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ABSTRACT 

Background and objectives 

We investigate three issues related to the adjustment for baseline covariates in late phase 

clinical trials: (1) the analysis of correlated outcomes in multicentre RCTs, (2) the 

assessment of the probability and implication of prognostic imbalance in RCTs, and (3) 

the adjustment for baseline confounding in cohort studies.  

Methods 

Project 1: We investigated the properties of six statistical methods for analyzing 

continuous outcomes in multicentre randomized controlled trials (RCTs) where within-

centre clustering was possible. We simulated studies over various intraclass correlation 

(ICC) values with several centre combinations. 

Project 2: We simulated data from RCTs evaluating a binary outcome by varying risk of 

the outcome, effect of the treatment, power and prevalence of a binary prognostic factor 

(PF), and sample size. We compared logistic regression models with and without 

adjustment for the PF, in terms of bias, standard error, coverage of confidence interval, 

and statistical power. A tool to assess sample size requirement to control for chance 

imbalance was proposed. 

Project 3: We conducted a prospective cohort study to evaluate the effect of tuberculosis 

(TB) at the initiation of antiretroviral therapy (ART) on all cause mortality using Cox 



 

iv 

 

proportional hazard model on propensity score (PS) matched patients to control for 

potential confounding. We assessed the robustness of results using sensitivity analyses. 

Results and conclusions 

Project 1: All six methods produce unbiased estimates of treatment effect in multicentre 

trials. Adjusting for centre as a random intercept leads to the most efficient treatment 

effect estimation, and hence should be used in the presence of clustering. 

Project 2: The probability of prognostic imbalance in small trials can be substantial. 

Covariate adjustment improves estimation accuracy and statistical power, and hence 

should be performed when strong PFs are observed. 

Project 3: After controlling for the important confounding variables, HIV patients who 

had TB at the initiation of ART have a moderate increase in the risk of overall mortality. 
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PREFACE 

This dissertation is a “sandwich thesis”, which is composed of three individual projects 

prepared for publication in peer-reviewed journals. The following are the contributions of 

R. Chu in all of the papers included in the dissertation: developing the research ideas and 

research questions; designing the studies; developing the analysis and simulation plans; 

conducting all statistical analyses and simulations; produced all figures and tables; 

interpreting the results; writing all of the manuscripts; submitting the manuscripts; and 

responding to reviewers’ comments. My co-authors contributed to the acquisition of the 

example datasets, provision of clinical expertise, and critical revision of the manuscripts. 

The work of this thesis was conducted between September 2008 and July 2012. 

The first and second papers have been published and the remaining one will be submitted 

to a peer-reviewed journal in the near future. 
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CHAPTER 1 

INTRODUCTION 

Clinical trials are widely used to compare the effects of medical interventions in humans 

(1-5). Although it can be difficult to propose a universal framework to categorize clinical 

trials evaluating various types of interventions in different disease areas, in the 

development of therapeutic drugs, clinical trials are conventionally grouped into four 

phases (1,2,6). Phase I studies look for the best dose of a drug from a pharmacological 

perspective. Phase II studies aim to generate preliminary data on the safety and efficacy 

of fixed doses of a drug and assess study feasibility. Phase III studies are randomized 

controlled trials (RCTs) that provide confirmative evidence on the efficacy and severe 

side effects of an experimental intervention relative to control therapy. Such trials, if 

conducted rigorously, can produce comparability of the known and unknown baseline 

characteristics between intervention groups, and provide valid estimates of intervention 

effects (1,2,7). Phase IV studies are usually long-term surveillance studies (interventional 

or observational in nature) to help understand the effectiveness and safety of the new 

intervention in real-world situations.  

 

Statistics, as an essential tool to make inference in the designing and analysis of clinical 

studies, has advanced considerably over the past decades (7-10).  Many methodological 

challenges in statistical modeling of late phase trials have been identified and studied in 

the literature (2,11,12). However, different philosophies of statistical reasoning 

sometimes lead to the use of alternative approaches to address a clinical question. The 
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diversified perspectives are likely to promote the development and prosperity of the field 

of statistics. On the other hand, a lack of standardization of statistical procedures can 

yield different estimates of an intervention effect for a given research question. 

Disagreement exists on many practical issues in planning and analyzing clinical trials 

(2,13). Comprehensive investigation on the methodological and practical challenges 

demands efforts of generations of statisticians.  

 

The objective of this thesis is to address some of the challenges around baseline covariate 

adjustment in phases III and IV clinical trials, through the lens of Monte Carlo 

simulations and sensitivity analyses, and to provide directions for future research. Three 

specific statistical issues are investigated: (1) the analysis of correlated outcomes in 

multicentre RCTs, (2) the assessment of the probability and implication of chance 

imbalance of a baseline prognostic factor in simple RCTs, and (3) the adjustment for 

baseline confounding in large prospective cohort studies.  

 

Issue 1: Intracentre correlation in multicentre RCTs  

Multicentre RCTs can improve patient accrual rate and increase the applicability of a 

study (14). In such experiments, investigators often use a stratified randomization design 

to achieve balance over centre level differences in the study population or the 

management team, and to improve the precision and efficiency of the statistical analysis 

(10). Clustering within a centre emerges when the outcomes observed from patients 

managed by the same centre (practice or physician) are more similar than the outcomes 
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from different centres. The extent of clustering is often quantified by intraclass (or 

intracentre) correlation (ICC), a number ranging between 0 and 1 (15). A large ICC value 

indicates that individual observations within a centre contain less unique information.  

 

In practice, different strategies of handling centre effects are carried out to analyze data 

from multicentre RCTs (16-20,20-22). While some completely ignore any possible centre 

variation, others account for centre difference as fixed or random effects using a 

regression or meta-analytic framework. To date, only a few studies have been conducted 

to compare the performance of statistical methods that are commonly used to analyze 

continuous outcomes from multicentre RCTs, using the Monte Carlo simulation 

technique (16,17,23). No consensus has been reached on what are the best methods to 

analyze such data. The association of model performance (in terms of accuracy, precision 

and efficiency) and trial characteristics, including the number of participating centres, the 

number of patients per centre, the variation of centre size, and the value of ICC, has not 

been thoroughly studied in the literature.  

 

Issue 2: Prognostic imbalance in RCTs 

Randomization is the most important feature of RCTs, because it minimizes selection bias, 

and on average balances the known and unknown baseline prognostic factors (PFs) 

between treatment groups (1). Despite randomization, imbalance in PFs as a result of 

chance may still arise in an individual trial, and with small to moderate sample sizes such 

imbalance may be substantial (24,25). A biased estimate of the treatment effect may 
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result from ignoring a large chance imbalance in key PFs between treatment groups 

(26,27). When the PFs are well known and measured at baseline, the consequences of 

prognostic imbalance can be controlled by stratified statistical analyses, sometimes in 

conjunction with design techniques such as stratified randomization (28,29). The 

balancing of unknown PFs between treatment groups entirely relies on the randomization 

and play of chance, for which the sample size plays a critical role. Sample size 

calculations often assume a balance of prognosis between the treatment groups regardless 

of sample size, yet the distribution of the possible unobserved PFs is impossible to 

examine based on the observed data.  

 

In the process of grading the quality of medical evidence resulted from RCTs, an 

important issue is the lack of understanding of the likelihood of chance imbalance of the 

known and unknown PFs, and its implication on the estimation of treatment effects. The 

sample size required to minimize the probability and impact of chance imbalance in 

RCTs is lacking in clinical trial literature. The knowledge gap encumbers the assessment 

of the quality of evidence and the strength of recommendations in healthcare research.  

 

Issue 3: Baseline confounding in the assessment of the effect of tuberculosis on 

mortality among HIV patients 

The Human Immunodeficiency Virus (HIV) is one of the world's leading infectious 

diseases. The total number of people living with HIV reached 34 million in 2010, among 

whom 60% live in Sub-Saharan Africa (30). Tuberculosis (TB) is a leading cause of 
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mortality among HIV infected individuals and accounts for one half of the AIDS deaths 

worldwide (31). TB at the initiation of antiretroviral therapy (ART) is expected to 

importantly affect the likelihood of survival among HIV-co-infected patients. Yet, the 

magnitude of increased mortality is poorly understood, particularly in populations with 

lower TB prevalence settings, such as Uganda, Africa (32-34). 

 

Observational studies constitute an important tool in HIV/AIDS research. They may be 

the only feasible method to address a clinical or epidemiological question similar to the 

one stated above, for ethical or practical reasons. In the absence of randomization, 

attributing causality is a major challenge. The conventional statistical approaches of 

adjustment may not provide adequate control against a large number of potential 

confounders when the sample size or the number of outcome events is small. The 

balancing distribution of confounding variables between the intervention or risk groups 

after conventional stratification or covariate adjustment is difficult to examine. A 

powerful alternative that has been increasingly used to control for baseline confounding is 

the propensity score (PS) methods (35-37). This approach can estimate the average 

exposure effects on the whole population or subpopulations using the observed datasets. 

In the PS methods, the vector of potential confounding variables reduces to a single score 

that reflects one’s propensity of being exposed to an intervention or a risk factor.  

Conditional on PS, the exposure is independent of confounders being included in the PS 

model, and the actual exposure effects can be estimated (35,36). The PS methods are 

more advantageous when numerous confounders need to be accounted for in studying the 
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association between a rare outcome and a common exposure variable. The relative 

performance of different methods of controlling for PS in the outcome model is likely to 

vary between studies. Missing data is another major problem in HIV/AIDS research. 

Missing data may occur because of data entry errors, missing visits, loss to follow-up, or 

additional reasons which may or may not related to the exposure or the outcome. Ignoring 

incomplete information is likely to lead to invalid or unreliable results when the missing 

is not completely at random (38). 

 

Summary of Chapters 

This is a sandwich thesis of three papers, each matched to one of the issues described 

above. The papers are separated into three chapters beginning with Chapter 2.  

 

Chapter 2 deals with intracentre correlation (ICC) among continuous outcomes in 

multicentre RCTs. We compared six statistical methods for analyzing correlated 

continuous outcomes in multicentre RCTs using Monte Carlo simulations. The methods 

under investigation include simple linear regression, fixed-effects regression, random-

effects regression, generalized estimating equation (GEE), and fixed- and random-effects 

centre-level analysis. We considered a wide spectrum of ICC values, and varying 

numbers of centres and centre size in balanced and unbalanced designs in the simulation 

study, assuming the absence of treatment by centre interaction. Model performance was 

evaluated using bias, precision, mean squared error of the point estimator of the treatment 
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effect, empirical coverage of the 95% confidence interval, and statistical power of the 

procedure. 

 

Chapter 3 discusses the assessment and implication of prognostic imbalance in RCTs 

evaluating a binary outcome. We confined our attention to one binary baseline prognostic 

factor (PF), and varied five trial design parameters in this simulation study, including the 

frequency of the outcome event in the control group; the effect of treatment on the 

outcome; the strength of the association between the PF and the outcome; the prevalence 

of the PF; and the sample size. First, we evaluated the probabilities of various levels of 

imbalance in the binary PF between two treatment groups. Second, we investigated the 

impact of prognostic imbalance on the estimation of treatment effect, by comparing 

statistical performances of the two logistic regression models with and without 

adjustment for the PF. Finally we examined the effect of sample size on the probability 

and impact of prognostic imbalance. Our simulation study was intended to provide 

information on what constitutes an adequate sample size to control against potential 

impact of prognostic imbalance in simple RCTs. 

 

In Chapter 4, we aim to estimate the effect of tuberculosis (TB) at the initiation of 

antiretroviral therapy (ART) on all cause mortality in HIV co-infected patients who 

received ART, using a large prospective HIV cohort in Uganda, Africa. We applied 

propensity score (PS) matching method to account for potential baseline confounding 

when assessing the impact of TB on patient survival using a Cox proportional hazard 
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model. We inspected the comparability of the potential confounders using numerical and 

graphical tools. We used multiple imputation to handle missing covariate information at 

baseline. In addition, we examined the sensitivity of study results by comparing estimates 

from different PS methods (matching on PS, stratifying on PS, adjusting for PS as 

regression covariate) with the conventional multivariable Cox regression model. 

 

Chapter 5 summarizes the key findings of Chapters 2 to 4, and discusses the implications 

and limitations of the thesis. The common goal of all three papers is to advance our 

understanding on the analytical strategies involving baseline covariates in clinical 

research. Results of the individual projects will also shed light on the design of efficient 

and rigorous clinical trials.  
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ABSTRACT  

Background 

Multicentre randomized controlled trials (RCTs) routinely use randomization and analysis 

stratified by centre to control for differences between centres and to improve precision. 

No consensus has been reached on how to best analyze correlated continuous outcomes in 

such settings. Our objective was to investigate the properties of commonly used statistical 

models at various levels of clustering in the context of multicentre RCTs. 

Methods 

Assuming no treatment by centre interaction, we compared six methods (ignoring centre 

effects, including centres as fixed effects, including centres as random effects, generalized 

estimating equation (GEE), and fixed- and random-effects centre-level analysis) to 

analyze continuous outcomes in multicentre RCTs using simulations over a wide 

spectrum of intraclass correlation (ICC) values, and varying numbers of centres and 

centre size. The performance of models was evaluated in terms of bias, precision, mean 

squared error of the point estimator of treatment effect, empirical coverage of the 95% 

confidence interval, and statistical power of the procedure. 

Results 

While all methods yielded unbiased estimates of treatment effect, ignoring centres led to 

inflation of standard error and loss of statistical power when within centre correlation was 

present. Mixed-effects model was most efficient and attained nominal coverage of 95% 

and 90% power in almost all scenarios. Fixed-effects model was less precise when the 

number of centres was large and treatment allocation was subject to chance imbalance 
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within centre. GEE approach underestimated standard error of the treatment effect when 

the number of centres was small. The two centre-level models led to more variable point 

estimates and relatively low interval coverage or statistical power depending on whether 

or not heterogeneity of treatment contrasts was considered in the analysis. 

Conclusions 

All six models produced unbiased estimates of treatment effect in the context of 

multicentre trials. Adjusting for centre as a random intercept led to the most efficient 

treatment effect estimation across all simulations under the normality assumption, when 

there is no treatment by centre interaction.  
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Background  

A multicentre randomized control trial (RCT) is an experimental study “conducted 

according to a single protocol but at more than one site and, therefore, carried out by 

more than one investigator”[1]. Multicentre RCTs are usually carried out for two main 

reasons. First, they provide a feasible way to accrue sufficient participants to achieve 

reasonable statistical power to detect the effect of an experimental treatment compared 

with some control treatment. Second, by enrolling participants of more diverse 

demographics from a broader spectrum of geographical locations and various clinical 

settings, multicentre RCTs increase generalizability of the experimental treatment for 

future use [1].  

 

Randomization is the most important feature of RCTs, for on average it balances known 

and unknown baseline prognostic factors between treatment groups, in addition to 

minimizing selection bias. Nevertheless, randomization does not guarantee complete 

balance of participant characteristics especially when the sample size is moderate or small. 

Stratification is a useful technique to guard against potential bias introduced by imbalance 

in key prognostic factors. In multicentre RCTs, investigators often use a stratified 

randomization design to achieve balance over key differences in study population (e.g. 

environmental, socio-economic or demographical factors) and management team (e.g. 

patient administration and management) at centre level to improve precision of statistical 

analysis [2]. Regulatory agencies recommend that stratification variables in design should 
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usually be accounted for in analysis, unless the potential value of adjustment is 

questionable (e.g. very few subjects per centre) [1]. 

 

The current study was motivated by the COMPETE II trial which was designed to 

determine if an integrated computerized decision support system shared by primary care 

providers and patients could improve management of diabetes [3]. A total number of 511 

patients were recruited from 46 family physician practices. Individual patients were 

randomized to one of the two intervention groups stratified by physician practice using 

permuted blocks of size 6.The number of patients treated by one physician varied from 1 

to 26 (interquartiles= 7.25, 11, 15; mean=11; standard deviation [SD]=6). The primary 

outcome was a continuous variable representing the change of a 10-point process 

composite score based on eight diabetes-related component variables from baseline to a 

mean of 5.9 months’ follow-up. A positive change indicated a favourable result. During 

the study, the possibility of clustering within physician practice and its consequence on 

statistical analysis was a concern to the investigators. The phenomenon of clustering 

emerges when outcomes observed from patients managed by the same centre, practice or 

physician are more similar than outcomes from different centres, practices or physicians. 

Clustering often arises in situations where patients are selective about which centre they 

belong to, patients in a centre or practice are managed according to the same clinical care 

paths, or patients influence each other in the same cluster [4]. Intraclass (or intracentre) 

correlation (ICC) is often used to quantify the average correlation between any two 

outcomes within the same cluster [5]. It is a number between zero and one. A large value 
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indicates that within-cluster observations are similar relative to observations from other 

clusters and each observation within cluster contains less unique information. This 

implies that the independence assumption which many standard statistical models are 

based on is violated. An ICC of zero indicates that individual observations within the 

same clusters are uncorrelated and different clusters on average have similar observations. 

 

Through a literature review, we identified six statistical methods that were sometimes 

employed to analyze continuous outcomes in multicentre RCTs: A. simple linear 

regression (two sample t-test), B. fixed-effects regression, C. mixed-effects regression, D. 

generalized estimating equations (GEE), E-1. fixed-effects centre-level analysis, and E-2. 

random-effects centre-level analysis. The first four methods use patient as unit of analysis, 

yet address centre effects differently [6-8]. Simple linear regression completely ignores 

centre effects that are likely to arise from two sources: (1) possible differences in 

environmental, socio-economic or treatment factors between centres, and (2) potential 

correlation among patients within centres. Although stratified randomization attempts to 

minimize the impact of centre on standard error of the treatment effect by ensuring that 

the treated and control groups are largely balanced with respect to centre, failure to 

control for stratification in analysis will likely inflate variance of the effect estimate. The 

fixed-effects model treats each participating centre as a fixed intercept to control for 

possible population or environmental differences among centres. This model assumes that 

study subjects from the same centre have independent outcomes, i.e. the intraclass 

correlation is fixed at zero. The mixed-effects model incorporates dependence of 
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outcomes within a centre and treats centres as random intercepts. Proposed by Liang and 

Zeger [9], the generalized estimating equation (GEE) model extends generalized linear 

regression with continuous, categorical or count outcomes to correlated observations 

within cluster. Under a commonly used and perhaps oversimplified assumption, that the 

degree of similarity between any two outcomes from a centre is equal, an exchangeable 

correlation structure can be used to assess treatment effect in Model C and D. Though the 

within- and between-centre variances (
2

eσ  and
2

bσ ) are estimated differently in these two 

models. Method E-1 and E-2 are routinely employed to combine information from 

different studies in meta-analysis [10]. One can also apply them to aggregate treatment 

effects over multiple centres [11-13]. The overall effect is obtained as the average within-

centre effect differences over centre, using inverse-variance weighting.  

 

To date, only a few studies have been carried out to compare the performance of  

statistical models in analyzing multicentre RCTs using Monte Carlo simulation [6, 7, 14], 

whereas many studies assessed the impact of ICC in cluster randomization trials. 

Moerbeek et al [6] compared the simple linear regression model, fixed-effects regression 

and fixed-effects centre-level analysis with equal centre size. Pickering et al [7] examined 

the bias, precision and power of three methods: simple regression, fixed-effects and 

mixed-effects regression assuming block randomization of size 2 or 4 on a continuous 

outcome. In the presence of imbalance and non-orthogonality, they found ignoring 

centres or incorporating them as random-effects led to greater precision and smaller type 

II error compared with treating centres as fixed effects. Performance of the GEE approach 
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and centre-level methods were not investigated in that work. Jones et al [14] compared 

the fixed-effects and random-effects regression models to a two-step Frequentist 

procedure as well as a Bayesian model, in the presence of treatment by centre interaction, 

and recommended fixed-effects weighted method for future analysis of multicentre trials. 

The investigation was further expanded to assessing correlated survival outcomes from 

large multicentre cancer trials. A series of random-effects approaches were proposed to 

account for centre or treatment by centre heterogeneity in proportional hazards models 

[15, 16]. 

 

A lack of definitive evidence on which models perform the best in various situations led 

to this comprehensive simulation study to examine the performance of all six commonly 

used models with continuous outcomes. The objective was to assess their comparative 

performance in terms of bias, precision (simulation standard deviation (SD) and average 

estimated SE), and mean squared error (MSE) of the point estimator of the treatment 

effect, empirical coverage of the 95% confidence interval (CI) and the empirical 

statistical power, over a wide spectrum of ICC value and centre size. We did not consider 

treatment by centre interaction this study, partly because clinicians and trialists have been 

making efforts to standardize the conduct and management of multicentre trials via, for 

instance, uniform patient selection criteria, staff training, and trial monitoring and 

auditing to reduce heterogeneity of treatment effects among centres. Furthermore it is 

uncommon to find clinical trials designed with sufficient power to detect treatment by 

covariate interactions. 
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In this paper, we survey six methods to investigate the effect of a treatment in multicentre 

RCTs in detail. We outline the design and analysis of an extensive simulation study, and 

report how model performance varies with ICC, centre size and the number of centres. 

We also present the estimated effect of the computer-aid decision support system on 

management of diabetes using different methods. 

 

Methods 

Approaches assessing treatment effects 

We investigated six statistical approaches to evaluating effect of an experimental 

treatment on a continuous outcome compared with the control, for multicentre RCTs. 

