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Abstract

When the material or geometry of a reactor varies with time, the neutron flux will

respond in the form of a reactor transient. These transients can occur during normal

operations when control rods are moved or the reactor is refuelled (CANDU). During

a reactor accident, the transient response is especially important because the reactor

properties vary quickly with large amplitudes. Therefore, better understanding these

conditions allows for improved identification, prevention and mitigation of reactor

transients. However, current nuclear simulation codes are generally limited in their

ability to model transient behaviour.

The NStable code was created to model time-dependent neutron populations in

multiplying mediums using the Geant4 Monte Carlo toolkit. The neutron population

is allowed to evolve in time, but is periodically renormalized so that the total number

of neutrons is constrained within a manageable range. This ensures that the simu-

lation is viable even in highly sub- or supercritical environments. Since Geant4 was

not intrinsically designed to track a neutron population over “long” time periods (up

to 10 s), the population renormalization mechanisms needed to be created and inte-

grated with Geant4. Additionally, nuclear reactor analysis functionality was added

to calculate important quantities such as keff .

The NStable code was validated using three established nuclear simulation codes:

MCNP 5, DRAGON 3.06J, and TART 2005. The validation cases compared spatial

distributions and criticality estimates for either homogeneous spheres (uranium-235 or

a uranium-heavy water mixture) or the standard CANDU 6 lattice cell. For all three
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systems, the criticality estimates in NStable agreed with the appropriate validation

code within 10 mk (TART for the spheres and DRAGON for the CANDU 6 lattice).

Finally, the NStable code was also used to simulate a temperature transient in a UHW

sphere where the temperature linear increased by 700 K over 50 ms. In response to

the increasing temperature, keff decreased by 100 mk over the same period. In the

future, transient modelling in NStable should be investigated further to reproduce

actual experimental results, and to couple NStable with a thermohydraulics code to

simulate a full transient response.

iv



Acknowledgements

First, I would like to thank my co-supervisors, Dr. Adriaan Buijs and Dr. Guy

Jonkmans, for their help and support over the past two years. I would also like to

thank Bruce Wilkins at AECL Chalk River for offering his expertise in the area of

Monte Carlo simulations, and Dr. John Luxat for allowing me to use his computation

cluster at McMaster, which was the workhorse behind the results in this thesis.

I would also like to thank everyone in nuclear engineering at McMaster. You guys

provided a great deal of help and advice, as well as welcome distractions when the

frustrations of coding, debugging, and writing got to be too much. In particular,

I want to acknowledge the resident Ph.D.’s - David Hummel, Ken Leung, Andrew

Morreale and (Dr.) Matt Ball - who were always willing to talk through any obstacles

I encountered in my research. Additionally, I would like to offer a special thanks to

Wesley Ford who worked for Dr. Buijs and myself as a summer student in the last

four months of my thesis. His help was invaluable and ensured that I finished this

thesis on time.

Finally, I would like to thank my brother, who, in addition to everything else, was

my personal go to resource for anything coding related. Moreover, I could always

count on being able to crash at his place when I needed a break for a couple of days.

v



Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Geant4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Creating a Geant4 Simulation . . . . . . . . . . . . . . . . . . 10

1.2.5 Suitability of Geant4 . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background and Theory 13

2.1 Neutron Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Neutron Interactions . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Interaction Cross Sections . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Neutron Transport Equation . . . . . . . . . . . . . . . . . . . 17

vi



2.2 Reactor Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Time-Independent Eigenvalue Problems . . . . . . . . . . . . 22

2.2.3 Dynamic versus static criticality . . . . . . . . . . . . . . . . . 26

2.3 Nuclear Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Doppler Broadening of Resonances . . . . . . . . . . . . . . . 29

2.3.3 Energy Discretization . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Deterministic Simulations . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Static Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Dynamic Solutions . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.2 Neutron Transport in Monte Carlo Simulations . . . . . . . . 43

2.5.3 The Simulation World . . . . . . . . . . . . . . . . . . . . . . 47

2.5.4 Initial Source . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.5 Tallies and Scoring . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.6 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.7 Delayed Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Monte Carlo Implementation in Geant4 . . . . . . . . . . . . . . . . . 57

2.6.1 General Simulation Flow . . . . . . . . . . . . . . . . . . . . . 57

2.6.2 Transport in Geant4 . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.3 Nuclear Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



2.6.4 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Related Research 68

3.1 Related Simulation Codes . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 MCNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.2 TART 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.3 DRAGON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Related Time-Dependent Monte Carlo Simulations . . . . . . . . . . 74

3.3 Time-Dependent Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Modelling of ADSRs in Geant4 . . . . . . . . . . . . . . . . . . . . . 75

4 Contribution and Methodology 78

4.1 Code Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Geant4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Neutron Population Stabilization . . . . . . . . . . . . . . . . 80

4.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.3 Simulation Worlds . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.4 Physics Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.5 Parallel Implementation . . . . . . . . . . . . . . . . . . . . . 102

4.2.6 Simulation Parameters and Options . . . . . . . . . . . . . . . 104

4.3 Geant4 Source Code Modifications . . . . . . . . . . . . . . . . . . . 104

4.3.1 Arbitrary Data Thinning . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 Bug in Energy-Angular Definition . . . . . . . . . . . . . . . . 108

4.4 Data Library Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 109

viii



5 NStable Code Verification and Validation 111

5.1 Data Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Simulation Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Simulation Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 General NStable Results . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Neutron Spatial and Energy Distributions . . . . . . . . . . . . . . . 120

5.5.1 Source Convergence . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.2 Spatial Distribution Comparison . . . . . . . . . . . . . . . . . 122

5.6 Verification of Unbiased Renormalization . . . . . . . . . . . . . . . . 126

5.7 Criticality Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7.1 Finite Geometries . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7.2 Infinite Geometries . . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Transient Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.9 Parallelization Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Conclusions 144

6.1 NStable Verification and Validation . . . . . . . . . . . . . . . . . . . 147

6.2 Transient Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 Parallelization of NStable . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.1 Transient Validation and Modelling . . . . . . . . . . . . . . . 150

6.4.2 Additional Run-Level Calculations . . . . . . . . . . . . . . . 151

6.4.3 Isotopic Evolution . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4.4 Nuclear Data Libraries . . . . . . . . . . . . . . . . . . . . . . 153

ix



References 154

A C++ Basics 159

A.1 Classes and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2 Container Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.3 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.4 Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.5 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.6 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.7 C++ Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.8 Doubly-Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B Parallel Processing in Geant4 163

B.1 Run-Level Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.2 Event-Level Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C NStable Classes and Files 166

D NStable Target Selection Algorithm 171

E NStable Input Parameters 174

F Example Files 176

F.1 NStable Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

F.1.1 Main Driver Files . . . . . . . . . . . . . . . . . . . . . . . . . 176

F.1.2 Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

F.1.3 Output File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

x



F.2 MCNP Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

F.3 DRAGON Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

xi



List of Tables

4.1 List of software used . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 List of data libraries used for each code . . . . . . . . . . . . . . . . . 113

5.2 Simulation worlds used in validation cases . . . . . . . . . . . . . . . 114

5.3 Renormalization Simulations . . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Finite Geometry Criticality Simulations . . . . . . . . . . . . . . . . . 133

5.5 Infinite Geometry Criticality Simulations . . . . . . . . . . . . . . . . 136

5.6 Comparison of criticality estimates for a CANDU 6 lattice cell . . . . 137

5.7 Transient simulation parameters . . . . . . . . . . . . . . . . . . . . . 138

C.1 Control classes and driver files . . . . . . . . . . . . . . . . . . . . . . 166

C.2 Simulation world classes . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.3 User action classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.4 Physics list classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.5 Utility classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.6 Container classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

E.1 NStable Environment Variables . . . . . . . . . . . . . . . . . . . . . 174

E.2 Simulation parameters and options . . . . . . . . . . . . . . . . . . . 175

xii



List of Figures

1.1 Geant4 simulation hierarchy. . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Radiative capture cross section of uranium-238 exhibiting resonance

peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Broadened resonances in radiative capture cross section of Pu-240 due

to temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 High level simulation flow diagram for Geant4 . . . . . . . . . . . . . 58

2.4 Tracking flow diagram for Geant4 . . . . . . . . . . . . . . . . . . . . 59

4.1 High level simulation flow diagram for Geant4 . . . . . . . . . . . . . 82

4.2 Division of the simulation in time. . . . . . . . . . . . . . . . . . . . . 83

4.3 CANDU 6 lattice cell geometry in Geant4. . . . . . . . . . . . . . . . 97

4.4 The effects of data thinning on the energy spectrum of secondary neu-

trons from neutron-U235 interactions using the G4NDL 3.14 (top) and

4.0 (bottom) data libraries as compared to MCNP. . . . . . . . . . . 107

5.1 Shannon entropy (top) and keff (bottom) of subcritical U235 spheres. 117

5.2 Shannon entropy (top) and keff (bottom) of near-critical U235 spheres. 118

5.3 Shannon entropy (top) and keff (bottom) of supercritical U235 spheres.119

5.4 Convergence of the neutron spatial distribution (top) and energy spec-

trum (bottom) of a CANDU 6 lattice cell. . . . . . . . . . . . . . . . 121

xiii



5.5 Comparison of the predicted centreline neutron spatial distribution in

NStable and DRAGON. . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Comparison of spatial and energy distributions for a renormalized and

not renormalizaed neutron population in a subcritical 8.2 cm U235

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Comparison of spatial and energy distributions for a renormalized and

not renormalizaed neutron population in a near-critical 8.5 cm U235

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.8 Comparison of spatial and energy distributions for a renormalized and

not renormalizaed neutron population in a supercritical 8.7 cm U235

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.9 Percent error in the renormalized and not renormalized spatial and

energy distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.10 Criticality estimates for U235 spheres of varying radii using NStable,

TART and MCNP (top). The same estimates are also shown for the

near-critical region only (bottom). . . . . . . . . . . . . . . . . . . . . 134

5.11 Criticality estimates for UHW spheres of varying radii using NStable,

TART and MCNP (top). The same estimates are also shown for the

near-critical region only (bottom). . . . . . . . . . . . . . . . . . . . . 135

5.12 Comparison of criticality estimates for a CANDU 6 lattice cell with

varied lattice pitches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.13 Transient for a 87.5 cm radius UHW sphere where the temperature

rises from 293.6 to 1000 K (delayed neutrons not simulated). . . . . . 140

xiv



5.14 Parallel processing gain for NStable where the actual gain is fitted with

Amdahl’s Law. The plot also shows the initialization time per number

of processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D.1 Selection algorithm bias. . . . . . . . . . . . . . . . . . . . . . . . . . 173

xv



Chapter 1

Introduction

Since the “nuclear age” started in the late 1950’s, computer simulations have become

increasingly important to the design, utilization and safety of nuclear devices. Given

the extreme cost of nuclear facilities, especially power reactors, computer simulations

provide a relatively cheap and effective alternative to experimental prototypes. Al-

though the need for experimental facilities is unlikely to ever be eliminated, computer

simulations have become one of the main tools for nuclear researchers and the nuclear

industry. Coupled with the rapid development of computers, advances in computa-

tional nuclear simulations are allowing researchers to model difficult problems, such as

accident scenarios, where many coupled systems change rapidly over a short duration.

Due to increased awareness of the effects of radiation, especially on biological

systems, as well as increased knowledge of nuclear power accident scenarios from the

accidents at Three Mile Island, Chernobyl and Fukushima, safety is a priority for

the nuclear community. Given the complexity of nuclear reactors and the speed with

which accident conditions evolve, effectively modelling these conditions is difficult.

However, any improvements in the understanding of such conditions, especially how
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they evolve, could produce many benefits. Not only would a better understanding

improve safety overall, but it would also improve the ability to recognize, prevent and

mitigate accidents. Furthermore, an improved understanding could allow the current

safety cases that guide reactor regulations to be refined to the benefit of both the

public, in terms of increased safety, and the nuclear industry, in terms of reduced

costs.

Modelling dynamic reactor conditions, known as reactor kinetics, also has more

routine applications. Most reactors are modelled as essentially static with respect

to short time scales (less than an hour). However, the properties and outputs of a

reactor are constantly fluctuating within the operating limits. This nuclear noise can

come from many sources, such as the coolant flow, and must be actively controlled by

the reactor regulating systems [1]. Additionally, if the differences in fuel composition

across the core are not properly managed, they can lead to power oscillations between

two regions of the reactor (e.g. xenon oscillations). In all of these cases, a better

understanding of the reactor kinetics could improve the response and effectiveness of

the reactor control systems.

Traditionally, nuclear simulation codes (programs) have focused on static cases,

such as the power levels and neutron flux of a reactor at full power. In these cases, the

system is mostly stable in time, and can be assumed to be time-independent without

a major loss of accuracy. Such calculations have been used in the nuclear industry

to not only design reactors, but also to maintain reactor performance in areas such

as fuelling schemes (how and when to fuel a reactor). Additionally, deterministic

time-dependent reactor calculations can be achieved using either the point kinetics

approximation or a space-energy dependent dynamics approach [2]. The simpler

2
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point kinetics approximation, or point reactor model, assumes the neutron spatial

distribution is constant in time. This assumption is insufficient for many accident

scenarios, and thus, more complicated space-energy dependent dynamics approaches

are employed instead. These approaches, which include finite difference methods and

modal approaches, are more accurate but are also more time consuming [2]

Accident conditions are transient, and therefore, must be modelled as dynamic

systems. Monte Carlo simulations, which follow neutrons (and other particles) in

space, time and energy, provide an excellent platform for such dynamic simulations.

At the most basic level, Monte Carlo simulations are simple; they faithfully repro-

duce the given nuclear data through random sampling. As such, these simulations

can be applied to complex systems without many of the approximations necessary

for other simulation methods, such as spatial and energy disretization. However, this

fundamental simplicity also causes Monte Carlo simulations to be computationally

expensive in terms of time and resources because every neutron and secondary par-

ticle is followed from birth to death or escape. Moreover, the random sampling is

susceptible to statistical errors, which may only be eliminated if an infinite number

of neutrons are followed over the course of the simulation. Fortunately, the improve-

ments in computer processing power and simulation algorithms have relieved some

of these burdens so that Monte Carlo simulations are a viable alternative in dynamic

simulations.

1.1 Objectives

The objectives of the project detailed in this thesis were

1. To model time-dependent neutron populations with the Geant4 Monte Carlo

3
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toolkit.

2. To allow the material and geometric properties of the model to change with

respect to time.

3. To use the evolution of the neutron population to calculate macroscopic char-

acteristics 1 (e.g. keff ).

4. To use the evolution of both the neutron population and model properties (ma-

terial and geometric) to simulate reactor transients.

The Geant4 (GEometry ANd Tracking 4) Monte Carlo toolkit (explained in Sec-

tion 1.2) served as the base for the simulations in this project [3]. However, Geant4

was not designed specifically for use in reactor simulations, and therefore, most of the

project focused on developing and validating the computer code necessary to extend

Geant4 for this purpose.

1.2 Geant4

Geant4 is an open-source physics simulation toolkit that was developed by the Geant4

Consortium. This international consortium is comprised of scientists from many re-

search institutions, including the European Organization for Nuclear Research (CERN),

the Stanford Linear Accelerator (SLAC), TRIUMF (Cananda), KEK (Japan), the

University of Alberta, and the Massachusetts Institute of Technology (MIT) [3]. The

toolkit was designed to be applicable over a diverse range of problems, from small
1Macroscopic characteristics refers to characteristics that apply to the simulation as a whole.

These are also referred to as integral characteristics.
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fundamental physics simulations to full-scale detector simulations for particle accel-

erators such as the LHC (Large Hadron Collider). Moreover, Geant4 embraces cus-

tomization, and encourages users to develop algorithms and functions for their own

applications. It also is able to simulate a wide range of particles, such as neutrons,

photons and neutrinos, and physical interactions, such as hadronic and electromag-

netic interactions [3].

1.2.1 History

In 1993, two separate studies examined how modern computing techniques could be

applied to particle physics simulations to improve upon GEANT3 (the previous ver-

sion of GEANT). These studies by KEK and CERN merged and concluded that a

new version of GEANT should be developed using object-oriented C++. This led

to the creation of the RD44 project, spearheaded by CERN, which was mandated to

outline and design Geant4. In 1998, the first production release of Geant4 was com-

pleted and made available. Subsequently in 1999, the development and maintenace

of Geant4 was passed to the newly formed Geant4 Consortium [3].

The consortium is organized into a Collaboration Board, a Technical Steering

Board, and several working groups, each of which is responsible for an area of physical

phenomena, such as hadronic interactions. The Collaboration Board is mandated to

manage the resources and agreements of the consortium, while the Technical Steering

Board decides on the manner in which physics phenomena are implemented, and

prioritizes future development. Additionally, the Technical Steering Board appoints

coordinators to supervise each working group. The working groups themselves are

responsible for the development and maintenance of the code library covering their
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chosen physical phenomena [3].

1.2.2 Design Philosophy

Unlike most nuclear simulation codes, Geant4 was not designed to be a complete

program for the user to interact with. Instead, Geant4 is a “toolkit” of components

that the user can use to build a simulation. To this end, Geant4 was designed to be

modular and flexible, so that users could assemble a program at compile-time out of

components that either come from the toolkit or are self-supplied. The toolkit com-

ponents may even be supplanted by user-supplied code, making Geant4 extensible [3].

Openness was also an important consideration during the design process of Geant4.

In particular, care was taken to make the implementation of the physics models open

and transparent. Additionally, end-users are given a choice of physics models, and the

opportunity to use custom models that they have designed or modified themselves.

The nuclear data is separate from the physics models so that the user may chose their

own nuclear data library. Finally, not only is the source code freely available from the

Geant4 website, but also several online code browsers were created to help users to

navigate the source code [3]. This is extremely beneficial when attempting to follow

algorithms or processes in the source code.

1.2.3 Structure

The Geant4 toolkit is composed of three major parts: the source code, the nuclear

data, and the utility files, which aid the user in creating working programs (e.g.

makefiles). Upon installation, the Geant4 source code is compiled into libraries that

are linked to the user’s code at compile-time to form fully functional programs. In
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general, every major component of Geant4 is a C++ class, and these classes often

contain member data objects created from other classes in the Geant4 source code2.

1.2.3.1 Organization

Figure 1.1 shows the general hierarchy and progression of data in Geant4. The lines

denoted data flow toward the end of the link with the circle (e.g. Tracking uses data

from Hits and Processes, and then passes the tracking data on to Event). The data

progression was designed to be one way to prevent any chance of circular dependencies

in the core Geant4 classes (e.g. a class A has an object of class B, but class B calls

a member function of class A, which will confuse the compiler). The categories of

classes in the figure represent the major components of a Geant4 simulation, and the

ones most relevant to this thesis are defined below

Hit An interaction involving a tracked particle that invokes a physics process.

Process A physics model used to calculate the likelihood and result of a hit.

Models include hadronic interactions (scattering, fission, radiative capture),

transportation, and user defined processes.

Step A single discrete movement of a particle, which starts and ends with a hit.

Track A series of sequential steps that make up the history of the particle.

Primary An initial source particle used to start an event.

Event The entire history of n primaries and their descendants from birth until

death by absorption or escape from the simulation geometry.
2Geant4 is written in C++, so the discussion of the Geant4 source code and the extensions made

in this project will make use of general C++ nomenclature and concepts. For a short discussion on
the basic C++ concepts that are used heavily in this project, see Appendix A.
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Run A collection of independent events.

Simulation The entire modeling process from start to finish, which may include

multiple runs.

The most fundamental structure in every Geant4 simulation is the kernel. It

is responsible for tracking the particles with respect to the physics processes and

simulation geometry. It achieves this using manager classes to handle each step in

the tracking process [3]. These managers include

• Run manager

• Event manager

• Tracking manager

• Stepping manager

• Process manager

These are singleton classes (only one instance allowed) that can be called at any point

in the simulation. They allow access to the class category they manage - the process

manager allows access to the processes defined in the simulation - and they carry

out any actions necessary for tracking a particle. For example, the stepping manager

simulates each step of a particle, and does so with track and process information from

the tracking and process managers respectively.
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Figure 1.1: Geant4 simulation hierarchy [3].
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1.2.4 Creating a Geant4 Simulation

To create a Geant4 simulation, the user is required to provide the following classes

World constructor

Defines the material and geometric composition of the simulation world 3.

Primary generator

Defines source distribution of primary particles.

Physics list

Defines the physics processes to be used in the simulation.

The user may also provide the following optional action classes

Run action

Defines the actions to be taken at the beginning and end of each run.

Event action

Defines the actions to be taken at the beginning and end of each event.

Tracking action

Defines the actions to be taken at the beginning and end of tracking for the

current track.

Stepping action

Defines the actions to be taken at the beginning and end of each step.

The user must also provide a driver file containing the main function. The driver file

will instantiate the kernel, the run manager and the user defined classes. Once all the
3The simulation world is the “physical” environment that the neutrons move through during a

simulation. It includes all of the geometric structures, and associated materials, that have been
defined for the simulation.
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necessary classes and functions have been defined, the user-generated source files are

compiled and linked to the Geant4 source code libraries to form a working program.

While the above classes must be user-generated, this does not mean that every

detail must be explicitly coded by the user. The Geant4 toolkit provides many helpful

classes that can be used to quickly build user-generated classes. For example, the

primary generator class can be quickly created using the G4ParticleGun class. The

user simply needs to create a particle gun object and specify the number, type,

position and momentum of the primary particles.

1.2.5 Suitability of Geant4

Geant4 was chosen for this project due to its ability to be adapted to most problems.

While other, more established codes are appropriate for their intended purpose, such

as MCNP (Monte Carlo N-Particle) for multiplication eigenvalue calculations (see

Section 2.2.2), these codes are restrictive in terms of access to simulation data [4]. In

general, the developers built these other codes for a given set of tasks with a limited

set of output options, and therefore, applying these codes to problems outside of their

scope is challenging. Conversely, Geant4 makes few assumptions about the end-user’s

intended application, and provides a framework to build new simulation methods.

The benefit of this flexibility is tempered by the increased effort needed to build a

complete simulation, but in the case of this project, other codes, such as MCNP,

would have resulted in inelegant solutions created by “hacking” the functionality of

the established code.

While Geant4 is not an established code in the field of reactor research, it is in

many other fields. Geant4 is extensively used in high energy particle physics, and
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was used to design the detectors for the LHC. Additionally, it has seen constant

development and improvement over its 14 year lifespan, with a large community of

active users who may be approached in the case of technical problems [3]. Therefore,

while the nuclear engineering community may be unfamiliar with Geant4, it has been

extensively validated in many other areas [5, 6, 7, 8].

1.3 Summary

This thesis covers the development of algorithms and procedures for the Geant4 Monte

Carlo toolkit to simulate time-dependent neutron populations in environments where

the material or geometric composition may also change with time. Chapter 2 covers

the relevant background information necessary to inform the reader for the discus-

sion in the subsequent chapters. Chapter 3 examines Monte Carlo nuclear simulation

codes that are similar to the code developed in this project, as well as some other

applications of Geant4 in reactor research. The specific contributions and code de-

velopment for this project are described in Chapter 4, and Chapter 5 covers the

validation of the Geant4 reactor simulation method against standard reactor simu-

lation codes. Chapters 6 contains conclusions that were reached at the end of this

project and possible future extensions. Lastly, the conclusions are followed by the

references and the appendices.
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Chapter 2

Background and Theory

The scope of this chapter extends from the fundamental neutron transport equation

to solutions of the transport equation by deterministic and stochastic methods. In

particular, this section will focus on stochastic methods of solution, namely Monte

Carlo methods, including general Monte Carlo solution methods and specific imple-

mentations used in Geant4. The Geant4 discussion is limited to the base libraries

provided by the Geant4 consortium; see Chapter 4 for the contributions to the Geant4

code base made in this project.

2.1 Neutron Transport

2.1.1 Neutron Interactions

Neutron interactions are classified into two major categories, absorption and scatter-

ing [1]. Scattering interactions occur when a neutron “collides” (interacts) with a

nucleus but is not (permanently) absorbed. Instead, the momentum of the neutron
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changes depending on the nature of the collision. In many scattering collisions, the

neutron is temporarily absorbed by the nucleus to form an excited compound nu-

cleus, which decays and reemits a neutron. These interactions can either be elastic

or inelastic (see below), and normally occur for neutrons with energies above 10 keV

because the incident neutron must have sufficient energy to raise the nucleus to the

first excited state. Neutrons may also scatter elastically off the nuclear potential of

the nucleus; in this case, the neutron never penetrates the nuclear surface [1].

Elastic collisions (n,n) Kinetic energy is conserved in elastic collisions. En-

ergy is transferred between the neutron and the nucleus, and the direction

of the neutron is changed but no additional particles are created.

Inelastic collisions (n,n’) Inelastic collisions do not conserve kinetic energy

and some of the kinetic energy of the collision is released as radiation.

The two major absorption interactions are radiative capture and fission. In both cases,

the neutron is absorbed by the nucleus, creating an unstable compound nucleus [1].

Radiative capture (n,γ) The excited compound nucleus decays by emitting

gamma rays, but the incident neutron remains.

Fission (n,f) The compound nucleus splits into two smaller nuclei and two to

three fission neutrons. The daughter nuclei (fission products) are gener-

ally unstable and decay over time by particle emission (e.g. beta, gamma,

neutron, neutrino).

Only fissionable isotopes undergo fission, which includes all isotopes with an atomic

number greater than 89. Furthermore, fission only occurs if the captured neutron

provides enough energy to overcome the binding energy of the nucleons in the nucleus
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(this energy is known as the fission threshold and is approximately 6-9 MeV). The

incident neutron contributes its kinetic energy, as well as the binding energy gained

through its capture. For fissile isotopes, such as uranium-235, this binding energy

alone is sufficient to cause fission, but for isotopes that are only fissionable, such as

uranium-238, additional energy is needed to reach the fission threshold. For uranium-

238 to fission due to neutron capture, this energy must be provided by the kinetic

energy of the incident neutron. Since nuclear fission only requires sufficient energy to

surpass the fission threshold, fission may also be induced by high energy photons [1].

