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ABSTRACT:

The joint censoring scheme is of practical significance while conducting compara-

tive life-tests of products from different units within the same facility. In this thesis,

we derive the exact distributions of the maximum likelihood estimators (MLEs) of

the unknown parameters when joint censoring of some form is present among the

multiple samples, and then discuss the construction of exact confidence intervals for

the parameters.

We develop inferential methods based on four different joint censoring schemes.

The first one is when a jointly Type-II censored sample arising from k independent

exponential populations is available. The second one is when a jointly progressively

Type-II censored sample is available, while the last two cases correspond to jointly

Type-I hybrid censored and jointly Type-II hybrid censored samples. For each one of

these cases, we derive the conditional MLEs of the k exponential mean parameters,

and derive their conditional moment generating functions and exact densities, using

which we then develop exact confidence intervals for the k population parameters.

Furthermore, approximate confidence intervals based on the asymptotic normality

of the MLEs, parametric bootstrap intervals, and credible confidence regions from a

Bayesian viewpoint are all discussed. An empirical evaluation of all these methods

of confidence intervals is also made in terms of coverage probabilities and average

widths. Finally, we present examples in order to illustrate all the methods of inference

developed here for different joint censoring scenarios.
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Chapter 1

Introduction

1.1 Order Statistics

In general, the failure times we observe from a life-testing experiment arise in a

naturally increasing order, and so we can use the theory of order statistics to analyze

these lifetime data. Extensive literature exists with regard to theory, methods and

applications of order statistics. Interested readers may refer to the books by Arnold

et al. (1992), Balakrishnan and Rao (1998a, b) and David and Nagaraja (2003) for

exhaustive reviews on all these developments.

Let X1, X2, · · · , Xn be a random sample of size n from a continuous population

with cumulative distribution function (cdf) F (x) and probability density function

(pdf) f(x). The smallest of the Xi’s is denoted by X1:n, the second smallest is

denoted by X2:n, and so on, and the largest is denoted by Xn:n. The order statistics

1



Chapter 1.1 - Order Statistics 2

so obtained are X1:n ≤ X2:n ≤ · · · ≤ Xn:n. To derive the density function of Xi:n,

for i = 1, 2, · · · , n, we consider the event {x < Xi:n ≤ x + δx}, which is the same as

Xr ≤ x for i − 1 of Xr’s, x < Xr ≤ x + δx for exactly one of Xr’s, and Xr > x + δx

for the remaining n− i many of Xr’s, except for terms of order O(δ2
x). Evidently, we

have n!
(i−1)!(n−i)! many such possible events. Thus, we have

P (x < Xi:n ≤ x+ δx)

=
n!

(i− 1)!(n− i)!
[F (x)]i−1[1− F (x+ δx)]

n−i(F (x+ δx)− F (x)) +O(δ2
x),

where O(δ2
x) corresponding to all events with at least two Xr’s in the interval (x, x+

δx). The pdf of Xi:n is then obtained as

fi:n(x) = lim
δx→0

P (x < Xi:n ≤ x+ δx)

δx

=
n!

(i− 1)!(n− i)!
f(x)[F (x)]i−1[1− F (x)]n−i, −∞ < x <∞.

Similarly, the joint pdf of Xi:n and Xj:n can be obtained as

fi,j:n(xi, xj)

=
n!

(i− 1)!(j − i− 1)!(n− j)!
f(xi)f(xj)[F (xi)]

i−1[F (xj)− F (xi)]
j−i−1[1− F (xj)]

n−j,

−∞ < xi < xj <∞.
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The joint pdf of X1:n, · · · , Xn:n can be obtained directly as

f1,··· ,n:n(x1, · · · , xn) = n!
n∏
i=1

f(xi), −∞ < x1 < · · · < xn <∞.

The diverse applications of order statistics include robust estimation, detection of

outliers, inference based on censored sample, survival analysis, and reliability theory.

Of course, as mentioned earlier, order statistics play a very important role in the

analysis of data obtained from life-testing experiments.

1.2 Common Censoring Schemes

Censoring is often encountered in reliability and life-testing experiments, since the

experimenter may have to terminate the test before all items have failed due to time

limit or economic reason. The two most common forms are Type-I and Type-II

censoring schemes. In Type-I censoring scheme, the experimental time is fixed, but

the number of observed failures is a random variable. In Type-II censoring scheme, the

number of observed failures is fixed, but the experimental time is a random variable.

1.2.1 Type-I Censoring

Consider a life-testing experiment in which n units are placed on test. The ordered

lifetimes of these units are denoted by X1:n, X2:n, · · · , Xn:n, respectively. The lifetimes

of the sample units are assumed to be independent and identically distributed (i.i.d.)
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random variables with cdf F (x) and pdf f(x).

Let T be a pre-fixed time. In Type-I censoring scheme, the experimenter will

choose to terminate the experiment at the time point T . Let D be the random

variable such that XD:n ≤ T < X(D+1):n. Then, in this case, we have the likelihood

function as

L(θ|x1, · · · , xD) =
n!

(n−D)!

D∏
i=1

f(xi)(1− F (T ))n−D,

x1 < x2 < · · · < xD < T.

1.2.2 Type-II Censoring

Let r be a pre-fixed positive integer. In Type-II censoring scheme, the experimenter

will choose to terminate the experiment when r failures have been observed. Thus,

the experimental time here is Xr:n. In this case, we have

L(θ|x1, · · · , xr) =
n!

(n− r)!

r∏
i=1

f(xi)(1− F (xr))
n−r,

x1 < x2 < · · · < xr.

1.2.3 Progressive Type-II Censoring

Progressive censoring has been discussed quite extensively recently in the literature.

Suppose (R1, R2, · · · , Rr) is the pre-fixed progressive censoring scheme. Then, under

the progressive Type-II censoring scheme, at the time of the first failure, R1 of the
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n − 1 surviving units are withdrawn randomly from the life-test, at the time of the

second failure, R2 of the n − R1 − 2 surviving units are withdrawn randomly from

the life-test, and so on, until the r-th failure is observed, at which time, all remaining

surviving units are withdrawn from the life-test. In this case, we have

L(θ|x1, · · · , xr) =
r∏
j=1

(n− j + 1−
j−1∑
i=1

Ri)
r∏
i=1

f(xi)(1− F (xi))
Ri ,

x1 < x2 < · · · < xr.

As we can see, if R1 = R2 = · · · = Rr−1 = 0, then Rr = n− r which corresponds

to the conventional Type-II censoring scheme. Of course, if r = n with R1 = R2 =

· · · = Rn = 0, then we will have the complete sample situation.

1.2.4 Type-I and Type-II Hybrid Censoring

In Type-I hybrid censoring scheme, the experimenter will choose to terminate the

experiment at the time point T ∗ = min{Xr:n, T}. Thus, the test is terminated when

a pre-fixed number, r < n, out of n items has been observed, or when a pre-fixed

time T , has been reached. In this censoring, the experimental time is no more than

T , but the number of observed failures is a random variable.

In Type-II hybrid censoring scheme, the experimenter will choose to terminate

the experiment at the time point T ∗∗ = max{Xr:n, T}. Thus, if the r-th failure is

observed before time T , the test will be terminated at time T ; if the r-th failure is
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observed after time T , the test will be terminated at time Xr:n. In this censoring,

the number of observed failures is at least r, but the experimental time is a random

variable.

1.3 Joint Censoring and Background

The joint censoring scheme is of practical significance in conducting comparative life-

tests of products from different lines within the same facility. Suppose products are

being manufactured by k different lines within the same facility, and that k inde-

pendent samples of sizes nh, 1 ≤ h ≤ k, are selected from these k lines and placed

simultaneously on a life-testing experiment. In order to reduce the cost of the exper-

iment as well as the experimental time, the experimenter may choose to terminate

the experiment after a certain number (say, r) of failures has been observed altogeth-

er. In this situation, one may be interested in either point or interval estimation of

the mean lifetimes of units produced by these k lines. In this thesis, we derive the

maximum likelihood estimates of the scale parameters of k exponential populations

under this set-up, and then develop exact conditional inferential methods based on

these maximum likelihood estimates.

The joint censoring scheme has been considered before in the literature. For ex-

ample, Epstein (1954) introduced the Type-I hybrid censoring scheme (Type-I HCS)

in which the life-testing experiment is terminated as soon as a pre-specified number r

out of n items has failed or a pre-fixed time T on test has been reached. The Type-I
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HCS has been used as a reliability acceptance test in MIL-STD-781 C (1977). While

Basu (1968) discussed a generalized Savage statistic, Johnson and Mehrotra (1972)

studied a locally most powerful rank test under joint censoring. The problem of test-

ing for the equality of two distributions, under the assumption of exponentiality, was

discussed by Bhattacharyya and Mehrotra (1981). All these developments under the

joint censoring scheme have focused on nonparametric and parametric tests of hy-

potheses; see Bhattacharyya (1995, Chapter 7 of Balakrishnan and Basu (1995)) for

details. For the exact inference based on the MLEs, Chen and Bhattacharyya (1988)

derived the exact distribution of the maximum likelihood estimator of the mean of

an exponential distribution and an exact lower confidence bound for the mean based

on a Type-I hybrid censored sample. Childs et al. (2003) obtained an alternative

simpler form for the result of Chen and Bhattacharyya and also developed similar

results for the case of Type-II hybrid censoring.

To study two or more competing products in regard to the duration of their service

life, comparative lifetime experiments are quite useful. In this regard, Balakrishnan

and Rasouli (2008) discussed exact inference for two exponential populations when

Type-II censoring is implemented on the two samples in a joint manner. Balakrishnan

and Rasouli (2010) subsequently extended their work to the case of two exponential

populations when joint progressive Type-II censoring is implemented on the two sam-

ples in a combined manner. Recently, Shafay et al. (2012) developed exact inference

for two exponential populations under joint Type-II hybrid censoring on the two
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samples. By assuming two Weibull populations, Parsi et al. (2012) discussed con-

ditional maximum likelihood estimation and associated confidence intervals for the

model parameters.

1.3.1 Joint Type-II Censoring

Let us suppose that (X1, · · · , XN) are N jointly distributed random variables, with

{X1, · · · , XN} = {X11, · · · , X1n1 ;X21, · · · , X2n2 ; · · · ;Xk1, · · · , Xknk}, withN =
∑k

h=1 nh.

Suppose X11, X12, · · · , X1n1 are the lifetimes of n1 specimens from production line A1,

and are independent and identically distributed (iid) variables from a population with

cdf F1(x) and pdf f1(x). Similarly, X21, X22, · · · , X2n2 are the lifetimes of n2 speci-

mens from production line A2, and are assumed to be a sample from pdf f2(x) and

cdf F2(x), and so on, with Xk1, Xk2, · · · , Xknk denoting the lifetimes of nk specimens

from production line Ak being iid variables from pdf fk(x) and cdf Fk(x). Denote the

order statistics of these k random samples by W1 ≤ W2 ≤ · · · ≤ WN , where N is the

total sample size.

Let r denote a pre-fixed total number of failures to be observed. Then, un-

der the joint Type-II censoring scheme for the k-samples, the observable data con-

sist of (δ,w), where w = (w1, w2, · · · , wr), wi ∈ {Xhi1, Xhi2, · · · , Xhini} for 1 ≤

h1, h2, · · · , hr ≤ k, hi indicating the production line where wi is from. Moreover,
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associated to (h1, h2, · · · , hr), let us define δ = (δ1(h), δ2(h), · · · , δr(h)) as

δi(h) =


1, if h = hi

0, otherwise.

(1.3.1)

Under such a joint Type-II censoring scheme, to derive the joint probability density

function (pdf) of W1,W2, · · · ,Wr, we consider the event Ω = {wi < Wi ≤ wi+εwi , 1 ≤

i ≤ r} for w1 ≤ w2 ≤ · · · ≤ wr, and Wi ≥ wr+εwr for the remaining N−r of the Wi’s.

Let Mr(h) be the number of units selected from the h-th sample {Xh1, · · · , Xhnh}

for 1 ≤ h ≤ k. Evidently, we have
∏k

h=1
nh!

(nh−Mr(h))!
many such possible events.

Consequently, we have

P (Ω) =
k∏

h=1

nh!

(nh −Mr(h))!

r∏
i=1

k∏
h=1

[Fh(wi + εwi)− Fh(wi)]
δi(h)

×
N∏

i=r+1

k∏
h=1

[1− Fh(wr + εwr)]
δi(h) +

r∑
i=1

O(ε2
wi

).

The joint pdf of W1,W2, · · · ,Wr is then obtained as

f(w1, w2, · · · , wr) = cr

r∏
i=1

k∏
h=1

(fh(wi))
δi(h)

k∏
h=1

(Sh(wr))
nh−Mr(h),

−∞ < w1 < w2 < · · · < wr <∞,

where Sh(wr) = 1− Fh(wr) and cr =
∏k
h=1 nh!∏k

h=1(nh−Mr(h))!
.
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1.3.2 Joint Progressive Type-II Censoring

The joint progressive Type-II censoring is implemented as follows. At the time of the

first failure W1 ∈ Xh1 for some 1 ≤ h1 ≤ k, R1 units are randomly withdrawn from

the remaining N−1 surviving units. Next, at the time of the second failure W2 ∈ Xh2

for some 1 ≤ h2 ≤ k, R2 units are randomly withdrawn from the remaining N−R1−2

surviving units, and so on. Finally, at the time of the r-th failure Wr ∈ Xhr for some

1 ≤ hr ≤ k, all remaining Rr = N − r −
∑r−1

i=1 Ri surviving units are withdrawn

from the life-testing experiment. One may refer to the book by Balakrishnan and

Aggarwala (2000) and the discussion paper by Balakrishnan (2007) for elaborate

details on progressive Type-II censoring and associated inferential results. Here, the

joint progressive Type-II censoring scheme R = (R1, R2, · · · , Rr) is pre-fixed and has

the decomposition Ri =
∑k

h=1 si(h), 1 ≤ i ≤ r, where si(h) is the number of units

withdrawn at the time of the i-th failure belonging to the h-th sample, and these

are unknown and are latent random variables. The data observed in this form will

consist of (δ,R,w), where δ = (δ1, δ2, · · · , δr) and w = (w1, w2, · · · , wr).

Under such a joint progressive Type-II censoring scheme, to derive the joint pdf of

W1,W2, · · · ,Wr, we consider the event Ω = {wi < Wi ≤ wi+ εwi , 1 ≤ i ≤ r} for w1 ≤

w2 ≤ · · · ≤ wr, and for each i (1 ≤ i ≤ r), Ri of the N − i−
∑i−1

j=1 Rj surviving units

are withdrawn randomly from the life-test, in which si(h) of nh−Mi(h)−
∑i−1

j=1 sj(h)

many units are from h-th sample for 1 ≤ h ≤ k. Where Mi−1(h) is the number of

units among W1,W2, · · · ,Wi−1, selected from the h-th sample {Xh1, · · · , Xhnh} for
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1 ≤ h ≤ k. Let SR be the set of all such possible s. Evidently, for each specified s,

we have D1 many possible choice for the observed data and the probability of s ∈ SR

is D2, where

D1 =
r∏
i=1

[
k∑

h=1

(
nh −Mi−1(h)−

i−1∑
j=1

sj

)
δi(h)

]
,

D2 =
r−1∏
i=1



∏k
h=1

 nh −Mi(h)−
∑i−1

j=1 sj(h)

sj(h)


 N − i−

∑i−1
j=1Rj

Ri




.

Consequently, we have

f(w1, w2, · · · , wr) = cr

r∏
i=1

k∏
h=1

(fh(wi))
δi(h)

r∏
i=1

k∏
h=1

(Sh(wi))
si(h) ,

−∞ < w1 < w2 < · · · < wr <∞.

where Sh(wr) = 1− Fh(wr) and cr = D1D2.

1.3.3 Joint Type-I and Type-II Hybrid Censoring

Under the joint Type-I and Type-II hybrid censoring schemes for the k-samples, the

observable data consist of (δ,w), where δ is the vector of indicators and w is the

vector of ordered lifetimes, and these will be defined subsequently. Like conventional

Type-I censoring scheme, the main disadvantage of Type-I hybrid censoring scheme is
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that most of the inferential results are obtained under the condition that the number

of observed failures is at least one, and moreover, there may be very few failures at the

termination point of the experiment. In that case, the efficiency of the estimator(s)

may be low. For this reason, Childs et al. (2003) introduced the Type-II hybrid

censoring scheme as an alternative to the Type-I hybrid censoring scheme. It has the

advantage of guaranteeing that at least r failures will be observed at the end of the

experiment. Of course, the disadvantage of this scheme is that the duration of the

test is random.

Let D denote the number of failures up to time T . Then, D is a discrete random

variable with support {0, 1, 2, · · · , N} with probability mass function

P (D = d) =
∑ n1

l1

 pl11 q
n1−l1
1

 n2

l2

 pl22 q
n2−l2
2 · · ·

 nk

lk

 plkk q
nk−lk
k ,

where the summation is over (l1, l2, · · · , lk) for which
∑k

i=1 li = d for 1 ≤ li ≤ ni, and

pj = Fj(T ), qj = 1 − Fj(T ) (1 ≤ j ≤ k). Therefore, under the joint Type-I hybrid

censoring scheme described above, the observable data (δ,w) is of the following form:

(δ,w) =


(δ1, δ2, · · · , δD;w1, w2, · · · , wD), with D = 0, 1, · · · , r − 1,

(δ1, δ2, · · · , δr;w1, w2, · · · , wr), with D = r, r + 1, · · · , N.

Under the joint Type-II hybrid censoring scheme described above, the observable data
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(δ,w) is of the following form:

(δ,w) =


(δ1, δ2, · · · , δr;w1, w2, · · · , wr), with D = 0, 1, · · · , r − 1;

(δ1, δ2, · · · , δD;w1, w2, · · · , wD), with D = r, r + 1, · · · , N,

where δ is as defined in (1.3.1).

Now, the joint pdf of W1,W2, · · · ,Wr under joint Type-I hybrid censoring is ob-

tained as

f(w1, w2, · · · , wr) =


cD
∏D

i=1

∏k
h=1 (fh(wi))

δi(h)∏k
h=1 (Sh(T ))nh−MD(h) , T < wr,

cr
∏r

i=1

∏k
h=1 (fh(wi))

δi(h)∏k
h=1 (Sh(wr))

nh−Mr(h) , T > wr,

w1 < w2 < · · · < wr,

and the joint pdf of W1,W2, · · · ,Wr under joint Type-II hybrid censoring is obtained

as

f(w1, w2, · · · , wr) =


cr
∏r

i=1

∏k
h=1 (fh(wi))

δi(h)∏k
h=1 (Sh(wr))

nh−Mr(h) , T < wr,

cD
∏D

i=1

∏k
h=1 (fh(wi))

δi(h)∏k
h=1 (Sh(T ))nh−MD(h) , T > wr,

w1 < w2 < · · · < wr,

where Sh(wr) = 1 − Fh(wr), Sh(T ) = 1 − Fh(T ), cr =
∏k
h=1 nh!∏k

h=1(nh−Mr(h))!
and cD =

∏k
h=1 nh!∏k

h=1(nh−MD(h))!
.
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1.4 Scope of the Thesis

The main aim of this thesis is to consider k exponential distributions for the sam-

ples from k production lines, and to derive the exact distribution of the maximum

likelihood estimators (MLEs) of the unknown parameters and to construct exact con-

fidence intervals under various forms of joint censoring on the k samples.

In Chapter 2, when a jointly Type-II censored sample arising from k indepen-

dent exponential populations is available, we derive the conditional MLEs of the k

exponential mean parameters. The conditional moment generating functions and the

exact densities of these MLEs are also obtained. By using these exact densities of

the MLEs, we develop exact confidence intervals for the parameters. Moreover, ap-

proximate confidence intervals based on the asymptotic normality of the MLEs and

credible confidence regions from a Bayesian viewpoint are also discussed. An empir-

ical comparison of the exact, approximate, bootstrap and Bayesian intervals is also

made in terms of coverage probabilities. Finally, an example is presented in order to

illustrate all the methods of inference developed.

In Chapter 3, based on a joint progressively Type-II censored sample arising from

k independent exponential populations, we discuss the conditional MLEs of the k ex-

ponential mean parameters and derive their conditional moment generating functions

and exact densities. By using these exact densities of the MLEs, we develop exact

confidence intervals for the exponential mean parameters. Furthermore, approximate

confidence intervals based on the asymptotic normality of the MLEs and credible
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confidence regions from a Bayesian viewpoint are discussed. An empirical evaluation

of the exact, approximate, bootstrap and Bayesian intervals is also made in terms of

coverage probabilities and average widths. Finally, an example is presented in order

to illustrate all the methods of inference developed.

In Chapter 4, inferential methods based on joint Type-II hybrid censoring scheme

(HCS) are discussed. Based on a joint Type-II HCS arising from k independent

exponential populations, we obtain the conditional MLEs of the k exponential mean

parameters. We also derive their conditional moment generating functions and exact

densities. Using these exact density functions, we then derive the means, variances

and mean squared errors of these estimates, and also exact confidence intervals for

the parameters. Moreover, approximate confidence intervals based on the asymptotic

normality of the MLEs and credible confidence intervals from a Bayesian viewpoint

are discussed. Finally, some simulation results are presented in order to illustrate all

the methods of inference developed.

In Chapter 5, analogous results are developed for the joint Type-I HCS. We de-

velop the exact results and also present some numerical results and an example to

illustrate the established results.

Finally, in Chapter 6, we make some concluding remarks and also indicate some

directions for possible future research.



Chapter 2

Inference Under Joint Type-II

Censoring

2.1 Introduction

The joint censoring scheme is of practical significance in conducting comparative life-

tests of products from different units within the same facility. Suppose products

are being manufactured by k different lines within the same facility, and that k

independent samples of sizes nh, 1 ≤ h ≤ k, are selected from these k lines and

placed simultaneously on a life-testing experiment. Then, in order to reduce the cost

of experiment and also to reduce the experimental time, the experimenter may choose

to terminate the life-testing experiment as soon as a certain number (say, r) of failures

occur. In this situation, one may be interested in either point or interval estimation

16
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of the mean lifetimes of units produced by these k lines. Here, exact results based on

the maximum likelihood estimates are developed to facilitate this.

This joint censoring scheme has been considered before in the literature. Basu

(1968) discussed a generalized Savage statistic. Johnson and Mehrotra (1972) stud-

ied locally most powerful rank test under joint censoring. The problem of testing

for the equality of two distributions, under the assumption of exponentiality, was

discussed by Bhattacharyya and Mehrotra (1981). All these developments under this

joint censoring scheme have focused on nonparametric and parametric tests of hy-

potheses; see Bhattacharyya (1995, Chapter 7 of Balakrishnan and Basu (1995)). For

the exact inference based on the MLEs, Chen and Bhattacharyya (1988) derived the

exact distribution of the maximum likelihood estimator of the mean of an exponen-

tial distribution and an exact lower confidence bound for the mean based on a hybrid

censored sample. Childs et al. (2003) obtained an alternative simple form which is

equivalent to the results of Chen and Bhattacharyya. To study two or more com-

peting products in regard to the duration of their service life, comparative lifetime

experiments are of great importance. In this regard, Balakrishnan and Rasouli (2008)

discussed exact inference for two exponential populations when Type-II censoring is

implemented on the two samples in a joint manner. Here, we generalize their work

by considering the k-sample problem. Suppose the test units from k lines under s-

tudy are placed on a life-test simultaneously, that the successive failure times and the

corresponding types (lines from which the failed units come from) are recorded, and
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that the experiment is terminated as soon as a specified total number of failures (say,

r) occurred.

Suppose X11, X12, · · · , X1n1 are the lifetimes of n1 specimens from line A1, and

assumed to be independent and identically distributed (iid) variables from a pop-

ulation with cumulative distribution function (cdf) F1(x) and probability density

function (pdf) f1(x). Similarly, X21, X22, · · · , X2n2 are the lifetimes of n2 specimens

from line A2 and assumed to be a sample from pdf f2(x) and cdf F2(x), and so on,

with Xk1, Xk2, · · · , Xknk denoting the lifetimes of nk specimens from line Ak being iid

variables from pdf fk(x) and cdf Fk(x).

Furthermore, let N =
∑k

i=1 ni denote the total sample size and r denote the total

number of failures observed. Let w1 ≤ w2 ≤ · · · ≤ wN denote the order statistics of

the N random variables {Xij; 1 ≤ i ≤ k, 1 ≤ j ≤ ni}.

Therefore, under the joint Type-II censoring scheme for the k-samples, the observ-

able data consist of (δ,w), where w = (w1, w2, · · · , wr), wi ∈ {Xhi1, Xhi2, · · · , Xhini}

for 1 ≤ h1, h2, · · · , hr ≤ k, with r being a pre-fixed integer. Finally, associated to

(h1, h2, · · · , hr), let us define δ = (δ1(h), δ2(h), · · · , δr(h)) as

δi(h) =


1, if h = hi

0, otherwise.

(2.1.1)
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2.2 MLEs, Exact Distributions and Inference

Let Mr(h) =
∑r

i=1 δi(h) denote the number of Xh−failures in W for 1 ≤ h ≤ k and

r =
∑k

h=1Mr(h). Then, the likelihood of (δ,W) is given by

L(θ1, θ2, · · · , θk, δ,W)

= cr

r∏
i=1

k∏
h=1

(fh(wi))
δi(h)

k∏
h=1

(Sh(wr))
nh−Mr(h), (2.2.1)

where Sh(wr) = 1 − Fh(wr) and cr =
∏k
h=1 nh!∏k

h=1(nh−Mr(h))!
. When the k populations are

exponential with cdf Fh(x) = 1 − exp(− x
θh

), x > 0, and pdf fh(x) = 1
θh

exp(− x
θh

),

x > 0, for 1 ≤ h ≤ k, the likelihood function in (2.2.1) becomes

L(θ1, θ2, · · · , θk, δ,W)

= cr

k∏
h=1

θ
−Mr(h)
h

r∏
i=1

k∏
h=1

{
exp

(
−wi
θh

)}δi(h) k∏
h=1

{
exp

(
−wr
θh

)}nh−Mr(h)

= cr

k∏
h=1

exp

{
−Mr(h) log θh −

∑r
i=1wiδi(h)

θh
− wr(nh −Mr(h))

θh

}
(2.2.2)

= cr

k∏
h=1

exp

{
−Mr(h) log θh −

∑Mr(h)
i=1 xhi
θh

− wr(nh −Mr(h))

θh

}
. (2.2.3)

From (2.2.2), we can readily obtain the MLE of θh, for 1 ≤ h ≤ k, as

θ̂h =
1

Mr(h)

{
r∑
i=1

wiδi(h) + wr(nh −Mr(h))

}
, (2.2.4)
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or equivalently from (2.2.3) as

θ̂h =
1

Mr(h)


Mr(h)∑
i=1

xhi + wr(nh −Mr(h))

 . (2.2.5)

Remark 1 From the likelihood function, we readily see that the MLE of θh does not

exist when Mr(h) = 0. So, the MLEs in (2.2.5) are conditioned on S = {
∑k

h=1 Mr(h) =

r and Mr(h) ≥ 1,∀1 ≤ h ≤ k}, or equivalently on the set S = {
∑k

h=1Mr(h) = r

and
∏k

h=1Mr(h) 6= 0}. We therefore need to discuss the exact distribution and other

properties of the MLEs only conditional on the set S.

Lemma 1 Let Mr = (Mr(1),Mr(2), · · · ,Mr(k)) and t = (t1, t2, · · · , tk) with
∑k

j=1 tj =

r. Further, let

T =

{
t : max{1, r −

k−1∑
h=1

nj} ≤ tk ≤ min{r − k + 1, nk} ,

max{1, r −
k−2∑
h=1

nj − tk} ≤ tk−1 ≤ min{r − k + 2− tk, nk−1},

· · ·

max{1, r − n1 −
k∑

h=3

th} ≤ t2 ≤ min{r −
k∑

h=3

th, n2}

}
.

Then, we have

P (S) =
∑
t∈T

P (Mr = t). (2.2.6)
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Proof Consider the set

S =

{
k∑

h=1

Mr(h) = r,
k∏

h=1

Mr(h) 6= 0

}
.

Since tk ≤ nk and r =
∑k

h=1 th ≥ k − 1 + tk, we have tk ≤ min{r − k + 1, nk}.

On the other hand, tk ≥ 1 and r =
∑k

h=1 th ≤
∑k−1

h=1 nh + tk, and so we have

tk ≥ max{1, r −
∑k−1

h=1 nh}.

When we fix tk in this way, we get max{1, r −
∑k−2

h=1 nj − tk} ≤ tk−1 ≤ min{r −

k + 2− tk, nk−1}, and therefore

S = ∪t∈T{Mr = t}

which proves the lemma.

