
Intersection State Visualization for Realtime

Simulations



INTERSECTION STATE VISUALIZATION FOR REALTIME

SIMULATIONS

BY

JUSTIN ROTH, B.Sc.

a thesis

submitted to the department of computing & software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Justin Roth, May 2012

All Rights Reserved



Master of Applied Science (2012) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Intersection State Visualization for Realtime Simulations

AUTHOR: Justin Roth

B.Sc., (Software Engineering)

McMaster, Hamilton, Ontario

SUPERVISOR: Dr. Martin v. Mohrenschildt

NUMBER OF PAGES: xi, 112

ii



To my patient and supportive parents



Abstract

Driving simulators have existed since the beginning of the 20th century. From its roots,

it has been a technology used primarily to train drivers, test and prototype new tech-

nology, and improve the safety of automobile users. As technology has progressed,

so has the quality of the driving simulation, and along side it, the complexity of ex-

periments performed. The McMaster motion simulation system combines the latest

software with state of the art psychology techniques, to analyze the driving experience

in new and unique ways. To accommodate the wide range of plausible experiments, a

robust software system was developed that allows for custom driving scenarios. The

software system is comprised of several sub-components including content generation,

scenario management, visualization and artificial intelligence. This thesis details the

development of a traffic light system and its incorporation into the existing simula-

tion system. A variety of challenges were encountered including real-time constraints,

adapting flight software to driving simulation, inter-system communication, and in-

teroperability of multiple APIs. A secondary objective was to document, this thesis

records the methodology used to overcome these challenges in an attempt to facilitate

future work in this field.

iv



Acknowledgements

Acknowledgments go here.

v



Notation and abbreviations

AI: Artificial intelligence

API: Application programming interface

DFS: Depth first search

DOF: Degree of freedom

FOV: Field of View

FSM: Finite State Machine

OO: Object oriented

VSG: Vega Scene Graph

vi



Contents

Abstract iv

Acknowledgements v

Notation and abbreviations vi

1 Introduction 1

2 Background 5

2.1 OpenFlight Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Hierarchical Structure . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Low Level Implementation . . . . . . . . . . . . . . . . . . . . 8

2.1.3 World Coordinate System and Positioning . . . . . . . . . . . 9

2.1.4 Pallets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Instancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.6 Node Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Visualization and 3D Graphics . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Object and Scenes . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Virtual Environment . . . . . . . . . . . . . . . . . . . . . . . 23

vii



2.2.3 Frame Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Real Time Rendering . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.5 Transformations Matrices . . . . . . . . . . . . . . . . . . . . 29

2.3 Presagis Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Terra Vista . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Creator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.4 Vega Prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 History of Driving Simulation . . . . . . . . . . . . . . . . . . . . . . 38

3 Simulation System 40

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Scenario Development . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Intersection Signaling System Development . . . . . . . . . . . . . . . 45

3.4 Solution Development Process . . . . . . . . . . . . . . . . . . . . . . 46

4 Database Solution 49

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Initial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 OpenFlight API . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Model 1: Custom Traffic Node . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Model 2: Vega Prime Intersection Control . . . . . . . . . . . . . . . 63

viii



4.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Model 3: External Reference Labeling . . . . . . . . . . . . . . . . . . 73

4.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 XML Traffic Description 83

5.1 Model 4: Independent Intersection Control . . . . . . . . . . . . . . . 83

5.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Model 5: AI Intersection Control . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusion 106

A Rendering Specific Concepts 109

A.1 Double buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2 Z-fighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3 Bounding Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



List of Figures

2.1 Structure of OpenFlight Hierarchy . . . . . . . . . . . . . . . . . . . 6

2.2 Comparison of Database and Memory Structure in OpenFlight . . . . 8

2.3 Layout of OpenFlight Nodes in Memory . . . . . . . . . . . . . . . . 9

2.4 TextureMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Face Node comprised of 4 vertices . . . . . . . . . . . . . . . . . . . . 16

2.6 DOF CoordinateSystem . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Scene Graph for the Human Body . . . . . . . . . . . . . . . . . . . . 23

2.8 Viewing Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Identity Transformation Matrix . . . . . . . . . . . . . . . . . . . . . 30

2.10 Rotation Transformation Matrix . . . . . . . . . . . . . . . . . . . . . 30

2.11 Scaling Transformation Matrix . . . . . . . . . . . . . . . . . . . . . . 31

2.12 Translation Transformation Matrix . . . . . . . . . . . . . . . . . . . 31

2.13 Scaling Transformation Matrix . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Simulator System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Intersection Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Intersection State Machine . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Intersection Division . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



4.5 UML of Traffic System . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 External Reference Encoding . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 XML Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Model 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 XML Encoding Model 5 . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Switch Mask Generation . . . . . . . . . . . . . . . . . . . . . . . . . 103

xi



Chapter 1

Introduction

A driving simulator is a machine that simulates a driving environment or conditions

for the purpose of training or experimentation [6]. Starting at the beginning of the

20th century, simulators have been used as a tool to understand driver behavior and

reduce casualties on the roads. This was particularly true in the 60s where the wide

spread adoption of the automobile resulted in a drastic increase in the number of

driving related causalities [12, p.1]. Since then, the number of casualties related

to driving incidents has decreased, but there is still a need for driving simulation.

Cell phones are a relatively new technology that has had a drastic impact on how

people drive a vehicle. A study by VirginiaTech Transportation Institute states that

“secondary tasks account for 23 percent of all crashes and near-crashes”. Clearly,

there is still a need for driving simulators and more specifically, driving simulations

capable of studying the impact of current technology on people use of automobiles.

McMaster’s motion simulator is one such tool that attempts to tackle these issues

using the latest in simulation software and psychology techniques.

McMaster’s motion simulator is designed to perform unique experiments that

1



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

combine stimulus presentation and state of the art psychology techniques. One series

of experiments focuses on driving simulation and more specifically, how the brain of

candidates reacts while performing driving tasks. The objective of this simulator is

to perform a wide range of experiments and to minimize setup time. With this in

mind, the software side of the system was developed in order to create a realistic

driving simulation with the capability to generate new driving environments very

rapidly. One aspect of this automation process is the traffic light system. This

system visually signals to the user what actions they may perform when approaching

an intersection. At the same time, it effects how the AI behaves under the same

circumstances. The goal of this thesis is to document the development of a traffic

light visualization system that integrates with the rest of the simulation system.

The development of the traffic light visualization system has a unique set of chal-

lenges. The system is comprised of 13 different computers, each responsible for a

particular aspect of the simulation. The motion platform, the system responsible for

generation motion, is a real time system. Interacting with a real time system involves

hard deadlines and a variety of constraints. The system described in this thesis must

integrate within the exiting framework while not interfering with its performance.

Another interesting factor is the software used. Presagis has created a suite of prod-

ucts designed for “out of the box” motion simulation development. Most simulation

systems currently in use world wide are flight simulators. For this reason much of

the software’s design, optimization and architecture were originally intended for use

in flight scenarios. This thesis adapts a flight based software package for use in a

automobile simulation.

2



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Development of the intersection visualization system was not a traditional devel-

opment process. The designer, as well as the co-workers on the project, were only

partially familiar with the variety of tools available in the Presagis software package.

Ideally, a certain amount of time could be committed to fully understanding and

learning each system as well as what task they are capable of performing. The Pre-

sagis software tools are powerful but come with a step learning curve. Understanding

them fully would be very time consuming. To facilitate the design process we focused

on using software packages with the most extensive documentation. Then we choose

a testing intensive approach. A certain amount of uncertainty was present in the

design process and so it was important to rapidly prototype in order to expose any

flaws in design. With these concepts in mind, software development began.

The thesis has a standard layout. First, a background section introduces the

reader to pertinent information. The background consists of a specification of the

OpenFlight database format, a description of rendering and 3D graphics, an intro-

duction to the software used, and a history of driving simulation. Second, the simu-

lation system is introduced. This chapter describes the McMaster motion simulation

system as well as the design constraints the system architecture imposes. Constraints

are then used to draft an initial system design. The next chapter details the intersec-

tion state visualization system’s development process. The first chapter discussed the

database approach to development while the later details the XML approach. Each

chapter contains several proposed models. These models were proposed solutions to

the intersection state visualization system. The earlier implementations were not suc-

cessful but lead to some interesting refinements. The model description consists of

3



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

phases: design, implementation, and evaluation. The design phase consists of outlin-

ing the program’s algorithms and detailing potential implementation strategies. The

implementation phase contains the specifics of the implementation as well as issues

encountered. The evaluation phase analysis the causes of implementation issues, and

makes suggestions for future models. The thesis concludes with a discussion on the

lessons learned during development. The focus is on the effectiveness of the program

as a whole as well as the potential pitfalls in adapting Presagis’s software to a driving

simulation.

4



Chapter 2

Background

2.1 OpenFlight Database

“OpenFlight is the leading visual database standard in the world and has become

the defacto standard format in the visual simulation industry.” [10]. OpenFlight

is a database system created by MultiGen. It is designed “to support both simple

and relatively sophisticated realtime software applications” [9, p.2]. Because of its

success as realtime database system, Multigen and Openflight, was purchased by

CAE and incorporated in Presagis. OpenFlight is the storage medium for rendered

databases in Presagis’ suite of realtime development systems, Terra Vista, Creator

and VegaPrime. In these system, OpenFlight facilitates “variable levels of detail,

instancing (both within a file and to external files), replication, animation sequences,

boundingboxes for real time culling, shadows, advanced scene lighting features, lights

and light strings, transparency, texture mapping, and several other features” [9, p.2].

Due to its effectiveness, Openflight’s use is not limited to Presagis software. It is

used in a variety of open source realtime system including Open Scene Graph, a 3D

5



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

graphics tool kit, and Flight Gear a flight simulator. OpenFlight is the standard of

the simulation industry. Its modification and use, was essential in this thesis’s traffic

indicator system and for this reason, will be examined in greater detail.

2.1.1 Hierarchical Structure

Figure 2.1: A tree illustration the terminology used in trees. The letters A and B
describe the type of the nodes while the number describes the nth instance of the
respective node type. NodeType = {A, B}, RootNode = A1 and LeafNode = {A4,
B2, B3, A3}

OpenFlight databases are optimized for real time efficiency. The database uses

a tree structure for global organization and several logical groupings for local orga-

nization. This structure increases the speed of searches while groupings customize

performance based on use.

6



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

A tree structure consists of nodes and connections between them. Each node is

connected to at least one other node via a child or parent relation. A parent relation

is a connection to a node above it in a hierarchy. Each node may have only on parent.

A child relation is a connection between a node below it in the hierarchy. Unlike the

parent relation, a node may have any number of connection and therefore may have

n children. The arity of the relation is 2, meaning that one nodes connects to another

node and only one other node. There is the additional restriction that the connection

cannot be with itself.

Several terms are used when describing a tree. The top most node is called the

root node and nodes without children, leaf nodes. A node may also have any number

of siblings which are nodes that share the same parent. Additionally, node types have

restrictions on the types of their parents as well as the types of their children. Each

node type has a set that defines which nodes may be its parents and a separate set

which describes which nodes may be its children.For example, an object node cannot

be the parent of another object node.

The distribution of node types differ between the top and bottom levels of the

tree. The top levels use node types to group, organize and prioritize nodes. The

nodes situated at the bottom of the hierarchy are used for rendering specific tasks.

The leaf nodes are made exclusively of vertexes that describe faces and meshes.

Each node has a type “with attributes specific to its function in the database” [1,

p.13]. The attributes store information related to their function and will be discussed

in greater detail in section 2.1.6 Node Types. The connection between parent and

child have restrictions. These restrictions may be changed using node extension but

are generally kept in place so that assumptions may be made. For instance, face

7



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

nodes can only have vertex nodes as children. When a face node is read, it can be

implied that at least 3 vertices nodes will follow since any face must be made of three

points connected by lines.

2.1.2 Low Level Implementation

Figure 2.2: Comparison of Database and Memory Structures in OpenFlight. Left
(tree model), right (stack model), and bottom (memory implementation.)

OpenFlight file format is optimized for performance. Memory is continuous and

linear in structure and therefore, some conversions must be made to remove the

branching structure of the OpenFlight hierarchical tree. OpenFlight transforms the

tree structure into a linear structure using a depth first search (DFS). When moving

down the tree from parent to first child node, a push operation is performed and

respectively when moving up the tree a pop operation. Sibling nodes are then listed

from left to right when the traversal reaches maximum depth. This structure has a

8



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

few implications. One is that there is priority processing of nodes from left to right

based on the ordering on that level. The other, is that sibling nodes are not listed

continuously in memory unless the nodes are leaf nodes. This behavior is not optimal

in all situations and so open flight contains several control nodes (LOD, switch, group)

to customize the traversal.

All nodes in an OpenFlight database have a common structure. The first two

bytes encode an opcode. An opcode is a unique integer I that identifies the node

type. The second two bytes describe the length of the node information. The node

specific data is then encoded with the next bytes specified by the length field. The

encoding is specified in the OpenFlight User Manual [3].

Figure 2.3: Layout of OpenFlight Nodes in Memory. 2 byte opcode describes the
node type, 2 byte node length, and node specific data length is N-4. Length includes
the opdcode and node length fields and its value is N.

Following the node there are ancillary records. Ancillary encode additional infor-

mation that is useful for most nodes types yet not necessary enough to warrant its

inclusion in all nodes basic encoding. Information includes, long IDs, node names,

comments, and matrix transformations. The specifics of these node types will be

discussed in 2.1.6 Node Types section.

2.1.3 World Coordinate System and Positioning

OpenFlight was designed for use in flight simulations. The positioning and coordinate

system are designed to handle many different units of measure while still ensuring

efficient database organization. Each OpenFlight database contains a header file that

9



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

specifies how distance is measured. One field specifies the units( meters, kilometers,

feet, inches, miles) and another the projection type. The projection type is a math-

ematical model of the earth’s surface. The models differ on their accuracy relative

to the database’s global position. That is, the models are more accurate at predict-

ing the surface of the earth based on a specific longitude and latitude. The global

projections predicts the world’s surface and therefore require units of measure that

are very large relative to any object that might be place within a database. To avoid

forcing the same units as the global projection OpenFlight uses relative positioning.

The database defines a world coordinate as the origin. All vertexes are then speci-

fied relative to this database position. When world coordinates are needed, then the

projection type and database position are retrieved from the header node.

Additionally, global transformation may be applied to database sections using

transformation matrices. Each node may have an additional transformation matrix

inserted. A transformation matrix is a matrix that when multiplied by a position

vector results in a new position. Given a node’s transformation T matrix and its

position p, the node’s new position p’ is computed using as p = T ∗ p′. For more

information on transformation matrices refer to section 2.2.5. In OpenFlight, a trans-

formation matrix applied to a node also applies to the entire subtree. For this reason,

position is computed by traversing the entire scene graph.

As described in section 2.1.1 Hierarchical Structure, rendered nodes are situated

at the lower levels of the databases. Additionally, node position is effected by its an-

cestors’ transformation matrices. To find a rendered nodes’ world position a sequence

of transform matrices must be accumulated from the database’s root node to the ren-

dered nodes. The accumulated sequence of matrices is called the matrix stack. When

10



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

a rendered node’s position is required, the matrices on the stack are multiplied and

applied to the node’s position. Typically a single node’s position is not computed but

rather all the rendered node’s positions. In fact, this process is performed each time a

frame is drawn. The list of drawn nodes is known from the culling phase, see section

2.2.3. The scene is traversed, in a depth first manner, along the active branches. As

the tree is descended, from root to child, each transformation matrix encountered is

pushed on the matrix stack. Using similar criteria, transformations are pop during

the ascension. When a vertex node is found and that node must be drawn, then the

stack is computed. The computation involves multiplying the product of the matrices

on the stack by the position of the vertex node. This process is performed for every

vertex belonging to the draw list. In this manner, the location of all drawn nodes are

computed using a single scene traversal.