Assuming baseline prognostic characteristics are approximately balanced between the 

treatment and control groups via randomization, we do not consider covariates other than 

centre effects in the models. The first four approaches use individual patient as unit of 

analysis, while centre is the unit of analysis in the last two approaches.  

Simple linear regression (Model A) 

This approach models the impact of treatment (X) on outcome (Y) via regression 

technique (Equation 1). In the context of a two-arm trial, this approach is the same as a 

two-sample t-test [6].  

0 1ij ij ij
Y X eβ β= + + ,                   (Equation 1)  

where ij
Y  is the outcome of the i-th patient in the j-th centre, ij

X stands for the treatment 



PhD Thesis – R. Chu; McMaster University – HRM – Biostatistics 

 

23 

 

assignment ( ij
X  = 1 for the treatment, ij

X = 0 for the control), and ije  is the random error 

assumed to follow a normal distribution with mean 0 and variance
2

eσ . The intercept, 0β , 

represents the mean outcome for the control group in all participating centres, and the 

slope 1β  represents effect of the treatment on the mean outcome. 

Fixed-effects regression (Model B) 

This model (Equation 2) allows a separate intercept for each centre ( 0 j
β ) as a fixed effect 

by restricting the scope of statistical inference to the sample of participating centres in a 

RCT. Interpretation for 1β  remains the same as in Model A. Model A and B were fitted 

using the linear model procedure ‘lm()’ in R.  

0 1ij j ij ij
Y X eβ β= + +                   (Equation 2) 

Mixed-effects regression (Model C) 

Similar to Model B, the mixed-effects regression model assumes that the intercept 

0 0 0j jbβ β= + follows a normal distribution N( 0
β ,

2

bσ ), and is thus random effect.  In 

Equation 3, 0 j
b  is the random deviation from the mean intercept 0β , specific for each 

centre. 

0 0 1ij j ij ij
Y b X eβ β= + + +                   (Equation 3) 

Similar to the previous models, the within-centre variability is reflected by
2

eσ . The 

variability of outcome between-centre is captured by 
2

bσ  in Model C. The variance and 

covariance of outcomes in the same or different centres can be expressed as: Var( ij
Y ) = 
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2

bσ +
2

eσ , Cov( ij
Y , 'i j

Y ) = 
2

bσ , Cov( ij
Y , ' 'i j

Y ) = 0. The intraclass correlation that measures 

the correlation among outcomes within centre is given by 
2

2 2

b

e b

σ

σ σ+
, assumed equal across 

all centres. We fitted Model C in R via linear mixed-effects procedure ‘lme()’ using the 

restricted maximum likelihood (REML) method [17,18]. 

Generalized estimating equations (Model D) 

The GEE method has gained increasing popularity among health science researchers for 

its availability in most statistical software. As opposed to the mixed-effects method that 

estimates treatment difference between arms and individual centre effects, the GEE 

approach models the marginal population-average treatment effects in two steps: 1) it fits 

a naïve linear regression assuming independence between observations within and across 

centres, and 2) it estimates parameters of the working correlation matrix using residuals in 

the naïve model and refit regression model to adjust standard error and confidence 

interval for within-centre dependence [19]. As a result, the estimated impact of treatment 

on the outcome in GEE model reflects the “combined” within- and between-centre 

relationship. GEE employs quasi-likelihood to estimate regression coefficients iteratively, 

and a working correlation needs to be supplied to approximate the within centre 

correlation. When the working correlation is mis-specified, the sandwich-based 

covariance estimator will lead to a robust yet less efficient estimate of treatment effect in 

GEE model [9]. Recently, statisticians found that variance of the estimated treatment 

effect could be underestimated when the number of centres was small [20]. We therefore 

assessed the efficiency of GEE models using procedure ‘gee()’ in library(gee) in R. As in 
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the mixed-effects model, an exchangeable correlation structure was assumed in fitting 

Model D.  

Centre-level fixed-effects model (Model E – 1) 

The centre level model is a stratified analysis performed on the mean difference in 

outcome between the treatment and control arms within centre. The overall treatment 

effect is estimated by a weighted average of individual mean differences across all centres. 

The principle of inverse-variance weighting is often used (Figure 1). This model is 

essentially a centre-level inverse-variance weighted paired t-test (i.e. the treatment arm is 

paired to the control arm in the same centre) to account for within centre correlation [10]. 

In the absence of intraclass correlation and under the assumption of equal sampling 

variation at patient level, the inverse-variance weight reduces to
tj cj

tj cj

n n

n n+
 for the j-th 

centre, which can be further simplified as the size of centre j tj cj
n n n= + ,  given equal 

numbers of patients in two arms. Here ntj and ncj represent the number of patients in the 

treatment and control group, respectively, in the j-th centre. This form of the weighted 

analysis (without adjustment for covariates) was discussed extensively by many 

researchers [21-23]. We implemented Models E – 1 using the fixed-effects method for 

meta-analysis provided by the ‘metacont()’ procedure in R.  

Centre-level random-effects model (Model E – 2) 

A random-effects approach is used to aggregate mean effect differences not only across 

all participating centres but also across a population of centres represented by the sample. 

This model factors heterogeneity of treatment effect among centres (i.e. random treatment 
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by centre interaction) into its weighting scheme and captures within- and between-centre 

variation of the outcome. One should not confuse this method with the mixed-effects 

model using patient-level data (Model C). For Model E-2, the underlying true treatment 

effects are not a fixed single value for all centres, rather they are considered random 

effects, normally distributed around a mean treatment effect with between-centre 

variation. Model C, on the other hand, treats centres as random intercepts and postulates 

the same treatment effect across all centres. Model E-2 does not serve as a fair 

comparator to the alternatives listed here which assume no treatment by centre interaction. 

Preliminary investigation suggested E-2 could outperform E-1 in some situations; we 

therefore included E-2 in the study to advance understanding of these models. Details of 

centre level models are provided in Figure 1. Model E – 2 was carried out using 

DerSimonian-Laird random-effects [24] method using the ‘metacont()’ procedure in R. 

The confidence interval for Model E – 2 was constructed based on the within- and 

between-centre variances. 

 

Study data simulation 

We used Monte Carlo simulation to assess performance of statistical models to analyze 

parallel group multicentre RCTs with a continuous outcome. We simulated outcome, Y, 

using the mixed-effects linear regression model (Model C): 0 0 1ij j ij ijY b X eβ β= + + +
 

for the i-th patient in the j-th centre, where ij
X (=0, 1) is the dummy variable for 

treatment allocation (i = 1… j
m , j = 1… J). We generated random error, e, from N(0, 

2

eσ
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=1). We set the true treatment effect ( 1β ) to be 0.5 residual standard deviation ( eσ ), an 

effect size suggested by the COMPETE II trial. This corresponds to a medium effect size 

according to Cohen’s criterion [25]. To simulate centre effects, we employed the 

relationship between ICC and
2

bσ : ICC =
2

2 2

b

e b

σ

σ σ+
.  To fully study the behaviour of 

candidate models at various ICC levels, we considered the following values of ICC for 

completeness: 0.00, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 and 0.75. 

This in turn set the corresponding
2

bσ values to be 0, 1/99, 1/19, 1/9, 3/17, 1/4, 1/3, 3/7, 

7/13, 2/3, 9/11, 1 and 3. However, we focused interpretation of the results on lower values 

of ICC as they were more likely to occur in practice [26-28]. 

 

The original sample size was determined to be 84 per arm using a two-sided two-sample 

t-test (Model A) to ensure 90% power to detect a standardized effect size of  0.5 at 5% 

type I error rate. We increased the final sample size to 90
1
 per arm to accommodate more 

combinations of the number and size of participating centres. We assumed patients were 

randomly allocated to two groups with a ratio of 1:1, the most common and efficient 

choice. We generated data in nine scenarios (Table 1) to assess model performance in 

three designs: (a) balanced studies where equal numbers of patients are enrolled from 

study centres and the numbers of patients in the two arms are the same (fixed by design); 

(b) unbalanced studies where equal numbers of patients are enrolled from study centres 

but the numbers of patients in two arms within centre may be different due to chance yet 

                                                           
1
 Power increases to 91.8% 
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remain 1:1 allocation ratio; and (c) unbalanced studies where the numbers of patients 

enrolled vary among centres, and block randomization of size 2 or 4 is used to reduce 

chance imbalance. For designs (a) and (b), we considered three combinations of centre 

size and number of centres: J = 45 centres, 4 patients per centre; J = 18 centres, 10 

patients per centre; and J = 6 centres, 30 patients per centre. Design (c) mimicked a more 

realistic scenario for multicentre RCTs. For the first setup of design (c), we grouped 180 

patients to 17 centres. It was constructed so that the centre composition and degree of 

allocation imbalance were analogous to the COMPETE II trial but at a smaller sample 

size: the number of patients per centre varying from 1 to 28; quartiles = 5, 10, 15; 

mean=11; SD=8; percentage of unbalanced centres between 47% and 70% depending on 

block size.  

 

To compare results from various models in analyzing the COMPETE II trial, and assess 

accuracy and precision of the effect estimates, we included an additional scenario in 

design (c) to imitate this motivating example more closely, with respect to sample size 

and centre composition (scenario 9). We generated treatment allocation (X1) and outcome 

(Y) for 511 patients in 46 centres, where the number of patients per centre was set exactly 

the same as observed in the COMPETE II trial (Table 2). In particular, three centres 

recruiting only one patient was simulated. Analogously to COMPETE II, a fixed block 

size of 6 was used to assign patients to treatments. The same simulation model was 

employed as in previous scenarios yet a separate set of parameters based on results of the 

COMPETE II trial were used (Table 3): 0β = 1.34, 1β  = 1.26, 
2

bσ  = 1,
2

eσ =7, ICC = 0.125.  
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We generated 1000 simulations for each of the 13 ICC values under each of the first eight 

scenarios and 1000 simulations for the specified ICC value for the ninth scenario. 

Separate sets of centre effects were simulated for each scenario and each simulation 1-

1000. We chose to simulate 1000 replicates so that the simulation standard deviation for 

the empirical power at a nominal level of 90% in the absence of clustering was controlled 

at 1%. This also ensured that standard deviations of the coverage of the confidence 

interval and the empirical power not exceed 1.6%.  

 

Comparison of analytic models 

We applied six statistical models to each simulated dataset. For each model, we 

calculated the bias, simulation standard deviation (SD), average of estimated standard 

error (SE) and mean squared error (MSE) of the point estimator of treatment effect (i.e.

1β ), empirical coverage of the 95% confidence interval around 1β  and the empirical 

statistical power. We constructed confidence intervals based on t-test for Models A – C, 

and Wald interval based on normal approximation for Models D and E. We estimated 

bias as the difference between the average estimate of 1β  over 1000 simulated datasets 

and the true effect. The simulation or empirical SD was calculated as the standard 

deviation of the estimated 1β s across simulations, indicating precision of the estimator. 

We also obtain average of the estimated SEs from 1000 simulations to assess accuracy of 

variance estimator from each simulation dataset. The overall error rate of the point 

estimator was captured by the estimated MSE, enumerated by the average squared 
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difference between the estimated 1β  and true value across the 1000 datasets. Furthermore, 

we reported performance of the interval estimators in each model. The empirical coverage 

was estimated as the proportion of 95% confidence intervals that covered the true 1β , and 

the empirical power was the proportion of confidence intervals that rejected a false null 

hypothesis, i.e. zero lies outside CI. All datasets were simulated and analyzed in R 

version 2.4.1[29]. 

 

Results  

Analysis of COMPETE II trial data 

We applied all six models to the COMPETE II data and reported results in Table 3. 

Approximately equal numbers of patients were randomized to the intervention and 

control groups within each family doctor, leading to 253 and 258 patients in the 

intervention and control group, respectively.  Among 46 family physicians, 11 physicians 

(24%) treated equal numbers of patients in two arms, 24 physicians (52%) treated one 

more patient in the intervention or control arm, 10 physicians (22%) managed 2 more 

patients in either arm, and one physician (2%) managed 3 more patients in one arm 

compared with the other. 

 

All baseline characteristics were roughly balanced between arms [3]. The analyses using 

patient-level data produced similar estimates for 1β  and the effect size was around 0.5 

times the corresponding residual standard deviation. The standard error of the estimated

1β  reduced from 0.25 (Model A) to 0.23 (Models B, C) then 0.19 (Model D) when centre 



PhD Thesis – R. Chu; McMaster University – HRM – Biostatistics 

 

31 

 

effects were adjusted, leading to narrower CIs around estimated 1β  in Models B – D. The 

intraclass correlation was estimated 0.138 in Model C and 0.124 in Model D. The two 

centre-level analyses returned slightly larger estimates of 1β  than those from the 

individual patient-level models. In fact the minimal variance between physicians 

indicated no noticeable heterogeneity between physicians (τ
2
=0, I

2
=0), resulting in same 

estimates from E-1 and E-2. Zero was not contained in the 95% confidence intervals, 

therefore all models led to the conclusion that the experimental intervention significantly 

improved patient management over usual care based on the change of composite process 

score.  

 

Balanced design with equal centre size 

Properties of point estimates 

Table 4 summarizes descriptive statistics of the point estimator of treatment effect in 

Models A – E for three values in the lower range of the spectrum of ICC, in the balanced 

design. The point estimates of 1β  were unbiased in all six models for all ICC values. 

Upon review, it was surprising that the point estimates in Model A, ignoring stratification 

and clustering, were invariant of ICC, and that the same estimates were returned by four 

patient-level models for each simulation. In fact, when treatments are allocated in same 

proportion in all centres, centre has no association with the treatment allocation, hence 

adjusting for centre effect or not has little impact on point estimate of the treatment – 

response relationship given a continuous response variable. For this reason, different 

ways to incorporate between-centre information (Models B -D) led to same estimates of 
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treatment contrast in a balanced design. Same point estimates led to same empirical SD 

and overall error rate (measured by MSE) of the estimator in Models A – D regardless of 

ICC. Across different ICC values and scenarios 1 – 3, Models B and C yielded accurate 

estimates of the standard error of 1β̂
 
that approximated the empirical SD and the true 

standard deviation, 0.149, calculated using the best linear unbiased estimator of the 

simulation model, i.e. Model C [18]. From Table 4, we found that the standard error of 1β̂ , 

in Model A increased with ICC in each scenario, deviating from the corresponding 

empirical SD. The standard error could be slightly underestimated in Model D when the 

number of centres was small (Table 4, scenario 2 and 3 comparing empirical SD and 

average SE). This agreed with previous work concerning small sample properties of the 

GEE model [20]. 

 

The centre-level analyses produced larger empirical SE and MSE for 1β̂
 
compared with 

the patient-level analyses given small or moderate centre sizes (Table 4). The difference 

reduced as centre size increased. When only a few patients were enrolled per centre, the 

fixed-effects centre-level point estimator in Model E – 1 had large sampling variation that 

was severely underestimated at all ICC values. The random-effects model (E – 2) based 

on DerSimonian-Laird method on the other hand seemed to yield valid SE for 1β̂  that was 

on average greater than SEs from the patient-level models. The average estimate of SE 

for 1β̂  over all simulations in Model E – 2 was always larger than estimates of SE in 

Models B and C, followed by the SE estimated in Model E – 1 across different 
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combinations of centre size and number of centres. In this study, although datasets were 

generated so that the treatment effects were homogeneous among centres (i.e. no 

treatment by centre interaction), random-effects analysis using centre-level data 

outperformed the fixed-effects analysis when the centre size was small, for Model E – 2 

took into account the observed “heterogeneity” due to imprecise estimation of the centre 

mean difference and the associated standard error.  

Properties of interval estimates 

The empirical coverage of confidence intervals (CIs) and the statistical power in balanced 

studies are displayed in Table 5. Models B and C produced similar coverage close to the 

nominal value of 95% over different ICC values and centre composition. Model A 

provided conservatively high coverage increasing with ICC, illustrating that for moderate 

to large ICC values, CIs in Model A were abnormally wide due to overestimated SE for

1β̂ . The empirical coverage of CIs from Model D or E – 1 on average was farther down 

from 95% compared with Models B and C. This is likely caused by underestimation of 

the standard error in Models D and E-1, and is associated with an apparent increase of 

power in the first three scenarios. For Model D, the coverage dropped to below 90% 

when the number of centres reduced to six in scenario 3. The coverage of Model E – 1 

was too low to be useful when studies were conducted at many smaller centres (scenario 

1). However, coverage increased gradually with centre size and approached 95% when 

there were 30 patients per centre (scenario 3). Model E-2 presented similar coverage 

pattern to E-1, although the coverage was closer to 95%. Models B and C largely 

maintained nominal power of 91.8% regardless of ICC value. Power of Model A 
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decreased dramatically as ICC departed from 0, indicating that the model failed to adjust 

for between-centre variation or within-centre correlation in the outcome measure. The 

nominal type II error rate (8%) was maintained in Models D and E – 1 in scenarios 1 – 3. 

Model E – 2 generally had lower power to detect the true treatment effect due to a larger 

standard error that reflects both the within-centre variability and treatment by centre 

interaction. Interestingly, this power rose as the number of centres reduced and 

approached 88% in scenario 3.  

 

Overall, Models B and C had very close performance that outweighed other models in 

balanced design. Models C and D converged to a solution in all simulations. 

 

Design with equal centre size and chance imbalance 

Properties of point estimates 

Performance of different models in multicentre studies of equal centre sizes, 1-to-1 

allocation ratio and chance imbalance is displayed in Tables 6 and 7. Similar results were 

observed as in the balanced design, though a few differences emerged. The unbalanced 

allocation of patients into treatment arms due to pure within-centre variation introduced 

chance imbalance (in both directions) into treatment – response relationship, hence 

ignoring centre effects completely (as in Model A) led to unbiased yet less efficient 

estimates for large ICC values. Model B could be less precise than Model A given small 

to moderate ICC values, a phenomenon previously reported by Pickering and Weatherall 

[7]. As in the balanced design, the fixed- and random-effects models performed 
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comparably for various ICC values, largely because the fixed and random intercepts for 

study centres cancelled out in estimating effect contrast when we fit Models B and C, and 

had little impact on the estimation of the fixed effect contrast across centres. However, 

the fixed-effects model produced larger empirical standard deviation and average 

standard error in scenario 4, a study being composed of many centres each managing a 

few patients. Adjusting for between-centre variation as random effects in Model C or 

using population-averaged analysis in Model D allowed to borrow information across 

centres and resulted in greater precision.  

 

Properties of interval estimates 

Similar results were observed relative to the balanced design. Patient – level models A – 

C guaranteed nominal coverage of confidence intervals at different ICC values, whereas 

the other models were likely to produce lower coverage under certain conditions. Among 

all models, Models C and D achieved the best empirical power that was closest to the 

nominal value of 91.8% across different centre sizes. When centre size was small and the 

number of centre was large (scenario 4), power for Models C and D also decreased with 

ICC, a pattern that was less obvious in scenarios 5 and 6. Models C and D achieved 

convergence in analyzing all simulated datasets. 

  

Design with unequal centre sizes and chance imbalance 

The properties of point and interval estimates in the scenarios 7 and 8 (with unequal 

centre sizes and chance imbalance) were close to results in the previous two designs. In 
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particular, the comparative performance of six models lay in the middle ground between 

scenarios 2 and 5, as the level of imbalance between two treatments was no more than 

half of the block size within centres. As similar results were observed for block sizes 2 

and 4, summary statistics based on block size 4 were plotted in Figures 2, 3, 4 and 5. 

Results suggested that unequal centre size had little impact on model performance, yet it 

was associated with slight enlargement of the empirical variance of 1β̂  in Model E – 1. To 

summarize, although all six models produced unbiased point estimates, the fixed- and 

mixed-effects models using patient-level data provided the most accurate estimates of the 

standard error of 1β̂  given large ICC values, hence should be used in the analysis of 

multicentre trials when the ICC was nontrivial or unknown to control type I and type II 

error rates. For studies consisting of a large number of centres with only a few patients 

per centre, adjusting for centre as mixed effects produced most precise point estimate of 

treatment effect, hence were more preferable. The information sandwich method appeared 

to slightly underestimate the actual variance when patients were recruited from 17 centres 

in scenarios 7 or 8. Due to varying centre sizes, Model D did not converge for all 

simulated datasets (number varied between 1 and 93 out of 1000 simulations) after 2000 

iterations, when ICC was less than or equal to 0.1 or greater than 0.4 for block size of 2 or 

4. Such datasets were excluded for all models and extra data were simulated to attain a 

total number of 1000 simulations for any ICC value.  In most cases, the non-convergence 

of GEE occurred due to a non-positive definite working correlation matrix. 
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In scenario 9, as a result of mimicking the particular centre composition of the 

COMPETE II trial, on average, three centres out of 46 contained no patients in one of the 

treatment groups per simulation. These centres were removed from the fixed-effects 

model (Model B), as no comparison patients in the same centre were available. About six 

centres out of 46 recruited less than two patients per treatment arm for each simulation. 

These centres were dropped from the centre-level analyses, as the standard error for 

treatment difference per centre could not be obtained as input variables for ‘metacont()’. 

