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Abstract 

The neurophysiological basis of sensorineural hearing loss is thought to be hair cell 

damage or stria vascularis atrophy in the cochlea. The normal cochlea is responsible 

for a very complex, dynamic, nonlinear analysis and coding of acoustic signals, which 

is distorted by cochlear impairment. To overcome hearing loss, a typical hearing aid 

provides linear gain or some simple form of dynamic compression. However, such 

simple processing cannot fully compensate for the effects of cochlear impairment. In 

this thesis, machine learning is used to investigate more optimal speech processing 

schemes for hearing aids. 

A model of the auditory periphery is utilized to develop a set of neural predictors 

of human speech intelligibility. These are shown to have similar accuracy to acoustic 

predictors of intelligibility such as the articulation index. The neural predictors are 

then used as error metrics in a machine learning framework to train simple linear 

and compressive hearing aid algorithms. The results are consistent with empirically­

derived prescriptions for hearing linear gain and compression. 

It thus appears that to develop speech processing algorithms that provide greater 

benefits than those currently available in hearing aids, it is necessary understand 

more fully the distortions that are occurring in the cochlea due to hearing loss and 

to develop processing algorithms that specifically target compensation of these dis­

tortions. An analysis of the differences in compression, suppression and adaptation 

in the normal and impaired cochlea is performed using the model of the auditory 

periphery, and specific distortions are quantified. From this analysis, several speech 

processing algorithms are proposed that may more fully compensate for the effects of 

cochlear impairment on the neural representation of speech. 
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Chapter 1 

Executive Summary 

1.1 Goals 

1. Design an adaptive hearing system that will make a difference to a hearing­

impaired person and make it possible for him/her to engage in a conversation 

in a crowded room, doing so as comfortably as a normal-hearing person. 

2. Restore near-normal firing patterns in the auditory nerve, in spite of hair cell 

damage. Central to this is the processing in the brain that is eminently capable 

of segregation, streaming, and decoding must still function. 

3. Use neuro-physiologically based auditory models to develop predictive measures 

for offline evaluation and novel functional insights into the nonlinear operation 

of the cochlea. 

4. Quantify how IRC and ORC loss affects the processing of the auditory system 

as well as how that processing affects perception. 

1 
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1.2 Dissertation Introduction and Layout 

There have been several advances in the understanding of the neurophysiological 

basis of hearing impairment. Hair cell damage in the cochlea alters the auditory 

system and has profound effects on the design of hearing-aid systems to combat this 

type of impairment. While conductive loss, arising from ossicle damage or an ear 

drum puncture, can largely be overcome with frequency-shaped linear amplification, 

the types of impairment associated with Inner Hair Cell (IHC) and Outer Hair Cell 

(OHC) damage directly affects the nonlinear signal processing in the cochlea. Up 

until the mid 1980's the mechanisms underlying the more prevalent type of impair­

ment, hair cell loss or voltage loss from the atrophy of the stria vascularis, were not 

well understood. This led to a group of ad-hoc algorithms, largely based on the dis­

cerned symptoms (spectrally shaped sensitivity loss, identification in noise problems) 

as opposed to the mechanisms underlying the symptoms. 

The processing of an acoustic signal by the peripheral auditory system can be 

summarized as follows. A sound signal is directed to the ear canal by the pinna (outer 

ear). The eardrum responds to the pressure wave by deflecting. This deflection causes 

the three small bones of the inner ear to move, producing a similar movement in the 

oval window of the cochlea. This vibration starts a travelling wave in the fluid of 

the cochlea. Up to this point, the system is well characterized by a linear transfer 

function , but beyond this point, the system is highly nonlinear and dynamic. The 

travelling wave produces a peak displacement at some point along the cochlea that is a 

function offrequency and OHC undamping. OHCs are motile members that precisely 

modulate the basilar membrane. IHCs transduce the mechanical displacement of the 

basilar membrane to auditory nerve (AN) firings. The OHCs undamping enhances 

2 
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the IHCs sensitivity and selectivity [Nobili et al., 1998J. 

The impairment or loss of these hair cells produces symptoms such as elevated 

thresholds, loss of frequency selectivity, and loss of temporal discrimination [Liberman 

& Dodds, 1984aJ. The consequences of hair cell damage for auditory discrimination 

are far ranging, taking entire books to catalogue [Moore, 1995J. Chapter 2, provides 

a background on the auditory system and the associated psychophysics. 

The normal hearing process can be described with the block diagram in Figure 

1.1, where an input signal X is transformed by the auditory periphery, H, to produce 

a neural response Y. 

H 
x y 
Figure 1.1: Block diagram representation of normal hearing system 

The auditory periphery is treated as a black box in many signal-processing appli-

cations. In the hearing compensation application this approach has severe limitations. 

The success of the algorithm will be directly proportional to the amount of informa-

tion about H that one embeds in the design. With the impairment of hair cells the 

functionality of H changes, resulting in a hearing impaired system as shown in Fig-

ure 1.2. That is, the same input signal produces a distorted neural signal, Y, when 

processed by the damaged hearing system iI. 

Can a hearing aid algorithm alter the input to the impaired ear in such a way 

as to return the firing pattern from figure 1.1 to the AN from figure 1.2? Figure 1.3 
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Figure 1.2: Block diagram representation of impaired hearing system 

shows the hearing aid process, denoted Nc , before the impaired auditory periphery 

model, with the same spiking output as the normal ear. 

A 

H 
x y 

Figure 1.3: Block diagram representation of the compensated impaired representation 

There is the real possibility that a perfect return to normal firing is not possible. 

There might be the loss of a nonlinear process, one to many mapping, or information 

bottleneck that is intrinsic to sensorineural hearing impairment. This framework then 

requires some way of evaluating the relative perceptual distortion between the spiking 

behaviour of two populations of neurons. Chapter 3 is the formation of a metric that 

predicts intelligibility from a perceptual relevant distance between the normal and 

hearing impaired AN representations. Chapter 3 details the development of a novel 

intelligibility metric that provides better results than the Steeneken [1992] Speech 

Transmission Index (STI) metric . 

Chapter 4 then explores what exactly should make up the hearing aid pro mg 
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block, Nc . The algorithm to alter the input signal is called the "Neurocompensator" 

[proposed by Becker & Bruce, 2002]; the Nc from figure 1.3. Initial attempts to prove 

out the machine learning framework by validating against empirical results are given 

in chapter 4, as well as expanding the framework into novel processing blocks. 

If H was invertible the optimal hearing aid would be the cascade of the undamaged 

model and the inverse of the damaged system or Nc = HH-l, or H = Nc H. This 

approach to hearing aid design has been explored by Anderson [1994]' Chabries et al. 

[1995], and Anderson et al. [1995]. This algorithmic development belongs to the 

family of machine learning. Over the course of this dissertation an appreciation 

of why previous attempts have been unsuccessful because of the simplicity of their 

cochlear models is seen. 

For example, the auditory system has very important nonlinearities [Julicher et al., 

2001], time variances [Moore & Glasberg, 1986] and many to one mappings. The sim­

ple fact that a sound can be completely masked by the presence of a second sound 

is evidence that the auditory system discards information. This means a perfect in­

version is not possible. However, even if H is non-invertible, one may still be able to 

capture its capabilities sufficiently to approach normal hearing. This requires embed­

ding a detailed understanding of the auditory system, as well as the phenomenology 

of sensorineural impairment into the hearing aid signal processing. 

One of the big advantages of the approach in this dissertation is the detailed, 

nonlinear, dynamic impaired and normal auditory models, taken from Bruce et al. 

[2003]. In the first modelling chapters the power of the model to accurately describe 

the dynamic nonlinearity has not been used. It became clear that the adaptive 

nonlinearity of the healthy cochlea was not being captured in the machine learning 

framework in chapters 3 and 4. Chapter 5 is an evolution of the theoretical basis of 
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cochlear processes. It begins with summing up the differences between the normal and 

sensorineural impaired cochlea by stating that the impaired cochlea operates more 

linearly than the healthy cochlea. Modern hearing aid signal processing strategies 

do not re-introduce the important adaptive nonlinearities in the healthy cochlea that 

are compromised by sensorineural impairment. Chapter 5 discusses how important 

these nonlinearities are by polling the normal and impaired cochleas with a range of 

auditory coding metrics. 

The discussion and future work chapter, chapter 6, discusses what could be done 

with the theoretical framework provided in Chapter 5. Novel algorithms aimed at 

addressing the core adaptive nonlinear problems of sensorineural impairment are in­

troduced in chapter 6. These new processing strategies are key in mimicking the 

normal auditory periphery's dynamic nonlinearities. This dissertation concludes with 

a review of the novel concepts contributed in it, as well as a discussion of some future 

directions that may provide greater benefit to the sensorineurally impaired. 

1.3 Contributions 

1. A machine learning algorithm to design hearing aid . 

2. New framework for producing fitting strategies that can adapt to particular 

pathologies offline. 

3. Three new studies quantifying the effects of sensorineural impairment on tem­

poral, spectral and level acuity. 

4. Two novel processing strategies. The first, reduces the spread of masking asso­

ciated with hearing loss that is governed by suppression. The second, replicates 
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the normal auditory systems rate-level growth curves versus a wide range of 

input stimuli. 

1.4 Publications 

This dissertation is the result of original research conducted by the author, except 

for contributions made by the thesis supervisor, Prof. Ian C. Bruce, and by co­

authors of journal and conference papers arising from the research presented in this 

thesis. The publications resulting from each chapter and the contributions made by 

co-authors other than the thesis supervisors are as follows: 

Chapter 3: Some of the results of this chapter were published in a paper presented at 

an international conference: Ian Bruce, Jeff Bondy, Simon Haykin and Sue 

Becker, "A Physiologically Based Predictor of Speech Intelligibility" , Inter­

national Hearing Aid Research Conference, Lake Tahoe, 2002. This work 

was extended in the refereed international conference paper: Jeff Bondy, 

Ian Bruce, Sue Becker and Simon Haykin. " Predicting speech intelligibility 

from a population of neurons", Advances in Neural Information Processing 

Systems 16, Sebastian Thrun, Lawrence Saul, Bernhard Schoelkopf (eds.), 

MIT Press, Cambridge, MA, 2004. Ian Bruce was pivotal in the incep­

tion and implementation of this chapter, his auditory model is central to 

this chapter and what follows. Sue Becker and Simon Haykin revised and 

suggested many changes. 

Chapter 4: Some of the results of this chapter were published in a refereed jour­

nal paper: Jeff Bondy, Sue Becker, Ian Bruce, Laurel Trainor and Simon 
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Haykin. "A novel signal-processing strategy for hearing-aid design: Neu­

rocompensation", Signal Processing 84(7), 2004, 1239-1253. As well, the 

nonlinear modelling portion of this chapter stems from the refereed paper 

presented at the international conference: Jeff Bondy, Ian Bruce, Rong 

Dong, Sue Becker and Simon Haykin. "Modeling intelligibility of hearing­

aid compression circuits" , Signals, Systems & Computers, 2003 The Thirty­

Seventh Asilomar Conference on, Volume: 1 , Nov. 9-12,2003, pp:720-724. 

Sue Becker, Laurel Trainor and Simon Haykin revised and suggest many 

changes. Rong Dong helped with initial programming. 

Chapter 5: A portion of the results of this chapter were published in a paper pre­

sented at an international conference: Jeff Bondy, Ian Bruce, "Machine 

Learning and the Auditory Nerve", presented at: International Hearing 

Aid Research Conference (IHCON), Lake Tahoe, August 2004. As well 

as presented at the national conference: Jeff Bondy, Ian Bruce, " Degrada­

tion of acoustic coding in the auditory nerve by sensorineural impairment" , 

presented at : Canadian Acoustical Association, Acoustics week in Canada, 

Ottawa, October 2004. Finally, the temporal modelling was originally pre­

sented at the international conference: Jeff Bondy, Ian Bruce, "From neu­

rons to hearing aids", presented at: Toronto Auditory Temporal Processing 

Symposium, May 27-29, 2005. 



Chapter 2 

Introduction 

The problem tackled in this dissertation is to derive novel signal processing strate­

gies that can unleash the power of the recently introduced digital signal processing 

hearing aids to improve the quality of life of the sensorineural hearing impaired. There 

has been a historical difficulty with combining knowledge across the different disci­

plines involved with hearing aid research. The vast range of different knowledge from 

fields such as physiology, psychophysics, audiology, acoustics and engineering has 

not integrated into a processing scheme that improves speech intelligibility beyond 

that obtained with linear gain hearing-aids, with the possible exception of directional 

hearing aids. 

This thesis attempts to be problem-centric, so the discussion starts with an in­

troduction to the physiology of the auditory system (section 2.1), before moving on 

to how sensorineural impairment affects important psychophysical measures (section 

2.2). Most of the models used to explain the different losses associated with hear­

ing impairment hinge on alteration of one of three processes of the normal cochlea, 

namely compression, suppression and adaptation. Explaining the processing deficits 
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in terms of changes to one of these dynamic nonlinearities drives much of the later 

chapters. After this, an introduction to how signal processing can be combined with 

pathology through the use of machine learning is introduced (section 2.3). Previous 

attempts with frameworks similar to the one proposed in this thesis are described in 

section 2.4. 

2.1 Auditory System 

The human auditory pathway is a complex structure that can be loosely cate­

gorized into the auditory periphery (including the pinna to the auditory nerve) and 

the central processing structures (the cochlear nucleus to the auditory cortex). Much 

more is known about the functional structure of the peripheral structure, including 

the main effects of sensorineural hearing impairment, then the auditory brain. The 

auditory periphery has an important impact on the understanding of speech, or qual­

ity of processing by the higher auditory brain centers. A detailed understanding of 

the auditory periphery is necessary to define sensorineural hearing loss clearly, while 

the hearing loss' impact on central processing structures is also key. Figure 2.1 shows 

a simplified representation of the auditory system. 

The next section discusses the auditory system starting at the ear (section 2.1.1), 

and moving inward through the cochlea (section 2.1.2) to the auditory nerve (section 

2.1.3). An attempt is made at providing functional and morphological descriptions of 

each subcomponent. Understanding the phenomenology of the auditory system is a 

modelling necessity, so modelling of the periphery is expanded upon in section 2.1.4. 

Quantifying the effect of auditory periphery impairment on the neural representation 

on the auditory nerve is a final open question, discussed in 2.1.5. 
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Figure 2.1 : Pictorial representation of the major centers of the auditory system. 
Adapted from Yost & Nielsen [1977] 
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2.1.1 The Ear 

The ear is often split into the outer, middle and inner ear sections. The represen-

tation in figure 2.2 processes the acoustic energy from the left, finishing with neural 

transduction on the right. 

Conduct; ve Sensori neural ... ... ~ 

OUTER INNER 

Figure 2.2: Cutaway representation of the ear. The outer ear is comprised of the 
Pinna and ear canal, the middle ear by the ossicles, and the inner ear by the cochlea. 
Adapted from Davis & Silverman [1970J 

The pinna has evolved to gather and amplify acoustic energy. It has a frequency 

response that allows the auditory system to make accurate judgements on azimuth 

and elevation. The ear canal provides gain for important spectral components in 

speech. 

The middle ear also has a frequency response, but it is usually thought of as 

an impedance transformer. The low acoustic impedance provided by the air must be 

transferred to the high acoustic impedance of the cochlear fluid. The directed acoustic 

signal hits the ear drum (or tympanic membrane) before the three small bones known 

as the ossicles. The small bones, malleus, incus, and stapes, efficiently couple the air 

vibrations by tapping on the cochlea's oval window. 
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2.1.2 The Cochlea 

The cochlea is a coil, about 2.5 turns, for about 3.5 cm in human adults, often 

depicted as snail-like. The fluid filled cochlea transduces the acoustic wave into an 

electrical, neural response. When the stapes taps on the oval window at the base 

end of the cochlea, a travelling wave is sent along the basilar membrane that runs 

the length of the cochlea. This wave reaches a peak somewhere along the basilar 

membrane that is dependent upon the frequency content of the signal. The basilar 

membrane goes from narrow and stiff at the base of the cochlea to wide and flexible 

at the apex. This corresponds to a frequency specific deflection impedance which sets 

a tonotopic organization to the peak displacement of the basilar membrane. Figure 

2.3 represents how high frequencies (20 kHz in humans) start at the basal end, and 

lower frequencies (100 Hz in humans) are at the apical end. 

Cochl"" slrclchl'ti oul 

Figure 2.3: Representation of the unrolled cochlea of a cat. Adapted from von Bekesy 
[1960] 

The cochlea has three ducts; the basilar membrane separates the scala tympani 

(perilymphatic) and scala media (endolymphatic); Reissner's membrane separates 

the scala vestibuli (perilymphatic) and scala media. On top of the basilar membrane, 

protruding into the scala media is the organ of Corti, which houses the mechanisms 
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of mechanical to electrical transduction. Figure 2.4 is a cross-section of the healthy 

cochlea. A close up of the organ of corti is in figure 2.5. 

: .. t ~ ' .... " 

Figure 2.4: Cochlear cross-section with the three ducts. The inner, outer hair cells, 
basilar and tectorial membranes are all part of the organ of Corti. Taken from Nolte 
[1993] 

The organ of corti is made up of various structural, supporting and sensory cells. 

Table 2.1 is an abbreviated list of the important cells in and around the organ of 

Corti. 

The hair cells are arranged in rows running the length of the basilar membrane. There 

are three (or sometimes four) rows of outer hair cells; approximately 15,000 in all, 

and a single row of inner hair cells; about 4000. Hair cells have small stereocilia-

like, "hair fibers", protruding towards the tectorial membrane. Figure 2.6 shows a 

representation of an outer hair cell. Inner hair cells are almost exactly the same, 

except they are not as vertical, they have a more arched body. 
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Figure 2.5: Detail of the Organ of Corti. Taken from Smith [1980] 

Cell Name Type Description 
Inner Hair Sensory Mechanical to electrical transducer 
Outer Hair Sensory Electro-motile active element 

Inner Thnnel Pillar Structural Support and forms part of tunnel of Corti 
Outer Thnnel Pillar Structural Support and forms part of tunnel of Corti 

Deiters Structural Under OHCs, effect active response 
Hensen Transport Adjacent to Deiters, fluid or ion conduit 

Claudius Support Extend from Deiters cells to spiral ligament 

Table 2.1: Cell structures comprising the Organ of corti . 
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Figure 2.6: Detail of an Outer Hair Cell. Taken from Dallos et al. [1996] 

The stereocilia have a height gradient, and the highest of them connect into the 

tectorial membrane for outer hair cells, but are thought not to for inner hair cells. The 

tectorial membrane is a gelatinous form running in parallel with the basilar membrane, 

and whose mechanical mass increases towards the apical end of the cochlea. This 

mass gradient produces a frequency peak displacement response analogous to the 

basilar membrane's elasticity derived tonotopic response. It is thought that the two 

membrane's are not exactly matched so a signal would produce a relative motion 

between the membranes, causing a shear on the stereocilia connection of the outer 

hair cells. Whether deflection by shear or deflection by the traveling wave, the motion 

of the stereocilia produces a potential change across the hair cell membrane. This 

potential change produces a motile response in outer hair cells, and leads to synaptic 

transmission in inner hair cells. 

The motile response of the outer hair cells is essential to normal hearing. It is 

an active, nonlinear process that produces the frequency selectivity, sensitivity and 
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adaptive, dynamic range compression which ultimately leads to the fantastic speech 

recognition ability of a normal hearing person. The inner hair cell is ultimately 

responsible for changing mechanical energy into the electrical energy encoded on the 

auditory nerve. Damage to OHCs and IHCs are the central issue in sensorineural 

hearing loss. 

2.1.3 The Auditory Nerve 

The AN, or nerve VIII, is the interface between the auditory periphery and the 

auditory brain. Acoustic information on the auditory nerve is carried in spikes and 

shows many of the dynamic nonlinear processes of the auditory periphery. The AN 

itself is a homogeneous bundle of approximately 30,000 mostly myelinated fibers in 

humans (50,000 in cats). This section deals with the normal operation of transduction 

of pressure waves into the AN representation. 

The AN is comprised ofaxons from two types of spiral ganglion cells. 95 % 

are Type I neurons, with myelinated cell bodies which innervate inner hair cells. 

Each IHC has 15 to 20 of these synapsing to them. One IHC is connected to many 

neurons, conversely, single Type II neurons connect to many OHCs. The Type II 

neurons are unmyelinated and project to different areas of the cochlear nucleus from 

Type I neurons. 

Not much is known about the Type II responses to acoustic stimulus, and Type 

I are hypothesized to carry the bulk of the stimulus information. The Type I neu­

rons are typical spiking neurons, mediated by the electro-mechanical IHC process. 

Hyperpolarizing currents and small depolarizing currents produce small changes in 

membrane potentials, but large depolarizing currents exceeding a threshold produce 

an action potential (or spike) which travels along the axon without attenuation. 
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Figure 2.7: Schematic of the ion flow thought to describe IRC transduction. The light 
blue wave at the top represents a pressure gradient in the cochlear fluid that causes 
a large positive deflection of the IRC cilia. This opens gating channels in the cilia, 
and causes the cascade of depolarizing currents, and subsequent return to a quiescent 
state. Taken from Glowatzki [2004] 
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A positive pressure gradient in the scala media causes the IHC cilia tips to defiect 

in the positive direction. This stretches tip-link fibers between the cilia, which are 

attached to mechanical gates, and pulls these gates open. The gates are K+ ionic 

channels, which depolarizes the IHC membrane potential, initially open Na+ and K+ 

ion channels on the IHC body, and Ca2+ channels at the base (these channels quickly 

close). The calcium channels induce neurotransmitter release. Vessicles filled with 

glutamate are pushed across the synaptic cleft, fusing there and causing excitatory 

postsynaptic potentials (EPSP), with enough frequency these EPSPs create action 

potentials. 

A negative pressure gradient in the scala media causes the opposite effect , closing 

all the cilia gates. This is the cause of the half wave rectification on the AN. Even 

without a positive pressure gradient a portion of the IHC cilia K+ gates are open, 

which can lead to spontaneous activity. 

There are t hree groups that describe the spontaneous discharge rates (SR) of 

particular fibers. The most common, high-SR group (SR > 18 spikes/ s) provides 

60% of the AN population. The medium-SR group (0.5 < SR < 18 sp/s) contains 

about 25 % of healthy fibers with the low-SR group (SR < 0.5 sp/s) accounting for 

the rest [Liberman & Kiang, 1978]. Spontaneous discharge rate is inversely related to 

threshold at the CF, low-SR fibers have the highest thresholds, while high-SR fibers 

have the lowest thresholds. 

By studying the AN response, one can infer cochlear processing. For example, 

in a single fiber, the pure tone response that produces activity levels statist ically 

above spontaneous rates would be the neural equivalent of psychophysical tuning 

curves. Neural tuning curves are sharp for for low-CF « 2 kHz) fibers, and sharp, 

but with a broad tail extending to low frequencies for high-CF fibers. Low-SR fibers 
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commonly exhibit larger Q10s than high-SR fibers) even though the same inner hair 

cell is innervated by fibers from all 3 groups [Miller et al., 1997]. 

Low-frequency « 5 kHz) pure tones produce phase locking of spike discharges. 

Spikes tend to occur at a particular phase of a stimulus, but not every cycle. Phase 

locking is usually quantified using period histograms, which display the distribution 

of spikes within a stimulus cycle. With no phase locking the period histograms would 

be a uniform distribution, while perfect phase locking, would produce an impulse at 

a particular phase. 

For pure tones above 1 kHz phase locking falls off. Above 5-6 kHz, the synchro­

nization index reaches the noise floor. This fall-off loosely corresponds to the decrease 

in the AC component of the IHC receptor potential relative to its DC component due 

to the hair-cell membrane capacitance and resulting lowpass response. Additional 

stages of lowpass filtering must also playa role. 

Phase locking seems a part of the half wave rectification process brought on by hair 

cell bundle displacement. The other cochlea nonlinearities are less obvious. Discharge 

rate growth versus input level functions of ANFs for tones at CF show both hard 

saturation and a "sloping" saturation. Low-threshold, high-SR fibers tend to have 

a hard saturation, while high-threshold, low-SR fibers a sloping saturation. This 

AN compressive response is modelled by cascading two nonlinearities; a peripheral 

soft compression (power-law type) is followed by a central, hard sigmoid nonlinearity 

whose operating point correlates with fiber threshold. The peripheral nonlinearity 

closely matches the 3: 1 compression seen in basilar membrane motion after about 35 

dB SPL. The central nonlinearity is thought to arise at the hair-cell auditory-nerve 

synapse. This two stage model predicts that the knee in the rate-level function should 

occur at the same SPL for all fibers innervating the same place, which is empirically 
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correct [Sachs et al., 1989]. 

After compression, another nonlinear process that is shown in the AN response 

is adaptation. The onset of a tone-burst, produces discharge rates much greater 

than steady state rates. AN fibers quickly react to changes in a stimulus, then 

gradually decay to a steady level. The fastest, and largest adaptation decay is the 

fast adaptation that has a time constant of about 2 milliseconds. Other rates include 

processes from 40 milliseconds, to hundreds of milliseconds, with other adaptation 

responses extending past a full second [Fettiplace, Ricci & Hackney, Fettiplace et al.]. 

Adaptation is thought to arise at the synaptic cleft, a sort of filling and depleting 

of different storage mechanisms of neurotransmitter. Some research shows that there 

is no adaptation at the membrane potential. While postsynaptic potential data from 

the goldfish show adaptation consistent with a depletion of neurotransmitter on the 

presynaptic side [Westerman & Smith, 1988]. 

Adaptation changes the linear coding of speech in a very interesting way. The 

onsets of unvoiced phones, are captured by high CF fibers, while voiced phones show 

large adaptation spikes in low-CF fibers [Delgutte, 1980; Delgutte & Kiang, 1984]. 

This effect has brought some researchers to say that adaptation enhances the repre­

sentation of rapid onset transients in speech. It also has the ability to demarcate when 

a stimulus is turned off. Fibers, who have strongly adapted will show poststimula­

tory depression after the stimulus is turned off. This poststimulatory depression lasts 

longer for large intensity adapting stimulus and is another way that the nonlinear, 

dynamic cochlea enhances contrast both spectrally and temporally. 

Spectral contrast is also enhanced through the cochlear process of suppression. A 

tone can have its average discharge rate suppressed in response to another, excitatory 

tone at the CF. A tone at a certain CF can attenuate the firing rates of adjacent 
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frequency bands [Sachs & Kiang, 1968]. The one tone versus another is called two­

tone rate suppression. A fixed suppressor shifts the rate-level function for a CF tone 

towards higher intensities. Suppression increases with the intensity of the suppressor 

tone and strongly depends on suppressor frequency. 

Suppression is asymmetrical. The growth of suppression for high side suppressors 

is less than a dB if the suppressor level is increased by IdB. The growth of suppression 

for suppressors much lower in frequency than CF can exceed 2 dB/dB. This rapid 

growth of low-side suppression is responsible for" upward spread of masking". Or the 

psychophysical asymmetry, where it is easier to mask a tone with a low frequency 

masker than a high frequency masker. 

2.1.4 Auditory Modeling: The Periphery 

The auditory periphery model used throughout is from Bruce et al. [2003] , fol­

lowing initial work by Bruce et al. [1999], Heinz et al. [2001] and Zhang et al. [2001]. 

The nonlinear, computational A~ model includes gamma-tone filters with compres­

sive magnitude responses, two-tone suppression, saturating rate-level curves, low­

threshold high-spontaneous rate (HSR) fibers , rolloff in phase-locking, neural adap­

tation, and realistic onsets and offsets. The system is shown in Figure 2.8. 

This model describes the function of the auditory system from the middle ear to 

auditory nerve. For outer ear functioning the head related transfer function from 

Wiener & Ross [1946] is used. The auditory model itself comprises several sections, 

each providing a phenomenological description of a different part of auditory periphery 

function. 

The first section models middle ear filtering. The second section, labeled the 

"control path," captures the OHC's modulatory functions, and includes a wideband, 
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Figure 2.8: Block diagram of the computational model of the auditory periphery from 
the middle ear to the Auditory Nerve. Taken from Bruce et al. [2003]. 
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nonlinear , time varying, band-pass filter followed by an ORC nonlinearity (NL) and 

low-pass (LP) filter. This section controls the time-varying, nonlinear behavior of 

the narrowband signal-path basilar membrane (BM) filter. The control-path filter 

has a wider bandwidth than the signal-path filter to account for wideband nonlinear 

phenomena such as two-tone rate suppression. 

The third section of the model, labeled the "signal path", describes the filter 

properties and traveling wave delay of the BM (time-varying, narrowband filter), the 

nonlinear transduction and low-pass filtering of the inner hair cell (IRC NL and LP) , 

spontaneous and driven activity and adaptation in synaptic transmission (synapse 

model), and spike generation and refractoriness in the auditory nerve (AN). In this 

model, CIHC and CoHC are scaling constants that control IRC and ORC status, 

respectively. 

The gain functions of linear versions of the time-varying narrowband filter in 

the signal path, plotted as gain versus frequency deviation f:)..jfrom the filter's Best 

Frequency (BF) are given in Figure 2.9. 

o 
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Figure 2.9: Filter shaping functions of the time-varying narrow-band filter in the 
signal path, plotted as gain versus frequency deviation (f:)..f) from BF. This example 
is at 1. 7 kRz. Taken from Bruce et al. [2003J. 
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The filter is fourth-order and is plotted for five different values of Tsp between 

Tnarrow and Twide. Tsp is the time-bandwidth control parameter, where larger values 

correspond to more frequency selectivity, and Tsp € [Twide, Tnarrow]. 6:..T = Tnarrow -

Twide. Tnarrow was chosen to produce a 10 dB bandwidth of ",450 Hz, and Twide was 

chosen to produce a maximum gain change at BF of ",41 dB at 1. 7 kHz. This plot can 

be interpreted as showing the nominal tuning of the filter with normal OHC function 

at five different sound pressure levels, or alternatively, as the nominal tuning of the 

filter for five different degrees of OHC impairment. 

The success of the machine learning strategies presented in this dissertation de­

pends upon the accuracy of the auditory model of the normal and damaged ear. The 

Bruce et al. [2003] model, while being based on cat physiology, is thought to corre­

spond very closely with human physiology. This particular model has a long history 

of development and good fit to a wide range of empirical data. The auditory model 

can capture a range of phenomena due to hair cell dynamic nonlinearities, including 

loudness-dependent sensitivity and bandwidth modulation (as stimulus intensity in­

creases the output response levels off and frequency-tuning becomes broader) , and 

masking effects such as two-tone suppression. The model incorporates critical prop­

erties of the auditory nerve response including synchrony capture in the normal and 

damaged ear and replicates several fundamental phenomena observed in electrophys­

iological experiments in animal auditory systems subjected to noise-induced hearing 

loss. For example, with OHC damage, high frequency auditory nerve fibers' tuning 

curves become asymmetrically broadened toward the lower frequencies and tend to 

become synchrony locked to lower frequencies. 

