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Abstract

This thesis discusses and describes empirical comparisons of execution

times of three programs for computing runs in strings. Since two of the pro-

grams were thought to be of O(n log n) algorithms (crochB and crochB7) and

the third is an implementation of a linear algorithm (runFinder), it was ex-

pected that for larger strings runFinder() will strongly outperform the other

two programs in the processing of long strings. The aim of this study is thus

manifold. We establish the upper limits of lengths of strings for which the

performances of crochB and crochB7 are faster or comparable to the perfor-

mance of runFinder; we also investigate what kind of penalty in performance

crochB7 incurs for the memory saving implementation; furthermore, we wish to

explore the relative trade-offs of using one technique (represented through the

programs with which experimentation was gone about) over another: within

what context would it be advantageous to utilize one program over another of

those that are being investigated.

The motivation for this work is the continuation of work of Franek, Jiang,

Smyth, Weng, and Xiao, who implemented a space efficient version of

Crochemore’s repetition algorithm [6], and then extended it to compute runs

[4, 5]. The three programs tested are:

1. crochB – a direct C++ implementation of the extension of Crochemore’s

algorithm for runs by Franek, Jiang, and Weng without any space savings

techniques;

2. crochB7 – a space efficient version of crochB by the same authors,

3. runFinder – an efficient C++ implementation by Hideo Bannai from the
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Department of Informatics at Kyushu University in Japan. His imple-

mentation utilizes the linear-time strategy of computing the suffix array

of the string; using the suffix array it then computes the LCP array; us-

ing the suffix and LCP arrays it computes the Lempel-Ziv factorization;

from the Lempel-Ziv factorization all leftmost runs are computed using

Main’s algorithm; and the rest of the runs are computed using Kolpakov-

Kucherov’s algorithm.

In this thesis, the three programs are discussed, the experimental setup for

the performance measurements is described, the measurements are presented

and a brief analysis of the results follows. It will be shown that although an

expectation of O(n log n) performance can be expected in the case of processing

of one category of investigated data by the latest version of the implementation

of the Crochemore program, in some circumstances (discussed), a performance

expectation of order n2, and in others one between this and one of order n log n

will be encountered.
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Notation and Definitions

In this preliminary section we discuss the notions and notation pertinent to the

understanding of the work presented in this thesis.

Let x be a string over an alphabet A. This means that x is a sequence of

symbols from A. The length of x, denoted by |x|, is the number of symbols in

x. The empty string, i.e., a string of length 0 is denoted by ε. The notation

x[i] denotes the i-th symbol of x, and we speak of i-th position in string x. The

notation x[i..j] denotes the substring of x consisting of symbols from position

i to position j inclusively. An important notion of regularity in strings is the

period : a string x = x[1..n] has a period p if x[i] = x[i+p] for any 1 ≤ i ≤ n−p.

Consider a string u. We denote by uu the concatenation of two copies of

u. We refer to uu as a square of period |u|; this is also denoted by u2. The

expression uuu may also be abbreviated as u3 and is referred to as a cube of

period |u|. The symbol uk refers to concatenation of k copies of u and is refereed

to as a k repetition of period |u|. Since a string x has at least one period, but

can have more, the notation x = ur where |u| is the smallest period of x and

where r = |x| / |u| is referred to as the normal form of x.

Let x = x[1..n]. Then the substring x[1..i], for any i ≤ n, is said to be a

prefix of x; if i < n we speak of a proper prefix of x. The empty string ε is said

to be a trivial prefix of x. Similarly, x[i..n] for any 1 ≤ n is said to be a suffix

of x; if i > 1 we speak of a proper suffix of x. The empty string ε is said to be

a trivial suffix of x.

Let x = uvrw for some substrings u,w and a non-empty substring v and

and integer r ≥ 2. Then we speak of an occurrence of an r repetition of v in x,
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or simply of an r repetition of v in x. A primitively rooted repetition vv is such

that its generator v is primitive, i.e. v is not a repetition itself. A repetition

x = uvrw in x is said to be maximal if it cannot be extended to the left – i.e.

there is no u1 so that x = u1v
r+1w, and cannot be extended to the right – i.e.

there is not w1 so that x = uvr+1w1. A repetition x = uvrw can be encoded

as a triple (s, p, r) where s indicates the starting position of the repetition, p

the period of the repetition, and r the exponent of the repetition. The end

of the repetition can be easily computed as e = s + rp − 1. Alternatively, it

can be encoded also as (s, p, e), where s again refers to the starting position

of the repetition, p again refers to the period of the repetition, and e the

ending position of the repetition. The exponent can be easily computed using

r = (e − s) / p. It is clear [1] that knowing explicitly all maximal primitively

rooted repetitions gives us the implicit knowledge of all repetitions as every

repetition is a part of a maximal primitively rooted one.

A more concise and succinct notion still is that of a run in a string x.

In a sense, it is a maximal fractional primitively rooted repetition. To be

more precise, (s, p, r, t) encodes a run if (s, p, r) encodes a maximal primitively

rooted repetition that cannot be shifted left – i.e. either s = 1 or there is no

r repetition of period p starting at position s − 1, and (s + t, p, r) encodes a

maximal primitively rooted repetition that cannot be shifted right – i.e. there

is no r repetition of period p starting at position s+t = 1. We can encode a run

also as a triple (s, p, e), where s indicates the starting position of the run, p its

period, and e its ending position. Clearly, r = (e− s) / p and t = (e− s) % p.

x



Chapter 1

Introduction

Strings, or linear sequences of symbols, represent one of the most fundamen-

tal objects in discrete mathematics and theoretical computer science. In the

the study of combinatorial and computational properties of strings, several im-

portant notions arise. Of the most fundamental is the notion if the period

of a string. Since strings are practically structureless objects, any structural

knowledge that can be derived about them can be highly beneficial to their pro-

cessing. If a string posses significant periodicity, its processing can be simplified

and/or sped up. For instance, data compression highly relies on the knowledge

of the periodicity of the string to be compressed. Many algorithms needed for

sequencing of DNA or proteins rely on the knowledge of the periodicity of the

string representing the DNA or the protein.