Other absorption interactions can release particles such as alpha particles and

neutrons. The neutron releasing interactions (not including fission) are called (n,*n)

interactions where ’*’ is the number of neutrons at the end of the interaction. Addi-

tionally, photons may also produce photo-neutrons through (γ,n) interactions. These

neutron-producing interactions are particularly important to reactor physics because

they contribute positively to the overall neutron economy.

2.1.2 Interaction Cross Sections

The propensity of a neutron to interact with a given material depends on the micro-

scopic cross sections for that neutron-material pair. The microscopic cross section is

defined as the “effective cross-sectional area per nucleus seen by the [neutron]” and is

usually given in units of barns (10−24 cm2) [9]. This is not the actual cross sectional

area of the nucleus, but rather, a physical quantity that depends on the atomic num-

ber and mass of the nucleus, and the energy of the incoming neutron. The probability

of an interaction between the neutron and the material depends also on the density

of the material. This probability per unit length is defined as the macroscopic cross
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section and is given by [1]

Σi(E) = Nσi(E) = NAρ

M
σi(E) (2.1)

where N is the atomic number density of the material, NA is Avogadro’s number, ρ

is the density of the material, M is the molar mass of the material, and i denotes

the type of interaction. Since the cross sections correspond to independent neutron

interactions, the overall effect of multiple cross sections is a superposition of the

individual cross sections. That is,

σt = σs + σa = σγ + σf + σe + σin + ... (2.2)

Σt = Σs + Σa = Σγ + Σf + Σe + Σin + ...

where the interaction types are as follows: t is total, s is scattering, a is absorption, e

is elastic, and in is inelastic. The extension from micro- to macroscopic cross sections

in Equation 2.2 relies upon Equation 2.1, where the atomic number density, N is

common to all interaction types for a given isotope.

The fundamental neutron cross sections are defined for a given particle, interaction

and isotope. For materials containing multiple isotopes, the total macroscopic cross

section must be formulated using the interaction and neutron densities for each isotope

present. That is

Σt =
∑
i

∑
j

Njσ
j
i (2.3)

where j denotes the isotope and i denotes the neutron interaction type [1].
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2.1.2.1 Mean Free Path

Another important quantity is the average distance a neutron will travel before in-

teracting with a nucleus, which is known as the mean free path length, λ. This

quantity can be defined for either an individual interaction or multiple interactions

(see Equation 2.2). The mean free path length for an interaction i, is given by [1]

λi = 1
Σi

(2.4)

which has units of length.

2.1.3 Neutron Transport Equation

The fundamental governing equation of reactor physics is the neutron transport equa-

tion [9]:

1
υ

∂

∂t
+ Ω̂ · −→∇ + Σt(−→r , E)

ψ(−→r , Ω̂, E, t)

= Q+
∫
dE ′

∫
dΩ′Σs(−→r , E ′ → E, Ω̂′ · Ω̂)ψ(−→r , Ω̂′, E ′, t)

+ χp(E)
∑
i

(
1− βi

) ∫
dE ′

∫
dΩ′ νΣi

f (−→r , E ′)ψ(−→r ,Ω′, E ′, t)

+
∑
l

χl(E)λlCl(−→r , t)

(2.5)

The variables in Equation 2.5 are as follows:

• ψ is the neutron flux

• E is the neutron kinetic energy

• υ is the neutron speed
(
υ =

√
2E/mn

)
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• mn is the neutron rest mass

• Ω is the neutron momentum direction (solid angle)

• Σt is the total interaction cross section

• Σs is the collision (scattering) cross section

• Σf is the fission cross section

• ν is the average neutron yield (multiplicity) per fission

• χp is the prompt fission neutron energy spectrum

• βi is the delayed neutron fraction for delayed neutron precursor group i

• χl is the delayed neutron energy spectrum for group l

• λl is the group l decay constant

• Cl is the group l precursor concentration

• Q is any other neutron sources (Q(−→r , Ω̂, E, t))

Equation 2.5 is organized with neutron sinks on the left and neutron sources on

the right, and the net neutron gain equals the time dependent rate of change of

the neutron flux
(

1
υ
∂ψ
∂t

)
. Note that the neutron sources and sinks are defined for a

particular position, energy, time and direction of flight of the neutron. For simplicity,

the delayed neutron precursors, those fission products that decay and release neutrons

at some time after the fission, are grouped according to the decay constant for each

precursor. Thus, the precursor spectrum is reduced to l groups (normally six), whose

concentration changes according to the Bateman equations [1]:

∂

∂t
Cl(−→r , t) =

∑
i

βil

∫
dE ′

∫
dΩ′ νΣi

f (−→r , E ′)ψ(−→r ,Ω′, E ′, t)− λlCl(−→r , t) (2.6)
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where βi = ∑
l β

i
l , λl is the average decay constant for group l, and i denotes a

particular fissile isotope. Additionally, the external source, Q may also be configured

such that the position, strength and direction of the source are time-dependent. For

clarity, Equation 2.5 can be simplified using operator notation

(
1
υ

∂

∂t
+ T − S − F

)
ψ = Q +

∑
l

χl(E)λlCl(−→r , t) (2.7)

where the transport, removal (neutron sink) and fission operators are given below,

respectively.

Tψ =
(
Ω̂ · −→∇ + Σt(−→r , E)

)
ψ(−→r , Ω̂, E, t)

Sψ =
∫
dE ′

∫
dΩ′Σs(−→r , E ′ → E, Ω̂′ · Ω̂)ψ(−→r , Ω̂′, E ′, t)

Fψ = χp(E)
∑
i

(
1− βi

) ∫
dE ′

∫
dΩ′ νΣi

f (−→r , E ′)ψ(−→r ,Ω′, E ′, t)

While Equation 2.5 is generally the most fundamental equation used in neutron

transport, it does rely on the following assumptions [9]:

1. Particles may be considered as points.

2. Particles travel in straight lines between point collisions.

3. Particle-particle interactions may be neglected.

4. Collisions may be considered instantaneous.

5. Materials are assumed to be homogeneous and time-independent.

Assumptions 1, 3 and 4 rely on the small size of the neutron compared to atoms and

interatomic spaces, the comparably low density of neutrons in interatomic spaces,
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and the short time scale of nuclear reactions; with the exception of radioactive decay

nuclear interactions like fission have a time scale of approximately 10 fs [1]. Assump-

tion 2 is true for neutrons regardless of the presence of electromagnetic fields because

neutrons have no electric charge, and other nuclear forces, such as the strong and

weak nuclear forces, are negligible outside of a small region surrounding the nucleus,

which is comparable to the atomic radius. Finally, assumption 5 is generally true

for simulated reactor materials given the lack of detailed structure in materials in

nuclear simulations, although some anisotropy with respect to the direction of travel

of the neutron can be included [9]. In particular, the time scale of material property

changes is on the order of milliseconds to days, whereas the time between neutron-

nucleus interactions is on the order of nanoseconds to microseconds.

2.2 Reactor Kinetics

Reactor kinetics refers to the time-dependent changes in the neutron flux of the

reactor. These changes can be described by Equations 2.5 and 2.6, although simpli-

fications may be applied to reduce the complexity of the problem [9]. In the case of

systems containing fissionable material, the fissioning of these materials will give rise

to new generations of neutrons; these systems are said to be multiplying mediums. For

reactors, the balance between neutron production through fission and neutron loss

through absorption or escape is an extremely important state called criticality [9].
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2.2.1 Criticality

The time-dependent evolution of a neutron population in a system is divided into three

regimes. If the neutron population grows with time, it is said to be supercritical. If

the neutron population is stable in time, then the system is critical, and finally, if the

population shrinks over time, then the system is subcritical. The degree of criticality

is measured either with the neutron multiplication factor, keff , or the reactivity, ρ,

of the system. The neutron multiplication factor is defined as [1]:

keff ≡
Rate of neutron production

Rate of neutron loss = P (t)
L(t) (2.8)

and the reactivity of the system is related to the criticality of the system by

ρ = 1− 1
keff

(2.9)

Thus, using the definitions for the three regimes of criticality defined above, we have

keff , ρ =


> 1, > 0 supercritical

1, 0 critical

< 1, < 0 subcritical

In a non-critical multiplying medium (without a significant external source), the

neutron population will either increase or decrease exponentially depending on whether

keff is greater or less than one [9]. This exponential population change occurs because

equation Equation 2.5 has positive feedback through the neutron flux, ψ. The source

and sink terms all depend positively on the flux such that any imbalance between the

sources and sinks is amplified over time. Thus, the criticality of a system is especially
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important to nuclear reactor operators; for a reactor to be stable, it must be critical

or shutdown. When a reactor is starting up, shutting down or changing power levels,

the reactor may briefly go into a sub- or supercritical state, but it must always return

to a critical state when running [1]. The reactor is only left in a non-critical state in

full shutdown (i.e. subcritical).

2.2.2 Time-Independent Eigenvalue Problems

Most numerical solutions of the neutron transport equation solve the time-independent

form of Equation 2.5 [9].

(T − S − F )ψ = Q (2.10)

Obviously, this equation is no longer true if the system is not critical because the

time-derivative of the flux has been removed, so any difference between the strength

of the sources and the sinks will no longer be balanced. Thus, Equation 2.10 must

be modified to obtain a solution in these cases. These modifications, which take

the form of eigenvalues, are useful to determine quantitatively how far the system is

from critical. Two eigenvalue solutions, the multiplication eigenvalue and the time-

absorption eigenvalue, will be discussed below. For simplicity, the external source

term will also be neglected from the following discussion. Additionally, the following

eigenvalue solutions solve for the neutron flux as t→∞; in other words, the eigenvalue

solutions represent the asymptotic behaviour of the flux with respect to time. This

asymptotic behaviour corresponds to the fundamental mode eigenvalue, and higher

mode eigenvalues of the neutron flux are assumed to be transitive, and thus are also

disregarded [9].
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2.2.2.1 The multiplication eigenvalue

This method is often referred to as the k-eigenvalue, λ-eigenvalue or k-static method

for solving criticality problems. To balance Equation 2.10, it is written as an eigen-

value problem. That is,

(T − S)ψ = λFψ (2.11)

where λ = 1/k [9]. As mentioned above, only the eigenvalue corresponding to the

fundamental mode is to be considered, which is the largest value of k that solves

Equation 2.11. Note that the multiplication eigenvalue k (or more correctly 1/k)

found by solving Equation 2.11 is not necessarily the neutron multiplication constant,

keff , but in many cases they are equivalent. This discrepancy arises from the assumed

time-independence and will be discussed in Section 2.2.2.3.

The addition of a constant 1/k to Equation 2.10 is generally thought of as adjusting

the neutron yield per fission, νΣi
f , so that the left and right sides of the equation

balance (i.e. ν → ν/k).

(T − S)ψ = χp(E)
∑
i

(
1− βi

) ∫
dE ′

∫
dΩ′ ν

k
Σi
fψ (2.12)

So if the system is subcritical, k < 1 and ν/k > ν; the introduction of k increases

the neutrons per fission and balances the equation making the new system critical.

Recall that Equation 2.10 was modified, so Equation 2.11 does not solve the actual

system, rather it is solving an idealized critical system that was created when k was

introduced [10]. It is the difference between these two systems (1/k) that gives a

quantitative measure of how far the real system is from critical.
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2.2.2.2 The time-absorption eigenvalue

Instead of simply adding a scalable eigenvalue to Equation 2.10, the time-absorption

eigenvalue method of solution assumes that the problem is separable and that the

time-dependent part is an exponential [9]. That is

ψ(−→r , Ω̂, E, t) = ψα(−→r , Ω̂, E) eαt (2.13)

Then Equation 2.7 becomes

(T − S − F )ψ = −α
υ
ψ (2.14)

by taking the derivative of Equation 2.13 with respect to time. Equation 2.14 is

an eigenvalue equation in terms of α, so this solution method is often referred to

as the α-eigenvalue method (also referred as the ω-eigenvalue method). Again, the

fundamental mode solution corresponds to the (real part of) the largest value for α

that solves Equation 2.14. The α eigenvalue is called the time-absorption eigenvalue

because it essentially adds an absorption (loss) term to the equation that comes from

the time-dependent part of the flux. However, in a subcritical medium, α is negative,

so the eigenvalue term becomes a neutron source. Additionally, the extra absorption

term depends on the inverse of the speed (kinetic energy) of the neutrons. Therefore,

the eigenvalue preferentially removes low energy neutrons in supercritical systems,

and preferentially adds low energy neutrons in subcritical systems [9].
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2.2.2.3 Comparison of eigenvalue methods

The eigenvalue solutions described above differ in their treatment of the time-dependent

part of Equation 2.5. The multiplication eigenvalue eliminates time-dependence by

assuming that the neutron flux is time-independent. Thus, any solution of the k

eigenvalue for an unstable system will be inaccurate because the system fails to

meet the fundamental assumption made in Equation 2.11 (i.e. the flux is time-

independent) [10]. Conversely, the α eigenvalue solution does not require the system

to be time-independent, but the time-dependence of the neutron flux is restricted

to exponential growth or decay controlled by the fundamental eigenvalue, α. The α

eigenvalue solution should not be used if the system properties undergo quick changes,

since these can evoke higher order modes (eigenvalues) where the change in the neu-

tron flux can no longer be modelled by a simple exponential.

However, when the basic conditions of each solution method are met, they are

both valid solutions of Equation 2.5. The eigenvalue solutions from both methods

can be compared using

kα = αTR + 1 (2.15)

where kα is the neutron multiplication constant corresponding to the α eigenvalue,

and TR is the average neutron removal time [10]. The neutron removal time is defined

as the time from the creation of a neutron (through fission, etc) until it is removed

from the system by absorption or by escaping the system geometry. Obviously, this

comparison is only valid when the preconditions of both solution methods are met.
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2.2.3 Dynamic versus static criticality

Dynamic criticality refers to a direct calculation of the neutron production and loss

rates (see Equation 2.8). This is usually achieved by calculating the total neutrons

produced and lost over a time period, T , such that

keff = P (t)× T
L(t)× T = NP (T )

NL(T ) (2.16)

where NP and NL are the total neutrons produced and lost over T , respectively [10].

Equation 2.16 is true as long as the geometry and materials of the simulation world

remain constant over T . Therefore, this definition of criticality is valid for sub- and

supercritical systems [10].

Static criticality refers to criticality solutions that are time-independent. The

eigenvalue solution methods listed above are both static solutions, although the α-

eigenvalue method does assume an exponential time dependence. Other than the

α-eigenvalue method, static criticality solution methods can only (accurately) solve

for keff in a (near) critical system [10]. Another common static criticality method is

to define the criticality of a system by comparing the number of neutrons in successive

fission generations. That is

kgen = Number of neutrons in generation i+ 1
Number of neutrons in generation i

(2.17)

where neutrons born through fission form the next generation; neutrons born through

other interactions do not advance the fission generation of the neutrons [4]. In a real

system, the neutrons in a single generation will not “die” or “spawn” new neutrons at

the same time. In the time taken for slow neutrons to give birth to the next generation,
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more energetic neutrons could go through multiple generations. Therefore, calculating

kgen is inherently time-independent, and is only valid for critical systems (assuming

the neutron population covers a range of energies).

As with the comparison of the eigenvalue methods, time-independent, or static,

criticality methods may be applied to non-critical systems. In these cases, the actual

value of keff will be inaccurate, but its value relative to unity can be used as a

qualitative assessment of the system. In other words, a static criticality calculation

will show whether the system is sub- or supercritical, and give a rough estimate of the

system’s difference from a critical system. Conversely, dynamic criticality calculations

are always applicable, but they are often more difficult to implement than the static

methods and they are unnecessary when simulating a critical system (e.g. a nuclear

reactor in equilibrium conditions).

2.3 Nuclear Data

The nuclear data used in simulation codes contains the parameters necessary to model

neutron interactions, most of which are indexed by the incoming energy of the particle

that initiates the interaction (e.g. neutron). These parameters include interaction

cross sections, outgoing angular and energy distributions, and secondary particle

yields. Since experimental measurements only cover portions of the nuclear data, and

different experiments may disagree, the nuclear data used in simulations comes from

evaluated data sets [11]. These evaluated data sets are formed through a combination

of experimental data, nuclear interaction models, and evaluator judgement. The

evaluators must use the tabulated error for the experimental data and decide how

closely the models should fit the given data. While these data sets are validated
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against a range of characteristic simulations, the data sets do contain inconsistencies

relative to the true physical parameters and to other evaluations of the same data.

Standard nuclear data sets are produced in series as the evaluations are revised

and updated. Some popular evaluation series are the ENDF/B series produced by

Brookhaven National Laboratory, the ENDL series produced by Lawerence Livermore

National Laboratory, and the JENDL series produced by the Japan Atomic Energy

Agency. In this thesis, the ENDF/B series is used exclusively.

2.3.1 Data Formats

Most simulation codes require a specialized format for the nuclear data regardless

of the source evaluation [4, 12]. Simulation codes such as MCNP1 and Geant4 use

ENDF/B data, but the data is reformatted so that it can be read directly by the

simulation code (without parsing the original ENDF/B file). This reduces the ini-

tial computational overhead required to start a simulation, but it also reduces the

portability of data sets between codes; a data set created for MCNP cannot be used

directly in Geant4.

MCNP

The MCNP data format is standardized as three tables of data. The first

lists the totals pertaining to the different data types, such as the total num-

ber of energy data points or the total number of interactions that produce

secondary neutrons. The second contains indices of each different data type

in the third table. The third table contains the actual nuclear data including

incoming neutron energies, interaction cross sections, and outgoing angular
1Monte Carlo N-Particle is a stochastic simulation code that models the transport of neutrons,

photons and electrons. It was developed by Los Alamos National Labs (LANL) [4].
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and energy distributions. This data format is compact, but is hard to read

without first parsing the data according to the indices listed in the second

table. The data library format is given in the third volume of the MCNP

manual [4].

Geant4 - G4NDL

The neutron interaction data in Geant4 for neutrons in the range of [0,20

MeV] is given by the Geant4 Neutron Data Library (G4NDL). The data is

separated into interaction cross sections and final state data (i.e. the state

of all constituent particles at the end of an interaction). These two data

types are further divided into elastic scattering, radiative capture, fission,

and all other inelastic interactions. The final state data includes all relevant

parameters for each interaction (outgoing angular and energy distributions,

secondary particle yields, etc.) but this data is read directly and sequentially

by the code without any parsing, so it is also difficult to read. Unfortunately,

the G4NDL libraries do not come with a format manual, so the format must

be deciphered by reverse-engineering it from the source code [12].

2.3.2 Doppler Broadening of Resonances

In general, the low (thermal) and high energy (> 1 MeV) cross section data is rela-

tively smooth, but some interactions contain resonant peaks in the middle energies

(approximately 1 to 100 keV). These peaks are narrow, only covering small energy

regions, but they may be several orders of magnitude in height. Thus, for a small

localized energy region, the interaction cross section can be many times greater than

that of the surrounding energies, and may even be greater than the cross sections at
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the thermal energies. This so-called resonance region contains many such peaks (see

Figure 2.1), and is very important in reactor calculations. At a resonance peak, a

neutron-nucleus interaction is likely to form a compound nucleus

n1
0 +XA

Z = XA+1
Z (2.18)

if the energy of the neutron and nucleus is close to the energy of the compound

nucleus minus the binding energy of the neutron. Outside of this energy range, the

probability of forming a compound nucleus is lower, so the interaction cross section is

also lower, which forms a peak in the cross section profile [1]. These compound nuclei,

and associated resonances, occur for fission, radiative capture, and certain scattering

interactions.

10
−5

10
0

10
5

10
−4

10
−2

10
0

10
2

10
4

10
6

Energy (eV)

C
ro

s
s

 S
e

c
ti

o
n

 (
b

)

Figure 2.1: Radiative capture cross section of Uranium-238 exhibiting resonance peaks
[13].

30



M.A.Sc. Thesis - Liam Russell McMaster - Engineering Physics

The nuclear cross section data is evaluated at a single temperature (often 0 K), and

must be re-evaluated at higher temperatures for most simulations. This reevaluation

is necessary because at any temperature above 0 K, the nucleus is moving (vibrating).

Thus, the incoming neutron velocity in the direction of travel of the nucleus is given

by
−→v ′ = −→v −−→V (2.19)

in the rest frame of the nucleus, where −→v is the neutron velocity in the lab frame and
−→
V is the current velocity of the nucleus due to vibrations (assuming non-relativistic

speeds since the neutron energy is relatively low) [1]. The velocity of the nucleus

can be approximated by a Maxwell-Boltzmann distribution describing an ideal gas in

equilibrium at a temperature T . Therefore, the speed of the nucleus is approximately

Vth = (kT/M)1/2, so at higher temperatures, the nucleus is moving with greater

energy in a random direction [1]. This effectively broadens the resonant peaks because

neutrons that have energies above or below a resonant energy in the lab frame, may

now have the proper energy to form a compound nucleus in the rest frame of the

nucleus, and vice versa for neutrons already at the resonant energy. The process of

broadening the resonance peaks to account for the temperature of a material is known

as Doppler broadening, and is shown in Figure 2.2.

Doppler broadening may be applied to a data library before it is used in a simula-

tion using nuclear data utility codes such as NJOY [15]. However, some simulations

use on-the-fly Doppler broadening [16]. In this case, the following algorithm is used

to determine the cross section at a temperature T .
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Algorithm 2.1: On-flight Doppler broadening
Input: Incident neutron, target nucleus, material temperature T , convergence

limit δ = 3%, σsum = 0
Output: Interaction cross section at T

N = max(10, T/60) // Number of nucleus velocities to sample

Repeat

σ̄ = σsum / count // Save last average cross section

for i = 1→ N do
−→
V = r (kT/M)1/2 // Sample nucleus velocity
−→v ′ = −→v −−→V // Find rest frame velocity

σi = σ
(

1
2mv

′2
)

// Find cross section at v′

σsum = σsum + σi // Add cross section to sum

end
count = count+N // Update counter

Until (σ̄ < (1± δ)σsum / count)

σ̄ = σsum / count
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0 K
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Figure 2.2: Broadened resonances in radiative capture cross section of Pu-240 due to
temperature [14].

where r is a Gaussian-distributed random number centred at one [12]. The on-flight

Doppler broadening algorithm samples the velocity of the nucleus and determines the

neutron interaction cross section in the rest frame of the sampled nucleus. This pro-

cess continues until the average cross section value converges within the given limit.

For efficiency, the sampled cross sections are calculated N times before the conver-

gence condition is re-evaluated. Unfortunately, this algorithm becomes increasingly

inefficient as the temperature of the simulated material increases relative to the tem-

perature at which the nuclear data was evaluated. Therefore, a nuclear data library

that was evaluated at a temperature near the simulated material temperature is pre-

ferred.
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2.3.3 Energy Discretization

In general, the nuclear data evaluations are continuous in the energy range of the

evaluation. While the evaluation itself may be in the form of a table of discrete

points, the evaluation includes sufficient data points such that accurate data may

be obtained at any energy in the given range through interpolation. However, for

some simulation codes, especially deterministic codes (see Section 2.4), calculations

using continuous energy are too complicated and costly in terms of computation.

Therefore, the energy range is discretized into energy groups, where each energy

group has a single interaction cross section, as well as singular energy and angular

distributions for secondary particles [1]. However, since the neutrons may lose or gain

energy, these multigroup data libraries must also contain the up- and down-scattering

cross sections that provide the probability of a neutron being scattered up or down

to a particular energy group [1].

Since several resonance peaks may be contained within a single energy group, the

averaged interaction cross section does not accurately reflect the effects of these reso-

nances. In particular, the resonances cause local depressions in the flux distributions

at the resonant energies; this effect is known as self-shielding [9]. Therefore, fur-

ther self-shielding corrections are needed to accurately model materials that contain

resonance peaks.

2.4 Deterministic Simulations

Deterministic simulations are labelled as such because their solutions do not contain

any randomized elements. Therefore, the solution of a deterministic simulation will
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not change unless the problem parameters are changed, and thus, the solution is pre-

determined. In general, deterministic solutions of the neutron transport problems are

faster than stochastic solutions, but integral to this rapidity are several simplifications

that make Equation 2.5 manageable. Additionally, deterministic problems are solved

numerically since even simple solutions of the neutron transport equation are difficult

to obtain analytically [1].

2.4.1 Simplifications

Three major simplifications are applied to the simulation for most deterministic

solvers. The simplifications are as follows

Energy Discretization

The first simplification used in most deterministic nuclear codes is the en-

ergy discretization described in Section 2.3.3. With this simplification, the

transport equation becomes a set of linear equations for each energy group

and movement between the energy groups is handled by group-specific scat-

tering cross sections (e.g. one scattering cross section would define scattering

from energy group one to energy group two).

Spatial Discretization

The second simplification is to discretize the simulation geometry in space,

such that the simulation world is composed of NV volumes with homoge-

neous material properties. This simplification is generally necessary to solve

the neutron transport equation numerically within the simulation geome-

try [17].

Angular Discretization
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The third simplification is the discretization of the outgoing angular distri-

butions of the hadronic interactions. Thus, the angular distributions are

reduced to a set of directions, Ω̂n, where n = 1, ..., N [1]. Generally, these

directions should be chosen to be normal to the surfaces (edges) created by

the spatial discretization; this makes surface currents easier to calculate.

2.4.2 Static Solutions

The most common method for solving the neutron transport equation requires two

steps. The first is to solve the integral form of the transport equation for a small,

repeatable geometry (i.e. a cell) to obtain homogenized cross sections. These ho-

mogeninized cross sections can be applied across the entire cell so that the simulation

world becomes a series of cells that each have a single set of interaction cross sections

for each energy group [17]. The second step is to iteratively solve for the neutron

flux between the cells. This second step, the diffusion approximation, is not strictly

necessary, but by combining these two steps, a complex problem, such as a nuclear

reactor with instrumentation and control rods, can be reduced to a simpler, more

easily solvable problem.

2.4.2.1 Cell Homogenization

The first step is to solve the neutron transport equation over the cells using the three

simplifications listed above. This can be done using deterministic numerical simu-

lation codes such as DRAGON. DRAGON specifically uses the collision probability

method to solve for the absorption and scattering cross sections (Σa and Σs), the

fission yield (νΣf ), the fission spectrum (χ), and the angular neutron flux (φ) in each
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volume of the cell [18]. Then the homogenization for each energy group g is performed

by averaging each parameter across the volumes. Homogenizing these parameters for

every energy group yields a compressed data library where each cell only has one

value for each property and energy group.

