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Abstract 

There is a tremendous demand for Internet core nodes to provide quality-of-service 

(QoS) guarantees for multimedia services, and to provide high switching capacity 

that makes use of the virtually unlimited bandwidth of optical fibers. The Internet's 

Success depends on the deployment of high-speed switches and routers that meet 

these two demands. We address theoretical and practical aspects of packet switch 
scheduling in high-speed data networks. 

First, we address short-term fairness III QoS scheduling for input-queued (IQ) 

switches. We show that existing practical scheduling algorithms for Internet routers 

with IQ switches are unfair over short time scales and potentially lead to increased jit­

ter. Subsequently, we present a scheduling policy based on credit-based fair queueing 

that provides better short-term fairness in QoS scheduling than existing solutions with 

comparable complexity. A flow-based iterative credit-based fair scheduler (iCBFS) is 

proposed for crossbar switches, that provides fair bandwidth distribution among flows 

at a fine granularity and achieves asymptotically 100% throughput, under uniform 

traffic. To reduce the implementation complexity of iCBFS, we present a port-based 

version of iCBFS that is tailored towards high-speed hardware implementation. 

Second, we address the problem of fair scheduling of packets in Internet routers 

with IQ switches and unity speedup. Scheduling in IQ switches is formulated as 

tracking the behaviour of an output-queued (OQ) switch that provides optimal per­

formance. We present the notion of "lag" as a performance metric that measures 

the difference between a packet's departure time in an IQ switch over that provided 

by an OQ switch. We prove that per packet mean lag is bounded for a maximum 

weight matching scheduling policy that uses lag values for its weights and derive a 
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bound on the mean lag value using a Lyapunov function technique. Furthermore, we 

propose a simple heuristic tracking scheduling policy and evaluate its performance by 
simulation. 

Finally, we present a novel distributed scheduling paradigm for Internet routers 

with IQ switches, called Cooperative Token-Ring (CTR) that provides significant 

performance improvement over existing scheduling schemes with comparable com­

plexity. In classical token-ring based scheduling for IQ switches, a separate token 

ring (an arbiter) is used to resolve contention for each shared resource (i.e., an out­

put port). Although classical token-ring based scheduling achieves fairness and high 

throughput for uniform traffic, under non-uniform traffic the performance degrades 

significantly. We show that by using a simple cooperative mechanism between the 

otherwise non-cooperative token rings (arbiters) the performance can be significantly 

improved and the scheduler is able to dynamically adapt to any non-uniform traffic 

pattern. To provide adequate support for rate guarantees in IQ switches, we present a 

Weighted Cooperative Token-Ring (WCTR), a simple hierarchical scheduling mecha­

nism. Finally, we analyze the hardware complexity introduced by the proposed CTR 

scheduling and describe an optimal hardware implementation for an N x N switch im­

plementing a CTR scheduler. We show that the hardware time complexity introduced 

by the proposed Cooperative mechanism is 8 (log N). 
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Chapter 1 

Introduction 

1.1 Introduction 

There is a tremendous demand for Internet core nodes to provide quality-of-service 

(QoS) guarantees for multimedia services, and to provide high switching capacity 

that makes use of the virtually unlimited bandwidth of optical fibers. The Internet's 

success depends on the deployment of high-speed switches and routers that meet these 

two demands. This work addresses switch scheduling in high-speed data networks and 

proposes several techniques to provide high switching capacity and QoS guarantees. 

This chapter is organized as follows: Section 1.2 provides an overview of the 

architecture and components of an Internet router; various switch fabric architectures 

are discussed in Section 1.3; the organization and contributions of this dissertation 

are described in Section 1.4; a list of acronyms used in this dissertation is provided 

in Section 1.5. 

1.2 Overview of IP Router Architecture 

A block diagram of typical router is shown in Figure 1.1. The blocks in Figure 1.1 

can be broadly partitioned into two groups based on the functionality: datapath and 

control plane. 

The control plane of the router include system configuration, management, and 

1 
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Control 
Plane 

Datapath 
Plane 

Incoming 
Packets 

Outgoing 
Packets 

Figure 1.1: Router Block Diagram. 

exchange of routing table information. These operations are performed relatively 

infrequently and are typically implemented in software. 

The datapath operations are performed on every packet that passes the router. 

These functions include forwarding decisions, switching through the router's switch 

fabric. When a packet arrives at the forwarding engine, its destination IP address is 

looked up from the forwarding table (using a longest-prefix match) and the packet 

header is updated accordingly. Subsequently, the packet header is used to determine 

the packet's output port where the packet is routed through the switch fabric. An 

overview of switch fabric architectures is provided in Section 1.3. A scheduler is used 

to resolve contention among packets that are destined to the same output port in fair 

manner or according to their priority levels. The scheduling problem is described in 

detail in Chapter 2. 

The packet forwarding process operates at the granularity of an entire IP packet, 
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which can be of variable-length, whereas switching is performed on smaller fixed­

length granularity cells such that a segmentation and reassembly process is used. In 

a packet-switch, segmentation and reassembly (SAR) is the process of breaking a 

variable-length packet into smaller fixed-length cells before transmission through the 

switch fabric and reassembling them into the proper order at the switch's output. 

This segmentation and reassembly simplifies the switch's design considerably and 

allows the implementation of transmission rates up to several Gbps per link in VLSI 

hardware. We assume fixed-length cell scheduling in this work - the words packet 

and cell are used interchangeably for the remainder of this dissertation. 

1.3 Switch Fabric Architectures 

In this section we provide an overview of the main switch fabric architectures. For 

the purposes of this dissertation, we classify switch fabric architectures based on their 

queueing discipline as it is a key factor in determining the switch's performance. We 

describe the following switch fabric architectures: output-queued, shared memory, 

buffered crossbar, and input-queued. 

1.3.1 Output-Queued Switch Fabric 

In an output-queued (OQ) switch fabric all cells are buffered in the egress side of 

the switch fabric as shown in Figure 1.2, and there is a constant delay for all cells 

through the fabric. This queueing discipline requires that the switch fabric works N 

times faster than the cell rate on the line card. In addition, the buffers in egress port 

should support up to N writes and 1 read every time slot. 

The major drawback of the OQ switch fabric is that it requires a speedup of N. A 

switch with a speedup of S can remove up to S packets from each input and deliver up 

to S packets to each output within a time slot, where a time slot is the time between 

packet arrivals at an input port. Unfortunately, for large or for high-speed data lines, 

memories with sufficient bandwidth are not available. 
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N 

• -.-r--.---+-J]] 1 
Non-blocking 
Switch Fabric 

• 
Figure 1.2: Basic architecture of an output-queued switch. 

1.3.2 Shared Memory Switch Fabric 

The shared memory switch fabric uses shared memory as the switch fabric such that 

all the inputs and output ports have access to a shared memory as shown in Figure 1.3. 

On the one hand, the shared memory switch fabric provides an efficient implemen­

tation of output queueing and provides optimal throughput and delay performance. 

On the other hand, the switch aggregate capacity (N x link speed) is limited by the 

memory read/write access time, within which N incoming and N outgoing cells in a 

time slot need to be accessed as shown in equation 1.1 

cell length 
Switch Capacity < ------.:::---­

- 2 x memory access cycle 
(1.1 ) 

For instance, with a cell length of 200 bytes and a memory access cycle of 5 ns, the 

switch capacity is limited to 160 Gbps 

1.3.3 Buffered Crossbar Switch Fabric 

In the buffered crossbar architecture a distributed array of buffers is used such that a 

buffer is used at each crosspoint of the crossbar as shown in Figure 1.4. The objective 

here is to maintain output ports as busy as possible by keeping the crosspoint buffers 
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N 

Shared 
Memory 

N 

Figure 1.3: Basic architecture of an N x N shared-memory switch fabric. 

non-empty. This architecture distributes contention resolution among all inputs and 

outputs: Independent input schedulers select packets to move from the line cards to 

the buffered crossbar; and independent output arbiters select packet from among all 

packets in the crossbar destined to the same output. This results in a simpler, more 

distributed implementation of 2N (N input schedulers, and N output schedulers) 

schedulers each with a complexity of 8(N) instead of one centralized scheduler with 

a complexity of 8(N2). 

Input1-,----~ __ _r----__ ~T_----~--

Input 2 -,----~ __ _r----__ ~T_----~--

Input 3 ---....------.... -.------111--.-----_&--

Output 1 Output 2 Output 3 

Figure 1.4: Basic architecture of a 3 x 3 internally buffered crossbar switch fabric. 

The main drawback of the internally buffered crossbar architecture is that a sep­

arate buffer is required at each crosspoint resulting in N2 buffers per priority class. 

Additionally, each crosspoint has a fixed amount of buffer space that is not shared 

among other inputs or outputs. Furthermore, this architecture requires flow control 

mechanisms integral to the datapath of the crossbar itself. 
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1.3.4 Input-Queued Switch Fabric 

In the input-queued (IQ) switch arriving cells are buffered at the input before being 

routed to the their intended destination as shown in Figure l.5. A crossbar is typically 

used as the non-blocking switch fabric. 

• ..+......-Outputl 
Non-blocking 
Switch Fabric \ / x\ 

• al-!--+OutputN 

Figure 1.5: Basic architecture of an N x N input-queued switch fabric. 

Unlike an OQ switch where a cell from each input can be simultaneously transmit­

ted to the same output, the set of cells that can be transmitted from inputs to outputs 

in an IQ switch must satisfy the so-called crossbar constraint: During every time-slot, 

each output can only accept data from a single output, which must concurrently be 

transmitting data only to that output. 

Input-queueing has the advantage that the bandwidth requirement on each input­

queue is proportional only to the port speed and not to the number of switch ports 

as only one read and one write operation is required per packet cycle on each queue. 

For an N x N IQ switch with a port speed of E, the total bandwidth requirement is 

2E per input queue. 

A scheduler is used during each time-slot to arbitrate among the head-of-line 

packets of each queue to be switched to the outputs. The scheduler must satisfy 

the crossbar constraint, provide fairness, and achieve good performance. Scheduling 

in IQ switches is explored in detail in Chapter 2. In essence, designing a scalable 

scheduler is the main challenge of this architecture and is the main topic addressed 

in this dissertation. 
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1.4 Dissertation Organization and Contributions 

This dissertation is organized as follows: 

This chapter introduces the problem domain of high-speed switching networks, 

provides some background on switching, and summary of the main contributions of 

this dissertation. 

Chapter 2 provides detailed background and related work on the current state-of­

the-art in IQ scheduling. 

In chapter 3 we present a scheduling algorithm for Internet routers with IQ 

switches based on credit-based fair queueing that provides better short-term fair­

ness in QoS scheduling than existing solutions with comparable complexity. First, 

we present a flow-based iterative credit-based fair scheduler (iCBFS), for crossbar 

switches, that provides fair bandwidth distribution among flows at a fine granularity 

and achieves asymptotically 100% throughput, under uniform traffic. To reduce the 

implementation complexity of iCBFS, we present a port-based version of iCBFS that 

is tailored towards high-speed hardware implementation. 

Chapter 4 presents a theoretical framework for evaluating the performance of IQ 

switches, and introduces the "lag" concept as a performance metric that measures 

the difference between a packet's departure time in an IQ switch over that provided 

by an OQ switch that provides optimal performance. We present several scheduling 

policies that use the "lag" as a performance metric and assess their performance using 

analytic and simulation methods. 

In Chapter 5 we present a novel distributed scheduling paradigm for Internet 

routers with IQ switches, called Cooperative Token-Ring (CTR) that provides sig­

nificant performance improvement over existing scheduling schemes with comparable 

complexity. In classical token-ring based scheduling for IQ switches, a separate token 

ring (an arbiter) is used to resolve contention for each shared resource (i.e., an out­

put port). Although classical token-ring based scheduling achieves fairness and high 

throughput for uniform traffic, under non-uniform traffic the performance degrades 

significantly. We show that by using a simple cooperative mechanism between the 

otherwise non-cooperative token rings (arbiters) the performance can be significantly 
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improved and the scheduler is able to dynamically adapt to any non-uniform traffic 

pattern. To provide adequate support for rate guarantees in IQ switches, we present a 

Weighted Cooperative Token-Ring (WCTR), a simple hierarchical scheduling mecha­

nism. Finally, we analyze the hardware complexity introduced by the proposed CTR 

scheduling and describe an optimal hardware implementation for an N x N switch im­

plementing a CTR scheduler. We show that the hardware time complexity introduced 

by the proposed cooperative mechanism is 8 (log N). 

Chapter 6 summarizes the results and contributions of this work and provides 

directions for future work. 

1.5 List Of Acronyms 

This section lists acronyms used in this dissertation: 

ATM Asynchronous Transfer Mode 

BGM Bipartite Graph Matching 

CMOS Complementary Metal-Oxide 

CTR Cooperative Token-Ring 

EiSLIP Exhaustive iSLIP 

EM Exhaustive Matching 

FCFS First-Come First-Served 

Gbps Gigabits per second 

FIFO First-In First-Out 

GBps Gigabytes per second 

HoL Head-of-Line 

iCBFS iterative Credit-Based Fair Queueing 

iDRR iterative Deficit Round Robin 

IDT Ideal Departure Time 

iLag Iterative Lag 

IP Internet Protocol 

IQ Input Queue/Queued/Queuing 

iSLIP Iterative SLIP 
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LPF Longest Port First 

LQF Longest Queue First 

MWL Maximum Weighted Lag 

OQ Output-Queued 

PIM Parallel Iterative Matching 

QoS Quality of Service 

RR Round Robin 

RRM Round-Robin Matching 

TRV Token Request Vector 

TRP Token Request Path 

WCTR Weighted Cooperative Token-Ring 

WDM Wavelength-Division Multiplexing 

WFQ Weighted Fair Queuing 

WPIM Weighted Parallel Iterative Matching 

VOIP Voice Over Internet Protocol 

VOQ Virtual Output Queue( d/ing) 



Chapter 2 

Background and Related Work 

Most commercial high-performance switches and routers (e.g., CISCO 1200[Cis04j, 

BBN [PCB+98]) employ IQ switches because the fabric and the memory of an IQ 

switch need to run only as fast as the line rate. This bandwidth memory requirement 

makes input queueing very appealing for switches with fast line rates or with a large 

number of ports. In this chapter we describe general background and related work 

on arbitration for IQ switches. 

This chapter is organized as follows: We describe the head-of-line (HaL) blocking 

problem in IQ switches in Section 2.1 and present a known architecture technique 

to reduce HaL blocking in Section 2.2. A general classification of arbitration algo­

rithms based on graph theory is described in Section 2.3. A paradigm for hardware 

implementation of arbitration algorithms is described in Section 2.4. We discuss ran­

domized scheduling algorithms in Section 2.6. Finally, we discuss arbitration based 

on matrix decomposition and load balancing in Section 2.7. 

2.1 Head-of-Line Blocking 

A well known problem in pure IQ switches with first-in-first-out (FIFO) input buffers 

is the head-ai-line (HaL) blocking problem. This problem occurs when cells are 

blocked from reaching a free output port because other cells that are ahead of it in 

the FIFO buffer. As shown in Figure 2.1, the cell behind the HaL cell at input port 

10 
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1 is destined for an idle output port 2, but it is blocked by the HOL cell. 

-- Cell blocked due to HOl blocking 

Input 1 --+ Output 1 

Input 2 --+ Output 2 

Figure 2.1: Head-of-line blocking in an IQ Switch. 

Karol et al. [KHM87] have shown that FIFO input-queueing limits the switch's 

throughput to a theoretical maximum of merely 2 - V2 ~ 58.6% of maximum band­

width under the assumption of uniform Bernoulli independent identically distributed 

(i.i.d.) traffic. For correlated arrival traffic, the throughput decreases to 50% [Li92]. 

One solution that has been proposed to reduce HoL blocking is to use virtual 

output queueing as described in the next section. 

2.2 Virtual Output Queueing 

Virtual output queuing (VOQ) architecture is commonly used for reducing HOL 

blocking such that each input maintains a separate queue for each output [TF88]. 

For an N x N switch, there are a total of N 2 queues such that each queue uses a 

FIFO scheduling policy and a scheduler is used to select a single packet from each 

input as shown in Figure 2.2. Qi,j is the queue used at input i to store packets 

destined for output j. 

In the VOQ architecture, incoming cells are queued at the input ports and a 

scheduling algorithm configures the fabric during each time slot and decides which 

inputs will be connected to which outputs. In an N x N switch the scheduler examines 

the contents of N2 virtual output queues and determines a conflict free match between 
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A (I) 

Non-blocking 
Swilch Fabric 

Scheduler 

°1(1) 

Figure 2.2: Virtual Output Queueing in an IQ Switch. 

inputs and outputs. 

In an IQ switch there are essentially two shared resources: the switch fabric and 

the outgoing link. Arriving packets are queued at the input port of the switch and 

they must first contend for access to the switch fabric (input contention), before 

contending for the outgoing link (output contention) as shown in Figure 2.3 

In essence the role of the scheduler in an IQ switch is to resolve input and output 

contention fairly and efficiently. In the next sections we describe various techniques 

for resolving this contention with diverse tradeoffs between the implementation cost 

and the achieved performance. 

2.3 Bipartite Graph Matching 

In an N x N IQ switch using VOQ, the scheduler determines in every time slot a 

conflict free match between inputs and outputs; that is each input is matched to 

at most one output and conversely each output is matched to at most one input. 
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A(t) 

Input 
Contention 

Output 
Contention 

Figure 2.3: Input and Output Contention in an IQ Switch. 

This scheduling problem is equivalent to finding a bipartite graph matching (BGM) 

[Tar83]. 

The graph corresponding to the scheduling problem has N source vertices that 

correspond to the N inputs of the switch, and N sink vertices that correspond to the 

outputs. An input and and output are connected by an edge if the corresponding 

VOQ is not empty- there are at most N 2 edges between source and sink vertices. In 

each time slot, a graph G = (V, E) that consists of a set V of 2N vertices, partitioned 

into two sets, namely N inputs and N outputs as shown in Figure 2.4 (a). At time 

slot n, the set of edges E has each edge connecting vertex i from the inputs set to 

vertex j for which Qi,j(n) > 0; that is, for each non-empty VOQ the graph has a 

corresponding edge. 

A matching M on this graph 9 is any subset of E such that no two edges in M 

have a common vertex; that is, at most one packet is transferred from each input and 

at most one packet is received at each output. Specifically, let Si,j (n) be a binary 



Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 14 

Request Graph, G Matching Graph, M 

Inputs Outputs Inputs Outputs 

0~ --~~~---- -0 

(a) (b) 

Figure 2.4: IQ Scheduling modeled as a bipartite graph matching problem: (a) Re­
quest Graph, g. (b) Computed Matching, M. 

service indicator such that Si,j(n) = 1 if input i is matched to output j at time slot 

n. A matching M must satisfy that 2:{:1 Si,j(n) ::; 1 and 2:;:1 Si,j(n) ::; 1 

There are various BGM algorithms with a tradeoff between their performance and 

implementation complexities [ADH98]. BGM algorithms can be broadly classified 

into three categories: maximum size matching, maximum weighted matching, and 

maximal matching, which are described in the next sections. 

2.3.1 Maximum Size Matching 

A maximum size Matching M on a graph 9 is one that maximizes the number of edges 

in the matching; that is, M = M ax(2:i,j Si,j (n)). The sequential time complexity of 

the maximum size matching is G(N2.5 ) [Din70]. 