Performance of six models in scenario 9 was similar to that in scenarios 7 and 8, although 

point estimates from all models appeared to be marginally biased toward the null (Table 

8). Estimates from patient-level models were more precise and closer to 0.230, the best 

linear unbiased estimate of standard error based on the simulation model. Once again, the 

standard error was slightly biased upward in Model A and marginally biased downward 

in Model D. This resulted in wider and conservative interval estimates from Model A and 

slightly narrower intervals from Model D. Models B and C performed comparably, 

probably because on average only three centres each containing one patient were dropped 

from Model B, which did not affect the variance estimation much. Models C and D 

achieved convergence for all 1000 simulations in this scenario. 

 

Discussion  

In this paper, we investigated six modelling strategies in a Frequentist framework to study 

the effect of an experimental treatment compared to the control treatment in the context of 

multicentre RCTs with a continuous outcome. We focused on three designs with equal or 
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varying centre sizes and a treatment allocation ratio of 1:1 in the absence of treatment by 

centre interaction. Results of this simulation study showed that, when the proportion of 

patients allocated to the experimental treatment was the same in each centre or subject to 

chance imbalance only, models using patient-level and centre-level data yielded unbiased 

point estimates of treatment effect across a wide spectrum of ICC values. Ignoring 

stratification by centre or within-centre correlation did not bias the estimated treatment 

effects even when ICC was large. In fact, Parzen et al showed that mathematically the 

usual two-sample t-test, naively assuming independent observations of the response 

within centre was asymptotically unbiased in this context [30].  

 

The simulation study also indicated that these models produced different standard errors 

of 1β̂ , and the properties of interval estimates were affected by several factors: whether 

and how centre effects were incorporated in analysis, the combination of centre size and 

number of participating centres, and the level of non-orthogonality of the observed data . 

Treating centre as a random intercept resulted in the most precise estimate, and nominal 

values of coverage and power were attained in all circumstances. The fixed-effects model 

had extremely similar performance compared with the mixed-effects model in balanced 

design, but was slightly less efficient when the number of centres was large (J>20) in an 

unbalanced design. Pickering and Weatherall observed the same pattern in their 

simulation study comparing three patient-level models with small ICC values [7]. The 

GEE model using information sandwich covariance method tended to underestimate the 

standard error across centre effects when the sample of centres was small, a property 
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noticed by researchers [20, 31]. This resulted in higher statistical power. That is, the 

treatment effect estimate was more likely to be significant with a smaller standard error, 

but was associated with a lower coverage of the conference interval. Marray et al 

suggested that at least 40 centres should be used to ensure reliable estimate of standard 

error in the context of cluster randomized trials [32]. Our simulation results suggested that 

such cut value was also applicable to multicentre RCTs. Failure to control for centre 

effects in any form resulted in inflation of standard error, falsely high interval coverage 

and sizable drop of power, as ICC increased. Parzen et al quantified the impact of 

correlation among observations within centre on the variance of 1β̂  in Model A as 1/(1-

ICC) [30]. Alternatively, one may consider a variant of robust variance estimation or a 

GEE model with an independent working correlation to control for the impact of ICC on 

variance estimation using t-test. Centre-level models generally produced larger standard 

errors, lower coverage or power than the patient-level models. Centre-level random-

effects model incorporated variability of the treatment effect over centres, and was not a 

fair comparator to other models. Interestingly, this model seemed to fare better than the 

centre-level fixed-effects model in terms of precision and coverage even though the 

simulated datasets contained no treatment by centre interaction. Despite that the random-

effects centre-level model may be a reasonable alternative for patient-level models when 

the number of patients per centre is large (≥30), centre-level models cannot adjust for 

patient-level covariates, a potential fatal drawback in the presence of patient prognostic 

imbalance. 
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Statisticians have different viewpoints on treating centre effects and treatment by centre 

interaction as fixed or random effects when analyzing multicentre RCTs [12, 13, 21, 33]. 

Our simulation results demonstrated the advantage of treating centres as random 

intercepts in the absence of treatment by centre interaction. When many centres enrol a 

few patients and allocation is unbalanced, the random intercept models can give more 

precise estimates of the treatment effect than the fixed intercept models, because they 

recover inter-centre information in unbalanced situations. For instance, in a multicentre 

RCT consisting of 45 centres each recruiting 4 patients, the empirical variance of the 

estimator of the treatment effect resulting from the fixed-effects model was 24.8% and 

26.0% greater than that from the random-effects model when the ICC was 0.01 and 0.05, 

respectively. In the sentence alluded to, we need to compare the empirical variance of 

0.162
2
 with the value of 0.145

2
 for ICC = 0.01, and 0.174

2
 to 0.155

2 
for ICC = 0.05 

(Table 6, scenario 4). We therefore take the same position as Grizzle [33] and Agresti and 

Hartzel [12] that, “Although the clinics are not randomly chosen, the assumption of 

random clinic effect will result in tests and confidence intervals that better capture the 

variability inherent in the system more realistically than clinical effects are considered 

fixed”.  

 

Our results have some implications for the design of multicentre RCTs in the absence of 

treatment by centre interaction. First, regardless of the pre-determined allocation ratio, 

permutated block randomization (of relatively small block sizes) should be used to 

maintain approximate balance or orthogonality (i.e. same treatment allocation proportion 
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across centres [7]) between treatments and centres, so that their individual effects can be 

evaluated independently. Variable block sizes can be used to strengthen allocation 

concealment. Second, for a given sample size, the number of patients randomized in 

majority of centres should be sufficiently large to ensure reliable estimate of within-centre 

variation. Third, it is essential for investigators to obtain a rough estimate of ICC for 

within-centre responses, through literature review or a pilot study. To reach nominal 

power of 80% or 90% (in the absence of clustering), centre effects should be taken into 

consideration in sample size assessment. When centre effects are included without 

treatment by centre interaction, the analysis becomes more powerful than a two-sample t-

test. One method to assess sample size is to start with a two sample t-test for continuous 

outcomes (ignoring centre effect) then multiple the original estimated error variance by an 

variation inflation factor of 1/(1-ICC). This factor would have the effect of increasing the 

required sample size. Ignoring centre effects results in the larger sample size in the 

absence of interaction. Sample size determined using information sandwich covariance of 

GEE model could lead to slight loss of power, when the number of centres is small (≥40) 

and no proper adjustment is done. Lastly, there is no particular reason to require equal 

numbers of patients being enrolled in all participating centres and this is seldom the case 

in practice. Throughout the simulations, we observed similar results for studies of equal 

and varying centre sizes. In the study, we considered three scenarios representing the 

particular centre composition of the COMPETE II trial. For discussion on potential 

impact of enrolment patterns on the point and interval estimates of treatment effect, 

readers can refer to the publications on random enrolment verse determined enrolment, 



PhD Thesis – R. Chu; McMaster University – HRM – Biostatistics 

 

42 

 

and relative efficiency between equal and unequal cluster sizes in the reference list [34, 

35].  

 

The current ICH E9 guideline recommends that researchers investigate treatment effect 

using a model that allows for centre differences in the absence of treatment by centre 

interaction [1]. However, it is implausible or impractical to include centre effects in 

statistical modelling or stratify randomization by centre, when it is anticipated from the 

start that trials may have very few subjects per centre. As it is acknowledged in the 

document, these recommendations are based on fixed-effects models. Mixed-effects 

models on the other hand may also be used to explore the centre and centre by interaction 

effects, especially when the number of centres is large [1]. Our simulation results 

indicated that when a considerable number of centres contains only a few patients, 

adjusting for centre as a fixed effect may lead to reduced precision (depending on 

distribution of patients between arms) compared with the naïve unadjusted analysis. Our 

work complements the ICH E9 guideline, by studying the impact of intraclass correlation 

on the assessment of treatment effects – a challenge that is seldom discussed, although 

routinely faced by investigators in reality. Our investigation suggests that, (1) ignoring 

centre effects completely may cause substantial overestimation of the standard error, 

faulty increase of coverage of the confidence interval and reduction of power; and (2) 

mixed-effects models and GEE models, if employed appropriately, can produce accurate 

and precise effect estimates, regardless of the degree of clustering. We recommend 

consider these methods in developing future guidelines.  



PhD Thesis – R. Chu; McMaster University – HRM – Biostatistics 

 

43 

 

 

When the number of patients per centre is very small, it is not practical to include centre 

as a fixed effect to analyze patient-level data, as centre effects cannot be reliably 

estimated, and precision of the treatment effect will be compromised. In fact for 

extremely small centres, all patients may be allocated to the same treatment group, and 

such centres will be ignored by the fixed-effects model [36-39]. The alternatives include 

collapsing all centres to perform a two-sample t-test, collapsing smaller centres to create 

an artificial centre and treating it as a fixed effect, and exploring other models discussed 

above. The mixed-effects model utilizes small centres more efficiently by “borrowing” 

information from larger centres. The GEE approach models the average treatment 

difference across all centres and adjusts for centre effects through a uniform correlation 

structure. This is an intuitively more efficient model which unfortunately does not always 

converge when the number of patients per centre was highly variable (simulation 

scenarios 7 and 8). In the current study, non-convergence problems were more likely to 

arise for very small or large ICC values (less than 0.1 or greater than 0.4 for block size 2 

or 4) due to non-positive definite working correlation matrices, and the frequency could 

be as big as 10% after 2000 iterations.  Conversely, convergence problems did not occur 

for the mixed-effects models in any scenarios. Our results show that  analysis of trials 

consisting of very small centres (i.e. those containing less than 2 patients per arm) using 

centre-level models may not be an optimal strategy, because the within-centre standard 

deviation of treatment difference cannot be estimated for such centres, and consequently 

these very small centres are excluded from the analysis. 
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Results of two large empirical studies and one systematic review of cluster RCTs in 

primary care clinics suggested that most ICC values on physical, functional and social 

measures were less than 0.10 [26-28]. The estimated ICC in the COMPETE II trial using 

GEE and linear mixed-effects model, on the other hand, was 0.124 and 0.138, 

respectively. We chose to include rare yet possible large ICC values (0-0.75) in this 

simulation to examine the overall trend of model performance by ICC, and for the 

purpose of completeness and generalizability. Readers should anticipate the ICC values 

likely to emerge from their studies when interpreting these results. Throughout the work, 

we quantified correlation among subjects within centre using ICC, the most commonly 

used concept to assess clustering in biomedical literature. As indicated in previous 

sections, ICC reflects the interplay of two variance components in multicentre data: the 

between-centre variance and within-centre variance. These variance components are 

relatively easy to interpret for analysis of continuous outcomes using linear models.  For 

analysis of binary or time-to-event data from multicentre trials using generalized mixed 

and frailty models, interpretation of centre heterogeneity can present challenges because 

random effects are linked to the outcome via nonlinear functions [40]. Reparameterization 

of the probability density function may be used to assess the impact of within- and 

between-centre variance. Interested readers can refer to Duchateau and Janssen [40] for 

more details.  
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A major limitation of the study is that it did not address model performance when the 

treatment by centre interaction exists. The interactions may be due to different patient 

populations or variable standard of care. Interested readers may read Moerbeek et al [6] 

for formulas of variance of 1β̂  in different models and Jones et al [14] for simulation 

results. Future studies addressing interaction effects in multicentre RCTs are needed. 

Datasets in the current paper were generated based on a moderate treatment effect 

reflected by the standardized mean difference between the treatment and control group. 

More or less prominent treatment effects are also likely to occur in clinical studies and 

similar findings are expected. The current study investigated on continuous outcomes in 

two groups from a Frequentist perspective. The models discussed above can be naturally 

extended to compare three or more treatments. Agresti and Hartzel [12] surveyed 

different methods to evaluate treatments for binary outcomes in multicentre RCTs. Non-

parametric approaches and Bayesian methods are also available to obtain treatment 

contrast. Interested readers can refer to Aitkin [41], Gould [11], Smith et al [42], Legrand 

et al [16], and Louis [43], to name a few. 

 

Conclusions  

We used simulations to investigate the performance of six statistical approaches that have 

been advocated to analyze continuous outcomes in multicentre RCTs. Our simulation 

study showed that all six models produced unbiased estimates of treatment effect in 

individual patient randomization multicentre trials. Adjusting for centre as random effects 

resulted in more efficient effect estimates in all scenarios over a wide spectrum of ICC 
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values and various centre compositions. Fixed-effects model performed comparably to 

the mixed-effects model under most circumstances but lost efficiency when many centres 

contained a relatively small number of patients. The GEE model underestimated standard 

error of the effect estimates when a small number of centres were involved, and did not 

always converge when the centre size was variable for very large or small ICC values. 

Two-sample t-test severely overestimated standard error given moderate to large ICC 

values.  The relative efficiencyof statistical modelling of treatment contrasts was also 

affected by ICC, distribution of patient enrolment, centre size and the number of centres. 
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Figure 1 A schematic of fixed- and random-effects centre-level models 
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Figure 2 Empirical standard deviation (SD) across 1000 simulations by ICC for scenario 

8 (block size = 4) 

 

 
 

Figure 3 Average of standard error (SE) across 1000 simulations by ICC for scenario 8 

(block size = 4) 
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Figure 4 Coverage of 95% CI by ICC for scenario 8 (block size = 4) 

 

 
 

Figure 5 Empirical power by ICC for scenario 8 (block size = 4) 
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Table 1 Catalogue of simulation designs 

 

Design Scenario 
Number of 

centres 
Centre size ICC 

Balance 1 45 4  

 2 18 10  

 3 6 30  

Chance 4 45 4  

imbalance 5 18 10 0 – 0.75 

 6 6 30  

Blocking  

(size = 2) 
7 17 

1, 1, 4, 5, 5, 5, 8, 

8, 10, 10, 10 
 

Blocking  

(size = 4) 
8 17 

10, 15, 15, 20, 

25, 28 
 

Blocking 

(size = 6) 
9 46 Same as Table 2 0.125 

ICC: Intraclass (intracentre) correlation 
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Table 2 Centre composition of the COMPETE II trial 

 

Number of patients 

per centre 

Number of 

Centres 

1 3 

2 0 

3 1 

4 4 

5 1 

6 1 

7 2 

8 3 

9 4 

10 3 

11 5 

12 3 

13 2 

14 0 

15 3 

16 3 

17 0 

18 2 

19 2 

20 1 

21 0 

22 1 

23 1 

24 0 

25 1 
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Table 3 Estimates of intervention effects in COMPETE II trial 

 

Model Estimate of 

intervention 

effect 

SE 95% CI Variance 

component 

A: Simple linear 

regression 

1.270 0.246 (0.787, 1.753) 2

eσ =7.712 

B: Fixed-effects 

regression 

1.291 0.231 (0.836, 1.745) 2

eσ =6.682 

C: Mixed-effects 

regression† 

1.263 0.230 (0.811, 1.714) 2

eσ =6.678 

2

bσ =1.069 

D: GEE‡ 1.263 0.193 (0.884, 1.641)  

E – 1: centre-level 

Fixed-effects model 

1.397 0.219 (0.967, 1.826)  

E – 2: centre-level 

Random-effects model 

1.397 0.219 (0.967, 1.826)  

SE: standard error; CI: confidence interval; 
2

eσ : within-centre variance; 
2

bσ : between-

centre variance; ICC: intraclass (intracentre) correlation 

† ICC=0.138 

‡ ICC=0.124 
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Table 4 Properties of point estimates of the treatment effect from Models A – E in 

scenarios 1 to 3 

 

 ICC = 0.01 ICC=0.05 ICC=0.20 

Model Mean 

effect 

(SD) 

Ave. 

SE 

MSE Mean 

effect 

(SD) 

Ave. 

SE 

MSE Mean 

effect 

(SD) 

Ave. 

SE 

MSE 

Scenario 1 – balanced design, 45 centres each with 4 subjects 

A 0.496 

(0.148) 

0.149 0.022 0.499 

(0.146) 

0.152 0.021 0.497 

(0.151) 

0.167 0.023 

B 0.496 

(0.148) 

0.148 0.022 0.499 

(0.146) 

0.148 0.021 0.497 

(0.151) 

0.149 0.023 

C 0.496 

(0.148) 

0.147 0.022 0.499 

(0.146) 

0.148 0.021 0.497 

(0.151) 

0.149 0.023 

D 0.496 

(0.148) 

0.146 0.022 0.499 

(0.146) 

0.146 0.021 0.497 

(0.151) 

0.147 0.023 

E-1 0.496 

(0.494) 

0.066 0.244 0.491 

(0.454) 

0.066 0.206 0.506 

(0.447) 

0.065 0.200 

E-2 0.499 

(0.163) 

0.172 0.027 0.497 

(0.166) 

0.170 0.027 0.494 

(0.162) 

0.170 0.026 

Scenario 2 – balanced design, 18 centres each with 10 subjects 

A 0.490 

(0.149) 

0.150 0.022 0.504 

(0.155) 

0.152 0.024 0.498 

(0.145) 

0.166 0.021 

B 0.490 

(0.149) 

0.149 0.022 0.504 

(0.155) 

0.149 0.024 0.498 

(0.145) 

0.149 0.021 

C 0.490 

(0.149) 

0.148 0.022 0.504 

(0.155) 

0.148 0.024 0.498 

(0.145) 

0.149 0.021 

D 0.490 

(0.149) 

0.142 0.022 0.504 

(0.155) 

0.143 0.024 0.498 

(0.145) 

0.142 0.021 

E-1 0.490 

(0.178) 

0.130 0.032 0.501 

(0.180) 

0.130 0.032 0.498 

(0.171) 

0.130 0.029 

E-2 0.492 

(0.164) 

0.154 0.027 0.503 

(0.165) 

0.155 0.027 0.498 

(0.158) 

0.153 0.025 
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Table 4 (continued) 

 ICC = 0.01 ICC=0.05 ICC=0.20 

Model Mean 

effect 

(SD) 

Ave. 

SE 

MSE Mean 

effect 

(SD) 

Ave. 

SE 

MSE Mean 

effect 

(SD) 

Ave. 

SE 

MSE 

Scenario 3 – balanced design, 6 centres each with 30 subjects 

A 0.496 

(0.149) 

0.149 0.022 0.492 

(0.149) 

0.152 0.022 0.504 

(0.151) 

0.164 0.023 

B 0.496 

(0.149) 

0.149 0.022 0.492 

(0.149) 

0.149 0.022 0.504 

(0.151) 

0.149 0.023 

C 0.496 

(0.149) 

0.149 0.022 0.492 

(0.149) 

0.149 0.022 0.504 

(0.151) 

0.149 0.023 

D 0.496 

(0.149) 

0.130 0.022 0.492 

(0.149) 

0.130 0.022 0.504 

(0.151) 

0.149 0.023 

E-1 0.497 

(0.153) 

0.144 0.023 0.491 

(0.154) 

0.144 0.024 0.508 

(0.156) 

0.144 0.024 

E-2 0.497 

(0.151) 

0.163 0.023 0.491 

(0.151) 

0.163 0.023 0.507 

(0.153) 

0.161 0.023 

SD: empirical standard deviation; Ave. SE: average estimated SE; MSE: mean squared 

error; ICC: intraclass (intracentre) correlation 
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Table 5 Coverage of the 95% interval estimate of the treatment effect and statistical 

power of Models A – E in scenarios 1 to 3 

 

 ICC = 0.01 ICC = 0.05 ICC = 0.20 

Model Cover. 

 of CI 

Power Cover. 

 of CI 

Power Cover. 

 of CI 

Power 

Scenario 1 – balanced design, 45 centres each with 4 subjects 

A 0.952 0.901 0.953 0.912 0.973 0.862 

B 0.947 0.905 0.945 0.924 0.951 0.899 

C 0.947 0.907 0.944 0.924 0.951 0.899 

D 0.941 0.911 0.936 0.931 0.933 0.902 

E-1 0.286 0.902 0.294 0.920 0.320 0.912 

E-2 0.933 0.810 0.921 0.818 0.938 0.821 

Scenario 2 – balanced design, 18 centres each with 10 subjects 

A 0.955 0.899 0.941 0.903 0.973 0.881 

B 0.954 0.906 0.935 0.906 0.954 0.916 

C 0.951 0.908 0.935 0.906 0.954 0.916 

D 0.929 0.909 0.902 0.919 0.940 0.924 

E-1 0.845 0.904 0.835 0.917 0.857 0.924 

E-2 0.921 0.868 0.905 0.886 0.938 0.875 

Scenario 3 – balanced design, 6 centres each with 30 subjects 

A 0.953 0.905 0.949 0.901 0.966 0.888 

B 0.948 0.907 0.947 0.906 0.952 0.918 

C 0.948 0.907 0.946 0.906 0.952 0.918 

D 0.860 0.915 0.854 0.931 0.867 0.929 

E-1 0.939 0.918 0.931 0.910 0.926 0.927 

E-2 0.952 0.867 0.949 0.846 0.953 0.880 

Cover. of CI: coverage proportion of 95% confidence interval; ICC: intraclass 

(intracentre) correlation 
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Table 6 Properties of point estimates of the treatment effect from Models A – E in 

scenarios 4 to 6 

 

 ICC = 0.01 ICC=0.05 ICC=0.20 

Model Mean 

effect 

(SD) 

Ave. 

SE 

MSE Mean 

effect 

(SD) 

Ave. 

SE 

MSE Mean 

effect 

(SD) 

Ave. 