2.4.2.2 Diffusion Approximation

Once the cells have been homogenized, the diffusion approximation is used to cal-

culate the flux between cells. First an initial flux is set for each cell, and boundary

conditions are set for cells on the edge of the system. Then the system is solved using

a finite difference method to determine the flux at the centre of each cell. Since the

cells are homogeneous and the cross sections are known, the unknown quantity is the

flux into the cell from adjacent cells. By conservation of particles, the flux into cell A

from cell B must be equal to the flux out of cell B into cell A. Therefore, the following

algorithm is used to converge to the actual flux shape
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Algorithm 2.2: Iterative flux solution
Input: Homogenized cross sections, initial flux values φ0, convergence limit δ

Output: Final flux profile

/* Keep recalculating the neutron flux at the centre of

each cell till they all converge within δ */

Repeat

/* Find flux at the centre of each cell in the system

*/

for j = 1→ NV do

Find φji based on adjacent cells // ith flux of cell j

end

i = i+ 1 // Increment i

Until max [(φi+1 − φi)/φi+1] < δ

As the calculated flux at the centre of cell j is updated, this causes the fluxes of all

adjacent cells to change; hence, continuing the iterative process. This process (or a

similar one) can be completed by codes such as DONJON [18].

2.4.3 Dynamic Solutions

In general, time-dependent deterministic solutions of the neutron transport equation

either use the point kinetics approximation or a more complicated space-energy dy-

namics approach. The first approach, the point kinetics approximation, assumes that
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the neutron flux shape is time-independent. That is

ψ(r, E, t) = p(t)φ(r, E) (2.20)

where p(t) is a time-dependent amplification factor and φ is the time-independent

flux shape. This assumption leads to the point kinetics equations, which are given by

dp

dt
= ρ(t)− β

Λ(t) p(t) +
n∑
i=1

λiCi(t) (2.21)

= ρ(t)− β
Λ(t) p(t) + Sd(t)

Λ(t)
dCi
dt

= βi
ρ(t)
Λ(t)p(t)− λiCi(t) | i = 1, ..., n

where ρ is the reactivity, Λ is the average neutron generation time, i is the delayed

neutron precursor group number, n is the total number of precursor groups, β is

the total delayed neutron fraction, βi is the delayed neutron fraction of group i,

λi is the delayed neutron decay constant, and Ci is the delayed neutron precursor

concentration [2].

The point kinetics approximation is limited by the lack of any time-dependent

spatial or energy effects. Consequently, the quasistatic method was developed to

allow indirect time-dependence in the neutron flux shape. The flux shape in the

quasistatic method is solved at regular time steps using the following equation

(
F + S − T − 1

v

ṗ

p

)
ψ(r, E, t) = −1

p
Sd [p(t′)ψ(r, E, t′)] (2.22)

where F is the prompt neutron fission source, ṗ is the derivative of the amplitude

function with respect to time, Sd is the delayed neutron source term, and t′ is the
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time of the previous time step [2]. Note that the time step used in Equation 2.22

can be longer than the time step used to solve the point kinetics approximation. The

addition of time-dependence to the neutron flux shape allows this method to be used

to simulate many accident scenarios, such as a rod ejection [2].

Instead of using the point kinetics approximation, the transport equation may

be solved numerically using one of the space-energy dynamics approaches. These

approaches include the finite difference method, the modal and nodal approaches,

and the quasistatic correction described above. The finite difference method involves

replacing the differential terms in Equation 2.5 with finite difference quotients, and

then the neutron flux is solved across a space-energy mesh at each time-step. The

modal approach represents the flux as a superposition of fundamental space-energy

modes, where the time-dependent superposition coefficients are updated at each time

step. Lastly, the nodal approach represents the neutron flux as individual coupled

fluxes at spatial nodes. The nodal fluxes again feature time-dependent coefficients.

All of these methods are more accurate than the point kinetics approximation, but this

accuracy increases the computational cost of each calculation. Moreover, the accuracy

of each approach is limited by the number of fundamental divisions employed (i.e.

number of meshes, modes or nodes).

2.4.3.1 Limitations

The point kinetics approximation has a number of limitations. First, Equation 2.21

does not account for energy effects. For example, the delayed neutrons are generally

born at lower energies than prompt neutrons, so they tend to undergo less moderation

and are absorbed more quickly. Second, the delayed neutron characteristics vary for
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different fissile isotopes, so the βi and λi values must be calculated as an average

of the individual values for each isotope. Finally, the major limitation of the point

kinetics approximation is the assumption that the actual spatial flux distribution

can be accurately represented using the static shape factor, φ. The assumption of a

stable spatial shape factor is only true if the system’s material composition does not

change. For accident scenarios that are spatially dependent, such as a rod ejection

or rod drop, the point kinetics approximation tends to underestimate the positive

reactivity insertion and overestimate the negative reactivity insertion [2]. Thus, this

method is not conservative, which is problematic when simulating reactor accidents.

For changing spatial distributions, quasistatic methods may be employed to achieve

some time dependence in the spatial form factor. Obviously, the frequency of these

periodic spatial calculations must be sufficiently large relative to the changes in the

core composition; otherwise, the point kinetics approximation will diverge from the

modelled system as the true spatial distribution diverges from the assumed spatial

form factor [1]. Finally, the other space-energy approaches have the same limitations

as other deterministic equations; the discretization of space and energy, as well as

time, affects the accuracy and speed of the calculations.

2.5 Monte Carlo Simulations

Unlike deterministic calculations, which solve for values that are predetermined when

the problem is posed, stochastic calculations rely on random sampling to model the

same problem. In general, a problem can be separated into individual components

whose behaviour can be described by probability trees; although, these probabilities
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are not necessarily independent. Starting from a given initial state for the compo-

nents, the stochastic calculation randomly samples the probability trees to produce

a single outcome of the initial state. Assuming the random sampling process is not

biased, subsequent simulations of the problem will produce different outcomes. If

an infinite number of stochastic calculations were performed, the collective outcomes

would exactly reproduce the combined probability trees.

Monte Carlo processes are a subset of stochastic calculations and can take a variety

of differing forms, but in general, they all follow the basic outline described above. The

outcome of a system is modelled by sampling probability distributions that describe

the behaviour of a system given an initial state. Random outcomes are generated until

the average outcome converges to within an appropriate variation. At this point, the

Monte Carlo calculation should reproduce the results of the deterministic equation

with limited statistical error.

The benefit of using a Monte Carlo calculation is that complex problems, like

neutron transport in a material, can be modelled with relatively simple calculations.

While deterministic solutions require simplifications such as energy discretization, a

Monte Carlo solution needs only to have sufficient probability tables to model any

possible interactions. However, this completeness, and the necessity of simulating a

“complete” set of outcomes, requires longer computation times relative to equivalent

deterministic calculations.

2.5.1 Basic Principles

The procedure of random sampling to determine the outcome of a problem is often

referred to colloquially as “rolling the dice”. To choose a particular outcome from a
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table of probabilities, a random number generator produces a number, r, and uses

∃m ∈ [1, N ] | r

rmax

N∑
i=1

Pi ≤
m∑
i=1

Pi (2.23)

where rmax is the maximum number that the random number generator can produce,

N is the total number of outcomes, and Pi is the probability of outcome i occurring.

This is analogous to assigning outcomes to the numbers on a die, and then rolling

the die to produce a random result. In probability theory, the set of all possible

outcomes, S, is known as the sample space, and any subset of S is referred to as

an event, E [19]. As the number of calculated outcomes increase, the Monte Carlo

solution approaches the actual solution (the particular combination of the probability

tables that the problem represents). This process of solving problems by simulating

and counting outcomes is used in neutron transport to measure quantities such as

aggregate cross sections and criticality (see Equations 2.3 and 2.8).

The following discussion will focus mainly on neutrons and neutron interactions.

However, most of the following is equally applicable to any other particle that the

Monte Carlo code can simulate including protons, electrons, alpha particles, etc.

2.5.2 Neutron Transport in Monte Carlo Simulations

Monte Carlo simulations are used to solve Equation 2.5 by converting the integral

production and loss terms into probabilities, and applying these probabilities to a

neutron moving through a material. The neutrons are followed in space from creation

to loss, where creation occurs from a neutron-producing interaction (e.g. fission,

original source particle creation), and loss can occur through a neutron-removing

interaction (e.g. absorption, escape). Along this path, the neutrons move through
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a series of steps, each of which ends with an interaction. The length of each step

and the type of interaction are calculated using the interaction cross sections with

Equations 2.1 and 2.4. Additionally, secondary neutrons, which are produced from

interactions such as fission, are also followed until their loss. Starting with a single

neutron, the result of a Monte Carlo simulation is the outcome of that neutron and all

of its descendants; that is, the combined history of all the neutrons originating from

the first neutron, which includes the number, location and timing of all interactions,

secondary neutron productions and neutron losses. In general, an event is taken to

be the history of n initial neutrons and their descendants from creation to loss.

In most Monte Carlo transport codes, a neutron is only subject to external forces

during the interactions at the end of each step. Between the beginning and end of

a step, the neutron moves along a straight path with a constant velocity [4]. Ad-

ditionally, the interactions are instantaneous so a neutron can be assumed to travel

the entire step length without any deviations from its initial velocity. All of these

conventions derive from the assumptions listed in Section 2.1.3.

2.5.2.1 Step-by-Step Transportation

While the exact mechanics of neutron transport in Monte Carlo simulations can differ,

most methods are similar to the procedure described below. The following procedure

is used to model the movement of a neutron in the simulation world through a series

of steps. While this algorithm is general, it is closest to the neutron transportation

algorithms used in MCNP [4].
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Algorithm 2.3: Monte Carlo step-by-step transportation
Input: Nuclear data, current state of neutron
Output: Step length, neutron interaction, end state of neutron

while neutron is alive do
/* Find new position */

l = − 1
Σt

log ξ | ξε[0, 1) // ***Calculate step length
−→x = −→x + l · x̂ // Calculate new position

/* Pick the interaction type */

r = x ε [0, 1] // Generate random number

ΣR = 0 // Initialize the running total

for i = 1→ TotalInteractions do
ΣR = ΣR + Σi // Add Σi to running total

if r ≤ ΣR/Σt then
break

end
end

/* Model interaction i */

if necessary then
Kill neutron
Create secondary particles

end
end
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where TotalInteractions is the total number of neutron interactions defined for a neu-

tron in the given material, and ΣR is the running total of the individual macroscopic

cross sections, which starts at zero for each iteration of the while loop. Stochasticity

is added to the process through the random numbers ξ and r, which randomize the

step length and the interaction selection respectively [4].

When the neutron crosses from one volume into the next over the course of a single

step, the tracking algorithm listed above must be modified to account for the changing

macroscopic cross section. However, only the step length calculation (marked with

*** in Algorithm 2.3) is affected. The step length calculation becomes [9]

Algorithm 2.4: Stepping across volumes

λ = log ξ | ξ ε [0, 1) // Mean path lengths left

Repeat
−→
d = Intersect(S,−→x , p̂) // Intersection with surface S

dout = −→d −−→x // Calculate distance to surface

l′ = − 1
Σm

t
λ // Calculate step length in material m

if l′ > dout then
l = l + dout // Add incremental distance

λ = λ− dout/Σm
t // Reduce mean free path lengths left

end
Until (l′ < dout)

where the Intersect function determines the intersection between the surface of the

volume, S, and the path of the neutron, which is calculated using the position (−→x )

and momentum direction (p̂) of the neutron. Then the interaction type and result

depend on the final material, m′.
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For most Monte Carlo codes, the tracking algorithm does not consider time. In-

stead, the time is updated at the end of each step using [16]

tf = t0 + l

v
(2.24)

where t0 and tf are the times at the beginning and end of the step respectively, and v

is the scalar velocity of the tracked neutron. This assumes that the neutron does not

undergo any acceleration during the step. When the tracked particles are being ac-

celerated, such as charged particles in an electromagnetic field, neither Algorithm 2.3

nor Equation 2.24 are valid. The algorithms to deal with this situation are discussed

in Section 2.6.2.

2.5.3 The Simulation World

In Monte Carlo simulations, the simulation world is composed of elementary con-

nected regions, often referred to as volumes, and each volume is composed of a single

homogenous material [9]. The simulation world is bounded by a single mother volume,

often called the world volume. If a neutron leaves the world volume, it is lost and is

killed (removed from the simulation). Inside the world volume, the daughter volumes

are arranged so that their boundaries do not overlap with each other; that is, if two

daughter volumes are intersecting, one of these volumes must be completely contained

within the other; a neutron must be able to unambiguously determine which volume

it is in so that the tracking algorithm (e.g. Algorithm 2.3) may apply the correct

nuclear data.

Each elementary volume can be further divided into several smaller volumes to

provide higher resolution for scoring, such as flux tallies (see section 2.5.5). The
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quantization of a volume is only limited by the minimum dimension that the sim-

ulation code can resolve. However, complicating the geometry by subdividing the

elementary volumes will reduce the efficiency of the tracking algorithm. As the num-

ber of volumes increases, determining when a neutron reaches the edge of its current

volume and which volume it will enter next becomes increasingly difficult and time

consuming.

2.5.4 Initial Source

Since Monte Carlo simulations follow individual particles in the simulation world, the

simulation must begin with a set of initial neutrons (primary particles or primaries).

These particles can start with any distribution of position and momentum throughout

the simulation world, although certain distributions will be better suited to specific

applications. The neutron distribution will converge in space and energy to the

“physical” distribution dictated by the simulation world; this process is referred to

as source convergence. Even subcritical simulation worlds will have an innate source

distribution as long as there are sufficient neutrons in the world [4]. Below is a list of

common source distributions.

1. Beamline

Primary neutrons that start at the same position with the same momentum

direction. This distribution is useful for probing a material or apparatus with

neutrons over a range of energies.
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2. Point Source

Primary neutrons that start at the same position with random momentum di-

rections. This source is simple, easy to implement, and useful for many ap-

plications. However, the neutron spatial distribution may take more time to

converge.

3. Uniform Source

Primary neutrons that start at locations uniformly distributed across the sim-

ulation world. This source can be used if the evolution of a point source would

be too slow.

4. Distributed Source

Primary neutrons whose position and/or momentum is assigned according to

a given distribution. This source is the quickest to converge towards the true

physical spatial distribution if the given distribution is well chosen.

In criticality simulations, source convergence is particularly important because keff

is calculated using the rates of neutron production and loss in Equation 2.8. These

rates will change based on the spatial distribution of the neutrons, especially if the

simulation is initialized from a point source [4]. Thus, the source must be allowed to

converge in a Monte Carlo criticality calculation before any criticality estimates can

be made.

2.5.5 Tallies and Scoring

The results from Monte Carlo simulations come from various counting processes re-

ferred to as tallying and scoring. Particular events are noted and counted over the
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course of a simulation using a running tally. For example, the neutron flux through

a given volume is measured by tallying the number of neutrons entering and leaving

the volume during the simulation. Individual events may also be recorded directly for

further accuracy, such as the location of each fission in a simulation. Certain tallies,

such as energy deposition or neutron flux, are less useful either when applied to an

entire elementary volume or saved as individual events (i.e. individually recording

energy deposition of each fission). For these cases, the elementary volumes are sub-

divided into smaller volumes (see Section 2.5.3), which are used to separate, or bin,

the tallies into smaller, more descriptive values. This can be used to determine the

energy deposited in different parts of a detector or the flux profile along the surface

of a subdivided volume.

Since a Monte Carlo simulation is a stochastic process, the number of initial

neutrons is directly proportional to the statistical accuracy of the tallies and the

derived quantities. If the process of interest is relatively rare, such as (n,2n) collisions

in Uranium-235, the number of initial neutrons must be increased to get a sufficient

number of (n,2n) collisions so that the (n,2n) tally is large enough to be statistically

relevant (i.e. not dominated by uncertainty). The scoring is ultimately a counting

process, or formally, a Poisson process, where the number of tallied occurrences is

distributed according to a Poisson distribution. Thus, if N tallies are made, then the

standard deviation in this tally decreases by
√
N [19]. However, the statistical error in

the tally does not account for any systematic errors due to errors and approximations

in the simulation code or nuclear data [4]. The expected value of a tally x can be

written as

x̄ = E(x) + δsystem (2.25)
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where x̄ is the “true” mean value of the tally in a physical system, E(x) is the

expected value of the tally derived from the Monte Carlo simulation, and δsystem is

the systematic error of the Monte Carlo code. The expected value will have a standard

deviation, σ(x) ≈ 1/
√
N , that may be reduced by increasing the number of initial

particles, but the systematic error can only be minimized by modifying the Monte

Carlo code or the nuclear data [4].

2.5.6 Quantitative Analysis

The tallies created by the scoring processes represent raw data from the simulation.

After the simulation is finished, the tally data can be combined and manipulated to

calculate derived quantities. The most pertinent quantities to this discussion are the

calculation of the criticality of the system and of the Shannon entropy, which are

discussed below.

2.5.6.1 Monte Carlo Criticality Calculations

Monte Carlo criticality calculations can be performed through a variety of methods.

Three methods will be discussed here: the generational method, the α-eigenvalue

method, and the dynamic method (see Section 2.2.1). For a discussion on these

methods, see Section 2.2.3.

Generational method:

The criticality of a system may be calculated by comparing the number

of neutrons in successive generations (Equation 2.17). This is equitable to

the k-eigenvalue method since both methods find the eigenvalue k and are

time-independent. In practice, the number of neutrons per generation is
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calculated using Algorithm 2.5 [4].

Algorithm 2.5: Monte Carlo k eigenvalue calculation
Input: Monte Carlo simulation with a converged neutron source

distribution

Output: Mean k value, k̄

Repeat

/* Simulation */

Simulate one generation of neutrons starting from fission sites of

the last generation

/* Calculations */

Tally nfi+1 // Tally number of fissions

ki = nfi+1 / n
f
i // Calculate ki

k̄ = 1
i

∑i
j=1 kj // Recalculate k̄

i = i+ 1 // Increment i

Until (k̄ has converged)

For this algorithm, it is equivalent to count the number of fissions or the

number of neutrons produced from fission in a generation assuming the ma-

terials are constant in time (i.e. constant neutron fission yield, ν).

Time-absorption eigenvalue method:

The time-absorption eigenvalue method uses Equation 2.15 to calculate kα.

Therefore, the Monte Carlo simulation needs to calculate the α eigenvalue
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and the mean neutron removal time, TR. If the neutron population is known

at times t1 and t2 (where t2 > t1), then the α eigenvalue can be calculated

using

α = 1
t2 − t1

[
log

(
N(t2)
N(t1)

)]
(2.26)

where N(t) is the total number of neutrons in the simulation at time t [10].

The neutron population at each time is found by tallying all the neutrons in

the simulation at these times, and the mean neutron removal time, TR, can

be derived by averaging the removal times of all neutrons that are killed in

the interval [t1, t2].

Dynamic criticality method:

The dynamic criticality method is implemented using Equation 2.16. The

criticality of the simulation world at a time t is

keff = NP (T )
NL(T ) (2.27)

where T is the interval [t0, t], and t0 is any time after the neutron source

distribution has converged. Equation 2.27 is true so long as neither the

geometry nor the materials of the simulation world change in the interval

[t0, t].
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2.5.6.2 Shannon Entropy

Shannon entropy was introduced in 1948 by Claude Shannon as a quantitative mea-

sure of the average information needed to encode a message for lossless compres-

sion [20]. The message is treated as a sequence of independent and identically

distributed random variables, and the entropy of a message depends on the prob-

ability that each variable has a given value. If the message is the sequence of let-

ters ‘AABDC’, then the Shannon entropy is the entropy of the set of probabilities

{pA, pA, pB, pD, pC}. Moreover, the Shannon entropy approximates the information

needed to encode each letter (e.g. the average number of bits per letter needed to

encode the message in a binary (digital) representation) [20].

Instead of a sequence of letters, the Shannon entropy is calculated for a discretized

spatial distribution in Monte Carlo simulations, specifically the spatial distribution

of the fission sites (positions of fission interactions). For a stable distribution, the

Shannon entropy is constant; therefore, calculating the Shannon entropy can affirm

convergence in the spatial distribution of the fission sites [4]. To calculate the Shannon

entropy, the positions of the fission sites are discretized using an arbitrary three

dimensional mesh. Then the Shannon entropy is

Hsrc = −
Nb∑
j=1

Pj log2 (Pj) (2.28)

where Hsrc is the calculated Shannon entropy, Nb is the total number of grid boxes

formed by the mesh, and Pj is the probability of a fission site being in box j. This

probability is given by

Pj = njs
Ns

(2.29)
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where njs is the number of fission sites in box j and Ns is the total number of fission

sites [4]. If a grid box contains no fission sites, then it does not contribute to the

Shannon entropy. Likewise, if all of the fission sites are contained in only one grid

box, then the Shannon entropy is also zero. However, if the fission sites are uniformly

distributed among the grid boxes, then the Shannon entropy will attain a maximal

value of

Hmax = − log2

( 1
Nb

)
(2.30)

Given that the maximal Shannon entropy depends on the resolution of the discretiza-

tion mesh, it is useful to define the Shannon entropy of a spatial distribution as a

percentage of the maximal Shannon entropy, which depends on the meshing.

2.5.7 Delayed Neutrons

Delayed neutrons may be simulated in Monte Carlo simulations directly without any

simplifications by stochastically simulating the decay of the fission products from

each fission. However, as an approximation, the properties of the resultant delayed

neutrons can be simply sampled from the existing nuclear data (e.g. multiplicity,

momentum, time of birth). This approximation is simpler, but its accuracy relies on

the simplifications made in the sampled nuclear data (e.g. the precursor grouping

described in Section 2.1.3).

The delayed neutron decay time, ldecay, is determined from the difference between

the time of birth of the delayed neutron and the time of the fission that produced the

initial delayed neutron precursor. That is

ldecay = tdecay − tfission (2.31)
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where tdecay is the time of the reaction product decay that produces the delayed

neutron, and tfission is the time of the fission that created the initial reaction product.

Thus, the simulation begins tracking a delayed neutron at

tstart = tfission + ldecay | ldecay >> lprompt (2.32)

where lprompt is the average lifetime of a prompt neutron, tstart is the time at the

start of the tracking of the delayed neutron, and tfission is the time when the fission

that produced the delayed neutron precursor occurred [1]. Since the delayed neutron

decay time may be of the order of seconds, whereas as the lifetime of a prompt

neutron is of the order of milliseconds at most, the delayed neutrons are born many

prompt generations after their sister (prompt) neutrons. It is this difference that

makes delayed neutrons important even though they make up less than 1% of the

total neutron population. The delayed neutrons represent a much older state of the

reactor, and consequently make the reactor response sluggish. This makes the reactor

controllable because it gives the control systems more time to respond [1].

Given that the delayed neutrons are born much later than prompt neutrons, it

can be impractical to simulate enough generations such that the delayed neutrons

begin to be born in the simulation of a time-dependent neutron population (i.e. run

the simulation for more than ldecay seconds). This challenge is often simplified by

making the delayed neutrons “prompt” so they are born at tfission [4]. In order to

make this simplification more accurate, the lifetime of the delayed neutron can be set

to ldecay at birth, so that the average neutron generation time will reflect the presence

of delayed neutrons. In general, the lifetime of a neutron is a measure of the time

between the birth and death of a neutron, but to make the calculation of the average

56



M.A.Sc. Thesis - Liam Russell McMaster - Engineering Physics

neutron generation time easier, the delayed neutron decay time can be added to the

lifetime, reducing the number of variables that need to be tracked.

2.6 Monte Carlo Implementation in Geant4

As described in Section 1.2, the Geant4 Monte Carlo Toolkit was developed in an

effort to create a modern, extensible tool for Monte Carlo simulations over a wide

range of applications [3]. As such, Geant4 builds on the Monte Carlo knowledge that

has been gained over the past 70 years, but it also differs from older codes such as

MCNP in a few key areas. The following sections will elaborate on these differences

and explain how important algorithms are implemented in Geant4.

2.6.1 General Simulation Flow

Figures 2.3 and 2.4 show the organization and flow of control in Geant4. Figure 2.3

stops at the tracking algorithm that processes the tracks of an event, and Figure 2.4

continues from this point until the tracking algorithm is finished. Simulations in

Geant4 are organized as a series of loops, where each action in the hierarchy completes

Ni iterations of the next lower action before the higher action can finish. For example,

each run will consist of NE events that must be fully simulated before the run is

allowed to end. This structure extends to the track level, but at the step level,

the stepping action continues until the neutron being tracked is removed from the

simulation (dies) [12]. Note that the “x++” notation is a C++ convention denoting

an unary increment of the variable x (i.e. x = x+ 1).
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Figure 2.3: High level simulation flow diagram for Geant4

2.6.2 Transport in Geant4

As in other Monte Carlo simulation codes, Geant4 tracks particles as they move in a

series of steps with instantaneous interactions at the end of each step. However, to

enhance the flexibility of Geant4, any arbitrary process may be defined so long as it

does the following [3]:

Declare applicability:
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Figure 2.4: Tracking flow diagram for Geant4

Given the particle being tracked and the material being traversed, the pro-

cess determines whether or not it is applicable. If not, the process is ignored
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for the current step.

Propose a step length:

When prompted by the tracking manager, the process must propose a valid

step length for the neutron (i.e. in the range [0, 10302] mm).

Model the interaction if chosen:

If the process is selected by the tracking manager, it must model its interac-

tion by proposing changes to the attributes of the neutron (e.g. momentum,

state - alive or dead, etc.). The process must also create any secondary

particles that are produced in the interaction and set their attributes.

For arbitrary processes, the interaction does not have to change any attributes of the

neutron, and in this case, the interaction will be referred to as a null interaction.

Additionally, if a process is deemed applicable but should still not occur, the process

may return the maximum step length (10302 mm). This could occur if the interaction

cross section is zero for the current energy of the neutron. Finally, interactions that

occur at the end of the step are referred to as post-step interactions in Geant4; Geant4

also allows pre-step and along-the-step processes. Along-the-step processes occur

“continuously” along the path of the step, and will be discussed in Section 2.6.2.3.

