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§ - ABSTRACT
The thermodynamic properties of a number of simple

metals 1n the superconducting state are calculated from the
%

numerical solution of the isotropic Eliashberg equations
on the imaginary axis and comparison is made with experiment.
The functional derivatives of these properties with respect

to change in. the electron-phonon interaction are calculated

and used in a .detailed analysis of the interaction in super-
conducting Nb. Anisdtropy in,the/electron-pﬁonoh interac-
tloh is also investigated nﬁmé:ically foxr séme éetals using

a simple model for the anisotropy. The functional derivative

in an anisptropic superconductor is found to be qualitatively

dfffereﬁt.at low frequencies from that of anhiéotropic syéteﬁ.
The difference is shown to be caused by the wéshing out of
ani‘sotropy by thermal phonons. Some comparison with experi-_
ment and with previous approximate solutions of.tHe 'same

model is made. For some quantities the previous approximate
4 - .

estimates of the effect of gap ani%otrOpy are shown to be

inadequate. A useful expression reiatinq the amount of
. s ' N
anisotropy with the impurity dependence of the critical tem-

perature is developed ‘independent of any such model or
; -
approximation. '

Another calcuiapion is done with a réélistic calculated

interaction for lead that includes anisotropy in the phonons
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and Fermi surface. An orthonormal basis sgt for the expansion

of this interaction is enumerated and tested, but is found
unnecessary for lead because the interaction is very close to
separable. It is shown that the anisotropy in Fhe iﬁterac— -
tion’can be approximated .by a bery glmple separable model

without  significantly affecting the thermodynamic gjbperties.
Also, the g%p anisoérOpy on the imaginary axis is %ound to

be identigai to that of the gap edge at T=0 calculated on

the real .axis from the same interaction.
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CHAPTER 1

rnTrRoDUCT ION

"Because the BCS theory of superconductivity and its

+

extension by Elidshbérg to systems with a étrong electron-

phonon’ interaction have been so successful, it is possible

. i3 Al

po:}elate the small remaining discrepancies between theory

- and experimernt to the details of the electron-phonon interac-

L

tion in a'pértiﬁulaf material. The detail being investigated
here is the'anisotrooy in the‘electron7phonon interaction,
‘whlch can ea51ly be taken Care of, formally at least, by the
addition of another subscrlpt for the sums over the Ferml sur-
‘face.' Predicting the effects of tﬁis anisoctropy on the gap or
other meésufﬁble quantitiés is not so easy, either with an
anaiytical\expression oxr ﬁy gﬁmer{cal calculation. Since pre—‘
vious work has éocused oﬁ approximatg,solutioms of model aniso-
tropid interaétions (for weak-doupling‘superconductors} and
incompletely iterated solutions with a fed{}gtic interaction,
an attempt will be made hgéﬁrto get éxact solutions for the,
model interéction in both weak and strong coupling systemsggnd
a completely converged solution for a realistic. calculated
interacgion in Pb. Bqth.calgdiatioﬂs are“dohe numerically put

. Pl .
on'the imaginary axis, thus llmltlnq the dlsC0531on to thermo—

¢

dynamic propertles except 1in Pb, whexe a comnarlson will be



-

made between gap‘anisotroby on the real and imaginary axis.
vF&r'that metal also an expansion af the iqteréction in terms of
a recently suggestéd set of orthonormal basis functions suitable
. for anisotropic qﬁantitleé defined on the Fermilsurface will

be tested. Another calculation with a simple but justifiabfe

model anisotropy will show how the previously mentioned approxi-

El

mate solution c¢ompares with the exact numerical results, and
whether the experimental data is consistent with a small amount

of anisotropy or not. One other possible cause for the small
discrepancy betweeh theory and expériment, an error in the

. average interaction (not-in the anisotropy) will be investiga-

[}

. - . » .
ted by means of the functional derivatives of some thermodynamic
préperties with respect to the interaction. NlOble will.

serve as an example for this kind of analy51s.

»

Elastic scattering by non—magnetic impurities .usually

.forms a part of any discussion of anlsotropy effects because /

it controls the amount of gap anlsotr0py by dlsruptlng the = ,
r//
palr formatlon. ‘The part of the thermo&ynamlc prOpert;es dug

/

to anlsotropy in the electron- phonon interaction can thereﬁore

be tounu 1nd1rectly by coﬂparlng measurements 1n the pure ﬁaterlal

[

and 1n a d;lutc alloy. This relatlonshlp between qap anisotropy
and impuritx concentraﬁion will be investigated numericaily,"
and a simple)expressidﬁ'relatihg.thé‘rhté of change of Tc‘tq~
tne amount af gap anlsotrOpy will be derlved Th; next chéptér

presents the theory on Wnlch all. these calculatlons are based

s

&Y.



CHAPTER 2

THE ELECTRON-PHONON INTERACTION,ANISOTROPIC
SUPERCONDUCTORS, AND ELASTIC IMPURITY SCATTERING .

IS

1. Necessary Theoretical Background

In this section the equatidns used throughout the rest
of the thesis will be presented, but with relatively little
D

discussion because strong-coupling theory is well-established

;nd hardly new. Singg a detailéd undérstanding of supefconduc—
tiélty[ as ié essential_fqr calculating anisotropy effects
because they are usually so small, reqﬁirés knOWle@ge«offE%e
electron—phonoﬁ interaétion, that is the best place to start.

“ Althéugh the potentials near the positivel§~charged
ions in a metal are large and rapidly varying, the' conduction
electronﬁ behave very much like free électrohs, because the
ueffeétiVe ionic potentials are relatively weak for the foi—
lowing reasons. First, the Pauli exclusion principie kgeps
the conduction eléctrénsTaway from the core region where the
‘algeady—%illed gtémicnorbiﬁals are.localized.'kéeconde;\sémé
cbnduction elettrons are attracted to ;he éositive charge and
thefefore‘scregnfii frqﬁ more'distant glectrons; 'TheSe two
factors permit the replacemeﬂt'$f tpe étféng field around each

ion by the pseudopotential, a much weaker non-singhlarre{%ec—

tive. ihteraction that has these two gffects built into it.
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A
The pseudopotential can then be treated as a perturba-

%

-

tion to second order for the conduction electrons. From

this description it should be clear that the pseudopotential

is a rather complicated function, Aot necessarily unique, and
will in general be non-local. However, even if a local approxi- -
mation is madé, +the resulting function turns out to be quite
adequaﬁe for certain calculations, for example phonons in

simple metals, and of course the electron-phonon interaction
itself. The Fourier transform of the pseudopotential W(q) is,_
at least for the nearly-free electron metals, a flat-bottomed

well of depth 2/3 E_ and radius of order 2k which falls off

F
.rapidly for large g. An impurity atom can also be assigned

a pseudopotential, or rather thé difference AW(g) between

host and impurity, (2although the pseudopotentiél of an impurity
of differént valence than the host may be too strong fofﬂper—
turbative treatment): The impurity pseudopotential will depend
on the host tﬁroggh the influence of the electron density on

the screening. The 2/3‘EF rule still holds though, implying
that AW(0) = 0 for isovalent }mpurities.‘;The current state of
the art for impurity‘pseudopotentials does not seem to be quite
as good as for the host, for which the Fermi surface determined
by W(g) can be cﬁepkgd against de ﬁaas—v;n Alphen data. The
perturbaéion caused by tﬁe.pseuquotentialé is not carried past
~ second orxder (the,first‘ordef change in the energy is absorbed
in a Fermi energy redefinition) énd is imp;rtant‘only fof‘"

electrons near the intersection of the Fermi Surface with the



H
»
b

v

Bragg planes becéuse'these are the only degeﬁerabe states
between which thé pgriodic array of ions can cause traﬁsitions.
This periodicity ensures that the only possible momentum trans-
fers are of reciprocal lattice vectors En' and that the ﬂew
wave function, the pseudo-~wave function, is, outside the-core,

a linear combination of plane wave states:

| pseudo-wave functiOn>k = |k> - ¢ a, (£)|§f5n> (2-1)
n -n ' '

where the a_ are the plane wave mixing coefficients and |k>
-.—.n .
is a plane wave state. A one plane-wave approximation (no sum

over n) will therefore be just a sphérical Fermi surface, while
3
for a multi plane-wave solution the a, (k) determine the shap®
- ‘ —n
of the Fermi surface, the weight dsk/lvkl of a given point k,

the Fermi veiocity Vi and the band mass renormalization. The

a, (k) need oniy be specified over a small fraction of the
~n

Fermi surface, the ifreducible 48th, (defined by k, 2 0,

kx > kylﬁkz > kx), if there is cubic symmetry; the velocities

and weights elsewhere can be found‘by:applying group operations.
.In principle the phonons could also be Calcul;ted from
first principles 5& screening the plasma‘oscilldtibns of the | v
bare ions; but thié procedure has only been done for the. |
s%mplest_metals - a category,-wﬁich Eor this particular calcu-
' la£ion{ excludes Ph. For others force constants have been fitted
to dispersion curves for‘high symmetry directions obtagned from
neutron scétté&ing, These constants ane{sﬁfficieﬂt to deter-

and, polarization vectors gl(g) for

mine the frequencies ng



any wave vector q and branch A, the dens%ty F{w) of phonon
states and the density of states F(q,w) for a particular momen-
tum g.

The electron-phonon matrix element between two plane-

wave states is, with

swir) = I W(r-R,) - W(z-R) ,

being the pseudopotential,

et

3. i(k-k'):

<k|oW|k'> =1L { d’r e LIW(e-Ry)-W(z-R) 1 (2-2)
%

Q —

where 53 is the equilibrium position of ion £, EQ the displaced

position, and Q@ the crystal volume. For small displacements
R —gg~may be expanded in phonon annihilation and creation opera-
tors after the transformation to normal modes is made. The

matrix element g,,,, for the transition between the multi-plane

A
wave states k and k' brought about by the phonon g\ is then

- - ’ . h/
L thet-n) | (2-37
V2MNwy 4o

—_—

gl(_k_'}‘ =

) x - ‘
2,' a, ,(_lfj')ar: (k) (E'+£n'_}—<'_£n)<l(:'+£n'I\S"‘T‘E'“__n—“

nn ~n' -n

where M is therionic mass and N the total nuﬁber of atoms in
the crystélﬁ This together with thé Fermi surface data is all
the informat?bn*needed to see how the phonons ﬁodify the be-
“haviour of tﬁe elccﬁrons; although .later ip will~ge rearréhged

in a more convenient ‘form.



- - -

/ ,\s -

Since the thermodynamlc properties and dynamlcal res-—
ponse of interacting particles can be expressed in terms of
the expectation values of certain comblnatlons of second
quantized operators, the Green's functions which are closely
related to such averages, are sufficient to desqribe the sys-
tem, Evaluated at a discrete set of points on the imaginary
axis, they give only}the thermodynamics, evaluated on the real
axis they give that and the dynamic properties. Actually it
is not so much the electron Green's functions that are re-
quired as the self-energies (Z), which embody the changes
caused by many-body effects. These changes may be determined

¢

self-consistently through the following choice of diagrams:

i
&€ ] [ - >

The first is the emission and reabsorption of a phonon, the
second the Coulomb interaction. NO“further_vertex corrections

" for the phonons are necessary, thanks to Migdal'’s tﬁeorem which
is connected to thenadiabatic approximation stated in terms of
Green's functions. The Coulomb interaction is of course not

so easily disposed of, but in.a superconductor a very eetailed

A

treatment turns out to be unnecessary, since much of the

interaction can be absorbed by suitable renormallzatlon(ss)

also the attractlve force,responSAble for superconducthlty, .
the electron~phonon interaction, is limited to a very small

frequency 1nterva1 (of ordervwD
Wthh the Cgulomb 1nteractlon,(wh1ch extends to frequen01es

-

the Debye temperature) over



of the order EF' the Fermi energy) can be treated as a con-
- N ) >

stant. In fact, in order to cut off frequency sums at W v

usually taken as 5 or 10 times the maximum phonon frequency

rather than E the Coulomb interaction below w_ is replaced

F’ c

by an effective interaction, which takes into account the omit-
" ted frequencybrange above W As mentioned éarlier, ;he Coulomb
interaction is nearly constant over this small interval, so
‘that a singlé'frequency—independent constant u; turns Qut to be
quite adequate. There is no k- or frequency dependence because

the effective interaction is instantaneous and very short

-

raﬁge; the l&%g range part being screened out. ‘The theory

is good enough to give an order of magnitude estimate for u*; but
since this is far less than the accﬁracy with which the elec-
tron~phonon interact}on is known, pu* is customarily fitted to
some measurable property. Since it is a pseudopotential, it

will depend somewhat on W and the method of summation, i.e.

. . . . 8 . . . . o
on the real or imaginary ax1s(7~). This situation justifies

to a large extent the soit of manipulation done later to.-obtain

numerical results. N
Returning to eqn. (2-3),and writing it out in terms of
the phonon propagator Dkkg,imn), the vertex”ebemen;-lgkk.llz,

~

the electron Green's function,-G(g,iwn) and its self-energy

a1

Z(k.,iw ), one finds

: _ S 2 L
Z(E,lwn)“— kBT § {ZIQEE.XI DA(E—E_,lwn—leJ
kima (2-4).

3

s 4 .
" - * ' J

- MGk iw )T

» . &



In this equation the electron Green's functions are
being evaluated on the imaginary agis at the Matsubara frequen-
cies w_, where iwh = imk T(2n-1) and the phonon propagators at
even multiples of inkBT. The Matsubara frequencies also déter—
mine the number of terms in the summation, which 1s truncated
for w_ > W . The phonon propagator here is not an unknown to

n
be found, but is identical to the free phonon Green's function

v .gA
Dy{g,r2} = 5 (2-5)

since the phonon frequencies are almost unaffected by the
supérconducting transition. The electron Greenzs functions are
greatly éhanged; in fact egn. (2-4) is a 2x2 matrix equation
with the diagonal terms corresponding to the normal part of

the electron-phonon interaction and the off-diagonal terms to

the gap. It can however be reduced .to only two independent

equations, which are, after the following definitions

\
G(k,iw )

111

{2-6)

[3

i(wk(n)—wn)l + iAk(n)Tl ~ (2-7)

—— o

11

~Z£5,iwn)
(the 1 are the Pauli spin matrices)’eqns. (2-8) and (2-9):

Ak.(m)

——

A, (n) = kT . L (A, (m-n)=-u*) — (2-8)
k kt,m XK S bp el +R2, (m) .
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3 Wy v (M)
&k(n)—wn = (ZnQ) kgT I A, (m-n) — “2 ~ (2-9)
K k',m = wﬁ'(m)+€ﬁ'+ﬂ&'(m)
These are the Eliashberg equations. Here € is the single-
particle enefgy measured from the Fermi energy and Akk,(m)
contains the phonon propagator:
(m) = I |g 1°D, (k-k',2mmik_T) (2-10)
kk' N kk'A A= =7 B
which can be rewritten as (see footnote, pg. 12).
B 2wdw 2 S ' _ ‘
kk,(m) = [ -5 3 {a P(m))kk, : (2-11)
w +w —_
m .
where ¢g = k-k'
2 _ Q 2
(a F(w))ﬁ, =L —— lgkk'kl 6(w—w£{)\) (2-13)

A (27)
is seen to be the phonon densffy of states F(k~k',w) weighted

by the effectiveness of these particular phonons for causing

wr

a transition between elec¢tron states k and k°'.

Equations (2-8) and (2-9) can be simplified in the,
® '
conventional way by using the fact that I(k,iw_ ) has very

little ¢ dependence, which allows, when the summation I 1is

k Q dSk' k' .
rewritten as J j de, the treatment of the upper k'
(2W) " '

[Ty

belongs to the top line, not to “k‘ (m) _as constants during the
€-integration. If the limits of 1ntegratlon are extended to

t «. (which is permissible because E, >> &k or Ak) equations

(2—3) ‘and (2-9) become
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- ds, 3 (m)
*
= 1 ) - — -n) - — -

A}—(—(n) kBT - J WK—'—T (A}i}i,(m n) 19} )/‘2 = (2 13)

= VouS, (m) +w’ . (m)

k k!
) dsﬁ, S§.(m)
m&(n) = wn+kaT % J TVZTT AES,(m—n) Vi > (2-14)
-— 4 g:\k’l (m)+k}\| (m)

It is sometimes more convenient to write these two equations

tir

in terms of 5&(n) AE(n)/[QE(n)E:

T~

~

lo (M) |3 () - as . By (m)
T T L T O it 2015
k a3 -
!3;<n>{ ds, sgn (w )
—_— e = e T -
Tk T 2n-1 + I j ?——'—;— kk' {m=-n) - (2 16)
B /1+ 2: (m)
;\!

—

The factor sgn(w wm) appears in eqn., (2-16)_but not (2-15) be-

I

cause Rk(n) and Ek(n) are even functions of n while Qk(n) 1S not.

These non-linear equations have non-trivial solutions

only for T <« TC. At Tc they can be linearized by setting the

—

Ak.(m) Or,zk.(M) under the square root to zero. The transition
temperature could be found by éxtrapolating the gap ik(ni to

the temperature where it vanishes, but in practice it 1s easier

to find TC as the temperatureawhgfe the linearized equation

dsk' Sk,fm)
A, () = wk T Z — (Y, (m=n)—n*'—— (2-17)
- }..(.. ‘B m J ]V}i.! ..k,_}i }:5“»;‘ (m) ! ~
i ' il =
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has a non-traivial solution. Here

i Ak(n) = w + “kBT & \k(m—n)sqn(wm) ; (2—18L
_ m ———
and
i dsi'
) ) -
k(m) [ jV 7 KK * (m) (2-19)
ol J .}.(.. —_l

1s a partial average of \kk" which can also be written as

:
Ak(m) = [ é—"*f (Q F(w)) (2-20)
A WL =
where 4
as, |
(PP (s)), = & (2F () C(2-21)
14 A E{_ - j Ivk' L e &' .

If an approximate solution in which the k-dependence of

E?(n) and ;k(n) 15 1gnored 1is desired, then equations (2-15),

(2-16), (2-17) and (2-18) become:

i%i%lii(n) = 2 (A (m-n)-p*) A {m) (2-22)
P - V/l+§2(m
?Q,(n) 1 sgn (wnmm)
o T oen-lloe Do (men) ———— (2-23)
(n)y = "k, T L {m-n)-u*) —%iﬁl— (2-24)
B }m(m)§

In this exprgssion vn is an even, not an odd multiple of 7kgT
as in (2-18). It should ke clear henceforth from the context
how the ., 1s to be interureted - always even when they appear
with > (m).
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and

~ 4R
= + . - -
w{n) ?n nkBT A(m n)sgnmm (2-25)

where the A (m) which are the average of X _(m) can also be

k
written as

Am) = } 2‘5"1‘”2 «2F () (2-26)
w +(x)m

&

with azF(w) being the obvious average:

v

as, ds, , , / aSy
IV}:I 'vk.l (O. F(w))_]i}i' ‘]“'—_"‘Vk“ . (2—27)

If the Fermi surface is spherical, then (azp(w))kk,
is a function of k-k' only and g purely geometrical identity

may be used to rewrite egns. (2-27) and (2-3) as

2 Q 3 m lg- £ (@) | 2
32n hemMk, A 18 - qr -
lq] <2k F
F ’ . :
(m is the electron mass, Af Planck's constant over. 27).
azF(m) is, like its antecedent_(azF(m)) therefore

kk'’
a phonon density of states weighted according to the effective-

ness of the phonons of frequency w for causing trgnsitions
between any two states on-the Fermi surface. The original
notation, az(mxf(w), reflecés this interpretétion, az(w) being
the weight factor,but bhecame too unwieldy when 2 or 4 sub-
script k's-were déd- nd funptionai derivatives were taken

.with respect to -it, hence the peculiar compromise azP(w) used

]

M ) yed
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Because the gap on the 1maginary azis 1s not directly
t

measurable, but 1ts analytic continuation on the real axis is,

L

the relationship is worth writing out. Singe iA, (n) and i&k(n)

K
are both Green's functions, (or rather integrals over energy

of Green's functions) they must satisfy certain spectral reélations

such as o

(2-29)

where p(ﬁ,w), a real function, is given by the difference in

.

= N

the imaqinak? part of G(k,Z2) across the branch cut on the

real axis:

It

2ip(k,w) = 1im{G(k,w+i8) -G (k,w=18)]

60 . (2-30)

2i ImG(K,w+id) . '

]

When a similar substitution is made for the phonon Green's

functions, and thé sums over discrete frequencies are.converted
<& . - : *

using Poisson's formula to integrals on the real axis, the

Eliashberg qguatians become

dsk, W :' Ak,(m') )
' ’EIU)ZE(U’) = 'V}ét . dw'Re ’ — : [ d.QK*_((U,_k_.:w',E’,Q)
o= ‘ R AVANTY -Ak.(w)
5- A
- p*tanh —2—} ' . {2-31)

~
ol "0
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[

w(l- Z (w))

dSk, W ( w".
'I—-‘r— dw'Re diKk (Q},k,u)',k',g)
' Vk' ) / |2 2 ¥ - - -
. = 5 (O w —Ak.(m ) .
3 & (2-32)

where K, (w, ko' k' @) (@’F(2)),,, [(n(R)+£ (-0 )

1 ! N 1
T w'—wtii~ ~w HFwER+FLS T w -w+Q—16

w'ru+R+1id
)] and f(w')

)+ (n{2)+£(w')) (
and n(f?) are the usual fermion .and boson occupatlon numbers.

Zk(w) and Ak(w) are related to the self energy of the

— —

matrix Gréen's function on the real axis by

Ty + w2y (w)A (w)r {2-33)

I(k,w) = ~0(3, (0)~1}1 + e, T4

a

Hence wz (w) and Ak(w) are therefore the real-axis analogues'

bf w {n) and A (n).

— —_—

Another diyectly measurable quantity is the free -energy

difference between the normal and superconducting states.
Being a perfect diamagnet, a superconductor in an applied mag-
" netic field B acquires a magnepic moment M = -B/4w, which will

_increase its free energy per unit volume by -

~—~

AR = B B = §—’I;HC . . (2-34)

. *

'When thls quantity becomes greater than the free energy dif-
ference in the absence of an applied field between the normal
nand superconductlng states, a transition occurs and the system
--sWitches . back ‘'to the normal state, hence the term Crltlcal fleld
(HC(T)). sane thgs f;eld has a nearly parabolic temperatuee l
dependenee:ﬂxreil superconeUCtors, the'detailslof a. particular

sytem are best dlsplayed in the devxatlon D(t) from a parabola~'

H 4T) -
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2

where t is tﬁe reduced temperature T/TC. As this equation
shows, the superconducting transition is second-order (since
HC(TC) Q"O), corresponding to a finite specific heat jump

at T_. Since H_(T) is linear in TC—T just below Tc, the speci-
fic heat difference ACV(TC) at Tc can be expressed in terms of
(dIlC/d’I")T by an obvious the;modynamic‘relationship which is

usually referred to as Rutger's equation:

_ ' 2, g
ACV(TC) = kBTC(dHC/dT)TC/4H . . ,(2-36)

The following discussion is largely based on a paper by

(79)

wWada . Hevfindsﬂphe,free energy difference between the.

normal - and- superconducting states by expressing in terms of
Green's functions the difference in the expectation value of

‘the operator g . ’

K 2 Mg+ Ho o + Hgo , (2-37)

where “0 is the Hamiltonian for the non-interacting electrons
and phonons, Hep tfAe electrdn-phonbp interaction and Hee the

Coulomb interaction between the electrons. In terms of Green's

functions,
<K> = k. T T tr{G(k,iw )c. T
BT, Gl do e, Ty

(2-38)
o o ‘ !
3 265,1gn?c(5,1wn)} + 2<§M>

where tr stands for the trace and Ky, is the ion kinetic energy.

.which must somehow be'eliﬁinatédljrom eqn. (2-38) in favour

" of electron Green's 'functions., 'This 1is dohe, using the so-called .

Sa
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Chester's relation(zo), another quite general thermodynamic
~relationship
K,, = -M(9F/3M)
1 T
" (2-39)
' oH
52 c
= o —— H ——————
4n cM oM

(here M is the atomic mass)

through which certain assumptiOns about the isotope effect

will enter into the derivation. So far no approximations

have beeﬁ made,; but néw, in ord?r to remove the unknown, the
free eﬁergy, fromvthe right side of egn. (2-38) and get a

closed expressioh,.it becomes necessary to aésume some sort-of
mass dependence fof the critical field. The obvious assumption,
based on egn. (2-3), that Hc « M_l[4, is only approximately true
because the Coulomb pseudopotential depends on tﬂe choice of

-

W which ié in turn propdrtional to the maximum phondn frequency.
It is also nedéssafy to assume that HC(T)/HC(O) is independent -
of M, another approximation Ehat\would be exact only if u* were

independent of M. With these assumptions, eqn. (2-38) becomes

C \ 2 ~
) wnwi(n)'!'EE K ~
BF = -N(0)k T8 £ - Py ¢ (2-40)
: - k,n wk(n)+§EfAE(?) -
where N{0) is the single-spin density of gtates'ét the Fermi R

surface, and the A means that the difference between normal
and suéérconaucting states is being considered, a necessary
' precaution because expressien (iFQO) would otherwise diverge.

To but"this difﬁerently,'it is impossible to split. eqn. (2-41),

- . . -
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(to follow) into normal and superconducting free energies.

Performing the usual integration over energy leads to

dSk .
N?g) - (nkBT)z T J T 9y -1+ 1 y -
. n Vk! . /f1+52£n)
- k

(2-41)

~O _~ <2
(wk(n) mk(n)/’l+é&(n))lsgn(wn)

—— —

"where Gi(nb which refers to the normal state, is defined as
in eq. {(2-18). | ’

It is sometimes useful to rewrite this, using eqn.

(2-22), as
as
k r¢ ds
AF  _ e 2 k. k .
N (0) (2 (akpT) 1vk|“|wnl( = - l)+(HkBT)2 z J[ IVFI
—!B /52 nm Tk
. ; l+Ak(n) =
S, ., -
' v&‘ {( L — ;-1)Rkk,(m—n)sgn(wnwm) (2-42)
ety l+3§(n) //1+E§,<m> — . a
Xk(n) ﬁk,(m) k
(AE§,(m—n)-u*)]-

+ = — —
v 1+5ﬁ(n) //1+E§,(m)

By using eqn: (2-29) it 1s possible to get an expression,

in terms of the gap on the real axis:

o ds ”
k 2
AF = N(O){ dw — Rel(1 + 2% (w))w - o
o M = /0252
0 —_ . ,.v ) —Ak(m}
. -
- o) o wlox? _w
ZE(A) VoW Pﬁ(»)]tanh ZKBT
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o
k

P

state.

with Z (w) being the corresponding quantity in the normal

Bardeen and StEphens(l4)

claim to present a slightly
different formula, but it is shown without difficulty (at least
on the imaginary axis) that the two are equi;alent.

Equation (2—382 can also be used to obtain the part

of the normal state specific heat caused by the electron-phonon

interaction through the free energy difference:

AF ~
T nkBT i Iw(?)-mnl (2-44)

which is /falid for both isotropic and anisotropic systems. .
This is equivalent to the formula quoted by Grimvall(QS)

on the real axis. If the electron-phonon interaction is ignored

then the normal-state specific heat of the electrons at low

1

temperature is Ce Yk _T where

n "B
2n2kB2,
<y ="-——§——-—-——N(0) : (2-45) //

-

-~

The simplest correction for the elect;on;phopon interaq;iég to
this formula is the addition of a factor of 1+A(0)ﬂt0/¥. But |
‘this is exact only at Tﬁo; ;;ZTﬁétion\3§??§§£é§§ion (2-44)
insteaé would replace vy byaa temperature;dependent quantity,
but the effect is small.’

| The discussion ¢of the normal state Qas'nécessary because

egn. (2-41) gives oniy‘the difference ACVECS-CN between the normal
and sugeréégéfcting state specific heat, Besgides the term

[

“en propor-

N

C o yﬁBT, C,, also comprises & lattice contribution CL

* . .



: 3 . . ' . . -
tional to T, which requires no renormalization and is unaf-
fected by the superconduéting transition.

from

. !