Remark 2 In fact, the set {Mr(1) = r −
∑k

h=2 th
4
= t1,Mr(2) = t2, · · · ,

Mr(k) = tk} may be empty if any one of t1, t2, · · · , tk is out of the range {t =

(t1, t2 · · · , tk) : tj ∈ {1, 2, · · · , nj}}. In this case, the probability of such a set be-

comes

P ({Mr(1) = t1,Mr(2) = t2, · · · ,Mr(k) = tk}) = 0.
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Theorem 1 (a) The joint probability mass function of δ is

P (δ = δ̃) = cr

k∏
h=1

θ
−Mr(h)
h

r∏
i=1

1∑k
h=1

nh−Mi−1(h)
θh

; (2.2.7)

(b) For t = (t1, t2, · · · , tk) such that
∑k

j=1 tj = r and tj ≥ 1 for all j, let δ be as

defined in (1.3.1), Mr(h) =
∑r

i=1 δi(h), and

Q∗(t) = {δ̃(h) = (δ̃1, δ̃2, · · · , δ̃r) such that Mr(h) = th for 1 ≤ h ≤ k}.

Then,

P (Mr = t) =
∑

δ̃∈Q∗(t)

cr

k∏
h=1

θ−thh

r∏
i=1

1∑k
h=1

nh−Mi−1(h)
θh

; (2.2.8)

(c) Finally, we have

P (S) =
∑
t∈T

P (Mr = t). (2.2.9)

Proof (a) From (2.2.2), we have the joint density of (δ,W) as

f(δ,W)

= cr

k∏
h=1

θ
−Mr(h)
h exp

{
−

r−1∑
i=1

k∑
h=1

wiδi(h)

θh

}
exp

{
−wr

k∑
h=1

δr(h) + nh −Mr(h)

θh

}
.
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Let

aj =
k∑

h=1

δj(h)

θh
=

1

θhj
,

br =
k∑

h=1

δr(h) + nh −Mr(h)

θh
=

k∑
h=1

nh −Mr−1(h)

θh
.

Then, we have

f(δ,W) = cr

(
k∏

h=1

θ
−Mr(h)
h

)
exp

{
−

r−1∑
i=1

aiwi − brwr

}
. (2.2.10)

Upon integrating out w1, w2, · · · , wr over {0 ≤ w1 ≤ w2 ≤ · · · ≤ wr < ∞} in

(2.2.10), by mapping it onto {0 ≤ ui <∞, 1 ≤ i ≤ k} through the transforma-

tion



u1 = w1,

u2 = w2 − w1,

· · ·

ur = wr − wr−1,

we obtain the joint probability mass function of δ as

P (δ = δ̃) = cr

k∏
h=1

θ
−Mr(h)
h

1

br

r−1∏
i=1

1

br +
∑r−1

j=i aj
. (2.2.11)
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Observe that for δ̃, Mr(h, δ̃) =
∑r

i=1 δ̃i(h) and

br +
r−1∑
j=i

aj =
k∑

h=1

δ̃r(h) + nh −Mr(h)

θh
+

r−1∑
j=i

k∑
h=1

δ̃j(h)

θh

=
k∑

h=1

nh −Mi−1(h, δ̃)

θh
,

where Mi−1(h, δ̃) =
∑i−1

l=1 δ̃l(h) depends on δ̃, and yet we denote it by Mi−1(h)

for simplicity, and take M0(h, δ̃) = 0. Thus, (2.2.7) is obtained.

(b) It follows from (2.2.7).

(c) The required result follows immediately from Lemma 1 and Part (b).

Example 1 When k = 3, we have

P (S) =
r−2∑
t3=1

r−1−t3∑
t2=1

P (Mr(1) = t1,Mr(2) = t2,Mr(3) = t3).

As an example, let us take n1 = n2 = n3 = 6, and r = 10. Then, we can see that

the sets {M10(1) = 8,M10(2) = 1,M10(3) = 1}, {M10(1) = 1,M10(2) = 8,M10(3) =

1}, {M10(1) = 1,M10(2) = 1,M10(3) = 8}, {M10(1) = 7,M10(2) = 1,M10(3) = 2},

etc. are all empty, and so the probability of these sets are 0. In this case, P (S) has
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the following form:

P (S) =
6∑

t2=3

P (M10(1) = 9− t2,M10(2) = t2,M10(3) = 1)

+
6∑

t2=2

P (M10(1) = 8− t2,M10(2) = t2,M10(3) = 2)

+
6∑

t2=1

P (M10(1) = 7− t2,M10(2) = t2,M10(3) = 3)

+
5∑

t2=1

P (M10(1) = 6− t2,M10(2) = t2,M10(3) = 4)

+
4∑

t2=1

P (M10(1) = 5− t2,M10(2) = t2,M10(3) = 5)

+
3∑

t2=1

P (M10(1) = 4− t2,M10(2) = t2,M10(3) = 6).

Theorem 2 Conditional on
∏k

h=1 Mr(h) 6= 0, the moment generating function (mgf)

of θ̂l (for l = 1, 2, · · · , k) is given by

Mθ̂l
(t) =

1

P (
∏k

h=1Mr(h) 6= 0)

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)
r∏
i=1

(1− β∗lit)−1,

where T is the set defined in Lemma 1, and

β∗li =
nl −Mi−1(l)

Mr(l)
∑k

h=1
nh−Mi−1(h)

θh

, 1 ≤ l ≤ k, 1 ≤ i ≤ r. (2.2.12)

Proof Conditioning on the values of Mr for
∏k

h=1Mr(h) 6= 0 and then on δ̃, we
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obtain

E

[
etθ̂l |

k∏
h=1

Mr(h) 6= 0

]
P

(
k∏

h=1

Mr(h) 6= 0

)
=

∑
t∈T

E
[
etθ̂l |Mr = t

]
P (Mr = t)

=
∑
t∈T

∑
δ̃∈Q∗(t)

∫
0≤w1≤w2≤···≤wr<∞

etθ̂lf(δ̃,W)dw1 · · · dwr

=
∑
t∈T

∑
δ̃∈Q∗(t)

cr

k∏
h=1

θ
−Mr(h)
h

×
∫

0≤w1≤w2≤···≤wr<∞

exp

{
t

Mr(l)

(
r∑
i=1

wiδ̃i(l) + wr(nl −Mr(l))

)

−
r−1∑
i=1

aiwi − brwr

}
dw1 · · · dwr

=
∑
t∈T

∑
δ̃∈Q∗(t)

cr

k∏
h=1

θ
−Mr(h)
h

×
∫

0≤w1≤···≤wr<∞

exp

{
−

r−1∑
i=1

(
ai −

tδ̃i(l)

Mr(l)

)
wi

−
(
br −

t(nl −Mr−1(l))

Mr(l)

)
wr

}
dw1 · · · dwr

=
∑
t∈T

∑
δ̃∈Q∗(t)

cr

k∏
h=1

θ
−Mr(h)
h

×


r−1∏
i=1

1

br +
∑r−1

j′=i aj′ −
(
nl−Mr−1(l)

Mr(l)
−
∑r−1

j′=i

δ̃j′ (l)

Mr(l)

)
t

 1

br − t(nl−Mr−1(l))
Mr(l)

.
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Now, observing that

br +
r−1∑
j′=i

aj′ −

(
nl −Mr−1(l)

Mr(l)
−

r−1∑
j′=i

δ̃j′(l)

Mr(l)

)
t

=
k∑

h=1

nh −Mi−1(h)

θh
−
(
nl −Mi−1(l)

Mr(l)

)
t

= (1− β∗lit)
k∑

h=1

nh −Mi−1(h)

θh

and β∗li = nl−Mi−1(l)

Mr(l)
∑k
h=1

nh−Mi−1(h)

θh

, we obtain

E

[
etθ̂l |

k∏
h=1

Mr(h) 6= 0

]
P

(
k∏

h=1

Mr(h) 6= 0

)

=
∑
t∈T

∑
δ̃∈Q∗(t)

cr

k∏
h=1

θ
−Mr(h)
h

r∏
i=1

1∑k
h=1

nh−Mi−1(h)
θh

− t
Mr(l)

(nl −Mi−1(l))

=
∑
t∈T

∑
δ̃∈Q∗(t)

cr

k∏
h=1

θ
−Mr(h)
h

r∏
i=1

1∑k
h=1

nh−Mi−1(h)
θh

r∏
i=1

(1− β∗lit)−1

=
∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)
r∏
i=1

(1− β∗lit)−1,

as required.

Remark 3 For each fixed l, we may have some β∗li’s to be the same. In this case,

we resort the β∗li’s and denote them by {β∗li}r
′
i=1, and assume that αi terms of β∗li’s are

equal, with
∑r′

i=1 αi = r. Thus,
∏r

i=1(1−β∗lit)−1 can be rewritten as
∏r′

i=1(1−β∗lit)−αi.
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In this case, we can rewrite the conditional mgf in Theorem 2.2 as

E

[
etθ̂l |

k∏
h=1

Mr(h) 6= 0

]

=
1

P (
∏k

h=1 Mr(h) 6= 0)

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)
r′∏
i=1

(1− β∗lit)−αi . (2.2.13)

Theorem 3 Conditional on
∏k

h=1Mr(h) 6= 0, the pdf of θ̂l (for l = 1, 2, · · · , k) is

given by

fθ̂l(x) =
1

P (
∏k

h=1Mr(h) 6= 0)

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)gYl,δ(x), (2.2.14)

where P (δ = δ̃) is as given in (2.2.7), Yl,δ
d
=
∑r′

i=1 Y
∗
αi,i

with Y ∗1,i being independent

random variables having gamma G(αi, β
∗
li) distributions with shape parameter αi and

scale parameter β∗li, and gYl,δ(x) is the pdf of Yl,δ.

Remark 4 From (2.2.14), it is clear that the distribution of the MLE θ̂l (for l =

1, 2, · · · , k) is a weighted sum of distributions of random variables Yl,δ, where Yl,δ

itself is a sum of independent and non-identical gamma random variables.

Corollary 1 From (2.2.13), we immediately obtain the expressions for the first two

moments of θ̂l as follows:

E(θ̂l) =
1

P (
∏k

h=1Mr(h) 6= 0)

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)
r′∑
i=1

αiβ
∗
li
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and

E(θ̂2
l ) =

1

P (
∏k

h=1 Mr(h) 6= 0)

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)


r′∑
i=1

αiβ
∗
li

2 +

(
r′∑
i=1

αiβ
∗
li

)2
 .

Then, Var(θ̂l) and MSE(θ̂l) can be readily obtained from these two expressions.

It is convenient to rewrite the conditional mgf of θ̂l (for l = 1, 2, · · · , k) in Theorem

2.2 as

Mθ̂l
(t) =

1

P (
∏k

h=1Mr(h) 6= 0)

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)
r′∏
i=1

(1− β∗lit)−αi

=
1

P (
∏k

h=1Mr(h) 6= 0)

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)
r′∑
i=1

αi∑
j=1

A
(j)
li (1− β∗lit)−j,

where Ali’s are coefficients obtained by writing the product
∏r′

i=1(1 − β∗lit)−αi in the

partial fraction form
∑r′

i=1

∑αi
j=1A

(j)
li (1− β∗lit)−j which can be determined by the use

of Lemma 5 in Appendix. Since (1− β∗lit)−j is the mgf of a gamma distribution with

shape parameter j and scale parameter β∗li, we can obtain the tail probability of θ̂l

(for l = 1, 2, · · · , k) from the above expression as

P (θ̂l > b) =
1

P (
∏k

h=1Mr(h) 6= 0)

∑
t∈T

×
∑

δ̃∈Q∗(t)

P (δ = δ̃)
r′∑
i=1

αi∑
j=1

A
(j)
li e
− b
β∗
li

j−1∑
j′=0

( b
β∗li

)j
′

j′!
. (2.2.15)

We shall assume that P (θ̂l > b) is an increasing function of θl when all other θj’s are
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fixed for j 6= l. This assumption guarantees the invertibility of the pivotal quantities,

and it has been verified to be true in this case through extensive computations; see

Figure 2.1, for example. It should be mentioned that this approach has been used

by a number of authors for constructing exact confidence intervals in a variety of

contexts; see, for example, Childs et al. (2003), Chandrasekar et al. (2004), and

Balakrishnan et al. (2007). We then have a 100(1− α)% lower confidence bound for

θl as θlL, where θlL is such that PθlL(θ̂l > θ̂l,obs) = α with θ̂l,obs being the observed

value of θl. Also, a 100(1− α)% confidence interval for θl is (θlL, θlU), where θlL and

θlU are determined by PθlL(θ̂l > θ̂l,obs) = α
2

and PθlU (θ̂l > θ̂l,obs) = 1− α
2
.

By performing the same steps as done in the case of conditional marginal mgf, we

can derive the conditional joint mgf of (θ̂1, θ̂2, · · · , θ̂k) as follows.

Theorem 4 Conditional on
∏k

h=1 Mr(h) 6= 0, the joint mgf of (θ̂1, θ̂2, · · · , θ̂k) is given

by

Mθ̂1,θ̂2,··· ,θ̂k|
∏k
h=1Mr(h)6=0(t1, · · · , tk)

=
1

P (
∏k

h=1Mr(h) 6= 0)

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)
r∏
i=1

(1−
k∑
l=1

β∗litl)
−1, (2.2.16)

where

β∗li =
nl −Mi−1(l)

Mr(l)
∑k

h=1
nh−Mi−1(h)

θh

.
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Figure 2.1: Plot of the function g(θ1) = Pθ1(θ̂l > b) for the choice of b =
0.4, 1.4, 2.4, 5.4, respectively.
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Corollary 2 From (2.2.16), we obtain the covariance of θ̂l1 and θ̂l2 to be

Cov(θ̂l1 , θ̂l2)

=
1

P (
∏k

h=1Mr(h) 6= 0)

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)

(
r∑
i=1

β∗l1,iβ
∗
l2,i

+
r∑
i=1

β∗l1,i

r∑
j=1

β∗l2,j

)

− 1{
P (
∏k

h=1 Mr(h) 6= 0)
}2

∑
t∈T

∑
δ̃∈Q∗(t)

P (δ = δ̃)
r∑
i=1

β∗l1,i

×
∑
t′∈T

∑
δ̃∈Q∗(t′)

P (δ = δ̃)
r∑
i=1

β∗l2,i. (2.2.17)

2.3 Approximate Confidence Intervals

Let I(θ1, θ2, · · · , θk) = (Ii,j(θ1, θ2, · · · , θk)), i, j = 1, 2, · · · , k, denote the Fisher infor-

mation matrix of the parameters θ1, θ2, · · · , θk, where

Ii,j(θ1, θ2, · · · , θk) = −E
(
∂2 lnL

∂θi∂θj

)
. (2.3.1)

From the likelihood function in (2.2.3), we have Ii,j(θ1, θ2, · · · , θk) = 0 if i 6= j.

Consequently, we have

I(θ̂1, θ̂2, · · · , θ̂k)

= −Diag

(
∂2 lnL

∂θ2
1

|θ1=θ̂1
,
∂2 lnL

∂θ2
2

|θ2=θ̂2
, · · · , ∂

2 lnL

∂θ2
k

|θk=θ̂k

)
, (2.3.2)
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where

∂2 lnL

∂θ2
h

|θh=θ̂h
=

Mr(h)

θ̂2
h

−
2
∑Mr(h)

j=1 xhj

θ̂3
h

− 2 {wr(nh −Mr(h))}
θ̂3
h

= −Mr(h)

θ̂2
h

.

Then, by using the asymptotic normality of the MLEs, we have θ̂h − θh ∼

N(0, I−1
h,h), using which we can express the approximate 100(1 − α)% confidence in-

terval for θh, 1 ≤ h ≤ k, as

θ̂h ± Zα/2
∑Mr(h)

i=1 xhi + wr(nh −Mr(h))

(Mr(h))
3
2

= θ̂h

(
1±

Zα/2√
Mr(h)

)
,

where Zα/2 denotes the upper α/2 percentage point of the standard normal distribu-

tion.

2.4 Bayesian Intervals

Let uh =
∑Mr(h)

i=1 xhi +wr(nh −Mr(h)). Then, we can rewrite the likelihood function

as

L(θ1, θ2, · · · , θk, δ,W) = cr

k∏
h=1

θ
−Mr(h)
h exp

(
−uh
θh

)
. (2.4.1)

Now, by assuming independent inverse gamma prior distributions, viz., IG(ah, bh)
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for 1 ≤ h ≤ k, we obtain from (2.4.1) the posterior joint density function as

L(θ1, θ2, · · · , θk|data) = cr

k∏
h=1

θ
−Mr(h)−ah−1
h exp

(
−uh + bh

θh

)
.

Upon comparing this with (2.4.1), we see that the joint posterior density function

of (θ1, θ2, · · · , θk) is a product of k independent inverse gamma density functions. So,

given the data, the posterior density function of θ̂h is simply IG(Mr(h) +ah, uh+ bh).

Thus, the Bayes estimator of θh under the squared-error loss function is

θ̂h,Bayes =
uh + bh

Mr(h) + ah − 1
, h = 1, 2, · · · , k. (2.4.2)

When we use Jeffreys’ non-informative prior I(θh) ∝ 1
θ2h

corresponding to the

special case when ah = 1 and bh = 0, for 1 ≤ h ≤ k, the Bayes estimators in (2.4.2)

coincide with the MLEs in (2.2.5).

Let Uh = 2(uh+bh)
θh

for 1 ≤ h ≤ k. Then, the pivot Uh follows χ2
2(Mr(h)+ah) distri-

bution, provided 2(Mr(h) + ah) is a positive integer, for 1 ≤ h ≤ k. In this case, the

100(1− α)% Bayes credible interval for θh becomes

(
2(uh + bh)

χ2
2(Mr(h)+ah),1−α/2

,
2(uh + bh)

χ2
2(Mr(h)+ah),α/2

)
, h = 1, 2, · · · , k,

where χ2
v,α

2
is the lower α

2
percentage point of the chi-square distribution with v

degrees of freedom.



Chapter 2.5 - Bootstrap Intervals 35

2.5 Bootstrap Intervals

In this section, we consider confidence interval for θh (h = 1, 2, · · · , k) based on the

Bootstrap-p and Bootstrap-t methods; see, for example, Efron and Tibshirani (1994).

To find the Bootstrap-p and Bootstrap-t intervals, in the first step, we generate

original samples from k exponential populations with parameters θh of size nh, 1 ≤

h ≤ k. Next we sort the data, and determine to which population each failure belongs,

and then estimate θh based on the conditional MLE in (2.2.5). In the second step,

we generate a bootstrap sample (δ1, δ2, · · · , δr;w1, w2, · · · , wr) by using the values

(θ̂1, θ̂2, · · · , θ̂k), and then obtain the bootstrap estimates of θh, 1 ≤ h ≤ k, say θ∗h,

1 ≤ h ≤ k, from the bootstrap sample. In the third step, we repeat the second step

N -Boot times.

Boot-p: Suppose KhB(x) = P (θ̂∗h ≤ x), 1 ≤ h ≤ k, is the cumulative distribution

function of θ̂∗h. Define θ̂hB(α) = K−1
hB(α), 1 ≤ h ≤ k, for a given α. Then, the

100(1− α)% Boot-p confidence interval for θh, 1 ≤ h ≤ k, is given by

(
θ̂hB

(α
2

)
, θ̂hB

(
1− α

2

))
, 1 ≤ h ≤ k.

Boot-t: After generating the bootstrap samples in the second step and calculating

θ̂∗h, we need to use them to compute estimates of V ar(θ̂∗h) from the observed Fisher



Chapter 2.6 - Simulation Results and Discussion 36

information matrix in (2.3.2). Then, we determine the T ∗h statistic given by

T ∗h =
θ̂∗h − θ̂h√
V ar(θ̂∗h)

, 1 ≤ h ≤ k. (2.5.1)

Now, suppose LhB(x) = P (T ∗h ≤ x) is the cumulative distribution function of T ∗h ,

1 ≤ h ≤ k. Then, the 100(1 − α)% Boot-t confidence interval for θh, 1 ≤ h ≤ k, is

given by

(
θ̂h −

√
Var(θ̂h)L

−1
hB

(
1− α

2

)
, θ̂h −

√
Var(θ̂h)L

−1
hB

(α
2

))
, 1 ≤ h ≤ k.

2.6 Simulation Results and Discussion

A simulation study was carried out to evaluate the performance of the condition-

al MLEs and also all the confidence intervals discussed in the preceding sections.

We considered different sample sizes for three populations (i.e., k = 3) as n1 =

18, 30, 35, 60, 75, 120, n2 = 18, 35, 75 and n3 = 18, 35, 75, 120, and different choic-

es of r = 8, 12, 15, 30, 40, 60, 75, 80, 100, 120, 140, 180. We also chose the parameters

(θ1, θ2, θ3) to be (2, 4, 7) and (3, 5, 9). For these cases, we computed the conditional M-

LEs for the parameters (θ1, θ2, θ3). We also computed for r = 8, 11 the 95% confidence

intervals for (θ1, θ2, θ3) using exact, approximate, Boot-p and Boot-t methods (with

N-Boot as 1000). For comparative purposes, we also computed the 95% credible inter-

vals using Jeffreys’ non-informative priors (a1 = a2 = a3 = 1 and b1 = b2 = b3 = 0).
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We repeated this process 1000 times and computed the average values of the con-

ditional MLEs as well as the coverage probabilities for all confidence intervals. The

average values of the conditional MLEs are presented in Table 2.1. From these val-

ues, it is clear that the MLEs have a moderate bias when the essential sample size r

is small even when the sample sizes (n1, n2, n3) are not small. This bias also seems

to affect the approximate confidence intervals based on normality as they are not

centered properly in this case. However, the bias of the conditional MLEs become

negligible when r increases, as is evident from Table 2.1.

In Table 2.2, the coverage probabilities of 95% confidence intervals of (θ1, θ2, θ3)

for all the methods are presented for some small and moderate values of n1, n2, n3 and

r. From these values, it is clear that the exact conditional method has its coverage

probability to be very nearly 95% always, while the approximate method is not at

all satisfactory (as low as 85% in some case). We also observe that between the two

bootstrap methods, the Boot-p method performs better than the Boot-t method; the

Bayesian method has very stable coverage probabilities (quite close to the nominal

level of 95%). Moreover, we see that the approximate and bootstrap methods have

lower coverage probabilities when n1, n2, n3 are small. The importance of the exact

method developed in the preceding sections becomes clear as it provides exact con-

ditional confidence intervals with accurate coverage probabilities (compared to the

nominal confidence levels) even for small sample sizes. However, the exact method

becomes computationally quite intensive when r becomes large.
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In Table 2.3 and 2.4, the coverage probabilities of 95% confidence intervals of

(θ1, θ2, θ3) for the approximate, Boot-p and Boot-t methods are presented for some

large values of n1, n2, n3 and r. Here again, we observe that the approximate method

is not satisfactory unless r is rather large (at least 120). The two bootstrap methods

and the Bayesian method all perform quite similar in terms of coverage probabilities

whcih are nearly the same as the nominal confidence level.

From the results presented in these tables, we would recommend the use of the

exact conditional confidence intervals for θh developed here whenever possible and

especially when the sample sizes are small; but when the sample sizes get larger with

a large r, the computational complexity increases in the exact conditional method,

and in this case the Boot-p method and the Bayesian method are computationally

simpler to use and they also possess good performance, for the interval estimation of

parameters.

2.7 Illustrative Example

Nelson (1982, Ch. 10, Table 4.1) has given times to breakdown in minutes of an

insulating fluid subjected to high voltage stress. The failure times were observed in

the form of groups with each group reporting data on 10 insulating fluids. For the

purpose of illustrating the methods of inference detailed in the preceding sections, let

us consider the following three groups of samples of failure time data presented in

Table 2.5.



Chapter 2.7 - Illustrative Example 39

Table 2.1: Average values of the conditional MLEs for different choices of (n1, n2, n3)
and r

(n1, n2, n3) r θ1 = 2 θ2 = 4 θ3 = 7 θ1 = 3 θ2 = 5 θ3 = 9
(18, 18, 18) 8 2.49 5.03 6.69 3.75 6.49 9.05
(18, 18, 18) 11 2.08 4.50 7.64 3.06 5.83 10.42
(18, 18, 18) 15 2.15 4.66 8.67 3.26 5.71 11.28
(30, 35, 35) 15 2.20 4.88 8.87 3.36 5.85 11.28
(30, 35, 35) 30 2.09 4.32 8.20 3.09 5.32 10.21
(30, 35, 35) 40 2.06 4.22 7.60 3.04 5.29 9.64
(30, 75, 75) 30 2.15 4.24 7.91 3.23 5.18 10.03
(30, 75, 75) 60 2.03 4.09 7.36 3.13 5.08 9.40
(30, 75, 75) 80 2.06 4.04 7.13 3.08 4.98 9.19
(60, 35, 35) 30 2.05 4.64 8.89 3.10 5.72 11.14
(60, 35, 35) 60 2.00 4.16 7.70 3.02 5.23 9.92
(60, 35, 35) 80 2.01 4.11 7.41 3.00 5.05 9.28
(60, 75, 75) 40 2.02 4.22 7.73 3.08 5.22 10.19
(60, 75, 75) 75 2.02 4.10 7.28 3.07 5.11 9.40
(60, 75, 75) 120 2.01 4.05 7.07 3.03 5.03 9.19
(120, 35, 35) 40 2.04 5.05 9.16 3.02 6.00 11.78
(120, 35, 35) 100 2.00 4.23 7.65 3.02 5.21 9.93
(120, 35, 35) 140 2.00 4.13 7.28 3.02 5.09 9.43
(35, 35, 120) 40 2.07 4.41 7.11 3.16 5.45 9.30
(35, 35, 120) 100 2.02 4.09 7.03 3.04 5.15 9.09
(35, 35, 120) 140 2.00 4.04 7.03 3.02 5.02 9.07
(120, 75, 75) 60 2.02 4.28 7.81 3.03 5.21 9.97
(120, 75, 75) 120 2.01 4.10 7.34 3.01 5.08 9.36
(120, 75, 75) 180 2.01 4.01 7.08 3.01 5.01 9.16
(75, 75, 120) 60 2.02 4.19 7.33 3.07 5.18 9.42
(75, 75, 120) 120 2.01 4.10 7.10 3.02 5.08 9.15
(75, 75, 120) 180 2.02 4.03 7.03 3.01 5.01 9.07
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Table 2.2: Coverage probabilities of different confidence intervals for some choices of
(n1, n2, n3) and small r

θ = (2, 4, 7)
(n1, n2, n3) r Exact(%) Approximate(%) Bayes(%) Boot−t(%) Boot−p(%)

(5, 4, 5) 8 (96, 93, 94) (88, 86, 87) (94, 93, 96) (94, 92, 92) (93, 95, 96)
(18, 18, 18) 8 (95, 94, 96) (93, 87, 85) (95, 96, 98) (96, 97, 95) (95, 91, 96)

(5, 4, 5) 11 (95, 95, 95) (88, 87, 86) (94, 94, 95) (95, 96, 95) (91, 92, 92)
θ = (3, 5, 9)

(n1, n2, n3) r Exact(%) Approximate(%) Bayes(%) Boot−t(%) Boot−p(%)
(5, 4, 5) 8 (96, 96, 95) (89, 87, 87) (95, 96, 97) (95, 93, 92) (94, 96, 96)

(18, 18, 18) 8 (96, 96, 96) (92, 89, 84) (95, 96, 98) (94, 92, 96) (97, 97, 95)
(5, 4, 5) 11 (94, 95, 96) (85, 88, 89) (93, 95, 96) (95, 95, 94) (89, 92, 95)

First of all, let us test the hypothesis H0 : θ1 = θ2 = · · · = θk versus H1 : {Not all

θ’s are equal}. For using the likelihood ratio method (LRT), let us find

λ(W) =
supΘ0

L(θ|W)

supΘ L(θ|W)
.

