2 Hz and 149.4 Hz, respectively. These 

frequencies perfectly match with the calculated BPFO at 148.5 Hz and BPFI at 

226.5 Hz. 
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Figure	65			Partial	enlarged	vibration	signal	from	the	bearing	with	multiple	faults	at	2500	RPM	

 

Figure	66			DTCWT‐denoised	signal	from	the	bearing	with	multiple	faults	at	2500	RPM	

Figure 67 shows the frequency spectrum of the denoised signal. 
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Figure	67			Frequency	spectrum	of	denoised	signal	from	the	bearing	with	multiple	faults	at	
2500	RPM	

 

Figure	68			Scalogram	of	denoised	signal	from	the	bearing	with	multiple	faults	at	2500	RPM	
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present. Due to the damping effect, the fault signature of the inner race defect is 

not as strong as that of the outer race defect. 

Table	9			Kurtosis	of	signals	from	faulty	and	normal	bearings	at	2500	RPM	

Signal source  Raw faulty Raw normal Denoised faulty Denoised normal

Kurtosis Mean  11.47 2.78 29.73 3.51 

 

In Table 9, the kurtosis of the denoised signal from the faulty bearing is 

more than 8 times larger than that from a normal bearing, which suggests the 

underlying machine faults. The effectiveness of DTCWT in enhancing 

characteristic features of faults is also reflected by the increase of the kurtosis 

from 11.47 to 29.73. 

 

4.3.3	 Case	3:	Urban	Driving	Cycle	

The Extra Urban Driving Cycle (EUDC) [100] is a driving cycle devised to 

represent typical driving conditions of a car. As described in Section 5.1.2.3, this 

test was designed in an attempt to demonstrate the effectiveness of the fault 

diagnosis scheme in practical situations. Figure 69 shows the measured speed 

trajectory in the testing. Figure 70 shows the BPFO and BPFI corresponding to 

outer and inner race faults respectively. Since the BPFs are proportional to the 
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rotating speed of the motor, the curves shown in Figure 69 and Figure 70 are of 

the similar shape.   

 

Figure	69				Measured	motor	speed	in	the	Extra	Urban	Driving	Cycle	test	ሺsame	as	Figure	40ሻ	

 

      

Figure	70				Ball	Passing	Frequencies	ሺBPFO	and	BPFIሻ	in	EUDC	test	
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Figure	71			Scalogram	of	denoised	signal	from	the	faulty	bearing	in	EUDC	test	

Figure 71 shows the wavelet scalogram of the denoised signal. Two 

curves present in Figure 71, which indicate the inner race fault and the outer race 

fault respectively. The fault signature of the outer race defect is much stronger 

than that of the inner race defect. The curves shown in Figure 71 appear not 

exactly as the BPF curves shown in Figure 70. This is because the wavelet 

scalogram shown in Figure 71 has varying frequency resolution (y-axis). 
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4.4	 Summary	

This section provided the experimental results and discussions of the fault 

diagnosis conducted on the BLDC motor. The denoising algorithm, which 

incorporates the Dual-Tree Complex Wavelet Transform with Bivariate shrinkage 

played a central role in the denoising and feature enhancement of the measured 

signal. During the tests, the front bearing in the test motor was replaced by a 

faulty one. Four conditions were considered, namely normal bearing, bearing with 

inner race defect, bearing with outer race defect, and bearing with multiple 

defects. In each group of defect, two motor speeds were selected and the results 

were compared. By applying the DTCWT-based algorithms on vibration 

measurements, the bearing faults were detected successfully and repeatedly. 

Meanwhile, it was found that fault could be diagnosed and identified under 

varying speeds conditions, such as the EUDC driving cycle. The results also 

suggested that higher rotating speed would produce stronger characteristic 

features for fault diagnosis. All of the results presented in this chapter 

demonstrate the effectiveness of the proposed approach in fault detection and 

diagnosis of rolling bearings. 
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Chaprter	5	 Estimation	Theory	

State estimation is an important concept in control and instrumentation. In 

mechanical or electrical systems, the internal dynamics are usually described by 

a set of state variables. The goal of state estimation is to extract the states from 

available measurements, which are usually noisy. Accurate estimation of the 

states plays a key role in control systems. For example, in order to control the 

speed and the position of a motor, the controller may need to estimate the 

winding currents and the winding resistances of the motor. This can be achieved 

by using state and parameter estimation algorithms. In this chapter, one of the 

most well-known estimation methods, the Kalman Filter, is briefly introduced. The 

Smooth Variable Structure Filter is also considered [101].   

 

5.1	 The	Kalman	Filter		

The Kalman Filter was first published by R.E. Kalman in 1960 in his 

famous paper that described a recursive solution to the discrete linear filtering 

problem [102]. Since then, the Kalman Filter has become the best used filter for 

estimation and has been the subject of extensive research [102-116]. One of the 

applications that made it famous was its use in NASA lunar and Apollo missions 

[117]. 
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Figure	72			The	discrete	Kalman	Filter	cycle	

Basically, the Kalman Filter consists of a set of mathematical equations 

that estimate the states of a process in a predictor-corrector fashion. It addresses 

the estimation problem of a process governed by linear stochastic difference 

equations through the minimization of the mean squared error of the estimates. 

The popularity of KF comes from its optimality in terms of Root Mean Square 

Error (RMSE), and its ability to minimize the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ state estimation error 

[118]. A detailed introduction to the Kalman Filter can be found in [116], and is 

summarized as follows.  

Consider a discrete-time system: 

௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅ ߱௞,                       Equation 

with states ݔ ∈ Ը௡ and a measurement ݖ ∈ Ը௠: 

௞ାଵݖ ൌ ௞ାଵݔܥ ൅  ௞ାଵ.                         Equation 5.1.2ݒ

The random variables ߱௞  and ݒ௞  represent the process and the measurement 

noise, respectively. It is assumed that ߱௞ and ݒ௞ are independent of each other, 

and have zero mean Gaussian distributions, i.e.:  
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,ሺ߱ሻ~ܰሺ0݌ ܳሻ,                              Equation 5.1.3 

,ሻ~ܰሺ0ݒሺ݌ ܴሻ                               Equation 5.1.4 

where the process noise covariance	ܳ and measurement noise covariance ܴ are 

assumed to be constant during the process. The corresponding error covariance 

matrix is then defined as: 

௞ܲାଵ|௞ ൌ  ௞ାଵ|௞݁௞ାଵ|௞்൧,                     Equation 5.1.5݁ൣܧ

௞ܲାଵ|௞ାଵ ൌ  ௞ାଵ|௞ାଵ݁௞ାଵ|௞ାଵ்൧.                Equation 5.1.6݁ൣܧ

The ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ state estimate ݔො௞ାଵ|௞ାଵ	is defined as a linear combination of an 

݅ݎ݋݅ݎ݌	ܽ  estimate ො௞ାଵ|௞ݔ  and a weighted difference between an actual 

measurement ݖ௞ାଵ and a measurement prediction	݄ݔො௞ାଵ|௞: 

ො௞ାଵ|௞ାଵݔ 	ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵݖ௞ାଵ൫ܭ െ  ො௞ାଵ|௞൯         Equation 5.1.7ݔܥ

where the difference 	൫ݖ௞ାଵ െ   is called the measurement innovation; the	ො௞ାଵ|௞൯ݔܥ

ො௞ାଵ|௞ݔ ∈ Ը௡ is the ܽ	݅ݎ݋݅ݎ݌ state estimate at time ݇ ൅ 1 given the knowledge of the 

process at time ݇; ݔො௞ାଵ|௞ାଵ ∈ Ը௡ is ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ state estimate at time ݇ ൅ 1 given 

the measurements ݖ௞ାଵ; ܥ is the measurement matrix; the ܭ௞ାଵ in Equation 5.1.7 

is a ݊ ൈ ݉ matrix used in every iteration of the estimation process, referred to as 

the Kalman gain: 

௞ାଵܭ ൌ ௞ܲାଵ|௞்ܥሺܥ ௞ܲାଵ|௞ାଵ்ܥ ൅ ܴ௞ାଵሻିଵ       Equation 5.1.8 
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The Kalman gain is designed to minimize the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ error covariance, given 

as: 

௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ሻܥ௞ାଵܭ ௞ܲାଵ|௞                 Equation 5.1.9 

Note that ܴ௞	and ܳ௞ can vary during the process, but they are often chosen as 

constants prior to the estimation. In the case where the measurement is less 

noisy, the corresponding measurement covariance 	ܴ௞  should be set to a 

relatively small value, and the Kalman gain thus weighs the measurement 

innovation more, as if the Kalman Filter ‘trusts’ the measurement more than the 

prediction of the model. Otherwise, the Kalman Filter ‘trusts’ the model more. 

One of the very appealing features of the Kalman Filter comes from its 

 form, which recursively conditions the current estimate of a ݎ݋ݐܿ݁ݎݎ݋ܿ-ݎ݋ݐܿ݅݀݁ݎ݌

process on all of the past measurements. As Figure 72 shows, the Kalman Filter 

consists of time update equations, which are responsible for projecting forward 

the current estimates to obtain the ܽ	݅ݎ݋݅ݎ݌ estimate of the next time step, and 

measurement update equations, which are responsible for incorporating the new 

measurement into the ܽ	݅ݎ݋݅ݎ݌  estimate to produce the adjusted ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ 

estimate. After each time and measurement update pair, the process is repeated 

using the previous ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ estimates to predict the new ܽ	݅ݎ݋݅ݎ݌ estimates. 

In the implementation of the filter, the measurement noise covariance ܴ௞ 

and the process noise covariance ܳ௞ are often manually tuned by trial and error.  
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5.2	 The	Extended	Kalman	Filter	(EKF)	

 In the case where the system to be estimated is nonlinear, the classical 

Kalman Filter is modified to form the Extended Kalman Filter (EKF). The basic 

idea is to linearize the non-linear system model around the current state 

estimates using partial derivatives. This results in the loss of optimality, thus the 

EKF no longer provides the optimal estimates.  