The Bruce et al. [2003J model is capable of simulating all known auditory nerve 

responses in both a normal and damaged human auditory system accurately. The 
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damaged system model must be tuned to the parameters of a particular individual's 

hearing-impairment. This requires estimates of both inner and outer hair cell loss 

over a range of frequencies. The standard audiological assessment, the audiogram, 

simply measures the threshold for pure tones at each of a small set of frequencies. 

An elevation in pure tone threshold cannot differentiate between a reduction in ORC 

driven gain versus a loss of IRCs tuned to that frequency. In sensorineural hearing 

disorders, it is generally assumed that a moderate elevation in threshold primarily 

reflects ORC loss, while a severe elevation reflects an additional IRC loss. Although 

this pattern is typical in individuals with age-related and noise-induced hearing loss, 

the exact proportion of IRC to ORC loss may deviate from the typical pattern in some 

individuals, and also may not hold at all for individuals with less common types of 

sensorineural damage, e.g. drug-induced. Better methods for estimating, separately, 

the degree of inner and outer hair cell loss, such as using noise-masked tones (Moore 

et al. [2000]) are intrinsic to this strategy. Given accurate measurements, the model 

could be tailored to compensate for many individual patterns of deficits. 

2.1.5 Neural Modelling: Differences in Neural Codes 

Just as section 2.1.4 attempted to model the processes introduced in 2.1.2, this 

section deals with modelling the AN data introduced in 2.1.3. While the cochlea 

has a tremendous amount of data associated with trying to understand its workings, 

neural codes have probably been discussed an order of magnitude more. And while 

cochlear models have some agreement among researchers in the field the same cannot 

be said of the neural code. The neural code used by the AN is open to a multitude 

of interpretations. 

The goal of this section is to introduce some neural coding hypotheses, and the 
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tools to quantify the differences between neural codes. In chapter 5 quantifying 

the difference between neural codes with and without the imprints of the dynamic 

nonlinearities of the cochlea become supremely important. 

As discussed in section 2.1.3 each fiber on the AN produces a set of action potential 

(AP) over time. There are a large number of theories on how information is encoded 

by APs. 

1. Binary Coding: either AP is a signal, or it is silent 

2. Rate Coding: the average firing frequency over a certain time period. 

3. Interspike Interval Coding: Temporal sequence of spike times. 

4. Population Coding: Output of a network is a pattern of activity across the 

population of neurons. There are different ways to view population coding, in 

essence saying that spikes are informative in relation to spiking behaviour of 

other fibers. 

5. Population, Local Coding: each neuron represents a specific feature that 

the system distinguishes 

6. Population, Scalar Coding: firing rate of each neuron encodes a feature. 

Redundancy and improved signal-to-noise ratio can be achieved by several neu­

rons coding the same features 

7. Population, Vector Coding: features are encoded in the firing rates of a 

subpopulation of neurons that have overlapping tuning curves in the feature 

space. 
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8. Population, Volley Coding: A single object in the real world may be 

encoded in the synchronous firing of neurons that code for each separate feature 

of the object. In this way multiple objects can be represented simultaneously 

and distinguished by the neurons representing one object firing out of phase 

with the neurons representing another object. 

9. Population, Synchronization/Oscillatory Coding: There is evidence for 

an increase in synchrony between cortical neurons responding to a stimulus, 

without necessarily any change in their average firing rates. This synchrony is 

seen in nearby neurons, between neurons in different cortical areas and even 

across hemispheres. An example is in the auditory system, where in response 

to a sound stimulus, neurons do not change their average firing rate, but they 

do fire more in synchrony with each other - this synchrony may be detected by 

downstream neurons, thus recognizing the presence of the sound. 

In reality, the brain probably uses a varied set of coding strategies that are optimal 

depending on neural resource, the input stimuli, and what the desired output format 

is. While a tremendous amount of research has gone into trying to provide a single 

general neural coding strategy, it has largely been less then entirely fruitful. 

Shortly after Shannon's introduction of information theory Attneave [1954] and 

Miller [1956] discussed the possibility of treating biological sensory systems as com­

munication channels. Uttley [1970] introduced Informon, that minimized mutual 

information between the input and output, and gave rise to discrimination functions. 

Linsker [1992] with Info Max, provided a possible general rule for neural coding; that 

neural systems should maximize the mutual information between the input and out­

put of the system. Becker [1996] put a novel twist on InfoMax, producing Imax, which 
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maximized the mutual information between outputs of neighbouring neural networks, 

and extracted spatially coherent features for visual processing. Ukrainec & Haykin 

[1996] did the opposite, minimizing the mutual information, to produce spatial in­

coherent features that were effective at denoising radar images. These information 

maximization approaches have some usefulness. 

Running in parallel with information maximization is redundancy reduction. While 

Attneave [1954] mentions this specifically, Barlow is most often quoted in describing 

the biological imperative for redundancy reduction [Barlow, 1961]. Here the goal for 

the neural code is to be as efficient as possible. Under certain conditions redundancy 

reduction is equivalent to maximization of input-output mutual information. 

While fun, and sometimes useful, most attempts to derive real insights into a 

general neural code are little more than whistling in the dark. Yet, independent 

of the actual neural code, information theory does provide several tools to examine 

differences between AP sequences. Computing the mutual information between some 

small AP feature and the stimulus set can begin to form a foundation. This can then 

be extended into asking how do the small AP features code specific aspects of the 

stimulus? How do neurons interact to transmit information together? How well is a 

fiber encoding the acoustic stream if the cochlear preprocessing is damaged? While 

this is beyond the current dissertation, looking at small features of the AP is not. 

In general, one neural fiber's spiking behaviour is compared to a similar fiber, but 

coming from a damaged cochlea. The small features of the spiking behaviour could 

be: 

1. Spike counts: Counting the number of APs over a certain time period is used 

throughout section 5.1. For a homogenous Poisson process, it is a sufficient 

statistic. The AN response is not homogenous though, speech produces large 
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rate changes over time. 

2. Spike counts with inter-spike-intervals: Spike counts can be extended for 

renewal processes. These are processes in which the distribution of inter-event 

intervals is independent of past events, but is not necessarily exponential as in 

a Poisson process. Renewal processes are often used for AN fibers because AK 

neurons reset after spiking. Biophysical processes in the cell such as membrane 

voltage and ion channel configuration in the soma and proximal dendrites return 

to a zero state, and with it the past spiking activity of a cell is decoupled from the 

future. This type of analysis is more complex and severely limited. In essence 

it takes the spike count and adds another statistic dealing with the temporal 

distribution of spike waiting times. It does not take into account complex 

patterns of spikes. Refined calculations can be made by adding on more complex 

connections between spikes. The inter-spike-interval can be viewed as the linear 

term in the Taylor series expansion of correlations between spikes. Using higher 

order statistics of inter-spike-intervals, say among groups can asymptotically 

increase the accuracy to rival the binary word method below. 

3. Spike counts with heterogenous firings: Similar to the other spike counting 

paradigms. Heterogenous firing rates can be taken into account by discretizing 

time, and producing an analog probability of firing rate per period by summing 

across the AN responses. This type of calculation is used in chapters 3 and 4. 

4. First spike latency: The timing of the first spike after stimulus onset carries 

a considerable amount of information about the stimuli. In an experiment 

from the visual domain, van Rullen & Thorpe [2002] show how a network that 

only processes the very first few spikes from a simulated retina can convey 
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almost all the information in a scene. An intuitive explanation is that neurons 

whose firing fits the homogeneous Poisson model, the inter spike interval is 

exponentially related to the firing rate. This allows an estimate of the rate 

in a very short time. While estimating spike counts requires averaging over a 

relatively long time window, the time interval between stimulus onset and the 

first spike conveys the same information but only requires the observation of a 

single spike. A method very similar to this is used in section 5.3 

5. Spike patterns as binary words: The direct method captures potential in­

formation in temporal patterns of spikes. Each spike train is represented as a 

binary string. Time is discretized. This is exponentially more computationally 

complex than Spike counts with heterogenous firings. But with asymptot­

ically infinite data and infinitesimal resolution, it captures the complete infor­

mation that the spike trains convey regardless of their underlying distribution. 

With coarse resolution the binary word method extracts the coarse temporal 

structure of the responses, similar to the one captured by heterogenous rate 

models. This method was discarded during the initial phases of section 3.1 

because of its computational complexity. 

there are many other possibilities. In the best possible world, researchers would 

have an understanding of how the AN information is used. The best guess that is 

available right now, is that each researcher builds neural architectures mimicking the 

cochlear nucleus and applies Hebbian strategies to the incoming neural signals. This 

would show how the normal and impaired AN responses code information. 
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2.2 Psychophysics of Sensorineural Impairment 

The reduction of sensitivity to low intensity acoustic pressure waves is probably 

the best understood symptom of sensorineural hearing impairment. Threshold shift, 

through the use of the audiogram has often been taken as the sole determining factor 

for fitting hearing aids. Threshold shift is often considered the largest factor creating 

hearing difficulty, leading to hearing aid algorithms hallmarked by attempting to 

returning audibility. But it is now a common understanding that audibility does not 

ensure intelligibility. 

There is a large problem with thinking that audibility ensures intelligibility, be­

cause people with very similar audiograms behave very differently. People with mod­

erate hearing loss have a wide range of deficits (2.5 to 5 dB signal to noise ratios 

(SNR)) on Speech Reception Thresholds (SRT) than normal hearing people [Glas­

berg & Moore, 1989J. Even with the same threshold shift, intelligibility can be quite 

different , so researchers have looked closer at the cause of hearing impairment. 

Sensorineural impairment is thought to be caused by damage to stereocilia on the 

haircell bundles discussed previously. Different levels of damage to IRCs and ORCs 

can produce the same level of threshold shift while changing other symptoms. What 

follows is a discussion of the psychophysical consequences to sensorineural impair­

ment or the symptoms. Each subsection has a short description before the detailed 

data. The consequences for the hearing impaired are given as a motivation to turn 

engineering into something that is socially beneficial. Finally, an attempt to describe 

the active processes that are damaged from sensorineural impairment and that give 

rise to the psychophysics are given in each subsection in an attempt to come to terms 

with the root causes. 
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The first several symptoms, threshold shift, reduced dynamic range and reduced 

frequency selectivity in sections 2.2.1,2.2.2, and 2.2.3 are the most well known. These 

three symptoms of sensorineural hearing loss are quickly quantified in a clinic, and are 

often classified as spectral deficiencies. The next symptoms, changes, or lack thereof 

in tuning curves due to temporal masking, longer temporal integration and decreased 

temporal resolution in sections 2.2.4, 2.2.5 and 2.2.6 are less well known. They dovetail 

from the discussion on frequency selectivity, and highlight the microscopic aspects of 

temporal changes in the sensorineural impaired auditory system. The auditory system 

has been shown to integrate acoustic changes over time and frequency. Amplitude 

and frequency modulation discrimination are about the same in normal hearing and 

hearing impaired people, but there are some interesting differences, these are discussed 

in sections 2.2.7 and 2.2.8. The final three sections deal with hearing impaired people's 

difficulties in reverberation, source localization and competing speech. The sections 

2.2.9, 2.2. 10 and 2.2.11 deal with macroscopic definitions of sensorineural impairment. 

This is where obvious, large scale, intelligibility differences are seen between normal 

hearing and hearing impaired people (20 dB SNR deficits!), and because these sections 

are closer to real life use, why they are key for motivating the understanding of hearing 

impairment. Section 2.2.11 is the core problem encompassing the various sympt oms. 

If one can understand the cochlear process in the competing speech regimes, one 

will have a clear representation of the tradeoffs necessary for optimal hearing aid 

processing. 
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2.2.1 Threshold Shift 

2.2.1.1 Description 

The loss of absolute threshold, or the minimum detectable level of a sound, without 

any other competing sounds accompanies sensorineural impairment. There are two 

basic ways of measuring the absolute threshold. The first places a probe microphone 

close to the subjects ear canal to record the sound pressure level (SPL) that elicits 

a response when the stimuli is presented through headphones. This is called the 

minimum audible pressure (MAP). The second way is to present the subject the 

sounds through loudspeakers in an anechoic chamber. This method 's threshold is 

ordinarily called the minimum audible field (MAF). These two results differ because 

of every individual's differing pinna and canal response. The outer ear produces a 

gain for frequencies between 1 and 9 kHz, with up to 15 dB of gain at 3 kHz. Figure 

2.10 shows the MAF for people generally considered to have normal hearing. 
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Figure 2.10: The Minimum Audible Field for young, normally hearing people. Taken 
from Robinson & Dadson [1956] . 
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Thresholds have a basin between 1 kHz and 5 kHz, and then huge increases under 

300 Hz and above 6 kHz. Sensorineural impairment can come in many different forms, 

but the most common is age related or presbycucis. Presbycucis is typified by a high 

frequency threshold shift. Classically, the audiogram has been made from recording 

the level shift in dB caused by hearing impairment versus the normal hearer's curve 

(Figure 2.10). The units are usually in dB HL (dB Hearing Level). Sounds can be 

characterized by the amount relative to hearing threshold at which they are presented, 

in dB SL (dB Sensation level), or in absolute pressure ratios versus 20 f1 P, in dB 

SPL. For normal hearing versus a hearing impaired subject, the dB SL can be quite 

different given the same dB SPL. 

Psychoacousticians typically plot thresholds as increasing upwards, as in Figure 

2.10. Audiologists typically plot threshold degradations, or hearing losses, as plotted 

downwards, with the" normal" threshold as a horizontal line at the top of the plot. 

Thus, the degree of hearing loss is plotted below the normalization line. 

2.2.1.2 Data 

The most common way of quantifying hearing loss is in terms of the absolute 

threshold for sinusoids, in dB HL, averaged over the frequencies 500, 1000 and 2000 

Hz. This is also known as the pure-tone average (PTA) hearing loss, and is used in 

many hearing aid fitting procedures, such as those from the National Acoustic Lab­

oratory (NAL) of Australia. Goodman [1965] proposed the following classification: 

At present , the level where mild hearing loss is typically demarcated is a PTA 

of 16 dB HL. The categories are an attempt to indicate broadly the difficulties in 

communicating in typical situations. That is mild or moderate to severe difficulties 

in normal interactions. A note of caution though: individuals with similar absolute 
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I PTA dB HL I Description 

-10 to 26 Normal limits 
27 to 40 Mild hearing loss 
41 to 55 Moderate hearing loss 
56 to 70 Moderately severe hearing loss 
71 to 90 Severe hearing loss 
over 90 Profound hearing loss 

Table 2.2: Categorization of hearing loss from the Pure Tone Audiogram. Taken from 
Goodman [1965] 

thresholds can vary considerably in how their impairment affects their ability to hear 

in real situations. 

2.2.1.3 Consequences 

The most obvious consequence from threshold shift is the loss of audibility. Low 

level sounds, such as whispers simply cannot be heard. While the auditory system 

is eminently capable of filling in blanks, such as using a telephone with its 3.4 kHz 

bandwidth, unvoiced sounds may be under threshold, especially in low level conver-

sations. Hearing aids have been largely defined by ensuring audibility. Chapter 4.1 

details the seminal efforts in dealing with threshold shift and how it forms the basis 

for most hearing aid research. 

2.2.1.4 Phenomenology 

Liberman & Dodds [1984a] conducted studies in an attempt to relate hair cell dam-

age to changes in Al\ responses. By using noise exposure and/or ototoxic drugs they 

were able to produce a mixed set of OHC and IHC damages in cats. This produced 

some animals with various ranges of IHC and/or OHC damage. Both IHC and OHC 
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damage resulted in elevated thresholds. Complete ORC loss without corresponding 

IRC damage can result in a threshold shift from 30 dB for low frequency to an almost 

60 dB shift at higher frequencies. Complete IRC loss without corresponding ORC 

damage can result in complete loss at a frequency, or a hole in hearing. 

Recently, some other suggestions have come to light, such as loss of voltage from 

stria vascularis atrophy [Gratton et al., 1996]. It is a research goal to try to determine 

the connection between hair cell damage and psychophysical threshold detection. An 

example of this line of research is in Slepecky et al. [1982]. 

2.2.2 Dynamic Range 

2.2.2.1 Description 

A higher than normal absolute threshold does not correspond with an increase in 

the highest intensity a sound may be before it is deemed uncomfortable. This means 

that the growth of loudness with increasing sound level is greater than in normal 

auditory systems. For example, someone with 50 dB threshold shift equates a 50 dB 

sound with a normal hearers 0 dB sound, while both normal and impaired ears hear 

120 dB sounds the same. The range of sounds that the impaired ear can comfortably 

listen to, or the auditory system's dynamic range is greatly reduced. The audiology 

term for this loss of dynamic range is loudness recruitment. 

2.2.2.2 Data 

Moore et al. [1985] studied loudness recruitment in subjects with unilateral hearing 

loss. By having the subject match the loudness of tone burst between the normal and 

impaired ear they came up with the mean results in Figure 2.11 
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Figure 2.11: The solid line shows the intensity level matching for tone burst for people 
with asymmetric hearing loss. The dotted line is loudness matching for normal hearing 
people. Taken from Moore [1995]. 

From Figure 2.11 the slope for normal ears is close to one (there is a bias for 

the matching tone to be slightly less then the t est tone , especially at high levels 

since subjects tend to avoid high sound levels) . The curve for ears with unilateral 

impairment, have a slope greater than one. At low levels there is a greater discrepancy 

between the normal and impaired ears (33 dB), than at high frequency (12 dB). 

Loudness recruitment can also be demonstrated in people with cochlear damage 

in both ears. One method of doing this involves the use of a categorical loudness 

scaling procedure. The subject is presented with a test sound, and is asked to judge 

its loudness by using one of several verbal categories [Pascoe, 1978]. 

For people with bilateral hearing loss, qualitative loudness tests can be used to 

judge recruitment. Allen [1990] provides a methodology where half-octave wide bands 

of noise centered at 500. 1000. 2000 and 4000 Hz were used as test stimuli. The first 
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component of judging loudness has a subject respond with 'cannot hear', 'very soft', 

'soft', 'comfortable', 'loud', 'very loud', or 'too loud' to a set of 3 noise bursts. The 

second component collects data by randomizing the center frequency and the level for 

all the stimuli except the 'too loud' and 'cannot hear' stimuli. From here, functions 

relating perceived loudness to level at each centre frequency are made; the steeper 

the slope, the more recruitment. 

Although there can be considerable individual recruitment differences for subjects 

with similar audiograms, on average the steepness of the loudness growth curves 

increases with increasing absolute threshold [Hellman & Meiselman, 1993]. 

2.2.2.3 Consequences 

Loudness is a funny thing. While most of the above discussion on dynamic range 

revolved around a reduced set of intensities that some one with hearing loss can judge 

from, does it really correspond to real life? Matching noise or tone bursts does not 

give the same results as matching speech. Loudness is a complex function of the 

stimuli, even the smallest details, such as phase [Gockel et al., 2003] are important 

factors for loudness and are not very well described by the loudness matching tests 

above. 

Most hearing aid research discounts this, and has produced nonlinear algorithms 

meant to restore the compressed dynamic range of the hearing impaired. The largest 

set of nonlinear algorithms used in hearing aids are compression circuits. In general, 

these circuits are meant to make low level sounds audible, make normal level sounds 

intelligible, and to bring high intensity sounds into the comfortable range. A com­

pressive hearing aid maps the impaired intensity/loudness function from figure 2.11 

to the normal intensity/loudness function. 
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2.2.2.4 Phenomenology 

Most researchers believe that for simple stimuli, loudness recruitment as well as 

threshold elevation are both due to the loss of the active mechanism in the cochlea. 

Loudness is then some function of the total evoked neural activity. Accompanying 

threshold loss is also a loss in the compressive nonlinearity of the BM, thought to 

be mediated by the electromotility of OHCs. With a steeper (less compressive) BM 

input/output function than normal the amount of total neural firings increases. At 

high SPLs the normal ear begins to operate as a linear system, and thus the impaired 

ear begins to match the normal I/O function. This is an explanation of why the 

loudness in an impaired ear usually mimics a normal ear at sound levels greater then 

90 dB SPL. 

Along with changes to the BM level function, there is a broadening of the cochlear 

filters (see section 2.2.3) with sensorineural impairment. This leads to a broader AN 

excitation pattern, ie., more neural activity, and hence from the above phenomenology, 

a louder sensation. 

2.2.3 Frequency Selectivity 

2.2.3.1 Description 

Frequency selectivity often goes unmeasured by an audiologist, yet is the second 

most obvious difference between normal hearers and the sensorineurally impaired. 

Frequency selectivity is the ability of the peripheral auditory system to resolve a 

complex sound into spectrally distinct components. 

Its most often quantified by studying masking effects. Masking i the effect of 
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how one particular sound renders another undetectable, even though that impover­

ished sound is suprathreshold. If a sound at one frequency is masked by another 

sound at another frequency, then the auditory system has failed to resolve the two 

sounds, and this may lead to a loss in quality or intelligibility. By measuring when a 

sound is masked by another, it is possible to characterize how the frequency analysis 

capabilities of the auditory system are diminished with sensorineural impairment. 

Frequency selectivity depends to a large extent on the filtering that takes place in 

the cochlea. A complex sound, undergoes a spectral analysis in the cochlea where the 

sinusoidal components of the sound are separated if their frequency separation is large 

enough. In the normal auditory periphery there are several active mechanisms that 

ensure this and that the acoustic landscape is coded independently in the auditory 

nerve. 

The perception of a sound as a coherent whole depends upon an accurate rep­

resentation of the individual components as well as accurate interpretation of their 

interconnection at some later stage in the auditory system. Damage to the cochlea 

leads to reduced sharpness of tuning on the basilar membrane and in single neurons 

of the auditory nerve, as measured in critical bands, or the auditory filter shape. 

Frequency selectivity is often worse than normal in people with sensorineural impair­

ment. 

2.2.3.2 Data 

Much of the explanation of masking effects derive from Fletcher [1940] and early 

work in acoustics at Bell Labs. The concept of the critical band and power spectrum 

model stem from this body of work. Fletcher [1940] measured the threshold for 

detecting a sinusoidal signal when masked by a bandpass noise masker. The noise 
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was centered at the same frequency as the sinusoid, and the noise power density was 

held constant while the bandwidth was altered. The total noise power increased as 

the bandwidth increased. Moore et al. [1993] prepared a modified version of this test, 

with normal and hearing impaired people. Their results are given in figure 2.12. 
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Figure 2.12: Averaged threshold for normal and impaired subjects for a 2 kHz sinu­
soidal signal plotted as a function of bandwidth of a masker centered at 2 kHz. Taken 
from Moore et al. [1993], 

Qualitatively, the pattern of results is similar for the normal and impaired subjects, 

both show a leveling off at between 400 and 800 Hz. Quantitatively, the overall 

performance is worse for the hearing impaired, with thresholds increasing for a larger 

bandwidth of about 800 Hz. Fletcher [1940] suggested phenomenology was that the 

peripheral auditory system behaves as if it contained a bank of overlapping bandpass 

filters. This gave rise to the term "auditory filters". His explanation was that the 

signal was detected by using the output of the auditory filter centered on the signal 

frequency. Thus, increases in noise bandwidth result in more noise passing through 

that filter, and a lower signal to noise ratio at the output. That is while the noise 

bandwidth is less than the filter bandwidth. When the noise bandwidth exceeds the 

auditory filter bandwidth, an increase in noise bandwidth does not decrease the SNR 
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the auditory brain works with. Fletcher termed this frequency dependent bandwidth, 

for which the signal threshold ceased to increase the "critical bandwidth" (CB). This 

auditory analysis explanation and critical bandwidths are key elements in modern 

audiology. Fletcher's phenomenological explanation led to the power spectrum model 

of auditory functioning. It is based on the following assumptions: 

1. The peripheral auditory system can be represented as an array of overlapping 

linear bandpass filters. 

2. For detecting a signal in a noise background, the listener makes use of the filter 

with a centre frequency close to that of the signal, or this filter that has the 

highest signal-to-masker ratio at its output. 

3. Components in the noise outside of the auditory filter in use have no effect on 

masking the signal. 

4. Detection is determined at a specific signal-to-masker rat io. That is, the stimuli 

are fully represented by their long-term power spectra; phases and the short­

term fluctuations in the masker are not important. 

None of these assumptions is strictly correct; auditory filters are level-dependent, 

listeners combine information from many auditory filters to enhance signal detection, 

noise outside of the auditory filter centered at the signal frequency can strongly affect 

detection and fluctuations and phase coherence in the masker plays a strong role. 

However, these simplifying assumptions are a valuable starting point in dealing with 

the complexities of the auditory periphery. 

The psychophysical measurement of these auditory filters results in psychophysical 

tuning curves (PTCs); there is a counterpart procedure for determining the neural 
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tuning curve [Small, 1959]. To measure a PTC, a test signal is input at a very 

low sensation level along with a sinusoid or narrow band noise masker. For several 

masker centre frequencies the level needed to mask the signal is determined. From 

the aforementioned power spectrum model assumptions this creates a PTC indicative 

of the masker level required to produce a fixed output from the auditory filter as a 

function of frequency. 

From the linear filter assumption the PTC can be determined with a signal fixed 

in level and varying in frequency or by determining the input level required to produce 

the same output level. A typical normal and impaired PTC are given in Figure 2.13. 
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Figure 2.13: Simultaneous masking PTCs for a normal and hearing impaired ear on 
a unilaterally impaired subject at 1 kHz CF. Taken from Moore & Glasberg [1986]. 

The circles are for the normal ear, the squares from the impaired ear of the same 

subject. The PTC is broader for the impaired ear, a clear indication of wider tuning 

and loss of frequency selectivity. 

In this example there may be off-frequency listening, or a break with assumption 3 

of the power spectrum model. With the masker frequency above the signal frequency, 

the most propitious signal-to-masker ratio occurs for a filter centered below the signal 
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frequency; when the masker frequency is below the signal frequency, the best signal­

to-masker ratio occurs in a filter centered above the signal frequency. So the reality of 

off-frequency listening produces a higher determined masker level then if off-frequency 

listening did not occur. The overall effect is that the PTC has a sharper tip than 

would be obtained if only one auditory filter were involved [O'Loughlin & Moore, 

1981]. 

A way to limit the amount of off-frequency listening is to use notched-noise, whose 

effect limits the frequency shift of the auditory filter, as well as severely deteriorating 

the signal-to-masker ratio in adjacent frequency bands. The auditory filter shapes 

for sensorineurally impaired subjects have been estimated many times using notched­

noise maskers (for example Glasberg & Moore [1986]; Leeuw & Dreschler [1994]). 

Typically, the auditory filters are wider than normal in hearing-impaired subjects. 

Also, the amount of broadening loosely correlates with increasing threshold shift. 

Glasberg & Moore [1986] measured auditory filter shapes in subjects with unilateral 

sensorineural impairments, so that the differences between the normal and impaired 

ears cannot be due to age or attention. Results are given in figure 2.14 

The auditory filters for normal ears are very sharp indicating good frequency 

selectivity, while the auditory filter shapes for impaired ears are much less sharp. 

Also there is a wide variance in shapes and asymmetries in the hearing impaired ears, 

and especially the much lower masking thresholds at lower frequencies. This is a 

hallmark of the hearing impaired person's problem with masking from low-frequency 

sounds, such as car noise, HVAC, cows mooing. 

An additional problem with the power spectrum model and PTCs is the assump­

tion about the auditory filter being linear. In reality the actual shape depends highly 

on the input SPL. By determining the PTC with a changing input the underlying 
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Figure 2.14: Auditory filter shapes for a CF of 1 kHz for six unilaterally impaired 
subjects. Taken from Glasberg & Moore [1986]. 
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filter shape changes as the masker frequency and level is varied. Because of this, the 

slope of the low frequency skirt of the PTe is underestimated, along with a converse 

overestimation of the higher frequency skirt slope [Verschuure, 1981 J. 

2.2.3.3 Consequences 

With reduced frequency selectivity, people with sensorineural impairment are vic­

tims to increased masking, and wholescale changes to perception. Some of these 

aspects, such as frequency discrimination, pitch and timbre perception effect the 

quality and quantity of the impaired persons acoustic experience. The most direct 

consequence to the reduction in fre(lu~ncy selectivity is the increased susceptibility 

to masking. As delineated above, it is actually how one quantifies the frequency se­

lectivity of the auditory system. There are many different ways that one can define a 

masking signal, the most obvious is the signal and masker overlapping in spectrum. 

In this case, the masked thresholds for hearing impaired people are usually only a 

little more for hearing impaired people then for normal hearing people. If the sig­

nal and masker are spectrally disjoint masking could be considerably greater in the 

hearing impaired, depending on their exact auditory filter layout. This is supremely 

important in competing speech, where the attended speaker has a much different 

short term spectrum then the other conversations in a room. That is, because of 

reduced frequency selectivity, a particular speaker's individual sounds are more likely 

to be masked. 

2.2.3.4 Phenomenology 

Studies into PTCs give a general agreement into the broader tuning in the auditory 

filter shapes for hearing impaired people. There is also some correlation between the 
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broadened filter and desensitizing thresholds , but there is also wide variance between 

these two findings . 

In particular, PTCs have been found that have two tips, or colloquially, that are 

W-shaped rather than the typical V-shaped [Hoekstra & Ritsma, 1977]. This result 

has also been found in neural tuning curves. Sensorineural impairment also can shift 

the CF of the auditory tuning curve, sometimes well away from the normal place. This 

is thought to stem from an almost complete loss of inner hair cells in low-frequency 

regions of the cochlea, making higher frequency neurons take low frequency input. 

This is quite rare, the more prevalent case is damage primarily to the OHCs 

with the IHCs left more intact. This is thought to diminish the electromechanical 

active mechanism of the outer hair cells, leaving a relatively normal mechanism for 

transducing basilar-membrane movement into neural responses , but with a loss of 

the suppression, and nonlinear selectivity. If this is indeed the case, the reduction in 

frequency selectivity should correlate with elevation in threshold. Another possibil­

ity is deterioration of both OHCs and IHCs. Both the active nonlinearity and the 

transducer mechanism are damaged. There should be considerable reduction in both 

sensitivity and selectivity. Lastly, there is a rare case of damage solely to the IHCs. 

One expects high thresholds but tuning to remain sharp. For a realistic hearing loss 

the cochlear degradation is some combination of the above loss mechanisms, there is 

considerable variability in threshold shifts and selectivity patterns. So much so that 

the above phenomenology is somewhat debatable. 