Asymptotically, −2 log λ(W) is χ2 distributed with k − 1 degree of freedom, where

−2 log λ(W) = 2
k∑

h=1

Mr(h)(log θ̂ − log θ̂h)

in this case, with

θ̂ =
1

r

{
r∑
i=1

wi + wr(n− r)

}
,

θ̂h =
1

Mr(h)

{
r∑
i=1

wiδi(h) + wr(nh −Mr(h))

}
.
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Table 2.3: Coverage probabilities of different confidence intervals for some choices of
(n1, n2, n3) and large r

θ = (2, 4, 7)
(n1, n2, n3) r Approximate(%) Bayes(%) Boot−t(%) Boot−p(%)
(18, 18, 18) 15 (91, 92, 87) (94, 94, 95) (95, 100, 98) (94, 96, 96)
(30, 35, 35) 15 (92, 91, 88) (95, 95, 96) (98, 100, 98) (96, 96, 97)
(30, 35, 35) 30 (93, 93, 92) (94, 95, 94) (94, 97, 99) (94, 95, 94)
(30, 35, 35) 40 (94, 91, 92) (95, 95, 94) (95, 96, 99) (94, 94, 94)
(30, 75, 75) 30 (93, 93, 91) (95, 96, 93) (99, 95, 100) (95, 96, 93)
(30, 75, 75) 60 (93, 94, 92) (95, 96, 95) (96, 100, 95) (95, 95, 94)
(30, 75, 75) 80 (93, 94, 95) (94, 94, 95) (94, 100, 95) (94, 95, 95)
(60, 35, 35) 30 (93, 90, 90) (95, 93, 94) (88, 100, 100) (95, 93, 95)
(60, 35, 35) 60 (94, 92, 94) (94, 95, 94) (92, 99, 99) (94, 95, 95)
(60, 35, 35) 80 (94, 96, 94) (95, 94, 95) (92, 100, 98) (94, 95, 95)
(60, 75, 75) 40 (94, 93, 91) (95, 96, 94) (94, 96, 98) (95, 95, 94)
(60, 75, 75) 75 (94, 94, 94) (94, 95, 96) (93, 100, 96) (94, 95, 95)
(60, 75, 75) 120 (94, 94, 95) (95, 94, 95) (92, 100, 94) (94, 94, 96)
(120, 35, 35) 40 (94, 91, 89) (95, 93, 97) (89, 100, 99) (95, 93, 98)
(120, 35, 35) 100 (95, 94, 93) (94, 94, 94) (91, 100, 99) (95, 93, 94)
(120, 35, 35) 140 (96, 95, 94) (96, 96, 94) (92, 100, 97) (96, 96, 94)
(35, 35, 120) 40 (94, 93, 92) (94, 94, 95) (95, 100, 93) (94, 94, 93)
(35, 35, 120) 100 (93, 92, 96) (94, 95, 95) (95, 100, 93) (93, 95, 96)
(35, 35, 120) 140 (94, 95, 94) (95, 94, 96) (92, 100, 91) (94, 94, 95)
(120, 75, 75) 60 (94, 95, 92) (95, 95, 94) (91, 98, 100) (96, 95, 94)
(120, 75, 75) 120 (95, 94, 93) (96, 95, 94) (92, 100, 96) (95, 95, 94)
(120, 75, 75) 180 (94, 93, 93) (95, 94, 94) (92, 100, 92) (94, 94, 94)
(75, 75, 120) 60 (93, 94, 94) (95, 93, 95) (93, 100, 96) (94, 93, 95)
(75, 75, 120) 120 (95, 93, 94) (95, 95, 95) (92, 100, 93) (96, 95, 95)
(75, 75, 120) 180 (94, 94, 94) (95, 94, 95) (92, 100, 92) (95, 93, 95)
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Table 2.4: Coverage probabilities of different confidence intervals for some choices of
(n1, n2, n3) and large r

θ = (3, 5, 9)
(n1, n2, n3) r Approximate(%) Bayes(%) Boot−t(%) Boot−p(%)
(18, 18, 18) 15 (90, 91, 87) (95, 94, 96) (96, 100, 99) (94, 96, 97)
(30, 35, 35) 15 (92, 92, 90) (95, 94, 96) (98, 100, 99) (95, 94, 97)
(30, 35, 35) 30 (93, 92, 91) (95, 96, 95) (97, 96, 99) (94, 95, 95)
(30, 35, 35) 40 (94, 93, 92) (96, 95, 95) (96, 97, 99) (96, 95, 95)
(30, 75, 75) 30 (91, 95, 92) (94, 96, 94) (100, 96, 99) (94, 96, 94)
(30, 75, 75) 60 (94, 92, 94) (96, 94, 94) (98, 100, 96) (95, 93, 94)
(30, 75, 75) 80 (93, 94, 94) (93, 95, 94) (98, 100, 95) (93, 94, 94)
(60, 35, 35) 30 (94, 92, 92) (96, 95, 92) (92, 100, 100) (95, 94, 93)
(60, 35, 35) 60 (94, 92, 92) (95, 95, 96) (93, 99, 98) (94, 94, 96)
(60, 35, 35) 80 (94, 94, 93) (94, 96, 95) (93, 100, 96) (94, 95, 95)
(60, 75, 75) 40 (93, 93, 93) (94, 96, 94) (97, 98, 100) (94, 95, 94)
(60, 75, 75) 75 (92, 94, 95) (94, 95, 96) (95, 100, 97) (93, 95, 96)
(60, 75, 75) 120 (95, 93, 95) (95, 94, 94) (92, 100, 94) (95, 94, 95)
(120, 35, 35) 40 (94, 94, 90) (95, 94, 96) (88, 100, 100) (95, 94, 97)
(120, 35, 35) 100 (94, 93, 94) (96, 94, 94) (91, 100, 100) (96, 94, 94)
(120, 35, 35) 140 (92, 93, 94) (92, 94, 95) (92, 100, 97) (92, 94, 95)
(35, 35, 120) 40 (92, 93, 92) (95, 94, 96) (98, 100, 91) (95, 94, 95)
(35, 35, 120) 100 (94, 94, 94) (95, 95, 96) (94, 100, 92) (94, 95, 95)
(35, 35, 120) 140 (94, 93, 94) (95, 94, 95) (95, 100, 91) (94, 93, 94)
(120, 75, 75) 60 (93, 92, 91) (95, 95, 94) (93, 99, 98) (94, 95, 94)
(120, 75, 75) 120 (94, 94, 94) (95, 95, 94) (93, 100, 96) (95, 95, 95)
(120, 75, 75) 180 (95, 94, 95) (95, 94, 96) (92, 100, 94) (95, 94, 96)
(75, 75, 120) 60 (94, 94, 93) (96, 96, 95) (95, 100, 94) (96, 95, 94)
(75, 75, 120) 120 (95, 94, 95) (95, 95, 96) (93, 100, 93) (95, 95, 96)
(75, 75, 120) 180 (96, 94, 96) (96, 96, 95) (91, 100, 94) (97, 95, 96)

Table 2.5: Failure time data as three groups of insulating fluids

Group 1 0.31 0.66 1.54 1.70 1.82 1.89 2.17 2.24 4.03 9.99
Group 2 0.00 0.18 0.55 0.66 0.71 1.30 1.63 2.17 2.75 10.60
Group 3 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75
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Table 2.6: Bootstrap p-values for likelihood ratio statistic for testing H0 : θ1 = θ2 = θ3

r 13 15
−2 log λ(W) 3.46 3.29

Bootstrap p− value 0.068 0.044

Table 2.7: Jointly Type-II censored data observed from Table 2.5 with r = 15

W 0.00 0.18 0.31 0.49 0.55 0.64 0.66 0.66
0.71 0.82 0.93 1.08 1.30 1.54 1.63

hi for which δ(hi) = 1 2 2 1 3 2 3 1 2
2 3 3 3 2 1 2

However, the asymptotic approximation may not be suitable here for small r. We

therefore use the values of (θ̂1, θ̂2, θ̂3) to generate bootstrap samples (δ1, δ2, · · · , δr;

w∗1, w
∗
2, · · · , w∗r), then obtain the bootstrap estimates of (θ̂1, θ̂2, θ̂3), say, (θ̂∗1, θ̂

∗
2, θ̂
∗
3),

repeat this step 1000 Boot times, and get the Bootstrap p-value to be the proportion

of times −2 log λ(W∗) > −2 log λ(W). Table 2.6 gives these Bootstrap p-values for

different choices of r. We can see from Table 2.6 that we would reject H0 by bootstrap

method for a nominal level of 10% when r = 13, 15.

Suppose the samples of sizes n = (10, 10, 10) in Table 2.5 are from three exponen-

tial populations with means (θ1, θ2, θ3), respectively. Suppose joint Type-II censoring

with r as 12, 13 and 15 had been enforced on these data. For example, Table 2.7

presents the jointly Type-II censored data that would have been obtained from the

data in Table 2.5 with r = 15.

We then computed the conditional MLEs of (θ1, θ2, θ3) and the estimates of their

standard deviations and mean square errors for the choices of r = 12, 13, 15 by using
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Table 2.8: Conditional MLEs and the estimates of their standard deviations and mean
square errors based on jointly Type-II censored data from Table 2.7

Mean ŜD M̂SE

r (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3)
12 (4.805, 1.500, 1.872) (3.7660, 0.8572, 1.2938) (15.0964, 0.7629, 1.7577)
13 (5.685, 1.433, 2.092) (4.4547, 0.7013, 1.3685) (21.1555, 0.5062, 1.9611)
15 (4.640, 1.417, 2.422) (4.2025, 0.6142, 1.4879) (19.0674, 0.3837, 2.2964)

Table 2.9: Estimates of the covariance matrix of the conditional MLEs based on
jointly Type-II censored data from Table 2.7

r Covariance matrix (ρ(θi, θj))i,j

12

 14.1827 0.0668 0.0431
0.0668 0.7348 −0.0861
0.0431 −0.0861 1.6738


13

 19.8440 0.0909 0.0579
0.0909 0.4918 −0.0665
0.0579 −0.0665 1.8728


15

 17.6612 −0.0801 −0.3429
−0.0801 0.3773 −0.0444
−0.3429 −0.0444 2.2139



the expressions presented earlier in Section 2.2, and these are presented in Table 2.8.

We have also computed the estimates of the covariance matrix of (θ̂1, θ̂2, θ̂3) from the

expression in Corollary 2, and these are presented in Table 2.9. From the results in

Tables 2.8 and 2.9, we find the estimates to be quite stable, and especially so for

θ2 since this population has smallest mean thus producing more failures in the joint

censored data.

Table 2.10 presents the 95% confidence intervals for (θ1, θ2, θ3) based on the exact,

approximate, Bayes credible, Boot-p and Boot-t methods corresponding to the cases

r = 12 and r = 15. From these results, we observe once again that the approximate
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Table 2.10: 95% confidence intervals for (θ1, θ2, θ3) corresponding to different methods
based on jointly Type-II censored data from Table 2.7

r = 12
CI for θ1 CI for θ2 CI for θ3

Exact (1.55, 64.84) (0.70, 4.20) (0.83, 5.81)
Approximate (0, 46.98) (0, 7.31) (0, 11.47)

Boot-t (0, 40.31) (0, 6.98) (0, 11.08)
Boot-p (0.57, 27.12) (0.29, 13.19) (0.33, 17.41)

Bayes credible (0.67, 626.85) (0.34, 16.44) (0.39, 36.83)
r = 15

CI for θ1 CI for θ2 CI for θ3

Exact (1.77, 22.57) (0.86, 3.48) (1.12, 7.04)
Approximate (0, 48.83) (0.07, 5.83) (0, 13.08)

Boot-t (0, 46.36) (0, 5.25) (0, 12.06)
Boot-p (0.66, 33.20) (0.29, 7.95) (0.45, 22.50)

Bayes credible (0.78, 771.24) (0.34, 9.23) (0.54, 30.60)

and Boot-t confidence intervals are not satisfactory compared to the exact confidence

intervals. Moreover, we note that the Bayesian credible intervals are quite wide com-

pared to the exact confidence intervals. These demonstrate once again the importance

of the exact results derived here for obtaining exact conditional confidence intervals

in the case of small values of r.



Chapter 3

Inference Under Joint Progressive

Type-II Censoring

3.1 Introduction

In life-testing experiments, the joint censoring scheme is of great importance while

conducting comparative life-tests of products from different units within the same

facility. Suppose that products are being produced by k different lines within the

same facility, and that independent samples of sizes nh, 1 ≤ h ≤ k, are selected from

these k lines and placed simultaneously on a life-testing experiment. For the sake of

reducing cost and the experimental time, the experimenter may choose to terminate

the experiment as soon as a certain number (say, r) of failures occur. In this situation,

one may be interested in either point or interval estimation of the mean lifetimes of

46



Chapter 3.1 - Introduction 47

units produced by these k lines. Here, exact results based on maximum likelihood

estimates are developed to facilitate this.

In the literature, this joint censoring scheme has been considered before. For ex-

ample, a generalized Savage statistic has been discussed by Basu (1968). Johnson

and Mehrotra (1972) studied locally most powerful rank test under joint censoring.

The problem of testing the equality of two distributions, under the assumption of

exponentiality, has been discussed by Bhattacharyya and Mehrotra (1981). All these

developments under joint censoring scheme focused on nonparametric and parametric

tests of hypotheses; see Bhattacharyya (1995, Chapter 7 of Balakrishnan and Basu

(1995)). For inference based on the MLEs, Chen and Bhattacharyya (1988) derived

the exact distribution of the maximum likelihood estimator of the mean of an ex-

ponential distribution and an exact lower confidence bound for the mean based on

a hybrid censored sample. An alternative simple form, which is equivalent to the

results of Chen and Bhattacharyya, has been given by Childs et al (2003). To study

two or more competing products with regard to the duration of their service life,

comparative lifetime experiments are quite useful. Balakrishnan and Rasouli (2008)

discussed exact inference for two exponential populations when Type-II censoring is

implemented on the two samples in a combined manner. Balakrishnan and Rasouli

(2010) subsequently extended their work to the case of two exponential populations

when joint progressive Type-II censoring is implemented on the two samples. In the

present work, we generalize their work by considering the k-sample problem. Suppose



Chapter 3.1 - Introduction 48

the test units from k lines under study are placed on a life-test simultaneously, that

the successive failure times and the corresponding types (lines from which the failed

units come from) are recorded, and that the experiment is terminated as soon as a

specified total number of failures (say, r) occurred.

Suppose X11, X12, · · · , X1n1 are the lifetimes of n1 specimens from line A1, and

they are assumed to be independent and identically distributed (iid) variables from a

population with cumulative distribution function (cdf) F1(x) and probability density

function (pdf) f1(x). Similarly, X21, X22, · · · , X2n2 are the lifetimes of n2 specimens

from line A2 and are assumed to be a sample from pdf f2(x) and cdf F2(x), and so

on, with Xk1, Xk2, · · · , Xknk denoting the lifetimes of nk specimens from line Ak and

are assumed to be iid variables from pdf fk(x) and cdf Fk(x).

Furthermore, let N =
∑k

i=1 ni denote the total sample size and r denote the total

number of failures observed. Let w1 ≤ w2 ≤ · · · ≤ wN denote the order statistics of

the N random variables {Xij; 1 ≤ i ≤ k, 1 ≤ j ≤ ni}.

Therefore, under the joint progressive Type-II censoring scheme for the k-samples,

the observable data consist of (δ,w), where w = (w1, w2, · · · , wr), wi ∈ {Xhi1, Xhi2, · · · , Xhini}

for 1 ≤ h1, h2, · · · , hr ≤ k, with r being a pre-fixed integer. Finally, associated to

(h1, h2, · · · , hr), let us define δ = (δ1(h), δ2(h), · · · , δr(h)) as

δi(h) =


1, if h = hi

0, otherwise.

(3.1.1)
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This progressive Type-II censoring is implemented as follows. At the time of

the first failure W1 ∈ Xh1 for some 1 ≤ h1 ≤ k, R1 units are randomly withdrawn

from the remaining N − 1 surviving units. Next, at the time of the second failure

W2 ∈ Xh2 for some 1 ≤ h2 ≤ k, R2 units are randomly withdrawn from the remaining

N−R1−2 surviving units and so on. Finally, at the time of the rth failure Wr ∈ Xhr

for some 1 ≤ hr ≤ k, all remaining Rr = N − r −
∑r−1

i=1 Ri surviving units are

withdrawn from the life-testing experiment; see Balakrishnan and Aggarwala (2000)

and the discussion paper by Balakrishnan (2007) for elaborate details on progressive

Type-II censoring and associated inferential results. Here, the joint progressive Type-

II censoring scheme R = (R1, R2, · · · , Rr) is prefixed and has the decomposition

Ri =
∑k

h=1 si(h), 1 ≤ i ≤ r, where si(h) is the number of units withdrawn at the

time of ith failure belonging to the Xh-sample, and these are unknown and are random

variables. The data observed in this form will consist of (δ,R,w).

Let Mr(h) =
∑r

i=1 δi(h) denote the number of Xh−failures in w, 1 ≤ h ≤ k, and

r =
∑k

h=1Mr(h). As we can see from the form of the progressive Type-II censoring,∑k
h=1 si(h) = Ri,

∑r
i=1 si(h) +Mr(h) = nh and, of course,

∑r
i=1Ri = N − r.
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3.2 MLEs, Exact Distributions and Inference

Let s = {s(h)}kh=1 = {(s1(h), s2(h), · · · , sr(h))}kh=1. The likelihood of (δ, s,w) is then

given by

L(θ1, θ2, · · · , θk, δ, s,w) = cr

r∏
i=1

k∏
h=1

(fh(wi))
δi(h)

r∏
i=1

k∏
h=1

(Sh(wi))
si(h) , (3.2.1)

where Sh(wr) = 1− Fh(wr) and cr = D1D2, with

D1 =
r∏
i=1

[
k∑

h=1

(
nh −Mi−1(h)−

i−1∑
j=1

sj

)
δi(h)

]
,

D2 =
r−1∏
i=1



∏k
h=1

 nh −Mi(h)−
∑i−1

j=1 sj(h)

sj(h)


 N − i−

∑i−1
j=1Rj

Ri




.

The special case of joint Type-II censoring scheme is obtained when we set R1 =

R2 = · · · = Rr−1 = 0 and Rr = N − r in which case we will have si(h) = 0 when

1 ≤ i ≤ r − 1 and sr(h) = nh −Mr(h) for all 1 ≤ h ≤ k.

When the k populations are exponential with cdf Fh(x) = 1− exp
(
− x
θh

)
, x > 0,

and pdf fh(x) = 1
θh

exp
(
− x
θh

)
, x > 0, for 1 ≤ h ≤ k, the likelihood function in (3.2.1)
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becomes

L(θ1, θ2, · · · , θk, δ, s,w)

= cr

k∏
h=1

θ
−Mr(h)
h

r∏
i=1

k∏
h=1

{
exp

(
−wi
θh

)}δi(h) r∏
i=1

k∏
h=1

{
exp

(
−wi
θh

)}si(h)

= cr

k∏
h=1

exp

{
−Mr(h) log θh −

∑r
i=1(δi(h) + si(h))wi

θh

}
. (3.2.2)

From (3.2.2), we readily obtain the MLE of θh, for 1 ≤ h ≤ k, as

θ̂h =
1

Mr(h)

r∑
i=1

(δi(h) + si(h))wi. (3.2.3)

Remark 5 From the likelihood function in (3.2.2), we readily see that the MLE of

θh does not exist when Mr(h) = 0. So, the MLEs in (3.2.3) are conditioned on

S = {
∑k

h=1Mr(h) = r and Mr(h) ≥ 1 for ∀1 ≤ h ≤ k}, or equivalently on the set

S = {
∑k

h=1Mr(h) = r and
∏k

h=1Mr(h) 6= 0}. We, therefore, need to discuss the

exact distribution and other properties of the MLEs only conditional on the set S.

Lemma 2 Let Mr = (Mr(1),Mr(2), · · · ,Mr(k)) and t = (t1, t2, · · · , tk) with th =

nh −
∑r

i=1 si(h), 1 ≤ h ≤ k. Then,

P

(
k∏

h=1

Mr(h) ≥ 1|s

)
= P (Mr = t) . (3.2.4)
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Proof For fixed s, observe that
∑r

i=1 si(h) +Mr(h) = nh.

Remark 6 For a scheme R, let us denote

SR =

{
s = {si(h)}1≤h≤k,1≤i≤r :

k∑
h=1

si(h) = Ri, 1 ≤ i ≤ r,

r∑
i=1

si(h) ≤ nh − 1

}
.

Then, we have

SR =

{
s : 0 ≤ s1(h) ≤ min

(
R1 −

h−1∑
j=1

s1(j), nh − 1

)
, 1 ≤ h ≤ k − 1;

0 ≤ s2(h) ≤ min

(
R2 −

h−1∑
j=1

s2(j), nh − 1− s1(h)

)
, 1 ≤ h ≤ k − 1;

· · · ;

0 ≤ sr−1(h) ≤ min

(
Rr−1 −

h−1∑
j=1

sr−1(j), nh − 1−
r−2∑
i=1

si(h)

)
, 1 ≤ h ≤ k − 1;

0 ≤ sr(h) ≤ min

(
Rr −

h−1∑
j=1

sr(j), nh − 1−
r−1∑
i=1

si(h)

)
, 1 ≤ h ≤ k − 1,

such that
k∑

h=1

si(h) = Ri and
r∑
i=1

si(h) ≤ nh − 1

}
.

Theorem 5 (a) The joint probability mass function of δ is given by

P (δ = δ̃) = cr

k∏
h=1

θ
−Mr(h)
h

r∏
i=1

1∑k
h=1

nh−Mi−1(h,δ̃)−
∑i−1
j=1 sj(h)

θh

; (3.2.5)
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(b) For each s ∈ SR, denote t = (t1, t2, · · · , tk) = (n1−
∑r

i=1 si(1), n2−
∑r

i=1 si(2), · · · , nk−∑r
i=1 si(k)), with

∑k
j=1 tj = r and tj ≥ 1 for all j. Let δ be as defined in (3.1.1),

Mr(h) =
∑r

i=1 δi(h), and

Q∗(s) = {δ̃(h) = (δ̃1, δ̃2, · · · , δ̃r) such that Mr(h) = th for 1 ≤ h ≤ k}

Then,

P (Mr = t) =
∑

δ̃∈Q∗(s)

cr

k∏
h=1

θ−thh

r∏
i=1

1∑k
h=1

nh−Mi−1(h,δ̃)−
∑i−1
j=1 sj(h)

θh

; (3.2.6)

(c)

P

(
k∏

h=1

Mr(h) 6= 0

)
=
∑
s∈SR

P (Mr = t). (3.2.7)

Proof (a) From (3.2.2), we have the joint density of (δ, s,w) as

f(δ, s,w) = cr

k∏
h=1

θ
−Mr(h)
h exp

(
−

r∑
i=1

k∑
h=1

wi(δi(h) + si(h))

θh

)
.

Let

aj =
k∑

h=1

δj(h) + sj(h)

θh
.
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Then, we have

f(δ, s,w) = cr

(
k∏

h=1

θ
−Mr(h)
h

)
exp

(
−

r∑
i=1

aiwi

)
. (3.2.8)

Upon integrating out w1, w2, · · · , wr over {0 ≤ w1 ≤ w2 ≤ · · · ≤ wr < ∞} in

(3.2.8), after mapping it onto {0 ≤ ui <∞, 1 ≤ i ≤ k} though the transforma-

tion



u1 = w1,

u2 = w2 − w1,

· · ·

ur = wr − wr−1,

we obtain the joint probability mass function of δ as follows:

P (δ = δ̃) = cr

k∏
h=1

θ
−Mr(h)
h

r∏
i=1

1∑r
j=i aj

. (3.2.9)

Observe that for δ̃,
∑r

i=1 si(h) + Mr(h, δ̃) = nh, where Mr(h, δ̃) =
∑r

i=1 δ̃i(h),
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and so

r∑
j=i

aj =
r∑
j=i

k∑
h=1

δj(h) + sj(h)

θh

=
k∑

h=1

Mr(h, δ̃)−Mi−1(h, δ̃) +
∑r

j=i sj(h)

θh

=
k∑

h=1

nh −Mi−1(h, δ̃)−
∑i−1

j=1 sj(h)

θh
,

where Mi−1(h, δ̃) =
∑i−1

j=1 δ̃j(h) depends on δ̃, and yet we denote it by Mi−1(h)

for simplicity, and set M0(h) = 0. Thus, (3.2.5) is obtained.

(b) It readily follows from (3.2.5).

(c) The required result follows immediately from Remark 6 and Part (b).

Theorem 6 Conditional on
∏k

h=1 Mr(h) 6= 0, the moment generating function (mgf)

of θ̂l (for l = 1, 2, · · · , k) is given by

Mθ̂l
(t) =

1

P (
∏k

h=1Mr(h) 6= 0)

∑
s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)
r∏
i=1

(1− β∗lit)−1,

where R is a scheme and SR is the sets defined in Remark 6, and

β∗li =
nl −Mi−1(l)−

∑i−1
j=1 sj(l)

Mr(l)
∑k

h=1

nh−Mi−1(h)−
∑i−1
j=1 sj(h)

θh

, 1 ≤ l ≤ k, 1 ≤ i ≤ r. (3.2.10)
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Proof Conditioning on the values of Mr for
∏k

h=1Mr(h) 6= 0 and then on δ̃, we

obtain

E

[
etθ̂l |

k∏
h=1

Mr(h) 6= 0

]
P

(
k∏

h=1

Mr(h) 6= 0

)
=

∑
s∈SR

E(etθ̂l |Mr = t)P (Mr = t)

=
∑
s∈SR

∑
δ̃∈Q∗(s)

∫
0≤w1≤w2≤···≤wr<∞

etθ̂lf(δ̃,w)dw1 · · · dwr

=
∑
s∈SR

∑
δ̃∈Q∗(s)

cr

k∏
h=1

θ
−Mr(h)
h

×
∫

0≤w1≤w2≤···≤wr<∞
e

t
Mr(l)
{∑r

i=1 wi(δi(l)+si(l))} exp

(
−

r∑
i=1

aiwi

)
dw1 · · · dwr

=
∑
s∈SR

∑
δ̃∈Q∗(s)

cr

k∏
h=1

θ
−Mr(h)
h

×
∫

0≤w1≤···≤wr<∞
exp

{
−

r∑
i=1

(
ai −

t(δ̃i(l) + si(l))

Mr(l)

)
wi

}
dw1 · · · dwr

=
∑
s∈SR

∑
δ̃∈Q∗(s)

cr

k∏
h=1

θ
−Mr(h)
h


r∏
i=1

1∑r
j=i

(
aj − t(δ̃j(l)+sj(l))

Mr(l)

)
 .
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Now, we observe that

r∑
j=i

(
aj −

t(δ̃j(l) + sj(l))

Mr(l)

)

=
r∑
j=i

aj −
t

Mr(l)

r∑
j=i

(δ̃j(l) + sj(l))

=
k∑

h=1

nh −Mi−1(h)−
∑i−1

j=1 sj(h)

θh
−
nl −Mi−1(l)−

∑i−1
j=1 sj(l)

Mr(l)
t

= (1− β∗lit)
k∑

h=1

nh −Mi−1(h)−
∑i−1

j=1 sj(h)

θh
,

where β∗li is as given in Eq. (3.2.10). Thus, we obtain

E

[
etθ̂l |

k∏
h=1

Mr(h) 6= 0

]
P

(
k∏

h=1

Mr(h) 6= 0

)

=
∑
s∈SR

∑
δ̃∈Q∗(s)

cr

k∏
h=1

θ
−Mr(h)
h

r∏
i=1

1∑k
h=1

nh−Mi−1(h)−
∑i−1
j=1 sj(h)

θh

r∏
i=1

(1− β∗lit)−1

=
∑
s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)
r∏
i=1

(1− β∗lit)−1,

as required.

Remark 7 For fixed l and δ̃, some β∗li’s may be the same. In this case, we resort

the β∗li values and still denote them by {β∗li}r
′
i=1, and assume that there are r′ distinct

values with αi of the β∗li’s being equal, with
∑r′

i=1 αi = r. Consequently, the term∏r
i=1(1− β∗lit)−1 can be rewritten as

∏r′

i=1(1− β∗lit)−αi, and so the conditional mgf in
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Theorem 6 can be expressed as follows:

E

[
etθ̂l |

k∏
h=1

Mr(h) 6= 0

]
=

1

P
(∏k

h=1Mr(h) 6= 0
) ∑

s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)

×
r′∏
i=1

(1− β∗lit)−αi . (3.2.11)

Theorem 7 Conditional on
∏k

h=1 Mr(h) 6= 0, the pdf of θ̂l is given by

fθ̂l|
∏k
h=1Mr(h) 6=0(x)

=
1

P
(∏k

h=1Mr(h) 6= 0
) ∑

s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)gYl,δ(x), (3.2.12)

where P (δ = δ̃) is as given in (3.2.5), Yl,δ
d
=
∑r′

i=1 Y
∗
l,i with Y ∗l,i being independent

random variables having gamma G(αi, β
∗
li) distributions with shape parameters αi and

scale parameters β∗li, and gYl,i(x) is the pdf of Yl,i.

Remark 8 From (3.2.12), it is clear that the distribution of the MLE θ̂l is a weighted

sum of distributions of random variables of the type Yl,δ, where Yl,δ itself is a sum of

independent and non-identical gamma random variables.

Corollary 3 From (3.2.12), we immediately obtain the expressions for the first two
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conditional moments of θ̂l as follows:

E

[
θ̂l|

k∏
h=1

Mr(h) 6= 0

]

=
1

P
(∏k

h=1 Mr(h) 6= 0
) ∑

s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)
r′∑
i=1

αiβ
∗
li

and

E

[
θ̂2
l |

k∏
h=1

Mr(h) 6= 0

]
=

1

P
(∏k

h=1 Mr(h) 6= 0
) ∑

s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)

×


r′∑
i=1

αiβ
∗
li

2 +

(
r′∑
i=1

αiβ
∗
li

)2
 .

Then, Var(θ̂l) and MSE(θ̂l) can be readily obtained from these two expressions.

