
ON PACKET SWITCH SCHEDULING IN HIGH-SPEED

DATA NETWORKS

ON PACKET SWITCH SCHEDULING IN HIGH-SPEED

DATA NETWORKS

BY

AMIR GOURGY, B. ENG.(MCMASTER), M.A.SC.(WATERLOO)

MARCH 2006

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

© Copyright 2006 by Amir Gourgy, B. Eng. (McMaster),

M.A.Sc.(Waterloo)

All Rights Reserved

DOCTOR OF PHILOSOPHY (2006)

(Electrical and Computer Engineering)
McMaster University

Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

On Packet Switch Scheduling in High-Speed Data Net­

works

Amir Gourgy, B. Eng.(McMaster), M.A.Sc.(Waterloo)

Dr. Ted H. Szymanski, Professor of Electrical and Com­

puter Engineering, B.A.Sc., M.A.Sc., Ph.D. (University

of Toronto)

NUMBER OF PAGES: xvi,136

11

Abstract

There is a tremendous demand for Internet core nodes to provide quality-of-service

(QoS) guarantees for multimedia services, and to provide high switching capacity

that makes use of the virtually unlimited bandwidth of optical fibers. The Internet's

Success depends on the deployment of high-speed switches and routers that meet

these two demands. We address theoretical and practical aspects of packet switch
scheduling in high-speed data networks.

First, we address short-term fairness III QoS scheduling for input-queued (IQ)

switches. We show that existing practical scheduling algorithms for Internet routers

with IQ switches are unfair over short time scales and potentially lead to increased jit­

ter. Subsequently, we present a scheduling policy based on credit-based fair queueing

that provides better short-term fairness in QoS scheduling than existing solutions with

comparable complexity. A flow-based iterative credit-based fair scheduler (iCBFS) is

proposed for crossbar switches, that provides fair bandwidth distribution among flows

at a fine granularity and achieves asymptotically 100% throughput, under uniform

traffic. To reduce the implementation complexity of iCBFS, we present a port-based

version of iCBFS that is tailored towards high-speed hardware implementation.

Second, we address the problem of fair scheduling of packets in Internet routers

with IQ switches and unity speedup. Scheduling in IQ switches is formulated as

tracking the behaviour of an output-queued (OQ) switch that provides optimal per­

formance. We present the notion of "lag" as a performance metric that measures

the difference between a packet's departure time in an IQ switch over that provided

by an OQ switch. We prove that per packet mean lag is bounded for a maximum

weight matching scheduling policy that uses lag values for its weights and derive a

iii

bound on the mean lag value using a Lyapunov function technique. Furthermore, we

propose a simple heuristic tracking scheduling policy and evaluate its performance by
simulation.

Finally, we present a novel distributed scheduling paradigm for Internet routers

with IQ switches, called Cooperative Token-Ring (CTR) that provides significant

performance improvement over existing scheduling schemes with comparable com­

plexity. In classical token-ring based scheduling for IQ switches, a separate token

ring (an arbiter) is used to resolve contention for each shared resource (i.e., an out­

put port). Although classical token-ring based scheduling achieves fairness and high

throughput for uniform traffic, under non-uniform traffic the performance degrades

significantly. We show that by using a simple cooperative mechanism between the

otherwise non-cooperative token rings (arbiters) the performance can be significantly

improved and the scheduler is able to dynamically adapt to any non-uniform traffic

pattern. To provide adequate support for rate guarantees in IQ switches, we present a

Weighted Cooperative Token-Ring (WCTR), a simple hierarchical scheduling mecha­

nism. Finally, we analyze the hardware complexity introduced by the proposed CTR

scheduling and describe an optimal hardware implementation for an N x N switch im­

plementing a CTR scheduler. We show that the hardware time complexity introduced

by the proposed Cooperative mechanism is 8 (log N).

iv

Acknowledgments

I would like to thank God who helped me finish this work and used many

people to help me and guide me along the way.

I would like to express my sincere gratitude and thanks to my supervisor

Dr. Ted Szymanski for his meticulous supervision of this work during the

last four years. I enjoyed his unrelenting enthusiasm and passion for ex­

ploring new ideas and his unparalleled breadth and depth of knowledge in

many research areas that helped me finish this work. My Ph.D. commit­

tee members Drs. Douglas Down and Terry Todd provided guidance and
support.

Special thanks to all my colleagues and office mates who provided a lively

working environment: Honglin Wu, Zhiwei Mao, Ying Yang, Kalyan Bhat­

tacharyya, Houman Homayoun, Nader Fahmy, and Ehab Anis.

The administrative team of the Electrical and Computer Engineering De­

partment deserves my gratitude for their endless help in many matters,

especially Cheryl Gies and Helen lachna.

Finally, I thank my family for their continual unconditional support to
myself all the time.

v

I acknowledge the financial support of the Natural Sciences and Engi­

neering Research Council of Canada (NSERC) Discovery Grant and an

Ontario Center of Excellence - Communications and Information Technol­

ogy (OCE-CITO) Research Grant.

vi

Contents

Abstract

Acknowledgments

1 Introduction

l.1 Introduction..............

l.2 Overview of IP Router Architecture .

l.3 Switch Fabric Architectures

l.3.1 Output-Queued Switch Fabric

l.3.2 Shared Memory Switch Fabric

1.3.3 Buffered Crossbar Switch Fabric.

l.3.4 Input-Queued Switch Fabric ...

l.4 Dissertation Organization and Contributions

1.5 List Of Acronyms

2 Background and Related Work

2.1 Head-of-Line Blocking ..

2.2 Virtual Output Queueing.

2.3 Bipartite Graph Matching

2.3.1 Maximum Size Matching

2.3.2 Maximum Weighted Matching

2.3.3 Maximal Size Matching

2.4 Implementing Maximal Size Matching Using Parallel Matching Algo-

rithms

Vll

iii

v

1

1

1

3

3

4

4

6

7

8

10

10

11

12

14

15

15

16

2.5 Exhaustive Matching 18
2.6 Randomized Scheduling Algorithms 19
2.7 Birkhoff von Neumann Switches .. 20

3 Credit-based Fair Scheduling in Input-Queued Switches 22
3.1 Introduction 22
3.2 Related Work on QoS Scheduling in IQ Switches. 24
3.3 A Flow-based Fair Scheduling Algorithm 25

3.3.1 Definition of Fair Scheduling . . 25
3.3.2 Architecture of iCBFS Switch 26
3.3.3 Description of iCBFS algorithm 27

3.4 Simulation Results 29
3.4.1 QoS Traffic Model 29

3.4.1.1 ICBFS vs. iDRR 29
3.4.1.2 IPCBFS vs. WiSLIP 34
3.4.1.3 IPCBFS vs. WPIM . 34

3.4.2 Uniform Traffic 35
3.4.3 ON/OFF Markov-Modulated Arrivals. 35

3.5 A Port-based Fair Scheduling Algorithm 38
3.6 Complexity of iCBFS 39
3.7 Conclusion 39

4 On Tracking the Behaviour of an Output-Queued Switch 41
4.1 Introduction 41
4.2 Problem Formulation 43

4.2.1 Definition of Terms 44
4.3 Motivation and Related Work 45
4.4 Computing the Ideal Departure Time 46
4.5 Tracking Scheduling Policies 47

4.5.1 Maximum Weighted Lag Scheduling Policy . 48
4.5.2 Iterative Lag Scheduling Policy 63

4.6 Simulation Results 63

Vlll

4.6.1 Bernoulli Traffic Distribution

4.6.2 Bursty Traffic Distribution

4.7 Conclusion.............

5 Cooperative Token-Ring Scheduling

5.1 Introduction and Related Work

5.2 Problem Addressed

5.3 Overview of Cooperative Token-Ring Scheduling.

5.4 Description of Cooperative Token-Ring Scheduler

5.4.1 Computing the Tokens Request Paths Phase

5.4.2 Token Propagation/Selection Phase

5.5 Parallel Implementation of CTR

5.6 Simulation Results for Best Effort Traffic

5.6.1 Bernoulli Traffic Distribution ..

5.6.2

5.6.3

5.6.4

5.6.5

5.6.6

5.6.7

Simulation as a function of the switch size

Bursty Traffic Distribution

Uniform Bursty Traffic

ON/OFF Markov-Modulated Arrivals.

Effects of increasing number of iterations

5.6.6.1 Uniform Bernoulli Traffic '"

5.6.6.2 Log Diagonal Bernoulli Traffic.

5.6.6.3 Diagonal Bernoulli Traffic .

5.6.6.4 Uniform Bursty Traffic ...

ON/OFF Markov-Modulated Traffic

64

64

73

74

75

76

77

80

82

83

84

87

87

91

91

92

92

93

94

94

94

94

94
5.7 Fairness of Cooperative Token-Ring Scheduling 110

5.8 Weighted Cooperative Token-Ring. 111

5.8.1 Simulation Results for Weighted Cooperative Token-Ring Sched-

uler. 112

5.9 Hardware Implementation of Cooperative Token-Ring 113

5.9.1 Complete Symmetrical Prefix Problem 114

5.9.1.1 Upward phase. 115

ix

5.9.1.2 Downward Phase " 117

5.9.2 Computing the Token Request Vector as a Complete Symmet-

rical Prefix Problem 117

5.10 Examples of the Cooperative Token-Ring Scheduling Policy. 119

5.10.1 Notation. . . . 119

5.10.2 First Example. 121

5.10.2.1 Initial State 122

5.10.2.2 First Iteration: Computing the Tokens Request Paths

Phase . 122

5.10.2.3 First Iteration: Request-Grant-Accept Phase. 122

5.10.2.4 Second Iteration:Computing the Tokens Request Paths

Phase . 122

5.10.2.5 Second Iteration: Request-Grant-Accept Phase 123

5.10.2.6 Final State 123

5.10.3 Second Example 124

5.10.3.1 Initial State 125

5.10.3.2 First Iteration: Computing the Tokens Request Paths

Phase . 125

5.10.3.3 First Iteration: Request-Grant-Accept Phase. 125

5.10.3.4 Second Iteration:Computing the Tokens Request Paths

Phase . 126

5.10.3.5 Second Iteration: Request-Grant-Accept Phase 126

5.10.4 Third Example . 127

5.10.4.1 Initial State . 127

5.10.4.2 First Iteration: Computing the Tokens Request Paths

Phase . 128

5.10.4.3 First Iteration: Request-Grant-Accept Phase. 128

5.10.4.4 Second Iteration:Computing the Tokens Request Paths

Phase . 128

5.10.4.5 Second Iteration: Request-Grant-Accept Phase 129

5.10.5 Fourth Example. 130

x

5.10.5.1 Initial State. .. 130

5.10.5.2 First Iteration: Computing the Tokens Request Paths

Phase . 131

5.10.5.3 First Iteration: Request-Grant-Accept Phase. 131

5.10.5.4 Second Iteration:Computing the Tokens Request Paths

Phase . 131

5.10.5.5 Second Iteration: Request-Grant-Accept Phase 131

5.10.5.6 Third Iteration:Computing the Tokens Request Paths

Phase . 132

5.10.5.7 Third Iteration: Request-Grant-Accept Phase 132

5.11 CONCLUSION . 132

6 Conclusions 134

6.1 Summary of Contributions

6.2 Future Work

Bibliography

xi

134

135

137

List of Tables

5.1 Multiplication table for the operator defined for computing the token

request path. For example, S 0 G = S

5.2 The signal states for the modules in Figure 5.22

xu

118

119

List of Figures

1.1 Router Block Diagram. 2

1.2 Basic architecture of an output-queued switch. 4

1.3 Basic architecture of an N x N shared-memory switch fabric. 5

1.4 Basic architecture of a 3 x 3 internally buffered crossbar switch fabric. 5

1.5 Basic architecture of an N x N input-queued switch fabric .. 6

2.1 Head-of-line blocking in an IQ Switch. 11

2.2 Virtual Output Queueing in an IQ Switch. 12

2.3 Input and Output Contention in an IQ Switch. . 13

2.4 IQ Scheduling modeled as a bipartite graph matching problem: (a)

Request Graph, 9. (b) Computed Matching, M.. 14

2.5 Hardware Interconnection Structure of 3-Phase Matching. 18

2.6 Architecture of load-balanced Birkhoff-von Neumann switch. 20

3.1 Architecture of a flow-based credit-based fair queueing switch.

3.2 Throughput per flow using iCBFS.

3.3 Throughput per flow using iDRR. .

3.4 Throughput per flow using WiSLIP.

3.5 Throughput per flow using WPIM.

3.6 Average Delay of iCBFS, iSLIP, WPIM, and Output-Queueing under

27

30

31

32

33

uniform Bernoulli i.i.d. Traffic. .. 36

3.7 Average Delay under 2-state Markov-modulated arrivals with average

burst size of 16. .. 37

Xlll

4.1 Logical structure of an input-queued switch. 47

4.2 £[11111 d versus offered load for uniform Bernoulli i.i.d. traffic. 65

4.3 Average cell delay versus offered load for uniform Bernoulli i.i.d. traffic. 66

4.4 £[11111 d versus offered load for log diagonal traffic. 67

4.5 A verage cell delay versus offered load for log diagonal traffic. 68

4.6 £[11111 d versus offered load for diagonal traffic. 69

4.7 A verage cell delay versus offered load for diagonal traffic. 70

4.8 £[11111 d versus offered load for bursty traffic. 71

4.9 Average cell delay versus offered load for bursty traffic. 72

5.1 Scheduling Using Classical Token-Ring and Cooperative Token-Ring. 78

5.2 Architecture of Cooperative Token-Ring Switch. 80

5.3 Parallel Implementation of Cooperative Token-Ring. 85

5.4 Performance of CTR, iSLIP, DRR, PIM, and EiSLIP for uniform traffic. 88

5.5 Performance of CTR, iSLIP, and EiSLIP for Log Diagonal traffic. .. 89

5.6 Performance of CTR, iSLIP, DRR, PIM, and EiSLIP for Diagonal traffic. 90

5.7 The performance of CTR as a function of switch size for uniform i.i.d.

Bernoulli arrivals. 91

5.8 Average Delay under the uniform bursty traffic model. 92

5.9 A verage Delay under 2-state Markov-modulated arrivals with an aver-

age burst size of 16. .. 93

5.10 Effects of increasing the number of iterations under uniform Bernoulli

i.i.d. traffic. .. 95

5.11 Effects of increasing the number of iterations under log diagonal Bernoulli

i.i.d. traffic. .. 98

5.12 Effects of increasing the number of iterations under diagonal Bernoulli

i.i.d. traffic. ., 101

5.13 Effects of increasing the number of iterations under uniform bursty

traffic with fixed burst size of 16. 104

5.14 Effects of increasing the number of iterations under under 2-state Markov­

modulated arrivals with an average burst size of 16. 107

xiv

5.15 Under an inadmissible workload, the CTR scheduler will cause VOQ1,l

to starve. 111

5.16 Plot of throughput per flow for WCTR at the end of one frame. 113

5.17 Action of an internal node (a) and leaf (b) during the upward phase.

Inputs to the internal nodes are concatenated, and then passed up-

wards. Inputs to leaves are stored and passed upwards. 115

5.18 Concatenation performed by each node in the parallel prefix algorithm

for an 8-element string. Each node computes the product of the inputs

that it spans. 116

5.19 Swapping the node values during the upward propagation phase. 116

5.20 The node values after swapping the left and right child for the 8-string

used in Figure 5.18 116

5.21 Operation of nodes (leaf and non leaf nodes) during the downward

phase. .. 117

5.22 (a) The request bit at each node. (b) The corresponding value of TRV

at each node. 118

5.23 Circuit for computing the token request path in a ring with four nodes.

The circuit uses approximately 30 standard cells to realize the binary

tree structure shown in Figs. 5.18 and 5.21, with 4 input ports and

3 binary nodes. Therefore, each node in the binary tree consumes

approximately 10 standard cells. .. 120

5.24 First Example of CTR scheduling policy (a) Initial State (b) Final State121

5.25 Second Example of CTR scheduling policy (a) Initial State (b) Final

State. .. 124

5.26 Example 3 of CTR scheduling policy (a) Initial State (b) Final State 127

5.27 Example 3 of CTR scheduling policy (a) Initial State (b) Final State 130

xv

Chapter 1

Introduction

1.1 Introduction

There is a tremendous demand for Internet core nodes to provide quality-of-service

(QoS) guarantees for multimedia services, and to provide high switching capacity

that makes use of the virtually unlimited bandwidth of optical fibers. The Internet's

success depends on the deployment of high-speed switches and routers that meet these

two demands. This work addresses switch scheduling in high-speed data networks and

proposes several techniques to provide high switching capacity and QoS guarantees.

This chapter is organized as follows: Section 1.2 provides an overview of the

architecture and components of an Internet router; various switch fabric architectures

are discussed in Section 1.3; the organization and contributions of this dissertation

are described in Section 1.4; a list of acronyms used in this dissertation is provided

in Section 1.5.

1.2 Overview of IP Router Architecture

A block diagram of typical router is shown in Figure 1.1. The blocks in Figure 1.1

can be broadly partitioned into two groups based on the functionality: datapath and

control plane.

The control plane of the router include system configuration, management, and

1

Ph.D. Thesis - A. Gourgy - McMa.ster Univ.- Electrical & Computer Eng. Dept. 2

Control
Plane

Datapath
Plane

Incoming
Packets

Outgoing
Packets

Figure 1.1: Router Block Diagram.

exchange of routing table information. These operations are performed relatively

infrequently and are typically implemented in software.

The datapath operations are performed on every packet that passes the router.

These functions include forwarding decisions, switching through the router's switch

fabric. When a packet arrives at the forwarding engine, its destination IP address is

looked up from the forwarding table (using a longest-prefix match) and the packet

header is updated accordingly. Subsequently, the packet header is used to determine

the packet's output port where the packet is routed through the switch fabric. An

overview of switch fabric architectures is provided in Section 1.3. A scheduler is used

to resolve contention among packets that are destined to the same output port in fair

manner or according to their priority levels. The scheduling problem is described in

detail in Chapter 2.

The packet forwarding process operates at the granularity of an entire IP packet,

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 3

which can be of variable-length, whereas switching is performed on smaller fixed­

length granularity cells such that a segmentation and reassembly process is used. In

a packet-switch, segmentation and reassembly (SAR) is the process of breaking a

variable-length packet into smaller fixed-length cells before transmission through the

switch fabric and reassembling them into the proper order at the switch's output.

This segmentation and reassembly simplifies the switch's design considerably and

allows the implementation of transmission rates up to several Gbps per link in VLSI

hardware. We assume fixed-length cell scheduling in this work - the words packet

and cell are used interchangeably for the remainder of this dissertation.

1.3 Switch Fabric Architectures

In this section we provide an overview of the main switch fabric architectures. For

the purposes of this dissertation, we classify switch fabric architectures based on their

queueing discipline as it is a key factor in determining the switch's performance. We

describe the following switch fabric architectures: output-queued, shared memory,

buffered crossbar, and input-queued.

1.3.1 Output-Queued Switch Fabric

In an output-queued (OQ) switch fabric all cells are buffered in the egress side of

the switch fabric as shown in Figure 1.2, and there is a constant delay for all cells

through the fabric. This queueing discipline requires that the switch fabric works N

times faster than the cell rate on the line card. In addition, the buffers in egress port

should support up to N writes and 1 read every time slot.

The major drawback of the OQ switch fabric is that it requires a speedup of N. A

switch with a speedup of S can remove up to S packets from each input and deliver up

to S packets to each output within a time slot, where a time slot is the time between

packet arrivals at an input port. Unfortunately, for large or for high-speed data lines,

memories with sufficient bandwidth are not available.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 4

N

• -.-r--.---+-J]] 1
Non-blocking
Switch Fabric

•
Figure 1.2: Basic architecture of an output-queued switch.

1.3.2 Shared Memory Switch Fabric

The shared memory switch fabric uses shared memory as the switch fabric such that

all the inputs and output ports have access to a shared memory as shown in Figure 1.3.

On the one hand, the shared memory switch fabric provides an efficient implemen­

tation of output queueing and provides optimal throughput and delay performance.

On the other hand, the switch aggregate capacity (N x link speed) is limited by the

memory read/write access time, within which N incoming and N outgoing cells in a

time slot need to be accessed as shown in equation 1.1

cell length
Switch Capacity < ------.:::---­

- 2 x memory access cycle
(1.1)

For instance, with a cell length of 200 bytes and a memory access cycle of 5 ns, the

switch capacity is limited to 160 Gbps

1.3.3 Buffered Crossbar Switch Fabric

In the buffered crossbar architecture a distributed array of buffers is used such that a

buffer is used at each crosspoint of the crossbar as shown in Figure 1.4. The objective

here is to maintain output ports as busy as possible by keeping the crosspoint buffers

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 5

N

Shared
Memory

N

Figure 1.3: Basic architecture of an N x N shared-memory switch fabric.

non-empty. This architecture distributes contention resolution among all inputs and

outputs: Independent input schedulers select packets to move from the line cards to

the buffered crossbar; and independent output arbiters select packet from among all

packets in the crossbar destined to the same output. This results in a simpler, more

distributed implementation of 2N (N input schedulers, and N output schedulers)

schedulers each with a complexity of 8(N) instead of one centralized scheduler with

a complexity of 8(N2).

Input1-,----~ __ _r----__ ~T_----~--

Input 2 -,----~ __ _r----__ ~T_----~--

Input 3 ---....------.... -.------111--.-----_&--

Output 1 Output 2 Output 3

Figure 1.4: Basic architecture of a 3 x 3 internally buffered crossbar switch fabric.

The main drawback of the internally buffered crossbar architecture is that a sep­

arate buffer is required at each crosspoint resulting in N2 buffers per priority class.

Additionally, each crosspoint has a fixed amount of buffer space that is not shared

among other inputs or outputs. Furthermore, this architecture requires flow control

mechanisms integral to the datapath of the crossbar itself.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 6

1.3.4 Input-Queued Switch Fabric

In the input-queued (IQ) switch arriving cells are buffered at the input before being

routed to the their intended destination as shown in Figure l.5. A crossbar is typically

used as the non-blocking switch fabric.

• ..+......-Outputl
Non-blocking
Switch Fabric \ / x\

• al-!--+OutputN

Figure 1.5: Basic architecture of an N x N input-queued switch fabric.

Unlike an OQ switch where a cell from each input can be simultaneously transmit­

ted to the same output, the set of cells that can be transmitted from inputs to outputs

in an IQ switch must satisfy the so-called crossbar constraint: During every time-slot,

each output can only accept data from a single output, which must concurrently be

transmitting data only to that output.

Input-queueing has the advantage that the bandwidth requirement on each input­

queue is proportional only to the port speed and not to the number of switch ports

as only one read and one write operation is required per packet cycle on each queue.

For an N x N IQ switch with a port speed of E, the total bandwidth requirement is

2E per input queue.

A scheduler is used during each time-slot to arbitrate among the head-of-line

packets of each queue to be switched to the outputs. The scheduler must satisfy

the crossbar constraint, provide fairness, and achieve good performance. Scheduling

in IQ switches is explored in detail in Chapter 2. In essence, designing a scalable

scheduler is the main challenge of this architecture and is the main topic addressed

in this dissertation.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 7

1.4 Dissertation Organization and Contributions

This dissertation is organized as follows:

This chapter introduces the problem domain of high-speed switching networks,

provides some background on switching, and summary of the main contributions of

this dissertation.

Chapter 2 provides detailed background and related work on the current state-of­

the-art in IQ scheduling.

In chapter 3 we present a scheduling algorithm for Internet routers with IQ

switches based on credit-based fair queueing that provides better short-term fair­

ness in QoS scheduling than existing solutions with comparable complexity. First,

we present a flow-based iterative credit-based fair scheduler (iCBFS), for crossbar

switches, that provides fair bandwidth distribution among flows at a fine granularity

and achieves asymptotically 100% throughput, under uniform traffic. To reduce the

implementation complexity of iCBFS, we present a port-based version of iCBFS that

is tailored towards high-speed hardware implementation.

Chapter 4 presents a theoretical framework for evaluating the performance of IQ

switches, and introduces the "lag" concept as a performance metric that measures

the difference between a packet's departure time in an IQ switch over that provided

by an OQ switch that provides optimal performance. We present several scheduling

policies that use the "lag" as a performance metric and assess their performance using

analytic and simulation methods.