Consider a process governed by the nonlinear stochastic difference 

equation: 

௞ାଵݔ ൌ ݂ሺݔ௞, ௞ሻݑ ൅ ߱௞                        Equation 5.2.1 

with a measurement equation: 

௞ାଵݖ ൌ ݄ሺݔ௞ାଵሻ ൅  ௞ାଵ                        Equation 5.2.2ݒ

where ݄  is the nonlinear measurement model. Let ݔො௞ାଵ|௞	 and ̂ݖ௞ାଵ|௞  be the 

 ,state and measurement vectors respectively ݅ݎ݋݅ݎ݌	ܽ

ො௞ାଵ|௞ݔ ൌ ݂൫ݔො௞|௞,  ௞൯                          Equation 5.2.3ݑ

And the corresponding ܽ	݅ݎ݋݅ݎ݌ estimated error covariance becomes: 

௞ܲାଵ|௞ ൌ ௞ܨ ௞ܲ|௞ܨ௞
் ൅ ܳ௞                       Equation 5.2.4 

where ܳ௞ is the process noise covariance matrix. The matrices ܨ௞ and ܪ௞ାଵ are 

Jacobian matrices and are derived from the partial derivatives of ݂ and ݄ with 

respect to the states: 
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௞ܨ ൌ
߲݂ሺݔሻ
ݔ߲

ฬ
௫ୀ௫ොೖ|ೖ,௨ೖ

                          Equation 5.2.5 

௞ାଵܪ	 ൌ
߲݄ሺݔሻ
ݔ߲

ฬ
௫ୀ௫ොೖశభ|ೖ

	                        Equation 5.2.6 

While the measurement error is given as: 

y෤௞ାଵ ൌ ௞ାଵݖ െ ݄ሺݔො௞ାଵ|௞ሻ                       Equation 5.2.7 

and the measurement error covariance matrix ܵ௞ାଵ is defined as:  

ܵ௞ାଵ ൌ ௞ାଵܪ ௞ܲାଵ|௞ܪ௞ାଵ
் ൅ ܴ௞ାଵ                  Equation 5.2.8 

where ܴ௞ାଵ  is the measurement noise covariance matrix. The next step is to 

update the ܽ	݅ݎ݋݅ݎ݌ estimates to the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ estimates, by applying the EKF 

gain: 

xො௞ାଵ|௞ାଵ ൌ xො௞ାଵ|௞ ൅  ௞ାଵy෤௞ାଵ                  Equation 5.2.9ܭ

                               where  ܭ௞ାଵ ൌ ௞ܲାଵ|௞ܪ௞ାଵ
் ܵ௞ାଵ

ିଵ ,                         Equation 5.2.10 

The final step is to update the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ estimation error covariance: 

௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ௞ାଵሻܪ௞ାଵܭ ௞ܲାଵ|௞              Equation 5.2.11 

For mildly nonlinear system, the EKF is easy to implement and can provide 

satisfactory performance. However, the linearization of the system model in the 

EKF may introduce instabilities to the estimation process [117]. Besides, the EKF 

is sensitive to computer precision, and the complexity of computations is 

relatively high due to matrix inversions [118]. More discussions on the Kalman 
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Filter can be found in [117]. The steps involved in the EKF are also summarized 

in Table 10. 

Table	10			Summary	of	EKF	equations	ሾ116ሿ	

Time Update (Predictor)  Measurement Update (Corrector) 

(1). Projector the state ahead	

ො௞ାଵ|௞ݔ ൌ ݂൫ݔො௞|௞,   ௞൯ݑ

(1). Compute the Kalman gain 

௞ାଵܭ       ൌ ௞ܲାଵ|௞ܪ௞ାଵ
் ܵ௞ାଵ

ିଵ  

ܵ௞ାଵ ൌ ௞ାଵܪ ௞ܲାଵ|௞ܪ௞ାଵ
் ൅ ܴ௞ାଵ 

(2). Project the error covariance ahead

௞ܲାଵ|௞ ൌ ௞ܨ ௞ܲ|௞ܨ௞
் ൅ ܳ௞ 

 

(2). Update estimate 

y෤௞ାଵ ൌ ௞ାଵݖ െ ݄ሺݔො௞ାଵ|௞ሻ	

xො௞ାଵ|௞ାଵ ൌ xො௞ାଵ|௞ ൅  ௞ାଵy෤௞ାଵܭ

  
(3). Update the error covariance 

௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ௞ାଵሻܪ௞ାଵܭ ௞ܲାଵ|௞ 

 

5.3	 The	Smooth	Variable	Structure	Filter	(SVSF)	

The Smooth Variable Structure Filter (SVSF) was first presented in 2007, 

as the successor of Variable Structure filter (VSF) [101]. It is a novel model-

based estimation strategy that closely relates to the sliding model control (SMC) 

concept. The SMC utilizes a discontinuous switching plane along the desired 

state trajectory (sliding surface), so as to keep the state values along this surface 

and minimize the trajectory errors [119, 120]. In this way, it can guarantee 
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estimate given an uncertain system model and forces it towards the real 

trajectory. During this process, the estimated trajectory then reaches the 

existence subspace. The existence subspace is a time varying space that 

encloses the true state trajectory, and is calculated based on the state trajectory, 

uncertainties, noise, and disturbances. After reaching an existence subspace, the 

estimated state will stay within it and switch back and forth across the true state 

trajectory. The period from the beginning to when the estimates reach the 

existence subspace, is called the reachability phase, as marked in Figure 73. 

The SVSF works in a predictor-corrector fashion that resembles the 

Kalman Filter. In every cycle of the estimation, the SVSF calculates an ܽ	݅ݎ݋݅ݎ݌ 

state estimate	ݔො௞ାଵ|௞ based on the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ estimate ݔො௞|௞ of the previous step, 

It then updates the ܽ	݅ݎ݋݅ݎ݌ estimate ݔො௞ାଵ|௞ to an ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ value	ݔො௞ାଵ|௞ାଵ, by 

applying the SVSF gain. According to [101], during reachability phase the 

estimation will be stable and will converge to the existence subspace, if the 

following condition is satisfied: 

หe௞ାଵ|௞ାଵห ൏ หe௞|௞ห                           Equation 5.3.1 

Essentially, Equation 5.3.1 means that the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ estimation error of 

SVSF will decrease with time, thus the estimate will converge to the existence 

subspace. The width of the existence subspace ߚ	varies with time, and is a 

function of the uncertain dynamics [117]. The upper bound of ߚ	can be estimated 

based on the upper bounds of uncertainties.  
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Since the chattering caused by the switching of the SVSF is not desirable 

in most cases, a smoothing boundary layer is used to smooth the estimates, as 

shown in Figure 73. The smoothing boundary layer should be chosen to enclose 

the existence subspace, i.e.	߰ ൐ ߚ . Details of the derivation and proof of the 

SVSF can be found in [101, 117]. The following is a brief overview of the 

implementation steps of SVSF. 

Consider a nonlinear process with a linear measurement equation, where 

the ܽ	݅ݎ݋݅ݎ݌ state estimate ݔො௞ାଵ|௞	of the system can be expressed as: 

ො௞ାଵ|௞ݔ ൌ መ݂ሺݔො௞|௞,  ௞ሻ                          Equation 5.3.2ݑ

The estimated measurements and the ܽ	݅ݎ݋݅ݎ݌ estimation error can be derived as: 

௞ାଵ|௞ݖ̂ ൌ  ො௞ାଵ|௞                            Equation 5.3.3ݔܥ

݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ  ௞ାଵ|௞                       Equation 5.3.4ݖ̂

The SVSF gain is then defined as: 

௞ାଵܭ
ௌ௏ௌி ൌ ሺห݁௭,௞ାଵ|௞หିܥ ൅ ห݁௭,௞|௞หሻߛ ∙ ሺݐܽݏ

݁௭,௞ାଵ|௞
߰

ሻ     Equation 5.3.5 

where ห݁௭,௞ାଵ|௞ห  and ห݁௭,௞|௞ห  are the absolute values of the ܽ	݅ݎ݋݅ݎ݌  and the 

 state estimate error respectively; ߰ is the smoothing  boundary layer ݅ݎ݋݅ݎ݁ݐݏ݋݌	ܽ

width; the SVSF convergence rate is defined by ߛ, that is chosen between 0 and 

 ݅ݎ݋݅ݎ݁ݐݏ݋݌	ܽ is the measurement matrix. With the SVSF corrective action, the ܥ ;1

state estimate at time ݇ ൅ 1 is calculated as: 
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ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵܭ
ௌ௏ௌி                     Equation 5.3.6 

Then, the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌  estimated measurement ̂ݖ௞ାଵ|௞ାଵ  and the corresponding 

 :estimation error are updated as ݅ݎ݋݅ݎ݁ݐݏ݋݌	ܽ

௞ାଵ|௞ାଵݖ̂ ൌ  ො௞ାଵ|௞ାଵ                         Equation 5.3.7ݔܥ

݁௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ  ௞ାଵ|௞ାଵ                    Equation 5.3.8ݖ̂

Table 11 summarizes the process of the SVSF 

Table	11			Summary	of	SVSF	estimation	steps	

Time Update (Predictor) 

(1). Project the state ahead 

ො௞ାଵ|௞ݔ ൌ መ݂ሺݔො௞|௞,  ௞ሻݑ

(2). Update the ܽ	݅ݎ݋݅ݎ݌ estimation error 

݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ  ො௞ାଵ|௞ݔ௞ାଵܪ

Measurement Update (Corrector) 

(3). Compute the SVSF gain 

௞ାଵܭ
ௌ௏ௌி ൌ ሺห݁௭,௞ାଵ|௞หିܥ ൅ ห݁௭,௞|௞หሻߛ ∙ ሺݐܽݏ

݁௭,௞ାଵ|௞
߰

ሻ 

(4).  Update the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ state estimate 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵܭ
ௌ௏ௌி 

(5).Update the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ measurement error 

݁௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ  ො௞ାଵ|௞ାଵݔܥ
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In the above equations, it is assumed that all of the states of the system 

have corresponding measurements and that the measurement matrix is full rank. 

Sometimes only some of the states are directly measurable. If the system is 

completely observable and controllable, then SVSF can still be applied. The 

solution to this ‘fewer measurements than states’ scenario is a ‘reduced order’ 

approach that formulates a full measurement matrix [101]. The idea is to 

construct ‘artificial measurements’ for the unmeasured states using available 

measurements [101]. As such, the aforementioned estimation steps can still be 

applied, and the SVSF can still provide robust estimates of the system that. 

 

5.4	 The	EK‐SVSF	

The EK-SVSF is a combination of EKF and SVSF, which achieves better 

estimation accuracy while preserving the robustness feature of SVSF. This 

strategy is summarized below.  

In an effort to achieve optimality, an optimal time varying smoothing 

boundary layer (VBL) was first derived in [121]. The original smoothing boundary 

layer was replaced by the VBL. The VBL was obtained by taking the partial 

derivative of the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌  error covariance matrix with respect to the 

smoothing boundary layer term [117]. In a linear system, the VBL yields an 

optimal gain value which makes SVSF equivalent to the Kalman Filter. The 
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convergence of the SVSF to the Kalman Filter or EKF is only desirable within the 

existence subspace for optimality. Outside of it, the SVSF should be retained to 

ensure robust stability, as illustrated in Figure 74. As such, an upper limit was 

specified for the VBL. Outside the limit the robustness and stability of the SVSF 

was maintained, while inside the boundary layer the optimal gain was applied.  

 

 

 

 

 

 

Figure	74			The	concept	of	EK‐SVSF	strategy	ሾ117ሿ	

To calculate the VBL, the ܽ	݅ݎ݋݅ݎ݌ estimation error covariance needs to be 

calculated: 

௞ܲାଵ|௞ ൌ ௞ܨ ௞ܲ|௞ܨ௞
் ൅ ܳ௞                       Equation 5.4.1 

where the ܳ௞ is the measurement noise covariance, as defined in Equation 5.1.3; 

 ௞ are the partial derivatives of the system matrix and the measurementܪ ௞ andܨ

matrix with respect to the states, respectively.  
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Figure	75			Methedology	of	combining	nonlinear	filtering	strategies	ሾ117ሿ.	

The ܽ	݅ݎ݋݅ݎ݌  and the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌  estimation errors have the same 

formulation as defined in the original SVSF by Equation 5.3.4 and Equation 5.3.8. 