It is thus imperative to have highly time and space efficient algorithms

for determining the periodicity of a possibly large string. As indicated in the

preliminary section, computing a list of all runs in a string provides a rich

information of the periodicity of a string. Please, see [16] for details and the

references concerning the history of algorithms for computing runs in a string.
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In this context, the concept of “calculation” refers to outputting or recording

of locations of occurrences of all runs within a string.

While the methods associated with the linear-time calculation of runs and

repetitions have been established theoretically, the efficiency of their various

implementations must be considered, and compared, with that of alternative

methods and their implementations. Some consideration is given to whether

actual performance values, with respect to time consumption, are in keeping

with what is expected. It is a goal of this thesis to determine this. This

motivation is provided in part by the desire to determine in what context which

of the tested programs would be most practical for use. That is, is there a point

(as would be suggested by the functions representing the theoretical run time

of each of the programs) with respect to processed string length at which the

performance of one program surpasses that of the others. It is hypothesized

that there is, and the investigations within this thesis will seek to both prove

this and relay the point at which this occurs. An additional aim of this study is

to determine what kind of penalty in performance crochB7 pays in comparison

to crochB for the memory saving implementation.

In this thesis we present comparisons of C++ implementations pf three

algorithms for computing runs. The two of them, crochB and crochB7 rely

on the refinement process due to Crochemore [1]. The third implementation

– runFinder – due to Hideo Bannai from the Department of Informatics at

Kyushu University in Japan utilizes the linear-time strategy of computing the

suffix array of the string, using the suffix array it then computes the LCP

array, using the suffix and LCP arrays it computes the Lempel-Ziv factorization,

from the Lempel-Ziv factorization all leftmost runs are computed using Main’s

2
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algorithm, and the rest of the runs are computed using Kolpakov-Kucherov’s

algorithm, see [16].

The original Crochemore’s so-called partitioning algorithm [1] for com-

puting maximal repetitions in strings, the first of many O(n log n) repetitions

algorithms, was implemented in a space efficient manner by Franek, Smyth,

and Xiao [6] and latter extended to compute runs by Franek and Jiang [3].

However, this extension while of the same complexity O(n log n) as the un-

derlying partitioning algorithm, was not very memory efficient as it required

additional O(n log n) memory for cumulation of computed squares and their

consolidation into runs. Franek, Jiang and Weng in [4, 5] modified the al-

gorithm [3] to compute runs, or maximal primitively rooted repetitions, or

primitively rooted distinct squares when the types rather than occurrences of

squares are counted, without any need for extra memory and preserving the

original complexity O(n log n). The program crochB is based on this algorithm

and it is a straightforward implementation in C++ without any memory saving

techniques. Thus crochB has an O(n log n) time complexity and its memory

requirement is 19n integers, where n is the length of the input string. The

program crochB7 is a modification of crochB using virtualization and mul-

tiplexing of memory to lower the memory requirement to 13n integers, while

implementing the same algorithm and thus preserving the original complexity.

Though both crochB and crochB7 can compute maximal repetitions or distinct

squares, the investigation in this thesis was limited to the computation of runs

as runFinder computes only runs.

The method by which performance measurement would be observed was

an important consideration of the investigation around which this thesis is cen-
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tred. It would be ideal to remove from consideration any factors that might not

have a direct relation to the comparable tasks at hand, between the programs

observed. As such, the primary technical mechanism utilized was through the

facilities offered in the time.h library of the C++ programming language. In

particular, a mechanism is offered that allows for the reporting of an approxi-

mation of the number of clock ticks elapsed since the initial call of the program

in which the reporting function (clock()) is called. Furthermore, it was origi-

nally desired to exclude such operations as memory allocation from observation

(primarily due to the unpredictability of operating system-based functionality

with respect to actual time utilized). This exclusion is done as a property of

the clock-tick method of time observation: as those time-unpredictable func-

tion are handled outside of the running program, their utilized clock cycles are

part of those whose values are to be reported by clock().

Observed data that were reported consisted of the calculated actual time

required for the processing of a string of a particular length. Since the facilities

offered for the calculation of running time provide an approximation of clock

cycles utilized, shorter strings presented the challenge of appearing to utilize

no cycles for their processing. This was overcome by the repeated running of

the processing portion of the programs’ code for smaller strings (the number

of iterations being dependant on the shortness of the input string) and then

averaging of the result with respect to the number of iterations of the processing

that were performed upon a given string.

4
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Overview

Within this thesis is presented a brief introduction to the essential aspects of op-

eration for each of the programs considered in testing (Chapters 2 – 4). Impor-

tant particulars of the methods and processes utilized for testing are discussed

(Chapter 5), with reference to and discussion about several unexpected aspects

of observations made (Chapter 6). Those areas that would seem particularly

interesting for future investigation are mentioned and briefly discussed along

with conclusions about the experiments performed and their results (Chapter

7). Relevant data and graphs are supplied, appended to this main document.
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Chapter 2

A brief description of crochB

program

It was estimated by M. Crochemore himself that an implementation of the

partitioning algorithm [1] for computing maximal repetitions in a string would

require 20n integers of memory due to a significant overhead in data structures

needed for the partition refinement process. In 2003, Franek, Smyth, and Xiao

[6] implemented in C++ the algorithm using various memory saving techniques

like array virtualization – when an array’s storage is distributed across other

arrays utilizing their unused fragments of storage while keeping a constant-time

access, or memory multiplexing – when two stacks or queues are made to share

the same storage as it can be shown that as one grows, the other shrinks and

vice-versa, and so they would never corrupt the storage of the other. These

techniques allowed to lower the overall memory requirements to either 14n or

15n integers – depending which version is considered. It will be explained

later in this chapter how the refining process is used to identify all primitively

rooted squares in a string. Any maximal repetition (s, p, r) can be viewed as

a consolidation of (r− 2) shifts of the leading square (s, p, 2) of the repetition.