In Chapter 5 we present a novel distributed scheduling paradigm for Internet

routers with IQ switches, called Cooperative Token-Ring (CTR) that provides sig­

nificant performance improvement over existing scheduling schemes with comparable

complexity. In classical token-ring based scheduling for IQ switches, a separate token

ring (an arbiter) is used to resolve contention for each shared resource (i.e., an out­

put port). Although classical token-ring based scheduling achieves fairness and high

throughput for uniform traffic, under non-uniform traffic the performance degrades

significantly. We show that by using a simple cooperative mechanism between the

otherwise non-cooperative token rings (arbiters) the performance can be significantly

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 8

improved and the scheduler is able to dynamically adapt to any non-uniform traffic

pattern. To provide adequate support for rate guarantees in IQ switches, we present a

Weighted Cooperative Token-Ring (WCTR), a simple hierarchical scheduling mecha­

nism. Finally, we analyze the hardware complexity introduced by the proposed CTR

scheduling and describe an optimal hardware implementation for an N x N switch im­

plementing a CTR scheduler. We show that the hardware time complexity introduced

by the proposed cooperative mechanism is 8 (log N).

Chapter 6 summarizes the results and contributions of this work and provides

directions for future work.

1.5 List Of Acronyms

This section lists acronyms used in this dissertation:

ATM Asynchronous Transfer Mode

BGM Bipartite Graph Matching

CMOS Complementary Metal-Oxide

CTR Cooperative Token-Ring

EiSLIP Exhaustive iSLIP

EM Exhaustive Matching

FCFS First-Come First-Served

Gbps Gigabits per second

FIFO First-In First-Out

GBps Gigabytes per second

HoL Head-of-Line

iCBFS iterative Credit-Based Fair Queueing

iDRR iterative Deficit Round Robin

IDT Ideal Departure Time

iLag Iterative Lag

IP Internet Protocol

IQ Input Queue/Queued/Queuing

iSLIP Iterative SLIP

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 9

LPF Longest Port First

LQF Longest Queue First

MWL Maximum Weighted Lag

OQ Output-Queued

PIM Parallel Iterative Matching

QoS Quality of Service

RR Round Robin

RRM Round-Robin Matching

TRV Token Request Vector

TRP Token Request Path

WCTR Weighted Cooperative Token-Ring

WDM Wavelength-Division Multiplexing

WFQ Weighted Fair Queuing

WPIM Weighted Parallel Iterative Matching

VOIP Voice Over Internet Protocol

VOQ Virtual Output Queue(d/ing)

Chapter 2

Background and Related Work

Most commercial high-performance switches and routers (e.g., CISCO 1200[Cis04j,

BBN [PCB+98]) employ IQ switches because the fabric and the memory of an IQ

switch need to run only as fast as the line rate. This bandwidth memory requirement

makes input queueing very appealing for switches with fast line rates or with a large

number of ports. In this chapter we describe general background and related work

on arbitration for IQ switches.

This chapter is organized as follows: We describe the head-of-line (HaL) blocking

problem in IQ switches in Section 2.1 and present a known architecture technique

to reduce HaL blocking in Section 2.2. A general classification of arbitration algo­

rithms based on graph theory is described in Section 2.3. A paradigm for hardware

implementation of arbitration algorithms is described in Section 2.4. We discuss ran­

domized scheduling algorithms in Section 2.6. Finally, we discuss arbitration based

on matrix decomposition and load balancing in Section 2.7.

2.1 Head-of-Line Blocking

A well known problem in pure IQ switches with first-in-first-out (FIFO) input buffers

is the head-ai-line (HaL) blocking problem. This problem occurs when cells are

blocked from reaching a free output port because other cells that are ahead of it in

the FIFO buffer. As shown in Figure 2.1, the cell behind the HaL cell at input port

10

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 11

1 is destined for an idle output port 2, but it is blocked by the HOL cell.

-- Cell blocked due to HOl blocking

Input 1 --+ Output 1

Input 2 --+ Output 2

Figure 2.1: Head-of-line blocking in an IQ Switch.

Karol et al. [KHM87] have shown that FIFO input-queueing limits the switch's

throughput to a theoretical maximum of merely 2 - V2 ~ 58.6% of maximum band­

width under the assumption of uniform Bernoulli independent identically distributed

(i.i.d.) traffic. For correlated arrival traffic, the throughput decreases to 50% [Li92].

One solution that has been proposed to reduce HoL blocking is to use virtual

output queueing as described in the next section.

2.2 Virtual Output Queueing

Virtual output queuing (VOQ) architecture is commonly used for reducing HOL

blocking such that each input maintains a separate queue for each output [TF88].

For an N x N switch, there are a total of N 2 queues such that each queue uses a

FIFO scheduling policy and a scheduler is used to select a single packet from each

input as shown in Figure 2.2. Qi,j is the queue used at input i to store packets

destined for output j.

In the VOQ architecture, incoming cells are queued at the input ports and a

scheduling algorithm configures the fabric during each time slot and decides which

inputs will be connected to which outputs. In an N x N switch the scheduler examines

the contents of N2 virtual output queues and determines a conflict free match between

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 12

A (I)

Non-blocking
Swilch Fabric

Scheduler

°1(1)

Figure 2.2: Virtual Output Queueing in an IQ Switch.

inputs and outputs.

In an IQ switch there are essentially two shared resources: the switch fabric and

the outgoing link. Arriving packets are queued at the input port of the switch and

they must first contend for access to the switch fabric (input contention), before

contending for the outgoing link (output contention) as shown in Figure 2.3

In essence the role of the scheduler in an IQ switch is to resolve input and output

contention fairly and efficiently. In the next sections we describe various techniques

for resolving this contention with diverse tradeoffs between the implementation cost

and the achieved performance.

2.3 Bipartite Graph Matching

In an N x N IQ switch using VOQ, the scheduler determines in every time slot a

conflict free match between inputs and outputs; that is each input is matched to

at most one output and conversely each output is matched to at most one input.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 13

A(t)

Input
Contention

Output
Contention

Figure 2.3: Input and Output Contention in an IQ Switch.

This scheduling problem is equivalent to finding a bipartite graph matching (BGM)

[Tar83].

The graph corresponding to the scheduling problem has N source vertices that

correspond to the N inputs of the switch, and N sink vertices that correspond to the

outputs. An input and and output are connected by an edge if the corresponding

VOQ is not empty- there are at most N 2 edges between source and sink vertices. In

each time slot, a graph G = (V, E) that consists of a set V of 2N vertices, partitioned

into two sets, namely N inputs and N outputs as shown in Figure 2.4 (a). At time

slot n, the set of edges E has each edge connecting vertex i from the inputs set to

vertex j for which Qi,j(n) > 0; that is, for each non-empty VOQ the graph has a

corresponding edge.

A matching M on this graph 9 is any subset of E such that no two edges in M

have a common vertex; that is, at most one packet is transferred from each input and

at most one packet is received at each output. Specifically, let Si,j (n) be a binary

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 14

Request Graph, G Matching Graph, M

Inputs Outputs Inputs Outputs

0~ --~~~---- -0

(a) (b)

Figure 2.4: IQ Scheduling modeled as a bipartite graph matching problem: (a) Re­
quest Graph, g. (b) Computed Matching, M.

service indicator such that Si,j(n) = 1 if input i is matched to output j at time slot

n. A matching M must satisfy that 2:{:1 Si,j(n) ::; 1 and 2:;:1 Si,j(n) ::; 1

There are various BGM algorithms with a tradeoff between their performance and

implementation complexities [ADH98]. BGM algorithms can be broadly classified

into three categories: maximum size matching, maximum weighted matching, and

maximal matching, which are described in the next sections.

2.3.1 Maximum Size Matching

A maximum size Matching M on a graph 9 is one that maximizes the number of edges

in the matching; that is, M = M ax(2:i,j Si,j (n)). The sequential time complexity of

the maximum size matching is G(N2.5) [Din70].

Although using maximum size matching maximizes the instantaneous throughput

by transferring the maximum number of cells during each time slot, it was shown

that it could lead to starvation of some queues [MMAW99] and instability, even under

admissible traffic, and for any switch size [KM03]. A queue is said to be unstable

[KM03] if after a finite time, its occupancy never returns to zero with probability one.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 15

2.3.2 Maximum Weighted Matching

A maximum weight matching (MWM) on a bipartite graph with weighted edges

is defined as a set of edges between input and output nodes with the maximum

total weight among all possible sets satisfying the constraint that any input node

is matched to at most one output node. At every time slot n, a weight Wi,j(n) is

associated to every edge in the request graph, g; the maximum weighted matching

finds a matching M that maximizes Li,j Wi,j(n)Si,j(n) and can be found by solving

an equivalent network flow problem [AM093].

Several algorithms have been proposed based on MWM that use different functions

to assign edge weights (e.g., the queue-length, the waiting time of the HOL packet,

priority, or any other combination).

The sequential run time complexity of MWM is 8(N3 log N)[AM093], [Tar83]'

[MMAW99], which makes MWM prohibitively expensive to implement in hardware.

Instead, most practical algorithms are based on simple heuristics that aim at max­

imizing the number of connections between inputs and outputs to achieve maximal

size matching as described next.

2.3.3 Maximal Size Matching

A maximal matching is defined as one in which no edges can be added to it without

first removing an existing edge. The sequential time complexity of maximal matching

is 8(N2
) on a sequential model, which is lower than both maximum size and maximum

weight matching. Most practical implementations of high-speed packet switches aim

at achieving a maximal matching (e.g., iSLIP[McK99]' WPIM[SV95], iDRR[ZB03],

iFair[NB02]' HSA[BDEA04]). The main distinction between the various maximal

matching based algorithms is the heuristic used for selecting the edges that are added

to the matching.

Most maximal matching algorithms are implemented in hardware using an itera­

tive mechanism, which is described in Section 2.4, such that up to N inputs can be

matched in each iteration, and the computation performed per iteration is 8(N). In

the worst case, N iterations are required to converge to a maximal matching; however,

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 16

in practice only a fixed number of iterations are performed.

Dai and Prabhakar proved that a speedup of 2 is sufficient to provide 100%

throughput for any maximal matching based algoritnm [DPOO]. Conversely, Mneim­

neh et al. [MS03] proved that at least a speedup of two is required for maximal

matching algorithm to provide 100% throughput; that is, the bound on the speed up

of two is tight.

2.4 Implementing Maximal Size Matching Using

Parallel Matching Algorithms

A simple paradigm that is commonly employed in implementing maximal matching

is using an input arbiter at each input port to resolve input contention and an output

arbiter at each output port to resolve output contention such that a maximal match is

achieved by iteratively matching inputs to outputs. Specifically, two schemes can be

classified under this paradigm: 2-phase, and 3-phase matching with different imple­

mentation tradeoffs. Initially, all the inputs and outputs are not matched. A 3-phase

algorithm comprises the following phases:

1. Request: Each unmatched input arbiter sends a request to every output arbiter

for which it has a queued cell.

2. Grant: Each unmatched output

arbiter resolves output contention by choosing only one of the input requests

and sends back a grant signal to the input port.

3. Accept: Each input arbiter resolves input contention by choosing only one of

the received grants and sends back an accept signal to the corresponding output

arbiter. The input and output arbiter are considered matched.

The previous phases are repeated until either a maximal matching is found or a

fixed number of iterations are performed.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 17

Anderson et al. [AOST93] proposed parallel iterative matching (PIM), a 3-phase

algorithm, and used random selection at each input and output arbiter. Although

finding a maximal matching using PIM may, in the worst case, take N iterations, it

was shown that [AOST93] under uniform i. i. d. traffic, the algorithm converges to a

maximal match in 8(1og(N)) iterations; however, for a single iteration the throughput

is limited to approximately 63% for uniform i.i.d. traffic.

Iterative round-robin matching (iRRM) [MVW93] works similarly to PIM, but

uses round-robin schedulers instead of random selection at both inputs and outputs.

McKeown proposed iSLIP [McK99] as an improvement over PIM and iRRM. iSLIP

uses rotating priority round-robin arbiters. Under uniform traffic, the pointers used

in the input and output arbiters for selection (i.e., grant and accept selection) tend

to point to different elements (desynchronize) such that each arbiter tends to make

different selection from other arbiters and the largest number of inputs and outputs

are matched. Consequently, under uniform Bernoulli i.i.d. traffic iSLIP arbiters adapt

to a time-division multiplexing scheme, providing a perfect match and 100% through­

put [McK99]. However, under non-uniform traffic, the pointers are not necessarily

desynchronized and the performance potentially degrades.

In a 2-phase algorithm [ChaOO] each input arbiter sends at most one request;

subsequently, it receives at most one grant signal, and the accept phase is not needed;

for example, dual round robin (DRR) [Li04] performs the following 2-phases:

1. Request: Each input sends an output request corresponding to the first non­

empty VOQ in a fixed round-robin order, starting from the current pointer

position. The pointer remains at that nonempty VOQ if the selected output is

not granted in the second phase.

2. Grant: If an output receives one or more requests, it chooses the one that

appears next in a fixed round-robin schedule starting from the current pointer

position. The output notifies each input whether or not its request was granted.

The pointer of the output arbiter is incremented to one location beyond the

granted input. If there are no requests, the pointer's position does not changes.

Ph.D. Thesis - A. Courgy - McMaster Univ.- Electrical & Computer Eng. Dept. 18

One the one hand, a 2-phase algorithm requires less communication and is simpler

to implement than a 3-phase; on the other hand, a 3-phase algorithm tends to converge

to a maximal matching faster than a 2-phase algorithms. Consequently, with the same

number of iterations, a 3-phase algorithm usually provides a better performance. For

simplicity, we refer to all scheduling schemes based on either 2-phase or 3-phase

matching paradigm as IIRC A.

Figure 2.5 shows a typical interconnection of 2N arbiters to implement a 3-phase

matching for an N x N switch. Each arbiter is usually implemented using a rotating

round-robin priority encoder that operates in 8 (log N) time.

..- Grant
00 Arbiter

:t:::: t
..0
C\J

Z
!o.-
Q) --

00 00

a Grant 0>

0
Arbiter Q)

2 a: > C
::::l 0
0- 00
C 0 - Q)

0 0
Q)
CO Grant Arbiter en N

Figure 2.5: Hardware Interconnection Structure of 3-Phase Matching.

2.5 Exhaustive Matching

Li et al. [LPC02] proposed coupling IIRCA paradigm with exhaustive matching(EM).

In EM, after an input is matched to an output using IIRGA, a VOQ is served contin­

uously until it becomes empty; that is, EM attempts to achieve high throughput by

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 19

maintaining the current match between inputs and outputs as long as possible, and

performing a match between the unmatched input and output ports when needed.

This scheme tends to perform well under non-uniform bursty traffic, and has the

potential of amortizing the cost of arbitration time over multiple time slots. Simula­

tions results for different variations of exhaustive matching algorithms are reported in

[KC03] using a 2-phase and 3-phase matching where it was shown that exhaustive is­

LIP (EiSLIP) produces the best results among various proposed exhaustive matching

algorithms (e.g., exhaustive dual round-robin matching, exhaustive PIM, etc.).

2.6 Randomized Scheduling Algorithms

Randomized scheduling algorithms have been proposed for IQ switches [Tas98] in an

attempt to simplify the scheduling problem and provide fairness. The basic idea of

randomized scheduling is to select the best matching from a set of random matches.

The best matching is defined to be the matching with the maximum weight. Various

weight functions have been proposed and analyzed in the literature [GPS03].

Goudreau et al. [GKROO] proposed using a randomized technique that addresses

the problem of low throughput under non-uniform traffic for TIRC A schedulers, the

Shakeup scheduling policy. In the shakeup scheduling policy, after a maximal match­

ing is computed (say using any TIRCA scheduler) each unmatched input is allowed

to force a match for itself randomly even though an existing match has to be knocked

off. The argument for this scheme is that by randomly breaking matches, adding

new ones the algorithm will escape the "local minima" of a maximal matching and

probabilistically converges to a maximum size match. Although theoretically sound,

no analysis has been made on the number of iterations required for converging, and

its implementation feasibility is unknown. Furthermore, given the randomized nature

of the algorithm, it is not clear how it can be extended to provide rate guarantees.

In other words, Shakeup attempts to find the global maximum, but the feasibility of

its implementation in a real system is unknown because it takes more iterations to

converge, mostly because all the selections are done randomly.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 20

2.7 Birkhoff von Neumann Switches

Chang et al. [CCH01] formulated IQ scheduling as matrix decomposition that can be

performed using Birkhoff von Neumann decomposition, which decomposes a doubly

substochastic matrix into a convex combination of (sub)permutation matrixes. This

decomposition is based on the assumption that an arrival rate matrix is given that

specifies the arrival rates between every input-output pair.

The off-line sequential computational complexity to compute the permutation

matrices is 8(N4.5) and the number of permutation matrices is 8(N2
). Subsequently,

the on-line sequential computational complexity to schedule the permutation matrices

is 8 (log N).

Although this scheme provides 100% throughput with unity speedup, it requires:

explicit knowledge of all the arrival rates; the need to store a.ll the computed permu­

tation matrices, which does not scale for large N; and the need to perform complex

calculations when arrival rates change. In addition, because the decomposition algo­

rithm uses long term traffic arrival statistics, it does not adapt too well to dynamic

traffic fluctuations. Although other decomposition methods have been proposed that

reduce the number of permutation matrices, in general, they do not provide good

throughput; for example, the throughput for the decomposition scheme in [KKLS03]

is 8(1/ log N), which tends to 0 for large N.

N

TID
"""",," __ -'--~+ TID •

•

Load-balancing

TID

• •
•

•
TID

Birkhoff
Von Neumann

Switch
· · · · · · · · · · iN

Figure 2.6: Architecture of load-balanced Birkhoff-von Neumann switch.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 21

Load-balanced Birkhoff-von Neumann [CLJ02] switches attempt to trivialize the

arbitration process. A load-balanced routes consists of two stages as shown in Fig­

ure 2.6. First, a load balanced stage spreads arriving packets equally among line

cards. Then, a forwarding stage transfers packets from the line cards to their in­

tended destination. In addition to the delay incurred by using a 2-stage switch, the

main drawback of this architecture is that packets can be missequenced, which may re­

quire complicated hardware implementation and non-scalable computation overhead.

Providing a scalable solution that can simultaneously provide QoS support and solve

the packet missequencing problem is the major difficulty in the load-balanced router

architecture.

In this chapter we discussed background and related work on arbitration for IQ

switches. We described the head-of-line blocking problem in pure IQ switches and

showed how the virtual output queueing architecture combined with a matching algo­

rithm could reduce HOL blocking. We presented a classification of matching into max­

imum weighted, maximum size, and maximal size matching and compared their per­

formance tradeoffs. Finally, we discussed other scheduling approaches that includes

exhaustive matching, randomized scheduling, and Birkhoff-von Neumann switches.

Chapter 3

Credit-based Fair Scheduling
Input-Queued Switches

•
In

We present a novel QoS scheduling algorithm for Internet routers with IQ switches

based on credit-based fair queueing. We present a flow-based iterative credit-based

fair scheduler (iCBFS), for crossbar switches, that provides fair bandwidth distribu­

tion among flows at a fine granularity and achieves asymptotically 100% throughput,

under uniform traffic. To reduce the implementation complexity of iCBFS, we present

a port-based version of iCBFS that is tailored towards high-speed hardware imple­

mentation. We show by simulation that iCBFS provides better fairness than existing

schedulers in the literature, with comparable hardware complexity.

3.1 Introduction

Although several practical scheduling algorithms such as iDRR [ZB03], WiSLIP

[McK99]' and WPIM [SV95] (described in the next section) have been proposed for

IQ switches to provide QoS guarantees, these algorithms provide bandwidth guar­

antees over coarse granularity (i.e., a frame) and exhibit unfairness over short time

scales. Specifically, these schemes are fair only over timescales longer than a frame

size, where the frame size is one round-robin of service over all backlogged flows in the

switch such that all backlogged flows are served in proportion to their reservations.

Over timescales less than a frame, these schedulers do not serve flows in proportion

to their reservations and flows can be served in any arbitrary order. Although the

22

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 23

aggregate bandwidth received by a flow over the entire frame is in proportion to its

reservation, within a frame time some flows may not get any service until the very

end of the frame and bandwidth distribution over the frame time is nonuniform. Fur­

thermore, as the switch size increases, the number of queues in the switch increases

and the frame size becomes larger; thereby, this unfairness leads to increased jitter,

which is undesirable for multimedia services like VOIP. It is this problem that our

proposed scheduler solves. We emphasize that this problem can not be solved by

using a smaller frame size because the frame size is limited by the resolution of the

minimum allocatable fraction of bandwidth per flow; for example, consider a future

core router with link speeds of 100 Gbps. For a flow to reserve only 10 Mbps, or 0.01

percent of the link capacity, the frame size needs to be at least 10000 time slots.

Bensaou et al. [BTC01] have proposed credit-based fair queueing for OQ switches.

In this chapter, we propose a scheduling algorithm for IQ switches based on credit­

based-fair-queueing [BTC01], called iterative credit based fair scheduling (iCBFS).

Our simulation results show that iCBFS provides fair bandwidth distribution among

flows bandwidth at a fine granularity, and solves the unfairness for timescales smaller

than a frame size; thereby our algorithm provides better short-term fairness than

existing schemes, with comparable hardware complexity. In addition, iCBFS achieves

asymptotically 100% throughput, under uniform traffic. Note that the short-term

fairness problem addressed by iCBFS is orthogonal to the CTR presented in Chapter

5. In essence, the iCBFS scheme presented in this chapter could be combined with the

WCTR presented in Section 5.8 to provide rate guarantees and short-term fairness.

This chapter is organized as follows. Section 3.2 provides a review of related work

on scheduling for IQ switches. Section 3.3 discusses fairness in IQ schedulers, presents

our proposed flow-based scheduler (iCBFS), and compares its performance to other

scheduling schemes. In section 3.5, we propose a port-based version of (iCBFS) that

is tailored towards efficient high-speed hardware implementation. Finally, section 3.7

concludes this chapter and summarizes our contributions.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 24

3.2 Related Work on QoS Scheduling in IQ Switches

McKeown [McK99] proposed "weighted iSLIP" (WiSLIP) as a variation of iSLIP that

can allocate bandwidth nonuniformly to different inputs. The bandwidth from input

i to output j is given by the ratio Iij = r, where nij is reservation for the inputi-
'J

outputj pair, and dij is the aggregate reservation for output j. Instead of each arbiter

maintaining an ordered circular list 5 = 1, ... , N as in iSLIP, the list is expanded

in WiSLIP at output j to the ordered circular list 5j = 1, ... , Wj , where Wj=lowest

common multiple d ij and input i appears r x Wj ; that is, the size of the circular
'J

changes based on the reservation values.

Stiliadis [SV95] proposed weighted PIM (WPIM) that allocates output bandwidth

among inputs based on reservations made during an admission control phase. In

WPIM, the time axis is divided into frames with a fixed number of slots per frame

(e.g., a frame is typically 1000 slots [SV95]). The reservation unit is slot/frame.

Consequently, WPIM provides bandwidth guarantee at a coarse granularity of a frame

sIze.

Ni and Bhuyan [NB02] proposed a fair scheduling algorithm for IQ switches called

iFS, which is based on virtual time. In iFS, each output link maintains a fair queueing

engine, which assigns a virtual time to every incoming packet based on bandwidth

reservation of the packet's flow. The incoming packet is then queued in a FIFO input

buffer on a per flow basis. The algorithm then executes a maximal matching scheme

based on virtual time, where only the grant and accept stages are executed.

On the one hand, by using virtual-time stamps for every incoming packet, iFS

[NB02] can honour bandwidth reservations at a very fine granularity better than

most existing schemes; on the other hand, the cost of this algorithm is the increased

complexity in implementing N virtual-time based fair queueing engines.

A major problem with virtual-time-based approaches is the time stamp overflow.

Because time stamp is an increasing function of the time that depends on a common

virtual clock, which in turns reflects the value of the time tag of previously served

packets, the virtual clock cannot be reinitialized to zero until the system is completely

empty and all sessions are idle, which although statistically finite can be extremely

Ph.D. Thesis - A. Courgy - McMaster Univ.- Electrical & Computer Eng. Dept. 25

long, given that most real-communication traffic exhibits self-similar patterns. This

may easily cause an overflow in the time tag unless special hardware algorithms are

used [CJGL99j. Floating-point units are usually used in computing the virtual-time

stamp. In addition, virtual-time-based approaches require that packets be sorted ac­

cording to their time tags by the fair queueing engine. In iFS, every incoming packet

needs to be assigned a virtual time-stamp and inserted into a sorted list. Therefore,

for practical implementation of iFS, a very high-speed fair queueing hardware engine

needs to be designed to compute virtual time-stamps in floating point, perform sort­

ing, and be able to process up to packets during each time slot. These requirements

are expensive to implement in hardware.