It is convenient to rewrite the conditional mgf of θ̂l (for l = 1, 2, · · · , k) in Theorem

6 as

Mθ̂l|
∏k
h=1Mr(h)6=0(t)

=
1

P
(∏k

h=1Mr(h) 6= 0
) ∑

s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)
r′∏
i=1

(1− β∗lit)−αi

=
1

P
(∏k

h=1Mr(h) 6= 0
) ∑

s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)
r′∑
i=1

αi∑
j=1

A
(j)
li (1− β∗lit)−j,

where Ali’s are coefficients obtained by writing the product
∏r

i=1(1 − β∗lit)
−1 =
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∏r′

i=1(1 − β∗lit)−αi in the partial fraction form
∑r′

i=1

∑αi
j=1A

(j)
li (1 − β∗lit)−j, which can

be determined by the use of Lemma 5 in Appendix. Since (1− β∗lit)−j is the mgf of a

gamma distribution with scale parameter β∗li and shape parameter j, we can obtain

the conditional tail probability of θ̂l (for l = 1, 2, · · · , k) from the above expression as

P

(
θ̂l > b

∣∣∣∣∣
k∏

h=1

Mr(h) 6= 0

)
=

1

P
(∏k

h=1 Mr(h) 6= 0
) ∑

s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)

×
r′∑
i=1

αi∑
j=1

A
(j)
li e
− b
β∗
li

j−1∑
j′=0

(
b
β∗li

)j′
j′!

. (3.2.13)

We shall now assume that the conditional tail probability of θ̂l in (3.2.13) is an

increasing function of θl when all other θj’s are fixed, for j 6= l. This assumption

guarantees the invertibility of the pivotal quantities, and it has been verified to be

true in this case through extensive computations under various of settings. It should

be mentioned that this approach has been used by a number of authors for the

construction of exact confidence intervals in a variety of contexts; see, for example,

Childs et al. (2003) and Balakrishnan et al. (2007). We then have a 100(1 − α)%

lower confidence bound for θl as θlL, where θlL is such that PθlL(θ̂l > θ̂l,obs) = α

with θ̂l,obs being the observed value of θ̂l. Also, a 100(1 − α)% confidence interval

for θl is (θlL, θlU), where θlL and θlU are determined by PθlL(θ̂l > θ̂l,obs) = α
2

and

PθlU (θ̂l > θ̂l,obs) = 1− α
2
.

By performing the same steps as done in the case of conditional marginal mgf, we

can also derive the conditional joint mgf of (θ̂1, θ̂2, · · · , θ̂k) as follows.



Chapter 3.2 - MLEs, Exact Distributions and Inference 61

Theorem 8 Conditional on
∏k

h=1 Mr(h) 6= 0, the conditional joint mgf of (θ̂1, θ̂2, · · · , θ̂k)

is given by

Mθ̂1,θ̂2,··· ,θ̂k|
∏k
h=1Mr(h)6=0(t1, · · · , tk)

=
1

P
(∏k

h=1Mr(h) 6= 0
) ∑

s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)

×
r∏
i=1

(
1−

k∑
l=1

β∗litl

)−1

, (3.2.14)

where β∗li is as defined earlier in Eq. (3.2.10).

Corollary 4 From (3.2.14), we find the covariance between θ̂l1 and θ̂l2 (for l1 6= l2)

as follows:

Cov
(
θ̂l1 , θ̂l2

)
=

1

P
(∏k

h=1 Mr(h) 6= 0
) ∑

s∈SR

×
∑

δ̃∈Q∗(s)

P (δ = δ̃)

(
r∑
i=1

β∗l1,iβ
∗
l2,i

+
r∑
i=1

β∗l1,i

r∑
i=1

β∗l2,i

)

− 1{
P
(∏k

h=1Mr(h) 6= 0
)}2

∑
s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)
r∑
i=1

β∗l1,i

×
∑
s∈SR

∑
δ̃∈Q∗(s)

P (δ = δ̃)
r∑
i=1

β∗l2,i. (3.2.15)
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3.3 Approximate Confidence Intervals

Let I(θ1, θ2, · · · , θk) = (Ii,j(θ1, θ2, · · · , θk)), i, j = 1, 2, · · · , k, denote the Fisher infor-

mation matrix of the parameters θ1, θ2, · · · , θk, where

Ii,j(θ1, θ2, · · · , θk) = −E
(
∂2 lnL

∂θi∂θj

)
. (3.3.1)

From the likelihood function in (3.2.2), we have Ii,j(θ1, θ2, · · · , θk) = 0 if i 6= j.

Consequently, we have

I(θ̂1, θ̂2, · · · , θ̂k)

= −Diag

(
∂2 lnL

∂θ2
1

|θ1=θ̂1
,
∂2 lnL

∂θ2
2

|θ2=θ̂2
, · · · , ∂

2 lnL

∂θ2
k

|θk=θ̂k

)
, (3.3.2)

where

∂2 lnL

∂θ2
h

|θh=θ̂h
=

Mr(h)

θ̂2
h

− 2
∑r

i=1(δi(h) + si(h))wi

θ̂3
h

= −Mr(h)

θ̂2
h

.

Then, by using the asymptotic normality of the MLEs, we have θ̂h − θh ∼

N(0, I−1
h,h), so that we can express the approximate 100(1 − α)% confidence inter-
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val for θh, 1 ≤ h ≤ k, as

θ̂h ± Zα/2
∑r

i=1(δi(h) + si(h))wi

(Mr(h))
3
2

= θ̂h

(
1±

Zα/2√
Mr(h)

)
,

where Zα/2 denotes the upper α/2 percentage point of the standard normal distribu-

tion.

3.4 Bayesian Intervals

Let uh =
∑r

i=1(δi(h) + si(h))wi. Then, we can rewrite the likelihood function as

L(θ1, θ2, · · · , θk, δ, s,w) = cr

k∏
h=1

θ
−Mr(h)
h exp

(
−uh
θh

)
. (3.4.1)

Now, by assuming independent inverse gamma prior distributions, viz., IG(ah, bh)

for 1 ≤ h ≤ k, we obtain from (3.4.1) the posterior joint density function as

L(θ1, θ2, · · · , θk|w) = cr

k∏
h=1

θ
−Mr(h)−ah−1
h exp

(
−uh + bh

θh

)
.

Upon comparing this with (3.4.1), we see that the joint posterior density function of

(θ1, θ2, · · · , θk) is a product of k independent inverse gamma density functions. So,

given the data, the posterior density function of θ̂h is simply IG (Mr(h) + ah, uh + bh).
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Thus, the Bayes estimator of θh under the squared-error loss function is

θ̂h,Bayes =
uh + bh

Mr(h) + ah − 1
, h = 1, 2, · · · , k. (3.4.2)

When we use Jeffreys’ non-informative prior I(θh) ∝ 1
θ2h

corresponding to the

special case when ah = 1 and bh = 0, for 1 ≤ h ≤ k, the Bayes estimators in (3.4.2)

coincide with the MLEs in (3.2.3).

Let Uh = 2(uh+bh)
θh

for 1 ≤ h ≤ k. Then, the pivot Uh follows χ2
2(Mr(h)+ah) distri-

bution, provided 2(Mr(h) + ah) is a positive integer, for 1 ≤ h ≤ k. In this case, the

100(1− α)% Bayes credible interval for θh becomes

(
2(uh + bh)

χ2
2(Mr(h)+ah),1−α/2

,
2(uh + bh)

χ2
2(Mr(h)+ah),α/2

)
, h = 1, 2, · · · , k,

where χ2
v,α

2
is the lower α

2
percentage point of the chi-square distribution with v

degrees of freedom.

3.5 Bootstrap Intervals

In this section, we consider confidence interval for θh (h = 1, 2, · · · , k) based on the

Bootstrap-p and Bootstrap-t methods; see, for example, Efron and Tibshirani (1994).

To find the Bootstrap-p and Bootstrap-t intervals, in the first step, we generate

original samples from k exponential populations with parameters
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θh of size nh, 1 ≤ h ≤ k. Next, we sort the data, and determine to which population

each failure belongs, and then estimate θh by the conditional MLE in (3.2.3). In

the second step, we generate a bootstrap sample (δ1, δ2, · · · , δN ;W1,W2, · · · ,WN)

by using the values (θ̂1, θ̂2, · · · , θ̂k), and then obtain the bootstrap estimates of θ̂h,

1 ≤ h ≤ k, say θ̂∗h, 1 ≤ h ≤ k, from the bootstrap sample. In the third step, we

repeat the second step N -Boot times.

Boot-p: Suppose KhB(x) = P
(
θ̂∗h ≤ x

)
, 1 ≤ h ≤ k, is the cumulative distribution

function of θ̂∗h. Define θ̂hB(α) = K−1
hB(α), 1 ≤ h ≤ k, for a given α. Then, the

100(1− α)% Boot-p confidence interval for θh, 1 ≤ h ≤ k, is given by

(
θ̂hB

(α
2

)
, θ̂hB

(
1− α

2

))
, 1 ≤ h ≤ k.

Boot-t: After generating the bootstrap samples in the second step and calculating

θ̂∗h, we need to use them to compute the estimate of V ar(θ̂∗h) from the observed Fisher

information matrix in (3.3.2). Then, we determine the T ∗h statistic given by

T ∗h =
θ̂∗h − θ̂h√
V ar(θ̂∗h)

, 1 ≤ h ≤ k. (3.5.1)

Now, suppose LhB(x) = P (T ∗h ≤ x) is the cumulative distribution function of T ∗h ,

1 ≤ h ≤ k. Then, the 100(1 − α)% Boot-t confidence interval for θh, 1 ≤ h ≤ k, is
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given by

(
θ̂h −

√
Var(θ̂h)L

−1
hB

(
1− α

2

)
, θ̂h −

√
Var(θ̂h)L

−1
hB

(α
2

))
, 1 ≤ h ≤ k.

3.6 Simulation Results and Discussion

A simulation study was carried out to evaluate the performance of the conditional

MLEs and also the average width of all confidence intervals discussed in the preceding

sections for some choices of (n1, n2, n3) and r. We considered different sample sizes

for three populations (i.e, k = 3) as n = (n1, n2, n3), n1 = n2 = n3 = 5, 6, 7, 8, 9, 10,

and different choice for r = 8, 10, 12, 18. We list the different choices in Table 3.1 and

3.2 for which the simulation results are presented here. We also chose the parameters

(θ1, θ2, θ3) to be (2, 4, 7) and (3, 5, 9). For these cases, we computed the conditional

MLEs for the parameters (θ1, θ2, θ3) and the average width of 95% confidence intervals

for (θ1, θ2, θ3) using approximate, Boot-p and Boot-t methods (with N-Boot as 1000).

For comparative purposes, we also computed the average widths of 95% credible

intervals using Jeffreys’ non-informative priors (a1 = a2 = a3 = 1 and b1 = b2 =

b3 = 0). We repeated this process 1000 times and computed the average values of

the conditional MLEs as well as the coverage probabilities for all confidence intervals,

and these are presented in Table 3.3 and 3.4. From these values, it is clear that the

MLEs have a moderate bias when the essential sample size r is small relative to the

sample sizes (n1, n2, n3) and become negligible when r increases relative to N , as is
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evident from Table 3.3 and 3.4.

In Table 3.3 and 3.4, the coverage probabilities of 95% confidence intervals of

(θ1, θ2, θ3) for all the methods are presented for the same choices of n1, n2, n3 and r. We

observe that between the two bootstrap methods, the Boot-p method performs better

than the Boot-t method; the Bayesian method has very stable coverage probabilities

(quite close to the nominal level of 95%); however, all these methods have lower

coverage probabilities when the sample sizes are small. The exact method derived

in Section 2 provides exact conditional confidence intervals with accurate coverage

probabilities (compared to the nominal confidence levels) for small sample sizes.

3.7 Illustrative Example

Nelson (1982, Ch. 10, Table 4.1) has given times to breakdown in minutes of an

insulating fluid subjected to high voltage stress. The failure times were observed in

the form of groups with each group reporting data on 10 insulating fluids. For the

purpose of illustrating the methods of inference detailed in the preceding sections, let

us consider the following three groups of samples of failure time data presented in

Table 3.7.

Suppose the samples of sizes n = (10, 10, 10) in Table 3.7 are from three expo-

nential populations with means (θ1, θ2, θ3), respectively. Suppose a joint progressive

Type-II censoring with r = 12 had been enforced on these data. For example, Tables

3.8 and 3.9 present the joint progressively Type-II censored data that obtained from
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Table 3.1: Different choices of sample sizes and the joint progressive Type-II censoring
scheme employed in the simulation study. (Here, (17, 0), for example, means that the
censoring scheme employed is (1,1,1,1,1,1,1,0))

(n1, n2, n3) r R Scheme no. for θ = (2, 4, 7)
(5, 5, 5) 8 (17, 0) [111]

(23, 04, 1) [112]
(6, 6, 6) 8 (17, 3) [121]

(25, 03) [122]
(7, 7, 7) 8 (17, 6) [131]

(26, 0, 1) [132]
(8, 8, 8) 8 (17, 9) [141]

(28) [142]
(5, 5, 5) 10 (15, 05) [151]

(22, 07, 1) [152]
(6, 6, 6) 10 (18, 02) [161]

(24, 06) [162]
(7, 7, 7) 10 (19, 2) [171]

(25, 04, 1) [172]
(8, 8, 8) 10 (19, 5) [181]

(27, 03) [182]
(6, 6, 6) 12 (16, 06) [191]

(23, 09) [192]
(7, 7, 7) 12 (19, 03) [1101]

(24, 1, 07) [1102]
(8, 8, 8) 12 (112) [1111]

(26, 06) [1112]
(9, 9, 9) 12 (111, 4) [1121]

(27, 1, 04) [1122]
(7, 7, 7) 18 (13, 015) [1131]

(2, 1, 016) [1132]
(8, 8, 8) 18 (16, 012) [1141]

(23, 015) [1142]
(9, 9, 9) 18 (19, 09) [1151]

(24, 1, 013) [1152]
(10, 10, 10) 18 (112, 06) [1161]

(26, 012) [1162]
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Table 3.2: Different choices of sample sizes and the joint progressive Type-II censoring
scheme employed in the simulation study. (Here, (17, 0), for example, means that the
censoring scheme employed is (1,1,1,1,1,1,1,0))

(n1, n2, n3) r R Scheme no. for θ = (3, 5, 9)
(5, 5, 5) 8 (17, 0) [211]

(23, 04, 1) [212]
(6, 6, 6) 8 (17, 3) [221]

(25, 03) [222]
(7, 7, 7) 8 (17, 6) [231]

(26, 0, 1) [232]
(8, 8, 8) 8 (17, 9) [241]

(28) [242]
(5, 5, 5) 10 (15, 05) [251]

(22, 07, 1) [252]
(6, 6, 6) 10 (18, 02) [261]

(24, 06) [262]
(7, 7, 7) 10 (19, 2) [271]

(25, 04, 1) [272]
(8, 8, 8) 10 (19, 5) [281]

(27, 03) [282]
(6, 6, 6) 12 (16, 06) [291]

(23, 09) [292]
(7, 7, 7) 12 (19, 03) [2101]

(24, 1, 07) [2102]
(8, 8, 8) 12 (112) [2111]

(26, 06) [2112]
(9, 9, 9) 12 (111, 4) [2121]

(27, 1, 04) [2122]
(7, 7, 7) 18 (13, 015) [2131]

(2, 1, 016) [2132]
(8, 8, 8) 18 (16, 012) [2141]

(23, 015) [2142]
(9, 9, 9) 18 (19, 09) [2151]

(24, 1, 013) [2152]
(10, 10, 10) 18 (112, 06) [2161]

(26, 012) [2162]
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Table 3.3: Average values of the MLEs θ̂ = (θ̂1, θ̂2, θ̂3) and coverage probabilities of
different confidence intervals for some choices of (n1, n2, n3), r and joint progressive
Type-II censoring scheme.

Scheme θ = (2, 4, 7)

no. θ̂ = (θ̂1, θ̂2, θ̂3) Approximate Bayes Boot−t Boot−p
111 (2.13, 4.25, 7.74) (88, 85, 84) (96, 94, 91) (84, 90, 91) (91, 92, 91)
112 (2.14, 4.76, 9.02) (85, 88, 90) (94, 92, 90) (82, 88, 90) (89, 91, 95)
121 (2.33, 5.93, 10.90) (91, 93, 93) (94, 87, 85) (86, 87, 87) (90, 90, 95)
122 (2.21, 4.33, 7.71) (88, 84, 85) (94, 94, 93) (85, 88, 91) (91, 91, 92)
131 (2.52, 6.46, 11.82) (94, 95, 94) (92, 84, 80) (86, 83, 83) (91, 88, 92)
132 (2.21, 4.87, 9.60) (90, 87, 91) (95, 91, 88) (86, 88, 90) (92, 92, 96)
141 (2.88, 7.28, 11.46) (97, 97, 94) (91, 80, 83) (87, 77, 83) (87, 80, 93)
142 (2.24, 5.50, 11.05) (92, 91, 94) (96, 90, 86) (89, 87, 85) (93, 91, 96)
151 (2.01, 4.28, 7.21) (86, 86, 82) (96, 93, 94) (83, 88, 90) (88, 91, 88)
152 (2.08, 4.29, 7.95) (87, 88, 89) (96, 93, 94) (84, 89, 93) (89, 92, 94)
161 (2.14, 4.29, 7.69) (90, 87, 86) (96, 94, 92) (86, 89, 93) (92, 92, 93)
162 (2.03, 4.02, 7.44) (88, 86, 85) (95, 95, 93) (84, 88, 92) (91, 90, 90)
171 (2.25, 5.01, 10.73) (92, 92, 94) (93, 91, 85) (85, 88, 83) (90, 92, 94)
172 (2.10, 4.65, 9.02) (88, 88, 93) (95, 93, 90) (83, 87, 90) (90, 91, 96)
181 (2.34, 5.93, 12.30) (94, 95, 94) (94, 87, 77) (86, 84, 72) (91, 87, 86)
182 (2.15, 4.45, 7.77) (91, 88, 85) (96, 92, 92) (87, 90, 93) (93, 95, 93)
191 (1.96, 4.12, 7.15) (87, 86, 86) (96, 94, 94) (82, 89, 94) (90, 91, 91)
192 (2.01, 4.05, 7.10) (87, 86, 85) (95, 94, 93) (83, 89, 91) (90, 89, 89)
1101 (2.04, 4.24, 7.59) (88, 89, 86) (96, 94, 93) (83, 90, 93) (91, 92, 92)
1102 (2.07, 4.06, 6.96) (89, 85, 85) (94, 94, 93) (85, 89, 92) (91, 90, 90)
1111 (2.09, 4.95, 9.19) (91, 92, 91) (95, 89, 86) (86, 89, 86) (91, 93, 94)
1112 (2.06, 4.15, 7.27) (89, 86, 86) (95, 95, 92) (84, 89, 93) (91, 92, 91)
1121 (2.26, 5.38, 11.97) (93, 95, 96) (96, 88, 78) (85, 84, 68) (91, 89, 84)
1122 (2.15, 4.29, 7.73) (90, 88, 88) (95, 94, 92) (86, 90, 94) (92, 93, 94)
1131 (2.00, 3.92, 7.00) (87, 88, 88) (94, 94, 95) (83, 91, 94) (90, 90, 91)
1132 (2.02, 3.97, 6.93) (89, 88, 87) (95, 94, 95) (85, 90, 94) (92, 91, 90)
1141 (1.98, 4.14, 7.02) (89, 90, 87) (96, 94, 94) (84, 91, 94) (92, 91, 90)
1142 (2.00, 4.01, 7.01) (87, 89, 88) (95, 94, 95) (83, 90, 95) (90, 91, 92)
1151 (2.03, 4.10, 7.01) (90, 90, 88) (95, 94, 94) (85, 91, 94) (92, 93, 91)
1152 (2.00, 4.06, 7.07) (87, 88, 88) (95, 95, 94) (83, 90, 95) (91, 92, 91)
1161 (2.08, 4.00, 7.15) (91, 88, 89) (93, 94, 93) (87, 91, 93) (93, 92, 93)
1162 (2.02, 4.15, 7.22) (90, 89, 89) (96, 94, 93) (86, 91, 93) (93, 92, 93)
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Table 3.4: Average values of the MLEs θ̂ = (θ̂1, θ̂2, θ̂3) and coverage probabilities of
different confidence intervals for some choices of (n1, n2, n3), r and joint progressive
Type-II censoring scheme.

Scheme θ = (3, 5, 9)

no. θ̂ = (θ̂1, θ̂2, θ̂3) Approximate Bayes Boot−t Boot−p
211 (3.32, 5.50, 9.96) (88, 87, 82) (94, 93, 91) (84, 88, 90) (91, 93, 92)
212 (3.32, 5.80, 11.81) (86, 86, 90) (93, 92, 90) (82, 87, 90) (89, 90, 95)
221 (3.53, 7.24, 14.33) (92, 94, 92) (94, 89, 83) (86, 89, 84) (91, 93, 95)
222 (3.19, 5.61, 10.02) (87, 86, 84) (94, 93, 93) (84, 89, 91) (91, 93, 91)
231 (4.01, 7.92, 14.92) (95, 95, 95) (92, 84, 81) (88, 83, 82) (90, 88, 94)
232 (3.46, 6.19, 12.73) (90, 89, 92) (94, 91, 88) (86, 88, 89) (92, 93, 96)
241 (4.40, 8.61, 15.01) (96, 97, 95) (90, 83, 81) (86, 80, 82) (87, 83, 92)
242 (3.59, 6.96, 14.72) (92, 92, 93) (94, 89, 85) (86, 88, 84) (91, 91, 94)
251 (3.28, 5.14, 9.07) (88, 85, 84) (95, 96, 94) (84, 88, 91) (92, 91, 89)
252 (3.11, 5.46, 10.56) (86, 88, 90) (94, 92, 92) (81, 88, 92) (90, 90, 95)
261 (3.18, 5.45, 9.83) (89, 88, 87) (96, 93, 92) (86, 89, 91) (92, 94, 92)
262 (3.11, 5.20, 9.21) (86, 86, 83) (95, 95, 94) (83, 88, 90) (89, 91, 89)
271 (3.39, 6.21, 13.58) (92, 92, 94) (94, 93, 84) (85, 89, 84) (92, 92, 93)
272 (3.19, 5.76, 11.74) (87, 88, 92) (95, 92, 89) (84, 87, 88) (90, 90, 96)
281 (3.74, 7.34, 15.94) (94, 96, 96) (92, 89, 78) (86, 83, 71) (89, 88, 84)
282 (3.31, 5.49, 10.11) (91, 88, 86) (94, 94, 92) (87, 91, 93) (93, 93, 93)
291 (3.18, 5.28, 9.29) (90, 87, 84) (95, 94, 92) (85, 88, 92) (92, 92, 88)
292 (3.00, 5.11, 9.38) (84, 85, 87) (93, 94, 93) (82, 87, 91) (88, 89, 90)
2101 (3.15, 5.40, 9.92) (92, 88, 86) (96, 94, 92) (87, 88, 92) (94, 94, 93)
2102 (3.10, 5.10, 9.02) (88, 86, 85) (95, 93, 93) (86, 87, 92) (91, 89, 90)
2111 (3.26, 5.64, 12.00) (91, 90, 90) (96, 91, 88) (86, 86, 87) (92, 91, 94)
2112 (3.09, 5.40, 9.29) (89, 89, 85) (95, 94, 93) (84, 90, 93) (92, 93, 91)
2121 (3.45, 6.68, 15.41) (94, 94, 95) (94, 89, 75) (87, 85, 68) (92, 90, 81)
2122 (3.26, 5.50, 9.52) (90, 88, 87) (94, 94, 93) (87, 89, 92) (92, 93, 93)
2131 (3.00, 5.01, 9.16) (89, 86, 87) (95, 95, 94) (84, 88, 93) (91, 91, 89)
2132 (3.01, 4.96, 9.03) (86, 87, 88) (94, 95, 96) (82, 88, 94) (89, 89, 91)
2141 (3.01, 4.94, 9.06) (88, 88, 87) (95, 95, 93) (84, 87, 92) (91, 91, 90)
2142 (3.06, 5.08, 9.01) (89, 89, 88) (95, 96, 95) (86, 90, 92) (92, 92, 90)
2151 (3.11, 5.10, 9.20) (91, 89, 88) (96, 94, 93) (86, 89, 94) (93, 92, 92)
2152 (3.03, 4.86, 9.01) (88, 87, 85) (96, 94, 94) (84, 87, 94) (91, 91, 90)
2161 (3.11, 5.21, 9.19) (91, 88, 88) (95, 94, 92) (88, 88, 93) (93, 92, 92)
2162 (3.05, 5.22, 9.03) (90, 88, 88) (95, 93, 94) (86, 88, 94) (92, 92, 92)
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Table 3.5: The average widths for some choices of (n1, n2, n3), r and joint progressive
Type-II censoring scheme.

Scheme θ = (2, 4, 7)
no. Approximate Bayes Boot−t Boot−p
111 (5.0, 9.7, 17.4) (33.8, 68.6, 120.6) (5.7, 12.6, 24.2) (8.5, 60.5, 256.7)
112 (4.7, 10.6, 20.0) (12.0, 26.8, 51.0) (5.8, 14.6, 28.8) (8.0, 86.1, 346.4)
121 (5.2, 13.2, 24.2) (13.1, 33.3, 61.1) (7.1, 23.7, 45.5) (10.5, 194.9, 674.9)
122 (5.0, 9.5, 16.4) (14.0, 27.7, 48.1) (5.9, 12.2, 22.1) (8.2, 53.9, 204.7)
131 (5.7, 13.9, 25.7) (15.9, 41.1, 75.4) (8.5, 27.0, 42.4) (11.8, 215.7, 598.0)
132 (5.0, 10.6, 20.8) (14.1, 31.2, 61.2) (6.4, 17.1, 37.0) (8.1, 99.6, 486.5)
141 (6.8, 16.6, 26.2) (45.9, 113.3, 178.2) (10.5, 29.5, 38.0) (17.2, 240.3, 457.6)
142 (5.3, 12.3, 25.3) (35.7, 84.5, 180.4) (6.7, 22.1, 50.1) (8.7, 176.3, 795.2)
151 (4.2, 8.3, 14.4) (8.1, 17.2, 29.0) (4.4, 9.8, 16.7) (5.1, 40.7, 122.7)
152 (4.4, 8.6, 16.2) (10.1, 20.8, 38.2) (4.7, 10.6, 20.2) (5.5, 38.3, 162.6)
161 (4.5, 8.6, 15.3) (8.6, 17.3, 31.1) (4.9, 10.9, 20.7) (5.6, 44.4, 182.2)
162 (4.3, 8.1, 15.2) (9.7, 19.0, 36.1) (4.5, 9.3, 17.5) (5.3, 36.0, 134.9)
171 (5.3, 6.2, 8.7) (37.1, 86.1, 174.9) (5.6, 17.4, 44.8) (9.6, 103.8, 708.1)
172 (4.4, 9.2, 18.3) (10.0, 22.1, 43.2) (5.0, 13.2, 27.5) (5.9, 86.2, 269.8)
181 (5.2, 8.2, 16.5) (14.3, 35.5, 74.5) (6.3, 24.5, 54.0) (9.2, 183.9, 948.8)
182 (4.5, 8.8, 15.2) (8.7, 18.0, 31.3) (5.0, 11.7, 21.1) (6.5, 54.8, 196.5)
191 (4.0, 5.9, 8.5) (7.3, 15.3, 26.1) (3.9, 8.5, 15.0) (4.1, 29.2, 93.9)
192 (4.0, 6.7, 10.8) (6.9, 13.9, 24.1) (4.0, 8.2, 14.4) (4.5, 26.0, 88.5)
1101 (4.1, 6.6, 11.6) (7.0, 14.5, 25.8) (4.1, 9.4, 17.8) (4.3, 35.5, 140.8)
1102 (4.2, 6.1, 11.4) (9.1, 17.7, 30.4) (4.1, 8.5, 14.7) (4.7, 29.6, 91.6)
1111 (4.6, 4.0, 11.2) (31.1, 67.1, 130.8) (4.3, 14.4, 31.7) (5.0, 85.4, 364.3)
1112 (4.2, 5.8, 10.9) (8.8, 18.1, 32.0) (4.2, 8.9, 16.1) (4.8, 33.4, 112.4)
1121 (4.5, 8.6, 17.1) (7.7, 18.4, 40.8) (5.0, 19.4, 55.8) (5.7, 109.4, 956.6)
1122 (4.3, 6.0, 11.4) (7.4, 14.7, 26.5) (4.4, 9.8, 18.4) (5.4, 39.4, 143.3)
1131 (3.2, 4.7, 8.0) (4.4, 8.7, 15.5) (3.2, 6.2, 11.2) (3.4, 17.2, 60.1)
1132 (3.2, 5.2, 9.2) (4.5, 8.8, 15.3) (3.2, 6.3, 11.1) (3.4, 17.6, 55.6)
1141 (3.3, 4.5, 5.6) (4.8, 9.9, 16.8) (3.1, 6.7, 11.5) (3.2, 20.0, 59.9)
1142 (3.2, 4.3, 7.8) (4.5, 9.0, 15.8) (3.2, 6.4, 11.4) (3.3, 18.8, 59.4)
1151 (3.2, 4.4, 9.0) (4.5, 9.1, 15.5) (3.2, 6.8, 11.8) (3.4, 20.1, 62.3)
1152 (3.2, 4.7, 8.1) (4.5, 9.2, 15.9) (3.2, 6.6, 11.6) (3.4, 19.4, 62.3)
1161 (3.4, 3.7, 7.1) (4.9, 9.5, 16.9) (3.3, 6.8, 12.7) (3.4, 20.5, 72.3)
1162 (3.3, 5.0, 7.3) (4.5, 9.3, 16.2) (3.2, 6.9, 12.1) (3.4, 20.9, 65.4)
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Table 3.6: The average widths for some choices of (n1, n2, n3), r and joint progressive
Type-II censoring scheme.