SE 

MSE 

Scenario 4 – chance imbalance, 45 centres each with 4 subjects 

A 0.502 

(0.146) 

0.150 0.021 0.511 

(0.154) 

0.154 0.024 0.494 

(0.168) 

0.166 0.028 

B 0.506 

(0.162) 

0.172 0.026 0.510 

(0.174) 

0.172 0.030 0.496 

(0.180) 

0.172 0.032 

C 0.502 

(0.145) 

0.149 0.021 0.511 

(0.155) 

0.152 0.024 0.496 

(0.165) 

0.159 0.027 

D 0.501 

(0.146) 

0.146 0.021 0.511 

(0.155) 

0.149 0.024 0.496 

(0.165) 

0.155 0.027 

E-1 0.492 

(0.525) 

0.122 0.275 0.504 

(0.544) 

0.126 0.296 0.481 

(0.482) 

0.127 0.232 

E-2 0.506 

(0.274) 

0.265 0.075 0.515 

(0.284) 

0.269 0.081 0.490 

(0.285) 

0.260 0.081 

Scenario 5 – chance imbalance, 18 centres each with 10 subjects 

A 0.495 

(0.148) 

0.150 0.022 0.498 

(0.150) 

0.153 0.023 0.497 

(0.169) 

0.166 0.028 

B 0.494 

(0.156) 

0.157 0.024 0.498 

(0.152) 

0.157 0.023 0.500 

(0.161) 

0.157 0.026 

C 0.495 

(0.148) 

0.150 0.022 0.498 

(0.149) 

0.151 0.022 0.499 

(0.159) 

0.153 0.025 

D 0.494 

(0.148) 

0.142 0.022 0.498 

(0.150) 

0.144 0.022 0.499 

(0.159) 

0.148 0.025 

E-1 0.488 

(0.206) 

0.130 0.042 0.498 

(0.199) 

0.130 0.039 0.503 

(0.204) 

0.130 0.042 

E-2 0.490 

(0.177) 

0.163 0.031 0.501 

(0.172) 

0.162 0.030 0.501 

(0.178) 

0.164 0.032 
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Table 6 (continued) 

 

 ICC = 0.01 ICC=0.05 ICC=0.20 

Model Mean 

effect 

(SD) 

Ave. 

SE 

MSE Mean 

effect 

(SD) 

Ave. 

SE 

MSE Mean 

effect 

(SD) 

Ave. 

SE 

MSE 

Scenario 6 – chance imbalance, 6 centres each with 30 subjects 

A 0.499 

(0.153) 

0.149 0.023 0.502 

(0.150) 

0.153 0.022 0.510 

(0.165) 

0.164 0.027 

B 0.499 

(0.155) 

0.150 0.024 0.501 

(0.150) 

0.151 0.022 0.507 

(0.151) 

0.152 0.023 

C 0.499 

(0.153) 

0.149 0.024 0.503 

(0.149) 

0.150 0.022 0.507 

(0.151) 

0.151 0.023 

D 0.498 

(0.154) 

0.129 0.024 0.503 

(0.150) 

0.131 0.022 0.508 

(0.151) 

0.134 0.023 

E-1 0.498 

(0.159) 

0.146 0.025 0.502 

(0.156) 

0.146 0.024 0.507 

(0.157) 

0.146 0.025 

E-2 0.498 

(0.157) 

0.165 0.025 0.502 

(0.153) 

0.164 0.023 0.507 

(0.154) 

0.167 0.024 

SD: empirical standard deviation; Ave. SE: average estimated SE; MSE: mean squared 

error; ICC: intraclass (intracentre) correlation 
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Table 7 Coverage of the 95% interval estimate of the treatment effect and statistical 

power of Models A – E in scenarios 4 to 6 

 

 ICC = 0.01 ICC = 0.05 ICC = 0.20 

Model Cover. 

 of CI 

Power Cover. 

 of CI 

Power Cover. 

 of CI 

Power 

Scenario 4 – chance imbalance, 45 centres each with 4 subjects 

A 0.954 0.910 0.949 0.918 0.942 0.845 

B 0.966 0.846 0.946 0.822 0.931 0.810 

C 0.954 0.912 0.945 0.917 0.934 0.870 

D 0.948 0.924 0.934 0.926 0.934 0.878 

E-1 0.411 0.782 0.417 0.793 0.424 0.745 

E-2 0.897 0.468 0.900 0.501 0.887 0.468 

Scenario 5 – chance imbalance, 18 centres each with 10 subjects 

A 0.954 0.898 0.949 0.900 0.942 0.843 

B 0.946 0.874 0.959 0.891 0.937 0.891 

C 0.952 0.898 0.951 0.904 0.939 0.895 

D 0.922 0.916 0.932 0.911 0.910 0.900 

E-1 0.776 0.868 0.794 0.890 0.791 0.895 

E-2 0.905 0.810 0.918 0.834 0.918 0.839 

Scenario 6 – chance imbalance, 6 centres each with 30 subjects 

A 0.950 0.897 0.953 0.905 0.961 0.860 

B 0.949 0.892 0.954 0.907 0.961 0.916 

C 0.950 0.897 0.952 0.905 0.959 0.910 

D 0.856 0.911 0.879 0.918 0.874 0.908 

E-1 0.922 0.904 0.931 0.921 0.931 0.913 

E-2 0.944 0.831 0.951 0.867 0.955 0.857 

Cover. of CI: coverage proportion of 95% confidence interval; ICC: intraclass 

(intracentre) correlation 
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Table 8 Properties of point and 95% interval estimates calculated from Models A – E 

based on 1000 simulated datasets in scenario 9 – unbalanced, 46 centres, same centre 

composition as the COMPETE II trial. 

 

 SCENARIO 9 

Model Mean effect 

(SD) 

Ave. 

 SE 

MSE Cover. 

 of CI 

Power 

ICC = 0.125 

A 1.254 

(0.236) 

0.249 0.056 0.965 0.999 

B 1.253 

(0.240) 

0.236 0.058 0.952 1 

C 1.253 

(0.237) 

0.235 0.056 0.949 0.999 

D 1.253 

(0.237) 

0.230 0.056 0.944 0.999 

E-1   1.256 

(0.405) 

0.207 0.165 0.787 0.991 

E-2 1.257 

(0.270) 

0.261 0.073 0.935 0.995 

SD: empirical standard deviation; Ave. SE: average estimated SE; MSE: mean squared 

error; Cover. of CI: coverage proportion of 95% confidence interval; ICC: intraclass 

(intracentre) correlation 
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ABSTRACT 

Background 

Chance imbalance in baseline prognosis of a randomized controlled trial can lead to over 

or underestimation of treatment effects, particularly in trials with small sample sizes. Our 

study aimed to (1) evaluate the probability of imbalance in a binary prognostic factor (PF) 

between two treatment arms, (2) investigate the impact of prognostic imbalance on the 

estimation of a treatment effect, and (3) examine the effect of sample size (n) in relation 

to the first two objectives.  

Methods 

We simulated data from parallel-group trials evaluating a binary outcome by varying the 

risk of the outcome, effect of the treatment, power and prevalence of the PF, and n. 

Logistic regression models with and without adjustment for the PF were compared in 

terms of bias, standard error, coverage of confidence interval and statistical power. 

Results 

For a PF with a prevalence of 0.5, the probability of a difference in the frequency of the 

PF ≥ 5% reaches 0.42 with 125/arm. Ignoring a strong PF (relative risk =5) leads to 

underestimating the strength of a moderate treatment effect, and the underestimate is 

independent of n when n is > 50/arm. Adjusting for such PF increases statistical power. If 

the PF is weak (RR=2), adjustment makes little difference in statistical inference. 

Conditional on a 5% imbalance of a powerful PF, adjustment reduces the likelihood of 
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large bias. If an absolute measure of imbalance ≥ 5% is deemed important, including 

1000 patients/arm provides sufficient protection against such an imbalance. Two 

thousand patients/arm may provide an adequate control against large random deviations 

in treatment effect estimation in the presence of a powerful PF.  

Conclusions 

The probability of prognostic imbalance in small trials can be substantial. Covariate 

adjustment improves estimation accuracy and statistical power, and hence should be 

performed when strong PFs are observed. 
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Introduction 

Because randomization attempts to balance the distribution of known and unknown 

prognostic factors (PFs) between treatment groups, authorities view it as critical for 

ensuring unbiased assessment of treatment effects [1]. Despite randomization, imbalance 

in PFs as a result of chance (chance imbalance) may still arise, and with small to 

moderate sample sizes such imbalance may be substantial [2, 3]. Ignoring chance 

imbalance in key PFs between treatment groups may result in a biased estimate of the 

treatment effect, particular when a large between-group difference occurs in a powerful 

PF [4-7].  

Control for unbalanced PFs is often achieved via statistical techniques such as 

regression analysis, sometimes in conjunction with other design features such as stratified 

randomization. Adjusting for balanced or marginally unbalanced PFs of high predictive 

value increases statistical power and reduces sample size requirements [8-13]. While 

including balanced baseline covariates in linear models does not change the estimate of 

treatment effect, omitting balanced covariates in logistic regression models may lead to 

underestimation of subject-specific treatment effects [14-16]. Although guidelines for 

RCTs recommend conducting both unadjusted and adjusted analyses [17-19], only a 

minority of trials report adjusted analyses [13, 20]. Moreover, although recommendations 

also suggest specifying key PFs in the protocol based on prior judgement, there is often 

insufficient prior knowledge to ascertain all important PFs before a trial commences [13, 

21].     
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Sample size of RCTs plays a critical role in balancing known and unknown PFs 

between treatment groups. Although many clinical trials with a binary outcome employ 

power calculations to determine an adequate sample size, underpowered studies are 

common [22-24]. Among 519 PubMed-indexed RCTs published in December 2000, the 

median total sample size per trial was 52 (10
th

 – 90
th

 percentile: 12–310) considering all 

designs and 80 (10
th

 – 90
th

 percentile: 25–369) considering only parallel-group trials [25]. 

A more recent systematic review of 215 two-arm parallel group RCTS of superiority with 

a single primary outcome published in six high impact factor general medical journals 

between January 1, 2005 and December 31, 2006 indicates a larger median total trial size 

of 425 (interquartile range: 158-1041) [26]. Sample size calculations often assume a 

balance of prognosis between the treatment groups regardless of sample size, yet the 

distribution of the possible unobserved PFs can be difficult to examine using empirical 

data mainly because they are unobserved. 

The current simulation study was designed to address three objectives: (1) to 

evaluate the probability of imbalance in a binary PF between two treatment groups in 

simple RCTs with standard randomization (without stratification, blocking or 

minimization) evaluating a binary outcome; (2) to investigate the impact of prognostic 

imbalance on the estimation of treatment effect; and (3) to examine the effect of sample 

size on the probability and impact of prognostic imbalance in RCTs.  

 

Methods 
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Simulation framework 

We considered parallel group RCTs with a binary outcome in which equal numbers of 

patients were randomized to the treatment and control groups. For simplicity, we confined 

our attention to only one baseline PF without stratification. Five trial design parameters 

were considered: the frequency of the outcome event in the control group; the effect of 

treatment on the outcome; the strength of the association between the PF and the outcome; 

the prevalence of the PF; and the sample size.  

 We explored two simulation settings. For setting #1, we did not impose any level 

of imbalance, but simply generated a binary PF (C=0, 1) independently from the 

treatment allocation (T=0, 1) for each simulated trial. We refer to this as the 

“unconditional setting”. This setting allowed us to evaluate the cumulative probability of 

prognostic imbalance greater than or equal to some level, and address whether or not 

adjusting for a baseline PF that is subject to chance imbalance improves the accuracy, 

precision and efficiency of the estimation of treatment effects.  

 We refer to setting #2 as the “conditional setting” for which we imposed a 

particular level of imbalance in each simulated trial, specifically, 5% more patients in the 

control group having the PF than those in the treatment group.  Although, over a large 

number of RCTs, the probability of repeated occurrence of imbalance approaches zero, 

the conditional setting allowed us to explore what would happen if there were a 5% 

imbalance in a particular trial. This provided a way to assess the magnitude of potential 

bias resulting from an imbalance if it was unobserved or omitted from the analysis.  It 
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also allowed us to study whether this potential bias could be controlled by increasing the 

sample size. 

Setting #1: the unconditional setting 

Each simulated dataset in the unconditional setting consisted of a binary indicator for 

treatment allocation (T = 0, 1), a binary baseline PF (C = 0, 1), and a binomial response 

variable (Y), indicating the number of patients who experience an outcome event (D = 0, 

1) for each T-C categorization. We related the log odds of experiencing the outcome D =1 

conditional on the allocated treatment and baseline prognosis through the following 

model:  

Simulation model: CT
CTD

CTD
210

),|1Pr(1

),|1Pr(
log βββ ++=

=−

=

,

                                  (Eq. 1) 

where 0β corresponds to the log odds of the outcome among patients without the PF in 

the control group, 
1β corresponds to the log odds ratio (OR) of having the outcome in the 

experimental treatment group relative to the control group conditional on baseline 

prognosis (i.e. the treatment effect), and 
2β  corresponds to the log OR of the outcome 

among patients having the PF versus not conditional on treatment status.  

We assumed equal numbers of patients being randomized to the experimental 

group (T=1) and control group (T=0), i.e. n1=n0=n. We sampled C independently of T 

from the binomial distribution Bin(ni, λ), with prevalence λ being fixed at 14 values 

between 0.005 and 0.995, namely, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
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0.9, 0.95, and 0.995. We simulated 8 scenarios (Table 1) by varying each of three 

parameters to reflect typical features of a cardiovascular prevention trial: (a) risk of 

outcome event in the control group (a low risk of 0.05; and a moderate risk of 0.10), (b) 

treatment effect size in the absence of the PF (a moderate effect: relative risk [RR] of 0.75; 

and a zero effect: RR of 1),  and (c) effect of the PF on the outcome in the control group 

(a strong effect: RR of 5; and a moderate effect: RR of 2). If the covariates are strongly 

predictive of the outcome, i.e. strong PFs, mild or moderate imbalance can result in a 

biased effect estimate [3, 27]. The potential impact of dissimilarity in such strong PFs 

between groups can plausibly be greater when the risk of event in the control group is low, 

because results of hypothesis testing may be more sensitive to the change in the numbers 

of outcome events in treatment groups when the outcomes are rare. For each scenario, we 

investigated six sample sizes and the 14 λ values listed above. Considering a clinical trial 

aiming to detect a moderate treatment effect (i.e. RR=0.75) and a moderate risk of the 

outcome in the control group (i.e. 0.10), a standard power calculation suggests a total of 

4000 patients (2000 per group) is needed to yield type I and type II error rates of 5% and 

20%, respectively. To assess the impact of sample size on prognostic imbalance, we also 

included ½, ¼ and 1/16 of this calculated sample size for each simulation scenario 

(corresponding to 1000, 500 and 125 patients per arm, respectively). We also considered 

two smaller sample sizes (25 and 50 patients per arm) because small trials occur 

frequently in medical publications [25]. We simulated 10,000 trials per prevalence per 

sample size per scenario. 
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Setting #2: the conditional setting 

We also simulated 10,000 replicates for each combination of the prevalence and sample 

size per scenario as per Table 1 in the conditional setting. For each trial, 5% more patients 

had the PF in the control group than the treatment group.  We fixed the overall proportion 

of the PF at each of the 11 values: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95, 

as the probability of observing a 5% imbalance is extremely low for λ < 0.05 or > 0.95. 

We conducted all simulations and analyses in R 2.12.1. 

 

Analysis 

Distribution of imbalance 

For each scenario, we retained the simulated proportion of patients with the PF per arm, 

with continuity correction by adding 0.5 to each T-C categorization to handle sparse cells 

[28]. We quantified imbalance using two different measures: the absolute difference (D1) 

and the standardized difference (D2), as follows:   

• cc ppD 011 −= , and 

• ( ) ( )cccccc ppppppD 0011012 15.015.0 −+−−= , 

where p
c
i = proportion of patients having the PF (C=1) (with continuity correction) at 

baseline in the treatment (i = 1) or control (i = 0) group. We decided to use the absolute 

difference, D1, as the primary measure of imbalance, because it is more intuitive for 
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clinicians. The standardized measure has been advocated for having better statistical 

properties and may be more appealing to the statistical audience [29, 30]. We assessed the 

probabilities of observing different levels of imbalance for each sample size: Pr (Di ≥ d1), 

where d1 = 0.005, 0.01, 0.025, 0.05, 0.10, 0.15, 0.20.  

Impact of prognostic imbalance on treatment effect estimation 

We fit two logistic regression models to evaluate the effect of treatment with and without 

adjustment for the PF. The adjusted model was the same as the underlying simulation 

model (Eq. 1) and the unadjusted model took the form of Eq. 2.  

Unadjusted Model: 

 

T
TD

TD
10

)|1Pr(1

)|1Pr(
log αα +=

=−

=
,                                               (Eq. 2) 

where 0α represents the log odds of having the outcome among patients in the control 

group (with or without the PF), and 
1α  represents the log OR of the outcome in the 

experimental treatment group relative to the control group regardless of baseline 

prognosis.  

For each simulated RCT, we recorded the estimated regression coefficients, their 

associated estimated standard errors (SEs), 95% confidence intervals (CIs, based on Wald 

test), and fitted probabilities of the outcome for each T-C (for the adjusted model) or C 

(for the unadjusted model) categorization. For each scenario, bias of the estimated 

regression coefficient (
1α̂  or 1β̂ ) relative to the true log OR (

1β ), its empirical standard 

deviation (SD), and mean squared error (MSE) were recorded for each model. The 
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empirical coverage of the 95% CI was computed as the proportion of CIs that contained 

the true effect; and power was calculated as the proportion of replications where the CI 

excluded the null. 

 

Results 

Distribution of imbalance 

Figure 1 displays the cumulative probabilities of an imbalance using the absolute measure 

(D1) with 25, 50, 125, 500, 1000, and 2000 patients per arm. For a fixed sample size, the 

probability of imbalance varied with the prevalence of the PF (λ): imbalance was more 

likely to occur when λ is close to 0.5, but probability diminished as λ approached 0 or 1. 

The probability of imbalance increased markedly as sample size decreased regardless of λ. 

For a PF with prevalence of 0.5, the probability of an imbalance ≥ 5% was about 0.02 

with 1000 patients per arm, 0.1 with 500 patients per arm, and 0.42, 0.62 and 0.67 with 

125, 50 and 25 patients per arm, respectively. When the prevalence of PF was 0.05, Pr(D1 

≥ 0.05) increased from ≤ 0.0001, 0.0004, 0.059, 0.24 and 0.29 as sample size decreased 

from 1000 to 25.  

Figure S1 displays the cumulative probability of imbalance using the standardized 

measure (D2). Because the absolute difference was scaled by the pooled SD to create the 

standardized measure, λ had little impact on the probability of D2, except for the extreme 

values. Common for both imbalance measures, the chance of imbalance decreased with 
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increasing sample size. However, the relationship between the probability of imbalance 

and the prevalence of the PF differed using different measures. 

 

Impact of prognostic imbalance on treatment effect estimation 

Setup #1: the unconditional setting 

Scenario 1 corresponded to trials with a 10% risk of the outcome in the control group, a 

strong prognostic factor (RR=5), and a moderate treatment effect (RR=0.75, 

corresponding OR = 0.73) (Table 1). Figures 2 and 3 depict the bias and empirical SD of 

the point estimator of log OR, the coverage of the 95% CI, and the empirical statistical 

power for the adjusted and unadjusted models with 125 and 2000 patients per arm. When 

PF was omitted from the logistic regression, the estimated log OR was biased towards 

zero.  

 The magnitude of bias declined as λ approached 0 or 1, but varied little with 

sample size when each arm had 50 or more patients.  The adjusted estimator 1β̂   was 

unbiased conditional on baseline prognosis, and independent of λ and sample size, when 

there were over 50 patients per arm. With 25 patients per arm, estimated log ORs from 

both models tended to be biased towards zero for λ ≤ 0.1; the adjusted estimates were 

slightly negatively biased for greater λ values. This was possibly due to the lack of 

outcome events to reliably estimate the treatment contrast (Figures S2 and S3). 
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Adjusting for the PF reduced precision of the point estimator, especially when the 

trial size was less than 500 per arm. The adjusted model was able to maintain the nominal 

coverage of the 95% CI for different trial sizes. In contrast, coverage of the unadjusted 

model was less than the nominal value for most λ values, when sample size exceeded 500 

per arm; the decline was more drastic when λ was near 0.5. For a PF with prevalence of 

0.5, the actual coverage of the unadjusted 95% CIs was 95%, 93.58%, 91.15%, and 88.12% 

with 25-125, 500, 1000 and 2000 patients per arm, respectively. 

When λ decreased to 0.05, coverage of the unadjusted 95% CIs was roughly 

around the nominal value. Despite a slight loss of precision, the adjusted model had equal 

or greater statistical power across of the spectrum of the prevalence of PF. The gain in 

power was more marked when sample size was between 500 and 1000 per arm (Figures 

S4 and S5), probably due to the floor or ceiling effect associated with very small or large 

sample sizes, i.e. power from both models approached 0 or 100%, so the difference in 

power between models shrank accordingly. 

For a PF with prevalence of 0.5, the loss of power of the unadjusted model 

relative to the adjusted model was 3.44%, 15.20%, 11.29%, 14.39%, 9.66%, and 2.61% 

with 25, 50, 125, 500, 1000 and 2000 patients per arm. The two models achieved similar 

power for a rare PF with λ < 0.1. For both models, the precision of point estimator and 

empirical power increased with the number of outcome events resulting from increasing 

sample size and λ.  
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As the relative risk of experiencing an outcome event for those with the PF versus 

those without in the control group reduced from 5 to 2 (scenario 2), bias associated with 

the unadjusted point estimator of log OR became negligible for all trial sizes (except for 

25 per arm with λ ≤ 0.2). The adjusted and unadjusted models were also similar in terms 

of precision, coverage of CI and statistical power (Figures S6, S7, S8, and S9).   