If OHC stereocilia damage does reduce tuning of the basilar membrane [Glasberg 

& Moore, 1986], it is not a simple function of threshold shift [Leek & Summers, 

1993]. The increase in auditory filter equivalent rectangular bandwidth (ERB) can 

be anywhere from 20 to 500 percent, depending on the loss. Phenomenologically, 
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this broadened tuning increases the correlation between different frequency bands, 

and therefore reduces the number of independent channels that the hearing impaired 

person has access to. 

This, coupled with a lower SNR, because of larger channel bandwidths leads to 

the idea that an information bottleneck reduces speech intelligibility in the hearing­

impaired cochlea. Attempts at enhancing the spectral sharpness of an incoming signal 

to restore the auditory response have led to minimal or mixed results, see for example 

Bunnell [1990], Bruce [2004] . The lack of positive results for spectral enhancement 

is thought to be connected to interaction with the compressive nonlinearity in the 

basilar membrane response. 

2.2.4 Temporal Aspects of Frequency Selectivity 

2.2.4.1 Description 

Frequency selectivity has been quantified through the use of a simultaneous mask­

ing experiment, but there is also the possibility of probing the auditory filter through 

the use of a masker preceeding the signal, and deriving a PTC through this, forward 

masking paradigm. The fact that the two PTCs differ in shape gives rise to the idea 

that they are mediated by different mechanisms. The mechanism that governs simul­

taneous masking is known as suppression. In general, it is a dynamic mechanism of 

the healthy cochlea that attenuates (or suppresses) particular frequency components 

in response to other frequency components. 
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2.2.4.2 Data 

Suppression effects in normal hearing and hearing impaired people are derived by 

studying the simultaneous and forward masking. The signal level is not varied, to 

reduce the issues intrinsic to the nonlinear growth and decay of the auditory periphery 

response. By changing the masker, forward masking studies attempt to determine 

the masking thresholds based on a fixed output of the auditory filter in the cochlea, 

not based on a fixed input as previously discussed. 

Wightman et al. [1977] studied the PTCs derived from both simultaneous and 

forward masking paradigms for hearing impaired subjects. Their results indicate a 

much sharper forward masking PTC when the signal and the masker were in regions 

of normal sensitivity. Conversely, when the signal was applied to a frequency region 

with elevated threshold, the differences between the two PTCs were minimal. The 

explanation for this is that some type of unmasking was available to the healthy 

cochlea, but not when the ear was impaired. Wightman et al. [1977] conjectured that 

suppression was responsible for the differences between PTCs in simultaneous and 

forward masking in the healthy ear. 

Moore & Glasberg [1986] updated this research by looking at the simultaneous 

and forward masking PTCs in subjects with unilateral losses. A notched noise, off­

frequency listening limiting method was followed. The PTCs for the healthy ears 

were sharper in forward masking than in the simultaneous masking experiment. The 

PTCs for the damaged ears had negligible differences between the two paradigms. 

An example of this is shown in 2.15 

The loss of suppression reduces the ability to temporally separate frequency com­

ponents in people with sensorineural hearing impairment. Festen & Plomp [1983] 

also studied simultaneous and forward masking PTCs, but their experiment used a 
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periments from unilaterally impaired subjects. The top plot is determined from the 
damaged ear, t he bottom from the normal hearing ear. Taken from Moore & Glasberg 
[1986]. 
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rippled-noise masker. This diminished the differences between simultaneous and for­

ward masking PTCs for impaired hearing subjects, corroborating that suppression 

effectiveness was greatly reduced in the hearing impaired. 

In general, two-tone unmasking by preceding frequency components is diminished 

or entirely absent with sensorineural impairment, and the differences in frequency 

selectivity of complex stimuli, mediated by the suppression mechanism for simultane­

ous and forward masking are greatly diminished or absent in hearing impaired people 

when compared to normal hearing people. 

2.2.4.3 Consequences 

This loss of suppression has similar consequences to increasing frequency selec­

tivity. On top of the problems already detailed , there is the exacerbating issue that 

normally hearing people have an even easier time resolving frequency components 

that have temporal characteristics. Suppression makes it easier to separate acoust ic 

phenomena that happen serially in time, while frequency selectivity can be thought 

of as separating parallel components. This is key for dealing with competing speech, 

speech streams have ever changing temporal patterns that the healthy ear can use 

to unmask the attended talker, while the sensorineural impaired ear cannot unmask 

with temporal fluctuations. 

Separating acoustic streams is of obvious importance, but so is processing a sin­

gle, complex, acoustic stimulus. Complex stimuli created with the vocal tract or a 

musical instrument can be defined by their timbre. Timbre has the silly definition of: 

"that attribute of auditory sensation in terms of which a listener can judge that two 

sounds having the same loudness and pitch are dissimilar". A saxophone or piano 

playing middle C can be readily identified because of their different timbre. There are 
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both spectral and temporal characteristics of timbre that are directly affected by the 

frequency selectivity and suppression mechanism of the ear. With the reduced fre­

quency resolution brought on by cochlear damage the auditory system has less detail 

to determine the source instrument. Practically, this also effects speech recognition, 

as voiced sounds have information coded in its timbre, while the unvoiced sound is 

easily masked by large, preceding frequency components. 

2.2.4.4 Phenomenology 

The psychophysical data strongly support the idea that lateral suppression is re­

duced or absent in people with cochlear hearing loss, but the cochlear mechanism 

is not well described. It is theorized that a different time constant filter in tandem 

with the natural BM time constant can mediate the ORC electromechanical response. 

This secondary filtering interaction is damaged with ORC loss. The most common 

suggestion for this effect is the ORC stereocilia tip connection to the tectorial mem­

brane acts as a feedback mechanism tuned to similar spectra-temporal components 

as the BM. The tectorial membrane is much more gelatinous then the elastic basilar 

membrane, giving a broader resonant frequency. The tip connection of the ORCs 

would then be modulated by different frequency components than the corresponding 

IRC gating filaments at a particular place. While this is just one conjecture, what is 

not in dispute is that the loss of ORC function results in a loss of suppression. 
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2.2.5 Temporal Integration 

2.2.5.1 Description 

Cochlear damage engenders a change in threshold intensity over a signal duration 

that is often smaller than for normally hearing people. Normal hearing people have a 

-3 dB threshold advantage for every doubling of stimuli duration, while the slope for 

hearing impaired people can be much shallower. That is, the hearing impaired have 

a reduced ability to sum frequency components over time. Also, changes in absolute 

threshold correlate to reduced temporal integration or shallower slopes (dB/ ~ t). 

This shallower slope also translates into the sensorineurally impaired needing higher 

signal intensities to detect brief sounds. 

2.2.5.2 Data 

One explanation for the reduction in temporal integration brought on from sen­

sorineural impairment is in terms of the detection of spectral splatter in finite dura­

tion signals [Hall & Fernandez, 1983]. For this explanation, the absolute threshold 

has to be determined by detection of frequency components in the splatter and not 

at the stimulus frequency. The experimental evidence suggests that this is not what 

is happening in the sensorineural impaired ear. People with fiat losses have reduced 

temporal integration and normally hearing subjects tested with noise that mimics 

a hearing impairment still have temporal integration advantages [Florentine et al., 

1988J . 

The spectral splatter hypothesis cannot be correct. The explanation that is most 

likely is that a reduction or complete loss of the compressive nonlinearity of the 

BM reduces the temporal integration. Zwisklocki [1960J and Penner [1972J both 
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give models showing that a steeper I/O functions from the BM or steeper discharge 

rate-versus-intensity level functions in the auditory nerve lead to reduced temporal 

integration. Their models are based on a sliding temporal window (mathematically 

equivalent to a low-pass filter) followed by the auditory periphery's nonlinearity. The 

nonlinearity is less compressive in the impaired cochlea. For stimuli with slowly 

changing intensity, such as narrow bands of noise, this can lead to poorer temporal 

resolution, since the inherent fluctuations can be confused with the temporal feature 

to be detected. 

2.2.5.3 Consequences 

Since most sounds in everyday life are characterized by seemingly random fluctua­

tions in intensity, hearing impaired people will have greater difficulty in following the 

temporal structure. It is often said that reduced temporal integration from cochlear 

damage is less severe for weak sounds than for long sounds. For example, a sound 

with a saturating intensity-loudness duration of 400 ms has less relative loss t hen 

a burst of 10 ms. The normal hearing person requires 4 dB SPL and 20 dB SPL, 

respectively for detection, but a typical hearing impaired person may have a 54 dB 

SPL and 60 dB SPL respectively. Thus the relative detection threshold shift is more 

profound for the longer duration signal then the short. 

2.2.5.4 Phenomenology 

Steeper discharge rate-versus-intensity level functions lead to reduced temporal 

integration. The threshold for detecting a sound when looking at a neurogram is 

defined by having a number of spikes above the noise condition. The discharge rate 

necessary at absolute threshold for a long duration sound in a normal auditory system 
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is N 1 spikes per second. When the duration of the sound is halved the stimulus has 

to be amplified to restore the total spike count, N2 = 2 X N1 . But the amplification 

necessary to get to N2 spikes, or the same total spikes is higher for the compressive, 

normal functioning ear, than the impaired ear because of the assumed steeper rate­

versus-level function in the impaired auditory system. That is, because of the steeper 

discharge rate-to-stimulus intensity curve for an impaired cochlea less integration is 

seen. 

2.2.6 Temporal Resolution 

2.2.6.1 Description 

Apart from these fairly well understood symptoms of sensorineural hearing impair­

ment , the temporal effects of hair-cell damage are not well understood. Temporal in­

tegration can be thought of as how the auditory system deals with long-term acoustic 

stimuli, while the very shortest duration signals are characterized by the auditory sys­

tem's temporal resolution. A subject 's temporal resolution determines how they deal 

with fast transients and quick gaps. Since a lot of the information in speech is coded 

by consonants that may last for only a few milliseconds, understanding sensorineural 

impairment's effect on temporal resolution is key. 

2.2.6.2 Data 

Temporal resolution, such as gap detection, of deterministic signals can be shorter 

for hearing-impaired people [Moore et al., 1989], but gap resolution is approximately 

30 percent longer for hearing impaired people in octave band noise [Fitzgibbons & 

Wightman, 1982J. The conjectured mechanism is that the sensorineural impaired 
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auditory system cannot reliably separate the random fluctuations in noise with the 

fluctuations of the signal. This effect may be from higher order auditory processes, 

or from the loss of the compressive nonlinearity in the auditory system. 

2.2.6.3 Consequences 

Temporal resolution can be diminished because the sounds are at low 8Ls or be­

cause the audible bandwidth is affected with cochlear damage. These temporal factors 

can lead to problems in understanding speech or environmental sounds, especially in 

noise. 

2.2.6.4 Phenomenology 

There is a hodge-podge of reasons used to try to explain the lack of temporal 

resolution in people with sensorineural hearing loss. The first point is the effect 

of sensation level. Normal hearing people show a deterioration in resolution at low 

sensation levels. For the detection of bandlimited noise and forward masking recovery, 

hearing impaired people operate near normal hearing people at equivalent 8L, but at 

a detriment for the same 8PL [Fitzgibbons & Wightman, 1982]. Another possibility 

for diminished temporal resolution is the loss in audible bandwidth. This is discussed 

in detail in section 2.2.7 in relation to amplitude modulations. 

The loss of the compressive nonlinearity, specifically by how it influences loudness 

resolution, is often suggested for the reduction in temporal resolution. This stems 

from the diminished capacity to deal with gaps in noise versus sinusoids. The inherent 

fluctuations in noise produce a large swing in perceived loudness and these fluctuations 

may be confused with the actual gaps. 

Glasberg & Moore [1992] coducted an experiment that compressed and expanded 
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the envelope of narrowband noise by raising it to some power N. If N is greater 

than one, then this magnifies the fluctuations, mimicking impairment. N less than 

one represents a typical hearing aid compression circuit. Their results show that 

impaired gap detection can be mimicked with envelope manipulations greater than 

one. 

2.2.7 Amplitude Modulation 

2.2.7.1 Description 

The Short Increment Sensitivity Index (SISI) revolves around the idea that loud­

ness recruitment can be used to probe the level of sensorineural impairment of a 

subject. The SISI test involves detection of intensity levels of a continuous sound. 

This task is comparable to detection of a slow amplitude modulation. Buus et al. 

[1982] delineates subjects with cochlear impairment as having higher SISI scores, and 

conversely lower difference limens (DLs) for amplitude modulation detection when 

tested at equal SL. In contrast , at equal SPL, subjects with cochlear damage perform 

either equivalently or worse then normal hearing people. 

2.2.7.2 Data 

Glasberg & Moore [1989] tested nine subjects with unilateral cochlear impairments 

with relatively 'flat ' moderate losses. The test consisted of two successive tone pulses; 

one was sinusoidally modulated with 4 Hz sinusoid, the other was unmodulated. Each 

tone was 1020 ms, that includes a lO-ms raised-cosine onset and offset ramp. Subjects 

had to determine which tone was modulated. The unmodulated tone was presented at 

80 dB SPL to the impaired ears, while the normal ears were tested at the equivalent SL 
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and the same SPL. The detection threshold was measured using an adaptive procedure 

that determined the peak-to-valley ratio for 71 % correct. Trials were conducted in 

quiet and in an one-octave wide noise designed to mask the high frequency excitation 

pattern of the test tone. The low frequency cutoff was twice the signal frequency with 

an overall level of 77 dB SPL. For the two normal ear conditions the results are quite 

different. The results when the two ears are at the same SPL have thresholds that 

are sometimes larger and sometimes smaller. While at equal SL, the AM detection 

thresholds are consistently smaller for the impaired ear in quiet, and mostly also in 

noise. The highpass noise increased AM difference limens (AMDLs) in both ears, 

highlighting that high frequency information is important for amplitude modulation 

detection. This is in contrast to the difference limens for intensity (DLI), which is a 

measure of how small a difference in intensity can be detected between two tones. 

2.2.7.3 Consequences 

Drullman et al. [1994] shows how slow amplitude modulations are dramatically 

important for speech intelligibility. The inability to follow these slow modulations 

in hearing impaired people may result in a large loss in the amount of information 

received. 

2.2.7.4 Phenomenology 

Depireux et al. [2001 J shows how ferrets have specific spectro-temporal response 

fields (STRFs) dedicated to amplitude modulations. It is thought that most auditory 

brain centers, induding humans, have a similar structure. So the basic idea is that 

higher order brain centers have an impaired representation because of what happens 

in the cochlea. 
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2.2.8 Frequency Modulation 

2.2.8.1 Description 

Along with short amplitude transients of some unvoiced sounds, and the slow 

amplitude modulations so important for speech intelligibility, there is a huge amount 

of information contained in frequency modulation. Speech is not characterized by 

a standard spectro-temporal template for each sound. Instead a speaker connects 

each individual phone into a slur of sliding formants and continuous, smooth vocal 

tract changes. In particular, some consonants in real speech are only characterized by 

their transition characteristics. These transitions are usually characterized by slides 

in frequency as the vocal tract resonator modulates itself for the next phone. FM 

detectors are found throughout the higher auditory brain centers. 

2.2.8.2 Data 

Zurek & Formby [1981] calculated the frequency modulation difference limens 

(FMDLs) for ten subjects with cochlear damage. An FMDL is the amount of modu­

lation required for a person to tell the difference between two differently modulated 

tones. They used a 3-Hz glide rate and for test frequencies from 125 and 4000 Hz at 

a SL of 25 dB (the level found to produce results independent of level) . FMDLs in­

creased with increasing hearing loss , and for a specific threshold shift the performance 

was worse at low frequencies than at high frequencies. 

This follows a different pattern than difference limens for frequencies (DLFs). 

DLFs are the point where a person can judge detect that there is a difference in 

frequencies between two tones of slightly different frequencies. While both FMDLs 

and DLFs are raised with hearing impairment, the DLFs for a hearing impairment 
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do not improve with increasing frequency, a trend that is seen m normal hearing 

subjects. 

Moore & Glasberg [1986] tested for FMDLs using a 4-Hz modulation rate and com­

pared it to the AMDLs described above. The theory was that if the same cochlear 

damage mediated resolution of AM and FM then the ratio FMDL/DLF should equal 

the ratio AMDL/ DLI. Moore and Glasberg found these two metrics were uncorre­

lated (r = 0.06), concluding that the excitation-pattern model was inconsistent in 

accounting for both DLFs and FMDLs. While the FMDLs can be well modeled with 

an excitation pattern paradigm [Sek & Moore, 1995], the AMDLs may be responsible 

for a different, possibly cognitive mechanism. 

2.2.8.3 Consequences 

Grant [1987] measured FMDLs with a stimulus amplitude modulated by a 3 Hz 

cutoff lowpass noise. It was expected that the random amplitude fluctuations would 

impair the use of cues for FM detection by using place changes in excit ation level. 

The excitation-pattern model predicts that the random amplitude modulation would 

lead to increased FMDLs. This was seen in Grant's results, but the increase was 

much greater for the impaired than for the normally hearing subjects. The suggested 

explanation for this large difference is that at low modulation rates, normal hearing 

subjects can extract information about frequency modulation both from changes in 

excitation level and from phase locking [Sek & Moore, 1995] while the impaired person 

has difficulty accessing the phase locking information. So the random AM diminishes 

the information available from changes in excitation level, but does not alter the use 

of phase locking cues. 
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2.2.8.4 Phenomenology 

The first suggested mechanism to explain FMDL variations between low and high 

frequency are the different strategies used in coding frequency. A temporal mech­

anism is predominant at low frequencies and a place mechanism is used for higher 

frequencies. That is, the low frequency mechanism is more disrupted with hearing 

loss than the place mechanism. Another, highly likely, widely supported through 

empirical testing, yet not much discussed, is the very real possibility that absolute 

thresholds, especially at low frequencies do not provide an accurate indicator of the 

extent of cochlear damage. 

FMDLs for hearing-impaired people can be modelled by excitation-pattern models 

that make use of the reduced frequency selectivity of the damaged ear. Of course, 

that doesn't really explain the loss of phase sensitivity. It is one of the more specious 

arguments in the cochlear impairment field. 

2.2.9 Reverberation 

2.2.9.1 Description 

When people speak, sound waves propagate away from the mouth until they hit 

some object, or wall, where some of the energy is absorbed and some reflected back. 

This occurs for all surfaces and sets up a complex situation where 3D pressure waves 

bounce about a room. The listener then hears sound arriving in two distinct parts. 

The first part is sound that travels directly from the speaker, or the direct sound field. 

After this, reflections from other objects begin to arrive. Considering the complexity 

of furniture layout, any room can have a very complex set of reflections and delays 

before the sound arrives at the listener. The indirect sound energy is known as 
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reverberation and is often a large problem for hearing impaired people. 

2.2.9.2 Data 

Irwin & McAuley [1987] tested eight normal and sensorineural impaired subjects to 

determine the minimum detectable gap for a 71 % correct score in a 2IFC tone bursts 

paradigm. They added distortions to the test stimulus, including two noise levels and 

two reverberation conditions. Hearing-impaired listeners needed significantly longer 

gaps for detection, similar to gap detection experiments for noise stimuli. On speech 

intelligibility tests, Irwin & McAuley [1987] showed longer reverberation times pro­

ducing significantly higher thresholds than the shorter times for the hearing impaired. 

In all, the time constant was significantly correlated with the speech threshold mea­

sures (r = -0.58 to -0.74) and speech thresholds were correlated to hearing threshold 

(r = 0.53 to 0.95). The correlation between time constants and speech thresholds in 

real reverberation were of similar importance to those for hearing loss and simulated 

reverberation. 

Payton et al. [1994] studied speech intelligibility for normal-hearing and hearing­

impaired listeners in noisy, reverberant, and reverberant noisy environments. They 

studied clear and conversational speech. Clear speech is more intelligible across all 

noise and reverberation conditions, but is a special benefit to hearing impaired people; 

they experience a much larger increase in intelligibi~ity that normal hearing people. 

On the subject of reverberation, hearing impaired people suffered greater degradation 

due to reverberation when compared to normal hearing people. 

Harris & Swenson [1990] studied speech intelligibility in quiet and noise in three 

levels of reverberation (anechoic, R60 = 0.54 sand R60 1.55 s) for subjects with 

hearing impairment. Diminishing intelligibility due to noise and reverberation both 
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correlated to absolute threshold shift. Plus, there is a correlation between noise and 

reverberation, showing a compounding of both is a special problem for the hearing 

impaired. 

2.2.9.3 Consequences 

Hearing impaired people have problems dealing with reverberation, and real en­

vironments are sometimes terribly reverberant . For example, classrooms or auditoria 

have a lot of focused research on them. Since it is harder to learn with an increase 

on listening stress many, even moderately hearing impaired children, can suffer a 

learning disability simply from the acoustics. 

2.2.9.4 Phenomenology 

Roberts et al. [2003] determined the effects of reverberation and noise on t he 

precedence effect in listeners with hearing loss . They measured lag burst thresholds 

(LBTs) for 4-ms noise bursts for normal hearing and hearing impaired subjects in 

reverberant and anechoic environments in quiet and noise. In quiet , LBTs increased 

with SL in reverberant environments and decreased with SL in the anechoic environ­

ment, while threshold loss did not correlate with the LBTs. When noise was added it 

had a greater deleterious effect on the performance of listeners with impaired hearing. 

Their findings indicated that the ability to fuse direct sounds and early reflections is 

degraded with sensorineural impairment. 

The initial wavefront information which a normal hearing person uses as a key 

to deconvolve the environmental effects are not as accurate in the hearing impaired 

auditory system. Also , the hearing impaired person has an inability to connect, or 

stream. the different acoustic markers that make up a single stimulus. It is theorized 
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that the first window of stimulus takes precedence over later reflections, and while 

later segments of the stimulus can improve the estimation, the hearing impaired 

person is not as able to integrate those later segments. This is largely thought to be 

a cognitive effect. 

2.2.10 Spatial Hearing 

2.2.10.1 Description 

One of the largest and most obvious consequences of sensorineural impairment is 

difficulty in localizing sound sources or using spatial separation to unmask a target 

stimulus. In some severe cases of cochlear damage the person cannot make use of 

pinna spectral cues. Without pinna cues, it is difficult to make elevation decisions and 

resolve the front-to-back ambiguity. Also, hearing aids dramatically alter the spectral 

patterns at the eardrum and reduce the important high frequency cues. Even when 

sounds are presented at an adequate SL into a non-occluded sensorineural impaired 

ear there is difficulty in determining the location. 

Most people with sensorineural impairment have more difficulty in determining 

Interaural Timing Differences (lTD) and Interaural Intensity Differences (IID) than 

normal hearing people. This reduction in cues used to locate a sound reduces the 

ability to stream a stimulus based on spatial position. 

Some intelligibility studies have used speech and noise coming from the same 

loudspeaker, thus making conservative estimates on the deficits the hearing impaired 

person faces versus the normal hearer, who can have a 5-7 dB advantage because 

of spatial unmasking. Normal hearing people have an SRT advantage of 10 dB for 

spatially separated speech and noise versus coincident presentation. People with 
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moderate cochlear damage only see an advantage of 3-5 dB between these two cases. 

2.2.10.2 Data 

The two quantifiable performance metrics in sound localization are one's ability 

to correctly judge where a sound is coming from and how well one can ascertain 

small changes in the stimulus. The first metric is widely variegated in people with 

sensorineural impairment because of the loss of pinna and front-to-back cues distorted 

with a hearing aid. The other resolution metric is determined by finding the smallest 

detectable change in azimuth, or the minimum audible angle (MAA). The MAA is 

smallest for sounds coming from in front of the subject. A shift of only about 1° 

can be detected for frequencies below 1000 Hz, with diminishing performance above 

1500 Hz. This is explained with the duplex theory. At 1500 Hz, phase differences 

(lTD) between the two ears become ambiguous and interaural intensity differences 

(IID) are small. For normal hearing people the MAA increases as the test location is 

moved away from directly ahead. When hearing sounds from the sides, it is almost 

impossible to determine sounds above 1500 Hz with any accuracy. 

For studying the cochlear and auditory brain responses directly, it is possible to 

move the stimulus out of free field and present it via headphones. With headphones 

one can adjust the signal to specifically probe lTD and IIDs. Detection of changes 

in lTD are smallest when mimicking the front, or centre of the head, or an lTD of 

zero [Yost, 1974]. lTD changes of lams can be detected around 900 Hz. This loosely 

corresponds to a free field shift of 1 ° at speaking distances. For frequencies below 

900 Hz, the lTD resolution diminishes slightly, plateauing at about 3°, while above 

900 Hz, the lTD resolution rapidly deteriorates. Above 1500 Hz, lTD ceases to be an 

accurate determiner of location. Similar to free field results, lTD resolution increases 
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at all frequencies for the nonzero reference ITDs. 

Similar to lTD, IID resolution is best at the zero reference IID, with about a 1 dB 

detectable difference. Unlike lTD, IID does not have a substantial drop-off at higher 

frequencies. In practice, large IID values are most likely at higher frequencies as the 

human head is a poor low frequency acoustic baffle. 

The localization of the binaural auditory system is best for determining sounds 

that come from directly ahead a person (0 azimuth). Localization is dependent upon 

two cues, where low frequency resolution is mediated by lTD cues, while lID can be 

used over a larger frequency range, but for people without enormously large heads, 

is mostly used at high frequencies. 

Nordlund [1964] determined localization of free field sinusoids at 500, 2000 and 

4000 Hz for normal and hearing impaired people. Subjects with cochlear losses in 

both ears, typically showed normal results, while highly asymmetric loss subjects had 

a propensity for larger deviation from normal hearers. 

For looking at localization cues specifically, Hall et al. [1984] measured ITDs res­

olution differences at 500 Hz and 70 dB SPL. The impaired subjects ITDs were on 

average 176 ps versus normal hearing subjects 65 ps. There was also some correlation 

between threshold shift and lTD resolution, but this ratio had large variability. 

Smoski & Trahiotis [1986] show IID resolution differences for 500 Hz sinusoids at 80 

dB SPL. The hearing impaired people, again, had higher lTD thresholds than normal 

hearers, but at equal SL of 25 dB, IID resolution thresholds were not substantially 

different. In general, the data on sinusoids suggest that symmetric cochlear damage 

does not impede localization. However, asymmetrical damage may lead to localization 

difficulties, yet this is not correlated to a loss in absolute thresholds. 
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2.2.10.3 Consequences 

The data for spatial localization above stems from sinusoidal stimuli. 8moski & 

Trahiotis [1986] also measured lTD resolution thresholds using narrowband noises 

at 500 and 4000 Hz, presented over headphones at 80 dB 8PL. The lTD resolution 

differences were small for the 500 Hz stimulus but large for the 4000 Hz stimuli, 

sometimes by an order of magnitude. At equal 8L (25 dB), this result did not hold, 

as lTD resolution thresholds grew to 200-600 /-LS for normal and hearing impaired 

people. 

Kinkel et al. [1991] measured lTD and IID resolution thresholds for narrowband 

noises at 500 and 4000 Hz, presented over headphones, at 75 dB 8PL. This was a 

larger study using 15 normal hearing and 49 subjects, presumably with sensorineural 

hearing loss. The average lTD resolution thresholds were much larger for the hearing 

impaired than for the normally hearing subjects; 210 /-LS versus 38 /-LS for the 500 Hz 

stimulus; 530 /-LS versus 81 /-LS for the 4000 Hz stimulus. The average lID resolution 

thresholds were also larger for the hearing impaired, at 500 Hz (4.7 dB versus 2.6 

dB) and at 4000 Hz (5.1 dB versus 2.2 dB). For both the lTD and IID some of the 

hearing impaired people had normal resolution thresholds, more so for the IID. 

People with very similar audiograms based on similar causes can behave very 

differently on lTD and IID tests. There is enormous variability between subjects, 

making the corresponding pathology difficult to pinpoint. In general, people with 

asymmetric losses more often show larger resolution thresholds for detecting changes 

in lTD and IID than people with normal or bilateral loss. 
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2.2.10.4 Phenomenology 

Several pathologies have been suggested for the difficulty in discriminating inter­

aural arrival timing differences. The most hopeful suggestion deals solely with the 

absolute threshold shift and the corresponding low SL of the stimuli. Normal hearing 

people have deteriorating lTD discrimination below about 20 dB SL [Hausler et al., 

1983]. Another explanation comes from the possibility of disruptions to the BM trav­

eling wave. Here, hair cell damage produces discontinuities and an irregular phase 

response, reducing the information of spike initiation shared between the two ears 

[Ruggero & Rich, 1987]. This is more or less the specious phase locking argument. 

Poor IID discrimination also shares the SL explanation. 

2.2.11 Competing Speech 

2.2.11.1 Description 

Competing speech combines all the preceding psychophysics. This is an impor­

tant environment to understand because dealing with each symptom individually has 

produced no hearing aid algorithms that improve intelligibility in a cocktail party. A 

possible exception is directional microphone hearing aids. 

The core problem is modelling how the compressive non-linearity of the cochlear 

amplifier, disturbed by sensorineural hearing loss, can be restored by signal processing 

in a hearing-aid. There is a complicated set of signal processing that is taking place in 

the cochlea that ultimately affects intelligibility. Little is constructively known about 

why there is such a large discrepancy between the hearing impaired and normal 

hearing person's ability to unmask competing speech. Understanding this disparity 

is key to building better speech processing algorithms. 
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2.2.11.2 Data 

Carhart & Tillman [1970] show a SNR advantage between 12-15 dB for normal 

hearing people over hearing impaired people in identifying syllables in competing 

speech. Over time, testing methodologies have been refined, but results still show an 

enormous discrepancy between normal hearing and hearing impaired people's ability 

to understand speech against contending speech. Table 2.3 gives an overview of 

normal hearing versus hearing impaired peoples ability to recognize target speech 

with a masking speaker. 

Study Description SRT 
Nor-
mal/ 
Im-
paired 

Duquesnoy 20 elderly subjects with ski-slope high -17.6/-5.3 
[1983] frequency loss; freefield; Competing @ 

55 dBA 
Festen & 20 mixed age and losses; monaural ear- -11.4/-1.1 
Plomp [1990] phones; Competing @ 80 dBA 
Hygge et al. 24 mixed age; freefield, binaural; Com- -9.2/7.0 * 
[1992] peting Speech. SNR 
Peters et al. 10 elderly subjects with ski- slope high -11.9/0.8 
[1998] frequency loss; monaural earphones; 

Competing @ 65 dBA 

Table 2.3: Intelligibility in speech and speech-like noise 

To underscore Table 2.3, in noise with a long term average speech spectrum 

(LTASS) the difference in SRTs between normal and impaired hearing individuals 

is only 2-5 dB [Glasberg & Moore, 1989]. 
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2.2.11.3 Consequences 

It seems that to allow a sensorineural impaired person the ability to operate in 

the classical cocktail party in a way that approaches a normal hearing person, the 

auditory impairment must be understood in the competing speech regime, because of 

the complexity of competing needs. 