Figure 2-1 taken

Ref. 109 shows roughly the relative contributions of these

terms for a medium~coupling system, Sn:

proportionately larger.

C
_S_
kgT ' Cy -
§ kBT
r AC (T )
; kBTC B ]
s I
1 Lq
- : k_T
i B
: C
en
C i
“es kgT
— kT e
C_ |
2 Iy L
- 2 . >
To T

Contributions to the specific heat

.
-

Fig. 2-1
For stronger couplind‘thé lattice contribution is

Sinée C is unchanged by the tran51t10n‘

the guantity usuallj calculated and compared with exPerlment

is

= - \ ! N l
es CS CB v AC + Yk T '
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This section closes with a brief discussion of BCS

»

theory, which is a special case of the strong coupling theory
expounded here. It is” appropriate when the electron-nhonon

coupling is so wedk that retardation effects (which required the

&

use of the phonon Green's function) and quasti-particle damping

-

(corresponding to an imaginary part of Ak(w)) can be ignored.

These criteria are not quantitative, but in practice it is

.
-

not difficult to classify a system as weak or strong coupling;

in Figures 5-5 and 5-6 for example, Nb_Sn, Pb, and Hg fall

3
into one group, Nb, In, Sn, Tl and Ta in the intermediate coup-
ling group, whilg Aly’for which BCS theory is appropriate, 1is

an extreme sé? aparct fromiéll the oéhers. The value of X (0)
(cohpafe Tablé 5-3) i's often.enough to classify a supercondqg~
tar.. “

-The criteria just mentioned permit not an analytical
solution of the gap équétions written here but the use of a
simé;er Hamil%onian, in-which the coupling strength is repre-
sented by-a-single parameter N(0)V, N{0) being the usual density
of states and V a measure of tﬁe.attractién between the
electrons. N?hé p@opoﬁ cqt off is taken care of through a
vagueiy'defined'"tQpical phonon ﬁ;@quency", of order wD;
.the Debyé tempéraﬁuye;'which allows TC and H to be
écaied up gﬁd down as in -

. kR | 1 -
' N(O)V

Y - ) = . N _
| kT, = 1114 wp e - (2-46)
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. Y
N(0)V

1

Since the combination wDe

tities, this theodry predictS‘tﬁ?t certain dimensionless ratios

appears in all calculated quan-

should be univgrsél. The chief ones are D(t), CeS(T)/Yka
(which inclédes tlHe specific heat ﬁumé at TC, ACV(TC)/“{kBTC
(= 1.43), and Y(kByc)z/ch(O) (f .l68fi Others such as
(TC/HC(O))(dHC/dTi&'c are defivable from these. Deviations

from these ratios are to be interpreted as a measure of the

coupling strength. One more BCS relation will prove useful:
£y = Vg/TA . (2-47)

Here VF is some avefage Fermi Velocity, A is the gap at T=0

(v ZkBTcz, and 50 the coherence léngth, the distance over which
the "‘electrons are correlated. This completes the listing of
formulas for’later réference. .
v/L‘

2. Elastic Impurity Scattering and Anisotropic Superconductors

The difference in the properties of a dilute alloy

4 -
L]

and the pure metal are in general expected to be lipeaf in the
impurity concentration.. When this does not happen, when there

is something like saturation occ?;ring, then the impurities

are changing the properties>of the system in some more funda-

‘mental way than just”adding or subtracting a iittle to the

parameteérs ‘that stlll determlne the properties of the metal.

Such is the case when non-magnetlc lmpurltlcs are added to an

et ™
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anisotropic¢ superconductor. The behaviour of the critical tem-

T

perature is typical:

ca ~

Fig. 2-2 Valence effect and mead‘free,path effect.

”~
.

leferent 1mpur1tles in the same host cause & change
in T that may be’ separated lnto a llnear part dEpendlng on the
ch01ce of the lmpurlty and a saturating part which is approxi-
mately 1ndependent of the partlcular 1mpu;1ty when plotted
agalnst 2 the mean free path Thellnearterm, called the

valence effect because its sign is nearly always determlned by .

~ the valenge dlfferenc between host and impurity, although

ather ﬁéctOISfmay in'Iuencewlt, is not difficulge to understand.
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Impurities cause certain gross changes in the host; the number

of electrons may change, so that the Fermi surface-is altered,
theiphonon spectrum changes if there is.a lqrge mass difference
between host and impufity, plus more subtle effects. The other
term, called the mean free path effect becausq saturation occurs
when & >> 50, the coherence length caﬁno? be explained in this
way. The fundamental change first suggested by P. W. Anderson(lo)
that it reflects’is the change in the pairing, from é cérrela—
tion between |kt> and [-ki> to ; correlation between an eigen-
state of the alloy and itg time reverse. These two states
cannot be labélled with momentum any more because they are
linear combinations of states from all over the Fermi surface.
Tpis mixing of states is the cause of the iniéial,drOp, for
when -the electrogs are being scattergd all over, thé& cannot
takefad&antage of ghe ani;otrOpy as they do in the pure metal
to enhance their.éttractive interaction because these electrons

’

see only an isotropic averaged ihteraction. This last idea is
important enough to res;até'in di}ferent words: When the in-
"ﬁeraction in an anisoérOpic superconductor is replaced by the
averagéd interaction, TC,lHC(O) and other indices of coupif%g
strength drop, typically‘by a few percené. The aVeraged
superconductor is what will be termed the correspOndlng iso- .
tropac system, and its propertles w1ll be labelled with sub—
script i, as opposed po gubscrlpt a fo; the purehanlsotroplc

_system. The phrase "correspondlng lSOterlC system” 1is brer ‘

ferred here over 'the more widely used "dlrty limit" because lts
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béhaviour is in theory and in practice determined by solviné
the isotropic gap equations in which nothing referring go im; "
purities appears, r;ther than the anisotropic equyations with

a lar impurity term. ©Not even in pringciple can the latter
equaxtions be solved because the eigenstates of the impure Sys-
tem are not known. The only possible approach is the usual
procedure with an alloy, to do a configuration a%erage, thus
recovering k as a conserved quantity and then to'treat the
impurities as an additional term in the Hamiltoﬂian or self-
energy. .There is more than one pOSSlble way of doing thlS(Gg 108)
but the method followed here is that of Markowltz and

Kadanoff(36)

, who providé§ not just a suitable set of diagrams,
but also, with the help of a model interaction, an analytical
ekpr%ssion for the ¢hangeain TC. The va}idity of their mode%
will,be discussed in.considerable detail in Chapters 3 and

5, but their expression for the self-energy should be discussed

first. It is simply . Y,

. N
B R R & I’ b i i
I = . LT TN - {2-48)
] s .“1.*. ’ Y

s >t r
7 v

which treats the 1mpur1ty scattering on the same footlng as

.

the‘attractlve 1nteractlon that causes superconductLV1ty.
That does not seem qulte rlght, and there is indeed a prlce

to pay, namely t appearance of an 1maglnary part t6 the gap

on the real axis evan when the electron-phonon interaction is
(67 2%)

very weak ~and|no quasi-partlcle damping by phonons }s
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happening. But this 1s only to be expected when the state i&»

L4

being used as labels have finite lifetimes. Markowitz and
3

Kadanoff consider other diagrams linear in the concentration,

such as

:

v

but dismiss these as small and belonging to the valence term.
The smallness may be proved by an adaptation of Migdal's proof,
while the justification for relegating all other contributions
to the valence effect is provided by the fact that the one
impurity diagram shown earlier is sufficient to wash out gap
anisotropy and saturate TC ?t Tci' They manage also to relate

the difference T__-T

a Tey FoO the amount of gap anisotropy, but

that is more a feature of their model interaction, although
their estimates of both quantities are of the right order.
Improéing these estimates, connecting them to a realistic
electron-phonon interaction, and extending them to other éhermo-
dynamic properties is one of the major goals of this thesis.

The emphasis is however very much on the thermodynamic proper-
ties, which are much easier to handle, as a comparison of

eqns. (2-31) and (2-22) makes plain. One mgré term in»the

self-energy hardly complicates eqns. (2-22) and (2-17):
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- ~1
w, (n) = w_ + crn1, “sgn(w )
k™' k nto (2-49)
— + kT é AE(m-n)sgnwm ¢
Bkim) (2-50)
+ CT-]lck,/kBT ) =
== %y, (m | )
"1‘, = ¢ |aw(k-Rk') |2 . ] (2-51)
Tkk a TR

Here c¢ is the fraction of impurities, and R is a sum over group
operations appropriate to the system. A single Fermi surface

average of Tki' defines T;l, and a second average gives T_l,

—

ki' instead

of IAW(E-ﬁ')i is intended to emphasize the way crystal symmetry

the inverse of the impurity lifetime. The use of =z

credtes an effective impurity interaction much smoother than .
the actual pseudopotential. This point will.be d%scuesed more
ieter. | ' A ' . | l

As a quick and non-trival illustration of the convenience
of working on the imaginary axis, consider the expeeted null
efféc@ of elastic impurities on an isotropic system, often
,called‘Andersen's theorem. When eqn . (5—50) is rewiitten in

~

%
terms of A(n), the 1mpur1ty;term, llke A(OL cancels from both

s;des. The next chapter will have more SL nlflcant changes to
- - . >

show.

~
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- o ' - CHAP.TER 3

2 L3

THE APPLICATIO\I OF FUNCTIONAL -DERIVATIVES TO ANISOTROPIC
IMPURE SYSTEMS
Tﬂis chepter covers a range of @iVErse topics, with

the common thsead being the effect on thermodynamic quanti-
ties (maiﬁly TC) of infiﬁitesimal chéhges‘in the electron4‘
phoeon interection and the’ amount of;elastic iﬁgurity scat-
'ter;ng. Section 1 is devoted‘to isotroéic systems ena is
largely a review pf“ﬁork done bygpreeious authors on the)subﬂ‘
ject. In‘sectlon 2 these methods are cenerallzed to anlsow\b
troplc systems (a far richer field) and 1n sectlon 3 anolled

t

to elastic scattering from non—mégnetlc'lmpurltles.

.

1. Functional Derlvatlves in Isotr0p1c Systems

It is of great interesg to know how the changes 1n thev

electfon phonon interaction or the phonon snectrum induced by

4 -

allaoying, oressure or phase . changes wxll affect T and H

To study these changes, the naturalfmethod lS to add an ‘
1nan1€esmmal change 6a2F(w) or SF(w) onto the orbglnal quan-'
tlty and obtain the resultlng change 6T or &H . The rates

of change 5T /5a F(w), GT /GF(w), 5H /6a F(w) or: 6H /6F€w)

are the functlonal derlvatlves. Thelr functlonal forms will

. &

depend on the type of cnange made in azF(w) or F(m) and

I

ince the.

_solutlonnof the gap equatlons appears exp11c1t1y 1n the func_

-~

4

28
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tional deribat;ve. In this discussion only two types
'of infinitesimal chaﬁges a?e considered- the delta functlon
of .infinitesimal weight centred on _some phonon frequency Wy v
waqd the 1nf1n1te51mal shifts of all the frequencies by some
. amount §¢QA. The former reveals the relative.importance,of
different phonon frequencies, wnilé the ;gtter»shows the effect ~.
of. gross‘chaﬁgés in F.(w), such as those causednby the appiican
tion of"ﬁressuie, or the effeot of a drop in a sinéleephonoh‘
frequency associated with phase transxtlons. |
The 51mp11c1ty of the functlonal form of- the functlonal
derlvatlve on the 1maglnary axis and the faé%‘that the solutlon‘
ﬂof the gap equatlons is requlred fcr its evaluation implies
that the-lmaglnary axis is the more natural place to work. WIE?
addition,'the symmetry'of‘eqn.‘(2—24) .in the 1ndlces m and n
makes a furt?ér slmpllfleatlon p0351b1e. Thls is the tré%sfor—
mation of aqn. (2~24)tx>an elgenvalue eauatlon w1th a symmetrlc
‘jkernel, alldW;ng the perturbation methqu appropr;ate.for
Hermitian operators to—be used in gvalgating the fuhcﬁionai’
deri%ative.f This transformatlon, first used by Bergmann and
(15) ' o

Raiher 1s “the el;mlnathn of E(ﬁ) in favouf éf

14

A (n) ',A(n)/(c + lw(n)]) L A3
sp.ﬁhat-eqn.:(2r24) beco¢¢s~'
mnlw(n)l

- ) o * s D
xDAKn) =:j¥BT.i_(A(m-n)~u - kaT - )A(m) (3&2)

For systems w;th magnetlc lmpurltles, p(T) is the pa1r~break1ng.

.parameter and as such has phy51ca1 meanlng Here 1t‘ls used AQ

. 7
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for mathematical cenvenience only. The A(n) just defined is
clearly different from the one discussed in Chapter 2, but
this should.not create confusion because the only solution of
egn. {3-2) with phy51cal meaning is the one w1th zero eigen-—
value at T At a given temperature egn. (3-2) will have more
than one eigenvalue. The eigenvalue that passes through zero
as T approaches T is the only one of lnterest- henceforth

o Wlll always refer to that partlcular one. In fact T could
be deflned as, the max1mum of the IOOtS’(lf .any) of all the
"elgenvalues of eqgn,; (3—3). _It 1s‘the change 1nnthat special
, eigenyalhe’which yieldsrthe:fﬁncﬁiohal_derivative? From
first order perturbation theory,

vt ek BmEm /L 5% (n) (3-3)

8T
' C m,n e n -

ci= ’ )T
where BK "is the change in the kernel of eqn. (3=2) evaluated

at’T caused by Sa F(w), the A(n) are the solutlon of egn..

(2-24), and

B0 . BB (n)/z 3% (n) (3-4)
- . T . :

N C m,n e . n .
The minus sign in egn. '(3-3) is best explained by

the following.diagram:
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. % . P -
Fig. 3-1 Behaviour of p(T) nedr Tc. The dotted line
is later shown to be impossible.

. The transition temperature of the system with the

1nf1n1tesxmal change. added to the kernel is’ the paoint where

*

the new elgenvalue p.+ 5p passes through Zero. Hence
. ) - )
? = (aT)T §p. Later lt WLll be shown that (ap/alyT . O:.
N Since the partlal derlvatlves are always evaluated at Tc’

that subscript w1ll henCeforth be dropped Table_S—B lists values

for 3p/9T shOW1ng it is 1nsensmt1ve tO’large différenCes in azF(w).

‘ It is" convenlent at thls point to prove a property of
p that will prOVe useful in sectlon 2, nam%}y that p .is the
\ maxlﬁum elgenvalue of eqn. (3 2) at T = TC; This properéy
is.not,obvious; there cou;d be an.elgenvalge of eqnl (3-2)
above p that is a positise iﬁcreasing’quantiti for T > Tc
{such as\théﬁaotted‘line in thexpredeQLng'diagfaﬁ). A forﬁal
proof requires, a trahstrmatlop suggested gy rainer (19°) First

rewrite eqﬁ. (2-24) as
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B Lom)| - mk T (A(0) = u*)]
= 7k _T_ I (A(m-n) - u*)a(m)-.
BCm?gn
Defining ﬂkBTCQ(n) ES [IG}n)] - ﬂkBTC(A(O)—u*)]

and g(n) = ¥ w(n)A(n), then this equation becomes

s = p Almon)opx
AR /) @ (m)

It is convenient to introduce an eigenvalue E(T) while

g {(m)

letting T vary and to- replace u* by a function u(T) which has
a constant value u* below some.arbitrarily defined temperature

above which. it decreases to zero as T =+ <,

-

N

(A (m=n)=u(T))

E(T)g(n) = I g (m) (3-5)
o mAn /5 ) @ () ’ AN

P, - ]

Analogously to ean. (3-2), the maximum value of T for
which there exists an eigenvalue of_uﬁity is TE. Unlike the
situation with eqn,'(f-Z)p it is possible to prova that the

maximum eigenvalue B, at T, is unity, because the kernel of

egn. (3—5)'is"completely\continuOus (q} compact) ~ it is
obviously bounded and goeé to‘zero asﬂT';-ﬁ,b?cauée as T - w;
Vn#0) « T 2 while @(n) » 2n-1. Hence a well-known theoren 106!
"about completely continuous kerﬁeis can be applied, which

statgs thatiéhe only possible limit poing of the eigenvaluég

" is iero, ie as T-J‘mh all the E(T) + 0. The desired‘resu;t,

that r is the maximum eigenvalue of egn. (3-2) at T now

,'\-‘



folléws trivially. Suppose/ there were an eigenvalue E' greatex
than unity at T;. Then sin E' eventually falls to zero, it
must pass through unity at’som temperature T' greater than
TC' implying that eqﬁ. (2-24) has a non-trivial solution at T*'.
There fore unity is the maximum eigenvalue of egn. (3-5) forf$

T = T_ implying that for any function g(n),

(A(m-n) ul>2 5 §(n) /s g (n) - (3-6)

m#n (@ (m) & (n)) n

1> “kBTc- z
Rewriting egn. (3-6) in terms of g¢!(n) = g(n)// w(n) yields

0 >~ L |$(h)lg'21n) + Tk T I (A (m-n)zu*)g' (n)g' (m)
. n , m,n

with eéﬁality hold?ng fér g'(n);= a(n), which establishes that

p (=0) ,is indeed the maximuf eigenvalue'at Tc of eqﬁ. (3-2),

and is therefore stationary with respect tokvafiations in A(n).
The next result to be,proved is éb/BT < 0. Since the

ma;imumieigenvalue E, (T) is stationary with respect to vgriétions

-

in g(n) and 'is a decreasing function of T at'Tér

A

S9E ‘ S ' *
2 M, , 3 A(m-n)-u
0 >Z g7 (n) (55) =, I -g{n)g(m) = {— — }
n IT "To “nyn 3T i amemn 2y 1
‘ . . m#n , ' ' ¢ |
- 3 A(n)A(m) ;; (k(m*n) W . T
em'n . ' . -
2L p (meny-pr) —SmBn) 6 (n E—E s/ S ,aw
Z - T
~“ mn w ( m(n)
" m#n ‘ Vrg(m)m(n) | |

In going £0 the .second line, éhe identity g(n)/Q @(n) = A(n)

L f
-
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was used.es The second term may be simplified using the fact

£ (Am-n)-p)E(m) = &(n)A(n)
R#EN .
so that it reduces to *
.72, 3w(n) _ _ . 72, @ {w(n)]
i A ) =55 = ~ﬁ A () 35 nk T )

. ‘
Combining the first and second terms gives

0> % "B(m)A(n)
m,n

- - w(n)
{A(m n)-u* 5‘ lk_B—'Y"—L}T

BT

Comparison with egns. {3-2) and (3-4) shows that this is the

~—

desired result. L

The mathematical formalities are out of the way, now

v
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the tools can be used to see how azF(m)“and F(w)y influence

T..- If GazF(w) is a §-function at frequency Wgq and weight g,

‘the effectiVeness of the different frequency ﬁa;ts of-angw)

for.enhanciﬁg T, can be.obtained from egn. (3-3):

C 2w .2
GT = e(ap) lnk T )

BTa 5 g (E(Q)E(n)—a (n)sgn(wnwm)Y/Z Ez(n)

» +
. m,n wP W

3

Some plots of 6Tc/6a?r(w) are shown in Fig.

. It is easily seen that the’curﬁes' for dlfferent

superconductors have almost the Same shape w1th a maximum near

wo"s 7 kyT_, the difference in scale being due almost entirely

-

n

i

5-3..

to dlfferences in 80/3T The unlverSallty in the shapes is

almost certalnly due to the fact that A(n) A A(l)/(2n~l)

for small n, and approsches some negative constant at large n’

b3

(3-7)
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" for all supefconductorsﬁ Slight deviations in shape between

weak and strong coupling curves are probably due to

the inadequacy of the formula just guoted to describe strong
coupling systems. For strong coupling systems, thé maximum in
the'curves could be explained by gssuming that the dominant
-terms in the sum are those with |m-n| ='l (the m=n terms
cancei), SO that.GTé/Sazﬁ(w) would be proportional to

2 2 . o _
wo/(m0+(2nkBTc) ),‘whlch.does have a maslmum at Wy = 2nkBTc,

'bﬁt the assumptioq does not” hold so well for weak coupling
where E(n) decreases more slowly, and it seems necessary to

|

to invoke the follow1ng phy51cal explanation given

(107) |

by carbotte An 1on_v1brat1ng with a frequency 7kBTC

moves through a quarter of its period (ie from equilibrium
toits maximum displacement) during the time an electron
‘stays within a cohe?ence length of'it; thus 7kBTc is the op-
Eiﬁum'f;eéueggy fbf the lattice's poifrization reéponsg_

to the electron. But this pbla;izaﬁion is jﬁst the origin
of'tge_éttgactibp between electrons that leads to superCoﬁduﬁ;
tiyity, therefore 7kBTC'is the best frequéncj td énhance,

. o Looking ahead to anlsotrOplc systems, and back to -
Andersonf;!theorem, one flnds that the really 1n?erest1ng fea-
ture of thése qurves. is thelr llnea{;~y and p051t1ve smgnlat
low’ frequency.' It .seems plau51b1e that phonons of very 1ow
:‘_frequency (the only. ones that cauld be exc1ted thermally) would

dlsrupt the palrlng 1nteract;on and therefore the functlonal

@

. .derlvaplve a; small wo should be gegatrvg. :In fact,’ thg lqwest.

-
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frequency phonons play no role whatever, since they contribute
significantly only to A(0), which cancels out of egqn. (2-24).

Bergmann and Rainer(ls)

supply a physical interpretation;: to
the electrons, the very slowly moving thermal phonons, with
their low energy which makes the-electron-phonon scattering
nearly elastic, are hardly distinguishable from static latpice
defects and therefore by Anderson's theorem de not affect

T.- In fact, they were able to prove strictly that for u -0
6Tc/6q2F(w0) > 0 at any frequency. If u' f 0, no inequality

could be established, but all systems studied had positive

definite functional derivatives. " C .

For future reference, "the coefficient of W, in )
lim ——5"2~—- is requlred In princiole, this coefficient
w *0 Sa F(m )

could be obtalned analytically by subs

tuting A(h) = 1/|2n-1|
T Jl - -

'in eq. (3-7), but in practice it is more egsily obtained from
Fig. 5-3 and Table 5-3. Thanks to the un ve;sel shaﬁe of the °

curves, the coefficient is véry nearly the same for all materials,

-

The resulting expression is

: Sp n mO -
lim —f—— % .09 —— . (3-8)
w040 Sa F(wd) ’ B c

The existence of a maximum in GTC/ﬁaZF(w) suggested .

to C.R. Leavens that it is possible to construct an azf(m)-

5

of optimal shaoé for meximizing T . Such a construction makes | .-
sense only lf it is Subject to some constralnt - for example

egn. (2 24)tr1v1a11y 1mplles that under the transformatlon

A

«
L}
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o?F(a) - «%F (xw), T, > Tc/r,so'that T, could be increased 1\_/>
indefinifely. wThe constraint Leavens chose was to'keep the
“following quantity fixed; ?
o
- 2. .
A = J 6] F(w)dw . (3"‘9)
o

- This leads to an optimal spectrum of the form

aZF(w}.= AS (w - w;) (3-10)
and a least ugper bound 6h Tc’ The optimal frequencylw; . .
is a function of A gpd p*: S )
* *
w, = 1.75 A d(u ) (3-11)

E

where d(0) = 1 and d(p*) decreases linearly to about .5 at

u* = .20. The least upper bound is

N . .
’ * .' ’ .
RyT_ < .2; ?Fg ) A (;-12)

where c(u*)’falis from unity aEfu*'='Q to .65 at v* = ,20

and equaiity hoids for Ehe delta~function spectrum eqh (3 10)

He also found that for azF(m) near the thlmum shape (le w1th ff
A (0) dev1at1ng from the optimum value ZA/wE, or with airec— |

tangular azF(w)) T remalnza Very close to its least upper
bouhd so that his result is of practical use even though

‘ o F(w) of real materlals are nothing like delta-functlons.‘
It m1ght seem that similar 1nequa11tles could be obtalned by

2
constralnlng ‘other lnteaer moments of, o F(w), spgh as the.
|

1
+
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-

more accessible A (0), but Leavens showéd.that with the
exception of the first moment, proportional to tﬁe McMil%an—
tHopfield parameter n, (which turned out to be releQant only
for systems with unrealistically large X (0)), the resulting
optimal spectra were unphysical and led to meaningless in-
equalities for Té. The paramount importance of A and its
inequality- is most convincingly displayed in Fig. 3-2, which
shows that all exéerimental Tc for which data was available

satisfy egn. (3-12) and some in fact lie just below the least

a2
¥

upper bound.

' The position 6f’§he optimal spectrum at such high fre-
guency appears to contradict the experimental result‘that T,
in certain strong - coupling alloys increases as the composi-
tion approaches the critical valu;gfor a structural phase
transition, when it is believed that one phconon softens con-
siderably while the other phonon frequencies shift but‘by a
smaller amount. Tg examine thiskeffect,;consider the folldwing

* t V]

infinrtesimal change -in the phonon frequencies:
. . ! - T,

g, I e (3-13) -

" (This particdlar‘variatién was cﬁosen instéad of a delta-
funcfibn added to F(w) becausé of the‘complicatiéns'caused by

i t?e ncrﬁglizatién condition on F(m)l In addition this gives

a’bettertdescription of structural phase transitions which

occur when the freégquency of one phonon gA drops abruptly.f

A one—plane—ﬁave approximation can be Qsed here f;r simpliéify

. without changing the conclisions to be drawn.
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%)

.86c{p*)

'40 - . :\’: - .
-] = -F
*
i 1 ) 4
% 3 10 15 20 b
pu*

Fig. 3-2 The function c¢(u*) occurring in the

’ relation kBTc<.23d(u*)A is shown as<§>'
function of u* by the solid curve.

The open circles (o) are calculated
values of c(u*); the solid circles (@)
indicate experimenfal values of kBTC/,23A
and p* for all the materials for which
this data is. available. This figﬁre

is taken frdh Ref. 33.

s

-
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‘('
Then from egn. (2-28), the change 1in aZF(w) is

3
.2 d 2 - A 2 3 -1
Sa“F (w) = TE? W (q) i (g-e” (@) 6w9A6(w~ng)(§J w ) (3-14)

‘gl<2KF
P

where (&% w_l) is to bearegarded as an operator, and tﬁe pro-

portionality constant is related to FS constants. To see why
an operator is necessary, consider for an arbitrary function

T(w) the integral

-

S{w~w . ~Sw )

c 2 O fadg 2 A2 Qg
deT(w)oa F(w)=JTE$ W (@) T (gre (@) deT(w){ I
~ A . g gA
lal<2kg : .
5(m-mgﬁ) , -
- ) .
wgk
The integral over w is simply T(ng+6wgk)/(ng+5ng?
= 3 [T(w) ; .
- T(ng)/mgk— 6ng 35 (—5——)mgA. It followsuthat o y
’ Sw o )
3 Yqa g
a°q , X 2 94 4
S§x(n) = - 1 I§% fz(q) § (g-e” (q)) (m2 +w2)2 (3-15)
lq‘<2kF . ' QA n
and ' o
‘ Sw ,
.3 Y )
d 2 A 2 9r
A = ~ .T—%=w (@) T (9. (q)) . (3-16)
{ 9 y - -4 mzk R
laf<2k o ) 4 Z

~

= v

Although Bergmann .and Rainer proved it rigorously only .
. B ’ - 4 Y
for_u*=0, thqif numerical reSults_make it plausible that when-

A . .o : .
ever.éy(n) > 0, 6TC > 0 as well. Therefore eqgn. (3-15) '

fTheir.prOOf_was based on the assumption that 8A(n) and &(n)

were positive and monotonically decreasing functions-of n.

v = ’ - . . -

P

’ . .
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implies that for 5w3k < 0, Tc should [increase. There is no ’//«

contradiction with the previbus resultg, because eqgn. (3—16}f/
shows that A increases as well. It is\true that X (0) also
changes, possibly in a direction awaf frgm the optimal value,
but in strong coupling systems A is the mofe important parameter

)(56)

and T, is relatively insensitive to A(0 . ' some caution

should be used in applying the preceding reasoning to amorpﬁbus

systems, where the functional form of azF(w) may be different(49),

and it shoﬁld also be kept in mind that the pseudopotential and
the phonon frequencieé are not fully independent, as is im-
.plicitly assumed in taking this functibnal-derivative.