6
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For instance, ..aabaabaabaab.. consists of 7 primitively rooted squares:

..aabaabaabaab..,

..aabaabaabaab..,

..aabaabaabaab..,

..aabaabaabaab..,

..aabaabaabaab..,

..aabaabaabaab..,

..aabaabaabaab...

Thus, the squares are consolidated to maximal repetitions. Due to the design of

the underlying Crochemore’s repetition algorithm, these squares are determined

in the natural order (based on the starting position) and thus they can be

consolidated on the run and they do not have to be first collected and the

consolidated.

The implementation [6] was used in 2009 as a basis by Franek and Jiang

[2, 3] and the program was embellished to compute runs. Any run (s, p, r, t)

can be viewed as consisting of t + 1 shifts of a maximal repetition (s, p, r, t).

For instance, ..aabaabaabaabaa.. consists of 3 maximal repetitions:

..aabaabaabaabaa..,

..aabaabaabaabaa..,

..aabaabaabaabaa...

The implementation [2, 3] thus relies on the underlying [6] and its reporting of

the found repetitions. Since the repetitions are not reported in any discernible

order, the repetitions must first be collected, and then consolidated into runs.

The data structure required to collect the repetitions and to consolidate them

into runs was implemented in 3n log n integers of memory. Though the run-time

7
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complexity O(n log n) of the underlying partitioning algorithm was preserved,

the significant memory overhead rendered the implementation impractical.

In 2011, Franek, Jiang and Weng in [4, 5] modified the algorithm [6] to

compute runs, or maximal primitively rooted repetitions, or primitively rooted

distinct squares when the types rather than occurrences of squares are counted,

without any need for extra memory and preserving the original complexity

O(n log n). It consolidates the squares into runs on the go while utilizing some

of the auxiliary data structures needed for the refinement process – these data

structures are not needed when the the refinement process of the level p is com-

pleted and when the found squares of the period p are reported and consolidated

into runs.

The program crochB is based on this algorithm and it is a straightforward

implementation in C++ without any memory saving techniques. Thus crochB

exhibits O(n log n) time and its memory requirement is 19n integers, where n

is the length of the input string.

The underlying partitioning algorithm relies on the computation of classes

of equivalence, each containing indexing positions of the input string. The

members of the same class are starting positions of identical substrings of a

given length. If two substrings x[i..i+ k] and x[j..j + k] of a string x are equal,

then this is denoted by writing i ≈k j and means that the positions i and j are

equivalent. The algorithm computes the classes of equivalence ≈k for successive

k, referred to as the levels of refinement.

Consider for instance a string x = abaababaabaabab$. For technical reasons, we

imagine that the string is terminated by a sentinel symbol $, that is considered

smaller (with respect to an alphabetical ordering) than any other symbol of the

8
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a b a a b a b a a b  a  a b  a  b  $
0  1  2  3 4  5 6  7  8  9 10 11 12 13 14 15level

{0,2,3,5,7,8,10,11,13}a {1,4,6,9,12,14}b1

{2 7 10} {1 4 6 9 12}b2 {0 3 5 8 11 13} b {14}b$

{15}$

{2,7,10}aa {1,4,6,9,12}ba2 {0,3,5,8,11,13}ab {14}b$

{2,7,10}aab {1,6,9}baa3 {0,3,5,8,11}aba {4,12}bab{13}ab$

{2,7,10}aaba {1,6,9}baab4 {0,5,8}abaa {4}baba{3,11}abab {12}bab$

{7}aabaa {1,6,9}baaba5 {0,5,8}abaab{3}ababa{2,10}aabab {11}abab${7}aabaa {1,6,9}baaba{0,5,8}abaab{3}ababa{2,10}aabab {11}abab$

6 {0,5,8}abaaba{2}aababa {10}aabab$ {6}baabaa {1,9}baabab

7 {5}abaabaa {0,8}abaabab {1}baababa {9}baabab$

8 {0}abaababa {8}abaabab$

Figure 2.1: The classes of equivalence in Crochemore’s partitioning

string – very similar to the idea of C strings terminated by the NULL character.

The classes on each level of refinement are depicted in Figure 2.1.

Classes indicated on level k are classes of ≈k equivalence. Thus, a class

on level k consists of positions in the string x at which identical substrings of

length k of x start. For instance, the class {0, 5, 8} on level 6 indicates that

x[0..6] = x[5..1] = x[8..14] = abaaba (indicated by the little gray subscript of

the class in the diagram). Please, note, that the indexing of strings starts with

0 as it is more natural for C/C++ based implementations. When a class splits

9
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into several classes by the refinement, this is indicated by black solid arrows in

the diagram; if a class remains untouched by the refinement, this is indicated

by a dotted gray arrow.

Even though it is possible to determine the classes directly from the string,

the processing to do so would be O(n2): scan the string from left to right

to determine the classes of the 1st level, scan the string again to determine

the classes of the 2nd level, etc. To achieve O(n log n) complexity, a smart

refinement of level k + 1 using already computed so-called small classes of level

k is performed [1]. An additional important feature of the refinement is the fact

that the indices in the classes are kept in the natural order, though the same

is not true for the classes themselves: for instance in Figure 2.1, the indices in

class the {0, 5, 8} on level 6 would be recorded in that order, but we cannot

rely on this class being computed before the class {6}.

The process of refinement finishes when all classes are refined to single-

tons. In Figure 2.1, once a class shrinks to a singleton, it does not appear in

subsequent levels, but if it were to, each level would thus be a partitioning of

{0, 1, . . . , n− 1} into classes. This is why the algorithm is often referred to as

a partitioning algorithm.