A new innovation covariance is obtained as: 

ܵ௞ାଵ ൌ ௞ାଵܪ ௞ܲାଵ|௞ܪ௞ାଵ
் ൅ ܴ௞ାଵ                  Equation 5.4.2 

Followed by a combined error vector: 

௞ାଵܣ̅ ൌ ห݁௭,௞ାଵ|௞ห ൅  ห݁௭,௞|௞ห                    Equation 5.4.3ߛ

The VBL is defined as a function of ܵ௞ାଵ and ܣ௞ାଵ: 

߰௞ାଵ ൌ ሺ̅ܣ௞ାଵ
ିଵ ௞ାଵܪ ௞ܲାଵ|௞ܪ௞ାଵ

் ܵ௞ାଵ
ିଵ ሻିଵ             Equation 5.4.4 

Note that a ‘divide by zero’ check should be performed on Equation 5.4.3 

to avoid inversion of zero in Equation 5.4.4 [117]. The concept behind the EK-

SVSF is illustrated in Figure 75. Essentially, the values of Equation 5.4.4 are 

compared with the limits for the smoothing boundary layer widths (a designer 

setting) to determine which gain is used (EKF or SVSF) [117]. If the values of 

Equation 5.4.4 are larger than the limits (i.e. ߰௞ାଵ ൒ ߰௟௜௠), the EK-SVSF gain is 

defined by: 

If ߰௞ାଵ ൒ ψ୪୧୫ 

If ߰௞ାଵ ൏ ߰௟௜௠ 
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௞ାଵܭ ൌ ଵ݀݅ܽ݃ൣ൫ห݁௭,௞ାଵ|௞หିܪ ൅ ห݁௭,௞|௞ห൯ߛ ∙ ൫ݐܽݏ ത߰ିଵ݁௭,௞ାଵ|௞൯൧ൣ݀݅ܽ݃൫݁௭,௞ାଵ|௞൯൧
ିଵ

 

                   Equation 5.4.5 

Otherwise, the standard EKF gain may be used, as defined in Equation 5.4.6.  

௞ାଵܭ ൌ ௞ାଵܪ
ିଵ ௞ାଵ߰୩ାଵܣ̅

ିଵ                         Equation 5.4.6 

The ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ state estimate equation is modified as: 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅  ௞ାଵ݁௭,௞ାଵ|௞                Equation 5.4.7ܭ

Finally, the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ estimation error covariance is obtained as: 

					 ௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ௞ାଵሻܪ௞ାଵܭ ௞ܲାଵ|௞ሺܫ െ ௞ାଵሻ்ܪ௞ାଵܭ ൅ ௞ାଵܭ௞ାଵܴ௞ାଵܭ
்         Equation 5.4.8 

Finally, the ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ measurement error ݁௭,௞ାଵ|௞ାଵ is updated using ݔො௞ାଵ|௞ାଵ, 

                                        ݁௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ ݄൫ݔො௞ାଵ|௞ାଵ൯                 Equation 5.4.9 

	

Table	12			Summary	of	EK‐SVSF	ሺPredictorሻ	

Time Update (Predictor) 

(1). Project the state ahead 

ො௞ାଵ|௞ݔ ൌ መ݂ሺݔො௞|௞,  ௞ሻݑ

(2).Linearize the system and the measurement matrices 

௞ܨ							 ൌ
߲݂ሺݔሻ
ݔ߲

ฬ
௫ୀ௫ොೖ|ೖ,௨ೖ

  and  ܪ௞ାଵ ൌ
߲݄ሺݔሻ
ݔ߲

ฬ
௫ୀ௫ොೖశభ|ೖ
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(3). Calculate the ܽ	݅ݎ݋݅ݎ݌ estimation error covariance 

௞ܲାଵ|௞ ൌ ௞ܨ ௞ܲ|௞ܨ௞
் ൅ ܳ௞ 

(4). Update ܽ	݅ݎ݋݅ݎ݌ estimation error 

݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ ݄൫ݔො௞ାଵ|௞൯ 

	

	

Table	13			Summary	of	EK‐SVSF	ሺCorrectorሻ	

Measurement Update (Corrector) 

(5). Calculate the smoothing boundary layer width ߰௞ାଵ 

								ܵ௞ାଵ ൌ ௞ାଵܪ ௞ܲାଵ|௞ܪ௞ାଵ
் ൅ ܴ௞ାଵ								̅ܣ௞ାଵ ൌ ൫ห݁௭,௞ାଵ|௞ห ൅ ߰௞ାଵ								ห݁௭,௞|௞ห൯ߛ

௞ାଵܣ̅								 ൌ ൫ห݁௭,௞ାଵ|௞ห ൅ ߰௞ାଵ								ห݁௭,௞|௞ห൯ߛ ൌ ሺ̅ܣ௞ାଵ
ିଵ ௞ାଵܪ ௞ܲାଵ|௞ܪ௞ାଵ

் ܵ௞ାଵ
ିଵ ሻିଵ 

								߰௞ାଵ ൌ ሺ̅ܣ௞ାଵ
ିଵ ௞ାଵܪ ௞ܲାଵ|௞ܪ௞ାଵ

் ܵ௞ାଵ
ିଵ ሻିଵ 

ൌ ሺ̅ܣ௞ାଵ
ିଵ ௞ାଵܪ ௞ܲାଵ|௞ܪ௞ାଵ

் ܵ௞ାଵ
ିଵ ሻିଵ 

(6). Compute the EK-SVSF gain 

௞ାଵܭ

ൌ ൝
ܲ݇൅1|݇݇ܪ൅1

ܶ ܵ௞ାଵ
െ1, ݂݅	߰݇൅1 ൏ ݈߰݅݉																																																																																																														

ଵ݀݅ܽ݃ൣ൫ห݁௭,௞ାଵ|௞หିܪ ൅ ห݁௭,௞|௞ห൯ߛ ∙ ൫ݐܽݏ ത߰ିଵ݁௭,௞ାଵ|௞൯൧ൣ݀݅ܽ݃൫݁௭,௞ାଵ|௞൯൧
ିଵ
, ݂݅	߰݇൅1 ൒ ݈߰݅݉

 

(7).  Update ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ state estimate 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅  ௞ାଵ݁௭,௞ାଵ|௞ܭ

(8). Calculate ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ estimation error covariance 

௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ௞ାଵሻܪ௞ାଵܭ ௞ܲାଵ|௞ሺܫ െ ௞ାଵሻ்ܪ௞ାଵܭ ൅ ௞ାଵܭ௞ାଵܴ௞ାଵܭ
்  
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(9).Update ܽ	݅ݎ݋݅ݎ݁ݐݏ݋݌ measurement error 

݁௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ ݄൫ݔො௞ାଵ|௞ାଵ൯ 

 

5.5	 Summary	

This chapter briefly described the implementation of the Extend Kalman 

Filter and the Smooth Variable Structure Filter. The EKF is well-established in the 

estimation field. For linear systems with Gaussian noise, the Kalman Filter 

provides optimal estimates in terms of mean square error. In nonlinear systems, 

the EKF is applied. The Kalman Filter suffers a major drawback which is its 

sensitivity to modeling uncertainties.  

To overcome this limitation, the SVSF may be used [117]. The SVSF is a 

robust state estimator [101]. The EK-SVSF provides the accuracy of the EKF as 

well as the robustness of the SVSF in the presence of modeling errors.  
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Chaprter	6	 Experimental	 Results	 of	 Stator	 Winding	 Fault	

Diagnosis	

In terms of the stator winding faults of electric motors, the most common 

ones are the open circuit and short circuit faults. It is believed that these faults 

usually start as turn-to-turn faults and then gradually grow and culminate into a 

winding failure [16]. With the progression and the deterioration of the fault, the 

stator winding resistance will also vary correspondingly with time. Thus, the 

continuous estimation of the stator winding resistance becomes very important in 

condition monitoring of motors. In this research, artificial winding faults were 

physically simulated on the test motor. A description of experimental setup is 

provided in Appendix 1. With the measurements of the currents and voltages of 

the three phases, the estimation techniques were applied to track the variation of 

the winding resistance. Specifically, the EKF and EK-SVSF were implemented for 

estimation of the states and the parameters of the motor. 

The EK-SVSF was applied for the estimation of the states and the 

parameters of the test motor. The EK-SVSF requires a model of the motor as 

defined later in this chapter (Equation 6.5.1). A goal of this research was to 

compare the effectiveness of the EK-SVSF with that of the Extended Kalman 

Filter in the diagnosis of stator winding faults. 
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Figure	76			Typical	voltage	measurements	

 

Figure	77			Typical	current	measurements	

   The experimental setup used in this study is described in Appendix 1. . 

As shown in Figure 76, the phase-to-neutral input voltages Ua, Ub and Uc of the 

motor. The phase voltages were obtained by direct line voltage measurements. 

The associated phase currents were also measured as shown in Figure 77. All 
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measurements were pre-processed by an anti-aliasing filter with a cut-off 

frequency of 500 Hz. During the test, the speed of the motor was fixed to 1000 

RPM with no external load. The angular position of the motor was measured by 

an absolute encoder.  

The discrete-time state space model of the motor was obtained based on 

Equation 1.2.1 to Equation 1.2.4 [122-124], and an equivalent circuit diagram 

shown in Figure 78 (same as Figure 1). More descriptions can be found in 

Section 1.2. 

 

Figure	78			Simplified	equivalent	circuit	of	the	BLDC	motor	ሺsame	as	Figure	1ሻ	ሾ3ሿ.		

The motor was modeled as a third-order nonlinear system with six state 

variables related to its phase currents and phase resistances. The value of the 

constants used in the model can be found in Table 21 in the Appendix 1.  

At the beginning, the estimated states were initialized to zero. The 

sampling frequency of the system was	்݂ ൌ   .ݖܪ	32,000
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࢞࢑ା૚ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
െܴܽۍ

݇ ݐ݀ ⁄ݏܮ 0 0 0 0 0

0 െܴܾ
݇ ݐ݀ ⁄ݏܮ 0 0 0 0

0 0 െܴܿ
݇ ݐ݀ ⁄ݏܮ 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 ے1
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

∙ ࢞࢑

൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ݐ݀ۍ ⁄ݏܮ 0 0 െܽߔ݁ܭ

݇ 0

0 ݐ݀ ⁄ݏܮ 0 െܾߔ݁ܭ
݇ 0

0 0 ݐ݀ ⁄ݏܮ െܿߔ݁ܭ
݇ 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 ے0
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

∙ ࢛࢑									 																		Equation	6.5.1	

	

࢞࢑ ൌ ሾܫ௔
௞ ௕ܫ

௞ ௖ܫ
௞ ܴ௔

௞ ܴ௕
௞ ܴ௖

௞ሿ்,																												 	 																		Equation	6.5.2 

࢛࢑ ൌ ሾݑ௔௞ ௕௞ݑ ௖௞ݑ ߱݇ 																					,௘௞ሿߠ 	 																																	Equation	6.5.3	

where ߔ௔
௞ ൌ ௘ሻߠሺ݊݅ݏ , ௕ߔ

௞ ൌ ݊݅ݏ ቀߠ௘ ൅
ଶ

ଷ
ቁߨ , ௖ߔ

௞ ൌ ݊݅ݏ ቀߠ௘ െ
ଶ

ଷ
,ቁߨ  and the relation 

between the electrical angle ߠ௘ and the physical angle ߠ of the rotor is ߠ௘ ൌ  ,ߠ2ܲ

ܲ  is the number of pole pairs. ܭ௘ ൌ 0.77	ሾV ∙ s/radሿ	 and ௦ܮ ൌ 0.0048	ሾHሿ . The 

corresponding measurement equation can be defined as: 

࢑ା૚ࢠ ൌ ࡯ ∙ ࢞࢑ା૚																					 	 		Equation	6.5.4	

where ܥ is the measurement matrix.  