2.6.2.1 Proposed Step Lengths

For processes that depend on cross section data, such as hadronic processes for scat-

tering, fission and radiative capture, the proposed step length, d, is given by the

following equation

di = ηiλ
Σi

(2.33)
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where di is the step length for the hadronic process i, Σi is the macroscopic cross sec-

tion associated with i, and ηiλ is a counter of mean free path lengths (Section 2.1.2.1) [16].

Therefore, ηiλ is the number of mean free path lengths that the neutron has to travel

before undergoing an interaction of type i. That is

ηiλ = distance to next interaction of type i
Σ−1
i

= − log(r) | r ∈ (0, 1] (2.34)

where r is a uniformly distributed random number between 0 and 1 [16]. In the

Geant4 documentation, ηiλ is referred to as the number of interaction lengths left,

where an interaction length is the same as a mean free path length. Each process

based on nuclear data maintains a unique ηiλ that is initialized using Equation 2.34 at

the start of tracking. After a non-null interaction, one in which the attributes of the

neutron are changed, the ηiλ value for each process is reset using Equation 2.34 [16].

For processes that do not depend on nuclear data, the proposed step length is

arbitrary. The most common use of these arbitrary (in terms of step length) processes

is as a step limiter. In this case, the proposed step length is a value dmax that is set

according to the function of the process. For example, the transportation process is

responsible for stopping neutrons at the interface of two volumes. In this case, the

proposed step length is the distance to next volume in the direction of travel of the

neutron [16]. That is

dmax = | −→xS(x0, p̂)−−→x0 | (2.35)

where −→x0 is the current position of the neutron, p̂ is the momentum direction of the

neutron, and −→xS is a point on the surface of the current volume in the direction of p̂
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starting from −→x0.

For step limiter processes, the modelled interaction is null because the neutron is

stopped arbitrarily at a point in space. Given that the step length is arbitrary and not

contingent on any nuclear interaction data, the occurrence of a null interaction should

not change the results of the simulation. To ensure continuity between two steps that

have been arbitrarily separated by a null interaction, the ηiλ value is not reset after

a null interaction. Instead, ηiλ is decremented by the number of interaction lengths

that the neutron travelled during the step preceding the null interaction. Therefore,

for any step that ends with a null interaction, the ηiλ values are modified using

ηiλ(j + 1) = ηiλ(j)− dj Σj
i (2.36)

where dj is the step length of step j, and Σj
i is the macroscopic cross section of

interaction i in the material the neutron travelled through during step j [16]. Thus,

the effect of Algorithm 2.4 is replicated in Geant4.

2.6.2.2 Process Selection and Utilization

Since every process proposes a step length, the winning process is the process with

the smallest proposed step length. The process selection and utilization algorithm is

executed by the stepping manager as follows [12]

At the pre- and along-the-step stages, any applicable interaction will occur. Addi-

tionally, the transport of the neutron is handled by the along-the-step component of

the transportation process, which may also be the winning post-step interaction if
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Algorithm 2.6: Process selection and utilization in Geant4 for one step
Input: Process list, current state of neutron, current volume
Output: Final state of neutron and secondaries at the end of the step

/* Chose winning process */

Applicable processes each propose a step length di

Process with dmin is chosen

/* Pre-Step */

All applicable pre-step interactions occur

/* Along-the-Step */

All applicable along-the-step interactions occur
Neutron is moved dmin by transportation process

/* Post-Step */

Winning post-step interaction occurs
if interaction is null then

etaiλ values are decremented (Equation 2.36)
end
else

etaiλ values are reset (Equation 2.34)
end
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the distance to the volume surface is less than any other proposed step length [3].

2.6.2.3 Transport in an Acceleration Fields

One strength of Geant4 is its ability to model charged particles moving in an accel-

erating field. For example, an electron in a magnetic field will travel along a curved

path. In Geant4, this is modelled by approximating the curved path as a series of

short straight steps (chords) [16]. An electromagnetic process is used to limit the

step to the length of a single chord, and to correct the path of the charged particle

so that it follows the predicted curve. The shape of the curve itself is predicted using

Runge-Kutta integration [16]. Thus, the charged particle will travel approximately

ηiλ mean free path lengths before undergoing an interaction of type i even though the

path of the particle is now curved. The ability to model such events is useful when

designing charged particle detectors, such as the detector systems used in particle

physics experiments like the Large Hadron Collider.

2.6.3 Nuclear Data

The nuclear data in Geant4 can be in a variety of forms depending on the implemen-

tation of a particular physics process. The majority of data is stored in tables to be

used either in parameterized models or directly through interpolation. The neutron

high precsision (NeutronHP) physics processes used in this thesis use the G4NDL

libraries (Geant4 Neutron Data Libraries), which store the interaction cross sections

in tables indexed by incident neutron energies [16]. In addition to the cross section

data, the G4NDL libraries contain final state data for each interaction; that is, the

secondary particle yields, and angular and energy distributions necessary to model
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a given hadronic interaction. The final state data is also stored in tables that are

indexed by incident neutron energies [3].

2.6.3.1 Temperature Dependence

The G4NDL data used by the NeutronHP processes was evaluated at 0 kelvin.

Therefore, for any realistic simulation, the NeutronHP physics processes use on-flight

Doppler-broadening to determine the interaction cross sections at a given material

temperature (see Section 2.3.2) [12]. This does slow down any simulation with ma-

terials above 0 K, with increasing inefficiency as the temperature of the material

increases. Therefore, it is advantageous to create data libraries evaluated at higher

temperatures if possible.

2.6.4 Data Processing

The data processing in Geant4 happens in four stages from the individual hits to the

entire simulation (see Figure 1.1). The four stages of data collection and analysis

are [3]

1. Hits are processed in a sensitive detector and saved in hit collections.

2. Hit collections for an event are gathered and processed in the event action.

3. Data from all events (processed by the event action) is further analyzed by the

run action.

4. Data from the multiple runs may be collated and analyzed after the simulation

has finished (optional).
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To gain access to the data in a later stage, the data must be saved and passed to the

subsequent stages. For example, the sensitive detector saves the pertinent information

for individual hits in a hit collection, which is passed to the event action for further

analysis.

2.6.4.1 Initial Actions: Hit and Event Level

Geant4 contains several scoring classes, but the most versatile is the sensitive detector

class. In the definition of the world volumes, selected volumes are set as sensitive

detectors. By doing so, any interaction (hit) that occurs in that volume is registered

and may be analyzed/saved in the hits processing function of the sensitive detector.

The pertinent information for each hit may then be saved in a hit object (container

class), and added to the hit collection of the sensitive detector for the current event [3].

Much of the analysis, such as discriminating hits based on interaction type, occurs in

this stage.

The event action allows the hit collections stored by each sensitive detector to

be collated and analyzed. The data may be reduced (in size) and repacked in a new

container class before transferring it to the run action to increase efficiency (especially

important for event-level parallelism, Section B.2). Additionally, the event action may

be used to complete any actions that need to be performed at the beginning or end

at each event.

2.6.4.2 Final Actions: Run and Simulation Level

The run action is essentially the same as the event action, except that it is used to

collect the data from the events, as well as completing any necessary actions at the
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beginning or end of the run. In general, the run action is used to control the simulation

in terms of initialization, output and data logging. Additional data processing may

be done at the simulation level if the simulation includes multiple runs. However,

this behaviour is not well supported by Geant4, so more user-generated code must be

added for data analysis at this level.
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Chapter 3

Related Research

As alluded to in Chapter 2, Geant4 exists in a larger ecosystem of simulation codes,

including other Monte Carlo codes that are similar in many ways. Since Geant4 is a

modern code that takes advantage of prior knowledge, such similarity is expected and

even desired [3]. Furthermore, Geant4 has a diverse range of applications, although

it is not widely used in reactor physics. One prominent example, however, is the use

of Geant4 to model accelerator driven subcritical reactors (ADSR), where a particle

accelerator provides the external neutron source necessary to sustain a stable neutron

population in the reactor [21].

3.1 Related Simulation Codes

The following three simulation codes, MCNP, DRAGON and TART 2005 are used

specifically in reactor physics. Each code has a significant history and has been well

studied; moreover, they all overlap with the code developed for this thesis for certain

applications. This is not a comprehensive list of nuclear codes; other codes, such as
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WIMS and SCALE, are also widely used [22]. However, the following codes were used

to validate the NStable code, with each code being used in a particular area where it

was most applicable (see Chapter 5).

3.1.1 MCNP

MCNP (Monte Carlo N-Particle) is a three dimensional Monte Carlo neutron, electron

and photon transport code that was developed by Los Alamos National Labs (LANL)

[4]. MCNP5, the latest version in the MCNP series, was used in this thesis.

3.1.1.1 Application to Reactor Physics

MCNP is a general transport code, and thus, it can be applied to a large number of

specific problems. These problems usually fall into two categories: physics simulations

and criticality calculations. Fundamental physics is a broad category, covering most

simulations where neutrons are fired into a test geometry, and the results of each

shot are tallied for later analysis. For example, MCNP could be used in a detector

simulation where the sensitivity of a particular design needs to be evaluated, especially

if the detector produces photons or electrons as intermediaries. However, the limited

number of particle types available does restrict the scenarios that MCNP can simulate

(see Section 3.1.1.2 for the extended version of MCNP that seeks to resolve this issue).

MCNP is used extensively to validate deterministic codes through criticality cal-

culations, as well as other characteristic properties, such as the neutron flux. As a

Monte Carlo code, MCNP does not apply simplifications such as energy discretiza-

tion (see Section 2.4.1), and therefore, is generally more accurate than deterministic

codes (assuming the simulation is well posed). However, given the speed advantage of
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deterministic codes, MCNP is not usually used for routine reactor calculations, such

as determining a new fuelling scheme.

MCNP solves criticality problems using the generational method (KCODE) de-

scribed in Section 2.5.6.1. This method is inaccurate outside of the near-critical

regime, so MCNP should not be used to accurately calculate the criticality of sub-

/supercritical systems. However, the generational method is sufficient for coarse

qualitative calculations; MCNP will show that a system is sub- or supercritical, but

the calculated value of keff will not be accurate [10]. Previous versions of MCNP

did possess the ability to solve for the α-eigenvalue (ACODE), but this feature is not

present in Version 5.

3.1.1.2 MCNPX

MCNP also features the MCNPX series, which separated from the main MCNP series

at version 4B. It incorporates additional features not contained in the main series

(the X in the name stands for eXtended). These features include elements seen

in Geant4 such as exotic particle tracking (muons, neutrinos), and interchangeable

physics models. MCNPX also features isotopic depletion calculations (burnup) using

the CINDER90 module [23]. However, some concepts, such as charged particles

moving in electric fields, are still under development [23]. The next version of MCNP

plans to merge MCNP5 and MCNPX to combine the capabilities of both in a single

code.
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3.1.1.3 Application to the Project Objectives

It is conceivable to use MCNP to achieve the goals set out in this thesis. MCNP has

the ability to stop neutrons at a given time in the simulation and save these neutrons

to a source file [4]. However, any modifications of this source distribution would

have to be done in post-processing between runs and outside of MCNP. Any post-

processing that involves reading and writing files to the hard disks is prohibitively

expensive compared to operations carried out in RAM (computer random access

memory). Therefore, while MCNP may be able to accomplish the goals of this project,

the solution would not be trivial and would likely be inefficient.

3.1.2 TART 2005

TART 2005 is a general purpose, three dimensional, coupled neutron-photon Monte

Carlo transport code. It was created by Lawrence Livermore National Labs (LLNL),

and builds on its predecessor, TARTND. The first version of TART was released in

1995 (TART95), and subsequent versions have been released at regular intervals until

the latest version, TART 2005 [24]. While TART 2005 is relatively small in size

compared to MCNP5 and Geant4, it is a complete program including the simulation

code, a select set of nuclear data, and utility programs that perform auxiliary tasks

such as checking the input geometry for errors or plotting the nuclear data.

Unlike MCNP5 and Geant4, TART 2005 does not use continuous energy nuclear

data by default. Instead, it uses a 700 group multi-group data library with self-

shielding, although continuous energy data is available should the user require it.

Using a multi-group library in TART does reduce computation times, but the accuracy

of such calculations will depend on the discretization of the energy spectrum and the
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implementation of the self-shielding correction. The reduction in computation time

using the multi-group library is approximately a factor of two compared to using the

continuous energy nuclear data [24]. Therefore, the benefit of this simplification is

not overwhelming.

TART 2005 bears similarity to the NStable code developed in this project; many

of the fundamental concepts used in TART were used as a reference for the NStable

code. TART can calculate keff using all three methods (see Section 2.5.6.1), including

the dynamic method used in the NStable code. Like the NStable code, the dynamic

method in TART 2005 uses periodic renormalization of the neutron population to

keep the population within a manageable range. TART 2005 also features automatic

updating of the run duration based on the average neutron removal time, so that a

simulation is not wholly dependent on the initial user input. Therefore, TART 2005

is able to follow a population of neutrons in time as it evolves [10].

3.1.2.1 Application to Project Objectives

While TART 2005 is a general Monte Carlo neutron transport code with available

source code, it lacks the flexibility and access that Geant4 grants its user. It also does

not support the evolution of material or geometric properties with respect to time.

The source code for TART 2005 is available, but it was not designed to be easily

modified and/or overridden. Therefore, implementing new behaviour would require

changes to the source code, which would limit the portability of the modified TART

code. Additionally, the scheme of achieving the project objectives using MCNP (see

Section 3.1.1.3) could be used with TART 2005, but the same disadvantages would

apply.
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3.1.3 DRAGON

DRAGON is a deterministic neutron transport code that solves the neutron transport

equation for lattice cells in two- or three-dimensions. It was developed at École

Polytechnique de Montréal to unify and improve upon several existing models and

algorithms [18]. DRAGON was developed so that new methods and models could be

easily added to the source code package. Thus, DRAGON allows the user to choose

from several multigroup nuclear data libraries, and to choose the method of solution

used in the tracking module (see the DRAGON user manual and physics manual for

a detailed explanation of the solution methods employed by DRAGON) [18, 17].

DRAGON has the ability to [18]

• Calculate multigroup fluxes for each zone of the subdivided lattice cell in 2D

and 3D

• Calculate homogenized cross sections for the entire lattice cell

• Calculate the criticality of a lattice cell using the k-eigenvalue method

• Calculate isotopic depletion (burnup) of fissionable isotopes in the lattice cell

• Employ resonance self-shielding corrections in the above calculations

However, given that DRAGON is a deterministic transport code, it must employ

the simplifications given in Section 2.4.1, namely spatial, energy and angular dis-

cretization. Addtionally, DRAGON is a static code in terms of flux and criticality

calculations, and a quasistatic code in terms of burnup calculations. Therefore, it

would be difficult to model transient conditions in DRAGON, where the system is

not stable and the higher order spatial modes are present. On the other hand, it is a
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well validated lattice cell calculation code, which makes it a good comparison for the

NStable lattice cell results for near-critical systems.

3.2 Related Time-Dependent Monte Carlo Simu-

lations

Monte Carlo simulations are widely used in scientific research, and the ability to

perform time-dependent simulations has not gone unnoticed. Other researchers have

also been working toward time-dependent Monte Carlo neutron simulations, espe-

cially those involving burnup or transmutation calculations. Two examples of this

work are discussed below: one developed a quasistatic Monte Carlo code for bur-

nup calculations, and the other used Geant4 for modelling an Accelerator Driven

Subcritical Reactor (ADSR).

3.3 Time-Dependent Monte Carlo

Shayesteh and Shahriari describe the development of a time-dependent Monte Carlo

(TDMC) code that is able to calculate keff , the neutron lifetime, and the flux in time

and space [25]. In the TDMC code, keff is calculated using methods similar to MCNP.

In particular, keff is calculated with the generational method (time-independent)

using absorption, collision and track length estimators for keff [4, 25]. Likewise, the

neutron lifetime is calculated using an averaged tally of neutron lifetimes, and the flux

is estimated by averaging the neutron track lengths in a volume divided by the volume

itself [25]. However, time in the TDMC code is broken into generations (or ”cycles”).
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Thus, the time-dependence is only accurate for stable (critical) systems. Once the

system is no-longer near critical, the neutron lifetime will begin to vary significantly

so that the criticality estimates will no longer be valid (see Section 2.2.3).

For near-critical systems, the TDMC code performs isotopic depletion (burnup) in

time using the Bateman equations. At the end of each generation, the total number

of neutrons, and the delayed neutron precursor concentrations, are updated using

a method similar to the point kinetics approach [1, 25]. Shayesteh and Shahriari

show that this method is equivalent to the point kinetics model for flux calculations

of simple slab geometries with multiple regions. The TDMC code is also able to

alter the properties of this slab by changing the thickness of various regions between

generations, or by varying the fission cross section of the fuel with respect to time. In

particular, these modifications were applied to a seven region slab of fuel surrounded

by an absorber and then a reflector. This model showed good agreement with the

point kinetics model in terms of relative flux calculations [25]. Additionally, Shayesteh

and Shahriari report using two-group cross section libraries with six delayed neutron

groups, although it is not reported whether the TDMC code can also use continuous

energy cross section libraries. Thus, the TDMC code, as reported, is capable of

time-dependent Monte Carlo simulations of near-critical systems.

3.4 Modelling of ADSRs in Geant4

Bungau, Barlow and Cywinski show that Geant4 can be used to model time-dependent

behaviour in accelerator driven subcritical thorium reactors [21]. The simulated re-

actor features 215 rods of ThO2 (thorium-232) fuel (approximately 14 tonnes) sur-

rounded by a ZrO2 reflector and lead shielding. The reactor itself is subcritical, and
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requires a steady source of neutrons from an accelerator to reach a critical level. This

neutron source is created by directing a 1 GeV beam of protons at a 60 cm lead

target at the centre of the reactor so that neutrons are produced through spallation.

This produces a flux of neutrons into the thorium-oxide fuel, which transmutes the

thorium-232 into uranium-233 and causes fission in any existing uranium-233. Ad-

ditionally, spontaneous fission within the reactor adds to the neutron economy. The

authors show that both MCNPX and their Geant4 code predict that the reactor will

be critical on spontaneous fission alone if the reactor fuel is 1.9% 233UO2. They also

predicted, using their Geant4 code, that the reactor requires 15% 233UO2 to achieve

criticality if spontaneous fission is ignored and only the spallation neutrons are used.

This means that the spallation neutrons can never make the reactor critical; it would

already be supercritical due to spontaneous fission if the 233UO2 concentration was

at 15% [21].

To simulate the ADSR in Geant4 and calculate its criticality, three filters were

added to the sensitive detector: G4SDTimeFilter, G4SDParticleWithTimeFilter and

G4SDParticleWithVolumeFilter [21]. This allows the sensitive detector to divide hit

results in time and in space, allowing the neutron population to be counted for a given

time period (bin). The exact algorithm used to calculate the criticality of the reactor

is not reported, but criticality is defined as the number of neutrons in one generation

relative to the number of neutrons in the past generation, implying an MCNP-like

k-eigenvalue calculation [4, 21]. The entire neutron population is followed in time

by virtue of the sensitive detector filters, although no population renormalization

is used, so simulations that are not-near critical would suffer from unmanageable

neutron populations over relatively short time periods; an example of the evolution
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of a neutron population in the ADSR is only shown for 1.8 µs in a reactor configuration

with keff = 0.9927 [21]. This simulation duration is short enough that the adverse

affects of not renormalizing the neutron population will not be seen.

77



Chapter 4

Contribution and Methodology

Most of the work accomplished involved adding new classes to Geant4 to extend the

functionality of the code. In particular, these new classes allow Geant4 to simulate

time dependent neutron populations. The other main focus was to create nuclear

data libraries at different temperatures by converting the MCNP data libraries into

Geant4’s G4NDL format using a Python script.

4.1 Code Development

The extensions for Geant4 developed in this project were written using a standard

C++ IDE (Integrated Development Environment) called Code::Blocks. The code

was then compiled externally using the standard g++ linux compiler and the Geant4

makefiles. Thus, the source code should compile and run on any standard Linux/Unix

system; it has never been tested on a Windows system, so it may not work in that

environment. The evolution of the NStable 1 code was tracked using the Bazaar
1The Geant4 simulation program created for this project was named “NeutronStability”, and will

be referred to as the NStable code in this thesis. A complete listing of the classes and files added
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version control system. Bazaar provided a detailed history of the Geant4 extensions by

documenting every major change, and it also provided an easy method for transferring

the source code between various systems. The actual simulations were performed

on an i-7 64-bit desktop PC, as well as a simulation cluster with two 32-processor

computation nodes (64-bit AMD processors). The versions of the major software used

in this project are listed below

Table 4.1: List of software used

Software Version

Geant4 4.9.4.p02
MCNP 5
DRAGON 3.06J
TART 2005
g++ 4.6.3-2
python 2.7.3
Bazaar 2.3.4

4.2 Geant4 Extensions

While Geant4 is a general purpose Monte Carlo code, it has seen little application in

the field of nuclear engineering. Therefore, the Geant4 source code contains few tools

to simulate the environments found in a nuclear reactor, although it does have many

helpful utility classes that can be used to build such tools [12]. All of the extensions

to the Geant4 source code that are described in this section did not exist in Geant4,

and were created specifically for this project.

to Geant4 to make the NStable code is given in Appendix C. The appendix also includes a short
description for each class or file.
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As outlined in Section 1.1, the objective was to simulate the evolution of a set of

neutrons and their descendants over a period of time on the order of seconds. During

this simulation, the material and geometric composition of the simulation world must

also be able to change. This behaviour is different from traditional Monte Carlo

detector simulations where single particles are fired into the simulation world, creating

a cascade of events, and then the end result is recorded and analyzed [3]. Instead,

this project seeks to analyse the system at regular intervals without interrupting the

evolution of the neutron population. Therefore, the necessary extensions to achieve

this goal are not trivial.

4.2.1 Neutron Population Stabilization

Nuclear reactors are by necessity multiplying mediums, where the neutron population

will either grow or shrink exponentially given the shape of the reactor and the ratio

of neutron absorbers to neutron sources (fissionable isotopes) [1]. If the simulation

world, is sub- or supercritical, then the neutron population will continue to shrink or

grow exponentially according to

N(t) = N0 exp
[(
keff − 1

l

)
t

]
(4.1)

where N(t) is the neutron population with respect to time, and l is the average

neutron lifetime [1]. Note that Equation 4.1 assumes that l and keff do not change

with time, which is true as long as neither the material or geometric composition of

the simulation world changes. Using this equation, the population will change by a

factor of exp (keff − 1) every l seconds, and since l is on the order of nanoseconds to

milliseconds, the neutron population can change significantly in a short time. Such
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a population will either grow to exceed the available computer memory, or vanish

completely. With shrinking populations, the time until the population vanishes can

be increased by increasing the number of initial particles, but this quantity is also

limited by available computer memory. Moreover, once the population becomes small

enough, the average spatial distribution of neutrons in the system will no longer

be adequately defined by the current neutron population. Therefore, the simulated

spatial distribution will change as the remaining neutrons move about the system,

causing fluctuations in keff that are not physical; no material or geometric changes

occur, so the fluctuations in keff only occur because the initial neutron population

was too small. Consequently, any simulation of a neutron population in time must

contain some method to stabilize the population within an appropriate range.

4.2.1.1 General Approach

The flowchart in Figure 4.1 shows the algorithm used to stabilize the neutron popu-

lation. Each step will be explained in more detail in the following sections. Basically,

the simulation is broken into runs of length Trun, and at the end of each run, the pop-

ulation is renormalized to the initial neutron population, N . As long as the neutron

population does not change too much over the run (i.e. N ′ >> N or N ′ << N), then

this approach will keep the neutron population within a manageable range. Since the

neutrons at the end of one run become the primaries at the beginning of the next

run, the evolution of the neutron population is continuous with respect to time (see

Section 4.2.1.5 for a discussion of the effect of the renormalization on the continuity

of this evolution).
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Figure 4.1: High level simulation flow diagram for Geant4

This general strategy, and its difference from the approach used in other Monte

Carlo codes such as MCNP, is illuminated in Figure 4.2. In the NStable code, the

simulation is comprised of many sequential runs, which serve as the discrete time

intervals necessary for the renormalization. All of the neutrons are stopped at the

same time at the end of the run, so the time-dependence of the simulation is not

affected. In contrast, k-eigenvalue calculations in Monte Carlo codes are usually

performed by comparing the change in fission neutrons per generation [4]. Therefore,

a single run, or cycle, in such a code (e.g. MCNP) uses the neutron generations to

divide the simulation, which is shown by the dotted line on Figure 4.2. While the

average neutron generation time of the system is usually constant (average lifetime of

neutrons causing fission), the individual lifetimes of the neutrons vary. Therefore, the

current cycle ends at a different time for each neutron. This convention is reasonable

as long as the system is time-independent (critical), but for time dependent systems,

this approach will not produce accurate results (see Section 2.2.3).
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4.2.1.2 Division of the Simulation into Discrete Intervals

To stabilize the neutron population, the NStable code divides the simulation into

discrete time intervals and renormalizes the neutron population at the end of each

interval, where

N(t0 + TRun) norm−−−→ N(t0) (4.2)

after renormalization and t0 is the time at the beginning of a run. However, the

default Geant4 run manager (G4RunManager) only instantiates a single independent

run. Therefore, to implement sequential, dependent runs, the default run manager

was replaced by a new NSRunManager class that was derived from G4RunManager.

This new run manager simulates a given number of sequential runs, and handles the

communication between the current run and the next one. To quantify the population

change over a single run, the run multiplication constant, krun, is defined as

krun ≡
N(t0 + Trun)

N(t0) (4.3)

This is simply a measure of the overall neutron population change during the current

run, where the population was

krun =


> 1 growing

1 stable

< 1 shrinking

depending on krun.
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4.2.1.3 Stopping the Neutrons at the End of the Run

By default in Geant4, neutrons do not stop with respect to time; they stop with

respect to step length proposed by the winning post-step process. Therefore, to get a

neutron to stop at a prescribed time, such as the end of the current run (tf = t0+Trun),

a new step limiter process (a class derived from G4StepLimiter) was added in the

NStable code. This process, NSStepLimiter, always proposes a step length equal to

the distance the neutron can travel before the run ends. That is

dlimit = (tf − tstep) v (4.4)

where tstep is the time at the beginning of the current step, and v is the scalar velocity

of the neutron. Unlike other step limiting processes, the NSStepLimiter process is

not truly a null interaction (see the next Section 4.2.1.4); it kills the neutron to

remove it from the simulation. Therefore, no neutrons will survive past the end

of the run because the NSStepLimiter process is always the winning process if the

neutron reaches tf .