The refinement process and the resulting classes would be of no use if the

primitively rooted squares could not be obtained from them. Without regard

to complexity, having all non-singleton classes of level k suffices to determine

all primitively rooted squares of period k is rather straightforward: just scan

every class and if two consecutive indices differ exactly by k, the smaller index

is a starting position of a primitively rooted square of period k. For example,

consider the class {0, 3, 5, 8, 11} on level 3: thus 0, 3 indicate a square abaaba

10
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at position 0; 5, 8 indicate a square abaaba at position 5; and 8, 11 indicate a

square abaaba at position 8. This näıve approach is not feasible as it would

again inflate the run-time complexity to O(n2).

Thus an auxiliary array Gap[k] is maintained for each level k that supplies

information relating to indices that are of distance k from their predecessors.

More precisely Gap[k] = i if and only if i− k and i belong to the same class on

level k and are consecutive indices in the class. The Gap array can be modified

and maintained during the refinement process without destroying the run-time

complexity.

The program crochB relies on the Gap array and directly traces the runs

through the squares determined from the Gap array. Using other auxiliary

structures that are needed only for the refinement to remember already consol-

idated parts of a run so it is not re-consolidated again. The tracing of maximal

repetitions is achieved in the same way. Finally, for computation of the num-

ber of primitively rooted distinct squares, it is sufficient to consider only one

square per a class, i.e. once a class has been used through the traversal of the

Gap array, it is “marked” and if another square from the same class is to be

determined, it is ignored. In this fashion, the program can as easily determine

the runs as the maximal repetitions or the number of distinct squares.

The implementation of crochB is similar to [6], however without any of the

memory-saving techniques discussed in the next chapter, leading to O(n log n)

run-time complexity and 19n integers storage requirement.

11



Chapter 3

A brief description of the
crochB7 program

The program referred to by crochB7 is the result of several progressive refine-

ments to the crochB program. As the name of this latest version suggests, there

were 6 revisions completed between the first and latest program. The trend of

the major changes between revisions was to move away from some stored data

toward a calculation of certain values (as will be discussed below) to obtain

the same results. As a result of this, of course some increase of runtime was

expected. As will be seen in some of the testing data, this has occurred between

crochB and crochB7, more notably during the processing of larger and / or

more complex input data.

Below is given some detail as to the progression from crochB to crochB7

in the modifications made from one revision to the next.

3.1 Progression from crochB to crochB7

The original version of crochB utilized several arrays for its calculations. Some

of these remained through future refinements of the program, but some were

12
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replaced by functions to perform the same tasks, but with a reduced require-

ment for memory. Below are details of the used arrays and the functions that

subsequently replaced some of them. Other refinements were made, and are

detailed below as well.

The majority of information used in the calculations done by Crochemore’s

algorithm is stored in arrays, indexed by position within the input string. They

are primarily used to emulate linked lists in an efficient way.

The first two arrays are CStart and CEnd . These give the start and end

positions of classes, each indicated by a given index of the arrays.

Next are CNext and CPrev , used to emulate forward and backward point-

ers. They respectively point to the next and previous elements of a given class.

An array CMember is used to indicate the membership of an element, in-

dicated by index, within a class, indicated by stored value (i.e., CMember[i] =

j indicates that i is a member of class j).

CSize stores the sizes of the classes being utilized. Finally, CEmpty

indicates empty classes. All of the above arrays are of type integer. Other

arrays are used to deal with families.

The arrays FStart ,FNext ,FPrev , and FMember serve the same function

as with those of similar names (the above “C”-prefixed arrays) in the context

of classes. They also are of type integer.

Further arrays are used for the process of refinement. Refine indicates

which elements (through index) should be moved to which classes (through

stored value). RStack is used as a stack, keeping track of those positions of

Refine that are occupied. Sel is used to queue the members of all of the small1

1A “small” class is one whose members together number less than one of the classes that
has been determined to be the “large” class. This in turn is a class containing a number of

13
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classes. Finally, Sc points to the last member of each of the small classes. As

with all of the previously described arrays, those just mentioned are of type

integer.

Finally, several arrays are used to implement the gap function. Gap

indicates the first element of a gap list for a given index. GMember indi-

cates that a given index value belongs to the stored value’s gap list. That is,

GMember [i] = j implies that i belongs to the j gap list. GNext and GPrev are

used to emulate forward and reverse links in a list of gap values. Once again,

all arrays just discussed are of type integer.

During the construction of the first program refinement (crochB1), several

of the arrays discussed above were replaced by functions, to reduce memory

usage.

The function GMember , used in the same way as was the array of the

same name, returns null if the passed argument is either a member of no

class, or is the first member of a class. Otherwise, the class of which it is a

member is returned, by returning CPrev [i], where i is the passed argument.

The introduction of function GMember to replace the array of the same name

reduced the memory usage of the program from 19n to 18n integers.

Next, in crochB3, further improvement to memory usage was made through

the introduction of function FMember, again to replace the functionality of

the array of the same name. The memory requirement was reduced through

this to 17n integers. The definition of FMember is such that if a given pointer

is null for argument i, it returns the value FStart [i]; if i ≤ the stack pointer,

FNext [FPrev [FStart [i]]] is returned; FStart [i] is returned otherwise. Finally,

elements that is not less than that of any other class among its siblings.
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FEnd is defined such that FEnd(i) = FPrev [FStart [i]].

Further refinement was made with the introduction of crochB4 by way

of causing the arrays CEmpty and CStart to reside within the same memory

segment as one another. This reduced the memory need further to 16n integers.

In the next version of the program (crochB5), things are arranged such

that information previously stored in CEnd and CSize could be derived from

CStart , CNext , and CPrev . As a result of this, the space requirement was

reduced to 14n integers. After the modification, the information that was

“moved” became accessible through the following facts: CEnd(i) =

CPrev [CStart [i]]; CSize(i) = CNext [CPrev [CStart [i]]].