Note that for systems that have fewer measurements than states, 

Luenberger’s approach is used to formulate a full measurement matrix, as 
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presented in [101, 117, 125]. Essentially, ‘artificial measurements’ are created 

and used throughout the estimation process [117]. In this case, the artificial 

measurements of phase resistances were calculated using available 

measurements of the phase voltages and currents, as given by Equation 6.5.5: 

ெே,௔ݎ ൌ
ெே,௔ݑ െ ܮ

݀݅ெே,௔
ݐ݀ െ 2߱ெே݁ܭ

݅ெே,௔
																									Equation	6.5.5	

where the subscript “MN” denotes the mean value of the variable in every half 

cycle, the subscript “ܽ” denotes phase A, and	ܭ௘ଶ is a voltage constant which 

equals to	0.4877	ሾV ∙ s/radሿ. The		ݎெே,௔	was then low-pass filtered to reduce the 

noise amplified by the differentiation operation in Equation 6.5.5. An example of 

the artificial measurements is shown in Figure 79.  

 

Figure	79			Artificial	measurements	of	phase	resistance	
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Thus, the new measurement vector ࢑ࢠା૚ is defined as: 

࢑ା૚ࢠ ൌ ൣ݅௔
௞ାଵ ݅௕

௞ାଵ ݅௖
௞ାଵ ெே,௔௞ାଵݎ ெே,௕௞ାଵݎ ெே,௖௞ାଵ൧ݎ

்
 

where the measurement matrix ܥ becomes an indentity matrix, i.e.: 

ܥ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 ے1

ۑ
ۑ
ۑ
ۑ
ې

 

Note that the same (artifical) measurements were used by both of the 

SVSF and the Kalman Filter. For the Kalman Filter, the artifical measurements 

could decrease estimation errors, particularly in the presence of modeling 

uncertainties [126]. Some results of the Kalman Filter without using Luenberger’s 

approach are provided in Appendix 2 as a comparison. 

 The For the Kalman Filter, the system noise covariance ܳ  and 

meansurement noise covariance ܴ, and initial state error covariance P଴|଴  were 

determined by trial and error as follows: 

ܳ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
1 ൈ 10ିହ 0 0 0 0 0

0 1 ൈ 10ିହ 0 0 0 0
0 0 1 ൈ 10ିହ 0 0 0
0 0 0 0.5 ൈ 10ି଻ 0 0
0 0 0 0 0.5 ൈ 10ି଻ 0
0 0 0 0 0 0.5 ൈ 10ି଻ے

ۑ
ۑ
ۑ
ۑ
ې

, 
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ܴ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
1 ൈ 10ିଷ 0 0 0 0 0

0 1 ൈ 10ିଷ 0 0 0 0
0 0 1 ൈ 10ିଷ 0 0 0
0 0 0 0.2 0 0
0 0 0 0 0.2 0
0 0 0 0 0 ے0.2

ۑ
ۑ
ۑ
ۑ
ې

, 

P଴|଴ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
1 ൈ 10ିସ 0 0 0 0 0

0 1 ൈ 10ିସ 0 0 0 0
0 0 1 ൈ 10ିସ 0 0 0
0 0 0 1.5 ൈ 10ିସ 0 0
0 0 0 0 1.5 ൈ 10ିସ 0
0 0 0 0 0 1.5 ൈ 10ିସے

ۑ
ۑ
ۑ
ۑ
ې

, 

For the EK-SVSF, the ‘memory’ or convergency rate was set to γ ൌ 0.2. 

The limit for the smoothing boundary layer widths for the six states were set as 

߰ ൌ ሾ2 2 2 2 2 2ሿ୘.  

Four different cases were studied. The first case was considered a normal 

condition, where no faults occured in the motor.  

The second case included a faulty resistance in one of the phases of the 

motor. The fault conditions are described in Table 14. 

Table	14			Faulty	conditions	of	the	motor	in	the	sencond	case	of	experimental	tests	

Fault Condition 
Normal 

Resistance 
Faulty 

Resistance 
Occurrence 

Time 
Duration 

Change of winding 
resistance in phase C 

ܴ௖ = 0.5 Ohm ܴ௖ = 1.0 Ohm t = 8 sec 
Till the 

end 
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In the third case, a modeling error was injected in to the estimator half-way 

through the process, in order to test the roubustness of the methods. The 

modeling uncertainties are described in Table 15. 

Table	15			Modeling	uncertainties	in	the	third	case	of	experimental	tests	

Type of Modeling 
Uncertainties 

Normal 
Condition 

Modeling Error 
Condition 

Occurrence 
Time 

Duration 

Change of the 
model parameter ܭ௘ 

 ௘ = 0.77 * 90% t = 1.7 sec t = 1.6 secܭ ௘ = 0.77ܭ

 

 The fourth case was a combination of the second case and the third case, 

which involved the faulty resistance and the modeling error. The fault conditions 

and modeling uncertainties are provided in Table 16. 

Table	16			Fault	conditions	and	modeling	uncertainties	in	the	fourth	case	of	experimental	tests	

Fault Condition / 
Modeling Uncertainties 

Normal Faulty 
Occurrence 

Time 
Duration 

Change of winding 
resistance in phase C 

ܴ௖ = 0.5 Ohm ܴ௖ = 1.0 Ohm t = 8 sec 
Till the 

end 

Change of the model 
parameter ܭ௘ 

 ௘ = 0.77ܭ
 * ௘ = 0.77ܭ

90% 
t = 8 sec 

Till the 
end 
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6.1 Normal	Condition	

In this case, the motor was running in normal conditions. Figure 80 and 

Figure 81 show the parameter estimation results from the EK-SVSF and the 

Extended Kalman Filter, respectively. The nominal phase resistance of the motor 

is 0.5 Ohm. As we can see from the figures, the EKF and the EK-SVSF produce 

similar results when estimating this resistance. The current estimates for both the 

EK-SVSF and the EKF are also comparable. The Root Mean Square Error 

(RMSE) comparison of two filters is presented in Table 17.  

 

Figure	80			Estimation	of	phase	resistance	using	EK‐SVSF	

A small discrepancy in the estimation of Ra is observed in Figure 80 and 

Figure 81. This discrepancy is also found in all of the following results, and is 

believed to be caused by the slightly unbalanced supply voltage in phase A from 

the motor drive. 
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Figure	81			Estimation	of	phase	resistance	using	Extended	Kalman	Filter	ሺEKFሻ	

As claimed in [117], for a known system subjected to Gaussian noise, the 

Kalman Filter gives the optimal estimates. The EK-SVSF yields the same results 

with better robustness. In this case, the target system is nonlinear, and the noise 

distribution is Gaussian but not exactly known.  

Table	17			Root	Mean	Square	Error	of	estimated	parameters	ሺNormal	Caseሻ	

Filter  Ra Rb Rc 

EKF  5.939 ൈ 10ିଶ 3.723 ൈ 10ିଶ 3.587 ൈ 10ିଶ 

EK-SVSF  5.042 ൈ 10ିଶ 1.266 ൈ 10ିଶ 1.355 ൈ 10ିଶ 

 

As shown in Table 17, EK-SVSF outperformed the EKF in terms of the 

RMSE. This is likely due to the faster convergence of EK-SVSF over EKF at first 

0.5 sec, which results in an overall smaller RMSEs. Furthermore, if the leftmost 
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part of Figure 80 is compared to Figure 81, it can be seen that the EK-SVSF 

converges to the true state trajectory faster than the EKF. This demonstrates the 

merits of EK-SVSF, which brings the fast convergence property of SVSF together 

with the accuracy of the EKF, thus giving a better overall performance than either 

alone. 

 

6.2 Winding	Resistance	Fault	

To simulate this fault condition, an external resistor was added to the 

stator winding of the motor, doubling its resistance ܴ௖ halfway in the estimation 

process. A description of experimental setup is provided in the Appendix 1. 

 

Figure	82			Estimation	of	phase	resistance	using	Extended	Kalman	Filter	ሺEKFሻ	

Figure 82 shows the estimated resistance by using the EKF, with the 
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from Figure 82, EKF provides satisfactory results. The change in the resistance 

ܴ௖ from 0.5 Ohm to 1 Ohm was successfully captured, and the estimation of the 

other two phases are not affected by this disturbance. Figure 83 shows the 

estimation results of the EK-SVSF that are similar to that of the EKF. The reason 

is that in the absence of modeling error, the SVSF gain is practically the same as 

that of the EKF’s.  The change in the resistance ܴ௖ was successfully tracked, and 

the estimation stabilized. As we can see in the Figure 83, the change of ܴ௖ did 

not affect the other two phases. This means the approach can estimate the three 

states independently in a decoupled way. 

 

Figure	83			Estimation	of	phase	resistance	using	EK‐SVSF	

The RMSE of the estimation given in Table 18 also suggests that the 

performance of these two methods is similar. The RMSE of the ܴ௖ estimate is 
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smaller error in ܴ௔ and	ܴ௕, mostly because of the faster convergence of the EK-

SVSF in the beginning of the estimation. 

Table	18			Root	Mean	Square	Error	of	estimated	parameters	ሺWinding	Resistance	Faultሻ	

Filter  Ra Rb Rc 

EKF  3.224 ൈ 10ିଶ 1.150 ൈ 10ିଶ 1.409	 ൈ 10ିଵ 

EK-SVSF  3.057 ൈ 10ିଶ 1.004 ൈ 10ିଶ 1.364 ൈ 10ିଵ 

 

6.3 Modeling	Uncertainty	

The third case was to compare the robustness of the filters under 

modeling uncertainties. As per [101], consider the introduction of a modeling error 

or uncertainty at 1.7 seconds into the test. The modeling uncertainty was 

introduced by decreasing the value of 		Kୣ	 in the model by 10%. The altered 

parameter was then changed back to the correct value at 3.3 seconds. While the 

model given to the filters was changed, the actual running conditions of the motor 

remained the same. The corresponding resistance estimates for this case are 

shown in the following figures.  

Figure 84 is the result from the EKF. The abrupt jump at 1.7 sec is shown 

together with a sudden drop at 3.3 sec. The estimation error of the EKF due to 

the modeling uncertainties is more than five times larger than the true value. 

Obviously, the estimates of EKF completely diverge from the true state trajectory 



Master’s Thesis                                                                       McMaster University                            
Wanlin Zhang                                       Department of Mechanical Engineering 

  
 

120 
 

because of the injected modeling error. Although Kalman Filter gives the optimal 

estimate in known systems with white noise, one of its well-known deficiencies is 

its sensitivity to modeling uncertainties. 

 

Figure	84			Estimation	of	phase	resistance	using	Extended	Kalman	Filter	ሺEKFሻ	

On the other hand, the estimation results in Figure 85 demonstrate the 
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not completely immune from the injected modeling error, the EK-SVSF is 

nevertheless much better than the EKF, as compared in Table 19.  

 

Figure	85			Estimation	of	phase	resistance	using	EK‐SVSF	

In addition, the VBL is a reflection of the modeling uncertainties during the 
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region of the true state trajectory. In terms of RMSE, the EK-SVSF strategy in this 

case also yields much better results, as shown in the following table. 