When the treatment had no effect on the outcome of interest (scenarios 3 and 4), 

the adjusted and unadjusted models produced unbiased point estimate despite the 

predictive power of the PF. Adjusting for baseline PF was not necessary in this situation 

to remove bias, and in fact it led to a slight inflation of SD. Sample size had little impact 

on the comparative performance of the two models, and nominal coverage of CI was 

achieved for both models (Figure S10).  

For scenarios 5-8, where there was 5% risk of the outcome in the control group, 

the results demonstrated patterns similar to those described above for the first four 

scenarios. Precision of the point estimates and statistical power were lower for both 

models in scenarios 5-8. The magnitude of bias of the unadjusted log OR estimator in 

scenario 5 was slightly less than those in scenario 1. Differences in statistical power 

between two models also decreased slightly with the risk of outcome event when a 

treatment difference truly existed.  

Figure 4 and Figures S11 and S12 display distributions of the differences (DORR) 

between the estimator of OR reduction (ORR, defined as 1 - OR) and the true ORR, i.e. 

ORR - RR̂ODORR = , across the spectrum of λ, based on 10,000 trials in scenario 1, with 
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125 patients per arm.  The vertical axis represents the proportion of trials associated with 

a difference greater than or equal to a certain value d2, where d2 = 0, 0.05, 0.10, 0.15, 0.2 

or 0.25. While Figure 4 corresponds to the probability of deviations in either direction,

)Pr( 2dDORR ≤
,
 Figures S11 and S12 correspond specifically to underestimation, 

)Pr( 2dDORR −≤ and overestimation, )Pr( 2dDORR ≥ , respectively. Figure 5 and Figures 

S13 and S14 present distributions of DORR for the same scenario with 2000 per arm.  

Tables 2 and 3 present the proportions of difference at selected λ values across all sample 

sizes in scenario 1.  

Overall, the proportion of random deviations decreased when the sample size, λ 

and the size of the deviation increased. When λ = 0.05 in scenario 1, the probabilities of 

DORR ≥ 0.05 (in either direction) from the true ORR was 0.87-0.88 and 0.52 with 125 and 

2000 patients per arm, respectively, for both models (Table 2). In comparison, the 

probabilities of DORR ≥ 0.1 dropped to 0.75-0.76 (125/arm) and 0.20 (2000/arm) at the 

same prevalence (Table 3). When the treatment effect was zero, the corresponding 

probabilities of a given deviation were higher (Tables 4 and 5). For instance, probabilities 

of DORR ≥ 0.1 were 0.78-0.81 (125/arm) and 0.30-0.32 (2000/arm) when λ = 0.05 in 

scenario 3. The probabilities of DORR ≥ 0.1 remained above 0.8 with 50 or less patients 

per arm in all scenarios, when λ was between 0.01 and 0.5. 

In scenario 1, the distribution of the unadjusted ORR estimates was positively 

skewed, indicating a higher likelihood of underestimation than overestimation when PF 

was a strong predictor of the outcome and treatment was moderately efficacious. 
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Adjusting for PF made the distribution of the ORR estimator symmetric around the true 

effect, i.e. random fluctuations were equally likely in either direction. When the influence 

of the PF was moderate or the actual treatment effect was zero, adjusting for PF did not 

improve accuracy or precision of the estimate.  

 

Setup #2: the conditional setting 

For all 8 scenarios in the conditional setting, the adjusted model produced roughly 

unbiased estimates of the treatment effect and maintained nominal coverage of the 95% 

CI. The unadjusted model overestimated treatment effects, and the model performance 

was influenced by multiple factors including the treatment effect, the effect and 

prevalence of the PF, and the sample size.  

Figures S15 and S16 display the performances of the adjusted and unadjusted 

models in scenario 1 under the conditional setting with 125 and 2000 patients per arm. 

Ignoring the fact that 5% more patients had this PF in the control arm led to substantial 

overestimation of treatment effect. Bias was comparatively larger when PF was rare: 

when λ ranged between 0.05 and 0.2, bias of the unadjusted estimate of log OR, 
1α̂ , 

relative to 
1β was between -0.18 and -0.09, with 125 per arm in scenario 1. Varying 

sample size led to little change in the magnitude of bias in scenario 1, though estimates 

were more variable with 125 or fewer patients per arm. Coverage of the unadjusted CI 

was greater than its nominal value with 125 or fewer per arm for most prevalence values 

between 0 and 1. The coverage reduced substantially as sample size went beyond 1000 
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per arm; when λ ≤ 0.2 or ≥ 0.8 coverage of the unadjusted CI dropped to 60%-90%. For a 

fixed sample size, the unadjusted estimate had slightly greater precision than the adjusted 

estimate; but the difference diminished as sample size increased.  

 With PF RR=2 in scenario 2, bias of the unadjusted point estimator decreased 

with sample size and varied little with λ. The average biases of 
1α̂  over the 11 prevalence 

values investigated were -0.014, -0.055 and -0.050 with 25, 50 and 125 patients per arm 

respectively and reduced to -0.015, -0.007 and -0.004 when the sample size reached 500, 

1000 and 2000 per arm. The corresponding biases of the adjusted log OR estimator, 1β̂ , 

were 0.024, -0.024, -0.012, -0.005, -0.002 and -0.001. Both models achieved similar 

coverage when sample sizes were greater than or equal to 50 per arm, and demonstrated 

comparable precision.  

 The unadjusted model had slightly greater power though this advantage decreased 

as sample size increased. When the treatment had no effect, performance of the adjusted 

and unadjusted models in scenarios 3 and 4 was similar to that in scenario 2.  Omitting a 

stronger PF in analysis again led to a greater bias for a fixed sample size and bias again 

shrank as trial size enlarged. Findings similar to scenarios 1-4 were demonstrated when 

the risk of outcome events in the control group reduced from 0.1 to 0.05 (scenarios 5-8). 

A low event rate in each trial resulted in reduced precision and statistical power.  Bias of 

the unadjusted log OR estimates decreased with sample size and was generally smaller 

than the counterpart in the previous scenarios.  
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Discussion 

Our simulation results demonstrate that small sample size is associated with a high risk of 

imbalance in PFs in individual simple RCTs. The probabilities of an absolute imbalance ≥ 

5% in a binary PF of prevalence 0.5 is 0.42, 0.62 and 0.67 with 125, 50 and 25 patients 

per arm. The probability of absolute imbalance decreases as sample size increases or 

prevalence of PF approaches 0 or 1.   

Failing to adjust for a largely balanced strong PF (RR=5) in a logistic regression 

model leads to bias toward no treatment effect when the actual size of treatment effect is 

moderate (RR=0.75); this bias varies little with sample size greater than 50 patients per 

arm. Adjusting for such a PF reduces precision of the effect estimate but increases 

statistical power. The gain in power is comparatively larger when sample size is between 

500 and 1000 per arm and prevalence is within 0.2 – 0.6, relative to other cases. When the 

PF is less powerful and a treatment difference exists, improvement in accuracy and 

efficiency associated with the adjustment for a largely balanced PF is less noticeable. 

When the treatment effect is zero, such covariate adjustment leads to minimal loss of 

precision.  Overall the simulation results based on a single binary baseline PF suggest it is 

critical to adjust for important PFs in trials evaluating a binary outcome. If ignored, 

substantial bias due to confounding or non-collapsibility can emerge; bias would be more 

marked when PF has high predictive value and sample size is small to moderate. 

It is challenging to establish a single rule for sample size requirement focused on 

the probability and impact of prognostic imbalance. Multiple factors influence the 

requirement. 
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Firstly, sample size should be sufficiently large that the probability of imbalance 

is restricted to a reasonably low value. The adequate sample size varies with the choice of 

imbalance measure, the size of imbalance that is deemed important, and the prevalence of 

the PF. For example, Figure 1 suggests that if an absolute measure of imbalance ≥0.05 is 

deemed important, 1000 patients per arm is a reasonable size. 

Secondly, sample size should be sufficient to produce a reliable estimate of 

treatment effect. Although it has less impact on the magnitude of bias around the mean 

effect estimate in the unconditional setting, sample size does affect precision. While 

adjusting for PF removes systematic bias, estimates from an individual trial may still 

deviate from the true effect in either direction due to random sampling variation. Tables 2 

and 4 suggest that probabilities of having an absolute deviation >= 0.05 (in either 

direction) from the true ORR are 0.87-0.93 and 0.52-0.62 for trials recruiting 125 and 

2000 patients per arm, respectively. If trialists are willing to tolerate a slightly bigger 

deviation from the true ORR, for instance, no more than 0.1, the above probabilities 

decrease to 0.75-0.81 (125/arm) and 0.20-0.32 (2000/arm) for both models, and 2000 

patients per arm then seems to be a reasonable sample size (Tables 3 and 5). As PF 

becomes less prevalent, larger trial sizes are required for purposes of precision. When 

randomization partially or completely fails, no statistical adjustment or increase in sample 

size can fully correct the resulting bias.  

The current investigation on the likelihood of prognostic imbalance and its 

implications for sample size requirements is consistent with previous findings. A 

minimum of 100 patients per arm has been suggested to control the chance of imbalance 
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of 20% or more in a single PF [31], and 1350 per arm may be needed to minimize the 

chance of a 5% imbalance [3]. Although Cui et al calculated the probabilities of a 20% 

imbalance in at least one out of k independent PFs (k = 2, 3, and 4) [31], situations 

involving multiple correlated PFs are worth further investigation.  

Gail first demonstrated that omitting balanced baseline covariates in logistic 

regression asymptotically (i.e. for very large sample sizes) results in downward bias on 

the subject-specific treatment-outcome association [14]. This is also referred to as the 

non-collapsibility problem [16], because the odds ratio as the measure of association 

between the treatment and the binary outcome within each category of the baseline 

covariates (i.e. conditional or subject-specific association) is different from the 

association across all categories of the covariates (i.e. the marginal or average 

association).  

In their simulation study [32], Negassa and Hanley showed that omitting an 

important balanced continuous or binary covariate in logistic regression model lowers 

both the coverage probability (that is, the proportion of the time that the CI contains the 

true value of interest in a set of hypothetical repetition of data collection and analysis 

procedure [33]) and study power in binary trials with moderate sample sizes (n=500 and 

1000). These findings are complemented by a simulation study that explored the effect of 

imbalance in two continuous baseline covariates on power in a logistic regression 

framework when both variables were adjusted for in analyzing small trials (n = 50, 100 

and 300) [12]. Others quantified the increase in statistical power resulting from covariate 
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adjustment as a decrease in the sample size required in comparison to the unadjusted 

model [11].  

It was not clear in the literature, however, how the interplay of chance imbalance, 

the risk of outcome and the prevalence of a binary PF affects treatment effect estimation 

in trials with a binary outcome. Our simulation study provided information on what 

constitute an adequate sample size to control against potential impact of prognostic 

imbalance. Our results based on trials subject to chance imbalance across six sample sizes 

in the unconditional setting are consistent with the previous findings.  

When one is confident that all important PFs are distributed similarly between 

treatment groups in a binary trial, it is sensible to decide if the goal of a trial evaluating a 

binary outcome is to assess the marginal effect of treatment over patients with 

heterogeneous baseline prognosis, or to obtain a more individualized treatment effect 

estimate that is specific to a prognosis. These objectives can be achieved by using the 

unadjusted and adjusted logistic regression analyses. With a binary outcome, the two 

models produce mathematically different results in the presence of a non-zero treatment 

effect. Mismatch of the study objective, the statistical method, and interpretation of 

results can result in misleading messages. Due to the uncertainty around the existence or 

magnitude of the treatment effect and possibly different criteria to assess prognostic 

imbalance, we recommend reporting both the adjusted and unadjusted results in the 

manuscript. 
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The CPMP guideline recommends that including important PFs in the primary 

analysis can be justified only if their associations with the primary outcome are expected 

to be strong, based on previous evidence, and are specified a priori [18].  What constitutes 

adequate justification may be a matter of judgment. Our results demonstrate the value of 

adjustment, and suggest the merits of avoiding excessively stringent criteria when 

deciding whether prior evidence of prognostic power is adequate.  

Our study has several limitations. First, we included only one binary baseline PF 

to illustrate the probability and impact of prognostic imbalance in RCTs evaluating a 

binary outcome. For continuous PFs, Ciolino and colleagues proposed a rank-sum ratio to 

measure the level of imbalance in addition to the commonly used mean values [12]. 

When multiple PFs are present at baseline, balancing distribution of the individual PFs 

and the overall prognosis needs to be assessed. Although the single binary PF considered 

in the current study can be conceptualized as a measure of the overall prognosis of a 

patient based on multiple PFs, for instance, in a propensity score framework [34], further 

investigation on the distribution and impact of multiple correlated PFs on effect 

estimation in RCTs is warranted.  

Second, although our investigation was focused on prognostic balancing in 

individual RCTs, systematic reviews and meta-analyses face the same methodological 

challenges. The cumulative number of patients from individual RCTs and the between-

study variation need to be considered to assess the impact of imbalance on obtaining an 

aggregated estimate of treatment effects. Future work is needed in these directions. 
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Our study provides useful new insights. The results can not only help to design 

clinical trials, but can also inform quality assessment of a body of evidence from RCTs.  

Our simulation findings provide insights on prognostic imbalance which pertains to both 

risk of bias and imprecision [35]. The current study was not designed to propose a single 

threshold value of sample size that can be readily employed to rate the quality of evidence 

with respect to precision. Rather it lends itself to guide selection of such threshold values 

over various combinations of trial parameters, a subjective process likely influenced by 

the tolerance of risk.   

In summary, prognostic imbalance does not on average jeopardize internal 

validity of findings from RCTs, but if neglected, may lead to chance confounding and 

biased estimate of treatment effect in a single RCT. To produce an accurate estimate of 

the treatment-outcome relationship conditional on patients’ baseline prognosis, balanced 

or unbalanced PFs with high predictive value should be adjusted for in the analysis.  

Covariate adjustment slightly reduces precision, but improves study efficiency, when PFs 

are largely balanced. Once chance imbalance in baseline prognosis is observed, covariate 

adjustment should be performed to remove chance confounding. 
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Figure 1 Probability of imbalance using absolute measure (D1) with different trial sizes. 

Lines correspond to Pr (D1 ≥ d1), where d1 = 0.005 (hollow circle), 0.01 (triangle), 0.025 

(cross), 0.05 (X), 0.10 (diamond), 0.15 (inverted triangle), and 0.20 (filled circle), from 

the top to the bottom, respectively. Top left: 25/arm, top right: 50/arm, middle left: 

125/arm, middle right: 500/arm, bottom left: 1000/arm, bottom right: 2000/arm. 
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Figure 2 Bias, simulation standard deviation (SD), coverage proportion and statistical 

power for the unadjusted and adjusted logOR, in scenario 1, the unconditional setting, 

with 125 patients per arm. The unadjusted model is indicated by the dotted line with 

hollow circles, and the adjusted model is indicated by the solid line with filled circles. 
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Figure 3 Bias, simulation standard deviation (SD), coverage proportion and statistical 

power for the unadjusted and adjusted logOR, in scenario 1, the unconditional setting, 

with 2000 patients per arm. The unadjusted model is indicated by the dotted line with 

hollow circles, and the adjusted model is indicated by the solid line with filled circles. 
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Figure 4 Probability of difference between the estimated and true ORR (deviation in 

either direction) in scenario 1, the unconditional setting, with 125 patients per arm. 

Within each graph, lines correspond to Pr (|DORR| ≥ d2), where d2 = 0 (solid circle), 0.05 

(bullet), 0.10 (little circle), 0.15 (square), 0.2 (diamond) and 0.25 (triangle), from top to 

bottom, respectively.  

 

Figure 5 Probability of difference between the estimated and true ORR (deviation in 

either direction) in scenario 1, the unconditional setting, with 2000 patients per arm. 

Within each graph, lines correspond to Pr (|DORR| ≥ d2), where d2 = 0 (solid circle), 0.05 

(bullet), 0.10 (little circle), 0.15 (square), 0.2 (diamond) and 0.25 (triangle), from top to 

bottom, respectively.  

 



Table 1 Simulation scenarios for the unconditional and conditional settings  

 

Scenario 

Effect of 

treatment in 

RR* (B1) 

Effect of PF 

in RR† (B2) 

Incidence of 

outcome (B0) 

Prevalence of 

PF (C) 

Sample 

size/arm 

1 0.75 (-0.315) 5 (2.197) 0.1 (-2.197)   

2 0.75 (-0.315) 2 (0.811)  0.005 – 0.995  (a) 25 

3 1 (0) 5 (2.197)  (unconditional) (b) 50 

4 1 (0) 2 (0.811)   (c) 125 

5 0.75 (-0.301) 5 (1.846) 0.05 (-2.944) 0.05 – 0.95 (d) 500 

6 0.75 (-0.301) 2 (0.747)  (conditional) (e) 1000 

7 1 (0) 5 (1.846)   (f) 2000 

8 1 (0) 2 (0.747)    

 

* Relative risk of having an outcome event for people receiving the experimental treatment (vs. control treatment) 

without the prognostic factor 

† Relative risk of having an outcome for people with vs. without the PF in the control group 

SCN: Scenario 

  



Table 2 Probability of difference between the estimated and true ORR ≥ 0.05 in the unconditional setting scenario 1  

 

Difference from true 

ORR ≥ 0.05 

Unadjusted model Adjusted model 

 Sample 

size 

Prevalence of PF Prevalence of PF 

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5 

Over-  25 0.45 0.45 0.44 0.44 0.44 0.45 0.44 0.46 0.48 0.47 

estimation 50 0.46 0.44 0.43 0.42 0.39 0.47 0.47 0.47 0.47 0.45 

 125 0.44 0.42 0.39 0.35 0.33 0.45 0.45 0.44 0.43 0.42 

 500 0.37 0.33 0.29 0.24 0.20 0.38 0.38 0.37 0.36 0.33 

 1000 0.32 0.27 0.21 0.16 0.11 0.33 0.33 0.31 0.29 0.26 

 2000 0.25 0.19 0.14 0.08 0.04 0.27 0.26 0.25 0.23 0.18 

Under- 25 0.52 0.50 0.48 0.47 0.51 0.52 0.51 0.48 0.46 0.46 

estimation 50 0.47 0.49 0.49 0.47 0.49 0.46 0.46 0.46 0.44 0.45 

 125 0.43 0.45 0.46 0.48 0.48 0.43 0.43 0.43 0.43 0.41 

 500 0.39 0.41 0.44 0.46 0.47 0.39 0.37 0.37 0.36 0.33 

 1000 0.34 0.37 0.42 0.46 0.46 0.33 0.32 0.32 0.31 0.28 

 2000 0.28 0.33 0.38 0.44 0.44 0.27 0.26 0.26 0.25 0.20 

Overall 25 0.96 0.94 0.92 0.91 0.95 0.97 0.95 0.94 0.94 0.93 

 50 0.93 0.92 0.92 0.89 0.88 0.93 0.93 0.93 0.91 0.90 

 125 0.88 0.87 0.86 0.84 0.81 0.88 0.88 0.87 0.86 0.83 

 500 0.76 0.75 0.73 0.70 0.66 0.76 0.75 0.74 0.72 0.67 

 1000 0.66 0.64 0.63 0.62 0.57 0.66 0.65 0.63 0.60 0.54 

 2000 0.54 0.52 0.51 0.52 0.48 0.54 0.52 0.51 0.48 0.38 

ORR: odds ratio reduction; PF: prognostic factor 
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Table 3 Probability of difference between the estimated and true ORR ≥ 0.10 in the unconditional setting scenario 1  

 

Difference from true 

ORR ≥ 0.10 

Unadjusted model Adjusted model 

 Sample 

size 

Prevalence of PF Prevalence of PF 

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5 

Over-  25 0.37 0.37 0.38 0.40 0.38 0.39 0.41 0.43 0.44 0.44 

estimation 50 0.40 0.39 0.39 0.38 0.33 0.42 0.43 0.43 0.43 0.39 

 125 0.38 0.35 0.32 0.28 0.24 0.39 0.38 0.37 0.35 0.33 

 500 0.26 0.22 0.17 0.12 0.08 0.27 0.25 0.24 0.22 0.18 

 1000 0.17 0.13 0.09 0.05 0.02 0.18 0.18 0.16 0.14 0.09 

 2000 0.09 0.05 0.03 0.01 0.00 0.10 0.09 0.07 0.07 0.03 

Under- 25 0.51 0.49 0.47 0.43 0.42 0.52 0.49 0.46 0.43 0.42 

estimation 50 0.41 0.43 0.44 0.45 0.42 0.41 0.43 0.42 0.40 0.40 

 125 0.39 0.40 0.41 0.42 0.39 0.38 0.38 0.38 0.37 0.34 

 500 0.29 0.30 0.31 0.32 0.30 0.28 0.27 0.26 0.24 0.20 

 1000 0.21 0.23 0.25 0.26 0.24 0.20 0.20 0.19 0.17 0.13 

 2000 0.13 0.15 0.17 0.19 0.15 0.12 0.11 0.10 0.08 0.05 

Overall 25 0.88 0.86 0.85 0.83 0.80 0.91 0.90 0.89 0.88 0.86 

 50 0.81 0.81 0.83 0.82 0.75 0.83 0.85 0.85 0.83 0.79 

 125 0.76 0.75 0.72 0.70 0.63 0.76 0.76 0.75 0.72 0.67 

 500 0.55 0.52 0.49 0.45 0.38 0.55 0.52 0.50 0.47 0.39 

 1000 0.38 0.36 0.34 0.32 0.26 0.38 0.37 0.35 0.30 0.22 

 2000 0.22 0.20 0.20 0.20 0.15 0.22 0.20 0.18 0.15 0.08 

ORR: odds ratio reduction; PF: prognostic factor 
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Table 4 Probability of difference between the estimated and true ORR ≥ 0.05 in the unconditional setting scenario 3  