In the revision represented by crochB6, through the reduction of the pos-

sible length of an input string from UNSIGNED LONG MAX to LONG MAX, guar-

antee was given that adequate space be available such that CMember could

be virtualized over the arrays GNext , Gap, and GPrev . The elimination of

CMember reduced the memory size requirement of the program was reduced

to 13n integers.

The most recent revision of the modified Crochemore’s program, rather

than representing changes in memory requirements (which currently remain at

13n integer), instead was the result of refinements of the code used to perform

the program’s tasks. This latest version is known as crochB7, and is one of the

three programs utilized for testing in the context of this writeup.
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Chapter 4

A brief description of runFinder

In this chapter, there is presented a brief description of the underlying algorithm

utilized by the runFinder program. It is comprised of several algorithms, each

of which (excepting the final) supplies the next stage with input toward the

goal of calculating runs within the initial input of a string.

4.1 Linear-time Runs Calculation

The utilized portion of the Run Finder program employes the well-known linear

time method for finding runs within a string on a general alphabet. The general

procedure for this can be summarized to the following steps.

1. Compute the input string’s suffix array (hence SA)

2. Use SA and compute the longest common prefix (array) (hence LCP)

3. Use SA along with LCP to compute the Lempel-Ziv factorization (hence

LZ) of the input string

4. Use Main’s algorithm with LZ as input to compute all left-most runs

within the original string
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5. Use Kolpakov and Kucherov’s algorithm with LZ as input to compute the

remainder of the runs within the original string.

Below, some particulars of each step will be expanded upon.

4.1.1 Computation of the Suffix Array

The structure of the suffix array (which was described by U. Manber and E.

W. Meyers in 1993[15]) is such that it can keep track of the beginning position

of each of the suffixes of a given string. The array is sorted in such a way that

the suffixes indicated by it are in order. That is, if indices 1 and 3 are stored

in that order within SA, the suffix indicated by index 1 is lexicographically less

than that indicated by index 3. It is the achievement of this ordering that is

the bulk of the work toward the task of constructing SA of a given string, and

this can be done in Θ(n) time, with respect to the number of strings to be

sorted.

It was not until 2003 that the initial algorithms for computing SA ap-

peared that were also in linear time, which of course is a requirement toward

run calculation in linear time. The first of these were documented in [10, 11, 9],

with those documented in [11] and [9] proving to be feasible for practical use.

4.1.2 Longest Common Prefix Array

The second component involved in the linear-time calculation of runs of a

string under discussion is the Longest Common Prefix array. Using the symbol

lcp(i, j), let its function be defined at points i and j to be the longest common

prefix of the suffixes whose starting positions are respectively located at posi-

tions i and j in a given string x[1 . . . n]. The LCP array is computed such that

17



M.Sc. Thesis — Robert Fuller McMaster–Computing and Software

for a position i, LCP [i] = lcp(SA[i− 1], SA[i]) (where SA is the suffix array of

the string under consideration).

It is clear that were LCP to be computed in the obvious way, this pro-

cedure would be of O(n2) time. However, as is the requirement of the overall

task at hand, methods for finding LCP of a given input string exist that are of

linear time.

4.1.3 Lempel-Ziv Factorization

The Lempel-Ziv Factorization of a string was introduced in 1978 by Abraham

Lempel and Jacob Zivfor purposes toward data compression. However, it has

also been found to yield information regarding periodicity within a string.

Once factorization has occurred, a string x may be viewed as a concatena-

tion of its factors u1, u2, . . . , un such that the following holds. If x = u1 . . . uk,

then each ui from u1, . . . , uk−1, and possibly including uk, ui is the longest pre-

fix of ui . . . uk that also occurs earlier in x, or is one character. As an example,

consider the following string: abbaabbabaaabab, which has the LZ factorization

a, b, b, a, abb, baa, ab, ab[13].

A method by which LZ may be computed was introduced in a paper by

Crochemore, Ilie, and Smyth[13] (see pseudo-code listing “Algorithm 2”). This

method involves the computation of an array called the longest previous factor

array (hence LPF). As its name might suggest, LPF keeps track of information

regarding the longest previous (Lempel-Ziv) factor in a string with respect to

a given position within it. It is then one step from the computation of LPF to

LZ. Additional to LPF, information that will be useful to a later step in the

overall process of finding runs is kept in a structure called PrevO. This array
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will keep track of the start position of the previous occurrence of a factor with

respect to a given position, indicated by the array’s index. The computation

of both PrevO and LPF is showing in pseudocode listing “Algorithm 1.”

LPF is defined as an array with respect to string x such that

LPF [i] = max{l|x[i . . . i+ l− 1] is a factor of x[0 . . . i+ l− 2]} ∪ {0}) (4.1.1)

Algorithm 1: Computing LPF array and PrevO array

for i = 0 to LZLength− 1 do
if PSV [i] = −1 then

p=0
else

p=LCPQuery(SA[PSV[i]],SA[i])
end if
if NSV [i] = length then

n=0
else

n=LCPQuery(SA[NSV[i]],SA[i])
end if
LPF[SA[i]]=MAX(p,n)
if LPF[SA[i]] = 0 then

PrevO[SA[i]]=-1
else

if p > n then
PrevO[SA[i]]=SA[PSV[i]]

else
PrevO[SA[i]]=SA[NSV[i]]

end if
end if

end for
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Algorithm 2: Lempel-Ziv factorization[17]

LZ[0]=0
while LZ[i] < length do

LZ[i+1]=LZ[i]+max(1,LPF[LZ[i]])
i=i+1

end while

4.1.4 Main’s Algorithm

The next step in the calculation of runs within a string is implemented through

an algorithm by Main [14] that calculates leftmost runs of the string (see

pseudo-code listing “Algorithm 3”). This is done using LZ as input. To discuss

this further, some new concepts are introduced, below.

Considering the LZ factorization of a string x, let those runs that are

within one factor be said to be in Class 1. Let those runs that cross a boundary

between factors be said to be in Class 2.