 

Figure	86			The	VBL	trajectory	of	the	three‐phase	currents	in	EK‐SVSF	

Table	19			Root	Mean	Square	Error	of	estimated	parameters	ሺModeling	Uncertaintyሻ	

Filter  Ra Rb Rc 

EKF  1.283 ൈ 10଴ 1.248 ൈ 10଴ 1.252	 ൈ 10଴ 

EK-SVSF  5.157 ൈ 10ିଶ 1.637 ൈ 10ିଶ 1.804 ൈ 10ିଶ 

 

In this case, it is very clear that the SVSF greatly outperformed EKF, as 

the RMSEs of the EKF are more than 30 times larger than those of the EK-SVSF. 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

V
al

u
e

 

 
Psi-Ia
Psi-Ib
Psi-Ic



Master’s Thesis                                                                       McMaster University                       
Wanlin Zhang                                       Department of Mechanical Engineering 

  
 

123 
 

6.4 Winding	Resistance	Fault	and	Modeling	Uncertainty	

The fourth case was a combination of the second case (Section 6.3) and 

the third case (Section 6.4), which involved the resistance fault as well as the 

modeling uncertainty. Consider the introduction of a modeling uncertainty at 8 

seconds into the test. The modeling uncertainty was introduced by decreasing 

the value of		Kୣ	in the model by 10%. At the same time, an external resistor was 

also added to the stator winding of the motor, doubling its resistance ܴ௖ halfway 

in the estimation process. Note that the resistance fault and the modeling 

uncertainty occurred at the same time in order to exaggerate the effect of 

uncertainty in the system. The corresponding resistance estimates for this case 

are shown in the following figures. 

Figure 87 shows the estimated resistance by using the EKF, with the 

dashed line in grey indicating the change in the resistance value. As we can see, 

the estimation error of the EKF is more than three times larger than the true value. 

Apparently, the estimates of EKF were strongly affected by the modeling error 

and diverged from the true state trajectory. Although Kalman Filter gives the 

optimal estimate in known systems with white noise, one of its well-known 

deficiencies is its sensitivity to modeling uncertainties. 
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Figure	87			Estimation	of	phase	resistance	using	Extended	Kalman	Filter	ሺEKFሻ	

  

Figure	88			Estimation	of	phase	resistance	using	EK‐SVSF	

On the other hand, the estimation results in Figure 88 demonstrate the 

robustness of the EK-SVSF given modeling uncertainties. The modeling 

uncertainty does not cause a large error in the estimated resistance	ܴ௖, and the 

resistance fault is effectively estimated by EK-SVSF. Furthermore, all of the three 
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states start chattering after the injection of modeling errors. The chattering 

phenomenon shown in Figure 88 is an indicator that can be used to identify the 

hidden fault in the system. Although the estimates of EK-SVSF are not 

completely immune from the injected modeling error, the EK-SVSF is 

nevertheless much better than the EKF. 

 

Figure	89			The	VBL	trajectory	of	the	three‐phase	currents	in	EK‐SVSF	

Under normal conditions, the EK-SVSF has the same performance as the 

EKF. However, when the system is subjected to modeling uncertainties, as 

shown in Figure 84 and Figure 85, the EKF fails to yield a reasonable estimate 

and deviates from the true values. The EK-SVSF on the other hand remains 

robust and stabile. Its estimates remained bounded to within a region of the true 

state trajectory. 
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The VBL is a reflection of the modeling uncertainties during the estimation 

process. As shown in Figure 89, the VBL increases drastically when the modeling 

uncertainty is injected into the system. The variation of the VBL in SVSF thus is 

another useful indicator of fault conditions in the system being estimated. 

Table	20			Root	Mean	Square	Error	of	estimated	parameters	

Filter  Ra Rb Rc 

EKF  1.751 ൈ 10଴ 1.704 ൈ 10଴ 2.007	 ൈ 10଴ 

EK-SVSF  3.633 ൈ 10ିଶ 1.480 ൈ 10ିଶ 1.409 ൈ 10ିଵ 

 

In terms of RMSE, the EK-SVSF strategy in this case also yields much 

better results. As shown in Table 20, the RMSEs of the EKF are much larger than 

those of the EK-SVSF. 

 

6.5 Summary	

This section presented the implementation of the EK-SVSF and the EKF 

for estimating the states and the parameters of a BLDC motor. The Kalman Filter 

provides optimal estimates in linear known systems with Gaussian noise, but it 

suffers from a major drawback which is the sensitivity to modeling uncertainties. 

The Smooth Variable Structure Filter is a robust state estimator with a secondary 

indicator for modeling uncertainties. The EK-SVSF is a combination of the EKF 
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and the SVSF which has the performance of the EKF and the robustness of the 

SVSF.  

In order to physically simulate the stator winding faults, resistors were 

added to the external winding circuits. In an effort to detect those faults, the 

winding resistance of the three phases of the motor were monitored 

simultaneously using EK-SVSF and the EKF. The results of the EK-SVSF were 

compared to that of the EKF. Experimental results demonstrated that both of the 

EK-SVSF and the EKF produced accurate estimates when the model of the 

motor was known. In the presence of modeling errors, however, the EKF 

deviated from the true state trajectories, while the EK-SVSF still gave accurate 

estimates with a low degree of chattering. Moreover, the VBL width of the EK-

SVSF was found to be a secondary indicator for the changes in the system and 

the modeling errors. 
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Chaprter	7	 Concluding	Remarks	

7.1	 Summary	of	Research		

Unexpected motor failures in rotating equipment can result in unplanned 

production downtime, costly replacement of parts and safety concerns. Thus, fast 

and efficient fault detection and diagnosis of electric motors are necessary in 

order to maintain a high degree of reliability and operational safety. It has been 

reported that bearing faults and stator winding faults cause the majority of motor 

failures. In this research, these faults were physically simulated on a Permanent 

Magnet Brushless DC Motor. Signal-based and model-based fault detection and 

diagnosis techniques were proposed and used successfully to detect the above 

mentioned faults. 

When a bearing contains a fault, the resulting vibration signal exhibits 

characteristic features that can be utilized to detect the fault. However, the 

vibration signal from a bearing with an incipient fault is usually masked by 

machine noise, making it difficult to detect the fault signature. In this research, a 

signal processing method that incorporated the Dual-Tree Complex Wavelet 

Transform with the Bivariate shrinkage was applied for signal denoising and 

feature extraction from the measured vibration signal. Envelope analysis was 

then used to extract modulated impulses associated with faults. Different bearing 

conditions, including inner race fault, outer race fault and multiple faults, were 
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physically simulated and were all successfully detected using the proposed 

method. The effectiveness of the approach was further demonstrated by using 

the Extra Urban Driving Cycle, where the speed of the motor was varied 

according to a pre-defined driving profile. Both numerical simulations and 

experimental results showed that the DTCWT-based fault diagnosis approach 

was very effective for bearing fault diagnosis in electric motors, without any 

necessary optimization to enhance its performance.  

The Kalman Filter provides optimal estimates in linear known systems with 

white noise. However, its performance degrades in the presence of modeling 

uncertainties. The Smooth Variable Structure Filter is an estimation strategy that 

is robust to modeling uncertainties. The EK-SVSF is a combination of the EKF 

and the SVSF which has the performance of the EKF and the robustness of the 

SVSF. In this research, stator winding faults were physically simulated by adding 

resistors to the external winding circuits. In an effort to detect those faults, the 

winding resistance of the three phases of the motor were monitored 

simultaneously using the EKF and the EK-SVSF estimation techniques. The EK-

SVSF was implemented to estimate the winding resistance, and the experimental 

results were compared to that of the EKF. It was demonstrated that both of the 

EK-SVSF and the EKF produced accurate estimates at normal condition and 

faulty condition when the model of the motor was known. In the presence of the 

modeling errors, however, the EKF’s performance significantly degraded, while 

the EK-SVSF maintained its accuracy. Moreover, the VBL width of the EK-SVSF 
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was found to be a secondary indicator for modeling uncertainties. In summary, 

the EK-SVSF was shown to be a valuable and effective tool for the fault detection 

and diagnosis of BLDC motors. 

 

7.2	 Recommendations	and	Future	Work	

In this research, bearing faults representing the mechanical elements of 

the motor and stator winding faults from the electrical elements of the motor were 

studied. For mechanical faults, further studies should involve applying the 

proposed methods on fault diagnosis of all components of the motor. In addition, 

the influence of the external load on fault diagnosis should be investigated. In 

terms of parameter estimation of the motor, further studies should involve the 

implementation of the EK-SVSF on other types of electric motors, such as 

induction and switched reluctance motors.  
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Appendix	

1.	 Experimental	Setup	

 

             

Figure	90			The	Permanent	Magnet	Brushless	DC	Motor	

The Permanent Magnet Brushless DC Motor used in this research is 

shown in Figure 90, with specifications listed in Table 21.  

Table	21			Motor	construction	parameters	

Motor Parameter Symbol Value 

Rated Speed ߱௥ 3000 rpm 

Number of poles ܲ 8 

Moment of Inertia 4.8 ܬx10-3 kgm2 

Torque Constant 1.52 ்ܭ Nm/A 

Voltage Constant ܭ௘ 0.77 V/(rad/s) 

Winding Resistance ܴ 0.5 Ohm 

Field Inductance ܮ௦ 4.8x10-3  H 

 

Accelerometer 

Motor Drive 

Motor  

Bearing  
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The motor was controlled by Siemens’s SimoDrive 611 system, as shown 

in Figure 91.  

 

Figure	91			Architecture	of	fault	diagnosis	scheme	

A built-in absolute encoder was used for rotor position and speed 

measurement, with a resolution of 2048 lines per revolution. Bearing faults were 

simulated by replacing the bearing in front of the motor with faulty ones of the 

same type. An accelerometer (AC240-1D) was mounted on the casing of the 

motor for vibration measurement, as shown in Figure 90. A data acquisition board 

(NI PCI-6229) was used along with a built-in anti-aliasing filter for data collection. 

           

Figure	92			ሺaሻ	Inventor	model	of	the	test	motor;		ሺbሻ	Inventor	model	of	the	test	bearing	

The ball bearings used for fault simulation were of the type NACHI-

6207NSE.  

(a) (b) 

Sensor 

Bearing 
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The dimensions of the test bearing are provided in Table 22, and are 

marked in Figure 93. 

Table	22			Bearing	Parameters	

Bearing Parameter Symbol Value 

Model Number N. O. 6207NSE 

Outer Diameter 72 ܦ [mm] 

Inner Diameter ݀ 35 [mm] 

Width 17 ܤ [mm] 

Number of Rolling Balls ௕ܰ 11 

Contact Angle 0 ߠ [degree] 

 

Figure	93			Dimensions	of	a	ball	bearing	

Four bearing health conditions were considered: normal condition, outer 

race fault, inner race fault and the presence of both inner and outer race fault. 

The bearing faults were physically simulated by creating small dents on the inner 

or outer races with electro-chemical etching method. 