In closiﬁg this section two functional derivatives by-
passing p altogether w%ll be discussed. To obﬁain 6Tc/§a2F(wO),
%tandard first-order pérturbation theory appiied"to homogeneous .
F;edholm équations of the second kind with Tc playing the réie
of an eigenvalue, could have been hsed. This procedure was
in fact carried out by Appel by taking the real part of both
51des of the- llnearlzed form of eqn. (2~ 31) Evaluation of |
the functlonal derlvatlve requlred solvxng not just the re-
sultlnquntegra; equatlon but its adjoint as well, a difficulty

- '

which again underlines the advantages of working on the

imaginary axis. However, his method does allow the 1nf1uence

of thermal and virtual phonons to be separated, as will.be

P Epo——

shown in Appendix IV. The second functional derlvatlve where -

p plays no part is GHC(Tl/ﬁa F(wo).. Since AF is stétiona;y‘

with respect to Aln), eqn.12~42) immediately'gives‘49)
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U S i
da"F(w) = L5(w~w0):

QHC(T) _ A=

_ SAF
sa’Flwg)  He™ 8a?p(u )
wher?
1 ; rf ,—— _ . )
—3E— = N0 (kT ) : L (1-/" 1452 (n) VA+E2 (m)
;Sa Flug) - noem /gﬁnaz(n) //l+32
- a  sgn(w_w_) 2w o _
; + B mEtm) g — (3-17)
M : W |
0 n-m

. ‘r
Because the terms n=m cancel out of this expression, there is
0»;
'thermal phonons play no role here either. The shape of

no term prcportional to w hence A (0) and the low-lying‘

SAF/éa F(w ) .is smmllar to that. of ST /Ga F(m ) in being

linear at small W In” the next section the 51tuatlon Wlll

turn out to be guite different. , :

2. Functioﬁal‘ﬂerivatives in Anisotropic Superconductors

In this ~sectidn, all the’ methods dlscussed in sectlon ‘1

w;ll be. generallzed to pure anlsct:oplc systems. Deflnlng 3,

“k
and p as in eqn. (3#2),,and subst;tutlng in egn. (2- 17)
obtalnsl_ ‘ | o - . , -
\ . .das,, . . I
B (n) = -z - * o
- kP eete /) T—;TT{Akk'(m m) =yt k'/kBTC
T L NEs LT |
- :-—;' 3 :"[ .. A’ | - 3}
§ (K i‘)Jmnglngn)]/ﬁkBTC}Ak’fm) ; L 308

*In this sectioh,. references toegn. (3-18) will assume

-

c=D. As an immediate illustration of the power ofuﬁhe,methods .

L
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'outlined in the last chapter, a rigorous and simple préof 1s
presentéd of the fact that an anisotropic superconductor has
a hig@ef'Tc thn the correspoé?ing isotropic §¥stem. Consider
. the following infinitesimal change in (azF(w))kk. which
leaves a%F(w) unaffected but augments the aniég;fdpy (Note

that‘tpis is not a delta~ function - the interaction is
being changed at all frequencies): '

Gfazf(w)kk.)é ej(a%ﬁtw{lkk. - ﬁzF(w)] . {(3~19)

‘Then the change in the kérnellxkkt(m—n) aof eqn. (3-18) is

. . ‘ ) -f‘sk (n)l
) =k (k=k') —_—
. EkaT {“‘5}_:_' (mhr‘l‘) u*-8ik-k')8 TR ]

<[5kkn)[>i

. A,

B e w8 ek D Sy 1)

where < > denotes an'FS average, so that

.
)
o . '

<y (n) |>

——

vOfek“T by fi<AR(nP<AEJm)>A(m’n)-5mn

2Ei}n)5}
Com,n - -

nkBTé

H ..~ _2‘ ] ‘, . . . “-I \.‘
‘ o ~/Z,<Ak(n) . o e - o {3=20).
o S : = e e T

.3The‘firs£ term vénishes becéﬁsé‘gk(ﬁ)qis the solution
© of egn. (3-18). ‘Sihée}<di(n)>~3 <Akkﬁ)>2, egn. (3-20) becomes
. \’f— - B . + , ' v,

—_— N
. PR L
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Sp - . ’ N
> - 7k_ T Z {<A_(n)XA i{m)>X(m-n)-5__<|&, (n)]>
6(a2F(w))kk. - BCmn K _ 51 : mn Uk
el -2 <2
AmkpT ) <Al€(n)f}-/§<A_}g(n) >
| dsk as, . I | L o
= ~nkBT !VkI |Vk‘} <AEQQ:KAE(m?>K§£,(m-n)/i4<A£(n)> : (3-21)

48

But <Ak(n)> is not the solution of eqn. ¢3-18), whose m&kimum
eigenvalue is zero. ' (The proaf for 1sotrop1q systems can ea511y

"be generallzed by defining. -

(\. g}_g(n) = AE(.n) fc"ﬁ_k_(n)| - 'rrkBq?cdi&, (n)'(A}_(E, (0)~—-u*)>

-

——~
o]
S

1

Fglc_(n)/ ('A'E(n) ﬂkB‘Pé)“lz

's0 that no terms independent of I'will appear in the numeratdr

of the trénsfefmed equdtiod written in terms of Iy ? ak and u(T)).

< Therefore 6p/6(a F(m)) and so 8T > 0, with

kk‘ 0.
4equa11ty holdlng only for 1sotroPlc systems. Analogous

reasonlng, maklng use of the fact that AF, llke p,is stationary

with respect to variations in Ak leads to the concluslon that AF

p—

"can also be 1ncreased by augmenting the anlsotropy accordlng ta’

-

eqn. (3-19). SAF, the expre951on obtalned by substltutlnq

E(lkgﬁnl—k}§3) fo? Akk.(n) in eqn §(2 42) is : R | .-

N , - . a

1 - -

wb&.
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-eAF -E(nk T) N(O)Z Sgn(m W ) { [<- >< >~l]A(m—n)
nm ¢/1+ Ak(n) /fI% A
Ak(n) Aﬁ(m) )
+ <o T >< —> (A (m=n)=-u*) }

S m V1R

where AF* I AF - 27k_TN(0)Z]w_| (<——=——>-1) appears for the
) B . n -2
' n l+A (n)
same reason as the zero in eqn. (3- 20). The remaining terms

can be expressed as

" ds, ds,, .
-e(wk T) N(O)Z JJ — "i{sgn(wnmm)_~

am J) VK| |VK _ .

: L e N L L'A&(n) 4, (m)
< . >< >_;]kkk'(m_n)§: e >
e Biem) S Elm T N/ Rl {1ER

r_(:AEk—r (Iﬁ"n‘)-u* )} .

which must be less than AP* since eqn.l(é—4€) is stationary

"with respect to variations in Ek(n); Therefore §AF > 0.

——

In these prcofs; where isoc}qpic and anisctrOPic supef;
conductors are belng compared it éeéms at first thought mo#e
natural to start Wlth an lsotroplc superconductor and add

‘lnflnlteSLmal anlsotropy onto 1t but then one. will, always flnd
- / .

’ *69 =’Q. Th;s occurs because the anisetropic exgenvectors

) of eqn, (3&21) cannot be expresse& ag'llnear comb;natlons of .
the elgenvectors of eqn. (3 2) Perturbatlon theory therefcre'
falls, maklng lt necessary ﬁo work backwards, always subtrac—'

-
. . i P - .
- . - . v
- . . L L. DI LU » -, . )
Cad . - v L L " * : (. ’ L - M . L4
x - . N PN . o . - . - a -
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ting anisotropy from an anisotropic superconductor to make
comparisons betweeﬁ them. )

The, infinitesimal variation of egn. ({3-19) differs
from those used for.iSOtropic superconductors in not being
a delta-function; either in frequency or in k. With only
sitwo exceptions it is impossible to prove general results with
infinitesimal variations of the latter tyée, because there
arerseveral comglicating, compefing factors present in‘aﬁiso—
tropic sugercondhctdrs. For examp;e, adding |

. - (k' =k, ) +8 (i 8 8 .,

E'i,j [5(57§i)§(§ -gj) (gfgi) (&:E?)] (w“wo) ’ ‘ (3.22)
where {k.} and {k.} are sets each of 48 symmetry—relafed
dlrectlons, to (azF(m)kkx will lncrease A and A(O), but on
the other hand, an unlucky choice of {k } and {k } may re-
duce the anlsotropy of the interaction. The~same argu@ents
apply te variations of the type—sﬁ(m-m ))Fvariations in ‘

'the phonon Spectrum, and to the changes caused by small amounts
of 1nelast;c rmpurlty scatterlng

Recall .that A(0) does not cancel out of the anieefropic
equations, implyfng thet m?n terms will appear.in éhelfunqtional
derlvatlve and be prOportlonal to wolf The-remalnlng -
terms for 6(& F(m))kk‘_ ea(w wo) will stlll have the same
'shape as in Flg. 5=3, 31nce for small anlsotropy <A (n)> has
very muchithe same, n dependence as the LSOtrOplC soZﬁtlon,
and its magnltude w111 increasé by an amount of the order . of
Rg (thanks to the correlatlon between A (n)' and k (0)),-§hereff

.—

B P
i « i
- . N



"R® = [z <3%(n)> - <A, (n)>21/T <BZ(n)> (3.23)
0 k k k
n i — n —
which will be small in realistic calculations. Therefore, at

small Wye €gqn. (3-8) "still describes the linear contribution

of the m¥n terms.

The contribution to 6Tc/6(a%F(w)) of the m=n terms

Kk

for arbitrary 6(a2F(w))kk. is proportional to

as,  as,, ) : :
. 2 { Tvkl Ivk!l (n)6Akk,(0)A&,(n)
) .
dS]—{_ 2 | ‘ . S
- l l (n)SA (0) }/L <A (n)> .
Yk E = n ‘
48 -
) 1 dSE k' ~ - - 1, =2 -2
=L J T ToT S (0 By @B, ) = FELm+ B, ()]
48
-2 .
/ & <El()> (3.24)

rd

which is clearly negatlve if 6Akk,(0) > 0. In the particuiar

case'@ia F(m)hﬂ{’é eﬁ(w-wof, 1mplying 6Akk,(03 = 2e/w

exp;eésioht(3~24)‘reduces to —2R§/w0, The functlonal derlva—

tive of an anisotropic superconductor is ther%fore qualmtatively

different only ét low'frequency; it turns negative.when rZRg/wO

domlnates the llnear term descrlbed by egn. (3-8) (see Fig. 5-16
- ASL',

for.- example) If,R0 is of the same order ‘as the root mean

square an;sotropy of the gap edge bn ‘the real axis (some



{
evidence will be presehted*in Chapter 5 in support of this

assumption), then: egns. (3-24) and (3-8) imply that the

frequency where the functiOnallaeriyatiVe turns negative is
of order .5 kBTc’ thus only a very sma}l ?;agt%on of sz(wi
decreases T . Coefficients of ;w*I greaéer than 2R2

0 0
which is roughly corre-

can be

obtained by choosing a é(azF(m))kk,

lated with Ek(n)ﬁk,(n), and since Ek(q) is correlated with

. — —

A (0), a likely candidate is

2
"(CC F (UJ) )_k_}f_"

E , § (w=w ) » : (3.25)
azE(w) : 0. .

Because the double FS average of expression (3-25)
minus eé?w—wo) vanishes, it follows that the most effective
- way of auqmenting_TC while keéping sz(@l fixed 'is to exag-

gerate the anisotropy of;(azF(w)) at as low a frequency

Kk ' _
‘as possible because the difference between the 8T _ generated

Y

by variation (3-25) and the 6T, obtained from ed (w-w,) is

inversely proportional to Wa -

To prove that the thermal phonons are the cause of
the change in sign, the functional derivatives must be-
" evaluated on the real axis, where they appear explicitly in

the kerne}.as’the n{) of eqgn. (2-31). The proof that the .~

0

: - .
n(wo)are the sole origin of the w
derivative and that it vanishes without gap anisotropy is

term in the functiona}\l

"rather tedious_ and has been relegated to Appendix IV, together

" with .some other comments about the functional derivative .

.

St =



on the real axis.

It will come as no-surprise that GAFydaZF(wO) also

has a functional derivative dominated by a negative wal

at low frequency'when anisotropy is éreSent while the re-

term

maining terms resemble the isotropic functional derivative.
Aithough similar to egn. (3-24), the proof requires a longer
chain of inequalities than that for GTc/dazF(wd), thus it is
worth writing'out.' The simplest possible G(azF(w))kk‘ =
eG(w-wO) is uséd, and only the terms m=n are‘cqnsid;;ed. K

Their contribution is

. cis das, , ] I
SAF) = g. (1k 'I‘)zN(O)‘2 z fJ = J £ '
( _n = E- — —
m=n - B Yo n ,{v&l .IVE'[
) A {n) . A, y (n)
- k k
(1l ‘ 1. 14 —— o }
/10”2 m) /1E2, (o) S1v 2 /145 ()
) - : . Zk(n)
= t—:(‘rrkBT)zN(O) 2 p{s—2 52 _ 1 4 <= >2} (3.26),

W i — -
- 0m /142 (n) /1R ). _
v ] ‘ ~' >

By the Schwarsz inequality, )

2
< 1. 7 <« yl >
Y %2 )
l+AE(n) ,_l+AEfn)
“and - ) ' ‘- : -2 | |
by n) "2 - A&{n)
S > <& : >
/52 T T2 S
N l+.A_k_(n) , l*AE(n) 7 | -

so that the gquantity }n‘braces is less than or eqgual to
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It follgws ﬁﬁét (5AF)m=n < 0 with equality holding
for isotropic systems. To prove that thermal phonons’are the
origin, eqgn. (2-43) would have to be rewritten in a form
~analogous to egqn. (2-42), so that the thermal phonons appear
éxplicitly in the functional derivative as n(wb). In
Appendix IV this sémé.procedu;e of isolating p(mo) is'c§rqied
-ouﬁ in grééﬁ détail for STC,:algo s?owing that the only'séurcé

of terms inversely proportional to wqy as mb + 0 is the thermai
k. T :

phononé. Since lim n(w0)=7?—, and the functional deriva-
(uo""O ‘0

tlve on the real axis has no, expllclt factors of T like eqn.

(3-26), whilé the coefflclent of mol must be the same which-

ever way it is obtained; on the real axis or imaginary axis,
it fallows that (§AF) _ . is-proportional to T/w,. (A corollary

is that the quantify in the bracés is proportional to‘T—l.)

But (GHC/GQZF(wO)) for isotropic systems is lineér,

T=0

positive, and vanishes as w0‘+ 0, therefore as T = 0 the con-

tribution’ of the m#n terms to $AF 'is finite and approaches
a finifg constant. Henge the frequency where the funcﬁional
derivative changes-sign is proportional to T.

Qe - .

~

. Allowing anisotropy adds another‘dimeﬁsion to the
searéhtfoi an optimum spectrum and least uppef~bouﬁd‘on T.-
vThe great dlfflculty 11es in the many déegrees of freedomh
even for flxed azF(w) or A,of the anlsotropzc electron~phon§n

1nteractlon - it is unlgnorably frequency~dependent as,a

- ' . . . -



51

glance-at'any (gzr‘(@))k (Fig. 5-21) wili show ~.aﬁa in the
absence or‘incbqvenien;é of constraints on the anisotropy.

Egn. (3i21) shows how Tcnmaz be increased indefinitely by
exaggerating the alreadyexﬁétinganiso£ropy, while keeping
azF(mr fixed{ thqg showing thé need for a constraint. A
constraint on the énisotropy, however defined, that is averaged
over f:equenéy does not pin matters down enough, for itlwould
not preclude.wild aniébtrOpy at isglated grequenciés. That
difficulty at least céﬁ be .avoided by loéking only at an

‘ anisotropic delta-function in frequency; one expects on the

basis of Leavens' work that the optimal spectrum will have

the form:

2 = - -
(o F(w))kk. = A (w wE)ka, (3-27)

—— —

where

<<y, L, > =‘1 and Vi1 > = 1 + v, . (3-28)

k

Now comes the difficulty of'constraining the anisotropy,

LI

which first requires defining it. Even the siﬁplest choice,

k

fixing <V2>, turﬁs out to be é~use1e§s céhstrain;, because
the Fs”weigh;é dsk/]yk} are also free to vary (bg} without
phénging their mean v;lue), thus making the variational équar
tions impossibly complicated;‘ It is more realistic té aban-
don the idea of constraints on the,anisotropy altogéther and

‘guess at an optimum interaction with fikéd'angw) or A.

Considex a sphe:icé} FS with

SN



vd . =S % ¢(k-k") (3-29)

where ¢ (q) vanishes unless *g lies inside the neighbourhood
of some wave-vector g, with the size of the neighbourhood

determined by S as follows:

dSE .

$(k-k') = S (3-30)

)yl

so that only a fraction § assumed to be very small, of* the
states participate in the electron-phonon interaction. (This
interaction éoes not satisfy crystal symmetry. That defect
could be remedied by replacing ¢$(q) by I ¢(Rg) where the sum

R
is over group operations. The inclusion of symmetry only com-

plicates the-eguations without altering the proof to FolldWw. )
- e . .
The states between'wH}cQ\E e interaction occurs are shown in
) .

the. following diagram:

[0
F
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In regions where ¢(k-k') = 0 for any k', the &

vanishes. Elsewhere, thé gap is independent of k and satis-
fies the same eéuation as an isotropic system having

azF(w) = S—lAé(m—mE). Therefore, if pu* = 0, TC has been
increased by a factor of S-‘l over that of the corresponding
isoﬁrOQic system. Because the anisotropic equaéﬁgﬁnhas the
same form as the isotropic one, where the gap exists, even
if Q* # 0, it is possible to determine the optimal frequency
for. the-anisotropic system from Leavens' eqn. (3-11). The

new w; is clearly 1.75 S_lAd(u*). This rise in ‘m; can

be explained ?y considering the'occupation numbers defined
in BCS thedry.’ The w; for an isotropic system 1is proportional
to A; in an anisotropic system, one expects it to be pro-
‘portional to the ave;aée weighted by the occupation numbers

of the areas under the (QZF(M)) which is more than the un-

k L]
weiqhtéd average by a factor of S-l, since the pairs)are
. C ‘

formed only from states where the interaction is non-zero,
just where the interaction is greater than the usual average
by a factor of S~2. Consider the following infinitesimal
addition.to (aZF(w))kk, which leaves azF(w) fixed, but dis-

tributes the interaction:

. €(§(m-wE)¢'(&-&')*é(@-wE)¢(5~5')0 (3-31)

where ¢'(gq) is defined like ¢(gf but centred on some different

wave-vector Q‘N such that its neighbourhood does not overlap
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with the one defined by g. Then the first term of (3-31)
contributes nothing to 3,,, since the lack of overlap ensures

that ?k vanishes wherever ¢'(k-k') is non-zero, and the second

term therefore makes ¢§o negative. The comrclusion 1is that

the optimum spectrum for fixed A is

(12F(w))kk, = lim AS—2¢>(}_<_-}_<_')6(w-l.7S s™Y adur)y. (3-32) -

S-+0
x Unlike Leavens' optimum spectrum, this resembles nothing
;éen in nature. Hoﬁever, the steps leading up to it do sug-
..gest how, for fixed A, the electron-phonon interaction should
be adjusted to maximize Tc: firstly, X(0) = ZA{w; should be
less than the optimum value quoted by Leavens, since wr is

E

larger, and secondly, the electron-phonon interaction should

be concentrated between as few states as possible. e

This section on pure anisotropic superconductors will
close with a comparison between a weak coupling and strong

coupling superconductor having the same amount of anisotropy

ly the same root mean square deviation in Ak(O)).
by jneans of éqn. (2-17). To begin with, it is necessa;§ to
make qdantiﬁgtive the distinction between weak coupling and
strong coupling. The criterion is not A or Tc but the size
of A(0). Compare two isotropic superconductors having spec:\\\
tral densities differing only by a stretch factor r: &ZF(M),
and 12F(rw). The areas uﬁder threse distributions are respec;

tively A and A/r, but they have the same A (0). Substitution

into eqgn. (2-24) shows that their transitian tempefatures are



55

Tc and Tc/r; and most importantly, that they have identical
A(n). Below Tc’ eqn. (2-22) implies that at temperatures T
and T/r they will have the same A(n) so that the analyﬁic
continuations A{w) and 2 (w) will be identical except for the
same stretch factor as in azF(w), implying that the ratio of
the gap edge at T=0 to the transition temperature and the
deviation of Z(w) from unity, two of the criteria distingui-
shing weak céupling from strong coupling,‘will be the same
for the two syséems.

Returning to anisotropic superconductors, first, con-
sider ;he situation with p* = 0. Because the A's are larger,

one expects &, ,(m) to be more anisotropic for a étrong coupling -

kl
\\f:if a weak coupling superconauctor. Since the k' dependence
o

A {m-n) is positively correlated with A _, (m-n)- and

kk' k*
thertefore with &k,(m) as well, the kernebikkk,(m—n)/l&k,(m)l

of a strong coupling superconductor will have less E dependence

t

than that of a weak coupling superconductor. In addition,

since Ek(n) is positively correlated with {&k(n)l even if

— .

Bk(n) were equally anisotropic for the two sysiems, the strong

égﬁpling superconductor will have less anisotropy in Ek(h),
the quantity of physical interest. If u* > 0, then th; dif-
ference in anisotropy of Zkin) betweeg the tfo.SYStems is
5é§eb gréater, because the ;é%gtiée size of u* and A(0) is

s0 different. If u*ﬁ<<‘£(0)f th%h the anisotropy of the

kernel is hardly affected by the subtraction of the isotropic

e
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guantity u*, but if u* and A(0) are of comparable magnituyde
(in Al, for example A(0) “ .4 and u* *~ .13) @hen Akg.(O)—u*
is far more anisotropic than Akk,(O). All these fa;Zs sug-
gest that for the same amount of anisotropy in Ak(O), a

‘weak coupllngsuperconductorwlll will have a larger Rg than.

the strong coupling superconductor. In general, for a system

with as strong a coupling as Pb, RO is less than the root

mean square deviation of Ak(O), while in systems as weak as

Al, the inequality is.reversed. As yet there is no basis

for assuming that (Tca—-Tci)/Tci will also be larger for the

.

#weak coupling superconductor. That, however will be proved

true by using elastic impurity scattering to obtain Tci"

]

3. Elastic Impurity Scattering

In this section, the functional derivative will be

A

used to examine in detail the impurity dependence of_ AF,
and the anisotropy, with occasional use of a separabie model
for the potential. The appropriateness of p for such investi-

gation 1is immediateiy seen by using egn. (3-18) to get BTC/BCE

’r_ " dSE ds, . i .
EE R N LA I o k‘“”kk' e ()

| 48 T 48

1 ds}_(_ 2 '* ) .

kb2 = a2
48 % -
¥ ; *
4 %
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Since

as, ' ' as.
[ £ Ez(n)r -1 _1 £ ‘ (A (n)+A (nﬂr -1
TR T T2 T

48. ' " 48 48

—

aTgééc is clearly negatibe and increases,with the amount of

//ggp anisotropy. It is usefGl to define for later reference.

g2 = 1: <<r’1k£;{l(32(n)+-52 (n))=3. (n)B. . (n)1>>/% <B2(n)>. (3-33)
FE T BT P TR M B DSt By

L 4

F

tfast to Ek which repeats itself on every 48th (a region whose

(Because (Aw(g))2 varies smoothly over a scale of k_, in con-

maiimum"dimension is k /J—) and because the definition (2-50)

pl -1
kk' kk'*

than (AW ( 575' )) 2 1t seems reasonable to replace Tkk,

in eqgn. (3“33)r (The approximation is tested numerically in

of probably makes 1 a smoother function of k and k'

by T“l

s ‘Chapter 5 for two typical pééudopetentials.) The fésulting

s;mpllflcatlon is

BTC *

& . 3T -1.2 . (3-34)
ac ap T R

-

1

.where R2 1s deflned llke R2

0
the subscrlpt indicates the presence of elastlc 1mpur1ty scat—

by egn. (3—23); ~ the absence of

.terlng. It 1s unfortunately impossible to prove that this

1s an over or undek estlmate- model,Ak and t;t' can be in-

< R, but there 1is reason

F

vented that lead to R, >"R and R

E LE
to belleve that' RE v R, whlch is con51stent with the observed

cht_that the Lnltialﬁelopes of Tc curves for different 1mpur1ties

ip the éame maﬁeiial dare almost the same when plotted as a function:



of inverse mean free path. ' -

-
w

It.is iﬁportant to realize that egn. #3-34) is valid
a£ éll concentrétions, not juét in the limit c¢»0. Also,
since* ;=0 is a maximum eigenﬁalué, it follows from second-order
perturbation theory that sz/acz > 0, so that R2 decreases |

with c andvxeing positive, must eventually saturate. It will

-1
Kk

eqﬁ. (2—24),‘ so that the expected result, R2+0 at high im-

be proved that when c1 >> kBTc’ egn. (2-50) reduces to
purity concentratiqn, does indeed follow from the diagrams
‘chosen in Chapter 2.

‘The starting point of the proof is egn. (2-49). With
the definitions a, (n) = Eg(n)—<3k(n)> and A, (n) -= <Zk4n)>, and

for simplicity omitting p* and using T-l instead of T;i,r

0

eqgn. (2-49) becomes

ﬁéo(n)+ak(ﬁ))I&E(n)[=kaTC Eo(y

(m—n)zo(m)+<AE£,(m—n)ak,(n)P)

— —

cT - ) ' . o

>

~

Taking the FS average of Both sides of egn. (3-35}),

one obtains

- - ) T ~ ‘ cny
Ao(n)(|w(n)|-%§) + gaE(n)(lw£(n)[ - =)>
= ”kBTc,E(A(m_n)EO(m) + <Ak(m—n)ak(m)>)} (B—Qét

-

4

in which ¢/t cancels'out, and which reduCes'to the Tb equation
of an isotropic 'system when a,(n) - 0..

Subtracting eqn.. (3-36) from egn. (3-35), one obtains.

.
. ,
£ ‘ '\$~



Aokn)()ak(n)lﬁl&(njl)»+ a&(a)lak(n)lr<a£(n)({gk(a)J-n%r’/ﬁz

(man)—Ak,(m-n))ak,(m)>}.(3.37)

=ﬁgéTé‘Z((Ag(a—n)—k(mbn))eo(m)+<(AE&, K K

In this equation ¢/t appears only in the term

ma, {n)c/T. °  All other guantities have no explicit dependence

——

on c/%.Tc may be divided out on both sides of the equation
so that it is present only buried in the A's. It follows
,tha£ as.c/T becomes the dominant term in [;k(n)}, (i.e.

c ' e : L. : -1 .
=S .
= > kBTc).aE}n}/Ao(n) 1s.progertlona1 to ¢ ©. Hence fo;

.

large c¢,'eqn. (3-36) reduces to the isotropic limit.

Now an a:gumenf'will be‘presentedkthat ap/éT cﬂaages '
by ‘an améunt,of order‘Rg as T, falls from éca to T_;. Since
3 A k,(d{V&T = 0, there is no term inversely proportional to fre{
qUency asin 6p/8a’ F(w) Aleo, "<'Z (n) >2 char;gee by an amount
:of order . Rgﬂ‘
a ‘factor of 2 5 over all the range of systems studied,

Flnally, Table 5-3. Shows that. ap/aT varles by

show1ng a gradual decrease with T, and X(O), suggestlng that
9p0/3T 'is quite 1nsenelt1ve to Tc as well, Numerical: verifi-

cation of this assertion iskproviﬂed in Chaptér 5.