Main’s algorithm considers a string, composed of blocks of factors such

that the string x = w1 . . . w2, where each wi is a block of LZ factors. The

algorithm works by considering for the value h between 2 and k, the substring

th, which is defined to be the substring preceding the block wh and is of length

2|wh−1 wh|, at most1. Within the substring th wh can be calculated its right-

and left-max runs (those that are adjacent to the boarder of two factors). These

values are then investigated, and if it can be seen that a given run of this type

extends beyond the border of a neighbouring factor, it is a run of Class 2. Once

this procedure is completed with respect to a string, all Class 2, and thus all

leftmost runs, are found. The process of doing this over the whole string x

1The bound 2|wh−1 wh| is taken from a paper by Main: [14]
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being of Θ(n) running time[14].

Algorithm 3: Main’s algorithm[17]

for i = 0 to length− 1 do
len=min(LZE[i]-LZB[i-1],LZE[i-1]+1)
for l = 1 to len do

if LZE[i− 1]− l < 0 then
s=0

else
s=LCSQuery(LZE[i-1]-l,LZE[i-1])

end if
p=LCPQuery(LZB[i]-l,LZB[i])
if s + p >= l AND (p > 0 OR LZB[i]− l − s > LZB[i− 1]) then

add run (LZB[i]-l-s,(LZE[i-1]+p),l) to LinkedList[LZE[i-1]+p]
end if

end for
for l = 1 to LZE[i]− LZB[i] do

s=LCSQuery(LZE[i-1]+l,LZE[i-1])
p=LCPQuery(LZB[i]+l,LZB[i])
if s + p >= l AND LZE[i− 1] + l + p <= LZE[i] AND s < l then

add run (LZB[i]-s, LZE[i-1]+l+p, l) to LinkedList[LZE[i-1]+p]
end if

end for
end for

4.1.5 Kolpakov and Kucherov’s Algorithm

The final step in the process of finding all runs within a string involves the

utilization of an algorithm by Kolpakov and Kucherov[12]. The algorithm is

fairly straight forward:

• Begin observation of a LZ factor that has a previous neighbour

• For each Class 2 run occurring within it, look at its previous occurrences
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• If a given previous occurrence falls within the block, it is a Class 1 run.

Since the union of the collections of Class 1 and 2 runs comprises all runs

within a string, the collection of runs is now complete. The pseudo-code for

the above procedure is listed in “Algorithm 4”.

Algorithm 4: Kolpakov and Kucherov’s algorithm[17]

for h = 1 to LZLength− 1 do
if | LZ[h] |> 1 then

delta=LZB[h] - PrevO[LZB[h]]
for i = LZB[h] to LZB[h + 1]− 1 do

for all j ∈ LinkedList[i− delta] do
if (j.e + delta) < LZB[h + 1] then

add run (i, j.e+delta, j.l) to LinkedList[i]
end if

end for
end for

end if
end for
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Chapter 5

The experimental setup

The mechanism and relevant particulars of the experiments performed are pre-

sented. Included are discussions of the methodology utilized, including con-

siderations related to some of its particulars; test data are referenced; and the

platform on which the experimentation took place is listed.

5.1 Test Mechanism

In order to ascertain a reasonable and fair measurement of performance of the

programs in question, a method was needed to determine the running time

of each. It would be desired to exclude from measurement those operations

called for by the relevant parts of the program being test that themselves had

no direct bearing (other than, for example, the provision of resources such as

memory) on the actual work being performed by the program with respect to

runs calculation. In addition, given that the programs were run within a multi-

tasking environment, a method that would exclude much of the direct influence

(at least with regard to working clock cycle consumption) of programs external

to those being tested would be most desirable. Given these two key motiva-
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tors, the method provided through the facilities given by the time.h library of

the C++ programming language were utilized. Specifically, those facilities that

provide access to an approximation of clock cycles utilized by the program up

to a specified point were included in the testing framework.

The mentioned library presents the clock() function, which reports an

approximation of clock cycles utilized form the beginning of execution of the

program in which it is called until the calling of that function. Its return type is

long int, and utilizing the difference of two values returned by calling cloc()

at different times can provide a measure of consumed clock cycles over a given

time period. These values in conjunction with the constant CLOCKS PER SEC

were used to calculated milliseconds of actual time represented by the number

of clock cycles utilized. That is, were the program running in an environment

within which only its relevant operations were carried out, it would take the

amount of time calculated to perform its task.

5.2 Test Data

The programs were made to run each on the same sets of data, chosen before-

hand. These sets were constituted by collections of data representing:

1. Samples of English language texts

2. Strings representing DNA segments

3. Fibonacci string segments

4. Random strings
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Each of the data sets above was represented by collections of strings of

specific and varied lengths. It was chosen to supply to the programs strings of

the above sorts of lengths beginning at length 50 and extending through length

140 000. The results are represented graphically as split into two groups: big

and small (about the 7500-string mark).

5.3 Test Particulars – Repeated Test Runs

As a result of the manner through which the runtime information is presented,

through the time.h clock() function), shorter runtimes are not reported be-

fore a certain point. That is, if an execution of code utilizes few enough clock

cycles, its activity will not register (as a result of the nature of the approxima-

tion gone about in the supplying of the reported utilized clock cycles). This

problem was encountered during the processing of shorter strings during the

investigations for this thesis. A method by which this issue might be worked

with is through the repeated execution of the relevant run-calculating code for

each of the shorter strings. The clock cycles used for all of these executions

together is reported, and this value is then divided by the number of executions

gone about on a given string. Thus, the resultant value represents an approx-

imation of the number of clock cycles utilized for that string whose runs had

just been calculated.