Although using maximum size matching maximizes the instantaneous throughput 

by transferring the maximum number of cells during each time slot, it was shown 

that it could lead to starvation of some queues [MMAW99] and instability, even under 

admissible traffic, and for any switch size [KM03]. A queue is said to be unstable 

[KM03] if after a finite time, its occupancy never returns to zero with probability one. 
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2.3.2 Maximum Weighted Matching 

A maximum weight matching (MWM) on a bipartite graph with weighted edges 

is defined as a set of edges between input and output nodes with the maximum 

total weight among all possible sets satisfying the constraint that any input node 

is matched to at most one output node. At every time slot n, a weight Wi,j(n) is 

associated to every edge in the request graph, g; the maximum weighted matching 

finds a matching M that maximizes Li,j Wi,j(n)Si,j(n) and can be found by solving 

an equivalent network flow problem [AM093]. 

Several algorithms have been proposed based on MWM that use different functions 

to assign edge weights (e.g., the queue-length, the waiting time of the HOL packet, 

priority, or any other combination). 

The sequential run time complexity of MWM is 8(N3 log N)[AM093], [Tar83]' 

[MMAW99], which makes MWM prohibitively expensive to implement in hardware. 

Instead, most practical algorithms are based on simple heuristics that aim at max­

imizing the number of connections between inputs and outputs to achieve maximal 

size matching as described next. 

2.3.3 Maximal Size Matching 

A maximal matching is defined as one in which no edges can be added to it without 

first removing an existing edge. The sequential time complexity of maximal matching 

is 8(N2
) on a sequential model, which is lower than both maximum size and maximum 

weight matching. Most practical implementations of high-speed packet switches aim 

at achieving a maximal matching (e.g., iSLIP[McK99]' WPIM[SV95], iDRR[ZB03], 

iFair[NB02]' HSA[BDEA04]). The main distinction between the various maximal 

matching based algorithms is the heuristic used for selecting the edges that are added 

to the matching. 

Most maximal matching algorithms are implemented in hardware using an itera­

tive mechanism, which is described in Section 2.4, such that up to N inputs can be 

matched in each iteration, and the computation performed per iteration is 8(N). In 

the worst case, N iterations are required to converge to a maximal matching; however, 
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in practice only a fixed number of iterations are performed. 

Dai and Prabhakar proved that a speedup of 2 is sufficient to provide 100% 

throughput for any maximal matching based algoritnm [DPOO]. Conversely, Mneim­

neh et al. [MS03] proved that at least a speedup of two is required for maximal 

matching algorithm to provide 100% throughput; that is, the bound on the speed up 

of two is tight. 

2.4 Implementing Maximal Size Matching Using 

Parallel Matching Algorithms 

A simple paradigm that is commonly employed in implementing maximal matching 

is using an input arbiter at each input port to resolve input contention and an output 

arbiter at each output port to resolve output contention such that a maximal match is 

achieved by iteratively matching inputs to outputs. Specifically, two schemes can be 

classified under this paradigm: 2-phase, and 3-phase matching with different imple­

mentation tradeoffs. Initially, all the inputs and outputs are not matched. A 3-phase 

algorithm comprises the following phases: 

1. Request: Each unmatched input arbiter sends a request to every output arbiter 

for which it has a queued cell. 

2. Grant: Each unmatched output 

arbiter resolves output contention by choosing only one of the input requests 

and sends back a grant signal to the input port. 

3. Accept: Each input arbiter resolves input contention by choosing only one of 

the received grants and sends back an accept signal to the corresponding output 

arbiter. The input and output arbiter are considered matched. 

The previous phases are repeated until either a maximal matching is found or a 

fixed number of iterations are performed. 
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Anderson et al. [AOST93] proposed parallel iterative matching (PIM), a 3-phase 

algorithm, and used random selection at each input and output arbiter. Although 

finding a maximal matching using PIM may, in the worst case, take N iterations, it 

was shown that [AOST93] under uniform i. i. d. traffic, the algorithm converges to a 

maximal match in 8(1og(N)) iterations; however, for a single iteration the throughput 

is limited to approximately 63% for uniform i.i.d. traffic. 

Iterative round-robin matching (iRRM) [MVW93] works similarly to PIM, but 

uses round-robin schedulers instead of random selection at both inputs and outputs. 

McKeown proposed iSLIP [McK99] as an improvement over PIM and iRRM. iSLIP 

uses rotating priority round-robin arbiters. Under uniform traffic, the pointers used 

in the input and output arbiters for selection (i.e., grant and accept selection) tend 

to point to different elements (desynchronize) such that each arbiter tends to make 

different selection from other arbiters and the largest number of inputs and outputs 

are matched. Consequently, under uniform Bernoulli i.i.d. traffic iSLIP arbiters adapt 

to a time-division multiplexing scheme, providing a perfect match and 100% through­

put [McK99]. However, under non-uniform traffic, the pointers are not necessarily 

desynchronized and the performance potentially degrades. 

In a 2-phase algorithm [ChaOO] each input arbiter sends at most one request; 

subsequently, it receives at most one grant signal, and the accept phase is not needed; 

for example, dual round robin (DRR) [Li04] performs the following 2-phases: 

1. Request: Each input sends an output request corresponding to the first non­

empty VOQ in a fixed round-robin order, starting from the current pointer 

position. The pointer remains at that nonempty VOQ if the selected output is 

not granted in the second phase. 

2. Grant: If an output receives one or more requests, it chooses the one that 

appears next in a fixed round-robin schedule starting from the current pointer 

position. The output notifies each input whether or not its request was granted. 

The pointer of the output arbiter is incremented to one location beyond the 

granted input. If there are no requests, the pointer's position does not changes. 
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One the one hand, a 2-phase algorithm requires less communication and is simpler 

to implement than a 3-phase; on the other hand, a 3-phase algorithm tends to converge 

to a maximal matching faster than a 2-phase algorithms. Consequently, with the same 

number of iterations, a 3-phase algorithm usually provides a better performance. For 

simplicity, we refer to all scheduling schemes based on either 2-phase or 3-phase 

matching paradigm as IIRC A. 

Figure 2.5 shows a typical interconnection of 2N arbiters to implement a 3-phase 

matching for an N x N switch. Each arbiter is usually implemented using a rotating 

round-robin priority encoder that operates in 8 (log N) time. 

..- Grant 
00 Arbiter 

:t:::: t 
..0 
C\J 

Z 
!o.-
Q) -- ...... 

00 00 

a Grant 0> 

0 
Arbiter Q) 

2 a: > ...... C 
::::l 0 
0- 00 
C 0 - Q) 

0 0 
Q) ...... 
CO Grant ...... Arbiter en N 

Figure 2.5: Hardware Interconnection Structure of 3-Phase Matching. 

2.5 Exhaustive Matching 

Li et al. [LPC02] proposed coupling IIRCA paradigm with exhaustive matching(EM). 

In EM, after an input is matched to an output using IIRGA, a VOQ is served contin­

uously until it becomes empty; that is, EM attempts to achieve high throughput by 
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maintaining the current match between inputs and outputs as long as possible, and 

performing a match between the unmatched input and output ports when needed. 

This scheme tends to perform well under non-uniform bursty traffic, and has the 

potential of amortizing the cost of arbitration time over multiple time slots. Simula­

tions results for different variations of exhaustive matching algorithms are reported in 

[KC03] using a 2-phase and 3-phase matching where it was shown that exhaustive is­

LIP (EiSLIP) produces the best results among various proposed exhaustive matching 

algorithms (e.g., exhaustive dual round-robin matching, exhaustive PIM, etc.). 

2.6 Randomized Scheduling Algorithms 

Randomized scheduling algorithms have been proposed for IQ switches [Tas98] in an 

attempt to simplify the scheduling problem and provide fairness. The basic idea of 

randomized scheduling is to select the best matching from a set of random matches. 

The best matching is defined to be the matching with the maximum weight. Various 

weight functions have been proposed and analyzed in the literature [GPS03]. 

Goudreau et al. [GKROO] proposed using a randomized technique that addresses 

the problem of low throughput under non-uniform traffic for TIRC A schedulers, the 

Shakeup scheduling policy. In the shakeup scheduling policy, after a maximal match­

ing is computed (say using any TIRCA scheduler) each unmatched input is allowed 

to force a match for itself randomly even though an existing match has to be knocked 

off. The argument for this scheme is that by randomly breaking matches, adding 

new ones the algorithm will escape the "local minima" of a maximal matching and 

probabilistically converges to a maximum size match. Although theoretically sound, 

no analysis has been made on the number of iterations required for converging, and 

its implementation feasibility is unknown. Furthermore, given the randomized nature 

of the algorithm, it is not clear how it can be extended to provide rate guarantees. 

In other words, Shakeup attempts to find the global maximum, but the feasibility of 

its implementation in a real system is unknown because it takes more iterations to 

converge, mostly because all the selections are done randomly. 
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2.7 Birkhoff von Neumann Switches 

Chang et al. [CCH01] formulated IQ scheduling as matrix decomposition that can be 

performed using Birkhoff von Neumann decomposition, which decomposes a doubly 

substochastic matrix into a convex combination of (sub )permutation matrixes. This 

decomposition is based on the assumption that an arrival rate matrix is given that 

specifies the arrival rates between every input-output pair. 

The off-line sequential computational complexity to compute the permutation 

matrices is 8(N4.5 ) and the number of permutation matrices is 8(N2
). Subsequently, 

the on-line sequential computational complexity to schedule the permutation matrices 

is 8 (log N). 

Although this scheme provides 100% throughput with unity speedup, it requires: 

explicit knowledge of all the arrival rates; the need to store a.ll the computed permu­

tation matrices, which does not scale for large N; and the need to perform complex 

calculations when arrival rates change. In addition, because the decomposition algo­

rithm uses long term traffic arrival statistics, it does not adapt too well to dynamic 

traffic fluctuations. Although other decomposition methods have been proposed that 

reduce the number of permutation matrices, in general, they do not provide good 

throughput; for example, the throughput for the decomposition scheme in [KKLS03] 

is 8(1/ log N), which tends to 0 for large N. 

N 
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Figure 2.6: Architecture of load-balanced Birkhoff-von Neumann switch. 
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Load-balanced Birkhoff-von Neumann [CLJ02] switches attempt to trivialize the 

arbitration process. A load-balanced routes consists of two stages as shown in Fig­

ure 2.6. First, a load balanced stage spreads arriving packets equally among line 

cards. Then, a forwarding stage transfers packets from the line cards to their in­

tended destination. In addition to the delay incurred by using a 2-stage switch, the 

main drawback of this architecture is that packets can be missequenced, which may re­

quire complicated hardware implementation and non-scalable computation overhead. 

Providing a scalable solution that can simultaneously provide QoS support and solve 

the packet missequencing problem is the major difficulty in the load-balanced router 

architecture. 

In this chapter we discussed background and related work on arbitration for IQ 

switches. We described the head-of-line blocking problem in pure IQ switches and 

showed how the virtual output queueing architecture combined with a matching algo­

rithm could reduce HOL blocking. We presented a classification of matching into max­

imum weighted, maximum size, and maximal size matching and compared their per­

formance tradeoffs. Finally, we discussed other scheduling approaches that includes 

exhaustive matching, randomized scheduling, and Birkhoff-von Neumann switches. 



Chapter 3 

Credit-based Fair Scheduling 
Input-Queued Switches 

• 
In 

We present a novel QoS scheduling algorithm for Internet routers with IQ switches 

based on credit-based fair queueing. We present a flow-based iterative credit-based 

fair scheduler (iCBFS), for crossbar switches, that provides fair bandwidth distribu­

tion among flows at a fine granularity and achieves asymptotically 100% throughput, 

under uniform traffic. To reduce the implementation complexity of iCBFS, we present 

a port-based version of iCBFS that is tailored towards high-speed hardware imple­

mentation. We show by simulation that iCBFS provides better fairness than existing 

schedulers in the literature, with comparable hardware complexity. 

3.1 Introduction 

Although several practical scheduling algorithms such as iDRR [ZB03], WiSLIP 

[McK99]' and WPIM [SV95] (described in the next section) have been proposed for 

IQ switches to provide QoS guarantees, these algorithms provide bandwidth guar­

antees over coarse granularity (i.e., a frame) and exhibit unfairness over short time 

scales. Specifically, these schemes are fair only over timescales longer than a frame 

size, where the frame size is one round-robin of service over all backlogged flows in the 

switch such that all backlogged flows are served in proportion to their reservations. 

Over timescales less than a frame, these schedulers do not serve flows in proportion 

to their reservations and flows can be served in any arbitrary order. Although the 

22 
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aggregate bandwidth received by a flow over the entire frame is in proportion to its 

reservation, within a frame time some flows may not get any service until the very 

end of the frame and bandwidth distribution over the frame time is nonuniform. Fur­

thermore, as the switch size increases, the number of queues in the switch increases 

and the frame size becomes larger; thereby, this unfairness leads to increased jitter, 

which is undesirable for multimedia services like VOIP. It is this problem that our 

proposed scheduler solves. We emphasize that this problem can not be solved by 

using a smaller frame size because the frame size is limited by the resolution of the 

minimum allocatable fraction of bandwidth per flow; for example, consider a future 

core router with link speeds of 100 Gbps. For a flow to reserve only 10 Mbps, or 0.01 

percent of the link capacity, the frame size needs to be at least 10000 time slots. 

Bensaou et al. [BTC01] have proposed credit-based fair queueing for OQ switches. 

In this chapter, we propose a scheduling algorithm for IQ switches based on credit­

based-fair-queueing [BTC01], called iterative credit based fair scheduling (iCBFS). 

Our simulation results show that iCBFS provides fair bandwidth distribution among 

flows bandwidth at a fine granularity, and solves the unfairness for timescales smaller 

than a frame size; thereby our algorithm provides better short-term fairness than 

existing schemes, with comparable hardware complexity. In addition, iCBFS achieves 

asymptotically 100% throughput, under uniform traffic. Note that the short-term 

fairness problem addressed by iCBFS is orthogonal to the CTR presented in Chapter 

5. In essence, the iCBFS scheme presented in this chapter could be combined with the 

WCTR presented in Section 5.8 to provide rate guarantees and short-term fairness. 

This chapter is organized as follows. Section 3.2 provides a review of related work 

on scheduling for IQ switches. Section 3.3 discusses fairness in IQ schedulers, presents 

our proposed flow-based scheduler (iCBFS), and compares its performance to other 

scheduling schemes. In section 3.5, we propose a port-based version of (iCBFS) that 

is tailored towards efficient high-speed hardware implementation. Finally, section 3.7 

concludes this chapter and summarizes our contributions. 
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3.2 Related Work on QoS Scheduling in IQ Switches 

McKeown [McK99] proposed "weighted iSLIP" (WiSLIP) as a variation of iSLIP that 

can allocate bandwidth nonuniformly to different inputs. The bandwidth from input 

i to output j is given by the ratio Iij = r, where nij is reservation for the inputi-
'J 

outputj pair, and dij is the aggregate reservation for output j. Instead of each arbiter 

maintaining an ordered circular list 5 = 1, ... , N as in iSLIP, the list is expanded 

in WiSLIP at output j to the ordered circular list 5j = 1, ... , Wj , where Wj=lowest 

common multiple d ij and input i appears r x Wj ; that is, the size of the circular 
'J 

changes based on the reservation values. 

Stiliadis [SV95] proposed weighted PIM (WPIM) that allocates output bandwidth 

among inputs based on reservations made during an admission control phase. In 

WPIM, the time axis is divided into frames with a fixed number of slots per frame 

(e.g., a frame is typically 1000 slots [SV95]). The reservation unit is slot/frame. 

Consequently, WPIM provides bandwidth guarantee at a coarse granularity of a frame 

sIze. 

Ni and Bhuyan [NB02] proposed a fair scheduling algorithm for IQ switches called 

iFS, which is based on virtual time. In iFS, each output link maintains a fair queueing 

engine, which assigns a virtual time to every incoming packet based on bandwidth 

reservation of the packet's flow. The incoming packet is then queued in a FIFO input 

buffer on a per flow basis. The algorithm then executes a maximal matching scheme 

based on virtual time, where only the grant and accept stages are executed. 

On the one hand, by using virtual-time stamps for every incoming packet, iFS 

[NB02] can honour bandwidth reservations at a very fine granularity better than 

most existing schemes; on the other hand, the cost of this algorithm is the increased 

complexity in implementing N virtual-time based fair queueing engines. 

A major problem with virtual-time-based approaches is the time stamp overflow. 

Because time stamp is an increasing function of the time that depends on a common 

virtual clock, which in turns reflects the value of the time tag of previously served 

packets, the virtual clock cannot be reinitialized to zero until the system is completely 

empty and all sessions are idle, which although statistically finite can be extremely 
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long, given that most real-communication traffic exhibits self-similar patterns. This 

may easily cause an overflow in the time tag unless special hardware algorithms are 

used [CJGL99j. Floating-point units are usually used in computing the virtual-time 

stamp. In addition, virtual-time-based approaches require that packets be sorted ac­

cording to their time tags by the fair queueing engine. In iFS, every incoming packet 

needs to be assigned a virtual time-stamp and inserted into a sorted list. Therefore, 

for practical implementation of iFS, a very high-speed fair queueing hardware engine 

needs to be designed to compute virtual time-stamps in floating point, perform sort­

ing, and be able to process up to packets during each time slot. These requirements 

are expensive to implement in hardware. 

To overcome the complexity of using a virtual-time-based fair-queuing engine at 

each output, and assigning a virtual time-stamp to each incoming packet, Zhang and 

Bhuyan [ZB03j proposed iDRR, a IIRC A scheduling scheme based on deficit round­

robin. In iDRR, each input and output maintain a circular list such that inputs and 

outputs are matched in round-robin based on a quota value assigned by deficit-round­

robin engines, in proportion to their reservations. Each matched input-output pair 

may transfer packets until it uses its uses its available quota or there are no more 

packets to transfer. A port-based version of iDRR, called iPDRR was also proposed 

in [ZB03j along with its hardware implementation. 

3.3 A Flow-based Fair Scheduling Algorithm 

First, a definition of fairness in IQ switch scheduling is presented. Second, we de­

scribe the architecture of our proposed flow-based iterative credit-based fair scheduler 

(iCBFS). Third, we present iCBFS algorithm in detail. Fourth, we evaluate the per­

formance of iCBFS using various traffic models, and compare its fairness to WiSLIP, 

WPIM, and iDRR. 

3.3.1 Definition of Fair Scheduling 

We assume a work-conserving IQ switch, and use a definition of fairness similar to 

[NB02j and [ZB03j. Let jloWk(i,j) denote the kth flow from input i to output j with 
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bandwidth reservation Sk, and Wk(t l , t2J be the amount of jlowk(i,j) traffic served 

in the interval (tl' t2J. Two flows jloWM(il,jd and jlowN(i2,j2) are in contention if 

i l = i2 or jl = j2; that is, in an IQ switch, there are essentially two shared resources: 

the crossbar, where flows at each input contend (input contention); and the bandwidth 

of each outgoing link, where flows destined to the same output link contend (output 

contention). For any two backlogged flows jloWM(il,jl) and jlowN(i2,j2) that are 

in contention, a scheduling scheme is ideally fair in (tl' t2J if wM
S<:;.t2) = WN.t~.t2) 

That is, contending flows are served in proportion to their reservations. This 

definition of fairness, of course, holds only in an idealized fluid flow network. When 

the network is more realistic and serves the traffic flows by a nonnegligible quantum 

of variable size (packet by packet), the definition of fairness can be written as 

I WM(t l , t2J _ WN(t l , t 2 J
1 
< B 

SM SN-

where B is a bound that gives a measure of fairness, also called fairness index [GoI94J. 