2.1.4 Pallets

Figure 2.4: A sample texture pallet that maps index value to corresponding textures.

OpenFlight uses a pallet system for storage and access of common information

such as colors, textures, materials and vertexes. In OpenFlight, a palette can be

viewed as a mapping P between an integer and an output type b where P (a) = b.

Consider the texture pallet for a face node in figure 2.4. The pallet consists of

input/output pairs of integer and textures respectively. The face node stores the

11



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

integer representation of its texture rather than a local copy. When rendering the

face node, the integer is mapped, using the texture palette, to a corresponding texture

that is then drawn to the face. In this example, an index value of 1 would result in

Grass being drawn on the face node. The pallet system greatly reduces the cost of

storing local information but requires some additional resources to store and manage

the pallet. This compromise is desirable in most 3d objects systems. The number of

faces is usually several scales of magnitude larger than the number of textures and so

the cost of managing the pallet system is relatively negligible. It should be noted that

the pallet system is not unique to OpenFlight but commonly used in most 3D graphic

models such as blender(.blend), Legacy 3D Studio(.3ds) and COLLADA (.dae)

2.1.5 Instancing

Instancing is defined as “the ability to define all or part of a database once, then ref-

erence it one or more time while apply various transformations” [3, p.14]. Instancing

is best explained with an example. Consider an automobile with four wheels. The

wheels are identical in terms of geometry yet differ in their positioning. An efficient

database implementation would define the wheel once, use instancing to replicate the

node, then apply a transformation to reposition the wheels. This automobile sce-

nario has its advantages and disadvantages when implemented using instancing. Its

advantages are that the database size is reduced by eliminating redundant geometry

definition for each tire. As well, if the user decides to change the look and feel of the

tire then the user can alter the geometry of one node and have it applied to others

automatically. The disadvantage is adaptability. If the user wanted to implement a

flat tire then altering a single tire would result in all tires being flat. Instancing is a

12



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

tool to reduce database size and increase speed at the cost of reduced adaptability.

2.1.6 Node Types

Push/Pop

This section discusses the push and pop node types. As discussed in the hierarchical

structure section 2.1.1, push and pops are used to move up and down the tree structure

of an OpenFlight database. There exists several different type of push/pop operations.

There are generic, surface, extension, and attribute push/pops.

Generic push pops are used to describe the parent/child relationship between

nodes in the OpenFlight hierarchal database.

Subface push/pop are used when distinguishing between two overlaping coplanar

faces. In OpenFlight, surface refers to the parent/child relationship and NOT to

geometrical relationship where one face lines entirely within the other. “Creator

and real-time applications use [suface] convention to determine the drawing order

of coplanar polygons, when drawing with a z buffer” [3, p.27]. Practically, when a

subface and parent face both occupy the same plane the subface is visible and not the

parent. If this relationship is not established then Z-fighting may occur and rendering

artifact may be present. Z-fighting will be discussed in section A.2, Z-fighting.

Extension push/pops are used when defining new node type. It will be discussed

fully in the extension node section.

Header

“The header record is the primary record of the header node and is always the first

record in the database file. Attributes within the header record provide important

13



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

information about the database file as a whole” [3, p.21]. The header nodes stores

all data describing the database as a whole. This include the current OpenFlight

standard, projection type, and database corners.

The OpenFlight standard defines which node definition are used. OpenFlight

versions differ on their node types, node size, and bit offset of attributes.

Projection type describes the mathematical model used to represent the surface

of the earth. The models have different accuracies for different world coordinates.

World Geodetic System (WGS 84) is the projection type used in the current thesis’s

database.

The database is defined as a square that is then transformed into a surface using

the projection type. The southwest and northeast latitude and longitude are used to

define the database area.

Group

Group nodes are a generic node type used to, organize database structure, aide in

the culling process 2.2.3, and perform simple animations. The group node’s byte

encoding is one of the smallest in the OpenFlight database structure. Additionally,

there are very few restrictions on which nodes may be a group node’s parent or child.

For these reasons, group nodes are used to reorganize the scene graph.

Often databases are reorganized based on some criteria. This criteria often in-

cludes spacial location to increase culling performance, or conceptual grouping to

improve the readability of the database. The process involves, introducing group

nodes into the database, attached nodes based on the grouping criteria and creating

a bounding box. In OpenFlight, bounding boxes are volumes of space that encompass

14



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

a particular set of geometries, A.3. The group node’s bounding volume encompass

its entire subtree. Using this volume, the cull process determines whether the group’s

subtree needs to be drawn.

Group nodes may also be used to create animation. In this process each direct

child is activated sequentially in a specified order. Animation will not be discussed

in great detail as it is not used in the traffic system.

Object

Object nodes are low-level grouping nodes that contain attributes pertaining to the

state of it child geometry [3, p.28]. The attributes determine, transparency, special

effects, and how the geometry is rendered. The rendering options include the time of

day the object should be rendered in and how shadows are computed. Transparency

describes the degree to which an object behind the object record is visible. For

example, a window has a high transparency, wax paper an intermediate, and a wall

no transparency(opaque). Special effects fields are usually used as marker to signal

different interpretation of the node and its children.

Face

The face node is the primary rendering unit of a database and contains attributes

describing the visual state of its child vertices [3, p.28]. The face node describes a

polygon along with attributes for its rendering. The attributes include a surface ma-

terial, transparency, flags, light mode, color,material, shader pallet indexes. Together

these values determine the rendering of the face.

Color, texture, and material are essential to the rendering process and drastically

15



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

effect the realism of the object. For a detail description of the rendering process

please refer to the drawing process describded in section 2.2.3.

Transparency describes the degree to which an object behind the face is visible.

Flags are used to enable special processing of polygons. Terrain, cut out, and roof

line are some examples of flags that change the rendering of face nodes. Light mode

determines what lighting model is used to render the polygon.

In Openflight, faces are defined by a sequence of vertexes, a separate node type.

The vertices specify a x,y,z coordinate of a point in space. To associate a vertex

with a face node the vertices are attached, as direct children, to the face node. The

drawing of the face/polygon follows the order of the child vertices from left to right.

The specifics are described in figure 2.5.

Figure 2.5: A face node comprised of 4 vertices. The left image describes the hierar-
chal structure of face nodes and its vertices. The right image is the resultant polygon.
A line is generated from each vertex pair that are located directly beside each other
in the the tree. This also includes the the first and last vertex pair. The set of line
for the polygon are V = {(V1, V2), (V2, V3), (V3, V4), (V1, V4)} and the dotted lines that
do not comprise the polygon are Vnot = {(V1, V3), (V2, V4)}

16



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Mesh

“A mesh node defines a set of geometric primitives that share attributes and ver-

tices” [3, p.31]. These shared attributes and vertices are identical to those found in a

face node. A mesh can be thought of as a collection of faces with identical attributes

that share at least two vertices with another face in the mesh. In other words, a mesh

is a set of faces that share and edge with at least one other face in the set. The shared

vertices are only defined once but used to generate more than one face. The set of

vertices used to generate the mesh are called the vertex pool. The optimization used

by meshes reduces the size of databases.

DOF

Degree of freedom node(DOF) “specifies a local coordinate system and the range

allowed for translation, rotation, and scale with respect to that coordinate system” [3,

p.40]. OpenFlight databases are modeled using a world coordinate as an origin, but

in many situations, it is preferable to specify transformations relative to another

object or point. This process is achieved using a DOF node. When a DOF node

is introduced into a scene graph, the location of insertion becomes a new origin for

all subtree nodes. The location is computed using the matrix stack, as described in

section 2.1.3.Following DOf insertion, a new coordinate system is established. The

local coordinate system redefines the x,y,z axis as well as the origins.

DOF nodes may place restrictions on how nodes may be manipulated at run time.

DOF nodes specify the range of valid translations or rotations. Restrictions are useful

for modeling the real world since motions naturally occur on some axis but not others.

The wheel, figure 5.1, typically rotates about the pitch axis when moving forward and

17



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

rotates about yaw when turning. It does not rotation about the roll axis and so a

degree of freedom node could be used to restriction motion about that axis.

Figure 2.6: DOF node coordinate system with restrictions on certain axises. The
DOF nodes stores a new local coordinate system at the center of the wheel. Restric-
tions may be places on the x,y, or z axis.

External Reference

External references allow one database to reference, or instance, a node in another

database (or an entire database) [3, p.40]. An external reference is conceptually sim-

ilar to instancing as described in section 2.1.5. It differs in that the sub tree is an

entire external OpenFlight database. The attributes in an external reference node

are used to resolve issue arising from using two databases concurrently. The flag

field determines which database’s pallets should be used when rendering the external

reference. The material, color, texture, and sound pallets may either be taken from

the parent’s database or external’s. The other important field is the path. The path

may be relative or absolute. Absolute path involves specifying the entire directory

structure to the node including the drive letter. Relative path specifies the path rela-

tive to the current database directory location. Care must be taken when using both

approaches. Absolute paths have issues when moving OpenFlight databases between

18



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

system since the drive/folder structure are typically different between systems. How-

ever moving the database file to a different directory within the system does not cause

any problems. Relative paths have issues when moving databases within a system.

They remain functional when moved between systems. This assumes that the relative

directory structure is maintained between the database and the externally referenced

file. Another issue to consider is node naming. By default, the name of the node

is its path. Consequentially, external reference names cannot be changed within the

OpenFlight database and naming cannot be used to distinguish between two external

nodes that reference the same file.

Switch

Switch nodes are a set of masks that control the display of the switchs children [3,

p.52]. A switch node defines a set of masks. The mask’s states are a sequential

enumeration of N0 starting at 0. For each state, a flag is set for each child directly

attached to the switch node. The flag, a boolean, determines whether the child is

visible for that state. The switch node provides a mechanism for the rapid change of

visibility at runtime. A fitting example is a traffic light with three lights and three

mask states. The switch node representing the light would have three children sub

trees that represent, a green, yellow, and red light.

Level of Detail

Level of detail(LOD) nodes are specialized switch nodes which may have only one

child. The LOD record determines whether a child is rendered based on its distance

from the observer. The selection process uses the switch in distance and switch out

19



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

distance attributes to compute the visibility state. Please refer to table 2.1. Transition

range is an optional attribute that may be specified. It is used to blend one LOD

node with another.

Range Visibility
Distance < SwitchIn None
Distance = SwitchIn ChildPresent

SwitchIn < Distance < SwitchOut∧ Child
Distance ≥ SwitchOut Child2

Table 2.1: Visibilty of child nodes based on distance from observer

Extension

Extension nodes are user created node types introduced into the database system.

The process involved in creating a new node type is quite involved. The user may

assign any number of attributes to the node. The type of the attribute must be an

integer, boolean, float, double, ASCII string, or and XML formated ASCII character

string. The user must also define the parent/child restrictions of the node. More

specifically, which node type may be this node’s parents and which may be its children.

For a full discussion of how extension nodes are created please refer to section 4.1.2.

Ancillary

Ancilliary data is additional information that can be attached to existing nodes.

Ancillary information decreases the size of the database by providing a framework for

adding commonly occurring information. Ancillary information is written sequentially

after the primary node but only if it is required. Using this technique avoids the need

to assign common attributes, such as transformations, to every node that does not

20



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

require them. The following section briefly introduces the various ancillary nodes and

their intended purposes.

Comment ancillary records are used to store user created comments. This may

include notes on the organization of the database or the reasoning behind certain

node attributes.

Long ID are used when a node’s name exceeds 8 characters. The long ID is an

adjustable size node that stores any name that may be assigned to a node.

Multitexture ancillary records are used when more than one texture is assigned

to a polygon. The nodes attributes describe the various textures assigned to it as

well as rendering specific information such as mip maps and visual effects.

UV list is used to map textures to a face. It “always follows the vertex list

or morph vertex list record and contains texture layer information for the vertices

represented in the vertex list record it follows” [3, p.59]. UV mapping is a complicated

process in itself and will not be explained in this thesis.

Replicate nodes are used in conjunction with instancing. The replicate node

follows an instance node and counts the number of time it has been replicated. It

ensures that all replicated/instanced nodes are updated when the source node is

altered.

Transformation matrix applies rotations, scaling, and shearing to the node’s

children. The information is stored in the form of a 4x4 matrix. Please refer to the

section 2.2.5 more information.

Bounding volume record is a geometric shape that is used to determine culling

and its visibility. The bounding volume is theoretically a minimal volume geometry

21



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

that contains all its subtree nodes. Practically the bounding volume may be manipu-

lated by the user and may not meet the above criteria. In OpenFlight, the bounding

volume may be in the shape of a box, sphere, cylinder, convex hull or histogram [3,

p.64].

2.2 Visualization and 3D Graphics

“The term computer graphics includes almost everything on computers that is not

text or sound” [8]. Simply put, computer graphics are images generated by computers.

The programs described in this thesis manipulate computer graphics in order to create

a virtual environment. The following section introduces the language and concepts

used in computer graphics in order to avoid any ambiguity while discussing this thesis.

2.2.1 Object and Scenes

Conceptually, the basic unit of a a virtual environment is an object. Objects are

defined as a set of polygons each with visual properties describing its surface. The

set of polygons considered together create the object. There are no strict restrictions

on which polygons should make up the set, but conceptually the grouping is based on

the object it is trying to model. The overall organization of the virtual environment

including all objects is called the scene graph. The scene graph is a hierarchical

tree consisting of object constructed from other objects or polygons. Typically the

polygons are grouped into objects and in turn these nodes may be grouped. An

example of object grouping would be the human body with arms, leg, head and torso

as described in figure 2.7.

22



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Body

Head Torso Legs

Left Leg Right Leg

Arms

Left Arm Arm Leg

Figure 2.7: This scene describes a simple representation of the human body as an
object in a scene graph. Each leaf in the tree consists of a set of polygons, that
considered together, describe the object.

In most applications, polygons are convex. Convex, as opposed to concave, poly-

gons facilitate intersection problems, a frequent operation in computer graphics. A

convex polygon is a polygon where all it’s internal edges are less than 180 degrees.

More formally,

if the are n vertexes that make up a polygon and vi, i = 1, 2, ..., n

are the verteces that define the polygon. Then the edges that define the

polygon are ei = vi+1 − vi. Also assume that xn+1 is equivalent to x1.

Then a convex polygon is a polygon where vi · vi+1 has the same sign for

all i. [5, p.138-148]

2.2.2 Virtual Environment

The application scope of computer graphics is vast. In order to accommodate all situ-

ations, a combination of textures, materials, and colors are used. The color’s attribute

covers the surface of the polygon with a uniform color. Material affects how lighting

interacts with a face in order to mimic real world objects. For instance, specular

material mimics the reflection of metallic surfaces and ambient lighting simulates the

23



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

lighting of object with no direct light source. Textures are images that are mapped

onto a polygons surface. This process involves sampling an area of a 2d image and

placing that sample on the polygon’s surface. Together, color, material, and texture

successfully model 3D object.

Several other factors are involved in making a virtual environment. The skybox

is a box in which the virtual environment operates. It is used in large volume en-

vironments. The box’s internal walls are images that represent the landscape view.