-

Since the washlng out of anlsotropy depends on.c/1 kg o’
-1

‘ one expects R2 to éecrease faster as a functxon of cT eﬁor‘
weak | ccupllng than strong coupl;ng systenms, and 51nce [GT/Bni
is larger for weak caupllng than strong coupang SUperconduc—
‘ths, the 1nes¢apab1e COnClUSlOn 1s ‘that for a glven amount |
of anlsotropy in the lnteractlon, the weak coupllng system Wlll

£

'have ‘not just moxe gap anlsotrOPy but a larger (T 17/Tci‘

*
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This means that on experimenoal curves such as fig. 2-1, ‘the
initial dip will be shallower and have a smaller initial slope;
thus making the valenoe effect obscure the mean:free path
effect. Anisotropy effects are in general smaller in strong
superconductors. ' |

Since 2y (n) cth--l for large ¢, egn. (3-34) implies that
for that llm;£ T (c)—TCi < c—l,v For other valuee of ¢, eqn.
(3-34) gives little information about Tc(c){ all the c-
dependence is hidden in the‘eigEnvectors, and when nothing is
known about the other eigenvalues or elgenVectors of" egn.

'k -
(3-18) ,” na perturbatlon expan51on of the A () is fea51ble.

-—
LY

The way around this obstacle is to use a model 1nteractLon
that makes c¢/1 appear explicitly in'Rz. But models will

be used only as a last resort at the end of this section. .1£
is Stlll pOSSLbletx>make-some headway WLth R2 and J4F/3¢
remains to be examined. ‘

"In both strong and weak coupling supeECOndoctors, R2

—

0
can be”apgroximated to a very éood degree by P s
2 A - ) ...2‘ ) ]
Rp & 1 = <8 (L)>5/<Bp)>. . (3-38)

0
beoause Bi(n’ is a very rapidly dec:eaéing function of n,
and chang;s reletively:little in shepevfor ;he fifs£ few~;.
The apbgoximation turns outito be, sliqhtiy worse‘for'weak
coupling. Now, a connectlon can be made between R and an ob—"”
servable, toe gap/edge at T~0._ It can be shown that for a

weak coupling superconductor ‘the real part “of the gap canQbe i

-



approximated at low frequency by a frequency-independent con-

(101)

stant the gap edge, and that the anisotropy in the gap

edge 1s nearly temperature-indegendent. It follows from

egn. (2-29) that R is Verf close to the root mean square
deviatiep of the gap edge at T=0. For strong coupling, Re'Ak(w)
shows much more structure, and there is no evidence, for or -
against, that the anisotropy of the gap edge is temperature-
1ndependent. Nevertheless, if it could be shown numerically

that lf the shape and therefore the anisotropy of A (n) is

._..

temperature independent dOWn to very low temperatures implying

the same property in Re Ek(w), then R could be identified

I enad

with the anisotropy of the zero-témperature gap edge, since

the dominanf contribution to 5&(1) at very low temperature .

——

is' from the low frequency part of Re Ak(wi. But at low

—

frequency‘near the gap edge, Re Ak(w) is slowly varying (it

:is-a constant + .a term quadretic ;n w) and is therefere'close
to the’value at the gap edge. Accordingly, the, root mean
eéuare enisotrop¥ in_Eg(k) weuld be identified with the
root meaﬁ square anisot;epy of the zeio—temperature gap .edge, ’
flnally maklng the .connection between R2 and a measurable
quantlty. ThlS is ver;f;ed in Chapter 5

Another method of connectlng R2 w1th the gap on the
real ax1s is’ purely mathematlcal - u51ng P01sson s formula
qand the analytlc propertles of Green s functions. -Accqr@1ng
ta Poisson's formule:, ‘

-



. - s =_: 1 7 Il -
L G(E,lwn)G(§,lwn) STik.T de(Z)G(er)G(E ,Z) (3-39)
odd n .. B

: C

‘where the contour C is shown in Fig. 3-3(a).

Fig. 3-3(a) Contour C ' (b) Contour C'

Since G{(k,z] has no éoles but only a branch cut .on the real
axis, the contour C may be deformed to C' shown in Fig. 3-3 (b),

so that egn. (3-39) bécomes

-

s

. . 1 ’ ;
z Glk,iw_)G(k',iw ) = - : dzf(z)G(k,2)G(k',z2)
odd n n n ankBT {
. Lo
oo o0 - . o0 & poO o i
=< 2 | dwfn? | du' | dup(k.w')p k", 0")
2mikT J - X =T A
ST SLA S SRR SU
wtif-w' wtid-w" . w-id-0" w-if-w” )
1 s ‘ R T S :
= EETEET-[ dw2i Im(G(k,w+id)G{k L@+16)% _ . 13740)
using.ﬁhe identities f(w)+f(;w)=l, Im L - o ind (w) ¢ apd

. w+;6
-G (k,~w+id)

G(k,w+id) = G*(k,w-id}.
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Now specializing to the case of the gap on the

{ [
real axis at T_, and performing the standard J dskJ'de

k'
. .. X
- integration on both sides of eqn. (3—40), one obtains
| e () By (@)
- - 1
L Ak(n)Ak,(n) = kBT Im(— 5 ” ) . (3-41)
— — c J .
Therefore 3
N '
R = | 2 Im{<a (w)> = <8 (0)>7)
) e .k
- -
dw . . -
/l 5 Im<A (w)> . : (3-42)
W

" (The integral does not diverge because at T _, lim Re A(w) < w2
o . w>0
and Im A(w) is odd.) Even though it could be expressed in

L. ~ . ,
terms of Re'Ak(w) alone, egn. (3-42) is not informative un-

—

less the gdp anisotropy is temperature-independent. That
question will be angwered in Chabter 5 by examiniﬂg the tem-
.perature dependence of the anisotropy of the solutioﬁs on the
r;imaginary axis. | .

3AF/3c for a system with s-wévg elastic scattering . -

(Tki' =:¢~1} wili not surpriéingly, be identical to eqn.
(3-26), excepttha¢nn(rk T) replaces Ze/w ‘Knowing the

temperature dependence of the quantity in braces, one flnds

that lim 3%? is a constant dependlng on the anlsotrOpy. SlnCe
T0 - '

AF, llke p,:ﬁsstatlonary w1th respect to varlatlons in A (n),



results similar to those for Tc can be proved: 9AF/dc < 0,

2

and BZAF/BC > 0 so that the quantity in braces in (3-26)

(the analogue of R2) decreases to zero as ¢ increases.

To obtain Tc as a function of c, a separablgfmodel for

(36)

the anisotropy first used by Markowitz and Kadanoff will

_ be introduced. 'They applied it to the BCS model on the real
axis and therefore limited their woXk to weak coﬁplipg super-

conductors, but set u* = 0 (a bad approximation in weak coup-=
%

ling systems) and ignored anisotropy in.Zk(w) ka better

b

approximation). Their model will be generalized to remove
these faults and used on the imaginary axis, where strong
coupling is easier to handle. The model consists of replacing

) (this a, has no connection

k'~

with the éuantity in eqgn. (3-35)) where <ak> = 0, and to make

——

some contact with reality, a, is shaped 1ike'kk(0) or the area

(a2F () k' Y szF(cu) (l+a-k_) (1+a "

—— -—

under (azp(w))k, (the two are very similar in lead),. so

that,/<ai> is the root mean square deviation of Ak(Of. Sub-

stituting this kernel into eqn; (2-50) giGésAthe one-dimen-

- sional equation expected from a separable kernel:

5'(n) = gLBTc Z(A(m—n)~ug(n)) é%iﬂl_ (3~43a}*‘
: ‘ E |@(m) | .
. where S ) ’
T At = by ()>p, (3-43b)
@ (n) ] = p/lx +s +p (s +& )] . (3-430)
. * ;' ~ . N
r L | (3-43Q)

= < . - . -
n . |QHI+(l+ak)ﬂkBTc z A(m*n)sgnmhmm+Qn/Tk..
- " - m .



S, = <a,/same denominator> (3-43e)

n
tn = <ai/same denominator> (3-43f) -
1 - &7 r
P, = 2D (3-43g)
, l + — s
. T n
- )
= * -
g (n) W E./S ‘ (3-43h)
s = mk T'u.* s /(1L + S% g (3-43i)
. _B'c ., m ] T m
En = nkBTc ;2;:1 A(m-n) (tm+sm)/_(l+cn-sm/'r) . (3-433)
. F IS e TS gy L
. T n T n

4

"If the PS is.treated as sphericel (that can be done
when the Fermi surface anlsotropy is already built intc the

ak through thelr resemblance to the A (O)) then the FS averages

_.,.

+in (3~-43d), (e) and (f) can be replaced by integrals over the
probéb;llty density P(a) defined as.follows: P(a)da = probabi-
lity that ay lies between a and a+da The use- of a proba-

—_ -1

‘blllty dens1ty nece551tated the approx1matlon of Tkk' by © ~.

It also means that less will be known about A (n}); only the
-probablllty den51ty P (a) that A (n) dev1ates"ty a fractlon
a from its mean value. That probablllty dens ity, together with
the T obtalned from eqn,. (3—43) can be compared with the ’
solutlon generated from a more accurate method described in

the next chapter. . . ’\\\

’ - N
Y . ]
\; L] . M * 3 -



For a strong coupling superconductor, with s-wave

scattering, .T —Tc(c) may be approximated as follows:

ca
~ 0 aT (0 ) .
T -T (c) = dc __Ejkf—ﬂéz. dc(l~<B (1)>2/<32(l)>) (3-44)
ca ‘c ) ac 3p k k _
c c -

since R2 can be approximated by the first term in the sum.

Although for weak couplidg R2 may also be'approximated by 6ne

term, the non-zero u* makes the expression for Ak(l) excessive-

—

ly complicated. 1In addition, because % is larger in comparison

to the rest of Qk(n), the rémaining terms in R2 have a .
: > \

relatively. greater dependence on %' and. cannot. be negiected.
For p*=0, a reasonable approximétion for véry strong

coupling, and which should not affect the R2 when <ai> isQ

small , egns. '(3-43) and the definition of (aZF(w))kk. imply

A£(l) = <A£(l)>(l + plaﬁ)

so that . - oo ‘
) ’ r <A£(l)>(1+aEPlL
<Ak(;)> = <= - =1 >
< nkBTc(l+$l+ak)A(O)+CT ,/kBTc)

)

: _ <A-}S(l)>(l+a]£pl
)2>

<Z£(l)>= < ]

~ -1
nkBTc(l+(l+a£)A(0)+cT '/kBTc)

Assuming small anisotropy, so that terms of order

.. 2 . .
higher than <a, > can be neglected, an expression for R2 as -

a function of ¢ can be obtaiined after some tedious algebra

from . :



67

rRZ 3 1 - <Zk(1)>2/<5i(l)>

‘ - - (3-45)
<ag>( 2% (0)-1)
. =
n,
(L+A(0) +

] )2 ’
TkBTc
Note that as expected in a strong coupling system,

Rg < <ai> :

RS = <al>(A(0)-1)/ (A (0)+1). (3-46)

Integrating egn. (3-45) while treating Tc as a constant (it

varies by only a few percent) gives.‘

aT 2 1

- N oL - i 1. (3=
T o~Te () R-kgT g 55 <@ >(A (0)- 1){1+x(0) — }.(3-47)
. 141 (0) + rm———
TkBTca

In contrast, Markowitz and Kadanoff predict for weak coupling.

' _ 2 X . C - ' _
Tca-Tc(c) = <ak>'r I (k T T) (3-48a)
= B c
where
. c ’
lim I v - T —0rr (3-48b)
c+0 © 8 kBTcaT”
and _ '
s ,= R \J l. N _
) . lim ) IC N ﬂn(ﬁ?:?) - - (3 48¢c)
. ‘ —,-r-’>>kBTc
~ -

;f more terms had beeﬁ‘retained in the expression for Rz, then
eqn. (3-47} would reduce’ for A(0)<< iy (Le no anisotropy in Zk(w)
and very weak coupllng) to digamma functlons and a functhn

slmllar to I - Taking the limit ct -1 >> k T é in eqn. (3-47)

-

gives



T -7

€2 <2 :{1—-33} <a§>()\(0)-l)/('\(0)+l)- (3-49)
[ .~

( ca

This is to be compared with Markowitz and Kadanoff's

-

~a

result for weak coupling

Tca_Tci 1 2
.._T_____... = m &a}i> (3"50)
ci .

where N(0)V. is defined by the standard result of BCS theqry

A

kBTci = mDexp(-l/N(O)V) . (2-46)

-

{

‘It is important to realize that these last twé re-
sults are the difference in TC between the pure strong coupling
and the darty limit strong coupling only if the aiagrams of eqﬂx
2-48) are correct. Otherwise they are only the différence be—‘_
tween the anisotgopic and corresponding isotropic systems.

The separable model with the assumption of small aniso-

22) t5 other thermodynamic

tropy has algeady been applied by Clem
properties of weak coupiing superconductors. ASince the con-
vergence of egn. (2-41) .for‘an isotropic system already ;re- ;
sents difficulties because thé-three terms cancel ta about .0001%
(see Chqpter 5), it seemannwise'to apply.appro;imations'such

as those leading to eqn. (3~50) to obtain the effec of

)

anisotropy on AF. 1In addition, properties such as Cv‘at very
low temberétures are'sepsitive to the details of P(a) - a few
small regions where the gap 1S small can contribute substan-
. tially to Cv. Rather, the be;t possible numerical methods

-

<. ' be “jed t6 the +°  and the



CHAPTER 4

-

FERMI SURFACE HARMONICS

In realistic calculations limitations of computer
time and the fineness of the"gr d of k-points required for
accuracy (the minimum grid squa size is 2 degrees x 2
degrees) make it impossible to iterate equations (2-13) or
(2-17)r to convergence, either on the real or the im;gina;y
axis. Below Tc some worthwhile results can be obtained py )
inserting the solution of the isotropic ga? equation ;n%i
the rig@t~hand side of the anisetropic equations with the
real Fermi surfaee,'as,has'been done at T=0 oﬁ‘the real
axis for Pb by T?wfzhson and Carbotte(73). Tﬁis procedure

8 ] -
( l). - It is not clear however,

was first suggested by Bennett
whether this one-iteration result is an over or under estimate
of the gap anisotropy. A different approach by Leavens and

Carbotte‘lOl)

using, approx1matlons tc the part of the kernel
derived from the Green's functions effectlvely went as iar

.as two lteratlons and ylelded.an appro%lmate T ca and zero- .
temperature gap, but used approxlmatlons Valld only for weak
coupling superconductors and}?ld not include Fermi surface
aeisqtroPy. g:vefy disturbidé feature pointed out by Leavens

and Carbotte is that the mean value ¢f'&he gap obtained after

one iﬁeration:is_lggg_thgn the mean value of the gap for the cor- .

reSpohding isotifpictsystem, contradicting the theory of Chapter'l.

4
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-~ Tomlinson and Carbotte make no such comparison in their ?aper;

but it was still possible to average ‘their values of the gap

edge at T=0, giving a mean of 1.33 meV, in comparison_ to 1.38

(102)

meV for the corresponding isotropic system The reason for

i
stressing this particular weakness of one-iteration results is
v\

two-fold: firstly, it is the only prOperty of the anisotropic
i
gap that 1is constrain?d, there being no such condition on the

quaﬁtlty of real interest, the mean square anisotropy ©f the
;

4
gap edge, and secondly because errors in the mean value of
,the gap will inval%ﬂate attempts to obtain the anisotropy de-

pendence of quantities such as the specific heat, even if the
/
one-iteration result did have the correct mean sguare aniso-
¢+ tropy. Leavens and Carbotte(lol)

7 .

also iterated to convergence
several model interactions consisting of a sum of factorable

matrix elemerrts and found that the anisotropy changed little

after the first iteration but that £he mean value of the gap
converged ;ery slowly; 5 iterations brought it up only half
the dlstance separatlng the isotropic ’ gap from the average
anlsotroplc;gap. It is not clear how much of their results

would carry over to strong coupling systems with Fermi surface
7
anlsotropy

For these reasons it is desirable to write the gap equa-

‘tiOps in a form that can be iterated to coﬁvergencé. This
impliés an expansion of the gap. and thg'kernel in some new ‘

“ . ,
basis truncated'po a reésonable size. On 4 épherical'Rermi
surfacef the sphericalvharmoniés’wo&idﬂs;;m a'néédral_choice:' ]
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thanks to their orthonormality and‘simple‘fanetional form.
This choice howaver overlooks one of the most important o
themes of thig- chapter, that of crystal symmetry and the con-
straints it places on the basis. Pb is fcc at ali temperature
and the pairing is S-WaVe, therefore the gap is invariant
under all oPeratioes of the full cubic group Oh; the set €

: of'proper’ané improPer rotations and reflections which map a
cube or octehedron ;nto-itself. In the language of group
theory, the éap‘ie a'Pl representatlon of Oh Since the
baeiS—functione used to expand the gap and the kerﬁel‘must

_ obviously share all theirliovarianoe properties,=the basisu

functions are also ry representations. The group Q is large

‘h
(48 operatlons) and therefore reduces greatly (all odd orders
are thrown outvfo; example) the number of basis functions that
ean be consﬁructeé from suitabie iinear combinations of thev
spherlcal harmon;cs, le the Kublc harmonics, whlch are usually
expressed as real polynomlal functlons of the Carte51an co~
“ordlnates, not as tr1g0nometrrc functlons.u\Indxv;dual terms
of a KUblG harmonlc have the form xpy 2% where p, 9 T2 0
and p+q+r order of Kubic harmpn;c ' The Kubic harmonlcs of type Fl
‘a gaven order are therefore less numerons than the spherlcal R

- harmonics £see Table II 3)“ This 1sva 11ab11xty when an’

] orthonormal“set of polynommals 1s to be used to expand a

“relatlvely smooth functlon, The orthOgonallty of a glVen

L‘polynomlal to all the.ones of lower order 1mp11es that it

L

"”must haVe more_ changes ef 51gn,‘an& the hlgher‘%he order

.
. o <
. -’ ey N < ' TS

*rhe mo:e v;oleﬁt ﬁhese QSClllatlonS‘W e ‘ Ca
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in fitting one-dimensional functions it is better practice

to divide up the domain of the function into smaller regions
and fit each region independently with only a few polynomials
of low order subject to boundary conditions that make the
polynomial fit continuous and smooth at the boundaries

of the regions (cubic splines are a familiar example).
Something analogous can be done when thq Fermi surface is non-
spherical and consists of disjoint pieces (see Fig.5-22),

only here there are no boundary conditions to worry about.

One can define new basis functions in terms of the old global
ones that covefed the entire surface by setting the global
polynomial to zero everywhere except in the ghosen region

and its symmetry-related "partners", that is. the pieces of

the Fermi surface related to the chosen region by some group
‘operation. At one stroke the number of polynomials éf a

given order is quadrupled, since the four regions in Fig. 5-22
are not symmetry-related. But that is not the only gain in
numbers. A polynomial that is zero';vegywhere except in re-
gion 1, séy, need not be invariant under .as mény group opera-
tions as the global ponnémial. Hence x4+§4 is an acceptable
basis function if confined to region 1. But in such céses,
when the ‘local function is defined differently fromkthe
glbba; funétions,_é cpmblication arisesfbecausé then the local
functions must have\éifferent functionai forms on Fhe other:

‘symmetry~-related pieces of Fermi surface. 1In this example,

the basis function is defined as
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L % + y° near (001), (001)
4 -—

y +2 near (100), (100)

z° + x° near (010), (010)

to have full cubic symmetry. Fortunately this multiplicaty

of functional forms does not complicate the numerical work,
)

where only the values on the 48th are of interest. An additio- -

-

nal reason for using local rather than global basis functions
for the gap equations is that the local average values of the direc-

tional A, (0) and of the one-iteration gaﬁ,vary considerably

k

among the four regions. In fact,.there:is more variation
~ between than within the regions. /
On g2 non-spherical Fermi surface the Kubic harmonics
énd the local basis functions derived therefrom will not be

arthogonal with the weight functionxdsk/[vkr. This could

be corrected by performing Gram-Schmidt orthogonalization on

the polynomial functions of Cartesian coordinates, using

dSk . c e -

‘T;:T as the weight function for the inner product. The Gram-
k " -

. Schmidt recursion formula is

"po = ¢0/‘ <¢0l¢0>

> T 2% T L
. v, = (¢, - £§=l <o, W >)/N

Here the:¢£ are the npn—orthdgonal polynomials, @i the ortho-
normal set genefated from them, < | > denotes the inner pro-

‘ dqqt, and Nz is a cénstant determihed by the condition

! .
; . -
e
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<¢£Iw2§’;
(1)

According to P.B. Allen more suitable argumenhs

for polynomial basis functiohs are the components of the
velocity. He argues that the kind of functions that need
expansion are usually slowly varying in,the nearly-free-
electron like parts of the Eermi serface and vary rapidiy
near the intersection of the Fermi surface with the Brillouin
zone, just where the velocity deviates from its nearly free .
electron values (fee Fig;S—zo)r In fact, the deviations of

Ak and the one~iteration gap from their local mean value

" . . 2 . . ~ .
correlate well with the deviations of Vi from its mean value.

That the correlation goes the wrong way'~.v2 decreases where

k

A andBAk increase - is not a serious objection, since a

linear combination of polynomials that- goes up near'the :
edge ‘of the Fermi surface can always be constructeq by .sub~
tracting the upward-curllng polynomials from the zeroth order

(constant) basis functions. THis euppesitiqn is'confirmed

'Wlth ve1001ty components as arguments already have some of

the shape of the functlons that they are meant to expand bullt

" ‘right 1n to them, so that convergence should be rapld com— :,

pared to the expanszon mentloned rn the prevzous paragraph

s

F;nally, the _use of Yy rather than Carte51an coordlnates

<2 —

1ncreases the number of llnearly 1ndependent basis functlons

when there 1s Ferml surface anrsotropy._ As an 111ustratrve

example, con31der the three polynomlals 1,.22

.,
hd P <

. )
- . n Y . ’ [
- N - A - . < Y H

x +y ’- Wthh ;' .
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% - -

satisfy the symmetry constraints for region 1. In contrast

to l,,vi + Vi + v;, the former set is linearly dependent where-
as theé latter is not because vi + v§ + Vz is not a constant.:

P.B. Allen named these prom131ng functlons Fermi sur-
fdce hafﬁonlcs (FSH).. Throughout the main body of thlS thesis
that naﬁé will be reserved for .the Gram-Schmidt prthogonaliZed-
) functions, to be denoted by ¢, It‘is‘cqhvenient to define
a function i(4), i being the regiQh‘wﬁére wzlus'ndnvzefo. : _ ‘
The symbols- L, L, & etc, and i, it will be ieservedvas basis
and reglon lab?is. The subscrlpts on the ¢£, the. functlons
.from whlch the wz are derlved by’ GramrSchmldt orthogonallzathn
_have the same meanlng. (Note that Gram—Schmldt orthogonallza—
‘tion does not mix functlons from dlfferent régions.) . Chap—
terS Ilsts the ¢2 actually used in* the numerlcal calculatlons,
. and.Appendlces 1, II and ITI. prov1de a longer list as well
as descrlblng systematlc methods of obtalnlng the ¢£ by means ;
of group theory., e < . *’\ K
mo rewrlte’equatlons (2*15)and (2«17)1n the new baszs, -
_the Clebsch-Gordan coeff&czents of the FSH are‘needed Deflne

.

]
-

". o o X ‘- ) dS ' ) ‘ |
. . ’;'.« ng;l!'ﬂ. -"=“ -F-—’T wg(v )‘pi‘l ( )‘pln (v ) : i ’ '4‘\\1 .
) _‘ . rl."‘ o . m" i ’:-‘ : ’:F“}: 48 . . -’ Lo - . .

~ £
- .--'a-\,.‘ - ‘\.

-

‘ It folloWs ;mmedla:ely that a product of two ESH can be wrltten as

T, . -‘. = P
. ..
“QA HL’} . )

IVi(v )lpl' (Y':k) -._— z Cgrg' ﬂ,"‘pg"(\’ ) {_, _( i ."" - ‘ i

: .e.,

all three subscrlpts and.vanlsh unless 1(2) ;(2') = i(ﬁ")

*;, & <
T ' i P &

A 1935 dbvzous "aeftw O - wo
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polynomials, is that Cogrgn also .vanishes if the orders of
Wy r wz, and wz" fail to satisfy the trianéle.inequality. There-

fore the number of terms in the above expansion is finite.

In translatlng equatlons (2-15) and (2-17) into th%rsa
basis, the question of the completeness of the FSH comes up,

because the equations are unmanageable without the assumption

g ATEART .

P.B. Alleh(l'la)hasconsidered theacompletenese of the FSH in .
[
some detail, concludlng that if there are no palrs of ‘wave-

-vectors kl and k such that vk ‘= v then the set is com-

=2 Ky Ko

. plete. That such an equallty should occur acc1dentally is

. unlikely, but the. hlgher symmetry of compared to k makes

a—.

such an occurrence p0551ble at, a few pOlntS or llnes of mea- _‘
sure zero. If the FSH 'aré used to expand only functlons -having

as much as or more symmetry than the. v then there is no ’

%('

problem, because if symmetry implies Vi = Vk o then it also .
. =1

tlmplles that the gap,for example,ls the same at kl and k2 The
 FSH are’ therefore for all practlcal purposes a‘complete set e v -
' because the probablllty of acc1dental degeneracy of vk~is .

negllglble.

With the.following, definitions - -

‘ dS - S R
- r - , .t ‘_. )
. f}dz(n) = J T"-T‘wz(vk)A (n) S ~f4:1?
A . 48 ;"‘ co e “"i”{‘a“i‘j’ S
. ds - ds, ;- C L e
. T,Q,.Q(" E T"‘*‘]- 'r"‘——l" lpg (Vk)‘plv (Vk')Tkk‘ ‘. '.; « “1' / : .
K o 48 T N P
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ds - .
TQ,Q,' = J W U’Q(Y_E)lbﬂ. (_‘{5) TE
48
¢ dSl(_ )
= Z C ' " 7 tlf w lV T
48
* * ! = =
y = (M /wi(i)/wl(a,) Order of v, order of wi' 0
et 0 otherwise
wi = weight of region 1i.
r dSk ds k’
48 Al
¢ dSk
-~ " - — . - _ -_1
wgz,(n) z T;;T wl(zﬁ)wg.(yﬁ)[w£(n) chE sgn(wn)!/nkBT
48 - *
s dSk
48

the transition temperature equation can be written

-

: _ &)
Y Tept, -
[‘ kBTc+ lag o () |12 (n)-2§ [Ag 0+ (m-n)~- 2£'+5m{1 W]A“: (m)
. . ‘ Ty | (4-2)
- if;R [Imgg,(n)lf E;TZ—]AQ,(n). .
if KQKn)“gé defined as 2 :: ‘A ) ':" ,R\
‘ot \
.89,('“} E“I;}—f * Ia'“(n) l-lﬂg(ri) ' ' -\\\

and 4 is ELiminaﬁed in favour of 8 then equation (4-2) ‘has

o

the same form as equation (3- 43(6)), so that Leavens‘ methij of
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iteration may be applied for rapid nunerical sclution.

The gap equations below T, are more difficult to trans-

4

form because of their nonlinearity. Defining

.

Yo grgn i) E ;ﬁ.ca z"z'"“ goo (1)

Troeren T %, Cargrem Tegm
* R ' .
!1‘52: [ wi(g’) ' wﬂ, of prder zero .
= \ - C(4-3)
"0 wl'of order > zero
. ds

Mg,

.k L

b, (n) = T;;T ¢£(%E)Ak(n)
48 . ’

r dsk

@' = - '
ﬁz(n) J T;;T WZ(E-) ——
ig = . . /fi + Ak(n)

L 4

Sgn (u)n«)

5

the resulting equations are

>

Wy By (N) = > (A, - {m-n)

*
2'“'2" ’m\ Q/;YR-' L " 1‘!9"21 Ln

é
_nmn

+ T by, B, () | .7 (a-4)
kBT % gL 4 [ ‘ “ | A

T . .
Ny u | : J .

- R i
. .