The smaller the fairness index, the fairer is the scheduling algorithm. 

3.3.2 Architecture of iCBFS Switch 

The basic architecture of iCBFS is shown in Figure 3.1; for each output link we 

maintain a credit-based fair queueing (CBFQ) arbiter and a separate queue is used 

for each flow at the input ports. The scheduling algorithm is based on a fIRC A 

policy. 

The basic idea of iCBFS is to assign each flow a counter that gets incremented 

in proportion to the flow's reservation such that when the counter reaches a certain 

threshold value, its corresponding flow is flagged as a candidate, and is allowed to 

transmit a packet across the switch; subsequently, the counter is decremented after 

transmission. These counters are maintained by the CBFQ arbiters and are used to 

fairly resolve output contention as described in the next section. 

In addition to the counters used by CBFQ arbiters, each input arbiter tracks the 

aggregate reservation from its port to all outputs, and uses another set of counters 

to track the aggregate number of packets transmitted to each output. These input 
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Figure 3.1: Architecture of a flow-based credit-based fair queueing switch. 

arbiters' counters are used to fairly resolve input contention as described in the next 

section. All counters can be updated independently in parallel, which suits efficient 

hardware implementation. 

Let the average packet arrival rate at input i for output j be Aij. The incoming 

traffic is called admissible if L~l Aij < 1 , and L~=l Aij < 1, We assume that flows' 

reservations are admissible. 

3.3.3 Description of iCBFS algorithm 

In an N x N switch, for each jloWk(i,j) going from input i to output j, the input 

arbiter i uses a separate queue qjk, and the CBFQj arbiter maintains a counter Kjk 

and a bandwidth share Sjk. Let Qj = qjl, qjl, ... ,qjJ be the set of queues for flows 

1, ... , J that are destined to output j, with bandwidth shares Sjl 2: Sj2 2: ... 2: SjJ. 

Initially, all counters are set to zero. Each CBFQj engine updates the counters as 

follows: Kjk = Kjk + =SSk; that is, the backlogged queue with the largest share, at 
)1 

each CBFQ engine, is chosen as the reference queue to calculate a pro-rated share of 

bandwidth each backlogged queue should receive. Kjk is the accumulated credit for 

jlowk destined to output j. Each jloWk(i,j) with Kjk 2: 1 and /qjk/ > 0 is marked 
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as candidate and can be used during the iterative matching phase as described next. 

In addition to the counters used by CBFQ arbiters, each input arbiter i uses a 

set of N counters G; = Gil, Gn , .. . , G;N such that G;j indicates the current available 

quota of the input;-outputj pair. The quota is the number of reserved slots per frame 

for each input;-outputj pair. Let R;j represent aggregate reserved bandwidth from 

input; to outputj . Each input arbiter i then assigns a quota to the counter values 

Gil, Gn , ... ,GiN such that G;j indicates the current available quota of the input;­

outputj pair. These quotas can be either statically or dynamically reconfigured. In 

the static approach, a fixed minimum quota value (qm;n) is assigned to the minimum 

possible aggregate reservation Rm;n. Subsequently, each aggregate reservation Gij 

is assigned a quota Rm~~min' In the dynamic approach, the value of qmin can be 

dynamically calculated based on the current flow with minimum reservation and the 

quotas of all other flows are calculated accordingly. 

Initially, all inputs and outputs are unmatched. Then in each iteration: 

1. Request: Each unmatched input sends a request to every output for which it 

has a queued packet. 

2. Grant: If an unmatched output receives any requests, it chooses any candidate 

flow that belongs to an unmatched input and send a grant to this flow at its 

corresponding input. Note that counters are updated if there are no candidate 

flows for any of the requests. 

3. Accept: If an unmatched input receives any grants, it chooses the flow with the 

largest quota for its counter. Note that selecting the flow with the largest quota 

resolves input contention in fair and simple manner. 

In each time slot, for every selected flow, the switch transfers a packet of its head­

of-line (HOL) queue. The input arbiter decrements the quota by 1 and the output 

arbiter decrements the flow's counter value by 1. The previous algorithm executes 

until either no more matches can be made or for a fixed number of iterations. 

To circumvent flows from overusing or underusing their reservations, we require 

all quotas and counters be reinitialized after some period of time. For simplicity, we 

assumed a fixed frame size (e.g., 1000 slots) after which all the counters are initialized. 
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3.4 Simulation Results 

First, the switch is set such that different flows have different reservations and the 

throughput per flow is measured to evaluate the fairness of the scheduler. Second, 

the switch setting is such that all flows have equal reservations and the performance 

is measured for a 16 x 16 switch under uniform Bernoulli i.d.d. traffic. The number of 

iterations was fixed to 4. The performance of iCBFS is compared to WiSLIP, iDRR, 

and WPIM. 

3.4.1 QoS Traffic Model 

To illustrate the fairness of iCBFS in bandwidth allocation, a 4 x 4 switch was sim­

ulated such that each input has four flows, each going to a different output with a 

different bandwidth reservation. Let Ik(i,j) represent flow k from input port ito out­

put port j. In the simulated switch, fr (0,0), 12(1,0), /3(2,0), 14(3,0) have reserved 

10, 20, 30, and 40 percent of the bandwidth, respectively, but they always maintain 

the same actual arrival rate. Other flows have a load of 5 percent each. This traffic 

model has been used in [NB02] and [SV95]. We used equivalent switch settings for 

iCBFS, iDRR, and WPIM with equivalent frame size of 1000 slots. Figures 3.2, 3.3, 

3.4, 3.5 shows the throughput per flow using iCBFS, iDRR, WiSLIP, and WPIM, 

respectively, after 750 time slots. The value of 750 represents 75 percent of the frame 

size and was chosen to illustrate the short-term unfairness problem present in other 

schemes and the superiority of iCBFS in solving this problem. 

3.4.1.1 ICBFS vs. iDRR 

Both iCBFS and iDRR were simulated with qmin = 50 slots and r min = 5% with static 

counter initialization after 1000 slots. Although iDRR [ZB03] avoids the complexity of 

the virtual-time approach used in iFS, it does so at the expense of other performance 

metrics such as delay and fairness. iDRR possesses all the deficiencies inherent in 

deficit-round-robin service, namely that it is fair only over time scales longer than 

frame, and it has unbounded delay (the delay depends on local switch settings that 

can be arbitrarily large; see [GVC96] p. 3). As shown in Figure 3.3, at the rightmost 
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Figure 3.2: Throughput per flow using iCBFS. 
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Figure 3.3: Throughput per flow using iDRR. 
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Figure 3.4: Throughput per flow using WiSLIP. 
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Figure 3.5: Throughput per flow using WPIM. 
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point of the graph, h (0,0), 12(1,0), h(2,0), 14(3,0) and receive 13, 26, 40, and 20 

percent of the bandwidth, respectively. Specifically, 14(3,0) receives only half of its 

reserved bandwidth share leading to a large delay and jitter. In contrast, iCBFS 

is able to precisely allocate the bandwidth among the flows in proportion to their 

reservation. 

3.4.1.2 IPCBFS vs. WiSLIP 

As shown in Figure 3.4 at the rightmost point of the graph, WiSLIP does not precisely 

allocate bandwidth among flows in proportion to their reservations; h (0,0) receives 

15 percent of the bandwidth instead of its reserved 10 percent. Consequently, both 

12(1,0) and h(2, 0) receive only 18% and 27% instead of 20% and 30%, respectively. 

In contrast, iCBFS is able to precisely allocate the bandwidth among the flows in 

proportion to their reservation. We identify the unfairness in iSLIP and its vari­

ant WiSLIP as caused by the simple operation of the rotating round-robin priority 

arbiters-the output arbiters do not track precisely how much bandwidth each in­

put port uses. Specifically, iSLIP and all its variants [McK99] use simple rotating 

round-robin priority arbiters at each output arbiter with a pointer gi to the current 

highest priority input of the round-robin schedule. This pointer gi is only incremented 

(modulo N) if, and only if, the grant signal is accepted in the first iteration of the 

algorithm. For all subsequent iterations, the pointer is not updated even if a granted 

input is accepted. Although this scheme elegantly eliminates starvation in both is­

LIP and its variants, it leads to impreciseness in tracking the bandwidth allocated to 

each input port (see [McK99] for a detailed explanation regarding the pointer update 

and the starvation problem). In addition, as the switch size increases the number 

of elements at each output arbiter's circular list increases and these elements can be 

positioned in any order. Consequently, the time required to serve all elements in the 

list will increase and the short-term unfairness will manifest itself clearly. 

3.4.1.3 IPCBFS vs. WPIM 

Although WPIM is fair over a time scale larger than the frame size (typically 1000 

slots [SV95]), it is unfair over shorter time scales. As shown in Figure 3.5 at the 
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rightmost point of the graph,h(O, 0), 12(1,0), 13(2,0), and 14(3,0) receIve 13,26, 

28, and 32 percent of the bandwidth, respectively. This unfairness is caused by the 

uniform random selection used at the output arbiters. In essence, all flows with 

available credit are treated equally until their credit is used up. Consequently, flows 

with higher bandwidth reservations than others receive their differential bandwidth 

share only at the end of a frame, whereas iCBFS distributes this differential bandwidth 

share uniformly over the entire time scale. 

When all flows use their reserved credits, WPIM reduces to PIM and all unreserved 

bandwidth is distributed equally among all inputs [SV95], whereas iCBFS distributes 

unreserved bandwidth among all inputs in proportion to their reservations. 

In summary, iCBFS provides fair bandwidth among flows in proportion to their 

reservations. iCBFS provides significantly better fairness than WiSLIP, WPIM, and 

iDRR over time scales less than a frame size. We emphasize that as the switch size 

increases, the frame size required to serve all the input ports increases proportionally 

and the short-term unfairness problem manifests itself clearly in increased jitter. The 

simple case of a 4 x 4 switch was only used to simplify the presentation. In addition, 

as the link speed increases the frame size would also increase. 

3.4.2 Uniform Traffic 

In addition to providing fair bandwidth among flows in proportion to their reserva­

tions, we evaluated the performance of iCBFS when all flows have equal reservations. 

Figure 3.6 shows the average delay of iCBFS compared to iSLIP, WPIM, and iDRR 

under uniform i.i.d. Bernoulli traffic. Similar to other scheduling schemes, iCBFS is 

capable of achieving asymptotically 100% throughput under uniform traffic. However, 

this traffic model is not realistic for Internet routers, which are usually non-uniform. 

3.4.3 ON/OFF Markov-Modulated Arrivals 

Figure 3.7. shows the average delay for iCBFS compared to iDRR, WiSLIP, and 

WPIM under an ON/OFF Markov Modulated Process with geometric burst size of 

16. This traffic model is described in detail in [For04]. 
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Figure 3.6: Average Delay of iCBFS, iSLIP, WPIM, and Output-Queueing under 
uniform Bernoulli i.i.d. Traffic. 
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Figure 3.7: Average Delay under 2-state Markov-modulated arrivals with average 
burst size of 16. 
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As shown in Figure 3.7, the average delay for iCBFS is almost identical to iDRR, 

WiSLIP and WPIM. 

3.5 A Port-based Fair Scheduling Algorithm 

There is a trade-off in the design of high-speed switches between fairness among 

flows and simplicity of hardware design required for high-speed implementation. On 

the one hand, flow-based-scheduling guarantees fairness among flows by isolating 

non-conforming flows and provides bandwidth guarantees to individual flows; on the 

other hand, it makes hardware design relatively complex, and does not scale well 

as the number of flows grows. Port-based scheduling [SV95] allows simple hardware 

implementation at the cost of a coarse granularity of bandwidth guarantee. Rather 

than tracking individual flows at each input port, a port-based scheduler tracks the 

aggregate bandwidth reservation at each input port. Consequently, the complexity 

of a port-based scheduler is proportional to the switch size instead of the number of 

flows, which can be significantly larger. Thus, port-based scheduling can reduce the 

complexity of the scheduler considerably. 

We propose to divide scheduling into two layers: CBFQ per virtual queue at the 

input side (labelled VCBFQ(i,j) for packets at input port i destined to output j), 

and a port-based scheduler, PCBFQj, at each output port j. VCBFdi,j) can be 

implemented in software using dynamic RAM (DRAM), and PCBFQj can be easily 

implemented in hardware. Intuitively, using this hierarchical scheduling scheme, the 

complexity of the original CBFQj engine at each output j is distributed among all the 

input ports and the PCBFQj only deals at the abstraction of port-based scheduling; 

thus simplifying the design considerably. 

The PCBFQj, at each output port j, maintains a counter Kij and a bandwidth 

share 5ij for the aggregate bandwidth reservation from input i to output j. Similar 

to iCBFS, each input arbiter i uses a set of counters Gij to track the aggregate quota 

for each inputi-outputj pair. A VOQij becomes candidate if Kij ?: 1. The port­

based of iCBFS, called iPCBFS would execute the request, grant, and accept stages 

as described in the previous section. 
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Note that the simulation results for iPCBFS are identical to the simulation results 

for iCBFS described Section 3.4. 

3.6 Complexity of iCBFS 

We assume a CRCW PRAM model, and estimate the complexity of iCBFS scheduling 

for an N x N switch. In the iCBFS algorithm, each time an output arbiter selects a 

flow to send a grant signal, all the operations executed are 8(1) time. Similarly, each 

time an input arbiter selects an input to send the accept signal, all the operations 

executed are 8(1) time. 

The priority sort of the flows to select the flow with the largest share at each 

output arbiter changes only at the burst level timescale. That is, each flow's share is 

allocated upon the admission of a new flow and does not change during its lifetime. 

Consequently, the sorting consists only of extracting the pre-ordered list of active 

flows from a static list. Note that iDRR also maintains a pre-ordered list of active 

flows such that the flow with the smallest reservation is always used in calculating 

the quota for other flows. During the grant stage of iCBFS, the counter values do not 

need to be sorted according to their values. Consequently, we only need to compare 

each counter's value to 1. We point that all the counters' update and comparison 

operations can be implemented using integers. 

In iCBFS, each output arbiter needs to maintain a counter for each flow, whereas 

in iPCBFS the number of counters is fixed and equals N. 

Similar to all algorithms based on I1RGA paradigm, both iCBFS, and iPCBFS 

may require up to N iterations in the worst case and an average of 8 (log N) iterations 

for uniform traffic. 

3.7 Conclusion 

We proposed iCBFS, a flow-based fair scheduling algorithm for Internet routers with 

IQ switches. We showed through simulation that iCBFS can fairly allocate band­

width in proportion to flows' reservations and provide considerably better fairness 

over short-time scales compared to all other schemes; thereby, iCBFS reduces the 



Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 40 

jitter and delay for multimedia services like VOIP and video-an-demand. In addi­

tion, the algorithm achieves 100% throughput for uniform traffic. To simplify the 

implementation complexity of iCBFS, we proposed a port-based version of iCBFS, 

iPCBFS, which is simpler to implement in hardware. 



Chapter 4 

On Tracking the Behaviour of an 
Output-Queued Switch 

We address the problem of fair scheduling of packets in Internet routers with IQ 

switches and unity speedup. Scheduling in IQ switches is formulated as tracking the 

behaviour of an OQ switch that provides optimal performance. We present the notion 

of "lag" as a performance metric that measures the difference between a packet's 

departure time in an IQ switch over that provided by an OQ switch. We prove that 

per packet mean lag is bounded for a maximum weight matching scheduling policy 

that uses lag values for its weights and derive a bound on the mean lag value using 

a Lyapunov function technique. Furthermore, we propose a simple heuristic tracking 

scheduling policy and evaluate its performance by simulation. 

4.1 Introduction 

The Internet's success depends on the deployment of high-speed switches that provide 

QoS guarantees for multimedia services, and high switching capacity that makes use 

of the virtually unlimited bandwidth of optical fibers. 

On the one hand, the demand of QoS guarantees can be met using OQ switches, 

which provides optimal throughput. In addition, much research effort has been de­

voted to packet scheduling at output ports to support fair bandwidth sharing that pro­

vides delay bounds for regulated traffic(e.g., weighted fair queueing (WFQ) [PG93]). 

However, output queueing for an N x N switch requires the switching fabric and 

41 
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memory to run up to N times faster than the line rate; unfortunately, for large N or 

for high-speed data lines, memories with sufficient bandwidth are not available. On 

the other hand, the fabric and the memory of an IQ switch need only to run as fast as 

the line rate. This property makes input queueing very appealing for switches with 

fast line rates or with a large number of ports. One method that has been proposed 

to reduce HOL blocking is to increase the speedup of a switch (See Section 1.3.1.). 

A theoretical result [CGMP99] established that an N x N combined input-and 

output-queued (CIOQ) switch with a speedup of two could exactly emulate an N x N 

OQ switch for any traffic pattern of input cells. Emulation occurs at every time in­

stance if, under identical inputs both systems produce identical departures. Unfor­

tunately, the complexity of the scheduling algorithm presented in [CGMP99] renders 

OQ switch emulation infeasible (see [KPCS99], [MRS03] for a discussion of the com­

plexity). The speedup requirement translates to a smaller time available for the exe­

cution of the arbitration algorithm. In a hardware implementation, reduction of the 

available time by a factor of two poses a substantial problem, although the difference 

does not seem significant asymptotically; it translates to a requirement of doubling 

the operating frequency of the arbiter, which might not be practically achievable. 

The tradeoff between the delay and speedup in a CIOQ switch has been analyzed 

in [GLPS04]. Furthermore, Minkenberg [Min02] has shown that exact emulation of 

an OQ using a CIOQ switch is possible only if the CIOQ switch has infinite output 

buffers. 

Most commercial high-performance switches and routers (e.g., CISCO 1200 [Cis04], 

BBN [PCB+98], Lucent Cajun [Luc04] family, or Avici TSR45000 [Avi04]) use IQ 

switches. Most of these high-speed switches are built around a crossbar switch that 

is configured using a centralized scheduler designed to provide high throughput. 

We consider scheduling policies in an IQ-crossbar switch with a unity speedup. 

Given that an IQ switch requires at least a speedup of two to exactly emulate an 

OQ switch [CGMP99], an IQ scheduling policy with a unity speedup can not exactly 

emulate the behaviour of an OQ switch, under all possible traffic patterns. Conse­

quently, we formulate scheduling in an IQ switch as the problem of tracking an OQ 

switch. We propose the "lag" as a performance metric that measures the difference 
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between a packet's departure time in an IQ switch over that provided by an OQ 

switch. We present an IQ scheduling policy with unity speedup for which the lag 

is bounded and derive a bound on the mean lag value per packet. Furthermore, we 

propose a simple heuristic tracking scheduling policy and evaluate its performance by 

simulation. Although in this chapter we describe the case of tracking an OQ switch 

implementing only a FIFO scheduling policy, our results can be easily extended for 

other nonanticipative (decisions do not depend on future arrivals) scheduling policies. 

This chapter is organized as follows. Section 4.2 formulates scheduling in an IQ 

switch with unity speedup as tracking the behaviour of an OQ switch. Section 4.3 

provides motivation for tracking the behaviour of an OQ switch and discusses related 

work. In Section 4.5, we present two scheduling policies for tracking the behaviour 

of an OQ switch. First, we present a scheduling policy called maximum weighted lag 

(MWL). We prove that the mean lag value is bounded for MWL and derive an upper 

bound on its value using a Lyapunov function technique. The MWL scheduling policy 

has a high implementation cost, but serves as a solid base for developing other prac­

tical scheduling policies that approximate its performance. Consequently, we present 

a simpler heuristic tracking policy that can be readily implemented in hardware. The 

performance of the proposed scheduling policies is evaluated by simulation in Section 

4.6. Section 4.7 provides our conclusions. 

4.2 Problem Formulation 

We consider an N x N OQ switch that uses scheduling policy IIoQ and an IQ switch 

with unity speedup that uses scheduling policy IIIQ. For an N x N switch, we use 

the following notational conventions: i an input, 1 :::; i :::; N; j an output, 1 :::; j :::; N; 

Qi,j is the VOQ at input i and buffers cells destined for output j; HOLi,j is the 

head-of-line cell at Qi,j. 