Within the skybox, the camera’s view resembles the view of distant object such as

clouds, mountains or celestial bodies. The skybox moves with the camera in order

to maintain this illusion. The skybox is an essential element in creating large scale

virtual environment.

The next concept is levels of detail (LOD). Levels of detail are several different

representations of the same object. The representations differ in the number of poly-

gons used to model them. Based on an object distance from the camera, the LOD

system selects which model to use. For example, a house with 3 levels of detail; high,

medium, and low. Low resolution models are used for houses when they are more

than 2 km away, the high resolution model when closer than 500 meters and medium

for the range between 500, and 2 km. LODs reduce the number of polygons in the

scene by using simplified models when detail in not necessary.

The final factor to consider when generating a virtual environment is the software

system. There are several terms important to the understanding of the software

system. Frame rate is a common term used to measure performance in computer

graphics. Frame rate is the number of times the frame loop is executed per second.

The frame loop determines which images to draw and handles the procedure for

24



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

drawing the frame. Culling is the process that determines which images should be

drawn. Finally, rendering is the process of converting computer data into images for

display.

2.2.3 Frame Loop

The frame loop is the process that creates and draws images to a display. The process

can be divided into 3 major phases called application, culling and, drawing. These

phases are essential to the rendering process and together form the main loop that

runs the virtual environment.

The Application phase performs computations related to the program running the

visualization. The programs process data and determines the appropriate response

to user input.

The cull phase determines which objects are to be drawn. The process involves

three concepts, levels of detail, bounding box,A.3, and viewing volume.

The bounding volume is defined using a point,the camera, and two planes,far and

near clip plane. From the camera, rays are projected out that represent the camera’s

field of view. This creates a pyramid volume that is called the viewing volume.

Typically limitations are placed on how close and far images may be seen. Using a

near and far plane called clipping planes, a volume is defined where objects are visible

to the camera. Relative to the camera, only objects in front of, near, and behind the

rear clip plane are visible. Figure 2.8 illustrates the viewing volume concept.

The culling process traverses the scene graph from top to bottom searching for

relevant nodes. The nodes of interest are, at the top level, LOD nodes, the mid

25



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Figure 2.8: Illustration of a bounding volume. This example includes a near and far
clipping plane.

levels, bounding boxes, and the bottom, geometries. LOD nodes are typically en-

countered first during the traversal. For a given LOD node it is determined whether

switchin ≤ cameradistance ≤ switchout. If it holds than the LOD child is traversed.

When an active node is encountered with a bounding box, a computation is performed

to determine whether the box intersects the bounding volume. If no intersection is

found the traversal does not proceed down that branch. When an intersection is

found the traversal continues downward. The process continues until a geometry is

found. A geometry being a face, mesh or light point that the application may render.

The encountered geometry is added to the draw list, the list of geometries that will

be rendered in the draw phase. Using this process, the traversal systematically deter-

mines which nodes are to be drawn. Bounding boxes and LOD nodes are not strictly

necessary to determine which nodes to draw, however, they drastically reduce the

scene traversal time but quickly eliminating irrelevant branches. Care must be taken

not to introduce to many LODs and bounding boxes as the gains from eliminating

26



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

branches will be offset by the additional computations necessary for each comparison.

The draw phase renders relevant data onto a display. Issues arise when more

than one image request the same display location for rendering. The z-buffer is used

to resolve this issue. During the draw phase, the list of geometries that must be

drawn is processed. This list is known as the draw list and it was computed during

the cull phase. The geometries in the draw list are converted into images using the

attributes defined by their node type. The final result is a set of pixel each with

color and distance to the camera. This information is passed to the z-buffer. The

z-buffer consists of a list of pixels with an associated depth value. The depth values

are initialized to a very large value. For each inputed pixel, the depth value of that

pixel is compared to that of z-buffer. If the inputed pixel’s depth is smaller than the

z-buffer’s depth then the z-buffer’s data is overwritten. The final result is a process

where images are display in a manner consistent with real world applications. More

specifically, when two images are in the same direct line of sight of the observer than

the closer image appears on the display.

2.2.4 Real Time Rendering

Visual media is a common means of communication with several subcategories in-

cluding films, interactive video, and real-time simulations. Although the display of

images is common in all three subcategories, there are significant differences in how

these technologies are implemented. This section outlines the features of real time

simulations and the unique constraints they impose.

The first feature of real-time systems is user input. Videos, unlike interactive

media, do not take user input. Therefore, the sequence of images in a video may

27



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

be precomputed. When a video is displayed to a user, the images are replayed to

the user without complex computations at runtime. Interactive media differs. It

involves input from the user and this input may change the sequences of images that

are rendered. Interaction therefore forces computation to be performed after the user

input. The result being that in order to maintain a consistent frame rate constrains

must be placed on the frame computation time. These constrains are called deadlines.

Deadline type is the distinguishing factor between video games and simulations.

Video games and simulations both seek to immerse the user in an environment. Cre-

ating a dynamic environment that responds to the user’s interaction is critical to

achieving this immersion. However, the systems differ on whether immersion may be

dropped when deadlines are not met. Video games have soft deadlines while simu-

lations hard deadlines. Simulations by definition have a set frame rate. This means

that for each frame there is a specific time interval where all computations must be

completed. If the computations are incomplete, the images will be drawn yet incom-

plete. In video games, the frame rate may vary. This allows the application to exceed

a frame’s time interval in order to complete the drawing stages. This situation results

in a decreased frame rate. Real-time systems, unlike games, maintain a consistent

frame rate.

Models in real-time systems have less detail as measured by number of polygons.

The number of polygons greatly affects the time required to render a scene. To ensure

that deadlines are met, level of details(LOD) are implemented. The LOD systems

allows for the rapid exchange of models at run-time. The models increase or decrease

the number polygons of the object. Using this system the application programmer

may adjust his scene to ensure the deadlines are met and no rendering artifacts occur

28



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

due to missed deadlines.Refer to section 2.1.6 for a detail description of level of detail

implementation.

In real-time system, user input is given high priority. If a user controls an object

within the simulated environment, then the object must react within a time interval

for immersion to occur. Without this deadline constraint, the illusion of control is

lost and the effectiveness of the simulation decreased. These characteristics define a

real-time system and are serious design constraints in this thesis’s system design.

2.2.5 Transformations Matrices

Transformation matrices are the typical technique used to manipulate objects in in-

teractive systems. The concept of Transformation matrices was introduced in section

2.1.3 and here it will be elaborated on in more detail.

Transformation matrices are the common method used to represent transformation

in 3d graphics. For a given euclidean space Pn, the square matrix used to represent

transformation in this space is of size n + 1. n + 1 matrix is used to allow for the

addition of translation into the transformation. The n+ 1th column or row see figure

2.12 is used to specify translations. It is possible to represent many translations as a

n size matrix, however, the mathematics are more complex. The n+1 form results in

independent value entries for transformation and scaling that can be easily extracted

without computation. The cost of more memory for the n+1 vs n matrix is more

than offset by the reduced computation time in a deadline critical environment.

29



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Figure 2.9: Identity transformation matrix

Rx =


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

Ry =


cosθ 0 sinθ 0

0 1 0 0
−sinθ 0 cosθ 0

0 0 0 1

Rz =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1


Figure 2.10: Rotation transformation matrix about the x, y, z axis respectively by
an amount θ

2.3 Presagis Software

A large software package was used during the development of the intersection visu-

alization system. The package, designed for the development of motion simulators,

was acquired from Presagis Inc. Presagis is a subsidiary of CAE and CAE is the

world leader in civil aviation simulation and modeling technology. Logically, Presagis

software is tailored for flight simulation. This thesis describes the process of adapt-

ing Presagis software to ground level simulation. More specifically, these sections

introduce the software packages used in development in order to identify the design

constraints they impose and to give context to the development process.

2.3.1 Terra Vista

Terra Vista is a tool used for the generation of large scale terrain. It facilitates the

creation of content by automating many of the features common to most databases.

30



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering


ax 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 ay 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 az 0
0 0 0 1


Figure 2.11: Scaling transformation matrix along the x,y,z axis respectively

T =


1 0 0 0
0 1 0 0
0 0 1 0
xt yt zt 1

T ′ =


1 0 0 xt
0 1 0 yt
0 0 1 zt
0 0 0 1


Figure 2.12: Translation transformation matrix. This transformation would move a
vector v = {x, y, z, 1} to position v’ = {x + xt, y + yt, z + zt, 1}. The two forms of
the matrix depend on how the vector is represented as a matrix. If v is a 1x4 matrix
than the left matrix is used and the multiplication is v · T and if v is a 4x1 matrix
then the multiplication is T ′ · v

It allows the user to specify, levels of detail, world coordinates for the database, vector

based culture generation, and correlated output.

Database Initialization

Terra Vista facilitates the creation of databases. In the initial step, the user specifies

the world coordinates of the database. Next, the terrain blocks are set up. This

process specifies the gaming area of the database. The gaming area is a 2 dimensional

area of blocks defining the database. Each block consists of an OpenFlight database.

The blocks are then merged together in a master file using external references, 2.1.6.

This process facilitates the loading of the database by allowing the application to load

the master file without referencing each sub database. The databases are also given

specific dimensions and levels of detail.

31



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering


ax 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 ay 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 az 0
0 0 0 1


Figure 2.13: Scaling transformation matrix along the x,y,z axis respectively

Level of Detail Setup

When creating the database in Terra Vista, levels of detail are specified. As explained

in section 2.1.6 and 2.2.4, levels of detail are different representations of the same

object with a varying number of polygons. During the initialization process, the

number of LODs are specified as well as the range of each LOD. By adjusting the

range, the number of polygons for each LOD level can be specified. Additionally, the

total number of LODs can be increased. Given a fixed polygon budget, this increase

results in a smoother visual transition since the LOD’s polygon numbers differ by a

smaller amount between LODs.

Culture Generation

Terra Vista facilitates the generation of culture using vector data. The entire process

involves three components, vector data, attributes and processing paths.

After the database is initialized, vector data is specified. In Terra Vista, vector

data may be points, lines, and areas. Points are used to insert OpenFlight models

at a location. Typically points represent trees, houses or street lights. Lines are a

sequence of interconnected points. Lines are used for the generation of power lines,

roads and rivers. Typically, culture is placed directly on the line or parallel to the

line. Areas are describes as a sequence of lines where the initial and final point are

32



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

equal. They are also used for the generation of lakes, forest or fields. Areas are useful

when specifying locations where the ground texture differs from that of the default

terrain.

Following vectors creation, attributes are assigned. Any number of attributes may

be assign to a given vector. These attributes are then used by processing paths at

compile time to generate appropriate culture.

Terra Vista generates culture using a tree structure. Each node consists of a set of

attributes that it may match. Leaf nodes specify models or actions. When building

the database, the tree is traversed in a depth first manner following only branches

that match the attributes assigned to each vector. When a match is found, the leaf

nodes actions are performed and culture is generated.

Correlated Output

Terra Vista contains a variety of tools that correlate vector data to other output

formats. Those of relevance in this thesis, are the road compiler and ACX generator.

The road compiler, as the name implies, is responsible for the generation of com-

plex roads. Given a vector, the complex road compiler generates roads with custom

width, side walks and medians. When two line vectors intersect, the compiler iden-

tifies this point as an intersection. The point, along with the attributes of each line,

are then used to generate a traffic intersection with appropriate traffic lights and

pedestrian crossing lines.

The ACX generator is responsible for the generation of AI implant data. The AI

implant is the program responsible for the control of pedestrian and vehicle AI in

the simulation. The ACX generator creates road networks and navigational meshes,

33



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

which are used determine traveling behavior and intersection data. In turn, this data

determines AI behaviors at intersections. The type of intersection generated depends

on the number of lines intersecting the vector as well the attributes of these lines.

Terra Vista is responsible for the creation of AI data and OpenFlight databases.

The generation process has a considerable amount of flexibility, however, some factors

cannot be changed. The result being that several design constraints are imposed by

the software system. They will be discussed in section 4.1.1, initial design.

2.3.2 Creator

Creator is a 3D modeling environment specifically designed for use with OpenFlight.

It allows for the creation and alteration of OpenFlight models. In this thesis, Cre-

ator was used for a variety of tasks including creating/importing models, optimizing

database organization and testing custom nodes.

Creating Content

Creator’s primary purpose is the generation and modification of OpenFlight models.

In this thesis, very few models were created from a blank database. Typically, an

existing model is modified to satisfy some purpose in the simulation. The modification

process involves changing the orientation of models, removing unnecessary faces and

changing textures.

Another source of content is external file formats. Creator has the capability to

import other 3D modeling databases. The importing process has a few bugs and

so, the resulting database is not entirely transferable. To ensure proper conversion,

incorrect materials and textures must be corrected. The process involves adding

34



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

appropriate material and correcting the uv mapping of textures.

Optimizing Performance

Many databases are created with a non-optimal structure. For instance, some database

consist of only one level of face nodes. To optimize this database, group and LOD

nodes are inserted with respective bounding boxes and switch in distances. The in-

troduction of new nodes increases the performance of the culling process as described

in section 2.2.3.

Another source of inefficiency is duplicate texture pallets. When there are several

external references within one database the common practice is to maintain a texture

pallet for each reference. When there exists textures common to several pallets this

is redundant. To optimize, Creator creates a large texture pallet that contains all the

sub database pallets. Duplicates textures are then manually removed.

Creator can be used to find and optimize sequences of face nodes. When a sequence

is drawn, the attributes of the current node are compared to that of the previous. If

the attributes differ, then the new attributes are loaded. Loading is a costly operation.

This procedure can be optimized in two ways. One, if nodes exist with identical

attributes then these nodes should be grouped into meshes. Meshes,2.1.6, are a set

of face nodes that share the same value for attributes. Two, if there exists a set

of of face nodes with similar attributes, then they should be ordered sequentially to

prevent frequent reloading of attributes.

35



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Custom Nodes

The first attempt at creating a traffic system, 4.2, involved using custom nodes to

store traffic information. Within creator there exists a tool named the attribute

visualizer. This tool allows the user to visualize and edit attributes of a given node.

The tool was used frequently during the custom node development process as a means

of validating the new node’s implementation.

2.3.3 Stage

Stage is responsible for scenario management in the virtual environment. It provides

several services including, entity management, external program interfaces and event

scripting.

Entity Management

Stage tracks and manages all entities in the virtual environment. Entities are objects

and stage tracks their position and a vector of their velocity. Stage allows for the

repositioning or alteration of the entities at runtime. As well, it specifies the initial

value of their variable when the application starts. Another interesting feature is its

ability to change entities at run-time. Any of the previously described processes may

be performed at runtime. This includes the addition or removal of other entities.

External Plugging

Stage controls entities in the virtual environment. Stage’s role as a management

system makes it the ideal medium for the integration of other external applications.

Stage is written to allow plug-ins that interface between it and other applications.

36



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

There are a few relevant detail to consider during the integration process. One,

Stage runs at a set frame rate of 30 frames/second. This means that all plug ins

have set deadlines for the reception and processing of information. Two, plug-ins

must utilize the networking system. The system in this thesis runs across several

different computers each with its own application. Networking is used to communicate

between the different applications. Therefore, plug-ins are responsible for receiving

and decoding network messages. To ensure that frame rate deadlines are met, strict

size constraints are placed on the information being passed between applications.

Scripting

Scripting is the process of automating a series of tasks. Stage supports the use of

scripting to trigger events such as the creation, movement or deletion of entities.

Scripting is not thoroughly used in this thesis and so it will not be described in great

detail.