To overcome the complexity of using a virtual-time-based fair-queuing engine at

each output, and assigning a virtual time-stamp to each incoming packet, Zhang and

Bhuyan [ZB03j proposed iDRR, a IIRC A scheduling scheme based on deficit round­

robin. In iDRR, each input and output maintain a circular list such that inputs and

outputs are matched in round-robin based on a quota value assigned by deficit-round­

robin engines, in proportion to their reservations. Each matched input-output pair

may transfer packets until it uses its uses its available quota or there are no more

packets to transfer. A port-based version of iDRR, called iPDRR was also proposed

in [ZB03j along with its hardware implementation.

3.3 A Flow-based Fair Scheduling Algorithm

First, a definition of fairness in IQ switch scheduling is presented. Second, we de­

scribe the architecture of our proposed flow-based iterative credit-based fair scheduler

(iCBFS). Third, we present iCBFS algorithm in detail. Fourth, we evaluate the per­

formance of iCBFS using various traffic models, and compare its fairness to WiSLIP,

WPIM, and iDRR.

3.3.1 Definition of Fair Scheduling

We assume a work-conserving IQ switch, and use a definition of fairness similar to

[NB02j and [ZB03j. Let jloWk(i,j) denote the kth flow from input i to output j with

Ph.D. Thesis - A. Courgy - McMaster Univ.- Electrical & Computer Eng. Dept. 26

bandwidth reservation Sk, and Wk(t l , t2J be the amount of jlowk(i,j) traffic served

in the interval (tl' t2J. Two flows jloWM(il,jd and jlowN(i2,j2) are in contention if

i l = i2 or jl = j2; that is, in an IQ switch, there are essentially two shared resources:

the crossbar, where flows at each input contend (input contention); and the bandwidth

of each outgoing link, where flows destined to the same output link contend (output

contention). For any two backlogged flows jloWM(il,jl) and jlowN(i2,j2) that are

in contention, a scheduling scheme is ideally fair in (tl' t2J if wM
S<:;.t2) = WN.t~.t2)

That is, contending flows are served in proportion to their reservations. This

definition of fairness, of course, holds only in an idealized fluid flow network. When

the network is more realistic and serves the traffic flows by a nonnegligible quantum

of variable size (packet by packet), the definition of fairness can be written as

I WM(t l , t2J _ WN(t l , t 2 J
1
< B

SM SN-

where B is a bound that gives a measure of fairness, also called fairness index [GoI94J.

The smaller the fairness index, the fairer is the scheduling algorithm.

3.3.2 Architecture of iCBFS Switch

The basic architecture of iCBFS is shown in Figure 3.1; for each output link we

maintain a credit-based fair queueing (CBFQ) arbiter and a separate queue is used

for each flow at the input ports. The scheduling algorithm is based on a fIRC A

policy.

The basic idea of iCBFS is to assign each flow a counter that gets incremented

in proportion to the flow's reservation such that when the counter reaches a certain

threshold value, its corresponding flow is flagged as a candidate, and is allowed to

transmit a packet across the switch; subsequently, the counter is decremented after

transmission. These counters are maintained by the CBFQ arbiters and are used to

fairly resolve output contention as described in the next section.

In addition to the counters used by CBFQ arbiters, each input arbiter tracks the

aggregate reservation from its port to all outputs, and uses another set of counters

to track the aggregate number of packets transmitted to each output. These input

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 27

Input 2 =r::I:D
----.~ -

Input N =r::I:D
----.~ --=r::I:D

Output 1

Output 2

Output N

Figure 3.1: Architecture of a flow-based credit-based fair queueing switch.

arbiters' counters are used to fairly resolve input contention as described in the next

section. All counters can be updated independently in parallel, which suits efficient

hardware implementation.

Let the average packet arrival rate at input i for output j be Aij. The incoming

traffic is called admissible if L~l Aij < 1 , and L~=l Aij < 1, We assume that flows'

reservations are admissible.

3.3.3 Description of iCBFS algorithm

In an N x N switch, for each jloWk(i,j) going from input i to output j, the input

arbiter i uses a separate queue qjk, and the CBFQj arbiter maintains a counter Kjk

and a bandwidth share Sjk. Let Qj = qjl, qjl, ... ,qjJ be the set of queues for flows

1, ... , J that are destined to output j, with bandwidth shares Sjl 2: Sj2 2: ... 2: SjJ.

Initially, all counters are set to zero. Each CBFQj engine updates the counters as

follows: Kjk = Kjk + =SSk; that is, the backlogged queue with the largest share, at
)1

each CBFQ engine, is chosen as the reference queue to calculate a pro-rated share of

bandwidth each backlogged queue should receive. Kjk is the accumulated credit for

jlowk destined to output j. Each jloWk(i,j) with Kjk 2: 1 and /qjk/ > 0 is marked

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 28

as candidate and can be used during the iterative matching phase as described next.

In addition to the counters used by CBFQ arbiters, each input arbiter i uses a

set of N counters G; = Gil, Gn , .. . , G;N such that G;j indicates the current available

quota of the input;-outputj pair. The quota is the number of reserved slots per frame

for each input;-outputj pair. Let R;j represent aggregate reserved bandwidth from

input; to outputj . Each input arbiter i then assigns a quota to the counter values

Gil, Gn , ... ,GiN such that G;j indicates the current available quota of the input;­

outputj pair. These quotas can be either statically or dynamically reconfigured. In

the static approach, a fixed minimum quota value (qm;n) is assigned to the minimum

possible aggregate reservation Rm;n. Subsequently, each aggregate reservation Gij

is assigned a quota Rm~~min' In the dynamic approach, the value of qmin can be

dynamically calculated based on the current flow with minimum reservation and the

quotas of all other flows are calculated accordingly.

Initially, all inputs and outputs are unmatched. Then in each iteration:

1. Request: Each unmatched input sends a request to every output for which it

has a queued packet.

2. Grant: If an unmatched output receives any requests, it chooses any candidate

flow that belongs to an unmatched input and send a grant to this flow at its

corresponding input. Note that counters are updated if there are no candidate

flows for any of the requests.

3. Accept: If an unmatched input receives any grants, it chooses the flow with the

largest quota for its counter. Note that selecting the flow with the largest quota

resolves input contention in fair and simple manner.

In each time slot, for every selected flow, the switch transfers a packet of its head­

of-line (HOL) queue. The input arbiter decrements the quota by 1 and the output

arbiter decrements the flow's counter value by 1. The previous algorithm executes

until either no more matches can be made or for a fixed number of iterations.

To circumvent flows from overusing or underusing their reservations, we require

all quotas and counters be reinitialized after some period of time. For simplicity, we

assumed a fixed frame size (e.g., 1000 slots) after which all the counters are initialized.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 29

3.4 Simulation Results

First, the switch is set such that different flows have different reservations and the

throughput per flow is measured to evaluate the fairness of the scheduler. Second,

the switch setting is such that all flows have equal reservations and the performance

is measured for a 16 x 16 switch under uniform Bernoulli i.d.d. traffic. The number of

iterations was fixed to 4. The performance of iCBFS is compared to WiSLIP, iDRR,

and WPIM.

3.4.1 QoS Traffic Model

To illustrate the fairness of iCBFS in bandwidth allocation, a 4 x 4 switch was sim­

ulated such that each input has four flows, each going to a different output with a

different bandwidth reservation. Let Ik(i,j) represent flow k from input port ito out­

put port j. In the simulated switch, fr (0,0), 12(1,0), /3(2,0), 14(3,0) have reserved

10, 20, 30, and 40 percent of the bandwidth, respectively, but they always maintain

the same actual arrival rate. Other flows have a load of 5 percent each. This traffic

model has been used in [NB02] and [SV95]. We used equivalent switch settings for

iCBFS, iDRR, and WPIM with equivalent frame size of 1000 slots. Figures 3.2, 3.3,

3.4, 3.5 shows the throughput per flow using iCBFS, iDRR, WiSLIP, and WPIM,

respectively, after 750 time slots. The value of 750 represents 75 percent of the frame

size and was chosen to illustrate the short-term unfairness problem present in other

schemes and the superiority of iCBFS in solving this problem.

3.4.1.1 ICBFS vs. iDRR

Both iCBFS and iDRR were simulated with qmin = 50 slots and r min = 5% with static

counter initialization after 1000 slots. Although iDRR [ZB03] avoids the complexity of

the virtual-time approach used in iFS, it does so at the expense of other performance

metrics such as delay and fairness. iDRR possesses all the deficiencies inherent in

deficit-round-robin service, namely that it is fair only over time scales longer than

frame, and it has unbounded delay (the delay depends on local switch settings that

can be arbitrarily large; see [GVC96] p. 3). As shown in Figure 3.3, at the rightmost

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 30

0.45

-B- FO (10%)
>< .. Fl (20%)

0.4
F2(30%)

-- F3(40%)

F3 (40%)
0.35

0
~ 0.3 a;
.£
;:
0

;;:::

//~ iii 0.25
c.

/' ~ :;
C.
J:
0>
::l

0.2 e

F2 (30%)

J:
~

Fl (20%)
0.15 roo r
0.1

FO(10%)
0.05L--------L------~ ________ L_ ______ _L ______ ~ ________ ~ ______ ~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Offered load per flow(cell/slot)

Figure 3.2: Throughput per flow using iCBFS.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 31

0.55.-------.--------.--------.-------.--------.--------,-------,
--e-- FO (10%)
-- F1 (20%)

0.5 F2 (30%)

o
~

0.45

0.4

~ 0.35
~
o

;;:::

iii 0.3
0.
:;
0.
.r:
g> 0.25
£>
.r:
I--

0.1

41<- F3 (40%)

FO(10%)
0.05L-------~-------L--------L-------~------~--------L-------~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Offered load per flow(cell/slot)

Figure 3.3: Throughput per flow using iDRR.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 32

(5

~
~

0.41---:::----T-----,---,-----,-----,------::::::l======~
-B- FO(10%)
-- Fl (20%)

F2 (30%)
0.35 -+- F3 (40%)

0.3

F3 (40%)

F2 (30%)

"3 0.25
,g
iii a.
:;
.§- 0.2
OJ
::J e

£
I-

)(.
---~ .. ---- ~----

Fl (20%)

FO(10%)

0.05L-------L-------~-------L------~------~--------L-----~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Offered load per flow(cell/slol)

Figure 3.4: Throughput per flow using WiSLIP.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 33

0.4,-------,-------,-------,--------,-------,--------,-------,

(5

~
~

0.35

0.3

~ 0.25
o

:;=

Q;
c.
:;
~ 0.2
Ol
::> e
.c
t-

0.1

-e- FO (10%)
-l<- Fl (20%)

F2 (30%)
-+- F3 (40%)

F2 (30%)
y---.----~-----.-

Fl (20%)

FO(10%)

0.05 L-______ -'--______ ...l...-______L ______ -'-______ ---1. ______ ---'L-____ ---'

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Offered load per flow(celi/slot)

Figure 3.5: Throughput per flow using WPIM.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 34

point of the graph, h (0,0), 12(1,0), h(2,0), 14(3,0) and receive 13, 26, 40, and 20

percent of the bandwidth, respectively. Specifically, 14(3,0) receives only half of its

reserved bandwidth share leading to a large delay and jitter. In contrast, iCBFS

is able to precisely allocate the bandwidth among the flows in proportion to their

reservation.

3.4.1.2 IPCBFS vs. WiSLIP

As shown in Figure 3.4 at the rightmost point of the graph, WiSLIP does not precisely

allocate bandwidth among flows in proportion to their reservations; h (0,0) receives

15 percent of the bandwidth instead of its reserved 10 percent. Consequently, both

12(1,0) and h(2, 0) receive only 18% and 27% instead of 20% and 30%, respectively.

In contrast, iCBFS is able to precisely allocate the bandwidth among the flows in

proportion to their reservation. We identify the unfairness in iSLIP and its vari­

ant WiSLIP as caused by the simple operation of the rotating round-robin priority

arbiters-the output arbiters do not track precisely how much bandwidth each in­

put port uses. Specifically, iSLIP and all its variants [McK99] use simple rotating

round-robin priority arbiters at each output arbiter with a pointer gi to the current

highest priority input of the round-robin schedule. This pointer gi is only incremented

(modulo N) if, and only if, the grant signal is accepted in the first iteration of the

algorithm. For all subsequent iterations, the pointer is not updated even if a granted

input is accepted. Although this scheme elegantly eliminates starvation in both is­

LIP and its variants, it leads to impreciseness in tracking the bandwidth allocated to

each input port (see [McK99] for a detailed explanation regarding the pointer update

and the starvation problem). In addition, as the switch size increases the number

of elements at each output arbiter's circular list increases and these elements can be

positioned in any order. Consequently, the time required to serve all elements in the

list will increase and the short-term unfairness will manifest itself clearly.

3.4.1.3 IPCBFS vs. WPIM

Although WPIM is fair over a time scale larger than the frame size (typically 1000

slots [SV95]), it is unfair over shorter time scales. As shown in Figure 3.5 at the

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 35

rightmost point of the graph,h(O, 0), 12(1,0), 13(2,0), and 14(3,0) receIve 13,26,

28, and 32 percent of the bandwidth, respectively. This unfairness is caused by the

uniform random selection used at the output arbiters. In essence, all flows with

available credit are treated equally until their credit is used up. Consequently, flows

with higher bandwidth reservations than others receive their differential bandwidth

share only at the end of a frame, whereas iCBFS distributes this differential bandwidth

share uniformly over the entire time scale.

When all flows use their reserved credits, WPIM reduces to PIM and all unreserved

bandwidth is distributed equally among all inputs [SV95], whereas iCBFS distributes

unreserved bandwidth among all inputs in proportion to their reservations.

In summary, iCBFS provides fair bandwidth among flows in proportion to their

reservations. iCBFS provides significantly better fairness than WiSLIP, WPIM, and

iDRR over time scales less than a frame size. We emphasize that as the switch size

increases, the frame size required to serve all the input ports increases proportionally

and the short-term unfairness problem manifests itself clearly in increased jitter. The

simple case of a 4 x 4 switch was only used to simplify the presentation. In addition,

as the link speed increases the frame size would also increase.

3.4.2 Uniform Traffic

In addition to providing fair bandwidth among flows in proportion to their reserva­

tions, we evaluated the performance of iCBFS when all flows have equal reservations.

Figure 3.6 shows the average delay of iCBFS compared to iSLIP, WPIM, and iDRR

under uniform i.i.d. Bernoulli traffic. Similar to other scheduling schemes, iCBFS is

capable of achieving asymptotically 100% throughput under uniform traffic. However,

this traffic model is not realistic for Internet routers, which are usually non-uniform.

3.4.3 ON/OFF Markov-Modulated Arrivals

Figure 3.7. shows the average delay for iCBFS compared to iDRR, WiSLIP, and

WPIM under an ON/OFF Markov Modulated Process with geometric burst size of

16. This traffic model is described in detail in [For04].

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 36

10
2
,-----,------,-----,,-----,-----,------,------,-----,-----,

-e- islip
-->(_. wpim

iCBFS
-.- output
.) iDRR

10-2L-____ ~ ____ -L ____ ~ ______ L_ ____ _L ____ ~ ______ L_ ____ ~ ____ ~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Offered load per input(cell/slot)

Figure 3.6: Average Delay of iCBFS, iSLIP, WPIM, and Output-Queueing under
uniform Bernoulli i.i.d. Traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 37

--B-islip
--wpim

iCBFS
--'-iDRR

101~---L----~ __ ~ __ ~~ __ ~ __ ~ ____ ~ __ ~ ____ ~~
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Offered load per input(cell/slot)

Figure 3.7: Average Delay under 2-state Markov-modulated arrivals with average
burst size of 16.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 38

As shown in Figure 3.7, the average delay for iCBFS is almost identical to iDRR,

WiSLIP and WPIM.

3.5 A Port-based Fair Scheduling Algorithm

There is a trade-off in the design of high-speed switches between fairness among

flows and simplicity of hardware design required for high-speed implementation. On

the one hand, flow-based-scheduling guarantees fairness among flows by isolating

non-conforming flows and provides bandwidth guarantees to individual flows; on the

other hand, it makes hardware design relatively complex, and does not scale well

as the number of flows grows. Port-based scheduling [SV95] allows simple hardware

implementation at the cost of a coarse granularity of bandwidth guarantee. Rather

than tracking individual flows at each input port, a port-based scheduler tracks the

aggregate bandwidth reservation at each input port. Consequently, the complexity

of a port-based scheduler is proportional to the switch size instead of the number of

flows, which can be significantly larger. Thus, port-based scheduling can reduce the

complexity of the scheduler considerably.

We propose to divide scheduling into two layers: CBFQ per virtual queue at the

input side (labelled VCBFQ(i,j) for packets at input port i destined to output j),

and a port-based scheduler, PCBFQj, at each output port j. VCBFdi,j) can be

implemented in software using dynamic RAM (DRAM), and PCBFQj can be easily

implemented in hardware. Intuitively, using this hierarchical scheduling scheme, the

complexity of the original CBFQj engine at each output j is distributed among all the

input ports and the PCBFQj only deals at the abstraction of port-based scheduling;

thus simplifying the design considerably.

The PCBFQj, at each output port j, maintains a counter Kij and a bandwidth

share 5ij for the aggregate bandwidth reservation from input i to output j. Similar

to iCBFS, each input arbiter i uses a set of counters Gij to track the aggregate quota

for each inputi-outputj pair. A VOQij becomes candidate if Kij ?: 1. The port­

based of iCBFS, called iPCBFS would execute the request, grant, and accept stages

as described in the previous section.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 39

Note that the simulation results for iPCBFS are identical to the simulation results

for iCBFS described Section 3.4.

3.6 Complexity of iCBFS

We assume a CRCW PRAM model, and estimate the complexity of iCBFS scheduling

for an N x N switch. In the iCBFS algorithm, each time an output arbiter selects a

flow to send a grant signal, all the operations executed are 8(1) time. Similarly, each

time an input arbiter selects an input to send the accept signal, all the operations

executed are 8(1) time.

The priority sort of the flows to select the flow with the largest share at each

output arbiter changes only at the burst level timescale. That is, each flow's share is

allocated upon the admission of a new flow and does not change during its lifetime.

Consequently, the sorting consists only of extracting the pre-ordered list of active

flows from a static list. Note that iDRR also maintains a pre-ordered list of active

flows such that the flow with the smallest reservation is always used in calculating

the quota for other flows. During the grant stage of iCBFS, the counter values do not

need to be sorted according to their values. Consequently, we only need to compare

each counter's value to 1. We point that all the counters' update and comparison

operations can be implemented using integers.

In iCBFS, each output arbiter needs to maintain a counter for each flow, whereas

in iPCBFS the number of counters is fixed and equals N.

Similar to all algorithms based on I1RGA paradigm, both iCBFS, and iPCBFS

may require up to N iterations in the worst case and an average of 8 (log N) iterations

for uniform traffic.

3.7 Conclusion

We proposed iCBFS, a flow-based fair scheduling algorithm for Internet routers with

IQ switches. We showed through simulation that iCBFS can fairly allocate band­

width in proportion to flows' reservations and provide considerably better fairness

over short-time scales compared to all other schemes; thereby, iCBFS reduces the

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 40

jitter and delay for multimedia services like VOIP and video-an-demand. In addi­

tion, the algorithm achieves 100% throughput for uniform traffic. To simplify the

implementation complexity of iCBFS, we proposed a port-based version of iCBFS,

iPCBFS, which is simpler to implement in hardware.

Chapter 4

On Tracking the Behaviour of an
Output-Queued Switch

We address the problem of fair scheduling of packets in Internet routers with IQ

switches and unity speedup. Scheduling in IQ switches is formulated as tracking the

behaviour of an OQ switch that provides optimal performance. We present the notion

of "lag" as a performance metric that measures the difference between a packet's

departure time in an IQ switch over that provided by an OQ switch. We prove that

per packet mean lag is bounded for a maximum weight matching scheduling policy

that uses lag values for its weights and derive a bound on the mean lag value using

a Lyapunov function technique. Furthermore, we propose a simple heuristic tracking

scheduling policy and evaluate its performance by simulation.

4.1 Introduction

The Internet's success depends on the deployment of high-speed switches that provide

QoS guarantees for multimedia services, and high switching capacity that makes use

of the virtually unlimited bandwidth of optical fibers.

On the one hand, the demand of QoS guarantees can be met using OQ switches,

which provides optimal throughput. In addition, much research effort has been de­

voted to packet scheduling at output ports to support fair bandwidth sharing that pro­

vides delay bounds for regulated traffic(e.g., weighted fair queueing (WFQ) [PG93]).

However, output queueing for an N x N switch requires the switching fabric and

41

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 42

memory to run up to N times faster than the line rate; unfortunately, for large N or

for high-speed data lines, memories with sufficient bandwidth are not available. On

the other hand, the fabric and the memory of an IQ switch need only to run as fast as

the line rate. This property makes input queueing very appealing for switches with

fast line rates or with a large number of ports. One method that has been proposed

to reduce HOL blocking is to increase the speedup of a switch (See Section 1.3.1.).

A theoretical result [CGMP99] established that an N x N combined input-and

output-queued (CIOQ) switch with a speedup of two could exactly emulate an N x N

OQ switch for any traffic pattern of input cells. Emulation occurs at every time in­

stance if, under identical inputs both systems produce identical departures. Unfor­

tunately, the complexity of the scheduling algorithm presented in [CGMP99] renders

OQ switch emulation infeasible (see [KPCS99], [MRS03] for a discussion of the com­

plexity). The speedup requirement translates to a smaller time available for the exe­

cution of the arbitration algorithm. In a hardware implementation, reduction of the

available time by a factor of two poses a substantial problem, although the difference

does not seem significant asymptotically; it translates to a requirement of doubling

the operating frequency of the arbiter, which might not be practically achievable.

The tradeoff between the delay and speedup in a CIOQ switch has been analyzed

in [GLPS04]. Furthermore, Minkenberg [Min02] has shown that exact emulation of

an OQ using a CIOQ switch is possible only if the CIOQ switch has infinite output

buffers.

Most commercial high-performance switches and routers (e.g., CISCO 1200 [Cis04],

BBN [PCB+98], Lucent Cajun [Luc04] family, or Avici TSR45000 [Avi04]) use IQ

switches. Most of these high-speed switches are built around a crossbar switch that

is configured using a centralized scheduler designed to provide high throughput.

We consider scheduling policies in an IQ-crossbar switch with a unity speedup.

Given that an IQ switch requires at least a speedup of two to exactly emulate an

OQ switch [CGMP99], an IQ scheduling policy with a unity speedup can not exactly

emulate the behaviour of an OQ switch, under all possible traffic patterns. Conse­

quently, we formulate scheduling in an IQ switch as the problem of tracking an OQ

switch. We propose the "lag" as a performance metric that measures the difference

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 43

between a packet's departure time in an IQ switch over that provided by an OQ

switch. We present an IQ scheduling policy with unity speedup for which the lag

is bounded and derive a bound on the mean lag value per packet. Furthermore, we

propose a simple heuristic tracking scheduling policy and evaluate its performance by

simulation. Although in this chapter we describe the case of tracking an OQ switch

implementing only a FIFO scheduling policy, our results can be easily extended for

other nonanticipative (decisions do not depend on future arrivals) scheduling policies.

This chapter is organized as follows. Section 4.2 formulates scheduling in an IQ

switch with unity speedup as tracking the behaviour of an OQ switch. Section 4.3

provides motivation for tracking the behaviour of an OQ switch and discusses related

work. In Section 4.5, we present two scheduling policies for tracking the behaviour

of an OQ switch. First, we present a scheduling policy called maximum weighted lag

(MWL). We prove that the mean lag value is bounded for MWL and derive an upper

bound on its value using a Lyapunov function technique. The MWL scheduling policy

has a high implementation cost, but serves as a solid base for developing other prac­

tical scheduling policies that approximate its performance. Consequently, we present

a simpler heuristic tracking policy that can be readily implemented in hardware. The

performance of the proposed scheduling policies is evaluated by simulation in Section

4.6. Section 4.7 provides our conclusions.

4.2 Problem Formulation

We consider an N x N OQ switch that uses scheduling policy IIoQ and an IQ switch

with unity speedup that uses scheduling policy IIIQ. For an N x N switch, we use

the following notational conventions: i an input, 1 :::; i :::; N; j an output, 1 :::; j :::; N;

Qi,j is the VOQ at input i and buffers cells destined for output j; HOLi,j is the

head-of-line cell at Qi,j.