 

Difference from true 

ORR ≥ 0.05 

Unadjusted model Adjusted model 

 Sample 

size 

Prevalence of PF Prevalence of PF 

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5 

Over-  25 0.39 0.41 0.41 0.42 0.43 0.39 0.44 0.47 0.48 0.47 

estimation 50 0.44 0.44 0.44 0.45 0.46 0.44 0.47 0.47 0.47 0.46 

 125 0.45 0.46 0.46 0.45 0.42 0.46 0.45 0.45 0.45 0.44 

 500 0.41 0.41 0.39 0.39 0.36 0.33 0.32 0.31 0.30 0.27 

 1000 0.36 0.35 0.35 0.33 0.31 0.37 0.36 0.36 0.35 0.32 

 2000 0.31 0.30 0.29 0.27 0.23 0.31 0.30 0.30 0.29 0.26 

Under- 25 0.40 0.41 0.41 0.43 0.44 0.41 0.45 0.47 0.47 0.48 

estimation 50 0.43 0.43 0.45 0.45 0.45 0.43 0.46 0.47 0.47 0.46 

 125 0.46 0.46 0.46 0.45 0.42 0.46 0.45 0.45 0.44 0.44 

 500 0.40 0.40 0.39 0.38 0.35 0.41 0.40 0.40 0.39 0.37 

 1000 0.37 0.36 0.35 0.34 0.31 0.37 0.37 0.35 0.35 0.33 

 2000 0.32 0.31 0.30 0.28 0.24 0.32 0.32 0.31 0.29 0.26 

Overall 25 0.79 0.81 0.82 0.85 0.87 0.80 0.89 0.93 0.95 0.95 

 50 0.86 0.88 0.89 0.90 0.91 0.87 0.93 0.94 0.94 0.92 

 125 0.92 0.93 0.92 0.91 0.83 0.92 0.90 0.90 0.89 0.88 

 500 0.81 0.81 0.78 0.77 0.71 0.73 0.72 0.71 0.69 0.64 

 1000 0.73 0.71 0.70 0.67 0.61 0.73 0.73 0.72 0.70 0.65 

 2000 0.63 0.60 0.59 0.55 0.47 0.63 0.62 0.61 0.58 0.53 

ORR: odds ratio reduction; PF: prognostic factor 
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Table 5 Probability of difference between the estimated and true ORR ≥ 0.10 in the unconditional setting scenario 3  

 

Difference from true 

ORR ≥ 0.10 

Unadjusted model Adjusted model 

 Sample 

size 

Prevalence of PF Prevalence of PF 

0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5 

Over-  25 0.39 0.41 0.41 0.42 0.43 0.39 0.42 0.45 0.46 0.44 

estimation 50 0.44 0.44 0.44 0.45 0.39 0.43 0.44 0.44 0.43 0.42 

 125 0.38 0.39 0.39 0.38 0.36 0.39 0.40 0.39 0.39 0.37 

 500 0.31 0.30 0.28 0.27 0.23 0.31 0.31 0.29 0.29 0.25 

 1000 0.24 0.22 0.21 0.18 0.14 0.24 0.23 0.22 0.21 0.16 

 2000 0.16 0.14 0.13 0.11 0.06 0.16 0.14 0.14 0.12 0.09 

Under- 25 0.40 0.41 0.41 0.43 0.44 0.40 0.43 0.45 0.45 0.46 

estimation 50 0.43 0.43 0.45 0.45 0.41 0.43 0.43 0.45 0.44 0.42 

 125 0.41 0.39 0.39 0.39 0.37 0.42 0.41 0.40 0.39 0.38 

 500 0.32 0.31 0.30 0.28 0.24 0.33 0.32 0.31 0.30 0.27 

 1000 0.26 0.25 0.22 0.20 0.16 0.26 0.26 0.24 0.22 0.20 

 2000 0.18 0.17 0.15 0.12 0.08 0.18 0.17 0.17 0.15 0.11 

Overall 25 0.79 0.81 0.82 0.85 0.87 0.79 0.84 0.89 0.91 0.89 

 50 0.86 0.88 0.89 0.89 0.80 0.86 0.88 0.88 0.87 0.84 

 125 0.79 0.78 0.78 0.78 0.73 0.81 0.81 0.80 0.78 0.75 

 500 0.63 0.61 0.58 0.54 0.47 0.64 0.63 0.60 0.59 0.52 

 1000 0.49 0.47 0.43 0.38 0.30 0.50 0.49 0.47 0.43 0.36 

 2000 0.34 0.30 0.27 0.23 0.15 0.34 0.32 0.30 0.27 0.20 

ORR: odds ratio reduction; PF: prognostic factor 



Supporting Information 

Figure S1 Probability of imbalance using standardized measure (D2) with different trial sizes. 

Lines correspond to Pr (D2 ≥ d1), where d1 = 0.005 (hollow circle), 0.01 (triangle), 0.025 (cross), 

0.05 (X), 0.10 (diamond), 0.15 (inverted triangle), and 0.20 (filled circle), from the top to the 

bottom, respectively. Top left: 25/arm, top right: 50/arm, middle left: 125/arm, middle right: 

500/arm, bottom left: 1000/arm, bottom right: 2000/arm. 
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Figure S2 Bias, simulation standard deviation (SD), coverage proportion and statistical power for 

the unadjusted and adjusted logOR, in scenario 1, the unconditional setting, with 25 patients per 

arm. The unadjusted model is indicated by the dotted line with hollow circles, and the adjusted 

model is indicated by the solid line with filled circles. 
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Figure S3 Bias, simulation standard deviation (SD), coverage proportion and statistical power for 

the unadjusted and adjusted logOR, in scenario 1, the unconditional setting, with 50 patients per 

arm. The unadjusted model is indicated by the dotted line with hollow circles, and the adjusted 

model is indicated by the solid line with filled circles. 
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Figure S4 Bias, simulation standard deviation (SD), coverage proportion and statistical power for 

the unadjusted and adjusted logOR, in scenario 1, the unconditional setting, with 500 patients per 

arm. The unadjusted model is indicated by the dotted line with hollow circles, and the adjusted 

model is indicated by the solid line with filled circles. 
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Figure S5 Bias, simulation standard deviation (SD), coverage proportion and statistical power for 

the unadjusted and adjusted logOR, in scenario 1, the unconditional setting, with 1000 patients 

per arm. The unadjusted model is indicated by the dotted line with hollow circles, and the 

adjusted model is indicated by the solid line with filled circles. 
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Figure S6 Bias, simulation standard deviation (SD), coverage proportion and statistical power for 

the unadjusted and adjusted logOR, in scenario 2, the unconditional setting, with 25 patients per 

arm. The unadjusted model is indicated by the dotted line with hollow circles, and the adjusted 

model is indicated by solid line with filled circles. 
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Figure S7 Bias, simulation standard deviation (SD), coverage proportion and statistical power for 

the unadjusted and adjusted logOR, in scenario 2, the unconditional setting, with 50 patients per 

arm. The unadjusted model is indicated by the dotted line with hollow circles, and the adjusted 

model is indicated by the solid line with filled circles. 
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Figure S8 Bias, simulation standard deviation (SD), coverage proportion and statistical power for 

the unadjusted and adjusted logOR, in scenario 2, the unconditional setting, with 125 patients per 

arm. The unadjusted model is indicated by the dotted line with hollow circles, and the adjusted 

model is indicated by solid line with filled circles. 
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Figure S9 Bias, simulation standard deviation (SD), coverage proportion and statistical power for 

the unadjusted and adjusted logOR, in scenario 2, the unconditional setting, with 2000 patients 

per arm. The unadjusted model is indicated by the dotted line with hollow circles, and the 

adjusted model is indicated by the solid line with filled circles. 
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Figure S10 Bias, simulation standard deviation (SD), coverage proportion and statistical power 

for the unadjusted and adjusted logOR, in scenario 3, the unconditional setting, with 125 patients 

per arm. The unadjusted model is indicated by the dotted line with hollow circles, and the 

adjusted model is indicated by the solid line with filled circles. 
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Figure S11 Probability of difference between the estimated and true ORR (underestimation) in 

scenario 1, the unconditional setting, with 125 patients per arm. Within each graph, lines 

correspond to Pr (DORR ≤ - d2), where d2 = 0 (solid circle), 0.05 (bullet), 0.10 (little circle), 0.15 

(square), 0.2 (diamond) and 0.25 (triangle), from top to bottom, respectively. 

 

Figure S12 Probability of difference between the estimated and true ORR (overestimation) in 

scenario 1, the unconditional setting, with 125 patients per arm. Within each graph, lines 

correspond to Pr (DORR ≥ d2), where d2 = 0 (solid circle), 0.05 (bullet), 0.10 (little circle), 0.15 

(square), 0.2 (diamond) and 0.25 (triangle), from top to bottom, respectively.  
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Figure S13 Probability of difference between the estimated and true ORR (underestimation) in 

scenario 1, the unconditional setting, with 2000 patients per arm. Within each graph, lines 

correspond to Pr (DORR ≤ - d2), where d2 = 0 (solid circle), 0.05 (bullet), 0.10 (little circle), 0.15 

(square), 0.2 (diamond) and 0.25 (triangle), from top to bottom, respectively.  

 

 

Figure S14 Probability of difference between the estimated and true ORR (overestimation) in 

scenario 1, the unconditional setting, with 2000 patients per arm. Within each graph, lines 

correspond to Pr (DORR ≥ d2), where d2 = 0 (solid circle), 0.05 (bullet), 0.10 (little circle), 0.15 

(square), 0.2 (diamond) and 0.25 (triangle), from top to bottom, respectively. 
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Figure S15 Bias, simulation standard deviation (SD), coverage proportion and statistical power 

for the unadjusted and adjusted logOR, in scenario 1, the conditional setting, with 125 patients per 

arm. The unadjusted model is indicated by the dotted line with hollow circles, and the adjusted 

model is indicated by the solid line with filled circles. 
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Figure S16 Bias, simulation standard deviation (SD), coverage proportion and statistical power 

for the unadjusted and adjusted logOR, in scenario 1, the conditional setting, with 2000 patients 

per arm. The unadjusted model is indicated by the dotted line with hollow circles, and the 

adjusted model is indicated by the solid line with filled circles. 
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ABSTRACT 

Background: Tuberculosis (TB) at the initiation of antiretroviral therapy (ART) is 

expected to importantly affect the likelihood of survival among HIV co-infected patients. 

Yet, the magnitude of increased mortality is poorly understood. 

Methods: Using a prospective cohort study of 22,477 adult patients who initiated ART 

between August 2000 and June 2009 in Uganda, we assessed the effect of TB at the 

initiation of ART on all cause mortality using a Cox proportional hazard model on 

propensity score (PS) matched patients to control for potential confounding. Stratification 

and covariate adjustment for PS and the conventional Cox models were performed for 

sensitivity analysis. 

Results: A total of 1,609 (7.52%) patients were diagnosed as having TB at the start of 

ART. TB patients were more likely to be male, have AIDS defining illnesses, belong to 

WHO disease stage III or IV, and have lower CD4 cell counts at baseline. The 

percentages of death were 10.47% (95% confidence interval [CI]: 9.01% – 11.93%) and 

6.38% (95% CI: 6.05% – 6.71%) for patients with and without TB, respectively. The 

hazard ratio (HR) for mortality comparing TB and non-TB patients on 1,686 PS matched 

pairs (HR=1.37, 95% CI: 1.08 – 1.75) was less marked relative to the crude estimate 

(HR=1.74, 95% CI: 1.49 – 2.04). The other PS methods and the conventional Cox model 

produced similar results. 

Conclusions: After controlling for the important confounding variables, HIV patients 

who had TB at the initiation of ART have an increase in the risk of overall mortality 

relative to the non-TB patients.  
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Introduction 

The total number of people living with human immunodeficiency virus (HIV) reached 

33.4 million (31.1 – 35.8 million) worldwide by the end of 2008 (1), among whom two 

thirds resided in Sub-Saharan Africa. It is estimated that one-third of HIV infected people 

are co-infected with mycobacterium tuberculosis, which could reactivate or get a patient 

re-infected with a new strain, leading to active tuberculosis (TB) disease. However, TB 

incidence rates vary importantly according to geography and patient’s degree of 

immunosuppression as evidenced by CD4-T cell count. The incidence of active 

tuberculosis in HIV-infected patients with latent tuberculosis infection is about 10% per 

year as compared to 10% per lifetime for an HIV-uninfected individual (2). TB is a 

leading cause of HIV-related deaths and accounts for one half of the AIDS deaths 

worldwide (3). Recent trial data have shown that early (within 2 weeks) initiation of 

antiretroviral therapy during TB therapy can improve survival for patients with co-

infection (4-6). Guidelines and policies on joint HIV/ TB interventions have been 

developed to promote synergies between TB and HIV/AIDS prevention and care 

activities (7-9), aimed at reducing morbidity and mortality in TB co-infected HIV patients.  

On the other hand, joint treatment containing ART and anti-TB drugs may be complicated 

by overlapping toxicity profiles, complex drug-drug interactions, and immune 

reconstitution inflammatory syndrome (10-13).  

 

To date, the association between active TB and mortality in HIV-infected patients who 

receive ART is poorly understood, particularly in settings with a relatively lower TB 

prevalence, such as Eastern Africa (9,13,14) as compare to Southern Africa (14-16). An 
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observational study from Tororo, Uganda, comprising 1,044 HIV patients showed that TB 

at the initiation or during follow-up of ART was associated with a 4.7 fold increase in 

cumulative mortality relative to those without TB, without accounting for baseline 

covariates (17). A study in South Africa, a higher incidence setting, found a lack of 

association between initiation of pulmonary TB treatment and risk of death when 

controlling for baseline covariates such as CD4 count and WHO stage IV (15). These 

results suggested that the association of TB disease and mortality at start of TB treatment 

was clearly confounded by degree of immunosuppression. Several studies in more 

developed countries suggest substantial effects of incident TB on AIDS-related mortality 

among HIV patients subject to moderate ART exposure (18,19). Small cohort numbers of 

co-infected patients and incomplete information on clinical outcomes have led to 

widespread misunderstanding about the impact of TB/HIV co-infection on clinical 

outcomes and the optimal timing of treatment of both diseases. A recent meta-analysis 

suggested little impact of TB on mortality in HIV patients exposed to ART, yet readers 

need to bear in mind the heterogeneity in the timing of TB diagnosis and initiation of 

ART when interpreting the results (20). 

 

Our current study involves a large prospective cohort of HIV positive adult patients in 

Uganda, aiming to address two objectives: (1) to assess the impact of TB at ART 

initiation on overall survival among HIV patients during ART treatment by adjusting for 

potential confounders using propensity score (PS) methods (21-23),  and (2) to explore 

the robustness of the study findings by comparing results from different PS  methods 
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(matching on PS, stratifying on PS, adjusting for PS as regression covariate) and the 

conventional regression model. The propensity score methods have been increasingly 

used to control for baseline confounding in observational studies (21-26). They are a 

powerful alternative to estimate the average exposure effects on the whole population or 

subpopulations using the observed datasets (27). In the PS methods, the vector of 

potential confounding variables reduces to a single score that reflects one’s propensity of 

being exposed to an intervention or a risk factor. This provides relatively easy means to 

compare the distributions of individual potential confounders and the support of the PS 

between exposure groups (28). We hypothesized that having TB at the beginning of the 

treatment versus not was associated with increased overall mortality in HIV positive 

patients who receive ART within a 5-year follow-up. These results may help accurately 

plan TB and HIV/AIDS management activities in HIV patients with TB co-infection. 

 

Methods 

Setting, participants and data collection 

Our prospective cohort contains HIV-infected patients initiating ART at ten service 

centres managed by the AIDS Support Organization (TASO) across different settings in 

Uganda since 2000. Patients received ART from experienced medical staff, at TASO 

clinics, outreach clinics in rural areas, and through community-based treatment programs. 

Details of treatment administration have been published previously (29). Non-nucleoside 

reverse transcriptase inhibitors form the primary initiation regimen. The current study 

included adult patients (aged 14 years or older at ART initiation) enrolled between 
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August 2000 and June 2009, as part of an ongoing observational study intended to 

evaluate the programmatic delivery of services. After ART initiation, patients were 

scheduled for clinic visits at least every 3 months. Patients’ demographic, clinical, 

psychosocial and medication use data were collected by clinicians and field workers using 

standardized forms at ART initiation and each visit. 

 

At the time of data collection, national guidelines in Uganda used three strategies for 

initiating treatment of TB in a co-infected patient: 1) patient with TB and CD4 cell count 

< 250 cells/mm
3
 or a patient with extra-pulmonary TB or WHO stage IV disease: Start 

TB therapy first and when tolerated (usually within 2-6 weeks) then introduce ART; 2) 

Pulmonary TB and CD4 250-350 cells/mm
3
: start TB therapy for two months then 

introduce ART, and; 3) pulmonary TB and CD4>350 cells/mm
3
: defer ART, monitor 

clinically and also do CD4 cell counts regularly; re-evaluate the patient at eight weeks 

and the end of TB treatment (30). 

 

Primary outcome, exposure and potential confounding variables 

Our primary outcome was time from the initiation of ART to all-cause mortality. The 

primary exposure was active pulmonary TB as evidenced by sputum smear positive 

results at the initiation of ART, or suspected TB regardless of sputum results followed up 

by radiography. Fourteen variables containing clinical and demographic characteristics, 

and medicine history measured at the beginning of ART (baseline), were considered in 

the study and their role as potential confounders was investigated further. The 14 baseline 
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covariates included gender, age, CD4 count, WHO clinical disease stage of HIV/AIDS, 

presence of AIDS defining illness, TASO service centre (10 sites), calendar year of ART 

initiation, education, marital status, partner sero-status, sexual activity, sexually 

transmitted infection (STI), history of pneumocystis jeroveci pneumonia, and 

toxoplasmosis.  

 

Statistical analysis  

We adopted PS methods to estimate the causal effect of TB at the initiation of ART on 

overall survival of the HIV patients since their initiation of ART and reported the crude 

and adjusted effect of TB using hazard ratio [HR]. We chose PS matching as the primary 

method of analysis because empirical evidence suggested it provided better control of 

confounding relative to the other PS methods (31), and the statistical diagnostic tools for 

assessing the balance of potential confounders between the matched pairs were readily 

available (28,32,33). Specifically, we fit a Cox proportional hazard (PH) model on 1-to-1 

PS matched pairs to control for the observed potential confounding variables using a two-

step procedure. First, we modeled the relationship between having active TB at baseline 

and the observed baseline covariates using a logistic regression model (“PS model”). We 

employed an iterative approach (34) to build the PS model by starting with the 14 

observed baseline covariates; we then considered pairwise interactions, and polynomial 

terms of the continuous variables, if including them improved the predictive power the PS 

model and its ability to balance the distribution of the covariates between the PS matched 

pairs. We aimed to match each active TB patient to one non-TB patient on the logit of the 
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PS using calipers of width equal to 0.2 of the standard deviation of the logit of the 

estimated PS (31,35). Balance diagnostics of the baseline covariates were based on a 

series of numerical and graphical measures recommended in the literature, including the 

standardized difference, and for the continuous covariates (age and CD4 cell count), ratio 

of variance, 5-number summaries, QQ plot, nonparametric density plot, empirical 

cumulative distribution function and side-by-side boxplot.  Second, we fit a stratified (on 

the matched pairs) Cox PH model to estimate the impact of baseline TB on survival while 

adjusting for the dependence of outcome within pairs (36). The appropriateness of the PH 

assumption was assessed using log-log survival curves.  

 

We applied two other PS methods as supportive secondary analysis to assess the 

robustness or sensitivity of the PS matching analysis results, namely, the stratified Cox 

regression on 5 subclasses using quintiles of the estimated PS, and the Cox model 

adjusting for PS and its quadratic and cubic terms as covariates. The conventional Cox 

regression directly modeling the effect of TB on overall survival, adjusting for multiple 

baseline covariates in the same form as being included in the final PS model, was also 

performed as a sensitive analysis.  