Let the average cell arrival rate at input i for output j be Aij . We assume that 

incoming traffic is admissible; that is, 2:~1 Aij < 1 , and 2::1 Aij < 1. The arrival 

process is identical to both switches. The goal is to find a scheduling policy IIIQ that 

tracks the behaviour of the OQ switch as close as possible, where we define what 
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tracking means more precisely after introducing some definitions. Given that an IQ 

switch requires at least a speedup of two to exactly emulate an OQ switch [CGMP99], 

a scheduling policy for an IQ switch with a unity speedup can not exactly emulate 

the behaviour of an OQ switch, under all possible traffic patterns. In general, cells 

arriving to the IQ switch implementing IIIQ will depart at some later time than the 

OQ switch implementing IIoQ . Consequently, we say that an IQ switch implementing 

IIIQ lags the behaviour of the OQ switch implementing IIoQ . 

4.2.1 Definition of Terms 

Here we make precise some of the terminology used throughout this chapter. 

Definition 1. Arrival Rate Matrix (A): A == [Aij], where the arrival process is assumed 

to be admissible and stationary; that is, 2:~1 Aij < 1, 2:;=1 Aij < 1, Aij 2 0 and 

associated arrival rate vector ~ == (A1,1, ... , Al,N, ... , AN,l, ... , AN,N f· 
Definition 2. Ideal departure time (IDT): The ideal departure time for a cell c, 
I DT( c), is the time slot at which c will depart from an OQ switch using IIoQ. 

Definition 3. Actual departure time (ADT): The actual departure time (ADT) for a 
cell c, ADT( c), is the time slot at which c departs from the switch under consideration 
(i.e., IQ implementing IIIQ). 

Definition 4. Cell Lag (CL): The cell lag for a cell c, CL(c) , is the difference 
between the ideal departure time and the actual departure time. Precisely, 

CL(c) == { ADT(c) - IDT(c) ADT(c) > IDT(c) 
o otherw2se 

(4.1 ) 

In addition, we define the cell lag for a cell c given the current time slot n, 
C L( c, n), as the difference between the ideal departure time and the current time 
slot. Precisely, 

CL(c,n) == { n - IDT(c) n> IDT(c) 
o otherwzse 

The goal of a scheduling policy can be characterized by any statistical metric 

that attempts to minimize the cell lag; for example, in Section 4.5.1 we present a 

scheduling policy that minimizes the mean lag value per packet. 

Note that according to equation (4.1) the lag is nonnegative and generally a cell's 

ADT is greater than its IDT, however, a cell may occasionally depart from an IQ 
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switch earlier than an OQ switch; for example, consider a 2 x 2 switch at a specific 

time slot such that the two most lagging cells for its outputs (e.g., outputs 1 and 

2) reside at the same input port (e.g., input 1). Because the scheduling policy can 

transfer at most one cell from each input port (e.g., input 1), another cell with an 

IDT in the future can be selected from the other input port (e.g., input 2) to improve 

the throughput. 

4.3 Motivation and Related Work 

In an OQ switch arriving packets are immediately available at the outgoing link. 

Consequently, the only shared resource in an OQ switch is the outgoing link for 

which packets contend for access (output contention). In an IQ with switch there are 

essentially two shared resources: the switch fabric and the outgoing link. Arriving 

packets are queued at the input port of the switch and they must first contend for 

access to the switch fabric, before contending for the outgoing link (see Section 2.2). 

In an IQ switch packets are queued at the input port of the switch and they must 

first contend for access to the switch fabric (input contention), before contending for 

the outgoing link; that is, in an IQ switch, there are two shared resources: the switch 

fabric and the outgoing link. 

All present IQ scheduling policies resolve input and output contention using heuris­

tics such as using a round-robin scheme at both the input and output to solve the 

contention fairly [McK99]' or using the packet's age (i.e., time in the switch) to re­

solve contention [MMAW99]. All these schemes can be seen as an approximation to 

the ideal case of an OQ switch, where all of the outgoing links are independent and 

packets are served independently in each outgoing link; that is, by tracking the be­

haviour of an OQ switch and minimizing the lag, we automatically resolve input and 

output contention in a fair manner and eliminate any starvation problem of inputs 

that other scheduling policies have to carefully handle. 

We emphasize that significant research effort (e.g., [PG93], [Cru91]' [PG94j) has 

been done in developing scheduling policies for ideal servers that provide bounded 

latency, jitter, and end-to-end delay for traffic flows. Unfortunately, the Internet 
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does not consist only of ideal servers, but rather of heterogeneous servers (i.e., non 

ideal IQ and CIOQ servers, and ideal OQ servers). By tracking the behaviour of an 

ideal server, we approximate its behaviour as close as possible and attempt to bound 

the performance difference between the ideal server and an IQ switch. 

Tabatabaee et al. [TGTOl] consider the related problem of packetizing arbitrary 

fluid policies in an N x N crossbar switch using FIFO virtual output queues. They 

define trackable fluid policies such that for each pair of input and output ports, at 

each time step, the cumulative number of packets sent between these ports differs 

from the cumulative fluid scheduled between these ports by less than 1. They prove 

that a tracking policy always exists for the special case of a 2 x 2 switch, provide an 

example for a 3 x 3 switch where a non anticipative tracking policy does not exist, and 

propose several heuristics for packetizing fluid policies on general N x N switches. 

Rosenblum et al. [RGT04] further extend the results in [TGTOl] by relaxing the 

tracking constraint such that the cumulative difference in the number of packets sent 

using the fluid and packetized policies can be more than one packet. Our work differs 

from [TGTOl] and [RGT04] in that we track the precise packet departure sequence 

in an OQ switch rather than the aggregate rate provided by a fluid scheduling policy 

in an IQ switch, which does not necessarily track an OQ switch; for two scheduling 

policies to provide the same service rate they need to serve only the same number 

of packets per link, rather than tracking the precise packet departure order, which 

can be different between the two scheduling policies. This issue is discussed in more 

detail in Section 4.5.1. 

4.4 Computing the Ideal Departure Time 

We consider the case of IIoQ = FIFO. The architecture of our IQ switch is shown in 

Figure 4.1. We use virtual output queueing (VOQ) at each input port of the switch 

and a crossbar as the switching fabric. 

For IIoQ = FIFO, arriving cells at the I Q switch can be immediately assigned 

an IDT using a simple parallel prefix circuit [Szy97](i.e., a ranker circuit). Let Nj(n) 

be the number of cells in the OQ switch destined to output j at time slot n. The IQ 
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Inl'~_-,-,-, 
Switching fabric 

Inp~_-,-,-, OutputN 

Figure 4.1: Logical structure of an input-queued switch. 

switch uses N rankers such that each ranker calculates the number of cells present in 

the OQ switch being tracked. At the beginning of each time slot, n, the number of 

packets in the OQ switch is computed as follows: 

N ( ) _ { Nj (n - 1) - 1 Nj (n - 1) > 0 
j n = 0 N

j 
(n - 1) = 0 

Note that the subtraction of one in the previous equation accounts for one (cell/time 

slot) departure in the OQ switch. For every new cell c arriving at time slot n des­

tined to output j, ranker j assigns a numeric rank (from 1 ... N) in a linear order 1 to 

packets arriving for output port j. The I DT of each cell is equal to its numeric rank 

plus Nj(n - 1), and Nj(n - 1) is updated accordingly. The complexity of computing 

the I DT( c) in hardware using a parallel prefix computation is G(log N) depth and 

8(N) circuit size, expressed in terms of binary operators [Szy97]. 

4.5 Tracking Scheduling Policies 

In this section we present two tracking scheduling policies. First, we present the 

maximum weighted lag scheduling policy and prove that its per packet mean lag 

is bounded and derive a bound on the mean lag value using a Lyapunov function 

1 We investigated diverse ordering schemes (e.g., round-robin, linear, etc) for assigning IDT to 
simultaneous cell arrivals destined to the same output and found it to have an insignificant effect on 
the results, when the queues had infinite capacity. 
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technique. Second, we propose a heuristic tracking scheduling policy called iLag 

based on maximal matching that is simple to implement in hardware. 

4.5.1 Maximum Weighted Lag Scheduling Policy 

Maximum weighted lag (MWL) is based on the implementation of a maximum bipar­

tite weight-matching algorithm (See Section 2.3.2). At every time slot n, we associate 

a weight Wi,j to every Qi,j such that Wi,j = CL(HOLi,j, n); that is, Wi,j is the lag 

of an HOL packet in Qi,j. The maximum weighted lag scheduling policy finds a 

matching M that maximizes L(i,j)EIvI Wi,j and can be found by solving an equivalent 

network flow problem [AM093]. The sequential run time complexity of MWM is 

8(N3 10g N)[AM093]. 

Previous work on MWM considered only the weight to be either some function 

of the occupancy of the VOQs (i.e., number of packets in each VOQ) or the waiting 

time of the cell at the head of line of each VOQ (e.g., [MMAW99], [KMOl], [DPOO], 

[LMNMOla], and [LMNM03]). Consequently, these algorithms do not necessarily 

track the behaviour of an OQ switch and a cell's departure times may deviate from 

the ideal case under non-uniform traffic. In addition, using the occupancy of the 

VOQs as the edge weight can lead to starvation of certain inputs [MMAW99]. 

Because MWL computes the matching with the maximum possible total weight 

during every time slot, it aims at minimizing the mean lag (/-llag)' Although this 

algorithm is too complex to implement in practice, it serves as a reference model for 

which other approximation algorithms are developed. 

The stability of maximum weighted matching scheduling policies is a well studied 

problem in the literature. McKeown et al. [MMAW99] proved the stability of longest 

queue first (LQF) and oldest cell first (OCF) maximum weight matching for all admis­

sible i.i.d. arrival processes using a Lyapunov function technique; Dai and Prabhakar 

[DPOO] extended the results to prove the stability of a maximum weight matching 

algorithm under any admissible arrival processes using fluid model techniques. 

Although the results for the fluid model technique established in [DPOO] could 

easily be used to prove the stability of MWL, it can not be further extended to 

derive a bound on the expected lag value. Consequently, we use a Lyapunov function 
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technique that allows us to derive a bound on the expected lag value as described 

next. 

Theorem 1. A FIFO tracking policy that uses the maximum weighted lag as the 
scheduling policy is stable (achieves 100% throughput) for all admissible i. i. d. arrival 
processes. 

The proof of Theorem 1 for the stability of MWL is an adaptation of the proof 

for stability of Oldest Cell First scheduling presented in [MMAW99]. The proof 

uses substantially the same techniques to first develop a discrete time Markov chain 

reflecting the lag of a cell. The proof then identifies a quadratic Lyapunov function 

which establishes the existence of a negative drift in the Markov chain for sufficiently 

large states. The existence of the negative drift implies the stability of the Markov 

chain, using a result of Kumar and Meyn [KM95]. The stability of the lag implies the 

stability of the queue occupancy. The main differences in the proofs are as follows. 

The definition of a cell's weight is changed from the cell's age to the cell's lag, which 

is equal to the cell age minus a positive term reflecting the cell's ideal departure time. 

Lemma's 7, 8, 9 and 10 in [MMAW99] are modified to reflect the new cell weights. 

We present a model of the system and use it to establish the proof of Theorem 1 next. 

Model 

The arrival process at each input port i is assumed to be a i.i.d. discrete-time sta­

tionary ergodic process of fixed size cells. At the beginning of each slot, either zero or 

one cell arrives at each input port. Virtual output queueing is used such that when 

a cell arrives at time slot n for output j at input i , it is placed in queue Qi,j. 

Definition 5. Let Q(n) be the occupancy vector at time slot n such that 

Definition 6. Let Amin == min(Ai,j, 1 ::; i,j ::; N). 

Definition 7. Let Ci,j(n) denote the HOL cell of Qi,j at time slot n. 

Definition 8. Let z:( n) be the interarrival time vector such that 

z:(n) == (Tl,l(n), ... , Tl,N(n), ... , TN,l(n), ... , TN,N(n)f· 

where Ti,j (n) is the interarrival time between Ci,j (n) and the cell behind it in Qi,j 
((MMAW99j, appendix B, definition 2). 
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Definition 9. Let A( n) be the arrival matrix representing the arrivals into each queue 

at time slot n, A(n) == [Ai,j(n)] where 

Ai (n) == {I if an arrival occurs at Qi,j at time slot n 
,) 0 otherwzse 

and the associated arrival vector is 

A(n) == (A 1,1 (n), .. . ,A1,N(n), .. . ,AN,l (n), . .. , AN,N(n)f. 

(fMMAW99j, appendix A, definition 2) 

Definition 10. Let 5( n) be the service matrix indicating which queues are served 
during slot n, 5(n) == [5i,j(n)] where 

5 (n) == {I if Qi,j is served at time slot n 
',) 0 otherwzse 

and 5(n) E 5, the set of service matrices2 . Note that 5(n) is a permutation matrix; 
that is, 2:~1 5ij = 2:;=15ij = 1. We define the associated service vector ~(n) == 
(51,1(n), ... , 5 1,N(n), ... , 5 N,N(n))T. 

Definition 11. Let L.(n) be the lag vector at time slot n such that 

where Li,j(n) is the lag of Ci,j(n) (cell at HOL of Qi,j at time slot n). (Recall that 
the lag is the difference between the ideal departure time and the current time, also 
note that all elements in the lag vector are nonnegative.) 

Definition 12. Let Lmax == max( Li,j, 1 :s i, j :s N). 

Definition 13. Let T be a positive-semidefinite diagonal matrix whose diagonal ele­

ments are A1,1, ... , A1,N, ... , AN,l, ... , AN,N' 

Definition 14. [~8 Q 8 f] denotes a vector in which each element is a product of the 
corresponding elements of the vectors: ~, Q, and f, i.e., ai,jbi,jCi,j. 

Definition 15. Let 1 denote a column vector of dimension N 2 whose elements are 
all ones. 

2This definition of the "service" matrix is a permutation matrix, which includes the case where 
an empty queue is served. 
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Definition 16. Let D(n, n + 6n) be the aggregate arrival vector for each output port 

during the time interval [n, n + 6n] 

D(n, n + 6n) = (D 1(n, n + 6n), ... , DN(n, n + 6n)f, 

where Dj(n, n+6n) represents the aggregate number of cells that arrived to the switch 
during the time interval [n, n + 6n] destined to output j. Note that the dimension of 
the vector D(n, n+6n) is N, whereas most previously defined vectors have dimension 

N 2 , consequently, we define the following vector: 

Z(n, n + 6n) == (D 1(n, n + 6n), ... , DN(n, n + 6n), . .. , 

Dl(n, n + 6n), ... , DN(n, n + 6n), ... , 

Dl(n, n + 6n), ... , DN(n, n + 6n)) T 

i. e., the vector Z (n, n + 6n) is the vector D( n, n + 6n) written out N times. 

Definition 17. The approximate Lag next-state vector, which does not consider the 

case of an empty queue is given by: L.(n + 1) == L.(n) + 1- [~(n) 0 [~(n) + Z(~(n))]] 
Explanation: The above equation describes the evolution of the lag vector. In the 

above equation, if Qi,j is not serviced at slot n then its corresponding Si,j element in 

~(n) is zero and the corresponding term in ~(n) 0 [~(n) + Z(~(n))] cancels out. In 

this case the lag increases by 1. Alternatively, if the HOL cell at Qi,j is serviced at 

time slot n, then we need to calculate the lag of the cell following it in the queue. We 

consider two subcases: 

CASE A: There were no packet arrivals to the switch destined to output j during 

the interarrival period between the HOL cell at Qi,j and the cell following it (i.e., 

Zi,j ( Tij) is zero). In this case, the corresponding element for Q i,j in ~ (n) is 1 and 

Zi,j (Ti,j) is zero. Therefore, 

L ·(n + 1) = L(n) + 1 - T ·(n) ~,J 1,,) 1,,)' 

i.e., the new lag is the old lag minus the interarrival time between the two cells. 

CASE B: There were arrivals during the interarrival period between the HOL 

cell in Qi,j and the cell following it. In this case, all cells that arrived during this 

interarrival period should depart from the switch (or be selected to be transferred 
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across the switch by the scheduler) before the new HOL cell at Qi,j, so the new lag 

is given by: 

L(n + 1) == L ·(n) + 1 - T ·(n) - Z(T ·(n)). ~,J ~,J 't,J t,J 1"J 

The following facts are used in the proof of the stability of the lag vector. 

Fact 1. For all i,j,n an interarrival time Ti,j(n) is independent of the lag Li,j(n). 
This fact is true because we are assuming an i. i. d. traffic model. . 

Fact 2. Ti,j(n) 2: 1 because there is at most one arrival per time slot, so the arrival 
times of any two consecutive cells must be at least one slot apart. 

Fact 3. For all i,j, n (Ai,j = 0) => (IIQdl = 0) => (Li,j(n) = 0); that is, any queue 
whose amval rate is zero is empty and consequently has a zero lag. 

Proof of Theorem 1. We prove the stability of the lag vector, which implies the 

stability of the queue occupancy. Recall that the lag is defined in terms of the total 

occupancy of packets in the switch destined to an output port. 

The following Lemma is adapted from [MMAW99], Lemma 7. 

Lemma 1. II (n)~-ll (n)~*(n) ::; 0, V1.(n) , ~ where ~*(n) is such that l.T (n)~*(n) = 
max(1.T(n)~(n)) (Note that ~*(n) is the service vector selected by the maximum 

weighted lag scheduling policy at time slot n.) 

Proof. Identical to the proof of [MMAW99], Lemma 2. o 

The following Lemma is adapted from [MMAW99], Lemma 8 and is simplified for 

an N x N switch rather than an N x M switch. 

Lemma 2. For all ~ ::; (1 - (3)~m (the inequality is interpreted componentwise), 
0< !3 < 1, where ~m is any rate vector such that II~m112 = N, there exists 0 < E < 1 
such that 

E[LT(n + I)TL(n + 1) -1.T(n)T1.(n)IHn)] ::; EII1.(n)11 + K. 
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Proof. By expansion 

~T ~ 

L, (n + l)TL,(n + 1) = L,T(n)TL.(n) + 2L,T(n)~ 
- 2L,T(n) [~*(n) 8 I(n) 8~] - 2L,T(n) [~*(n) 8 Z(I(n)) 8~] 
+ L Ai,j - 2 L S~j(nh,j(n)Ai,j 

i,j i,j 

i,j i,j 

Subtracting L,T (n)T L,(n) from both sides and taking the expected value and observing 

that the expected value of T is *' 
~T ~ 

E[L, (n + l)TL,(n + 1) - L,T(n)TL,(n)IL,(n)] 

= 2L,T(n)~ - 2L,T(n)~*(n) - 2L,T(n) (~*(n) 8 Z(I) 8~) 

+ L Ai,j - 2 L S;,j(n) - 2 L S~j(n)E[Zi,j(Ti,j)Ai,j] 
i,j i,j i,j ( 4.2) 

We make use of the following properties to simplify equation (4.2) and establish 

Lemma 2: 
(a) ". Ai J' < N; (from the admissibility constraints) 

W~,J ' 
(b) l:i,j S~j(n) ~ 0; (from the scheduling algorithm properties) so, this term can be 
ignored in equation (4.2) because it has a negative sign. 