Let the average cell arrival rate at input i for output j be Aij . We assume that

incoming traffic is admissible; that is, 2:~1 Aij < 1 , and 2::1 Aij < 1. The arrival

process is identical to both switches. The goal is to find a scheduling policy IIIQ that

tracks the behaviour of the OQ switch as close as possible, where we define what

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 44

tracking means more precisely after introducing some definitions. Given that an IQ

switch requires at least a speedup of two to exactly emulate an OQ switch [CGMP99],

a scheduling policy for an IQ switch with a unity speedup can not exactly emulate

the behaviour of an OQ switch, under all possible traffic patterns. In general, cells

arriving to the IQ switch implementing IIIQ will depart at some later time than the

OQ switch implementing IIoQ . Consequently, we say that an IQ switch implementing

IIIQ lags the behaviour of the OQ switch implementing IIoQ .

4.2.1 Definition of Terms

Here we make precise some of the terminology used throughout this chapter.

Definition 1. Arrival Rate Matrix (A): A == [Aij], where the arrival process is assumed

to be admissible and stationary; that is, 2:~1 Aij < 1, 2:;=1 Aij < 1, Aij 2 0 and

associated arrival rate vector ~ == (A1,1, ... , Al,N, ... , AN,l, ... , AN,N f·
Definition 2. Ideal departure time (IDT): The ideal departure time for a cell c,
I DT(c), is the time slot at which c will depart from an OQ switch using IIoQ.

Definition 3. Actual departure time (ADT): The actual departure time (ADT) for a
cell c, ADT(c), is the time slot at which c departs from the switch under consideration
(i.e., IQ implementing IIIQ).

Definition 4. Cell Lag (CL): The cell lag for a cell c, CL(c) , is the difference
between the ideal departure time and the actual departure time. Precisely,

CL(c) == { ADT(c) - IDT(c) ADT(c) > IDT(c)
o otherw2se

(4.1)

In addition, we define the cell lag for a cell c given the current time slot n,
C L(c, n), as the difference between the ideal departure time and the current time
slot. Precisely,

CL(c,n) == { n - IDT(c) n> IDT(c)
o otherwzse

The goal of a scheduling policy can be characterized by any statistical metric

that attempts to minimize the cell lag; for example, in Section 4.5.1 we present a

scheduling policy that minimizes the mean lag value per packet.

Note that according to equation (4.1) the lag is nonnegative and generally a cell's

ADT is greater than its IDT, however, a cell may occasionally depart from an IQ

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 45

switch earlier than an OQ switch; for example, consider a 2 x 2 switch at a specific

time slot such that the two most lagging cells for its outputs (e.g., outputs 1 and

2) reside at the same input port (e.g., input 1). Because the scheduling policy can

transfer at most one cell from each input port (e.g., input 1), another cell with an

IDT in the future can be selected from the other input port (e.g., input 2) to improve

the throughput.

4.3 Motivation and Related Work

In an OQ switch arriving packets are immediately available at the outgoing link.

Consequently, the only shared resource in an OQ switch is the outgoing link for

which packets contend for access (output contention). In an IQ with switch there are

essentially two shared resources: the switch fabric and the outgoing link. Arriving

packets are queued at the input port of the switch and they must first contend for

access to the switch fabric, before contending for the outgoing link (see Section 2.2).

In an IQ switch packets are queued at the input port of the switch and they must

first contend for access to the switch fabric (input contention), before contending for

the outgoing link; that is, in an IQ switch, there are two shared resources: the switch

fabric and the outgoing link.

All present IQ scheduling policies resolve input and output contention using heuris­

tics such as using a round-robin scheme at both the input and output to solve the

contention fairly [McK99]' or using the packet's age (i.e., time in the switch) to re­

solve contention [MMAW99]. All these schemes can be seen as an approximation to

the ideal case of an OQ switch, where all of the outgoing links are independent and

packets are served independently in each outgoing link; that is, by tracking the be­

haviour of an OQ switch and minimizing the lag, we automatically resolve input and

output contention in a fair manner and eliminate any starvation problem of inputs

that other scheduling policies have to carefully handle.

We emphasize that significant research effort (e.g., [PG93], [Cru91]' [PG94j) has

been done in developing scheduling policies for ideal servers that provide bounded

latency, jitter, and end-to-end delay for traffic flows. Unfortunately, the Internet

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 46

does not consist only of ideal servers, but rather of heterogeneous servers (i.e., non

ideal IQ and CIOQ servers, and ideal OQ servers). By tracking the behaviour of an

ideal server, we approximate its behaviour as close as possible and attempt to bound

the performance difference between the ideal server and an IQ switch.

Tabatabaee et al. [TGTOl] consider the related problem of packetizing arbitrary

fluid policies in an N x N crossbar switch using FIFO virtual output queues. They

define trackable fluid policies such that for each pair of input and output ports, at

each time step, the cumulative number of packets sent between these ports differs

from the cumulative fluid scheduled between these ports by less than 1. They prove

that a tracking policy always exists for the special case of a 2 x 2 switch, provide an

example for a 3 x 3 switch where a non anticipative tracking policy does not exist, and

propose several heuristics for packetizing fluid policies on general N x N switches.

Rosenblum et al. [RGT04] further extend the results in [TGTOl] by relaxing the

tracking constraint such that the cumulative difference in the number of packets sent

using the fluid and packetized policies can be more than one packet. Our work differs

from [TGTOl] and [RGT04] in that we track the precise packet departure sequence

in an OQ switch rather than the aggregate rate provided by a fluid scheduling policy

in an IQ switch, which does not necessarily track an OQ switch; for two scheduling

policies to provide the same service rate they need to serve only the same number

of packets per link, rather than tracking the precise packet departure order, which

can be different between the two scheduling policies. This issue is discussed in more

detail in Section 4.5.1.

4.4 Computing the Ideal Departure Time

We consider the case of IIoQ = FIFO. The architecture of our IQ switch is shown in

Figure 4.1. We use virtual output queueing (VOQ) at each input port of the switch

and a crossbar as the switching fabric.

For IIoQ = FIFO, arriving cells at the I Q switch can be immediately assigned

an IDT using a simple parallel prefix circuit [Szy97](i.e., a ranker circuit). Let Nj(n)

be the number of cells in the OQ switch destined to output j at time slot n. The IQ

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 47

Inl'~_-,-,-,
Switching fabric

Inp~_-,-,-, OutputN

Figure 4.1: Logical structure of an input-queued switch.

switch uses N rankers such that each ranker calculates the number of cells present in

the OQ switch being tracked. At the beginning of each time slot, n, the number of

packets in the OQ switch is computed as follows:

N () _ { Nj (n - 1) - 1 Nj (n - 1) > 0
j n = 0 N

j
(n - 1) = 0

Note that the subtraction of one in the previous equation accounts for one (cell/time

slot) departure in the OQ switch. For every new cell c arriving at time slot n des­

tined to output j, ranker j assigns a numeric rank (from 1 ... N) in a linear order 1 to

packets arriving for output port j. The I DT of each cell is equal to its numeric rank

plus Nj(n - 1), and Nj(n - 1) is updated accordingly. The complexity of computing

the I DT(c) in hardware using a parallel prefix computation is G(log N) depth and

8(N) circuit size, expressed in terms of binary operators [Szy97].

4.5 Tracking Scheduling Policies

In this section we present two tracking scheduling policies. First, we present the

maximum weighted lag scheduling policy and prove that its per packet mean lag

is bounded and derive a bound on the mean lag value using a Lyapunov function

1 We investigated diverse ordering schemes (e.g., round-robin, linear, etc) for assigning IDT to
simultaneous cell arrivals destined to the same output and found it to have an insignificant effect on
the results, when the queues had infinite capacity.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 48

technique. Second, we propose a heuristic tracking scheduling policy called iLag

based on maximal matching that is simple to implement in hardware.

4.5.1 Maximum Weighted Lag Scheduling Policy

Maximum weighted lag (MWL) is based on the implementation of a maximum bipar­

tite weight-matching algorithm (See Section 2.3.2). At every time slot n, we associate

a weight Wi,j to every Qi,j such that Wi,j = CL(HOLi,j, n); that is, Wi,j is the lag

of an HOL packet in Qi,j. The maximum weighted lag scheduling policy finds a

matching M that maximizes L(i,j)EIvI Wi,j and can be found by solving an equivalent

network flow problem [AM093]. The sequential run time complexity of MWM is

8(N3 10g N)[AM093].

Previous work on MWM considered only the weight to be either some function

of the occupancy of the VOQs (i.e., number of packets in each VOQ) or the waiting

time of the cell at the head of line of each VOQ (e.g., [MMAW99], [KMOl], [DPOO],

[LMNMOla], and [LMNM03]). Consequently, these algorithms do not necessarily

track the behaviour of an OQ switch and a cell's departure times may deviate from

the ideal case under non-uniform traffic. In addition, using the occupancy of the

VOQs as the edge weight can lead to starvation of certain inputs [MMAW99].

Because MWL computes the matching with the maximum possible total weight

during every time slot, it aims at minimizing the mean lag (/-llag)' Although this

algorithm is too complex to implement in practice, it serves as a reference model for

which other approximation algorithms are developed.

The stability of maximum weighted matching scheduling policies is a well studied

problem in the literature. McKeown et al. [MMAW99] proved the stability of longest

queue first (LQF) and oldest cell first (OCF) maximum weight matching for all admis­

sible i.i.d. arrival processes using a Lyapunov function technique; Dai and Prabhakar

[DPOO] extended the results to prove the stability of a maximum weight matching

algorithm under any admissible arrival processes using fluid model techniques.

Although the results for the fluid model technique established in [DPOO] could

easily be used to prove the stability of MWL, it can not be further extended to

derive a bound on the expected lag value. Consequently, we use a Lyapunov function

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 49

technique that allows us to derive a bound on the expected lag value as described

next.

Theorem 1. A FIFO tracking policy that uses the maximum weighted lag as the
scheduling policy is stable (achieves 100% throughput) for all admissible i. i. d. arrival
processes.

The proof of Theorem 1 for the stability of MWL is an adaptation of the proof

for stability of Oldest Cell First scheduling presented in [MMAW99]. The proof

uses substantially the same techniques to first develop a discrete time Markov chain

reflecting the lag of a cell. The proof then identifies a quadratic Lyapunov function

which establishes the existence of a negative drift in the Markov chain for sufficiently

large states. The existence of the negative drift implies the stability of the Markov

chain, using a result of Kumar and Meyn [KM95]. The stability of the lag implies the

stability of the queue occupancy. The main differences in the proofs are as follows.

The definition of a cell's weight is changed from the cell's age to the cell's lag, which

is equal to the cell age minus a positive term reflecting the cell's ideal departure time.

Lemma's 7, 8, 9 and 10 in [MMAW99] are modified to reflect the new cell weights.

We present a model of the system and use it to establish the proof of Theorem 1 next.

Model

The arrival process at each input port i is assumed to be a i.i.d. discrete-time sta­

tionary ergodic process of fixed size cells. At the beginning of each slot, either zero or

one cell arrives at each input port. Virtual output queueing is used such that when

a cell arrives at time slot n for output j at input i , it is placed in queue Qi,j.

Definition 5. Let Q(n) be the occupancy vector at time slot n such that

Definition 6. Let Amin == min(Ai,j, 1 ::; i,j ::; N).

Definition 7. Let Ci,j(n) denote the HOL cell of Qi,j at time slot n.

Definition 8. Let z:(n) be the interarrival time vector such that

z:(n) == (Tl,l(n), ... , Tl,N(n), ... , TN,l(n), ... , TN,N(n)f·

where Ti,j (n) is the interarrival time between Ci,j (n) and the cell behind it in Qi,j
((MMAW99j, appendix B, definition 2).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 50

Definition 9. Let A(n) be the arrival matrix representing the arrivals into each queue

at time slot n, A(n) == [Ai,j(n)] where

Ai (n) == {I if an arrival occurs at Qi,j at time slot n
,) 0 otherwzse

and the associated arrival vector is

A(n) == (A 1,1 (n), .. . ,A1,N(n), .. . ,AN,l (n), . .. , AN,N(n)f.

(fMMAW99j, appendix A, definition 2)

Definition 10. Let 5(n) be the service matrix indicating which queues are served
during slot n, 5(n) == [5i,j(n)] where

5 (n) == {I if Qi,j is served at time slot n
',) 0 otherwzse

and 5(n) E 5, the set of service matrices2 . Note that 5(n) is a permutation matrix;
that is, 2:~1 5ij = 2:;=15ij = 1. We define the associated service vector ~(n) ==
(51,1(n), ... , 5 1,N(n), ... , 5 N,N(n))T.

Definition 11. Let L.(n) be the lag vector at time slot n such that

where Li,j(n) is the lag of Ci,j(n) (cell at HOL of Qi,j at time slot n). (Recall that
the lag is the difference between the ideal departure time and the current time, also
note that all elements in the lag vector are nonnegative.)

Definition 12. Let Lmax == max(Li,j, 1 :s i, j :s N).

Definition 13. Let T be a positive-semidefinite diagonal matrix whose diagonal ele­

ments are A1,1, ... , A1,N, ... , AN,l, ... , AN,N'

Definition 14. [~8 Q 8 f] denotes a vector in which each element is a product of the
corresponding elements of the vectors: ~, Q, and f, i.e., ai,jbi,jCi,j.

Definition 15. Let 1 denote a column vector of dimension N 2 whose elements are
all ones.

2This definition of the "service" matrix is a permutation matrix, which includes the case where
an empty queue is served.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 51

Definition 16. Let D(n, n + 6n) be the aggregate arrival vector for each output port

during the time interval [n, n + 6n]

D(n, n + 6n) = (D 1(n, n + 6n), ... , DN(n, n + 6n)f,

where Dj(n, n+6n) represents the aggregate number of cells that arrived to the switch
during the time interval [n, n + 6n] destined to output j. Note that the dimension of
the vector D(n, n+6n) is N, whereas most previously defined vectors have dimension

N 2 , consequently, we define the following vector:

Z(n, n + 6n) == (D 1(n, n + 6n), ... , DN(n, n + 6n), . .. ,

Dl(n, n + 6n), ... , DN(n, n + 6n), ... ,

Dl(n, n + 6n), ... , DN(n, n + 6n)) T

i. e., the vector Z (n, n + 6n) is the vector D(n, n + 6n) written out N times.

Definition 17. The approximate Lag next-state vector, which does not consider the

case of an empty queue is given by: L.(n + 1) == L.(n) + 1- [~(n) 0 [~(n) + Z(~(n))]]
Explanation: The above equation describes the evolution of the lag vector. In the

above equation, if Qi,j is not serviced at slot n then its corresponding Si,j element in

~(n) is zero and the corresponding term in ~(n) 0 [~(n) + Z(~(n))] cancels out. In

this case the lag increases by 1. Alternatively, if the HOL cell at Qi,j is serviced at

time slot n, then we need to calculate the lag of the cell following it in the queue. We

consider two subcases:

CASE A: There were no packet arrivals to the switch destined to output j during

the interarrival period between the HOL cell at Qi,j and the cell following it (i.e.,

Zi,j (Tij) is zero). In this case, the corresponding element for Q i,j in ~ (n) is 1 and

Zi,j (Ti,j) is zero. Therefore,

L ·(n + 1) = L(n) + 1 - T ·(n) ~,J 1,,) 1,,)'

i.e., the new lag is the old lag minus the interarrival time between the two cells.

CASE B: There were arrivals during the interarrival period between the HOL

cell in Qi,j and the cell following it. In this case, all cells that arrived during this

interarrival period should depart from the switch (or be selected to be transferred

Ph.D. Thesis - A. Gourgy - !l1cMaster Univ.- Electrical & Computer Eng. Dept. 52

across the switch by the scheduler) before the new HOL cell at Qi,j, so the new lag

is given by:

L(n + 1) == L ·(n) + 1 - T ·(n) - Z(T ·(n)). ~,J ~,J 't,J t,J 1"J

The following facts are used in the proof of the stability of the lag vector.

Fact 1. For all i,j,n an interarrival time Ti,j(n) is independent of the lag Li,j(n).
This fact is true because we are assuming an i. i. d. traffic model. .

Fact 2. Ti,j(n) 2: 1 because there is at most one arrival per time slot, so the arrival
times of any two consecutive cells must be at least one slot apart.

Fact 3. For all i,j, n (Ai,j = 0) => (IIQdl = 0) => (Li,j(n) = 0); that is, any queue
whose amval rate is zero is empty and consequently has a zero lag.

Proof of Theorem 1. We prove the stability of the lag vector, which implies the

stability of the queue occupancy. Recall that the lag is defined in terms of the total

occupancy of packets in the switch destined to an output port.

The following Lemma is adapted from [MMAW99], Lemma 7.

Lemma 1. II (n)~-ll (n)~*(n) ::; 0, V1.(n) , ~ where ~*(n) is such that l.T (n)~*(n) =
max(1.T(n)~(n)) (Note that ~*(n) is the service vector selected by the maximum

weighted lag scheduling policy at time slot n.)

Proof. Identical to the proof of [MMAW99], Lemma 2. o

The following Lemma is adapted from [MMAW99], Lemma 8 and is simplified for

an N x N switch rather than an N x M switch.

Lemma 2. For all ~ ::; (1 - (3)~m (the inequality is interpreted componentwise),
0< !3 < 1, where ~m is any rate vector such that II~m112 = N, there exists 0 < E < 1
such that

E[LT(n + I)TL(n + 1) -1.T(n)T1.(n)IHn)] ::; EII1.(n)11 + K.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 53

Proof. By expansion

~T ~

L, (n + l)TL,(n + 1) = L,T(n)TL.(n) + 2L,T(n)~
- 2L,T(n) [~*(n) 8 I(n) 8~] - 2L,T(n) [~*(n) 8 Z(I(n)) 8~]
+ L Ai,j - 2 L S~j(nh,j(n)Ai,j

i,j i,j

i,j i,j

Subtracting L,T (n)T L,(n) from both sides and taking the expected value and observing

that the expected value of T is *'
~T ~

E[L, (n + l)TL,(n + 1) - L,T(n)TL,(n)IL,(n)]

= 2L,T(n)~ - 2L,T(n)~*(n) - 2L,T(n) (~*(n) 8 Z(I) 8~)

+ L Ai,j - 2 L S;,j(n) - 2 L S~j(n)E[Zi,j(Ti,j)Ai,j]
i,j i,j i,j (4.2)

We make use of the following properties to simplify equation (4.2) and establish

Lemma 2:
(a) ". Ai J' < N; (from the admissibility constraints)

W~,J '
(b) l:i,j S~j(n) ~ 0; (from the scheduling algorithm properties) so, this term can be
ignored in equation (4.2) because it has a negative sign.

(c) L,T(n)(~*(n)8Z(I)8~) ~ 0; (because each element in this term is non-negative;

observe that this term has a negative sign in equation (4.2) so it can be ignored)
(d) l:i,j S;)n)E[Zi)Ti,j)Ad ~ 0; (because each element in this term is non-negative;
observe that this term has a negative sign in equation (4.2) so it can be ignored) Also,
note that the following positive terms in equation (4.2) are bounded:

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 54

(4.3)

i,j

From equation (4.2), properties (a) through (d), and equation (4.3), we obtain

-T -
E[1 (n + 1)T1(n + 1) -1T(n)T1(n)11(n)] (4.4)
::; 21T(n)~ - 21T(n)~*(n) + N + 1/J + 20: + T

Using Lemma 2, we obtain:

1 T(n)T1(n) ::; -(31T(n)~m

1T(n)~ -1T(n)~*(n) ::; -(3111T(n)llll~mll cos(fJ) (4.5)

where fJ is the angle between 1T (n) and ~m·
We now show that cos (fJ) > c5 for some c5 > 0 whenever 1 T (n) f 0 using the same

approach as in [MMAW99], equations (16)-(18). This is included here for complete­
ness and is simplified for an N x N switch rather than an N x M switch.

We do this by contradiction: suppose that cos(fJ) = 0, i.e., 1T(n) and ~m are
orthogonal. This can only occur if 1T(n) = 0, or if for some i, j, both Ai,j = 0 and
Li,j (n) > 0, which is not possible: for Qi,j to have a lag greater than zero, Ai,j must
be greater than zero. Therefore, cos(fJ) > 0 unless 1T (n) = o. Now we show that
cos(fJ) > c5 for some c5 > o. Because Ai,j > 0 wherever Li,j(n) > 0 , and because

11~112 < N

(
fJ) 1T(n)~ Lmax(n»..min

cos = II1(n)IIII~11 2: 111(n)IIJN·
Also, 111(n)11 ::; NLmax(n), and so cos(fJ) is bounded below by

(fJ)
Amin

cos 2: N~ . (4.6)

Substituting equation (4.6) in equation (4.5) we get

(fJ 1T(n)A Lmax(n)Amin
cos) = 111(n)IIIIAII 2: 111(n)IIJN

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 55

-T -
E[1 (n + I)T1(n + 1) -1T(n)T1(n)11(n)] :::; -2EI11(n)11 + K (4.7)

where E = 2(3)..';:;" and K = 'lj; + N + 20: + T 0

The following Lemma is adapted from [MMAW99] Lemma 9 and is simplified for

an N x N switch rather than an N x M switch.

Lemma 3. For all ~ :::; (1 - (3)~m (the equation is interpreted componentwise), 0 <
(3 < 1, where ~m is any rate vector such that II~mll = N, there exists 0 < E < 1 such

that
E[1T(n + I)T1.(n + 1) -1T(n)T1(n)11(n)] :::; EII1(n)11 + K.

Observe that the difference between Lemmas 2 and 3 is that Lemma 2 uses the ap­
proximate next state vector, whereas Lemma 3 uses the exact next state vector. The
approximate next state vector assumes that each VOQ always has a packet. The exact
next state vector takes the empty queue case into account.

The proof of this Lemma is similar to the proof of Lemma gin (lj, and is included

here for completeness.

Proof.

(4.8)

The fact that T is a positive-semidefinite matrix together with equation (4.8)

imply that for all n

-T -
1 T(n + I)T1(n + 1) :::; 1 (n + I)T1(n + 1).

Therefore,

This proves the Lemma. o

Lemma 4. There exists a quadratic Lyapunov function V (1(n)) such that

E[V(1(n + 1)) - V(1(n))11(n)] :::; -EI11(n)11 + K

where K, E > O.

Proof. From Lemma 3, V(1.(n)) = l.T(n)T1.(n), E = 2.f3)..f:r, and K = 'lj; + N + 20: +
,. 0

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 56

Theorem 2. Under Maximum Weighted Lag, the expectation of the lag values are
bounded for all n under all admissible and independent arrival processes, i. e., \In, E[lIL:(n) II] <
00.

Proof. V(L:(n)) = L:T(n)TL:(n) is a quadratic Lyapullov function and according to
the arguments in [KM95], it follows that the expectation of the lag values is bounded
for all n under the maximum weighted lag scheduling policy. 0

Theorem 3. Under the MWL scheduling policy, the expectation of the queue occu­
pancy is bounded for all n under all admissible and independent arrival process, i. e.,

\In, E[IIQ(n)ll] < 00.

Proof. That stability of the lag values implies the stability of the per packet additional
waiting in the IQ switch using the MWL scheduling policy over that provided by the
OQ switch being tracked. Given the traffic admissibility constraints, each packet's
delay in the OQ switch being tracked is finite. Consequently, the total delay provided
by the IQ switch using MWL is bounded. Therefore, all the queue occupancies in the

IQ switch under MWL are bounded for all n. 0

Different weight functions lead to different bounds on the average queue size (cell

delay) with varying performance; for example, in [KMOl] it is shown that all maximum

weight matching scheduling policies with weight equal to the queue size raised to some

positive ex, IIQi,jll"', are stable. However, it is shown through simulation that under

a specific arrival pattern the average cell delay is smaller when ex = 0.5 than for all

higher values of ex. A methodology for deriving bounds on the cell delay and queue

size is described in [LMNM03]. In [MMAW99] it was shown that Longest Queue

First could potentially lead to starvation. Longest Port First (LPF) was proposed in

[MM98] and was shown by simulation to provide better performance than LQF and

OCF, but it is possible to construct a traffic pattern that leads to starvation for LPF

[Mek98]. All the previous results are applicable to stability in a single node (switch).