- fx (n}A , (n) ' e

~

(‘_)9,9.'{}1) =“(2n_l)62’ ' + Sgn(_fdn) z (A

o fm*n)"
n ] -
ey &R

e R e,
. c:t L [ :'.{ i . - . . .‘ R ' "‘ -, '
. A Qw zzr c e .. P i
+ 8 R p s qm) . L - : SIS
2B TR P 2 T -
: .’ ‘u ’-1_“. ':1 a .. ’
» s & b ""-‘
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Substituting equation (4-5) into the right hand side of
equation (4-4) and defining A as before changes (4-4) into a
form that can be solved by the same method as (4;2), except
that here the magnitude of the gap is the gquantity which is
adjusted at each iteration, instead of the trial TC

In the new basis the familiar guantities Ré and AF appear

as (see original definitions, equations (3-33), (3-23) and (2-41).

2 — A

R, =1 A, (n)t, ,-1,.,)A,,(n)/L An(n) (4-6a)
E neg' ') e 52.52, A nt

rR% = (z (c A (n)-2 W & 1}/2: 5% (n) - (4-6b)
. & i ny ~

AF = 2(1nk T) V(O) L [~ Z(wl(n)+w (n))+2(w (n)+w (n))h (n)

“r . n>0 i 2
(4-7)
* z C w By (M3, () h,,, (M6 (n)]
LIS T LI S A - 2 2 29
where‘
) as, ) |
wg(n) = T‘;]-:r wﬂ,(z&)wk(n)/“kBT
i8 = '

and Q (n) is the corresponding quantity for the normal state.

8, (n)//ﬁT is the mean value of Ak(n) in region i,similarly
w (n)//W_ L -

This chapter Qpened with a crlthue of cne- and two-
iteratlonsolutlons of the- gap equations. Changlng to the

P

_FSH ba51s not only changes the nature of the appIOleatlon
. ‘.

. but improves the user's ablllty to- estimate quantitatively
the magnitude of the: error caused by %ome of the approxima-
tions and makes. it feasible to calculate thermodynamlc

.’quantities.- There are chree approxamatlons made in solving
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theﬁeﬁuations numerically' (a) the sampling of only a finite
number of points on the Fermi surface to obtain the (a F(w))kk,
(b) the truncation of the sums aover 2 and (c) (applying only to
the nonlinear equations) the use of a very coarse grid to
evaluate some of the hl(n).

Approximation (a) 1is common to both methods of solution.
It is impractical at present on our computer for a multi-OPW
Fermi surface to evaluate (azF(w))kk, for k' points separated
by intervals A8 and A¢ (polar and-;;imuth angles) of less
than 2° and for more than 35 k-points on the 48th. Although
(aZF(w)k is a‘reasonably smooth function of Kk, (azF(w))kk'
for ;ix;d k is a very rapidly varying function of k', h;;ce a
fairly fine mesh of k' points is needed to get a good .sample.

There is some evidence that a 2°x2° mesh is fine enough, at

least in Al, a more anisotropic system than Pb. Leavens and

10 ! . . .
Carbotte( l)calculated (azF(w))k in one-plane—-wave approximation
using k' points chosen at random within each 2°x2° grid square. -

Leunget al}96)

recalculated this quantity with a multi- plane-wave
Fermi surface and the same number of k! points but located at the
centre of each grid square. In those directions where the one-plane-

S r

wave approximation is expected to agree yith the multi-plane-wave
resglt, the agreement between the two calculations is excellent,
which suggests that the number of k' points used is actually.
guite adequfte. From the poiﬁt of view of'the FSH, the k'

mesh is certainly fine - even the highest order FSH used in

the computatiens has the saﬁe\sign over regigns .much largér

o -

LY
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than the 2°x2° unit area. Therefore 1t seems reasonable that

as. ,
(azF(w)) = < ( 2F( ») gy, (v ) / (4-8)
ket T p Tv T T e e e
FS B

can be calculated to the same degree of accuracy as (LzF(uu))k

on the 2°x2°% k' mesh. The sum over the k-points necessary to

generate

dSk

2 . - ., 2 ) B
(a F(w))ig. TV;T (o F(w))Ez.wi(Ek) (4-9)

48
is actually'more problematical, because the mesh 1s so much
coarser - only 31 k points were used in the numerical work.

These points were chosen by inspection only. They are not

in high-symmetry directions. On a non-spherical Fermi surface

with the v, as arguhents there is no way of éhoosxng special
points for Gaussian guadrature as is done by Fehlner and
Vosko(zg). In principle, it is possible by interpolation to

obtain (azF(w))kg on a 2°x2° mesh, but this procedure would

— Y

still generate asymmetric (azF(w))zg, . From the structure of

u.(m)

equations (4-2), (4-4) 'and (4-5) it is '‘clear that the X
must be Symmetric“in 2 and 2'. Therefore either the "upper

A
be used to obtain a symmetric Aggl(m). Since Uy (v} for % of

—

diagonal”" or " lower diagonal" elements of (azp(w)) must

high 6rder may vary rapidly between two of the sparse k points,
2 " 3 .
(" Flw)) oo,

choices. As the region within which (a%F(m?)kg.
' ., , =%,

nearly ¢ -~ . ¢ " tar-  ° of the - = "~

for 2' > ¢ is the more reliable of the two

remains
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o

around each k point, the accuracy of the (sz(m)) , declines.

2

fal]

Since the Gram-Schmidt orthogonalization process forces each
function to have more wriqgqgles than %ts predecessors in order
to be orthouonal to all of them, implying that (ﬂzF(w))ki, may
not be smooth for large &', the number of k points plaC;S a
natural limit on the number of FSH that can be used. Another
limit, of more i1mportance 1n weak coupling superconductors,

[

15 that the total number of . (m) 1s

PP A
n (; Li) i Li(L1+l)
where Li is the number of FSH in region i, and n_ is the
number of Matsubara frequencigs summed over (defined in \\\
Chapter 2). This does not turn aut to be a problem 1in Pb,at
least with four FSH.

Truncation of the basis introduces a qualitatively dif-
ferent error ff&m stopping after one or two iferatlons over
the Fermi surface. For one thing, the mean value of the gap will
increase from the isotropic lamit and be consiFtent with the'>
anisotropy, so that 1t becomes feasible to calculate thermo-
dynamic quantities, which are sensitive to~the magnitude 6f
the gap as well as its anisotropy. Also, sincg the bggis
functions of higher order ar; rapidly fluctuating, their
absence should .mean that only some of the finer structufe of

A, rof little relevance 1in the context of present experimental
difficulties, is lost. It should be kept in mind that most of
the gap anisotropy is caused by differences in the mean of

2
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the gap for the four regions, and.that the four zeroth order
basrs functions are sufficient to describe a system with con-
stanﬁ gaps within each region. Most important, however, is
that the degree of cohvergenCe can be éhecked by plottlng‘TC,
HC and Cv as functions of the number of basis functions. Such
results are shown in Chapter 5.

The evaluation of the hQ (defined in equation (4-3)) is

“

a special problem posed by nonlinearity. If Skin) v 1 as

occurs near T, for all n, and at lower temperatures for large

n, then 1/Jfl + Ei(n) can be expressed as a power series 1in

Ez(n)wl(xk), so that h, (n) can be obtained directly from the

Y

R(n) without explicitly performing a Fermi surface integra-
tion. Also if the gap anisotropy within each region is small,
then for any value¢1f<5k(h)> the square root can be expanded

. . o= T
as a power series in Aydn)wg(xk) where the wi are of greater

than zeroth order. But if A (n) > 1 and the anisotropy is large,

X
‘then during iteration the integration must be done so, often

that it is impractical to perform it on a 2°x2° mesh. In-
stead, the integral (really a sum over the 2°x2° mesh) .is re-
placed by a sum over the 31 k points of quantities averaged

in neighbourhoods of the k-points @

ds
a1 X
hom % & < T"T’ NACRES //1 + <By (n)> . (4-9)

A . j=1 . {“\
Here < "2 weight of k-point j
. . i Ki j , g R .27P . ?

<wl{YE)> = average value of %, ‘near point 'j

-~ -

P
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and

(n) .

By (n)> = §.<¢Q(Xk)>jAQ

The approximation should be valid if the,ﬁk(n) do not vary

-

much within each neighbourhood j.

An objection related to the truncation of the basis

el

is that the kernel of the integral eguation (azF(w))kk, be-

haves more like a function of g = k-k' than'a product of
functions of k and k'. In the one-OPW approximation,

(aZF(w)) is indeed a function of g only, and 1t 1s unlikely

EEI

that the addition of more OPW's will make (aZF(w)) more like

kk'
a separable potential. An expansion of (azF(u))kkT—as the sum of
a finite number of separable terms, as is implieg—in equation
{4-9), would therefore seem to be a poor approximation despite
the existence of the addition theorem for the spherical har-
monics, which expresses the Legendre polynomial PQ(Ig}) as

a fznité sum of products of spherical harmonics with k and k'

as arguments. A useful addition theorem is impossible to

formulate for the FSH because they are functions of v, whereas

an identity involving k and k' is required. Nevertheless

the existence of the identity for spherical harmonics i1ndi-
cates that the distance between a function of g and a sum

of separable terms is not so great. The real tests g% expan-

sions in FSH are numerical and wikl be discussed in the next

chapter.
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In Chapter 3 a separable model for the electron—phonén

"

interaction was discussed in which (azF(w))Pk, was approximated
- ~
] - -

by (l+ax) (1+ax') o®F(w), where *(1+ax) was defined as Ay (0) /A (0)

or fdw(azF(w))k /A. The FSH offer a way of seeing how well

.

it ittt S

Akkv(O) or [dw(azF(w))kk, can be approximated in this way.

Given that:

PP

AEE'(O) = EQ.ALQ((O)wQ(XK)wR.<xE.) (4-10)
then
A£(0) = gixgi(O)w2(¥E)/ﬁ{ (4-11)
and e
A(0) = T X;4(0)/Wivy (4-12)
1j

where the substitution of i or j for the usual subscripts 2 or
L' indicates the coefficient of the zeroth order FSH in region B

i or §. It follows that:

A(0) (1+a, ) (1+a, )

- b
= x&(a))uk,w)/x(o)

=Mz';ijxki(0) Agvj (0) v'wiwj% (1&) Vo (X’i' )/ Zi'j)‘ij(O) /wi‘.':j

(4-13)
This expression can be compared with X, . (0) by picking

out the coefficient of wﬂ(zk )wi.(gk.), which i~

—
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/-—-__ “
I g (00, (0T, /T L (0) VT W,

i3 i (4-14)

and comparing it to X (0). Since most of the anisotropy

gt
occurs between rather than within the regions, this comparison
is most meaningful when £ and %' are zeroth order functions.

In Table 5-12 this is done for Akk,(O) and fdw(azF(w))kk,.




CHAPTER =

a .
RESULTS AND DISCUSSION OF NUMERICAL CALCULATIONS

In this chapter calculations are presented of the
functional derivatives mentioned in the previous chapter,
the thermodynamics ok several isotropic and model anisotropic
superconductors and the exact solution of Markowitz and
Kadanoff's separable model; also preliminary results for the
application of Fermi surface harmonics to anisotropic Pb are
discussed. The emphasis is however somewhat different from
that of the preceding two chapters in that the thermodynamics
of the important elemental superconductors are stressed, al-
though no new formalism has been developed there. These
numerical results - the first of their kind for the specific
heat - showing the effects of strong coupling and anisotropy
on the specific heat and deviation function are of sufficient
interest in-themselves, since in the past only semi-empirical
formulas, or expressions properly restricted to weak coupling
have been used to deduce the gap anisotropy from experiment.
No such deductions w1}1 be made here,iéit a falrly.detailed

comparison with experiment is done with the results of isotropic

calculations.
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1. The Functional Derivative of the Deviation Function

Since the shape of the deviation function D(t) says
more about the type of coupling in a superconductor than the
magnitudes of Hc and TC, it would be very useful to know how

v(t) responds to changes in QZF(m) and u* The required

functional derivative, GD(t)/SazF(w), defined by
2 2
AD(t) = 3f¢9a F(w) [éD(t)/Sa F(w)] , (5-1)

and 3D(t)/du*, can be expressed in terms of other functional-

derivatives and dHC(T)/dT as follows:

3D (t) /60°F(w) = {H_(0)8H_(T)/da’F (w) (5-2)

a

“H_(T) 6IIC(0)/6a2F(w)+tHC(C) (dH_(T) /dT) 5TC/<Sa2F () }/H % (0) .

The third term appears because the differentiation with respect
to QZF(w) of HC(T) is done keeping T/TC fixed but allowing T
and T. to vary. The derivative of HC(O) 1s obtained the same
way that HC(O) is found in lmaginary—axis’calculatfons, by
straightforward extrapolation; since the height of the maxi-
mum of GHC(T)/éazF(w) changes only by a few percent, while
its position shifts down from 7kBTC to about 2.6 kT ~as t goes
all the way from 0 to 1 (see Fig. 5-13) fhe extrapolation should
be reliable.

Figures 5-1, 5-8 and 5-14 show SD(t)/dazF(m) and
oD(t) /ou* for lead and for a weak and med;um coupling system.

The surprising amount of structure and temperature dependence e

compared to the two parent functional derivatives occur be-

QU
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Fig. 5-1 Functional deravative of D(t) for Pb. \
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cause of the degree of cancellation in (5-2) and the difference
in the position of the maxima of GTC/GaZF(w) and GHC(T)/GazF(w).
If the;e were a simple physical explanation for the position of
the maximum of GHC(O)/GazF(w) at 2.6 TC, more could be said
about that negative region. Rainer and Bergmann(4?) fournd
similar negative regions in the functional derivatives gf di-
mensionless ratios such as TC/HC(O)(dHC/dT)T and conclude
that increasing azF(w) in this frequency range actually decreases
any stroné coupling effects. But it is in any case not impor-
tant because it lies below most of azF(w), at least in the
crystalline elements studied here, with the possible exception

2F(m) indicates whether a givén chanée

of Hg. Because §D(t)/éa
in azF(w) moves the system towards weak or stroﬁg coupling,
a better explanation would be valuable. The difference between
Figures 5-1 and 5-14,weak and stfong coupling, is not just
in magnitude but proportion as well, since the relative sizes
of 3D(t)/3u* and 6D(t)/6a2F(w) are very different, so that
these shapes are far from mniversal. 1

There are many applications of this functional deriva-
tive, for example to alloy series, the effects of pressure(104)'
thé isotope effect (through 8Tc/aﬁﬁ as done by Leavens(BS)), or
the modification of an aZF(w) to improve agreement with ex-
periment, ;s is done'in section 4 for Nb. One obvious limi- "
tation of ﬁhe method is that it cann&t handle large changes

in ‘the interaction, especially in u*, as the relative sizes

2. o
0f 3T_/3u* and BZTC/Bu* in Table 5-3 indicate. Another

*
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arises from the truncation of the Matsubara frequency sums.
Table 5-1 compares the changes predicted by functional deri-
vatives in Tc' HC(O),.and D(t) with the cganges obtained by
direct calculation: In columns (a) and (c) the starting
point a?F(w) was that obtained by Rowell and in (b) was the
modified azF(w) described in Fig. 5-8, so that slightly dif-
ferent functional derivatives had to be used in column (b).
The‘changes used to test the functional derivative were in u¥*
((a) and (b)) and in azF(w) (column (c)). The change in azF(w{,
which decreased A and A by about 5 and 10% respectivély, is
the same one shown in Fig. 5-8. v

One sees immediately that the error in predicting AD(t)
is much larger than that for ATC and AH_(0). This is to be
expected because the three terms i1n equation (5-2) cancel out
to about 80%, thus magnifying any error in ATC and AHC. But
not even a correction from the second derivative can improve -
the ATC preéicted in columns (b) and (c); there the error is
3 or 4 times greater than the error in H_, in contrast to
column (a) where the error is about the same. Poor convergence
of the numerical solution is not the problem. In fact, itera-
ting the equations to the limit set by machine accuracy only
vegifies that for small changes in the kernel, ATC énﬁ AHC(Th
are predicted by the functional derivative to ﬁg%ter than 1%,
while for larger changes thg discrepancy remains. Tpe

problem occurs because the functional derivative has a. dis-

continuity when the number of Matsubara frequencies summed over

Wy b gy S
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Table 5-1

Comparison of the changes predicted by functional deriva-
tive with the results of direct computation in Nb.

.98, u* increased from .1091 to .11725

Column (a) A

(b) A .89, u* decreased from .1091 to .092

(c) .03 subtracted f?om azF(m) from w = 3 to 12
meV, X changes from .98 to .89, u* constant

(a) (b) (c)

Y

ATC direct calculation i -.32 .73 -.97
functional
derivative -32 -67 -82
AHC(O) direct calculation ~75a 165. -235.
functional derivative -76. l68. -248.
AD(.7) direct calculation’ -.00076 .0015 ~.0054

functional derivative -.00081 .0018 -.0045

Initial T~ 9.2 K, H_(0) ~ 1980 G, D(.7) ~ -.010 (values are

approximate) .,

e e ot e 4 A
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changes, wath the result that only changes in TC small enough
for the number of terms in the sum to remain constant, i.e.
within a temperature interval of about 2n(kBTC)2/wc, can be pre-
dicted with arbitrary accuracy. Further consequences of the

truncation of the sum are discussed in the next section.

)
2. Difficulties in %heqNumerical Solution.

Apart from the need‘to have very well-converged solu-
tions of the gap equation, which is easily managed by increa-
sing the number of iterations, and the size of the arrays for
the gap and the kernel, most of the problems in numerical
solution of the gap equation on the imaginary axis arise from
the need ta, truncate the su%s over Matsubara fregquencies. That
the difficulty 1is partlf one of interpretation 1s demonstra-
ted by the following example.

At T, the expression for w(n) (egn. (2-25)) can be simpli-
fied, 1f an infinite number of Matsubara frequencies are
allowed, to .

"'n
G{n) = wn+nkBTcsgn(wn)(-£(0)/+ 2 mEo X {m) ) (5-3)

because an anfinite number of terms cancel out thanks' to the fac-
‘tor Sgn(wm). If the sums are truncated some cancellation
still occurs, but the expression does not simplify and eqgn.
(2-25) must be evaluated as it stands. It would seem that
expression (5~3) 1s preferable, since there 1s no truncation, but

1t can also be“argued that the sum in w(n) should be cut off
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just l;ke the sum in K(n) for the sake of consistency. More-
over, expression (5-3) results in a Tcllnconsistent with the
non-linear gap equations, since below Tc' w({n) cannot be
expressed as such a finite sum even if the interaction is not
truncated; hence in a numerical solution the number of Matsu-
bara frequencies summed over to get «(n) both at and below TC
mu§t be the same as that used for A(n) because if Tc 1s lncon-
sistent with the gap equatiop below Tc, then neither D(t), nor
the specific heat jump extrapolated to Tc can be trusted,
especially since the discrepancy 1in Tc is of the order of one
percent. Although the need for numerical consistency precludes
the use of expression (5-3), it is not immediately obvious how
best to reinterpret the upper bound of the frequencies used on
the real axis, which does have a physical meaning, 1n terms of
truncation on the imaginary axis. )

The cénclu31on of section+l in Chapter 2 was that
for a gaiven w the p* used on the imaginary axis need not be
the number deraived from tunneling but 1s a constant, depending
on w_. chosen to fit the experimental TC or the gap edge, or
anything measurable. It 1s worth knowing what happens to other
calculated quantities when TC and u* are nailed down in thas
way. In the following table the effects of using different
Wa and u* with the same)azF(w) and Tc are shown. Tho entraies
in brackets correspond to u* = .1257, which le&ds to a Tc

slightly higher than that in the neighbouring columns. Using

aT_/3u* to see what change AuY1s needed to bring T. down to

. Ve
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»

2.329, then BHC(T)/au* and aD/3utone can get values to compare
with the Other two columns. These two deraivatives will aléo
prove useful later in the discussion of anisotropy effects.
Right now they provide evidence that in the calculation of
measurable quantities, the choice of W and u* 1s unimportant,
while fsr the derivatives with respect to u*, a significant
difference 1s seen. There 1s no contradiction, since what
is always called aTC/au* or QHC/Bu* does not really give the
change 1in TC or Hc when the Coulomb repulsion is increased, be-
cause these derivatives are taken at fixed W when in fact u*
1s a fuqction of W, - They should he regarded more as con-
veniences 1in fitting u* to e;periment or comparing different
calculat:ions. ) ‘ i
An entirely different problem resulting from trunca-
ting arises because there are inevitably discontinuities in
the thermodynamic properties and theif!derivatlves whenever
_.the number of terms in the sum changes.. This means that not
only 1s.TC a non-smooth function of p* at fixed W s and
vice versa, but also that the free energy AF and its deriva-
tives &re not smooth functions of temperature. Some of this
discontinurty can be smoothed out by the appropriate weighting
‘of the last term N in the frequency sum as follows: if W

lies a fraction £ of the distance between w, and w then

N N-1"'

the Nth term in any sum is multiplied by f. This procedure

is intuitively appealing and does actually make Tc a monotoni-

g 8B

“
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. s 4

cally decreasing function of u* at fixed w_ - Unfortunately,
it does not go far enough éo straighten aTc/au* and aTc/ao,
both of which display a typical sloping saw-toothed pattern
as a function of p* in which the jumps are of the order of a
f%é percent, far larger than the increment between juﬁps of
the .mean value of BTC/Bu*. This shape explains the behaviour
of ATc in Table 5-1, because the error in the predicted ATC
is a constant fraction (20%) of the directly calculated ATC,
implying that the 18Tc/8u*| used in the comparison was larger
than the mean value‘over one sawtooth.

A related problem shows up in 38D/3u* in Fig. 5-14

only now it has its origin in aHC(T)/au*. But before even

‘this curve could be calculated there were complications caused

by aTC/Bu*. Just as TC and H_ must be consistent to get a
smooth D(t), so the three derivatives in egn. (5-2) must not
contradict each other, otherwise dD/3u* as t - 1 swings in

all directions. It was in fact necessary to ad]gst STC/QU*

by a fgw percent, to get 9D(t)/op* at the highest temperatures
lying on a straight line. The remaining bumps, caused by
8Hc/5u*,,are not such a problem, since they can be removed by
a straightforward smoothing prodedure. The reader may however
wonder'how D(t), or even the change in D(t), can be a smooth
function of telperature when its derivative is not. The

answer is of course that

aD (t sD(t,u*
A}J* (*) # du* ( *u )

311 J . au

o

s
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B

A*

because the position of the bumps changes when u* and TC do.
So far the difficulties have all been associated with

3/3u*, because in that derivative expressions such as :
& +.

Q ¥

&

2 A(n)A(m) (5-4)
mn

occur in which the large values of n and m are not weighted

2

C_p) as in 5/aa2F(w), while A (n)

by factors like 2w/ (w® +

at large n tends-to a negative constaff which is often a %\\
sizeable fraction of A(l). TLe result is that such an expres-
sion 1is very sensiti&e to changes in the number of Matsubara
frequencies, especially when there are relatively few (less

than 50, say) terms in the sum., Increasing W and lowering

the temperature therefore lessens the sensitivity, since the
more terms there are in the sum, the smaller the influence of
the last term. This problem disappears almost entirely for

t < 1.

Even at very low temperature however the truncation

JPPR—

of sums requires very careful handling to calculate a meaning-~
.

ful specific heat. 1In the first place, the free energy AF

5

(eqn. 2-41) 1s the difference between individually divergen

R A 4
sums, so that the amount of cancellation may be as great ag 1
part in 106. Moreover the triplets of temperatures at which AF
[V]
is evaluated for the specific heat must be chosen so that they

-

~

truly reflect the mean curvature of AF and not the local bumps
due to increments in the number of Matsubara frequencies. It

is easier to discuss the problem in terms of the slope of
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. 9AF /3T than the curvature of AF. Just below‘Tc, most of the
, .
mean slope of 9AF/3T comes from the slope of individual line

segments, while for t < .4, the jumps betziiﬁjline segments

account for most of it, as shown below.

_ 9AF
9T
Sy,
/I
/
‘7‘-—
A
b o
'—4:
v
ot
e
Vs
:;
~5
;7 -
”
,‘-—-{ ,
t << 1
da)
_ JAF *
T
t < 1
& : . (b) .

Fig. 5=2 Discontinui#lies in aAF/EPdﬁe to changes in the
L3 -

number of Matsubara frequencies. Dashed line
is the smoothed~va1ue.