2.3.4 Vega Prime

Vega Prime is responsible for the rendering of a scene. It takes one or multiple

OpenFlight databases and renders them. Additionally, Vega Prime determines the

climate conditions of the simulation and the manner in which lighting is calculated.

Finally, Vega Prime performs computations that are specific to the rendering process

such as collision detection and object transformations.

37



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Rendering

Vega Prime is a program specifically designed for the rendering of OpenFlight databases.

It loads, optimizes and renders the scene specified by the OpenFlight database.

Vega Prime renders the database using the traditional rendering model with ap-

plication, culling and drawing phase, as described in section 2.2.3. Additionally, tools

are available to fine tune rendering performance and realism of the final product. This

includes lighting models which differ on realism and performance, and LOD scaling

to reduce the number of polygons in a scene.

IG Application

Vega Prime is responsible for visualization of the virtual system, and as such, is

responsible for processes that directly effect rendering. Vega Prime contains a pro-

gramming frame work to facilitate the development of applications. The framework,

an API, facilitates the rapid transformation of rendered objects. In this thesis, the

API was used for, state change of traffic lights, collision detection, custom traversal

and optimization of the scene graph.

2.4 History of Driving Simulation

Driving simulators were initially developed to assess the skills and competence of

public transit operators in the early 1910s [12, p.1]. The simulation consisted of

artificial vehicle equipped with various stimuli and sensors. The stimuli used were

devices created to imitate specific components of the driving experience. In the 1960s,

driving simulation projects were undertaken in the US and Japan due to a very high

38



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

fatality rate amongst vehicle operators [14, p.1] [12, p.1]. At the same time, many

automobile companies started developing their own driving simulators [4, p.2-4].

Computers were not in wide spread use and so the simulations consisted of “analogue

computers or electrical circuits” [14, p.3]. The driving environment was displayed

to the user via a screen and a prerecorded film of a vehicle driving [12, p.1]. As

time progressed, so did the technology used to drive the driving simulators. Various

studies were performed through the 70’s and 80’s on a wide variety of topic including:

performance variables of older and younger drivers, hazard mitigation, and visual

attention [12, p.1]. The theme amongst the driving simulators of the present and

past, is that they “place the subject in an artificial environment believed to be a

valid substitute for one or more aspects of the actual driving experience” [13]. As

technology and society changes, so do the way in which people use their vehicles. For

instance, advances in cell phone technology have resulted in greater cell phone use

while driving. A study by VirginiaTech Transportation Institute states “secondary

tasks account for 23 percent of all crashes and near-crashes”. It is import that modern

driving simulators be developed that address the impact of an ever changing driving

environment.

39



Chapter 3

Simulation System

3.1 Overview

This thesis describes the process of developing an intersection visualization system for

the simulator at McMaster university. System development started when a project

was undertaken to upgrade the existing simulator system. The new system haw

several new objectives, but the one of concern in this thesis was the development of

a realistic driving simulation. Before commencing a discussion on the traffic system,

it is worth introducing the simulator system. Its design introduces constraints on the

implementation of the traffic signaling system as whole.

Figure 3.1 describes the systems involved in running full simulation.

The McMaster simulator is designed to perform unique experiments that combine

stimulous presentation and state of the art psychology techniques. To accommodate

the wide range of possible scenarios and experiments a combination of visual, motion,

audio, and data gathering systems, are employed.

To gather information on the user response, the EEG, eyetracker, user controls

40



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Figure 3.1: This figure describes the components comprising the simulator system as
well as their relationship to other components.

41



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

and logger are used. The Electroencephalograph (EEG), measures the magnetic fields

generated by the brain during experiments in order to isolate patterns of activity. The

eyetracker system tracks the motion of the eyes during the course of the experiment.

The system is accurate enough that it can determine where the user is looking at a

given time point. The user is typically provided with some sort of control in order to

interact with his environment. This comes in the form of button boxes, keyboards,

steering wheels and touch screens. Finally, all these systems pass their information

to the logger system that records the various user input. The information is then

analyzed at a further date.

The simulation system itself is comprised of several systems that may or may not

be used based on the context of the experiment. The systems are audio, motion and

image generation.

The sound system provides auditory stimulus to the user. Audio is typically used

to immerse the user in an environment, or as a cue in a experiment. Immersion sounds

are sounds appropriate to scenario. As an example, these could be the sounds of the

engine while driving or blinker sounds when signaling a turn. Cue sounds are used

to communicate to the user that some action will, must or can be performed. For

instance, in some experiments a sound is played slightly before a stimulus appears on

screen.

The motion platform applies forces to the user. The platform is used for two

purposes in the context of this system. One, to analyze a user’s perception of external

forces or two, to add realism to a simulation. The science of how humans perceive

motion cues within motion simulators is not well understood. This system allows for

controlled application of forces so that detailed experiments on human perception of

42



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

forces can be performed. The motion platform is used to simulate a flight or driving

experience. When driving, forces are experienced due to acceleration and deceleration

of the vehicle. A more realistic simulation can be created by computing these same

forces and applying them to the user. The forces are computed by the physics engine

localized in the platform’s sim. The forces are then simulated by the movement of

the motion platform. The processes of mimicking forces using a motion platform will

not be explained in this thesis since it is a complicated subject on to itself.

The image generation(IG) system is another important method for providing stim-

ulus to the user. Again, the IG system is used for experiments or simulations. The IG

system is interesting as it is comprised of three separate computer systems. Each IG’s

display is installed within the simulator. One is centered on the users view while the

others are installed at approximately 60 degrees off center. When running a scenario,

each IG contains an identical copy of the database. Using view frustum calculations,

each screen displays an appropriate camera view into the scenario world. As position

of the camera changes so does the position of the camera in each IG. Using these

techniques, the user has a sense that he or she is perceiving the scenario world.

Creating a realistic driving simulation is not a trivial process, and therefore several

properties were identified that are factors involved in achieving this goal, including, a

realistic physical environment, AI controlled entities, motion simulation and a traffic

system. This thesis describes the development of the visual component of the traffic

system as well as its interaction with the other subsystems involved in the project.

This concludes the introduction of the simulator system. The discussion focuses

on user interaction with the simulator as well as the techniques used to record the

user’s interaction. Next, the discussion will focus on the development process for

43



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

scenario development and traffic signal constraints.

3.2 Scenario Development

Scenario development is the process where a virtual environment is created with the

purpose of simulating a specific set of conditions. A major goal of the simulator

system at McMaster is the development of a realistic driving simulation. This section

discusses the development of a driving simulation scenario as well as the components

used to create this environment. The components are intelligent characters that follow

traffic rules and visual content creation.

Content creation is a process where the virtual environment is populated with el-

ements that fit the scenario. Elements include terrain, culture and entities. Typically

this process is performed by a team of artists. In the case of video games, half the

development staff are involved with content creation. This is not a realistic scenario

given the budget of McMaster’s simulator. Instead, development was focused on tools

for the rapid development of content. Terra Vista a terrain generation tool was instru-

mental in this process. As described in section 2.3.1, Terra Vista is GMS system that

translates vector data into a database populated with models. A fair amount of time

was spent programing Terra Vista to utilize our models, generate appropriate traffic

AI data and analysis vector data in a manner that meets our traffic requirements.

Entities are “intelligent characters” that are capable of analyzing their environ-

ment and reacting appropriately. The term used to describe intelligent character in

the context of computing is artificial intelligence (AI). In an urban driving environ-

ment there are typically other vehicles on the road and pedestrians walking on the

sidewalk as well as crosswalks. To simulate an urban driving environment, AI was

44



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

developed to simulate vehicles and pedestrians. The AI implant from Presagis greatly

facilitated the process by providing basic behaviors. Additional behaviors were added

to the system by another member of the development team.

The final component used to create the driving environment are traffic lights.

Traffic lights are used to signal to the user, the vehicle and pedestrian when they

may proceed into an intersection and what actions they may perform. Creating a

traffic intersection system by itself is not a complicated task, however, the design

of the simulator system requires that the intersection system communicate with the

OpenFlight database, the image generators and the AI implant, which complicates

the design process significantly. This thesis describes development and integration of

the intersection visualization system into McMaster’s motion simulation system.

3.3 Intersection Signaling System Development

The final intersection signaling system must meet certain constraints based on the

design of the simulator system.

I The final product must integrate into the current development process.

The generation of intersection signaling data must work with Terra Vista. More

specifically, the intersection setup must be generated by Terra Vista or computed

from its outputted AI or Open Flight data.

II The inter-system communication must consist of small messages that

require little computation at run time.

The image generator, artificial intelligence, and scenario manager are all located on

different computers and communicate using a combination of TCP/UDP protocols.

45



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Due to the demanding deadlines for rendering in a real time system, it is important

that the signaling system messages do not interfere with network communication via

overly large packets or frequent messages.

III The system must have a high level override

The simulator system will be used to perform experiments on driving conditions.

Many of these experiments will involve custom traffic patterns or sudden changes

in light state. It is therefore important that the traffic signaling system be able to

quickly change state via a simple message.

IV The system must be able to model all possible traffic light systems

used in the real world

The simulator may be used to model real world locations. It is therefore important

that it be able to model any type of intersection or sequence of states.

V A user must be able to program their own traffic intersection

Eventually the system should be user friendly enough that a psychology student

without extensive knowledge of programming may be able to program their own

custom intersection system.

Given these constraints, the development of traffic system commenced.

3.4 Solution Development Process

The development process used in this thesis was not formal methods. Rather, a

custom process was used that focused on testing and a short development cycle. This

46



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

decision was made because some elements required for a complete design were not

present. The individual software packages used were quite well documented however,

the interaction between software modules was not. More specifically, it was unknown

how a change in the database, via Terra Vista or Creator, would effect performance

in visualization, Vega Prime. Determining these inter-system interactions was key

to the design process. The alternative approach was a testing intensive process.

By rapidly prototyping, the obvious implementation issues could be exposed. The

solution development process is broken down into 3 steps:

1. Design

2. Implementation

3. Evaluation

The system is designed under various constraints, while attempting to provided

as many desirable characteristics as possible. Algorithms are developed to compute

information and solve encountered problems. Several implementation strategies are

evaluation, and eventually, one is chosen. The actual implementation is left to the

next section.

The implementation takes the model’s design and translates it into an application.

It uses tools such as programing languages, outside application, APIs and scripts to

complete the physical program. During this process, unexpected behavior may be

encountered or assumptions may be invalidated. These failures are noted and will be

analyzed in the next step.

The evaluation stage critically analyses the program generated in the implementa-

tion. Successful and unsuccessful components, of the implementation, are identified.

The unsuccessful component’s root causes are identified and used to generate a set

47



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

of properties that guide the refinement of the current model. These properties will

guide the redesign of the current model in the next development cycle.

When issues are encountered during implementation, the model must be adjusted.

Using the properties identified in the evaluation section, the design phase creates a

new model of the intersection state visualization system. The design, implement,

evaluation cycle is repeated until a complete solution.

The programs specified by each model can be generalized. Each model consists

of three steps: information gathering, intersection generation and the run-time appli-

cation. As each model is developed, new process and algorithms are added in order

to reach a complete solution. Each of this components will be integrated into one

of these three steps. To improve the readers understanding of changes amongst each

model, a diagram is added at the beginning of each model that illustrates each new

process as well any changes to the program structure or data flow.

48



Chapter 4

Database Solution

The OpenFlight database solution went through several iterations before being aban-

doned. Although not used, the older models did lead to several useful conclusions.

This chapter will outline the motivation for using OpenFlight, the three implemen-

tations and finally the conclusions drawn from this model.

4.1 Overview

The initial development of the intersection signaling system focused on utilizing the

powerful set of tools for OpenFlight databases. Implementation issues arose and

a new solution was proposed. This cycle repeated itself several times resulting in

three models. The models are, one, the custom intersection node; two, Vega Prime

intersection control; and three, finally the external reference ID system. All these

implementations utilize the OpenFlight API to some degree. During the development

process several limitations of the development tools were discovered. The limitations

eventually resulted in the abandonment of the OpenFlight extension tools all together

49



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

but still utilizing the OpenFlight API.

The following section details justification for implementing the intersection sig-

naling system in OpenFlight. Following that discussion, the OpenFlight custom node

framework is briefly introduced.

4.1.1 Initial Design

Fewer Inputs

By incorporating traffic light information into the OpenFlight database encoding,

we eliminate the need to add another file format to create, maintain, and update.

This model is consistent with Constraint I, integrate into the current development

process.

Another possible solution was storing intersection data as a part of the AI implants

data. The AI file formate (.acx) is an XML based encoding and it would be suitable

candidate for storing intersection data, however the interface for ACX modification

had little to no documentation. It was decided that the OpenFlight tool set was more

extensive and would be a more appropriate solution. It should be noted, that post

development, there was a release of the AI implant that created intersection data

within the acx file format. This system is utilized in the second implementation of

the intersection signaling system.

OpenFlight Synergy

As described previously, OpenFlight contains a set of tools for the generation and use

of custom node types. OpenFlight is known for its efficiency as a real time application

database. It can therefore be assumed that incorporating our intersection signaling

50



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

system into the OpenFlight system would lead to some increased performance. This

is indeed the case. For one, by incorporating the custom node we leverage the traver-

sal system used in OpenFlight. As described in section 2.1.2, traversal is DFS that

eliminates branches of the scene graph when they are not rendered. This means

that the custom nodes are not read unless they are to be rendered. This will drasti-

cally improve performance across large simulations. Two, OpenFlight is the standard

database system for all Presagis products, and therefore, the custom nodes should

integrate easily into the other products; AI, stage, and VegaPrime.

Development Tools

The OpenFlight API is a set of tools used for the creation and modification of the

OpenFlight database system. The tool set is well documented and allows for a great

degree of customization. The sample code and two reference manuals facilitated the

learning process which, in turn, lead to rapid prototyping. This was ideal for our

agile development process.

4.1.2 OpenFlight API

The OpenFlight API contains functions for the manipulation and customization of

OpenFlight databases. A subset of the tools allows the user to generate their own

extension of the OpenFlight standard. The process is quite involved but the end

results is a new node type. The design of nodes can be described as object oriented

(OO), however, the properties of the object are quite restrictive relative to other OO

designs. There are three steps in the definition process. First, a new or existing node

attributes are defined. Second, function are defined related to that node. Third, the

51



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

relation, of that node to the other node types, is defined.

Attributes

In OpenFlight, a node is defined by the data it stores. Data is named an attribute

and defined using the dataDef keyword. The attributes are defined by data types

similar to those of most programing languages.

• Boolean (true or false)

• Integer (a whole number)

• Float (single precision real number)

• Double (double precision real number)

• Unformatted String (variable length ASCII character sequence)

• XML String (variable length ASCII character sequence interpreted as XML

format)

[2, p.17]

Functions

The functions used with a node in OpenFlight are limited relative to most programing

languages. The two categories of functions are action and drawing

An action function is one that is called when a node’s attribute is altered. Pre

action function is called just before the node is altered. This is used when a value is

needed for the attribute update process. Post action function is called after a node’s

attribute is altered. This is used to trigger the update of other attributes that are

derived from that node’s data.

52



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Draw functions are used in conjunction with creator. They determine how Creator

renders a custom node. Draw functions are typically used with drawn node types such

as face or meshes.

Relationship

The final property of a node is its relationship to other nodes. In OpenFlight, the

relationship is limited to the parent and child. Each relationship defines the set of

nodes that are valid as a parent or a child.