The problem of scheduling a network of IQ switches is considered in [AZ03] and it

is shown that both the LQF and LPF scheduling policies can be unstable for a fixed

traffic pattern in a simple network of eight IQ switches.

We establish a bound on the mean lag value using the techniques developed in

[LMNM03j; the following definitions are needed for bound result in Theorem 4:

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 57

Definition 18. L1 Norm: Given a vector Z E JRN
2

, the norm IIZI11 is defined as:

N2

IIZI11 = I: IZkl·
k=1

Definition 19. Input-Output Norm: Given a vector Z E JRN2, Z = {Zk' k = Ni +

j, i,j = 1, ... , N}, the norm IIZIIIO is defined as:

N N

IIZIIIO = j!!t,~~N {I: IZNk+jl, L IZNJ+t!}
k=1 1=1

IIZIIIO takes the maximum of the sum of quantities related to all the queues referring
either to the same input or to the same output; for example, the traffic arrival vector

is admissible if and only if 11.611 IO < 1.

Definition 20. Let L.(n) be the lag vector at time slot n such that

where Li,j(n) is the lag of Ci,j(n) (cell at HOL of Qi,j at time slot n).

Theorem 4. A bound on the mean lag, E[lIL.(n)lld, using a maximum weighted Lag
scheduling policy under any admissible i. i. d. arrival process is given by:

Proof:

E[IIL()11] < N
3
+ 3N

2
11.6111

- n 1 - 2(1 -11.6IIIO) .

Definition 21. Given a vector Z E JRN2, the second order norm IIZI12 is defined as:

N2

IIZI12 = I: (Zk)2
k=l

Definition 22. The unit vector parallel to z.. is denoted by Z, and is defined as:

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 58

To proceed we need the following theorem due to Leonardi et al. [LMNM03],Theorem

3.6, which is presented here in a form appropriate for the problem under consideration.

Theorem 5 ([LMNM03],Theorem 3.6). Given a system of queues whose evolution is
described by a Discrete Time Markov Chain (DTMC) with state vector Yn E NM

,

whose state space H is a subset of the Cartesian product of a denumerable state space
HL and a finite state space HK , and for which all the polynomial moments of lag
distributions are finite, if a lower bounded polynomial function V (lA n)), V : NN -t R,

can be found, such that E [V (1(n)) I Yn] < 00 and there exist two positive real

numbers E E jR+ and B E jR+, such that

E[V(1(n + 1)) - V(1(n)) I Yn] ~ -Ef(1I1(n)lI) VYn : IIL(n)1I > B, (4.9)

where f (x) is a continuous function in jR+ ,then

1~~ E[f(IIL(n)II)] ~ 1~~ E[f(IIL(n)lI)

+ V(L(n + 1)~ - V(L(n)) IYn E HB] X P[Yn E HB]
(4.10)

Note that for MWL Y(n) = (A(n),L(n),1:(n)) is an appropriate DTMC and all the

polynomial moments of the lag distribution are finite by Theorem 3.5 of [LMNM03],

which is included here for completeness.

Theorem 6 ([LMNM03],Theorem 3.5). Given a system of queues whose evolution is
described by a DTMC with state vector Yn E NM , whose state space H is a subset of
the Cartesian product of a denumerable state space HL and a finite state space HK , if
a lower bounded function V(L(n), called Lyapunov function, V(L(n)),v : NN -t R,

can be found, such that E [V (1(n)) I Yn] < 00, VYn and there exists E E jR+ and

B E jR+ such that

E[V(L(n + 1)) - V(L(n)) I Yn] ~ -EIIL(n)1I VYn : IIL(n)1I > B,

then the system of queues is strongly stable. In addition, if there exists symmetric
copositive matrix Z E jRNxN defining the Lyapunov function V(L(n)) = L(n)ZLT(n),
then all the polynomial moments of the queue lengths distribution are finite.

The proof of Theorem 4 consists of two steps. First, we find a lower bound on E

in equation (4.9). The second step is to use equation (4.10) to derive the bound on

E[IIL(n)lId·

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 59

Using equation (4.10) with f(111(n)ll) = 111(n)lll and V(1(n)) = 1 T
(n)T1(n)

for some B > O. The function at the left hand side of equation (4.11) admits a limit

for 111(n)lll -+ 00 which depends on the direction of the vector 1(n). Let Emax be the

smallest value for this limit, i.e.

Substituting equation (4.2) in the above equation and observing that all the terms

in the numerator that do not contain 1(n) will go to zero upon dividing by 111(n)lh -+

00, we get

21T(n)~ - 21T(n)~'(n) - 21T(n) (~'(n) 8 Z(IJ 8~)
Emax = liminf __________________ -~-----...c.....

IIMn)111---->oo 111(n)lll

Rearranging the terms we get:

Taking 2 as a common factor and rearranging the terms we get:

We make use of the following proposition, which was proved in [LMNM03] (Propo­

sition A.l) and is included here for completeness.

Proposition 1. For any nonnull normalized vector Z(n) E]R+N2:

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 60

Applying Proposition 1 to the second term in equation (4.12) we get:

Now, we use a technique from [LMNM03](pg. 542 and 543) to bound the following

term:
ll(n)~*(n) -ll(n)~

11L:(n)lll
Consider the vector U(n) = E[A(n)] + (1 - 11~IIIO)~*(n). It is straightforward to

prove that IIU(n)IIIO ::; 1. Also, the fact that the system is stable implies E[A(n)] =

E[~*(n)] =~. Thus,

~*(n)L:T(n) - Q(n)L:T(n) = ~*(n)L:T(n) - ~ 8 L:T(n) - (1 - 11~IIIO)~*(n)L:T(n) > 0

11L:(n)lll 11L:(n)lll -

and from Lemma 1 we have

S*(n)LT(n) - ALT(n) > (1 -11~IIIO)~*(n)L:T(n)
11L:(n)lll - 11L:(n)lll .

Applying Proposi~ion 1 we get:

~*(n)L:T(n) - MT(n) > (1 - II~IIIO)
11L:(n)lll - N .

(4.13)

Substituting equations (4.5.1) and (4.13) in equation (4.10), we get:

(4.14)

The next step is to evaluate equation (4.10):

1~~ E[f(IIL:(n)II)] ::; 1~~ E[f(IIL:(n)ll)

+ V(L:(n + 1)~ - V(L:(n)) IYn E HB] x P[Yn E HB]

Evaluating the term E[V(L:(n + 1)) - V(L:(n))IYn E HB] appearing in equation (4.9)

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 61

and using the result from equation (4.2)

E[V(L:(n + 1)) - V(L:(n))IYn E HB]

= E[L:T(n + l)TL:(n + 1) - L:T(n)TL:(n)IL:(n)]

= 2L:T(n)~ - 2L:T(n)~*(n) - 2L:T(n)(~*(n) 8 Z(rJ 8~)

+ 2:: Aid -2E[2:: S;)n)] -2E[2:: S;)n)Zi,j(Ti,j)Ai,j]
i,j i,j i,j

['""" S* (n)] ['"""] +E ~ T +2E ~S;)n)Zi,j(Ti,j)
. . 't,J ..
'J 'J

+ E [2:: S;'j(n)Zlj(Ti,j)Ai,j].
i,j

and using the result of equation (4.5.1) and equation (4.13) we get

E[L:T(n + l)TL:(n + 1) - L:T(n)TL:(n)IL:(n)] :S

EmaxllL:(n)lll + 2:: Ai,j - 2E [2:: S;,j(n)] - 2E [2:: S;'J(n)Zi,j(Ti,j)Ai,j]
i,j i,j i,j

From stability we have E[~(n)] = E[~], E[~T(n)~(n)] = 11~lh, and E[~T~(n)] =

E[~T]E[~(n)] = II~II§. Also, E[Si,j] = Ai,j; so, E[l:i,j s~:~n)] = N2 because we are

summing over N 2 elements and each element is 1. Similarly, E [l:i,j S:'j(n)Zi,j(Ti,j)] :S

NII~lh

E[L:T(n + l)TL:(n + 1) - L:T(n)TL:(n)IL:(n)] :S

EmaxllL:(n)lh - 11~lll - 2E [2:: S;'j(n)Zi,j(Ti,j)Ai,j]
',J

+ N2 + 2NII~111 + E[2:: S;)n)Zlj(Ti,j)Ai,j].
i,j

(4.15)

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 62

Substituting equation (4.15) in equation (4.10) we get:

E[111(n)lll] <

E[111(n)lh] <

E [IIMn)lll + V(L(n+l)~-V(L(n)) 11(n)]

E[111(n)111(1- ~)]
N2+2NII~lh +E L . .i Z;)T;.j»L + ________ ~ ________ ~ ______ ~ ________ _L

If we set E = Emax we get:

[]
N2 + 2NII~lh + E[2:i) Z;).(Ti,j)>';)'] -11~lll - 2E[2:.). Zi,j(Ti,j)>';)']

E 111(n)lll ::; ", l"

Emax

N2 + 2NII~lll + E [2:i,j Zlj (Ti,j)>'L] - 11~lll
< ------------~~----------~-----

Emax

< N2 + 2NII~lh + NII~lll
- ~(1 - II~IIIO)

< N 2 + 3NII~lh
- ~(1 - II~IIIO)

< N 3 + 3N211~lh
- 2(1-11~IIIO)'

We emphasize that the bound in Theorem 4 is a much stronger property than

bounding the average packet delay in an IQ switch over that in an OQ switch. Not

only does Theorem 2 provide a bound on the additional mean delay for all packets

departing an IQ switch using MWL over an OQ switch, it also applies to any indi­

vidual packet departing the IQ switch. Specifically, Theorem 4 provides a bound on

the difference between the precise packet departure sequence from an IQ using MWL

over that provided by an OQ switch; for example, consider an IQ scheduling policy

that periodically serves the same number of packets per output port as an OQ switch

over a time interval larger than the corresponding time interval in an OQ switch. For

all admissible traffic, this behaviour would imply a bounded per packet average delay

compared to an OQ switch, but it does not imply the property of Theorem 4. This

behaviour occurs because each packet's departure order could be different from the

IQ scheduling policy compared to the OQ scheduling policy; the key difference lies in

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 63

the lag definition such that a packet departing ahead of its time would have a zero

lag. Observe that if a negative lag was allowed then the mean lag value becomes the

additional mean delay in an IQ switch over that in an OQ switch as packets depart­

ing ahead of their IDT (negative lag) would offset packets departing after their IDT

(positive lag). Furthermore, bounding the mean delay in an IQ switch over that in

an OQ switch requires only knowledge about the average service rate per output port

in both switches rather than the precise packet departure sequence from each switch.

4.5.2 Iterative Lag Scheduling Policy

Iterative lag (iLag) is a simple heuristic based on maximal matching (see Section

2.3.3). iLag can be implemented using an arbiter at each input and output port

using a request-grant-accept paradigm. Initially all input and output arbiters are

unmatched, then in each iteration:

l. Request: Each unmatched input sends a request to every unmatched output for

which it has a queued cell.

2. Grant: If an unmatched output receives any requests, it chooses the request

with the most lagging cell and sends a grant to this input.

3. Accept: If an unmatched input receives any grants, it chooses the grant for its

most lagging cell and sends an accept signal to this output.

The input and output arbiter are considered matched. The algorithm executes

until either no more matches can be made or a fixed number of iterations are per­

formed. The hardware implementation of iLag comprises the hardware to compute

the IDTs in an OQ switch, the hardware to select the maximum lagging cells at each

output arbiter, and the hardware at each input arbiter to select the maximum lagging

cell and perform the accept step.

4.6 Simulation Results

The average cell delay and E[1I1111] of MWL and iLag are evaluated by simulation

for a 16 x 16 switch and compared to LPF [MM98], LQF [MMAW99], iSLIP [McK99]

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 64

and PIM [AOST93]. All simulations were performed with 99% confidence and 1%

accuracy. iLag, iSLIP, and PIM were executed with 4 iterations. Bernoulli and bursty

traffic distributions are used for performance evaluation.

4.6.1 Bernoulli Traffic Distribution

For Bernoulli i.i.d. distribution, we use three traffic models: uniform, log diagonal,

and diagonal arrival pattern.

l. Uniform: Ai,j = N Vi, j, where N = 16 is the size of the switch.

2. LogDiagonal: Ai,j = 2A;,lj+11, and Li Ai,j = p; for example, the distribution of
N .

the load at input 1 across all outputs is Ai,j = ;N~f. This arrival pattern is

more skewed than uniform loading.

3. Diagonal: Ai,j = 2p/3, Ai,Ii+11 = p/3 Vi, and Ai,j = 0 for all other i and j. This

is very skewed loading and is more difficult to schedule than uniform loading.

As shown in Figure 4.2, MWL provides the lowest ElIl~11 d compared to other

maximum weight matching schemes under uniform Bernoulli arrivals, although all

maximum weight matching schemes have almost the same average cell delay as shown

in Figure 4.3. The same trend occurs for iLag compared to iSLIP and PIM.

Similarly, under log diagonal traffic, MWL provides the lowest ElIlL11 d as shown in

Figure 4.4, whereas the delay of all maximum weighted matching scheduling policies

is almost identical as shown in Figure 4.5.

The same trend occurs for diagonal traffic as shown in Figures 4.6 and 4.7.

4.6.2 Bursty Traffic Distribution

Internet traffic is bursty in nature [CB97]. We considered an ON/OFF Markov Mod­

ulated Process with geometric burst size of 16. This traffic model is described in

detail in [For04].

The value of ElIILIl1] is generally higher under bursty traffic than under a Bernoulli

traffic distribution. As shown in Figure 4.8, MWL achieves the lowest lag compared to

other maximum weighted matching policies, whereas their delays are almost identical

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 65

E
o z

106.----,,----.-----,-----.-----.-----.-----.-----.----.---~

10

..... Bound
.. 0-. LPF

_T 103

c:

LQF
~- islip
+ilag
-t- MWL

ttl
Q)

:::E

--- PIM

10°L-__ ~L-__ ~ ____ ~ ____ ~ ____ -L ____ -L ____ -L ____ -L ____ ~ __ ~

0.8 0.85 0.9 0.95 0.5 0.55 0.6 0.65 0.7 0.75
Offered load per input port (cell/slot)

Figure 4.2: E[lILII d versus offered load for uniform Bernoulli i.i.d. traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 66

10
2 ~==~~---'----'-----'-----'----'-----'-----'----'-i

-e- LPF
LQF

._'- islip
+ ilag
-+- MWL
-><- PIM

10-1 L-__ ---1 ____ --L. ____ -'-____ ...L.-____ L-__ ---l ____ --'-____ --L. ____ -'-....-l

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Offered load per input port (cell/slot)

Figure 4.3: Average cell delay versus offered load for uniform Bernoulli i.i.d. traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 67

10
7

..... Bound
--e-- LPF

10
6

LQF
+ islip
+ ilag
-+- MWL

10
5 ---><- PIM

10'

E
0 z
_..r 103

c
ct!
Q)

~

10
2

10'

10°

10-'
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Offered load per input port (cell/slot)

Figure 4.4: EUlldll] versus offered load for log diagonal traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 68

10' rr===~~---'-----r----'-----'-----'T---'-r---'-----rl
-e- LPF

LQF
--' islip
+ ilag
-I- MWL

..- 10
3

en
-><- PIM

(5
Ci5 -

10-' L-__ ---L ____ -"-____ -'-____ ...L-____ -'--__ ---" ____ ---L ____ -"-____ -'--1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered load per input port (cell/slot)
0.95

Figure 4.5: Average cell delay versus offered load for log diagonal traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 69

10
7

.... Bound
-€- LPF

10
6 " LQF

+ islip
+ilag
-+- MWL

10
5 -><-- PIM

10
4

E
0
Z
....J- 103

c
<0
Q)

::2:

10
2

10'

10-'L-__ --'L-__ ~ ____ ~ ____ _L ____ _L ____JL ____ ~ ____ J_ ____ ~ __ ___'

0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.5 0.55 0.6
Offered load per input port (ceil/slot)

Figure 4.6: ElIlL11 d versus offered load for diagonal traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 70

102 r-____ ~-----r----~------.-----.------.r---~rr-----.-----.--,

-e- LPF
LQF

-:- islip
+ ilag
-+- MWL
~PIM

10-'L-____ ~ ____ _L ____ ~ ______ L_ ____ ~ ____ _L ____ ~ ______ ~ ____ ~~

0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.5 0.55 0.6
Offered load per input port (cell/slot)

Figure 4.7: Average cell delay versus offered load for diagonal traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 71

10
5

-e- LPF
LQF

....•..... islip
+ilag
-+- MWL
-*- PIM

10
4

E
0 z

,-
10

3 __ -----. .-e-...
-l
C . .---. .--.. e---"-""'0""
CO
(])

~

10
2

10'L-__ ~ ____ ~ ____ L-__ ~ ____ -L ____ L-__ ~ ____ -L ____ ~

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered load per input port (cell/slot)
0.95

Figure 4.8: ElIll:.11 d versus offered load for bursty traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 72

10
3

.-0 .. LPF
LQF

.. ;. islip
+ ilag
-+- MWL -- -><- PIM

en -0
Ci5
'--'
>. co
Q)

0
10

2

Q)
()
Q)
Ol
co
Q)

> «

101L---~----~-----L ____ ~ ____ ~ ____ L-____ L-__ ~ ____ -L~
0.5

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered load per input port (cell/slot)
0.95

Figure 4.9: Average cell delay versus offered load for bursty traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 73

as shown in Figure 4.9. Similarly, iLag achieves the smallest lag compared to iSLIP
and PIM.

4.7 Conclusion

IQ switches are commercially used in most Internet routers due to their capability

of operating at high line speeds with a lower memory bandwidth requirement than

OQ switches. In this chapter, we addressed fair scheduling in Internet routers with

IQ switches. We formulated switch scheduling in an IQ switch with unity speedup as

tracking the behaviour of an OQ switch. By tracking the behaviour of an OQ switch,

an IQ switch resolves input and output contention fairly, eliminates any starvation

of inputs, and approximates the behaviour of an OQ switch as close as possible. We

introduced the lag as a performance metric that measures the difference between a

packet's departure time in an IQ switch compared to an OQ switch. We proved

that per packet lag is bounded for a maximum weighted matching scheduling policy

that uses lag values for its weights and derived a bound on the mean lag value using

a Lyapunov function technique. Finally, we proposed a simple heuristic tracking

scheduling policy and evaluated its performance by simulation.

Chapter 5

Cooperative Token-Ring
Scheduling

In this chapter we present a novel distributed scheduling paradigm for Internet routers

with IQ switches, called cooperative token-ring (CTR) that provides significant per­

formance improvement over existing scheduling schemes with comparable complexity.

In classical token-ring based scheduling for IQ switches, a separate token-ring (an ar­

biter) is used to resolve contention for each shared resource (e.g., an output port).

Although classical token-ring based scheduling achieves fairness and high throughput

for uniform traffic, under non-uniform traffic the performance degrades significantly.

We show that by using a simple cooperative mechanism between the otherwise non­

cooperative token-rings (arbiters) the performance can be significantly improved and

the scheduler is able to dynamically adapt to non-uniform traffic patterns. In addition,

our proposed CTR scheduling policy potentially a.mortizes the cost of arbitration time

over multiple time slots, such that tokens are exchanged only on as-needed basis. The

proposed cooperative mechanism is conceptually simple and is supported by experi­

mental results. To provide adequate support for rate guarantees in IQ switches, we

present a weighted cooperative token-ring (WCTR), a simple hierarchical scheduling

mechanism. Finally, we analyze the hardware complexity introduced by cooperative

mechanism and describe an optimal hardware implementation with time complexity

of 8(10g N) and circuit size of 8(N log N) per node.

74

Ph.D. Thesis - A. Courgy - McMaster Univ.- Electrical & Computer Eng. Dept. 75

5.1 Introduction and Related Work

Most commercial high-performance switches and routers (e.g., CISCO 1200[Cis04],

BBN [PCB+98]) employ IQ switches because an IQ switch requires its fabric and

memory to run only as fast as the line rate, which makes IQ very appealing for

switches with fast line rates and/or with a large number of ports. A VOQ architecture

and a crossbar as the switch fabric are typically used such that a scheduling algorithm

configures the crossbar during each time slot and decides which inputs are connected

to which outputs.

Most practical schedulers are based on simple heuristics, which are readily im­

plemented in hardware, that aim at maximizing the number of connections between

inputs and outputs and achieving a maximal match using a IlRC A scheduler (See

Section 2.4) like PIM [AOST93], WPIM [SV95], iSLIP [McK99]' etc. Most maximal

matching based scheduling algorithms perform well under uniform traffic, but the

performance degrades under non-uniform traffic; for example, iSLIP uses rotating

round-robin priority arbiters at the inputs and outputs such that under uniform traf­

fic, the pointers used in the input and output arbiters for selection tend to point to

different elements (desynchmnize) and each arbiter tends to make a different selection

from other arbiters and the largest number of inputs and outputs are matched. Conse­

quently, under uniform Bernoulli i.i.d. traffic iSLIP arbiters adapt to a time-division

multiplexing scheme, providing a perfect match and 100% throughput. However,

under non-uniform traffic, the pointers are not necessarily desynchronized and the

performance potentially degrades - Chang et al. [CLJ02] showed using a pathological

traffic pattern for a 3 x 3 switch how iSLIP can get trapped in "bad modes" such

that the throughput is limited to 66.67%.

To cope with degrading performance under non-uniform traffic, without increas­

ing the scheduler's complexity, Li et al. [LPC02] proposed coupling the I1RCA par­

adigm with exhaustive matching(EM) (see Section 2.5). Specifically, it was shown

[LPC02] that exhaustive iSLIP (EiSLIP) produces the best results compared to several

proposed exhaustive scheduling algorithms and performs better than non-exhaustive

matching algorithms, under some non-uniform traffic patterns.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 76

Load-balanced Birkhoff-von Neumann [CLJ02j switches (see Section 2.7) address

the problem of scheduling non-uniform traffic using a two stage scheduler: a load

balancing stage followed by a second scheduling stage that essentially operates on

uniform traffic. The main drawback of this architecture is that packets can be misse­

quenced, which may require complicated hardware implementation and non-scalable

computation overhead. Furthermore, providing a scalable solution that simultane­

ously provides QoS support and solves the packet missequencing problem is a major

difficulty in the load-balanced router architecture.

5.2 Problem Addressed

In summary, it is a challenge to find a scheduling scheme for IQ switches that meets

the following requirements:

1. Provides high throughput for both uniform and non-uniform traffic.

2. Provides rate guarantees for QoS traffic and proportional bandwidth sharing.

3. Is readily implemented in hardware: most practical schedulers are iterative with

hardware time complexity of 8 (log N) per iteration, where N is the size of the

switch; usually log(N) iterations are used in practice.

In this chapter we address the previous issues and present a solution that meets

all these requirements. We emphasize that almost all practical scheduling schemes

in the literature can provide high throughput under uniform traffic; however, under

non-uniform traffic, the throughput usually degrades significantly.

This chapter is organized as follows. Section 5.3 provides an overview of the pro­

posed cooperative token-ring scheduling policy. In Section 5.4, we present all the

algorithmic details of the proposed CTR scheduler. We present a parallel implemen­

tation of CTR based on IlRC A paradigm in Section 5.5. The performance of CTR,

for best-effort traffic, is evaluated by simulation in Section 5.6. In section 5.7, we

examine the fairness of the proposed CTR scheduler. We propose a two-level hi­

erarchical scheduler, weighted CTR scheduler, which supports rate-guarantees and

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 77

proportional bandwidth sharing in Section 5.S. In Section 5.9, we provide an optimal

hardware implementation for the proposed cooperative mechanism. Several detailed

examples of CTR scheduling policy are presented in Section 5.10. Finally, Section

5.11 provides our conclusions.

5.3 Overview of Cooperative Token-Ring Schedul-.
lng

In this section we informally describe the cooperative token-ring (CTR) scheduling

policy. The goal is to provide an intuitive understanding of the concept rather than

to list the algorithmic details, which are given in Section 5.4.