The measurement of vibration was recorded at a range of operating 

conditions and speeds. A Piezoelectric accelerometer was chosen for vibration 
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     Settling Time (20°C)              < 2.5 [sec] 

     Power Requirement              18-30 [VDC], 2-10 [mA] 

     Bias Output Voltage              7-14 [VDC] 

     Temperature Range              -50 to 121 [°C] 

     Sensing Element              PZT Ceramic 

     Sensing Structure              Shear Mode 

     Resonant Frequency              34000 Hz 

 

Motor vibration can be affected by operating conditions influenced by their 

rotational speed, load and temperature. These factors were considered when 

designing the experiments. During the tests conducted in this research, the motor 

was running at two pre-defined speeds with no load. A continuous driving cycle 

was used for validating and evaluating the effectiveness of the fault diagnosis 

scheme. The test motor was air-cooled. In order to alleviate the influence of 

temperature variation, a “warm-up” of 10 minutes was performed prior to the 

beginning of each test, with the motor running at a constant speed of 3000 RPM. 

Nonetheless, the temperature was later found to have little influence on the 

vibration data. 

The data acquisition (DAQ) device used in this study was the National 

Instruments PCI-6229 (16-Bit, 833 kS/s, 32 Analog Inputs), with detailed 

specifications summarized in Table 24. The analog voltage output from the 

sensor was discretized by a 16-bit analog-to-digital (ADC) function. The 16-bit 
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ADC card of this system can support maximum sampling frequency of 833 kHz 

per channel with a resolution of 0.3 mV.  

Table	24			Specifications	of	data	acquisition	card	

Performance Specification              Values 

     Number of Analog Inputs (AI)              32 

     Analog Input Resolution              16 [bits] 

     Number of Analog Outputs (AO)              4 

     AO Resolution              16 [bits] 

     Max AO Rate              833 [kS/s] 

     AO Range              +/-10 [V] 

     Digital I/O              48 

     Correlated (clocked) DIO              32 [Hz] to 1 [MHz] 

     Maximum Sample Rate (AI)              250 [kS/s] 

     Update Rate (AO)              833 [kS/s] 

     Maximum Voltage Range Accuracy (AI)              3100 [µV] 

 

Sampling rate is an important consideration in data acquisition systems. 

The sampling rate should be set high enough to capture the maximum frequency 

component of interest contained in the signal. Nyquist frequency is half the 

sampling frequency of a discrete signal processing system and is the highest 

frequency that can be extracted from a discretized signal. In this research, the 

frequency range of interest was 0 - 4 kHz, and the sampling rate chosen was 10 
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kHz. The data acquisition time was set to 10 seconds to ensure enough samples 

were captured for analysis. This acquisition length yielded 100,000 samples per 

test. 

 

Figure	95			Simplified	stator	circuit	model	with	faulty	resistance	in	one	phase	

Winding resistance fault was simulated by adding an external resistor of 

0.5 Ohm in series to one of the windings in series. Figure 95 shows the simplified 

circuit diagram of the stator winding with an added resistor in one of the three 

phases. In order to reduce aliasing noise, measurements were pre-filtered by a 

built-in anti-aliasing filter with a cut-off frequency of 500 Hz. Current and voltage 

measurements were acquired by using a Yokogawa WT1800 power analyzer. 

This power analyzer was capable of simultaneously measuring the currents and 

voltages of all of the three phases of the motor with a bandwidth of 5 MHz and an 

accuracy of ±0.1%.  
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2.	 The	Kalman	Filter	without	Artificial	Measurements	

As a comparison to the performance of Kalman Filter implemented with 

artificial measurements in Chapter 6, no artificial measurements were used by 

the Kalman Filter in this section. Accordingly, the measurement matrix ܥ for KF 

becomes, 

ܥ ൌ ൥
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

൩ 

Other than	ܥ, all filter parameters, such as ܳ and ܴ, were kept the same as those 

used in Section 6.2 (Winding Resistance Fault). The estimation results are 

provided as follows. 

 
Figure	96			Estimation	of	phase	resistance	using	Extended	Kalman	Filter	ሺEKFሻ	

Apparently, the estimates of phase resistance shown in Figure 96 have 

much more fluctuation than those shown in Figure 82. In terms of the root mean 
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squared error, the RMSE of all three phases provided in Table 25 for this case 

are also much larger than those in Table 18.  

Table	25			Root	Mean	Square	Error	of	estimated	parameters	ሺWinding	Resistance	Faultሻ	

Filter  Ra Rb Rc 

EKF  8.984 ൈ 10ିଶ 7.296 ൈ 10ିଶ 8.964 ൈ 10ିଶ 

 

 

Another example is provided below as a comparison to the case of 

modeling uncertainties discussed in Section 6.3.  

 
Figure	97			Estimation	of	phase	resistance	using	Extended	Kalman	Filter	ሺEKFሻ	

As shown in Figure 97, after the injection of the modeling error at halfway, 

the estimates of the Kalman Filter diverge from the true state trajectories. This is 

similar to the results shown in Figure 84, which is due to the sensitivity of KF to 

modeling uncertainties. The estimation error shown in Figure 97 is, however, 
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much larger than that of Figure 84. Moreover, the RMSE given in Table 26 are 

also more than 10 times larger than those of Table 19. 

Table	26			Root	Mean	Square	Error	of	estimated	parameters	ሺModeling	Uncertaintiesሻ	

Filter  Ra Rb Rc 

EKF  15.42 15.70 15.50 

 

As these two examples indicate, compared with the standard Kalman Filter 

without Luenberger’s approach, the Kalman Filter implemented with artificial 

measurements in Chapter 6 have smaller estimation errors.  
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3.	 Matlab	Code	

Matlab	Code	1:	DTCWT_Bearing_Diagnosis.m	

Comments: This is the main program for the bearing diagnosis application. 

% ************************************************* 
% Bearing Faulty Diagnosis based on DTCWT Denoising 
% ************************************************* 
clear;clc;close all; 
 
 
% *********** Import Signal *********** 
% Import Signal 
load 'C:\Users\Peter\Dropbox\JHE105\Bearing Test 
Data\2012March17OuterRace.mat';  
% Define faulty bearing signal 
data1 = acc1_RPM2000_faulty;  
% Define healthy bearing signal 
data2 = acc1_RPM2000_faulty;  
  
 

% *********** Measurement Parameters *********** 
% Sampling Frequency 
Fs = 10000; 
% Motor Speed 
RPM = 1900; 
% Time Vector 
T = 0:1/Fs:(size(data1,1)‐1)/Fs; 
  
 

% *********** Envelop Analysis *********** 
% Digital IIR Filtering 
% Remove signal mean 
data1 = data1 ‐ mean(data1); 
data2 = data2 ‐ mean(data2); 
data1_bandpassed = data1; 
data2_bandpassed = data2; 
% First Stopband Frequency 
Fstop1 = 500;         
% First Passband Frequency 
Fpass1 = 1000;         
% Second Passband Frequency 
Fpass2 = 3000;         
% Second Stopband Frequency 
Fstop2 = 3500;         
% First Stopband Attenuation (dB) 
Astop1 = 30;           
% Passband Ripple (dB) 
Apass  = 1;            
% Second Stopband Attenuation (dB) 
Astop2 = 40;           
% Band to match exactly 
match  = 'stopband';   

 

 

 

(1). Bandpass 
filtering (Digital IIR 
filter) 

(2). Rectification 
(Section 3.2 B) 
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% Filter parameters 
h  = fdesign.bandpass(Fstop1, Fpass1, Fpass2, Fstop2, 
Astop1, Apass, Astop2, Fs); 
% Designed digital filter 
Hd = design(h, 'butter', 'MatchExactly', match); 
% Filtered signals 
data1_bandpassed = 
filtfilt(Hd.sosMatrix,Hd.ScaleValues,data1);  
data2_bandpassed = 
filtfilt(Hd.sosMatrix,Hd.ScaleValues,data2);  
% Rectification  
dataF = abs(data1_bandpassed); 
dataH = abs(data2_bandpassed); 
  
 

% *********** DTCWT‐based Signal Denoising *********** 
% Length of signal after extension 
ExtedData = 15535; 
% Extended signal 
dataF_ext = wextend('1','per',dataF,ExtedData); 
dataH_ext = wextend('1','per',dataH,ExtedData); 
% Filtered signal 
dataF_d = denoising_dtdwt(dataF_ext,5,4*50); 
dataH_d = denoising_dtdwt(dataH_ext,5,4*50); 
% Extract signal from extension 
dataF_d = dataF_d(15536:15535+length(data1)); 
dataH_d = dataH_d(15536:15535+length(data2)); 
  
 

% *********** Frequency Spectrum *********** 
% Window size 
WINDOW = 51200/2; 
% Number of overlapping samples 
NOVERLAP = 0; 
% Normalized frequencies 
F = 1024*30; 
% Power Spectral Density of original signal 
[Power_F,Freq_F] = 
pwelch(dataF_ext,WINDOW,NOVERLAP,F,Fs); 
[Power_H,Freq_H] = 
pwelch(dataH_ext,WINDOW,NOVERLAP,F,Fs);   
% Power Spectral Density of DTCWT‐filtered signal 
[Power_F_d,Freq_F_d] = 
pwelch(dataF_d,WINDOW,NOVERLAP,F,Fs); 
[Power_H_d,Freq_H_d] = 
pwelch(dataH_d,WINDOW,NOVERLAP,F,Fs); 
% Power Spectral Density of digital filtered signal  
[Power_F_filtfilt,Freq_F_filtfilt] = 
pwelch(dataF_filtfilt,WINDOW,NOVERLAP,F,Fs);   
  
 

% *********** Output Display *********** 
% Ball Passing Frequency of Outer race and Inner Race 
BPFO_OuterRace = [0.0594*[1:5]*RPM; 
round(Fs./(0.0594*[1:5]*RPM))] 
BPFO_InnerRace = [0.0906*[1:5]*RPM; 
round(Fs./(0.0906*[1:5]*RPM))] 
% Kurtosis 

 

See Matlab Code 2 
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Kurtosis = [kurtosis(data1(1000:end‐1000)); 
kurtosis(data2(1000:end‐
1000));kurtosis(dataF_d(1000:end‐1000)); 
kurtosis(dataF_filtfilt(1000:end‐1000)); 
kurtosis(dataH_d(1000:end‐1000))]; 
% Display Kurtosis 
Kurtosis = [['Raw faulty        ';'Raw healthy       
';'Denoised faulty   ';'IIR faulty        ';'Denoised 
healthy  '],num2str(Kurtosis)] 
  
 

% *********** Wavelet Scalogram  *********** 
% Assign signal 
data_scalog = dataF_d(00001:100001);  
T_scalog = T(00001:100001); 
% Frequency Axis Limit 
FreqLimit = 
[BPFO_OuterRace(1,1)*0.53,BPFO_InnerRace(1,1)*1.05]; 
% Define wavelet function, analytic morlet wavelet, 
length = 80 
WAV = {'morl',80};  
% Scale‐to‐Frequency factor 
MorletFourierFactor = 4*pi/(WAV{2}+sqrt( 2+WAV{2}^2)); 
% Frequency resolution 
Resolution = 4; 
% Wavelet Scales 
Scales = 
round((1./FreqLimit(2))/MorletFourierFactor*Fs):Resoluti
on:round((1./FreqLimit(1))/MorletFourierFactor*Fs)/Fs; 
% Frequency ticks for the plot 
Freq = 1./(Scales*MorletFourierFactor);  
% Freq = Freq/BPFO(1,1); 
% BPFs' scale  
BPFO_scale = 
round((round((1./BPFO_OuterRace(1,1:3))/MorletFourierFac
tor*Fs)/Fs‐Scales(1))/(Scales(2)‐Scales(1))); 
BPFI_scale = 
round((round((1./BPFO_InnerRace(1,1:3))/MorletFourierFac
tor*Fs)/Fs‐Scales(1))/(Scales(2)‐Scales(1))); 
% Perform CWT 
cwtsig = 
cwtft({data_scalog,1/Fs},'scales',Scales,'wavelet',WAV); 
 