(c) L,T(n)(~*(n)8Z(I)8~) ~ 0; (because each element in this term is non-negative; 

observe that this term has a negative sign in equation (4.2) so it can be ignored) 
(d) l:i,j S;)n)E[Zi)Ti,j)Ad ~ 0; (because each element in this term is non-negative; 
observe that this term has a negative sign in equation (4.2) so it can be ignored) Also, 
note that the following positive terms in equation (4.2) are bounded: 
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(4.3) 

i,j 

From equation (4.2), properties (a) through (d), and equation (4.3), we obtain 

-T -
E[1 (n + 1)T1(n + 1) -1T(n)T1(n)11(n)] ( 4.4) 
::; 21T(n)~ - 21T(n)~*(n) + N + 1/J + 20: + T 

Using Lemma 2, we obtain: 

1 T(n)T1(n) ::; -(31T(n)~m 

1T(n)~ -1T(n)~*(n) ::; -(3111T(n)llll~mll cos(fJ) (4.5) 

where fJ is the angle between 1T (n) and ~m· 
We now show that cos (fJ) > c5 for some c5 > 0 whenever 1 T (n) f 0 using the same 

approach as in [MMAW99], equations (16)-(18). This is included here for complete­
ness and is simplified for an N x N switch rather than an N x M switch. 

We do this by contradiction: suppose that cos(fJ) = 0, i.e., 1T(n) and ~m are 
orthogonal. This can only occur if 1T(n) = 0, or if for some i, j, both Ai,j = 0 and 
Li,j (n) > 0, which is not possible: for Qi,j to have a lag greater than zero, Ai,j must 
be greater than zero. Therefore, cos(fJ) > 0 unless 1T (n) = o. Now we show that 
cos(fJ) > c5 for some c5 > o. Because Ai,j > 0 wherever Li,j(n) > 0 , and because 

11~112 < N 

(
fJ) 1T(n)~ Lmax(n»..min 

cos = II1(n)IIII~11 2: 111(n)IIJN· 
Also, 111(n)11 ::; NLmax(n), and so cos(fJ) is bounded below by 

(fJ) 
Amin 

cos 2: N~ . (4.6) 

Substituting equation (4.6) in equation (4.5) we get 

(fJ 1T(n)A Lmax(n)Amin 
cos ) = 111(n)IIIIAII 2: 111(n)IIJN 
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-T -
E[1 (n + I)T1(n + 1) -1T(n)T1(n)11(n)] :::; -2EI11(n)11 + K (4.7) 

where E = 2(3)..';:;" and K = 'lj; + N + 20: + T 0 

The following Lemma is adapted from [MMAW99] Lemma 9 and is simplified for 

an N x N switch rather than an N x M switch. 

Lemma 3. For all ~ :::; (1 - (3)~m (the equation is interpreted componentwise), 0 < 
(3 < 1, where ~m is any rate vector such that II~mll = N, there exists 0 < E < 1 such 

that 
E[1T(n + I)T1.(n + 1) -1T(n)T1(n)11(n)] :::; EII1(n)11 + K. 

Observe that the difference between Lemmas 2 and 3 is that Lemma 2 uses the ap­
proximate next state vector, whereas Lemma 3 uses the exact next state vector. The 
approximate next state vector assumes that each VOQ always has a packet. The exact 
next state vector takes the empty queue case into account. 

The proof of this Lemma is similar to the proof of Lemma gin (lj, and is included 

here for completeness. 

Proof. 

(4.8) 

The fact that T is a positive-semidefinite matrix together with equation (4.8) 

imply that for all n 

-T -
1 T(n + I)T1(n + 1) :::; 1 (n + I)T1(n + 1). 

Therefore, 

This proves the Lemma. o 

Lemma 4. There exists a quadratic Lyapunov function V (1( n)) such that 

E[V(1(n + 1)) - V(1(n))11(n)] :::; -EI11(n)11 + K 

where K, E > O. 

Proof. From Lemma 3, V(1.(n)) = l.T(n)T1.(n), E = 2.f3)..f:r, and K = 'lj; + N + 20: + 
,. 0 
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Theorem 2. Under Maximum Weighted Lag, the expectation of the lag values are 
bounded for all n under all admissible and independent arrival processes, i. e., \In, E[lIL:( n) II] < 
00. 

Proof. V(L:(n)) = L:T(n)TL:(n) is a quadratic Lyapullov function and according to 
the arguments in [KM95], it follows that the expectation of the lag values is bounded 
for all n under the maximum weighted lag scheduling policy. 0 

Theorem 3. Under the MWL scheduling policy, the expectation of the queue occu­
pancy is bounded for all n under all admissible and independent arrival process, i. e., 

\In, E[IIQ(n)ll] < 00. 

Proof. That stability of the lag values implies the stability of the per packet additional 
waiting in the IQ switch using the MWL scheduling policy over that provided by the 
OQ switch being tracked. Given the traffic admissibility constraints, each packet's 
delay in the OQ switch being tracked is finite. Consequently, the total delay provided 
by the IQ switch using MWL is bounded. Therefore, all the queue occupancies in the 

IQ switch under MWL are bounded for all n. 0 

Different weight functions lead to different bounds on the average queue size (cell 

delay) with varying performance; for example, in [KMOl] it is shown that all maximum 

weight matching scheduling policies with weight equal to the queue size raised to some 

positive ex, IIQi,jll"', are stable. However, it is shown through simulation that under 

a specific arrival pattern the average cell delay is smaller when ex = 0.5 than for all 

higher values of ex. A methodology for deriving bounds on the cell delay and queue 

size is described in [LMNM03]. In [MMAW99] it was shown that Longest Queue 

First could potentially lead to starvation. Longest Port First (LPF) was proposed in 

[MM98] and was shown by simulation to provide better performance than LQF and 

OCF, but it is possible to construct a traffic pattern that leads to starvation for LPF 

[Mek98]. All the previous results are applicable to stability in a single node (switch). 

The problem of scheduling a network of IQ switches is considered in [AZ03] and it 

is shown that both the LQF and LPF scheduling policies can be unstable for a fixed 

traffic pattern in a simple network of eight IQ switches. 

We establish a bound on the mean lag value using the techniques developed in 

[LMNM03j; the following definitions are needed for bound result in Theorem 4: 
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Definition 18. L1 Norm: Given a vector Z E JRN
2

, the norm IIZI11 is defined as: 

N2 

IIZI11 = I: IZkl· 
k=1 

Definition 19. Input-Output Norm: Given a vector Z E JRN2, Z = {Zk' k = Ni + 

j, i,j = 1, ... , N}, the norm IIZIIIO is defined as: 

N N 

IIZIIIO = j!!t,~~N {I: IZNk+jl, L IZNJ+t!} 
k=1 1=1 

IIZIIIO takes the maximum of the sum of quantities related to all the queues referring 
either to the same input or to the same output; for example, the traffic arrival vector 

is admissible if and only if 11.611 IO < 1. 

Definition 20. Let L.( n) be the lag vector at time slot n such that 

where Li,j(n) is the lag of Ci,j(n) (cell at HOL of Qi,j at time slot n). 

Theorem 4. A bound on the mean lag, E[lIL.(n)lld, using a maximum weighted Lag 
scheduling policy under any admissible i. i. d. arrival process is given by: 

Proof: 

E[IIL( )11] < N
3 
+ 3N

2
11.6111 

- n 1 - 2(1 -11.6IIIO) . 

Definition 21. Given a vector Z E JRN2, the second order norm IIZI12 is defined as: 

N2 

IIZI12 = I: (Zk)2 
k=l 

Definition 22. The unit vector parallel to z.. is denoted by Z, and is defined as: 
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To proceed we need the following theorem due to Leonardi et al. [LMNM03],Theorem 

3.6, which is presented here in a form appropriate for the problem under consideration. 

Theorem 5 ([LMNM03],Theorem 3.6). Given a system of queues whose evolution is 
described by a Discrete Time Markov Chain (DTMC) with state vector Yn E NM 

, 

whose state space H is a subset of the Cartesian product of a denumerable state space 
HL and a finite state space HK , and for which all the polynomial moments of lag 
distributions are finite, if a lower bounded polynomial function V (lA n)), V : NN -t R, 

can be found, such that E [ V (1( n)) I Yn] < 00 and there exist two positive real 

numbers E E jR+ and B E jR+, such that 

E[V(1(n + 1)) - V(1(n)) I Yn] ~ -Ef(1I1(n)lI) VYn : IIL(n)1I > B, (4.9) 

where f (x) is a continuous function in jR+ ,then 

1~~ E[f(IIL(n)II)] ~ 1~~ E[f(IIL(n)lI) 

+ V(L(n + 1)~ - V(L(n)) IYn E HB] X P[Yn E HB] 
(4.10) 

Note that for MWL Y(n) = (A(n),L(n),1:(n)) is an appropriate DTMC and all the 

polynomial moments of the lag distribution are finite by Theorem 3.5 of [LMNM03], 

which is included here for completeness. 

Theorem 6 ([LMNM03],Theorem 3.5). Given a system of queues whose evolution is 
described by a DTMC with state vector Yn E NM , whose state space H is a subset of 
the Cartesian product of a denumerable state space HL and a finite state space HK , if 
a lower bounded function V(L(n), called Lyapunov function, V(L(n)),v : NN -t R, 

can be found, such that E [V (1( n)) I Yn] < 00, VYn and there exists E E jR+ and 

B E jR+ such that 

E[V(L(n + 1)) - V(L(n)) I Yn] ~ -EIIL(n)1I VYn : IIL(n)1I > B, 

then the system of queues is strongly stable. In addition, if there exists symmetric 
copositive matrix Z E jRNxN defining the Lyapunov function V(L(n)) = L(n)ZLT(n), 
then all the polynomial moments of the queue lengths distribution are finite. 

The proof of Theorem 4 consists of two steps. First, we find a lower bound on E 

in equation (4.9). The second step is to use equation (4.10) to derive the bound on 

E[IIL(n)lId· 



Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 59 

Using equation (4.10) with f(111(n)ll) = 111(n)lll and V(1(n)) = 1 T
(n)T1(n) 

for some B > O. The function at the left hand side of equation (4.11) admits a limit 

for 111(n)lll -+ 00 which depends on the direction of the vector 1(n). Let Emax be the 

smallest value for this limit, i.e. 

Substituting equation (4.2) in the above equation and observing that all the terms 

in the numerator that do not contain 1(n) will go to zero upon dividing by 111(n)lh -+ 

00, we get 

21T(n)~ - 21T(n)~'(n) - 21T(n) (~'(n) 8 Z(IJ 8~) 
Emax = liminf __________________ -~-----...c..... 

IIMn)111---->oo 111(n)lll 

Rearranging the terms we get: 

Taking 2 as a common factor and rearranging the terms we get: 

We make use of the following proposition, which was proved in [LMNM03] (Propo­

sition A.l) and is included here for completeness. 

Proposition 1. For any nonnull normalized vector Z(n) E ]R+N2: 
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Applying Proposition 1 to the second term in equation (4.12) we get: 

Now, we use a technique from [LMNM03](pg. 542 and 543) to bound the following 

term: 
ll(n)~*(n) -ll(n)~ 

11L:(n)lll 
Consider the vector U(n) = E[A(n)] + (1 - 11~IIIO)~*(n). It is straightforward to 

prove that IIU(n)IIIO ::; 1. Also, the fact that the system is stable implies E[A(n)] = 

E[~*(n)] =~. Thus, 

~*(n)L:T(n) - Q(n)L:T(n) = ~*(n)L:T(n) - ~ 8 L:T(n) - (1 - 11~IIIO)~*(n)L:T(n) > 0 

11L:(n)lll 11L:(n)lll -

and from Lemma 1 we have 

S*(n)LT(n) - ALT(n) > (1 -11~IIIO)~*(n)L:T(n) 
11L:(n)lll - 11L:(n)lll . 

Applying Proposi~ion 1 we get: 

~*(n)L:T(n) - MT(n) > (1 - II~IIIO) 
11L:(n)lll - N . 

(4.13 ) 

Substituting equations (4.5.1) and (4.13) in equation (4.10), we get: 

(4.14) 

The next step is to evaluate equation (4.10): 

1~~ E[f(IIL:(n)II)] ::; 1~~ E[f(IIL:(n)ll) 

+ V(L:(n + 1)~ - V(L:(n)) IYn E HB] x P[Yn E HB] 

Evaluating the term E[V(L:(n + 1)) - V(L:(n))IYn E HB] appearing in equation (4.9) 
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and using the result from equation (4.2) 

E[V(L:(n + 1)) - V(L:(n))IYn E HB ] 

= E[L:T(n + l)TL:(n + 1) - L:T(n)TL:(n)IL:(n)] 

= 2L:T(n)~ - 2L:T(n)~*(n) - 2L:T(n)(~*(n) 8 Z(rJ 8~) 

+ 2:: Aid -2E[2:: S;)n)] -2E[2:: S;)n)Zi,j(Ti,j)Ai,j] 
i,j i,j i,j 

['""" S* (n ) ] ['""" ] +E ~ T +2E ~S;)n)Zi,j(Ti,j) 
. . 't,J .. 
'J 'J 

+ E [2:: S;'j(n)Zlj( Ti,j)Ai,j]. 
i,j 

and using the result of equation (4.5.1) and equation (4.13) we get 

E[L:T(n + l)TL:(n + 1) - L:T(n)TL:(n)IL:(n)] :S 

EmaxllL:(n)lll + 2:: Ai,j - 2E [2:: S;,j(n)] - 2E [2:: S;'J(n)Zi,j(Ti,j)Ai,j] 
i,j i,j i,j 

From stability we have E[~(n)] = E[~], E[~T(n)~(n)] = 11~lh, and E[~T~(n)] = 

E[~T]E[~(n)] = II~II§. Also, E[Si,j] = Ai,j; so, E[l:i,j s~:~n)] = N2 because we are 

summing over N 2 elements and each element is 1. Similarly, E [l:i,j S:'j(n)Zi,j(Ti,j)] :S 

NII~lh 

E[L:T(n + l)TL:(n + 1) - L:T(n)TL:(n)IL:(n)] :S 

EmaxllL:(n)lh - 11~lll - 2E [2:: S;'j(n)Zi,j( Ti,j)Ai,j] 
',J 

+ N2 + 2NII~111 + E[2:: S;)n)Zlj(Ti,j)Ai,j]. 
i,j 

(4.15) 
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Substituting equation (4.15) in equation (4.10) we get: 

E[111(n)lll] < 

E[111(n)lh] < 

E [IIMn)lll + V(L(n+l)~-V(L(n)) 11(n)] 

E[111(n)111(1- ~)] 
N2+2NII~lh +E L . .i Z;)T;.j»L + ________ ~ ________ ~ ______ ~ ________ _L 

If we set E = Emax we get: 

[ ] 
N2 + 2NII~lh + E[2:i) Z;).(Ti,j)>';)'] -11~lll - 2E[2:.). Zi,j(Ti,j)>';)'] 

E 111(n)lll ::; ", l" 

Emax 

N2 + 2NII~lll + E [2:i,j Zlj (Ti,j )>'L] - 11~lll 
< ------------~~----------~-----

Emax 

< N2 + 2NII~lh + NII~lll 
- ~(1 - II~IIIO) 

< N 2 + 3NII~lh 
- ~(1 - II~IIIO) 

< N 3 + 3N211~lh 
- 2(1-11~IIIO)' 

We emphasize that the bound in Theorem 4 is a much stronger property than 

bounding the average packet delay in an IQ switch over that in an OQ switch. Not 

only does Theorem 2 provide a bound on the additional mean delay for all packets 

departing an IQ switch using MWL over an OQ switch, it also applies to any indi­

vidual packet departing the IQ switch. Specifically, Theorem 4 provides a bound on 

the difference between the precise packet departure sequence from an IQ using MWL 

over that provided by an OQ switch; for example, consider an IQ scheduling policy 

that periodically serves the same number of packets per output port as an OQ switch 

over a time interval larger than the corresponding time interval in an OQ switch. For 

all admissible traffic, this behaviour would imply a bounded per packet average delay 

compared to an OQ switch, but it does not imply the property of Theorem 4. This 

behaviour occurs because each packet's departure order could be different from the 

IQ scheduling policy compared to the OQ scheduling policy; the key difference lies in 
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the lag definition such that a packet departing ahead of its time would have a zero 

lag. Observe that if a negative lag was allowed then the mean lag value becomes the 

additional mean delay in an IQ switch over that in an OQ switch as packets depart­

ing ahead of their IDT (negative lag) would offset packets departing after their IDT 

(positive lag). Furthermore, bounding the mean delay in an IQ switch over that in 

an OQ switch requires only knowledge about the average service rate per output port 

in both switches rather than the precise packet departure sequence from each switch. 

4.5.2 Iterative Lag Scheduling Policy 

Iterative lag (iLag) is a simple heuristic based on maximal matching (see Section 

2.3.3). iLag can be implemented using an arbiter at each input and output port 

using a request-grant-accept paradigm. Initially all input and output arbiters are 

unmatched, then in each iteration: 

l. Request: Each unmatched input sends a request to every unmatched output for 

which it has a queued cell. 

2. Grant: If an unmatched output receives any requests, it chooses the request 

with the most lagging cell and sends a grant to this input. 

3. Accept: If an unmatched input receives any grants, it chooses the grant for its 

most lagging cell and sends an accept signal to this output. 

The input and output arbiter are considered matched. The algorithm executes 

until either no more matches can be made or a fixed number of iterations are per­

formed. The hardware implementation of iLag comprises the hardware to compute 

the IDTs in an OQ switch, the hardware to select the maximum lagging cells at each 

output arbiter, and the hardware at each input arbiter to select the maximum lagging 

cell and perform the accept step. 

4.6 Simulation Results 

The average cell delay and E[1I1111] of MWL and iLag are evaluated by simulation 

for a 16 x 16 switch and compared to LPF [MM98], LQF [MMAW99], iSLIP [McK99] 
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and PIM [AOST93]. All simulations were performed with 99% confidence and 1% 

accuracy. iLag, iSLIP, and PIM were executed with 4 iterations. Bernoulli and bursty 

traffic distributions are used for performance evaluation. 

4.6.1 Bernoulli Traffic Distribution 

For Bernoulli i.i.d. distribution, we use three traffic models: uniform, log diagonal, 

and diagonal arrival pattern. 

l. Uniform: Ai,j = N Vi, j, where N = 16 is the size of the switch. 

2. LogDiagonal: Ai,j = 2A;,lj+11, and Li Ai,j = p; for example, the distribution of 
N . 

the load at input 1 across all outputs is Ai,j = ;N~f. This arrival pattern is 

more skewed than uniform loading. 

3. Diagonal: Ai,j = 2p/3, Ai,Ii+11 = p/3 Vi, and Ai,j = 0 for all other i and j. This 

is very skewed loading and is more difficult to schedule than uniform loading. 

As shown in Figure 4.2, MWL provides the lowest ElIl~11 d compared to other 

maximum weight matching schemes under uniform Bernoulli arrivals, although all 

maximum weight matching schemes have almost the same average cell delay as shown 

in Figure 4.3. The same trend occurs for iLag compared to iSLIP and PIM. 

Similarly, under log diagonal traffic, MWL provides the lowest ElIlL11 d as shown in 

Figure 4.4, whereas the delay of all maximum weighted matching scheduling policies 

is almost identical as shown in Figure 4.5. 