Consider the system shown in Figure 5.1 (a) There are a set of four users (nodes)

that are alphabetically labeled A, B, C, and D. There are four resources, which are

represented by the tokens TI , T2 , T3, and T4 . These tokens rotate clockwise in the ring

and could be acquired by any of the nodes subject to the constraint that each node

acquires at most one resource simultaneously. Each node maintains a separate queue

for each token that represents backlogged work for that resource. We assume that

time is slotted such that token-arbitration is performed during each time-slot where

each node may acquire or release an acquired token. At the end of token-arbitration

each node may be matched to at most one token and consumes an element from the

corresponding queue. Consider the configuration shown in Figure 5.1(a) where each

of the four nodes has backlogged queues for some resources, which are represented

by the rectangle boxes outside the ring: node A requires tokens TI and T
2

; node B

requires tokens TI ; node C requires tokens T3 and T4 ; and node D requires token T
4

.

The initial token(s) position(s) are as shown in Figure 5.1(a): TI is at node D; T3

and T4 are at node B; and T2 is at node C.

In classical token-ring scheduling each node makes an independent token-selection

decision obliviously of the state of other nodes; for example, given the initial state

shown in Figure Figure 5.1 (a) each node could acquire the first available token to

result in the matching state shown in Figure 5.1 (b) where: node A acquires token T
I

,

and node C acquires token T4 . The resource utilization in this example using classical

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 78

IT;Jo

I T1T21

A

C
I T3T, I

(a) Initial State.

(c) Tokens Request Paths.

B~

A

o B

-C

(b) Classical Taken-Ring.

A

o B

C

(d) Cooperative Taken-Ring.

Figure 5.1: Scheduling Using Classical Token-Ring and Cooperative Token-Ring.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 79

token-ring scheduling is 50%. Note that nodes E and D do not require tokens T2 and
T3 .

CTR is an iterative scheme such that each iteration comprises two phases: com­

puting a request path for each token, and token propagation/selection. The main

idea of CTR is to create a guided path along the ring for each token from its current

position to the last node in the ring that requires that token and is not matched to any

other token. The guided paths for the initial token configuration in Figure 5.1 (a) are

pictorially shown in Figure 5.1 (c); for example, the guided path for token TI starts at

node D and ends at node E, which is the last node that is not matched to any other

token and requires token TI . The value of each token request path at each node is a

Boolean variable that indicates whether this token is requested by some other nodes

along path. Subsequently, tokens propagate through the ring such that each node

uses the token request paths to decide whether to acquire, swap, or release a token

to improve the overall resource utilization. Specifically, token propagation/selection

is performed at each node to achieve two goals:

1. Attempt to improve the node's resource utilization. If the node is not matched

(has not acquired any token yet) then it acquires the first available token that

it needs regardless of whether this token is requested by other nodes along the
path.

2. Attempt to improve the overall resource utilization of the ring by swapping

its acquired token for another unrequested token. This swapping is performed

using the token request paths' information that have been previously computed.

After computing the guided paths in Figure 5.1 (c), tokens propagate in the ring.

When node A receives token T1 , it acquires it. When tokens n, and T4 arrive at node

C, node C acquires T3 because T4 is requested by some other node along the path

as indicated by the request path for T3. Subsequently, token T4 propagates along the

ring and is acquired by node D. When T2 arrives at node A, which had previously

acquired T1 , node A swaps TI for T2 and TI propagates to node E, where it gets

acquired. Note that A performs the swapping because it knows that Tl is requested

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 80

by some other node along the ring. The final state is shown in Figure 5.1 (d), where

each node is matched to a token and the resource utilization is 100%.

In essence, the main difference between traditional token-ring and cooperative

token-ring is that each node in traditional token-ring scheduling considers only its

own resource utilization, whereas in CTR the token-selection at each node additionally

cooperates with other nodes in the ring to improve the overall resource utilization.

5.4 Description of Cooperative Token-Ring Sched­
uler

Outpull

Oulpul2

N tokens

OUlpul3

Outpul N

Crossbar

Figure 5.2: Architecture of Cooperative Token-Ring Switch.

The basic architecture of a cooperative token-ring switch is shown in 5.2. There

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 81

are N tokens in the ring that correspond to the N outputs of the switch such that

each CTR arbiter is allowed to acquire at most one token. When input i is matched

to output j in a time slot it is allowed to transmit a packet to output j during that
time slot.

CTR is an iterative algorithm such that each iteration comprises two phases:

1. Computing the tokens request paths phase: In this phase a token request vector

(T RV) is computed for each input that represents which tokens are requested

by other unmatched inputs. Each element in the T RV vector is a binary value

such that a true value for T RV (i) indicates that token i is requested by some

other unmatched input along the ring. Computing the T RV is described in

Section 5.4.1 and its hardware complexity is examined in Section 5.9.1.

2. Token propagation/selection phase: In this phase tokens propagate through the

ring and each CTR arbiter selects tokens based on its VOQ status and TRV.

Here we make precise some terminology used for the remainder of this chapter. We

adopt a matrix representation to represent the switch's state. We use the following
standard notations:

+ denotes standard Boolean OR operation.

x denotes standard Boolean AND operation.

1 denotes true and a denotes false.

A denotes Boolean NOT operator applied to the Boolean parameter A.

Definition 23. The VOQ state matrix VOQ. VOQi,j is set to one if the virtual
output queue at input i for output j is nonempty, and is set to zero otherwise.

Definition 24. The matched matrix M. Mi,j is set to one if input i is currently
matched to output j.

Definition 25. The request matrix R. Ri,j is set to zero if input i is matched and is
set to V OQi,j, otherwise. The request matrix is used for computing the token request
paths.

Definition 26. The token position TP. T P;,j is set to one if the token for output j
is currently at input i and is set to zero, otherwise. Note that multiple tokens can be
at the same input, and also when token j is at node i does not necessarily imply that
input i is matched to output j.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 82

Definition 27. The token request paths matrix TRP. Let k be position of the token j
in the ring: Then T RPi,j is set to one if there exists an input y between (circular wise)
input i (exclusive) and k (exclusive) that is not matched and VOQy,j = 1. Observe
that each row in TRP represents the TRV for the corresponding input; i.e., row i is
the TRV for input i. The goal of the first phase of CTR scheduling is to compute the
TRP matrix.

Our design strategy is to have a communication structure that is feasible to im­

plement in hardware and that could be used to iteratively improve the throughput

of the switch such that a tradeoff could be made between the number of iterations

performed and the achieved throughput. Coincidentally, we would like the communi­

cation mechanism to be as concise as possible and reflect the dynamic nature of the

traffic conditions such that the scheduler is able to dynamically adapt to time-varying

traffic, which manifests itself in the status of VOQs, such that little or no exchange

of tokens is performed between the different arbiters when the status of VOQs do not

change and more communication is performed when the status of the VOQ change

and arbiters become unmatched that could potentially be matched. Unequivocally,

the T RV at each input can be viewed as forming guided paths for the tokens to

reach their intended destinations that lead to an overall performance improvement.

Computing the token request paths and token-selection phases are described in detail

in Sections 5.4.1 and 5.4.2, respectively.

5.4.1 Computing the Tokens Request Paths Phase

The TRV computed at each input represents the set of tokens that are requested by

other unmatched inputs along the ring and is used by each CTR arbiter during the

token selection phase as described in Section 5.4.2. Each element in the TRV is a

binary value that is set to true if there is an unmatched arbiter along the ring that
requests this token.

The same algorithm is used to compute the token request path for each token in

the ring (i.e., a column in the TRP matrix). To simply the notation, we focus on

computing the token-request path along one ring and drop the second subscript.

Assume a token-ring with N nodes and N tokens. Let Ikl = (k mod (N + 1)).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 83

The value of TRP at input module i is given by:

j=i+N-l k=j-l

T RPi = Rli+ll + L R ljl IT T P lkl (5.1)
j=i+2 J,'=i+l

Various implementation schemes could be used to compute TRP based on equation

(5.1). One possible implementation scheme is to exploit the ring structure and send

the requests in opposite direction of token propagation such that each node computes

its TRP bit and either propagates or stops the request based on the token's position.

The time complexity using this technique is 8(N). In section 5.9, we describe how a

binary tree structure could be used to evaluate equation (5.1) in 8(1og N) time. We

emphasize that computing TRP requires simple boolean operations that is readily

implementable in hardware.

5.4.2 Token Propagation/Selection Phase

Each eTR arbiter performs token-selection using its computed T RV. We say that a

token is requested if its corresponding element in the T RV is true and is unrequested

otherwise. A precondition for acquiring token by an input is that the corresponding

VOQ is nonempty.

Each eTR arbiter selects tokens according to the following rules:

R1 An input that is not matched acquires the first available token regardless of

whether this token is requested or not - this ensures that the matching con­
verges.

R2 Acquiring an unrequested token is prioritized over acquiring a requested token.

R3 Swapping an acquired token with an unrequested token, when possible.

R4 An input arbiter that still has backlogged packets for its acquired token, can hold

its acquired token for more than one time slot.

The Prioritization according to [R2] is done to provide other unmatched inputs

the chance to acquire the requested token and improve the overall throughput.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 84

[R.3] allows two cases for token-swapping: swapping a requested token for a non­

requested token as in [R.2]; and swapping a non-requested token for another unre­

quested token. Swapping between unrequested tokens allows the breaking of cyclic

dependencies; for example consider a token-ring with three nodes: A, B, and C such

that C is not matched and requests a token that is acquired by B. In turn, B would

relinquish its acquired token only if it acquires the token that is acquired by node A.

According to Definition 25, node B can not send a request for the token acquired by

node A because B is already matched; however, node A would swap its acquired token

according to [R.3], which in turn would be acquired by B in exchange for the token

required by node C to achieve 100% utilization. A detailed example that shows how

swapping unrequested tokens could break a cyclic dependency is provided in Section

5.10.5.

[R.4] is based on the observation that the state of the VOQs changes slightly

between time slots. So, rather than starting each matching from scratch at the

beginning of each time slot, [R.4] attempts to improve over the matching computed

from the previous time slot.

There are various mechanisms for implementing a CTR scheduler with implemen­

tation tradeoffs. We emphasize our description so far has been only a logical descrip­

tion: any hardware implementation that logically implements the CTR scheduler

could be used; for example, in Section 5.5, we describe how CTR could be physically

implemented using a lIRC A paradigm, which is typically employed in high-speed IQ

switch implementation [GM99].

5.5 Parallel Implementation of CTR

In this section we present a parallel implementation of cooperative token-ring sched­

uler that is tailored towards high-speed implementation with a hardware time com­

plexity of 8(1og N) per iteration based on lIRCA paradigm.

At the beginning of each iteration the T RV is computed for each input as de­

scribed in Section 5.4.1 and the Token Propagation/Selection Phase is performed

using lIRC A paradigm as described next.

PhD. Thesis - A. Courgy - McMaster Univ.- Electrical & Computer Eng. Dept. 85

Output 1

Output 2

Output N

Crossbar

Figure 5.3: Parallel Implementation of Cooperative Token-Ring.

As shown in Figure 5.3, a round-robin arbiter is used at each output port, and a

CTR arbiter is used at each input. The round-robin arbiter at each output implements

the token-ring for the corresponding output, whereas the CTR arbiter implements the

token-selection described in Section 5.4.2; the CTR arbiter implements the request

and accept phase, and the round-robin arbiter implements the grant phase of the

nRC A paradigm. Each CTR arbiter and round-robin arbiters uses a rotating round­

robin priority encoder as described next. Specifically, each iteration of the CTR

algorithm comprises the following steps:

1. Compute the T RV for each input as described in Section 5.4.1.

2. Request Step: Each unmatched eTR arbiter sends a request to every output

arbiter for which it has a queued cell, whereas each matched input sends a

request to every unrequested and unmatched output 1 for which it has a queued

cell. Recall that an unrequested output is one for which the corresponding

element in TRY is false.

3. Grant Step: If an unmatched output arbiter receives any requests, it chooses

the one that appears next in fixed round-robin fashion starting with the highest

priority element. The output notifies each input whether or not its request was

1 Technically, it is irrelevant whether an input sends a request to a matched output because per
definition a matched output ignores the requests it receives, but it helps simplify our presentation.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 86

granted. The pointer to the highest priority element of the round-robin schedule

is incremented (modulo N) to one location beyond the granted input.

4. Accept-step: Each CTR arbiter selects one of the grant signals and sends an

accept signal to the corresponding output arbiter. Selecting a grant signal

follows [RI] - [R3] described in Section 5.4.2, which are are reiterated here for

completeness. There are two cases:

(a) Unmatched Input: Select a grant for an unrequested output (i.e., the cor­

responding bit in TRV is zero), if possible; otherwise, select a grant for a

requested output and send the accept signal starting with the highest prior­

ity element. The corresponding input and output are considered matched.

The round-robin pointer is incremented (modulo N) to one location be­

yond the accepted output.

(b) Matched Input: Per definition, the received grants are for unrequested out­

puts (requests were sent only for unrequested outputs in the Request Step)

and the output selects from among these grants in a round-robin fashion

starting with highest priority element - the CTR arbiter uses a rotation

round-robin priority. The input resets (breaks) its previously matched out­

put and sends an accept signal (is matched) to the selected output. The

round-robin pointer is incremented (modulo N) to one location beyond the

accepted output.

Most IIRCA typically converge to a maximal matching (See Section 2.3.3) af­

ter log N iterations, on average [McK99], although this convergence has never been

formally proven in the literature for any of the deterministic IIRC A schemes (those

schemes that do not use random selection). The only established formal convergence

in the literature is for PIM, which uses random selection at both the inputs and out­

puts and was shown to converge to a maximal matching after log N iterations, on

average, under Bernoulli i.i.d. traffic [AOST93j. In the worst case a IIRCA requires

N iterations - every iteration matches only a single input to an output [AOST93j.

Similar to other IIRC A, CTR typically converges to a maximal matching after log N

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 87

iterations on average; we conjecture that CTR converges to maximum size match­

ing (See Section) after N iterations; however, establishing an analytic proof of this

convergence is an area of future work.

5.6 Simulation Results for Best Effort Traffic

In this section, we evaluate the performance of CTR, iSLIP, EiSLIP, Dual Round­

Robin (DRR), and PIM for a 16 x 16 switch with four iterations. All simulations

were performed with 99% confidence and 1 % accuracy; that is, the simulations were

run until the relative width of the confidence interval equals 1% with probability

2: 99%. The simulations were implemented using a Java testbed (30KLOC) and

were executed on an IBM Blade Center; the confidence interval calculations were

done using the batch method with a batch size of 1000 time slots and were calculated

only after the system reached steady state (i.e., arrival rate equals departure rate). On

average each simulation run required four hours of execution time. We evaluate the

performance for both Bernoulli traffic distributions and various bursty traffic models.

5.6.1 Bernoulli Traffic Distribution

We use various traffic models recommended by the switching fabric benchmarking

group [For04]. The following arrival patterns are used with Bernoulli traffic distribu­

tion. Note that p denotes the normalized load such all inputs are equally loaded, and

N is the switch size.

1. Uniform: Ai,j = p/N Vi, j.

2. Diagonal: Ai,j = 2p/3, Ai,li+11 = p/3 Vi, and Ai,j = 0 for all other i and j. This

is very skewed loading and is more difficult to schedule than uniform loading.

3. Logdiagonal: Ai,j = 2Ai,I1+11, and L:i Ai,j = p; for example, the distribution of

the load at input 1 across outputs is Ai,j = ;;~f: This type of load is more

balanced than diagonal loading, but more skewed than uniform loading.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 88

Figures 5.4, 5.5, and 5.6 show the average delay under uniform, log diagonal and

diagonal traffic, respectively. In addition to providing the best performance under the

three arrival patterns, the improvement achieved by the proposed CTR scheduling

policy manifests itself clearly as the arrival pattern becomes more skewed: under

uniform arrivals, all schemes can support up to 100% traffic load and CTR provides

the lowest delay; as the arrival pattern becomes more skewed under logdiagonal traffic,

only CTR is able to provide almost 100% throughput for traffic load larger than 90%;

finally, under the diagonal arrival pattern, which is the most skewed arrival pattern,

the breakpoint at which both iSLIP and EiSLIP can not handle the traffic load moves

further to the left and only CTR is able to provide 100% throughput for traffic loads

larger than 85%.

104r-----r-----r-----r-----r-----.-----.---__ ~--~
-e-iSLIP

EiSLIP
~;~DRR

-+-PIM
103 --+-- eTR

10°C--=~L-____ L-____ L-____ L-____ L-____ L-____ ~ __ ~

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (cell/slot)

Figure 5.4: Performance of CTR, iSLIP, DRR, PIM, and EiSLIP for uniform traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 89

105 .-------~--------.-.-------,,----.--.--------,
----e- iSLI P

EiSLlP
+-DRR
~PIM
-+-CTR

10-1L---____ -L ________ ~ ______ ~L_ ______ _L ______ ~

0.5 0.6 0.7 0.8 0.9
Offered load per input port (cell/slot)

Figure 5.5: Performance of CTR, iSLIP, and EiSLIP for Log Diagonal traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 90

-&-iSLIP
EiSLIP

....... ! ·····DRR

---+-- PIM
--t-CTR

10-1L-__ -L ____ L-__ -L ____ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (cell/slot)

Figure 5.6: Performance of CTR, iSLIP, DRR, PIM, and EiSLIP for Diagonal traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 91

5.6.2 Simulation as a function of the switch size

Figure 5.7 shows the average latency imposed by a CTR scheduler as a function of

offered load for switches with 4, 8, 16, and 32 ports for Bernoulli uniform traffic with

log(N) iterations. The performance is almost identical for the various switch sizes.

10
2 r-------~--------~--------~--------~---------

0-- size=4
size=8

--t-- size=16
--B- size=32
--/.)-- size=64

10-1~------~------__ ~ ________ ~ ________ ~ ______ ~
0.5 0.6 0.7 0.8 0.9

Offered load per input port (cell/slot)

Figure 5.7: The performance of CTR as a function of switch size for uniform i.i.d.
Bernoulli arrivals.

5.6.3 Bursty Traffic Distribution

Because real-internet traffic is bursty [CB97], bursty traffic models were considered in

our simulations. Specifically, a bursty traffic with fixed burst size, and an ON/OFF

Markov Modulated Process with a geometrically distributed burst size [For04] were

used.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 92

5.6.4 Uniform Bursty Traffic

In this traffic model packets come as a burst of length N (i.e., 16) such that packets

within the same burst are destined to the same output. For every Nth time slot,

the probability that there is a burst arriving at a particular input port is p, and the

probability that there are no packet arrivals in these N slots is 1 - p. The destination

of the N packets within a burst is chosen uniformly from among the N output ports.

Q)
Ol

104,--------.--______ .-______ -. ________ -. _______ ~

-B-iSLIP
EiSLIP

...... + DRR
~PIM
--+--CTR

~ 2
Q) 10
~

101.~~~--~---------L--------L_ ______ ~ ________ ~
0.5 0.6 0.7 0.8 0.9

Offered load per input port (cell/slot)

Figure 5.8: Average Delay under the uniform bursty traffic model.

As shown in Figure 5.8, CTR provides the lowest cell delay followed by iSLIP and

finally by EiSLIP.

5.6.5 ON/OFF Markov-Modulated Arrivals

Each input port is connected to a burst source that generates traffic-cells using a

2-state Markov process that alternates between busy and idle states. The process

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 93

remains in the busy and idle states for a geometrically distributed number of cell

times. When the server is in the busy state, cells arrive at the beginning of every

time slot and all with the same set of destinations. This traffic model is described in

detail in [For04]. An average burst size of 16 was used.

105.--------.---------.------__ ,, ________ .-______ ~

--B-iSLIP
EiSLIP

-t--DRR
-+--PIM

104 --+-CTR

101L-------~ ________ -L ________ -L ________ ~ ______ ~

Q5 Q6 0.7 Q8 Q9
Offered load per input port (cell/slot)

Figure 5.9: Average Delay under 2-state Markov-modulated arrivals with an average
burst size of 16.

As shown in Figure 5.9, the same trend occurs and CTR provides the best per­

formance.

5.6.6 Effects of increasing number of iterations

One of the main arguments for CTR is that its performance iteratively improves with

increasing the number of iterations. The effect of increasing the number iterations

is evaluated by simulation for CTR, iSLIP, EiSLIP, Dual Round-Robin (DRR), and

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 94

PIM. A 16 x 16 switch was used and the number of iterations executed were: 1, 2, 4,

8, and 16.

5.6.6.1 Uniform Bernoulli Traffic

As shown in Figure 5.10, most schemes perform well under uniform Bernoulli i.i.d.

traffic and there is almost no improvement achieved by executing more than 4 itera­

tions for most schemes except for CTR.

5.6.6.2 Log Diagonal Bernoulli Traffic

As shown in Figure 5.11, CTR outperforms all other schemes for any number of

iterations under log diagonal traffic and is the only scheme able to sustain 100%

traffic load even with a single iteration. Observe that regardless of executing more

iterations, none of schemes other than CTR is able to sustain a traffic load larger

than 90%.

5.6.6.3 Diagonal Bernoulli Traffic

As the traffic becomes very skewed under diagonal traffic, none of the schemes other

than CTR is able to sustain traffic load higher than 85%, whereas CTR provides 100%

throughput with 4 iterations as shown in Figure 5.12. In addition, the performance

of CTR keeps incrementally improving as more iterations are executed, as expected.

5.6.6.4 Uniform Bursty Traffic

As shown in Figure 5.13, CTR outperforms all other schemes even with a single

iteration.

5.6. 7 ON/OFF Markov-Modulated Traffic

As shown in Figure 5.14, CTR outperforms all other schemes even with a single

iteration under bursty traffic model with a geometrically distributed burst size of 16.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 95

10'r------.------~------r_----~------,_------r_----~----~
--- 1
o 2

4
-><- 8
+16

./

100L-____ ~ ______ ~ ____ ~~ ____ ~ ______ ~ ____ ~ ______ ~ ____ ~

0.6 0.65 0.7 0.75 0.8 0.85 0.9 095
Offered load per input port (ceIVslot)

(a) iSLIP

10'r-----r_---.-----. ____ -. ____ -. ____ -. ____ -. ____ -. ____ .-.-__ ,
1

.. (). 2

4
-><- 8
+16

0.6 0.65 0.7 0.75 0.8 0.85
Offered load per input port (ceIVslot)

(b) EiSLIP

0.9 0.95

Figure 5.10: Effects of increasing the number of iterations under uniform Bernoulli
i.i.d. traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 96

10
5

---+--1
-B-2

4
10' ---*"- 8

~16
u;-
(5
en
;: 103

<d
Q;
Cl

Q;
()

~ 10
2

~
(l)

~

10'

10°
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Offered load per input port (cell/slot)

(c) DRR

10
3

·······1
-B .. 2

4

-- 8
+16

1~L-__ ~ __ ~-L ____ ~ ____ L-__ ~ ____ -L ____ ~ ____ ~ ____ L-__ ~

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per inpu1 port (celvslot)

(d) PIM

Figure 5.10: Effects of increasing the number of iterations under uniform Bernoulli
i.i.d. traffic (cont).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrica.l & Computer Eng. Dept. 97

10'
1

-e- 2
4

--- 8
+ 16

_ 102

'" 0
~
>-
oJ
Q;
0
Q;
u
Q)
0>

~
Q)
> « 10'

/
,,~~,_/

lO°L.....O::::::"'-----'-···~=_ __ _'_____ __ _'_ __ ___' ___ _L_ __ _'_ __ ___' __ ____'

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (ceIVslot)

(e) CTR

Figure 5.10: Effects of increasing the number of iterations under uniform Bernoulli
i.i.d. traffic (cont).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 98

10' r----,-----,----,-----,.---,-----r,---.-----,----,-----,

10'

.. + 1
.-;3- 2

4
-+<- 8
+16

10-' "-----'-----'------'-------'------'-----'------'------'------''-----'
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Offered load per input port (ceIVslot)

(a) iSLIP

10'
--+- 1
-B- 2
-B- 4
-><- 8
+16

10'

10-'L-----'-----'-----~----L-----'-----'-----~-----'------'----~
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Offered load per input port (ceIVslot)

(b) EiSLIP

Figure 5.11: Effects of increasing the number of iterations under log diagonal Bernoulli
i.i.d. traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 99

~
~ 102

>-

'" a;
o
a;
u

" ~ 10
1

~

10
4 .--------,--------,,-------,--------r--------.