Scheme θ = (3, 5, 9)
no. Approximate Bayes Boot−t Boot−p
211 (7.5, 11.8, 21.1) (20.9, 34.6, 62.9) (9.2, 16.2, 30.9) (15.8, 77.4, 327.2)
212 (7.3, 12.9, 26.2) (18.5, 32.5, 66.0) (9.3, 17.6, 37.5) (15.9, 77.4, 401.6)
221 (8.3, 15.7, 32.5) (53.9, 109.0, 228.3) (11.4, 28.4, 59.4) (17.7, 184.1, 801.0)
222 (7.2, 12.1, 21.9) (20.4, 35.7, 64.3) (8.5, 15.8, 28.8) (12.6, 67.8, 235.3)
231 (8.9, 17.6, 33.1) (22.2, 44.2, 83.7) (14.5, 32.8, 53.9) (24.1, 211.6, 604.6)
232 (8.2, 14.0, 28.6) (56.2, 99.9, 200.2) (10.4, 21.5, 49.1) (16.6, 106.5, 570.4)
241 (9.9, 18.5, 32.7) (27.8, 54.2, 95.0) (16.6, 35.4, 49.4) (30.1, 225.5, 514.8)
242 (8.5, 15.7, 33.3) (57.0, 110.0, 231.8) (11.5, 27.3, 66.7) (20.7, 177.8, 955.7)
251 (6.8, 10.3, 18.2) (13.2, 20.7, 36.5) (7.3, 11.7, 21.0) (10.0, 32.5, 120.5)
252 (6.6, 11.1, 21.6) (14.7, 25.9, 49.7) (7.2, 13.4, 26.8) (9.3, 46.3, 210.7)
261 (6.7, 11.1, 19.9) (15.3, 26.0, 46.9) (7.4, 13.8, 26.3) (9.2, 52.0, 196.1)
262 (6.5, 10.5, 18.3) (12.5, 21.1, 36.9) (7.0, 12.0, 21.6) (9.5, 37.4, 137.3)
271 (7.7, 9.3, 22.6) (50.5, 95.8, 198.6) (9.0, 21.2, 56.2) (13.0, 95.9, 738.2)
272 (6.8, 11.6, 23.4) (15.3, 27.3, 55.7) (7.8, 16.2, 35.6) (10.5, 66.0, 329.2)
281 (8.5, 13.0, 27.4) (54.6, 115.8, 244.3) (11.2, 29.3, 69.9) (17.8, 204.7, 1085.1)
282 (7.0, 11.1, 19.9) (15.7, 26.6, 48.0) (7.9, 14.2, 27.3) (11.7, 49.8, 219.6)
291 (6.4, 7.2, 11.8) (11.8, 19.7, 34.1) (6.3, 10.8, 19.4) (8.0, 30.9, 111.4)
292 (6.0, 8.5, 15.5) (10.3, 17.5, 32.0) (6.0, 10.3, 19.1) (7.3, 30.1, 110.4)
2101 (6.3, 8.3, 14.5) (10.7, 18.4, 33.9) (6.4, 11.9, 23.2) (7.7, 35.8, 152.2)
2102 (6.3, 6.8, 12.4) (11.5, 18.9, 33.5) (6.3, 10.6, 19.0) (7.9, 31.9, 104.0)
2111 (6.5, 8.7, 17.9) (11.1, 19.1, 41.1) (7.2, 15.5, 41.1) (9.6, 57.2, 484.8)
2112 (6.2, 8.5, 15.3) (10.5, 18.4, 31.7) (6.3, 11.6, 20.6) (8.5, 37.1, 123.6)
2121 (6.8, 12.3, 28.8) (11.1, 21.5, 49.5) (8.3, 23.6, 71.4) (13.5, 113.1, 1210.0)
2122 (6.5, 8.5, 13.4) (11.1, 18.7, 32.4) (6.8, 12.4, 22.5) (9.0, 44.6, 146.5)
2131 (4.9, 5.4, 8.4) (7.1, 11.9, 21.8) (4.8, 8.0, 14.6) (5.3, 18.5, 67.4)
2132 (4.9, 5.5, 10.6) (6.8, 11.1, 20.4) (4.8, 7.9, 14.4) (5.3, 18.1, 64.5)
2141 (4.8, 5.2, 11.0) (6.8, 11.1, 20.4) (4.8, 8.0, 14.8) (5.2, 18.9, 71.2)
2142 (4.9, 5.1, 9.5) (6.9, 11.4, 20.3) (4.9, 8.2, 14.6) (5.5, 18.8, 62.9)
2151 (5.1, 4.7, 8.2) (7.2, 11.8, 21.3) (5.0, 8.4, 15.5) (5.5, 19.8, 73.3)
2152 (4.9, 5.1, 10.0) (6.8, 11.0, 20.3) (4.9, 7.9, 14.8) (5.5, 19.0, 68.0)
2161 (5.0, 5.8, 5.0) (7.0, 11.7, 20.7) (5.0, 8.8, 16.3) (5.5, 22.8, 86.6)
2162 (4.9, 5.9, 10.2) (6.9, 11.8, 20.4) (4.9, 8.6, 15.1) (5.4, 21.7, 70.0)
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Table 3.7: Failure time data as three groups of insulating fluids

Group 1 0.31 0.66 1.54 1.70 1.82 1.89 2.17 2.24 4.03 9.99
Group 2 0.00 0.18 0.55 0.66 0.71 1.30 1.63 2.17 2.75 10.60
Group 3 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75

Table 3.8: Joint progressively Type-II censored data observed from Table 3.7 with
r = 12 and censoring scheme R1

W δ s
0.00 0 1 0 1 0 0
0.18 0 1 0 1 0 0
0.31 1 0 0 1 0 0
0.49 0 0 1 0 0 1
0.55 0 1 0 0 0 1
0.64 0 0 1 0 1 0
0.66 1 0 0 0 1 0
0.66 0 1 0 0 0 1
1.08 0 0 1 0 1 0
1.54 1 0 0 1 0 0
1.63 0 1 0 0 0 1
2.17 1 0 0 0 0 1

the data in Table 3.7 with r = 12 and censoring schemes R1 = (112) and R2 = (26, 06).

We then computed the conditional MLEs of (θ1, θ2, θ3) and the estimates of their

standard deviations and mean square errors for r = 12 from the expressions presented

earlier in Section 2, and these are presented in Table 3.10. We have also computed

the estimates of the covariance matrix of (θ̂1, θ̂2, θ̂3) from the expression in Corollary

3, and these are presented in Table 3.11. From the results in Tables 3.10 and 3.11,

we find the estimates to be quite stable, and especially so for θ2 since this population

has smallest mean thus producing more failures in the joint progressively censored

data.
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Table 3.9: Joint progressively Type-II censored data observed from Table 3.7 with
r = 12 and censoring scheme R2

W δ s
0 1 0 0 0 0 2

0.18 1 0 0 1 1 0
0.31 1 0 0 1 1 0
0.55 1 0 0 1 0 1
0.64 1 0 0 1 0 1
0.66 1 0 0 0 1 1
0.82 1 0 0 0 0 0
1.89 1 0 0 0 0 0
2.15 0 1 0 0 0 0
2.17 0 0 1 0 0 0
2.17 0 0 1 0 0 0
4.03 0 1 0 0 0 0

Table 3.10: Conditional MLEs and the estimates of their standard deviations and
mean square errors based on joint progressively Type-II censored data from Tables
3.8 and 3.9 according to the censoring schemes R1 = (112) and R2 = (26, 06).

Mean ŜD M̂SE

R (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3)
R1 (1.68, 1.01, 1.41) (1.1932, 0.5852, 0.9391) (1.4692, 0.3476, 0.9049)
R2 (2.35, 1.56, 2.22) (1.6288, 0.9142, 1.5063) (2.7313, 0.8490, 2.3316)

Table 3.11: Estimates of the covariance matrix of the conditional MLEs based on
joint progressively Type-II censored data from Tables 3.8 and 3.9

Covariance matrix (ρ(θi, θj))i,j for schemes R1 and R2 1.4237 −0.0258 −0.0494
−0.02582 0.3424 −0.0206
−0.0494 −0.0206 0.8820

 ,

 2.6529 −0.0566 −0.1091
−0.0566 0.8358 −0.0525
−0.1091 −0.0525 2.2690


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Table 3.12: 95% confidence intervals for (θ1, θ2, θ3) corresponding to different methods
based on joint progressively Type-II censored data from Table 3.8 and 3.9 for censoring
schemes R1 and R2.

Scheme r = 12
R CI for θ1 CI for θ2 CI for θ3

Exact R1 (0.69, 6.59) (0.46, 3.24) (0.60, 5.13)
R2 (0.98, 8.90) (0.71, 5.05) (0.94, 8.20)

Approximate R1 (0.01, 4.35) (0.92, 2.24) (1.2, 3.55)
R2 (0.02, 4.94) (0.61, 3.13) (0.9, 4.59)

Boot-t R1 (0.82, 40.32) (0.34, 6.12) (0.63, 24.11)
R2 (0.66, 16.82) (0.34, 5.27) (0.60, 14.17)

Boot-p R1 (0.74, 7.65) (0.40, 3.20) (0.61, 5.91)
R2 (0.69, 6.08) (0.47, 3.76) (0.65, 5.60)

Bayes credible R1 (0.99, 8.42) (0.51, 4.32) (0.80, 6.89)
R2 (1.13, 9.51) (0.71, 6.05) (1.04, 8.89)

Table 3.12 presents the 95% confidence intervals for (θ1, θ2, θ3) based on the exact,

approximate, Bayes credible, Boot-p and Boot-t methods corresponding to the case

r = 12 with joint progressive Type-II censoring schemeR1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

and R2 = (2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0). From these results, we observe once again that

the approximate and Boot-t confidence intervals are not satisfactory compared to the

conditional exact confidence intervals. We also observe that the Boot-p and Bayesian

methods yield results close to the exact confidence intervals, which once again reveals

the importance of the results derived in Section 3.2 in obtaining exact conditional

confidence intervals in the case of small values of r.



Chapter 4

Inference Under Joint Type-II

Hybrid Censoring

4.1 Introduction

The joint censoring scheme is quite useful in conducting comparative life-tests of

products from different units within the same facility. Suppose products are being

manufactured by k different lines within the same facility, and that k independent

samples of sizes nh, 1 ≤ h ≤ k, are selected from these k lines and placed simultane-

ously on a life-testing experiment. Then, in order to reduce the cost of experiment

and also to reduce the experimental time, the life-testing experiment may be chosen

to be terminated after a certain number (say, r) of failures has been observed. In this

situation, one may be interested in either point or interval estimation of the mean

77
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lifetimes of units produced by these k lines. In addition, one may also place a con-

dition based on time under test. In such a situation, here, if the termination of the

life-testing experiment is done by a joint Type-I or Type-II hybrid censoring scheme,

exact results based on the maximum likelihood estimates are developed for making

point and interval inference on the parameters.

Epstein (1954) introduced the Type-I hybrid censoring scheme (Type-I HCS) in

which the life-testing experiment is terminated as soon as a pre-specified number

r out of n items has failed or a pre-fixed time T on test has been reached, which

ever appears first. The Type-I HCS has been used as a reliability acceptance test in

MIL-STD-781 C (1977). However, the Type-I HCS may result in very few failures

at the termination point of the experiment. For this reason, Childs et al. (2003)

introduced the Type-II hybrid censoring scheme (Type-II HCS) as an alternative to

Type-I hybrid censoring scheme, in which the life-testing experiment terminates at

the time when the latter of the above two stopping rules is reached. This censoring

scheme has the advantage of guaranteeing that at least r failures are observed at the

end of the experiment. The disadvantage in this scheme, however, is that it may take

longer time to complete this life-test.

In the literature, joint Type-II censoring scheme and inferential methods based

on such a scheme have been discussed earlier. For example, Basu (1968) discussed

a generalized Savage statistic. Johnson and Mehrotra (1972) studied locally most

powerful rank test under joint censoring. The problem of testing for the equality of
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two distributions, under the assumption of exponentiality, was discussed by Bhat-

tacharyya and Mehrotra (1981). All these developments under this joint censoring

scheme have focused on nonparametric and parametric tests of hypotheses; see Bhat-

tacharyya (1995, Chapter 7 of Balakrishnan and Basu (1995)). For the exact inference

based on the MLEs, Chen and Bhattacharyya (1988) derived the exact distribution

of the maximum likelihood estimator of the mean of an exponential distribution and

an exact lower confidence bound for the mean based on a Type-I hybrid censored

sample. Childs et al. (2003) obtained an alternative simple form which is equivalent

to the results of Chen and Bhattacharyya.

To study two or more competing products in regard to the duration of their ser-

vice life, comparative lifetime experiments are of great importance. In this regard,

Balakrishnan and Rasouli (2008) discussed exact inference for two exponential popu-

lations when Type-II censoring is implemented on the two samples in a joint manner.

Here, we generalize their work by considering the k-sample problem. Suppose the

test units from k lines under study are placed on a life-test simultaneously, that the

successive failure times and the corresponding types (lines from which the failed u-

nits come from) are recorded, the experiment is terminated at time when the latter

of a specified total number of failures has been observed and a pre-fixed time T on

test has been reached. The main aim of this paper is to consider the parameters

of k exponential distributions, and to derive the exact distributions of the maximum

likelihood estimators of the unknown parameters based on a joint Type-II hybrid cen-
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sored sample arising from these k independent exponential populations. The exact

distributions of the maximum likelihood estimators and the exact confidence intervals

for the exponential parameters are discussed.

Suppose X11, X12, · · · , X1n1 are the lifetimes of n1 specimens from line A1, and

they are assumed to be independent and identically distributed (iid) variables from a

population with cumulative distribution function (cdf) F1(x) and probability density

function (pdf) f1(x). Similarly, X21, X22, · · · , X2n2 are the lifetimes of n2 specimens

from line A2 and are assumed to be a sample from pdf f2(x) and cdf F2(x), and so

on, with Xk1, Xk2, · · · , Xknk denoting the lifetimes of nk specimens from line Ak and

are assumed to be iid variables from pdf fk(x) and cdf Fk(x).

Furthermore, let N =
∑k

i=1 ni denote the total sample size, T denote the pre-fixed

test time, and r denote the pre-fixed number of failures to be observed. Let w1 ≤ w2 ≤

· · · ≤ wN denote the order statistics of theN random variables {Xij; 1 ≤ i ≤ k, 1 ≤ j ≤ ni}.

Therefore, under the joint hybrid Type-II censoring scheme for the k-samples, the

observable data consist of (δ,w), where w = (w1, w2, · · · , wr), wi ∈ {Xhi1, Xhi2, · · · , Xhini}

for 1 ≤ h1, h2, · · · , hr ≤ k. Finally, associated to (h1, h2, · · · , hr), let us define

δ = (δ1(h), δ2(h), · · · , δr(h)) as

δi(h) =


1, if h = hi

0, otherwise.

(4.1.1)
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Let D denote the number of failures up to time T . Then, D is a discrete random

variable with support {0, 1, 2, · · · , N} with probability mass function

P (D = d) =
∑ n1

l1

 pl11 q
n1−l1
1

 n2

l2

 pl22 q
n2−l2
2 · · ·

 nk

lk

 plkk q
nk−lk
k

with
∑k

i=1 li = d for 1 ≤ li ≤ ni, where pj = Fj(T ), and qj = 1− Fj(T ) (1 ≤ j ≤ k).

Therefore, under the joint Type-II hybrid censoring scheme described above, the

observable data consist of (δ,w) of the following form:

(δ,w) =


(δ1, δ2, · · · , δr;w1, w2, · · · , wr), with D = 0, 1, · · · , r − 1,

(δ1, δ2, · · · , δD;w1, w2, · · · , wD), with D = r, r + 1, · · · , N,

where δ is as defined in (4.1.1).

4.2 MLEs, Exact Distributions and Inference

Let Mr(h) =
∑r

i=1 δi(h) denote the number of Xh−failures in w for 1 ≤ h ≤ k, and

r =
∑k

h=1 Mr(h). Then, under the joint Type-II HCS, the likelihood of (δ,W) is
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then given by

L(θ1, θ2, · · · , θk, δ,w)

=


cr

r∏
i=1

k∏
h=1

(fh(wi))
δi(h)

k∏
h=1

(Sh(wr))
nh−Mr(h) , T < wr,

cD
D∏
i=1

k∏
h=1

(fh(wi))
δi(h)

k∏
h=1

(Sh(T ))nh−MD(h) , T > wr,

(4.2.1)

where Sh(wr) = 1 − Fh(wr), Sh(T ) = 1 − Fh(T ) and cr =
∏k
h=1 nh!∏k

h=1(nh−Mr(h))!
, and cD =

∏k
h=1 nh!∏k

h=1(nh−MD(h))!
.

When the k populations are exponential with cdf Fh(x) = 1 − exp(− x
θh

), x > 0,

and pdf fh(x) = 1
θh

exp(− x
θh

), x > 0, for 1 ≤ h ≤ k, the likelihood function in (4.2.1)

simplifies as follows:

For T < wr, (D ≤ r − 1), the likelihood of (δ,W) is given by

L(θ1, θ2, · · · , θk, δ,w)

= cr exp

{
−

k∑
h=1

Mr(h) log θh −
k∑

h=1

1

θh

(
r∑
i=1

wiδi(h) + wr(nh −Mr(h))

)}
;

(4.2.2)

For T > wr (D ≥ r), the likelihood of (δ,W) is given by

L(θ1, θ2, · · · , θk, δ,w)

= cD exp

{
−

k∑
h=1

MD(h) log θh −
k∑

h=1

1

θh

(
D∑
i=1

wiδi(h) + T (nh −MD(h))

)}
.

(4.2.3)
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Thus, under the Type-II HCS, for 1 ≤ h ≤ k, the MLE of θh is given by

θ̂h =


1

Mr(h)

{
r∑
i=1

wiδi(h) + wr(nh −Mr(h))

}
when D = 0, 1, · · · , r − 1,

1
MD(h)

{
D∑
i=1

wiδi(h) + T (nh −MD(h))

}
when D = r, r + 1, · · · , N.

(4.2.4)

Remark 9 From the likelihood function, we readily see that the MLE of θh does

not exist if T < Wr and
∏k

h=1 Mr(h) = 0; if T > Wr and
∏k

h=1 MD(h) = 0, then

also the MLE of θh does not exist. So, the MLEs in (4.2.4) are conditioned on

S =
{∏k

h=1MD(h) ≥ 1 or
∏k

h=1 Mr(h) ≥ 1
}

. We, therefore, need to discuss the

distribution and other properties of the MLEs only conditional on the set S.

Lemma 3 For r ≤ d ≤ N , let Md = (Md(1),Md(2), · · · ,Md(k)) and t = (t1, t2, · · · , tk)

with
∑k

j=1 tj = d. Further, let us denote the set

Td =

{
t : max{1, d−

k−1∑
h=1

nj} ≤ tk ≤ min{d− k + 1, nk} ,

max{1, d−
k−2∑
h=1

nj − tk} ≤ tk−1 ≤ min{d− k + 2− tk, nk−1},

· · · ,

max{1, d− n1 −
k∑

h=3

th} ≤ t2 ≤ min{d−
k∑

h=3

th, n2}

}
.
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Then, we have

P (S|D = d) =
∑
t∈Td

P (Md = t) (4.2.5)

Proof For 0 ≤ d < r, consider the set

{S|D = d} =

{
k∑

h=1

Md(h) = d,
k∏

h=1

Md(h) 6= 0

}
.

Since tk ≤ nk and d =
∑k

h=1 th ≥ k − 1 + tk, we have tk ≤ min{d − k + 1, nk}.

On the other hand, tk ≥ 1 and d =
∑k

h=1 th ≤
∑k−1

h=1 nh + tk, and so we have

tk ≥ max{1, d−
∑k−1

h=1 nh}.

When we fix tk in this way, we get max{1, d −
∑k−2

h=1 nj − tk} ≤ tk−1 ≤ min{d −

k + 2− tk, nk−1}, and therefore

{S|D = d} = ∪t∈Td{Mr = t}

which proves the lemma.

Similarly, we have the following result for the case when r ≤ d ≤ N .

Lemma 4 For 0 ≤ d ≤ r − 1, let Mr = (Mr(1),Mr(2), · · · ,Mr(k)) and t =
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(t1, t2, · · · , tk) with
∑k

j=1 tj = r. Further, let us denote the set

Tr =

{
t : max{1, r −

k−1∑
h=1

nj} ≤ tk ≤ min{r − k + 1, nk} ,

max{1, r −
k−2∑
h=1

nj − tk} ≤ tk−1 ≤ min{r − k + 2− tk, nk−1},

· · · ,

max{1, r − n1 −
k∑

h=3

th} ≤ t2 ≤ min{r −
k∑

h=3

th, n2}

}
.

Then, we have

P (S|D = d) =
∑
t∈Tr

P (Mr = t). (4.2.6)

Theorem 9 The joint probability mass function of δ under the Type-II HCS is as

follows:

(a) For 0 ≤ d ≤ r − 1,

P (δ = δ̃|D = d) =
cr

P (D = d)

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d, (4.2.7)
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where

ϕl′d =


d∏
j=0

j 6=l′

k∑
h=1

(Md−l′(h)−Md−j(h))

θh


−1{

r∏
j=d+1

k∑
h=1

nh −Mj−1(h)

θh

}−1

× exp

{
−T (

k∑
h=1

nh −Md−l′(h)

θh
)

}
, 0 ≤ l′ ≤ d; (4.2.8)

(b) For d ≥ r,

P (δ = δ̃|D = d) =
cd

P (D = d)

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d, (4.2.9)

where

ψl′d =


d∏
j=0

j 6=l′

k∑
h=1

(Md−l′(h)−Md−j(h))

θh


−1

× exp

{
−T

k∑
h=1

nh −Md−l′(h)

θh

}
, 0 ≤ l′ ≤ d; (4.2.10)

(c) For t = (t1, t2, · · · , tk), such that
∑k

j=1 tj = d and tj ≥ 1 for all j, let δ be as

defined in (4.1.1), Md(h) =
∑d

i=1 δi(h), and

Q∗d(t) =
{
δ̃(h) = (δ̃1, δ̃2, · · · , δ̃r) such that Md(h) = th for 1 ≤ h ≤ k

}
.
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Then,

P (Md = t) =
∑

δ̃∈Q∗d(t)

P (δ = δ̃); (4.2.11)

(d) Let Td be the set as defined in Lemma 3, Then,

P (S|D = d) =


∑

t∈Tr P (Mr = t) if d < r,∑
t∈Td P (Md = t) if d ≥ r.

(4.2.12)

As we can see, for some t, the probability P (Md = t) = 0, when t = (t1, t2, · · · , tk)

does not belong to Td.

Proof (a) When T < wr, let d be the integer such that wd < T < wd+1, from (4.2.2),

we have the joint density of (δ,W) as

f(δ,w) = cr

k∏
h=1

θ
−Mr(h)
h exp

(
−

r−1∑
i=1

aiwi − brwr

)
, (4.2.13)

{0 < w1 < w2 < · · · < wd < T < wd+1 < · · · < wr < ∞}, where ai =
∑k

h=1
δi(h)
θh

and

br =
∑k

h=1
δr(h)+nh−Mr(h)

θh
. Upon integrating out w1, w2, · · · , wr over {0 < w1 < · · · <

wd < T < wd+1 < · · · < wr <∞} in (4.2.13), by using Lemma 7, we obtain the joint
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probability mass function of δ as

P (δ = δ̃|D = d)P (D = d)

= cr

k∏
h=1

θ
−Mr(h)
h

∫
0≤w1≤w2≤···≤wd<T

exp

(
−

d∑
i=1

aiwi

)
dw1 · · · dwd

×
∫
T≤wd+1≤wd+2≤···≤wr<∞

exp

(
−

r−1∑
i=d+1

aiwi − brwr

)
dwd+1 · · · dwr

= cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

c
(d)
l′ exp

(
−T

d∑
i=d−l′+1

ai

)
c̃

(r)
d exp

(
−T (br +

r−1∑
i=d+1

ai)

)

= cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

c
(d)
l′ c̃

(r)
d exp

(
−T (br +

r−1∑
i=d−l′+1

ai)

)
,

where

c
(d)
0 =

d∏
j=1

1∑d
i=j ai

,

c
(d)
l′ =

(−1)l
′∏l′−1

j=0

∑d−j
i=d−l′+1 ai

d−l′∏
j=1

1∑d−l′
i=j ai

, for 1 ≤ l′ ≤ d,

c̃
(r)
d =

1

br

r−1∏
i=d+1

1

br +
∑r−1

j=i aj
,

which are shown in Lemma 7 in the Appendix.

Observe that for δ̃, Mr(h, δ̃) =
∑r

i=1 δ̃i(h) and

br +
r−1∑
i=j

ai =
k∑

h=1

δ̃r(h) + nh −Mr(h)

θh
+

r−1∑
i=j

k∑
h=1

δ̃i(h)

θh

=
k∑

h=1

nh −Mj−1(h, δ̃)

θh
,
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d−j∑
i=d−l′+1

ai =

d−j∑
i=d−l′+1

k∑
h=1

δ̃i(h)

θh
=

k∑
h=1

Md−j(h, δ̃)−Md−l′(h, δ̃)

θh
,

where Mi(h, δ̃) =
∑i

l=1 δ̃l(h) depends on δ̃, and yet we denote it by Mi(h), for

simplicity, and set M0(h) = 0. Thus, we have

c
(d)
0 =

d∏
j=1

1∑k
h=1

Md(h)−Mj−1(h)

θh

.

For 1 ≤ l′ ≤ d,

c
(d)
l′ =

(−1)l
′∏l′−1

j=0

∑d−j
i=d−l′+1 ai

d−l′∏
j=1

1∑d−l′
i=j ai

=
(−1)l

′∏l′−1
j=0

∑k
h=1

(Md−j(h)−Md−l′ (h))

θh

d−l′∏
j=1

1∑k
h=1

(Md−l′ (h)−Mj−1(h))

θh

,

=
d∏
j=0

j 6=l′

1∑k
h=1

(Md−l′ (h)−Md−j(h))

θh

,

c̃
(r)
d =

1

br

r−1∏
j=d+1

1

br +
∑r−1

i=j ai

=
r∏

j=d+1

1∑k
h=1

nh−Mj−1(h)

θh

.

Then,

P (δ = δ̃|D = d) =
cr

P (D = d)

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

c
(d)
l′ c̃

(r)
d e
−T

∑k
h=1

nh−Md−l′ (h)
θh ,

from which (4.2.7) is obtained.
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(b) When T > wr, from (4.2.3), d is the integer such that wd < T < wd+1. We

have the joint density of (δ,W) as

f(δ,w) = cd

k∏
h=1

θ
−Md(h)
h exp

{
−

d∑
i=1

aiwi

}

exp

{
−

k∑
h=1

T (nh −Md(h))

θh

}
(4.2.14)

with ai =
∑k

h=1
δi(h)
θh
, for 1 ≤ i ≤ d.

Upon integrating out w1, w2, · · · , wd over {0 ≤ w1 ≤ w2 ≤ · · · ≤ wd < T} in

(4.2.14) by using Lemma 7, we obtain the joint probability mass function of δ as

follows:

P (δ = δ̃|D = d)P (D = d)

= cd

k∏
h=1

θ
−Md(h)
h exp

{
−

k∑
h=1

T (nh −Md(h))

θh

}

×
∫ T

0

· · ·
∫ W2

0

exp(−
d∑
i=1

aiwi)dw1 · · · dwd

= cd

k∏
h=1

θ
−Md(h)
h exp

{
−

k∑
h=1

T (nh −Md(h))

θh

}
d∑

l′=0

c
(d)
l′ e−

∑d
i=d−l′+1 aiT

= cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

c
(d)
l′ exp

{
−T

k∑
h=1

nh −Md−l′(h)

θh

}

where c
(d)
l′ =

d∏
j=0

j 6=l′

1∑k
h=1

(Md−l′ (h)−Md−j(h))
θh

, 0 ≤ j ≤ d.

Thus, (4.2.9) is obtained.

The results in (c) and (d) follow immediately from Lemma 3, Lemma 4 and Part
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(b).