The same trend occurs for diagonal traffic as shown in Figures 4.6 and 4.7. 

4.6.2 Bursty Traffic Distribution 

Internet traffic is bursty in nature [CB97]. We considered an ON/OFF Markov Mod­

ulated Process with geometric burst size of 16. This traffic model is described in 

detail in [For04]. 

The value of ElIILIl1] is generally higher under bursty traffic than under a Bernoulli 

traffic distribution. As shown in Figure 4.8, MWL achieves the lowest lag compared to 

other maximum weighted matching policies, whereas their delays are almost identical 
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Figure 4.2: E[lILII d versus offered load for uniform Bernoulli i.i.d. traffic. 
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Figure 4.3: Average cell delay versus offered load for uniform Bernoulli i.i.d. traffic. 
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Figure 4.5: Average cell delay versus offered load for log diagonal traffic. 
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Figure 4.6: ElIlL11 d versus offered load for diagonal traffic. 
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Figure 4.8: ElIll:.11 d versus offered load for bursty traffic. 
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as shown in Figure 4.9. Similarly, iLag achieves the smallest lag compared to iSLIP 
and PIM. 

4.7 Conclusion 

IQ switches are commercially used in most Internet routers due to their capability 

of operating at high line speeds with a lower memory bandwidth requirement than 

OQ switches. In this chapter, we addressed fair scheduling in Internet routers with 

IQ switches. We formulated switch scheduling in an IQ switch with unity speedup as 

tracking the behaviour of an OQ switch. By tracking the behaviour of an OQ switch, 

an IQ switch resolves input and output contention fairly, eliminates any starvation 

of inputs, and approximates the behaviour of an OQ switch as close as possible. We 

introduced the lag as a performance metric that measures the difference between a 

packet's departure time in an IQ switch compared to an OQ switch. We proved 

that per packet lag is bounded for a maximum weighted matching scheduling policy 

that uses lag values for its weights and derived a bound on the mean lag value using 

a Lyapunov function technique. Finally, we proposed a simple heuristic tracking 

scheduling policy and evaluated its performance by simulation. 



Chapter 5 

Cooperative Token-Ring 
Scheduling 

In this chapter we present a novel distributed scheduling paradigm for Internet routers 

with IQ switches, called cooperative token-ring (CTR) that provides significant per­

formance improvement over existing scheduling schemes with comparable complexity. 

In classical token-ring based scheduling for IQ switches, a separate token-ring (an ar­

biter) is used to resolve contention for each shared resource (e.g., an output port). 

Although classical token-ring based scheduling achieves fairness and high throughput 

for uniform traffic, under non-uniform traffic the performance degrades significantly. 

We show that by using a simple cooperative mechanism between the otherwise non­

cooperative token-rings (arbiters) the performance can be significantly improved and 

the scheduler is able to dynamically adapt to non-uniform traffic patterns. In addition, 

our proposed CTR scheduling policy potentially a.mortizes the cost of arbitration time 

over multiple time slots, such that tokens are exchanged only on as-needed basis. The 

proposed cooperative mechanism is conceptually simple and is supported by experi­

mental results. To provide adequate support for rate guarantees in IQ switches, we 

present a weighted cooperative token-ring (WCTR), a simple hierarchical scheduling 

mechanism. Finally, we analyze the hardware complexity introduced by cooperative 

mechanism and describe an optimal hardware implementation with time complexity 

of 8(10g N) and circuit size of 8(N log N) per node. 

74 
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5.1 Introduction and Related Work 

Most commercial high-performance switches and routers (e.g., CISCO 1200[Cis04], 

BBN [PCB+98]) employ IQ switches because an IQ switch requires its fabric and 

memory to run only as fast as the line rate, which makes IQ very appealing for 

switches with fast line rates and/or with a large number of ports. A VOQ architecture 

and a crossbar as the switch fabric are typically used such that a scheduling algorithm 

configures the crossbar during each time slot and decides which inputs are connected 

to which outputs. 

Most practical schedulers are based on simple heuristics, which are readily im­

plemented in hardware, that aim at maximizing the number of connections between 

inputs and outputs and achieving a maximal match using a IlRC A scheduler (See 

Section 2.4) like PIM [AOST93], WPIM [SV95], iSLIP [McK99]' etc. Most maximal 

matching based scheduling algorithms perform well under uniform traffic, but the 

performance degrades under non-uniform traffic; for example, iSLIP uses rotating 

round-robin priority arbiters at the inputs and outputs such that under uniform traf­

fic, the pointers used in the input and output arbiters for selection tend to point to 

different elements (desynchmnize) and each arbiter tends to make a different selection 

from other arbiters and the largest number of inputs and outputs are matched. Conse­

quently, under uniform Bernoulli i.i.d. traffic iSLIP arbiters adapt to a time-division 

multiplexing scheme, providing a perfect match and 100% throughput. However, 

under non-uniform traffic, the pointers are not necessarily desynchronized and the 

performance potentially degrades - Chang et al. [CLJ02] showed using a pathological 

traffic pattern for a 3 x 3 switch how iSLIP can get trapped in "bad modes" such 

that the throughput is limited to 66.67%. 

To cope with degrading performance under non-uniform traffic, without increas­

ing the scheduler's complexity, Li et al. [LPC02] proposed coupling the I1RCA par­

adigm with exhaustive matching(EM) (see Section 2.5). Specifically, it was shown 

[LPC02] that exhaustive iSLIP (EiSLIP) produces the best results compared to several 

proposed exhaustive scheduling algorithms and performs better than non-exhaustive 

matching algorithms, under some non-uniform traffic patterns. 
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Load-balanced Birkhoff-von Neumann [CLJ02j switches (see Section 2.7) address 

the problem of scheduling non-uniform traffic using a two stage scheduler: a load 

balancing stage followed by a second scheduling stage that essentially operates on 

uniform traffic. The main drawback of this architecture is that packets can be misse­

quenced, which may require complicated hardware implementation and non-scalable 

computation overhead. Furthermore, providing a scalable solution that simultane­

ously provides QoS support and solves the packet missequencing problem is a major 

difficulty in the load-balanced router architecture. 

5.2 Problem Addressed 

In summary, it is a challenge to find a scheduling scheme for IQ switches that meets 

the following requirements: 

1. Provides high throughput for both uniform and non-uniform traffic. 

2. Provides rate guarantees for QoS traffic and proportional bandwidth sharing. 

3. Is readily implemented in hardware: most practical schedulers are iterative with 

hardware time complexity of 8 (log N) per iteration, where N is the size of the 

switch; usually log(N) iterations are used in practice. 

In this chapter we address the previous issues and present a solution that meets 

all these requirements. We emphasize that almost all practical scheduling schemes 

in the literature can provide high throughput under uniform traffic; however, under 

non-uniform traffic, the throughput usually degrades significantly. 

This chapter is organized as follows. Section 5.3 provides an overview of the pro­

posed cooperative token-ring scheduling policy. In Section 5.4, we present all the 

algorithmic details of the proposed CTR scheduler. We present a parallel implemen­

tation of CTR based on IlRC A paradigm in Section 5.5. The performance of CTR, 

for best-effort traffic, is evaluated by simulation in Section 5.6. In section 5.7, we 

examine the fairness of the proposed CTR scheduler. We propose a two-level hi­

erarchical scheduler, weighted CTR scheduler, which supports rate-guarantees and 
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proportional bandwidth sharing in Section 5.S. In Section 5.9, we provide an optimal 

hardware implementation for the proposed cooperative mechanism. Several detailed 

examples of CTR scheduling policy are presented in Section 5.10. Finally, Section 

5.11 provides our conclusions. 

5.3 Overview of Cooperative Token-Ring Schedul-. 
lng 

In this section we informally describe the cooperative token-ring (CTR) scheduling 

policy. The goal is to provide an intuitive understanding of the concept rather than 

to list the algorithmic details, which are given in Section 5.4. 

Consider the system shown in Figure 5.1 (a) There are a set of four users (nodes) 

that are alphabetically labeled A, B, C, and D. There are four resources, which are 

represented by the tokens TI , T2 , T3, and T4 . These tokens rotate clockwise in the ring 

and could be acquired by any of the nodes subject to the constraint that each node 

acquires at most one resource simultaneously. Each node maintains a separate queue 

for each token that represents backlogged work for that resource. We assume that 

time is slotted such that token-arbitration is performed during each time-slot where 

each node may acquire or release an acquired token. At the end of token-arbitration 

each node may be matched to at most one token and consumes an element from the 

corresponding queue. Consider the configuration shown in Figure 5.1(a) where each 

of the four nodes has backlogged queues for some resources, which are represented 

by the rectangle boxes outside the ring: node A requires tokens TI and T
2

; node B 

requires tokens TI ; node C requires tokens T3 and T4 ; and node D requires token T
4

. 

The initial token(s) position(s) are as shown in Figure 5.1(a): TI is at node D; T3 

and T4 are at node B; and T2 is at node C. 

In classical token-ring scheduling each node makes an independent token-selection 

decision obliviously of the state of other nodes; for example, given the initial state 

shown in Figure Figure 5.1 (a) each node could acquire the first available token to 

result in the matching state shown in Figure 5.1 (b) where: node A acquires token T
I

, 

and node C acquires token T4 . The resource utilization in this example using classical 
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(d) Cooperative Taken-Ring. 

Figure 5.1: Scheduling Using Classical Token-Ring and Cooperative Token-Ring. 
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token-ring scheduling is 50%. Note that nodes E and D do not require tokens T2 and 
T3 . 

CTR is an iterative scheme such that each iteration comprises two phases: com­

puting a request path for each token, and token propagation/selection. The main 

idea of CTR is to create a guided path along the ring for each token from its current 

position to the last node in the ring that requires that token and is not matched to any 

other token. The guided paths for the initial token configuration in Figure 5.1 (a) are 

pictorially shown in Figure 5.1 (c); for example, the guided path for token TI starts at 

node D and ends at node E, which is the last node that is not matched to any other 

token and requires token TI . The value of each token request path at each node is a 

Boolean variable that indicates whether this token is requested by some other nodes 

along path. Subsequently, tokens propagate through the ring such that each node 

uses the token request paths to decide whether to acquire, swap, or release a token 

to improve the overall resource utilization. Specifically, token propagation/selection 

is performed at each node to achieve two goals: 

1. Attempt to improve the node's resource utilization. If the node is not matched 

(has not acquired any token yet) then it acquires the first available token that 

it needs regardless of whether this token is requested by other nodes along the 
path. 

2. Attempt to improve the overall resource utilization of the ring by swapping 

its acquired token for another unrequested token. This swapping is performed 

using the token request paths' information that have been previously computed. 

After computing the guided paths in Figure 5.1 (c), tokens propagate in the ring. 

When node A receives token T1 , it acquires it. When tokens n, and T4 arrive at node 

C, node C acquires T3 because T4 is requested by some other node along the path 

as indicated by the request path for T3. Subsequently, token T4 propagates along the 

ring and is acquired by node D. When T2 arrives at node A, which had previously 

acquired T1 , node A swaps TI for T2 and TI propagates to node E, where it gets 

acquired. Note that A performs the swapping because it knows that Tl is requested 
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by some other node along the ring. The final state is shown in Figure 5.1 (d), where 

each node is matched to a token and the resource utilization is 100%. 

In essence, the main difference between traditional token-ring and cooperative 

token-ring is that each node in traditional token-ring scheduling considers only its 

own resource utilization, whereas in CTR the token-selection at each node additionally 

cooperates with other nodes in the ring to improve the overall resource utilization. 

5.4 Description of Cooperative Token-Ring Sched­
uler 

Outpull 

Oulpul2 

N tokens 

OUlpul3 

Outpul N 

Crossbar 

Figure 5.2: Architecture of Cooperative Token-Ring Switch. 

The basic architecture of a cooperative token-ring switch is shown in 5.2. There 
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are N tokens in the ring that correspond to the N outputs of the switch such that 

each CTR arbiter is allowed to acquire at most one token. When input i is matched 

to output j in a time slot it is allowed to transmit a packet to output j during that 
time slot. 

CTR is an iterative algorithm such that each iteration comprises two phases: 

1. Computing the tokens request paths phase: In this phase a token request vector 

(T RV) is computed for each input that represents which tokens are requested 

by other unmatched inputs. Each element in the T RV vector is a binary value 

such that a true value for T RV (i) indicates that token i is requested by some 

other unmatched input along the ring. Computing the T RV is described in 

Section 5.4.1 and its hardware complexity is examined in Section 5.9.1. 

2. Token propagation/selection phase: In this phase tokens propagate through the 

ring and each CTR arbiter selects tokens based on its VOQ status and TRV. 

Here we make precise some terminology used for the remainder of this chapter. We 

adopt a matrix representation to represent the switch's state. We use the following 
standard notations: 

+ denotes standard Boolean OR operation. 

x denotes standard Boolean AND operation. 

1 denotes true and a denotes false. 

A denotes Boolean NOT operator applied to the Boolean parameter A. 

Definition 23. The VOQ state matrix VOQ. VOQi,j is set to one if the virtual 
output queue at input i for output j is nonempty, and is set to zero otherwise. 

Definition 24. The matched matrix M. Mi,j is set to one if input i is currently 
matched to output j. 

Definition 25. The request matrix R. Ri,j is set to zero if input i is matched and is 
set to V OQi,j, otherwise. The request matrix is used for computing the token request 
paths. 

Definition 26. The token position TP. T P;,j is set to one if the token for output j 
is currently at input i and is set to zero, otherwise. Note that multiple tokens can be 
at the same input, and also when token j is at node i does not necessarily imply that 
input i is matched to output j. 
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Definition 27. The token request paths matrix TRP. Let k be position of the token j 
in the ring: Then T RPi,j is set to one if there exists an input y between (circular wise) 
input i (exclusive) and k (exclusive) that is not matched and VOQy,j = 1. Observe 
that each row in TRP represents the TRV for the corresponding input; i.e., row i is 
the TRV for input i. The goal of the first phase of CTR scheduling is to compute the 
TRP matrix. 

Our design strategy is to have a communication structure that is feasible to im­

plement in hardware and that could be used to iteratively improve the throughput 

of the switch such that a tradeoff could be made between the number of iterations 

performed and the achieved throughput. Coincidentally, we would like the communi­

cation mechanism to be as concise as possible and reflect the dynamic nature of the 

traffic conditions such that the scheduler is able to dynamically adapt to time-varying 

traffic, which manifests itself in the status of VOQs, such that little or no exchange 

of tokens is performed between the different arbiters when the status of VOQs do not 

change and more communication is performed when the status of the VOQ change 

and arbiters become unmatched that could potentially be matched. Unequivocally, 

the T RV at each input can be viewed as forming guided paths for the tokens to 

reach their intended destinations that lead to an overall performance improvement. 

Computing the token request paths and token-selection phases are described in detail 

in Sections 5.4.1 and 5.4.2, respectively. 

5.4.1 Computing the Tokens Request Paths Phase 

The TRV computed at each input represents the set of tokens that are requested by 

other unmatched inputs along the ring and is used by each CTR arbiter during the 

token selection phase as described in Section 5.4.2. Each element in the TRV is a 

binary value that is set to true if there is an unmatched arbiter along the ring that 
requests this token. 

The same algorithm is used to compute the token request path for each token in 

the ring (i.e., a column in the TRP matrix). To simply the notation, we focus on 

computing the token-request path along one ring and drop the second subscript. 

Assume a token-ring with N nodes and N tokens. Let Ikl = (k mod (N + 1)). 
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The value of TRP at input module i is given by: 

j=i+N-l k=j-l 

T RPi = Rli+ll + L R ljl IT T P lkl (5.1 ) 
j=i+2 J,'=i+l 

Various implementation schemes could be used to compute TRP based on equation 

(5.1). One possible implementation scheme is to exploit the ring structure and send 

the requests in opposite direction of token propagation such that each node computes 

its TRP bit and either propagates or stops the request based on the token's position. 

The time complexity using this technique is 8(N). In section 5.9, we describe how a 

binary tree structure could be used to evaluate equation (5.1) in 8(1og N) time. We 

emphasize that computing TRP requires simple boolean operations that is readily 

implementable in hardware. 

5.4.2 Token Propagation/Selection Phase 

Each eTR arbiter performs token-selection using its computed T RV. We say that a 

token is requested if its corresponding element in the T RV is true and is unrequested 

otherwise. A precondition for acquiring token by an input is that the corresponding 

VOQ is nonempty. 

Each eTR arbiter selects tokens according to the following rules: 

R1 An input that is not matched acquires the first available token regardless of 

whether this token is requested or not - this ensures that the matching con­
verges. 

R2 Acquiring an unrequested token is prioritized over acquiring a requested token. 

R3 Swapping an acquired token with an unrequested token, when possible. 

R4 An input arbiter that still has backlogged packets for its acquired token, can hold 

its acquired token for more than one time slot. 

The Prioritization according to [R2] is done to provide other unmatched inputs 

the chance to acquire the requested token and improve the overall throughput. 
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[R.3] allows two cases for token-swapping: swapping a requested token for a non­

requested token as in [R.2]; and swapping a non-requested token for another unre­

quested token. Swapping between unrequested tokens allows the breaking of cyclic 

dependencies; for example consider a token-ring with three nodes: A, B, and C such 

that C is not matched and requests a token that is acquired by B. In turn, B would 

relinquish its acquired token only if it acquires the token that is acquired by node A. 

According to Definition 25, node B can not send a request for the token acquired by 

node A because B is already matched; however, node A would swap its acquired token 

according to [R.3], which in turn would be acquired by B in exchange for the token 

required by node C to achieve 100% utilization. A detailed example that shows how 

swapping unrequested tokens could break a cyclic dependency is provided in Section 

5.10.5. 

[R.4] is based on the observation that the state of the VOQs changes slightly 

between time slots. So, rather than starting each matching from scratch at the 

beginning of each time slot, [R.4] attempts to improve over the matching computed 

from the previous time slot. 

There are various mechanisms for implementing a CTR scheduler with implemen­

tation tradeoffs. We emphasize our description so far has been only a logical descrip­

tion: any hardware implementation that logically implements the CTR scheduler 

could be used; for example, in Section 5.5, we describe how CTR could be physically 

implemented using a lIRC A paradigm, which is typically employed in high-speed IQ 

switch implementation [GM99]. 

5.5 Parallel Implementation of CTR 

In this section we present a parallel implementation of cooperative token-ring sched­

uler that is tailored towards high-speed implementation with a hardware time com­

plexity of 8(1og N) per iteration based on lIRCA paradigm. 

At the beginning of each iteration the T RV is computed for each input as de­

scribed in Section 5.4.1 and the Token Propagation/Selection Phase is performed 

using lIRC A paradigm as described next. 
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Figure 5.3: Parallel Implementation of Cooperative Token-Ring. 

As shown in Figure 5.3, a round-robin arbiter is used at each output port, and a 

CTR arbiter is used at each input. The round-robin arbiter at each output implements 

the token-ring for the corresponding output, whereas the CTR arbiter implements the 

token-selection described in Section 5.4.2; the CTR arbiter implements the request 

and accept phase, and the round-robin arbiter implements the grant phase of the 

nRC A paradigm. Each CTR arbiter and round-robin arbiters uses a rotating round­

robin priority encoder as described next. Specifically, each iteration of the CTR 

algorithm comprises the following steps: 

1. Compute the T RV for each input as described in Section 5.4.1. 

2. Request Step: Each unmatched eTR arbiter sends a request to every output 

arbiter for which it has a queued cell, whereas each matched input sends a 

request to every unrequested and unmatched output 1 for which it has a queued 

cell. Recall that an unrequested output is one for which the corresponding 

element in TRY is false. 