~··--·-1

·-··e-···· 2
4

103 --8
~16

10-' '----------'----------'---------'----------'-----------'
0.5

., 1
.-0- 2

4

-- 8
+16

0.6 0.7 0.8
Offered load per input port (ceil/slot)

(c) DRR

/
!

/

I

0.9

10-1 L-__ -'-____ -'--__ ----' ____ -'-____ L-__ --'-____ -'-____ L-__ --'-____ -'

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (ceIVslot)

(d) PIM

Figure 5.11: Effects of increasing the number of iterations under log diagonal Bernoulli
i.i.d. traffic (cant).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 100

10' r----,----,-----r----.----.----,-----,----,----.--~

4

-- 8
+16

10-' L-__ --'-____ -'-____ L-__ ---"--____ .l.-__ ---' ____ -L. ____ .L.-__ ---'. ____ -l

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (ceIVslot)

(e) CTR

Figure 5.11: Effects of increasing the number of iterations under log diagonal Bernoulli
i.i.d. traffic (cont).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 101

10' ,-----,----,,-----,-----,-----,-----,-.-,-,-----,-----,.
'~'1

-B- 2
4

-i<- 8
10' -+- 16

10-' '--____ '---__ --::-'---__ ,-'---__ --::-'---____ -'--____ -'--__ --::--'-____ -'-__ --::--LJ
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Offered load per input port (ceIVslot)

(a) iSLIP

10'
........ 1
-B- 2

4
-><- 8

-+- 16
10'

Offered load per input port (ceIVslot)

(b) EiSLIP

Figure 5.12: Effects of increasing the number of iterations under diagonal Bernoulli
i.i.d. traffic.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 102

10'
-+--1
--B-2

4
10

3 --8
~16

(j)
0
0;

;: 102

<1l
a;
0

a;
u
gJ, 10'
~
Q)
> «

10°

10·'
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Offered load per input port (cell/slot)

(c) DRR

10' ~--~----~----~----~----~~--~----~--__ ~ ____ ~
······1

·B- 2
4

-- 8
+16

10.
'
'-------L--------' ____ --'-____ ----'-___ --'-__ ...L. __ -'--__ -'--___ LJ

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (ceIVslot)

(d) PIM

Figure 5.12: Effects of increasing the number of iterations under diagonal Bernoulli
i.i.d. traffic (cant).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 103

10' r----,r----.-----.-----r----.-----~----,_,_--._--_,<

I
··+···1
-e- 2

4
-><-- B

10' + 16

10-1 '--____ L-__ ---' ____ ---'-____ -'-____ -'-____ ...L. ____ ..L..-____ "-:-__ ---:-'L

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (ceIVslot)

(e) CTR

Figure 5.12: Effects of increasing the number of iterations under diagonal Bernoulli
i.i.d. traffic (cant).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 104

10',-----,----.---.---,---,---.---,---,-__ ,--__
~···1

0·· 2
4

-><- 8
+16

./ "
./

/

0.55 0.6 065 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (ceIVslot)

(a) iSLIP

10·.-----.----.-----.----r---.--,
...... "t

4
---><-- 8
~16

10'~----L ____ L_ ___ -L ____ ~ ___ -J

0.5 0.6 0.7 0.8 0.9
Offered load per input port (cell/slot)

(b) EiSLIP

Figure 5.13: Effects of increasing the number of iterations under uniform bursty traffic
with fixed burst size of 16.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 105

10'

_ 103

U>
(5
~
>-..

Q;
0
Q;
u
'" '" l'!

'" >
« 102

105r--------.--------r--------.----____ .-______ ~
---c---- 1
··0-·-- 2

4
~8

104 ~16

10'
0.5 0.6

1
-&- 2

4

-- B
+16

0.55 0.6

0.7 0.8 0.9
Offered load per input port (cell/slot)

(c) DRR

I
I
I

I
I

;0

/

r~~"~'"

z///

/0/

"-.-------~

0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (ceIVslot)

(d) PIM

Figure 5.13: Effects of increasing the number of iterations under uniform bursty traffic
with fixed burst size of 16 (cant).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 106

104r----.----.-----r----r----.----,r----.----.-____ r-__ ~

4

-- 8
+16

+-

/
I
I

10'~~=x ____ ~ ____ L-__ -L ____ ~ __ ~L-__ -L ____ ~ ____ L-__ ~

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (ceIVslot)

(e) CTR

Figure 5.13: Effects of increasing the number of iterations under uniform bursty traffic
with fixed burst size of 16 (cont).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 107

104.----,----~----~----~----r_--~----~----~----~--~
_ .. _. 1

o 2
4

-- 8
+16

_ 10'

'" 15
~

10'L---~--__ _L ____ ~ ____ L_ __ ~L_ __ ~ ____ _L ____ ~ ____ L_ __ ~

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per inpu1 port (ceIVslot)

(a) iSLIP

104.----,-----.----.-----.-____ r-__ -. ____ ~----,_----,,--_.
1

o 2
4

-- 8
+16

10'L-__ ~ ____ -L~---L----~----L---~-----L--__ ~ ____ L_ __ __

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Offered load per input port (cell/slot)

(b) EiSLIP

Figure 5.14: Effects of increasing the number of iterations under under 2-state
Markov-modulated arrivals with an average burst size of 16.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 108

105r--------.--------.---____ -r ________ .-______ ~

'--r--1
"'-8--2

4
--8

104 ~16

10'L--------L----____ L-______ _L ________ L-______ ~

0.5 0.6 0.7 0.8 0.9
Offered load per input port (cell/slot)

(c) DRR

10'L----L ____ ~ __ ~~ __ _L ____ ~ __ ~ ____ -L ____ ~ __ ~L_ __ ~

M ~ M ~ ~ ~ ~ ~ M ~
Offered load per input port (ceIVslot)

(d) PIM

Figure 5.14: Effects of increasing the number of iterations under under 2-state
Markov-modulated arrivals with an average burst size of 16 (cant).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 109

104r--------.--____ -, ________ .-______ .-______ -,
---+-- 1
-B--- 2

4
--8
~16

!
j

10'L-______ ~ ______ ~ ________ ~ ______ ~ ______ ~
0.5 0.6 0.7 0.8 0.9

Offered load per input port (cell/slot)

(e) CTR

Figure 5.14: Effects of increasing the number of iterations under under 2-state
Markov-modulated arrivals with an average burst size of 16 (cant).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 110

5.7 Fairness of Cooperative Token-Ring Schedul-.
lng

Given that CTR scheduling potentially violates the strict ordering of round-robin

arbitration to achieve high throughput, it is expected that it could suffer from a

fairness problem for an adversarial traffic pattern. We describe the fairness problem

in the current design and then describe several augmenting schemes to the proposed

CTR scheduling policy that address fairness.

We have chosen to address the fairness issue separately for several reasons. First,

there are various possible solutions with tradeoffs in their implementation complexi­

ties that depend on the desired granularity of fairness that we believe should be left

to the designer. Second, the solutions to the fairness problem are complementary

to the concept of cooperative token-ring scheduling and helps simplify our presenta­

tion. Third, and more importantly, we view the decoupling between achieving high

throughput and providing fairness as one of our key contributions. It is our view

that the tight coupling of a rigid fairness scheme in many scheduling policies, which

almost dictates the next schedule, that forces the scheduler to not adapt to the traf­

fic dynamics; thus, causing an overall performance degradation. On the one hand,

in a strict round-robin scheduler the uniform selection of next matching element

tends to dovetail with and uniform i.i.d. traffic and the scheduler can provide 100%

throughput [LPC01]. However, for non-uniform traffic, strict round-robin scheduling

causes performance degradation. On the other hand, exhaustive scheduling policies

(e.g. EiSLIP [KC03]) potentially provide better performance than strict round-robin

schedulers for bursty traffic, but the scheduler could still get locked into "bad modes"

because each arbiter makes its decision obliviously of the state of the other arbiters in

the switch; that is, the scheduler does not necessarily adapt to traffic dynamics. Our

scheme alleviates this problem by using the cooperative mechanism described earlier.

Although our proposed CTR provides excellent performance for all admissible

traffic as previously shown, under inadmissible traffic CTR could lead to starvation

of some queues. An example of starvation behavior is shown in Figure 5.15 for a 2 x 2

switch. Because all three queues are permanently occupied, the algorithm will always

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 111

select the "cross" traffic: input 1 to output 2 and input 2 to output 1 and VOQl,l

will starve.

Figure 5.15: Under an inadmissible workload, the CTR scheduler will cause VOQl,l
to starve.

Although in a real-router, decongestion mechanisms (e.g., RED) are applied at

the ingress ports to avoid buffer overflow associated with inadmissible traffic, it is still

possible to construct an adversarial traffic pattern for CTR that leads to unfairness.

There are several mechanisms for providing fairness in a CTR scheduler. One simple

scheme is to set a threshold on the number of consecutive time slots for holding

the acquired token by an input (e.g., k time slots). This would ensure that each

input gets the chance to acquire any token every k(N - 1) time slots. Conversely,

an input module with a VOQ that has not been served beyond a threshold period

of time may send (broadcast) a "prioritized request", which must be honored by

the input module that is currently matched to this token. If a higher granularity of

fairness is desired, then a credit-based mechanism could be used such that a number

of credits are allocated to each input-output pair and each CTR arbiter is allowed to

acquire a token only if there are available credits for the corresponding output port.

We explore this credit-based scheme in section 5.8 to provide rate guarantees in our

proposed CTR scheduler.

5.8 Weighted Cooperative Token-Ring

To provide both rate-guarantees and proportional-bandwidth sharing, we propose a

two-level scheduler, weighted cooperative token-ring (WCTR). In WCTR, QoS traffic

is scheduled first and then best-effort traffic contend for the remaining bandwidth.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 112

Scheduling QoS in WCTR is performed using frame-based scheduling such that

time is divided into frames, and a counter is associated with each input-output pair.

The counters are set according to their negotiated bandwidth shares at the beginning

of each frame. Queues with positive counters compete with higher priority according

to CTR. Then, the remaining queues contend according to CTR for the available

bandwidth. During any time slot, an input module can acquire a token for an output­

port to send either guaranteed-rate traffic or best effort traffic and a flag is used to

indicate the traffic type for which the token is acquired. Scheduling in each level

(QoS or best-effort) is performed similar to the original CTR description in Section

5.4: computing the tokens request paths phase followed by a token-selection phase.

The main difference is that QoS traffic is prioritized over best-effort traffic. First the

token request paths is computed for QoS traffic with the semantics that a module

sends a token request only if it has QoS traffic and available credits. Subsequently, if a

module that had previously acquired a token for best-effort traffic, and the acquired

token is now requested by another unmatched input for QoS traffic, then it must

release it. Conversely, during the best-effort scheduling level, a WCTR arbiter would

not release a token that was acquired for a QoS traffic if this token is requested by

another input.

There are many variations of the presented weighted cooperative token-ring sched­

uler; for example, it is straightforward to generalize the scheme to multiple priority

levels scheduling. In addition, a centralized module could be used allocate credits

for best-effort traffic to ensure fairness in the distribution of unreserved bandwidth

among the inputs.

5.8.1 Simulation Results for Weighted Cooperative Token­
Ring Scheduler

To illustrate the fairness of WCTR in bandwidth allocation, a 4 x 4 switch was

simulated such that each input has four flows, each going to a different output with

a different bandwidth reservation. Let lk(i,j) represent flow k from input port i to

output port j. In the simulated switch, 11 (0,0), 12(1,0), h(2,0), and 14(3,0) have

reserved 10, 20, 30, and 40 percent of the bandwidth, respectively, but they always

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 113

maintain the same actual arrival rate. Other flows have a load of 5 percent each. This

traffic model has been used in [SV95] and [ZB03]. We used a frame size of 1000 slots

and measured the throughput per flow at the end of one frame. As shown in Figure

5.16, WCTR is able to provide to each input its allocated rate.

0.4 ~---r------'----'-------r---=:=-lI~ __ .,..-__ ",*

-B- FO (10%)
F1 (20%)

0.35 --+- F2 (30%)
----+- F3 (40%)

'E - 0.3
~
'iii
u

~ 0.25
;;::

a.;
a.
~ 0.2
.s:::.
OJ
:J
e
~ 0.15

0.1

F3 (40%)

F2 (30%)

F1 (20%)

FO (10%)
0.05 L----'-------'--------L __ -L __ --.J ___ .l....-_----.J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Offered load per flow(cell/slot)

Figure 5.16: Plot of throughput per flow for WCTR at the end of one frame.

5.9 Hardware Implementation of Cooperative Token­
Ring

In this section we analyze the hardware complexity of computing the token request

paths and prove that its latency is 8 (log N) and circuit size per node is 8(N log N).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 114

Recall from Section 5.4.1 that each element in the TRV is given by:

j=i+N-I k=j-l

T RPi = Rli+ll + L RUI II T P lkl
j=i+2 k=i+l

We make the following two observations:

1. Equation (5.1) can not be directly implemented using a parallel prefix circuit

[LF80j because each element is computed using all the other elements in the

ring in a circular (Modulo arithmetic) fashion.

2. Although it is simple to achieve an optimal latency of 8(log N) using a binary

tree for computing each element in Equation (5.1), the circuit size per element

(node) would be 8(N log N) per output bit value and consequently the circuit

size per node would be 8(N2 log N), whereas we describe a technique with

optimal latency and circuit size per node of 8(N log N).

Rather than providing a specific solution for computing Equation (5.1), we gen­

eralize the problem and present a generic circuit for computing all elements in a list

such that each element depends on other elements in the list, in a circular fashion, in

8(NlogN) circuit size with time complexity 8(logN) as described in Section 5.9.1.

A similar hardware circuit for computing circular prefix computations with the same

8(N log N) circuit size and 8 (log N) delay bounds was presented in [Szy02], upon

which this circuit was based.

5.9.1 Complete Symmetrical Prefix Problem

Let 0 be a binary associative operation. The complete symmetrical prefix problem is

to compute, given Xl, X2, ... ,Xn , the results YI, Y2, ... , Yn, where Yk = Xlk+ll0 Xlk+21 0
... 0 Xlk+n-ll, for 1 ::; k ::; n

The problem of computing the token request bit can be solved on a binary tree

network in 2D steps where D is the depth of the tree. The algorithm consists of

essentially two interleaving phases: upward phase, and downward phase. In the

upward phase, each internal node computes the product of the entries in the leaves

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 115

spanned by the node. In the downward phase, these products are passed downward

the tree so the leaf can form the result. We describe the algorithm in more detail in

the next sections.

5.9.1.1 Upward phase

During the first step, Xi is input to the ith leaf for 1 SiS N. This value is both

stored and passed upward to the node's parent. In subsequent steps, internal nodes

receiving inputs from children concatenate the inputs and pass the product upward

in the tree. After D steps, every node, other than the root, will have computed

the product of the inputs to the leaves covered by the node. Figure 5.17 shows the

computation performed by each node, and Figure 5.18 shows the actual products

computed by each node for an 8-string example.

(b)

x.
11 I

I

GJ

Figure 5.17: Action of an internal node (a) and leaf (b) during the upward phase.
Inputs to the internal nodes are concatenated, and then passed upwards. Inputs to
leaves are stored and passed upwards.

As each nonleaf node receives its input from below, it swaps the values computed

by the left and right child. That is, it passes the value computed by the left child to

the right child and conversely. Each node then stores the new value it receives from

its parent as shown in Figure 5.19.

For example, Figure 5.20 shows the node values after swapping for the previous
8-string example.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 116

Figure 5.18: Concatenation performed by each node in the parallel prefix algorithm
for an 8-element string. Each node computes the product of the inputs that it spans.

.. -
• * -. • • ~ X.:
+ 1.

1-.10 •••
~ ~.. . .

• ·X • : j'. • • • ••••••

Figure 5.19: Swapping the node values during the upward propagation phase.

Figure 5.20: The node values after swapping the left and right child for the 8-string
used in Figure 5.18

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 117

5.9.1.2 Downward Phase

During the downward phase each node receives the node value of its parent and

computes the result as depicted in Figure 5.2l. The operation is performed both for
leaf and nonleaf nodes .

. 1.... ~ .U .. •...
..••• .if.... ~ .. _ ••• X *. .+ -.

: "i : : x. :
••• ••• J •• " ~-

Figure 5.21: Operation of nodes (leaf and nonleaf nodes) during the downward phase.

In total, the algorithm takes 2D steps, where D is the depth of the tree and the

circuit size is determined by the number of nodes in the tree, which is S(N log N)
assuming each node has a fixed size.

5.9.2 Computing the Token Request Vector as a Complete
Symmetrical Prefix Problem

Computing the token request vector can be modeled as the complete symmetrical pre­

fix problem by keeping track of whether each module stage stops a request, propagates

a request or generates a request. Specifically, let the state at node i be:

stop(s) == if the token is currently at node i.

propagate(p) == if the token is not currently at node i and the node does not have
a request for the token.

generate(g) == if module i has a request for the token.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 118

Let Xi denote the s, p, or g value of ith node, and let Ikl = (k mod N).

Next, let T RPi = x/HI/ 0 x/H2/ 0 X/i+3/ ... 0 X/i+N-i/ for 1 ~ i ~ N where 0 is the
binary associative operator defined by the table in Table 5.1.

0 S P G
S S S S
P S P G
G G G G

Table 5.1: Multiplication table for the operator defined for computing the token
request path. For example, S 0 G = S

A
A

c c

(a) (b)

Figure 5.22: (a) The request bit at each node. (b) The corresponding value of TRV
at each node.

For example, the signal for the input modules used in Figure 5.22 (a) are shown

in Table 5.2. The token request bit at module X3 is given by:

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 119

Module Signal
Xl == XA P
X2 == XE G
X3 == Xc P
X4 == XD P
Xs == XE G
X6 == XF P
X7 == Xc p

Xs == XH S

Table 5.2: The signal states for the modules in Figure 5.22

Figure 5.23 shows the circuit for computing the token request path for a for a

ring with four inputs; this circuit was generated using Synopsys 2 design compiler,

with optimization setting for high speed. The circuit computes one column of the
TP matrix.

5.10 Examples of the Cooperative Token-Ring Schedul­
ing Policy

In this section we provide detailed step-by-step examples of eTR implemented using

the I1RGA paradigm described in Section 5.5.

5.10.1 Notation

A matrix notation is used such that rows correspond to inputs and columns correspond

to outputs. All matrix elements are binary values.

1. Request The request matrix in the request-grant-accept arbitration phase.

This matrix is different from R matrix (Definition 25.)- a matched input can

send a request to an unmatched output for which the corresponding TRV ele­

ment is zero (i.e., a token that is not currently requested by other unmatched

inputs), whereas in the R matrix only unmatched input can send requests.

2Synopsys is a trademark of Synopsys, Inc.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 120

Figure 5.23: Circuit for computing the token request path in a ring with four nodes.
The circuit uses approximately 30 standard cells to realize the binary tree structure
shown in Figs. 5.18 and 5.21, with 4 input ports and 3 binary nodes. Therefore, each
node in the binary tree consumes approximately 10 standard cells.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 121

Request;,j is set to 1 if there is a request from input i for output j, and is set
to zero otherwise.

2. Grant The grant matrix. Granti,j is set to 1 if there is a grant from output j
to input i.

3. Accept Accepti,j is set to 1 if there is an accept from input i to output j, and
is set to zero otherwise.

5.10.2 First Example

Inpul I
Acquired Token

Inpul2

InputJ

-_ ..
(a)

Inpul I
Acquired Token

=- H Token 1

=-1

Inpul2

----1

TIJJ i
--=-•• ,'-f Token 2

---...'
Inpul3

•••
::_-- '-/ Token 3

(b)

Figure 5.24: First Example of CTR scheduling policy (a) Initial State (b) Final State

Assume the initial switch configuration shown in Figure 5.24 (a).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 122

5.10.2.1 Initial State

5.10.2.2 First Iteration: Computing the Tokens Request Paths Phase

5.10.2.3 First Iteration: Request-Grant-Accept Phase

Request = (~ ~ ~) Grant = (~ ~ ~) Accept = (~ ~ ~)
100 000 000

At the end of the first iteration, input 1 acquires the token for output 1 and releases

the token for output 2 (token 2). Consequently, the state of the round-robin arbiters

and the acquired tokens state is given by the following matrices.

5.10.2.4 Second lteration:Computing the Tokens Request Paths Phase

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 123

5.10.2.5 Second Iteration: Request-Grant-Accept Phase

(
000) (000) (000)

Request = a 1 1 Grant = a 1 a Accept = a 1 a
000 000 000

At the end of the second iteration, input 2 acquires the token for output 2 and all
the inputs are matched.

5.10.2.6 Final State

The final state is shown in Figure 5.24 (b).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 124

5.10.3 Second Example

This example shows how the eTR arbiters use the token request vector to select

among multiple grant signals to improve the throughput.

Input 1

=rro -­=-
=rro

Input 2

, ", ::ern
=rn

Input 3

=rrn =­=rrn
=rrn

Input 4

=­=rrn
=rrn

(a)

Input 1

::ern
~
~

::ern
Input 2

:J" II
::ern
:JITJ

Input 3

::ern
~
::ern
::ern

Input 4

=- .1 Token 1 ::ern
::ern

.-"

(b)

Figure 5.25: Second Example of eTR scheduling policy (a) Initial State (b) Final
State

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 125

5.10.3.1 Initial State

0 1 1 0 1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 VOQ= TP= M= 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0

The initial state is shown in Figure 5.25(a).

5.10.3.2 First Iteration: Computing the Tokens Request Paths Phase

o 1 1 0

100 1

o 1 0 0

100 0

TP=

100 1

o 0 0 0

o 0 0 0

o 1 1 0

TRP=

110 1

1 1 0 0

100 0

o 1 1 0

5.10.3.3 First Iteration: Request-Grant-Accept Phase

Request =

o 1 1 0

1 0 0 1

o 1 0 0

1 000

Grant =

o 1 1 0

100 1

o 000

o 000

Accept =

o 0 1 0

000 1

o 0 0 0

o 0 0 0
Input 1 receives two grants for outputs 2 and 3. Because the TRV bit for output

2 is set to 1 it chooses to send an accept to output 3, which is not requested by

other inputs. Similarly, input 2 receives two grant signals for outputs 1 and 4, and

chooses to accept the grant from output 4 because it is not requested by other inputs.

Consequently, outputs 1 and 2 are left unmatched and will be matched in the second

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 126

iteration. The state of the output round-robin arbiter and the matched state is:

a 1 1 a a a 1 a
1 a a 1 a a a 1 TP= M= a a a a a a a a
a a a a a a a a

5.10.3.4
Second Iteration:Computing the Tokens Request Paths Phase

a a a a a 1 1 a a 1 a a
a a a a 1 a a 1 1 1 a a R= TP= TRP= a 1 a a a a a a a a a a
1 a a a a a a a a a a a

5.10.3.5 Second Iteration: Request-Grant-Accept Phase

a a a a a a a a a 0 0 0 a a a a 0 a a a 0 a a 0 Request = Grant = Accept = a 1 a a a 1 a a a 1 a a
1 a 0 a 1 a a a 1 0 a 0

At the end of the second iteration, input 1 is matched to output 3, input 2 is matched

to output 4, input 3 is matched to output 2, and input 4 is matched to output 1.

0 a 1 a a 0 1 0
0 a 0 1 a 0 0 1 TP= M=
0 1 0 a 0 1 a 0
1 a a a 1 a a a

The final state is shown in Figure 5.25(b).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 127

5.10.4 Third Example

This example shows how an input arbiter swaps an acquired token that is requested

by another unmatched input arbiter for an unrequested token.

Inpul I

=­
~=.­
~flIJ

Inpul2

-=-•• =-­IU]
=rn

Input 3

Input 4

(a)

Acquired Token Inpul I
Acquired Token

---r r ,"

= .. : =- :~Token3
~TI;::: !

Inpul2

-=-l =-1
IrL I
== rn :L.--./ Token 4

!

Inpul3

---r:- ,­
___ L...L -1.-.

~~ ... -I Token 2
._J ____ _

Input '"

-S •• l-{ Toten I =1 :
_:.J.