2.2.11.4 Phenomenology 

There is no real phenomenology to competing speech. Everything researchers 

know about sensorineural hearing loss probably comes into play given the cornucopia 

of stimuli and environments that competing speech comes up with. One thing is 

certain, the small pieces of the puzzle do not all add up to being able to build a 

hearing aid algorithm that improves the hearing impaired person's ability to operate 

like a normal hearing person at a cocktail party. As it stands, hearing aids reduce 

the ability to operate in a cocktail party. 

2.3 Machine Learning 

Machine learning is often introduced as the analogue to Hebbian learning, a theory 

of how humans learn. Hebbian learning is an unsupervised learning paradigm, but 

has a simple generalization to correlative learning and is the biophysical motivation 

for supervised learning strategies. In essence, supervised learning adapts a system to 

produce outputs that approach desired outputs in response to known inputs. These 

known inputs and outputs are referred to as the training set. Thus, supervised learn­

ing attempts to derive an algorithm, function or mapping between the input and 
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output. That is, for a set of training data with pairs of input patterns, x, and cor-

responding desired outputs or targets, y, the goal is produce a function f(x) - y. 

If f does closely match the functional relationship mapping the inputs to the target 

outputs then input taken from outside the training set , x', when applied to f , should 

produce proper results, f(x') - y' . This is the generalization problem. While it may 

be simple to fit a function for the training data, it is often not known how well the 

training set approximates or encompasses all the real situations. Figure 2.16 gives 

the typical supervised learning framework. 

Training Om 

Input Deued output 

Training Algorithm 
(oJl(lmlz8llo" rMC~) 

Figure 2.16: Block diagram of supervised learning. Taken from Reed & Marks [1998] 

For this dissertation, this framework has two major implications. The first has 

already been touched on, if the network in Figure 2.16 is the auditory system, then 

what are the implications on a training set whose input is distorted by sensorineural 

impairment. The second is , if the network is a hearing aid processor, how can one 

transform the input acoustic signal so that the output when fed into a damaged ear 

has the greatest intelligibility. 

For the second interpretation, the network is a function with a set of weights 

that have to be determined, or the network is an artificial neural network (ANN). At 
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the beginning of training, each input pattern is fed through the network, in simplest 

terms the training optimization tries to correlate the output of the network with the 

desired output. This is the correlative learning, or Hebbian learning connection. For 

real data, the network is almost never perfectly trained; there is some assumption 

about the importance of each deviation of the output to training set. 

For this framework several questions must be answered: 

1. Training Set. What data is input and how does one define the desired output? 

In the case of hearing aid processor training, the input is an acoustic waveform, 

and the desired output shall be the AN response of a normal auditory system. 

2. Network. What type of function should be approximated by the network, or 

what should the hearing aid processor be able to do? In the following chapters 

there is an evolution from simple processing blocks, replicating linear hear­

ing aid fittings, to network structures which are based on adaptive, nonlinear 

processing that is lost with sensorineural impairment. This really set the via­

bility of implementing a solution on silicon. Most networks without feedback, 

such as the multi-layer perceptron, or feed forward frameworks are computation­

ally inexpensive, and produce little delay, other than windowing for frequency 

implementations. While other networks are not very conducive to hearing aid 

implementation, notably the hopfield or elman networks which are computa­

tionally more expensive, with larger temporal requirements. 

3. Cost Function. The cost, or error function is the statistical measure of quality. 

As with the network, this evolved over the development of this dissertation. 

The main goal for a hearing aid processor is to return intelligibility, so the cost 

function grew out of predicting intelligibility by looking at the ANF discharge 
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rates. 

4. Training Algorithm. How are the weights changed in the network in response 

to the error function? This is probably the least important aspect of the learning 

for hearing aids with present-day computing power. 

5. Initial Conditions. What type of prior knowledge can be used to speed up 

convergence, or limit solutions that are physically not possible? In the end, the 

hearing aid processors output is listened to, but it is impossible to code the 

quality of a sound into the training algorithm. Heuristics such as limiting high 

frequency gain have shown some utility to keeping machine learning running 

smoothly in the auditory domain. 

6. Generalization. How well will the end network work in a real environment? 

Does training capture the important statistical structure of the acoustic en-

vironment? The training set may be too small, the training algorithm may 

only replicate the desired outputs but produce unusual results for other inputs. 

There are a huge number of reasons that the network once trained is incapable 

of dealing with the enormous corpus of acoustic environments. 

The cost function will be seen to be key to producing good hearing aid algorithms. 

The cost function guides the search for the solution, so it has a fundamental effect on 

the outcome. The most common error cost function is the mean squared error (MSE) 

(2. 1) 

p indexes the training set of P vectors, i indexes the number of output nodes, N , 

and tpi and Ypi are, respectively, the target and actual network output. An expansion 
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of the power explicitly states the correlative term 

(2.2) 

The cross term, relates to the correlation between the desired output and the 

networks output. The two squared terms are a normalization, making the error 

approach zero when the outputs approach the target . For an error signal that has zero 

mean and is Gaussian distributed, this leads to maximizing the correlation between 

the output and target . 

2.4 Prior Art 

In the following sections, previous attempts along these lines are expounded. Sec­

tion 2.4.1 was one of the original attempts to use auditory modelling to derive new 

hearing aid processing strategies. While this is a good starting point , this previous 

work did not address the essential nonlinearities or dynamics of hearing impairment. 

Section 2.4.2 also went with a simple linear fitting strategy. This section will ex­

pound on why intelligibility prediction, the first research chapter of this dissertation 

(Chapter 3) , is so important. Lastly, section 2.4.3 ends with some insights into the 

dynamic properties lost with sensorineural hearing impairment. This last section, 

while unsuccessful at developing hearing aid strategies, is a solid foundation for the 

processing strategies developed in this dissertation. 
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2.4.1 Anderson (1994) 

Anderson used a model of the human cochlea, encompassing inner and outer hair 

cell function . The outer hair cells were modelled with active mechanical feedback 

elements. The ORC model was able to account for the compressive nonlinearity 

and tuning sharpness. The compression was approximately logarithmic, mimicking 

the auditory system's loudness just noticeable differences (JNDs). IRC functions 

were modeled as hyperbolic tangent transducers of mechanical to spike rate firing. 

Anderson [1994] fit his model with loudness data from Stevens' power law for loudness 

growth. The full model is shown in figure 2.17 
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Figure 2.17: The cochlear model for both Normal and Impaired hearing people, taken 
from and used by Anderson [1994] 
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(2.5) 

(2.6) 

Then this cochlear model was altered to mimic hearing impairment. That is, 

it had the same functional form, but the values controlling filter shape and level 

changed. The form of this hearing model is very important because it allows for the 

development of an inverse model. Anderson's inverse model is in 2.18 
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Figure 2.18: The INVERSE cochlear model for both Normal and Impaired hearing 
people, taken from and used by Anderson [1994] 

The basic premise is that it is because of its linearity that the optimal hearing 

aid circuit is then the cascade of the inverse hearing impaired model and the normal 

model. After tinkering with the format to reduce complexity, Anderson [1994] ended 

up with the hearing aid processor in 2.19 

Anderson et al. [1995] tested the inverse hearing aid algorithm implemented on an 

HP series computer. Testing was performed on eight hearing impaired subjects. All 

eight subjects showed improvement in their speech discrimination scores over control 
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Figure 2.19: The hearing aid algorithm as implemented in Anderson [1994]. Hb is a 
one third octave bandpass filter, H{z) is a 16 Hz lowpass filter , the M decimator has 
an output of 60 Hz and b is an input intensity normalization factor 

hearing aids. Results are summarized in Table 2.4 

Study SL/SNR Unaided Aid A Aid B New 
[dB] Aid 

Quiet 10 dB 0 4 0 14 
Quiet 20 dB 0 17 9 71 
Quiet 30 dB 12 58 32 95 
Quiet 40 dB 33 90 66 97 
Babble 10 dB 0 39 17 65 
Babble 20 dB 19 71 64 86 
Babble 30 dB 41 90 82 96 
Babble 40 dB 77 96 93 94 
Babble 10 dB 0 39 17 65 
LTASS 10 dB 7 9 12 17 
LTASS 20 dB 18 45 48 61 
LTASS 30 dB 43 73 69 75 
LTASS 40 dB 72 91 95 93 

Table 2.4: Intelligibility in Quiet, multitalker babble and long term average speech 
shape noise 

Table 2.4 shows a clear advantage of the modelled aid over the other hearing aids. 

The problem with the data reported is that the control hearing aids weren't actually 

the ones that the subjects used in everyday life, so the results, in reality, are not as 

obvious. 
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There are some obvious problems with Anderson's work. The assumption of lin­

earity, and invertibility is not truly held. The reasons behind the exquisite frequency 

selectivity and ability to deal with complex stimuli are more incumbent on the adap­

tivity and nonlinearities in the normal auditory system, than the averaged, linear 

operation. Anderson [1994] is in essence a complicated AGC, but with the growing 

data showing the difficulties in optimizing nonlinear parameters [Smoorenburg, 2004], 

this may be a great help in understanding the phenomenology of the empirical data. 

2.4.2 Rankovic (1991) 

Rankovic [1991] attempted to derive a hearing aid processing strategy by maxi­

mizing the articulation index (AI). Referring to figure 2.16, her approach would have 

the network implement a linear fitting strategy and the cost function would be the 

AI. The ensuing amplification scheme was evaluated on 12 hearing impaired subjects 

versus such standard amplification schemes as NAL (Byrne and Dillon, 1986) and 

POGO (McCandless and Lyregaard, 1983). 

The empirical data showed a relationship between the intelligibility of nonsense 

syllable and AIs calculated on the NAL and POGO outputs. Subjects with severe 

sloping high-frequency hearing losses demonstrated nonmonotonicity on the AI max­

imization condition. This fitting prescribed much more gain at high than at low 

frequencies. This study essentially showed that the AI prescription provided no ben­

efit over the empirically derived strategies in maximizing word-intelligibility scores. 

The AI has significant corpus and environment effects. Rankovic [1991] discussed 

improving this process by altering the AI formula used, or adding kludge factors based 

on things such as entropy of material or reverberation. 
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2.4.3 Kates (1993) 

Kates [1993] improved on Rankovic's approach by trying to find the optimal fre­

quency gain response that would produce the minimum mean square error between 

the outputs of a normal and impaired auditory model. He used real speech stimuli 

to come up with the optimal gain across frequencies. The idea was similar to the 

basic hypothesis of this dissertation: An ideal hearing aid for a peripheral hearing 

loss would process the incoming signal in order to give a perfect match between the 

cochlear outputs of the impaired ear and a reference normal ear. 

Kates [1993], similar to Anderson [1994], develops a normal and impaired periph­

eral auditory system. Both researchers auditory models include the compression and 

the neural transduction process, but Kates [1993] adds in suppression effects. 

The machine learning framework is followed from Figure 2.16. The target signal 

is the analog discharge rate, and the network is a linear filter. The mean square 

difference between the target and the output of the damaged auditory model wit h 

the linear filter on the input drives the training of the filter. 

One of the exciting new ideas added by Kates was the need to change the linear 

filter with different input stimuli. In general Kates [1993] produced a three-channel, 

adaptive compression system. This system is shown in Figure 2.20 

This system stemmed from the analysis of several short term stimuli. Figures 

2.21, 2.22 and 2.23 give the input spectra, the auditory analysis representation and 

the derived optimal gains 

As the stimulus changes it is necessary for the optimal hearing aid to follow those 

changes. Kates [1993] found that the optimization process is not stable, that the 

derived filter shapes were different depending on starting conditions, and that the 

training algorithms used did not necessarily converge. He also stated that the largest 
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o Frequency [Log Hz] 

Figure 2.20: The simplified optimal hearing aid, taken from Kates [1993]. The arrows 
indicate an adaptive gain and bandwidth function. 
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Figure 2.21: The input spectrum (blue), auditory analysis spectrum (red) and optimal 
hearing-aid gain (green) for a simulated, flat 60 dB hearing loss for the /a/ in "ka". 
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Figure 2.22: The input spectrum (blue), auditory analysis spectrum (red) and optimal 
hearing-aid gain (green) for a simulated, fiat 60 dB hearing loss for the /p/ in "pa" . 
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Figure 2.23: The input spectrum (blue), auditory analysis spectrum (red) and optimal 
hearing-aid gain (green) for a simulated, fiat 60 dB hearing loss for the /k/ in "ka". 
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problem with this framework was adapting the filter shapes. From Figure 2.21 and 

2.23 it is obvious that the filter must change significantly, yet these two sounds are 

adjacent to one another, the timing of the change makes it impossible to retain 

optimality without introducing processing artifacts. One of the main goals for this 

thesis was to derive the optimum dynamic response for a hearing aid. 
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Chapter 3 

An AN Error Metric: The N AI 

For machine learning to be effective at producing hearing aid algorithms, a good 

error signal is pivotal, and following from Rankovic [1991 J it should revolve around the 

idea of intelligibility. This chapter deals with the development of a novel intelligibil­

ity predictor; one that encompasses the auditory periphery, and hence the differences 

between normal hearing and hearing with cochlear damage. The first, semi-successful 

attempt at an error Signal/intelligibility predictor was the Information Theoretic In­

telligibility Metric or ITIM. The development of ITIM is in section 3.1. ITIM was 

further refined by using Articulation Index (AI) theory, and the Speech Transmission 

Index (STI). This gave rise to a good predictor of intelligibility, the Neural Articula­

tion Index, or NAI, which is detailed in section 3.2. This novel intelligibility predictor 

is used to successfully design linear hearing aid algorithms in chapter 4. Later chap­

ters evolve from the idea that maximizing intelligibility over an ensemble is not as 

important as optimizing intelligibility for each token in that ensemble. In later chap­

ters this is the cornerstone for building on the differences between the normal and 

impaired cochlea and deriving novel signal processing strategies. 
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3.1 Information Theoretic Intelligibility Metric 

The initial attempt at a error signal/intelligibility predictor was the Information 

Theoretic Intelligibility Metric, or ITIM1. The basic premise was derived from viewing 

the auditory system as an information processing system and thus governed by the 

same description of distortion as all communication systems or channels. This led to 

using the Kullback-Leibler divergence (Kullback [1968], Johnson [1980], Bandyopad­

hyay & Young [2004]) instead of a signal to noise measure. 

ITIM itself was built to span both general distortion dimensions, namely time 

and frequency. Previously, frequency domain distortions were quantized with the 

signal to noise ratio (SNR) across different bands; the Wiener filter is the classic 

maximal SNR filter. French & Steinberg [1947] first proposed a metric using the 

SNR in different independent frequency bands as a predictor of intelligibility. Kryter 

[1962a] gave a procedure for calculating the AI based on this, popularizing the tool 

for 40 years. Time distortions such as reverberation were not taken into account, and 

the AI has been largely superceded by techniques that encompass them. One of the 

initial metrics of time domain distortions on intelligibility was the MTF by Houtgast 

& Steeneken [1973]. Limited time and frequency domain distortions were combined 

into the STI. The STI extended the MTF's test signal to account for a wider range 

of distortions. 

The STI test signal is a long-term average speech spectrum random signal, 100 

% amplitude modulated by a 0.63 Hz to 12.5 Hz tone. Different frequency bands 

are switched on and off over the testing sequence to come up with an intelligibility 

score between zero and one. Inter-frequency band intermodulation sources can be 

lThis section is based on Bruce et al. [2002]. 
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discerned, as long as the product does not fall into the testing band. Therefore, the 

STI allows for standard AI-frequency band weighted SNR effects, MTF-time domain 

effects, and some limited measurements of non-linearities. The STI shows a high 

correlation with empirical tests, and has been codified as ANSI standard S3.5-1997, 

ANSI [1997]. For general acoustics it is very good, but extending to an evaluation 

metric for hearing aid algorithms is not straight forward . 

The STI does not accurately model intra-critical band masker non-linearities, 

phase distortions or the mechanisms of cochlear processing (outside of independant 

frequency bands). The STI is also not an acceptable measure of fidelity or predictor of 

processing efficacy or interactions. While the AI or STI can take into account thresh­

old shifts in a hearing impaired individual, it cannot account for a hearing impaired 

persons suprathreshold degradations [van Schijndel et al., 2001] . Thus, intelligibil­

ity predictors as they are now implemented find use in more general acoustics than 

individual assessment. 

By using the KLD as a measure of the divergence between a control signal (in 

this case any arbitrary sound, as opposed to the specially constructed sources for 

MTF based approaches) and a test signal made by passing the control through some 

distortion, a monolithic framework is derived. 

3.1.1 Model Overview 

Typically, researchers have attempted to model the acoustic environmental effects 

by a linear system representation. 

x (t) = a (t) * s (t) + n (t) (3.7) 
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That is, the received signal, x(t), is a combination of additive noise n(t) and 

the convolution of the linear impulse response, a(t), (representing the environmental, 

multipath effects) and the input 8(t). Under processing, x , is mapped through a 

possibly non-linear function f(.), to produce an output y(t) 

y(t) =f(x(t),x(t-To),X(t-Tl)' ... ) (3.8) 

The nonlinearity and noise is often thought to produce a non-solvable condition, 

under normal processing constraints. But by using a standardized test signal one can 

marginalize most of the inherent pitfalls in the pragmatic system. Other possibilities 

for solving this type of problem are to introduce assumptions or relaxation of precision. 

The IT 1M instead treats the system in a general manner 

y (t) = 9 (8 (t)) (3.9) 

All additive, convolutive and nonlinear effects are treated together as a stochastic, 

nonlinear function g(.) . Where g(.) is a measure of the distortion in the system from 

all affecters. This distortion function maps the control signal to a test space. 

The mapping function was derived following Steeneken [1992]. The sounds files 

were taken from [van Schijndel et al., 2001], a Dutch Corpus, and are a sample of 

Dutch syllables, all of the consonant-vowel-consonant (CVC) form. The same 15 

syllables are spoken by four females and four males. The initial sound files were 

sampled at 44.1 kHz, the rms power was normalized and each syllable/speaker sound 

file was upsampled to 500 kHz for processing by the auditory periphery model. The 

upsampled spectrum has resampling distortions under -120 dBc. Well under the 

dynamic range of the auditory system and the model. 
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Following Steeneken [1992]' the syllables were filtered into 8 different passband 

conditions, these are given in table 3.5. 

Octave band centre frequency 
No 125 250 500 1000 2000 4000 8000 
1 1 1 1 1 a a a 
2 a a a a 1 1 1 
3 1 1 a a a 1 1 
4 a a 1 1 1 a a 
5 1 1 a a 1 1 a 
6 a a 1 1 a a 1 
7 1 a 1 a 1 a 1 
8 a 1 a 1 a 1 a 

Table 3.5: The filtering conditions for ITIM's test distortion condition. A "I" in the 
column represents that the band was passed, a "a" that the band was filtered. Each 
filtered condition was based on a 1353 tap FIR. 

After the spectral distortion, or filtering condition is applied, four different additive 

noise conditions were applied to each syllable. This additive noise was individualized 

per speaker by taking the spectrum of all their utterances and forming a long term 

average speech spectrum (LTASS). The shaped noise was then scaled and added to 

the normalized 500 kHz speech samples at a dB, 7.5 dB, 15 dB and infinite dB SNR 

samples. 

This produced a training set with the accompanying intelligibility metrics provided 

in Steeneken [1992J. These 15 syllables by 8 speakers by 4 SNRs by 8 bandpass 

conditions, test sounds were input, along with the unaltered control sounds, into the 

Bruce et al. [2003J auditory model. 

An AN response, or spike train, was derived for each stimulus for 20 representative 

frequencies. These frequencies started at 10 kHz, and moved down the cochlea in even 

increments according to Greenwood [1990J cochlear position-frequency function. This 
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gave a close to constant relative bandwidth between frequencies above 1 kHz, and then 

a constant bandwidth representation below that. The presentation level was chosen 

to approximate the normal speaking level of 65 dBa. 

The resulting 500 kHz sample rate spike trains were run 1000 times to create a 

probability of spiking profile. This probability train was down sampled to 1000 Hz, 

to coincide with the minimum refractory period of 1 ms. Here it should be evident 

that this representation is more akin to the rate coding model of brain activity than 

the spike timing paradigm. While this is clearly not the case for all sounds [Young 

& Sachs, 1979], the idea was to design a general framework that could be extended 

with synchrony neural codes. 

Generally there are two spike trains at 20 different frequencies to be compared. 

The Control spike train, is the AN response for the noiseless stimulus, while the Test 

spike train is the AN response for the stimuli which have been transformed spect rally 

and had noise added. The KLD from the Control spike train to the Test spike train 

is: 

D (Pt !Pc) = J Pt log Pt d)" 
Pc 

.>. 

(3.10) 

where the divergence, D, is the sum over the trial length, ).., of the Bernoulli trial 

probabilities of the test (denoted with subscript t) and the control (denoted with a 

subscript c) samples. 

The weighted average of the divergence from the Control spike train to the Test 

spike train, and the divergence from the Test spike train to the Control spike train 

(since the KLD is non-symmetrical) is then 
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(3.11) 

This average value was then normalized by the entropy of the Control spike train t o 

arrive at a "unit entropy representation" . This is a pragmatic assumption stemming 

from the notion that all syllables convey the same amount of information, and reduced 

the bias towards longer stimuli. 

(3.12) 

This basic divergence is normalized by frequency band to give a zero mean, unit 

variance, named S. This was done as low frequency bands are structured very dif-

ferently from higher bands, giving a much higher divergence. The asymmetrical low 

pass structure of the basilar membrane was hypothesized as the main contributor for 

this effect. 

S is transformed into an intelligibility number between 0 (for not intelligible) and 

1 (for no intelligibility loss) by 

J(BF) = 1/2 - 1/2 * tanh(S) (3.13) 

where the independent variable was changed from the test and control probability 

distributions to the Best Frequency (BF) moniker (BF E [1,2, ... ,20]). The intelli­

gibility of the resulting speech out of 100% was then a weighted summation of the 

individual frequency intelligibility factors: 

20 

I% = LwJ(i) (3.14) 
i=l 
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The frequency weights, Wi, were chosen to minimize 

(3.15) 

3.1.2 Example calculation of the ITIM 

To illustrate the above derivation, an example showing the various steps is included 

in this section. A typical trial run starts with the probability of spiking trains at the 

output of the modeL For example a typical spike train pair of Control and Test is 

given in figure 3.1. 

F20N"bak"at 3ffiO HZ,Hgh SI'R 
0.45 

0.4 

0.35 

~ 0.3 

:0025 
CO 

~ 0.2 

a.. 
0.15 

0.1 

0.06 I 
j I 

D -
O 100 400 

Sarrple 
500 

Olmrol 
Test 

600 

Figure 3.1: The AN response for the clean, Control stimulus, and th noi Te 
stimulus. 

The model outputs are then used to calculate the divergence via equation 3.11. 

A typical result is shown in figure 3.2. 

A plot of each stimuli's divergence, following the normalization by each frequency's 

mean and variance, shows a clear separation between the low SNR condition and high 
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Figure 3.2: A characteristic graph of divergence versus frequency is computed by 
equation 3.11. 

SNR, especially, in the lower frequency bands. 

Following this, the intelligibility factor, in each frequency channel (ie. the value 

between zero and one) that represents how intelligible a particular channel is calcu-

lated via equation 3.13. This flips figure 3.3, the low SNR values (red) are now close 

to zero in most cases, while the high SNR approach one. This is seen in figure 3.4. 

After the weighting structure is calculated through the adaptive least mean squares, 

the intelligibility predictor is shown in figure 3.5. 

The difference between the predicted intelligibility and the empirical data has 

an RMS error of 11.1 %. This was a very promising first result. The STI best fit 

is around 8.4 %. Extensions of this work are possible by the introduction of high 

threshold/large dynamic range fibers, or general improvement to the way differences 

between spike trains are quantified. The auditory periphery model used shows a high 

validity for discrimination versus SNR as all channels showed an increased divergence 

with increasing SNR. The real problem with ITIM was in the way the KLD quantified 
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Figure 3.3: The scatter plot showing the distributions of intelligibility over frequency 
after the Gaussian normalization. Each point is the score for one example from 
the corpus. The point of interest from this slide is the grouping of the three SNR 
conditions. 

Intelligibility by freqt..encyard 9'JR 

0.9 
>. == 0.8 ~m~mrr~~~~'AYXNrt, 
.c 
.- 07 .2> . 
Q) 0.6 

C _ 0.5 

"'0 
Q) 0.4 

• ~ lIHI:.I(.Q~'/W'-:-:"aJ 

ro 0.3 

E 0.2 ·
L 

..... 
U

I<I". 

o 
Z 0.1 

0 - .'--- -
2 4 6 8 10 12 14 16 18 20 

Emelope Identifier 

Figure 3.4: The intelligibility score per frequency channel in each frequency channel 
after normalization from equation 3.13. Each vertex is the score for one example from 
the corpus. The point of interest from this slide is the grouping of t he three SNR 
conditions. 
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Figure 3.5: The empirical percent intelligibility scores are plotted as la's and the 
ITIM predicted scores are plotted as 'x's for the eight different envelope conditions 
and the three signal to noise ratios. 

filtering conditions, Where additive noise was well captured, a better metric may 

be able to capture the loss of intelligibility brought on by attenuation in different 

frequency bands. 

Calculated CVC word score at 
SNR 

No 15 dB 7.5 dB o dB 
1 57.7 40.9 23.5 
2 64.9 48.9 32.0 
3 56.8 36.9 20.5 
4 67.6 50.1 29.9 
5 56.3 37.5 21.0 
6 65.8 49.4 29.4 
7 66.2 48.3 28.5 
8 59.3 40.3 23.1 

Table 3.6: The IT 1M predicted intelligibility scores tabulated from figure 3.5. 

94 



Ph.D. Thesis - Jeff Bondy McMaster University - Electr ical Engineering 

eve word score at SNR 
No 15 dB 7.5 dB o dB 
1 32.5 22.9 10.7 
2 63.6 50.7 33.7 
3 36.2 25.2 14.8 
4 69.8 61.6 26.7 
5 60.0 49.6 26.6 
6 61.6 52.5 25.1 
7 79.5 66.4 40.6 
8 65.1 53.9 27.9 

Table 3.7: The empirical intelligibility scores tabulated from figure 3.5. 
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3.2 Further Development of a Neural Intelligibil-

ity Predictor 

The major issue in this section in further development of an offline metric for 

evaluating speech enhancement and hearing compensation algorithms and that can 

be used as an error metric for the machine learning methods used later in this disser-

tation2 . The Speech Transmission Index (STI) failed to account for masking effects 

that arise from the highly nonlinear cochlear transfer function. The proposed Neural 

Articulation Index (NAI) overcomes this by estimating speech intelligibility from the 

instantaneous neural spike rate over time, produced when a signal is processed by 

an auditory neural model. In highly rippled frequency transfer conditions the N AI's 

prediction error is 8% versus the STI's prediction error of 10.8%. 

A wide range of intelligibility measures in current use rest on the assumption that 

intelligibility of a speech signal is based upon the sum of contributions of intelligibility 

within individual frequency bands, as first proposed by French and Steinberg [French 

& Steinberg, 1947]. This basic method applies a function of the Signal-to-Noise Ratio 

(SNR) in a set of bands, then averages across these bands to come up with a prediction 

of intelligibility. French and Steinberg's original Articulation Index (AI) is based on 

20 equally contributing bands, and produces an intelligibility score between zero and 

one: 

1 20 

AI = - "'TJ. 
20~ t 

i=l 

(3.16) 

where TIi (Transmission Index i) is the normalized intelligibility in the ith band. The 

2This section is based on Bondy et al. [2004]. 
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TI per band is a function of the ignal to noise ratio or: 

TJ.=SN~+12 
l 30 (3.17) 

for SNRs between -12 dB and 18 dB. A SNR of greater than 18 dB means that the 

band has perfect intelligibility and TI equals 1, while an SNR under -12 dB means 

that a band is not contributing at all, and the TI of that band equals O. The overall 

intelligibility is then a function of the AI, but this function changes depending on the 

semantic context of the signal. 

Kryter validated many of the underlying AI principles [Kryter, 1962aJ. Kryter also 

presented the mechanics for calculating the AI for different number of bands - 5,6,15 

or the original 20 - as well as important correction factors [Kryter, 1962bJ . Some of 

the most important correction factors account for the effects of modulated noise, peak 

clipping, and reverberation. Even with the application of various correction factors, 

the AI does not predict intelligibility in the presence of some time-domain distortions. 

Consequently, the Modulation Transfer Function (MTF) has been utilized to measure 

the loss of intelligibility due to echoes and reverberation [Houtgast & Steeneken, 1973J . 

Steeneken and Houtgast later extended this approach to include nonlinear distortions, 

giving a new name to the predictor: the Speech Transmission Index (STI) [Steeneken 

& Houtgast, 1980J . These metrics proved more valid for a larger range of environments 

and interferences. 

Using a spiking model of the auditory periphery [Bruce et al., 2003J the Neural 

Articulation Index (N AI) is formed by describing distortions in the spike trains of 

different frequency bands. The spiking over time of an auditory nerve fiber for an 

undistorted speech signal (control case) is compared to the neural spiking over time 
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for the same signal after undergoing some distortion (test case). The difference in the 

estimated instantaneous discharge rate for the two cases is used to calculate a neural 

equivalent to the TI, the Neural Distortion (ND), for each frequency band. Then 

the N AI is calculated with a weighted average of NDs at different Best Frequencies 

(BFs) . In general detection theory terms, the control neuronal response sets some 

locus in a high dimensional space, then the distorted neuronal response will project 

near that locus if it is perceptually equivalent, or very far away if it is not. Thus, the 

distance between the control neuronal response and the distorted neuronal response 

is a function of intelligibility. Due to the limitations of the STI mentioned above it 

is predicted that a measure of the neural coding error will be a better predictor than 

SNR for human intelligibility word-scores. 

3.2.1 Method 

The auditory periphery model used throughout is from [Bruce et al. , 2003]. The 

model is fully discussed in 2.1.4. The parameters of the synapse section of the model 

are set to produce adaptation and discharge-rate versus level behavior appropriate 

for a high-spontaneous-rate/low-threshold auditory nerve fiber. In order to avoid 

having to generate many spike trains to obtain a reliable estimate of the instantaneous 

discharge rate over time, the synaptic release rate , an approximation of the discharge 

rate ignoring the effects of neural refractoriness, is used instead. 