  
% *********** Plots *********** 
% Frequency Spectrum 
% Freq_F = Freq_F/BPFO(1,1); 
figure; 
set(gcf,'units','normalized','outerposition',[0 0 0.5 
0.5]); 
plot(Freq_F,log(Power_F),'‐','Color',[1 0.6 
0.78],'linewidth',1); 
hold all; 
plot(Freq_F,log(Power_F_d),'r','linewidth',1); 
hold all; 
plot(Freq_F,log(Power_F_filtfilt),'g','linewidth',1); 
legend('Faulty ‐ raw','Faulty ‐ dtdwt‐denoised', 'Faulty 
‐ zero‐phase IIR')    

 

(1). Define wavelet 
parameters 

(2). Perform CWT 
to obtain wavelet 
coefficients in time-
frequency domain 
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xlabel('Normalized by Order of (BPFO) Harmonics') 
ylabel('Power/frequency (dB/Hz)') 
grid on; 
title('pwelch spectrum') 
  
% Signal in waveform 
figure; 
set(gcf,'units','normalized','outerposition',[0 0 0.5 
1]); 
f1(1) = subplot(211); 
plot(T,(dataF),'m','linewidth',1); 
hold all; 
plot(T,(dataH),'b','linewidth',1); 
hold all; 
plot(T,(dataH_d),'c:','linewidth',2);  
legend('faulty ‐ raw','healthy ‐ raw','healthy ‐ 
denoised') 
xlabel('Time (sec)') 
ylabel('Accelerometer Output (V)') 
title('measurement') 
f1(2) = subplot(212); 
plot(T,(dataF),'k','linewidth',1); 
hold all; 
plot(T,(dataF_d),'r‐‐','linewidth',2); 
hold all; 
plot(T,(dataF_filtfilt),'g‐‐','linewidth',2); 
legend('faulty ‐ raw','faulty ‐ denoised','faulty ‐ 
zero‐phase IIR') 
xlabel('Time (sec)') 
ylabel('Accelerometer Output (V)') 
title('measurement')     
linkaxes([f1(1) f1(2)],'xy'); 
  
% Wavelet Scalogram  
figure; 
set(gcf,'units','normalized','outerposition',[0 0 0.5 
0.5]); 
SC = wscalogram2('image',normc(abs(cwtsig.cfs)), 
'scales',Freq,'ydata',data_scalog,'xdata',T_scalog); 
colormap('jet'); % 'hot' 
set(gca,'YDir','reverse'); 
C = caxis; 
caxis([0.0e‐5, 1.7e‐5]); 
shading flat;  
zoom on;  
xlabel('Time (sec)'); 
ylabel(['Frequency (Hz)']); 
for i = 1:1 
    line([0 1e5],[BPFO_scale_OuterRace(i) 
BPFO_scale_OuterRace(i)],[0 0],'Color',[0 0 
0],'Marker','.','LineStyle',':') 
    line([0 1e5],[BPFO_scale_InnerRace(i) 
BPFO_scale_InnerRace(i)],[0 0],'Color',[0 0 
0],'Marker','.','LineStyle',':') 
end 
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Matlab	Code	2:	denoising_dtdwt.m	

Comments: This function was obtained from a wavelet transform library [94]. Some modifications were 

applied. 

% ********************************************* 
% Dual‐Tree Complex Wavelet Transform Denoising 
% ********************************************* 
function y = denoising_dtdwt(x,J,WindowSize) 
  
% *********** Input Signal *********** 
% Set WindowSize 
windowfilt = ones(1,WindowSize)/WindowSize; 
% Imaginary number 
I=sqrt(‐1); 
% symmetric extension 
L = length(x); % length of the original signal. 
N = L+2^J;     % length after extension. 
x = symextend(x,2^(J‐1)); 
  
% *********** Dual‐Tree Complex Wavelet Transform ********** 
% Filters for first stage 
[Faf, Fsf] = FSfarras; 
% Filters after following stage 
[af, sf] = dualfilt1; 
% DTCWT coefficients 
W = dualtree(x, J, Faf, af); 
% Normalization matrix 
nor = normaliz_coefcalc_dual_tree2(x,J); 
% Normalized DTCWT coefficients 
W = normcoef(W,J,nor); 
  
% *********** Wavelet Shrinkage (Denoising) *********** 
% Estimated noise variance 
temp = W{1}{1}{1}{1}; 
Nsig = median(abs(temp(:)))/0.6745; 
for scale = 1:J‐1 
    % Real part of wavelet coefficients 
    Y_coef_real = W{scale}{1}; 
    % imaginary part of wavelet coefficients 
    Y_coef_imag = W{scale}{2}; 
    % Real part of parent coefficients 
    Y_parent_real = W{scale+1}{1}; 
    % imaginary part of parent coefficients 
    Y_parent_imag = W{scale+1}{2}; 
    % Variance estimation 
    Wsig = conv((Y_coef_real).^2, windowfilt,'same'); 
    Ssig = sqrt(max(Wsig‐Nsig(kk).^2,eps)); 
    % Threshold estimation 
    T = abs(1‐Nsig(kk)^2./Ssig^2); 
    % Magnitude of coefficients 
    Y_coef = Y_coef_real+I*Y_coef_imag; 
    % Magnitude of parent coefficients 
    Y_parent = expand(Y_parent_real) + 
I*expand(Y_parent_imag); 

 

 

 

(1). Define wavelet 
basis 

(2). Perform DTCWT 
on input signal 
(Equation 3.3.1 to 
Equation 3.3.15) 

(3). Normalize obtained 
wavelet coefficients 

(1). Estimate noise 
variance of the wavelet 
coefficients (Equation 
3.4.1) 

(2). Perform 
convolution to estimate 
the noise variance of 
the signal (Equation 
3.4.2 to Equation 3.4.3) 

(3). Calculate the 
thresholds (Equation 
3.4.4) 

(4). Perform Bivariate 
Shrinkage on the 
wavelet coefficients 
(See Matlab Code 3) 
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    % Bivariate shrinkage rule 
    Y_coef_shrked = bishrink(Y_coef,Y_parent,T); 
    % Denoised coefficients 
    W{scale}{1} = real(Y_coef_shrked); 
    W{scale}{2} = imag(Y_coef_shrked);    
end 
  
% *********** Inverse DTCWT Transform *********** 
% Normalization 
W = unnormcoef(W,J,nor); 
% Reconstructed signal via inverse DTCWT 
y = idualtree(W, J, Fsf, sf); 
% Extract denoised signal 
y_index = 2^(J‐1)+1:2^(J‐1)+L; 
y = y(y_index); 

 

 

 

 

 

 

 	

(1). Un-normalize the 
denoised wavelet 
coefficients 

(2). Perform inverse 
DTCWT on the 
coefficients to obtain 
denoised signal 
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Matlab	Code	3:	bishrink.m	

Comments: This function was obtained from a wavelet transform library [94].  

% **************************** 
% Bivariate Shrinkage Function 
% **************************** 
 
function [w1] = bishrink(y1,y2,T) 
% Usage : 
%      [w1] = bishrink(y1,y2,T) 
% INPUT : 
%      y1 ‐ a noisy coefficient value 
%      y2 ‐ the corresponding parent value 
%      T  ‐ threshold value 
% OUTPUT : 
%      w1 ‐ the denoised coefficient 
  
R  = sqrt(abs(y1).^2 + abs(y2).^2); 
R = R ‐ T; 
R  = R .* (R > 0); 
w1 = y1 .* R./(R+T);  
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Matlab	Code	4:	EKSVSF_Estimation.m	

Comments: This is the main program for the bearing diagnosis application. 

% ***************************************
% BLDC Motor Estimation (EKF and EK‐SVSF) 
% *************************************** 
clear;clc;close all; 
  
% *********** Import Measurements *********** 
% Motor Speed [RPM] 
Speed = 1000; 
% Sampling Frequency 
Fs = 1600*1000/50; 
% Sampling Period 
Ts = 1/Fs; 
% Import Measurements 
DATA = YokoDataImport('..\Faulty1_0.5OhmPhaseW_1000RPM_50ms\'); 
% Voltage Measurements 
Ua = DATA(:,1)' ;Ub = DATA(:,3)' ;Uc = DATA(:,5)' ; 
% Current Measurements 
ia = DATA(:,2)';ib = DATA(:,4)';ic = DATA(:,6)'; 
% Rota Angle 
Theta = [DATA(:,7)';DATA(:,8)';DATA(:,9)']; 
% Artificial Measurements (Voltage) 
UaMN = DATA(:,10)';UbMN = DATA(:,12)'; UcMN = DATA(:,14)'; 
% Artificial Measurements (Current) 
iaMN = DATA(:,11)'; ibMN = DATA(:,13)'; icMN = DATA(:,15)'; 
% Speed Vector [rad/s] 
W = Speed/60*2*pi*ones(1,size(DATA,1)); 
% Time Vector 
T = (0:1:size(DATA,1)‐1)/Fs; 
  
  
% *********** Motor Parameters *********** 
% Voltage constant [V/rad]  
V = 80.63/1000*(60/2/pi); 
% Winding Resistance 
Rs = 0.5; 
% Winding Inductance 
L = 0.0048; 
  
  
% *********** Estimation Parameters *********** 
% Fault Factor 
FAULT = 0.9; 
% EK‐SVSF Switch 
SVSFon = 1; 
% Measurement Covariance 
R = [[1 1 1]*1e‐3, [1 1 1]*2e‐1]' 
% Process Covariance 
Q = [[1 1 1]*1e‐5, [1 1 1]*5e‐8]' 
% Boundary Layer Width 
Psi = [[1,1,1]*2, [1,1,1]*2]'; 
% Convergence Rate 
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Gamma = [0.2; 0.2; 0.2; 0.2; 0.2; 0.2];
  
  
% *********** Artificial Measurements *********** 
diff_ia = [0,ia(2:end)‐ia(1:end‐1)]*Fs * L; 
diff_ib = [0,ib(2:end)‐ib(1:end‐1)]*Fs * L; 
diff_ic = [0,ic(2:end)‐ic(1:end‐1)]*Fs * L; 
% Artificial Measurements of Resistance  
ra=(UaMN ‐ diff_ia ‐ V2*Speed)./iaMN; 
rb=(UbMN ‐ diff_ib ‐ V2*Speed)./ibMN; 
rc=(UcMN ‐ diff_ic ‐ V2*Speed)./icMN; 
% Digital Filter  
% Passband Frequency 
FreqPass = 1.0e‐5; 
% Stopband Frequency 
FreqStop = 3.0e‐5; 
% Passband Ripple 
APass = 8; 
% Stopband Attenuation 
AStop = 23; 
% Designed digital filter 
Hd = design(fdesign.lowpass('Fp,Fst,Ap,Ast' , FreqPass, 
FreqStop, APass, AStop), 'cheby2'); 
% Signal extension 
ra_temp = [ra(end:‐1:1),ra,ra(end:‐1:1)]; 
rb_temp = [rb(end:‐1:1),rb,rb(end:‐1:1)]; 
rc_temp = [rc(end:‐1:1),rc,rc(end:‐1:1)]; 
% Filtered artificial measurements 
ra_f = filtfilt(Hd.sosMatrix,Hd.ScaleValues,ra_temp‐
mean(ra_temp)) + mean(ra_temp); 
rb_f = filtfilt(Hd.sosMatrix,Hd.ScaleValues,rb_temp‐
mean(rb_temp)) + mean(rb_temp); 
rc_f = filtfilt(Hd.sosMatrix,Hd.ScaleValues,rc_temp‐
mean(rc_temp)) + mean(rc_temp); 
% Extracted signal 
ra_f = ra_f(1+length(ra):2*length(ra)); 
rb_f = rb_f(1+length(rb):2*length(rb)); 
rc_f = rc_f(1+length(rc):2*length(rc)); 
  