-1 -:
__ I_._L)

(b)

Figure 5.26: Example 3 of eTR scheduling policy (a) Initial State (b) Final State

5.10.4.1 Initial State

0 1 1 0 0 1 0 0 0 1 0 0
1 1 0 1 1 0 0 0 1 0 0 0 VOQ= TP= M= 0 1 0 0 0 a 1 0 a a 0 0
1 0 0 0 a a a 1 a a a a

The initial state is shown in Figure 5.26(a).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 128

5.10.4.2 First Iteration: Computing the Tokens Request Paths Phase

R=

a a a a
a a a a
a 1 a a
100 a

a 1 a a
1 a a a
a a 1 a
a a a 1

TRP=

a 1 a a
1 100

1 a a a
a a a a

5.10.4.3 First Iteration: Request-Grant-Accept Phase

Request =

a a 1 a
a a a 1

a 1 a a
1 a a a

Grant =

a a 1 a
a a a 1

a a a a
a a a a

Accept =

a a 1 a
a a a 1

a a a a
a a a a

At the end of the first iteration, input 1 acquires the token for output 3 and releases

the token for output 2. Similarly, input 2 releases the token for output 1 and acquires

the token for output 4 and releases the token for output 1. Consequently, the state

of the output round-robin arbiter and the matched state is shown next.

TP=

a 1 1 a
100 1

a a a a
a a a a

M=

a a 1 a
a a a 1

a a a a
a a a a

5.10.4.4 Second Iteration:Computing the Tokens Request Paths Phase

a a a a a 1 1 a a 1 a a a a a a 1 a a 1 1 1 a a R= TP= TRP= a 1 a a a a a a 1 a a a
1 a a a a a a a a a a a

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 129

5.10.4.5 Second Iteration: Request-Grant-Accept Phase

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Request = Grant = Accept = 0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0

At the end of the second iteration, input 3 acquires the token for output 2 and input
4 acquires the token for output 1.

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 TP= M= 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0

The final state is shown in Figure S.26(b).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 130

5.10.5 Fourth Example

This example shows how swapping tokens could break a cyclic dependency (a module

requests a token that is acquired by another module which in turn would release if

it acquires another token that is currently acquired by another module) between the

input modules and leads to improving the throughput.

Input I Acquired Token

Input 2

~
J

=-
=_ ~ Token 3

Input 3

(a)

Input I Acquired Token

•• '--1 Token I

~ ..
,

~ ____ J
Input 2

·~---~~-l
.=rLU i

=----.- H Token 2
I

=-1
Input 3

I
"lTTl I __ LLl._ I

=- ~Token3
._~ ___ .. ~-.J

(b)

Figure 5.27: Example 3 of CTR scheduling policy (a) Initial State (b) Final State

5.10.5.1 Initial State

VOQ~U ~ :)TP~U ~ nM~O ~ n
The initial state is shown in Figure 5.27(a).

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 131

5.10.5.2 First Iteration: Computing the Tokens Request Paths Phase

5.10.5.3 First Iteration: Request-Grant-Accept Phase

(
100) (100) (100)

Request = a a a Grant = a a a Accept = a a a
001 000 000

At the end of the first iteration, input 1 releases token 2 and acquires token 1.

5.10.5.4 Second Iteration:Computing the Tokens Request Paths Phase

5.10.5.5 Second Iteration: Request-Grant-Accept Phase

(

000) (00 Request = 0 1 0 Grant = 0 1

o 0 1 0 0

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 132

At the end of the second iteration, input 2 releases token 3 and acquires token 2.

5.10.5.6 Third Iteration:Computing the Tokens Request Paths Phase

5.10.5.7 Third Iteration: Request-Grant-Accept Phase

Request = (~ ~ ~) Grant = (~ ~ ~) Accept = (~ ~ ~)
001 001 001

At the end of the third iteration, input 3 acquires the token for output 3 and the

all the inputs are matched. The final state is shown in Figure 5.27(b).

5.11 CONCLUSION

We proposed cooperative token-ring scheduling, a novel scheduling paradigm that

provides significant improvement over existing schedulers with comparable complex­

ity. Our scheduling paradigm adapts to dynamically varying traffic, provides high

throughput, and is easily implemented in hardware. We proposed WCTR to provide

rate guarantees in IQ switches and proportional bandwidth sharing. Finally, we note

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 133

that although CTR was presented in the context of IQ switches, it is potentially ap­

plicable to several other systems including SONET all-optical circuit-switches, which

schedules cells in circuit-based frames by using delay lines and star-based WDM

broadcast-and-select optical system with tunable transmitters and fixed receivers.

Generally, the proposed CTR scheme can be applied to solve any resource allocation

problem with a set of nodes competing for exclusive access to a set of shared resources.

Chapter 6

Conclusions

In this chapter we summarize the main contributions of this dissertation and discuss

future research directions.

6.1 Summary of Contributions

In Chapter 4 we introduced a theoretical framework for evaluating the performance of

IQ switches, and proposed the "lag" concept as a performance metric that measures

the difference between a packet's departure time in an IQ switch over that provided by

an OQ switch. By tracking the behaviour of an OQ switch, an IQ switch resolves input

and output contention fairly, eliminates any starvation of inputs, and approximates

the behaviour of an OQ switch as close as possible. We presented MWL, a scheduling

policy based on maximum weighted matching, that uses lag values for its weights.

We proved that MWL provides 100% throughput under Bernoulli i.i.d. traffic and

that the per packet lag is bounded. A bound on the mean lag value per packet was

derived using a Lyapunov function technique. The MWL scheduling policy has a

run time complexity of 8(N3 log N) on a sequential model, which is prohibitively

expensive to implement in practice. Consequently, we proposed a simple heuristic

tracking scheduling policy, iLag, based on maximal matching. The performance of

MWL and iLag was evaluated by simulation and compared to other scheduling policies

of comparable complexity.

In Chapter 5 we presented the cooperative token-ring (CTR) scheduling paradigm,

134

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 135

for Internet routers with IQ switches that provides significant performance improve­

ment over existing scheduling schemes with comparable complexity. We showed that

by using a simple cooperative mechanism between the otherwise non-cooperative

token-rings (arbiters) the performance can be significantly improved and the sched­

uler is able to dynamically adapt to any non-uniform traffic pattern. In addition,

the cooperative mechanism is simple to to implement in hardware. To provide ade­

quate support for rate guarantees in IQ switches, we proposed Weighted Cooperative

Token-Ring (WCTR) scheduling policy, a simple hierarchical scheduling mechanism

that provides both rate guarantees and proportional bandwidth sharing. The perfor­

mance of WCTR was evaluated by simulation.

We analyzed the hardware complexity introduced by the proposed cooperative

mechanism and provided an optimal hardware implementation for an N x N switch

implementing a CTR scheduler. We proved that the hardware complexity of the

cooperative mechanism is G(log N) time and G(N log N) circuit size, per port.

In Chapter 3 we addressed the problem of short-term fairness in QoS schedul­

ing for IQ switches. We presented a scheduling algorithm for Internet routers with

IQ switches based on credit-based fair queueing that provides better short-term fair­

ness in QoS scheduling than existing solutions with comparable complexity. A flow­

based iterative credit-based fair scheduler (iCBFS) was proposed that provides fair

bandwidth distribution among flows at a fine granularity than existing schemes with

comparable complexity. To reduce the implementation complexity of iCBFS, we pre­

sented a port-based version of iCBFS that is tailored towards high-speed hardware

implementation.

6.2 Future Work

Future work will focus on multi-stage switch fabrics, variable- length packet schedul­

ing, and multicast scheduling as described next.

As the demand for high capacity switch increases, future switches will use more

ports and higher data rate per port than existing switches and consequently require

scalable schedulers that support hundreds or thousands of ports. This scalability will

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 136

likely require using a multi-stage switch fabric. Future work will address scheduling

in multi-stage switch fabrics to achieve fairness and high throughput.

This work assumed fixed-length cells such that incoming variable-length IP packets

are segmented into fixed-length cells at the input and are reassembled at the output

of the switch. Using fixed-length cells simplifies the switch's scheduler at the over­

head cost of the segmentation and reassembly process. Future work will investigate

scheduling policies for variable-length packets.

A growing portion of IP traffic is multicast as point-to-multipoint and multipoint­

to-multipoint applications such as audio and video conferencing are being used. A

trivial way to schedule multicast traffic is to duplicate each multicast packet such

that the scheduler still operates on unicast packets. It is interesting to consider more

memory efficient multicast scheduling policies that do not use this approach. The

issue of scheduling QoS multicast traffic is also an interesting area of future work.

Bibliography

[ADH98]

[AHU74]

[AHU82]

[AM093]

Armen S. Asratian, Tristan M. J. Denley, and Roland Haggkvist. Bi­

partite graphs and their applications. Cambridge University Press, New

York, NY, USA, 1998.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design

and Analysis of Computer Algorithms. Addison-Wesley Series in Com­

puter Science and Information Processing. Addison-Wesley, 1974. AHa

a 74:1 l.Ex.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Struc­

tures and Algorithms. Addison-Wesley Series in Computer Science and

Information Processing. Addison-Wesley, 1982. AHa a 82:1 P-Ex.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. arlin. Network

Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.

[AOST93] T.E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker. High

speed switch scheduling for local area networks. ACM Trans. Computer

Systerms, 11(4):319-352, November 1993.

[Avi04]

[AZ03]

Avici systems, Inc., Billercia, MA., 2004.

M. Andrews and L. Zhang. Achieving stability in networks of input­

queued switches. IEEE/ACM Trans. Networking, 11(5):848 - 857, Oc­

tober 2003.

137

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 138

[BDEA04] H. Balakrishnan, S. Devadas, D. Ehlert, and Arvind. Rate guarantees

and overload protection in input-queued switches. In IEEE INFOCOM,

pages 2185-2195, March 2004.

[BTC01]

[CB97]

[CCHOl]

B. Bensaou, D. H. K. Tsang, and K. T. Chan. Credit-based fair queue­

ing (cbfq): a simple service-scheduling algorithm for packet-switched

networks. IEEE/ACM Trans. Networking, 9(5):591-604, October 2001.

M. E. Crovella and A. Bestavros. Self-similarity in world wide web

traffic: evidence and possible causes. IEEE/ACM Trans. Networking,

5(6):835-846, December 1997.

C. S. Chang, W. J. Chen, and H. Y. Huang. Birkhoff-von neumann input

buffered crossbar switches for guaranteed-rate services. IEEE Trans.

Commun., 49(7):1145-1147, July 2001.

[CGMP99] S. T. Chuang, A. Gael, N. McKeown, and B. Prabhakar. Matching

output queueing with a combined input/output-queued switch. IEEE

J. Select. Areas Commun., 17(6):1030-39, June 1999.

[ChaOO]

[Cis04j

[CJGL99j

[CLJ02j

[CLR90]

H. J. Chao. Saturn: a terabit packet switch using dual dound-robin.

IEEE Commun. Mag., 38(12):78-84, December 2000.

Cisco 12000 series-internet routers, 2004.

H. J. Chao, Y. R. Jenq, X. Guo, and C. H. Lam. Design of packet

fair queueing schedulers using a ram-based searching engine. IEEE J.

Select. Areas Commun., 17(6):1105-1126, June 1999.

C. S. Chang, D. S. Lee, and Y. S. Jou. Load balanced birkhoff-von neu­

mann switches, part i: one-stage buffering. Computer Communications,

25:611-622, 2002.

Thomas H. Carmen, E. Leiserson, Charles, and Ronald L. Rivest. In­

troduction to Algorithms. MIT Press, 1990. COR th 01:1 LEx.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 139

[CP98]

[Cru91]

[Din70]

[DPOO]

[FMP94]

[For04]

[GKP97]

[GKROO]

[GLPS04]

J. H. Chao and J. S. Park. Centralized contention resolution schemes

for a large-capacity optical atm switch. In Proc. IEEE ATM Workshop,

May 1998.

R. 1. Cruz. A calculus for network delay, part II: network analysis.

IEEE Trans. Inform. Theory, 37:132-141, 1991.

E. A. Dinic. Algorithm for solution of a problem of maximum flow in

networks with power estimation. Soviet Mathematics Doklady, 11:1277-

1280, 1970.

J. G. Dai and B. Prabhakar. The throughput of data switches with and

without speedup. In IEEE INFOCOM, pages 556-564, Tel Aviv, Israel,

March 2000.

T. Feder, N. Megiddo, and S. Plotkin. A sublinear parallel algorithm for

stable matching. Fifth ACM-SIAM Symposium on Discrete Algorithms,

pages 632-637, 1994.

Network Processing Forum. Switch fabric benchmarking group docu­

ments: Switch fabric benchmark test suites(NPF 2002.276.08), perfor­

mance testing methodology for fabric benchmarking(NPF 2003.213.06),

fabric benchmarking traffic models, fabric benchmarking performance

metrics, switch fabric benchmarking framework, 2004.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete

Mathematics; Second Edition. Addison-Wesley, 1997. GRA r 94:1 LEx.

M. W. Goudreau, S. G. Kolliopoulos, and S. B. Rao. Scheduling algo­

rithms for input-queued switches: Randomized techniques and experi­

mental evaluation. In IEEE INFOCOM, pages 1634-1643, March 2000.

P. Giaccone, E. Leonardi, B. Prabhakar, and D. Shah. Delay bounds

for combined input-output switches with low speedup. Performance

Evaluation, 55(1-2):113-128, January 2004.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 140

[GM99]

[Go194]

[Gou06]

[GPS03]

[GS62]

[GSD05]

[GVC96]

[GVC97]

[JaJ92]

[KC03]

P. Gupta and N. McKeown. Design and implementation of a fast cross­

bar scheduler. IEEE Micro, 19(1):20-28, 1999.

S. Golestani. A self-clocked fair queueing scheme for broadband appli­

catons. In IEEE INFO COM, pages 636-646, April 1994.

A. Gourgy. On Packet Switch Scheduling in High-Speed Data Networks.

PhD thesis, McMaster University, January 2006.

P. Giaccone, B. Prabhakar, and D. Shah. Randomized scheduling al­

gorithms for high-aggregate bandwidth switches. IEEE J. Select. Areas

Commun., 21(4):546-559, May 2003.

D. Gale and 1. S. Shapley. College admissions and the stability of

marriage. Amer. Math. Monthly, 69:9-15, 1962.

A. Gourgy, T. H. Szymanski, and D. G. Down. On tracking the be­

haviour of an output-queued switch using an input-queued switch with

unity speedup. Technical report, McMaster University, 2005.

P. Goyal, H. M. Yin, and H. Chen. Start-time fair queueing: a schedul­

ing algorithm for integrated services packet switching networks. In SIG­

COMM '96: Conference proceedings on Applications, technologies, ar­

chitectures, and protocols for computer communications, pages 157-168,

New York, NY, USA, 1996. ACM Press.

P. Goyal, H. M. Yin, and H. Cheng. Start-time fair queuemg: a

scheduling algorithm for integrated services packet switching networks.

IEEE/ACM Trans. Networking, 5(5):690-704, October 1997.

Joseph JaJa. An Introduction to Parallel Algorithms. Addison-Wesley,

1992. JAJ j 92:1 l.Ex.

Y. Kim and H. J. Chao. Performance of exhaustive matching algorithms

for input-queued switches. In Proc. IEEE ICC, volume 3, pages 1817 _

1822, May 2003.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 141

[KHMS7] M. Karol, M. Hluchyj, and S. Morgan. Input versus output queueing on a

space-division switch. IEEE Trans. Commun., 35:1347-1356, December
19S7.

[KK03] S. Kumar and A Kumar. On implementation of scheduling algorithms

in high speed input queuing cell switches. In Proc. IEEE ICC, 2003.

[KKLS03] 1. Keslassy, M. Kodialam, T. V. Lakshman, and D. Stiliadis. On guaran­

teed smooth scheduling for input-queued switches. In IEEE INFO COM,
2003.

[KM95]

[KM01]

P. R. Kumar and S. P. Meyn. Stability of queueing networks and

scheduling policies. IEEE Trans. Automat. Contr., 40, February 1995.

1. Keslassy and N. McKeown. Analysis of scheduling algorithms that

provide 100% throughput in input-queued switches. In Proc. of the 39th

Annual Allerton Conference on Communication, Control, and Comput­
ing, October 2001.

[KM03] 1. Keslassy and N. McKeown. Maximum size matching is unstable for

any packet switch. IEEE Commun. Lett., 7(10):496-49S, October 2003.

[KP05] M. Katevenis and G. Passas. Variable-size multipacket segments in

buffered crossbar (CICQ) architectures. In Proc. IEEE ICC, May 2005.

[KPCS99] P. Krishna, N. Patel, A. Charny, and R. Simcoe. On the speedup re­

quired for work-conserving crossbar switches. IEEE 1. Select. Areas

Commun., 17:1057-1066, June 1999.

[KS99]

[KSBS9S]

A. Kam and K. Siu. Linear-complexity algorithms for qos support in

input-queued switches with no speedup. IEEE 1. Select. Areas Com­

mun., 17(6):1040-1056, June 1999.

A. Kam, K. Y. Siu, R. A. Barry, and E. Swanson. A cell switching WDM

broadcast LAN with bandwidth guarantee and fair access. 1. Lightwave

Technol., 16:2265-22S0, December 1995.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 142

[Lei92]

[LF80]

F. Thomson Leighton. Introduction to Parallel Algorithms and Archi­

tectures: Arrays - Trees - Hypercubes. Morgan Kaufmann, 1992. LEI f
92:1 1.Ex.

R.E. Ladner and M.J. Fischer. Parallel prefix computation. JACM,

27(4):831-838, October 1980.

[Li92] S. Q. Li. Performance of a nonblocking space-division packet switch with

correlated input traffic. IEEE Trans. Commun., 40(1):97-108, January
1992.

[Li04] Yihan Li. Design and Analysis of Scheduling for High Speed Input

Queued Switches. PhD thesis, Polytechnic University, January 2004.

[LMNM01a] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan. Bounds on average

delays and queue size averages and variances in input-queued cell-based

switches. In IEEE INFO COM, pages 1095-1103, Alaska, April 2001.

[LMNM01b] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan. On the stability of

input-queued switches with speed-up. IEEE/ACM Trans. Networking,

9:104-118, February 2001.

[LMNM03] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan. Bounds on delays

and queue lengths in input-queued cell switches. JACM, 50:520-550,
July 2003.

[LPC01]

[LPC02]

Y. Li, S. Panwar, and H. J. Chao. On the performance of a dual round­

robin switch. In IEEE INFO COM, pages 1688-1697, April 2001.

Y. Li, S. Panwar, and J. H. Chao. The dual round-robin matching switch

with exhaustive service. In Workshop on High Performance Switching

and Routing, pages 58-63, May 2002.

[LTWW94] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the

self-similar nature of ethernet traffic. IEEE/ ACM Trans. Networking,

2(1):1-15, February 1994.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 143

[Luc04]

[Lyn96]

[Man89]

[McK95]

[McK99]

[Meh84]

[Mek98]

[Min02]

[MM98]

Lucent technologies, Inc., Holmdel, NJ., 2004.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

LYN n 96:1 P-Ex.

Udi Manber. Introduction to Algorithms. A Creative Approach. Addison­

Wesley, 1989. MAN u 89:1 P-Ex.

N. McKeown. Scheduling algorithms for input-queued cell switches. PhD

thesis, Univ. of California, Berkeley, 1995.

N. McKeown. The iSLIP scheduling algorithm for input-queued

switches. IEEE/ACM Trans. Networking, 7(2):188 -201, April 1999.

Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Search­

ing. EATCS Monographs on Theoretical Computer Science. Springer,

1984. MEH k 84:1 2.P-Ex.

A. Mekkittikul. Scheduling Non-uniform Traffic in High Speed Packet

Switches and Routers. PhD thesis, Stanford University, November 1998.

N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz.

The tiny tera: A packet switch core. In IEEE Micro.

C. Minkenberg. Work-conservingness of CIOQ packet switches with

limited output buffers. IEEE Commun. Lett., 6:452 -454, October 2002.

A. Mekkittikul and N. McKeown. A practical scheduling algorithm to

achieve 100% throughput in input-queued switches. In IEEE INFO­

COM, pages 792-799, 1998.

[MMAW99] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achiev­

ing 100% throughput in an input-queued switch. IEEE Trans. Com­

mun., 47(8):1260 -1267, August 1999.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.

Cambridge Univ. Press, 1995. MOT r 95:1 1.Ex.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 144

[MRS03] B. Magill, C. Rohrs, and R. Stevenson. Output-queued switch emulation

by fabrics with limited memory. IEEE 1. Select. Areas Commun., pages

606-615, May 2003.

[MS03] S. Mneimneh and K. Y. Siu. On achieving throughput in an input

queued switch. IEEE/ACM Trans. Networking, 11(5):858-867, October
2003.

[MVW93] N. McKeown, P. Varaiya, and J. Warland. Secheduling cells in an input­

queued switch. lEE Electron. Lett., 29(25):2174-2175, December 1993.

[NB02] N. Nan and L. N. Bhuyan. Fair scheduling in internet routers. IEEE

Trans. Comput., 51(6):686-701, June 2002.

[PCB+98] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra, T. Clarke,

L. Graham, M. Hathaway, P. Herman, A. King, S. Kohalmi, T. Ma,

J. Mcallen, T. Mendez, W. C. Milliken, R. Pettyjohn, J. Rokosz,

J. Seeger, M. Sollins, S. Storch, B. Tober, G. D. Troxel, D. Waitzman,

and S. Winterble. A 50-Gb/s IP router. IEEE/ACM Trans. Networking,

6(3):237-248, June 1998.

[PG93]

[PG94]

[Raw92]

[RGT04]

A. Parekh and R. G. Gallager. A generalized processor sharing approach

to flow control in integrated services networks: the single-node case.

IEEE/ACM Trans. Networking, 1(3):344-357, June 1993.

A. Parekh and R. Gallager. A generalized processor sharing approach

to flow control in integrated services networks: the multiple node case.

IEEE/ACM Trans. Networking, 2:137-150, April 1994.

Gregory J. E. Rawlins. Compared to What? - An Introduction to the

Analysis of Algorithms. Principles of Computer Science Series. Freeman,
1992. RAW g 92:1 l.Ex.

M. Rosenblum, M. X. Goemans, and V. Tarokh. Universal bounds

on buffer size for packetizing fluid policies in input queued, crossbar

switches. In IEEE INFO COM, pages 1126 - 1134, March 2004.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 145

[Sed90]

[SF96]

[SGP02]

[SV95]

[SV96]

[Szy97]

[Szy02]

[Tar83]

[Tas98]

[TF88]

Robert Sedgewick. Algorithms in C. Addison-Wesley Series in Computer

Science. Addison-Wesley, 1990. SED r 90:1.

Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis

of Algorithms. Addison-Wesley, 1996. SED r 96: 1 1.Ex.

D. Shah, P. Giaccone, and B. Prabhakar. Efficient randomized algo­

rithms for input-queued switch scheduling. IEEE Micro, 22(1):10-18,
2002.

D. Stiliadis and A. Varma. Providing bandwidth guarantees in an input­

buffered crossbar switch. In IEEE INFO COM, pages 960-968, April

1995.

M. Shreedhar and G. Varghese. Efficient fair queuing using deficit round­

robin. IEEE/ACM Trans. Networking, 4(3):375-385, June 1996.

T. Szymanski. Design principles for self-routing nonblocking connection

networks with n log(n) bit-complexity. IEEE Trans. Comput., pages

1057-1069, October 1997.

T. H. Szymanski. Circular prefix computations. Technical report, Mc­

Master University, 2002.

Robert Endre Tarjan. Data Structures and Network Algorithms. Re­

gional Conference Series in Applied Mathematics. Society for Industrial

and Applied Mathematics, 1983. TAR r 83:1 P-Ex.

L. Tassiulas. Linear complexity algorithms for maximum througput in

radio networks and input queued switches. In IEEE INFOCOM, pages

533-539, 1998.

Y. Tamir and G. L. Frazier. High-performance multi-queue buffers for

vlsi communications switches. In ISCA '88: Proceedings of the 15th

Annual International Symposium on Computer architecture, pages 343-

354, Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 146

[TGTOlj

[ZB03j

v. Tabatabaee, L. Georgiadis, and L. Tassiulas. QoS provisioning and

tracking fluid policies in input queueing switches. IEEE/ A CM Trans.

Networking, 9(5), October 2001.

x. Zhang and L. N. Bhuyan. Deficit round robin scheduling for input­

queued switches. IEEE 1. Select. Areas Commun., 21(4):584-594, May
2003.