The following formulation emulates most of the simulations described in Chapter 2 

of Steeneken [1992] ; it describes the full development of an STI metric from inception 

to end. For those interested, the following simulations try to map most of the second 

chapter, but instead of basing the distortion metric on a SNR calculation, the neural 

distortion is used. 
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There are two sets of experiments. The first, deals with applying a frequency 

weighting structure to combine the band distortion values, then there is an introduc-

tion of redundancy factors. The bands, chosen to match Steeneken [1992], are octave 

bands centered at [125, 250, 500, 1000, 2000, 4000, 8000] Hz. Only seven bands are 

used here. The Neural AI (NAI) for this is: 

(3.18) 

where ai is the ith bands contribution and NTIi is the Neural Transmission Index 

in the ith band. All the as sum to one, so each a factor can be thought of as the 

percentage contribution of a band to intelligibility. Since the NTI is between [0,1], 

it can also be thought of as the percentage of acoustic features that are intelligible 

in a particular band. The ND per band is the projection of the distorted (Test) 

instantaneous spike rate against the clean (Control) instantaneous spike rate: 

ND = 1 _ Test· Control
T 

Control· ControlT ' 
(3.19) 

where Control and Test are vectors of the instantaneous spike rate over time, sampled 

at 22050 Hz. This type of error metric can only deal with steady state channel 

distortions, such as the ones used in Steeneken [1992]. ND was then linearly fit to 

resemble the TI equation 1-2, after normalizing each of the seven bands to have zero 

means and unit standard deviations across each of the seven bands. The NTI in the 

ith band was calculated as 

(3.20) 

NTIi is then thresholded to be no less then 0 and no greater then 1, following the 
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TI thresholding. In equation 3.20 the factors, m = 2.5, b = -1, were the best linear 

fit to produce NTI/s in bands with SNR greater than 15 dB of 1, bands with 7.5 dB 

SNR produce NTI/s of 0.75, and bands with 0 dB SNR produced NT Ii 's of 0.5. This 

closely followed the procedure outlined in section 2.3.3 of Steeneken [1992]. As the 

TI is a best linear fit of SNR to intelligibility, the NTI is a best linear fit of neural 

distortion to intelligibility. 

The input stimuli were taken from a Dutch corpus [van Son et al., 2001], and 

consisted of 10 Consonant-Vowel-Consonant (CVC) words, each spoken by four males 

and four females and sampled at 44100 Hz. The Steeneken study had many more, 

but the exact corpus could not be obtained. 80 total words is enough to produce 

meaningful frequency weighting factors. There were 26 frequency channel distortion 

conditions used for male speakers, 17 for female and three SNRs (+ 15 dB, +7.5 dB 

and 0 dB). The channel conditions were split into four groups given in tables 3.8 

through 3.11. Female speakers have little to no energy in the 125 Hz band. For 

female speakers, a subset of the filtering conditions are used, these are marked with 

an asterisk in table 3.8 through table 3.11. 

In the above tables a one represents a passband and a zero a stop band. A 1353 

tap FIR filter was designed for each envelope condition. The female envelopes are a 

subset of these because they have no appreciable speech energy in the 125 Hz octave 

band. Using the 40 male utterances and 40 female utterances under distortion and 

calculating the NAI following equation 3.20 produces only a value between [0,1]. To 

produce a word-score intelligibility prediction between zero and 100 percent, the NAI 

value was fit to a third order polynomial that produced the lowest standard deviation 

of error from empirical data. While Fletcher & Galt [1950] state that the relation 

between AI and intelligibility is exponential, Steeneken [1992] fits with a third order 
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OCTAVE-BAND CENTRE FRE-
QUENCY 

ID #_ 125 250 500 1K 2K 4K 8K 
1* 1 1 1 1 0 0 0 
2* 0 0 0 0 1 1 1 
3* 1 1 0 0 0 1 1 
4* 0 0 1 1 1 0 0 
5* 1 1 0 0 1 1 0 
6* 0 0 1 1 0 0 1 
7* 1 0 1 0 1 0 1 
8* 0 1 0 1 0 1 0 

Table 3.8: Rippled Envelope 

OCTAVE-BAND CENTRE FRE-
QUENCY 

ID#_ 125 250 500 1K 2K 4K 8K 
9 1 1 1 0 0 0 0 
10 0 1 1 1 0 0 0 
11* 0 0 0 1 1 1 0 

Table 3.9: Adjacent Triplets 

OCTAVE-BAND CENTRE FRE-
QUENCY 

ID#_ 125 250 500 1K 2K 4K 8K 
12 1 0 1 0 1 0 0 
13 1 0 1 0 0 1 0 
14 1 0 0 1 0 1 0 
15* 0 1 0 1 0 0 1 
16* 0 1 0 0 1 0 1 
17 0 0 1 0 1 0 1 

Table 3.10: Isolated Triplets 
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OCTAVE-BAND CENTRE FRE-
QUENCY 

ID #_ 125 250 500 1K 2K 4K 8K 
18* 0 1 1 1 1 0 0 
19* 0 0 1 1 1 1 0 
20* 0 0 0 1 1 1 1 
21 1 1 1 1 1 0 0 
22* 0 1 1 1 1 1 0 
23* 0 0 1 1 1. 1 1 
24 1 1 1 1 1 1 0 
25 0 1 1 1 1 1 1 
26* 1 1 1 1 1 1 1 

Table 3.11: Contiguous Bands 

polynomial, and we have chosen to compare to Steeneken [1992]. The empirical word­

score intelligibility was from Steeneken [1992]. 

3.2.2 Results 

3.2.2.1 Determining frequency weighting structure 

For the first tests, the optimal frequency weights (the values of (Xi from equation 

3.20) were designed through minimizing the difference between the predicted intelli­

gibility and the empirical intelligibility. At each iteration one of the values was varied 

up or down, and then the sum of the (Xi was normalized to one. This is very similar 

to Steeneken & Houtgast [1980] whose final standard deviation of prediction error 

for males was 12.8%, and 8.8% for females. The NAI's final standard deviation of 

prediction error for males was 8.9%, and 7.1% for females. Full results are plotted in 

figure 3.6. 

The frequency weighting factors are similar for the N AI and the STI. The STI 
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Figure 3.6: Relation between NAI and empirical word-score intelligibility for male 
(left) and female (right) speech with bandpass limiting and noise. The vertical spread 
from the best fitting polynomial for males has a s.d. = 8.9% versus the STI [5] s.d. 
= 12.8%, for females the fit has a s.d. = 7.1% versus the STI Steeneken & Houtgast 
[1980] s.d. = 8.8% 

weighting factors from Steeneken [1992]' which produced the optimal prediction of 

empirical data (male s.d. = 6.8%, female s.d. = 6.0%) and the NAI are plotted in 

figure 3.7. 
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Figure 3.7: Frequency weighting factors for the optimal predictor of male and female 
intelligibility calculated with the NAI and published by Steeneken [1992] 

As one can see, the low frequency information is tremendously suppressed in the 

NAI, while the high frequencies are emphasized. This may be an effect of the stimuli 

corpus. The corpus has a high percentage of stops and fricatives in the initial and 

final consonant positions. Since these have a comparatively large amount of high 

frequency signal they may explain this discrepancy at the cost of the low frequency 
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weights. Steeneken [1992J does state that these frequency weights are dependant upon 

the conditions used for evaluation. 

3.2.2.2 Determining frequency weighting with redundancy factors 

In experiment two, rather then using equation 3.20 that assumes each frequency 

band contributes independently, we introduce redundancy factors. There is corre­

lation between the different frequency bands of speech [Houtgast & Verhave, 1991], 

which tends to make the STI over-predict intelligibility. The redundancy factors 

attempt to remove correlated signals between bands. Equation 3.20 then becomes: 

NAIr = al . NTII - {3l JNTII . NTI2 + a2· NTI2 - {31 JNTI2 · NTI3 + ... + a7· NTI7 , 

(3.21) 

where the r subscript denotes a redundant NAI and {3 is the correlation factor. Only 

adjacent bands are used here to reduce complexity. Replicating section 3.1 except 

using equation 3.21, the same testing, and adaptation strategy from before was used 

to find the optimal as and {3s. Results of this method for male and female speakers 

are in figure 3.8. 

The frequency weighting and redundancy factors given as optimal in Steeneken, 

versus calculated through optimizing the NAIr are given in figure 3.9. 

The frequency weights for the NAIr and STIr are more similar than those calcu­

lated without redundancy factors. The redundancy factors are different though. The 

NAI redundancy factors show no real frequency dependence unlike the convex STI 

redundancy factors. This may be due to differences in optimization that were not 

clear in Steeneken [1992J. 
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Figure 3.8: Relation between NAIr and empirical word-score intelligibility for male 
speech (right) and female speech (left) with bandpass limiting and noise with Redun­
dancy Factors. The vertical spread from the best fitting polynomial for males has a 
s.d. = 6.9% versus the STIr [8] s.d. = 4.7%, for females the best fitting polynomial 
has a s.d. = 5.4% versus the STIr [8] s.d. = 4.0%. 
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Figure 3.9: Frequency and redundancy factors for the optimal predictor of male and 
female intelligibility calculated with the NAIr, from Steeneken [1992]. 

MALE EQ. 3 FEMALE EQ. 3 MALE EQ. 6 FEMALE EQ. 6 
NAI 8.9 % 7.1 % 6.9 % 5.4 % 
STI [5] 12.8 % 8.8 % 
STI [8] 6.8 % 6.0 % 4.7 % 4.0 % 

Table 3.12: Standard Deviation of Prediction Error 
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The mean difference in error between the STIr, as given in Steeneken [1992]' and 

the NAIr is 1.7%. This difference may be from the limited eve word choice. It is 

well within the range of normal speaker variation, about 2%, the N AI and NAIr are 

comparable to the STI and STIr in predicting speech intelligibility. 

3.2.3 Discussion, LTASS Extensions 

The NAI provides a modest improvement over STI in predicting intelligibility. It 

is not a replacement for the STI for general acoustics since the N AI is much more 

computationally complex then the STL The NAI's end applications are in predicting 

hearing impairment intelligibility and using statistical decision theory to describe the 

auditory systems feature extractors - tasks which the STI cannot do, but are available 

to the NAL 

While the AI and STI can take into account threshold shifts in a hearing impaired 

individual, neither can account for sensorineural, suprathreshold degradations [van 

Schijndel et al., 2001]. The accuracy of this model, based on cat anatomy and physiol­

ogy, in predicting human speech intelligibility provides strong validation of attempts 

to design hearing aid amplification schemes based on physiological data and models 

[Sachs et al., 2002]. By quantifying the hearing impairment in an intelligibility metric 

by way of a damaged auditory model, one can provide a more accurate assessment of 

the distortion, probe how the distortion is changing the neuronal response and provide 

feedback for preprocessing via a hearing aid before the impairment. The NAI may 

also give insight into how the ear codes stimuli for the very robust, human auditory 

system. 

In the following Chapters, specifically chapter 4 this derivation is used with other 

corpora. To produce a more structured approach, it is first obvious that the error in 

106 



Ph.D. Thesis - Jeff Bondy McMaster University - Electrical Engineering 

any band is the absolute value of one minus the correlation between the normal and 

impaired firing patterns and normalized by the average spike rate from the output of 

the normal auditory model. Results from equation 3.19 were always positive for the 

van Son et al. [2001] syllable corpus, so did not need the absolute value. Replacing 

NTI with c; the error is calculated for each of the 7 frequency bands. The error in 

the ith frequency band, for the lh impaired condition is: 

(3.22) 

Where x is the normal auditory model instantaneous spiking rate vector, and if 

is the impaired auditory models instantaneous spiking rate vector over time. This 

metric cannot capture transient, or timing information of the auditory model because 

it cannot be coded through synchrony capture. 

The difficulty in computing results over an entire corpus of sounds was minimized 

with using a frozen Long Term Average Speech Spectrum (LTASS) Gaussian noise. 

LTASS is spectrally steady-state signal, the metric from 3.22 can capture distortion in 

the response; coinciding with a statistically mean processing strategy. This is loosely 

equivalent to using a Signal-to-Noise Ratio (SNR) metric, since most of the power in 

an utterance is due to voiced speech, the SNR captures mostly effects of voiced speech 

while synchrony capture is very evident in the auditory nerve during voiced speech 

and is the main distortion mechanism for the N AI. Further research is necessary to 

deal with the auditory systems time-adaptive characteristics of the healthy cochlea, 

it is the subject of chapter 5. 

The individual bands are then summed into a single error value with a weight-

ing function following the STI [Steeneken & Houtgast, 1980] frequency importance 

107 



Ph.D. Thesis - Jeff Bondy McMaster University - Electrical Engineering 

weighting, but derived for the neural representation specifically [Bondy et al., 2004] 

and derived specifically for LTASS. The total error, in accordance with equation 3.18 

is calculated using 

Error j = L Qi • Ci , 

i=l 

(3.23) 

where ai's are the bands importance weighting functions (shown in Figure 3.10), and 

the Ei'S are calculated through Equation 3.22. 

Frequency Weighting Factors 
.,r;::::=:===;:::::=::;::=.::;==,-----------, 

.- .. 

1000 10000 
Octave Band Centre Frequency [Hz] 

Figure 3.10: Frequency weighting factors used in calculating the neural distortion, as 
well as factors derived from a different stimuli Bondy et al. [2004] and an acoustic 
signal counterpart Steeneken & Houtgast [1980]. There are large differences between 
the importance of different frequencies for different corpuses. 

Bondy et al. [2004] shows that this weighted sum of Hebbian error is a monotonic 

function of intelligibility. This is important for offline assessment because it gives 

a way to judge different hearing aid processing strategies against one another. The 

actual error will be a relative indicator between strategies under test, not an intelli-

gibility value. 
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Chapter 4 

Processing Blocks for Machine 

Learning 

After successful completion of the intelligibility metric/error signal from Chapter 

3 the next open question was providing evidence of the ability to drive optimization 

of a hearing aid speech processing blockl. The most widely used hearing aids are 

simple linear processing blocks. Section 4.1 shows the development of the machine 

learning, linearly constrained hearing aid. The newest, industry accepted hearing aid 

are nonlinear, compression hearing aids. Section 4.2 details some interesting insights 

tied to developing the machine learning compression processing block. Finally, some 

researchers have suggested that the auditory nerve's coding mechanism may be a form 

of divisive normalization [Schwartz & Simoncelli, 2001]. An unsuccessful attempt was 

made to envelope this theoretical footing in hearing aid processing in Section 4.3. 

Before delving into the processing though, the machine learning technique was 

designed to take into account different levels of hearing impairment. For this a set of 

IThis section is based on Bondy et al. [2004]. 
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"offline" subjects was needed. Initial testing of the machine learning framework to 

establish the validity of the model-based approach was accomplished using idealized 

models of hearing impairment similar to those described in Byrne et al. [2001]. The 

different audiograms are given in Figure 4.1 A, and the individual contributions of 

inner and outer hair cell losses to each loss profile are given in Figure 4.1 B through 

F. 

A All Audiograms 
o --.--. iD ". \ 

E -20 " ' '0 .. \ 
;; ·····0 \ 
c55 -40 - . - . ., .~I' .. \\ 
~ ~"~' o -60 . : 
~ .\I.6og<am" .' 
~ -80 a ~ml2 

..c .... ~ml3 I- ... . _ .. 

-100 . 0 Audlogom is 

2SO 500 1000 2000 4000 

c Model Audiogram #2 
o 0HC mpelrmenl 

iD t!O.!l~ ~ 
E -20 

500 1000 2000 4000 

E 
Model Audiogram #4 

iD 
E - 20 

~ -40 
"0 
0 -60 
..c 
'" ~ -80 
..c 
I-

8000 

8000 

-100L--_~_~ ___ ~_D' 

250 500 1000 2000 4000 8000 
Frequency (Hz) 

B Model Audiogram #1 
o 

- - X OHI! Impairment 
-20 ......... ~ :10ne 

-40 1------!N-*~ ....... 8"'-1HI" 

-60 r 

l -80 OHC &IHC 
Impa irment 

- 100 
250 SOO 1000 2000 4000 8000 

D Model Audiogram #3 
0 

-20 --X~ OHC Impalrme I 
alone 

-60 

-80 OHC& IHC 
Impa irment 

- 100 
250 500 1000 2000 4000 8000 

F 
Model Audiogram #5 

-40 

-60 

-80 

-100 
250 500 1000 2000 4000 8000 

Frequency (Hz) 

Figure 4.1: Hearing threshold shift for 5 candidate audiograms taken from Byrne 
et al. [2001]. Differences are due to approximating threshold shift with IHC and 
OHC damage. The dashed and X marked lines are ideal estimated audiograms, while 
the solid lines are the actual audiogram provided by the Bruce et al. [2003] model. 

The impairments of inner and outer hair cells per frequency were calculated so 
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that OHC impairment accounted for approximately 50-60% of the total threshold 

shift in dB [Moore et al. , 2000J. The percent IHC loss was then adjusted to explain 

the remaining threshold shift. Loss profiles 3, 4, and 5 are indicative of presbyacucis 

or progressive sound-induced hearing loss and are more typical of the normal hearing 

loss pathology. 

Unlike, the van Son et al. [2001J Dutch syllable corpus used in much of chapter 

3, the stimulus used in this chapter was Gaussian noise shaped to have the same 

spectrum as the Long Term Average Speech Spectrum (LTASS, ?, combined data). 

A 200 millisecond LTASS input was sampled at 500 kHz and presented at 75 dB SPL 

into the normal model. The impaired model input would be processed by some test 

compensation strategy before being input into one of the impaired models, so the 

power level would fluctuate depending on the compensation strategy used. The high 

sample frequency is necessary for the Bruce et al. [2003] auditory model. 

The output of the model was a time series, 230 ms long (the extra time versus 

the input could be used to judge offset effects), with a 22050 Hz sample rate, of 

instantaneous neural spike rates across 7 octave bands, starting at 125 Hz and ending 

at 8000 Hz. The neural best frequencies were chosen to mimic the Byrne et al. 

[2001]; (Figure 2) audiogram data points. A typical output of a normal and impaired 

auditory nerve fiber model with a BF of 250 Hz is given in Figure 4.2. 

In general, it is hoped that encompassing the cochlear processing and impair­

ment will circumvent the problems Fabry & van Tassell [1990] had with using the 

articulation index to fit hearing-aids. 

The process of predicting efficacy of hearing aid algorithms is to take the LTASS 

stimulus, pass it through the normal auditory model and then take the same stimu­

lus, preprocess it with the hearing-aid algorithm under test and pass it through an 
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Figure 4.2: Time plot of instantaneous spiking rate versus time for the normal au­
ditory model and the impaired auditory model. The impaired model is based on 
Audiogram #4 from Figure 4.1 with the half-gain rule applied (see Section 4.1) to 
the input. The inset shows a closeup, where synchrony is very evident, as well as 
some differences between the Kormal and Impaired outputs. 

impaired auditory model, whose audiogram loss follows one of the profiles in figure 

4.1, then calculate the neural distortion following equation 3.22. This is repeated for 

several frequencies and the errors are summed following equation 3.23. The next sec­

tion illustrates how this predictive measure closely fits empirical data, and subsequent 

sections extends this to train new processing strategies for hearing-aids. 

Since the new compensation strategy relies heavily on neural network type train-

ing, and is in essence trying to re-establish normal neural activity, the general process-

ing strategy was coined Neurocompensation. A Neurocompensator is any block whose 

weights are fitted to an individual 's hearing loss through a training sequence that at-

tempts to return the normal neural code. The training sequence is represented in 

figure 4.3. 

The Neurocompensator, Nc , is trained on a set of input signals, supervised by the 

difference between the output across a set of frequencies of the normal auditory model, 

H, and the output of the impaired auditory model, iI. For each training iteration the 
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Input u-r--- -j 

Figure 4.3: Block representation of the NeuroCompensator training sequence. The 
dot operator before the frequency weightings corresponds to Equation 3.23, the 
weighting operator corresponds to Equation 3.22. The normal and impaired audi­
tory output is a set of the Auditory Model at different best frequencies, while the 
Neurocompensator is represented as a different preprocessor at the different frequen­
cies, but this is not necessarily the case. There may be only one Neurocompensator 
preprocessing block. 

Neurocompensator is adjusted by changing weights in its gain function to minimize 

the error signal. Training with LTASS noise will lead to a Neurocomper Jator that is 

optimal in the mean sense. 

4.1 Optimal Linear Hearing Aid Processing 

The validity of restoring normal auditory nerve activity through the use of super-

vised learning is tested by asking the question: would the standard fitting strategies, 

when applied to the input of the impaired model, result in optimal improvements in 

neural coding? 

4.1.1 The Half Gain Rule 

Early papers in audiology attempted to describe the amount of gain necessary for 

comfort and intelligibility. Markle & Zaner [1966] gave data showing how restoring 

normal hearing thresholds by setting the gain in each frequency band exactly equal to 
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the threshold loss results in a signal too loud to be comfortable or intelligible. Rather 

than employing a one-to-one gain to threshold loss, Byrne & Fifield [1974J found that 

a 0.46-to-one gain to threshold shift was optimal. That is, for every 10 dB threshold 

shift, the gain for optimum intelligibility should be 4.6 dB. The Byrne & Fifield [1974J 

data is the basis for the widely used [Martin et al., 1998J fitting strategies from the 

National Acoustics Lab of Australia (NAL-l, NAL-R, NAL-RP, NAL-NL1 ... ). 

The first experiment modeled the neural representation distortion introduced by 

setting different gains per dB threshold shift. Multiple ratios, R, are modeled with 

the gain in dB per dB of loss changing from 1: 1, or 1 dB of gain per dB of threshold 

loss (mimicking Markle & Zaner [1966]) to 0:1, or no processing whatsoever. 

The LTASS input stimulus and the error calculation is described at the end of 

chapter 3. The experiment is run for all five loss profiles with a sweep of the gain 

ratio, and the results are shown in figure 4.4, the y-axis is in model units, with larger 

values representing more distortion in the auditory nerve. 

The vertical line drawn at the minimum error point for the average of the five 

model audiograms is 0.44 dB gain per dB threshold loss. Clearly this result is very 

close to empirical evidence (0.46). Model audiograms three, four and five are more 

indicative of typical hearing loss pathology and these have less individual error than 

the flat audiogram of loss profile one. Another important insight is that the more 

severe losses need higher gain. This is consistent with empirical data for fitting the 

profoundly impaired. 

Brooks [1973J gives a possible theoretical footing for increasing gain at half the 

hearing threshold degradation by pointing out that the most comfortable level is 

approximately half way between threshold and the maximum tolerance level. Kates 

[1993J suggests that the half-gain rule is based on the natural compression ratio of 
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Figure 4.4: Neural error function versus gain ratio (R), showing a minimization of 
differences between the normal and impaired auditory models for a hearing-aid gain 
ratio. The vertical line is at the ratio (R) which minimizes the error curve, the X 
is at the value predicted by Byrne et al. [2001] data (0.46). The mean scheme in A 
minimizes neural differences between the normal and impaired at a ratio of gain to 
hearing loss of 0.44 which is very close to the empirical data of 0.46 dB of gain per 
dB of hearing loss. The Threshold Shift is raised to the power of the ratio since the 
fitting strategies correspond to a dB:dB gain. Graphs B-F show the error curves for 
each loss profile. 

the active ear. These results show another possible scenario: people are trying to fit 

their gain response to a normal neural representation. 

4.1.2 NAL-RP Gain Rate 

The next experiment dealt with the prediction of linear fitting strategies. The 

formula used for the following examples is the NAL-RP [Byrne et al., 1990] formula, 

introduced as the NAL-R [Byrne & Fifield, 1974]. Without the profound loss addi-

tional gain factors N AL-RP is: 

(4.24) 
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x = 0.15 * H3FA (4.25) 

( 4.26) 

Here Hi is the threshold shift measured at frequency i Hz. H3F A is the average 

threshold shift at 500, 1000 and 2000 Hz, X is a gain factor across all frequencies, 

and R is the gain in dB for each dB of loss. In the NAL-RP formula, R = 0.31. The 

insertion gain at frequency i, IG i , is made up of the constant gain factor X, 0.31:1 dB 

of gain per dB of threshold shift at that frequency, and a gain factor that is dependent 

upon the frequency, ki' but not the audiogram. ki is described in Table 4.13. 

Frequency [Hz 1 
250 500 1000 2000 3000 4000 6000 

ki [dB] -17 -8 1 -1 -2 -2 -2 

Table 4.13: Frequency shaping gain values for NAL-R 

Following the Half-Gain rule experiment, the neural error was used to try to 

predict the constants in the NAL-RP formula. LTASS is input at 75 dB SPL, the 

same input and output frequencies, and the same loss profiles were used. This time 

the gain per dB of threshold shift in Equation 4.26 (0.31:1) is modelled. The curve in 

figure 4.5 is the neural distortion when the multiplier (R) is swept from zero to one, 

with the fitting strategy having a prescribed value of 0.31. 

The minimum error of the multiplier for the strategy that attempts to restore 

neural firing patterns (0.34), based on these simulations, closely matches the NAL­

RP fitting strategy's multiplier (0.31), derived through empirical evidence. Most of 
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Figure 4.5: NAL-RP fitting strategy with the threshold shift versus gain ratio swept 
to see if the neural distortion error predicts empirical, published results. The X is 
at R = 0.31 and the vertical bar is at the minimum value of the error surface. The 
mean optimal value predicted by the neural distortion (in A) error is 0.34 dB gain 
per dB of hearing threshold shift versus the historical data of 0.31. The individual 
error functions for each model audiogram are given in parts B-F. 

these curves have a lower minimization point with the N AL-RP formula than the 

Half-Gain rule as well, with the exception of loss profile #4. 

Rankovic [1991] reports that people with profound hearing loss found t hat fitting 

with a high amount of gain in high loss frequency regions had their intelligibility 

reduced. Figure 4.5 's higher tail towards the full 1:1 dB of gain per dB of loss agrees 

with Rankovic , if intelligibility is a monotonic function of neural distortion. 

4.1.3 NAL-RP Frequency Shaping 

The final modelling was for the NAL-RP frequency weighting factors, (ki ). A 

simultaneous optimization of the seven frequency gain factors , starting at unity gain, 

was carried out. All initial condition were as before. The gain per dB of threshold 

shift was the NAL-RP recommended 0.31:1 , not 0.34:1 as recommended by the pre-

vious experiment; the remaining NAL-RP factors were used. It is hoped that the 
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frequency weightings calculated would closely match NAL-RP's k i factors. The opti-

mized frequency weightings versus the original weightings are in figure 4.6. This is for 

loss profile #4, as a profile that is typical of moderate age or noise induced hearing 

loss. 
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Figure 4.6: NAL frequency weightings calculated through neural error metric op i­
mization and what was prescribed in the original NAL-RP strategy. 

The calculated gain frequency weightings in figure 4.6 has had a small, fiat gain 

shift (less than one dB, which could coincide with the different optimal gain ratios) 

applied to it before being plotted to center it on the NAL-RP gain curve, emphasizing 

the differences in shape. 

The calculated gain frequency weightings and the prescribed weightings are clearly 

similar. The general low frequency attenuation, and the second formant range being 

emphasized is represented in both. There are differences including a lowering of 

the gain at the knee point of the audiogram and much lower high frequency gain. 

The knee point effect could be introduced by some nonlinearity between the normal 

hearing region and impaired region, or a model effect. The lower high frequency gain 

could be similar to how NAL-NL1 [Byrne et al. , 2001J limits gains in highly damaged 

118 



Ph.D. Thesis - Jeff Bondy McMaster University - Electrical Engineering 

regions. 

The above set of experiments started out simply and attempted to increase the 

complexity to test the basic assumption that offline modeling to return neural pat­

terns to a hearing impaired auditory system corresponds to empirical data. This cul­

minated in a metric that shows pronounced similarities to experimental data while 

being able to optimize multiple parameters. This section attempted to illustrate a 

connection between traditional, empirically derived hearing aid fitting strategies, and 

a new quantitative metric based on re-establishing normal neural representations in 

a hearing impaired individual. The neural error metric produced results very similar 

to empirical data, giving credence to the possibility of evaluating many fitting strate­

gies quantitatively, and in corollary: the ability to calculate optimal characteristics 

in designing hearing-aid algorithms offline. 

4.2 Optimal Compressive Hearing Aid Processing 

The rationale behind including some sort of compressive preprocessing in a hearing­

aid is the fact that an auditory system loses dynamic range due to sensorineural im­

pairment2 . Most researchers now agree that this loss is due to the destruction of hair 

bundles on outer hair cells (ORCs) in the cochlea. ORCs mechanically modulate the 

traveling wave of acoustic energy along the basilar membrane. This modulation acts 

as a nonlinear amplification at a particular frequency, and is also responsible for the 

suppression or contrast enhancement characteristics of a normal ear. Presumably, to 

restore normal hearing to a sensorineural impaired individual, there must then be 

some sort of compression in a hearing-aid. 

2This section is based on Bondy et al. [2003]. 
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Compression circuits in hearing-aids are characterized by time, intensity and fre­

quency parameters. Individual parameters are selected based on reasons such as 

loudness normalization, discomfort avoidance, or dynamic range compression. Dillon 

gives an overview and tutorial on the competing rationales and characteristics Dil­

lon [1996]. The degrees of freedom available to a hearing aid circuit designer make 

it infeasible to perform empirical intelligibility testing across all the possible para­

meters. Also, these studies look at what can be done to alleviate the symptoms of 

sensorineural hearing impairment , and do not address the core problem. 

The true problem that needs to be modelled is how the compressive non-linearity 

of the cochlear amplifier, disturbed by sensorineural hearing loss, can be restored by 

signal processing in a hearing-aid. There is a complicated set of signal processing 

that is taking place in the cochlea that ultimately affects intelligibility. Quantitative 

evaluation of compression circuits in hearing-aids reduces the burden on empirical 

testing. 

Quantitative analysis must also predict why there is such a large discrepancy be­

tween the hearing impaired and normal hearing person 's ability to unmask competing 

speech. Understanding this disparity is key to building optimal compression circuits. 

Carhart & Tillman [1970] shows a SNR advantage between 12-15 dB for normal hear­

ing people over hearing impaired people in identifying syllables in competing speech. 

Over time, testing methodologies have been refined, but results still show an enor­

mous discrepancy between normal hearing and hearing impaired people's ability to 

understand speech against contending speech. Table 4.14 gives an overview of nor­

mal versus hearing impaired peoples ability to recognize target speech with a masking 

speaker. 

To underscore table 4.14, III noise with a long term average speech spectrum 
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Study Description SRT 
Nor-
mal/ 
Im-
paired 

Duquesnoy 20 elderly subjects with ski-slope high -17.6/-5.3 
[1983] frequency loss; freefield; Competing @ 

55 dBA 
Festen & 20 mixed age and losses; monaural ear- -11.4/-1.1 
Plomp [1990] phones; Competing @ 80 dBA 
Hygge et al. 24 mixed age; freefield, binaural; Com- -9.2/7.0 * 
[1992] peting Speech. SNR 
Peters et al. 10 elderly subjects with ski- slope high -11.9/0.8 
[1998] frequency loss; monaural earphones; 

Competing @ 65 dBA 

Table 4.14: Intelligibility in speech and speech-like noise 

(LTASS) the difference in SRTs between normal and impaired hearing individuals is 

only 2-5 dB [Glasberg & Moore, 1989]. 