Theorem 10 Conditional on S, the moment generating function (mgf) of θ̂l (for

1 ≤ l ≤ k) is given by

Mθ̂l|S(t) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d

×
d∏

j=0;j 6=l′

1

1− tβ(d)
l,l′j

r∏
j=d+1

1

1− tβ∗lj
exp

{
tT (nl −Md−l′(l))

Mr(l)

}

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
d∏

j=0;j 6=l′

1

1− tβ(d)
l,l′j

exp

{
tT (nl −Md−l′(l))

Md(l)

}
, (4.2.15)

where ϕl′d and ψl′d are as given in (4.2.8) and (4.2.10), respectively. For 1 ≤ l ≤ k,

0 ≤ l′ ≤ d and 0 ≤ j ≤ d,

β
(d)
l,l′j =

Md−l′(l)−Mj−1(l)

Mr(l)
∑k

h=1

(Md−l′ (h)−Mj−1(h))

θh

, (4.2.16)

β∗lj =
nl −Mj−1(l)

Mr(l)
∑k

h=1
nh−Mj−1(h)

θh

. (4.2.17)
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Proof Conditioning on the set S and then on δ̃, we obtain

Mθ̂l|S(t) = E

[
etθ̂l |

k∏
h=1

Mr(h) 6= 0, or
k∏

h=1

MD(h) 6= 0

]

=
r−1∑
d=0

E

(
etθ̂l |D = d,

k∏
h=1

Mr(h) 6= 0

)
P (D = d)

+
N∑
d=r

E

(
etθ̂l |D = d,

k∏
h=1

MD(h) 6= 0

)
P (D = d). (4.2.18)

When d = 0, 1, 2, · · · , r − 1, by using Lemma 7, we have

E

[
etθ̂l |D = d,

k∏
h=1

Mr(h) 6= 0

]
P

(
k∏

h=1

Mr(h) 6= 0|D = d

)
P (D = d)

=
∑
t∈Tr

∑
δ̃∈Q∗r(t)

∫
0≤w1≤w2≤···≤wd<T≤wd+1≤wd+2≤···≤wr<∞

etθ̂lf(δ̃,w)dw1 · · · dwr

=
∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

∫
0≤w1≤w2≤···≤wd<T

e−
∑d
i=1 a

′
iwidw1 · · · dwd

×
∫
T≤wd+1≤wd+2≤···≤wr<∞

e−
∑r−1
i=d+1 a

′
iwi−b′rwrdwd+1 · · · dwr

=
∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

(
d∑

l′=0

b
(d)
l′ e−T

∑d
i=d−l′+1 a

′
i

)
b̃

(r)
d e−T (b′r+

∑r−1
i=d+1 a

′
i)

=
∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

b
(d)
l′ b̃

(r)
d e−T (b′r+

∑r−1
i=d−l′+1

a′i),
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where b′r = br − t
Mr(l)

(δ̃r(l) + nl −Mr(l)), a
′
i = ai − tδ̃i(l)

Mr(l)
,

b
(d)
0 =

d∏
j=1

1∑d
i=j a

′
i

,

b
(d)
l′ =

(−1)l
′∏l′−1

j=0

∑d−j
i=d−l′+1 a

′
i

d−l′∏
j=1

1∑d−l′
i=j a

′
i

, for 1 ≤ l′ ≤ d,

b̃
(r)
d =

1

b′r

r−1∏
j=d+1

1

b′r +
∑r−1

i=j a
′
i

.

Now, observing that

b′r +
r−1∑
i=j

a′i

= br +
r−1∑
i=j

ai −
t(δ̃r(l) + nl −Mr(l))

Mr(l)
−

r−1∑
i=j

tδ̃i(l)

Mr(l)

=
k∑

h=1

nh −Mj−1(h)

θh
− t(nl −Mj−1(l))

Mr(l)
,

d∑
i=j

a′i =
d∑
i=j

ai −
d∑
i=j

tδ̃j(l)

Mr(l)

=
k∑

h=1

Md(h)−Mj−1(h)

θh
− t(Md(l)−Mj−1(l))

Mr(l)
,

we obtain

b
(d)
0 =

d∏
j=1

1∑k
h=1

Md(h)−Mj−1(h)

θh

d∏
j=1

1

1− tβ(d)
l,0j

,
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where β
(d)
l,0j =

Md(l)−Mj−1(l)

Mr(l)
∑k
h=1

Md(h)−Mj−1(h)

θh

.

For 1 ≤ l′ ≤ r, we also have

b
(d)
l′ =

(−1)l
′∏l′−1

j=0

∑d−j
i=d−l′+1 a

′
i

d−l′∏
j=1

1∑d−l′
i=j a

′
i

=
(−1)l

′∏l′−1
j=0

(∑k
h=1

(Md−j(h)−Md−l′ (h))
θh

− t(Md−j(l)−Md−l′ (l))
Mr(l)

)
×

d−l′∏
j=1

1∑k
h=1

(Md−l′ (h)−Mj−1(h))
θh

− t(Md−l′ (l)−Mj−1(l))
Mr(l)

,

=
1

d∏
j=0

j 6=l′

∑k
h=1

(Md−l′ (h)−Md−j(h))
θh

d∏
j=0

j 6=l′

1

1− tβ(d)
l,l′j

,

b̃
(r)
d =

1

b′r

r−1∏
j=d+1

1

b′r +
∑r−1

i=j a
′
i

=
1∏r

j=d+1

(∑k
h=1

nh−Mj−1(h)

θh
− t(nl−Mj−1(l))

Mr(l)

)
=

1∏r
j=d+1

∑k
h=1

nh−Mj−1(h)

θh

r∏
j=d+1

1

1− tβ∗lj
,

where β
(d)
l,l′j =

Md−l′ (l)−Md−j(l)

Mr(l)
∑k
h=1

(Md−l′ (h)−Md−j(h))
θh

and β∗lj =
nl−Mj−1(l)

Mr(l)
∑k
h=1

nh−Mj−1(h)

θh

. Thus, when
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d = 0, 1, · · · , r − 1,

E

[
etθ̂l |D = d,

k∏
h=1

Mr(h) 6= 0

]
P

(
k∏

h=1

Mr(h) 6= 0|D = d

)
P (D = d)

=
∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

1
d∏
j=0

j 6=l′

∑k
h=1

(Md−l′ (h)−Md−j(h))
θh

d∏
j=0

j 6=l′

1

1− tβ(d)
l,l′j

× 1∏r
j=d+1

∑k
h=1

nh−Mj−1(h)

θh

r∏
j=d+1

1

1− tβ∗lj

× exp

{
−T

(
k∑

h=1

nh −Md−l′(h)

θh
− t(nl −Md−l′(l))

Mr(l)

)}

=
∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d

d∏
j=0

j 6=l′

1

1− tβ(d)
l,l′j

r∏
j=d+1

1

1− tβ∗lj

× exp

{
tT (nl −Md−l′(l))

Mr(l)

}
, (4.2.19)

where ϕl′d is as given in (4.2.8).

Similarly, when d = r, r + 1, · · · , N ,

E

[
etθ̂l |D = d,

k∏
h=1

Mr(h) 6= 0

]
P

(
k∏

h=1

Mr(h) 6= 0|D = d

)
P (D = d)

=
∑
t∈Td

∑
δ̃∈Q∗d(t)

∫
0≤w1≤w2≤···≤wd<T

etθ̂lf(δ̃,W)dw1 · · · dwr

=
∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h exp

{
−

k∑
h=1

T (nh −Md(h))

θh
+
tT (nl −Md(l))

Md(l)

}

×
∫

0≤w1≤w2≤···≤wd<T
exp

{
−

d∑
i=1

a′iwi

}
dw1 · · · dwd,
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where a′i = ai − tδ̃i(l)
Mr(l)

. Then, by using Lemma 7, we get

E

[
etθ̂l |D = d,

k∏
h=1

Mr(h) 6= 0

]
P

(
k∏

h=1

Mr(h) 6= 0|D = d

)
P (D = d)

=
∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

(
d∑

l′=0

b
(d)
l′ e−T

∑d
i=d−l′+1 a

′
i

)

× exp

{
−

k∑
h=1

T (nh −Md(h))

θh
+
tT (nl −Md(l))

Md(l)

}

=
∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

b
(d)
l′

× exp

{
−T

k∑
h=1

nh −Md−l′(h)

θh
+
tT (nl −Md−l′(l))

Md(l)

}

=
∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

d∏
j=0

j 6=l′

1

1− tβ(d)
l,l′j

× exp

{
tT (nl −Md−l′(l))

Md(l)

}
. (4.2.20)

Upon substituting from (4.2.19) and (4.2.20) into (4.2.18), we obtain the expression

in (4.2.15) as required.

Remark 10 For fixed l, l′ and δ̃, some β
(d)
l,l′i’s and β∗li’s may be the same. In this case,

for d < r, we resort the β
(d)
l,l′i and β∗li values and denote them by {β(1)

l,l′i}r
′
i=1, and assume

that there are r′ distinct values with α
(1)
l,l′i of the β

(1)
l,l′i’s being equal, with

∑r′

i=1 α
(1)
l,l′i = r.

Consequently, the term
∏d

j=0;j 6=l′

(
1− tβ(d)

l,l′j

)−1

×
∏r

j=d+1

(
1− tβ∗lj

)−1
can be rewrit-

ten as
∏r′

j=1

(
1− tβ(1)

l,l′j

)−α(1)

l,l′j
; For d ≥ r, similarly,

∏d
j=0;j 6=l′

(
1− tβ(d)

l,l′j

)−1

can be

rewritten as
∏r′′

j=1

(
1− tβ(2)

l,l′j

)−α(2)

l,l′j
with

∑r′′

i=1 α
(2)
l,l′i = d, and thus, the conditional mgf
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in Theorem 10 can be expressed as follows:

Mθ̂l|S(t) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d

×
r′∏
j=1

(
1− tβ(1)

l,l′j

)−α(1)

l,l′j
exp

{
tT (nl −Md−l′(l))

Mr(l)

}

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
r′′∏
j=1

(
1− tβ(2)

l,l′j

)−α(2)

l,l′j
exp

{
tT (nl −Md−l′(l))

Md(l)

}
(4.2.21)

Remark 11

1. (1− ct)−α is the mgf of the gamma G(α, c) distribution with scale parameter c

and shape paprameter α;

2. ect is the mgf of the degenerate distribution localized at the point c.

Theorem 11 Conditional on the set S, the pdf of θ̂l (for 1 ≤ l ≤ k) is given by

fθ̂l|S(x) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′dgY (1)

l′d

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Td

×
∑

δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′dgY (2)

l′d
, (4.2.22)

where Y
(1)
l′d

d
=
∑r′

i=1 Y
(1)
l′d,i + Yl′r with Y

(1)
l′d,i being independent random variables having

gamma G(α
(1)
l,l′i, β

(1)
l,l′i) distributions with scale parameters β

(1)
l,l′i and shape parameters
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α
(1)
l,l′i, Yl′r being independent random variables having degenerate distribution localized

at the point
T (nl−Md−l′ (l))

Mr(l)
, and g

Y
(1)

l′d
(x) is the pdf of Y

(1)
l′d ; Y

(2)
l′d

d
=
∑r′′

i=1 Y
(2)
l′d,i + Yl′d

with Y
(2)
l′d,i being independent random variables having gamma G(α

(2)
l,l′i, β

(2)
l,l′i) distribu-

tions with scale parameters β
(2)
l,l′i and shape parameters α

(2)
l,l′i, Yl′d being independent

random variables having degenerate distribution localized at the point
T (nl−Md−l′ (l))

Md(l)
,

and g
Y

(2)

l′d
(x) is the pdf of Y

(2)
l′d .

Corollary 5 From (4.2.15), we immediately obtain the expressions for the first two

moments of θ̂l as follows:

E(θ̂l|S) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d

×

 d∑
j=0

j 6=l′

β
(d)
l,l′j +

r∑
j=d+1

β∗lj +
T (nl −Md−l′(l))

Mr(l)


+

N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×

 d∑
j=0

j 6=l′

β
(d)
l,l′j +

T (nl −Md−l′(l))

Md(l)


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and

E(θ̂2
l |S) =

r−1∑
d=0

1

P (
∏k

h=1 Mr(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d

×


 d∑

j=0

j 6=l′

β
(d)
l,l′j +

r∑
j=d+1

β∗lj +
T (nl −Md−l′(l))

Mr(l)


2

+
d∑
j=0

j 6=l′

(
β

(d)
l,l′j

)2

+
r∑

j=d+1

(
β∗lj
)2


+

N∑
d=r

1

P (
∏k

h=1 Md(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×


 d∑

j=0

j 6=l′

β
(d)
l,l′j +

T (nl −Md−l′(l))

Md(l)


2

+
d∑
j=0

j 6=l′

(
β

(d)
l,l′j

)2

 .

Then, Var(θ̂l) and MSE(θ̂l) can be readily obtained from these two expressions.

It is convenient to rewrite the conditional mgf of θ̂l (for l = 1, 2, · · · , k) in Theorem

10 as

Mθ̂l|S(t) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d

×
r′∑
j=1

α
(1)

l,l′j∑
j′=0

A
(1)
l,l′jj′

(
1− tβ(1)

l,l′j

)−j′
exp

{
tT (nl −Md−l′(l))

Mr(l)

}

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
r′′∑
j=1

α
(2)

l,l′j∑
j′=0

A
(2)
l,l′jj′

(
1− tβ(2)

l,l′j

)−j′
exp

{
tT (nl −Md−l′(l))

Md(l)

}
, (4.2.23)
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where A
(1)
l,l′jj′ ’s are coefficients obtained by writing the product

∏r′

j=1

(
1− tβ(1)

l,l′j

)−α(1)

l,l′j

in the partial fraction form
∑r′

j=1

∑α
(1)

l,l′j
j′=1 A

(1)
l,l′jj′

(
1− tβ(1)

l,l′j

)−j′
and A

(2)
l,l′jj′ ’s are coeffi-

cients obtained by writing the product
∏r′′

j=1

(
1− tβ(2)

l,l′j

)−α(2)

l,l′j
in the partial fraction

form
∑r′′

j=1

∑α
(2)

l,l′j
j′=1 A

(2)
l,l′jj′

(
1− tβ(2)

l,l′j

)−j′
, and the coefficients A

(1)
l,l′jj′ , A

(2)
l,l′jj′ can be read-

ily determined by the use of Lemma 5 in Appendix. Since (1 − ct)−jeAt is the mgf

of the random variable X + A, where X has the gamma distribution with scale pa-

rameter c and shape parameter j, we readily obtain the tail probability of θ̂l (for

l = 1, 2, · · · , k) from the above expression as

P (θ̂l > b|S)

=
r−1∑
d=0

1

P (
∏k

h=1 Mr(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d

×
r′∑
j=1

α
(1)

l,l′j∑
j′=0

A
(1)
l,l′jj′

j′!
Γ

(
j′,

1

β
(1)
l,l′j

〈b− T (nl −Md−l′(l))

Mr(l)
〉

)

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
r′′∑
j=1

α
(2)

l,l′j∑
j′=0

A
(2)
l,l′jj′

j′!
Γ

(
j′,

1

β
(2)
l,l′j

〈b− T (nl −Md−l′(l))

Md(l)
〉

)
, (4.2.24)

where 〈x〉 = max{x, 0} and Γ(a, z) =
∫∞
z
ta−1e−tdt is the upper incomplete gamma

function.

We shall assume that P (θ̂l > b|S) is an increasing function of θl when all other

θj’s are fixed for j 6= l. This assumption guarantees the invertibility of the piv-
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otal quantities, and it has been verified to be true in this case through extensive

computations under various setting. It should be mentioned that this approach has

been used by a number of authors for constructing exact confidence intervals in a

variety of contexts; see, for example, Childs et al. (2003) and Balakrishnan et al.

(2007). We then have a 100(1− α)% lower confidence bound for θl as θlL, where θlL

is such that PθlL(θ̂l > θ̂l,obs|S) = α with θ̂l,obs being the observed value of θl. Also, a

100(1− α)% confidence interval for θl is (θlL, θlU), where θlL and θlU are determined

by PθlL(θ̂l > θ̂l,obs|S) = α
2

and PθlU (θ̂l > θ̂l,obs|S) = 1− α
2
.

By performing the same steps as done in the case of conditional marginal mgf, we

can derive the conditional joint mgf of (θ̂1, θ̂2, · · · , θ̂k) as follows.

Theorem 12 Conditional on the set S, the joint mgf of (θ̂1, θ̂2, · · · , θ̂k) is given by

Mθ̂1,θ̂2,··· ,θ̂k|S(t1, · · · , tk)

=
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d

×
d∏
j=0

j 6=l′

1

1−
∑k

l=1 tlβ
(d)
l,l′j

r∏
j=d+1

1

1−
∑k

l=1 tlβ
∗
lj

exp

{∑k
l=1 tlT (nl −Md−l′(l))

Mr(l)

}

+
N∑
d=r

1

P (
∏k

h=1 Md(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
d∏
j=0

j 6=l′

1

1−
∑k

l=1 tlβ
(d)
l,l′j

exp

{∑k
l=1 tlT (nl −Md−l′(l))

Md(l)

}
, (4.2.25)

where ϕl′d and ψl′d are defined by (4.2.8) and (4.2.10), respectively; also for 1 ≤ l ≤ k,
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0 ≤ l′ ≤ d, and 0 ≤ j ≤ d, β
(d)
l,l′j and β∗lj are as defined in (4.2.16) and (4.2.17).

Corollary 6 From (5.1.15), we obtain E(θ̂l1 θ̂l2) to be

E(θ̂l1 θ̂l2)

=
r−1∑
d=0

1

P (
∏k

h=1 Mr(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕl′d

×


 d∑

j=0

j 6=l′

β
(d)
l1,l′j

+
r∑

j=d+1

β∗l1j +
T (nl −Md−l′(l1))

Mr(l1)


×

 d∑
j=0

j 6=l′

β
(d)
l2,l′j

+
r∑

j=d+1

β∗l2j +
T (n2 −Md−l′(l2))

Mr(l2)


+

d∑
j=0

j 6=l′

β
(d)
l1,l′j

β
(d)
l2,l′j

+
r∑

j=d+1

β∗l1jβ
∗
l2j


+

N∑
d=r

1{
P (
∏k

h=1Md(h) 6= 0|D = d)
}2

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×


 d∑

j=0

j 6=l′

β
(d)
l1,l′j

+
T (nl1 −Md−l′(l1))

Md(l1)


 d∑

j=0

j 6=l′

β
(d)
l2,l′j

+
T (nl2 −Md−l′(l2))

Md(l2)


+

d∑
j=0

j 6=l′

β
(d)
l1,l′j

β
(d)
l2,l′j

 . (4.2.26)

From the above corollary, the covariance and correlation coefficient between MLEs

θ̂l1 and θ̂l2 can also be readily obtained.
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4.3 Approximate Confidence Intervals

Let I(θ1, θ2, · · · , θk) = (Ii,j(θ1, θ2, · · · , θk)), i, j = 1, 2, · · · , k, denote the Fisher infor-

mation matrix of the parameters θ1, θ2, · · · , θk, where

Ii,j(θ1, θ2, · · · , θk) = −E
(
∂2 lnL

∂θi∂θj

)
(4.3.1)

From the likelihood function in (4.2.4), we have Ii,j(θ1, θ2, · · · , θk) = 0 if i 6= j.

Consequently, we have

I(θ̂1, θ̂2, · · · , θ̂k)

= −Diag

(
∂2 lnL

∂θ2
1

|θ1=θ̂1
,
∂2 lnL

∂θ2
2

|θ2=θ̂2
, · · · , ∂

2 lnL

∂θ2
k

|θk=θ̂k

)
, (4.3.2)

where, for d = 0, 1, 2, · · · , r − 1,

∂2 lnL

∂θ2
h

|θh=θ̂h
=

Mr(h)

θ̂2
h

−
2

{
r∑
i=1

wiδi(h) + wr(nh −Mr(h))

}
θ̂3
h

= −Mr(h)

θ̂2
h

,
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and for d = r, r + 1, · · · , N ,

∂2 lnL

∂θ2
h

|θh=θ̂h
=

Md(h)

θ̂2
h

−
2

{
d∑
i=1

wiδi(h) + T (nh −Md(h))

}
θ̂3
h

= −Md(h)

θ̂2
h

.

Then, by using the asymptotic normality of the MLEs, we have θ̂h − θh ∼

N(0, I−1
h,h). With d̃ = max{d, r}, we can express the approximate 100(1− α)% confi-

dence interval for θh, 1 ≤ h ≤ k, as



θ̂h ± Zα/2

d̃∑
i=1

wiδi(h)+wr(nh−Md̃(h))

Md̃(h)
3
2

= θ̂h(1±
Zα/2

Md̃(h)
1
2

),

when d = 0, 1, 2, · · · , r − 1

θ̂h ± Zα/2

d̃∑
i=1

wiδi(h)+T (nh−Md̃(h))

Md̃(h)
3
2

= θ̂h(1±
Zα/2

Md̃(h)
1
2

),

when d = r, r + 1, · · · , N,

where Zα/2 denotes the upper α/2 percentage point of the standard normal distribu-

tion.
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4.4 Bayesian Intervals

Let

uh =


r∑
i=1

wiδi(h) + wr(nh −Mr(h)), when d = 0, 1, 2, · · · , r − 1,

d∑
i=1

wiδi(h) + T (nh −Md(h)), when d = r, r + 1, · · · , N.

Then, we can rewrite the likelihood function as

L(θ1, θ2, · · · , θk, δ,w) = cr

k∏
h=1

θ
−Md̃(h)

h exp(−uh
θh

) (4.4.1)

Now, by assuming independent inverse gamma prior distributions, viz., IG(ah, bh)

for 1 ≤ h ≤ k, we obtain from (5.3.1) the posterior joint density function as

L(θ1, θ2, · · · , θk|data) = cd̃

k∏
h=1

θ
−Mr(h)−ah−1
h exp

(
−uh + bh

θh

)
.

Upon comparing this with (5.3.1), we see that the joint posterior density function

of (θ1, θ2, · · · , θk) is a product of k independent inverse gamma density functions. So,

given the data, the posterior density function of θ̂h is simply IG(Md̃(h) +ah, uh+ bh).

Thus, the Bayes estimator of θh under the squared-error loss function is
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θ̂h,Bayes =
uh + bh

Md̃(h) + ah − 1
, h = 1, 2, · · · , k. (4.4.2)

When we use Jeffreys’ non-informative prior I(θh) ∝ 1
θ2h

corresponding to the

special case when ah = 1 and bh = 0, for 1 ≤ h ≤ k, the Bayes estimators in (5.3.2)

coincide with the MLEs in (4.2.3).

Let Uh = 2(uh+bh)
θh

for 1 ≤ h ≤ k. Then, the pivot Uh follows χ2
2(Mr(h)+ah) distri-

bution, provided 2(Md̃(h) + ah) is a positive integer, for 1 ≤ h ≤ k. In this case, the

100(1− α)% Bayes credible interval for θh becomes

(
2(uh + bh)

χ2
2(Md̃(h)+ah),1−α/2

,
2(uh + bh)

χ2
2(Md̃(h)+ah),α/2

)
, h = 1, 2, · · · , k,

where χ2
v,α

2
is the lower α

2
percentage point of the chi-square distribution with v

degrees of freedom.

4.5 Bootstrap Intervals

In this section, we consider confidence interval for θh (h = 1, 2, · · · , k) based on the

Bootstrap-p and Bootstrap-t methods; see, for example, Efron and Tibshirani (1994).

To find the Bootstrap-p and Bootstrap-t intervals, in the first step, we generate

original samples from k exponential populations with parameters θh of size nh, 1 ≤



Chapter 4.5 - Bootstrap Intervals 107

h ≤ k. Next we sort the data, and determine to which population each failure belongs,

and then estimate θh using the conditional MLE in (4.2.3). In the second step,

we generate a bootstrap sample (δ1, δ2, · · · , δr;w1, w2, · · · , wr) by using the values

(θ̂1, θ̂2, · · · , θ̂k), and then obtain the bootstrap estimates of θh, 1 ≤ h ≤ k, say θ∗h,

1 ≤ h ≤ k, from the bootstrap sample. In the third step, we repeat the second step

N -Boot times.

Boot-p: Suppose KhB(x) = P (θ̂∗h ≤ x), 1 ≤ h ≤ k, is the cumulative distribution

function of θ̂∗h. Define θ̂hB(α) = K−1
hB(α), 1 ≤ h ≤ k, for a given α. Then, the

100(1− α)% Boot-p confidence interval for θh, 1 ≤ h ≤ k, is given by

(
θ̂hB

(α
2

)
, θ̂hB

(
1− α

2

))
, 1 ≤ h ≤ k.

Boot-t: After generating the bootstrap samples in the second step and calculating

θ̂∗h, we need to use them to compute the estimate of V ar(θ̂∗h) from the observed Fisher

information matrix in (5.2.2). Then, we determine the T ∗h statistic given by

T ∗h =
θ̂∗h − θ̂h√
V̂ar(θ̂∗h)

, 1 ≤ h ≤ k. (4.5.1)

Now, suppose LhB(x) = P (T ∗h ≤ x) is the cumulative distribution function of T ∗h ,

1 ≤ h ≤ k. Then, the 100(1 − α)% Boot-t confidence interval for θh, 1 ≤ h ≤ k, is
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given by

(
θ̂h −

√
V̂ar(θ̂h)L

−1
hB

(
1− α

2

)
, θ̂h −

√
V̂ar(θ̂h)L

−1
hB

(α
2

))
, 1 ≤ h ≤ k.

4.6 Simulation Results and Discussion

A simulation study was carried out to evaluate the performance of the conditional

MLEs discussed in the preceding sections. We considered sample sizes for the three

populations as n = (6, 6, 6), and different choice for r and T . We also chose the

parameters (θ1, θ2, θ3) to be (2, 4, 7) and (3, 5, 9). For these cases, we computed the

conditional MLEs for the parameters (θ1, θ2, θ3) and the empirical values of their

means, standard deviations, mean square errors and covariance matrices for different

choices of r and T . The results of these obtained from 10,000 Monto Carlo simulations

are presented in Tables 4.1-4.4. From the results presented in these tables, we observe

that while the estimate of θ1 is very stable even for small r and T , the estimate of

θ2 and θ3 become stable only for larger values of r and T . This is to be expected

since when θ1 is smaller than θ2 and θ3, when r and T are small, most of the failures

observed would have resulted from the exponential population with parameter θ1 and

very few failures would have come from the exponential populations with parameters

θ2 and θ3. This does get rectified when r and T are increased, as one would expect.
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Table 4.1: The average values of the conditional MLEs and the estimates of their
standard deviations and mean square errors when θ = (2, 4, 7) and n = (6, 6, 6) for
different choices of r and T .

Mean ŜD R̂MSE

r T (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3)
6 2.5 (2.53, 5.09, 7.53) (1.5698, 3.4305, 4.2068) (1.6554, 3.5980, 4.2407)
6 3.0 (2.43, 5.01, 7.64) (1.4171, 3.4997, 4.6224) (1.4811, 3.6439, 4.6660)
6 3.5 (2.34, 4.90, 7.71) (1.2956, 3.3444, 4.9020) (1.3406, 3.4624, 4.9529)
6 4.0 (2.32, 4.81, 7.78) (1.1448, 3.2937, 5.1209) (1.1880, 3.3926, 5.1806)
6 4.5 (2.27, 4.73, 7.82) (1.0764, 3.0720, 5.1843) (1.1088, 3.1571, 5.2487)
9 3.5 (2.20, 4.98, 8.47) (1.1600, 3.5002, 5.5129) (1.1766, 3.6342, 5.7046)
9 4.5 (2.16, 4.82, 8.65) (1.0674, 3.2816, 5.9640) (1.0795, 3.3819, 6.1880)
9 5.5 (2.12, 4.67, 8.42) (0.9777, 2.9850, 5.9351) (0.9852, 3.0595, 6.1029)
9 6.5 (2.10, 4.51, 8.18) (0.9500, 2.5552, 5.5583) (0.9553, 2.6055, 5.6823)
9 7.5 (2.08, 4.41, 7.97) (0.9092, 2.4285, 5.2019) (0.9128, 2.4628, 5.2910)
12 4.5 (2.08, 4.43, 8.41) (0.9536, 2.5099, 5.7856) (0.9569, 2.5468, 5.9545)
12 5.5 (2.06, 4.48, 8.49) (0.9318, 2.4932, 5.9014) (0.9340, 2.5399, 6.0866)
12 6.5 (2.05, 4.44, 8.53) (0.9187, 2.4467, 5.9894) (0.9203, 2.4854, 6.1815)
12 7.5 (2.03, 4.39, 8.37) (0.8863, 2.3359, 5.9232) (0.8869, 2.3681, 6.0799)
12 8.5 (2.02, 4.27, 8.20) (0.8759, 2.1185, 5.4961) (0.8762, 2.1350, 5.6260)
15 7.0 (2.01, 4.22, 7.60) (0.8443, 1.9259, 3.7038) (0.8443, 1.9380, 3.7525)
15 9.0 (2.02, 4.14, 7.64) (0.8533, 1.8750, 3.7717) (0.8535, 1.8805, 3.8263)
15 11.0 (2.01, 4.14, 7.62) (0.8352, 1.8857, 3.8115) (0.8352, 1.8909, 3.8619)
15 13.0 (2.00, 4.11, 7.53) (0.8270, 1.8359, 3.7921) (0.8270, 1.8390, 3.8293)
15 15.0 (2.02, 4.06, 7.52) (0.8270, 1.7836, 3.7710) (0.8272, 1.7848, 3.8067)
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Table 4.2: The average values of the conditional MLEs and the estimates of their
standard deviations and mean square errors when θ = (3, 5, 9) and n = (6, 6, 6) for
different choices of r and T .