4.2 Model 1: Custom Traffic Node

The first implementation of an intersection signaling system used a custom Open-

Flight node. Each custom node stored information related to a particular intersection.

The node’s children were used to identify traffic lights belonging to that intersection.

The following discusses the intersection traffic information encoding. Next, the node

attributes are specified. Finally, a discussion on the failures of this model and the

lessons learned that lead to the next implementation.

4.2.1 Design

Encoding

There are many ways to represent an intersection’s state. The state themselves are

determined by the components used to create the intersection. At the lowest level

are light sources that are either on or off. Constructed from these light sources are

traffic lights. Finally, there are intersections consisting of multiple traffic lights.

53



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Traffic lights can be described as having states. A simple light consists of red,

yellow, and green indicators. In this example, each light may be on or off independent

of the other. A complex light contains left turn signals, right turn signals, and at

least 2 pedestrian signals. If there are no assumptions on the relationship between

lights, then the number of states are the power set of the set of all indicators. This

fact will be important for the encoding of intersection state.

The next encoding is at the level of the intersection. A traffic intersection is a

grouping of traffic lights that are located near an intersection of roads. Within the

traffic simulator, there is a need for a state that describes the intersection as a whole.

This need arises from constraint II & III which states that the system must have a

high level override and that the traffic messages must be small. A state encoding will

be used to specify the requested state in the override. As previously discussed, the

number of states for an individual traffic light is the power set of that light’s indicator.

An intersection’s possible states is therefore the power set of the light’s states that

make up that intersection. Consider a four way intersection with each light having

three indicators and a pedestrian crossing signal for two directions. Assume that

the pedestrian light for each direction has two indicators each. In this scenario, the

number of states

= 2(light indicators+pedestrian indicators)∗number of light = 2(3+4)∗4 = 228

This simple example requires 28 bits to encode the traffic state. The constants of the

traffic message are that they must be at 64 bits. Almost half the message space is

required for this simple example. Typically in most modern intersections there are

at least two lights per direction, additional turning signals and three indicators for

54



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

a pedestrian light. It is easy to imagine a scenario where the 64 bit encoding would

not suffice. There is a need for some encoding that simplifies the state space of the

intersection states.

Several techniques are used to simplify the traffic state description. Lights are

grouped, indicators are mapped to switches and assumptions are made about inter-

section states.

First, lights are grouped together if their states are identical for every intersection

state. This situation occurs frequently in modern intersections where more then one

light is used to display identical traffic information for a given direction. The grouping

of lights is referred to as a light group. Another situation where grouping occurs is

between lights on opposite sides of an intersection. For a given 4 way intersection

with north, south, east and west traffic lights, the light for north and south will be

in the same state and east and west the same state. This pattern is used to group

lights. This relationship does not hold for all intersection so this grouping is optional

based on the intersection design.

Second, the indicator states are stored at the level of the database as a switch,

2.1.6. The switch defines a global integer state where each indicator is either on or

off. The switch integer values are used to represent the state of the light group. Only

a small subset of possible states are used in most traffic lights, therefore, the switch

states tend to be small in number. Additionally, encoding light group states as a

switch, results in a finite sequence of light states. This fact will be important in the

implementation of the intersection state.

Third, only one light group may be in a non-red state at one time. By making this

assumption, the intersection state sequence can now be described as some permutation

55



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Figure 4.1: A sample of how intersection states are generated from light group states.
In this example all possible permutation are display.

of the light state sequence. Figure 4.2.1 displays the permutations generated from a

light state encoding.

Using these simplifications, an intersection state machine is constructed. Figure

4.2.1 illustrates the intersection level state machine in detail. The system comprises of

a state machine for each light group and one intersection level machine. There exist

an intersection state for each light group state machine. Only one light grouping

state machine is in a non-red state at a given time. The currently active light group

determines which state the intersection level state machine is in. The transitions that

occur at the intersection level, depend on the light group state; a self transition for

non-red states and a transition to new state when a red state is reached.

56



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Figure 4.2: Intersection signaling system for an intersection with 3 light groups. The
light groups have a variable number of states but always consist of a red state =
{R1,R2,R3} and a non red state = {G1,G2,G3,Y1,Y2,Y3,T2}. The bottom state
machine transitions are determined by those of the light grouping above. When a red
state is reached, the intersection level state machine may transition into a new state
and correspondingly so may a new light group.

57



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Run Time Application

Once the intersections are created, the database needs to be visualized. The visual-

ization process is performed by the image generator(IG) using Vega Prime. At the

time of this model’s implementation, it was assumed that there was a direct corre-

spondence between OpenFlight database structure and VegaPrime’s internal repre-

sentation, that all information within the database could be accessed and modified by

VegaPrime API. Under these assumptions, VegaPrime application would access the

myTraf node, and using the heuristics previously described, render the correct light

states.

4.2.2 Implementation

Node Setup

Custom node types are generated using a set of API tools. The custom node generated

within this thesis is named myTraf. Each myTraf node is meant to represent one traffic

node. The nodes are programed in a OpenFlight specific programing language .dd.

The specifics of the language are not important to the understanding of the node

type, and so, to increase readability, the .dd code has benn translated to C++ for

the reader’s convenience.

class myTraf
{
public :

myTraf ( ) ;
bool updat e l i gh t g roup ( int index , int value ) ;
bool update l ight max ( int index , int value ) ;

private :
int l i g h t g r o u p [ 1 0 ] ;

58



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

int l i ght max [ 1 0 ] ;
int num states ;
int num groupes ;

}

The OpenFlight generation process allows for additional specifications that are

not fully covered by the above C++ description. The following are points that are

missed by the above C++ header.

• Arrays do not exist within OpenFlight

To implement arrays in OpenFlight and conversion from arrays to a list of variables

is performed. An array of length n is specified as n separate variables. That is the

light group[10] becomes light group0,light group1,...,light group9. The same process

is used for light max[10]

• The value of light group and light max are between 0 and 11.

The OpenFlight framework allows for limitations to be placed on variable’s min

and max value. In this implementation, the range of the variables was limited. This

minimized the myTraf node size in the OpenFlight database.

• The value of num states and num groupes are derived from those of light group

and light max.

OpenFlight contains functions that are triggered when a value is changed. In the my-

Traf node alteration of the light group or light max triggers the update of num states

and num groupes.

59



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

• Child and Parent relation definition

There were restrictions placed on the child relation. As described in section 2.1.1,

OpenFlight nodes are connected to other nodes via a parent or child relation. In the

case of the myTraf node, all parent relations are valid but the child relation is only

valid between a myTraf and an external reference.

Organization & Interpretation

The myTraf node, as it is implemented, is only a list of integers. It requires organi-

zation and a specific interpretation to ensure proper functionality.

The current development process creates the database using Terra Vista. When

traffic lights are generated using this process, they are inserted into the database as an

external reference. The external references need to be assigned to an intersection. The

child/parent relationship is used for this purpose. To assign a light to an intersection,

an external reference is made the child of the myTraf node.

Next, the lights must be ordered into groups. The ordering process uses the

light group number to imply grouping. Moving from left to right, across the myTraf

node’s children, the light groups are ordered increasingly. Starting from the first child,

num groups value determines how many of the children will belong to the first group.

The second group children are listed to the right of the last child of the first group.

The process continues inductively. The range for each grouping can be summarized

by the following formula.

sum(n− 1) ≤ range(n) ≤ sum(n− 1) + light group(n)

where

• range(m) = the children that belong to mth light grouping

60



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

• light group(j) = the value stored in the jth light grouping field of the myTraf

node

• sum(k) =
∑k

0 light group(i)

A final convention is used for naming light switches. The switches used to define

the light states are given a particular naming convention. The naming can then

be used to identify switches controlling light state from other switches used by the

OpenFlight system.

Together the heuristics and the myTraf data are used to represent a intersection.

Run Time Application

The run time application component was only implemented in a rudimentary manner.

An external reference node specifying a light was loaded in Vega Prime. The light’s

switches was found and used to change the light indicators states. A full implemen-

tation was not achieved since issues arose that lead to a redesign of the model.

4.2.3 Evaluation

The custom node model does not satisfy all the constraints presented in section 3.3.

These violations arise from assumptions made about the Presagis software that did

not hold true. Other issues arose from the difficulty of implementing this model across

a large database system. Throughout this discussion, suggestions are made which will

form the foundation for the next model, the vega prime intersection implementation.

Terra Vista is used to generate the database and models that populate the virtual

environment. It was assumed that Terra Vista could be configured to insert custom

61



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

nodes into the database. It was also thought that external references could be at-

tached and organized, as myTraf children, in the manner described in section 4.2.2.

Both these assumptions are invalid. The process that generates intersections, within

Terra Vista, is a black box. There are attributes that may be used to alter intersec-

tion appearance, however there exists no framework for altering the actual procedure

used in the generation process. This suggests that insertion of myTraf nodes must

be handled by a separate procedure or program. This violates constraint I where

the traffic system must integrate into the current development process. Later, it

was discovered that Terra Vista has no API for any form of programmable elements,

and ultimately, any intersection signaling system must be generated outside of Terra

Vista.

There exists a corner case where an intersection lies between two databases. Re-

member that large databases are composed of OpenFlight databases joined together,

via external references in a master file, 2.3.1. Scenarios may arise where an inter-

section lies across multiple databases. More specifically, that the lights within the

intersection are spread across two databases. Assigning lights to an intersection, by

making them a child, is not possible. The myTraf node may only exist in one database

while the set of lights exist across two. The myTraf convention system fails under

these conditions. Clearly using child/parent relationship to group lights into an in-

tersection is not sufficient to cover all scenarios. The solution, presented in the next

section, stores the intersection and light grouping outside the database.

The myTraf node represents an intersection but requires lights to be assigned to it.

At the time of intersection creation, in Terra Vista, it is known which lights belong to

which intersection. The generation process is a black box and post database creation,

62



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

this information must be recomputed. The next intersection model must compute

which external reference belong to which intersection, and more specifically, which

light grouping.

In summary, the custom traffic node fails to provide the functionality required.

The new model will not use TerraVista to generate intersection information but rather

it will recompute which lights belong to which intersection.

4.3 Model 2: Vega Prime Intersection Control

Intersection organizational information must be moved outside of the OpenFlight

database. The previous model failed under some scenariosCence. Additionally, the

custom node could not be incorporated into the existing development process. The

decision was made to move the intersection generation process from the front end,

Terra Vista, to the back end, Vega Prime.

4.3.1 Design

Intersections are generated in Terra Vista when two roads intersect at a point. At

the time of creation, the intersection’s characteristics are known. This includes the

intersection center, number of lanes, lane position as well as the lights belonging

to the intersection. Unfortunately, there is no programming interface to access this

information from Terra Vista. The result is that this information must be recomputed

post database generation.

The task is therefore to gather or compute the necessary information to construct

intersections. The minimum required information is,

63



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

1. Number of states in a light

2. Which lights belong to which intersection

3. Which lights are grouped together

A new model was designed to compute and gather this information. The new

system runs as a programmable extension of Vega Prime. The application configu-

ration consists of three steps. First, relevant data is gathered. Second, intersection

organization is computed . Third, an application runs the intersection simulations.

Figure 4.3: The organization of the intersection state visualization application. The
system is broken down into programs, conceptual unit, information flow between units
and file formats.

Intersection data must be reconstructed using available data. In model 2 there

are three potential sources of data: the OpenFlight database, the AI.implant data

and the vega scene graph(VSG) representation. Ideally, the VSG data would contain

64



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

all the required information for computing intersection info as it is already used to

render the database, however, if insufficient information is present within the VSG,

then other sources of information will be queried.

The VSG is constructed by the Vega Prime loader. The loader takes, as input,

an OpenFlight database and with it creates an internal representation called the

vega scene graph(VSG). Three potential pieces of information are retrievable from

the VSG: light state, list of lights and light position. For light list and position, it

is unclear from the documentation whether this information is retrievable from the

VSG. The document does specify that VSG contains switches which operate in a

similar manner to OpenFlight switches. The VSG will be used to locate the switches

controlling the traffic light states. Based on preliminary research, the states stored in

the switch in OpenFlight are maintained when converted to VSG switches. Therefore

light states represented as OpenFlight switches in model 1 can be represented as VSG

switches in model 2. In the Vega Prime implementation, the number of states in a

light will be determined from the OpenFlight database using the Vega Prime loader

and the VSG.

If VSG contains insufficient information, then the OpenFlight database and Open-

Flight API will be used. With it, a list of all traffic lights can be gathered. Potential

lights are identified from the list of external references. This assumption can be made

since Terra Vista is used to generate the database and Terra Vista creates lights as

external references. The list of external references can be narrowed down to only

traffic lights using the external reference names. Additionally, the position of the

light can be determined from the external references node. The list of lights and their

respective positions are computed from OpenFlight database and stored for later use.

65



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

ACX Version1 Another potential source of information is the AI.Implant. At the

time of this model’s development, the AI implants data (ACX version 5.6) contained

limited traffic system information. The information consisted of way points and road

networks. A waypoint is a point along a path and a road network is a set of paths. It

is clear when visualizing the AI data that some way points are intersection centers,

however it is unclear how to determining whether a way point is an intersection center

or another point along the path. For this reason, this version of the AI data was not

used.

ACX Version2 During the design and implementation of model 2, a new version

of the AI.Implant (version 5.7) was released. It contained significant updates, one

of which is an intersection system. The new system detailed the center position of

intersections, the incoming lanes and the outgoing lanes. This information is used in

the Vega Prime intersection implementation.

Intersection Generation

Intersections are recomputed using the gathered information. Given that the tech-

niques described in section 4.3.1 are successful, then the following information is

available for computation

1. Light State

2. Light Position

3. List of All Lights

4. Intersection Center

5. Intersection Lane Location

66



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Using this information an algorithm was devised to generate intersections. First,

lights are assigned to intersections and second, intersection lights are grouped.

The list of intersections are created from the intersection center. For each in-

tersection center retrieved from the ACX, an intersection is created. Following this

step, lights are assigned to intersections. Light’s position is compared to that of ev-

ery intersection. The light is assigned to the intersection that it lies closes to. This

procedure continues until all lights are assigned to an intersection.

The lights are then grouped. In some intersections, when lights are opposite

each other, then they have identical states for all intersection states. The grouping

procedure attempts to identify pairs of lights which meet this criteria, that is, lights

that are opposite one another. The lanes that enter the intersection are used divide

the intersection into areas. If two lights lie in opposite areas then they are grouped.

Figure 4.3.1 illustrates the concept and the implementation section will have more

details.

Figure 4.4: The division of an intersection into areas using lanes. Lights in opposite
areas are grouped. Grouping1 = {l1,l3} and Grouping2 = {l2,l4}

With the completion of the intersection organisations, the essential information is

in place for running an intersection visualization system. The number of states in a

67



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

light is retrieved from the VSG. The lights to intersection association is assigned using

distance information. Light grouping is computed from light position and intersection

lanes. The run-time system may now visualize and control the intersection system.

Run Time Application

The runtime application is responsible for visualizing and changing the state of traffic

lights. The application is implemented in c++ using the Vega Prime API. In the

previous model, a rudimentary implementation was achieved that could change a

single traffic light’s state. The new intersection signaling system must organize and

store light and intersection data across several databases. This level of complexity

requires organization and is achieved using OO objects. The objects have three

levels of organization. At the lowest level are lights. Lights are associated with a

visual element or model that represents a traffic light. It is responsible for storing its

own state, changing it and interacting with the VSG. Intersections consist of several

lights. It stores the intersection state and is responsible for storing the subjective

mapping between intersection state and individual light states. At the top level is

the traffic manager. This singleton stores all the intersections in the database. It can

be programmed to trigger state changes and is responsible for any queries related to

the state of the traffic system. The details of how these systems are implemented are

left to the implementation section.