»
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If it is conceded that the ﬁean slope and not the slope of each
segment is to be interpretedras the specific heat, a question
easily answered by direct calculation, then the threé adiacen£
temperatures where AF is evaluated to get the specific heat
must correspond to different numbers of Matsubara frequencies
and all‘three to the saﬁé fraction f defined several paragraphs
back. Where this is not possible, as may happen, just below
Tc' two of the temperatures were takep on one line ségment
There remains a jump in ACV(T) and dHc/dT.when the middle
temperature of the triplet crosses from one segment to the
next, but these discontinUities;Lwhich look something like \,
Fig. Sgé(b),can be hAndled by‘a smoothing subroutine, only not
so well immediately beloQ Tc’ so that there is always an un-
gertainty of a pegcentnor.twq in ACV(TC)/yTC,QandAa discrepancy
between that quantity and (dHc/dT)Tc. Nevertheless there is
good reasop to believe that all these precautions are effective.
When the specific heat and deviation function were calculated
using the azF(w) for Al calculated by Leung et al(QG)

and a .u* of .1267 Ces/yT and D(t) lay about one Qércent

below the BCS values“tabulated by Mﬁhlschlegel(87), and even
that discrepancy could beé a£tfibuted to the Coulomb parameter.
" One uncertainty that does remain is in the specific heat at
very low temperature, t < .2, wheré Ces is approximately ex--
ponential. It could not be computed for Ai, since there were-
far t&g:manwaatsubara frequencies; in any case aréund t = .1,

{&Cv{'may be as much as 99% of <yT , greatly magnifying any
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error. More will be said about this temperature region in

section 3 when comparison with experiment is éiscussed.
’Thisosection closes with a description of the mgthod

of solution and the';ne convergence problem that accurfed for

large impurity concentrations. For isotropic separable fre-

guency-independent, and arbitrary (azF(w))

Kk '’ Tc was calcu-
‘lated from modifications of an algorithm developed by
Leavens(aa). The author is indebted to Dr. Leavens for. the

use of his program and for many helpful discussions. His a

procedure was to calculate at the beginning of iteration i

L4

the quantities
B(T)zmkT ) 2 nem) ~ w8 /)5l | (5-6)

for a set of temperatures Tj centred on the Tél) of the ‘pre-
/ D "

- i teration: (1) (1) (i) (4
vious lteratio <90 Tc ;y 95 Tc , <90 Tc ’ TC ’

1.05 Tél), 1.10 Tél). E(l? is the gap from the previous
iteration, normalized so that A(1) = 1. If both Tc and 5

are fully converged, then the B(Tj) are monotonicallly decrea-
- p X

- {i+1)

sing and’B(TB) = 1. Therefore TC is chosen as the tempera-

ture, found by interpolation, where B(T) = 1. The A(m) are
8 . P

then recalculated using Tél+l)r and A(1+1)

putting 5(1)'1n the right-hand side of egn. (2-24) and re-

.~ &
normalizing A. For the non-linear gap equation a very similar

is obtained by

procedure was adopted, with the magnitude of the gap playing

L]

the role of_ﬁemperature. Z(J)(l) is calculated for a set of

Cj'centred on unity with CjE(l)(n) replacing Egn) in the right

¢
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side of eqns. (2~22)"and (2-23). The ratios A(j)(l)/a(i)(l),”

like B(Tj), then determine by'what constant all the E(i)(n)
are multiplied by before going into the RHS of eqn. (2-22)

to geneféte Z(l+l)(n). Both algorithms are fast, and Tc or

7

Z(n) converge to 1 part in 10° within 10 iterations, at least

for pure systems, unless the inter-band coupling is relatively
weak. When a large amount of elastic impurity scattering is
put in, éhe linear equations (3-43) for the separable model
converge as usual, but eguations (2-50) and (4-2) do not,
because the term CT;k' dominates the kernel. This problem
occurs only at reia;;vely lérgéjconcentrations where TC—Tci «
c"l, and‘the constant of proportionality cah be obtained if
Tc:-Tci at lower concen#rations is kpdwn: In any c;ég, Tci can

always be found by putting the averége& GZF(w}’Tﬁ'the isotropic

D

Thermodynaﬁics of Isotropic Superconductors

In this section calculations are presented of "the
critical field HC(T) and the sbecific heat of isotropic Hg,

'In, Nb, Nb_Sn, Pb, Sn, Ta and Tl, and comp@r;sdn is made with

3

e#perimentr Some functional @erivatives are also calculated,
but thy-are‘ndp used for é really deta;led'comparisoﬁ with
experiment as is done in the next sections for NbLand Pb;

The azF(w) discussed here were derived from tunneling data,

except'for Al which was calculated(gs), and the up* was

chosen to fit the experiméntal T.- The pr&bepties of these
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spectra, aTc/au*, the u’.‘r obtained from tunneling and the u*
needed to fftch; are listed in Table 5-3, while 6Tc/6a2F(w)
is shown in Fig, 5-3. The:difference between t?e two u¥*
is certainly not large, in accord with previous work by

(68). But the main thing to notice "in

Vidberg and Serene
this table is that 3T/9p changes by only a factor of 2.4 in
going from the strongest to the weakest coupling, while
BTC/Bu* ‘which is often very lérge, is roughly probortional
to T, at gonstant'xz In addition Table 5-3 deﬁonstratég
-tﬁ;t the values calculated here for 3T/3p conpare
réasonably with those calculated by Be?gmann and Rainer(IS),
the discrepancy being less than 25%. 1In the actual
GTC/GafF(m) {(Fig. 5-3) there is a similar problem and the-
discrepancy remains, "ﬁossible explanétions are the difference
in p* and w_ (see Table 5-2) or the definition of ®(n)
discussed in section 2 of this chapter. 'Althoughnthé choice
of a definition for w(n) matteés/little to Tc’ it may afféqﬁ'
aT)ap considefably because 3p/3T and for that mattef - -
6p/6a2f(w) too are sums of terms that nearly cangel. The
difference is not however significant in this ‘context, since’
direct verification qf aTé/auf and 5Tc/6a2F(w) was done in
Table 5-1, while 3T/dp was checked thrppgh the rxelationship
between Tc’ impurity concentration and gap anisotropy (see
fection 3 of Chaptér 3)%

F For the calculaéion of “the dimensionless ratios D(t),

Ces(TC{/YkBTc'and y(kBTc)z/Héz.no additional information beyond

L
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o’F (8) and w* is needed, but for AC_(T_), H_(0) and (dil_/dT),
one needs N(0) the Fermi surface density.of states, which s ©
obtained from vy, the coefficient of the linear term in the h
normal state electronic specific heat as T + 0 (egn. 2-45)
Sinée this specific heat is not so easy to measure, nor is

the deduction of y from it straightforward in view of eqn. (2-44),
it is useful to know whether a given N(0) predicts both ACV(TC)
and H_(0) correctly. 1If, for exampl;, both the calculated
quantities are-larger than experiment while D(t) is nearly
right, and the experimental ACV(TC)/kaTC is too‘small, then the
discrepancy is more likely to be in the experimental vy ihan

in azF(m) or tﬁe éliashberg equations. Although one would
prefer to convertuexperimental results into dimensionless

. ratios for comparison with theory, tgese ratios (except D(t),
for which HC(O) must be obtained very accurately) contain an

" -uncertain factor of Y. Therefore it is often better to work
with AC (T ). (dH/dT)T and H (0), provided they are indeed
the quantities bglng meaSured directly, since calorimetric
data can be integrated to get HC(T), and magnet%zation curves
céq be differentiated.m On survey;ng the various experimental
resﬁlts, one sees geﬁéral agreement on the ACV(TC) determined
calorimetricaily,“(dHc/dT)TC, apd HC(O); larger qiscrepancies

in_y; b (TC')/kaTé and D(t), and very large uncertainty in

log §F§%;'for t < .25,

L
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Fig. 5-4 Calpulated and pxperimenﬁal D(t) for Pb

Experiment: ~+—-+=+ Ref. 6, —~=-m +~ Ref, 48,
-— B S & & . Ref. 74. N

Theory - isotropic tunneling 42F(¢). -
/ . “%*+r- anisotropy added, ------ anisotropy
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/»Nb3Sn : F/‘Pb

0 D T 1o°

Fig. 5-5 Calculated D(t) from isotropic tunnellng aZF(w) for -

: Pb, Nb3Sn, Hg, Nb, In, T1, Sn, and Td, The curve-
labelled BCS is actually that calculated for Al. For
all other systems D{(t) and AC,, (T) were calculated at
more closely-spaced temperatures than indicated here.
For Nb spectrum (a) was used (see Table 5-5).
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.

) This.last temperature redion, interesting as it may
be for anisotropic systems, really lies outside the scope of

this thesis, because the difficulties encountered there in
t) . L]

ﬁhas calculation can probably be removed by a better handling
of the normal state electronic specific heat Cen' The problem is

that yk T + (CS_Cﬁ)’ the quahtity referred to as CeS through=-
% . . .
out this thesis, actually becomes negative for the three

strongest coupling cyétems, Nb Sn, Pb and Hg around t = .2.

3
The reader will recall that Wada's eguation (2-41) gives only

-

the difference CS CN’

ly, so that some expression for C

with no way of getting CS and CN separate-

N must be added to get Cg

It is of course possible that his égsumpﬁion about thé isotope
effect is invalid, but the experimentéi plot of kaT + (CS—CN)=
in Figure 5-26 for Pb, -also changes sign in the same place,
making it more likely that the fault in the theory lies Wlth the
vk, T term rather than with the expression for C_-C.. Some

7B S N
( 89)

such negative values have been reported in In( 90) and Nb

and attributed}g4’9§) to ;he inadeguacy of’YkBT to describe CN,“

but were not found in these calculations, at least not down

- to t = .15 and .045 respectivelj." Since C,., in Nb._Sn has

N 3
not even been measured at a low enough temperature ; ta see
s
(95)

the sort of effects predicted by Grimvall .while in

‘Pb_and Hg ¥ 1s simply not gnown well enough - recall tﬁe

‘Hegxég\of cancellation - tpe guestion is by no means settled.
The calculated D(t) and Ces/kaTc for isotropic systems

are shown in Figure 5-5 and~5-6, while Table 5-4 lists more

.
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— u . .
of their properties and some experimental data. Quantities
not quoted directly in the references, those that were ob-
tained from dgraphs or in combination with data from other re-
ferences are shown in brackets. The finiteiwidth § of the
superconducting trans;tion creates ambiguities in the defini-
tion of AC_(T_), since it is rarely made clear whether the
quoted value:is Cg(T_-8/2) - C(T_ +6/2) or the difference
between CS(T) anq,CN(T) extraégiated to T.- A similar diffi-
culty arises with (GHC/BT)TC, a linearly increasing function
‘near T.: it is rarely made clear where in the. transition
"interval the derivative is evaﬁuated. Another annoyance
affecting the use of Rutger's formula to connect calorimetric
and maénetization data is é variation of a percent or two in |
the quoted molar'voluﬁes.A Such small poinfé do-matter, be-
causé thg difference between theory and experiment is only a
few percent, and the effects of anisotropy are expected to be
of_this order, as are the differences between egperiments. .
In fact, there are also discfepanéies Qhere there shouldn't be
any, between the calculated ACV(Tc) and the éalculated
(dHC/dT)Tc. The value deduced from JQH/BT)£ is lafger than
ac, (T_) by an gmouﬁt ranging'frbm~l% for weag coupling to 5%

for strong coupling. This is another result of those discon-

tinuities caused by changes in the number of Matsubara fréquenciesh

and careful examination of the smoothlng procedure reveals why
Rutger's relatxon does not hold. The same analy31s shows that the
problem is confined to systems such that the set of temperatures

(t>.94) ‘from which AC (T ) is extrapolated corresponds to the.same

:f P . : " n
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is likely to be underestimated. A close look at the plots of the

" calculated Ce; for the three strong coupling systems which
satisfy the preceding conditions réveals a very slight knee
around t2 = .80, making the pighest part of the curve slightly
convex, in contrast to the experimental curves for strong
coupling which are concave over the whole temperature range.
The source of the problem was that for strong coupliﬁg the
cutoff was taken so low that the region t2 > .80 contained
only one or two segments of thé type shown in section 2,
insufficient to allow the'upper members of the triplets to
have the same weight faqtor f as the middle temperature at
which CV(T) was sﬁpposed to be evaluaﬁed. In Al, where the
cutoff is already high enough, there was no diffiéulty - the
small deviation from BCS theory decreased smoothly, without
any abrupt change in the curvature - but it remains to be
verified that using a very high cutoff for the upper tempera-
ture is the solution to this problem with strong coupling.
There is a great deal of information to digest in
Table 5-4. A thorough discussion of only one element takes
up all 9f the next section. .Fortunater it is possible to
"géneralize to some extent. The first observation is that the
tunneling data togétﬁér with the y's quoted by Gladsténe

et al.(4l)

and the p* fitted to Té predict HC(O) and
ACV(TCT within a few percent, for weak and strong coupling

“alike. Secohdly, the height. of D(t)his'consistently over-

-

.y
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estimated by the calculations, more so in weak coupling than
13 3 > 2
strong ¢coupling. Thlrdly¥ the ratios Ces/kaTc and {(RBTC)

derived from experiment are not at all reliable because Yy is

s0 uncertairfi; in fact, it is more sensible to*work backwards
and dedugé Yy from the measured ACV(TC) and the caléulated
jump ratio for those elements where there is agreement on
ACV(TC) and H_(0). Finally, there may be a slight trend
towards overestimating Hc in the four strongeét coupling
materials, even when the N(0) used in the calculation is

deustea to make the calculated ACV(TC) coincide with the

S

(approximate) mean of the measured ACV(TC). This last trend
may however disappear when ACV(TC) is recalculated more care-
fully, because then ACV(TC) can be fitted by a smaller vy.

It is worth looking in detail at Nb,Sn, a much more

3
complicated superconductor for the theoretician than any of

the others in this table. The phonons are unignorably

anharmonic because the compound is close to a structural

e

-

phase trarsition driven by a very strong electron-phonon

inferaction, anomalies have been reported in the specific heat

(76) (97)

just below Tc . and it has been suggested that the

usual assumptions about the energy dependence made in deriving
[¥3
equation {(2-13) from equation (2-9) do noét hold. Yet
. L -
Tables 5-3, 5-4 and Figure 5-7 demonstrate that the tunneling

a’F(w) with the unmodified Eliashberg equations describe

the thermodynamics gquite well:; Nb3én seems to Pehave like

’

L
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Hg or Pb with the phonon frequencies scaled up. There is
room for a slight improvement though, in CES(T)/kaT. Decrea-
sing y to 12.5 brings the experimental Ces(T)/kaT into better
agreement with theory, but only at the highest temperatures, ]
while the calcdlated AC,(T ), (aH_/dT), and H_(0) change to
557 mJ/mole/deg, -604 Gauss/deg and 5238 Gauss respectively,
quite within the experimental error. The discrepancy in Ces/kaT
remains however, and it does not resemble the effects of
anisotropy to be discussed in section 5. Additional specific
heat data would be helpful.

The conclusion of this section is that except for
D(t) the isotropic Eliashberg equations predict the thermo-
dynamics of weak and strong coupling superconductors within

=

the experimental accuracy of several percent.

4. Thermodynamics of Superconducting Nb

Although superconducting Nb has béen extensively
studied there remains up to the time of writing considerable
uncertéinty about the u* and azF(w) obtained from tunneling
inversion. Although there are indications that Nb is

5 .
(92 (86)' and

(91)

very sensitive to - strain and dissolved gases
that tunneling experiments may not sample bulk properties
these considerations cannot explain a.£acéor of three difference
in the 1(0) obtained.from two diféerent tunnel?ng experiments.
In addition, a negative up* was found in one experiment, which \

casts doubt on the applicability of the Eliashberg equations
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to Nb. For these reasons it was found worthwhile to obtain
several proposednngCw) in order to test them and the theory
by uéing them to calculate. the thermodynamic properties. A
large discfepancy'between the measured vaiues, which vary by
only a few percent from one-experiment to another; and the

results calculated from the 02

p* would not in itself be conclusive; if the same inappropriate

theory that generated an implausible aszm)Land u* is further.-

.used to calculate other quantities from them, one can only

¥

expect to get meaningless results. But if"éalcglations with
other azF(w)'and u* giQé very good ggféement‘ﬁith experimeﬁty
it seems reasonable to conclude that the theory is sound and
that the anomalous dZ?(w) and u* are attributable to some
unidentified experimental difficulty with the tunneling juan
tion.

The three most important azF(m) used in these calcu-
‘lations, spectra 1, 2 and 3,.are shown in Fig; 5-8 and
described in the first three rows &f Table 5-5. The factor
of th?ee différence bgtﬁeen"the A(0) for spectra 1 and 2,
both of which were obtained from tunne}ing, is what motivéted

these calculations. The very small R(O),;which is compensated

by a negative p* of spectrum 2 is already a point against

sbectrum 2, for both theoretical éélculatipné‘gl) and experi-

ment(94) agree on a A(0) of order-unifyg Apart from an

&

overall scale factor, spectra 1 and 2. are much the same/shape:

»

s g

»

F(w) corresponding to the negative

.
_A-lepum § Mot e 0 2 T g
o it | K

ot e
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Several possible a?F(w) for Nb and

6D(t)/6a2F(w) for spectrum 1.

,QZP(m) -~

LI K B ] .i,.' spectrm l g T Spectrum 2,

spectrum 3..

The modifica%ion to spectrum 1 between
w =~3 and w = 12 meV is also shown.
GD(t)féa?F(w) is for spectrﬁm 1.
cvsere £ = .95, e b = .30,

—te—esmuws t = '70.
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Table 5-5

Properties of the various a’F (w) proposed for Nb

Spectrum 1 (J. Rowell, priv. commun.)

(b) Spectrum 2 (J. Bostock, priv. commun.)
(c) Spectrum 3 (W. Butler, priv. commun.)
{(d) Spectrum 3 scaled down by 2/3
(e) Spectrum 1, .03 subtracted between 3 and 12 meV
(f) Spectrum 1, delta-function of height h added at 23 meV
(g) Spectrum 1 with the model anisotropy described in the
next section and n* the same as (a)
(h) "The same as (g), but pu* adjusted to fit To
A = J dwazF(w) ' <w> = [ dw wazF(w)/A
Other derivatives for spectrum 1 are BACV(TC)/au* = -664,
3H : 8T

(—Qgi;ll) = 0052 , {—s—) S 539, (=) _ 5, 1y
§a”F (w) w=23 Sa"F(w) w=23 Sa"F (w) w=23 ’

w A A <w> oy *Te (.7

¢ b(au*) T3 T du*

(meV) (meV) (meV) T=0

K

(a), (g),(h) 85.5 6.29  .983 16.0° 9.3x10° 37 .10
(b) 106 2.89  .328 2.4x20% 110 .42
(c) 80.7 9.35 1.223 17.5 29
(a) 80.7 6.23 .816 17.5 45
(e) 85.5 6.01  .894 16.4 42

(£)

85.5 6.29+h .983

2h
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in particular both lack the pronounced second peak so prominent
in spectrum 3, which is a calculated azF(w). The huge difference
in area between this azF(w) apq the tunneling results sﬁﬁﬁld not
be interpreted as additional eviden;e for Nb being somewhat
anomalous, because in the transition metals such calculations

are far less accurate than in a nearly-free electron metal like
Pb. The existence of the second peak, which corresponds to the

longitudinal phonons, has been verified by neutron-scattering , .

studies of the phonon spectrum(93) and phonon lifetime experi-
(91)

I

ments it is curious that both tunneling azFfw)'s should lacg
it. The possibility that tunneling electrons do not probe the .
bulk propgrties of the junction and that.this somehow makes them
inseﬂsitiye to the longitudinai phonons has been offered as én
explanation(gl). = ’

The first three rows of Table 5-6 show the results of
calculations with these three spectra. The adjustable parameters
in these calculations were the same as in the previous section,
namely p*, which was fitted to T, for spectra 1 and 3 but left

unaltered for spectrum 2, and y, which was taken to be 7.80 ad/

mole/deg for all systems, a procedufé that led to larger N(0)

.being used for the systems with smaller A(0). The fitted u* |
for spectrum L differed from the tunneling u¥* byIB%, a discre- ‘

pancy comparable to that found.previously for other elements.

-

The improbably large p* (,32) needed to fit T, for spectrum 3 . .

= ke e g o

suggests—~that a detailed discussion of this azF(w) should be

deferred to the end of this.seétiqn wheré possible improvements
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-Expérimentai and calculated specific heat for Nb

3
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_~==f== Ref. 53, A Ref. 100, V Ref. 46, + Ref. 99.
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to the three original spectra are considered.
Table 5-6 shows that the enormous differences between

the three spectra are hardly reflected in the magnitudes of

the ACV(TC) and H, calculated from them; they are almost equally

close to the experimental data listed in Pable 5-4, except for
spectrum 2 which undgrestimates both ACV(TC) and Hc. That

last fact is not however sufficient reason to reject spectrum 2
out of hand, for a 15% increase -in the N(0) used in the calcula-
tion would bring both the ACV(TC) and H, for spectrum 2 up to
the experimental vahues. éuch an adjustment would not be con-
sistent'however with thé experimental y's which differ by

only a few perceﬁtlfrcm the value used here. This kind of
iﬁconclusive_juggling with numbers can be 'avoided by locking
.at .the éimensionless ratios D(t) and Ces(T)/YkBT. The experi-
mental values are shown in Table 5-4 and in Fiéures 5-9 and
5-10 where they are plotted together with the results from spec-
trum 4, while Figures 5-11 and 5-12 allow comparison of the
res&lts‘calculaged ff%m various azF(m). This additional data
leaves no doubt that spectrum 2 isnsimply too weak coupling
while specfrum 1l gives agreement almost as good as that seen in
the‘previoué section Eor-the other elements.

The reason that these ratios are decisive when the
absolute magnitudes of H_ and AC (T ) are not is to be found in
Table 5-2, and Figure 5- 13 which shows H (O)GH (0)/6& F(w) .
and T_lGT /6& F(w) '~ Table. 5-2 demonstrates that Tq laT /au '

and H (O)BH (0)/su* giffer by less than 20%, much 1ess than the

L3
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D(t) calculated for Nb from various
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k

e spectrum 3

- 8 O e ®

<

+- spectrum 3 withrsca£;<£$ctor.

/31




132

005

D(t)

-005

=-.010

-.0I5

=020

-.025}

o nh A s b b A



133

r
N

9

\ .

) =
0
/
Fig. 5-12

.20 L0 2 RN 89 BTN

Specific hHeat of Nb calculated from several
different azF(m). P

~e=-+—-+ gpectrum (a}), -+--++ spectrum (d), but
with u* = .109l;ﬂ —————— spectrum 2,

spectrum (g).

Note how closely the modification to spectrum S

mimics anisotropy effects, as in Fig. 5-11.
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%)

difference between the corresponding derivatives with respect
to a2F(m) at most frequencies. What is true for HC(O) also
holds for HC(T) at finite temperatures. It follows that ratios

such as YTCZ/ch(O), D(t), and ACV(T)/yT (which can be rewritten

as
AC (T) H_2(0) 2
v c 3"D(t)
T = 5 [-2 + _...__5..__]
Y%p 8ry(kgT, ) 3t

to make explicit the ratio TC/HC(O)) are all much less sensitive
to changes in u* than in azé(w). To put it more precisely: A
change in a2F(w) and a change in p* both chosen to increase TC
by the same amount will cause changes of quite different magni-
tudes in the difiensionless ratios. This is not to say that p*

is unimportant. In Fig. 5-11 for example, the very large u*

of spectrum 3 pulls its D(t) down to that for spectrum l, despite
tﬁé connsiderable difference in A and A (0) between the two. It
would be more accurate to state that adjustment of u* cannot
compensate for deficiencies in azF(m) as revealed in the dimen-

13
sionless ratios to the same extent that it can cover up the

A -

imperfections of azF(w) as revealed by the calculated Tc, HC(O)
' ¢
and ACV(TC). N
Now that it has been established that the Eliashberg
equations work for Nb and that the true azF(w) is quite close

to spectrum 1, the functional derivatives for spectra 1l and 2
t ; .
shown in Figures 5-8 and 5-14,. and the directly calculated _+

-

derivativesywith respect to u* listed in Table 5-5, can be used

to see how pectrum l/might be improved. To avoid wasting time

[r——
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by going into too much detail it is worth‘%inding out fi;st
how large a variation in azF(w) and u* is imélied by the dif-
ference between the various experimentally measured D(t), or
equivalentf&, how large a cﬁange is necessary to bring

the calculated D(t) down to that given in Ref. 3, say, as

an arbitrafily chosen example. There_are many ways of doing

' this but-some possibilities can be é%?;d out from the start. In
the first place it is clear that the change cannot be accom-
plished through u* alone because then T, would be reduced far
below the value reported‘in that experiment. Adding weight to
azF(w) below 2 meé where 6D(t)/6a2f(w) is large and negétive
but STC/GaZFgw) is small and positive would'bg-unrealistic
betause neutron scattering finds very few phonons of such low
frequeﬁcy. The only remaining p0351b111ty is to subtract weight
from uz?(w): The way to minimize the required reductlon is to
remove weight‘where §D(t)/da F(w) is largest, between 3 and 12
ﬁeV aé shown in Fig. 5-8 , thus redgcing A and A(d) by only

5% and 10% respectively.‘.sigfe ﬂt shoulad stay’constant during
© this changé, u* ig decrea§ed at the Same timé: Row (e) of
Table 5-6&, and Fig. S-il display the results of a direct cal-
culation Qith the'altereﬁ a?f(g)'and u*,’which cq@pares very
well withefhe valdes obtainéd in thatiparticulgr experiment,
provided allowance is ﬁéde fofiéhe faét that the p* used was é
Jlittle too small. Only the newly calculated Spe¢1flc ‘heat jump
is ffr\below the value quoted in Ref. 3, but the" reader will

recall that these calculations underestlmate the spec;flc heat

~

~




138

by one to five percent.

This short aside has shown that the difference between
the results reported in different experiments is consistent with
a variation of about 15% in A and A(OS. It was not intended
to suggest that spectrum 1 should be modified by subtraction;
quite the contrary, since the average of the other experimental
data listed in Table 5-4 is somewhat higher than the values re-
ported in Ref. 3, what spectrum 1 really needs is augmentatioﬂ.
The obvious place to put more weight'is where the longitudinal
phonons shéuld have been, around 23 mevlt Row (f) of Téble 5-6
shows the effect of adding a delta-function of height h to
specfrum 1 at that frequency while u* is held constant. Because
of the previougly mentioned uncertaintf in GZF(w), and because
the péssibility of anisotropy ié being ignored for the time

<

being, it is probably meaningless to continue this line of -

N - ‘

thought in any more detail

-
-

anisotropy it 1s worth seeing roughly how spectr 2 and 3 .
might-be improved. The relatively 1arg§’E;;;;E§§él derivatives

shown for spectrum 2 in Fig. 5-14 and Table 5-5 seem to suggest

Before finishing this/section with a discussion of

that a very small change in spectrum 2 would bring its D(t) ug
toiexperiment. Such simple reasoning grossly underestimates
the required change. As azF(w) is augmented u* has to become
more bositive to hold Tc éown to 9.2 K, with the result that
part of the gain in D(t) is cancelled out. Moreover, as dZF(w)

'inéreases, GD(t)/Gaszm5 rnust decrease by at least a factor

M - - ‘
~
. .
.
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of two to a magnitude more typical for intermediate strength
c&upling. From these considerations it should be clear that
the necessary modification to-spectrum 2 is far larger £han the
proposed 10 or 15 percent additions to spectrum 1.

Although spectrum 3 has the longitudinal phonon peak
that was lacking in the tunneling azF(w), its oversized u¥*
prevents tﬁat’peak from showing its influence an§where in the
calculateé quantities. 'Renormélizind the spectrum by an overall
scale factor of 2/3 to make the fitting of Tc by a smaller. p¥*
of .lb_possible has the resuit shown in row (d) of Table 5-6.
Since HC(O), ACV(TC), and the'diﬁensionless'ratiés are now all
smaller even than those obtained from the unmodified spegtrum 1l

O
the guess was obviously bad. A scale factor closer to unity

o

should have been used. It is gratifying to see that such a
modification would cause séectrum 3 to approach from above the
same’ sort of azF(w) that spectrum-l seems to be converging
on from below, namely an azF(w) resempling an average of spectra
1l and 3, with A(0) ~ 1.1 and A v 8 meV.

The possibility of an¥sotropy may make it necessary to
modify that conclusion. The éxperimental evidence in the super-
conductlng state for anlsotropy is ambiguous to say the least.

One group deduced anlsotropy from their tunnellng experlments(BS)

e (16)" ~ S

but 1ater redid the experiment and changed their minds H .

another found evidence for it in the behaVAour of C g at low

temperature(3l), while it was later shown that this behaviour

could be reproduced by dissolving hydrogen in the sample(3§);

§

. ) )
‘ “

o
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and so on for just about all the types of experiments'Where‘
anisotropy effects were expected to be seen. But in the normal

(94)

state cyclotron resonance studies give clear evidence of

anisotropy in Xk(O), while other work(ls) shows that the

Fermi surface ig far from the free-electron shape. Calcula-
tiornis have even been.done of Tc using a supposedly realistic
anisotropic ipteraction. One such effort, which like this

work was done on the'imqéinary axis, included a realistic Fermi
surface anisotroéy and found that this source of anisotropy
;aised Tc-by only 24 K(le);h,(Unﬁortunately ;hey di§ not guote
the RMS gap anisotropy.) Anothex one was done on the real

axis 'using Fermi‘surface harmonics to expand a calculated
interaction; this computation found &3 6% RMS deviation in the

gap and & .07 X dincrease in-T_ resulting from a 12% RMS

. ) L ‘
affisotropy in M (D). It is not at all clear why these calcu-
lated interactions should be so nearly isotropic when the

Fermi surface is highly distorted, but it does seem reasonable

to conclude that Nb is not one of the more anisotropic elements.

»

The calculation done here with a model anisotropy
Ieads to a very similar conclusion. The model, of which more

details are given in the next.section, consisted simpiy of

adding the,same‘factoﬁ‘(l#dﬁ)(l+ak,) onto specérum'l at all

. —

frequencies, with ak chdsén to get <ak2> = .04. The results

o -

of this change are shown .in row (g} of Tableé 5-6. The increase

in.Tcyof .52 K is larger than'those jUStfmentioned, but so is .

‘<a

2 . ‘ Co2 2 . -
a,“»; in fact:the ratio (T, Tci)/R0 where RO is the gap

N . . 2
. +
b g 5 . .
-
. -
R

o i b 1 4410 i ATt i st
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anisotropy (.023 in this work) is roughly the same, verifying
in one sense at least the consistency of the two calculations.

The other entries in Table 5-6 show that Ces/kaTc has fallen

far below the experimental ratio despite the increase in

ACV(TC), while D(t) is still within acceptable limits.

If there were experimental results showing the washing

EN
out of anisotropy in Nb, there would be no need to add to

Table 5-6 the row (g) which shows that would happen to the

properties of the anisotropic system if u* were increased to
AN : - ]
bring Tca down to the observed value. This row is meant to

answer the guestion: Given that the averaged interaction is

close to épectrum 1, is the experimental data other than T,

more consistent with <ak2 & .04 or <ak2> = 0? The answer

£ pey

must be.<ak2> =0 because the calculated D{t) falls far too

low. & verg/gon51derab1e increase in azF(m) would be-needed

to cgmpéESate for that drop in D(t), which in turn calls for

an increase in u* to hold down Tc. The upshot of it all would

probably be an 'improbably large u*'compepsating for an azF(w)

’ . B »
that is on the average too large to be consistent with other

estimates of A(O)' If anlsotropy is present then it would

have to be far less than that.used in this model calculatlon.

The conclu51on drawn from these calculatlons is that

R

the Ellashberg equatlons together with a conventlonal tunneling

azF(w) and u* descrlbe the. thermodynamlc prcpertles of Nb as-

|

‘well as they dé other elements. o .