The duration of a run should be chosen such that the neutron population does not

undergo significant change that would degrade the performance of the simulation. As

a rule of thumb, the run duration should be chosen given the following condition

{
Trun | N(tf ) ∈ [ 0.5N(t0), 2N(t0) ]

}
(4.5)

This range for Trun is arbitrary, but has proved sufficient during the validation testing

of the NStable code.
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4.2.1.4 Survivors

Those neutrons that reach the end of a run and are stopped by the NSStepLimiter

process are deemed to be the survivors of the run. These survivors then become

primaries in the next run to create a continuous evolution of the neutron population.

To completely replicate the survivors in the next run, the following information must

be recorded

• Position

• Momentum

• Current time

• Lifetime

• All ηiλ values

While the NSStepLimiter process is not a null interaction because it kills the neutrons

it acts upon, it is an arbitrary division of the current step (over two runs). Thus,

it should not affect the physics of the simulation, so each of the ηiλ values must

be decremented, recorded and used when the neutron begins tracking in the next

run. For easy transfer of this data, especially between the master (computer) process

and its slaves in a parallel computation, these values are saved to the NeutronData

container class. Once saved, the NeutronData object represents a single survivor.

4.2.1.5 Renormalization

To renormalize the neutron population to the number of initial primary neutrons,

selected survivors are either duplicated or deleted depending on the value of krun.

These selected neutrons are referred to as the targets of the duplication and deletion

algorithm. The selection algorithm is given below [26]
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Algorithm 4.1: Target selection for deletion or duplication
Input: Number of primary neutrons Np, number of survivors Ns, list of

survivors

Output: List of targets for deletion or duplication

m = |Ns −Np| // Number of missing/extra neutrons

for i = 0→ (Ns − 1) do

r ∈ [0, 1] // Generate a random number between 0 and 1

if r < m
Ns−i then

Add survivor i to list of targets

m = m− 1

end

end

This selection algorithm is uniformly applied across the survivors without bias, so

the renormalization process does not change any properties of the neutron popula-

tion such as the spatial distribution or the energy spectrum (see Appendix D for a

more complete discussion of the target selection algorithm). Therefore, the continuity

of the population with respect to time is affected by the renormalization; since the

NStable code uses a Monte Carlo method, the individual neutrons represented a sam-

ple of neutrons that could exist in the real system, and therefore, are not individually

important so long as the sample size is large enough to represent the macroscopic

system properties.

The renormalization algorithm occurs in the primary generator action (NSPrima-

ryGenerator) at the beginning of each run. The survivors are stored as a doubly-linked
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list of NeutronData objects. Thus, deletion or duplication of the targeted survivors

only requires that the algorithm remove survivors from the list or add copies of sur-

vivors to the end of the list (see Appendix A for details on doubly-linked lists). Then

the renormalized survivors are used as templates for the primaries produced by the

NSPrimaryGenerator in the next run.

4.2.1.6 Initializing the Next Run

Once the list of survivors has been renormalized to the number of initial primaries,

these survivors can be used directly to produce the primaries for the next run. The

NeutronData for each survivor is unpacked and used to set the position, momentum,

lifetime, and current time for a primary neutron. Since the ηiλ values are stored by

the processes, and not by the individual neutrons, these values must be stored in

each primary neutron using the G4VPrimaryParticleInformation pointer provided

by Geant4. This pointer is a data member of the primary particle and allows a

container class to be attached to it that can store the ηiλ values. The container

class, PrimaryNeutronInfo, was derived from G4VPrimaryParticleInformation for

this purpose. After all the survivors have been used to create primary neutrons, the

simulation of the current run begins.

In general, the ηiλ values are initialized for all applicable processes using Equa-

tion 2.34 when the simulation begins tracking a new neutron. Therefore, new pro-

cesses had to be derived from the NeutronHP processes to add the capability of initial-

izing the ηiλ values to the values stored in the PrimaryNeutronInfo. When these new

processes (e.g. NSHadronElasticProcess) start tracking a new particle, they check to

see if it is a primary neutron. If so, the process extracts its specific ηiλ value from the
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PrimaryNeutronInfo object and uses this as the initial number of mean path lengths

left.

4.2.1.7 Delayed Neutrons

Delayed neutrons are not generally produced in the current run because they are

born after the fission that created them (possibly seconds later). Therefore, unless

the delayed neutrons are being produced instantaneously, they must be saved and

added to future runs. The delayed neutrons are recorded as NeutronData objects in a

separate delayed neutron list. The “current time” of a delayed neutron is not the time

of the fission that created it, but rather the time when it is born, after the fission. At

the start of each run, the primary generator scans the delayed neutron list to see if any

delayed neutrons should be born in the upcoming run. If so, these delayed neutrons

are removed from the delayed neutron list and added to the survivors list prior to

renormalization. The delayed neutrons need to be renormalized because they were

produced during a run when the neutron population had deviated from its normalized

value. Therefore, the fraction of delayed neutrons to prompt neutrons reflects the

instantaneous population, not the normalized value. If the delayed neutrons survive

the renormalization process, then they will be treated like any other primary in the

simulation.

Given that the delayed neutrons are born long after the fissions that created

them, achieving a stable distribution of delayed neutrons would require simulating

the neutron population for a total simulation time greater than ten seconds. This is

a relatively long duration when the run durations are on the order of nanoseconds

to milliseconds. Consequently, this capability has not been fully tested; instead, the
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instantaneous production of delayed neutrons has been used as an approximation.

This approximation is sufficient for criticality calculations, especially calculations for

systems that are near-critical (keff ≈ 1), but it can be undesirable for transient

simulations.

4.2.2 Analysis

The analysis of the simulation data in the NStable code is performed at each of the

levels listed in Section 2.6.4. Each level of analysis required a new class to be derived

from basic Geant4 classes for sensitive detectors, event and run actions, and run

managers.

4.2.2.1 Neutron Sensitive Detector

A single general sensitive detector called NeutronSD is applied to every volume in a

NStable simulation. This sensitive detector is used to kill any particles other than

neutrons (not useful for the current objectives2), record the survivors and delayed

neutrons, and tally important physical quantities for the simulation. These quantities

(over one event) are

• Number of neutrons produced

• Number of neutrons lost

• Total lifetime of lost neutrons

• Position of each fission

The total lifetime is the sum of all the lifetimes of the neutrons when they were

killed. It is tallied so that it may be averaged over all the neutrons lost during
2Photons produced from neutron-nuclear interactions will in turn produce a group of delayed

neutrons known as photo-neutrons. However, the fraction of photo-neutrons is relatively small
compared to conventional neutrons, although they can be important in heavy water moderated
systems. For simplicity, all photon interactions were ignored.
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the run. Delayed neutrons that do not occur in the current run are not counted as

production until the neutron is actually born in a future run. Additionally, (n,*n)

inelastic collisions are only counted for the number of neutrons produced beyond the

incident neutron (see Section 2.1.1). Technically, the incident neutron is absorbed

momentarily, but this is not a true loss and production of neutrons; the neutron

economy is unchanged by the absorption and emission of the incident neutron. All

of this data is saved in a TallyHit class, which is saved to the hit collection for the

current event (see Section 2.6.4).

4.2.2.2 Event Action

The event action in NStable exists to repackage the TallyHit data for the event into

an EventData object. This repackaging is more important for parallel processing (see

Section 4.2.5), but it is advantageous to save the data in the event action where it

will persist until the next event begins. It is incumbent on the run manager to send

this data to the run action before it is overwritten. An EventData object contains

the following information from the current event

• Number of neutrons produced

• Number of neutrons lost

• Total lifetime of lost neutrons

• Position of each fission

• List of survivors

• List of delayed neutrons

• Event identifier

where the event identifier is a unique integer designation given to each event by the

run manager.
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4.2.2.3 Run Action

The run action is responsible for the data collection, analysis and output that must

be completed at the end of each run. First, the run manager passes the results of

each event (NSEventData) to the run action. The tallies are simply added to running

totals, but the survivors and delayed neutrons for each event are kept separated. Once

all the events have been completed, the survivors from each event are collated into

a single list that is ordered by the event identifiers; the same procedure is used to

order the delayed neutrons. This ensures that the survivor and delayed neutrons are

consistently ordered regardless of the order in which the event data was passed to the

run action. Again, this is important for parallel processing.

After the data from each event has been recorded and organized, the run action

calculates the following

1. The run multiplication constant, krun

2. The Shannon entropy, Hsrc

3. The average neutron lifetime, l

4. The neutron multiplication constant, keff

5. The run duration

Where the run duration is measured using a G4Timer object, which is started at the

beginning of the run and stopped once the above calculations are finished. Finally,

all of this data, and other key quantities such as the number of neutrons produced,

is written either to a log file or to the screen.
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4.2.2.4 Run Manager

Since runs in Geant4 are independent, communication between successive runs must

be handled either by the run action or the run manager. Since the run manager also

has access to the other user actions (e.g. event action, primary generator action), it is

advantageous to have the run manager facilitate most of the communication between

the user action classes. Additionally, the default run manager only allows one run

per simulation, and therefore, it was not sufficient for the NStable code. For these

reasons, the NSRunManager class was derived from the standard G4RunManager

class.

At its most fundamental level, the NSRunManager class is a loop over N runs.

Once these runs finish, the simulation performs any final actions and then stops.

However, within this loop, the run manager does the following

1. Before each event:

• Gets the primaries for each event from the primary generator action

2. After each event:

• Passes the event data from the event action to the run action

3. After the run:

• Updates the simulation time (e.g. start and end of next run)

• Passes the survivors and delayed neutrons to the primary generator action

• Checks for convergence in the Shannon entropy (Equation 4.6)

• If converged, keeps a running tally of physical quantities (e.g. keff )
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• Saves the survivor and delayed neutron lists to a text file (only at specified

intervals)

After all the runs have been simulated, the run manager averages the important

quantities over the number of runs since convergence was achieved. These averages

are either printed to the screen or to the log file.

Convergence in the Shannon entropy, and by extension, the spatial distribution of

neutrons, is achieved if the Shannon entropy from the past NC runs is within a given

convergence limit, LC . That is

LC >
∣∣∣∣Hi −Hj

Hi

∣∣∣∣ ∀j ∈ [i−Nc, i− 1] (4.6)

where Hi is the Shannon entropy of current run (run i). The default values for NC and

LC are 25 and 1.0% respectively (see Section 5.5.1 for examples of Shannon entropy

convergence).

4.2.2.5 Main Driver File

The main driver file (the file containing the main function) is the foundation of the

entire NStable code (see Appendix F.1.1 for the complete driver file). The driver file,

NStable.cc, does the following

1. Reads the input variables from the input file (see Section 4.2.6)

2. Instantiates the run manager, which instantiates the Geant4 kernel

3. Instantiates the main user classes: the simulation world, the physics list, and

the primary generator
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4. Instantiates the optional user actions: the event action, the run action

5. Sets the output stream (either to the screen or to a log file)

6. Starts the simulation with the run manager’s BeamOn function

7. Performs any remaining tasks after the simulation ends (clean up)

The output stream is either set to the standard Geant4 output, G4cout, which prints

to the screen, or to a log file created by the LoggingAction class. The LoggingAction

class is designed to not only create (or open) the given text file, but also to provide

an output stream to the log file so other classes can print to it as well.

4.2.3 Simulation Worlds

The core NStable code does not depend on the composition of the simulation world.

It is flexible enough to handle a diverse range of systems including a solid sphere of

a given material and a reactor lattice cell in an infinite lattice. The simulation world

in the NStable code is built using the NSWorld class, which manages constructors

for each available world type. Based on the world type that the user chooses, the

NSWorld class calls the appropriate world constructor.

All of the simulation worlds are built from the NSWorldConstructor base class.

This base class contains all common functionality between the world classes and it

also allows the NSWorld class to use polymorphism to simplify its interactions with

the chosen world constructor (i.e. it does not need a pointer to each world constructor

type). The world constructors currently available are:

Bare Sphere

The BareSphereConstructor creates a sphere of a homogeneous material
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with a given radius and material temperature. Available materials include

pure uranium-235 (U235), natural uranium (NU), and a mixture of heavy

water (D2O) and natural uranium, referred to as the UHW mixture. In the

case of the mixtures (NU and UHW), the relative isotopic concentrations

are set. However, the radius can be adjusted to change the criticality of the

system.

Homogeneous Lattice Cell

The CubeConstructor is the infinite analog of the BareSphereConstructor.

Using periodic boundary conditions (see Section 4.2.4.1), the cube construc-

tor creates an infinite lattice of homogeneous cubes. Available materials

include NU and UHW, where the relative isotopic concentrations can be

adjusted for varying degrees of criticality.

CANDU 6 Lattice Cell

The C6LatticeConstructor is based on an idealized CANDU 6 lattice cell

with fresh fuel and no instrumentation or adjusters (see Figure 4.3) [18].

Like the homogeneous lattice cell, the CANDU 6 lattice cell uses periodic

boundary conditions to simulate an infinite lattice. The lattice pitch, fuel

temperature, coolant temperature, and coolant density can all be adjusted

for this constructor.

These simulation worlds have already been built and are included in the NStable code,

but any end-users may define their own simulation worlds by creating new derived

classes from the NSWorldConstructor base class.
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(a) Side View

(b) Front View

Figure 4.3: CANDU 6 lattice cell geometry in Geant4.
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4.2.3.1 Dynamic Simulation Worlds

Most of the adjustments to the simulation world listed above occur during the con-

struction of the simulation world and remain constant for the actual simulation. How-

ever, some properties may be changed incrementally over the course of the simulation

to approximate a continuous change in these properties. This allows the NStable code

to model transient changes in material and geometric properties so that the resulting

feedback can be studied (e.g. keff change in response to fuel temperature). The

procedure for these incremental changes is

Algorithm 4.2: Incrementally change a geometric or material property
Input: Distribution for property as a function of time, p(t)
Output: Updated property value, p′

/* Current run ends */

t = tf // Update time to end of run

p′ = interp(p(t), tf ) // Interpolate p(t) to find p′ at tf

GeometryHasChanged() // Inform run manager of change

/* Next run begins */

The distributions for the property being changed are set in an input file as a two

dimensional table of data (see Section 4.2.6). The third step in Algorithm 4.2, in-

forming the run manager of a change in a geometric or material property, is required

so that the run manager can recalculate tables of combined material properties (e.g.

total isotopic density) that the tracking algorithms use to speed up calculations.

Currently, the incremental changes are limited to temperature and density changes

of select materials. The materials that allow incremental temperature changes are
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• Homogeneous material (Bare Sphere and Homogeneous Lattice Cell)

• Fuel (CANDU 6 Lattice)

• Coolant (CANDU 6 Lattice)

Incremental density changes are limited to the coolant of the CANDU 6 lattice. Again,

these adjustable properties simply represent the current dynamic capabilities of the

NStable code. End-users of the code can add additional dynamic properties by defin-

ing their own simulation world and modifying the ParseInput class (Section 4.2.6).

4.2.4 Physics Lists

The HPNeutronPhysicsList class, derived from G4VUserPhysicsList, is responsible

for declaring and initializing the physics models used in the simulation. All neutron

interactions with energies up to 20 MeV in the NStable code are modelled with the

NeutronHP processes. As mentioned in Section 4.2.1.6, new physics processes were

derived from the NeutronHP processes to allow the ηiλ values to be set at the be-

ginning of tracking. For energies above 20 MeV, a low energy parameterised model

(G4LEPNeutronBuilder) is used for all non-elastic collisions up to 25 GeV, except

for inelastic collisions from 20 MeV to 9.5 GeV, which use a Bertini intranuclear cas-

cade model (G4BertiniNeutronBuilder). For elastic collisions between 20 MeV and 20

GeV, a simple elastic model, G4LElastic is used. While neutrons in a reactor rarely

reach energies above 20 MeV, these models need to be defined so that neutrons in

that energy range can be simulated if the need arises. Additionally, the physics list is

also used to instantiate the NSStepLimiter and BoundaryStepLimiter processes (see

Sections 4.2.1.3 and 4.2.4.1).

99



M.A.Sc. Thesis - Liam Russell McMaster - Engineering Physics

For the NeutronHP processes, the nuclear cross section data is parsed and sampled

with the NeutronHPCSData class. This class is derived from the G4VCrossSectionDataSet

class, and is based on the default cross section data classes used with the NeutronHP

processes (e.g. G4NeutronHPElasticData). Four default data classes are defined (e.g.

elastic, inelastic, fission and capture) even though most of the code within each class is

identical. Moreover, the default data classes assume the cross sections were processed

at 0 kelvin. This is true for the G4NDL data libraries, but for a data library processed

at a higher temperature, the on-flight Doppler broadening produces the wrong result.

If the default data class received cross sections for data processed at 300 kelvin, and

the current material temperature was also 300 kelvin, then the default Doppler broad-

ening algorithm would still try to broaden the data by 300 degrees, essentially finding

the cross section at 600 kelvin. Therefore, the new NeutronHPCSData class was cre-

ated to not only handle cross section data sets for any neutron interaction type, but

also to Doppler broaden the cross sections based on a given evaluation temperature.

4.2.4.1 Periodic Boundary Conditions

Periodic boundary conditions were implemented in the NStable code to produce in-

finite lattices of the world volume. With a periodic boundary, a neutron that leaves

the world will reappear on the opposite side of the world with the same momentum;

this approximates the neutron entering a second identical lattice cell. If the centre of

the world volume is at the origin, this is formalized as

−→x → f
(
n̂(−→x )

)
· −→x (4.7)
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where −→x is a position on the edge of the world volume, n̂(−→x ) is the outward normal

to the surface of the lattice cell at −→x , and f (n̂) is given by

f (n̂) =
(
f(i), f(j), f(k)

)
| f(i), f(j), f(k) =


−1 if i, j, k 6= 0

1 otherwise
(4.8)

where i, j, and k are the components of n̂ in the cardinal Cartesian directions. Equa-

tion 4.8 essentially changes the sign of any component of −→x that is parallel to n̂. For

example, if the neutron left the world at −→x = (5, 1,−2) through a surface normal to

n̂ = (1, 0, 0), then Equation 4.8 states that

−→x = (−1, 1, 1) · (5, 1,−2) = (−5, 1,−2) (4.9)

This assumes that the world is symmetric about the origin; otherwise, Equation 4.7

would need to be more complex.

The boundary condition is implemented using the BoundaryStepLimiter process.

For any neutron leaving the world volume, the BoundaryStepLimiter proposes the

minimum step size possible ( 10−32mm). When it acts on a neutron, it produces a

secondary neutron on the opposite side of the world volume that is an exact copy

of the original neutron, and then the original is killed. It is necessary to produce a

secondary neutron because “teleporting” the original neutron across the world volume

would cause errors in the tracking algorithms.
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4.2.5 Parallel Implementation

The implementation of parallel processing in the NStable code uses TOP-C and Mar-

shalgen as described in Section B.2. The conversion of the NStable code to a parallel

version required two steps. First, a new run manager (ParNSRunManager) was

created to incorporate communication between the master and the slaves. Second,

Marshalgen was used to create marshallable versions of the NeutronData, NSEvent-

Data and NSPrimaryData container classes, which are used to transfer data between

the master and the slaves. A new driver file, NStable.icc, was also created to initialize

and finalize TOP-C. It takes three steps

1. Initialize TOP-C

2. Call the main function from NStable.cc

3. Finalize TOP-C

The new driver file also overwrites every instance of NSRunManager with ParNSRun-

Manager. Note that these overwrites take place after the ParNSRunManager class

has been declared because ParNSRunManager inherits from NSRunManager.

4.2.5.1 Parallel Run Manager

All parallel processes in TOP-C have three main functions centred around generating,

performing and checking the results of tasks (see Section B.2). The implementation

of these three functions in the NStable code is described below

Generate Task Input → GenerateEventInput()

The master generates an NSPrimaryData object with a random seed, an

event designation (integer number), and a vector of primary neutrons. The
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primary data also includes any incremental changes in material or geomet-

ric properties of the simulation world. Then the NSPrimaryData object is

marshalled and sent to a slave. The random seed is generated by the master

so that the event will always achieve the same result regardless of the slave

it is processed on.

Do Task → DoEvent()

The slave unmarshals the NSPrimaryData object and sets all primary data

for the event. This includes the primary neutrons and the random number

generator seed, as well as any changes to the simulation world. The event

is then processed, and the resulting NSEventData object is marshalled and

sent back to the master.

Check Task Result → CheckEventResult()

The master unmarshals the NSEventData object and passes it to the run

action for processing.

In this implementation, the master controls every aspect of the simulation, includ-

ing the random number generator and simulation world of the slaves. This centralized

command is advantageous because the master always knows what state the slaves are

in, and the slaves are only responsible for processing single events. For this reason,

the slaves do not have a run action, nor do they perform any renormalization of the

neutron population. All of the data necessary to process the events, other than the

base simulation world and the physics list, is provided by the master. Note that all

of the slaves are initialized with the same input file as the master.
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4.2.6 Simulation Parameters and Options

The NStable code uses a variety of parameters and options that are set by the user in

the input file (see Appendix F.1.2 for an example input file). The input file arguments

fall into three categories: required parameters that must be defined in every simula-

tion, world specific parameters that revert to default values if not explicitly specified,

and simulation options that enhance the user’s control over the simulation. Addition-

ally, a few arguments are set in the Linux environment variables; these arguments

pertain either to the Geant4 source code or the makefiles.

The ParseInput class is responsible for parsing the input file at the start of the

main function before any of the Geant4 classes are instantiated (e.g. the run manager,

the simulation world, etc). It also acts as a container class by storing all of the input

arguments. Rather than passing several arguments to each Geant4 class instantiated

in NStable.cc, the classes are given a pointer to the ParseInput object. This allows

each class to use any of the input arguments without having to specify which ones it

needs in NStable.cc. A list of the available input parameters is given in Appendix E.

4.3 Geant4 Source Code Modifications

Generally, modifications of the Geant4 source code should be avoided if at all possi-

ble; any modifications damage the interoperability of the code on different computers.

However, two instances were found during this project where a source code modifica-

tion was the only reasonable solution. In the first case, a parameter was hard coded

into the Geant4 source code that reduced the accuracy of every simulation. In the

second case, the source code contained a bug that caused the code to crash. For
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NStable to function properly, these source code modifications must be made to each

Geant4 installation that will be used to run the NStable code.

4.3.1 Arbitrary Data Thinning

When data is stored in a G4NeutronHPVector object, the data is thinned using

Algorithm 4.3. The algorithm tests whether the interpolation between two points

(x1, y1) and (x2, y2) is accurate enough to ignore any intervening points xk ∈ (x1, x2).

The accuracy of the interpolation must be with a precision limit p, which is set to

2% [12]. This is large enough that the data thinning causes noticeable differences

in the results of simple simulations (see the example below). If it were possible to

change the data thinning precision, a source code modification would be unnecessary,

but there is currently no way of doing this. The source code contains a note stating

that the optimization of the precision limit is ongoing, but no changes have been

made in the latest revision of the code (version 4.9.5.p01) [13].

The effect of the thinning algorithm was tested using a simple Monte Carlo sim-

ulation in Geant4 and MCNP5. A beam of thermal neutrons was shot at a small

cube of uranium-235 that measured 1 cm on each side, and the kinetic energy of any

secondary neutrons leaving the cube was recorded. Thus, the energy spectrum of the

secondary neutrons could be recreated for any given data library in either MCNP or

Geant4. The MCNP results were used as the benchmark, and they were produced

using the MCNP endf66 library (ENDF/B-VI cross sections at 293.6 K). These re-

sults were compared to Geant4 results produced from the G4NDL 3.14 and 4.0 data

libraries with the thinning algorithm either enabled or disabled (commented out in

the source code). This comparison is shown in Figure 4.4.
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Algorithm 4.3: Data thinning in the G4NeutronHPVector class
Input: Vector of data of length N (data), last data point j saved to thinned

buffer, precision p

Output: Thinned vector of data

for i < N do
(x1, y1) = data(j)
(x2, y2) = data(i)
/* Check all points between j and i */

for k ∈ (j, i) do
(xk, yk) = data(k) // Current data point

y = interp(x1, x2, y1, y2, xk) // Interpolate at xk

if |y − yk| > |p× y| then
Save data(k) to buffer
j = k // Set last saved point

end
end
i++ // Move to next point in vector

end
data = buffer // Overwrite data with buffer

With the data thinned to a precision of 2% using Algorithm 4.3, the energy spec-

trum of the secondary neutrons deviated significantly from the MCNP spectrum re-

gardless of the version of the G4NDL library. Disabling the thinning algorithm did not

change the results when using version 3.14 of the G4NDL library, which implies that

this version of library has already been pre-thinned to a precision of 2%. Conversely,

disabling the thinning caused the G4NDL 4.0 results to match the MCNP spectrum.

Therefore, the G4NDL 4.0 data library will provide more accurate results than the

version 3.14, assuming that the data thinning is disabled in the G4NeutronHPVector

class.
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Figure 4.4: The effects of data thinning on the energy spectrum of secondary neutrons
from neutron-U235 interactions using the G4NDL 3.14 (top) and 4.0 (bottom) data
libraries as compared to MCNP.
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4.3.2 Bug in Energy-Angular Definition

The following code from the Sample() function of G4NeutronHPContAngularPar class

causes a runtime error [12].

Listing 4.1. Source code from G4NeutronHPContAngularPar::Sample()

474 for(i=0; i<nAngularParameters; i++)

475 {

476 theBuff1.SetX(i, theAngular[it−1].GetValue(i));

477 theBuff1.SetY(i, theAngular[it−1].GetValue(i+1));

478 theBuff2.SetX(i, theAngular[it].GetValue(i));

479 theBuff2.SetY(i, theAngular[it].GetValue(i+1));

480 i++;

481 }

The first problem is that i increments by two for every iteration of the loop.