Mean ŜD R̂MSE

r T (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3)
6 3.5 (3.82, 6.48, 9.86) (2.5574, 4.5146, 5.7666) (2.6850, 4.7496, 5.8307)
6 4.5 (3.59, 6.26, 9.99) (2.1984, 4.3946, 6.3885) (2.2770, 4.5713, 6.4654)
6 5.5 (3.49, 5.97, 10.20) (1.9237, 3.9316, 6.7351) (1.9861, 4.0500, 6.8407)
6 6.5 (3.40, 5.79, 10.07) (1.6890, 3.5709, 6.8513) (1.7362, 3.6581, 6.9341)
6 7.5 (3.33, 5.65, 9.93) (1.5446, 3.3313, 6.7011) (1.5785, 3.3947, 6.7657)
9 7.0 (3.23, 5.74, 10.64) (1.5819, 3.4843, 7.3324) (1.5989, 3.5623, 7.5145)
9 8.5 (3.18, 5.60, 10.56) (1.4721, 3.1107, 7.2800) (1.4826, 3.1672, 7.4445)
9 10.0 (3.13, 5.46, 10.18) (1.3925, 2.9112, 6.5140) (1.3990, 2.9472, 6.6197)
9 11.5 (3.11, 5.36, 9.89) (1.3616, 2.6037, 5.9283) (1.3657, 2.6286, 5.9953)
9 13.0 (3.07, 5.30, 9.78) (1.3082, 2.5403, 5.7143) (1.3100, 2.5580, 5.7671)
12 10.5 (3.07, 5.39, 10.63) (1.3505, 2.7520, 7.2666) (1.3525, 2.7801, 7.4472)
12 12.0 (3.05, 5.30, 10.37) (1.3111, 2.6630, 6.7338) (1.3122, 2.6796, 6.8710)
12 13.5 (3.02, 5.19, 10.07) (1.2897, 2.4252, 6.1649) (1.2898, 2.4325, 6.2575)
12 15.0 (3.01, 5.21, 9.94) (1.2587, 2.4328, 5.8890) (1.2588, 2.4418, 5.9638)
12 16.5 (3.00, 5.15, 9.80) (1.2508, 2.3231, 5.2514) (1.2508, 2.3281, 5.3114)
15 15.5 (3.02, 5.15, 9.92) (1.2544, 2.3242, 4.9150) (1.2546, 2.3290, 5.0004)
15 18.0 (3.00, 5.12, 9.65) (1.2514, 2.2585, 4.6868) (1.2514, 2.2619, 4.7318)
15 20.5 (3.02, 5.06, 9.56) (1.2336, 2.1882, 4.6098) (1.2337, 2.1891, 4.6442)
15 23.0 (3.00, 5.00, 9.44) (1.2327, 2.1518, 4.4514) (1.2327, 2.1518, 4.4736)
15 25.5 (3.01, 5.01, 9.37) (1.2450, 2.1120, 4.3390) (1.2450, 2.1120, 4.3544)
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Table 4.3: The average values of the estimates of the covariance matrix of the condi-
tional MLEs when θ = (2, 4, 7) and n = (6, 6, 6) for different choices of r and T .

θ = (2, 4, 7) θ = (3, 5, 9)
r T Covariance matrix (ρ(θi, θj))i,j T Covariance matrix (ρ(θi, θj))i,j

6 2.5

 2.464 −0.018 0.283
−0.018 11.768 1.152
0.283 1.152 17.698

 3.0

 6.540 −0.202 0.590
−0.202 20.382 2.230
0.590 2.230 33.254


6 3.0

 2.008 0.056 0.288
0.056 12.248 1.522
0.288 1.522 21.367

 4.0

 4.833 0.267 0.998
0.267 19.312 2.196
0.998 2.196 40.813


6 3.5

 1.678 0.121 0.500
0.121 11.185 1.088
0.500 1.088 24.030

 5.0

 3.701 0.179 0.593
0.179 15.458 1.961
0.593 1.961 45.362


6 4.0

 1.311 0.229 0.352
0.229 10.848 1.199
0.352 1.199 26.224

 6.0

 2.853 0.260 0.562
0.260 12.751 2.014
0.562 2.014 46.940


6 4.5

 1.159 0.135 0.229
0.135 9.437 0.823
0.229 0.823 26.877

 7.0

 2.386 0.217 0.274
0.217 11.098 1.143
0.274 1.143 44.905


9 3.5

 1.345 −0.227 −0.094
−0.227 12.251 −0.396
−0.094 −0.396 30.392

 6.5

 2.502 −0.087 0.220
−0.087 12.140 0.915
0.220 0.915 53.765


9 4.5

 1.139 −0.105 0.147
−0.105 10.769 0.436
0.147 0.436 35.570

 8.0

 2.167 0.013 0.236
0.013 9.677 1.046
0.236 1.046 52.999


9 5.5

 0.956 −0.012 0.224
−0.012 8.911 0.715
0.224 0.715 35.225

 9.5

 1.939 −0.002 0.189
−0.002 8.475 0.415
0.189 0.415 42.432


9 6.5

 0.903 −0.029 0.117
−0.029 6.529 0.578
0.117 0.578 30.895

 11.0

 1.854 −0.073 0.098
−0.073 6.779 0.531
0.098 0.531 35.144


9 7.5

 0.827 −0.067 0.125
−0.067 5.897 0.498
0.125 0.498 27.060

 12.5

 1.711 −0.009 0.338
−0.009 6.453 0.596
0.338 0.596 32.653


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Table 4.4: The average values of the estimates of the covariance matrix of the condi-
tional MLEs when θ = (3, 5, 9) and n = (6, 6, 6) for different choices of r and T .

θ = (2, 4, 7) θ = (3, 5, 9)
r T Covariance matrix (ρ(θi, θj))i,j T Covariance matrix (ρ(θi, θj))i,j

12 4.5

 0.909 −0.088 −0.303
−0.088 6.300 −1.443
−0.303 −1.443 33.474

 10.0

 1.824 0.006 0.103
0.006 7.574 0.142
0.103 0.142 52.803


12 5.5

 0.868 −0.054 −0.063
−0.054 6.216 −1.302
−0.063 −1.302 34.827

 11.5

 1.719 0.011 0.058
0.011 7.092 0.084
0.058 0.084 45.344


12 6.5

 0.844 −0.046 −0.097
−0.046 5.986 −0.773
−0.097 −0.773 35.873

 13.0

 1.663 0.055 0.048
0.055 5.881 0.023
0.048 0.023 38.006


12 7.5

 0.786 −0.004 0.065
−0.004 5.456 −0.425
0.065 −0.425 35.085

 14.5

 1.584 −0.043 0.064
−0.043 5.919 0.188
0.064 0.188 34.681


12 8.5

 0.767 −0.029 0.008
−0.029 4.488 −0.067
0.008 −0.067 30.208

 16.0

 1.564 0.019 0.075
0.019 5.397 0.290
0.075 0.290 27.577


15 7.0

 0.713 −0.017 −0.066
−0.017 3.709 −0.368
−0.066 −0.368 13.718

 15.0

 1.573 −0.009 −0.109
−0.009 5.402 −0.389
−0.109 −0.389 24.157


15 9.0

 0.728 −0.029 −0.025
−0.029 3.516 −0.376
−0.025 −0.376 14.226

 17.5

 1.566 −0.056 −0.020
−0.056 5.101 −0.033
−0.020 −0.033 21.966


15 11.0

 0.698 −0.011 −0.023
−0.011 3.556 −0.148
−0.023 −0.148 14.528

 20.0

 1.522 −0.068 −0.014
−0.068 4.788 −0.045
−0.014 −0.045 21.250


15 13.0

 0.684 0.020 −0.042
0.020 3.370 0.002
−0.042 0.002 14.380

 22.5

 1.519 0.007 0.095
0.007 4.630 −0.082
0.095 −0.082 19.815


15 15.0

 0.684 0.015 0.026
0.015 3.181 −0.048
0.026 −0.048 14.221

 25.0

 1.550 −0.030 −0.006
−0.030 4.460 −0.048
−0.006 −0.048 18.827





Chapter 5

Inference Under Joint Type-I

Hybrid Censoring

5.1 MLEs, Exact Distributions and Inference

In this section, we drive analogous results for Type-I HCS, wherein the experiment

is terminated at the random time T ∗ = min{Wr, T}. As in section 4.2, let D be the

number of observed failures up to time T .

Suppose X11, X12, · · · , X1n1 are the lifetimes of n1 specimens from line A1, and

assumed to be independent and identically distributed (iid) variables from a pop-

ulation with cumulative distribution function (cdf) F1(x) and probability density

function (pdf) f1(x). Similarly, X21, X22, · · · , X2n2 are the lifetimes of n2 specimens

from line A2 and assumed to be a sample from pdf f2(x) and cdf F2(x), and so on,

113
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with Xk1, Xk2, · · · , Xknk denoting the lifetimes of nk specimens from line Ak being iid

variables from pdf fk(x) and cdf Fk(x).

Furthermore, let N =
∑k

i=1 ni denote the total sample size and r denote the total

number of failures observed. Let w1 ≤ w2 ≤ · · · ≤ wN denote the order statistics of

the N random variables {Xij; 1 ≤ i ≤ k, 1 ≤ j ≤ ni}.

Therefore, under the joint hybrid Type-II censoring scheme for the k-samples, the

observable data consist of (δ,W), where W = (w1, w2, · · · , wr), wi ∈ {Xhi1, Xhi2, · · · , Xhini}

for 1 ≤ h1, h2, · · · , hr ≤ k, with r being a pre-fixed integer. Finally, associated to

(h1, h2, · · · , hr), let us define δ = (δ1(h), δ2(h), · · · , δr(h)) as

Therefore, under the joint Type-I hybrid censoring scheme described above, the

observable data consist of (δ,W) of the following form:

(δ,W) =


(δ1, δ2, · · · , δD;W1,W2, · · · ,WD), T < Wr with D = 0, 1, · · · , r − 1,

(δ1, δ2, · · · , δr;W1,W2, · · · ,Wr), T > Wr with D = r, r + 1, · · · , N,

Then, under the Type-I HCS, the likelihood of (δ,W) is given by

L(θ1, θ2, · · · , θk, δ,W)

=


cD

D∏
i=1

k∏
h=1

(fh(wi))
δi(h)

k∏
h=1

(Sh(T ))nh−MD(h) , T < Wr,

cr
r∏
i=1

k∏
h=1

(fh(wi))
δi(h)

k∏
h=1

(Sh(wr))
nh−Mr(h) , T > Wr,

(5.1.1)

where Sh(wr) = 1 − Fh(wr), Sh(T ) = 1 − Fh(T ) and cr =
∏k
h=1 nh!∏k

h=1(nh−Mr(h))!
, and cD =
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∏k
h=1 nh!∏k

h=1(nh−MD(h))!
.

When the k populations are exponential with cdf Fh(x) = 1 − exp(− x
θh

), x > 0,

and pdf fh(x) = 1
θh

exp(− x
θh

), x > 0, for 1 ≤ h ≤ k, the likelihood function in (5.1.1)

simplifies as follows:

For T < Wr, (D ≤ r − 1), the likelihood of (δ,W) is given by

L(θ1, θ2, · · · , θk, δ,W)

= cD exp

{
−

k∑
h=1

MD(h) log θh −
k∑

h=1

1

θh

(
D∑
i=1

wiδi(h)− T (nh −MD(h))

)}
;

(5.1.2)

For T > Wr, (D ≥ r), the likelihood of (δ,W) is given by

L(θ1, θ2, · · · , θk, δ,W)

= cr exp

{
−

k∑
h=1

Mr(h) log θh −
k∑

h=1

1

θh

(
r∑
i=1

wiδi(h)− wr(nh −Mr(h))

)}
.

(5.1.3)

Thus, under the Type-I HCS, for 1 ≤ h ≤ k, the MLE of θh is given by

θ̂h =


1

MD(h)

{
D∑
i=1

wiδi(h) + T (nh −MD(h))

}
when D = 0, 1, · · · , r − 1,

1
Mr(h)

{
r∑
i=1

wiδi(h) + wr(nh −Mr(h))

}
when D = r, r + 1, · · · , N.

(5.1.4)
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Theorem 13 The joint probability mass function of δ under the Type-I HCS is as

follows:

(a) For T < Wr (d ≤ r − 1),

P (δ = δ̃|D = d) =
cd

P (D = d)

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d, (5.1.5)

where, for 0 ≤ l′ ≤ d, ψl′d determined by (4.2.10).

(b) For T ≥ Wr (d ≥ r),

P (δ = δ̃|D = d) =
cr

P (D = d)

k∏
h=1

θ
−Mr(h)
h

r∑
l′=0

ϕ̃l′r, (5.1.6)

where

ϕ̃l′r = c
(r)
l′ exp

{
−T

k∑
h=1

nh −Mr−l′(h)

θh

}
, 0 ≤ l′ ≤ r; (5.1.7)

c
(r)
0 =

r∏
j=1

1∑k
h=1

nh−Mj−1(h)

θh

,

c
(r)
l′ =

−1∑k
h=1

nh−Mr−l′ (h)

θh

r∏
j=0

j 6=l′

1∑k
h=1

(Mr−l′ (h)−Mr−j(h))

θh

, 1 ≤ l′ ≤ r.

(c) For t = (t1, t2, · · · , tk), such that
∑k

j=1 tj = d and tj ≥ 1 for all j, let δ be as

defined in (4.1.1), Md(h) =
∑r

i=1 δi(h), and

Q∗d(t) =
{
δ̃(h) = (δ̃1, δ̃2, · · · , δ̃r); such that Md(h) = th for 1 ≤ h ≤ k

}
.
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Then,

P (Mr = t) =
∑

δ̃∈Q∗d(t)

P (δ = δ̃); (5.1.8)

(d) Let Td be the set as defined in Lemma 3, Then,

P (S|D = d) =


∑

t∈Td P (Md = t) if d ≤ r − 1,∑
t∈Tr P (Mr = t) if d ≥ r.

(5.1.9)

As we can see, for some t, the probability P (Md = t) = 0, when t = (t1, t2, · · · , tk)

does not belong to Td.

Theorem 14 Conditional on the S, the mgf of θ̂l (1 ≤ l ≤ k) is given by

Mθ̂l|S(t) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
d∏
j=0

j 6=l′

1

1− tβ(d)
l,l′j

exp

{
tT (nl −Md−l′(l))

Md(l)

}
.

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

r∑
l′=0

ϕ̃l′r

× 1

1− tβ∗l,r−l′+1

r∏
j=0

j 6=l′

1

1− tβ(r)
l,l′j

exp

{
tT (nl −Mr−l′(l))

Mr(l)

}
, (5.1.10)

where ψl′d and ϕ̃l′r are as defined in (4.2.10) and (5.1.8), for 1 ≤ l ≤ k and 0 ≤ l′ ≤ d,

0 ≤ j ≤ d, β
(d)
l,l′j determined by (4.2.16), β∗lj determined by (4.2.17).
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Remark 12 For fixed l, l′ and δ̃, some β
(d)
l,l′i’s and β∗li’s may be the same. In this case,

for d < r, we resort the β
(d)
l,l′i values and denote them by {β(1)

l,l′i}r
′
i=1, and assume that

there are r′ distinct values with α
(1)
l,l′i of the β

(1)
l,l′i’s being equal, with

r′∑
i=1

α
(1)
l,l′i = d. Conse-

quently, the term
d∏
j=0

j 6=l′

(
1− tβ(d)

l,l′j

)−1

can be rewritten as
r′∏
j=1

(
1− tβ(1)

l,l′j

)−α(1)

l,l′j
; For d ≥

r, similarly,
r∏
j=0

j 6=l′

(
1− tβ(r)

l,l′j

)−1 (
1− tβ∗l,r−l′+1

)−1
can be rewritten as

∏r′′

j=1

(
1− tβ(2)

l,l′j

)−α(2)

l,l′j

with
∑r′′

i=1 α
(2)
l,l′i = r+1, and thus, the conditional mgf in Theorem 10 can be expressed

as follows:

Mθ̂l|S(t) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
r′∏
j=1

(
1− tβ(1)

l,l′j

)−α(1)

l,l′j
exp

{
tT (nl −Md−l′(l))

Md(l)

}

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

d∑
l′=0

ϕ̃l′r

×
r′′∏
j=1

(
1− tβ(2)

l,l′j

)−α(2)

l,l′j
exp

{
tT (nl −Mr−l′(l))

Mr(l)

}
(5.1.11)

Theorem 15 Conditional on the set S, the pdf of θ̂l (for 1 ≤ l ≤ k) is given by

fθ̂l|S(x) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′dhY (1)

l′d

+
N∑
d=r

1

P (
∏k

h=1 Md(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

×
r∑

l′=0

ϕ̃l′rg
(2)
Yl′r
, (5.1.12)
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where Y
(1)
l′d

d
=
∑r′

i=1 Y
(1)
l′d,i + Yl′r with Y

(1)
l′d,i being independent random variables having

gamma G(α
(1)
l,l′i, β

(1)
l,l′i) distributions with scale parameters β

(1)
l,l′i and shape parameters

α
(1)
l,l′i, Yl′r being independent random variables having degenerate distribution localized

at the point
T (nl−Md−l′ (l))

Mr(l)
, and g

Y
(1)

l′d
(x) is the pdf of Y

(1)
l′d ; Y

(2)
l′r

d
=
∑r′′

i=1 Y
(2)
l′d,i + Yl′d

with Y
(2)
l′d,i being independent random variables having gamma G(α

(2)
l,l′i, β

(2)
l,l′i) distribu-

tions with scale parameters β
(2)
l,l′i and shape parameters α

(2)
l,l′i, Yl′d being independent

random variables having degenerate distribution localized at the point
T (nl−Md−l′ (l))

Md(l)
,

and g
Y

(2)

l′d
(x) is the pdf of Y

(2)
l′d .

Corollary 7 From (4.2.15), we immediately obtain the expressions for the first two

moments of θ̂l as follows:

E(θ̂l) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×

(
d∑

j=0;j 6=l′
β

(d)
l,l′j +

T (nl −Md−l′(l))

Md(l)

)

+
N∑
d=r

1

P (
∏k

h=1 Md(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

r∑
l′=0

ϕ̃l′r

×

(
r∑

j=0;j 6=l′
β

(r)
l,l′j + β∗l,r−l′+1 +

T (nl −Md−l′(l))

Mr(l)

)
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and

E(θ̂2
l ) =

r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×


(

d∑
j=0;j 6=l′

β
(d)
l,l′j +

T (nl −Md−l′(l))

Md(l)

)2

+
d∑

j=0;j 6=l′

(
β

(d)
l,l′j

)2


+

N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

r∑
l′=0

ϕ̃l′r

×


(

r∑
j=0;j 6=l′

β
(r)
l,l′j + β∗l,r−l′+1 +

T (nl −Md−l′(l))

Mr(l)

)2

+
r∑

j=0;j 6=l′

(
β

(r)
l,l′j

)2

+
(
β∗l,r−l′+1

)2

}

Then, Var(θ̂l) and MSE(θ̂l) can be readily obtained from these two expressions.

It is convenient to rewrite the conditional mgf of θ̂l (for l = 1, 2, · · · , k) in Theorem

10 as

Mθ̂l|S(t) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
r′∑
j=1

α
(1)

l,l′j∑
j′=0

A
(1)
l,l′jj′

(
1− tβ(1)

l,l′j

)−j′
exp

{
tT (nl −Md−l′(l))

Mr(l)

}

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

r∑
l′=0

ϕ̃l′r

×
r′′∑
j=1

α
(2)

l,l′j∑
j′=0

A
(2)
l,l′jj′

(
1− tβ(2)

l,l′j

)−j′
exp

{
tT (nl −Md−l′(l))

Md(l)

}
, (5.1.13)
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where A
(1)
l,l′jj′ ’s are coefficients obtained by writing the product

∏r′

j=1

(
1− tβ(1)

l,l′j

)−α(1)

l,l′j

in the partial fraction form
∑r′

j=1

∑α
(1)

l,l′j
j′=1 A

(1)
l,l′jj′

(
1− tβ(1)

l,l′j

)−j′
and A

(2)
l,l′jj′ ’s are coeffi-

cients obtained by writing the product
∏r′′

j=1

(
1− tβ(2)

l,l′j

)−α(2)

l,l′j
in the partial fraction

form
∑r′′

j=1

∑α
(2)

l,l′j
j′=1 A

(2)
l,l′jj′

(
1− tβ(2)

l,l′j

)−j′
, and the coefficients A

(1)
l,l′jj′ , A

(2)
l,l′jj′ can be read-

ily determined by the use of Lemma 5 in Appendix. Since (1 − ct)−jeAt is the mgf

of the random variable X + A, where X has the gamma distribution with scale pa-

rameter c and shape parameter j, we readily obtain the tail probability of θ̂l (for

l = 1, 2, · · · , k) from the above expression as

P (θ̂l > b|S)

=
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
r′∑
j=1

α
(1)

l,l′j∑
j′=0

A
(1)
l,l′jj′

j′!
Γ

(
j′,

1

β
(1)
l,l′j

〈b− T (nl −Md−l′(l))

Mr(l)
〉

)

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

r∑
l′=0

ϕ̃l′r

×
r′′∑
j=1

α
(2)

l,l′j∑
j′=0

A
(2)
l,l′jj′

j′!
Γ

(
j′,

1

β
(2)
l,l′j

〈b− T (nl −Md−l′(l))

Md(l)
〉

)
, (5.1.14)

where 〈x〉 = max{x, 0} and Γ(a, z) =
∫∞
z
ta−1e−tdt is the upper incomplete gamma

function.

We shall assume that P (θ̂l > b|S) is an increasing function of θl when all other

θj’s are fixed for j 6= l. This assumption guarantees the invertibility of the piv-
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otal quantities, and it has been verified to be true in this case through extensive

computations under various setting. It should be mentioned that this approach has

been used by a number of authors for constructing exact confidence intervals in a

variety of contexts; see, for example, Childs et al. (2003) and Balakrishnan et al.

(2007). We then have a 100(1− α)% lower confidence bound for θl as θlL, where θlL

is such that PθlL(θ̂l > θ̂l,obs|S) = α with θ̂l,obs being the observed value of θl. Also, a

100(1− α)% confidence interval for θl is (θlL, θlU), where θlL and θlU are determined

by PθlL(θ̂l > θ̂l,obs|S) = α
2

and PθlU (θ̂l > θ̂l,obs|S) = 1− α
2
.

By performing the same steps as done in the case of conditional marginal mgf, we

can derive the conditional joint mgf of (θ̂1, θ̂2, · · · , θ̂k) as follows.

Theorem 16 Conditional on the set S, the joint mgf of (θ̂1, θ̂2, · · · , θ̂k) is given by

Mθ̂1,θ̂2,··· ,θ̂k|S(t1, · · · , tk)

=
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×
d∏
j=0

j 6=l′

1

1−
∑k

l=1 tlβ
(d)
l,l′j

exp

{∑k
l=1 tlT (nl −Md−l′(l))

Md(l)

}

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

r∑
l′=0

ϕ̃l′r

× 1

1−
∑k

l=1 tlβ
∗
lj

r∏
j=0

j 6=l′

1

1−
∑k

l=1 tlβ
(r)
l,l′j

exp

{∑k
l=1 tlT (nl −Md−l′(l))

Mr(l)

}
,

(5.1.15)
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where ψl′d and ϕ̃l′r are as defined in (4.2.10) and (5.1.8), for 1 ≤ l ≤ k and 0 ≤ l′ ≤ d,

0 ≤ j ≤ d, β
(d)
l,l′j determined by (4.2.16), β∗lj determined by (4.2.17).

Corollary 8 From (5.1.15), we obtain E(θ̂l1 θ̂l2) to be

E(θ̂l1 θ̂l2) =
r−1∑
d=0

1

P (
∏k

h=1Mr(h) 6= 0|D = d)

∑
t∈Td

∑
δ̃∈Q∗d(t)

cd

k∏
h=1

θ
−Md(h)
h

d∑
l′=0

ψl′d

×

{(
d∑

j=0;j 6=l′
β

(d)
l1,l′j

+
T (nl1 −Md−l′(l1))

Md(l1)

)

×

(
d∑

j=0;j 6=l′
β

(d)
l2,l′j

+
T (nl2 −Md−l′(l2))

Md(l2)

)
+

d∑
j=0;j 6=l′

β
(d)
l1,l′j

β
(d)
l2,l′j

}

+
N∑
d=r

1

P (
∏k

h=1Md(h) 6= 0|D = d)

∑
t∈Tr

∑
δ̃∈Q∗r(t)

cr

k∏
h=1

θ
−Mr(h)
h

r∑
l′=0

ϕ̃l′r

×


 r∑

j=0

j 6=l′

β
(r)
l1,l′j

+ β∗l1,r−l′+1 +
T (nl1 −Md−l′(l1))

Mr(l1)


×

 r∑
j=0

j 6=l′

β
(r)
l2,l′j

+ β∗l2,r−l′+1 +
T (nl2 −Md−l′(l2))

Mr(l2)


+

r∑
j=0

j 6=l′

β
(r)
l1,l′j

β
(r)
l2,l′j

+ β∗l1,r−l′+1β
∗
l2,r−l′+1

 . (5.1.16)

From the above corollary, the covariance and correlation coefficient between MLEs

θ̂l1 and θ̂l2 can also be readily obtained.
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5.2 Approximate Confidence Intervals

Let I(θ1, θ2, · · · , θk) = (Ii,j(θ1, θ2, · · · , θk)), i, j = 1, 2, · · · , k, denote the Fisher infor-

mation matrix of the parameters θ1, θ2, · · · , θk, where

Ii,j(θ1, θ2, · · · , θk) = −E
(
∂2 lnL

∂θi∂θj

)
(5.2.1)

From the likelihood function in (4.2.4), we have Ii,j(θ1, θ2, · · · , θk) = 0 if i 6= j.

Consequently, we have

I(θ̂1, θ̂2, · · · , θ̂k)

= −Diag

(
∂2 lnL

∂θ2
1

|θ1=θ̂1
,
∂2 lnL

∂θ2
2

|θ2=θ̂2
, · · · , ∂

2 lnL

∂θ2
k

|θk=θ̂k

)
, (5.2.2)

where, for d = 0, 1, 2, · · · , r − 1,

∂2 lnL

∂θ2
h

|θh=θ̂h
=

Md(h)

θ̂2
h

−
2

{
d∑
i=1

wiδi(h) + T (nh −Md(h))

}
θ̂3
h

= −Md(h)

θ̂2
h

,
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and for d = r, r + 1, · · · , N ,

∂2 lnL

∂θ2
h

|θh=θ̂h
=

Mr(h)

θ̂2
h

−
2

{
r∑
i=1

wiδi(h) + wr(nh −Mr(h))

}
θ̂3
h

= −Mr(h)

θ̂2
h

.

Then, by using the asymptotic normality of the MLEs, we have θ̂h − θh ∼ N(0, I−1
h,h).

With d̃ = min{d, r}, we can express the approximate 100(1−α)% confidence interval

for θh, 1 ≤ h ≤ k, as



θ̂h ± Zα/2

d̃∑
i=1

wiδi(h)+T (nh−Md̃(h))

Md̃(h)
3
2

= θ̂h(1±
Zα/2

Md̃(h)
1
2

),

when d = 0, 1, 2, · · · , r − 1

θ̂h ± Zα/2

d̃∑
i=1

wiδi(h)+wr(nh−Md̃(h))

Md̃(h)
3
2

= θ̂h(1±
Zα/2

Md̃(h)
1
2

),

when d = r, r + 1, · · · , N,

where Zα/2 denotes the upper α/2 percentage point of the standard normal distribu-

tion.
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5.3 Bayesian Intervals

Let

uh =


d∑
i=1

wiδi(h) + T (nh −Md(h)), when d = 0, 1, 2, · · · , r − 1,

r∑
i=1

wiδi(h) + wr(nh −Mr(h)), when d = r, r + 1, · · · , N.

Then, we can rewrite the likelihood function as

L(θ1, θ2, · · · , θk, δ,w) = cr

k∏
h=1

θ
−Md̃(h)

h exp(−uh
θh

) (5.3.1)

Now, by assuming independent inverse gamma prior distributions, viz., IG(ah, bh)

for 1 ≤ h ≤ k, we obtain from (5.3.1) the posterior joint density function as

L(θ1, θ2, · · · , θk|data) = cd̃

k∏
h=1

θ
−Mr(h)−ah−1
h exp

(
−uh + bh

θh

)
.

Upon comparing this with (5.3.1), we see that the joint posterior density function

of (θ1, θ2, · · · , θk) is a product of k independent inverse gamma density functions. So,

given the data, the posterior density function of θ̂h is simply IG(Md̃(h) +ah, uh+ bh).