«

,
‘é
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S. Results from the Numerlcal Solution of Systems with Model
Anisotropies

s

.
A

In this section the effect of various model anisotropies

together with elastic lmpurltL scatterlng on the thermodynamlc
properties of weak ‘and strong coupling superconductors is
studied through the exact solution of the anisotropic éliash-
berg egquations. These model anisdtyopies are with one excep-

tion separable and frequency-indepeﬁdent: that 1é to say

1

k

—

(uzF(m)kk, = (1 + a )(l + a )azF(m) where <a, > ¥ 0, and the
averaged interactlon is ldentxcal to the azr(w) used in the

precedlng sectlon.J a, is com>ietely described by a frequency-

k
independent pmobabxl;ty density > (a) defined so thaE.P(a)da

-

is the probability of a lying between a and a+da. The

k
impurity'scattering term is also approximated by a constant,

-~

-

ct. , where c—lt is the impurity lifetime (ndt to be confused

with the residual lifetime). In short, excepting, the use of

a retarded interaction, the model is that proposed. by Markowitz

///ﬁ\}nggffdanoff(36) and extended by Clenﬁzz) to the gemperatures

4

below Tc,but with an important differencel The simplifications

they.found necessary to éet an anélytic expression fer T ’

namely the use. of ‘a non-retarded lnteractLOn, the om1551on of

u* and the replacement of w (n) by its average w(n) were .-

not made in these calculatxons. The dlfference between th

‘exact and approxlmate solut;ons turns out to be szgnlflcant

_for every real;stlc system studled, whether weak or strong

*.
v

coupllnq. S e s , -
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*

Since it is impractical to do calculations below Tc

‘,with a great numbex2?of shapes for P(a) and magnitudes for

<ak2>, the first thing to verify is that the propefties of

interest, T Hc, AC%(TC) and D(t) differ from their isotropic

k2>

of P(a) are uﬁimportant to these gquantities and to the gap

c ’
values by an amount proportional to <a and that the details
anisotropy Rg. This is no more than the conclusion reached in
their formal work by Markowitz and Kadanoff(36) regarding T_,
22 -
and by Clem( ) regarding Tc, Hc’ ACV(TC) and D(t). The
2 ” * . ~
effect on'R0 and Tca-\-TCi for Hg and Sn of different P(a) but

identical <ak2> was a small variation

—

‘n Tca-Tci (4% for Sn,

(6% for sSn, 20% for Hg).
+ . 2 -
(a—Zam) + 3 5(a+am);

tep function and

8% for Hg) and a larger difference in
 The following P(a) were tested: P(a) = 3
and P(a) = .5 a;} e(amﬂla]), where 6 is the

am was adjusted to get <ak2> = .04. This 8%

is not s%gn1§1cant when TCa-Tgi is 3%,°f~Tci(H ) or 10% of
) 2

riation in Tc

Téi(SnY; The sensitivity of R0 to P(a) is more a problem limited

torstrong‘Eoupiing, for the following reason.lﬁrom,eqn.'(2~l7)

<

it follows that Eh(n)'= <E£(n){§1‘f Cuah), where Cu is a con-
stant debending on p*. This implies that if Ek(n) is very

nearly isotropic theh A (n) = A (n)/lm (n)l w111 glve an

Rg C§<ak2> r?gardless of. the shape of P(a). 1If however

=A (0) is relatlvely large, then the anlsotropy in tPefﬂenomlna—

tor does matter and will make Rg a non»llnear functlonal of _\

P(a), even more so when <ak2_ is large. The smallness of

the anlsotropy ln the two streng coupling systems studled here

makes such detalls un;mportant for the tlme belng, | “n 1 -

7

- . e N . i
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Because the anisotropy turns out to have very little
temperature dependence, it seems reasonable to generalize
these results to other thermodynamic properties than T.- (In
Clem's work the gap anisotropy was necessarily temperature-

independent, because it was identical to <a 25 at all tempera-

k
tures.)
2 : . .
Both R0~and Tca"Tci turn out to be nearly linear in
<a£3, at least up to <ak2> = .09, if <ak2> is varied by

changing_am wﬁile keeping the functional form of P(a) fixed.

In Sn, Tca—Tci=deViated by less than 4% from linearity in

<a2>: R2 by about 2%. For Hg as the previous discussion should

k 0
suggest, the deviations are much larger, 6% for Tc and “14%
for Rg over the same range of <ak2>.

- For temperatures below TC,‘there is,from the calcula-
tions with Pb described in the next section, indirect evidence

of 11nearlty in <ak2> of the changes in D(t} and. H_ When

<ak2> is 1ncrea5ed by 55¢ from .019 -to .029, while P(aj'is

P —

roughly the same shape, the difference in the maximum of D(t)

increases by 51%, T -T . and H ,SH'. bath by 66%. These re-

ca “ci ca& ci
sults should justify the use of the same P(a) = % §(a+2a ) "+
2 6(a—a 5 with am‘chosen to get <ak2>’£ .04 fof all the

"anlsotroplc systems ‘below T and should cautlon agalnst taklng
" the results for strong coupllng ‘too llterally

The omission of. u* and anlsotrOpy 1n m {n) has a

._....

"great effect on mg

Equatlon (2- 17) shows that' if both are
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omitted, then A (1) = <E (i)>(1 + a.), likewise for Z (1) .

_. -—

If only anlsotrOpy in w (n) is absent, then A (1) = <A (1) >

— —

(1+Cuak),51mllarly Ak(l), where Cu is some constant greater than
unity. This increase in gap anisotropy comes about because the
kernel Akk,(m)-u* is more anisotropic than Akk,(m) itself, at

least for the Matsubara frequencies where A{m) > u*. Typical

vélues for Cu {with <ak2 = .04) for Al, Sn and Hg are l1.44, .

l 21, and 1.13 respectively. It follows that P {(a) ,defined so o
that A (l)/<A (1)> - 1 has a probability P (a)da of 1lying |

k |

between a .and a+da, is merely a unlformly stretched version

of P(a). If however anisotropy in m (ﬂ) is allowed, so that ] ;e
for A (1) = A (1y/(1L + A (0)) a part of the anisotropy in A (1)

is washed out, the amount depending on the size of. A(O). Iq

addition, P{(a) can %o longer describe Ak(l). For the small -

—

<ak2> used here, the resulting difference in shape between PA(a)

and P(a) is insignificant, even if A(0) is very large, but

the amount of stretching is not, especially for strong coupling
where this effect dominates. The entries in. brackets unaer

Hg in Table 5*7 show that removing the anlsotropy in w (n)

nearly quadruples Rg and T ci" Even - for Al, it makes a
2

0
far more important. Table'5—7 shows that w1th u* = 0 there

dlfference, "R? increases by 50% w1thout it. But there u* is

is 50% less anisotropy. It lddks as if Markowitz and kadanoff'e

simplificatiqns are nowhere geed approximations, because for
strong coupling anisotropy in Ekfh) plays an essential role, .

. B . ) . . o™~ . /1" ) - N . . ) :

‘while for weak coupling.u* influences the gap anisotropy just , -

-
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as much. In the intermediate coupling range; although

2 . . . .
RO n <ak2>, the deficiencies of the approximate solution

surface in TC itself.
These-discrepahcies between the actual Zk(n) and
the simple form assumed for the analytical solution are less

conclusive than a comparison of the behavior of T_ . . Markowitz

and Kadanoff find

2
ToaTei | K ‘
= (3-50(a))
Tci N(0)V

where N(0)V is the usual BCS parameter, and .

3T

c . I 2 :
'r(ac)c=0 5 <a§ > ) ( (b))
in ctontrast to
G Y| 2. A(0)-1 -
ca_ci . 3; ‘"> (o)l (3-49)
ci -

*

an approximate expression valid only for very large A(0), and

3T .
_.._.g. = -34“ 2 ﬂ 3"'34 j
T(ac )c=0 - Ro 5 ( :L

“in which no approximations are made., Table 5-7 compares the
qa}culated values with thé approximate expressions. There is

‘ ad&étteély consideréble hncertaiﬁty in N(0)V, and it may be .
@éaningless to aséign such a ﬁumber to a strong-coupling system,

" but even'éo éxpression (3-50(a)) %s very inaccurate. It can be _
g;eatl& impro;ed;by replacing <;k2$ by Rg. Simi;arly eqn. ‘. B N

(3~48 (b)) compares very badly with egn. (3-34), which is exact.-
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Again, replacing <a 2> by R2

X 0 brings about some improvement,

but not in Al. 1In fact the only system where egns. (3-50(a)) and

(3-48(b)) are at all accurate is in Al wit@ p*=0 and with

isotropic &k. It would not be worthwhile making the comparison

were it not for the fact that these expressions have been widely

used to estimate the gap anisotropy. A recent example of in-
(98)

appropriate use is their application to Nb38n , @& system that

probably behaves much like Pb.. Using eqn. (3-48(Db)) to obtain
the gap anisotropy would underestimate it by about 50%.

The formula (3-49) proposed for the strong coupling,

limit fares no better; it predicts (Tca-—Tci)/'I"Ci = .0024 for
~ Hg. The reason is not the failure of aTC/ap to remain con-
stant; in Al, for exawple, with <ak2> = ,09, Tca is double

rc“ while aT/Bp dlfﬁers from the isotropic value by only 15%;

in Pb 9T/3p changes by less than 4% while <ak2> goes from zero

to .02. Nor is it the inadequacy of the approximation for
Rgf a poor“one even for A = l 62. The problem is the assump-

tion that RZ X1~ <Ak(l)> /<Ak(l)2>. This is quite true for

-—

c=0, but at intermediate concentrations where the anisetropy

1s washed out in A (1) but not in all the other Ak(n) it falls.

Because a glven A (n) will not be smoothed out until the iso-

._.

tropic part of mk(n) dominates the anlSOter1C part, ie until
1 :

>>“l&{n)—w | the larger values of n are what
i

<

contrxbutes most to Rz at higher concentrations. This means

fw | + ct

the saturation of Tc is certaln to ke very slow, sinqe'cr_

mist be far greater than mc'td remove the anisotropy in the
N : L . !

H

-

i A ————— - S —
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lest Matsubara frequengy. Figure 5-15, whice shows T, and R2
(ie BTC/Bc) versus goncentration, reveals that most of the
area under BTc/ac comes from the very high coneentrations where
R2 is nearly zero. Therefore only an equation that takes into
account all the terms, in the sum for R2 can hope to represent
Tc versus ¢ correctly for cr—l > Tc' When Lhe separable modei

i§ complicated by the inclusion of p* and anisotropy in ak,

—_—

the expressions for <Ek> and <Zk2> become very messy, SQ_

—_— —

there may not be much hope of progress in that direction.
Interestlngly enough, Markew1tz and Kadanoff\also point out
that%}he frequency cutcoff must be handled with great care when
impurities are present to get halfway sepsible results.

So far nothing much has been said about any experimental
‘evidence for anisotropy ‘except for D(t) in Nb, and some rather
‘general features of the effect on T_ of impurities. The
example of Nb illustrates the tyéical difficulties encountered
in an experimental search for anisotropy. 1In the first place, °
the evidence,is lndlrect thus requiring a good theoretical

understanding of the phenomenon; in the secqnd place the effect

is small, dlfferlng by only a few percent. ﬁrom;the 1sotfoplc

&

, the lmpurlty 11fet1me can only be known approx1mate-

_anisotrop

1y ;ﬁroug the residual resistivity.. The direct approaches
\ - . -3 L ° \ .
such .as tunneling at different crystal orientatiochs do net

)

P
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lead t& complete;y reproducible results, although they

-

.do indicate which supercondugtors are more anisotropic than
others. That is ebqut all that the other kinds of experiments.

reveal, despite their number and.variety, because different

(T

experiments on the same superconductor seem to lead to very

different estimates of the”anisetrOpy. The reader is referred
(83) ‘

to a comprehensive review paper and a more recent discus-

sion(ls) of the contradlctlons in the various estlmates. ?art

of the trouble almost cextalnly lies in the formulas developed

by Clem that are g/ed’to 1nterpret the experlments. Slnce .

hi% work shares the assumptlbns of Mankow1tz and Kadanoff s G .
analytlcal so;utlon, it shares the defects just demonstr;tedy\

too,  Being the'onl§ candldate 1nﬂ§he field other/ghan a'purely.
l (32?“ it has been applied just ss indiscrimi—».

=

'empiriéal formula
nately to strong and weak coupllng allke. Because an exact

n&merlcal solution bffers more ‘hope of prQV1dlng QUldellnes in

<

the 1nte:pretatlon of experlment, and ﬁecause SO llttle is

known of the details of the anlsotrop;c lnteractlon, it seemed {5

I
- 1 Bl [

worthwhlleyto calculate the thermodynamlc propertles of seVeralé

CE
systems thh dlffErent cbupl;ng strengths, using the o F(w) NS
N » _g%‘

w‘ofi the lSOtrOQlC superconductor Qomblned wzth a moéel frequency—§

by

‘independent separable anxsotropy desgr;bed by P(a) % 5(a+2a ) +*}
<

" 3 S(a—a )'Wlth a. chosen to make <a 2

ll

> .04 ) Such a serles

k
”of chlculatloﬂ% should show systematlcally the, effects of

strong coupllng.. Table 5+8 ﬁnd Flgures 5 18‘ and 5~19 dlSpl&y

't‘the results thained for Al;GHg, Hb, Pb, Sn sg? Tl. No elastlc

.xmpurlty scattenzng‘was 1nclude&’ although the cégputer pro-
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grams exi'gt': to do it, because aimost no experiments were done
'that demonstrate the washing out of,ahisotropy as clearly in
as much aeeail as the impurity dependence of Tc; what experi-
ments there are hardly show more than the difference befween

the clearr and dirty limits. Moreover, there is little reason
" to do such a calculation if impuriﬁies éake their preseﬁce
felt only through the reducgion of R2 and the dependence o§ R2
on'c@f{‘is the same at all temperatures, in other words the’
sam as at T‘. Althoughg this assumption seems reasonable,

4

/fespeC1ally in view of thé temperature dependence found for

o

the gap anlsotrOpy in these calculations, the washing out

of anisotropy at very low temperatures where the specific heat
" is expected Fo deéend on She.details of the gap anisotropy
remains ah open question. o

- The calculated temperature dependence of the gap

anisotropy, or rather the near-abseﬁee of temperature depengence,
can be egplaineé‘in terms of scattering by thermal phonons.

In systeme Qhege there is‘liﬁtle weéght in the part ef_azF(w)
VbeloW‘frequencies of order T‘, in other woxds the fegion from
‘Wthh the thermal phonOns can be excited, one would expect
g W1th temperature. These calcula--
tlons verlfy that conjecture. Between t = .1l and t =1, Rg

decreaSes by abOut: .4% for.sn, 2% for Nb, 5% for Pb and 10% for

to find little change in R

Hg, with about 86% of the decrease occurrlng above t = .5.
S;nce Ph and Hg Kave about the same A(O), the dlfference\hay .

be ascrlbed to .the unusual weight of the azF(m) of Hg at low "

a
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frequencies. A ten percent dlfference is in any case not
1arge compared to the experlmental uncertalntles. N

These numerical calculations also show that the nega-
tiv a1 for 4T /6a2F(w) turn out to be of greater*signifi—
cance 1 uncoverlng the special role of thermal phénons in
an;§otroplc systems than in affectlng any measurable quantth
Fléeres 5—17 and 5—16 show these derivatives for Al (model
anisotropy) and Pb (reallstlc anlsotropy)~ “In both cases the
change of sign, whose 9051t10n &s predicted Very well by com-
bining eqn. (3-8) and the COefflClent of wol
falls very low:in azF(w), (.13 meV for Al, .35 meV for Pb),
01 (0.178 and .0ll meV respectively)
are so small that these reglcns of azF(w) have .a totally

in eqn. (3-24),
and. the coefflcxents of w

negligible effect on T .

Two anlsotroples are included here that correspocd
xto a P(a)\dlfferent frcm‘the one deflned ea;ller. That used
for Pb w1th the calculated vl F(m) (whlch is somewhét weaker

coupllng than the tunnellng o F(wn is based on A (0y in the

maheer descrlbed in ﬁhe next sectlon. 001n01dentally, that

P{a) is very close to the one used for the other elements,

3

the.main dlfference being a smaller am that results in

s 2
2

be scaled up by ‘a factor of 2 to put them in thelr plice in -

> = .019, so that the anlsotrOpy effects in Pb need cnly

the serles. Slnce Hg is anomalous among strong—couplxng
systems because cf that 1arge welght low down in'a F(m), 1t

‘Seemed wcrth hav1ng a more normal strong coupllng sup rcon-

EY

+

s i— -

i
g ot e
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. . . \
ductor for comparison. This procedure turns out to be;gﬁ:z
ts

neeessary, since the factor of 2 difference in <ak2> accou

for most of the difference between their anisotropy effects,
as Table 5-8 shows. Those relativély abundant thermal phonons
" do not seem to have any. effect of measurable size.

The second ?non—stendard“ anisotropy ie really. the
opposite extreme to eepa;able anisbt;opy,*namely a two-band
model with very weak‘ieterband coupling and one gap.far larger

l than the other. The~interactidn'was,defined as

(a§§7;;?-. SV, , ulF(w)
v ij ij
where QZF(N) is the same tunneiing a?F(w) for Sn used thrdﬁgh-

" out, i and j label bands 1 and 2, while V.5 satisfies

]

V. IV..W

B 8 0] j
B ’ 1 = IW,V,
. - i-i » . .
,"\“ - . ‘ : &
where the W. are the relatlve welghts of the two bands
- with The—ratIOxWi/Wz = 3, and Vl/V =2, v11‘= 1. 47 V,, = 1.84

‘and v 12 = Vziuc .15. Thls v, i3 was chosen with the 2-band
‘ médel of Suhl et al(57> . in mind, another model 51mpge enough
to YLeld analyt1ca1 express;ons for T H but no attem§§ is: made

here to- verlfy them, Slnce thzs calculatlon was done gust as

[

ah.example of a- nOn-sepa;able potentlal A strange feature o@;,:

3

the. solutlon was the slgn cf AZ(n}, which was negatlve fbr ST

. all n, wthe A (n) looked normal The ratlo Az(l)/A (n) was

-

i only ~.10, so thls may be a feature pecullar to systems w1th

:
W

Rt
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much weaker coupling in one band than the other. 'Another
oddity was that' the specific heat jump actually fell below
the BCS value.“'It would have been interesting to see what

. happened to C at very low temperature, but the rate of conver-

es.
gence of the iterations was so slow due to the weak 1nterband
coupling that the calculation was not practicable. Table 5-8
shows the results obtained from the upper temperatures. Aboqt‘
the only generalizatlon that can be  made is that becauee all’

the results in this seéction are limited tb separable interac- .

tions,.they are likely to be uninformative and probably mislea- |

ding if the interaction is not separabie. This is meant to be :
- . ) . . . \ L.‘ .
N : . s s us . . . . R
- onky a'word of caution, not an 1nvltat10n to &lsmlss all of _ SV

Table 5-8; the next sectlon gives quantltatlve arguments that = - {500

a

~Pb, and therefore probably othexr nearly-free electron metals,

fcan be very well descrlbed w1th a separable approxlmatlon

to. the anlsotropy - ‘ . : e « ,j.~5§
- Slnce there are relatxvely few experlments that measure

A:A%rectly the drfference between the clean and dlrty lrmlts by

washlng out.anlsotr py, Table 5-8 shows 1n addltlcn to those
.1xm1ts thevdlfferenqes ‘ tween the rsotroplc superconductqr,
"”aeq tte enieqtrobie one’wrth ATE lncreased tc-brlng T é down‘ — kf?
to, T‘ ie. ThlS ad:ustment to p* has no phys;cal meanxng, but ' T
it does help to &nSwer the 1mgortant question For L glven T;T' s ;l agé
‘are the other propertles cons;stent thh a certarn amount of
:anlsotropy or ngt° The change 1h u* is 51mply (T ca )/

(aT /au*). anﬂ 1t 15 used together thh 3H. /au*, or BD(t)/ap*

T v .

- - L= N ' ' -
R I B - . .
deo f : o Tw - - f ¥

4 . N B .
! . . - . N . . E2 =
L. . - r . - P e
4 - . Ju
- . A TR
L . -
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" to get the HC and D(t). consistent with the observed Tc and the

model anisotr0py. éecaﬁse_H;laac/3<ai> may differ by—about
-1 ' - ' ‘

2 . -1 PP | N -
50% from Tc 3Tq/3<a > while H, ?Hc/au and Tc BTC/Bu are of

k

——

comparable size, this increase, in u* does not cancel out the
i

effectuef anisotropy in H ; or to te ﬁore exact, it over-
compensates for the increase in H, due to anisotropy by
brlng;ng H below its 1sotrop1c value. This klnd of overcom-
pensatlon occurs throughcut ‘the table, suggestlng that an

| anlSOtIOPIC superconductot wzll have a larger ratlo y(k )Z/ch
than the correspondlng lsotxOplc'system Unfortunate&y Y is

too uncertaln for such a comparlson to be carrled out W1th the

ex;stlng exper;mental data. Wlth other measurable quantltles

(-. o

than H (O) the derlvatlve w1th resPect to n* is more uncertaln"
or unknown, and 1t would not be p0351ble to make any estimate
Were it not fcr the fact that in AC and D(t), u* and-anisé-
tropy work together to pull both quantltles down. in contrast
"to the 81tuat10ntw1th H - Know1ng BD(t)/Bu* for two Nb ~sys- .
tems with A = .98 and .33, as well as for Pb (A = 1.62) sys- .

‘tems whlch span the whole range of coupllng strengths, one can'

t

at.least get znequalltles for these elements where 3AC (T )/3u*
and BD(t)/au* 15 unknewn. 1n Nb, the effect of thls 1ncrease’

'1n p* can be estmmated for all the thermoaynamlc progertles

-

_ﬁ'becaHSe dlrect calculat;ons were done earller WIth the same

‘l

ﬂ 1sotropic o F(m) but two sllghtly dlfferent n*
. Comparxson of Tables 5= 8 and 5-4 ahows that after u*

' is adjusted, the:D{t) are nQW‘ln much better agreement w;th

.

~
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experiment, while the specific heat jumps are still rather.
small*, but within experimental uncertainty when the pre-
viously explained underestimate in ACV(TC) is taken into ac¢count.
The absolute magnitudes of ACV(TC) and HC have also fallen -
a little below experiment, but thétlcan be explained by assu-
ming the y used in the calculation was too small.
- It is worth comparing the numerically calculated R2

. 0

with those that are deduced from the calculated T, H_ and

ACV(TC) using Clem's and Markowitz and Kadanoff's formulas.
For the critical field Clem finds

2 _ 2 _
(Hca/Hci) = (1 + <Rc>) _ (5-7)

and for the difference in the specific heat jump

C 2 . . -
A(§ke; ) = =5.70<RZ> (5-8) ~
B ¢C ,

where <R§> is his estimate of the gap anisotropy, which in

his theory is identical to the anisotropy in ), (0). Table 5-9
‘shows the true value Rg and the Ri deduced by ;bplying egns.
(5-7), (5-8), (3-50(a)) and (3-48(b)) to the numerical results.
The estimates based on Tc are reasonable,’ but those obtained
from Hc are too large by a factor of 4 or 5, while tho§e from.
specific heat jump are out by only 50 or 100%. It is'no

wonder that the analyses of different expériments with the same

superconductor have'led to contradictory values for the gap

* .. ) .
‘Since the results for Pb in Table 5-8 were gbtained from the
calculated o2F (w). not from the tunneling x4F(w) as in Table
5-4, that specific heat jump is certain to be too. small, How-
ever, the difference between the isotropic and anisotropic
specific heat jumps should be correctly estimated in Table 5-8.



Table 5-9

159

Contradictory estimates of the gap anisotropy

The first two rows are the anisotropy in Ak(O) and Ek respectively.

Entries in brackets refer to calculations done with &k replaced
by <&§>. -
Hg Nb Pb Sn, T1 Al Al (u*=9Q)
<al> .04 .04 .02 .04 .04 .04 .04
R2 .014 .023 .0062 .031 ..029 .052 (.038)
0 (.049) (.075)
Estimates of Rg based on equations (5-7), (5-8), (3-50(a)),{(3-48(b))
N(O)V(Tca"Tci) .012
(.,044) .01l6 .0055 .024 .024 .056 (.039)
ci ' (.087)
- 2 aT
_QRO 56 .a089 .019 .0035 .035 .028 .080 {(.046)
T (.031) (.11)
2(H_ _-H )
o2 S2 .048  .086 .021 .15 .13
ci :
A €S _y)y/5.70- .017° .013 .0072 .019 .019
RpTo g :

o g
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anisotropy. Just where the error lies in Clem's analysis, or
why some estimates of the gap anisotropy are better than others
is not clear at the moment. His other predictions of aniso-
tropy effects in nonequilibrium processes should therefore

also be used with caution.

6. Fermi Surface Harmonics and Anisotropy in Pb

In this section the suitability of the FSH for describing
quantities defined at the Fermi surface of Pb is demonstrated
and results are presented for the changes in the thermodynamic
progerties when a realistic calculated anisotropy in the elec-
tron phonon interaction is added. There is less connection
between the two sets of results than the precedingﬂchapters
would seem to sﬁggest, for it turns out that a very simple
separable model for the anisotropy describes Pb nearly as well
as .the comélicated first-principles calculation. That does not
however detract from the usefulness of the FSH, which do
indeed give rather good expangions for the Ak(O). . But to
appreciate that result reguires a more detaizéd description of
the Fermi surface and the calculated anisétrOpic interaction.

The electron-phonon interaction, given by egn. (2-3),
is completely specified when the Fermi surface, pseudopotentials,
and phonons are known. The phonon .frequencies and polariza-
tion vectors were obtainéd from the force constants fittedn

(23)

by Cowley to neutron scattering data.’ The pseudopotential

form factor for the host atoms was taken from the work of

{12)

_Appapillai .and Williams , and that for the impurity from .




16l

(71)

the work of Shaw through a local rescreening procedure

described by Sorbello(lOB). The Fermi surface geometry is

given by the pseudopotential model of Anderson and Gold(g)
which was fitted to de Haas-van Alphen data. This model also
yields the Fermi velocities and the plane-wave mixihg coef-
ficients for the electronic wave functions in the four plane-
wave approximation. All the imput to this calculation of the
interaction is identical to that used previously by Tomlinson

and Carbotte(73)

to calculate the gap edge at T=0 on the
real axis. This allows a very important comparison with the
gap on the imaginary axis to be made at the end pf the section.
Once.the Fermi surface, pseudopotentials and phonons
are specified, there are no more adjustable parameters and
there ;s nothing left to do but calculate. The labelling of
the disjoint pieces of Fermi surface on the irreducible 48th
is shown schematically in Fig. III-1 and the actual Fermi
velocities in Fig. 5-20. Near the intersection of the Fermi
surface with the Brillouin zone there is considerable distortion,
but in the middle of the larger pieces there are relatively
large free electron-like areas with the result that the band
mass is only ld% less than the free electron value. The Fermi

wave vector shows much less variation, changing by abeut

-4 percentﬂdVer the Fermi surface: it is !k which causes the

weighté_dsk/lvk{f@)inqrease sharply near the intersection of
the Fermi surface with the Brillouin zone. The picture to rer-
tain is that of a sphere intersected with narrow bands where

~no Fermi surface exists.
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) Table 5-10

Description of the anisotropy of the realistic interaction

Single < > refer to averages within a given region, double
<< >> to a full Fermi surface average. Quantities at far
right i1n brackets indicate averages obtained by ignoring the
anlsotropy within the regions.

A (A } is the difference between )\}\(0) (Ak) and its expansion

k =

in FSH.