 

Complete information was recorded for the study sample on TB status at ART initiation 

and all but four baseline covariates, namely, patient age (8% missing), CD4 count (17.3% 

missing), sexual activity (17.3% missing) and WHO clinical stage of HIV/AIDS (34.4% 

missing). Excluding patients who had missing data on any of the covariates would lead to 
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a loss of 48% subjects and 86% death events. Such exclusion could affect the stability of 

the PS matching method (due to low event rate) and jeopardize the internal validity and 

generalizability of the study. Therefore, we performed all analyses on five multiple 

imputation (MI) datasets (37). We used the Markov chain Monte Carlo method assuming 

a multivariate normality to create a monotone missing pattern, followed by separate 

imputations for the continuous (age, log CD4 count) and categorical (sexual activity and 

stage of disease) variables using linear and logistic regression models. A number of 

baseline characteristics (TB status, gender, TASO sites, AIDS status, education level, 

marital status, partner sero status, sexually transmitted infection, calendar year of ART 

initiation, and history of pneumocystis jeroveci pneumonia or toxoplasmosis) and follow-

up variables (death, switch of treatment regimen, patient adherence, and AIDS status post 

ART initiation) were included in the imputation procedure. While the same covariates 

were used to achieve prognostic balance on the five imputed datasets, the propensity 

scores were estimated separately for each individual dataset based on which an estimated 

effect of baseline TB on mortality was obtained. We then calculated the overall estimate 

of TB effect reported as hazard ratio [HR] with a 95% confidence interval (CI), and the 

associated p-value, using Rubin’s rule (37).  

 

We conducted all statistical analyses in SAS version 9.2 (Cary, NC), R 2.14.0 (R Core 

Development Team) and Stata 10 (College Station, TX). 

 

Ethics approval 
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University of British Columbia, University of Ottawa, and Mbale Regional Referral 

Hospital research ethics boards approved this study. 

 

Results 

Participant baseline characteristics 

The study cohort consists of 22,477 HIV-infected adult patients aged 14 years or older 

who started ART during August 2000 to June 2009 (Supplementary File #1: Figure S1). 

A total of 1,690 amongst the 22,477 patients (7.52%, 95% CI: 7.17% -7.86%) in the 

primary study sample were diagnosed having active TB at the initiation of ART. Table 1 

shows that TB patients tended to have a worse HIV-related prognosis at ART initiation. 

TB patients tended to be younger, more likely to be male, suffer more from AIDS 

defining illnesses, belong to WHO clinical stage of  III or IV, have a lower CD4 cell 

count, and have a history of pneumocystis jeroveci pneumonia. The prevalence of 

baseline TB disease was also unbalanced among the participating TASO centres.  

 

 

Association between TB at the initiation of ART and baseline covariates (PS model) 

The final PS model included all 14 baseline covariates, their pairwise interactions with 

gender and baseline AIDS status, and additional quadratic and interaction terms for the 

continuous variables to improve model fit (Supplementary File #2: Final PS model).  

Overall, the PS model predicted baseline TB status well.  We were able to match 1,686 

among all 1,690 baseline TB patients to an equal number of non-TB patients. PS 



PhD Thesis – R. Chu; McMaster University – HRM – Biostatistics 

 

122 

 

matching improved the similarity of the distributions of all baseline covariates between 

TB and non-TB patients and reduced the standardized differences to below 0.1. Table 2 

and Figures 1 and 2 display the balancing distributions of the baseline covariates for one 

of the five imputed datasets. Consistent patterns were observed across the imputed 

datasets. 

 

Association between TB and all-cause mortality 

During a median of 21.5 months of follow-up, 1,503 (6.69%, 95% CI: 6.36%-7.01%) 

among the 22,477 HIV patients who received ART died from all causes. The percentages 

of death were 10.47% (95% CI: 9.01% – 11.93%) and 6.38% (95% CI: 6.05% – 6.71%) 

for patients with and without TB, respectively, in the original unmatched sample. The risk 

of mortality remained higher in the 1,686 PS matched pairs, with 176 (10.44%, 95% CI: 

8.98%-11.90%) and 137 (8.13%, 95% CI: 8.13%-6.82%) deaths in the TB and non-TB 

groups. Compared with the crude difference in overall survival (HR=1.74, 95% CI: 1.49 – 

2.04) in the original sample, the hazard ratio for all cause mortality comparing TB and 

non-TB patients on the 1,686 PS matched pairs (HR= 1.37, 95% CI: 1.08 – 1.75) was less 

marked, indicating TB was associated with a 37% increase in the risk of death over the 

course of the study (Table 3). Kaplan-Meier survival curves are displayed in Figure 3. No 

violation of the PH assumption was suggested by the log-log survival curves.  

 

Sensitivity analyses 
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Stratifying on PS quintile and  adjusting for PS as a covariate in Cox regression models 

yielded similar TB effects on survival (PS-stratified HR=1.36, 95% CI: 1.15-1.60; PS-

adjusted HR=1.34, 95% CI: 1.14 -1.58) (Table 3). Adjusting for multiple baseline 

covariates simultaneously (as being entered in the PS model) in the conventional Cox 

model did not alter the association substantially (HR= 1.40, 95% CI: 1.19-1.65)   

 

Discussion 

This is, to our knowledge, the largest research cohort of HIV-infected patients receiving 

ART in a single African country that has evaluated TB outcomes in co-infected patients. 

The descriptive analysis showed that TB patients were more likely to be highly 

immunosuppressed and have a history of opportunistic infections (e.g. lower CD4 cell 

counts, more advanced WHO stage of HIV, and history of pneumocystis jiroveci 

pneumonia), and were more prevalent in certain geographical locations in Uganda. The 

results of the propensity score matching analysis showed that having TB at the initiation 

of ART led to a 37% increase in the risk of all cause mortality during the follow-up 

period between 2000 and 2009. Sensitivity analyses based on two other PS methods and 

the conventional Cox regression models showed similar results.  

 

The prevalence of active TB at the initiation of ART of 7.52% (1,690/22,477) in the study 

is consistent with results from a smaller TASO cohort reported from Tororo, Uganda (17). 

This indicates that TB is less prevalent in Uganda compared with other African countries 

(14,15). An open cohort of 7,512 patients receiving ART in South Africa suggested that 
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15.9% of HIV patients were being treated for pulmonary TB at the time of ART initiation 

between 2004 and 2007. Our finding of a 37% increase in hazard of all cause mortality 

associated with having active TB at the initiation of ART after controlling for potential 

baseline confounding is both statistically significant and clinically relevant. This result is 

different from Westreich et al’s findings on 7,512 HIV patients in South Africa, 

indicating pulmonary TB treatment at ART initiation was uncorrelated to the overall 

survival  (HR=1.06, 95% CI: 0.75-1.49) after adjusting for multiple confounders (15). 

There are several potential explanations for these conflicting data. First, all TB patients in 

the South Africa study received ART soon after initiation of TB treatment if well 

tolerated, which was less the case in the current study. Second, different sets of potential 

confounders as a proxy of disease prognosis were used in the two studies. While the 

presence of AIDS defining illnesses, history of pneumocystis jiroveci pneumonia and 

partner information at ART initiation were collected in the current study, body mass 

index and presence of anemia were not gathered in our study, nevertheless, controlled for 

in the South Africa study. Third, our primary goal was to assess the effect of TB at ART 

initiation in TB patients, by comparing them to the non-TB patients who had similar 

baseline demographic and clinical characteristics, using PS matching method. The South 

Africa study on the other hand estimated the average effect of TB using inverse 

probability weighting, as if one shifted the entire population from having active TB to not 

having TB, or vice-versa, at ART initiation (31). Forth, in addition to having a lower 

prevalence of active TB at baseline, the current cohort had higher CD4 cell counts (TB 

patients: median = 111, inter-quantile range [IQR]: 45-193; non-TB patients: median 



PhD Thesis – R. Chu; McMaster University – HRM – Biostatistics 

 

125 

 

=139, IQR: 66-208) relative to the South Africa study (TB patients: median = 58, IQR: 

22-116; non-TB patients: median = 94, IQR: 34-165). A potential interaction between the 

TB and CD4 count may also result in different effects of TB measured in the study 

population.  

 

Guidelines on the treatment of TB co-infection with HIV have changed dramatically over 

the last few years and may not reflect within-country variability. For example, early 

guidelines feared drug interactions between TB medication and ART or negative impact 

on adherence of ART or TB due to pill burden and suggested early treatment for TB 

disease followed by stabilization with ART. However, more recent evidence from 

randomized trials (4-6) suggests that starting ART within 2 weeks of TB treatment to 

improve survival appears to be well tolerated, and has persuaded guideline makers to 

recommend the co-administration of treatment. In addition, recent data from South Africa 

found  that although immune reconstitution inflammatory syndrome (IRIS) events were 

associated with slightly lower adherence rates, overall adherence to ART remained high 

in this TB-HIV co-infected population and that concerns about IRIS or drug-drug 

interactions should not deter clinicians from early ART initiation, but patients developing 

IRIS events should be monitored closely and potentially targeted for interventions to 

increase adherence(38). Other developments are related to the specific setting of co-

infection. Uganda, for example, has a lower national prevalence of co-infection than 

Southern Africa and has not reported any cases of extremely drug resistant TB infections. 

South Africa, on the other hand, has had an epidemic of XDR co-infections that have 
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resulted in quarantine of some patients and bi-directional recommendations about 

interacting with other individuals (39). National guidelines from Uganda do not match 

those of South Africa, as discussed earlier. 

 

Limitations of the study emerge from three key sources. First, propensity score methods 

cannot balance unobserved confounders in estimating a causal relationship, which is an 

inherited issue faced by all observational cohort studies. Our results may be biased if 

some unobserved prognostic factors were unbalanced between TB and non-TB groups. 

More resources need to be dedicated to improve the completeness and accuracy of data 

collection in HIV patients in underdeveloped regions. Although statistical tools, for 

instance the instrumental variable analysis, has been developed to  control for bias due to 

unobserved confounders (40), strong assumptions are required to ensure estimation 

accuracy, and such assumptions can be difficult to verify using empirical data. Second, 

the multiple imputation method employed to impute the missing values for baseline 

covariates requires the missing at random (MAR) assumption (i.e. the missingness can be 

explained by differences in the observed data). Although the current imputation procedure 

included a number of baseline characteristics and follow-up variables, we could not rule 

out the existence of additional variables that were highly associated with the missingness. 

The MAR assumption is unverifiable using data collected within a study. Third, our 

results are predominantly based on adult, HIV positive, African patients who initiated 

ART in Uganda, during 2004 to 2009, hence limiting their generalizability. The effect of 

the active TB on HIV patients in other age or ethnic groups and from different geographic 
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regions needs to be further investigated. 

 

Our study shows a 37% increase in the hazard f death among co-infected patients 

compared with those only infected with HIV. We used pulmonary TB as documented 

through sputum and radiologic confirmation for the diagnosis of TB as TASO, along with 

most AIDS Service Organizations in Africa lack the infrastructure to diagnose extra-

pulmonary TB. Also, we recognize that the sensitivity of sputum smear for the diagnostic 

of pulmonary TB in HIV-infected patients is poor (less than 50%) and thus follow-up 

suspected patients with radiologic examinations regardless of sputum results. Also, there 

are certain populations that may be at increased risk of co-infection that may otherwise go 

unnoticed. Children and adolescents, for example, report high rates of co-infection, 

possibly due to close confinement of living quarters (e.g. sharing beds). However, this 

population is more likely to go undiagnosed for HIV infection, especially in the absence 

of parents, and may have challenges adhering to their medications or accessing treatment 

(41,42). 

 

TASO patients are requested to identify a treatment supporter and discuss adherence with 

specific adherence counselors. However, they do not receive directly observed TB 

treatment, as is common in settings such as South Africa (43). The utility of directly 

observed treatment has been questioned in both HIV and TB separately (44,45), although 

the utility of this approach in co-infected patients has not been evaluated. It is possible 

that directly observed treatment has a role within this high-risk population as the first 3-
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months of therapy represents the greatest likelihood of treatment success or failure (46). 

Innovative interventions to promote both adherence and retention of patients in treatment, 

especially in the early stages is potentially cost-effective in settings such as Uganda as 

they have lower rates of co-infections and thus would require fewer human resources. 

 

Conclusions 

In summary, our current study suggests a moderate increase in risk of death associated 

with having active TB disease at the initiation of ART in HIV positive patients receiving 

ART in sub-Saharan Africa. Our finding is complementary to and strengthens results of 

the recent SAPIT (4), CAMELIA (5), and STRIDE trials (6) that demonstrate significant 

improvement on survival when ART is initiated during TB therapy. The results also 

validate the WHO guidelines that urge a more aggressive approach to management of 

both TB and HIV (47).  
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Figure 1 Distribution of age (in years) at ART initiation in TB and no-TB group in the 

original sample and PS matched pairs for a single MI dataset. From top to bottom: 

quantile-quantile plots, empirical cumulative distribution functions (circles represent TB 

and triangles represent no-TB), nonparametric density curves (solid line represents TB 

and dashed line represents no-TB), and side-by-side boxplots). 
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Figure 2 Distribution of CD4 cell counts at ART initiation in TB and no-TB group in the 

original sample and PS matched pairs for a single MI dataset. From top to bottom: 

quantile-quantile plots, empirical cumulative distribution functions (circles represent TB 

and triangles represent no-TB), nonparametric density curves (solid line represents TB 

and dashed line represents no-TB), and side-by-side boxplots. 
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Figure 3 Kaplan–Meier survival curves by baseline TB status in the unmatched study 

sample (top: 1a) and in the propensity score matched pairs for a single MI dataset (bottom: 

1b) 
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Table 1 Comparison of baseline and follow-up characteristics between HIV positive 

patients with and without co-infection of tuberculosis (TB) in the unmatched sample with 

imputed covariates (for a single MI dataset) 

 

Characteristics TB: yes 

(n=1690) 

TB: no 

(n=20787) 

P-value Standardized 

difference 

(Ratio of 

variance for 

continuous 

covariate) 

Demographics 

Age (year) 

Mean (SD) 

Min 

25
th

 percentile 

50
th

 percentile 

75
th

 percentile 

Max 

 

36.87 (8.78) 

14 

31 

36 

42 

73 

 

37.93 (9.48) 

14 

31 

37 

43 

99 

 

<0.0001 

 

-0.117 (0.86) 

Male: n (%) 670 (39.64) 6216 (29.90) <0.0001 0.206 

HIV prognosis 

CD4 count 

Mean (SD) 

Min 

25
th

 percentile 

50
th

 percentile 

75
th

 percentile 

Max 

 

143.39 

0 

45 

111 

193 

1701 

 

170.82 

0 

66 

139 

208 

1983 

 

<0.0001 

 

-0.170 (0.76) 

WHO stage:  

n (%) 

1 

2 

3 

4 

 

43 (2.54) 

441 (26.09) 

999 (59.11) 

207 (12.25) 

 

992 (4.77) 

11013 (52.98) 

7173 (34.51) 

1609 (7.74) 

 

<0.0001 

 

- 

AIDS: n (%) 493 (29.17) 3881 (18.67) <0.0001 0.248 

History of drug use & illnesses: n (%) 

Pneumocystis 

jeroveci pneumonia 

28 (1.66) 101 (0.49) <0.0001 0.114 

Toxoplasmosis 11 (0.65) 101 (0.49) 0.3542 0.022 

Sexually 

transmitted 

infection 

341 (20.17) 4353 (20.94) 0.4578 -0.019 

Partner information: n (%) 
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Married poly 125 (7.40) 1801 (8.66) 0.0734 -0.047 

Partner sero 

positive 

417 (24.67) 5801 (27.91) 0.0043 -0.073 

Sexually active 1224 (72.43) 15272 (73.47) 0.3508 -0.023 

Other characteristics: n (%) 

Site 

ENT 

GUL 

JIN 

MAS 

MBL 

MBR 

MSD 

MUL 

SOR 

TOR 

 

378 (22.37) 

161 (9.53) 

276 (16.33) 

130 (7.69) 

144 (8.52) 

116 (6.86) 

61 (3.61) 

211 (12.49) 

29 (1.72) 

184 (10.89) 

 

1950 (9.38) 

1891 (9.10) 

2586 (12.44) 

2246 (10.80) 

2446 (11.77) 

2641 (12.71) 

1254 (6.03) 

2390 (11.50) 

1546 (7.44) 

1837 (8.84) 

 

<0.0001 

 

- 

Education 

(Higher institute)  

58 (3.43) 623 (3.00) 0.3158 0.025 

Start year since 

2000 

0 

4 

5 

6 

7 

8 

9 

 

0 (0) 

23 (1.36) 

453 (26.80) 

373 (22.07) 

507 (30.00) 

330 (19.53) 

4 (0.24) 

 

2 (0.01) 

946 (4.55) 

4532 (21.80) 

3627 (17.45) 

6715 (32.30) 

4943 (23.78) 

22 (0.11) 

 

<0.0001 

 

- 

Follow-up 

Death: n (%) 177 (10.47) 1326 (6.38) <0.0001 0.148 

Median length of 

follow-up (days) 

627.5 646 - - 

Note: For continuous variables, mean and standard deviation for each group, 

standardized mean difference and ratio of variances between TB and no-TB patients are 

reported. For categorical variables, frequency and percentage of the specified level, and 

standardized difference between TB and no-TB patients are reported, unless noted 

otherwise. MI: multiple imputation, SD: standard deviation, WHO: World Health 

Organization, HIV: human immunodeficiency virus, AIDS: acquired immune deficiency 

syndromes, ENT: Entebbe, JIN: Jinja, MAS: Masaka, MBL: Mbale, MBR: Mbarara, 

MUL: Mulago, TOR: Tororo, GUL: Gulu, SOR: Soroti, MSD: Masindi 
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Table 2 Comparison of baseline and follow-up characteristics between HIV positive 

patients with and without co-infection of tuberculosis (TB) in propensity score matched 

pairs with imputed covariates (for a single MI dataset) 

 

Covariate TB: yes 

(n= 1686) 

TB: no 

(n= 1686) 

Standardized 

difference 

(Ratio of 

variance for 

continuous 

covariate) 

Demographics 

Age (year) 

Mean (SD) 

Min 

25
th

 percentile 

50
th

 percentile 

75
th

 percentile 

Max 

 

36.89 (8.77) 

14 

31 

36 

42 

73 

 

36.93 (8.87) 

14 

31 

36 

42 

77 

 

-0.005 (0.978) 

Male: n (%) 668 (39.62) 673 (39.92) -0.606 

HIV prognosis 

CD4 count 

Mean (SD) 

Min 

25
th

 percentile 

50
th

 percentile 

75
th

 percentile 

Max 

 

143.70 

(149.98) 

0 

45 

112 

194 

1701 

 

144.34 

(139.78) 

0 

44 

118 

196 

1247 

 

-0.004 

(1.15) 

WHO stage:  

n (%) 

1 

2 

3 

4 

 

43 (2.55) 

441 (26.16) 

996 (59.07) 

206 (12.22) 

 

43 (2.55) 

436 (25.86) 

983 (58.30) 

224 (13.29) 

 

- 

AIDS: n (%) 489 (29.00) 479 (28.41) 0.013 

History of drug use & illnesses: n (%) 

Pneumocystis 

jeroveci 

pneumonia 

25 (1.48) 33 (1.96) -0.037 

Toxoplasmosis 11 (0.65) 8 (0.47) 0.024 

Sexually 

transmitted 

infection 

340 (20.17) 339 (20.11) 0.001 
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Partner information: n (%) 

Married poly 125 (7.41) 136 (8.07) -0.024 

Partner sero 

positive 

417 (24.73) 431 (25.56) -0.019 

Sexually active 1221 (72.42) 1223 (72.54) -0.003 

Other characteristics: n (%) 

Site 

ENT 

GUL 

JIN 

MAS 

MBL 

MBR 

MSD 

MUL 

SOR 

TOR 

 

374 (22.18) 

161 (9.55) 

276 (16.37) 

130 (7.71) 

144 (8.54) 

116 (6.88) 

61 (3.62) 

211 (12.51) 

29 (1.72) 

184 (10.91) 

 

378 (22.42) 

176 (10.43) 

271 (16.07) 

125 (7.41) 

160 (9.49) 

121 (7.18) 

62 (3.68) 

203 (12.04) 

18 (1.07) 

172 (10.20) 

 

- 

Education 

(Higher institute)  

58 (3.44) 59 (3.50) -0.003 

Start year since 

2000 

4 

5 

6 

7 

8 

9 

 

23 (1.36) 

452 (26.81) 

372 (22.06) 

505 (29.95) 

330 (19.57) 

4 (0.24) 

 

15 (0.89) 

428 (25.39) 

360 (21.35) 

548 (32.50) 

330 (19.57) 

5 (0.30) 

 

- 

Follow-up 

Death: n (%) 176 (10.44) 137 (8.13) 0.080 

Median length of 

follow-up 

629 659 - 

Note: For continuous variables, mean and standard deviation for each group, 

standardized mean difference and ratio of variances between TB and no-TB patients are 

reported. For categorical variables, frequency and percentage of the specified level, and 

standardized difference between TB and no-TB patients are reported, unless noted 

otherwise. MI: multiple imputation, SD: standard deviation, WHO: World Health 

Organization, HIV: human immunodeficiency virus, AIDS: acquired immune deficiency 

syndromes, ENT: Entebbe, JIN: Jinja, MAS: Masaka, MBL: Mbale, MBR: Mbarara, 

MUL: Mulago, TOR: Tororo, GUL: Gulu, SOR: Soroti, MSD: Masindi 
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Table 3 Effect of TB at the initiation of ART on overall survival. Results for the PS or 

covariates adjusted Cox regression models were aggregated across 5 multiple imputed 

datasets using Rubin’s rule. 