5.4 Test Platform

• All programs were compiled using Microsoft Visual C++ 2010 Express

compiler
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• All experiments were ran on a stand-alone PC with Intel(R) Core(TM)2

Duo CPU E7400 @ 2.80GHz processor

• The machine had 2.00 GB memory (1.87 GB usable)

• Under the operating system Windows 7 Professional
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Chapter 6

Results

The input data files used in the experiments are listed below. Filenames of

input and result data are listed below. In the case of input data files, the

nature of the data begin’s the file’s name, followed by the length of the string

contained within the file, and then the file type extension (txt). With respect to

results data, the name of the program under observation begins the filename,

followed by the word results, then the category of input data used to produce

the results, followed by the size (in characters) of that input data, and finally

the file type extension (txt).

• dna.50.txt, · · · , dna.140000.txt

• english.50.txt, · · · , english.140000.txt

• fibo.50.txt, · · · , fibo.140000.txt

• rand.50.txt, · · · , rand.140000.txt

and the files with the results for crochB

• crochB.results.dna.50.txt, · · · , crochB.results.dna.140000.txt
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• crochB.results.englis.50.txt, · · · , crochB.results.english.140000.txt

• crochB.results.fibo.50.txt, · · · , crochB.results.fibo.140000.txt

• crochB.results.rand.50.txt, · · · , crochB.results.rand.140000.tx

and for crochB7

• crochB7.results.dna.50.txt, · · · , crochB7.results.dna.140000.txt

• crochB7.results.englis.50.txt, · · · , crochB7.results.english.140000.txt

• crochB7.results.fibo.50.txt, · · · , crochB7.results.fibo.140000.txt

• crochB7.results.rand.50.txt, · · · , crochB7.results.rand.140000.txt

and for runFinder

• rF.results.dna.50.txt, · · · , rF.results.dna.140000.txt

• rF.results.englis.50.txt, · · · , rF.results.english.140000.txt

• rF.results.fibo.50.txt, · · · , rF.results.fibo.140000.txt

• rF.results.rand.50.txt, · · · , rF.results.rand.140000.txt

These files can be found at http://www.cas.mcmaster.ca/~fullerrc/

For consideration of the results of the tests performed, several key aspects

were looked at. The primary objectives of this thesis were centred about ob-

serving the point at which it would become advantageous to use one program

over another for runs calculation (with respect to input string length); investi-

gating the question of the behaviour of the programs in operation in comparison
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to the theoretical bounds on their performance; and relating their theoretical

and actual performances mathematically through the observation of a constant

between these two values.

Some differences were observed between the performance of a given pro-

gram when processing certain of the utilized datasets (please see below for par-

ticulars). Specifically, Fibonacci strings seemed to clearly show the Crochemore

programs to consume more time than had been expected: of the order of n2

time with respect to input string length. This is a consistent issue through the

string types considered (with only one exception in the case of the processing

of Random string: see Table 6.5). It is possible that it is the highly periodic

nature of the Fibonacci strings that causes this behaviour to be clearly seen.

Please see below for a more detailed discussion.

6.1 Overall Trends

Though particulars of the performance results of each of the programs and how

they relate to one another vary between datasets, there are some trends that

appear mostly consistent1.

For shorter strings, as defined by the division of tables in Tables 6.6 – 6.13,

the Crochemore programs initially outperform runFinder. However, within

certain ranges of string lengths (the particular point varies per dataset, see

below for more detail), runFinder’s performance exceeds that of the Crochemore

programs, and the trend is not reversed within the domain of observed data.

The observations from longer strings continues this trend: runFinder begins2

1With the exception of the results based on the processing of the Fibonacci strings used.
2“Begins” with respect to the domain of observation restricted to long strings, but the

observations are actually continued from short strings.
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Dataset crochB / runFinder crochB7 / runFinder

DNA 2000 – 2500 1000 – 1500
English 2000 – 2500 2000 – 2500
Fibonacci 150 – 200 250 – 300
Random 2000 – 2500 1000 – 1500

Table 6.1: Performance Intersection with runFinder

outperforming the Crochemore programs, and the trend does not reverse.

6.2 Intersection of Performance

As mentioned above, the point at which runFinder begins to outperform the

Crochemore programs varies per dataset. For this reason, the listing of the

points of intersection of the runtimes for each program are given in Table 6.1,

divided by dataset.

As can be seen above, the point at which runFinder begins to outperform

the Crochemore programs is somewhat consistent, but shows some variance

between datasets.

6.3 Curve-Fitting

Because of the existence of certain expectations with respect to the performance

of the programs under investigation, it was possible to examine some modelling

of these expectations in comparison with actual performance. The methods by

which these observations were gone about revolved around use of the gnuplot [8]

program and its data analysis capabilities to perform curve-fitting and graph-

ing. A tutorial [7] was utilized to provide information regarding particulars

of the fitting process as it related to the gnuplot program. Considering the
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Program Function Constant Asymptotic Standard Error

crochB nlogn 0.000146017 +/- 4.444e-06 (3.044%)
crochB n2 1.2256e-08 +/- 1.385e-10 (1.13%)
crochB7 nlogn 0.000133007 +/- 3.524e-06 (2.65%)
crochB7 n2 1.1081e-08 +/- 1.731e-10 (1.562%)
rF n 0.00037505 +/- 1.281e-06 (0.3415%)

Table 6.2: DNA

Program Function Constant Asymptotic Standard Error

crochB nlogn 0.000143196 +/- 3.892e-06 (2.718%)
crochB n2 1.089e-08 +/- 1.388e-10 (1.274%)
crochB7 nlogn 0.000125915 +/- 3.197e-06 (2.539%)
crochB7 n2 9.56447e-09 +/- 1.053e-10 (1.101%)
rF n 0.000299246 +/- 5.699e-06 (1.904%)

Table 6.3: English

polynomial behaviour of crochB (and crochB7) that becomes visible during

the processing of the Fibonacci strings used for testing, the fitting of O(n2)

functions was attempted with respect to processing time result data for the

remainder of the datasets. The results indicated that the best fit for nearly all

those data not clearly reflecting performance of either O(n2) or O(n log n) for

crochB and crochB7 lies between O(n2) and O(n log n) (please see Tables 6.2

– 6.5 for comparison of fittings, as well as graphs given in Tables 6.14 – 6.25),

with the exception being seen through the processing of Random strings (Table

6.5), where crochB7’s performance remains O(n log n).