4.3.2 Implementation

This section details the techniques used to implement the concepts described in the

design section. This includes the software modules used to gather information, the

68



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Figure 4.5: A uml description of traffic system. Traffic Manager is composed of
Intersections and Intersections are composed of Lights.

algorithm used to group lights and the structure of the run time application.

Information Gathering

The VegaPrime’s internal representation is named the vega scene graph (VSG). The

Vega Prime loader takes as input an OpenFlight database and with it creates the VSG.

The conversion process has several variables to customize the level of optimization

in the final version of VSG. The implementation attempted to use the Vega Prime

loader to find traffic lights along with their position, identification and states.

The task of finding light switches within the VSG was relatively simple. The

traffic lights used to generate intersections in Terra Vista were modified. The traffic

light’s switch nodes controlling state where assigned a static name. During conversion

from OpenFlight to VSG, the naming for switches was kept in place. The VegaPrime

API used the static name to search the VSG and rapidly identify switches controlling

light states.

Determining light position using the VSG was problematic. The VSG is built for

visualization and it discards any information not required for the rendering process.

With traffic lights, polygon and texture information are kept but light position is

discarded. The polygons are not grouped based on object, but rather by levels of detail

or switch node. Determining which polygon belongs to the light, and additionally

69



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

whether it can be used to approximate the light position is a challenging problem. To

avoid unnecessary computations, the OpenFlight database is used to retrieve exact

light position instead of the VSG.

The OpenFlight API is used to search the database for external references with

specified names. A list is created with external references containing names corre-

sponding to traffic lights. Next, the program computes the position of the light using

the database hierarchy. For more information on how position is calculated in Open-

Flight, please refer to section 2.1.3. This information is kept and eventually passed

to the run time application.

The ACX data was used to gather intersection and lane position. The procedure

used the AI Implant API. The API’s use was straight forward and no problems were

encountered.

A secondary use of the information gathering system was the instantiation of

the run time classes. For each intersection center found, an intersection object was

created, and similarly, for each light position found, a light object is created. The

two objects are associated together in the next section, intersection generation.

Intersection Generation

The first step in intersection generation was the assignment of lights to intersections.

For each light position found a light was created, and for each intersection position,

an intersection. The algorithm sorted lights into the closest intersection based on

distance. The implementation details were relatively straight forward and do not

warrant additional explanation.

Following the assignment of lights to intersections, light grouping was performed.

70



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

The procedure divides intersection into areas, then groups lights based on which area

they lie within. The division is created using lines. These lines are generated from

two points: the lane positions and intersection center. Often, there are lanes opposite

each other in an intersection that correspond to the same line or even lanes that are

slightly non parallel. In these situations, having two lines is redundant and so one is

removed based on a minimum difference value between their slopes. With intersection

divided, the areas lying between lines are assigned numeric values. The values depend

on which side of the line the areas fall. First, a left or right destination is arbitrarily

assigned for each line. A value of 0 is assigned if the space is on the left and 1 if

the space lies to the right. For a given light, it is assigned a value for each lines in

the intersection. Each value is taken from the side of the line on which the light lies.

Taken together, these value create a binary value. The lights are grouped if they have

an identical binary value or if the values are complements. For a sample intersection

and light encoding refer to figure 4.3.2.

Run Time Application

The run time application was implemented as C++ classes. The classes where de-

signed to match the conceptual model of an intersection proposed in the design com-

ponent. Each light controls its own state and intersection perform global state changes

on groups of lights. With this division, changes can be made to each class without

compromising the functionality of the entire system. The details of the programming

are left out of this discussion as they are consistent with standard practices.

As discussed previously, the light switches and light position were found using

the VSG and OpenFlight database respectively. Switches, within the VSG, have no

71



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Figure 4.6: Grouping of lights based on intersection division. Intersection are divided
into areas based on the lines generated from lanes. Each light is assigned a value
based on which side of a line it lies. The values are then used to group lights

name and no position. The problem is that switches need to be associated with a

light positions for the light to be sorted into intersections. One proposed solution

involved finding the position of a polygon controlled by the switch and using it to

imply position. The alternative is to assign an ID to switch node. This decision is

not trivial and will be discussed in more detail in the conclusions. The fact is, the

next model must be able to map a switch node to a position in the database.

Intersection class performs intersection organization and stores state information.

It stores the lights belonging to the intersection and performs the light grouping

procedure as described in figure 4.3.2.

The TrafficMgr class is responsible for high level control of the intersection state

visualization. It was implemented as a singleton since there should only be one

management system for the entire intersection signaling system. The API contains

72



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

functions which retrieve information from the OpenFlight, ACX and VSG. These

functions trigger the instantiation of intersection and light class and consequentially

the intersection organization and light grouping.

4.3.3 Evaluation

The failure of this model was the inability to match light switches, or the polygons

representing a light, to a position in the database. The issue arose because of opti-

mizations made by the Vega Prime loader that removed any unnecessary information

for the rendering process. In this case the names and position of switch nodes were

removed. Additionally, the run time system was incomplete in its implementation.

No ID system was in place for lights or intersections bur rather, hard coded values

were used instead. These design decisions were chosen in accordance with a short

development cycle. We thought it more important to get a basic system in place to

determine whether the design of the model had any major flaws rather than focus on

a complete implementation. This enabled us to identify issues with the switch node

at an early stage. In the end, the next model needs to create an identification system

for lights and intersections, as well as resolve the issue of mapping switch nodes to

positions.

4.4 Model 3: External Reference Labeling

The external reference labeling model is a solution to the issues encountered in model

2. In the previous model, it was not possible to match individual traffic light models

with switch nodes that control their state. It was assumed that the node names,

73



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

present in the OpenFlight database, would also be present in the VSG representation.

The names would then be used to match traffic light model data to state control

data. This solution was not viable because the conversion process from OpenFlight to

VSG removes randomly generated node names. This model proposes an alternative

mechanism for labeling switch nodes. A custom node loading procedure will label

VSG nodes as they are generated from the OpenFlight database. This approach will

rely on the ”subscriber” framework present in The VegaPrime API. As a secondary

objective, this model will provide a uniform identification (ID) system for both lights

and intersections. The ID system was only partially implemented in the previous

model. This model completes the implementation.

Figure 4.7: An overview of how the program structure has changed between model
2 and model 3.Model 3 introduces three new procedures: ID Generation, ID Assign-
ment, and Custom Loader. The OpenFlight database is now modified.

74



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

4.4.1 Design

The Vega Prime loader is the class that loads OpenFlight databases, perform opti-

mizations, and generates the VSG. In model 2, the loader was used to generate the

visual environment using the OpenFlight database. In this model, the loader is mod-

ified in an attempt to label switch nodes as they are generated. This task uses the

Vega Prime concept of subscribers. Subscribing is a process where function 1 wish to

be triggered when function 2 performs a specific action called an event. In this case,

the event of interest is the generation of a VSG switch node from an OpenFlight VSG

node. When this event occurs, the VSG will be assigned an ID. Later this ID will be

used to match the VSG switch to the OpenFlight data. In order to implement this

functionality, 3 processes are required: one, a convention for generating ID; two, a

procedure for assigning ID’s to nodes; and three, a custom loader to read and assign

IDs.

ID Generation

The ID generation procedure assigns values using property’s of the OpenFlight database.

The ID is a tuple comprised of a database component and a instance component.

When a database is generated in Terra Vista, it is comprised of one master file con-

sisting of a list of external references each referencing a OpenFlight database, 2.3.1.

The sub databases are given names of the form flightX Y.flt where X and Y are

positive integers. In the ID generation process the X and Y identify the database

component of the ID. The instance ID is assigned based on the database organiza-

tion. The first traffic light is assigned an ID of 1, the second an ID of 2, and so

forth. These two IDs are sufficient to uniquely identify any traffic light generated

75



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

using Terra Vista.

OpenFlight ID Assignment

The ID assignment refers to the process where ID are assigned to OpenFlight nodes

and VSG switches. This section describes ID assignment for OpenFlight nodes ex-

clusively. In model 1 , it was discovered that Terra Vista could not be used to assign

values to custom nodes or attributes. The OpenFlight API is already being used to

gather traffic light position and orientation. Model 3 will use the OpenFlight API

to assign ID to traffic lights. Nodes that are assigned IDs may not have attributes

in which to store the ID. In this case, the custom/extension framework will be used

to create an additional field. For more information on custom nodes refer to section

4.1.2.

Custom Loader

The custom loader will be responsible for labeling switch nodes that control traffic

light state. The loader will first recognize switch nodes and second, read ID infor-

mation from the node’s attribute. In order to trigger node labeling, the concept of

subscribers in Vega Prime are used. Subscribers are classes that wish to receive noti-

fications if events occur in another class. In this application, the event is the loading

of an OpenFlight node and the notification triggers the labeling.

Switch nodes must be labeled, however, the database generation process creates

lights as references to one light model. In order to store ID information at the level of

switch nodes, there would need to be a distinct model for each light. This is clearly

not a reasonable solution. As an alternative, labeling is performed at the level of the

76



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

external reference. In this way, the switch node may be labeled at generation time

by determining parent external references.

Assuming that this procedure may be implemented, the custom ID attributes

must be read from within the Vega Prime framework. Reading custom OpenFlight

nodes using the Vega Prime loader is not part of the documentation. However, it

is known that OpenFlight database nodes are written to memory sequentially, 2.1.2.

Additionally, when a node is extended, custom attributes are appended to the existing

node structure in memory. These facts will be used to retrieve IDs from external

reference nodes.

4.4.2 Implementation

The implementation of the external reference labeling system had two interesting

components. It used the Vega Prime and OpenFlight API to complete the intersection

generation process. It reorganized some of the computation task from run time to

non run time, however, other major problems were encountered.

ID Generation

The ID generation process assigns an ID to external reference nodes. The ID is

comprised of two parts: the database and the object. The database ID is retrieved

from the database’s name. The database names are of the form flightX Y where they

represent two distinct positive integers. The implementation used a shell script to

parse the nodes name and pass the X and Y value to the ID generation application

at run time. The X and Y value are then combined into a single value using the

following formula ID Database = X ∗ 1000 + Y . The database ID is unique within

77



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

the range 1 ≤ X, Y ≤ 999. This assumption is valid for our system since one, X,Y

increase sequentially from 1 as database block size increases and two, the size of our

world is 18X18 blocks and future scenarios are unlikely to increase beyond 200.

The object ID is generated from the database layout. The entire database is

traversed. If an external reference is found that refers to a traffic light then it is

assigned an object ID. The ID starts at 1 and increases for each identified light. The

traversal is detailed in the OpenFlight ID assignment.

OpenFlight ID Assignment

External references require two new attributes to store database and object ID. These

attributes were added using the OpenFlight node extension API, 4.1.2. The imple-

mentation procedure was similar to that in Model 1, 4.2.2, however, this extension

only adds two new integers: database ID and object ID.

The OpenFlight API is used in Model 2 to gather information from the OpenFlight

database. API is used to gather a list of traffic lights and determine their position.

In model 3. the API is used to assign IDs to external reference nodes. The existing

traversal is modified to include a check for external references that point to traffic

light models. When these nodes are found, attributes are assigned values based on

ID generation previously described.

Custom Loader

The custom loader is responsible for loading OpenFlight nodes and converting them to

a VSG representation. The implementation is broken down into two major processes:

triggering a procedure when an external reference is loaded and reading the reference’s

78



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

attributes.

In Vega Prime, each file format is loaded and converted into VSG by a separate

loader. The loader “vsNodeLoader flt” is used to load the OpenFlight database. A

subscriber function is used to tie into the loading process. Remember that a subscriber

is a function that is triggered when an event occurs in the parent class. The function

prototype is

void n o t i f y ( vsNodeLoader f l t : : Event ,
const vsNodeLoader f l t ∗ loader ,
const vsNode∗ node ,
const mgBead∗ bead ,
const f l t A n c i l l a r i e s ∗ a n c i l

)

The event used in the custom loader is EVENT GEOMETRY. The event is trig-

gered every time a geometry is created. More specifically, it is trigger when an Open-

Flight node is used to create VSG node that can be rendered. External references

specify models which contain geometry and therefore this event is triggered when an

external reference is loaded. The function parameter “const vsNode* node” points to

the VSG node that was generated and “const mgBead* bead” points to the binary

structure of the OpenFlight node. In order to identify external reference nodes the

binary structure of bead is decoded.

[2, p.44]

typedef struct {
short opcode ; /∗ 2 ∗/
char f i l l e r [ 214 ] ; /∗ 214 ∗/
int database ;
int ob j e c t ;

} decodeStruct ;

79



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Figure 4.8: The structure of an external reference node in memory. Note that the
Opcode value for an external reference node is 63 and that the node is 214 bytes long.
The extension attributes database and object would then be located at location 216
and 218 respectively.

When an event is triggered, a decodeStruct pointer is assigned to the bead vari-

able. If the opcode value is 63 then the structure corresponds to a external reference

node. Similarly, the database and object ID are retrieved from the bead using the

decodeStruct.

Final Application

With these procedures implemented, the node matching procedure can be completed.

The database ID, object ID and the VSG node pointer “vsNode* node” are stored in

an associated list. Later the traffic light position and orientation data are matched

using IDs. The VSG node using the vsNode pointer.

80



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

4.4.3 Evaluation

Model 3 was successfully implemented. Unlike the other models, there were no issues

translating the design into the implementation, however, a major flaw was revealed

during testing. Changing the state of a traffic light via a switch node changed all

other traffic lights to the same state. For a given intersection with 4 traffic lights

represented by 4 switch nodes, when one switch node state is changed to red then all

other switches are changed to red. The exact reason for this behavior is still unknown,

however, several hypothesis were considered.

The VSG is built specifically for rendering real time databases. It contains sev-

eral optimizations that improve rendering performance. We believe that one of these

optimizations resulted in simplified switch nodes. When rendering several external

references that point to the same database, the resulting geometries are an identical

set of polygons. We believe the optimization recognizes this pattern and automati-

cally group these external references in a process called instancing,2.1.5. Remember,

instancing is “the ability to define all or part of a database once, then reference it

one or more times while applying various transformations” [3, p.14]. However, the

intersection signaling system requires lights with independent states. A solution must

be found that removes instancing.

With future reading of the documentation, it was discovered that the vpObject

class object was the “fundamental database unit for rendering”. The current ap-

plication setup had the entire database loaded as a single vpObject. Perhaps the

application has to be reorganized such that each object with state must be its own

vpObject. With a simple experiment, it was shown that two external references, each

loaded as a separate vpObject, could have independent states. The next model will

81



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

load each traffic light model as a separate vpObject.

82



Chapter 5

XML Traffic Description

5.1 Model 4: Independent Intersection Control

5.1.1 Design

This model was design to solve the issue discovered in model 3, changing any light

state would result in the same change in all lights. The reasons for this behavior are

not well understood, however it is known that traffic lights loaded as separate vpOb-

jects are capable of having distinct states. Model 4 loads traffic lights as vpObjects.

The loading system lead to some major structural changes in the program, including

the division of run-time and non-run-time. Additionally, a watch dog program was

added. The watch dog is a separate program that models the intersection system and

attempts to identify invalid state transitions and request intersection state changes.