Therefore, the SetX() and SetY() functions try to set elements [0, 2, 4, ...] of the

buffer objects (theBuff1 and theBuff2 ). This causes a runtime error since elements

are skipped in these buffers. Additionally, the angular data, theAngular, has the

following format

theAngular = {Peng, cos1 θ, P1, cos2 θ, P2, ...}

where Peng is the probability of the outgoing neutron energy (which is stored else-

where), cosi θ is the ith outgoing angle, and Pi is the probability of the ith outgoing

angle [12]. Therefore, the GetV alue() function should start at 1, not 0.
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Fixing this bug is relatively simple, and the solution used in this project is shown

in Listing 4.2.

Listing 4.2. Fixed source code from G4NeutronHPContAngularPar::Sample()

474 for(i=0, j=1; i<nAngularParameters; i++, j+=2)

475 {

476 theBuff1.SetX(i, theAngular[it−1].GetValue(j));

477 theBuff1.SetY(i, theAngular[it−1].GetValue(j+1));

478 theBuff2.SetX(i, theAngular[it].GetValue(j));

479 theBuff2.SetY(i, theAngular[it].GetValue(j+1));

480 }

In the fixed code, a separate index j is used to get the cosθ data from theAngular.

Again, this bug is present in the latest version of Geant4 [13].

4.4 Data Library Conversion

The default-low energy neutron libraries in Geant4, the G4NDL libraries, are given at

zero kelvin, which means that any realistic simulation will require significant Doppler

broadening. In addition, the data libraries from different simulation codes, such as

Geant4 and MCNP, will differ in some cases even if they are both based on the same

initial data. The MCNP data libraries, in particular, are based on standard ENDF/B

values, but they have been modified to correct deficiencies in the original data [4].

Compounding these issues is the pre-thinning used in the G4NDL v.3.14 libraries,

which were the latest version of G4NDL available when this project began.
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For these reasons, the MCNP data libraries were converted into the G4NDL format

so that the MCNP data could be used in the NStable code. A Python script was

created to read the data for a single isotope from the MCNP endf libraries, then

parse the MCNP format, and finally create the necessary files in the G4NDL format.

As noted in Section 2.3.1, the G4NDL data libraries do not have a format manual,

so the format was reverse engineered using the Geant4 source code [12].
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Chapter 5

NStable Code Verification and

Validation

In code development, two processes are used to ensure that a code is functioning prop-

erly: verification and validation. Verification is performed to ascertain whether the

code is functioning as expected and fulfils the design requirements, whereas validation

is performed to ensure that the code is producing accurate results [27]. In general,

the verification process occurs throughout the code development cycle, and after the

code is “complete”, it is validated against reputable sources, such as experimental

results or other validated codes. In code-to-code comparisons, validation is assumed

to be transitive, so that a newly developed simulation code may be validated through

its agreement with trusted benchmark codes.

The NStable code was validated against the three neutron transport codes listed

in Section 3.1: MCNP5, TART 2005, and DRAGON 3.06J. All of these codes have

been validated using code-to-code comparisons, benchmarks, and experimental re-

sults [28, 29, 30]. The comparisons shown below covered a range of applications
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including criticality calculations and neutron source distributions for finite and infi-

nite geometries. Not every validation code was applied to each comparison problem;

in general, the codes were applied to the problems that highlighted their strengths

(e.g. DRAGON was only used for near-critical lattice cell calculations).

5.1 Data Libraries

Table 5.1 lists the nuclear data libraries used for each simulation code in the validation

study. For DRAGON and TART, the default data libraries were used. In DRAGON,

this is the 69 group IAEA library which uses the WIMS-D4 format. This library

was created as part of the WIMS Library Upgrade Project (WLUP), and is based on

ENDF/B-VII cross sections. Conversely, TART 2005 uses an ENDF/B-VI continuous

energy library that was evaluated at 0 K (TART also includes multi-band and multi-

group libraries) [24]. To match TART, the endf66 library was chosen for MCNP5,

which is also an ENDF/B-VI data library, but it was processed at room temperature

(293.6 K). For the NStable code, the default ENDF/B-VII library, G4NDL4.0, was

used for comparisons involving DRAGON; otherwise, NStable used the C6-ENDF6

library, which was derived from the MCNP endf66 library using the python script

described in Section 4.4.
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Table 5.1: List of data libraries used for each code

Software Data Library ENDF/B
Version

Evaluation
Temperature

(K)

NStable G4NDL4.0
C6-ENDF6

7
6

0.0
293.6

MCNP5 endf66 6 293.6
DRAGON 3.06J IAEA WIMS-D4 7 Multiple
TART 2005 Continuous

Energy
6 0.0

5.2 Simulation Worlds

The NStable code was validated using four main simulation worlds: a pure U235

sphere, a homogeneous UHW sphere, a homogeneous NU lattice cell, and a standard

fresh-fuel CANDU 6 lattice cell [18]. In each of these models, one parameter was

varied to achieve different levels of criticality. The simulation worlds, and their major

features, are outlined in Table 5.2.

All of the simulations were initialized from an angularly isotropic point source of

neutrons at the centre of the simulation world, where the energy of the neutrons was

based on a Gaussian distribution centred at some arbitrary value. The median energy

of these point sources depended on the chosen world configuration. For the lattice

cells and the UHW sphere, the energy of the initial neutrons is not important because

the world contains moderating elements and/or has periodic boundary conditions.

Therefore, the initial neutrons are unlikely to escape the simulation world without

being absorbed, so the initial mean kinetic energy was set at 1.0 MeV. However, for the

subcritical U235 spheres, fast neutrons easily escaped the sphere without interacting.
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Table 5.2: Simulation worlds used in validation cases

Spheres U235 UHW

Material U235 (100%) U235 (0.077%)
U238 (10.653%)
D2O (89.270%)

Radius (cm) Variable Variable
Density (g/cm3) 18.75 3.0143
Temperature (K) 293.6 293.6
Infinite Lattice CANDU6 Lattice Cell

Material Fresh fuel (See reference [18])
Pitch (cm) 28.575 (Variable)
Density (g/cm3) 10.554

0.8074
1.0888

(Fuel)
(Coolant)
(Moderator)

Temperature (K) 859.99
561.29
336.16

(Fuel)
(Coolant)
(Moderator)

In these spheres, only the slow neutrons (approximately 10 eV and lower) were present

long enough to undergo fission. Therefore, it was advantageous to set the mean initial

energy of the neutrons in this range (0-10 eV). While the source may take longer to

converge in time (simulation time1), the first runs did not experience overwhelming

population depletion through escape.

5.3 Simulation Errors

The error reported by nuclear simulation codes is generally only the statistical error

associated with the simulation. This is the easiest error term to control because it
1Simulation time refers to the time tracked by NStable in the simulation world, whereas compu-

tation time is the real world time required to run the simulation.

114



M.A.Sc. Thesis - Liam Russell McMaster - Engineering Physics

can be minimized by increasing the number of simulations. For an average value, x̄,

δx = σ√
N

(5.1)

where δx is the statistical error of x̄, σ is the standard deviation of x̄, andN is the total

number of x values used in the average. Therefore, increasing the number of discrete

samples of x decreases the statistical error inherent in the average x̄. However, nuclear

simulations also contain errors due to the simulation methods and the discrepancies

in the nuclear data. All of the validation codes simulate neutron transport differently

than NStable, although in some cases such as TART 2005, these differences are minor.

Moreover, the method of calculating the fundamental properties of a system, such as

keff , can also differ (dynamic criticality versus the k-eigenvalue method). In addition,

all of the codes use different data libraries, so discrepancies exist between the basic

nuclear data that is being sampled in each code. All of these differences will contribute

some finite error to any comparisons. Therefore, the statistical error is not expected to

account for all of the discrepancies in the criticality or the neutron spatial distributions

between the validation codes and NStable, especially since the statistical error can

be minimized. To account for these non-statisical errors, an arbitrary limit of 10 mk

(0.01) was set for the criticality comparisons; if the criticality estimates from two

codes were within 10 mk, these estimates were assumed to agree. This variance of 10

mk is supported by the range of criticality estimates for a CANDU lattice cell using

fresh fuel seen in Table 5.6 (see Section 5.7.2, the estimates have a range of 6 mk).
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5.4 General NStable Results

Figures 5.1 to 5.3 show the general results of NStable simulations of U235 spheres

with respect to time. The two major calculated results, the keff and Shannon entropy

estimates, are shown over the entire simulation, where each data point represents the

result of a single run. Each simulation was initialized from a point source at the

centre of the simulation world, so the neutron source distribution must converge in

space and energy to the fundamental distributions implied by the world definition.

This convergence is exhibited in the first Nsc runs, where both the Shannon entropy

and keff values are changing with respect to time (Nsc is time to convergence of the

source in runs). After this initial convergence period, both calculated results stabilize,

and are distributed around a constant average value.

The results shown in Figures 5.1 to 5.3 were derived by varying the radii of the

U235 spheres. Since the subcritical U235 spheres are dominated by a slower neutron

population (lower energy), the source distribution takes longer to converge (in sim-

ulation time); this behaviour for subcritical unmoderated systems is also shown by

Dr. Cullen in “Static and Dynamic Criticality: Are They Different” [10]. For the

sake of efficiency, the run duration should be longer for these subcritical spheres to

give the population time to evolve over each run. A short run duration would also

be acceptable, although the slower neutrons may not have enough time to undergo

any non-scattering interactions. Thus, the statistical accuracy of a short run would

be limited for the U235 spheres (e.g. not enough neutron production and loss to

properly calculate any physical quantities).
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Figure 5.1: Shannon entropy (top) and keff (bottom) of subcritical U235 spheres.
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Figure 5.2: Shannon entropy (top) and keff (bottom) of near-critical U235 spheres.
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Figure 5.3: Shannon entropy (top) and keff (bottom) of supercritical U235 spheres.
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5.5 Neutron Spatial and Energy Distributions

To accurately calculate the criticality of a system, the NStable code must be able to

produce the proper spatial and energy distributions of neutrons. Starting from an

arbitrary initial distribution, such as an angularly-isotropic point source, the neutron

population in NStable must evolve to the appropriate stable neutron spatial distribu-

tion, which depends on the geometry and material composition of the system. First,

the NStable code must allow the neutron population to converge to the fundamental

spatial and energy distributions, and then it must maintain these distributions in

time. Moreover, for accurate criticality calculations, these distributions must match

the distributions predicted by other simulation codes.

5.5.1 Source Convergence

Figures 5.1 to 5.3 show that each simulation has an initial period where the Shannon

entropy is converging to a stable value. This convergence results from the conver-

gence of the neutron spatial distribution and energy spectrum. Since the simulations

started from an angularly-isotropic point source of neutrons with an arbitrary Gaus-

sian distribution of energies, neither the initial energy or spatial distributions were

close to the fundamental distributions. Therefore, the population had to evolve over

time, and stabilize in both space and energy. The stabilization of a population of one

million neutrons is shown in Figure 5.4. The spatial distribution and energy spectrum

are shown at six different times since the start of the simulation (simulation time).

Up to 50 µs, the neutron source distribution2 is converging, but by 125 µs, the source
2The term neutron source distribution refers to the survivors of a run that are saved by NStable

and used to initialize the next run. Therefore, the spatial and energy distribution of these neutrons
at the end of the current run can be derived from this source distribution.
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distribution has mostly converged. By 250 µs , the spatial and energy distributions

are stable in time, with some variation due to the stochasticity of the simualtion.

For simplicity, the delayed neutrons were created instantaneously (at the time of the

fission).

5.5.2 Spatial Distribution Comparison

To verify the ability of NStable to reproduce the fundamental neutron spatial dis-

tribution, the stable neutron source distribution for a CANDU 6 lattice cell was

compared using NStable and DRAGON. This is a useful geometry for this compar-

ison because the CANDU 6 lattice cell is heterogeneous, and therefore, has a more

complex spatial distribution. However, DRAGON does not calculate the neutron

spatial distribution, or neutron density, directly. Instead, it calculates the neutron

flux for each homogeneous region of the spatial discretization and each energy group

of the energy discretization (see Section 2.4.1)3. The neutron flux (φ) is related to

the neutron density (n) by the equation

φ = vn (5.2)

where v is the velocity of the neutrons, and therefore, varies for each neutron [1].

Since the kinetic energy of the neutrons is discretized in DRAGON, the velocity may

be similarly discretized so that the average velocity of an energy group is given by

v̄g =
√
Eg
max + Eg

min

mn

(5.3)

3Flux mapping could be implemented in NStable, but unlike DRAGON it is not required. Build-
ing a flux map would require the simulation world to be subdivided many times, which would slow
down the simulation.
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where v̄g is the average neutron velocity of group g, Eg
max and Eg

min are the limits

of the energy range spanned by the group, and mn is the mass of a neutron. Using

Equations 5.2 and 5.3, the neutron flux calculated by DRAGON can be converted to

a neutron density using

ni =
Ng∑
g=1

φig
v̄g

(5.4)

where Ng is the total number of groups in the energy discretization, and i denotes a

single homogeneous region in the spatial discretization.

The spatial distribution comparison was performed using the centreline neutron

number density in NStable and DRAGON. For this comparison, the centreline re-

gion was defined as a 2 cm thick region (slab) in the X-Z plane (the slab was 2 cm

thick along the Y-axis, and spanned the lattice cell along the X and Z-axes, See Ap-

pendix F.3 for the DRAGON input file). This slab passes through the first and third

rings of fuel, but misses the second ring because it is offset by 0.262 radians. With

the region of interest defined, the neutrons in this slab could be extracted from an

NStable source distribution (snapshot in time), and discretized in the x-direction to

match the volumes defined in DRAGON (see Appendix F.3). Since the magnitude of

the neutron density is arbitrary for these simulations - in an actual reactor, the mag-

nitude of the density or flux controls the power output of the reactor - the neutron

density from one of the codes needed to be scaled. Using a least-squares algorithm,

the DRAGON neutron densities were all scaled by a constant factor a such that

n′dragon = a ndragon (5.5)

where n′dragon is the scaled DRAGON neutron densities. The results of this comparison
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are shown in Figure 5.5 with units of neutrons/cm2 because the DRAGON simulation

was two dimensional. The hatched regions in the figure denote the four fuel rings

(including the centre pin), the pressure tube and the calandria tube respectively

(from left to right). Again, the delayed neutrons were created instantaneously.

Multiple source distributions from different times were combined to reduce the

stochastic variation of the NStable results (250, 300 and 350 µs). Since all of these

snapshots were recorded after the neutron source distribution had converged, they

all represent a sampling of the fundamental spatial and energy distribution of the

system. For the most part, the comparison is within the stochastic error predicted

by the NStable results (the error in the flux predicted by DRAGON was insignifi-

cant and is not shown in the figure; the maximum error in the flux was only 0.1%).

These discrepancies could be minimized by either using more primary neutrons in

the simulations, or by combining more snapshots from different times. Additionally,

some discrepancies are expected due to the simplifications used to solve the transport

equation in DRAGON, and differences in the nuclear data libraries.
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5.6 Verification of Unbiased Renormalization

The unbiased renormalization of the neutron population is fundamental to the NSta-

ble code. If the renormalization process were biased, then this entire method of

population stabilization would be flawed and invalid. The renormalization process

used in the NStable code is well known; however, given the importance of this aspect

of the code, the accuracy of the renormalization process needed to be shown in terms

of preservation of the neutron spatial and energy distributions.

To compare the effect of renormalizing the neutron population, three U235 spheres

(one subcritical, one near-critical and one supercritical) were simulated over the ini-

tial period of source convergence both with and without renormalization. All of the

simulations started from an angularly isotropic point source of neutrons at the centre

of the spheres with an average energy of 1 MeV. Given that the neutron population

changes quickly without renormalization when keff 6= 1, these simulations were per-

formed over 50 or fewer runs with spheres that were at most 30 mk from critical.

Since the simulations were extremely short, delayed neutrons were not included. The

details of the three pairs of simulations are summarized in Table 5.3.

Table 5.3: Renormalization Simulations

Subcritical Near-Critical Supercritical

Radius (cm) 8.2 8.5 8.7
Runs 30 50 30
keff 0.973 1.008 1.030
Initial Population 2.0e+6 1.0e+5 1.0e+4
Final Population 3.8e+4 1.7e+6 1.0e+6
Initial Pop. (renorm) 2.0e+5 1.0e+5 2.0e+5
Final Pop. (renorm) 1.7e+5 1.1e+5 2.3e+5
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Each pair of simulations was identical except for the number of initial particles

and whether or not renormalization was used. Therefore, the spatial and energy

distributions at the end of each simulation should be identical to its pair, within

error. Figures 5.6 to 5.8 show the comparison of the one-dimensional spatial (radial)

and energy distributions for each pair, where the final neutron population of each

renormalized simulation was scaled to match the final number of neutrons in the

complementary simulation without renormalization. The spatial distributions are

shown in terms of linear and volumetric radial neutron densities, where the volumetric

radial density is calculated as neutrons per cm3 along the radius of the sphere.

In every case, the agreement between each pair of simulations breaks down for bins

with relatively few neutrons. For example, the volumetric spatial distribution shows

worse agreement near 0 cm because the volume of this region is relatively small, and

thus contains few neutrons. Therefore, any discrepancies are magnified. Likewise, the

ends of the energy spectrum show worse agreement because of the relatively low num-

ber of neutrons at these energies. These differences are quantified in Figure 5.9, which

shows the discrepancies between the renormalized and not renormalized populations

that cannot be accounted for by the statistical error. For the spatial distribution,

the difference peaks at 2.5% when the sphere radius is under 10 mm. In the energy

spectrum, the percent difference exceeds 10% for the low energy neutrons in the 8.5

and 8.7 cm spheres. However, the total number of low energy neutrons in each bin is

at least three orders of magnitude less than that of the most populous bins. There-

fore, the discrepancies are the result of the small sample size; a discrepancy of tens

of neutrons is not very significant in a population of millions. These errors could be

reduced by increasing the number of neutrons simulated, or by more closely matching
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Figure 5.6: Comparison of spatial and energy distributions for a renormalized and
not renormalizaed neutron population in a subcritical 8.2 cm U235 sphere.
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Figure 5.7: Comparison of spatial and energy distributions for a renormalized and
not renormalizaed neutron population in a near-critical 8.5 cm U235 sphere.
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Figure 5.8: Comparison of spatial and energy distributions for a renormalized and
not renormalizaed neutron population in a supercritical 8.7 cm U235 sphere.
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the final neutron populations of each pair of simulations so that less scaling is nec-

essary in the analysis. Thus, the renormalization process is unbiased and does not

affect the spatial or energy distributions of the neutron population.

5.7 Criticality Calculations

Since criticality depends both on the composition of the simulation world and the

neutron source distribution, it is a useful quantity to compare for code validation. Any

discrepancies in the simulation of the neutron population should affect the criticality

estimate, keff . Thus, the NStable code was compared to all three validation codes in

terms of the criticality of various simulation worlds.

5.7.1 Finite Geometries

In the finite geometries, the U235 and UHW spheres, the criticality estimates of NSta-

ble were compared to the validation codes for spheres of varying radii. The main

comparison code was TART 2005 because it can accurately simulate sub- and super-

critical systems [10]. The NStable results were also compared to MCNP, where the

MCNP results were produced using k-eigenvalue calculations. Results were produced

using MCNP for every simulation, but they were most applicable for the near-critical

systems. In all of the finite geometry simulations, ENDF/B-VI data was used for the

best comparison with TART 2005. Additionally, delayed neutrons were not simulated.

The average criticality estimates for each sphere are shown in Figures 5.10 and 5.11.

The averages in TART 2005 and NStable were calculated using the last 25% of the

runs, while the average MCNP keff estimates were calculated over the last 225 runs.
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Table 5.4: Finite Geometry Criticality Simulations

U235 Spheres NStable TART MCNP

Initial Population 1e+5 2.5e+4 5e+3
Runs 250 - 4000 1000 - 4600 250
Run Duration (ns) 8 - 75 6 - 250 N/A
UHW Spheres NStable TART MCNP

Initial Population 1e+5 2.5e+4 5e+3
Runs 350 200 - 280 250
Run Duration (µs) 100 300 N/A

Additionally, the error bars represent the statistical error in the average keff estimates

for each code. In the case of MCNP and TART, variance reduction techniques are

built into these averages; each calculated keff value in MCNP is itself an average of

three different keff estimators [4]. For all three simulations, the statistical error was

less than 1 mk for every keff estimate.

These comparisons show excellent agreement between TART and NStable at every

point; the error is consistently less than 10 mk in absolute value. As expected, the

MCNP results do not show agreement except in the near-critical region. Outside

of this region, MCNP underestimates the criticality of the spheres. Additionally,

the criticality of the UHW spheres appears to be approaching an asymptote in the

supercritical region. Since the largest UHW sphere is almost 2.8 metres in diameter,

the escape probability of a neutron in the sphere is low, so the criticality estimates

are approaching that of an infinite lattice (kinf ).
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Figure 5.10: Criticality estimates for U235 spheres of varying radii using NStable,
TART and MCNP (top). The same estimates are also shown for the near-critical
region only (bottom).
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Figure 5.11: Criticality estimates for UHW spheres of varying radii using NStable,
TART and MCNP (top). The same estimates are also shown for the near-critical
region only (bottom).
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5.7.2 Infinite Geometries

Similar comparisons were carried out for infinite geometries, namely infinite lat-

tices of the CANDU 6 lattice cell simulated at various lattice pitches using NStable

and DRAGON. For these simulations, the delayed neutrons were produced instanta-

neously (i.e. ν = νtotal). The specific simulation parameters are given in Table 5.5.

Table 5.5: Infinite Geometry Criticality Simulations

CANDU 6 Lattice
Cell

NStable DRAGON

Initial Population 1e+5 N/A
Runs 150 N/A
Run Duration (µs) 100 N/A

Figure 5.12 shows the criticality estimate comparisons for the infinite geometries.

Both show reasonable agreement with the comparison code, where the error is less

than 10 mk in all cases. Agreement in the CANDU 6 lattice cell shows that NSta-

ble can handle heterogeneous systems. While there is some discrepancy between

the NStable code and DRAGON, the NStable estimate at the standard lattice pitch

(28.575 cm) lies between the DRAGON estimate and those made by other codes.

Table 5.6 shows the results of two codes from the SCALE package, along with the

DRAGON and NStable estimates [22]. All of the estimates are within 6 mk.
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Figure 5.12: Comparison of criticality estimates for a CANDU 6 lattice cell with
varied lattice pitches.

Table 5.6: Comparison of criticality estimates for a CANDU 6 lattice cell

Simulation Code keff Notes

NStable 1.127 Monte-Carlo, continuous energy
DRAGON 1.124 Deterministic, 69 energy groups
SCALE/NEWT 1.129 Deterministic, 238 energy groups
SCALE/KENO-VI 1.130 Monte-Carlo, continuous energy
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5.8 Transient Simulations

To show the ability of the NStable code to model transient behaviour, a simple tran-

sient simulation was performed by varying the temperature of the 87.5 cm radius

UHW sphere with respect to time. The temperature was increased linearly from

293.6 K to 1000 K over a period of 50 ms. To ensure that the source convergence did

not add additional effects to the simulated transient, the neutron distribution had to

be stable before the transient could begin. To ensure this precondition is met, the run

manager in NStable waits until the Shannon entropy of the neutron source distribu-

tion has converged before beginning any material or geometry transients. Once the

source distribution converged, the transient was initiated by incrementally changing

the temperature of the homogeneous UHW material (see Section 4.2.3.1). The spe-

cific parameters used in the transient simulation are given in Table 5.7. Since this is

only supposed to show the ability of the NStable code to model such transients, the

transient is not based on any real experiments and delayed neutrons were not included.

Table 5.7: Transient simulation parameters

Simulation Parameter Value

Material UHW
Radius (cm) 87.5
Run Duration (µs) 100
Initial Temperature (K) 293.6
Final Temperature (K) 1000.0
Time at Initial Temperature (ms) 10
Interval of Change (ms) 50
Time at Final Temperature (ms) 20

The resultant transient is shown in Figure 5.13. Initially, keff is changing due to
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the convergence of the source distribution; this occurs before the transient begins.

Once the Shannon entropy has converged, the temperature is held at 293.6 K for

10 ms, producing the initial plateau. Then as the temperature increases, keff value

decreases, before reaching a second plateau after the temperature variation ends. For

this simulation, there should be some lag between the temperature variation and

the keff estimate. However, given that the runs were 100 µs long, this is sufficient

time for the neutron population to react to small changes (i.e. to be upscattered by

the warmer environment). With a shorter run duration, some the simulation should

exhibit some lag.
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5.9 Parallelization Gain

Event-level parallelism uses a master-slave architecture to speed up the computation

of the events. The time taken by the slaves to process NE events can be reduced by

adding more slaves, assuming the number of events exceeds the number of slaves. If

the slaves exceed the number of events, then the excess slaves will not have any events

to process, and they will be idle. However, some actions must always be taken by the

master. In NStable, the master is not only responsible for coordinating the slaves,

but it also calculates all run-level results (e.g. keff , Shannon entropy). Thus, each

run has two components, the event processing by the slaves, which takes TE seconds,

and the run processing by the master, which takes TM seconds. Since the events are

completely independent, the total time taken for a run can be given by

Trun = TE
Ns

+ TM (5.6)

where Trun is the total time taken by a run, TE is the time to process all NE events,

TM is the time taken by the master to set up and analyse the run, and Ns is the

number of slaves available. Note that Equation 5.6 is simplified because it does not

account for the additional time needed to coordinate more slaves.

Since the master needs time to analyse a run and set up the next one, event-

level parallelism does not have a perfect one-to-one gain (speedup) for the number of

processors used. Thus, it is important to measure the efficiency of the parallelization

of the code. The gain for a parallel process is defined as

G = Trun(1)
Trun(Ns)

= 1
1−α
Ns

+ α
(5.7)
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where α is the non-parallelizable part of the code, α = TM/Trun, and (TM + TE) /Trun =

α+(1−α). Equation 5.7 is known as Amdahl’s Law, which also predicts a maximum

gain [31]

Gmax = 1
α

(5.8)

The parallel processing gain for the NStable code was determined by simulating

a CANDU 6 lattice cell over 100 runs with different numbers of slaves. Each simu-

lation was performed using two events per slave and approximately 100,000 primary

neutrons (±20). The average times to simulate a run are shown in Figure 5.14, along

with the initialization time of each simulation.