Thus, the Bayes estimator of θh under the squared-error loss function is
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θ̂h,Bayes =
uh + bh

Md̃(h) + ah − 1
, h = 1, 2, · · · , k. (5.3.2)

When we use Jeffreys’ non-informative prior I(θh) ∝ 1
θ2h

corresponding to the

special case when ah = 1 and bh = 0, for 1 ≤ h ≤ k, the Bayes estimators in (5.3.2)

coincide with the MLEs in (4.2.3).

Let Uh = 2(uh+bh)
θh

for 1 ≤ h ≤ k. Then, the pivot Uh follows χ2
2(Mr(h)+ah) distri-

bution, provided 2(Md̃(h) + ah) is a positive integer, for 1 ≤ h ≤ k. In this case, the

100(1− α)% Bayes credible interval for θh becomes

(
2(uh + bh)

χ2
2(Md̃(h)+ah),1−α/2

,
2(uh + bh)

χ2
2(Md̃(h)+ah),α/2

)
, h = 1, 2, · · · , k,

where χ2
v,α

2
is the lower α

2
percentage point of the chi-square distribution with v

degrees of freedom.

5.4 Bootstrap Intervals

In this section, we consider confidence interval for θh (h = 1, 2, · · · , k) based on the

Bootstrap-p and Bootstrap-t methods; see, for example, Efron and Tibshirani (1994).

To find the Bootstrap-p and Bootstrap-t intervals, in the first step, we generate

original samples from k exponential populations with parameters θh of size nh, 1 ≤
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h ≤ k. Next we sort the data, and determine to which population each failure belongs,

and then estimate θh using the conditional MLE in (4.2.3). In the second step,

we generate a bootstrap sample (δ1, δ2, · · · , δr;w1, w2, · · · , wr) by using the values

(θ̂1, θ̂2, · · · , θ̂k), and then obtain the bootstrap estimates of θh, 1 ≤ h ≤ k, say θ∗h,

1 ≤ h ≤ k, from the bootstrap sample. In the third step, we repeat the second step

N -Boot times.

Boot-p: Suppose KhB(x) = P (θ̂∗h ≤ x), 1 ≤ h ≤ k, is the cumulative distribution

function of θ̂∗h. Define θ̂hB(α) = K−1
hB(α), 1 ≤ h ≤ k, for a given α. Then, the

100(1− α)% Boot-p confidence interval for θh, 1 ≤ h ≤ k, is given by

(
θ̂hB

(α
2

)
, θ̂hB

(
1− α

2

))
, 1 ≤ h ≤ k.

Boot-t: After generating the bootstrap samples in the second step and calculating

θ̂∗h, we need to use them to compute the estimate of V ar(θ̂∗h) from the observed Fisher

information matrix in (5.2.2). Then, we determine the T ∗h statistic given by

T ∗h =
θ̂∗h − θ̂h√
V̂ar(θ̂∗h)

, 1 ≤ h ≤ k. (5.4.1)

Now, suppose LhB(x) = P (T ∗h ≤ x) is the cumulative distribution function of T ∗h ,

1 ≤ h ≤ k. Then, the 100(1 − α)% Boot-t confidence interval for θh, 1 ≤ h ≤ k, is
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given by

(
θ̂h −

√
V̂ar(θ̂h)L

−1
hB

(
1− α

2

)
, θ̂h −

√
V̂ar(θ̂h)L

−1
hB

(α
2

))
, 1 ≤ h ≤ k.

5.5 Simulation Results and Discussion

A simulation study was carried out to evaluate the performance of the conditional

MLEs discussed in the preceding sections. We considered sample sizes for the three

populations as n = (6, 6, 6), and different choice for r and T . We also chose the

parameters (θ1, θ2, θ3) to be (2, 4, 7) and (3, 5, 9). For these cases, we computed the

conditional MLEs for the parameters (θ1, θ2, θ3) and the empirical values of their

means, standard deviations, mean square errors and covariance matrices for different

choices of r and T . The results of these obtained from 10,000 Monto Carlo simulations

are presented in Tables 5.1-5.4. From the results presented in these tables, we observe

that while the estimate of θ1 is very stable even for small r and T , the estimate of

θ2 and θ3 become stable only for larger values of r and T . This is to be expected

since when θ1 is smaller than θ2 and θ3, when r and T are small, most of the failures

observed would have resulted from the exponential population with parameter θ1 and

very few failures would have come from the exponential populations with parameters

θ2 and θ3. This does get rectified when r and T are increased, as one would expect.



Chapter 5.5 - Simulation Results and Discussion 130

Table 5.1: The average values of the conditional MLEs and the estimates of their
standard deviations and mean square errors when θ = (2, 4, 7) and n = (6, 6, 6) for
different choices of r and T .

Mean ŜD R̂MSE

r T (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3)
6 2.5 (2.64, 4.85, 6.02) (1.8448, 3.1517, 3.2607) (1.9524, 3.2639, 3.4057)
6 3.0 (2.64, 4.86, 6.03) (1.8575, 3.1810, 3.3663) (1.9656, 3.2945, 3.5039)
6 3.5 (2.60, 4.90, 6.08) (1.8095, 3.2342, 3.3920) (1.9057, 3.3581, 3.5153)
6 4.0 (2.62, 4.92, 6.08) (1.7921, 3.2811, 3.4768) (1.8968, 3.4078, 3.5968)
6 4.5 (2.65, 4.90, 6.13) (1.8234, 3.2431, 3.4588) (1.9343, 3.3650, 3.5673)
9 3.5 (2.23, 5.10, 8.00) (1.3573, 3.8210, 5.0298) (1.3775, 3.9772, 5.1282)
9 4.5 (2.25, 4.97, 8.18) (1.2793, 3.6423, 5.3800) (1.3025, 3.7687, 5.5075)
9 5.5 (2.24, 5.07, 8.15) (1.2429, 3.7526, 5.5242) (1.2650, 3.9022, 5.6432)
9 6.5 (2.25, 5.04, 8.12) (1.3006, 3.7318, 5.4163) (1.3240, 3.8743, 5.5306)
9 7.5 (2.22, 5.00, 8.13) (1.2211, 3.6687, 5.4763) (1.2414, 3.8035, 5.5910)
12 4.5 (2.11, 4.66, 8.74) (1.0505, 3.3205, 6.3170) (1.0567, 3.3860, 6.5516)
12 5.5 (2.10, 4.57, 8.65) (0.9916, 2.9646, 6.4824) (0.9965, 3.0197, 6.6886)
12 6.5 (2.10, 4.50, 8.67) (1.0110, 2.7102, 6.5214) (1.0159, 2.7552, 6.7313)
12 7.5 (2.09, 4.52, 8.63) (0.9705, 2.8129, 6.5465) (0.9744, 2.8606, 6.7456)
12 8.5 (2.09, 4.42, 8.64) (0.9915, 2.6112, 6.5933) (0.9957, 2.6442, 6.7942)
15 7.0 (2.03, 4.40, 8.52) (0.8845, 2.4737, 6.3454) (0.8852, 2.5052, 6.5238)
15 9.0 (2.04, 4.21, 8.00) (0.8814, 2.0746, 5.4620) (0.8822, 2.0856, 5.5524)
15 11.0 (2.03, 4.19, 7.68) (0.8727, 2.0325, 4.6932) (0.8733, 2.0417, 4.7426)
15 13.0 (2.03, 4.20, 7.58) (0.8661, 1.9593, 4.4530) (0.8665, 1.9692, 4.4904)
15 15.0 (2.05, 4.17, 7.59) (0.8864, 1.9444, 4.2571) (0.8878, 1.9522, 4.2982)
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Table 5.2: The average values of the conditional MLEs and the estimates of their
standard deviations and mean square errors when θ = (3, 5, 9) and n = (6, 6, 6) for
different choices of r and T .

Mean ŜD R̂MSE

r T (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3) (θ̂1, θ̂2, θ̂3)
6 3.5 (3.96, 6.27, 8.10) (2.8759, 4.1993, 4.5740) (3.0328, 4.3866, 4.6615)
6 4.5 (3.94, 6.30, 8.09) (2.8265, 4.2987, 4.7074) (2.9794, 4.4921, 4.7944)
6 5.5 (3.98, 6.34, 8.18) (2.8381, 4.3232, 4.7552) (3.0018, 4.5270, 4.8253)
6 6.5 (3.94, 6.38, 8.15) (2.7565, 4.3702, 4.7941) (2.9134, 4.5838, 4.8683)
6 7.5 (3.92, 6.35, 8.12) (2.7691, 4.3649, 4.7673) (2.9175, 4.5697, 4.8475)
9 7.0 (3.42, 6.10, 10.47) (2.0110, 4.3496, 7.0004) (2.0540, 4.4856, 7.1521)
9 8.5 (3.39, 6.15, 10.55) (1.9791, 4.3885, 7.1121) (2.0168, 4.5358, 7.2800)
9 10.0 (3.41, 6.14, 10.53) (2.0024, 4.4430, 7.0558) (2.0436, 4.5872, 7.2192)
9 11.5 (3.39, 6.18, 10.54) (1.9653, 4.5188, 7.1686) (2.0027, 4.6706, 7.3318)
9 13.0 (3.39, 6.14, 10.67) (2.0154, 4.4742, 7.2024) (2.0522, 4.6173, 7.3944)
12 10.5 (3.17, 5.56, 11.07) (1.5196, 3.2933, 8.4661) (1.5289, 3.3411, 8.7165)
12 12.0 (3.18, 5.53, 11.05) (1.5083, 3.1974, 8.1906) (1.5193, 3.2412, 8.4436)
12 13.5 (3.16, 5.48, 11.14) (1.5565, 3.0776, 8.4199) (1.5646, 3.1142, 8.6866)
12 15.0 (3.15, 5.55, 11.13) (1.5225, 3.2389, 8.5639) (1.5302, 3.2847, 8.8255)
12 16.5 (3.13, 5.53, 11.03) (1.4681, 3.1161, 8.3438) (1.4741, 3.1602, 8.5862)
15 15.5 (3.07, 5.23, 9.98) (1.3277, 2.4516, 5.9225) (1.3294, 2.4625, 6.0033)
15 18.0 (3.05, 5.23, 9.73) (1.3260, 2.4083, 5.2926) (1.3270, 2.4189, 5.3433)
15 20.5 (3.08, 5.20, 9.70) (1.3282, 2.3761, 5.1418) (1.3304, 2.3843, 5.1889)
15 23.0 (3.06, 5.16, 9.67) (1.3306, 2.4062, 4.9658) (1.3320, 2.4115, 5.0109)
15 25.5 (3.06, 5.19, 9.63) (1.3362, 2.3993, 4.9349) (1.3376, 2.4068, 4.9747)
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Table 5.3: The average values of the estimates of the covariance matrix of the condi-
tional MLEs when θ = (2, 4, 7) and n = (6, 6, 6) for different choices of r and T .

θ = (2, 4, 7) θ = (3, 5, 9)
r T Covariance matrix (ρ(θi, θj))i,j T Covariance matrix (ρ(θi, θj))i,j

6 2.5

 3.403 0.173 1.155
0.173 9.933 3.651
1.155 3.651 10.632

 3.0

 8.271 0.020 2.310
0.020 17.634 6.583
2.310 6.583 20.921


6 3.0

 3.450 −0.044 1.040
−0.044 10.118 4.017
1.040 4.017 11.332

 4.0

 7.989 −0.106 2.504
−0.106 18.479 6.577
2.504 6.577 22.159


6 3.5

 3.274 −0.024 1.067
−0.024 10.460 4.092
1.067 4.092 11.506

 5.0

 8.055 −0.569 2.464
−0.569 18.690 6.927
2.464 6.927 22.612


6 4.0

 3.212 0.095 1.103
0.095 10.765 4.320
1.103 4.320 12.088

 6.0

 7.598 −0.205 2.282
−0.205 19.098 6.948
2.282 6.948 22.984


6 4.5

 3.325 −0.046 1.059
−0.046 10.518 4.249
1.059 4.249 11.963

 7.0

 7.668 −0.145 1.997
−0.145 19.053 7.154
1.997 7.154 22.727


9 3.5

 1.842 −0.169 0.286
−0.169 14.600 1.371
0.286 1.371 25.299

 6.5

 4.044 −0.700 0.056
−0.700 18.919 0.622
0.056 0.622 49.006


9 4.5

 1.637 −0.275 0.218
−0.275 13.266 1.085
0.218 1.085 28.944

 8.0

 3.917 −0.549 0.398
−0.549 19.259 0.537
0.398 0.537 50.582


9 5.5

 1.545 −0.292 0.245
−0.292 14.082 0.612
0.245 0.612 30.517

 9.5

 4.009 −0.572 0.030
−0.572 19.740 0.108
0.030 0.108 49.785


9 6.5

 1.692 −0.397 0.187
−0.397 13.926 0.224
0.187 0.224 29.337

 11.0

 3.862 −0.690 0.384
−0.690 20.420 0.494
0.384 0.494 51.389


9 7.5

 1.491 −0.362 0.271
−0.362 13.459 0.502
0.271 0.502 29.990

 12.5

 4.062 −0.584 0.309
−0.584 20.018 0.540
0.309 0.540 51.875


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Table 5.4: The average values of the estimates of the covariance matrix of the condi-
tional MLEs when θ = (3, 5, 9) and n = (6, 6, 6) for different choices of r and T .

θ = (2, 4, 7) θ = (3, 5, 9)
r T Covariance matrix (ρ(θi, θj))i,j T Covariance matrix (ρ(θi, θj))i,j

12 4.5

 1.104 −0.035 −0.014
−0.035 11.026 0.513
−0.014 0.513 39.905

 10.0

 2.309 −0.176 −0.382
−0.176 10.846 −1.070
−0.382 −1.070 71.675


12 5.5

 0.983 −0.028 0.009
−0.028 8.789 −0.504
0.009 −0.504 42.022

 11.5

 2.275 −0.167 −0.433
−0.167 10.223 −1.759
−0.433 −1.759 67.087


12 6.5

 1.022 −0.087 −0.245
−0.087 7.345 −0.576
−0.245 −0.576 42.529

 13.0

 2.423 −0.162 −0.547
−0.162 9.472 −1.635
−0.547 −1.635 70.896


12 7.5

 0.942 −0.067 −0.098
−0.067 7.912 −1.508
−0.098 −1.508 42.857

 14.5

 2.318 −0.207 −0.502
−0.207 10.490 −2.052
−0.502 −2.052 73.340


12 8.5

 0.983 −0.074 −0.242
−0.074 6.818 −1.227
−0.242 −1.227 43.471

 16.0

 2.155 −0.122 −0.329
−0.122 9.710 −1.781
−0.329 −1.781 69.619


15 7.0

 0.782 0.004 −0.008
0.004 6.119 0.179
−0.008 0.179 40.265

 15.0

 1.763 −0.061 −0.215
−0.061 6.010 −0.369
−0.215 −0.369 35.076


15 9.0

 0.777 −0.040 0.006
−0.040 4.304 0.070
0.006 0.070 29.834

 17.5

 1.758 −0.107 −0.122
−0.107 5.800 −0.199
−0.122 −0.199 28.011


15 11.0

 0.762 −0.031 −0.047
−0.031 4.131 0.064
−0.047 0.064 22.027

 20.0

 1.764 −0.120 −0.138
−0.120 5.646 −0.289
−0.138 −0.289 26.438


15 13.0

 0.750 −0.017 −0.042
−0.017 3.839 0.040
−0.042 0.040 19.829

 22.5

 1.771 −0.039 −0.022
−0.039 5.790 −0.421
−0.022 −0.421 24.659


15 15.0

 0.786 −0.020 −0.007
−0.020 3.781 −0.212
−0.007 −0.212 18.123

 25.0

 1.786 −0.069 −0.109
−0.069 5.757 −0.370
−0.109 −0.370 24.354





Chapter 6

Concluding Remarks

6.1 Summary of Work

In this thesis, by considering k exponential populations, we have developed exact

inferential methods based on four different joint censoring schemes—– (i) jointly Type-

II censored sample, (ii) jointly progressively Type-II censored sample, (iii) jointly

Type-I hybrid censored sample, and (iv) jointly Type-II hybrid censored sample. For

each of these cases, we have derived the conditional MLEs of the k exponential mean

parameters, and have derived their conditional moment generating functions and

exact densities, using which we have then developed exact confidence intervals for the

k exponential parameters. Furthermore, approximate confidence intervals based on

the asymptotic normality of the MLEs, parametric bootstrap intervals, and credible

confidence regions from a Bayesian viewpoint have all been discussed.

134



Chapter 6.1 - Summary of Work 135

For different censoring schemes, a simulation study has been carried out to e-

valuate the performance of the conditional MLEs of the parameters (θ1, θ2, θ3) for

different choices of r and (n1, n2, n3). From these results, it is clear that the MLEs

have a moderate bias when the essential sample size r is small even when the sample

sizes (n1, n2, n3) are not small. However, the bias of the conditional MLEs become

negligible when r increases.

An empirical evaluation is also made of all the confidence intervals. We also com-

puted exact 95% confidence intervals for some small values of r. From these results,

it is clear that the exact conditional method has its coverage probability to be quite

close to the nominal level of 95% always, while the approximate method is not at all

satisfactory. We also observe that between the two bootstrap methods, the Boot-p

method performs better than the Boot-t method; the Bayesian credible interval has

very stable coverage probabilities (quite close to the nominal level of 95%). Moreover,

we observe that the approximate and bootstrap methods have lower coverage proba-

bilities when n1, n2, n3 are small. Also, we have presented examples to illustrate all

the methods of inference developed here for different joint censoring scenarios. The

importance of the exact method developed in this thesis becomes clear as it provides

exact conditional confidence intervals with accurate coverage probabilities (compared

to the nominal confidence levels) even for small sample sizes and small values of r.

However, the exact method becomes computationally quite intensive when r is

large. Hence, we would recommend the use of the exact conditional confidence in-
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tervals for θh developed here whenever possible and especially when the sample sizes

are small; but when the sample sizes get larger with a large r, the computational

complexity increases in the exact conditional method, and in this case the Boot-p

method and the Bayesian method are computationally simpler to use and they also

possess good performance, in the interval estimation of parameters. We, therefore

would recommend one of these two methods for the interval estimation.

6.2 Possible Further Research

From the research work carried out in this thesis, we identify the following problems

that will be of great interest for further research:

• In the development of exact confidence intervals, we assumed that P (θ̂h > b) is

an increasing function of θh when all other θj’s are fixed for j 6= h (1 ≤ h ≤ k).

It would be useful to establish this result formally;

• Type-I and Type-II censoring schemes are the most common and popular cen-

soring schemes. As we have seen, Type-I censoring scheme has the advantage of

fixed experimental time, but may end up with very few observed failures at the

end of the experiment. Type-II censoring scheme has the advantage of having

at least a certain number of observed failures, but may take a long time to

terminate the experiment. For this reason, some Generalized HCS and Unified

HCS have been proposed in the literature; see, for example, Balakrishnan and
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Kundu (2013). It will be of interest to develop exact inferential results anal-

ogous to those developed in the thesis for these Generalized HCS and Unified

HCS when they are jointly implemented in the k samples;

• Recently, Childs et al. (2012) considered two-parameter exponential distribu-

tion and developed exact inferential results under HCS. Following this line, it

will be of interest to consider the case of two-parameter exponential distribution

and then develop exact inferential results analogous to those developed in the

thesis for various forms of jointly censored data.



Appendix A

Proof of Some Lemmas

Lemma 5 For fixed l, 1 ≤ l ≤ k, suppose {β∗li}r
′
i=1 are distinct. Let us define the

functions hi′(t) =
∏

i 6=i′(1−β∗lit)−αi, for i, i′ = 1, 2, · · · , r′. Then, the coefficients A
(j)
li

in expression (2.2.15) are determined as follows:

r′∏
i=1

(1− β∗lit)−αi =
r′∑
i=1

αi∑
j=1

A
(j)
li (1− β∗lit)−j,
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where

A
(αi′ )
li′ = hi′

(
1

β∗li′

)
=
∏
i 6=i′

(
β∗li′

β∗li′ − β∗li

)αi
, (A.0.1)

A
(αi′−1)
li′ = −

∑
i 6=i′

αiβ
∗
li

β∗li′ − β∗li
hi′

(
1

β∗li′

)
, (A.0.2)

A
(αi′−2)
li′ =

1

2


(∑
i 6=i′

αiβ
∗
li

β∗li′ − β∗li

)2

+
∑
i 6=i′

αi(β
∗
li)

2

(β∗li′ − β∗li)2

hi′

(
1

β∗li′

)
, (A.0.3)

A
(αi′−3)
li′ = − 1

3!


(∑
i 6=i′

αiβ
∗
li

β∗li′ − β∗li

)3

+ 3
∑
i 6=i′

αiβ
∗
li

β∗li′ − β∗li

∑
i 6=i′

αi(β
∗
li)

2

(β∗li′ − β∗li)2

+ 2
∑
i 6=i′

αi(β
∗
li)

3

(β∗li′ − β∗li)3

}
hi′

(
1

β∗li′

)
, (A.0.4)

A
(αi′−4)
li′ =

1

4!


(∑
i 6=i′

αiβ
∗
li

β∗li′ − β∗li

)4

+ 3

(∑
i 6=i′

αiβ
∗
li

β∗li′ − β∗li

)2∑
i 6=i′

αi(β
∗
li)

2

(β∗li′ − β∗li)2

+8
∑
i 6=i′

αiβ
∗
li

β∗li′ − β∗li

∑
i 6=i′

αi(β
∗
li)

3

(β∗li′ − β∗li)3
+ 6

(∑
i 6=i′

αi(β
∗
li)

2

(β∗li′ − β∗li)2

)2

+3!
∑
i 6=i′

αi(β
∗
li)

4

(β∗li′ − β∗li)4

}
hi′

(
1

β∗li′

)
, (A.0.5)

and so on.

Proof The coefficients A
(j)
li are determined from the following partial function iden-

tity:

r′∏
i=1

(1− β∗lit)−αi =
r′∑
i=1

αi∑
j=1

A
(j)
li (1− β∗lit)−j.
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For fixed l and i′, we have

A
(αi′ )
li′ =

∏
i 6=i′

(1− β∗lit)−αi − (1− β∗li′t)αi′
∑
i 6=i′

αi∑
j=1

A
(j)
li (1− β∗lit)−j

−
αi′−1∑
j=1

A
(j)
li′ (1− β

∗
li′t)

αi′−j.

Taking t = 1
β∗
li′

, we have

A
(αi′ )
li′ =

∏
i 6=i′

(
1− β∗li

β∗li′

)−αi
=
∏
i 6=i′

(
β∗li′

β∗li′ − β∗li

)αi
= hi′

(
1

β∗li′

)
.

Moreover,

A
(αi′−1)
li′ =

1

1− β∗li′t
∏
i 6=i′

(1− β∗lit)−αi −
A

(αi′ )
li′

1− β∗li′t

−(1− β∗li′t)αi′−1
∑
i 6=i′

αi∑
j=1

A
(j)
li (1− β∗lit)−j −

αi′−2∑
j=1

A
(j)
li′ (1− β

∗
li′t)

αi′−1−j.

When αi′ ≥ 2, the last two terms have factor 1−β∗li′t and so vanish when taking limit

t→ 1
β∗
li′

. Thus, we get

A
(αi′−1)
li′ = lim

t→ 1
β∗
li′

1

1− β∗li′t

(∏
i 6=i′

(1− β∗lit)−αi − A
(αi′ )
li′
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t→ 1

β∗
li′

1

1− β∗li′t

(
hi′(t)− A

(αi′ )
li′

)
= − 1

β∗li′
h′i′

(
1

β∗li′

)
.
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Note that hi′(t) =
∏

i 6=i′(1− β∗lit)−αi , and so

log hi′(t) = −
∑
i 6=i′

αi log(1− β∗lit),

h′i′(t)

hi′(t)
=

∑
i 6=i′

αiβ
∗
li

1− β∗lit
,

h′i′(t) =
∑
i 6=i′

αiβ
∗
li

1− β∗lit
hi′(t), (A.0.6)

and consequently,

A
(αi′−1)
li′ = −

∑
i 6=i′

αiβ
∗
li

β∗li′ − β∗li
hi′

(
1

β∗li′

)
.

In a similar way, when αi′ ≥ 3, we have

A
(αi′−2)
li′ =

1

(1− β∗li′t)2

∏
i 6=i′

(1− β∗lit)−αi −
A

(αi′ )
li′

(1− β∗li′t)2
− A

(αi′−1)
li′
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∑
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αi∑
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A
(j)
li (1− β∗lit)−j −

αi′−3∑
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A
(j)
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∗
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which yields

A
(αi′−2)
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li′

1
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{∏
i 6=i′

(1− β∗lit)−αi − A
(αi′ )
li′ − A

(αi′−1)
li′ (1− β∗li′t)

}

= lim
t→ 1

β∗
li′

1

(1− β∗li′t)2

{
hi′(t)− A

(αi′ )
li′ − A

(αi′−1)
li′ (1− β∗li′t)

}
=

1
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Now to find h′′i′
(

1
β∗
li′

)
, we take derivatives on both sides of (A.0.6) to get

h′′i′(t) =
∑
i 6=i′

αi(β
∗
li)

2

(1− β∗lit)2
hi′(t) +

∑
i 6=i′

αiβ
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li
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2
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∑
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∗
li
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)2

}
hi′(t). (A.0.7)

Thus, we obtain

A
(αi′−2)
li′ =

1

2!
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αiβ
∗
li

β∗li′ − β∗li
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Finally, when αi′ ≥ 4, we have

A
(αi′−3)
li′ =

1

(1− β∗li′t)3

∏
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A
(j)
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∗
li′t)

αi′−3−j,
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which yields

A
(αi′−3)
li′
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li′
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Upon taking derivatives on both sides of (A.0.7), we get
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In general, for 1 ≤ j ≤ αi′ , we have

A
(αi′−j)
li′ =

(−1)j

j!(β∗li′)
j
h

(j)
i′

(
1

β∗li′

)
.

In the above, β∗li = nl−Mi−1(l)

Mr(l)
∑k
h=1

nh−Mi−1(h)

θh

for 1 ≤ l ≤ k and 1 ≤ i ≤ r′, as given earlier

in (2.2.12).

Lemma 6 Let

fm(w) = c
(m)
0 + c

(m)
1 e−amw + · · ·+ c(m)

m e−
∑m
i=1 aiw

=
m∑
j=0

c
(m)
j e−

∑m
i=m−j+1 aiw.

such that fm(wm) =
∫ wm

0
fm−1(wm−1)e−amwm−1dwm−1. Then, the coefficients c

(m)
j can

be found as follows:

c
(m)
0 =

m−1∑
j=0

c
(m−1)
j∑m
i=m−j ai

, c
(m)
1 = −c

(m−1)
0

am
, · · · , c(m)

m = −
c

(m−1)
m−1∑m
i=1 ai

,

in which we adopt the usual conventions that
∏0

j=1 dj = 1 and
∑i−1

j=i dj = 0.
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Proof We have

fm(wm) =

∫ wm

0

fm−1(wm−1)e−amwm−1dwm−1

=
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0
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Comparing the coefficients on both sides, we have

c
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,
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(m)
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Lemma 7 Under the assumptions of Lemma 6 and f0(w) = 1, we have

c
(m)
0 =

m∏
j=1

1∑m
i=j ai

and

c
(m)
l =

(−1)l∏l−1
j=0

∑m−j
i=m−l+1 ai
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i=j ai

, for 1 ≤ l ≤ m.
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Proof First, it is easy to see that c
(m)
0 = fm(+∞) = lim

w→+∞
fm(w). Nest, we have

f1(w1) =

∫ w1

0

e−a1w0dw0,

f2(w2) =

∫ w2

0

f1(w1)e−a2w1dw1 =

∫ w2

0

∫ w1

0

e−(a1w0+a2w1)dw0dw1,

· · ·

fm(wm) =

∫ wm

0

fm−1(wm−1)e−amwm−1dwm−1

=

∫
0<w0<···<wm−1<wm

e−(a1w0+a2w1+···+amwm−1)dw0 · · · dwm−1.

Thus, we find

c
(m)
0 =

∫
0<w0<···<wm−1<∞

e−(a1w0+a2w1+···+amwm−1)dw0 · · · dwm−1.

Upon integrating out w0, w1, · · · , wm−1 over {0 ≤ w0 ≤ w1 ≤ · · · ≤ wm−1 < ∞}

in the above integral, after mapping it onto {0 ≤ ui < ∞, 1 ≤ i ≤ m − 1} through

the transformation



u1 = w0,

u2 = w1 − w0,

· · ·

um = wm−1 − wm−2,
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we obtain c
(m)
0 . Also, by using Lemma 6,

c
(m)
1 = −c

(m−1)
0

am
= − 1

am

m−1∏
j=1

1∑m−1
i=j ai

,

c
(m)
2 = − c

(m−1)
1

am + am−1

=
1

(am + am−1)am−1

m−2∏
j=1

1∑m−2
i=j ai

,

and in general, for 1 ≤ l ≤ m,

c
(m)
l = −

c
(m−1)
l−1
m∑

i=m−l+1

ai

=
(−1)l∏l−1

j=0

∑m−j
i=m−l+1 ai

m−l∏
j=1

1∑m−l
i=j ai

.
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