  
% *********** Estimation Initialization *********** 
R = diag(R); 
Q = diag(Q); 
X_priori = zeros(6,length(T)); 
X_post = zeros(6,length(T)); 
err_priori = zeros(6,length(T)); 
err_post = zeros(6,length(T)); 
SwitchOn = zeros(1,length(T)); 
P_priori = cell(1,length(T)); 
P_post = cell(1,length(T)); 
P_post2 = cell(1,length(T)); 
P_post{1} = Q.*diag([10,10,10,3e3,3e3,3e3]); 
K_svsf = cell(1,length(T)); 
K_kalman = cell(1,length(T)); 
K_KSVSF = cell(1,length(T)); 
psi = cell(1,length(T)); 
K_svsf2 = zeros(6,1); 
Ia = zeros(1,length(T)); 
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Ib = zeros(1,length(T)); 
Ic = zeros(1,length(T)); 
Ra = 0.0*Rs*ones(1,length(T)); 
Rb = 0.0*Rs*ones(1,length(T)); 
Rc = 0.0*Rs*ones(1,length(T)); 
dA = zeros(6,6); 
SwitchOn = 0; 
Z = [ia;ib;ic;ra_f;rb_f;rc_f]; 
  
  
% *********** Estimation Loop *********** 
for k = 1:length(T)‐1 
  
    % Model fault injected 
    if k == fix(length(DATA)/3) & FAULT,  
        V = FAULT*V; 
    end 
    % Model fault removed 
    if k == fix(length(DATA)/3*2) & FAULT,  
        V = 1/FAULT*V; 
    end 
     
    % A prior estimates 
    X_priori(1,k+1) = Ia(k) + (Ts/L)*( Ua(k) ‐ Ra(k)*Ia(k) ‐ 
V*W(k)*sin(Theta(1,k)) ); 
    X_priori(2,k+1) = Ib(k) + (Ts/L)*( Ub(k) ‐ Rb(k)*Ib(k) ‐ 
V*W(k)*sin(Theta(2,k)) ); 
    X_priori(3,k+1) = Ic(k) + (Ts/L)*( Uc(k) ‐ Rc(k)*Ic(k) ‐ 
V*W(k)*sin(Theta(3,k)) ); 
    X_priori(4,k+1) = Ra(k); 
    X_priori(5,k+1) = Rb(k); 
    X_priori(6,k+1) = Rc(k); 
  
    % Linearized system matrix 
    dA(1,:) = [1‐(Ts/3/L)*3*Ra(k), 0, 0, (Ts/3/L)*(‐3*Ia(k)), 0, 
0]; 
    dA(2,:) = [0, 1‐(Ts/3/L)*3*Rb(k), 0, 0, (Ts/3/L)*(‐3*Ib(k)), 
0]; 
    dA(3,:) = [0, 0, 1‐(Ts/3/L)*3*Rc(k), 0, 0, (Ts/3/L)*(‐
3*Ic(k))]; 
    dA(4,:) = [0, 0, 0, 1, 0, 0]; 
    dA(5,:) = [0, 0, 0, 0, 1, 0]; 
    dA(6,:) = [0, 0, 0, 0, 0, 1]; 
  
    % Measurement matrix 
    H = [1, 0, 0, 0, 0, 0; 
         0, 1, 0, 0, 0, 0; 
         0, 0, 1, 0, 0, 0; 
         0, 0, 0, 1, 0, 0; 
         0, 0, 0, 0, 1, 0; 
         0, 0, 0, 0, 0, 1]; 
          
    % Linearized measurement matrix 
    dH = H; 
  
    % Update estimation error covariance 
    P_priori{k+1} = dA * P_post{k} * dA' +  Q; 
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    % A prior estimate error
    err_priori(:,k+1) = Z(:,k+1) ‐ X_priori(:,k+1); 
  
    % EKF Gain 
    K_kalman{k+1} = P_priori{k+1} * (dH') * inv(dH * 
P_priori{k+1} * dH' + R); 
    err_post_Kalman(:,k+1) = ( eye(6) ‐ K_kalman{k+1} ) * 
err_priori(:,k+1); 
  
    % A posteriori innovation convariance 
    S = dH*P_priori{k+1}*dH' + R; 
    % Combined error vector 
    A = abs(err_priori(:,k+1)) + Gamma.*abs(err_post(:,k)); 
    % Varying Boundary Layer 
    psi{k+1} = inv(inv(diag(A))*dH*P_priori{k+1}*dH'/S); 
    % Saturation function 
    for kk=1:6 
        temp = sign(abs(err_priori(kk,k+1))‐Psi(kk))+1; 
        if temp 
            Sat(kk,k+1) = sign(err_priori(kk,k+1)); 
        else 
            Sat(kk,k+1) = (err_priori(kk,k+1) ./ Psi(kk)); 
        end 
    end 
     
    % SVSF gain 
    K_svsf{k+1} = dH * diag((abs(err_priori(:,k+1)) + Gamma .* 
abs(err_post(:,k))) .* Sat(:,k+1)) * 
inv(diag(err_priori(:,k+1))); 
     
    % EKF/EK‐SVSF switch 
    for ii=1:3,  
        psi_Indicator(ii) = sign(abs(psi{k+1}(ii,ii)) ‐ 
Psi(ii))+1;  
    end 
    SwitchOn(k+1) = 
(psi_Indicator(1)||psi_Indicator(2)||psi_Indicator(3)) & SVSFon; 
    if SwitchOn(k+1) 
        K_KSVSF{k+1} = K_svsf{k+1}; 
    else 
        K_KSVSF{k+1} = K_kalman{k+1}; 
    end 
  
    % A Posteriori estimation 
    X_post(:,k+1) = X_priori(:,k+1) + K_KSVSF{k+1} * 
err_priori(:,k+1); 
    
    % A posteriori error convariance 
    P_post{k+1} = ( eye(6) ‐ K_KSVSF{k+1}*dH ) * P_priori{k+1} * 
( eye(6) ‐ K_KSVSF{k+1}*dH )' + K_KSVSF{k+1} * R * 
(K_KSVSF{k+1})'; 
    P_post2(:,k) = diag(P_post{k}); 
     
    % A posteriori estimate error% 
    err_post(:,k+1) = Z(:,k+1) ‐ X_post(:,k+1); 
     
    Ia(k+1) = X_post(1,k+1); 
    Ib(k+1) = X_post(2,k+1); 
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    Ic(k+1) = X_post(3,k+1); 
    Ra(k+1) = X_post(4,k+1); 
    Rb(k+1) = X_post(5,k+1); 
    Rc(k+1) = X_post(6,k+1); 
end 
  
  
% *********** plot *********** 
% Covariance 
figure; 
set(gcf,'units','normalized','outerposition',[0.00 0.00 0.5 1]); 
    f2(1) = subplot(211); 
        plot(T,P_post2([1:3],:),'linewidth',2); 
        legend('Cov‐Ia','Cov‐Ib','Cov‐Ic'); 
        ylabel('Covariance'); 
        xlabel('Time (sec)'); 
        temp=axis;temp(2)=floor(T(end));axis(temp); 
    f2(2) = subplot(212); 
        plot(T,P_post2([4:6],:),'linewidth',2); 
        legend('Cov‐Ra','Cov‐Rb','Cov‐Rc'); 
        ylabel('Covariance'); 
        xlabel('Time (sec)'); 
        temp=axis;temp(2)=floor(T(end));axis(temp); 
        linkaxes(f2,'x');     
  
% Ua Ub Uc, Ia Ib Ic 
figure; 
set(gcf,'units','normalized','outerposition',[0 0 0.5 1]); 
    f2(1) = subplot(211); 
        plot(T,[Ua;Ub;Uc]); 
        legend('Ua','Ub','Uc'); 
        ylabel('Phase Voltage (V)'); 
        xlabel('Time (sec)'); 
    f2(2) = subplot(212); 
        plot(T,X_post(1,:));hold all; 
        plot(T,X_post(2,:));hold all; 
        plot(T,X_post(3,:)); 
        legend('Ia','Ib','Ic'); 
        ylabel('Line Current (V)'); 
        xlabel('Time (sec)'); 
        linkaxes(f2,'x') 
        temp=axis;temp(2)=floor(T(end));axis(temp); 
  
% Psi_Ia, Psi_Ib, Psi_Ic 
figure; 
set(gcf,'units','normalized','outerposition',[0.00 0.00 0.5 1]);  
f(1) = subplot(211); 
for i = 2:length(psi), psi_plot(:,i) = diag(psi{i}); end 
plot(T,psi_plot([1:3],:));hold all; 
plot(T,Psi(1)*ones(1,length(T)),'k‐‐','linewidth',2); 
legend('Psi‐Ia','Psi‐Ib','Psi‐Ic') 
xlabel('Time (sec)'); 
ylabel('Value'); 
temp=axis;temp(2)=floor(T(end));temp(4) = 3.5;axis(temp); 
f(2) = subplot(212); 
plot(T,psi_plot([4:6],:));hold all; 
plot(T,Psi(4)*ones(1,length(T)),'k‐‐','linewidth',2); 
legend('psi ra','psi rb','psi rc') 
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xlabel('Time (sec)'); 
ylabel('Value'); 
linkaxes(f,'x'); 
temp=axis;temp(2)=floor(T(end));temp(4) = temp(4);axis(temp); 
set(gcf,'units','normalized','outerposition',[0.00 0 0.5 1]); 
  
% Ra, Rb, Rc 
figure; 
set(gcf,'units','normalized','outerposition',[0.00 0.00 0.5 
0.5]); 
plot(T,X_post(4,:),'linewidth',2);hold all; 
plot(T,X_post(5,:),'linewidth',2);hold all; 
plot(T,X_post(6,:),'linewidth',2);hold all; 
legend('Ra','Rb','Rc'); 
xlabel('Time (sec)'); 
ylabel('Resistance (Ohm)'); 
grid on; 
temp=axis;temp(2)=floor(T(end));temp(4) = 1;axis(temp); 
  
% Root Mean Square Error 
RMSE_A = sqrt(mean((X_post(4,1:end)‐Nominal1(1,1:end)).^2)); 
RMSE_B = sqrt(mean((X_post(5,1:end)‐Nominal1(1,1:end)).^2)); 
RMSE_C = sqrt(mean((X_post(6,1:end)‐Nominal1(1,1:end)).^2)); 
display(['RMSE ‐ Ra: ',num2str([RMSE_A])]); 
display(['RMSE ‐ Rb: ',num2str([RMSE_B])]); 
display(['RMSE ‐ Rc: ',num2str([RMSE_C])]); 
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