The initialization time of the simulation is the time needed to load the NStable

program and the nuclear data before any calculations can begin. Unsurprisingly,

the initialization time of the simulation increases as the number slaves increase, but

only by approximately 25 seconds for 30 slaves (relative to the minimum initial-

ization time). More importantly, the simulated gain matches closely with the fit

using Amdahl’s law. From the fit, α is 0.348% for this problem, which implies that

the overwhelming majority of NStable is parallelizable for a representative problem.

Note that the simulated gain could be increased by increasing the computation time

of each event (e.g. by increasing the number or primary neutrons), so the actual gain

achieved is problem specific. Likewise, the simulated gain at thirty processors was

27.4, showing only a small loss from the ideal one-to-one gain. Additionally, Amdahl’s

law predicts a maximum gain of 284 (with infinite slaves), so the NStable code can

run more efficiently on more than 30 processors.
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Chapter 6

Conclusions

Most current dynamic nuclear simulation codes rely on simplifications or quasistatic

approximations to model transient behaviour. One common approach, the point ki-

netics approximation, assumes that the flux shape of the system is constant, and

approximates changes in the flux amplitude (neutron population) as a time depen-

dent gain that multiplies the constant flux shape. This is a valuable technique, but it

breaks down when the spatial distribution of the neutrons is time-dependent. Other

approaches solve for static system parameters, such as the neutron flux and keff , and

then move the simulation world forward in time using isotopic evolution calculations,

such as the Bateman equations, before solving for the reactor parameters at the next

time step. This coupled quasistatic approach is most often used to calculate the bur-

nup of reactor fuel over months or years. However, it does not capture the short-lived

transient behaviour often seen in reactor accidents because the reactor parameters

are always calculated statically. Therefore, this project sought to develop a stochas-

tic Monte Carlo code capable of modelling the evolution of a neutron population on

small time scales (less than ten seconds).
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The objective of this thesis was to create a reactor simulation code capable of fol-

lowing a neutron population in time and space, while also allowing for time-dependent

changes in the simulation world. Such a code could be used to calculate important

reactor quantities, such as keff , and also to simulate the reactor transients seen in

accident scenarios. The Geant4 simulation toolkit was chosen as the base for this

project because of its flexible, adaptable and open-source architecture. While it is

not inherently designed to perform reactor simulations (i.e. simulations of a neutron

population over time periods on the order of seconds), it is designed to be extended

by the user without having to modify the base source code. Geant4 provides basic

physics models, geometric descriptions and tracking algorithms, which the user builds

from to create a full simulation code. Most other particle physics codes are not as

open, and restrict the user to a set of applications defined by the code developers

(unless the user is willing to modify the source code). Therefore, Geant4 proved to

be a valuable tool for this project.

The resulting code, NStable, was built from the Geant4 toolkit and satisfies the

project objectives. The NStable code builds on the Monte Carlo knowledge that

has been gained over the past forty years, especially from established codes such

as MCNP or TART. However, the flexibility of Geant4 allows NStable to pick the

best attributes of these codes, as well as add additional functionality like dynamic

materials. In particular, the NStable code can follow a neutron population in time

for any given timespan, assuming the user is willing to run the simulation for the

necessary length of time. This is accomplished by periodically renormalizing the

neutron population without bias. This renormalization keeps the population at a

manageable size regardless of the sub- or supercriticality of the simulation world.
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During these breaks in the simulation, when the neutron population is renormalized,

the material or geometric composition of the simulation world may also be changed.

The incremental change in these properties allows the NStable code to approximate

the continuous change in the simulation world that is seen in reactor transients.

NStable is able to calculate a variety of system characteristics from the evolution

of the neutron population. Foremost among these characteristics are the Shannon

entropy, which can be used to determine the stability of the neutron spatial distribu-

tion, and the reactor multiplication constant, keff , which is a measure of the stability

of the neutron population with respect to time. In particular, keff is very important

because it relates directly to the controllability of the simulated system; if keff > 1,

then the neutron population is growing exponentially, as is the power that it is pro-

ducing through fission. This state, if left unchecked, can cause an accident, such as

melting of the reactor fuel. The NStable code is also able to calculate other charac-

teristics such as the average neutron lifetime in the system, and the total production

and loss of neutrons per run.

The NStable code also features a series of optional input arguments designed

to extend the applicability of the code. These features include periodic boundary

conditions, which can be used to simulate an infinite lattice of fundamental cells,

instantaneous delayed neutrons, where the delayed neutrons are born at the same

time as the prompt neutrons but are still created using the delayed neutron energy

and angular distributions, and unnormalized simulations, which can be used to check

the renormalization bias (which should not exist). Additionally, the NStable code

currently features three different simulation geometries: a simple homogeneous sphere

of varying materials, a homogeneous lattice cell that is the infinite analogue of the
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sphere, and a CANDU 6 lattice cell (fresh fuel). Moreover, these simulation worlds

are built using a standardized world constructor (NSWorldConstructor) that can be

used as a template to add any desired simulation world to the NStable code.

6.1 NStable Verification and Validation

The accuracy of the NStable code was evaluated against three established, industry

standard codes: MCNP5, DRAGON 3.06J and TART 2005. Each of these codes has

a particular area of applicability, and was compared to NStable for simulations that

best highlighted strengths of each code. MCNP5 is a standard particle physics simu-

lation code and provides accurate eigenvalue calculations (KCODE) for near-critical

systems. DRAGON is a deterministic lattice cell code, and excels at near-critical

simulations of complicated, heterogeneous systems such as the CANDU 6 lattice cell.

Finally, TART 2005 is a dynamic, time dependent Monte Carlo simulation code and

is the most similar to the NStable code developed in this thesis. Like NStable, it can

accurately simulate neutron populations in sub- or supercritical mediums through

renormalizing the population at regular intervals.

First, the renormalization algorithm was checked to ensure that it was unbiased.

This was confirmed by simulating near-critical U235 spheres over the initial period of

source convergence both with and without renormalization. As shown in Figures 5.6

to 5.8 and 5.9, the normalized and unnormalized energy and spatial distributions

exhibit the same shape, although discrepancies begin to appear in regions with rela-

tively low numbers of neutrons. The percent error difference between the two cases

tended to be less than 5%, except in the outlier regions (which have less neutrons).

Presumably, these discrepancies should disappear if the simulations were repeated
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with more neutrons because the renormalization algorithm used in this project is

closely based on well established combing (population control) algorithms [10].

After unbiased renormalization was established, the NStable code was compared

to the validation codes using criticality estimates. These are indicative of the accuracy

of the simulation since keff depends on the neutron distribution in time and space,

as well as the composition of the simulation world. Thus, any discrepancies in the

simulation should appear in the keff estimate. Criticality estimates from NStable were

compared against TART and MCNP for spheres of U235 and UHW (see Figures 5.10

and 5.11). As expected, NStable agreed with TART within 10 mk for the entirety of

both simulations, and agreed with MCNP in the near-critical regions (approximately

keff = 1.0±50 mk). For the CANDU 6 lattice cell, the NStable keff estimates agreed

with DRAGON within 10 mk when varying the lattice pitch of the CANDU 6 cell

from 22 cm to 50 cm. Thus, the NStable code shows good agreement for criticality

calculations across a variety of simulation conditions.

The neutron spatial distribution calculated by NStable was also compared to

DRAGON for the CANDU 6 lattice cell. Given the heterogeneity of this simulation

world, accurately reproducing the spatial distributions of neutrons is very important.

The centreline neutron density of the lattice cell from DRAGON was compared to

the spatial distribution of neutrons in NStable at a snapshot in time. The DRAGON

neutron densities were scaled by a constant factor to match the NStable densities,

and the results are shown in Figure 5.5. Both distributions exhibit the same basic

shape, although the NStable data is far noisier. This was expected given that the

NStable code uses stochastic calculations, and the statistical discrepancies could be

eliminated by initializing more primary neutrons.
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6.2 Transient Simulation

A simple transient simulation was modelled by incrementally changing the tempera-

ture of the 87.5 cm UHW sphere. The temperature was increased linearly from 293.6

K to 1000 K over a period of 50 ms (100 µs run duration). In response, the keff value

decreased by approximately 100 mk over the same period. The results in Figure 5.13

appear to exhibit a slight lag between the temperature increase and the keff decrease,

but this may simply be stochastic error. Furthermore, the run duration was likely too

long to capture any really fine transient behaviour (100 µs run duration). Regardless,

the NStable code has been shown to produce transient behaviour in the macroscopic

properties of the system (e.g. keff ) in response to a change in the simulation world.

6.3 Parallelization of NStable

Since Monte Carlo stochastic calculations are computationally intensive, spreading

the load across multiple processors can greatly reduce the simulation time. Since

the NStable code uses event-level parellelism, the master must coordinate the slaves

and perform any run-level analysis. Therefore, the gain in computer power (speedup)

due to adding additional slaves is defined by Amdahl’s law [31]. This relation is

shown in Figure 5.14, where Amdahl’s law was fit to the actual gain achieved for

simulations of a CANDU 6 lattice with varying numbers of slaves. This showed

that for a CANDU 6 simulation of 100,000 primary neutrons and 100 µs runs, the

unparallelizable fraction of the simulation was only 0.35% in terms of computation

time. Therefore, the NStable code has a nearly one-to-one gain in terms of processing

time when calculating this problem with slave processors; it achieved a gain of 27.4

149



M.A.Sc. Thesis - Liam Russell McMaster - Engineering Physics

when using 30 slaves (the ideal one-to-one gain would be 30).

6.4 Future Work

Given the adaptability of Geant4 and the relative infancy of the NStable code, there is

ample opportunity to improve and extend it. This thesis focused on creating the basic

functionality necessary to track neutron populations in time, and laid the groundwork

for future simulations of transient reactor behaviour. More importantly, this code can

now be used as a research tool to better understand reactor transients.

6.4.1 Transient Validation and Modelling

The NStable code has the ability to model transient behaviour in a reactor through

dynamic material or geometric properties and a continuous time evolution of the neu-

tron population. However, this potential has never been fully investigated or utilized.

Therefore, one of the first tasks should be to attempt to model an actual transient

where the material or geometric parameters are well known. For example, the NSta-

ble code could be validated against experimental or simulation data for transients

involving either the coolant void reactivity or fuel temperature feedback effects in a

CANDU 6 lattice cell. Once the NStable code has been shown to adequately model

these results, it can be applied to other problems.

Additionally, the NStable code could be coupled to a thermohydraulics code to

fully simulate the reactor conditions during a transient. With this method, the in-

cremental property changes at the end of each run could be taken directly from the

coupled thermohydraulics code, which would use the neutron flux and power density
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to calculate the these changes. If possible, the thermohydraulics code should commu-

nicate with NStable using MPI pipes, or even be added to the code itself as a C++

class. If communication between the codes must rely on file input and output, then

the coupled simulation will be significantly slower.

6.4.2 Additional Run-Level Calculations

The NStable code could also be used to calculate the criticality of the simulation

world using the k-eigenvalue method. The simplest way to implement this would be

to calculate keff using the generational algorithm employed by MCNP. That is,

keff = Number of neutrons produced through fission in one generation
Number of neutrons produced through fission in the previous generation

(6.1)

where each run of the simulation only encompasses a single generation [4]. As noted

previously, this method is only valid for near-critical systems, but having this option

in NStable could be useful for simulating small perturbations of a such system. It

would also be useful when comparing NStable to other reactor simulation codes that

use this method to calculate criticality.

6.4.3 Isotopic Evolution

While the NStable code focuses on short time scales relative to traditional burnup

calculations, it could be used to calculate the time dependent isotopic evolution of

reactor materials. The most likely method for this calculation would be to run the

NStable code for a short time period (Trun, approximately one second), during which

the isotope production and losses are tallied for important isotopes; tallying every
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isotope produced or lost would result in extremely complex reactor materials and

would slow the simulation. After each short interval, the simulation would be moved

forward in time by a large time step (Tjump, on the order of days), and the isotopic

change at the start of the next simulation interval (short time period) could be cal-

culated by prorating the tallies from the previous interval. That is

Algorithm 6.1: Isotopic evolution calculation
Input: Simulation with known material properties, decay chains for each

isotope, reactor power level P
Output: Isotopic composition at a later time

while t < tend do

/* Short simulation interval (t→ t+ Trun = tf ) */

Simulate neutron population in world
Tally isotope production (Nprod

i ) and loss (N loss
i )

/* Long time jump (t→ tf + Tjump) */

Prorate isotope loss and production
Nprod
i (tf + Tjump) = A Tjump

Trun
Nprod
i (tf )

N loss
i (tf + Tjump) = A Tjump

Trun
N loss
i (tf )

Adjust tallies for decay
Scale tallies according to power level P
Change materials based on updated tallies

end

where A is some constant related to the change in the neutron flux between tf and

tf + Trun. Note that the power level of the reactor will set the actual value of the

neutron flux, which is on the order of 3 × 1014 neutrons per square centimetre per
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second. Thus, the simulation results need to be scaled to a realistic flux level.

6.4.4 Nuclear Data Libraries

While the default G4NDL and MCNP-derived libraries are suitable for most situa-

tions, it would be useful to be able to create libraries in the G4NDL format directly

from the ENDF/B data files. To accomplish this, the Python conversion scripts would

need to be modified to parse the ENDF/B format and translate this to the G4NDL

format. Alternatively, a nuclear data evaluation code, such as NJOY, could be used

to create data libraries in the MCNP format from the ENDF/B evaluations [15].

Then these MCNP formatted libraries could be converted to the G4NDL format us-

ing the existing Python script. Additionally, NJOY can also Doppler broaden the

cross sections to any required evaluation temperature.

Similarly, the ability to use multiple data libraries at different evaluation temper-

atures in Geant4 would reduce computation times. In this scheme, Geant4 would

sample cross sections from the library with the closest evaluation temperature to

the temperature of the material that the neutron is travelling through. This would

reduce the amount of on-flight Doppler broadening necessary when sampling interac-

tion cross sections. However, the NeutronHP datasets, and possibly the NeutronHP

processes, would have to be redefined to implement multiple data library handling.

This modification would also increase the initialization time of the simulation since

multiple data libraries would need to be loaded.
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Appendix A

C++ Basics

Since Geant4 is written in object-oriented C++, a few of the core C++ concepts will

be explained here [32].

A.1 Classes and Objects

In C++, users interact with classes of objects and functions. A C++ class is an

abstract definition that can be used to create a concrete object. It may contain both

data and functions that are defined inside the class definition; these functions and

data are referred to as member functions and member data because they belong to

the class. For example, an integer (int) is a simple class in C++ that contains four

bytes of data that are used to represent a number. However, the int class cannot be

interacted with until an integer object is declared (int a = 4;). A more complicated

example is the string class, which contains an array of characters, but also has member

functions, such as the length function, which returns the number of characters in the

string.

159



M.A.Sc. Thesis - Liam Russell McMaster - Engineering Physics

A.2 Container Classes

While many classes perform complicated actions through their member functions,

container classes are used simply to store and access data. The vector class is a good

example of this. A vector in C++ is essentially a one-dimensional array of objects

(such as integers) that can grow or shrink in length. This is beneficial in C++ since

basic arrays must have a fixed size due to memory allocation requirements.

A.3 Inheritance

Inheritance is widely used in Geant4. Inheritance is the process of deriving a more

specialized class from a base class. The derived class retains all the data and func-

tionality of the base class, but additional member data and functions may be added.

Additionally, base class functions may be overridden in the derived class. An example

of inheritance would be creating a shape class, with basic properties such as a name

and a generic perimeter function, and then deriving a square and a circle class from

the shape class to provide specific implementations of the perimeter function.

A.4 Pointers

Pointers in C++ are objects that store the address of another object in memory.

Pointers have a unique class that they point to, so an integer pointer cannot be made

to point to a string object even though the memory addresses of a string and an

integer are the same size. The one caveat is that a base class pointer can point to a

derived class object, although in most cases, the base class pointer is not able to access
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the attributes of the derived class (member data and functions). Additionally, the

object that is being pointed to may be interacted with by dereferencing the pointer.

A.5 Polymorphism

Polymorphism is also widely used in Geant4. If a member function in a base class is

declared to be virtual, and it is overridden in a derived class, then when a base class

pointer to a derived class object calls the virtual function, it actually gets the derived

class version of that function. For example, let class B have a virtual function print

that prints “Base class”, and let class D be derived from B. Now if class D overrides

print so that it now prints “Derived class”, then a base class pointer (class B pointer)

pointing to a derived class object (class D object) will print “Derived class” if the

pointer calls the print function. Polymorphism allows classes in Geant4 to be derived

from general base classes and then used in source code functions that know nothing

of the user-created derived class.

A.6 Arrays

Arrays are one of the most basic structures in C++. A group of objects of the same

type (i.e. all of the same class) are created sequentially in memory (RAM) and can

be accessed by an index. For example, to access the second element of an array of

five integers, the syntax is array name[1] because array indices start at zero. Thus

a large number of objects can be stored with one variable and accessed through the

indexing operator (i.e. the ”[#]” syntax). The major drawback of C++ arrays is

that the length of an array (the number of objects stored in the array) is fixed. To
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change the length of an array, the original array must be copied and the data must

be entered into a new array of a different size. This operation is extremely inefficient

and costly if length of an array is being incremented by one multiple times.

A.7 C++ Vectors

Vectors in C++ are essentially arrays with added functionality that address some

of the drawbacks of arrays. First the size of a vector can be changed dynamically

without always copying the entire vector; if the length of a vector is incremented,

the vector reserves space for more elements than it currently needs in anticipation

of further increases in the vector length. A vector will also return the number of

elements currently stored in it (not done in an array).

A.8 Doubly-Linked List

A doubly-linked list in C++ is implemented as a collection of nodes that are ordered

from 1 to N , where N is the total number of nodes. Each node in the list contains an

object, and two pointers, one to the next node and one to the previous node. Since the

nodes are linked by pointers, they do not have to be stored contiguously in memory,

but this means that they cannot be accessed through an indexing operator. To access

node i in a list, the list must be traversed from node 1 to node i, or from node N to

node i, so accessing elements is slower than in an array or vector. However, nodes

may be easily removed from the middle of a list by linking the pointers of adjacent

nodes around the node to be deleted, and then simply deleting the node.
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Appendix B

Parallel Processing in Geant4

Monte Carlo simulations are generally parallelizable using two methods: run-level

parallelism, where independent runs are performed in parallel, and event-level paral-

lelism, where independent events are performed in parallel [33]. Run-level parallelism

is simpler because a run is the highest level of a standard Geant4 simulation (a simu-

lation of one run), whereas independent events run in parallel must be controlled by

a master process that deals with the simulation at the run-level.

B.1 Run-Level Parallelism

Run-level parallelism is better known as batch processing, which consists of running

multiple independent simulations in parallel. Each simulation is identical except for

different input values, such as a different random seed, and all important results

are saved to output files. The final results are obtained by combining the results of

each simulation, and performing analysis on the amalgamated data. Thus, individual

simulations are self-contained and do not need to communicate with any other process.
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B.2 Event-Level Parallelism

Event-level processing uses a master-slave topology to process events in parallel. The

master process is responsible for sending events to the slaves to be processed and for

receiving the results of each event; no particle tracking occurs on the master process.

The slaves are dependent on the master for instructions, and once finished simulating

the current event, the slave waits for the next event to be passed from the master.

Given that the slaves have significantly more (combined) computing power than the

master, as much of the simulation as possible should be completed by the slaves.

When the master is completing run actions at the beginning and end of a run, the

slaves sit idle. While event-level parallelism is more inefficient than batch processing,

it is necessary for parallel applications where the current run depends on the results

of the previous runs. This is the case when simulating a neutron population over

several runs.

Event-level parallelism is achieved in Geant4 using a program called TOP-C (Task

Oriented Parallel C/C++), which was written by Gene Cooperman at Northeastern

University [33]. TOP-C is a custom parallel library written using the MPI (Message

Passing Interface) interface, which is used for parallel applications in both Linux and

Windows. TOPC provides four main functions [33]

Generate Task Input Generates a single task (event) and passes it to a slave

to process (on master only).

Do Task Process a given task and pass the result back to the master (on slave

only).

Check Task Result Check the result of a task for errors (on master only).
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TOPC Master Slave At this point, the master generates task inputs and waits

for task results, and the slave waits for task inputs and calculates task

results.

In TOP-C, the master and slave simulations are almost identical. Both must build

simulation worlds, initialize physics lists and create a run manager. However, when

each simulation reaches the TOPC Master Slave function, the master asserts control

and the slaves wait for instructions. In the implementation of TOP-C in Geant4, the

run manager must be over-ridden by a new run manager that contains the TOP-C

functionality.

The MPI interface allows streams of serialized data to be communicated between

different processes. Therefore, container classes such as hit collections cannot simply

be passed between the master and the slaves. The container object must first be

marshalled at one end of the MPI pipe, and then unmarshalled at the other end.

When a C++ object is marshalled, the data contained in the object is converted into

a single string of serialized data, and during unmarshalling, a new copy of the object

is built from the serialized string [33]. Since this process is not trivial for even simple

objects, Marshalgen, an automating marshalling script written by Gene Cooperman,

can be used to automatically generated marshalling and unmarshalling functions for

C++ objects [33]. Therefore, custom data classes can be created to easily transfer

data to and from the slaves.

165



Appendix C

NStable Classes and Files

All of the classes and files created for the NStable code are listed below with a short

description for each class/file. For convenience, the classes (and files) have been split

into five categories, and within each category, the classes are listed alphabetically.

Table C.1: Control classes and driver files

Class/File
(Parent Class)

Description

NSRunManager
(G4RunManager)

The main run manager which performs the
simulations, and coordinates the user ac-
tions.

NStable.cc The main driver file for the NStable pro-
gram.

NStable.icc The parallel driver file, which adds TOP-
C functionality to NStable.cc and replaces
NSRunManager with ParNSRunManager.

ParNSRunManager
(NSRunManager)

Adds parallel processing to NSRunMan-
ager. It divides the simulation between the
master and the slaves, and coordinates all
communication.
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Table C.2: Simulation world classes

Class/File
(Parent Class)

Description

BareSphereConstructor
(NSWorldConstructor)

Builds the simulation world from a single
sphere of a homogeneous material.

C6LatticeConstructor
(NSWorldConstructor)

Builds the simulation world from a
CANDU 6 lattice cell with periodic bound-
aries.

CubeConstructor
(NSWorldConstructor)

Builds the simulation world from a homo-
geneous lattice cell with periodic bound-
aries.

NSWorld
(G4VUserDetectorConstruction)

Manages the simulation world construc-
tors. Chooses one to build the simulation
world based on user input.

NSWorldConstructor Virtual base class for simulation world con-
structors. Provides common functionality
for the world constructors.

Table C.3: User action classes

Class/File
(Parent Class)

Description

NeutronSD
(G4VSensitiveDetector)

The main scoring class. It categorizes all
hits and tallies neutron production/loss.

NSEventAction
(G4UserEventAction)

Action that completes all beginning and
end of event tasks. It loads the results of
the event into an NSEventData object.

NeutronGenerator Helper class for the primary generator ac-
tion that creates a new primary neutron
from each entry in the survivors list.

NSPrimaryGeneratorAction
(G4VUserPrimaryGeneratorAction)

Creates the primary neutrons for each
event, and stores the delayed neutron and
survivors lists. It also performs the popu-
lation renormalization at the beginning of
each run.

NSRunAction
(G4UserRunAction)

Performs any beginning and end of run
tasks. This includes all the run-level anal-
ysis such as calculating keff .
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Table C.4: Physics list classes

Class/File
(Parent Class)

Description

BoundaryStepLimiter
(G4StepLimiter)

The periodic boundary condition process.

HPNeutronBuilder
(G4VNeutronBuilder)

A helper class that adds the proper physics
model and the nuclear data class (Neu-
tronHPCSData) to each NSHadron pro-
cess.

HPNeutronPhysicsList
(G4VUserPhysicsList)

Defines all physics processes, models and
nuclear data for the simulation.

NeutronHPCSData
(G4VCrossSectionDataSet)

Loads and samples nuclear cross section
data. This derived class redefines the
Doppler broadening algorithm so that it
does not automatically assume the cross
sections were evaluated at 0 K.

NeutronProcessBuilder A helper class that instantiates all of the
NStable process (but not the base Geant4
processes).

NSHadronCaptureProcess
(G4HadronCaptureProcess)

Derived capture process that can set ηiλ
from PrimaryNeutronInfo.

NSHadronElasticProcess
(G4HadronElasticProcess)

Same as NSHadronCapture but for elastic
interactions.

NSHadronFissionProcess
(G4HadronFissionProcess)

Same as NSHadronCapture but for fission
interactions.

NSHadronicProcess Contains common function for NSHadron
processes to set ηiλ at the start of tracking.

NSNeutronInelasticProcess
(G4NeutronInelasticProcess)

Same as NSHadronCapture but for inelas-
tic interactions.

NSProcessManager Helper class for the NeutronSD class. Used
to get the ηiλ values from each hadronic
process.

NSStepLimiter
(G4StepLimiter)

Step limiting process that stops the neu-
trons at the end of each run.
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Table C.5: Utility classes

Class/File
(Parent Class)

Description

LoggingAction Helper class used to provide the output
stream to any other class. If output is to a
file, it opens the file.

MaterialEnumerator Contains two enumerators that specify ei-
ther a material (e.g. fuel, coolant) or a
property (e.g. temperature, density).

NSInterpManager Manages all of the interpolation vectors
used for material/geometry changes in
NStable.

NSInterpVector Data class that stores a two-dimensional
table of values (x and y). It can sample
x-values in the range of the table using a
specified interpolation scheme.

ParseInput Parses the input file, and sets simulation
parameters from input file (or default val-
ues if undefined in input file). It pro-
vides access to the input data for all other
classes.
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Table C.6: Container classes

Class/File
(Parent Class)

Description

Containers.hh Header file that contains all template
classes derived from the C++ standard
template library (STL).

NeutronData Marshallable container class that contains
the survivor/delayed neutron data: cur-
rent time, lifetime, position, momentum,
and the ηiλ values.