It seems that to allow a sensorineural impaired person the ability to operate in the 

classical cocktail party in a way that approaches a normal hearing person, auditory 

compression must be understood in the competing speech regime. This will intertwine 

the counterbalanced processes of compression and suppression. 

This section is also an advancement on the error metric provided in chapter 3. 

Because compression circuits are adaptive, a more speech-like corpus is necessary, but 

equation 3.22 averages over a stimulus, eliminating important temporal data. This 

is circumvented by an additional processing step for the NAI that relies on discharge 

rate contrasts to highlight important information. Fully, the acoustic signal is, as 

before, preprocessed with a compression algorithm, and then the representation of 

the auditory nerve activity is modeled. This modeling takes into account the cochlear 
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compression that is being studied. The discharge rates over time and frequency are 

further processed by calculating regions of onset of activation, and clustering the 

onset data across time and frequency. This spectro-temporal fusion reveals a very 

different pattern between normal and impaired auditory representations and leads to 

a mapping between a normal and impaired hearing representation in this domain, to 

obtain a novel model of intelligibility. 

Revisiting previous research, shows several attempts to produce a quantitative 

model to assess hearing aid performance or for hearing-aid circuit design. Fabry 

& van Tassell [1990] used the articulation index, Kates [1993] used a fairly simple 

compressing/suppressing auditory model, and Anderson [1994] used an invertible au­

ditory model. None of these attempts represent temporal information. In this section 

timing information is introduced into the distortion metric. From the introductory 

discussion in chapter 2, the temporal modulations in competing speech are important 

in unmasking target speech in normal hearing people but are not accessible to hear­

ing impaired people. The aim here is to provide an approach to encompass temporal 

information. Temporal information is lost with sensorineural impairment; present 

hearing-aid processing strategies do not address this, and neither do intelligibility 

predictors. 

The first modelling experiment attempted to optimize different parameters of 

compression such as attack and release time, channel numbers, compression rates and 

thresholds for the loss profiles in figure 4.1. No consistent set of parameters resulted 

in enhanced predicted intelligibility across the impairments. Recent evidence points 

to a wider variation in efficacies for nonlinear fitting strategies between loss profiles 

than for linear fitting strategies [Gatehouse et al., 2005]. So the modelled results 

may actually be informative, but at the time there was no empirical data along these 
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lines, most research had been focussed on deriving the single fitting framework. The 

inability to find quantitative data led to extending the intelligibility model to account 

for temporal mechanics in a qualitative way. 

4.2.1 Extended Temporal Intelligibility Model 

This model follows the process and data in Moore et al. [1999J. They carried out 

8RT tests on elderly hearing-impaired people with ski-slope, high-frequency loss with 

simulated linear, wide dynamic range compression (WDRC) and multiband (2, 4, 8) 

compression hearing-aids. The subjects were fitted using the "Cambridge" formula 

[Moore & Glasberg, 1998J for the linear condition. The compression ratio (CR) and 

threshold (CT) were determined by applying the following two constraints: 

1. The gain in each channel for a 65 dB 8PL, speech shaped, input noise is the 

same as in the linear condition. 

2. The gain in each channel makes a 45 dB 8PL speech signal in 65 dB 8PL noise 

audible. That is when operating at 65 dB 8PL, there is 20 dB of range between 

the output and 0 dB 8L in each band. 

The second constraint could not be held in all conditions. The offline subjects 

loss profile was the average loss profile of the 18 subjects from the study. The hearing 

loss in dB 8PL, compression ratio and compression threshold per channel are listed 

in Table 4.15. The attack and release times are typical of fast compression: both 

were 8.2 ms. The output 8RTs in competing speech for the unaided, linear, and 

eight-channel compression were reported as 0.5, -2.0, and -2.9 dB respectively [Moore 

et al., 1999J. 
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Frequency Hearing Loss CR CT [dB] 
250 28 1.7 22.3 
500 31 1.1 24.6 
1000 38 1.3 16.1 
2000 50 1.7 9.5 
3000 59 2.4 7 
4000 64 2.9 7 
5000 66 2.9 7 
6000 68 2.9 7 

Table 4.15: Loss profile a nd parameters for a compression circuit. 

While Moore, Peters and Stone used several different noise types, competing 

speech will be focussed on here, because of the large differences in intelligibility be­

tween stimulus types at the same SNR. 20 of the same HINT sentences [Nilsson et al., 

1994], but recorded for multiple talkers [Trainor et al., 2004J are used. The auditory 

periphery model used throughout was taken from Bruce et al. [2003J. Figure 4.7 is 

an example of normal and damaged auditory responses from this model. 

Effects of sensorineural impairment such as spreading in time and frequency are 

evident in the lack of separation between the lines representing formant frequencies. 

What is not obvious in this representation i how intelligibility i aff cted. 

A representation of the acoustic waveform allowing grouping of onset cues was 

chosen as a way of identifying acoustic events that are perceptually relevant and 

may be the source of the intelligibility difference between normal hearing and hearing 

impaired people in competing speech. Onset characteristics of the auditory represen­

tation were calculated with a difference of exponentials filter, hdn], in each frequency 

band 
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Figure 4.7: Auditory representation for the sentence "The boy got into trouble". 
Part A is from a normal hearing auditory model, B is from a sensorineural impaired 
auditory model. There is noticeable smearing in time and frequency as a result of the 
impairment. 

(4.27) 

(Xl and (X2 were selected to pass frequencies from 4 to 32 Hz. These frequencies 

contribute most to intelligibility, with a signal's fine temporal structure only adding 

a small amount to intelligibility [Drullman et al. , 1994]. 

This onset data was then integrated over a typical acoustic event time window, 

h2 [n], which had a 6 dB cutoff at 125 Hz. This integrator had a similar form to hl[n], 

(4.28) 
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For a sampling rate of 11025 Hz, al was 0.06, a2 was 0.10, and a3 was 0.001. An 

adaptive threshold and refraction operation was then applied. The threshold value 

was determined to produce some percentage of active events in the discretized time­

frequency grid when the refractory period is 1 ms. An 1:1000 events-to-nonevent-ratio 

was selected arbitrarily (Many ratios clustered in experiments, and gave qualitatively 

similar results. Anything less then 1:100 clustered similarly). This produced a discrete 

event map such as the one given in Figure 4.8. 
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Figure 4.8: The input signal is represented on the auditory nerve. Then low frequency 
auditory information is extracted with an onset detector. The onset events are then 
integrated over a speech cue period. With thresholding and a refraction window, 
discrete events are finally mapped. 
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Figure 4.8 shows that important timing information is carried across multiple 

frequencies. To calculate perceptual relevance, a clustering algorithm using a hard-

decision rule for class membership based on a Gaussian probability distribution as-

sumption is applied. Taking the thresholded information from Figure 4.8, and making 

each event, k, a two dimensional sample in time (subscript t) and frequency (subscript 

f),zk={Ztk, zfd, the whole set of acoustic events is represented as Z. Starting with 

a limited number of possible classes, J, an iterative clustering algorithm, with death 

for small clusters is run [Duda & Hart, 1973]. A sample was assigned to class j when 

( 4.29) 

where 

(4.30) 

7fj, J-tj and ~jare the prior probability, mean and covariance statistics for class j, 

respectively. All samples were classified before the prior and statistics are recalculated 

in a batch mode. Classes with a low prior probability were pruned; in these examples, 

classes with less then half a percent of all the events were discarded. Classification and 

statistical updates were iterated until the priors stopped changing between iterations 

by more then two percent root-mean-square. 

The classes were then split in half along the temporal axis and classification was 

again seeded and performed in the halved datasets to account for time warping or long 

pauses. This bifurcation helps competition and reduces reliance on initial conditions. 

The result of this clustering, using the onset data from figure 4.8 and bifurcated once 

with 50 initial classes is given in figure 4.9. 
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Onset Pen:eptual Event eluate", 

Figure 4.9: The normal hearing, perceptual clusters mean and two-standard deviation 
contours are plotted for the first half of the example sentence in steady state LTASS 
noise. 

4.2.2 Qualitative Model for Temporal Information 

The goal of this research was to be able to quantify effects on intelligibility of non-

linear, dynamic algorithms for sensorineural impairment. The question looked at first 

was whether this "perceptually relevant" clustering produced distinctly different rep­

resentations for the normal and impaired auditory models. Using the same Cambridge 

linear fitting strategy, with the simulated steeply sloped hearing loss as detailed in 

Table 4.15 the stimulus was presented to the normal and damaged auditory models. 

The normal model produced the clusters shown in figure 4.9 and the damaged model 

with preprocessing gain calculated by the Cambridge formula produced the clusters 

shown in figure 4.10. 

For this example, the impaired model forms fewer classes and the variances of 

those classes are greatly enlarged, while entire onset cues for some phones are lost. 

The dotted lines representing the normal hearing clusters are sometimes far removed 

from the impaired clusters. These results are indicative of both spectral and temporal 

spreading. Table 4.16 highlights the general results. 
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Onset Perceptual Event Clu.te", 

Figure 4.10: The sensorineural impaired perceptual clusters mean and two-standard 
deviation contours for a sentence in LTASS are plotted in solid lines. The normal 
clusters from figure 4.9 are plotted with dotted lines for reference. 

Variable Normal Impaired Linear Impaired 
8-Channel 

O"t 10 ms 11 ms 12 ms 
O"j 398 Hz 503 Hz 517 Hz 
Classes / sec01 c53.8 35.5 32.6 

Table 4.16: Differences in Normal and Impaired perceptual clustering in steady state 
noise 

This general pattern should be indicative of differences between normal and im-

paired listeners on the order of 3 to 5 dB in SRT. This is the baseline deficit that 

hearing impaired people face in conditions without any temporally modulated noise. 

Another test versus empirical data is to judge the difference between linear and the 

8-channel compression preprocessing. With the 8-channel compression circuit the 

impaired results are almost identical to the linear case. In only three of the twenty 

test sentences did compression produce a "phantom grouping", where a cluster was 

formed outside of a phone boundary. This is the expected result with speech pre­

sented at 65 dB SPL because it will very rarely go under the compression threshold 
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with the windowed energy calculation used here. Compression circuits do not overly 

change the AN representation of onset cues. 

So far all distortion conditions have been steady state noise. An important open 

question is how are these results affected by competing speech streams? Moore, Peters 

and Stone (1999) used a female talker whose long term average speech spectrum was 

modified to match the male targets as an interfering signal. The time envelope was 

basically undisturbed. Figure 4.11 shows the clustering that takes place in a normal 

hearing model for these data. 

Onset Perceptual EYent Cluaters 
~r-------r-----~r-----~~----~ 

Figure 4.11 : Normal clusters for the same input as figure 4.9 and 4.10 but with a 
competing speech masker. There are more classes with smaller variances between 
them than the normal hearing model clustering without competing speech. 

The compression and suppression characteristics of a normal undamaged ear have 

clearly changed the representation between target speech and target speech with 

competing speech. The clusters are smaller and greater in number. This is not the 

case in the impaired auditory system's ability to cluster two speech signals as shown 

in figure 4.12. 

Figure 4.12 is the grouping that takes place with 8-channel compression. Clearly 

the auditory system can not make use of the onset characteristics of a speech signal 
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Figure 4.12: Impaired competing speech clusters for the same input as figures 4.9 and 
4.10. There are roughly the same number of classes and those class variances remain 
high. 

with this type of compression. While the normal ear responds with mure specific 

groupings of acoustic events because of spectral-temporal suppressioil, the normal 

compression circuit does nothing to reestablish normal cochlear signal processing. 

Table 4.17 is a comparison of the clustering statistics in competing speech. 

Variable NORMAL Impaired IMPAIRED 8-CHANNEL 
Linear 

{Jt 10 ms 12 ms 12 ms 
{Jf 348 Hz 555 Hz 573 Hz 
J 70.8 38.4 34.1 

Table 4.17: Differences in Normal and Impaired perceptual clustering in competing 
speech 

Comparing table 4.17 to table 4.16 the data that jump out are the much smaller 

variances in the normal ear, the larger number of classes, while the statistics for 

the impaired ear remain remarkably similar, This is conceivably the reason why a 

normal hearing person has reduced SRT in competing speech versus steady noise; 
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-12 dB versus -4 dB; while a hearing impaired person does not see the same level 

of advantage; -2 dB versus 1 dB [Peters et al., 1998]. 

If intelligibility is the ability to group perceptually relevant acoustic cues while 

removing other events from different streams, normal hearing people have a clear 

advantage at the segmentation level. This result is clearly different from the articula­

tion index (AI) or speech intelligibility index (SIl). They calculate the intelligibility 

of a speech token based on the summation of signal-to-noise ratio (SNR) in a set 

of bands. The temporal information clustering criterion maintains that a more ap­

propriate measure of the intelligibility of a speech token is the event-to-noise ratio. 

Above, the events will have some spectral-temporal mask that can be used to deter­

mine whether the acoustic cue is discriminable. This can test specific phones, while 

the AI and SII measures have an implicit assumption about the ensemble statistical 

structure of speech across frequency. 

A novel way of representing acoustic material that qualitatively predicts intel­

ligibility for a compression circuit in a hearing-aid in competing speech takes into 

account the discharge rate contrast. This representation is affected by time, intensity 

and frequency parameters. To make this into a more useful intelligibility metric it 

still needs validation against normal conditions, and a mapping between the clustered 

space and a scalar intelligibility value. 
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4.3 Divisive Normalization for Hearing Aids 

Another avenue that was explored under the umbrella of nonlinear processing was 

divisive normalization3
. Schwartz & Simoncelli [2001] suggested divisive normaliza­

tion as the coding strategy that would optimally transform a set of coefficients from 

a linear auditory filterbank representation. Their derivation reduces dynamic range 

(compression, and desirable for limiting coding level issues) and increases indepen­

dence (reducing coding redundancy). Extending section 4.1, where the formation of 

the metric and validation of the strategy was a linear processing block, this is a novel 

hearing aid algorithm. 

The conceptual hearing aid processing block, or Neurocompensator, block is an 

attempt at spectral contrast enhancement following Schwartz & Simoncelli [2001 J. 

The analytic equation is given in Equation 4.31. 

(4.31) 

The gain at a frequency indexed by i, Gi , is a divisive function of the weighted 

(weighted by Vi) input power, t; , at frequency index i, and the weighted sum (weighted 

by Wj) of all the frequencies power, ry. (J is a term to ensure that Gi does not go to 

infinity. The weights, Vi and Wj , are trained in this Neurocompensator. The format 

of this example will produce a compensator that can apply level dependent gain, 

but not compression versus level, and ideally will produce some spectral contrast 

enhancement. The level dependent gain should produce a weighting that will show 

compression limiting. 

The first step in training the Neurocompensator is a pre-processing stage where 

3This section is based on Bondy et al. [2004]. 
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the time signal is compartmentalized into time-overlapped windowed samples. These 

windowed samples are filtered into twenty frequency subbands, corresponding to the 

model bands that will be combined in the error signal, and the power is taken in each 

band (fk where k = [1,2, ... ,20]). These are the statistics used as the input to the 

compensator model. A time series per frequency channel is derived, or Gi changes 

over time. 

Each weight , Gi , is applied per time slice to the short-time Fourier transform 

and the inverse Fourier transform is taken. All the time-slices are assembled by 

overlapping and adding the processed windowed samples. The resulting time-domain 

waveform is the input to the damaged model. The input to the normal model can be 

thought of having Gi equals one over every frequency and every time-slice. 

During the training phase, the Vi and Wj gain coefficients are adapted to minimize 

the error metric summed over all the time slices. The parameters of the compensator 

are optimized so that the output of iI matches the output of H as closely as possible. 

Once the compensator is trained, the gain coefficients are set and it becomes the final 

stage of processing in a digital hearing aid, replacing the fitting strategy. 

The Alopex algorithm [Unnikrishnan & Venugopal, 1994; Bia, 2001] was used to 

train the model weights via the error signal. Alopex is a stochastic optimization 

algorithm closely related to reinforcement learning and dynamic programming meth­

ods. It relies on the correlation between successive positive/negative weight changes 

and objective function changes from trial to trial to stochastically decide in which 

direction to move each weight. 

Initial experiments were conducted with loss profile # 5. Instead of using LTASS 

noise, the dutch syllable "kas" from the van Son et al. [2001] corpus was chosen. This 

was because of the difficulty in compensating spectra of the stop /k/ and fricative 

135 



Ph.D. Thesis - Jeff Bondy McMaster University - Electrical Engin ring 

/S/ would give a more interesting example for contrast enhancement. 
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Figure 4.13: Training curve for the Neurocompensator for 800 iterations. 

Figure 4.13 shows the error signal plotted versus iteration. Longer test results 

show that this error does not go to zero, meaning that better compensation models 

are needed, or that full restoration of the neural representation is not possible. 

The idea behind the original processing block was that it would provide spectral 

unmasking, or provide some contrast enhancement for the ear. This is plainly evident 

when one compares the settled algorithm's spectrogram in Figure 4.14B to the input 

spectrogram in Figure 4.14A. 

The dynamic range of both spectrograms is 60 dB. The NeuroCompensator has 

35 dB more energy than the unprocessed input signal. Of special note is the second 

formant in the signal spectrum for the NeuroCompensator. It shows evidence of 

compelling lateral suppression that reduces the spectra above and below the formant. 

This would spread the response to the formant, and formant capture is very evident 

in the normal auditory system. 
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Figure 4.14: The unprocessed input spectrogram (A) and the spectrogram of the 
signal that would be presented to the hearing impaired ear after Neurocompensation 
(B). 

Similarly to Kates [1993] the weights are dependent on the input stimulus, and 

should change over time mimicking the cochlea's cycle-to-cycle adaptive behaviour. 

At present, it is beyond the scope of the objective function to capture time adaptive 

and nonlinear, stimulus dependent effects. How the Vi and Wj change is a matter of 

future research. 

This type of processing also introduces a gain dependent upon received level. An 

example of the weighting factors changing over time is given in Figure 4.15. 

Figure 4.15 clearly shows an attempt to aid the transient response, or the '/k/' 

stop and the 'IS!, fricative, and limit the voiced vowel '/a/'. This can be viewed 

as loudness equalization across time periods, but the present Neurocompensator trial 

does not have look-ahead or look-behind in time capabilities, so it should not be able 

to return proper time adaptive auditory processing that is lost with sensorineural 
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Figure 4.15: Gain over time for several frequencies of the trial Neurocompensator 

hearing impairment. 
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Chapter 5 

Differences in Normal and 

Impaired AN Responses 

The results from Chapter 4 form a basis for understanding hearing aid processing 

as an attempt to re-establish normal neural firing patterns. Chapter 4 indicates the 

possibility of optimizing hearing aid fittings per hearing loss pathology offline. It was 

not successful in adding new algorithm classes into the sensorineural impairment lex­

icon. By constructing the tools, or machine learning framework, in line with previous 

paradigms no novel insight could be developed. This is linked to the problems with 

the intelligibility predictors, where the initial assumptions about stationarity belie 

the actual problem. 

In section 2.2, the reader was introduced to a large number of psychophysical mea­

sures that change with the advent of sensorineural hearing loss. This chapter hopes 

to integrate the root causes of the psychophysical symptoms, combining knowledge 

of important cochlear mechanisms and their effects on hearing in competing speech. 
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Due to the complexity of the problem this chapter remains largely theoretical to pro-

vide a foundation. Instead of continuing the assumption heavy intelligibility metric 

framework, this chapter derives novel insights into how the normal auditory periphery 

can parse difficult environments an order of magnitude better than the moderately 

impaired system in competing speech, and several orders of magnitude better then 

machine systems. 

The chapter focusses on the degradation of audio coding brought on by specific 

types of cochlear damage. This shows new ways of quantifying sensorineural impair-

ment, as it alters the neural coding of the acoustic environment. 

An acoustic signal is often represented with a spectrogram; figure 5.1 is an ex­

ample. This three dimensional representation (amplitude, time and frequency) is 

presented as an analogue to the AN representation. The cochlear processing that 

differentiates the AN representation from a spectrogram, namely compression, sup-

pression and adaptation, are discussed in relation to coding in amplitude, frequency 

and time domains, respectively. 

Figure 5.1: The 3-Dimensional representation of the auditory space that is fantas­
tically well coded by normal cochlear processing. The spectrogram used is for the 
TIMIT sentence "How much allowance do you get?" . 

Understanding the changes in encoding this multidimensional space brought on by 
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the loss of cochlear processing is fundamental in understanding hearing impairment 

as well as deriving new hearing aid algorithms. 

In section 4.2, the problem of applying machine learning to nonlinear hearing aid 

or automatic gain control algorithms has already been delineated with the simple 

description of neural coding and distortion. No time-constants, channel counts or 

compression rates improved the predicted intelligibility. Section 5.1 deals with the 

loss of the cochlear compressive nonlinearity in a novel context. The highlight of 

section 5.1 shows how the desired gain in a hearing aid algorithm to produce the 

closest AN match is not well described by the acoustic signal power. The loss of 

compression cannot be fully described without understanding consequences further 

up the auditory system, and so an adaptive compression scheme is derived in Chapter 

6. 

Section 5.2 continues with the impact of suppression. Suppression, in the simplest 

terms, reduces neighbouring frequencies discharge rates when a central frequency is 

stimulated. An interesting motivation for this decorrelating process is the conse­

quences on correlated firings (Hebbian mechanisms) in the auditory brain. In section 

5.2 the loss of suppression engenders strong correlations between frequency channels. 

The loss of contrast between frequencies from the loss of suppression also has a 

counterpart in temporal coding intrinsic to the loss of adaptation, especially fast adap­

tation. Section 5.3 highlights how onset adaptation is a powerful cue that highlights 

the first wavefront across frequencies. This temporal correlation across frequencies 

may be a key determiner to grouping frequency information. With the linearization 

that is a hallmark of sensorineural impairment this very important cue is lost, leading 

to deficits, not only in the hearing impaired person's ability to track temporal dips 

and the reduction of being able to use the first wavefront (a possible precursor to the 
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precedence effect), but also to combine information across frequency channels (impor­

tant for localization and dealing with reverberant environments). Hebbian learning 

dictates correlated firings are informative. This loss of correlated temporal-place 

firings may be important for describing many aspects of sensorineural impairment. 

By viewing the auditory system as a bottom-up processor [Allen, 1994] the goal 

of this chapter is to motivate new insights into what processes cause something to be 

intelligible, how the loss of these processes affects intelligibility, and lastly to motivate 

the development of new hearing aid algorithms (Chapter 6). 

An example of the discharge rate over time for a normal auditory nerve fiber, and 

a representative impaired auditory nerve fiber is in figure 5.2. The discharge rate of 

the normal auditory nerve is in blue, while the red curve is the impaired response (for 

loss profile #4 from figure 4.1) with NAL-R applied to the input acoustic waveform. 

, 
Time [sl 

- Impaired Response I 
~ Normal Response 

Figure 5.2: AN Response or discharge rate over time for the normal auditory nerve, 
and a representative auditory nerve for the TIMIT sentence" The dark, murky lagoon 
wound around for miles" at a BF of 750 Hz. 

Generally the maximum discharge rate between the curves looks the same, and 

the general shape looks similar. A notable exception being the speech silences are 

captured better by the normal AN response. On closer inspection some interesting 
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differences pop up. A zoomed in section of figure 5.2 of roughly 100 ms is given in 

figure 5.3. 
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Figure 5.3: A snapshot of the AN response from figure 5.2, loosely corresponding to 
the / a/ in "lagoon". 

It is evident in figure 5.3 that the normal and impaired AN responses are about 

the same level on average, but they have distinct temporal qualities. The normal 

response quickly builds up at onset, while the more linear impaired response has a 

peak which captures a variation in the input acoustic waveform. Also the offset is 

much more distinct in the normal response then the impaired one. How important 

these effects are and trying to quantify what is important on the auditory nerve forms 

the basis of the remainder of this Chapter. 
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5.1 Differences in Compression Responses 

Loudness recruitment (section 2.2.2) is often explained by an increasingly steep 

input level to rate function (rate-level function) brought on from sensorineural impair­

mentl. Most compression circuits in hearing aids are really based on this assumption. 

In reality, Heinz & Young [2004] show that this steeper rate-level assumption does not 

hold. In general the damaged AN fibers resulted in rate-level slopes shallower than 

normal for tones. This is a very new and exciting result, directly affecting the under­

standing of loudness recruitment, and in turn having huge implications on hearing 

aid compression circuits. 

Heinz & Young [2004] show discharge rate growth with sound level in the AN fibers 

of cats with noise induced hearing loss and a normal hearing, control group. They 

used a range of stimuli, including tones at an AN fiber's BF, fixed tones, broadband 

noise and a short eve "besh". These stimuli produce a range of responses in normal 

hearing cats, but one clear consistency between normal hearing and hearing impaired 

cats is there is a reduction in the range of responses for the hearing impaired cats 

over the stimuli set. 

The implied assumption in audition science is that loudness is proportional to the 

AN discharge rate, and the implied assumption in audiology is that hearing impaired 

people have steeper than normal discharge rates. This is almost always given as the 

reason behind loudness recruitment. Nonlinear hearing aid algorithms are predicated 

by this string of assumptions, but does not seem to hold in mammalian auditory sys­

tems. This important discrepancy is highlighted with the Heinz & Young [2004] data 

and the data replicated with the Bruce et al. [2003] model with a high spontaneous 

lThis section is based on Bondy & Bruce [2004bj. 
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Figure 5.4: Example of an impaired AN fiber for which rate-level functions are sim­
ilar for all frequencies. The normal hearing cats response is in the left column, the 
impaired fiber is in the right column. The top row is the tuning curve for the normal 
and impaired response. The three following rows are the rate-level response curves 
for the BF Tone, a broadband noise and the eve "besh", respectively. Thick lines 
are the linear regression lines and their corresponding slopes are in brackets. In the 
bottom row, the fricative response (dotted line) and vowel response (solid line) are 
broken out versus overall vowel level. The normal fiber had a 2.3 kHz BF, 15 dB SPL 
threshold, 68.6 sp/s spont rate and 3.4 QlO. The impaired fiber had a 2.3 kHz BF, 79 
dB SPL threshold, 68.0 sp/ s spont rate, and a QlO of 1.0. Figure 6 taken from Heinz 
& Young [2004] . 

Figure 5.4 shows how the growth slopes of the impaired response to each stimulus 

have less deviation than the normal responses. The typical impaired nerve fiber that 

ellicited this response was broadly tuned with a moderate to severe threshold shift. 

To check the connection between the AN response modeled and the Heinz & Young 

[2004] data the three stimuli from figure 5.4 were input into the Bruce et al. [2003] 
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model. The broadband noise was luckily a frozen noise to reduce randomness. Figure 

5.5 can be considered an extension of figure 5.4, with the two columns labelled normal 

simulated and impaired. 

I ~CZJFTone 
2 100 

'" a: 
°0 so 100 

StImulus Level dB SPL 

~ 200 Broadb 
CD 
~ 150 
Co 
~ 100 
.$ 

'" a: 

°0 50 100 
Stimulus LevelldB SPL) 

i :C2JFTone 
~ lOa 
CD 
1ii 50 
a: 

a a 50 100 

.,..200 

) 150 

~ 100 

Stimulus Level dB SPL 

~ SO~ ___ _ 

a: 

* SOr----­a: 
°0 50 lOa 

Stimulus Level [dB SPL] 

Figure 5.5: Example of the simulated impaired AN fiber rate-level functions. The 
three rows are the rate-level response curves for the BF Tone, a broadband noise 
and the CVC "besh", respectively. The normal auditory model produced slopes for 
the three stimuli of 8.1, 6.0 and 3.9/0.7 (low level slope over high level), while the 
impaired auditory model produced slopes of 7.4, 5.9 and 4.7/3.7. 

Another class ofrate-level functions were from nerve fibers that exhibited a growth 

of response that was shallower than normal. Heinz & Young [2004] says in general 

these impaired fibers generally still had a tight tuning curve, but exhibited a high 

threshold shift. This is generally thought to represent somewhat healthy OHC mech­

anisms, with highly impaired IHC mechanisms. Heinz & Young [2004] go on to say 

that this type of fiber is not only responsible for shallower responses, but can actu-

ally mimic normal rate-level operation. Figure 5.6 shows representative tuning curves 

and rate-level functions for the normal and impaired fibers that consistently produced 

shallower functions. The corresponding simulated AN response is in figure 5.7. 
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Figure 5.6: Example of an impaired AN fiber for which rate-level functions are shal­
lower than normal. The normal hearing cats response is in the left column, the 
impaired fiber is in the right column. The top row is the tuning curve for the normal 
and impaired response. The three following rows are the rate-level response curves 
for the BF Tone, a broadband noise and the eve "besh", respectively. Thick lines 
are the linear regression lines and their corresponding slopes are in brackets. In the 
bott om row, t he fricative response (dotted line) and vowel response (solid line) are 
broken out versus overall vowel level. The normal fiber had a 6.5 kHz BF, 25 dB SPL 
threshold, 0.4 sp/s spont rate and 7.5 QlO. The impaired fiber had a 6.3 kHz BF, 57 
dB SPL threshold, 0.3 sp/s spont rate , and a QlO of 7.6. Figure 7 taken from Heinz 
& Young [2004] . 
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Figure 5.7: Example of the simulated impaired AN fiber rate-level functions in an 
attempt to produce shallower than normal rate-level curves. The three rows are the 
rate-level response curves for the BF Tone, a broadband noise and the eve "besh", 
respectively. The normal auditory model produced slopes for the three stimuli of 6.4, 
9.2 and 2.5, while the impaired auditory model produced slopes of 6.0, 5.6 and 4.0. 
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Some impaired fibers that were generally shallower than normal also had a dis­

tinctive high level extremely steep response. They retained a great deal of dynamic 

range, for the 20 dB-30 dB range over threshold, then hockey sticked. 

The final possible change to rate level curves, were the steeper than normal rate-

level curves. Which were largely the result of medium spontaneous rate fibers with 

severely elevated thresholds and broad tuning. Figure 5.8 shows the tuning curves 

and steeper rate-level functions. Figure 5.9 shows the corresponding simulated fiber 

rate-level curve that is steeper then normal. 

There are many differences between normal and noise-induced hearing impaired 

rate-level curves, but to be useful for designing a single hearing aid compression 

circuit, these differences have to be consistent or their phenomenology must be un-

derstood. Table 5.18 shows the problems faced in dealing with returning a proper 

rate-level curve to the broadly tuned, hearing impaired AN. 