83



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Figure 5.1: An overview of how the program structure has changed between model
3 and model 4. Model 4 introduces three new procedures: XML Exporter, XML
Loader, and a Traffic Light Loader. Additionally, the program was divided into run
time vs non run time components.

Lights as vpObjects

Two mechanisms were considered to create vpObjects from light switches. The first,

involved creating vpObjects when nodes are loaded from the OpenFlight database.

This approach involves a custom loader that triggers vpObjects creation when traffic

lights are loaded. The implementation details would be similar to those of the pre-

vious model’s custom loader. The second technique involves loading traffic after the

database is loaded. In this process, the OpenFlight database is loaded and subse-

quently, the traffic lights are added. In this approach, additional information must

be gathered in order to specify traffic lights orientation, however, it has the major

84



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

advantage of removing the Intersection Generation process’s dependence on the VSG.

Remember, in the previous models the VSG’s switch nodes were matched to traffic

light data in oder to create the run-time intersection system. This new implementa-

tion computes intersection information and then manipulates the VSG to meet the

intersection’s design. Both techniques are viable, however, solution two will be used.

Program Restructuring

Model 4 separates the intersection state signaling system into non-run-time(front

end) and run-time(back end) programs. This division requires a medium of passing

information between the two programs. The decided upon medium is XML. Although

there may be more efficient ways of passing information, we believed that XML is a

convenient way of organizing our information while providing enough flexibility for

future development. Additionally, there exists several APIs that facilitate the reading

of XML databases.

Several changes must be made in order to divide the program into front end

and back end. More specifically, an export/import procedure must be developed.

In addition, the intersection generation procedure must be modified. In previous

versions, the intersection generation outputs were class objects that were used by

the run-time system. In model 4, the intersection generation process will export to

XML. The XML will be read by the XML Loader that will generate intersection

visualization objects used by the run-time system.

The XML loader takes as input an XML intersection description and with it,

creates the objects needed by the run time system. The XML loader will load the

world database, generate run-time objects from XML description and append traffic

85



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

lights to the VSG.

XML Encoding

The XML data encompasses all information related to the intersection indicator sys-

tem. Information referring to intersections is stored at the intersection level and

information regarding lights at the light level.

Intersection will store

• ID

• Position

• Traffic Lights

Traffic lights will store

• ID

• Position

• Orientation

• Group

• Model Type

ID for intersection come from ACX, while for lights, they are generated from the

database naming using the procedure in section 4.4.1. Position will contain an X,Y,Z

coordinate and will be relative to database center. Orientation, is the direction the

traffic light is facing. Group, is a number paring lights using a mechanism described

in section 4.3.1. Model type, stores the database name used to load the traffic light

model.

86



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Watch Dog

The final component in model 4 is a watch dog program. The watch dog is a separate

program designed to setup, manage and test the intersection signaling systems. The

program will be responsible for communicating and interacting with Stage, VegaPrime

and the AI Implant. The system consists of three components: intersection modeling,

intersection management and intersection validation. Finite state machine(FSM), will

be used to model intersection states. The conceptual design of the intersection is a

FSM, so implementing the watch dog as an FSM is a natural conclusion. The FSMs

will be defined using the formal 5-tuple definition (Q,Σ, δ, q0, F ), although accept

state and start state will not be required in the implementation.

• finite set of states (Q)

• a finite set of input symbols called the alphabet (Σ)

• a transition function (δ : Q× Σ→ Q)

• a start state (q0 ∈ Q)

• a set of accept states (F ⊆ Q)

[7]

In addition to the intersection modeling, the watchdog manages the intersection

state signaling system. The watchdog will be responsible for interacting with the run-

time system. It will periodically request state changes in order to simulate realistic

road conditions. Valid states and transition will be defined using the FSM definition

Q and δ : Q× Σ→ Q.

Intersection state sequences eventually repeat. The watchdog will have built in

facilities for programing repeating state transitions. Intersection’s transition will be

specified using a period, start state, next state, offset and condition. The period is the

87



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

time frame before the counter resets to zero. The offset is the point in time in which

the transition will occur. This value must be less than the period. The condition

is a guard that determines whether the transition is valid. Note, the definition of

multiple repeat transition is a scheduling problem. To avoid conflicts, the watchdog

will detect scheduling errors arising from simultaneous events transitions.

The final component of the watchdog system is intersection validation. The sched-

uler already performs validation by preventing simultaneous transitions. Other forms

of validation will include property checks such as safety and liveness. Computing

these properties from FSMs is a well documented algorithm.

5.1.2 Implementation

Lights as vpObjects

Traffic lights are now added to the VSG after the terrain is loaded. The Vega Prime

paging system is used to add objects to the VSG at runtime. The paging system loads

or removes objects when system resources become available. The use of this system is

relatively straight forward and will not be detailed further. Once a vpObject is created

using the traffic light model, the subtree of the object is searched for a switch node

representing light state control. The switch node is then associated, via a pointer,

with a Light object used in the run-time application.

Program Restructuring

The intersection state visualization system is now composed of two components. The

front end non-run-time system and the back end run-time system. The restructuring

88



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

requires an intermediate medium for communication, in this case XML, and proce-

dures to both import and export this information.

The export procedure converts Intersection Generation information into XML

data. For every intersection and traffic light, a corresponding procedure is used to

write XML data to a file. The formating follows the encoding described in section

5.1.2.

The import procedure reads XML information and creates corresponding intersec-

tion and traffic lights run-time objects. The XML file processing is performed using

tinyXML. TinyXML is a simple and small C++ XML parser. For every XML inter-

section read, an intersection constructor class is called with the relevant information.

For every XML light read, a corresponding light class is constructed. A reference to

the light class is stored in an intersection object. Once the entire XML system is

read, the run-time system can perform state simulation in the manner described in

figure 4.2.1 and 4.2.1.

XML Encoding

The XML encoding translates intersection and light information into an XML rep-

resentation. The translation process can be seen as a mapping between intersection

information and XML representation. The direct translation follows.

Intersections are stored using the tag <intersection>. The information describing

the intersections are separate child tags or attributes.

• ID is an attribute of interection <intersection ID = ””>

• Position uses a tag <position>with respective x,y,z components as children

<x>,<y>,<z>

89



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Traffic lights are children of intersections and the information they express are

child tags and attributes. The light tag is <ID>.

• Traffic light ID is stored as attribute num <ID num = ””>

• Position uses a tag <position>with respective x,y,z components as children

<x>,<y>,<z>

• Orientation is stored as tag <Heading>

• Group is stored as tag <group>

• Model Type is stored as tag <Name>

A complete XML representation of an intersection can be seen in figure 5.1.2

<TRAF DATA>
< i n t e r s e c t i o n ID =”565”>
<pos i t i on>
<X>156.042007</X>
<Y>551.028992</Y>
<Z>0.000000</Z>

</pos i t i on>
<ID num = ”514”>
<group>0</group>
<pos i t i on>
<X>169.843842</X>
<Y>551.361328</Y>
<Z>0.000000</Z>

<pos i t i on>
<Heading>240.913345</Heading>
<Name>s i g n a l 0 1 0 1 . f l t </Name>

</ID>
</TRAF DATA>

Figure 5.2: A sample XML encoding. This example contains one intersection with
ID 565 and one light with ID 514.

90



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Watch Dog

The watch dog is a separate program designed to setup, manage and test the intersec-

tion signaling systems. The implementation consists of, FSM definition, state change

requests, scheduling and property checks.

The formal definition of a FSM is (Q,Σ, δ, q0, F ). For more information on each

component refer to the design component, 5.1.1. State is defined as an integer. When

a new state is defined, the given intersection is checked to see whether it contains that

same state. If it does, the new state is invalid and if it does not, the new state is

add to the intersection possible states Q. A transition function is (δ : Q × Σ → Q).

In the implementation, the transition function is defined as a list of transition. A

transition is represented as a class. The class contains a variable to store its current

state. Next, it contains a map. A map is an implementation associative list. The first

value(key) defines the states being transitioned to. The second value is a function

pointer, Condition. Condition is a pointer to a function that validates the transition.

It is a guard that determines whether that transition is currently valid. Finally, a

multimap is used to define the transition function. A multimap is an associative list

where the key may correspond to more than one value. In other words, the multimap

is a non-injective function. The multimap is used so that a given state may have

more than one valid transition. Most intersection have state sequencess that repeat.

However, there are scenarios with emergency vehicles where light must be able to

quickly transition to red or green light. The multi map allows for these scenarios to

be modeled by allowing alternative state sequences.

// Function p o i n t e r f o r c o n d i t i o n r e q u i r e d f o r t r a n s i t i o n
typedef bool (∗Condit ion ) ( ) ;

91



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

class Trans i t i on
{
public :

int c u r r e n t s t a t e ; // i n s t i a l s t a t e f o r t r a n s i t i o n
map<int , Condition> NEXTSTATE Condition ;

} ;

multimap<int , Trans i t i on∗> Trans i t ionFunct ion ; // the
t r a n s i t i o n f u n c t i o n

The scheduling services are responsible for creating periodic state transitions. As

described in the design process, the requested transitions are specified using period,

start state, next state, offset and condition. This information is stored as a c style

struct. When a new periodic event is requested, a computation is performed to

determine whether a conflict will arise between the new event and existing events. A

conflict is defined as a time where two transitions are valid at the same time.

The final validation step is providing safety or liveness. These features were not

implemented since implementation issues arose.

The watchdog was integrated with the rest of the simulation system. In addition

to its interaction with the intersection state signaling system, the watch dog is respon-

sible for sending state updates to the AI Implant. The AI Implant has its own internal

intersection state representation that it uses for pedestrian and vehicle AI computa-

tions. It was assumed that the AI Implant API could be used to modify the AI’s

intersection state setup to correspond with this system, however, custom intersection

states are not possible in its current implementation. This violates Constraint I that

states that the final product must integrate into the current development process.

92



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

5.1.3 Evaluation

Model 4 was successful at resolving the light state issue encountered in the previous

model. The separation of the system, into front end and back end, resulted in two

beneficial properties. One, is reduced load time. Often the application is run several

times in succession in order to test functionality. With the new program division, the

data gathering and intersection generation do not have to be repeated. The second

beneficial property is facilitated intersection design. The XML traffic description is

a reasonable interface for allowing non-technical users to modify the traffic system.

Constraint V states that a user must be able to program their own traffic inter-

section. Modification of the XML directly seems like a reasonable mechanism. In

future developments, an application could be generated that manipulates the XML

description directly for the user.

Some issues arose while integrating the intersection state signaling system with

the rest of the simulation system. Model 4’ implementation worked correctly with

Stage and Vega Prime however there where issues with the AI Implant. The issue

was that the AI data could not be modified so that it had identical states as those in

the intersection state signaling system. This is clearly an issue. A driving simulation

without AI controlled cars is not a very good simulation. The issue of how to syn-

chronize intersection state signaling system and the AI implants will be addressed in

Model 5.

93



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Figure 5.3: An overview of how the program structure has changed between model
4 and model 5. Model 5 introduces two new procedures: AI State Mapping, and
AI XML Loader. The watchdog was removed since the intersection state is now
determined by the AI.

5.2 Model 5: AI Intersection Control

5.2.1 Design

In Model 4, issues arose while integrating the intersection state visualizer with the

rest of the simulation system,3.1. The AI Implant’s intersection state representation

could not be made to correspond with that of the intersection signaling system. This

problem resulted in two violated constraints. Constraint IV, the system must be

94



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

able to model all possible traffic light systems used in the real world. The AI Implant

has two intersection modes. In mode 1, intersection states are a permutation of each

light’s individual state sequence. The intersection’s state is generated in a similar

process to those described in model 2’s implementation, 4.2.1. In mode 2, lights

opposite one another have the same states. These two modes model quite a few

real world scenarios, however, the major problem is that the sequence of light states

cannot be modified. Every light goes through the same sequence based on its mode

and cannot be modified. For instance, in mode 2 the light sequence is red, green,

yellow and this sequence cannot be modified. Clearly this sequence does not represent

all possible traffic lights and therefore Constraint IV is violated. Constraint V

states that a user must be able to program their own traffic intersection. Again, the

AI Implant light states sequence are limited to those of the two modes and cannot be

modified. Consequently, all intersection designs will not be possible for the user and

Constraint V is violated.

The complete solution proposed in the initial system design is not achievable. The

source of constraint violates arise from factors beyond the design scope, however, an

intersection state signaling system is still needed and must be completed. Model 5

proposes a new solution that will create a functional solution, although limited in

the number of intersection systems it may model. The objective is a solution that

may be rapidly developed into a complete solution once the AI Implant issues are

rectified. Three methods were considered while developing model 5: one, wait for

new AI implant solution; two, modify the AI Implant; three, adapt to AI Implant.

The first solution involved waiting for a new AI Implant release. New releases are

relatively frequent but the immediate need for a traffic visualization system is still

95



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

present. As well, the writer of this thesis may not be present at the time of the AI’s

release. Modification of the visualization system would be easier if performed by its

developer.

The second solution involved using the AI Implant API to modify the AI Implant

directly. The solution would involve modifying the AI Implant in order to allow

for a more customized intersection representation. The major problem with this

approach is time. The AI Implant is a powerful tool that allows for the creating of

custom AI. The power of the tool also comes with a steep learning curve. Becoming

familiar with the AI API would take a significant amount of time and the objective,

intersection state modification, may be unachievable. Additionally, when the AI

Implant update is released, the intersection modification is unlikely to be compatible

with the new system. In this scenario, the custom solution would be discarded. There

is no guarantee of comparability between the two system and the implementation

would be time consuming, For these reasons, solution two was not implemented.

The third solution involves adapting the intersection signaling system to AI Im-

plant. In this solution, the steep learning curve associated with learning a new API

can be mitigated by mapping classes. In solution three, the intersection state would

no longer be programmed by the user, but rather, they would be computed from

the AI Implant’s internal state representation. A process would be developed that

reads the AI Implant data, determines each light’s state for a given intersection state,

and then exports this information to an XML representation. The solution will be

implemented in such a way that cuts down on development time post AI Implant

release. The solution focuses on mapping each class in the AI’s intersection state, to

a particular line of XML code. Using this approach, classes modified in the update

96



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

are the ones needing update in the XML mapping process.

The intersection state visualization system will be modified to take state informa-

tion from the AI Implant. The third solution, adapt to AI Implant, was chosen since

it had short development time and for its compatible with eventual AI update. The

solution is broken down into 3 steps: AI state decoding, XML representation, run

time system modification. The first step is retrieve AI state information from the AI

Implant. Second the AI information is exported to an XML representation. Third

the XML information is read and used to modify the intersection and light setup in

the run time system.

Front End Modification

The AI’s state setup will be used to configure the intersection visualization’s state.

The exact specification will be retrieved from the ACX using the AI Implant API. In

the AI, each light is described as a series of indicators. Each indicator consists of a

color, a direction and a status. This information will be gathered and then exported

to an XML file.

In the state visualizer program, the light IDs are generated using the algorithm

described in section 4.4.1. For the sake of consistency, the intersection visualization

system will now use the AI’s ID system for lights. The AI’s cell IDs are unique for a

given map and therefore a valid unique identifier.

Intersection Generation will be simplified. In previous versions, Intersection Gen-

eration was a process where lights were grouped and intersection states where com-

puted,4.3.2. Now, that information is specified from the AI data. Intersection Gener-

ation now consists of matching traffic light data to intersection data. The matching

97



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

process consisted of using traffic light position and intersection center to determine

which light models belonged to which intersection. In the new implementation, the

lane position will be used instead of intersection center, to match traffic light to AI

data.