3. Grant Step: If an unmatched output arbiter receives any requests, it chooses 

the one that appears next in fixed round-robin fashion starting with the highest 

priority element. The output notifies each input whether or not its request was 

1 Technically, it is irrelevant whether an input sends a request to a matched output because per 
definition a matched output ignores the requests it receives, but it helps simplify our presentation. 
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granted. The pointer to the highest priority element of the round-robin schedule 

is incremented (modulo N) to one location beyond the granted input. 

4. Accept-step: Each CTR arbiter selects one of the grant signals and sends an 

accept signal to the corresponding output arbiter. Selecting a grant signal 

follows [RI] - [R3] described in Section 5.4.2, which are are reiterated here for 

completeness. There are two cases: 

(a) Unmatched Input: Select a grant for an unrequested output (i.e., the cor­

responding bit in TRV is zero), if possible; otherwise, select a grant for a 

requested output and send the accept signal starting with the highest prior­

ity element. The corresponding input and output are considered matched. 

The round-robin pointer is incremented (modulo N) to one location be­

yond the accepted output. 

(b) Matched Input: Per definition, the received grants are for unrequested out­

puts (requests were sent only for unrequested outputs in the Request Step) 

and the output selects from among these grants in a round-robin fashion 

starting with highest priority element - the CTR arbiter uses a rotation 

round-robin priority. The input resets (breaks) its previously matched out­

put and sends an accept signal (is matched) to the selected output. The 

round-robin pointer is incremented (modulo N) to one location beyond the 

accepted output. 

Most IIRCA typically converge to a maximal matching (See Section 2.3.3) af­

ter log N iterations, on average [McK99], although this convergence has never been 

formally proven in the literature for any of the deterministic IIRC A schemes (those 

schemes that do not use random selection). The only established formal convergence 

in the literature is for PIM, which uses random selection at both the inputs and out­

puts and was shown to converge to a maximal matching after log N iterations, on 

average, under Bernoulli i.i.d. traffic [AOST93j. In the worst case a IIRCA requires 

N iterations - every iteration matches only a single input to an output [AOST93j. 

Similar to other IIRC A, CTR typically converges to a maximal matching after log N 
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iterations on average; we conjecture that CTR converges to maximum size match­

ing (See Section) after N iterations; however, establishing an analytic proof of this 

convergence is an area of future work. 

5.6 Simulation Results for Best Effort Traffic 

In this section, we evaluate the performance of CTR, iSLIP, EiSLIP, Dual Round­

Robin (DRR), and PIM for a 16 x 16 switch with four iterations. All simulations 

were performed with 99% confidence and 1 % accuracy; that is, the simulations were 

run until the relative width of the confidence interval equals 1% with probability 

2: 99%. The simulations were implemented using a Java testbed ( 30KLOC) and 

were executed on an IBM Blade Center; the confidence interval calculations were 

done using the batch method with a batch size of 1000 time slots and were calculated 

only after the system reached steady state (i.e., arrival rate equals departure rate). On 

average each simulation run required four hours of execution time. We evaluate the 

performance for both Bernoulli traffic distributions and various bursty traffic models. 

5.6.1 Bernoulli Traffic Distribution 

We use various traffic models recommended by the switching fabric benchmarking 

group [For04]. The following arrival patterns are used with Bernoulli traffic distribu­

tion. Note that p denotes the normalized load such all inputs are equally loaded, and 

N is the switch size. 

1. Uniform: Ai,j = p/N Vi, j. 

2. Diagonal: Ai,j = 2p/3, Ai,li+11 = p/3 Vi, and Ai,j = 0 for all other i and j. This 

is very skewed loading and is more difficult to schedule than uniform loading. 

3. Logdiagonal: Ai,j = 2Ai,I1+11, and L:i Ai,j = p; for example, the distribution of 

the load at input 1 across outputs is Ai,j = ;;~f: This type of load is more 

balanced than diagonal loading, but more skewed than uniform loading. 
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Figures 5.4, 5.5, and 5.6 show the average delay under uniform, log diagonal and 

diagonal traffic, respectively. In addition to providing the best performance under the 

three arrival patterns, the improvement achieved by the proposed CTR scheduling 

policy manifests itself clearly as the arrival pattern becomes more skewed: under 

uniform arrivals, all schemes can support up to 100% traffic load and CTR provides 

the lowest delay; as the arrival pattern becomes more skewed under logdiagonal traffic, 

only CTR is able to provide almost 100% throughput for traffic load larger than 90%; 

finally, under the diagonal arrival pattern, which is the most skewed arrival pattern, 

the breakpoint at which both iSLIP and EiSLIP can not handle the traffic load moves 

further to the left and only CTR is able to provide 100% throughput for traffic loads 

larger than 85%. 

104r-----r-----r-----r-----r-----.-----.---__ ~--~ 
-e-iSLIP 

EiSLIP 
~;~DRR 

-+-PIM 
103 --+-- eTR 

10°C--=~L-____ L-____ L-____ L-____ L-____ L-____ ~ __ ~ 

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 
Offered load per input port (cell/slot) 

Figure 5.4: Performance of CTR, iSLIP, DRR, PIM, and EiSLIP for uniform traffic. 
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Figure 5.5: Performance of CTR, iSLIP, and EiSLIP for Log Diagonal traffic. 
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Figure 5.6: Performance of CTR, iSLIP, DRR, PIM, and EiSLIP for Diagonal traffic. 
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5.6.2 Simulation as a function of the switch size 

Figure 5.7 shows the average latency imposed by a CTR scheduler as a function of 

offered load for switches with 4, 8, 16, and 32 ports for Bernoulli uniform traffic with 

log(N) iterations. The performance is almost identical for the various switch sizes. 

10
2 r-------~--------~--------~--------~---------

0-- size=4 
size=8 

--t-- size=16 
--B- size=32 
--/.)-- size=64 

10-1~------~------__ ~ ________ ~ ________ ~ ______ ~ 
0.5 0.6 0.7 0.8 0.9 

Offered load per input port (cell/slot) 

Figure 5.7: The performance of CTR as a function of switch size for uniform i.i.d. 
Bernoulli arrivals. 

5.6.3 Bursty Traffic Distribution 

Because real-internet traffic is bursty [CB97], bursty traffic models were considered in 

our simulations. Specifically, a bursty traffic with fixed burst size, and an ON/OFF 

Markov Modulated Process with a geometrically distributed burst size [For04] were 

used. 
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5.6.4 Uniform Bursty Traffic 

In this traffic model packets come as a burst of length N (i.e., 16) such that packets 

within the same burst are destined to the same output. For every Nth time slot, 

the probability that there is a burst arriving at a particular input port is p, and the 

probability that there are no packet arrivals in these N slots is 1 - p. The destination 

of the N packets within a burst is chosen uniformly from among the N output ports. 

Q) 
Ol 

104,--------.--______ .-______ -. ________ -. _______ ~ 

-B-iSLIP 
EiSLIP 

...... + DRR 
~PIM 
--+--CTR 

~ 2 
Q) 10 
~ 

101.~~~--~---------L--------L_ ______ ~ ________ ~ 
0.5 0.6 0.7 0.8 0.9 

Offered load per input port (cell/slot) 

Figure 5.8: Average Delay under the uniform bursty traffic model. 

As shown in Figure 5.8, CTR provides the lowest cell delay followed by iSLIP and 

finally by EiSLIP. 

5.6.5 ON/OFF Markov-Modulated Arrivals 

Each input port is connected to a burst source that generates traffic-cells using a 

2-state Markov process that alternates between busy and idle states. The process 
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remains in the busy and idle states for a geometrically distributed number of cell 

times. When the server is in the busy state, cells arrive at the beginning of every 

time slot and all with the same set of destinations. This traffic model is described in 

detail in [For04]. An average burst size of 16 was used. 

105.--------.---------.------__ ,, ________ .-______ ~ 

--B-iSLIP 
EiSLIP 

-t--DRR 
-+--PIM 

104 --+-CTR 

101L-------~ ________ -L ________ -L ________ ~ ______ ~ 

Q5 Q6 0.7 Q8 Q9 
Offered load per input port (cell/slot) 

Figure 5.9: Average Delay under 2-state Markov-modulated arrivals with an average 
burst size of 16. 

As shown in Figure 5.9, the same trend occurs and CTR provides the best per­

formance. 

5.6.6 Effects of increasing number of iterations 

One of the main arguments for CTR is that its performance iteratively improves with 

increasing the number of iterations. The effect of increasing the number iterations 

is evaluated by simulation for CTR, iSLIP, EiSLIP, Dual Round-Robin (DRR), and 
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PIM. A 16 x 16 switch was used and the number of iterations executed were: 1, 2, 4, 

8, and 16. 

5.6.6.1 Uniform Bernoulli Traffic 

As shown in Figure 5.10, most schemes perform well under uniform Bernoulli i.i.d. 

traffic and there is almost no improvement achieved by executing more than 4 itera­

tions for most schemes except for CTR. 

5.6.6.2 Log Diagonal Bernoulli Traffic 

As shown in Figure 5.11, CTR outperforms all other schemes for any number of 

iterations under log diagonal traffic and is the only scheme able to sustain 100% 

traffic load even with a single iteration. Observe that regardless of executing more 

iterations, none of schemes other than CTR is able to sustain a traffic load larger 

than 90%. 

5.6.6.3 Diagonal Bernoulli Traffic 

As the traffic becomes very skewed under diagonal traffic, none of the schemes other 

than CTR is able to sustain traffic load higher than 85%, whereas CTR provides 100% 

throughput with 4 iterations as shown in Figure 5.12. In addition, the performance 

of CTR keeps incrementally improving as more iterations are executed, as expected. 

5.6.6.4 Uniform Bursty Traffic 

As shown in Figure 5.13, CTR outperforms all other schemes even with a single 

iteration. 

5.6. 7 ON/OFF Markov-Modulated Traffic 

As shown in Figure 5.14, CTR outperforms all other schemes even with a single 

iteration under bursty traffic model with a geometrically distributed burst size of 16. 
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Figure 5.10: Effects of increasing the number of iterations under uniform Bernoulli 
i.i.d. traffic. 
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Figure 5.10: Effects of increasing the number of iterations under uniform Bernoulli 
i.i.d. traffic (cont). 
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Figure 5.10: Effects of increasing the number of iterations under uniform Bernoulli 
i.i.d. traffic (cont). 
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Figure 5.11: Effects of increasing the number of iterations under log diagonal Bernoulli 
i.i.d. traffic. 
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Figure 5.11: Effects of increasing the number of iterations under log diagonal Bernoulli 
i.i.d. traffic (cant). 
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Figure 5.11: Effects of increasing the number of iterations under log diagonal Bernoulli 
i.i.d. traffic (cont). 
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Figure 5.12: Effects of increasing the number of iterations under diagonal Bernoulli 
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Figure 5.12: Effects of increasing the number of iterations under diagonal Bernoulli 
i.i.d. traffic (cant). 
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Figure 5.13: Effects of increasing the number of iterations under uniform bursty traffic 
with fixed burst size of 16. 
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Figure 5.13: Effects of increasing the number of iterations under uniform bursty traffic 
with fixed burst size of 16 (cant). 
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Figure 5.13: Effects of increasing the number of iterations under uniform bursty traffic 
with fixed burst size of 16 (cont). 
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Figure 5.14: Effects of increasing the number of iterations under under 2-state 
Markov-modulated arrivals with an average burst size of 16. 
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Figure 5.14: Effects of increasing the number of iterations under under 2-state 
Markov-modulated arrivals with an average burst size of 16 (cant). 
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Figure 5.14: Effects of increasing the number of iterations under under 2-state 
Markov-modulated arrivals with an average burst size of 16 (cant). 
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5.7 Fairness of Cooperative Token-Ring Schedul-. 
lng 

Given that CTR scheduling potentially violates the strict ordering of round-robin 

arbitration to achieve high throughput, it is expected that it could suffer from a 

fairness problem for an adversarial traffic pattern. We describe the fairness problem 

in the current design and then describe several augmenting schemes to the proposed 

CTR scheduling policy that address fairness. 

We have chosen to address the fairness issue separately for several reasons. First, 

there are various possible solutions with tradeoffs in their implementation complexi­

ties that depend on the desired granularity of fairness that we believe should be left 

to the designer. Second, the solutions to the fairness problem are complementary 

to the concept of cooperative token-ring scheduling and helps simplify our presenta­

tion. Third, and more importantly, we view the decoupling between achieving high 

throughput and providing fairness as one of our key contributions. It is our view 

that the tight coupling of a rigid fairness scheme in many scheduling policies, which 

almost dictates the next schedule, that forces the scheduler to not adapt to the traf­

fic dynamics; thus, causing an overall performance degradation. On the one hand, 

in a strict round-robin scheduler the uniform selection of next matching element 

tends to dovetail with and uniform i.i.d. traffic and the scheduler can provide 100% 

throughput [LPC01]. However, for non-uniform traffic, strict round-robin scheduling 

causes performance degradation. On the other hand, exhaustive scheduling policies 

(e.g. EiSLIP [KC03]) potentially provide better performance than strict round-robin 

schedulers for bursty traffic, but the scheduler could still get locked into "bad modes" 

because each arbiter makes its decision obliviously of the state of the other arbiters in 

the switch; that is, the scheduler does not necessarily adapt to traffic dynamics. Our 

scheme alleviates this problem by using the cooperative mechanism described earlier. 

Although our proposed CTR provides excellent performance for all admissible 

traffic as previously shown, under inadmissible traffic CTR could lead to starvation 

of some queues. An example of starvation behavior is shown in Figure 5.15 for a 2 x 2 

switch. Because all three queues are permanently occupied, the algorithm will always 



Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 111 

select the "cross" traffic: input 1 to output 2 and input 2 to output 1 and VOQl,l 

will starve. 

Figure 5.15: Under an inadmissible workload, the CTR scheduler will cause VOQl,l 
to starve. 

Although in a real-router, decongestion mechanisms (e.g., RED) are applied at 

the ingress ports to avoid buffer overflow associated with inadmissible traffic, it is still 

possible to construct an adversarial traffic pattern for CTR that leads to unfairness. 

There are several mechanisms for providing fairness in a CTR scheduler. One simple 

scheme is to set a threshold on the number of consecutive time slots for holding 

the acquired token by an input (e.g., k time slots). This would ensure that each 

input gets the chance to acquire any token every k(N - 1) time slots. Conversely, 

an input module with a VOQ that has not been served beyond a threshold period 

of time may send (broadcast) a "prioritized request", which must be honored by 

the input module that is currently matched to this token. If a higher granularity of 

fairness is desired, then a credit-based mechanism could be used such that a number 

of credits are allocated to each input-output pair and each CTR arbiter is allowed to 

acquire a token only if there are available credits for the corresponding output port. 

We explore this credit-based scheme in section 5.8 to provide rate guarantees in our 

proposed CTR scheduler. 

5.8 Weighted Cooperative Token-Ring 

To provide both rate-guarantees and proportional-bandwidth sharing, we propose a 

two-level scheduler, weighted cooperative token-ring (WCTR). In WCTR, QoS traffic 

is scheduled first and then best-effort traffic contend for the remaining bandwidth. 
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Scheduling QoS in WCTR is performed using frame-based scheduling such that 

time is divided into frames, and a counter is associated with each input-output pair. 

The counters are set according to their negotiated bandwidth shares at the beginning 

of each frame. Queues with positive counters compete with higher priority according 

to CTR. Then, the remaining queues contend according to CTR for the available 

bandwidth. During any time slot, an input module can acquire a token for an output­

port to send either guaranteed-rate traffic or best effort traffic and a flag is used to 

indicate the traffic type for which the token is acquired. Scheduling in each level 

(QoS or best-effort) is performed similar to the original CTR description in Section 

5.4: computing the tokens request paths phase followed by a token-selection phase. 

The main difference is that QoS traffic is prioritized over best-effort traffic. First the 

token request paths is computed for QoS traffic with the semantics that a module 

sends a token request only if it has QoS traffic and available credits. Subsequently, if a 

module that had previously acquired a token for best-effort traffic, and the acquired 

token is now requested by another unmatched input for QoS traffic, then it must 

release it. Conversely, during the best-effort scheduling level, a WCTR arbiter would 

not release a token that was acquired for a QoS traffic if this token is requested by 

another input. 

There are many variations of the presented weighted cooperative token-ring sched­

uler; for example, it is straightforward to generalize the scheme to multiple priority 

levels scheduling. In addition, a centralized module could be used allocate credits 

for best-effort traffic to ensure fairness in the distribution of unreserved bandwidth 

among the inputs. 

5.8.1 Simulation Results for Weighted Cooperative Token­
Ring Scheduler 

To illustrate the fairness of WCTR in bandwidth allocation, a 4 x 4 switch was 

simulated such that each input has four flows, each going to a different output with 

a different bandwidth reservation. Let lk(i,j) represent flow k from input port i to 

output port j. In the simulated switch, 11 (0,0), 12(1,0), h(2,0), and 14(3,0) have 

reserved 10, 20, 30, and 40 percent of the bandwidth, respectively, but they always 
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maintain the same actual arrival rate. Other flows have a load of 5 percent each. This 

traffic model has been used in [SV95] and [ZB03]. We used a frame size of 1000 slots 

and measured the throughput per flow at the end of one frame. As shown in Figure 

5.16, WCTR is able to provide to each input its allocated rate. 
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Figure 5.16: Plot of throughput per flow for WCTR at the end of one frame. 

5.9 Hardware Implementation of Cooperative Token­
Ring 

In this section we analyze the hardware complexity of computing the token request 

paths and prove that its latency is 8 (log N) and circuit size per node is 8(N log N). 
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Recall from Section 5.4.1 that each element in the TRV is given by: 

j=i+N-I k=j-l 

T RPi = Rli+ll + L RUI II T P lkl 
j=i+2 k=i+l 

We make the following two observations: 

1. Equation (5.1) can not be directly implemented using a parallel prefix circuit 

[LF80j because each element is computed using all the other elements in the 

ring in a circular (Modulo arithmetic) fashion. 

2. Although it is simple to achieve an optimal latency of 8(log N) using a binary 

tree for computing each element in Equation (5.1), the circuit size per element 

(node) would be 8(N log N) per output bit value and consequently the circuit 

size per node would be 8(N2 log N), whereas we describe a technique with 

optimal latency and circuit size per node of 8(N log N). 

Rather than providing a specific solution for computing Equation (5.1), we gen­

eralize the problem and present a generic circuit for computing all elements in a list 

such that each element depends on other elements in the list, in a circular fashion, in 

8(NlogN) circuit size with time complexity 8(logN) as described in Section 5.9.1. 

A similar hardware circuit for computing circular prefix computations with the same 

8(N log N) circuit size and 8 (log N) delay bounds was presented in [Szy02], upon 

which this circuit was based. 

5.9.1 Complete Symmetrical Prefix Problem 

Let 0 be a binary associative operation. The complete symmetrical prefix problem is 

to compute, given Xl, X2, ... ,Xn , the results YI, Y2, ... , Yn, where Yk = Xlk+ll0 Xlk+21 0 
... 0 Xlk+n-ll, for 1 ::; k ::; n 

The problem of computing the token request bit can be solved on a binary tree 

network in 2D steps where D is the depth of the tree. The algorithm consists of 

essentially two interleaving phases: upward phase, and downward phase. In the 

upward phase, each internal node computes the product of the entries in the leaves 
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spanned by the node. In the downward phase, these products are passed downward 

the tree so the leaf can form the result. We describe the algorithm in more detail in 

the next sections. 