Stimulus Slope Nor mal Mild Moderate/Sever 
BF Tone Low-level 7.1 5.3 5.4 

High-level 2.2 2.2 1.7 
Broadband Noise Low-level 5.0 4.7 4.5 

High-level 1.6 2.5 
Relative 0.7 0.9 0.8 

Vowel Low-level 3.6 3.6 4.9 
High-level 1.6 2.6 
Relative 0.5 0.7 0.9 

Table 5.18: Summary of the effects of noise induced impairment on the response of 
AN rate-level 

The mild and moderate/severe responses are statistically shallower than normal 

at low levels. The vowel response was statistically steeper for the moderate/severe 

AN, and in the high level and relative slopes for the broadband noise condition for 
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Figure 5.8: Example of an impaired AN fiber for which rate-level functions are steeper 
than normal. The normal hearing cats response is in the left column, the impaired 
fiber is in the right column. The top row is the tuning curve for the normal and 
impaired response. The three following rows are the rate-level response curves for the 
BF Tone, a broadband noise and the eve "besh", respectively. Thick lines are the 
linear regression lines and their corresponding slopes are in brackets. In the bottom 
row, the fricative response (dotted line) and vowel response (solid line) are broken out 
versus overall vowel level. The normal fiber had a 1.6 kHz BF, 21 dB SPL threshold, 
8.1 sp/s spont rate and 2.6 QlO. The impaired fiber had a 1.3 kHz BF, 83 dB SPL 
threshold, 17.1 sp/s spont rate, and the QlO was undefined. Figure 9 taken from 
Heinz & Young [2004J. 
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Figure 5.9: Example of the simulated impaired AN fiber rate-level functions in an 
attempt to produce steeper than normal rate-level curves. The three rows are the 
rate-level response curves for the BF Tone, a broadband noise and the eve "besh", 
respectively. The normal auditory model produced slopes for the three stimuli of 7.1, 
5.3 and 3.4, while the impaired auditory model produced slopes of 7.4, 5.7 and 5.5. 
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mildly impaired fibers. The mild loss also produced a steeper relative slope. 

Explanations of several effects of sensorineural hearing loss (see Section 2.2) rely 

on steeper rate-level slopes after impairment. Heinz & Young [2004] show that rate­

level curves are often shallower, and suggest a phenomenology of IHC impairment to 

account for this unexpected result . Because of the importance of the IHC transfer 

characteristics in determining rate coding effects, it seems vital to account for IHC 

impairment in interpreting sensorineural impairment. 

Previously, it has been discussed that loudness is a function of the total rate of AN 

activity, if so, this interpretation has increased difficulty in dealing with the incon­

sistencies of rate-level curves with hearing impairment. Kiang et al. [1970] suggested 

that recruitment could result from the more rapid spread of excitation, but Heinz & 

Young [2004] says that broadened tuning does not have an appreciable effect on total 

AN activity. There are several other hypotheses for loudness recruitment, includ­

ing more central effects; auditory brain neurons show recruitment effects, possibly 

stemming from synaptic plasticity effects [Popelar et al. , 1987], and there is also the 

possibility that loudness is not a strong function of total average discharge rate. 

One thing that is certain is that compression algorithms in hearing aids cannot 

simply rectify the BM compression of the impaired cochlea. This is an advantage for 

the machine learning framework previously presented because it already has embed­

ded dependance on OHC and IHC impairment. 

Just hair cell impairment speaks to the complexity of re-establishing normal am­

plitude coding in the impaired ear. Even without considering stria vascularis atrophy, 

or higher level cognitive effects, including loss of efferent connections to the cochlea 

from auditory brain centers, there are a wide range of responses just in looking at 

stimuli and hair cell impairments. One common hypothesis on the reduction to the 
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range of slopes brought on by hearing impairment, is that feedback mechanisms me-

diate a response that matches rate-level growth to the acoustic environment. From 

the rate-level curves in figures 5.5, 5.7 and 5.9 this might not necessarily be the case, 

the Bruce et al. [2003] model does not include these feedback effects. Much of the 

variance between stimuli can be described by the difference between acoustic prop­

erties and hair cell impairment. To further illustrate this, the slopes for a range of 

inner and outer hair cell impairments were calculated for the three stimuli. Figures 

5.10, 5.11 and 5.12 are graphs for the tone, noise and "besh" stimuli, respectively. 

...... 
t 0-

I ... 
~ ~ . .... 

.. '" 
to 071 01 

i 
J 
I 

Figure 5.10: The rate-level growth slopes for a range of outer and inner hair cell losses 
and the tone stimulus. The regression plane slopes heavily uphill in the direction of 
outer hair cell loss, while increasing inner hair cell loss produces a greater range of 
responses, but not a consistent slope. 

153 



Ph.D. Thesis - Jeff Boody Mc:Master niversity - Electrical Engineering 

Grewf1 mo. I .. Nolle 
10.2 

i .... 
1·- J I 0 .. ! ~ ... J ... 

4.5 on •• 0" 0 ' 0 .. 0 
UIC _ .... _ 

Figure 5.11: The rate-level growth slopes for a range of outer and inner hair cell losses 
and the broadband noise stimulus. The regression plane slopes similarly to the tone 
stimulus, but shows a greater range of slopes. 
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Figure 5.12: The rate-level growth slopes for a range of outer and inner hair cell losses 
and the "Besh" stimulus. The regression plane slopes much more for IRe damage 
than the other stimuli, as well, there is much less difference in the amount of variation 
among the impairments. 
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The common hypothesis that sensorineural impairment causes steeper rate-level 

growth curves does hold on average. It must be considered, that the average response 

is not necessarily the best way to fit a hearing aid. It is speculated that the average 

pathology of sensorineural impairment hinges on outer hair cell damage. Figures 

5.13, 5.14 and 5.15 plot the resulting slopes for the tone, noise and "besh" stimuli, 

respectively, but only for ORC damage. 
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Figure 5.13: The slopes of rate-level growth for the tone stimulus, plotted versus 
ORC impairment. Slopes generally steepen versus increasing impairment, much in 
accord with accepted wisdom. More impairment results in a wider range of slopes. 
The green dotted line is the healthy cochlea slope, the red line is the linear regression 
line for all the different slopes and impairments. 
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Figure 5.14: The slopes of rate-level growth for the noise stimulus, plotted versus 
OHC impairment. Slopes generally steepen versus increasing impairment, much in 
accord with accepted wisdom. More impairment results in a wider range of slopes. 
The green dotted line is the healthy cochlea slope, the red line is the linear regression 
line for all the different slopes and impairments, 
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Figure 5.15: The slopes of rate-level growth for the "besh" stimulus, plotted versus 
OHC impairment. Slopes generally steepen versus increasing impairment, much in 
accord with accepted wisdom. More impairment results in a wider range of slopes. 
The green dotted line is the healthy cochlea slope, the red line is the linear regression 
line for all the different slopes and impairments. 
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Looking at the regression lines, all stimuli see steeper rate-level curves, but this is 

not necessarily the rule when IHC impairment is figured in. Several points are under 

the normal hearing slope. The relative increase in steepness for the broadband noise 

and the /besh/ stimuli are the same, and are both steeper than the tone increase. 

Again, OHC loss is often generalized as the cause of sensorineural hearing loss, and 

in turn, loudness recruitment from steeper rate level curves. As can be seen in the 

figures 5.16, 5.17 and 5.18 the resulting slopes for the tone, noise and "besh" stimuli, 

respectively, for IHC damage show no increase in steepness. 
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Figure 5.16: The slopes of rate-level growth for the tone stimulus, plotted versus IHC 
impairment. Slopes stay the same with increasing impairment, much in accord with 
accepted wisdom. More impairment results in a wider range of slopes. The green 
dotted line is the healthy cochlea slope, the red line is the linear regression line for 
all the different slopes and impairments. 
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Figure 5.17: The slopes ofrate-Ievel growth for the noise stimulus, plotted versus IRC 
impairment. Slopes stay the same with increasing impairment, much in accord with 
accepted wisdom. More impairment results in a wider range of slopes. The green 
dotted line is the healthy cochlea slope, the red line is the linear regression line for 
all the different slopes and impairments. 
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Figure 5.18: The slopes of rate-level growth for the "besh" stimulus, plotted versus 
IRC impairment. Slopes slightly steepen with increasing impairment, not predicted 
by presented theories. More impairment results in a wider range of slopes. The green 
dotted line is the healthy cochlea slope, the red line is the linear regression line for 
all the different slopes and impairments. 
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Interestingly, the "besh" stimulus is the only stimulus that shows appreciable 

gains in steepness. The appreciation in slope is five times less than seen with ORC 

impairment, and may arise from the statistical nature of the synapse model used or 

the automated computation of slope. 

The steepening of the rate-level slopes used so often to explain loudness recruit­

ment does not hold for all hearing loss pathologies. It would be a mistake to build 

hearing aid technologies on using the mean results from such a varied population. 

Noise induced hearing impairment generally damages ORCs more than IRCs, so the 

mean results do hold with the above simulation, but many novel insights are also 

brought to light. In general hair cell pathology can account for a wide range of 

rate level curves seen across different stimuli, without resorting to cognitive function, 

or brain feedback. A hearing aid compression circuit may need to understand the 

depths of this pathology to properly restore level perception. This would be further 

confounded with changes in a population of neurons, including the changes in thresh­

old and spontaneous rate that are incumbent in sensorineural impairment Liberman 

& Dodds [1984b]. The changes in amplitude coding brought on by stimulus types 

may also drive hearing aids that intelligently make use of the acoustic ecology. 

5.1.1 Simulation Experiments 

To extend the above description of the complexity in dealing with loss of cochlear 

compression, there is an obvious need for a deeper understanding of how the rate­

level function changes under sensorineural impairment. The first experiment to derive 

optimal gains over input powers for various stimuli used the TIM IT database [TIMIT, 

1990]. The simulated loss profile used for this test is #4 from figure 4.1. The goal 

was to see what a complex loss of both IRC and ORC required to return the normal 
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AN rate response, and could a general gain rule be made for a specific loss. 

To do this the acoustic input was separated into 25 bands. There were 10 bands 

of equal bandwidth under 1000 Hz, and then 15 bands spaced 1/6th an octave for 

frequencies above that. The AN response was derived for a fiber with a BF at the 

center of each of the acoustic bands. The speech was normalized to 65 dB SPL before 

the Wiener & Ross [1946] outer ear transfer function was applied. 

The initial gain before the impaired model was NAL-RP, as described in section 

4.1. The optimal gains in the 25 channels were derived by adjusting the gains by 0.5 % 

over 500 iterations. Optimality was defined as producing the closest correspondence 

between the normal and impaired mean firing rates. 

The mean firing rates were calculated by removing phase locking effects through 

taking the envelope of the AN response. The envelope was calculated through the lin­

ear interpolation between the peaks brought on by synchrony. The mean rate is then 

the average of this vector. While not precisely the mean rate, because this removes 

the off periods brought on by the IHe gating channel mechanism, it is monotonically 

related to the mean rate. That is, when comparing two mean rate vectors, the real 

mean rate of the discharge rate vector is larger when this measure is larger. 

The gain was not calculated for one specific sentence, but rather for each of the 

phonemic segments in each sentence. TIM IT [1990] has been hand segmented into 

63 phonemic categories that correspond to steady state spectra, and for the purposes 

outlined here correspond to approximately steady spectra. 

The calculation of the mean rate then has two major sources of error. The first 

is that the response during a phonemic interval is somewhat altered by the acoustic 

signal preceding it , or the forward masking effect. The second is adaptation, espe­

cially fast onset adaptation biases the mean positively for the normal response, but 
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adaptation is different in the damaged cochlea. This effect has a time constant of 

roughly 2 ms. These two sources of error are not important in the longer phonemic 

intervals. 

The above experimental setup produces instantaneous gain changes at phonemic 

boundaries. To a listener's auditory system this would result in large pops, clicks, or 

overall frequency distortions. This experiment was designed to simulate the amplitude 

coding characteristics of the auditory system; temporal coding will be discussed in 

section 5.3. 

For the TIMIT, "SX" training data, each phone segment has it's SPL calculated 

for each frequency band and then the gain in dB (versus NAL-RP, ie. if the optimized 

gain is equal to the NAL-RP prescription then gain = 0 dB) is plotted versus the 

input SPL. Each point in Figure 5.19 represents the gain for one frequency channel 

for one phonemic segment. 

Gain suggested by the AN response in relation to input power 

.. 
. ' . 

Figure 5.19: Scatter of optimal gains in different channels for the TIMIT "SX" data­
base. 

Obviously from the above graph, the mode response is a little over 0 dB, but the 

mean response is zero. An interesting result is the spread in the data. It seems that 
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there is not a strong correlation between input power and optimal gain required to 

reestablish normal firing rates in a complex but completely realistic hearing loss. 

If there is little correlation between short term input powers or syllabic SPL and 

required gain, what should hearing aid circuits use to drive their nonlinear processing? 

Is this the reason that there is little or no intelligibility gain from these circuits? To 

try to answer this very important question, the data from figure 5.19 can be broken 

out by frequency to see if there is a consistency between the spread of desired gains 

and the type of loss. The histograms for gains over NAL-RP versus input SPL were 

calculated for 25 frequency channels. To keep some level of compactness, only the 

channels centered on 250, 1050, 2200 and 2750 are shown in figures 5.20, 5.21, 5.22 

and 5.23, respectively. 

Figure 5.20: Gain over the standard NAL-RP prescription versus input power re­
ported in DB RMS when the input signal is 65 dB SPL. This is the gains in a single 
frequency channel centered at approximately 250 Hz. 
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Figure 5.21: Gain over the standard NAL-RP prescription versus input power re­
ported in DB RMS when the input signal is 65 dB SPL. This is the gains in a single 
frequency channel centered at approximately 1050 Hz. 
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Figure 5.22: Gain over the standard NAL-RP prescription versus input power re­
ported in DB RMS when the input signal is 65 dB SPL. This is the gains in a single 
frequency channel centered at approximately 2200 Hz. 
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Figure 5.23: Gain over the standard NAL-RP prescription versus input power re­
ported in DB RMS when the input signal is 65 dB SPL. This is the gains in a single 
frequency channel centered at approximately 2750 Hz. 
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There is still quite a spread in any single frequency channel. The marginal dis-

tributions, dependent upon input power in a channel are given in figures 5.24 - 5.27. 

Obviously, the previous scatter plots describe a complex stochastic process that might 

have a more discernable mode. 
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Figure 5.24: Marginal distribution of the gains over the standard NAL-RP prescrip­
tion versus input power reported in DB RMS when the input signal is 65 dB SPL. 
This is for the frequency channel centered at approximately 250 Hz. 

There is an interesting bimodality in these curves: one distribution looks tightly 

formed and centered with a gain above the NAL-RP prescription and the other cen-

tered well below the NAL-RP prescription and increasingly broad as frequency in­

creases. The process making the broadly tuned mode was conjectured to be tied to 

the spread of masking; all the points from this distribution are attenuating, so it 

was conjectured that other frequency channels were responsible for excitation spread. 

Since the gain optimization for a channel was tied to the difference between overall 

excitation and the difference between the normal and impaired rate in that channel, 

spread of excitation would result in the gain being decreased in a channel without 

effecting the overall excitation. Because of the randomness of speech and the opti-

mization process, negative gains in a channel with spread of excitation would become 
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Figure 5.25: Marginal distribution of the gains over the standard NAL-RP prescrip­
tion versus input power reported in DB RMS when the input signal is 65 dB SPL. 
This is for the frequency channel centered at approximately 1050 Hz. 
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Figure 5.26: Marginal distribution of the gains over the standard NAL-RP prescrip­
tion versus input power reported in DB RMS when the input signal is 65 dB SPL. 
This is for the frequency channel centered at approximately 2200 Hz. 
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Figure 5.27: Marginal distribution of the gains over the standard NAL-RP prescrip­
tion versus input power reported in DB RMS when the input signal is 65 dB SPL. 
This is for the frequency channel centered at approximately 2750 Hz. 

increasingly random. Combined with the asymmetry in the spread of masking this 

means that high frequency channels are more likely to be captured by off channel 

signals. 

The second distribution is a little more informative, it has much less spread at 

all frequencies, and correlates input and output power. Figures 5.28 to 5.31 plot the 

points that required gains above NAL-RP to equalize loudness. 

This was the first machine learning experiment that successfully calculated com-

pression characteristics, as the increasing compression rates match empirical data on 

intelligibility quite well. The compression ratios mimic empirical data, the larger the 

impairment, the higher the compression ratio is. Also, the compression ratio does 

not begin to elevate until well after the knee point of the loss profile. A second 

point is that compression is not the principle mode for the excitation optimization, 

attenuation is. Typically, the impaired auditory system sees too much activity: in-

telligent attenuation of frequency channels improves the neural representation and 

could possibly improve intelligibility. 
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Figure 5.28: For the frequency channel centered at approximately 250 Hz there was a 
light compression where gain shrank at 1.3 dB per dB of input power, over the entire 
range of speech tested. 
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Figure 5.29: For the frequency channel centered at approximately 1050 Hz there was 
a light compression where gain shrank at 1.13 dB per dB of input power, over the 
entire range of speech tested. 
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Figure 5.30: For the frequency channel centered at approximately 2200 Hz there was 
a light compression where gain shrank at 1.88 dB per dB of input power, over the 
entire range of speech tested. 
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Figure 5.31: For the frequency channel centered at approximately 2750 Hz there was 
a light compression where gain shrank at 2.09 dB per dB of input power, over the 
entire range of speech tested. 
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5.2 Differences in Suppression Responses 

The second audio coding dimension discussed in this chapter will be how the 

auditory periphery codes frequency2. While the many processes in the cochlea all 

overlap and have some importance in the frequency domain, the particular nonlinear-

ity focussed on in this section is suppression. Most, if not all, hearing aid algorithms 

consider the loss of the suppression mechanism through sensorineural impairment to 

be negligible, while it is the assertion of this dissertation that not only is suppression 

keenly important, its effect on the frequency representation in the auditory brain can 

be clearly delineated through audio coding foundations. 

Suppression is often glossed over because it changes the gain so little in comparison 

to compression. While compression can induce 50 to 60 dB of swing in cochlear gain, 

suppression accounts for small bands to either side of a suppressor and is often only 

a few dB. Figure 5.32 shows the limited amount of frequencies and amplitudes that 

are affected by the suppression mechanism. 
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Figure 5.32: The highlighted areas are the range of frequencies and levels that are 
suppressed by a tone at the peak. 

2This section is based on Bondy & Bruce [2004aJ. 
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In the simplest terms possible, as the suppressor tone's level increases, it pushes 

down the AN response of neighbouring fibers. This describes a decorrelative process, 

which begs to understand suppression under the audio coding paradigm. This is 

an expansion of the introductory material on information theoretic coding given in 

section 5.1. It has previously been touched upon that the input-output relationship 

of the biological coding mechanism is based on function (hypothesized for high and 

low spont rate fibers) or theoretically defined by the statistics of its environment; 

optimally corresponding to the cumulative distribution function [Barlow, 1961]. The 

extension of this is that when coding the environment, the statistical redundancies 

should be minimized across channels. In the case of the cochlea, the frequency domain 

is separated into different AN fibers , each being a different frequency channel, often 

called the place coding theory of the cochlea. 

Getting back to the impact on coding done by the cochlea, each IRC attaches 

to the auditory nerve and which in turn innervates the auditory brainstem. There 

are conservatively, 4000 IRCs with 10 to 20 nerve fibers innervating each one, each 

spiking up to 250 spikes/second (say on average 90), with each spike having somewhere 

between 3 to 8 bits of information [Rieke et al., 1997], so playing conservatively that's 

about 13Mbps (4000x10x90x3) for one ear into the auditory brainstem. This is only 

about two to three times less then the information throughput of the earliest stage 

of the vision system. There is a point to be made that if this information is highly 

redundant, then a lot of the brain's time is spent dealing with repetitive information. 

The theory behind the above derivation is that for optimality, the information 

coded by each filter/frequency channel along the cochlea should be statistically in­

dependent. In most mammalian ears, broadly tuned, high frequency responses are 

located at the basal end of the cochlea, and decrease in frequency and bandwidth 
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by progressing towards the apical end of the cochlea. The actual tradeoff between 

frequency and bandwidth is sublinear. Wavelet decompositions have linear frequency-

bandwidth tradeoffs. In the biological case the lower frequency filters have a lower Q 

value (center frequency over bandwidth) than the higher frequency filters. 

The question is then: does the empirical evidence of BM tuning correspond to 

the statistically optimal filters derived above? By applying the learning rule from 

independence maximization to a general filterbank and adapting the filterbank to 

make the outputs non-redundant and sparse, will the derived filterbank follow the 

empirical? Lewicki [2002] showed that the optimal filterbank does indeed follow 

biological data; results are shown in figure 5.33. 
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Figure 5.33: Filterbank derived by Lewicki [2002]. In A the top row shows three vec­
tors from the A matrix, underneath them are the corresponding frequency responses. 
The top row of panel B has recorded AN response , revcor kernels, plotted versus the 
derived filterbank. 

The optimally computed bases have progressively better Q factors as CF increases, 

matching the empirical measured curves quite well. Lewicki's work closely coincides 

with empirical data, and thus some statistical basis for evolved mechanism can be con-

jectured. The filterbank implementation of the auditory periphery may have evolved 

for redundancy removal, and higher brain centers might then "learn" by independance 
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maximization approaches. It is clear that there is temporal and frequency localization 

for a filterbank that optimally encodes speech, which matches the biological system. 

5.2.1 Simulation Experiments 

How does sensorineural impairment affect the optimality of the filter bank; and 

how does suppression directly effect the coding of the auditory environment? The 

above derivation motivates looking at the loss of independence in place coding as cen-

tral to understanding aspects of sensorineural impairment: a simpler form is needed 

to be usable however. In the simplest form, information is maximized if the joint 

distribution can be factorized by the constituent distributions, 

n 

P(Cxx ) = IIp(xi) (5.32) 
i=l 

where Xi is the discharge rate over time for the ith AN fiber. Using the entire acoustic 

ensemble and each AN fibers distribution is intractable, independence would be im-

possible to calculate. Instead, one can look to see how the normal and the sen­

sorineural impaired auditory periphery decorrelates the activity on the AN. This is 

much simpler, because decorrelation can be achieved with a simple linear transfor-

mation. 

Correlations are captured by the auto-covariance matrix, it is a simple 2nd order 

statistic that along with the mean produces sufficient statistics for gaussian distribu-

tions. While the AN rates are not Gaussian in speech, the covariance matrix is still 

the best estimator of the volume of the distribution. Equation 5.33 is the covariance 

calculation, with X representing the discharge rates over time vectors for an ensemble 

of fibers. 
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(5.33) 

Equation 5.33 is a simple transformation of the autocorrelation matrix, which 

contains the same information, or more precisely, 

Rxx (i .) = CXX (i,j) 
,J JCxx (i, i) Cxx (j,j) 

(5.34) 

Figure 5.34 is the covariance matrix of a syllable when it is split into 25 separate 

frequency channels, with filters mimicking the distribution and bandwidth of the 

auditory system. There were 10 bands of equal bandwidth under 1000 Hz, and then 

15 bands spaced 1/6th an octave for frequencies above that. The AN response was 

derived for a fiber with a BF at the center of each of the acoustic bands. The speech 

was normalized to 65 dB SPL before the Wiener & Ross [1946] outer ear transfer 

function was applied. The van Son et al. [2001] corpus was used as a preliminary test 

set. 

Acoustic Covariance 

550 1068 1B17 3055 5138 
Best Frequency 

Figure 5.34: An acoustic covariance matrix for the syllable "bak". 

It's obvious from Figure 5.34 that a linear filterbank devised to follow the cochlear 
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representation has limited, yet appreciable correlations in adjacent channels. With 

nonlinear suppression, the covariance matrix produced with the discharge rates in the 

normal auditory periphery shows a reduction of the adjacent channel correlations at 

low frequencies, as seen in figure 5.35. 

Normal Auditory Nerve 

1068 1817 3055 5.38 
Best Frequency 

Figure 5.35: The discharge rate covariance matrix for the syllable "bak" from a normal 
auditory model. 

From figure 5.35 there are across channel correlations from the production mech-

anisms and the timing of speech. A normal hearing person can reduce these, largely 

with the decorrelative, suppression mechanism, while the hearing impaired person 

must deal with correlations, such as those in figure 5.36. 

While some of these correlations come from broadened tuning of neural fibers, the 

adjacent channels are now almost representing the same information, their correlation 

factors are approaching one. This is going to be important on two fronts. The 

first, is that if the impaired auditory system is encoding the same information on 

multiple channels with the same rate of information, then this redundancy reduces 

the salient information that higher brain centers can use for processing. The second, 

more interesting problem, stems from the consequences from Hebbian learning. A 
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Impaired Auditory Nerve 

550 1068 1817 3055 5138 
Best Frequency 

Figure 5.36: The discharge rate covariance matrix for the syllable ··bak·: from a 
sensorineurally impaired auditory model. 

system built on the assumption of promulgating correlated activity, will therefore 

pass these meaningless correlations as important. 

5.3 Differences in Adaptation Responses 

An increase in a stimulus' level results in the discharge rate of an AN fiber quickly 

incrementing, well over the steady state response. After the initial maximum is 

reached there is a more gradual decay to the steady state level3 . This effect is called 

adaptation and is actually several different processes combined. These processes have 

different time constants, the largest adaptation rates decay in 2 ms and about 40 ms, 

the fast and medium adaptation processes (other effects can be several seconds). On 

the flip side, a decrease in stimulus level results in the AN response becoming greatly 

depressed, much less then the steady state response for about the same time periods. 

Since the AN discharge rate is a positive only count, this leads to a asymmetry in the 

3This section is based on Bondy & Bruce [2005]. 
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onset and offset response, effectively the off or decrement response inhibits firing for 

an extended amount of time [Nelson & Carney, 2004]. 

There is some research suggesting adaptation arises at the IHC synapse. Some 

data does not show nonlinear growth and decay of the membrane potential leading to 

the Westerman & Smith [1988] or "three pool" adaptation model used in Bruce et al. 

[2003]. Nelson & Carney [2004] later improved on the model to take into account 

the asymmetry in increment and decrement response. Interestingly though, many 

mammalian species have now been shown to have adaptation processes intrinsic to 

the IHC, prior to the synapse [Choe et al., 1998; Manley et al., 2001; Fettiplace & 

Ricci, 2003]. And while the auditory modelling done by Bruce et al. [2003] relies 

on the synapse only adaptation, in reality there is a change to membrane potential 

incumbent upon sensorineural impairment. The hair cell gain function in the normal 

auditory model is a saturating nonlinearity that with damage becomes more linear, 

thus empirical data points to the IHC having some gain function. This in turn affects 

adaptation by reducing the size of a differential that is the input into the three pool 

adaptation model. Less differential means less adaptation; adaptation is a function 

of both levels to either side of the discontinuity, as well as frequency. 

Adaptation has been suggested as an enhancement to the neural representation of 

rapid intensity transients; those that are perceptually important in speech and music. 

Additionally, this chapter makes a case for the fast adaptation responses to be key to 

segmenting acoustic cues. 

Figure 5.37 is the envelope of the AN response made by linearly interpolating be­

tween the peaks in the synchrony response ofthe 750 Hz simulated fiber. The stimulus 

was a TIMIT sentence, while only the response for the vowel /a/ is emphasized. 

Clearly there is a large difference at the start of and end of this segment. The 
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Figure 5.37: The envelope of the AN responses for the normal and impaired auditory 
periphery from figure 5.3. 

normal AN response peaks very quickly after the phonemic segment change and then 

has very evident rate suppression at the end of the phonemic segment. Contrast this 

to the more linear response that the impaired response shows, where the peak in the 

response is actually capturing a variation in spoken level, and is not consistent with 

the phone boundary. 

This chapter focuses on fast onset adaptation as a marker for changes in the 

acoustic stimulus brought on by the phonetic structure of speech. For unvoiced 

sounds, or fast consonants, high CF fibers produce the majority of adaptation peaks, 

and voiced sounds elicit the adaptation spike in lower CF fibers. The novel interpreta-

tion is that onset adaptation not only enhances the representation of rapid transients 

in speech, but it is a key mechanism in the grouping of auditory stimuli in time at 

different frequencies. The normal ear correlates firings across frequencies for onsets 

in a very small time window, giving Hebbian cues that can be used to reduce entropy 

in higher auditory brain centers. 

Gockel et al. [2003J produced an interesting insight into how important it is for an 

auditory stimulus to have its frequency components "lined up" in time, or that its first 
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wavefront is "in phase". They matched the loudness and masking response for three 

stimuli with varying degrees of phase alignment. The base stimulus was a harmonic 

tone complex with the various frequency components added in phase (CPH). This 

produced a high trough to crest ratio. The next stimulus was again a harmonic tone 

complex, yet this time with the various frequency components added with random 

phase (RPH). This produced a much smaller trough to crest. The final stimulus was 

noise, with the same bandwidth as both tone complexes (Noise). 

5.3.1 Fast Adaptation on Normal ANs 

Figure 5.38 highlights the results of a loudness matching experiment between the 

three stimuli. The tone complexes had a fundamental frequency of 62.5 Hz, and were 

filtered to between the 10th harmonic (625 Hz) and 5 kHz. In this experiment from 

Gockel et al. [2003], the control stimulus was played, then one of the remaining two 

classes was played. The second class was adjusted in RMS level until the subject 

concluded that each stimulus had equal loudness. Figure 5.38 plots the difference in 

RMS between the stimulus at equal loudness. 
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Figure 5.38: Figure 2 from Gockel et al. [2003]. Each plot is the dB difference 
between the RMS levels of a stimulus pair versus the control level. The first stimulus 
in the pairing is the one that needed gain. Open circles, upper pointing triangles and 
lower pointing triangles represent when the noise, CPR, and RPR was varied in level, 
respectively. The solid line is the average of the two control cases for each stimuli 
pair. 
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At all control levels, subjects were biased towards setting the variable stimulus at 

a level higher than required for equal loudness. This is typical of loudness matching 

experiments, and this bias decreased with increasing level. Interestingly, for the same 

RMS level, the CPR stimulus was louder then both the Noise and RPR stimuli . In 

fact, the RPR and Noise stimuli show close proximity, only needing about 2 dB gain 

in the Noise stimulus. In general the CPR stimulus is much louder at equivalent RMS 

levels than the RPR and Noise stimuli, while the RPR and Noise stimuli are about 

the same. 

While it is not news that the average loudness model is inaccurate, the amount 

of fine timing information that affects loudness is. Another newsworthy illustration 

that came out of Gockel et al. [2003J was the differences in forward masking the three 

stimuli showed. Most masking models are predicated on louder stimuli producing 

more masking. 

Figure 5.39 sums up a forward masking experiment carried out in Gockel et al. 

[2003]. In the experiment, a 208 ms masker of one of the three stimuli was used 

to forward mask a tone pulse. The tone was chosen from the set of 702 , 1114, 

1768, 2806 and 4454. Average forward masking for the RPH and Noise stimuli was 

approximately equal , showing similarities to the loudness experiment. Not consistent 

with the loudness experiment was that the CPR stimulus was a less effective masker 

then either the Noise or RPR stimulus. 