AI State Mapping

The AI’s state representation will be mapped to an XML description. The mapping

is intended to be adaptable to modifications made to the AI’s intersection. In order

to do so, each AI intersection class will have its own corresponding structure within

the XML file. The AI Implant chooses to describe the traffic light state as a series of

indicator. Remember, an indicator is a single light source that is described as either

on or off. The information used to represent traffic light state in the AI is

• State Number is an a positive integer used to distinguishes one intersection state

from another. state number = Z≥0

• Color describes the color of the indicator. color = {red, yellow, green}

• Arrows can be used to specify a direction to a particular indicator

arrow = {∅, left, right, straight}

• Status is used to indicator whether a light is on or off. status = {on, off, flashing}

This information will be used to configure lights states in the visualization system.

Run Time Modification

When an intersection is created in Terra Vista, there is no correspondence between

the AI and the database’s light state. More specifically, the switches representing

light state in the traffic light model do not correspond with the states generated in

98



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

the AI. For synchronization to occur, the VSG switch and the AI’s must be equal. In

Model 5, the VSG switch will be modified using the VegaPrime API. The intersection

description in the XML will be used to create a VSG switch that corresponds to visual

representation present in the AI.

5.2.2 Implementation

Front End Modification

The AI state information was retrieved using the AI Implant API. The intersection

information is dependent upon the intersection state and each piece of information

must be requested individually. Additionally, the individual lights that compose the

intersection must be accessed using their ID. The data gathering process is a series

of nested loops. The procedure is described in the following pseudo code:

for each i n t e r s e c t i o n
for each l i g h t

for each i n t e r s e c t i o n s t a t e
for each i n d i c a t o r

get i n d i c a t o r s t a t u s
get i n d i c a t o r arrow
get i n d i c a t o r c o l o r

end
end

end
end

Once data gathering is complete, a separate procedure parses and writes the in-

formation to the XML file. The exact formating will be described in the next section

5.2.2.

99



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

For backwards compatibility, the AI state description and the OpenFlight infor-

mation were kept separate within the XML. As well, the light grouping entry is no

longer necessary since it is replaced by the AI encoding. Therefore, a default value

of 0 is assigned to the group field.

Lights now have an ID derived from the AI cell ID. To match the OpenFlight data

to cell ID, the position of the traffic light is compared to that of the cell midpoint. The

closest cell’s ID is assigned to the OpenFlight data. In TerraVista, traffic lights are

placed next to the lanes to which their state refers. The matching problem consists

of finding the closest lane to a traffic light and using its ID.

With these minor details implemented, the mapping of AI information to XML

description can begin.

AI State Mapping

The AI information ID, Color, State, Arrows, and Status must be translated to

an XML representation. The question is what information must be written to the

XML presentation. Light ID is used to identify traffic lights and must be written.

State is the underlining factor controlling changes in intersection representation and

is therefore written. Status determines whether a light is on or not. Color and

Arrow are properties describing an indicator. For a given light, they could potentially

be specified once, however, the AI changes the values of arrow and color in some

situations. The reason for this change is unknown. In figure 5.2.2, color changes from

green to yellow in state 3 and 4 respectively. The value of arrow and color vary across

states therefore must be specified for each state.

The mapping used in this implementation is relatively simple. All AI information

100



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

is setup as a single field called <Indicator>. Status is written as a element since we

believe that the onoff state of an indicator is its most important property. When

other properties are found that describe the indicator, they are added as attributes.

Therefore, color and arrow attribute of the field <Indicator>. The following is a

sample intersection containing a single light.

< i n t e r s e c t i o n ID =”16”>
<pos i t i on>
<X>300.159546</X>
<Y>162.303375</Y>
<Z>0.000000</Z>

</pos i t i on>
<ID num = ”20”>
<group>0</group>
<pos i t i on>
<X>295.891327</X>
<Y>155.285065</Y>
<Z>0.000000</Z>

</pos i t i on>
<Heading>89.653481</Heading>
<Name>s i g n a l 0 5 0 1 . f l t </Name>

</ID>
<TraffidMap>
<I nCe l l ID= ”186”>
<State num= ”0”>
<I n d i c a t o r c o l= ”Green” ar r= ” Le f t ”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Red” ar r= ”None”>On</Ind i ca to r>
<I n d i c a t o r c o l= ” Yellow ” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ” Right ”>Off</Ind i ca to r>

</State>
<State num= ”1”>
<I n d i c a t o r c o l= ”Green” ar r= ” Le f t ”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Red” ar r= ”None”>On</Ind i ca to r>
<I n d i c a t o r c o l= ” Yellow ” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ” Right ”>Off</Ind i ca to r>

101



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

</State>
<State num= ”2”>
<I n d i c a t o r c o l= ”Green” ar r= ” Le f t ”>On</Ind i ca to r>
<I n d i c a t o r c o l= ”Red” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ” Yellow ” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ”None”>On</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ” Right ”>On</Ind i ca to r>

</State>
<State num= ”3”>
<I n d i c a t o r c o l= ” Yellow ” ar r= ” Le f t ”>On</Ind i ca to r>
<I n d i c a t o r c o l= ”Red” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ” Yellow ” ar r= ”None”>On</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ” Yellow ” ar r= ” Right ”>On</Ind i ca to r>

</State>
<State num= ”4”>
<I n d i c a t o r c o l= ”Green” ar r= ” Le f t ”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Red” ar r= ”None”>On</Ind i ca to r>
<I n d i c a t o r c o l= ” Yellow ” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ” Right ”>Off</Ind i ca to r>

</State>
<State num= ”5”>
<I n d i c a t o r c o l= ”Green” ar r= ” Le f t ”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Red” ar r= ”None”>On</Ind i ca to r>
<I n d i c a t o r c o l= ” Yellow ” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ”None”>Off</Ind i ca to r>
<I n d i c a t o r c o l= ”Green” ar r= ” Right ”>Off</Ind i ca to r>

</State>
</TraffidMap>

</ i n t e r s e c t i o n>

Figure 5.4: Sample encoding for an intersection with one light. This example contains
a light with 3 direction and 6 states. The light contains 5 indicators : Green, Yellow,
Red, Left Arrow and Right Arrow.

102



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

Run Time Modification

The run time system must be modified to read the new XML encoding. The existing

frame work established in model 4 allowed the program to read XML data. This same

framework is used to parse the new XML encoding. The AI information is then used

to reprogram VSG switch node. In order to facilitate the process, a new OpenFlight

traffic light model was designed.

The OpenFlight switch node contains the following indicator = { Red, Yellow,

Green, LeftRed, LeftYellow, LeftGreen, RightRed, RightYellow, RightGreen,

StraightRed, StraightYellow, StraightGreen } . When the OpenFlight light switch

is converted to VSG switch, the left to right ordering of the switch’s mask will cor-

respond with the ordering presented in indicator. For every intersection state and

every light, a new mask is created. The arrow and color value are used to determine

to which bit the status value refers. If the status value is on or flashing, the mask

values are assigned a value of 1. If no value is assigned then the default value is set

to 0. A sample of the translation process is described in the following figure 5.2.2.

Figure 5.5: This figure demonstrates the masks generated from the AI XML data.
This particular diagram refer to light 186, specified in figure 5.2.2. In the top column,
R = red, Y = yellow, G = green, L = left, RR = Right Red, and S = Straight.

103



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

With the new masks in place, the intersection visualization system is now in

correspondence with the AI Implant.

5.2.3 Evaluation

The AI intersection control model was successfully implemented. There were some is-

sues in understanding the AI Implants intersection representation but these problems

were overcome using testing. The current implementation is functional but there are

still improvements to be made.

The current XML representation for state information is rather large. Optimiza-

tion could be performed to reduce the size of the XML file. When comparing several

intersection across a large database, it is obvious that there are several repeated pat-

terns in terms of intersection encoding. For instance, several intersections consist

of 4 lights with each light containing 3 indicator that are green, yellow, red. This

information could be detailed once, then light containing the same encoding could

point to that information.

The XML file contains a fair amount of information and should be reorganized

to meet the conceptual model of an intersection. For instance, information from

OpenFlight database, such as orientation, and information from the AI, such as state,

should both be under a <light>label. This would improve the readability of the XML

and prevent a certain amount of duplicate information already present in the current

format.

The light models used in the visualization are those generated by Terra Vista.

When the AI information is generated in Terra Vista, different intersections are cre-

ated based on the number of lanes in an intersection and the angle between them.

104



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

The results are AI intersection with different number of states and often different

indicators. In future development, it would be convenient if the intersection state

visualizer could select a light model that corresponds with the AI intersection. When

an AI intersection contains green and yellow left turn arrows then a light model would

be loaded that contains such properties.

Pedestrian crossing signals are an important part of intersection that was not dis-

cussed in this thesis. A pedestrian system was partially implemented but issues arose

with understanding the AI pedestrian system. The issues were never resolved so the

discussion was left out. Future models should incorporate a pedestrian intersection

system.

105



Chapter 6

Conclusion

An intersection state visualization system was successfully designed, implemented

and incorporated into the McMaster motion simulator. There were major differences

between the initial design and final product. This was not necessarily a bad outcome

as the final product included several optimizations not foreseen in the initial design.

Some constraints were not satisfied in the final solution. Constraint IV, the system

must be able to model all possible traffic light system used in the real world. This

constraint was violated due to the AI Implant implementation. Besides this failing,

the overall driving system is still successful since most real world intersection can be

modeled by the AIs two modes. Outside the scope of the application, there were

several lessons learned during development.

Several assumptions were made that lead to implementation issues, the first being

inter-system compatibility. OpenFlight databases are used and generated by several

Presagis applications. Additionally, there exist tools for the modification and exten-

sion of the OpenFlight standard. It was assumed that modification to the OpenFlight

standard would be compatible across all Presagis products. This was not the case. A

106



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

simple fix would be the development of an inter-system compatibility guide. It would

detail which features are common between products vs. those with highly significant

differences.

In the content creation, Terra Vista is often the first program used to generate

large scale databases. It contains tools for the automated generation of roads, in-

tersection and AI information. Once the database is created, this information is

discarded. Ideally, an API would be present to modify the tools used in Terra Vista

and perhaps even access information used internally in the generation process. In this

way, information such traffic light position, orientation and even intersection states

would not have to be recomputed. A TerraVista API would have greatly facilitated

the development of this thesis.

OpenFlight is an open standard used for real time application. VegaPrime’s own

representation, VSG, is a similar product that is optimized for rendering perfor-

mance. Typically, OpenFlight databases are converted to a VSG format and used

in VegaPrime applications, however, the exact relationship between OpenFlight and

VSG is not well documented. In this thesis, models 2 and 3 encountered issues during

implementation due to a lack of understanding of the VSG. A detailed description

of the relationship between OpenFlight and VSG would help to avoid these issues in

future development.

The Intersection state visualization system is functional but not yet optimal. In

future designs, pedestrian lights and custom intersection development should be de-

veloped. The current pedestrian traffic states are tied to the state of the vehicle lights.

More specifically, the switch that controls the state of vehicle lights also controls that

of pedestrians. When the vehicle light is green, the walk signal is green; when the

107



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

light is yellow, the pedestrian light is a caution; and when the vehicle light is red

then the walk signal is red. In future works, the pedestrian lights should be inde-

pendent of the vehicle lights. Another ideal feature would be a separate system for

the generation of custom intersections. The program would allow the user to create

a traffic light system using a user interface. The design could then be assigned to

intersections in Terra Vista or the XML representation. This would greatly facilitate

the rapid development of traffic simulations and driving experiments.

108



Appendix A

Rendering Specific Concepts

A.1 Double buffer

Double buffering is a process used to remove rendering artifacts resulting from drawing

data directly to the display. In the process, two buffers are used to display and draw

images. One buffer displays an image while the other draws images that have not

been culled. When the frame expires and a new frame is requested the buffers swap.

The buffer that was drawn in the previous frame is displayed and the previous display

buffer is written to draw the new frame. This process prevents visual artifacts that

occur when drawing images directly to the display.

A.2 Z-fighting

Z-fighting is a rendering artifact that occurs when two rendered geometries have the

same value in the z-buffer. The artifact is typically a blend of the two surfaces

or is displayed as a rapid flickering between the two. A major source of z-fighting

109



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

are coplanar faces. When two faces are coplanar and overlap, then the entire overlap

section will have rendering artifacts. This is because the image have the same z-buffer

value.

A.3 Bounding Volume

A bounding volume is a geometry that encompasses another object or set of objects.

In Openflight, the bounding volume is described as a box, sphere, cylinder, or con-

vex hull. Typically the volume is minimal, meaning that it is the smallest volume

bounding that encompass the object fully. With several objects, the bounding volume

encompasses the union of the object’s volumes.

110



Bibliography

[1] (2010a). OpenFlight API User Guide Volume 1. Presagis, 4.2 edition.

[2] (2010b). OpenFlight API User Guide Volume 2. Presagis, 4.2 edition.

[3] (2011). OpenFlight Scene Description Database Specification. Presagis USA, 16.4

edition.

[4] Budianto (2009). Refactoring autosim for program comprehension.

[5] Hill, F. S. J. (1994). The Pleasures of ’Perp Dot’ Products in Ch. II.5 in Graphics

Gems IV (Ed. P. S. Heckbert). San Diego: Academic Press, San Diego.

[6] http://dictionary.reference.com/browse/simulator (2012). Simulator definition.

[7] http://en.wikipedia.org/wiki/Deterministic finite automaton (2012). Fsm @ON-

LINE.

[8] http://www.graphics.cornell.edu/online/tutorial/ (1998). What is computer

graphics? @ONLINE.

[9] http://www.presagis.com/files/standards/OpenFlight9.0.pdf (1990). Multigen

@ONLINE.

111



M.A.Sc. Thesis - Justin Roth McMaster - Software Engineering

[10] http://www.presagis.com/products services/standards/openflight/ (1998).

Openflight @ONLINE.

[11] Klauer, S., Dingus, T. A., Neale, V. L., and Sudweeks, J. (2006). The impact of

driver inattention on near-crash/creash risk.

[12] Strause, S. H. (2005). New, improved, comprehensive, and automated driver’s

license test and vision screening system.

[13] Wachtel, J. (1995). Brief history of driving simulators.

[14] Yoshimoto, K. and Suetomo, T. (2008). The history of research and development

of driving simulator in japan.

112


	Abstract
	Acknowledgements
	Notation and abbreviations
	Introduction
	Background
	OpenFlight Database
	Hierarchical Structure
	Low Level Implementation
	World Coordinate System and Positioning
	Pallets
	Instancing
	Node Types

	Visualization and 3D Graphics
	Object and Scenes
	Virtual Environment
	Frame Loop
	Real Time Rendering
	Transformations Matrices

	Presagis Software
	Terra Vista
	Creator
	Stage
	Vega Prime

	History of Driving Simulation

	Simulation System
	Overview
	Scenario Development
	Intersection Signaling System Development
	Solution Development Process

	Database Solution
	Overview
	Initial Design
	OpenFlight API

	Model 1: Custom Traffic Node
	Design
	Implementation
	Evaluation

	Model 2: Vega Prime Intersection Control
	Design
	Implementation
	Evaluation

	Model 3: External Reference Labeling
	Design
	Implementation
	Evaluation


	XML Traffic Description
	Model 4: Independent Intersection Control
	Design
	Implementation
	Evaluation

	Model 5: AI Intersection Control
	Design
	Implementation
	Evaluation


	Conclusion
	Rendering Specific Concepts
	Double buffer
	Z-fighting
	Bounding Volume