 

Method HR 95% CI P-value 

Primary analysis    

Matching on PS 1.37 1.08, 1.75 0.011 

Sensitivity analyses    

Unadjusted Cox regression 1.74 1.49, 2.04 <0.001 

Stratified on PS 1.36 1.15, 1.60 <0.001 

PS as covariate (linear, quadratic and 

cubic terms) 

1.34 1.14, 1.58 <0.001 

Conventional Adjusted Cox regression 1.40 1.19, 1.65 <0.001 

HR: hazard ratio; CI: confidence interval; PS: propensity score. 

  



Supplementary files    
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Active TB at ART initiation (n=1,690) No active TB at ART initiation (n=20,787) 

Received ART during 2000 to 2009 

(n=23,802)  

Excluded (n=1325) 

♦ Data quality (n=236) 

♦ Patient younger than 14 years (n=1089) 

Exposure 

Analysed (n= 1,690) 

 

Analysed (n= 20,787) 

 

 

Analysis 

Total recruited (n=22,477) 

Enrollment 



Results and performance of the final propensity score (PS) model  

 

Table S1 Results of the final PS model (logistic regression)  

 

Parameter Log OR SE P-value 

Intercept -10.1492 203.8 0.9603 

Log CD4 -0.2434 0.1644 0.1388 

Age 0.0542 0.0245 0.0271 

Start year 2009 7.8238 203.8 0.9694 

Start year 2008 6.9890 203.8 0.9726 

Start year 2007 7.0638 203.8 0.9723 

Start year 2006 7.2817 203.8 0.9715 

Start year 2005 7.2678 203.8 0.9715 

Start year 2004 5.9117 203.8 0.9769 

Male -1.8350 288.2 0.9949 

Site TOR -0.1025 0.1441 0.4770 

Site SOR -1.9095 0.3146 <0.0001 

Site MUL -0.4611 0.1417 0.0011 

Site MSD -1.0093 0.2234 <0.0001 

Site MBR -1.3222 0.1690 <0.0001 

Site MBL -0.8514 0.1572 <0.0001 

Site MAS -1.2095 0.1612 <0.0001 

Site JIN -0.3232 0.1350 0.0167 

Site GUL -0.4642 0.1459 0.0015 

AIDS 1.2107 1.0281 0.2390 

No higher institute education -0.0769 0.2369 0.7455 

Married mono 0.0785 0.1440 0.5858 

Partner sero positive -0.1566 0.1002 0.1181 

Sexually transmitted infection -0.0334 0.0892 0.7079 

Pneumocystis jeroveci pneumonia 1.0783 0.3456 0.0018 

Toxoplasmosis 0.4414 0.5596 0.4302 

Sexually active -0.1753 0.0858 0.0410 

WHO stage 4 1.4352 0.9910 0.1476 

WHO stage 3 1.7945 0.9313 0.0540 

WHO stage 2 0.4028 0.9558 0.6734 

Log CD4*Male 0.0236 0.0424 0.5777 

Age*Male -0.00735 0.00639 0.2498 

Start year 2009*Male 4.3433 288.2 0.9880 

Start year 2008*Male 3.2245 288.2 0.9911 

Start year 2007*Male 3.0723 288.2 0.9915 

Start year 2006*Male 3.0641 288.2 0.9915 

Start year 2005*Male 3.0068 288.2 0.9917 

Start year 2004*Male 3.0180 288.2 0.9916 



PhD Thesis – R. Chu; McMaster University – HRM – Biostatistics 

 

144 

 

Site TOR*Male -0.5218 0.2065 0.0115 

Site SOR*Male 0.0825 0.4017 0.8372 

Site MUL*Male -0.6340 0.2041 0.0019 

Site MSD*Male -0.4321 0.3002 0.1501 

Site MBR*Male -0.1690 0.2331 0.4686 

Site MBL*Male -0.1867 0.2194 0.3949 

Site MAS*Male -0.3524 0.2260 0.1190 

Site JIN*Male -0.4547 0.1880 0.0156 

Site GUL*Male -0.4697 0.2172 0.0306 

AIDS*Male 0.1107 0.1377 0.4214 

No higher institute education * Male -0.0175 0.2958 0.9528 

Married mono * Male 0.1036 0.2050 0.6134 

Partner sero positive * Male 0.0284 0.1329 0.8308 

Sexually transmitted infection * Male 0.0101 0.1562 0.9484 

Pneumocystis jeroveci pneumonia * 

Male 

0.3997 0.4930 0.4174 

Toxoplasmosis*Male -0.5613 0.7571 0.4584 

Sexually active*Male 0.0111 0.1398 0.9367 

WHO stage 4*Male -0.5251 0.3667 0.1521 

WHO stage 3*Male -0.3691 0.3358 0.2717 

WHO stage 2*Male -0.5178 0.3439 0.1322 

(Log CD4)
2
 -0.00151 0.00774 0.8458 

(Age)
2
 -0.00046 0.000218 0.0330 

WHO stage 4 * Log CD4 0.1695 0.1603 0.2903 

WHO stage 3* Log CD4 0.1881 0.1545 0.2235 

WHO stage 2* Log CD4 0.1932 0.1584 0.2227 

WHO stage 4 * Age -0.0241 0.0187 0.1976 

WHO stage 3 * Age -0.0320 0.0168 0.0573 

WHO stage 2 * Age -0.0299 0.0173 0.0843 

Log CD4 * AIDS -0.00706 0.0445 0.8739 

Age * AIDS 0.00156 0.00712 0.8268 

Start year 2009 * AIDS -1.7342 1.7115 0.3109 

Start year 2008 * AIDS -0.6642 0.7857 0.3979 

Start year 2007 * AIDS -0.7006 0.7817 0.3701 

Start year 2006 * AIDS -0.9289 0.7852 0.2368 

Start year 2005 * AIDS -0.5780 0.7811 0.4593 

Site TOR * AIDS -0.6444 0.2459 0.0088 

Site SOR * AIDS -0.1947 0.4644 0.6750 

Site MUL * AIDS -0.0822 0.2005 0.6818 

Site MSD * AIDS -0.4462 0.3279 0.1735 

Site MBR * AIDS -0.0858 0.2415 0.7222 

Site MBL * AIDS -0.4701 0.2434 0.0535 
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Site MAS * AIDS -0.4706 0.2540 0.0639 

Site JIN * AIDS -0.3984 0.1989 0.0452 

Site GUL * AIDS -0.2182 0.2683 0.4161 

No higher institute education * AIDS 0.3807 0.3528 0.2805 

Married mono * AIDS -0.0368 0.2279 0.8719 

Partner sero positive * AIDS -0.1394 0.1504 0.3542 

Sexually transmitted infection * AIDS -0.0282 0.1446 0.8455 

Pneumocystis jeroveci pneumonia * 

AIDS 

0.0779 0.4706 0.8685 

Toxoplasmosis * AIDS -0.5476 0.7043 0.4369 

Sexually active * AIDS 0.2564 0.1425 0.0719 

WHO stage 4 * AIDS -0.5620 0.4230 0.1840 

WHO stage 3 * AIDS -0.7115 0.4019 0.0767 

WHO stage 2 * AIDS -0.2125 0.4104 0.6046 

Log OR: log odds ratio, SE: standard error, p-value: Wald Chi-squared p-value, WHO: 

World Health Organization, HIV: human immunodeficiency virus, AIDS: acquired 

immune deficiency syndromes, ENT: Entebbe, JIN: Jinja, MAS: Masaka, MBL: Mbale, 

MBR: Mbarara, MUL: Mulago, TOR: Tororo, GUL: Gulu, SOR: Soroti, MSD: Masindi 
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Table S2 Model Fit Statistics for the PS model 

 

Criterion Intercept 

Only 

Intercept 

and 

Covariates 

AIC 11998.265 10913.351 

SC 12006.285 11651.214 

-2 Log L 11996.265 10729.351 

Convergence criterion (GCONV=1E-8) 

satisfied.  

AIC: Akaike information criterion, SC: Schwarz Criterion,  

Log L: log likelihood 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF P-value 

Likelihood 

Ratio 

1266.9134 91 <0.0001 

Score 1363.4461 91 <0.0001 

Wald 1080.6807 91 <0.0001 

DF: degree of freedom 

 

Hosmer and Lemeshow Goodness-of-Fit 

Test 

Chi-

Square 

DF P-value 

10.9856 8 0.2025 

DF: degree of freedom 
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CHAPTER 5 

CONCLUSIONS 

There are many clinical and methodological issues associated with baseline covariate 

adjustment in clinical trials. A subset of such challenges include: (1) analyzing correlated 

outcomes in multicentre randomized controlled trials (RCTs), (2) evaluating the 

probability and implication of baseline prognostic imbalance in RCTs, and (3) estimating 

the effect of tuberculosis (TB) on all-cause mortality in a large prospective cohort of HIV 

patients who received antiretroviral therapy (ART). We have studied these important 

topics in a manuscript-based thesis, with each chapter dedicated to investigating each of 

the issues. In this chapter, we summarize research findings, discuss their implications and 

limitations, and shed light for future investigation. 

 

In Chapter 2, we conducted a simulation study to compare 6 statistical methods (4 

patient-level models: ignoring centre effects, including centres as fixed effects, including 

centres as random effects, generalized estimating equation (GEE); and 2 centre-level 

models: fixed- and random-effects centre-level analysis) that are commonly used for 

estimating treatment effects on a continuous outcome in multicentre RCTs. We 

considered three designs with equal or varying numbers of patients per centre and a 1-to-1 

randomization ratio, in the absence of treatment-by-centre interaction. We found that all 6 

models yielded unbiased point estimates of the treatment effect over a wide spectrum of 
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intra-class (or intra-centre) correlation (ICC) values when the numbers of patients 

randomized to the two treatment groups were equal or subject to chance imbalance. 

Ignoring centre effects or intra-centre correlation did not bias the estimation of treatment 

effect for even large ICC values. This is largely because when treatments are allocated in 

the same proportion in all centres (or subject to change imbalance only), centre has no 

association with the treatment allocation, hence adjusting for centre effect or not has little 

impact on the point estimate of the treatment - response relationship given that the 

response variable is a continuous. Yet, the models produced different standard errors (SEs) 

for the estimated treatment effects in several scenarios, which subsequently led to 

different confidence interval (CI) estimates. Our simulation study demonstrated the 

advantage of treating centres as random intercepts in the absence of treatment-by-centre 

interaction. Overall, the random-intercept model produced the most precise effect 

estimates among the methods investigated and attained nominal values for CI coverage 

and statistical power, under all simulated circumstances. The fixed-intercept model 

demonstrated extremely similar statistical properties (in terms of bias, precision, CI 

coverage and power) relative to the random-intercept model in balance design; this 

method was less efficient when the study was composed of many centres (20+) each 

recruiting a few patients. When the number of centres was below 40, the GEE method 

tended to slightly underestimate the SE, subsequently resulting in greater statistical power 

(i.e. the treatment effect estimate was more likely to be statistically significant with a 

smaller SE) and lower CI coverage. We also encountered non-convergence problem when 

running GEE algorithm when centre sizes were highly variable. When one failed to 
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control for the potential centre effects in any form, as in a regular two-sample t test, the 

SE of the estimated treatment effect was severely overestimated for large ICC values 

greater than or equal to 0.2, leading to falsely high CI coverage and a decrease of 

statistical power. The centre-level models on average yielded larger SEs, lower coverage 

or statistical power relative to the patent-level models. Their incapability to adjust for 

patient-level covariates was a major drawback when prognostic imbalance was likely. 

 

This project complements the ICH E9 guideline (1), by studying the impact of ICC on the 

evaluation of treatment effects, a practical challenge faced by many trialists yet 

inadequately discussed in the literature. The key implications on the analysis and design 

of multicentre RCTs include the following. First, the sample size needs to be increased by 

an inflation factor of 1/(1-ICC) to account for within centre clustering, if an initial sample 

size evaluation and intended primary analysis employ a two-sample t-test. It is important 

to obtain an approximate estimate of ICC for the primary outcomes either through 

literature review or by conducting a pilot study. Second, permutated block randomization 

should be conducted when feasible, so that the treatment allocation proportions across 

centres are approximately the same and the treatment contrast and centre effects can be 

estimated independently and efficiently. Third, random-intercept models can recover 

inter-centre information in an unbalanced design and produce an accurate and more 

precise estimate of the treatment effect than the t-test and fixed-intercept model, when a 

large number of participating centres enroll only a few patients. Forth, centre sizes for the 

majority of the centres should be sufficiently large to ensure reliable estimation of the 
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within-centre variation, especially when the ICC value is unknown or possibly large. 

Although we observed similar results on simulations involving equal and varying centre 

sizes, similar centre sizes may help achieve convenience of the GEE approach when the 

value of ICC is below 0.1 or beyond 0.4.  

 

A limitation of this project is preclusion of treatment-by-centre interaction in the 

simulations. Such interaction may exist in practice, due to differences in patient 

population or variability in patient care among the participating centres, yet can be 

difficult to detect because of the lack of statistical power. Methodological challenges 

include the development of a statistical measure for the overall treatment effect across 

trials sites, the focus of statistical inference (individual treatment effects for participating 

sites versus an aggregated effect across sites), statistical and computational performance 

of the analytic models in various circumstances (balanced or unbalanced design with 

equal or highly variable centre sizes and different ICC values). Future theatrical and 

simulation studies are needed. 

 

In Chapter 3, our simulation study demonstrated that random error or chance plays an 

important role in the occurrence of prognostic imbalance and the estimation of treatment 

effects in individual RCTs. Simulation results showed that small sample size was 

associated with a high risk of imbalance in prognostic factors (PFs) in a particular trial. 

The probabilities of an absolute imbalance ≥ 5% in a binary PF of prevalence 0.5 were 
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estimated 0.42, 0.62 and 0.67 with 125, 50 and 25 patients per treatment arm, respectively. 

The probability of absolute imbalance decreased when sample size increased or 

prevalence of PF approached 0 or 1. Our results based on a single binary baseline PF 

suggested that it is essential to adjust for important PFs in trials evaluating a binary 

outcome. Ignoring PFs of high predictive values in the analysis would lead to severe bias 

or loss of statistical power, due to non-collapsibility (2) or chance confounding. When the 

PF was less powerful or a treatment difference did not exist, improvement in accuracy 

and efficiency associated with the adjustment for the PF was less noticeable.  

 

It was challenging to establish a single rule for sample size requirement based on the 

probability and impact of prognostic imbalance. Our study added to the current literature 

on what constitutes an adequate sample size to control against potential impact of 

prognostic imbalance, and demonstrated that the adequacy varies with multiple factors, 

including the choice of imbalance measure, the size of imbalance deemed important, 

one’s tolerance of the random error around the estimated treatment effects, and the 

prevalence of the PF. The proposed tool for sample size requirement not only helps to 

design clinical trials, but is also useful to assess the quality of completed trials by 

evaluating the likelihood and impact of potential risk of chance confounding. 

 

The probabilities of prognostic imbalance can also be calculated mathematically based on 

the difference between two independent and identically distributed binomial variables, 
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each representing the number of patients who have the baseline prognostic factor in a 

treatment group. Computer program is likely to be needed to obtain numerical values of 

the mathematical expression given the large sample sizes being investigated in Chapter 3. 

The simulation technique employed in the study allows us to address multiple research 

objectives in a unified framework while maintaining validity of the scientific 

investigation. This project had the following limitations. First, only one binary baseline 

PF was considered in the simulation. The balancing distributions of multiple correlated 

PFs between treatment groups needs to be assessed and their impact on effect estimation 

in RCTs is warranted. Second, systematic reviews and meta-analyses face the similar 

methodological challenges on prognostic balancing. Future work is needed to assess the 

impact of imbalance on obtaining an aggregated estimate of treatment effects in meta-

analyses, where the cumulative number of patients from individual RCTs and between-

study variation need to be taken into consideration. 

 

In Chapter 4, we assessed the relationship between having active tuberculosis (TB) at the 

initiation of antiretroviral therapy (ART) and overall survival among 22,477 adult HIV 

patients who received ART during August 2000 to June 2009, in Uganda, Africa. At the 

beginning of ART (baseline), 1,690 (7.52%) HIV patients were identified as having TB. 

At baseline, TB patients were more likely to be male, have AIDS defining illnesses, 

belong to WHO disease stage III or IV, and have lower CD4 cell counts, compared with 

the no-TB patients. To reduce bias and improve estimation stability and efficiency, we 

applied multiple imputation (MI) procedure to impute missing values for 4 important 
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baseline covariates (age, CD4 cell count, WHO disease stage and sexual activity), and 

performed all statistical analyses on 5 MI datasets. The final propensity score model (PS) 

included 14 baseline covariates, their pairwise interactions with gender and baseline 

AIDS status, and additional quadratic and interaction terms for the continuous variables 

to improve model fit. We managed to match 1,686 among all 1,690 baseline TB patients 

to an equal number of no-TB patients. The similarity of the distributions of all baseline 

covariates between the TB matched pairs was improved substantially. 

 

We estimated the hazard ratio for all-cause mortality to be 1.37 (95% CI: 1.08-1.75), 

comparing TB and no-TB patients on the 1,686 PS matched pairs with similar disease 

prognosis at baseline. This indicated having TB at the initiation of ART was associated 

with a 37% increase in the instantaneous risk of death, over a median of 21.5 months of 

follow-up. Stratification and covariate adjustment for the PS and controlling for multiple 

baseline covariates using Cox regression yielded similar results (PS-stratified HR=1.36, 

95% CI: 1.15-1.60; PS-adjusted HR=1.34, 95% CI: 1.14 -1.58; adjusted Cox HR= 1.40, 

95% CI: 1.19-1.65), all less marked than the crude estimate (HR=1.74, 95% CI: 1.49-

2.04). 

 

This project, to our knowledge, involved a large research cohort of HIV-infected patients 

receiving ART in a single African country that evaluated TB outcomes in co-infected 

patients. Results suggested that TB was less prevalent in Uganda compared with other 
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African countries (3,4). Our finding of the 37% increase in hazard of all-cause mortality 

associated with having active TB at the initiation of ART after controlling for baseline 

confounding is complementary to and strengthens results of the recent SAPIT, 

CAMELIA, and STRIDE trials (5-7) that demonstrated significant improvement on 

survival when ART was initiated during TB therapy. Our results validate the WHO 

guidelines that urge a more aggressive approach to management of both TB and HIV (8) .  

 

In this project, we described a PS-based framework to estimating the causal effect of an 

exposure variable (that cannot be manipulated in the study) on a clinical outcome using 

an observational prospective cohort design. When the sample size or the number of 

outcome events is small relative to the proportion subjects being exposed, the 

conventional statistical adjustment approaches may not provide adequate control against 

important confounding. Stratifying on or adjusting for a large number of confounders 

during the estimation of the exposure-outcome relationship may create sparse data 

problem and subsequently affect model stability or efficiency. Non-overlapping supports 

of the confounders in the comparison groups can lead to invalid results. Comparability of 

the confounding variables between the exposed and unexposed groups post covariate 

adjustment can be difficult to examine. The PS methods are a powerful alternative to 

estimate the average exposure effects on the whole population or subpopulations with 

observed datasets. In such methods, the vector of potential confounding variables reduces 

to a single score that reflects one’s propensity of being exposed. As illustrated in Chapter 

4, this provides relatively easy means to compare the distributions of individual potential 
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confounders and the support of the PS between exposure groups. Sensitivity analysis is a 

useful tool to examine the validity and variability of statistical inference when only 

empirical data are available. Results of the supportive analyses showed our study findings 

were robust to different modeling options. 

 

Limitations of this project emerged from three key sources. First, our results in Chapter 4 

are predominantly based on adult HIV patients who initiated ART during 2004 to 2009 in 

Uganda. Information of TB treatment was not available in the dataset, hence limiting the 

generalizability of the results. The effects of active TB on mortality for HIV patients with 

and without TB treatment, in different age or ethnic groups, and from different 

geographic regions warrant further investigation. Second, PS methods similar to most 

other analytical approaches, cannot balance unobserved confounders in estimating a 

causal relationship. Our results may be biased if some unobserved prognostic factors were 

unbalanced between TB and no-TB groups. More resources need to be dedicated to 

improve the completeness and accuracy of data collection in HIV patients in 

underdeveloped regions. Statistical tools such as the instrumental variable analysis can 

also be explored to handle bias due to unobserved confounders (9). Lastly, the multiple 

imputation (MI) method employed to impute the missing values for baseline covariates 

requires the missing at random (MAR) assumption (i.e. the missingness can be explained 

by differences in the observed data) (10). We could not rule out the existence of 

additional variables that were highly associated with the missingness. Because the MAR 

assumption is unverifiable using data collected within a study, simulation studies may be 
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needed to study the performance of MI and the determinants of MI behaviour, when 

missingness is not at random. The more sophisticated adjustment methods can make an 

impact on clinical research, only if user friendly software is accessible for the applied 

biostatisticians and clinical researchers. 

 

In summary, this PhD dissertation identified and investigated issues of covariate 

adjustment in late phase clinical trials. The three papers make contributions by exploring 

the phenomena of imbalance in baseline covariates and intracentre correlation in 

randomized and observational studies. The impact of each phenomenon on the estimation 

of the intervention effects has been carefully investigated. The performances of multiple 

routine statistical methods have been compared under various design parameters and 

using an observational dataset. Overall we showed that baseline covariates contain useful 

information and should be taken into consideration in the analysis and review of clinical 

trials. Interaction between baseline covariates and the intervention in individual studies 

meta-analyses warrants further investigation. 
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