Obviously, there is an enormous deficit in the ability of the CPR stimuli to mask 

a signal. Strangely, the loudest stimulus is the weakest masker. This may mimic 

sensorineural hearing loss, which shows unusual loudness growth that cannot be ac­

counted for with excitation modeling, and intrinsic masking whose psychophysics 

quantities are well in excess of excitation modeling. It may be that these models do 
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Figure 5.39: Figure 6 from Gockel et al. [2003J. The average gain that had to be 
applied to the CPH masker to make it as effective as the Noise or RPH maskers 
plotted versus the necessary level of the CPH masker. The five lines represent the 
five masked tones pulses from the legend. 

not take into the temporal qualities of the auditory system. Specifically most excita­

tion experiments have been done with the linearized Patterson et al. [1988J auditory 

model, a model without the active gain and segmentation mechanism of adaptation. 

5.3.2 Simulation Experiments 

What does happen when adaptation is taken into account with the three stimuli 

from Gockel et al. [2003]7 And, is there a connection between these classes of stimuli 

and the problems associated with sensorineural hearing loss? To answer the first 

question, one begins with looking at the particulars of the stimuli. Figures 5.40, 

5.41 and 5.42 are the amplitude-time graphs of the CPH, RPH and Noise stimuli, 

respectively. 

Clearly, the CPH stimulus has much more temporal information than the other 

two, but the RPH stimulus also can be considered to have more than the Noise 
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Figure 5.40: The CPR stimulus has a very large trough to crest because of the 
harmonic periodicity. 
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Figure 5.41: The RPR stimulus trough to crest is greatly reduced. Depending on the 
randomization of the tones in the complex this number can change. 
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Figure 5.42: The Noise stimulus does not have a particular periodicity, but i maxi­
mum amplitude is on average quite close to the RPH stimulus. 

stimulus. To see how a linear filterbank analyzes the components figure 5.43, 5.44 

and 5.45 show the spectrograms of the raised cosine onset ramp along with several 

milliseconds of the steady state stimulus. 
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Figure 5.43: The CPH spectrogram. When all the tones in the complex are in phase 
the maximum value is very evident. 

Here the temporal qualities of each frequency channel are more or less apparent. 

Because a linear frequency decomposition, by the FFT, makes an essential tradeoff 
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Figure 5.44: The RPR spectrogram. The complex lacks the beat rhythm of the CPR 
tone, but still retains some pulsing behaviour 
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Figure 5.45: The Noise spectrogram has no pulses because it lacks any semblance of 
a comb spectrum. 
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between temporal and frequency resolution there is some uncertainty in this repre-

sentation. This can minimally be overcome with a wavelet-like decomposition, but 

the auditory system seems to be able to analyse frequencies and process them within 

one half of the excitatory phase of an acoustic stimulus. That is to say, that the 

necessary quantities that provide distinction between the Gockel et al. [2003] stimuli 

are not well analyzed with normal auditory analysis tools. If instead one looks at 

the neurogram response of the stimuli using the fully nonlinear Bruce et al. [2003] 

model the resolution shows very interesting detail. Figures 5.46, 5.47 and 5.48 are 

the neurograms replicating the spectrogram figures, above. The heterogenous rates 

are plotted in 8 ms windows. Because of this windowing, there is almost no differ-

ence between these three figures. This one of the important factors in dealing with 

sensorineural impairment, simply by windowing information is lost. 

CPH 

0.4 05 0.6 0.7 0.8 
Time [s] 

Figure 5.46: The CPH Neurogram. Adaptation has greatly emphasized the onset, 
with the Neurogram reacting to the raised cosine onset ramp. 

This raised the question of what type of analysis could be done on the nonlinear 

neurograms that could emphasize the onset differences. By using the poisson point 

186 



Ph.D. Thesis - Jeff Bondy McMaster University - Electrical Engineering 
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Figure 5.47: The RPH Neurogram. Adaptation has again emphasized the onset, but 
unlike the CPH Neurogram, or the spectrogram, there is a loss of coherence at the 
input. Because of the spectro-temporal resolution tradeoff of the FFT, there is some 
"smearing" in time, making differences in onsets that the normal auditory system 
picks up upon lost with inaccurate analysis. 
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Figure 5.48: The Noise Neurogram looks startling similar to the RPH neurogram. 
The similarities showing far clearer than linear spectro-temporal analysis, and giving 
a clear connection why both stimuli react the same in psychophysical experiments. 
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process approximation of the spiking process, with randomization of the phase align-

ments for the RPR stimulus and random Noise stimulus the maximal AN response 

was determined. The highest probability of AN response, taking into account spiking 

properties shows much more difference than the neurograms. Figures 5.49, 5.50 and 

5.51 are the probability distributions that the maximal spiking probability occurs at 

a specific time. 

CPH 

0.12 0.14 0.16 016 
Time[sj 

Figure 5.49: The CPR probability of maximal response. Adaptation has greatly 
emphasized the onset, differentiating it from the RPR and Noise stimuli. 

The Noise and RPR maximum onset responses are almost indistinguishable, while 

the CPR response is sharper with less probability of having the maximum captured 

by acoustic or neural randomness. Fast adaptation produces a more specific indicator 

of where an onset occurs for the CPR stimulus. Figure 5.52 shows the probability 

mass function (pmf) of the three stimuli. Entropy is often used to quantify how well 

a pmf describes an event. Entropy is 

N 

H(N) = - L P (w) log2 P (w) (5.35) 
w=l 

The entropy of an ensemble N, is the negative sum of the probabilities of each event in 
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Figure 5.50: The RPH probability of maximal response. Adaptation has less of an 
effect on the onset, producing a maximal onset response very similar to the Noise 
stimulus. 
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Figure 5.51: The Noise probability of maximal response. Adaptation has less of an 
effect on the onset, producing a maximal onset response very similar to the RPH 
stimulus. 
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the ensemble. A uniform distribution has maximum entropy, while the deterministic 

distribution has zero entropy. 
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Figure 5.52: The maximal onset response for the CPH, RPH and Noise stimuli used 
in Gockel et al. [2003J. The CPH has far less entropy then the RPH and Noise stimuli , 
which are approximately equal. 

If the auditory system is able to key on the fast adaptation marker imprinted on 

the AN response, it would have no problem coding the CPR marker. It is a lower 

entropy source, as shown in figure 5.53 

A low entropy feature is less susceptible to noise, and since the brain reduces 

entropy as sensory input is processed to higher levels, it is much easier to code and 

group without losing information. The probability distributions for the onset char­

acteristics of the randomly phased tone complex and the noise are strikingly similar, 

to the extent that they can provide a qualitative answer to the similarities in the 

psychophysics. 

Onset characteristics came up several times in the discussion of the symptoms of 

psychophysics in section 2.2. They included the problems the sensorineurally impaired 

have with using the precedence effect, the deficit they see in reverberation and overall 

dealing with the competing speech that may arise from the inability to segment the 
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Figure 5.53: (Top) The standard deviations in the maximal response of the CPR, 
RPR and Noise stimuli used in Gockel et al. [2003]. (Bottom) The CPR stimulus has 
far less entropy then the RPR and Noise stimuli, which are approximately equal. 

acoustic environment properly. The connection to Gockel et al. [2003] is that, while 

the normal ear nicely highlights onset cues and parcels the time-frequency plane, the 

loss of adaptation diminishes the ability to correctly landmark changes in spectral 

content. Since voiced speech is made from harmonic complexes, the spectral onsets to 

voiced speech in the normal auditory system with strong adaptation response will be 

aligned like the CPR stimuli making it a stronger cue for combining information across 

frequencies. With the diminished adaptation response brought on by sensorineural 

impairment, the onset burst may not occur at the same location across frequencies, 

making the impaired auditory systems onset representation naturally similar to the 

RPR or Noise stimuli. Compounding the loss of adaptation is that hearing aids reduce 

the trough-to-crest ratios because of high frequency amplification. 

To illustrate this hypothesis the onset representation was calculated from the AN 

response of the TIMIT 'SX' training sentences over the 8 different regions for each 

phonemic class. The AN representation was calculated through the Bruce et al. [2003] 

model for a normal hearing auditory system and for losses like those used in Byrne 
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et al. [2001]. The impaired auditory system had NAL-RP applied before being input 

into the model. A set of spectro-temporal response functions (STRFs) were made 

following the process in section 4.2.1. In short this set of STRFs were differential 

operators with different temporal passbands, following from 

(5.36) 

Unlike section 4.2.1, CKl and CK2 were selected to pass a range of temporal modulation 

from sub-millisecond to 20 ms. A range of responses is shown in figure 5.54. 
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Figure 5.54: A snapshot of the temporal integrators used to probe differences of 
onsets encoded on the normal and impaired AN. The dark blue are faster than fast 
adaptation, and the dark red are slower but still faster than syllabic integration. 

These integrators show the largest variance of AM information as measured by 

entropy. To produce the pmf used to calculate entropy, the dynamic range after an 

integrator was applied to either the normal or impaired AN was adjusted to 30 equally 

spaced rates. Figure 5.55 details the resulting average entropy for the TIMIT 'SX' 

training corpus. 

The fast adaptation marker seems to lose a lot of its information with hearing 
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Figure 5.55: Both the Normal AN entropy rate (blue) and the Impaired AN entropy 
rate (red) peak around 2 ms, in line with fast adaptation being a very informative 
marker. The 2 ms marker is also the point where the Normal AN has the largest 
advantage over the Impaired AN, the difference between the two rates is in green. 

impairment. Consistent with psychophysical experiments which show slow AM dif-

ference limens being relatively similar in normal hearing and hearing impaired, if the 

above graph was extended to slower rates, both entropy rates would become equal. 

Since the fast adaptation marker is capable of providing the most information, it 

was studied further. The 2 ms STRF was then applied to the TIM IT "SX" corpus 

as detailed above. In a phonemic class an adaptation peak was identified as any rate 

more than three standard deviations above mean rates with zero rates discarded for 

that particular phone slice. AN responses are not Gaussian (they are much more 

compact), so the percent activation was much less than 0.1 %, instead of about 1 % 

if AN responses were Gaussian. This produced figures 5.56 to 5.59. 

What is extremely interesting in figures 5.55 to 5.59 is that the normal cochlea 

encoded a feature much more robustly, with a lower entropy of representation, in a 

high entropy dimension. The only way for this flip-flop to occur is if the nonlinearity 

in the healthy cochlea is specially suited to robustly encode onset statistics. 
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Figure 5.56: Four probabilities versus time from labelled marker of maximal adapta­
tion response for a soft a. The top left graph is low frequency, top right is a higher 
frequency, the bottom left is even higher and the bottom right is the highest fre­
quency. The blue curve is the normal cochleas response, red is for a ski-slope loss and 
the green curve is for a 60 dB fiat loss. The number in the legend is the entropy of 
the corresponding curve. 
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Figure 5.57: Four probabilities versus time from labelled marker of maximal adap­
tation response for a nasal, jn;' The top left graph is low frequency, top right is a 
higher frequency, the bottom left is even higher and the bottom right is the highest 
frequency. The blue curve is the normal cochleas response, red is for a ski-slope loss 
and the green curve is for a 60 dB fiat loss. The number in the legend is the entropy 
of the corresponding curve. 
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Figure 5.58: Four probabilities versus time from labelled marker of maximal adapta­
tion response for the closure proceeding p. The top left graph is low frequency, top 
right is a higher frequency, the bottom left is even higher and the bottom right is 
the highest frequency. The blue curve is the normal cochleas response, red is for a 
ski-slope loss and the green curve is for a 60 dB fiat loss. The number in the legend 
is the entropy of the corresponding curve. 
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Figure 5.59: Four probabilities versus time from labelled marker of maximal adap­
tation response for glide, /l/. The top left graph is low frequency, top right is a 
higher frequency, the bottom left is even higher and the bottom right is the highest 
frequency. The blue curve is the normal cochleas response, red is for a ski-slope loss 
and the green curve is for a 60 dB fiat loss. The number in the legend is the entropy 
of the corresponding curve. 
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The importance of the onset statistics can be described by comparing the onsets 

of the normal auditory representation in figure 5.60 and the impaired auditory rep-

resentation, preprocessed with NAL-RP in figure 5.61. This is the amalgam of all 

the training data for the phoneme "v". The probability of the maximal AN response 

occurring at time after the acoustic segmentation marker is plotted versus frequency. 

There is a huge loss in the quality of onset information in the impaired auditory 

channels; the normal auditory systems probabilities are much more in line than the 

impaired ears onset information. 
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Figure 5.60: Maximal onset map for all the TIMIT acoustic segments labelled "v" 
when simulated with normal auditory periphery. 

These adaptation differences stem from both inner and outer hair cell loss. The 

loss of inner hair cell gain linearizes the saturating nonlinearity in the inner hair cell, 

which in turn produces a less peaked, longer activity cycle. The phase response of the 

basilar membrane is also distorted producing a different traveling wave in the normal 

and impaired cochlea. Colloquially, one seems to see a loss of contrast between the 

different segments of an acoustic waveform, coded on the AN. 

This is where Gockel et al. [2003J is very interesting. Figure 5.60 is visually 
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Figure 5.61: Maximal onset map for all the TIM IT acoustic segments labelled "v" 
when simulated with an impaired auditory periphery with NAL-R as preprocessing. 

similar to 5.46, while figure 5.61 corresponds closely to 5.47. So the normal auditory 

system can make use of the natural phase information in speech, while the impaired 

auditory system loses that information embedded in the first wavefront because of 

the loss of adaptation. Naturally, the impaired auditory system will have all the 

idiosyncrasies associated with the random phase tone complex: unusual loudness 

perception and a heightened susceptibility to masking. These qualitatively match the 

effects of sensorineural impairment: loudness growth is accelerated for a period a little 

above threshold, and sensorineurally impaired people have a tremendous problem 

unmasking, especially temporally modulated maskers. 
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Chapter 6 

Discussion and Future Work 

6.1 Review 

Chapter 3 dealt with a novel intelligibility metric that arose from the building up 

the standard AI. There are many different predictive measures that stem from this, 

all really being based on SNR. The SNR gain after processing does not accurately 

reflect the real benefit for hearing impaired people. Many researchers are wary of 

using SNR benefits without human testing. Chapter 3 started as an attempt to move 

away from the perceptually irrelevant SNR basis to intelligibility prediction for the 

hearing impaired to a measure encompassing their cochlear loss. This led to the 

development of the NAI in section 3.2. 

There has been one other metric that attempted to provide a neural equivalent. 

Elhilali et al. [2003] introduced the spectro-temporal modulation index (STMI) as 

an intelligibility predictor based on the neural representation. The STMI can be de­

scribed as a straightforward application of the MTF stimulus like that used in the 

STI, but put through a simple auditory model. The auditory model used in the STMI 
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lacks the ability to model the differences between the normal and impaired cochlea. 

Many other applications of intelligibility predictors lack the dynamic nonlinear effects 

of the cochlea. But these are essential, as they are the pivotal differences between 

the normal cochleas and hearing impaired ones. Many researchers discard these dif­

ferences because of the inherent difficulty in dealing with nonlinear phenomena. 

For simple linear analysis the NAI works as well as the AI, SIl, or STI and opened 

an avenue for machine learning to train hearing aid algorithms. This was explored 

in chapter 4. In early works based on this idea by Anderson [1994]; Rankovic [1991]; 

Kates [1993] their learning algorithm minimized mean square error, or SNR. Chapter 

4 goes past these prior attempts by encompassing the impairment. Arising from these 

experiments was the insight that the differences between the normal and impaired 

auditory nerve responses underwent large changes during the course of a single sen­

tence. At some points in time both the normal and impaired auditory responses were 

very similar, while at others they were completely different. This is where a new 

paradigm for intelligibility metrics had to be derived. Different parts of speech have 

to be judge differently. 

While most of Chapter 5 follows from this, some recent data is worth mentioning. 

Kates & Arehart [2005] present an intelligibility predictor based on the coherence 

between a control signal and the signal under test. While equivalent to the SNR to 

within a linear transformation and almost mathematically equivalent to the NAPs 

distortion metric, they introduce an additional step. Kates & Arehart [2005] separate 

the stimulus into time segments and calculate the distortion in each segment. The 

segments are then averaged together with their importance based on their envelope 

amplitude. The envelope amplitude is suggested to be a major determining factor in 

finding where speech energy is. In chapter 5 there is a tacit assumption that different 
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time segments of speech have different importance to intelligibility, and that they 

have different coding mechanisms. How to deal with this is dealt with further in the 

next section. 

6.2 Future Work 

This section details two novel possibilities for hearing aid processing that is derived 

from the framework in Chapter 5. The first processing block attempts to adaptively 

re-establish aggregate spiking rates on the hearing impaired AN. Section 6.3 uses 

the results derived in section 5.1 to train a nonlinear network. A similar nonlinear 

network is trained in section 6.4 this time with a main goal of reducing inter-channel 

correlation stemming from section 5.2. This is seen to be very similar to applying 

psychophysical masking from standard audio applications. Both sections 6.3 and 6.4 

are preliminary results and require future study. 

6.3 Compression: Adaptive Networks 

Section 5.1 delineated that the aggregate loudness hypothesis does not produce 

the simple (normal dynamic range):(impaired dynamic range) compression ratio. In 

reality there is a complex interplay between the pathology and the acoustic input 

level, plus other factors that are as yet to be determined. The first step in realizing 

an adaptive nonlinear hearing aid algorithm along the lines detailed in section 5.1 is 

model verification. 

The best type of hypothesis testing would involve human intelligibility e ing. 

Future work could include using the Iowa consonant test [Tyler et al., 1987]. The 
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Iowa consonant test is made up of aCa tokens, or random consonants embedded with 

an / a/ preceding and following to act as a carrier. Consonants have a much more 

varied temporal structure, so this is an ideal place to start testing for benefits. 

If the AN aggregate loudness hypothesis does hold under human testing, then 

more simulations open up the possibility of training adaptive networks. To try to 

identify an intelligent strategy, the optimal excitation gains by phone were compiled 

for the TIMIT "SX" corpus. Gains over NAL-RP versus input SPL were partly able 

to describe the empirical gain ratios derived from human testing. Since the input 

spectrum is a function of phonemic category, it was theorized that the input acoustic 

waveform shape may help reduce the variations seen across level. If this is the case, 

then figures 6.1 - 6.6 should show consistent differences in the distribution for a 

phonemic family. 

Acoustic Energy of ax 

Optimized Gain of ax 

Figure 6.1: Optimal gains for a soft a. The top plot is the set of the acoustic db 
RMS across frequencies, the heavy red line is the mean acoustic input spectrum. The 
bottom graph is the set of optimal gains versus NAL-RP for all of the input slices. 
The heavy red line in the bottom graph is the mean of the derived gains. 

From the graphs by phone, it is clear hat the mean representation loses the 

pertinent information to produce optimality. In much the same way that the early 
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Figure 6.2: Optimal gains for jg j . The top plot is the set of the acoustic db RMS 
across frequencies, the heavy red line is the mean acoustic input spectrum. The 
bottom graph is the set of optimal gains versus NAL-RP for all of the input slices. 
The heavy red line in the bottom graph is the mean of the derived gains. 
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Figure 6.3: Optimal gains for q. The top plot is the set of the acoustic db RMS 
across frequencies , the heavy red line is the mean acoustic input spectrum. The 
bottom graph is the set of optimal gains versus NAL-RP for all of the input slices. 
The heavy red line in the bottom graph is the mean of the derived gains. 
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Figure 6.4: Optimal gains for ay. The top plot is the set of the acoust ic db RMS 
across frequencies, the heavy red line is the mean acoustic input spectrum. The 
bottom graph is the set of optimal gains versus N AL-RP for all of the input slices. 
The heavy red line in the bottom graph is the mean of the derived gains. 
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Figure 6.5: Optimal gains for b. The top plot is the set of the acoustic db RMS 
across frequencies, the heavy red line is the mean acoustic input spectrum. The 
bottom graph is the set of optimal gains versus NAL-RP for all of the input slices. 
The heavy red line in the bottom graph is the mean of the derived gains. 
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Acoustic Energy of ux 

Optimized Gain of ux 

Figure 6.6: Optimal gains for ux. The top plot is the set of the acoustic db RMS 
across frequencies, the heavy red line is the mean acoustic input spectrum. The 
bottom graph is the set of optimal gains versus NAL-RP for all of the input slices. 
The heavy red line in the bottom graph is the mean of the derived gains . 

.l\AI type developments simply averaged across a set of information, producing a 

smooth surface, this averaging operation removes the interesting aspects of hearing 

and replaces it with a manageable, yet ultimately trivial response. Obviously, there 

is not enough information to prescribe adequately what should be done to derive the 

nonlinear gain to reestablish normal firing rates in the sensorineural impaired ear if 

one takes averaged phone classes. So a network may be able to derive the necessary 

spectrum analysis to gain shape synthesis operation. 

6.4 Suppression: Adaptive Networks 

From section 5.2 it should be obvious that something needs to be done to reduce 

stimulus dependent correlations in different frequency channels. Not only does the 

loss of suppression and spread of excitation lead to redundant information and a di-

minishing throughput of information on the AN, but the effect of introducing spurious 

correlations creates confounding onsets. 
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Section 6.3 delineated processing based on the aggregate loudness hypothesis; this 

section will follow another hypothesis, the correlation reduction hypothesis proposed 

in section 5.2. Like, section 6.3, the first step in realizing an adaptive de-correlating 

hearing aid algorithm is model verification. 

Again, human testing could be accomplished with the h V d corpus from Hillen­

brand et al. [1995]. Vowels are made of harmonics, and every repetition beyond a 

pitch period decorrelates the constituent frequencies. 

If human testing shows improvement over linear processing, then an adaptive 

scheme similar to 6.3 can be built. This section details an attempt to decorrelate the 

AN response as an initial step in hearing aid processing. The following algorithm is 

not based on maximizing intelligibility but in minimizing the amount of redundant 

information in the auditory system. Intelligibility turns out to be a poor predic­

tor of hearing aid use [Bentler et al., 1993], and counter-intuitively of benefit; most 

hearing-aid users left to their own devices choose much less high frequency gain than 

is normally prescribed. One of the best predictors of the self-assessed benefit by sen­

sorineural impaired people is the acceptable noise level [Nabelek et al., 1991, ANL;]' 

which can be thought of as a measure of the hearing effort a hearing impaired person 

is willing to make. 

The decorrelative hearing aid algorithm is theorized to reduce hearing effort by 

reducing confounding correlated structures introduced by sensorineural hearing loss 

while keeping the those intrinsic to the acoustic stimulus. The initial supervised learn­

ing signal, based on intelligibility, is replaced with driving the impaired frequency­

covariance matrix towards the normal frequency covariance matrix 

E (Normal, Impaired) = sqrt (IICNormal - ClmpairedllFrob) (6.37) 
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The covariance matrix is formed by taking the discharge rate vectors of 25 fre­

quency channels and multiplying that by itself transposed, then normalizing by the 

number of time samples. There were 10 bands of equal bandwidth under 1000 Hz, 

and then 15 bands spaced 1/ 6th an octave above that. The AN response was derived 

for a fiber with a BF at the center of each of the acoustic bands. The speech was 

normalized to 65 dB SPL before the Wiener & Ross [1946] outer ear transfer function 

was applied. Figure 6.7 is an example of how the covariance matrix evolves from in 

the normal auditory system, to a moderate presbycusis AN representation with NAL­

RP, and how proper adaptive shaping can produce a covariance with less redundancy 

even with hearing impairment. 

The main diagonal for each covariance matrix is the average driven discharge rate 

in that channel. The other diagonals show how correlated one channel is to another. 

The error metric is function of the main diagonal, or the spectral shape of the input , 

as well as the redundancy across channels, in the off diagonal matrix elements. 

Initial tests minimizing the off-diagonal elements lead to a decorrelating frequency 

response, as the null matrix is an obvious solution. By keeping the main diagonal 

information, the error metric from equation 6.37 also attempts to "recenter" the 

peaks in the impaired excitation response, where formants may have moved from the 

spreading excitation brought on by sensorineural impairment. 

For the impaired listener, a typical hearing aid gain was set following the NAL­

RP prescription, as described in section 4.1. Obviously, the covariance matrix will 

show a great deal more inter-channel correlation. Figure 6.7 is the resulting matrix 

derived from the dutch syllable "bak", with a NAL-RP fitting through the impaired 

audiogram #4 from figure 4.1. 

Finally, for the decorrelative hearing aid algorithm the gains in 25 channels were 
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derived by adjusting the initial NAL-R prescribed gains by 0.5 % over 200 iterations, 

minimizing equation 6.37 by a stochastic optimization. Optimality was defined as 

producing the closest correspondence between the normal and impaired 2nd order 

statistics. 
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Figure 6.7: Top left is the normal auditory covariance matrix of the syllable 'bak', 
top right is the same syllable when simulated with an impaired auditory model with 
NAL-RP preprocessing, bottom left is the frequency shaping derived to minimize 
redundancy for the hearing impaired and bottom right is the resulting decorrelated 
covariance matrix for the same loss as seen in the top right . 
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In the normal response from figure 6.7, suppression actively attenuates correlation 

in adjacent channels. The minor diagonals have very low coefficients. The decorrel­

ative coding mechanisms in the ear in the impaired ear are greatly reduced. This 

coupled with the spread of excitation brought on by sensorineural impairment gives 

quite large inter-channel correlations. There is also a spread of excitation along the 

main diagonal and the spectral peak-to-trough is reduced. It is speculated that this 

loss of suppression can be thought of as the spectral equivalent to the loss of tem­

poral adaptation. Both are active processes that in essence are drawing attention 

to changes in the auditory input. Both enhance the representation of changes in 

the acoustic signal in the auditory brain, the vision counterpart would be contrast 

enhancing, lateral inhibitory cells. 

Several further examples of the normal, impaired with NAL-R preprocessing, and 

impaired with optimal correlation reduction are given in Figures 6.8 to 6.9 

208 



Ph.D. Thesis - Jeff Bondy 

Normal Auditory Covariance Matrix 

2753 

950 

450 

450 950 1637 2753 
Frequency [Hz] 

Information Shaping for Presbycusis 
15 r---~--~--~--~--~--~--~--~ 

iii' 
:E 

10 

g, 0 
I 

-' 
~ -s 
a 
~ -1 0 

0: 

~ -15 

- 20 

- 250 1000 2000 3000 4000 5000 6000 7000 BOOO 
Frequency [Hz] 

McMaster University - Electrical Engineering 

NALRP Covariance Matrix for Presbyacusis 

450 950 1637 2753 
Frequency [Hz] 

950 1637 275J 
Frequency [Hz] 

Figure 6.8: Top left is the normal auditory covariance matrix of the syllable 'drup', 
top right is the same syllable when simulated with an impaired auditory model with 
NAL-RP preprocessing, bottom left is the frequency shaping derived to minimize 
redundancy for the hearing impaired and bottom right is the resulting decorrelated 
covariance matrix for the same loss as seen in the top right. 
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Figure 6.9: Top left is the normal auditory covariance matrix of the syllable 'fluit ' , 
top right is the same syllable when simulated with an impaired auditory model with 
NAL-RP preprocessing, bottom left is the frequency shaping derived to minimize 
redundancy for the hearing impaired and bottom right is the resulting decorrelated 
covariance matrix for the same loss as seen in the top right. 
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For each stimuli the changes in correlative structure after are quite striking. To 

make a successful algorithm though, the input must be analyzed and the proper gain 

strategy calculated. The resulting gain shapes for other syllables, the input spectro-

gram, optimal decorrelative matrix and output spectrogram must all be embedded 

in a successful adaptive network. Obviously, the changes in the decorrelative gain 

shape is a complex function of the input, but it is also a complex function of the loss. 

Loss profile # 1 from figure 4.1 optimal gains were much different then those reported 

above. To make a useful algorithm, it is necessary to apply machine learning to a 

network that can find all the statistically significant information from the various 

input stimuli. 

This was done by stacking all the individual short word spectra together as an 

input to the network. Each spectrum was calculated as a 32 bin periodogram, using 

Welch's method. The decorrelation targets were linearly interpolated from 25 chan-

nels spaced similarly to human cochlea place mapping to 32 linear spaced channels to 

match the input size. The target network was a 32x64x32 feedforward network, the 

training procedure is shown in figure 6.10. 

Figure 6.10: An example of the type of adaptive network that may be able to embed 
the adaptive decorrelating process lost with sensorineural impairment. 

To apply the trained network to running speech, the periodogram is calculated in 

short time windows, and used as an input to the network. The resulting vector of 

channel gains is then low passed filtered by channel, to reduce fast gain fluctuations, 

or popping. The aim of this section was to highlight an attempt to return the audio 
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coding that is done in the normal auditory periphery. One of the key nonlinearities 

responsible for the great job of coding in the ear is suppression, which was shown 

to be a decorrelative process that enhances the contrast between adjacent frequency 

bands. 
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Chapter 7 

Conclusion 

This dissertation started off with trying to introduce the reader to a problem that 

is neither well defined, nor answerable with the tools that presently exist. Chapter 

2 provided a primer on the symptoms of hearing impairment, and up to this point 

hearing aid signal processing has largely been focussed on dealing with one symptom 

or the other. Chapter 3 details the development of a novel intelligibility metric that 

would be able to compare hearing aid algorithms offline, with attempts to prove out 

the machine learning framework in chapter 4. 

This is where the dissertation moved from empirical modelling to theoretical mod­

elling. There are no data or quantitative statistics on the adaptive nonlinear mechan­

ics of the healthy and impaired cochlea, especially when the interplay of pathology 

with acoustics is taken into consideration. Simply put, there needed to be a distilla­

tion of the numerous symptoms and how to combat them from the introduction. This 

gave rise to the key for the remaining chapters. The differences between the normal 

and sensorineural impaired cochlea can be summed up by saying that the impaired 

cochlea operates more linearly; the normal functioning cochleas adaptive nonlinearity 
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is the optimal transformation for dealing with the statistics of speech. 

The theoretical framework in Chapter 5 studied the key differences between the 

normally operating and the sensorineural impaired cochlea. Chapter 5 discusses how 

important these nonlinearities are by polling the normal and impaired cochleas audi­

tory coding characteristics, instead of numerical modelling. 

The discussion and future work in chapter 6 discussed how to adapt a hearing aid 's 

signal processing to address the core adaptive nonlinear problem of sensorineural im­

pairment. These new processing strategies are key in mimicking the normal auditory 

periphery's dynamic nonlinearities. 

The conclusion to this dissertation is not an ending, as the body of work raises 

more questions then it started out with. It is hoped that the new modelling tech­

niques suggested in this dissertation can be trialled in human tests. Or other cochlear 

modelling ideas might be incorporated to improve the health of the hearing impaired 

populace. 
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