5.9.1.1 Upward phase 

During the first step, Xi is input to the ith leaf for 1 SiS N. This value is both 

stored and passed upward to the node's parent. In subsequent steps, internal nodes 

receiving inputs from children concatenate the inputs and pass the product upward 

in the tree. After D steps, every node, other than the root, will have computed 

the product of the inputs to the leaves covered by the node. Figure 5.17 shows the 

computation performed by each node, and Figure 5.18 shows the actual products 

computed by each node for an 8-string example. 

(b) 

x. 
11 I 

I 

GJ 

Figure 5.17: Action of an internal node (a) and leaf (b) during the upward phase. 
Inputs to the internal nodes are concatenated, and then passed upwards. Inputs to 
leaves are stored and passed upwards. 

As each nonleaf node receives its input from below, it swaps the values computed 

by the left and right child. That is, it passes the value computed by the left child to 

the right child and conversely. Each node then stores the new value it receives from 

its parent as shown in Figure 5.19. 

For example, Figure 5.20 shows the node values after swapping for the previous 
8-string example. 
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Figure 5.18: Concatenation performed by each node in the parallel prefix algorithm 
for an 8-element string. Each node computes the product of the inputs that it spans. 

.. -
• * -. • • ~ X.: 
+ 1. ....... 

1-.10 ••• 
~ ~.. . . 

• ·X • : j'. • • • •••••• 

Figure 5.19: Swapping the node values during the upward propagation phase. 

Figure 5.20: The node values after swapping the left and right child for the 8-string 
used in Figure 5.18 
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5.9.1.2 Downward Phase 

During the downward phase each node receives the node value of its parent and 

computes the result as depicted in Figure 5.2l. The operation is performed both for 
leaf and nonleaf nodes . 

. 1.... ~ .U .. •... . ... 
..••• .if.... ~ .. _ ••• .. . . . ... X *. .+ -. 

: "i : : x. : 
••• .... ••• J •• " .......... . ..... ~-

Figure 5.21: Operation of nodes (leaf and nonleaf nodes) during the downward phase. 

In total, the algorithm takes 2D steps, where D is the depth of the tree and the 

circuit size is determined by the number of nodes in the tree, which is S(N log N) 
assuming each node has a fixed size. 

5.9.2 Computing the Token Request Vector as a Complete 
Symmetrical Prefix Problem 

Computing the token request vector can be modeled as the complete symmetrical pre­

fix problem by keeping track of whether each module stage stops a request, propagates 

a request or generates a request. Specifically, let the state at node i be: 

stop(s) == if the token is currently at node i. 

propagate(p) == if the token is not currently at node i and the node does not have 
a request for the token. 

generate(g) == if module i has a request for the token. 
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Let Xi denote the s, p, or g value of ith node, and let Ikl = (k mod N). 

Next, let T RPi = x/HI/ 0 x/H2/ 0 X/i+3/ ... 0 X/i+N-i/ for 1 ~ i ~ N where 0 is the 
binary associative operator defined by the table in Table 5.1. 

0 S P G 
S S S S 
P S P G 
G G G G 

Table 5.1: Multiplication table for the operator defined for computing the token 
request path. For example, S 0 G = S 

A 
A 

c c 

(a) (b) 

Figure 5.22: (a) The request bit at each node. (b) The corresponding value of TRV 
at each node. 

For example, the signal for the input modules used in Figure 5.22 (a) are shown 

in Table 5.2. The token request bit at module X3 is given by: 



Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 119 

Module Signal 
Xl == XA P 
X2 == XE G 
X3 == Xc P 
X4 == XD P 
Xs == XE G 
X6 == XF P 
X7 == Xc p 

Xs == XH S 

Table 5.2: The signal states for the modules in Figure 5.22 

Figure 5.23 shows the circuit for computing the token request path for a for a 

ring with four inputs; this circuit was generated using Synopsys 2 design compiler, 

with optimization setting for high speed. The circuit computes one column of the 
TP matrix. 

5.10 Examples of the Cooperative Token-Ring Schedul­
ing Policy 

In this section we provide detailed step-by-step examples of eTR implemented using 

the I1RGA paradigm described in Section 5.5. 

5.10.1 Notation 

A matrix notation is used such that rows correspond to inputs and columns correspond 

to outputs. All matrix elements are binary values. 

1. Request The request matrix in the request-grant-accept arbitration phase. 

This matrix is different from R matrix (Definition 25.)- a matched input can 

send a request to an unmatched output for which the corresponding TRV ele­

ment is zero (i.e., a token that is not currently requested by other unmatched 

inputs), whereas in the R matrix only unmatched input can send requests. 

2Synopsys is a trademark of Synopsys, Inc. 
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Figure 5.23: Circuit for computing the token request path in a ring with four nodes. 
The circuit uses approximately 30 standard cells to realize the binary tree structure 
shown in Figs. 5.18 and 5.21, with 4 input ports and 3 binary nodes. Therefore, each 
node in the binary tree consumes approximately 10 standard cells. 
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Request;,j is set to 1 if there is a request from input i for output j, and is set 
to zero otherwise. 

2. Grant The grant matrix. Granti,j is set to 1 if there is a grant from output j 
to input i. 

3. Accept Accepti,j is set to 1 if there is an accept from input i to output j, and 
is set to zero otherwise. 

5.10.2 First Example 

Inpul I 
Acquired Token 

Inpul2 

InputJ 

-_ .. 
(a) 

Inpul I 
Acquired Token 

=- H Token 1 

=-1 

Inpul2 

----1 

TIJJ i 
--=-•• ,'-f Token 2 

---...' 
Inpul3 

••• 
::_-- '-/ Token 3 

(b) 

Figure 5.24: First Example of CTR scheduling policy (a) Initial State (b) Final State 

Assume the initial switch configuration shown in Figure 5.24 (a). 
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5.10.2.1 Initial State 

5.10.2.2 First Iteration: Computing the Tokens Request Paths Phase 

5.10.2.3 First Iteration: Request-Grant-Accept Phase 

Request = (~ ~ ~) Grant = (~ ~ ~) Accept = (~ ~ ~) 
100 000 000 

At the end of the first iteration, input 1 acquires the token for output 1 and releases 

the token for output 2 (token 2). Consequently, the state of the round-robin arbiters 

and the acquired tokens state is given by the following matrices. 

5.10.2.4 Second lteration:Computing the Tokens Request Paths Phase 
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5.10.2.5 Second Iteration: Request-Grant-Accept Phase 

(
000) (000) (000) 

Request = a 1 1 Grant = a 1 a Accept = a 1 a 
000 000 000 

At the end of the second iteration, input 2 acquires the token for output 2 and all 
the inputs are matched. 

5.10.2.6 Final State 

The final state is shown in Figure 5.24 (b). 



Ph.D. Thesis - A. Gourgy - McMaster Univ.- Electrical & Computer Eng. Dept. 124 

5.10.3 Second Example 

This example shows how the eTR arbiters use the token request vector to select 

among multiple grant signals to improve the throughput. 

Input 1 

=rro -­=-
=rro 

Input 2 

, ", ::ern 
=rn 

Input 3 

=rrn =­=rrn 
=rrn 

Input 4 

=­=rrn 
=rrn 

(a) 

Input 1 

::ern 
~ 
~ 

::ern 
Input 2 

:J" II 
::ern 
:JITJ 

Input 3 

::ern 
~ 
::ern 
::ern 

Input 4 

=- .1 Token 1 ::ern 
::ern 

.-" 

(b) 

Figure 5.25: Second Example of eTR scheduling policy (a) Initial State (b) Final 
State 
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5.10.3.1 Initial State 

0 1 1 0 1 0 0 1 0 0 0 0 
1 0 0 1 0 0 0 0 0 0 0 0 VOQ= TP= M= 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 1 1 0 0 0 0 0 

The initial state is shown in Figure 5.25(a). 

5.10.3.2 First Iteration: Computing the Tokens Request Paths Phase 

o 1 1 0 

100 1 

o 1 0 0 

100 0 

TP= 

100 1 

o 0 0 0 

o 0 0 0 

o 1 1 0 

TRP= 

110 1 

1 1 0 0 

100 0 

o 1 1 0 

5.10.3.3 First Iteration: Request-Grant-Accept Phase 

Request = 

o 1 1 0 

1 0 0 1 

o 1 0 0 

1 000 

Grant = 

o 1 1 0 

100 1 

o 000 

o 000 

Accept = 

o 0 1 0 

000 1 

o 0 0 0 

o 0 0 0 
Input 1 receives two grants for outputs 2 and 3. Because the TRV bit for output 

2 is set to 1 it chooses to send an accept to output 3, which is not requested by 

other inputs. Similarly, input 2 receives two grant signals for outputs 1 and 4, and 

chooses to accept the grant from output 4 because it is not requested by other inputs. 

Consequently, outputs 1 and 2 are left unmatched and will be matched in the second 
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iteration. The state of the output round-robin arbiter and the matched state is: 

a 1 1 a a a 1 a 
1 a a 1 a a a 1 TP= M= a a a a a a a a 
a a a a a a a a 

5.10.3.4 
Second Iteration:Computing the Tokens Request Paths Phase 

a a a a a 1 1 a a 1 a a 
a a a a 1 a a 1 1 1 a a R= TP= TRP= a 1 a a a a a a a a a a 
1 a a a a a a a a a a a 

5.10.3.5 Second Iteration: Request-Grant-Accept Phase 

a a a a a a a a a 0 0 0 a a a a 0 a a a 0 a a 0 Request = Grant = Accept = a 1 a a a 1 a a a 1 a a 
1 a 0 a 1 a a a 1 0 a 0 

At the end of the second iteration, input 1 is matched to output 3, input 2 is matched 

to output 4, input 3 is matched to output 2, and input 4 is matched to output 1. 

0 a 1 a a 0 1 0 
0 a 0 1 a 0 0 1 TP= M= 
0 1 0 a 0 1 a 0 
1 a a a 1 a a a 

The final state is shown in Figure 5.25(b). 
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5.10.4 Third Example 

This example shows how an input arbiter swaps an acquired token that is requested 

by another unmatched input arbiter for an unrequested token. 

Inpul I 

=­
~=.­
~flIJ 

Inpul2 

-=-•• =-­IU] 
=rn 

Input 3 

Input 4 

(a) 

Acquired Token Inpul I 
Acquired Token 

---r r ," 

= .. : =- :~Token3 
~TI;::: ! 

Inpul2 

-=-l =-1 
IrL I 
== rn :L.--./ Token 4 

! 

Inpul3 

---r:- ,­
___ L...L -1.-. 

~~ ... -I Token 2 
._J ____ _ 

Input '" 

-S •• l-{ Toten I =1 : 
_:.J. 

-1 -: 
__ I_._L) 

(b) 

Figure 5.26: Example 3 of eTR scheduling policy (a) Initial State (b) Final State 

5.10.4.1 Initial State 

0 1 1 0 0 1 0 0 0 1 0 0 
1 1 0 1 1 0 0 0 1 0 0 0 VOQ= TP= M= 0 1 0 0 0 a 1 0 a a 0 0 
1 0 0 0 a a a 1 a a a a 

The initial state is shown in Figure 5.26(a). 
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5.10.4.2 First Iteration: Computing the Tokens Request Paths Phase 

R= 

a a a a 
a a a a 
a 1 a a 
100 a 

a 1 a a 
1 a a a 
a a 1 a 
a a a 1 

TRP= 

a 1 a a 
1 100 

1 a a a 
a a a a 

5.10.4.3 First Iteration: Request-Grant-Accept Phase 

Request = 

a a 1 a 
a a a 1 

a 1 a a 
1 a a a 

Grant = 

a a 1 a 
a a a 1 

a a a a 
a a a a 

Accept = 

a a 1 a 
a a a 1 

a a a a 
a a a a 

At the end of the first iteration, input 1 acquires the token for output 3 and releases 

the token for output 2. Similarly, input 2 releases the token for output 1 and acquires 

the token for output 4 and releases the token for output 1. Consequently, the state 

of the output round-robin arbiter and the matched state is shown next. 

TP= 

a 1 1 a 
100 1 

a a a a 
a a a a 

M= 

a a 1 a 
a a a 1 

a a a a 
a a a a 

5.10.4.4 Second Iteration:Computing the Tokens Request Paths Phase 

a a a a a 1 1 a a 1 a a a a a a 1 a a 1 1 1 a a R= TP= TRP= a 1 a a a a a a 1 a a a 
1 a a a a a a a a a a a 
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5.10.4.5 Second Iteration: Request-Grant-Accept Phase 

0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 Request = Grant = Accept = 0 1 0 0 0 1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 

At the end of the second iteration, input 3 acquires the token for output 2 and input 
4 acquires the token for output 1. 

0 0 1 0 0 0 1 0 
0 0 0 1 0 0 0 1 TP= M= 0 1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 

The final state is shown in Figure S.26(b). 
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5.10.5 Fourth Example 

This example shows how swapping tokens could break a cyclic dependency (a module 

requests a token that is acquired by another module which in turn would release if 

it acquires another token that is currently acquired by another module) between the 

input modules and leads to improving the throughput. 

Input I Acquired Token 

Input 2 

~
J 

=-
=_ ~ Token 3 

Input 3 

(a) 

Input I Acquired Token 

•• '--1 Token I 

~ .. 
, 

~ ____ J 
Input 2 

·~---~~-l 
.=rLU i 

=----.- H Token 2 
I 

=-1 
Input 3 

I 
"lTTl I __ LLl._ I 

=- ~Token3 
._~ ___ .. ~-.J 

(b) 

Figure 5.27: Example 3 of CTR scheduling policy (a) Initial State (b) Final State 

5.10.5.1 Initial State 

VOQ~U ~ :)TP~U ~ nM~O ~ n 
The initial state is shown in Figure 5.27(a). 
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5.10.5.2 First Iteration: Computing the Tokens Request Paths Phase 

5.10.5.3 First Iteration: Request-Grant-Accept Phase 

(
100) (100) (100) 

Request = a a a Grant = a a a Accept = a a a 
001 000 000 

At the end of the first iteration, input 1 releases token 2 and acquires token 1. 

5.10.5.4 Second Iteration:Computing the Tokens Request Paths Phase 

5.10.5.5 Second Iteration: Request-Grant-Accept Phase 

(

000) (00 Request = 0 1 0 Grant = 0 1 

o 0 1 0 0 
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At the end of the second iteration, input 2 releases token 3 and acquires token 2. 

5.10.5.6 Third Iteration:Computing the Tokens Request Paths Phase 

5.10.5.7 Third Iteration: Request-Grant-Accept Phase 

Request = (~ ~ ~) Grant = (~ ~ ~) Accept = (~ ~ ~) 
001 001 001 

At the end of the third iteration, input 3 acquires the token for output 3 and the 

all the inputs are matched. The final state is shown in Figure 5.27(b). 

5.11 CONCLUSION 

We proposed cooperative token-ring scheduling, a novel scheduling paradigm that 

provides significant improvement over existing schedulers with comparable complex­

ity. Our scheduling paradigm adapts to dynamically varying traffic, provides high 

throughput, and is easily implemented in hardware. We proposed WCTR to provide 

rate guarantees in IQ switches and proportional bandwidth sharing. Finally, we note 
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that although CTR was presented in the context of IQ switches, it is potentially ap­

plicable to several other systems including SONET all-optical circuit-switches, which 

schedules cells in circuit-based frames by using delay lines and star-based WDM 

broadcast-and-select optical system with tunable transmitters and fixed receivers. 

Generally, the proposed CTR scheme can be applied to solve any resource allocation 

problem with a set of nodes competing for exclusive access to a set of shared resources. 



Chapter 6 

Conclusions 

In this chapter we summarize the main contributions of this dissertation and discuss 

future research directions. 

6.1 Summary of Contributions 

In Chapter 4 we introduced a theoretical framework for evaluating the performance of 

IQ switches, and proposed the "lag" concept as a performance metric that measures 

the difference between a packet's departure time in an IQ switch over that provided by 

an OQ switch. By tracking the behaviour of an OQ switch, an IQ switch resolves input 

and output contention fairly, eliminates any starvation of inputs, and approximates 

the behaviour of an OQ switch as close as possible. We presented MWL, a scheduling 

policy based on maximum weighted matching, that uses lag values for its weights. 

We proved that MWL provides 100% throughput under Bernoulli i.i.d. traffic and 

that the per packet lag is bounded. A bound on the mean lag value per packet was 

derived using a Lyapunov function technique. The MWL scheduling policy has a 

run time complexity of 8(N3 log N) on a sequential model, which is prohibitively 

expensive to implement in practice. Consequently, we proposed a simple heuristic 

tracking scheduling policy, iLag, based on maximal matching. The performance of 

MWL and iLag was evaluated by simulation and compared to other scheduling policies 

of comparable complexity. 

In Chapter 5 we presented the cooperative token-ring (CTR) scheduling paradigm, 

134 
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for Internet routers with IQ switches that provides significant performance improve­

ment over existing scheduling schemes with comparable complexity. We showed that 

by using a simple cooperative mechanism between the otherwise non-cooperative 

token-rings (arbiters) the performance can be significantly improved and the sched­

uler is able to dynamically adapt to any non-uniform traffic pattern. In addition, 

the cooperative mechanism is simple to to implement in hardware. To provide ade­

quate support for rate guarantees in IQ switches, we proposed Weighted Cooperative 

Token-Ring (WCTR) scheduling policy, a simple hierarchical scheduling mechanism 

that provides both rate guarantees and proportional bandwidth sharing. The perfor­

mance of WCTR was evaluated by simulation. 

We analyzed the hardware complexity introduced by the proposed cooperative 

mechanism and provided an optimal hardware implementation for an N x N switch 

implementing a CTR scheduler. We proved that the hardware complexity of the 

cooperative mechanism is G(log N) time and G(N log N) circuit size, per port. 

In Chapter 3 we addressed the problem of short-term fairness in QoS schedul­

ing for IQ switches. We presented a scheduling algorithm for Internet routers with 

IQ switches based on credit-based fair queueing that provides better short-term fair­

ness in QoS scheduling than existing solutions with comparable complexity. A flow­

based iterative credit-based fair scheduler (iCBFS) was proposed that provides fair 

bandwidth distribution among flows at a fine granularity than existing schemes with 

comparable complexity. To reduce the implementation complexity of iCBFS, we pre­

sented a port-based version of iCBFS that is tailored towards high-speed hardware 

implementation. 

6.2 Future Work 

Future work will focus on multi-stage switch fabrics, variable- length packet schedul­

ing, and multicast scheduling as described next. 

As the demand for high capacity switch increases, future switches will use more 

ports and higher data rate per port than existing switches and consequently require 

scalable schedulers that support hundreds or thousands of ports. This scalability will 
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likely require using a multi-stage switch fabric. Future work will address scheduling 

in multi-stage switch fabrics to achieve fairness and high throughput. 

This work assumed fixed-length cells such that incoming variable-length IP packets 

are segmented into fixed-length cells at the input and are reassembled at the output 

of the switch. Using fixed-length cells simplifies the switch's scheduler at the over­

head cost of the segmentation and reassembly process. Future work will investigate 

scheduling policies for variable-length packets. 

A growing portion of IP traffic is multicast as point-to-multipoint and multipoint­

to-multipoint applications such as audio and video conferencing are being used. A 

trivial way to schedule multicast traffic is to duplicate each multicast packet such 

that the scheduler still operates on unicast packets. It is interesting to consider more 

memory efficient multicast scheduling policies that do not use this approach. The 

issue of scheduling QoS multicast traffic is also an interesting area of future work. 
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