NSEventData Marshallable container class that contains
all the results of an event: survivors, de-
layed neutrons, fission sites and event tal-
lies.

NSPrimaryData Marshallable container class that contains
all of the information necessary to start
an event: primaries, random number seed,
event number, and any material/geometry
changes.

NSTrackInfo Contains ηiλ values for secondary (copied)
neutrons created by the BoundaryS-
tepLimiter.

PrimaryNeutronInfo Contains the information needed to cor-
rect the lifetime and ηiλ values for primary
neutrons (cannot be done in the NSPrima-
ryGeneratorAction). Corrections occur in
the NSHadron processes and NeutronSD.

PropertyChange Marshallable container class that contains
the information for a geometry/material
change in the simulation world (material,
property, and new value).

TallyHit
(G4VHit)

Contains all the tallies, survivors and de-
layed neutrons from the NeutronSD sensi-
tive detector for a single event.

Triple Template used to create classes that store
three objects (of arbitrary classes).

TripleFloat Marshallable class that is used instead of
G4ThreeVector to define the position/mo-
mentum in NeutronData so that Neutron-
Data can be marshaled.
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Appendix D

NStable Target Selection

Algorithm

The target selection algorithm (Algorithm 4.1) used in the neutron population renor-

malization process is designed to select m items from a sample size of Ns without

repeating a selection. Moreover, this algorithm is designed to select the m items uni-

formly without any bias; that is, each of the items should have the same probability

of being selected. This process is generally known as combing, and the problem of

selecting m items from Ns uniformly has several solutions [10]. However, given the

added constraint of selecting each item only once, a slightly different approach was

needed. Algorithm D.1 was taken from an online coding forum, and therefore, it

needed to be tested to verify that it did indeed select targets without bias [34].
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Algorithm D.1: Target selection for deletion or duplication
Input: Number of primary neutrons Np, number of survivors Ns

Output: List of targets for deletion or duplication

m = |Ns −Np| // Number of missing/extra neutrons

for i = 0→ (Ns − 1) do

r ∈ [0, 1] // Generate a random number between 0 and 1

if r < m
Ns−i then

Add survivor i to list of targets

m = m− 1

end

end

The uniqueness criterion can be verified simply by examining Algorithm D.1. The

algorithm passes once over each of the Ns items, and each item may be selected or not.

Therefore, it is impossible for an item to be selected more than once. If m > Ns, then

all Ns items would be selected, and the algorithm would restart with m′ = m−Ns. As

long as m′ > Ns, all Ns items are selected, and then the selection algorithm restarts

with m′ decremented by Ns. In the NStable code, this situation could happen if the

population shrinks by more than a factor of two over a run. However, the uniqueness

condition is still upheld on the last iteration of Algorithm D.1.

To verify the lack of bias, a simple simulation was performed: 20 items were

selected from a total of 40, and this was repeated one million times. Therefore, each

item should be selected 500,000 times plus or minus an error term to account for the

stochasticity of the simulation. Since this is a counting process (Poisson process), the
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error can be given by ±
√

1E6 or ±1000 [19]. On a relative scale, the error is ±0.2%.

Figure D.1 shows the results of this simulation. All forty items have less than ±0.2%

bias, and therefore, the selection algorithm is within the expected error. From this,

it can be concluded that Algorithm D.1 is unbiased.
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Figure D.1: Selection algorithm bias.
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Appendix E

NStable Input Parameters

Table E.1: NStable Environment Variables

Environment Variables

G4NEUTRONHPDATA Location of the nuclear data for NeutronHP pro-
cesses (cross sections and final state data).

PARMODE Set to “MPI” for parallel processing and “SEQ” for
sequential.

G4USE TOPC Set to “1” to use the TOP-C libraries either in se-
quential or parallel mode.
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Table E.2: Simulation parameters and options

Required Parameters

WORLD Simulation world type (e.g. bare sphere or lattice
cell)

NUM RUNS Number of runs in the simulation
NUM EVENTS Number of events simulated per run
NUM PRIMARY PER EVENT Number of primary particles initialized at the start

of each
RUN DURATION Duration of a single run (TRUN)
NEUTRON ENERGY Initial energy of primary neutrons in first run
Geometric Parameters

RADIUS Sphere radius (sphere)
PITCH Lattice pitch (lattice cells)
TEMP Temperature of material (sphere and homogeneous

lattice cell)
U235 CONCENTRATION Concentration of U235 relative to U238 for NU ma-

terial
HW CONCENTRATION Concentration of heavy water relative to NU in

UHW material
Optional Parameters

SEED Initial random seed value
PERIODIC BC Enable periodic boundary conditions
INSTANT DELAYED Produce neutrons instantaneously
RENORMALIZE Renormalize neutrons after each run
SE MESH Number of mesh steps in 3D for Shannon entropy

calculation
Data File Options

INITIAL SOURCE FILE Load initial primaries and delayed neutrons from
given source file

OUTPUT LOG Output overall results of each run to a log file
OUTPUT SOURCE Output survivor and delayed distribution to a file
OUTPUT SRC FREQ Interval in runs when the source is saved to a file
FUEL TEMP DATA Fuel temperature distribution with respect to time
COOLANT TEMP DATA Coolant temperature distribution with respect to

time
COOLANT DENSITY DATA Coolant density distribution with respect to time
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Example Files

F.1 NStable Files

F.1.1 Main Driver Files

Listing F.1. NStable driver file

/*

NStable.cc

Created by: Liam Russell

5 Date: 22-06-2011

Modified: 09-07-2012

Main driver file for NStable code. Instantiates run manager, required classes

and optional classes. Also instantiates the parse input class (input

10 variables).

*/

// Include header files

//#define G4TIME

15
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#include "G4Timer.hh"

#include "NSRunManager.hh"

//#include "G4UIQt.hh"

20 #include "G4VisExecutive.hh"

#include "G4UIExecutive.hh"

#include "G4UImanager.hh"

#include "G4UIsession.hh"

#include "G4UIterminal.hh"

25 #include "G4ThreeVector.hh"

#include "G4UnitsTable.hh"

#include "NSWorld.hh"

#include "HPNeutronPhysicsList.hh"

30 #include "NSPrimaryGeneratorAction.hh"

#include "NSRunAction.hh"

#include "NSEventAction.hh"

#include "LoggingAction.hh"

35 #include "Randomize.hh"

#include <fstream>

#include "ParseInput.hh"

#include "G4EventManager.hh"

40 #include "G4TrackingManager.hh"

// Include parallel processing file

#include "NStable.icc"

45

int main(int argc, char **argv)

{

// Set up and start the timer

50 G4Timer mainTimer;

mainTimer.Start();
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// Simulation Variables ----------------------------------------------------

55

// Variables not set from input file

LoggingAction *logSession = NULL;

std::ostream *output = NULL;

G4bool master = true;

60 G4bool readInput = false;

// G4long randomSeed;

#ifdef G4USE_TOPC

65 master = G4bool(TOPC_is_master());

#endif

// Parse input file

70 ParseInput *InFile = new ParseInput;

readInput = InFile->ReadInputFile(G4String(argv[1]));

if(!readInput)

{

75 G4cerr << "Unable to open " << G4String(argv[1]) << ". Exiting."

<< G4endl;

return 1;

}

80

const ParseInput* infile = InFile;

// Determine whether logging is required and set the output stream

85 if(infile->SaveResultsToFile() && master)

{

// logSession = new LoggingAction(infile->GetResultsFile());

logSession = new LoggingAction(infile);

output = &(logSession->GetOutput());
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90 }

else

{

output = &G4cout;

}

95

// Random number generator -------------------------------------------------

// Set up random engine

100 CLHEP::HepRandom::setTheEngine(new CLHEP::RanecuEngine);

if(master)

{

// randomSeed = infile->GetRandomSeed();

105

CLHEP::HepRandom::setTheSeed(infile->GetRandomSeed());

CLHEP::HepRandom::showEngineStatus();

CLHEP::HepRandom::saveEngineStatus();

110 }

// Simulation structures ---------------------------------------------------

115

NSRunManager* runManager = new NSRunManager(infile, logSession);

runManager->SetVerboseLevel(0);

120 // Set version string in the ParseInput object

InFile->SetG4VersionString(runManager->GetVersionString());

// Construct the world

NSWorld *theWorld = new NSWorld(infile);

125 runManager->SetUserInitialization(theWorld);
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// Construct the physics list

runManager->SetUserInitialization(new HPNeutronPhysicsList(infile));

130

// Construct the primary generator

NSPrimaryGeneratorAction * genAction;

genAction = new NSPrimaryGeneratorAction(infile, master);

135

runManager->SetUserAction(genAction);

// Set optional user action class

140

// Construct the run action only if this is the master

NSRunAction *runAction = NULL;

if(master)

145 {

runAction = new NSRunAction(genAction,logSession, infile);

}

runManager->SetUserAction(runAction);

150

// Construct the event action

NSEventAction* eventAction = new NSEventAction();

runManager->SetUserAction(eventAction);

155

// Start simulation --------------------------------------------------------

// Initialize the run

160 runManager->Initialize();

// Record the initialization time and restart the timer for the computation
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mainTimer.Stop();

165

if(master)

{

// theWorld->DumpGeometricalTree();

170 // Set world size in run action now that the world is built

runAction->SetWorldDimensions(theWorld->GetWorldBoxDimensions());

InFile->PrintInput(output);

175 *output << "# Initialization time: " << mainTimer << G4endl

<< "#" << G4endl

<< "# ---------------------------------------------------------"

<< G4endl << "# " << G4endl

<< "# Starting Simulation" << G4endl

180 << "#" << G4endl;

}

mainTimer.Start();

185 /*

#ifdef G4VISUALIZE

// Visualization manager

G4VisManager* visManager = new G4VisExecutive;

visManager->Initialize();

190 #endif

*/

// G4EventManager *eventMan = G4EventManager::GetEventManager();

// G4TrackingManager *trackMan = eventMan->GetTrackingManager();

195 // trackMan->SetVerboseLevel(2);

if(argc > 2)

{

G4UImanager* UImanager = G4UImanager::GetUIpointer();

200 UImanager->ExecuteMacroFile(argv[2]);
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}

// set to zero so function will go to terminal

else if(infile->GetNumberOfEvents())

{

205 runManager->BeamOn(infile->GetNumberOfEvents());

}

else

{

G4UIsession *ui = new G4UIterminal;

210

ui->SessionStart();

delete ui;

}

215

// Wrap up simulation ------------------------------------------------------

// Output the source convergence results

if(master) runManager->OutputResults();

220

/*

#ifdef G4VISUALIZE

delete visManager;

#endif

225 */

// Stop the timer for the total computation time

mainTimer.Stop();

230 if(master)

{

*output << "#" << "G4endl" << "# Total computation time: "

<< mainTimer << G4endl;

}

235

delete infile;

delete runManager;
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delete logSession;

240 return 0;

}

Listing F.2. NStable TOPC driver file

/*

NStable.icc

Created by: Liam Russell

5 Date: 15-08-2011

Modified: 17-02-2011

This file is used to switch to parallel processing if the environment variable

G4USE_TOPC is set. Switches the run manager class from NSRunManager to

10 ParNSRunManager and overrides the main function.

*/

#ifdef G4USE_TOPC

15

// Include header files

#include "topc.h"

#include "ParNSRunManager.hh"

20 static int G4_main(int argc, char **argv);

int main(int argc, char **argv)

{

// Set mode to no tracer messages

25 TOPC_OPT_trace = 0;

TOPC_init(&argc, &argv);

int ret_val = G4_main(argc, argv);

TOPC_finalize();

30
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return ret_val;

}

35 #define NSRunManager ParNSRunManager

#define main G4_main

#endif

F.1.2 Input File

Listing F.3. NStable input file

## Script file for running Lattice Cell calculations

## World choice

WORLD C6Lattice

5 PITCH 28.575

## World paramenters

## Run parameters

10 NUM_RUNS 150

NUM_EVENTS 6

NUM_PRIMARY_PER_EVENT 4200

RUN_DURATION 1e5

NEUTRON_ENERGY 1.0

15

## Options

SEED 1557136549

INSTANT_DELAYED 1

20 ## Input source file

#INITIAL_SOURCE_FILE Src-C6Lattice.txt
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## Output source/log files

#OUTPUT_LOG Results/C6Lattice-Standard.txt

25 #OUTPUT_SOURCE Results/Src-C6Lattice-Standard.txt

#OUTPUT_SRC_FREQ 1

## Run data for material changes

#COOLANT_TEMP_DATA RunData/C6CoolantTempData.txt

30 #COOLANT_DENSITY_DATA RunData/C6CoolantDensityData.txt

F.1.3 Output File

Listing F.4. NStable output file

# ---------------------------------------------------------

#

# Geant 4 Simulation of Neutron Stability

#

5 # Geant4 version Name: geant4-09-04-patch-02 (24-June-2011)

# Neutron Stability rev.60 (Bazaar build date 2012-07-29 13:31:29 -0400)

#

# Current time: Wed Aug 8 21:40:37 2012

#

10 # Input Variables:

# World: Sphere

# Reactor Material: 92235

# Sphere radius (cm): 9.5

# Shannon entropy mesh: (20, 20, 20)

15 #

# Number of runs: 250

# Number of primaries per Event: 1667

# Number of events: 60

# Run duration (ns): 20

20 # Initial Neutron Energy (MeV): 1

#

# Data Library: /home/russellf/g4work/DataFiles/C6_ENDF6_T293.6
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# Reactor temperature (K): 293.6

# Cross section temperature (K): 293.6

25 # Doppler Broadening Algorithm: Standard

# Random Seed: 2013092304

#

# Logging File: /usr2/scratch/russellf/U235Results/U235-MCENDF6-9.5cm-250runs-20.0ns

-1.0MeV.txt

# Save source distribution interval: 250

30 # Output source file: /usr2/scratch/russellf/U235Results/Src-U235-MCENDF6-9.5cm-250runs

-20.0ns-1.0MeV.txt

#

#

# Initialization time: User=23.7s Real=34.23s Sys=1.42s

#

35 # ---------------------------------------------------------

#

# Starting Simulation

#

# Number of Primaries per Run = 100020

40 # Number of Events per Run = 60

#

#

# Run # Start (ns) Lifetime (ns) Production krun keff Shannon H Duration (s)

#

-------------------------------------------------------------------------------------------------------

45 1 0 4.099 786679 2.6560 1.266704 86.2654 18.89

2 20 5.226 411441 1.3714 1.099257 88.6460 10.34

3 40 5.443 410026 1.3731 1.100138 88.6941 10.12

4 60 5.52 407959 1.3611 1.097124 88.7010 10.19

5 80 5.536 412048 1.3824 1.102307 88.6907 10.12

50 6 100 5.494 417409 1.3957 1.104748 88.7192 10.58

7 120 5.528 408678 1.3722 1.100229 88.6531 10.27

8 140 5.566 404285 1.3530 1.095686 88.6950 10.27

9 160 5.514 414136 1.3879 1.103353 88.6703 10.21

10 180 5.563 404423 1.3596 1.097609 88.6890 10.23

55 11 200 5.515 414078 1.3887 1.103605 88.6863 10.1
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12 220 5.529 410065 1.3781 1.101606 88.6230 10.11

13 240 5.503 417234 1.4027 1.106848 88.6785 10.48

14 260 5.532 403667 1.3467 1.093972 88.7061 10.28

15 280 5.575 406367 1.3649 1.098669 88.6564 10.03

60 16 300 5.527 411184 1.3770 1.100971 88.6826 10.32

17 320 5.573 403817 1.3491 1.094664 88.6815 10.33

18 340 5.566 405252 1.3687 1.100116 88.6916 10.24

19 360 5.548 405055 1.3507 1.094817 88.7254 10.21

20 380 5.525 413187 1.3857 1.102970 88.7082 10.31

65 21 400 5.58 398531 1.3290 1.090014 88.7137 10.32

22 420 5.554 415816 1.3942 1.104759 88.6828 10.32

23 440 5.551 404913 1.3617 1.098105 88.6694 10.38

24 460 5.529 413815 1.3823 1.101800 88.7064 10.16

25 480 5.561 406146 1.3682 1.099725 88.7107 10.13

70 .

.

.

226 4500 5.553 409736 1.3676 1.098573 88.7215 10.66

227 4520 5.576 400545 1.3443 1.094056 88.6944 10.71

75 228 4540 5.58 408161 1.3764 1.101610 88.6768 10.51

229 4560 5.547 409678 1.3728 1.100137 88.6743 10.07

230 4580 5.585 399861 1.3361 1.091780 88.7312 10.27

231 4600 5.589 405524 1.3667 1.099431 88.6938 10.28

232 4620 5.546 412394 1.3878 1.103832 88.6530 10.55

80 233 4640 5.515 412810 1.3822 1.102049 88.7139 10.59

234 4660 5.543 409330 1.3741 1.100622 88.7116 10.42

235 4680 5.549 409492 1.3754 1.100936 88.6727 10.01

236 4700 5.545 407445 1.3674 1.099135 88.6735 10.37

237 4720 5.535 411599 1.3756 1.100444 88.7309 10.36

85 238 4740 5.531 410070 1.3656 1.097909 88.6813 10.17

239 4760 5.556 409296 1.3745 1.100731 88.6867 10.47

240 4780 5.526 411058 1.3826 1.102647 88.6974 10.58

241 4800 5.528 410274 1.3696 1.099026 88.6977 10.47

242 4820 5.555 406254 1.3600 1.097260 88.6999 10

90 243 4840 5.508 413029 1.3895 1.104155 88.7129 10.66

244 4860 5.558 408621 1.3671 1.098739 88.6652 10.61

245 4880 5.523 409167 1.3742 1.100692 88.7195 10.09

187



M.A.Sc. Thesis - Liam Russell McMaster - Engineering Physics

246 4900 5.573 405094 1.3544 1.095897 88.7316 10.15

247 4920 5.546 408602 1.3762 1.101439 88.6970 10.48

95 248 4940 5.58 400883 1.3438 1.093835 88.6872 10.06

249 4960 5.551 408297 1.3670 1.098795 88.6926 10.34

250 4980 5.517 409329 1.3718 1.099918 88.6550 10.47

# Total/Avg ( 216 runs): 5.545 408940 1.37 1.099409 88.6896 10

100

# Source convergence limit = 0.1%

# Source converged after 10 runs.

#G4endl# Total computation time: User=2.1e+02s Real=2.6e+03s Sys=14s

F.2 MCNP Input Files

Listing F.5. MCNP input for U235 sphere

Criticality of bare U235 sphere

C CELL CARDS

C Target sphere

1 1 -18.75 -11 imp:n=1

5 C Outside world (void)

99 0 11 imp:n=0

C SURFACE CARDS

C Sphere

10 11 so 8.7

C

C DATA CARDS

C Criticality control cards

15 kcode 5000 1.0 25 250

sdef erg=2.0 pos=0 0 0

C

C Material cards
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m1 92235.66c -18.75

20 C

C Problem mode (neutrons)

mode n

C

C Cutoff card (turn off implicit capture)

25 C cut:n j j 0 j j

C

C

C Physics fission card (turn off total nu)

totnu no

30 C

Listing F.6. MCNP input for UHW sphere

Comparison between MCNP and GEANT4 - Neutrons impinging on a slab of material

C CELL CARDS

C Target sphere

1 1 -3.01482 -11 imp:n=1

5 C Outside world (void)

99 0 11 imp:n=0

C

C SURFACE CARDS

10 C Sphere

11 so 87.5

C

C DATA CARDS

15 C Criticality control cards

kcode 5000 1.0 25 250

sdef erg=2.0 pos=0 0 0

C

C Material cards

20 m1 92235.66c -0.000773

92238.66c -0.106527

8016.66c -0.713116
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1002.66c -0.179683

C mt1 hwtr.10t

25 C

C Problem mode (neutrons)

mode n

C

C Physics fission card (turn off total nu)

30 totnu no

F.3 DRAGON Input File

Listing F.7. DRAGON input for standard C6 lattice cell

*----

* 37 Element CANDU Bundle

* Based on example TCWu05

* Used for testing self-shielding options in DRAGON 3.06*

5 *----

* Define STRUCTURES and MODULES used

*----

LINKED_LIST

LIBRARY CANDU6S CANDU6F VOLMATS VOLMATF PIJ FLUX BURNUP EDITION ;

10 SEQ_BINARY

INTLINS INTLINF ;

SEQ_ASCII

psmixs psmixf fluxes ;

MODULE

15 LIB: GEO: NXT: PSP: SHI: ASM: FLU: EDI: END: ;

*----

* Microscopic cross sections from file endfb7gx format WIMSD4

*----

LIBRARY := LIB: ::

20 NMIX 20 CTRA WIMS

MIXS LIB: WIMSD4 FIL: iaea
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MIX 1 561.285 0.8074

Onat = ’6016’ 7.9986E+01

D2D2O = ’3002’ 1.9889E+01

25 H1H2O = ’3001’ 1.2455E-01

MIX 2 561.285 6.5041

Nb93 = ’93’ 2.5800E+00

Fenat = ’2056’ 4.6780E-02

Crnat = ’52’ 8.0880E-03

30 Ninat = ’58’ 3.5000E-03

B10 = ’1010’ 2.4310E-05

Zrnat = ’91’ 9.7313E+01

MIX 3 448.72 0.0012

Cnat = ’2012’ 2.7110E+01

35 Onat = ’6016’ 7.2890E+01

MIX 4 336.16 6.4003

Fenat = ’2056’ 1.3500E-01

Ninat = ’58’ 5.5000E-02

Crnat = ’52’ 1.0000E-01

40 Zrnat = ’91’ 9.8209E+01

B10 = ’1010’ 5.9620E-05

MIX 5 336.16 1.08875

O16 = ’6016’ 7.9893E+01

D2D2O = ’3002’ 2.0098E+01

45 H1H2O = ’3001’ 8.2535E-03

MIX 6 859.99 10.5541

O16 = ’6016’ 1.18502E+1 1

U235 = ’2235’ 6.26700E-1 1

U238 = ’8238’ 8.75183E+1 1

50 U234 = ’234’ 4.8E-3 1

MIX 7 COMB 6 1.0

MIX 8 COMB 6 1.0

MIX 9 COMB 6 1.0

MIX 10 561.285 6.3918

55 Zrnat = ’91’ 9.8182E+01 1

Fenat = ’2056’ 2.1000E-01 1

Crnat = ’52’ 1.0000E-01 1

Ninat = ’58’ 7.0000E-03 1
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B10 = ’1010’ 5.9620E-05 1

60 ;

*----

* Geometry CANDU6S : cluster for self-shielding

* CANDU6F : annular cluster for transport

*----

65 CANDU6S := GEO: :: CARCEL 12 1 3

X- REFL X+ REFL Y- REFL Y+ REFL

MESHX -14.2875 14.2875

MESHY -14.2875 -0.1 0.1 14.2875

RADIUS 0.00000 0.74425 2.18350 3.60300 5.16890 5.60320 6.44780

70 6.58750 8.07000 9.55250 11.03500 12.51750 14.00000

MIX 1 1 1 1 2 3 4 5 5 5 5 5 5 1 1 1 1 2 3 4 5 5 5 5 5 5

1 1 1 1 2 3 4 5 5 5 5 5 5

CLUSTER ROD1 ROD2 ROD3 ROD4

::: ROD1 := GEO: TUBE 2 3 2

75 MIX 6 10 6 10 6 10 6 10 6 10 6 10

NPIN 1 RPIN 0.0000 APIN 0.0000

MESHX -0.6540 -0.1 0.1 0.6540

MESHY -0.6540 0.0 0.6540

RADIUS 0.00000 0.6122 0.6540 ;

80 ::: ROD2 := GEO: ROD1 MIX 7 10 7 10 7 10 7 10 7 10 7 10

NPIN 6 RPIN 1.4885 APIN 0.0000 ;

::: ROD3 := GEO: ROD1 MIX 8 10 8 10 8 10 8 10 8 10 8 10

NPIN 12 RPIN 2.8755 APIN 0.261799 ;

::: ROD4 := GEO: ROD1 MIX 9 10 9 10 9 10 9 10 9 10 9 10

85 NPIN 18 RPIN 4.3305 APIN 0.0 ;

;

CANDU6F := GEO: CANDU6S :: SPLITR 1 16 16 16 3 5 3 4 4 4 4 4

::: ROD1 := GEO: ROD1 SPLITR 4 1 ;

::: ROD2 := GEO: ROD2 SPLITR 4 1 ;

90 ::: ROD3 := GEO: ROD3 SPLITR 4 1 ;

::: ROD4 := GEO: ROD4 SPLITR 4 1 ;

;

*----

* Self-Shielding calculation EXCEL

95 * Transport calculation EXCEL
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* Flux calculation for keff

*----

VOLMATS INTLINS := NXT: CANDU6S ::

TITLE ’CANDU-6 CELL’

100 EDIT 0 MAXR 300 TRAK TISO 8 20.0 SYMM 12 ;

psmixs := PSP: VOLMATS :: FILL RGB TYPE REGION ;

LIBRARY := SHI: LIBRARY VOLMATS INTLINS ::

EDIT 0 ;

VOLMATF INTLINF := NXT: CANDU6F ::

105 TITLE ’CANDU-6 CELL’

EDIT 0 MAXR 300 TRAK TISO 14 20.0 SYMM 12 ;

psmixf := PSP: VOLMATF :: FILL RGB TYPE REGION ;

PIJ := ASM: LIBRARY VOLMATF INTLINF :: ;

FLUX := FLU: PIJ LIBRARY VOLMATF ::

110 TYPE K EDIT 1 ;

EDITION := EDI: FLUX LIBRARY VOLMATF ::

MERG REGION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5

0 0 0 0 0 0 0 0 0 0

115 12 11 10 9 8

0 0 0 0 0 0 0 0 0 0

13 14 15 16 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

120 40 39 38 37 36

0 0 0 0 0 0 0 0 0 0

41 42 43 44 45

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

6 7 0

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

130 46 47

48 49 50

51 52 53 54 55
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56 57 58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

140 STAT FLUX

EDIT 3

SAVE ON ’INITIAL’ ;

fluxes := EDITION ;

END: ;

145 QUIT "LIST" .
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