6.4 Graphs

Graphical representations of the results data are presented.Graphs were divided

between “short” and “long” strings. The motivation for this division was to
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Program Function Constant Asymptotic Standard Error

crochB nlogn 0.0830115 +/- 0.003101 (3.735%)
crochB n2 8.80837e-06 +/- 1.332e-08 (0.1512%)
crochB7 nlogn 0.0363081 +/- 0.001448 (3.989%)
crochB7 n2 3.86534e-06 +/- 1.99e-08 (0.5147%)
rF n 0.000510317 +/- 1.678e-06 (0.3287%)

Table 6.4: Fibonacci

Program Function Constant Asymptotic Standard Error

crochB nlogn 0.000147729 +/- 3.549e-06 (2.402%)
crochB n2 1.5339e-08 +/- 2.55e-10 (1.662%)
crochB7 nlogn 0.000136875 +/- 1.896e-06 (1.386%)
crochB7 n2 1.39936e-08 +/- 3.595e-10 (2.569%)
rF n 0.000447371 +/- 1.72e-06 (0.3845%)

Table 6.5: Random

provide adequate views of each of the representations with respect to relative

string length. Given that the step size between tested string lengths varied

(from 50 to 1000), and performance from one end of the string length range to

the other varied significantly, combining the results’ graphs would have caused

the more finely grained aspects of the short strings’ graphs to be overshadowed

by those of the large strings’ graphs. The combination is therefore avoided

when observing for significant points (intersections of performance values of

programs). In other figures (Tables 6.14 – 6.25), the combination is made and

used in the calculation of constants relating theoretical runtime bounds and

observed data, and then in the graphical representation of these both.

As a further note, distinct (but minor) discontinuities can be observed at

points x = 10 and x = 6 (respectively) of the short and long string graphs,

in the case of each of the datasets. This is a result of a change in step size

within the window of observation presented through those particular graphs.
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Table 6.6: DNA Data – Short Strings

Although it does take away from some of the (relative) smoothness of the graphs

the points at which this occurred are not significant with respect to important

events (intersections, notable points of increase in runtimes) of the result data.

As such, the discontinuities are left in, with this note explaining them.

6.5 Comparison With Theoretical Runtimes

The consideration of the performance of the observed programs in comparison

with that which was theoretically expected yielded for the most part little devi-

ation. However, as mentioned, particularly in the case of strings that displayed

high periodicity (Random and Fibonacci), crochB and crochB7 performed of

order n2 (please see Tables 6.23, 6.24, 6.20, and 6.21). Additionally, similar be-

haviour (performing between O(n2) and O(n log n)) was seen in crochB7 all but

Random strings, where O(n log n) performance was more clearly observable.
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Table 6.7: DNA Data – Long Strings

Table 6.8: English Data – Short Strings
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Table 6.9: English Data – Long Strings

Table 6.10: Fibonacci Data – Short Strings
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Table 6.11: Fibonacci Data – Long Strings

Table 6.12: Random String Data – Short Strings
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Table 6.13: Random String Data – Long Strings
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Table 6.14: DNA — crochB7

37



M.Sc. Thesis — Robert Fuller McMaster–Computing and Software

 0

 50

 100

 150

 200

 250

 0  20000  40000  60000  80000  100000  120000  140000

R
un

tim
e 

(m
illi

se
co

nd
s)

String Length (characters)

String Length vs. crochB (with fit function) -- DNA

y = 0.00014602 * x * log(x)
y = 0.00000001 x^2

crochB

Table 6.15: DNA — crochB
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Table 6.17: English — crochB7
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Table 6.19: English — runFinder
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Table 6.21: Fibonacci Strings – crochB
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Chapter 7

Conclusions and Future Work

A number of expected, and some unexpected observations came from the work

done toward the completion of this thesis.

7.1 General Observations

It was observed that indeed runFinder did surpass crochB and crochB7 in per-

formance with respect to runtime, and a range of points with respect to string

length have been identified within this investigation at which this occurs; the

shape of the data generated by test runs appears as it should in most cases, con-

sidering the theoretical runtimes of each of the programs, runFinder performing

in a linear manner with respect to input string length, and the Crochemore pro-

grams in a manner between O(n2) and O(n log n), and in the case of Random

strings, n log n for crochB7. Highly periodic strings seem to have proven useful

at bringing to light some pathological behaviours (considering the very clear

O(n2) appearance of the result data for crochB and crochB7 when processing

Fibonacci strings). This notion brings forward one of the unexpected results

observed: that of crochB and crochB7 performance in extreme circumstances
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(which seems to be representative of its performance in other situations, but

less clearly observable). Also, the non-observation of the outperformance of

crochB by crochB7 was somewhat unexpected, but reconcilable with some con-

siderations (as discussed below).

7.2 Performance of crochB vs. crochB7

Given that crochB and crochB7 perform the same tasks but with differing num-

bers of instructions (crochB7 utilizing a greater number), it would of course be

expected that at some point crochB would outperform its successor. How-

ever, within the domain of observation of this thesis, this was not experienced

in a sustained way. Observing the long string results, it can be seen that

crochB7 is still outperforming crochB. Different possible explanations exist for

this behaviour. Included are considerations regarding crochB’s heavy reliance

on data access (more so than crochB7’s). Because of this fact, it could be that

crochB evokes a greater number of cache misses, and the time cost of this might

outweigh that incurred by the extra work performed by crochB7’s additional

calculations for data access (compared with crochB). It is possible as well that

implementation issues might exist that could be responsible for some portion

of the added running time of crochB. Further investigation into this matter

would be interesting. Specifically, consideration of platforms whose cache sizes

differ and cache profiling might provide further insight into this unexpected

behaviour.
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