Regions 1 2 3 4 Entire Fermi
’ ) ] Surface

Weights .508  .329 135 .028 1.0

A, (0)5 1.44 1.09 1.53 1.08 1.33
<A, > 4.15 2.89 4.44 2.83 3.74
<X;(0)>/<<Ak(0)>> 1.09 .82 1.16 .81 1.0

k>/<<Ak>>_- 1.11 .77 1.19 .76 1.0

;(0) »/<A, (0)>%-1 .0052 .0018 .0022 .0006  .023  (.019)
<Al>/<B >2—1 0035 .0073. .0011 _.0014  .034  (.030)
<A§(O)/<Ak(0)> -1 .000L .0002 0005 -00003  .0002  (0.) .

k /<Ak,-1 : -00004 .0007 .0002 .Q0004 .0001 (0.)
<A;>/<<Zk>>(a) 1.059 .878 1.100 .877 1.0

;>/<<A;>>(b) 1.060 .878 1,103 .862 1.0

;>/<<A;>>(°) © 1.069 .862 1.106 .845 1.0
'<a£>/<a5;2-l(a) L0084  (.0084)

c<als/<n, 501 ) .0013 .0011 0001 .0011  .0098  (.0088)

<A§>/<Ak>201(°’ .0109  (.0109)
< taat gy .87 1.3 . .66 1.6
apt>/ih smy 0 Le8 1,03 1.05 .86

e 4y o vy

Uy

PR

- {continued next page)
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Table 5-10 {continued)

:
/

:k is Ek(l) obtained from a calculation on the imaginary

axis with a kernel expanded in the 4 zeroth-order FSH.

A, 1s the gap edge on the real axis at T=0 calculated by

k

Tomlinson and Carbotte.

Ak is Ek(l) obtained on the imaginary axis from a separable

— —

approximation to the kernel based on the mean values of

Ay in the four regions.

ey . ——
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For the purpose of calculation the entire Fermi sux-
face was covered with a fine 2x2 degree mesh (the k' mesh), and
a coarser grid of 31 representative points covered the forty-
eighth (the k mesh). The latter are the points where (otzF(w))k

was calculated by summing (azpfw)) over the k' points. The

kk'
results are shown in Fig. 5-21 for three directions, which make
1t look as if the frequency-dependence of the énisbtropy is very

important, since different frequency bins in (uzF(m))k appear

to be quite different functions gf direction. The moments

of (GZF(m)), Ak(O) and Ak tell /a different story. The XkYO)

shown in Fig. 5-22 are smoath functions of 6 and ¢ that .corre-

late quite well with the weights k/[zk'l (which can be inferred

from Fig. 5~20). A similar plot of the A, would lock identical,

k
although Table 5-10 shows that there are differences in shape

that must be attributed to frequency dependence of the aniso-

tropy. In particular, Ak is slightly more anisotropic than

.
—_— ~

Ak(O) which suggeéts that there 1is more anisotroﬁy at the

ngher frequencies. Table 5-10 also shows that most of the
anisotropy arises from the considerable differences between the

mean values of Ak(O) and A, on the four regions of the forty-

eighth. Although there may be some distortion near the

boundaries of the regions, the badly distorted .pieces of Fermi

e

surface carry relatively little weight. It follows that most

of the anigotropy could.be taken care of by éxpanding Ak(O)

with only the four: zeroth-order FSH, which are just constants
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“on the four regions. Still, it is interesting to see how well

they can be fitted“to the remaining anisotropy within each

region. The 26 FSH used were numbers 111, 122, 212, 221, 222,
'-'223, 224, 233, %35, 236, 311, 321, 322, 331, 332, 411, 421, 423; &

423 and 432, and of course the four conistants (see Table III-4).

The number of FSH per region is far from proportional to the

weiéht per region, because the smallest regions are naturally

the most distorted. This uncomfortable situation does not

quite explain the poor performance shown in Table 5-10 for region

3, say, where-the difference between Ak(O? and the expansion

in FSH is aétually one-guarter of the anisotropy in Xk(O)
itself, Figure 5-23 gives a more informative picture';f the
behaviour Qf the FSH expahsions.‘Aloﬁg arcs of constant 6,
along which Ak(o) is nearly comstant, the fit is not so good,
" but along’arc; of constant ¢, where mést of the apisotropy
'Within a given region occurs, the agreemént is excellent, es-
‘pecially at the edges of the regions, where.the use of Yy
rather thap trigonb@etric function of 6 ard ¢ as argumeﬂZs for
the pblyné%ials,was expected to be most successful. At the

lower boundary of region 3, where lt lntersects not the Brillouin
zone ﬁut a reflectlon plane, there is a. notlceable fallure

of the FSH. Close& examination of ‘the function being fitted
‘showed that it was not satlsfylng cubic symmetry everywhere

on the bbundarles of the forth*EJthh, as Flg\ 5~23 shows;

ﬁ‘it does not have’ agro slope at 6§ = 54°.° Therefore the FSH

-

A e
o r-,"" -
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could not possibly give a good fit, because cubic symmetry is \

built into them. (This deficiency in Ak(O) was caused by the

interpolatién used to get a smooth test‘function from the values
at the 31 k-points. This problem is irrelevant to all the other
'calculations described here.) Such considerations suggest that

the FSH will actually fit quantities defined on the Fermi sur-

face better than Table 5-10 indicates.

To get the changes in the thermodynamics caused by

= -

anisotropy, a comparison must be made between calculations with
and without anisotropy. The isotropic azF(m) in this section
is therefore not the tunneling azf(m) of sectionk4 but éhe
average of the calculated (uzF(w))k, a slightly different func-
tion. Figure 5-24 shows that the gﬁb azF(w) are quite close,
but that the calculated a°F(w) is a little smaller than the
tunneling result: A{(0) = 1.33 and A = 3.8 versus 1.62 and 4.0
respectively. Therefore the quantities calculated from it will
be too wedak-coupling to compare with experiment. The difference
from the tunneling result. is however small enough to give con-
fidence in the estimate of the anisotropy in the interaction.
It is also small enough that-the(c@anges in the thermod&namic
properties due to anisotropy Zan simply be added onto the
brevfbusly calculated vélueé from 'the isotropic tunneling
'azF(m) "to ‘get numbers that' can actually be compared Qith
experiment.

’ As mentioned earlie:, the féur zeroth~order FSH ac-

. count for mes# oé the anisotropy in 5#(0) and(Ak, and therefore

—_ ——

- probably in the gap also. Column (a) of Table 5;1} shows



167
Table 5-11
Effects of various realistic anisotropies on the
thermodynamic properties of Pb

(a) (b) (c) (d) (e)  (£) (9)

(T __-T .)/T . .026  ,025 .017 .025 .015  .0l4 .03
ca Ccl cl

(H_,=H_;)/H_4 .021  .020 .0L3 .018 .01l .01l .025
D,{.7)=D; (.7)  =.0021 -.0021 -.0014 -.0023 -.0015 -.0015 -.0025
B(Cgg/YT,) -.057% -.055*% -.038* -.074% -.043 -.041 .07"
ai> —— not defined—  .029 .019 .018 not defined
Rg .0084 .0081 .0056 .0109 .0063 .0062 .0098
Ré (Sn or Mg) .008  .008 ' .0109 .0063 .0062 .013 (esd,)

(a) Calqulation with no aﬁproximations except the truncation of the
FSH after the first four, ie,the anisotropy is frequency-
dependent and not separable. w, = 63 meV and u*= ,10

(b) Same as (a) except that W, =}Ji) meV.

(c) same as (a) except that uy* = 0

(d) (aZF(m)) , 1s approximated by (l+é )(1+a )azF(w), whefe l+ak
is determlned by the mean values of Ak on the four pleCes of T
the Ferni surface.lwc = 63 meV and u* = .10.

(e} The interaction is approximated as in (4), except that l+ak
. - is determined by the mean values of Xk' -

(f) same as (e), but now regions 2 and 4, also”1l and 3 have been
combined, so that ak takes on two values instead of 4.

(g) Estimate of the anlsotropy effects when the an1sotropy w1th1n
- each 05 the four regions is included, based ¢n the asgsumption
that RO is the same as the value found by Tomli son( ), and

that.anisotropy effects are linear in Ry with proportionality
_constant, obtained from .columi (a). R

©

Obtazned from columns (e} and (f) an the ‘assumption that the
- change in C__ /Y kpT_-is. proportlonél to Rg L

SR} N  Fo-, ! - ‘. N -

o

"
-~
/-’
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o

the gap _anisotropy Rg obtained from these four FSH with the

rather small changes caused by anisotropy in TC, Hc and D(t).
The next two columns show that anisotropy effects in Pb, as k\\‘—J//
one would expect from Table 5-2, are not at all sensitive to

v* and w_. Columns (d) and (e) show something much more

interesting: a separable model anisotropy with a, based on the

mean values of A, in the four regions when added onto the iso-

k
— - \é‘
tropic calculated azF(w) gives the same changes in TC, Hc and

D(t) as in column (a), where no approximatiodns are made, to

within 15%, while R2 is larger than the exact solution by some

0
25%. A separable model based on Ak(O) (column (e)) underesti-

mates the anisotropy effects, since Ak(O) corresponds to. an

<a§> some 33% smaller than that for Ak'

In view of previous

—

remarks .abouf the importance of A rather than A(0) in strong-
coupling superconductors, this is hardly surprising. After

all, when o is of the same order as w the maximum phonon

0'
frequency, the Ak(n) in egn. (2-17) will be closer to the first

or zeroth moment of aZF(w) than to Ak(O). Perhaps the opposite
behaviour will be seen in weaker coupling systems. It is
rather curious that the greatest difference between the exact

solution aﬁd,the separable model based on A, is in the pre-

k

4

diction of the critical field; that gquantity may of course be
sensitive to certain detailé of the anisotropy that wguld be
smeared out by the thermal phonons at hlgher temperatures. But
the dlsCrepanCy may also be related to the same problem that
caused Clem s e;tlmate of anlsotrcpy effects 1n H to be so in- .

accurate. One further 51Ap11f1caﬁion remalns to be discussed.

L
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Table 5-10 and the P(a) for A (0) in Fig. 5=25 show that the

regions ; and 3, also 2 and 4 have regional averages for Ak(O)

—

so similar that they could be merged from four into two regions,.

Then a, would take on only two values instead of four. Since

k
column (f) of Table 5-11 demonstrates that calculations with

. this approximation differ by a negligible amount from column

(e), the 4-region calculation based on Ak(O), i1t seems rea-

sonable to assume that the same would be true if the Ak were also

-

merged. Therefore an almost trivial model anisotropy suffices
to describe the effects of the complicated, non-separable and
frequency—dependént realistic interaction. The last two pages
in chapter 4 suggest how to verify whether this situation
arises because the interaction is truly "separable. Table 5-12
compares the actual interactions betwegn{the fgafmfégiqg§ with
{the values obtained by assuming the interaction is separaLIe
In other words it compares

with an a, based on A_(O) or A

k k™
kk,(0) with x (O)X (0)/)(0). The difference is seen to be
¢
remarkably small, s;?§;er than the difference between the re-

gions even, except for interactions between region 1 and the
other regions. The product of the yeights Wiwj’ which indi-
cates roughly the .contribution of the interactign between re-
gions i and j to the average interaction, is howéver very,
small where the deviafion from separability is largest.

: :Table 5-12 also shows how good the approximation of
the impurity pseudopotentlal by a constant.really lS for a

2=2 1mpur;ty (Mg) and a 2=4 1mpur1ty {Sn). The 1sova1ent im-

A %

o A e

[

e e




ERY

AfsnofoTeur pauIzop aixe ﬁww pue ﬂﬂ&
er - E 1 w/Fete = Nmﬂnmummwmv fy o
="M 2 3eus os pezrrewzou ¢ LAl = Ty Frefmz = T
b Tsp R
€ v, X bl KA IR 'Y {t
mn M/ Aﬁsvmmcvsv I = — = {(30ex?) v
, Plgp Asp -
T°1 g 6L°T €L°T ZE"'S L6 810" v v
0°1 L 5z 1 ‘ge Y TV e £8°¢ P0" y €
A1 6°1 88" LzL® 02°2 €8°1 801" € €
01 £€9° 89°1 09°T 96y SL*¥ 690" vz
6° 00°T LT°T 87" 1 6T°€ Zy e L971* £ 2
« 071 18" LS 1 15°1 19°¥ 05" ¥ 852° z -C _
= 8- €1 T4 AN 0€°T €€ ST ¢ %00° . T
6° 6€" 88" 07" T €1°2C 07" T 600°. - £ T
8" £°1 ST'1 ST T L0°€E. Ly € y10° zZ T
81 L'z £8° s€* £v- 8L" - 100" 1. 1. -~
us <77 a1gqexedag joexy mﬁnmmmmmm_ 30exd ‘ C . ,
<t T Py Hy " fwtm  suotsew

S

uotyewixoxdde aaeM-s
Ajtandwt 8yl Jo A3TpIIeA puUBR ‘g4 I03 UOT3IORIDIUT palzeIndied a3yl

Z1-G 31qeL

-~

30 KR3rTTgexedss’

»



% 171

purity, Sn, has both a longer lifetime (I~l is .2 eV versus 17
- \ :
kl than does Mg. This is to be

expected from the difference between the two &W(gq). For Mg,

for Mg) and less anisotropy in 1

the pseudopotential is largest at g = 0, so that

as, , e

T—;T 1AW(kk )‘ @Q

reflects mainly the relative size of dSk,/Ivk,l for k' very close
to k, in othér words k' from the sameqr;gidn—as k, and very
little Fermi surface averaging is being done. For Sn in Pb the
pseudopotentiai vanishes at g = 0 and has a minimum around
q = 2kF, so that the integrand will sample k' state; from re-
gions of a}l four types with the result that T;l is very nearly
independent of k as shown in Table 5-10. - TabIe 5-11 gives how-
ever a single value of Ré which is appropriate for both impuri;
ties, even though the preceding coqsiderations suggest that the

2 2

approximation RO ~ RE

5-10 demonstrates that T;l

should be very bad for Mg. Since Table
is negatively correlated with Ek(l)

for Mg, in contrast to Sn, the identical values of Rg may

therefore be dismissed as coincidence. .
2

E P-3
because the gap repeats itself over 48

The argument put forth earlier in Chapter 3 that R

0

should be close to R2
regions' each much smaller than the distance over which

N
A

'1AW(g)|? changes, éppears to hold, at least for isovalent im-

-

purities. A similar idea may explain the separability of the

kernel, witﬂ ‘gk&'kl playing the same role as IAw(g)l of

coursf this matnxx eleTent 18 not a smooth and slowly'varylng
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function of k and k', but considerable averaging is being

done, because the guantities in Table 5-12 are not the interac-
tion between two particular pieces i and j but the interaction
between all the symmetry-related pieces of type i with all the
pieces of type j. This is how part of the g dependence of the
interaction is averaged out. The frequency average also matters;
Figure 5-21 shows that (azF(m))k at any given fre&qgu is not
correlated with Ak(O). ghese t;6 averages magni:;‘izzxgg}t\9§:>
the anisotropic i;teraction which is féequency-independent and
invariant under the application of all the group operations (to
k and k' independently, not to g). By gombining egns. (2-3)

and (2-10) kkk,(m) can be rewritten as

Apger.(majde I {—g——y— z (gqY-g AW(g)a  (R'k")a_ - (Rk)
kk RR'A =, +0 nn' S R Ry
gA m
(5-12)

where k and k' both lie inside the irreducible 48th. If the
integration over frequency and the sums over R and R’

reduce all the functions of g = R(k+x, ) - R'(k'+k_,) to constants

independent of the exact positions oflg"and E'in the 48th but
possibly depending on which regions they lie 'in? egn. (5-12)

is reduced to a sum of terms. that are products of functions

W

of ki and E, ;;isiﬁg from the plane wave mixing coefficients

a, (k), which are invariant under all the group operations

-1 N ’ « .

R and R'. This is the origin of the separability. Anisotropy
. f . .

_in dsk/]vkl may further enhance or decrease this anisotropy

~N

R T R

col WS
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(since dsk/|vk] is correlated with the a_ (k)) but can-
= = n

not by itself account for the separability, let alone for any
anisotropy. If the averaging over group operations reduced

Mg+ (m) to a constant, then no amount of anisotropy in dSk/Ika

*

would suffice to produce gap anisotropy, as eqn. (2-17) shows
quite trivially. Fermi surface anisotropy is however necessary
to get a separable kernel, since no one-plane wave function will

ever result in a factor of a: (E)aK (k') that does not simply
-n -n'
reduce to a constant.

If the interaction averaged within each region turns
out to be separable, it seems logical to ask whether even the

remaining anisotropy within each region can be deduced from AL

—

or X,_(0). One way to check this would be to actually do the

k

expansion and compare as in eqgn. (4-14), but there is an easier
indirect way thgt also ties together anisotropy on the real
axis and anisotropy on the imaginary axis. x

Tomlinson and Carbotte. calculated the gap edge at T=0

(81)

in Pb using a method suggested by Bennett which consists

of iterating the isotropic Eliashberg equations to con~

vergence. .The solution is then put into the right-hand side

of the aniéotfopic gap equations and iterated only once {(because

of computer‘timetlimitatibns), thus getting an ipproximate value
. N

for the gap at the 31 k points. When thgse values are ave;aged

within each region, these averages divided by the overall

average form. exactly the samg ratio as those calculated on the

-

N

-

4 o i b

o
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imaginary axis at Tc’ using the 4 zeroth-order FSH,\és shown

in Fig. 5-25 and Table 5-10. This establishes that dﬁe itera-
tion on the real axis guffices to get the anisotropy cofrectly
(because egqn. (2-15) was iterated to convergence); also that gap
anisotropy on the imaginary axis at TC can meaningfully be
compared with anisotropy on the real axis at T=0, as eqn. (3-42)
suggests. This last conclusion is very important, since it justi-
fies a previous anisotropy calculation on the imaginary

axis(az) and lays a firm foundation. for the many to follow.

The fact that one iteration on the real axié gets the -
coarser features of the anisotropic gap right strongly sug-
‘gests that the small remaining anisotropy in the gap edge is
correct also. Direct oomparlson thh a fully-converged

imaginary axis soldtlon at the same 31 k-points is of course

impossible because the arrays such as A (m) are so large,

kk'
even at TC, but the smallness of the re;;ining anisotropy
permits another procedure. Since the coefficient C, mentioned
in the previous section, which determines the éhape of

kcu) in the separabl& model, was found

to be relatively insensitive to. the amount of anisotropy, the

Eh(l) = <5£(1)>(1 + a
same value of 1,19 found for the solution with only the 4
zeroth~order FSH can probébly servé if a little more apisotrop§
is added. Since & (1) = <, (1)>(1 + a,C )/ (L + A, (0)), the
variation of the gap w1thinreach reglon ‘can be ap;roxlmated by
setting a, k (0)/A2{(0)-1 whlle lettlng A (0) take on the

values calculateé at the 31 k points lnstead 0f the 4 averaged

values. The 31 ratlos‘Ak(l)/<Ak(l)> obtalned this way (Cblumn

K .
e o A
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(a) of Table 5-13) differ by less than 2% from the correspon-
ding ratios on the real axis (column (b) of Table 5-13). 1In
fact, thesé approximationshcan be pushed still furthefywithout
much loss of accuracy. If the‘cu is obtained not from a kernel

expanded in the four zeroth-order FSH as before, but from a

kernel of the type (1 + ak)(l + ak,)azF(w), where 1 + a, takes

on the four different values of Ak/A on the 4 regions, and then
this division by 1 + AE(O)mis regi?fid,\the resulting values
(column (c) of Table 5-13) for ————— compare almost as well
<dx(1l)> ;
with the gap edge as those obtain®d from a supposedly better Cu.
It seems reasonable that this procedure - obtaining an exact
sélution and Cu from the imaginary-axis gap equations at TC
wiFh an approximate partly-averageé kernel, and then getting
more detail by using the Ak(o) from the exact kernel - should

make it unnecessary to ever attempt a complete solution on the
real axis.,

Al;hough these results show that the gap anisotropy
calculated on the imaginary axis could be compared with the
resplts of tunneling experiments which are concerned with the
gap on the real axis, this discussion will be limited to the
thermodynamic properties, which give considerable evidence
that provided'the tgnnéling qu(w)&is correct, the amount of
anisotropy calculated here is not just within the range of
uncertainty in the experimental ‘data but brings the calculated
quantities into better agreement with experiﬁent“than if there
were no anisotropy.’ Tabiés—léshows how théiiesqlts from the

isotro§ic tunneling q?F(m)'hre.modified when the anisotropy

P b gt 4]
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gap anisotropy obtained from one iteration on
the real axis with present work

35, 5 @ 5 By

Region 6 ¢ Tng M (0) B B B>
1 1 1 .0035 1.09 .88 .889 .895
5 1 .0087  1.03 .85 .844 .86

3 23 .0087 1.06 .87 .866 .88

5 45 .0070 1.07 .87 .866 .88

2 15 13 .0328 1.57 1.11 1.121 1.10
33 19 .0308 1.54 1.10 1.106 1.09

15 23 .0387 1.59 1.12 1.121 1.11

23 23 .0545 1.30 .996 1.009 1.00

33 23 .0434 1.53 1.10 1.083 1.09

19 29 .0400 1.40 1.04 1.053 1.04

27 29 .0494 1.31 1.00 1.023 1.00

33 33 .0509 1.52 1.09 1.098 1.09

13 35 .0217 1.62 1.13 1.114 1.12

23 35 -.0356 1.31 1.00 1.023 1.00

27 39 .0318 1.31 1.00 1.023 1.00

19 41 .0285  1.41 1.08 1.053 1.04

13 45 .,0077 1.62 1.13 1.114 1.12

27 45 .0l140 1.32 1.01 1.030 1.01

33 45 .0280 1.52 1.09 1.091 1.09

3 45 23 .0668 1.04 .85 .851 .87
45 31 .0701 1.09 .88 .889 .89

41 35 .0585 1.03 .85 .844 .86

45 39 .0783 1.11 .90 .904 .91

39 45 .0263 1.07 .87 . 859 .88

53 45 .0289 1.15 .92 .934 .93

4 35 1l .0186 1.55 1.10 1.115 1.11
45 1 .0174 1.46 1.07 1.077 1.06

39 5 .0469 1.52 1.09 1.110 1.09

37 9 .0256 1.57 1.11 1.115 1.10

45 . 9 .0191 1.59 1.12 1.110 1.11

35 13 .0078 1.57 1.I1 1.115 1.10

e

*F
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these numbers cannot be compared with experiment because TCa
goes up to 7.41 K which is far above the measured values, so
that the procedure of section 4 has to be used - increasing
u* to bring Tca down to experiment (column (c), Table 5-14).
If this is done then the critical field falls to a more rea-
sonable value, only one percent above experiment, and the
calculated D(t) decreases to .022, slightly below the mean
(.023) of the experimental data shown in Fig. 5-~4 and Table
5-4. Doubling R2 .

0
which is below all three experiments while setting it to zero

would pull the calculated D(t) down to .019,

would bring D(t) up to .025, well above the éVerage but only
barely above the highest measured values. Therefore the

magnetization data by itself permits only the conclusion that

Rg < .015,with the most likely value, corresponding to the

average of'the three measured D(t), Wkeing .008, a little less
than that calculated here. ‘

The analysis of the séecific heat data is unfortunately
not so straightforward because of the previously-mentioned
sys#ematic error in tﬁé calculation of ACV(T) near Tc and

the uncertainty abqut BACV(TC)/Bu*. Figure 5-26 shows the Ces/

T galculated from the isotropic tunneling azF(w) together with.
' 2

q{ kB

the data from Refs,‘6, 74,'and 48. Above t° = .5, the calcu-
lated and experiméntal curves run nearly paréllel'up to“t2 % .8
where the calculgted-curve bends downwards. The sameudpwn;
ward~tﬁfn is présent‘in the calculayion; with other elements

shown in Figure 5-6, but does not become obvious until plotted
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together with experimental data. A linear extrapolation of the

isotropic calculated C_ (T)/YkBT, which is the best that can be

s
done without repeating the calculation, brings.the specific
heat jump up to 3.82, not very far above both the experiments
shown in the plot, but significantly greater than the mean
value of 3.66 obtained from Table 5-4. Column (¢) of Table
5-14 shows that the calculated anisotropy effects might be
enough to bring the calculated Jjump down 'to this average
value. Because Figure 5-26 is already crowded enough such

an adjustment is not plotted there, But the reader can

visualize the effect of an Rg of .010 on the specific heat

2
0

of .013 on the specific heat of Hg. This kind of change in

by looking at Figure 5-19, which shows the effect of aﬂ R

Ces/kaTc would improve the agreement at all temperatures.
boubling the anisotropy would pull the calculations well below
the experimental average but removing an;§otropy altogether
brings the jump above any experiment. It is unfortunate that
the amount of anisotropy in Pb is so small, because the slight
overestimate of D(t) and ACv(TC) in the isotropic calculation
can be‘éﬁtributed just as_Qell to a small overestimate of the
tunneling «’F(w). In Nb for éxample, the addition of anisotropy
had élmoét the same effect on D(t) as a 5% reduction in &2F(w).~

(See discussion in Section 4.) The conclusion drawn here:that

0 < Rg < .015 is therefore contingent on very high accuracy %ﬁ“\
the tunneling azr(w). It is however in accord with estimates
{83,18)

from-other experiments most of which also find that Pb

is' - of the more anisotropic superconductors.

e
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Fi1g. 5-20 Anistropy in the Fermi velocities on the irre-

(101) at far right,

ducible 48th.

(001l) is at left,



b H ;
200 B
|

L (220,359 b

| 'R
2CC- . | -
|

] ]

W

300 {

200k (35°.1°) -

KV .

3 i 1
fr,
(9]
o]

100~ ?ﬂ R
bté

- PN e 1

olelal PV
300 N " |
X
- ‘} }
i
. i
A - < " {
2€0~ (e, i<) I
!t *
» | ad ’h bl
! X
t n 15
100 J -
|t ,’ \ N s'
L 7 i :
| {:;pr»;umH‘ TRt
: riiag et A M
0CC s T
OL\J 2D Qat) JO0 (NS -301 e

(Ve ) ~a

The treQuengy dope ndote of the dieca tonal
speatrl went 1 S o) tor the s conts e the Philorem
sutl e The hetowrams oy 1 and st corresprond
respentinels to Xnahe ol 1y (¥ § ), g 2y d<)
dyention Note tht the horizental ~tale s sven ux the
LALO O W, with o the mavnmum photon fregusetey
Ph

Directionél azF(wL for

Figure 5-21
- is taken from Ref. 80.

Pb. This

184



185

WAWA\WS
RIR\VI

A A N A
ii

)\&(0)

.......

5-22

fig.

Anisotropy 1in Ak(O) aon the irreducible 48th.

(001) is at left, (10l) at far right



-COHOWH yospa CHSH#3

. \hovxK IBPUIDTAO —-mmem * (0) !y 3o uotsuedxq

186

10) ¢ 30 onea urow .- ..o

——

I ﬂu

*Hsd ut (0)Ay jo uotsuvdxmy ¢z-5 bty

- saa1bap

© 0G S¢ ob S& 0% S2 oz

Gl

Ol

s 0

{ 1 l { I i

I

1

T

1 1

a2’

e

17

Gl




187

e

. *qd 103 Asvhmd pejeTnoIeo yiTtm mnﬂﬂw:GSu Jo uostaedwo)y Hz-5 ‘614
¢ - cw)ym
0T . 38 g ey, 2 0
1 -1 T ) ! D
. N.
R
\ 33
pa}Dn|No|02
Lm.
buijeuuny . .
. . 107
- 4
q .
12T
Ra!
, de NU 7 w.ﬂ
1 r J 1 | 1 N




Fig.

Lod

P(a) and PA(a) for Pb
Horizontal lines are histogram bins:

‘ gap on real axis, ------ Xk(O).

Vertical‘line; are used for ayerage_values
within the four regions. The height 15 the
weight per region. ‘ .

gap on real axis, ------ kk(O),
+esse+ gap on imaginaky axis from separable

kernel based on A -

”



188

T T | M I
lllll _ I T T _ T T O
— — * - ' ."
— — e . — [4
""" * | —— e et e o //Jf
I : l" . -
| e - : —_—r dr
3 b e e e 2] | s ! _
|ll||l||r : — . “ _ v — ovur oo ove am
-
] D ) ,
b I TTTTT
-~ . | ¢
. 1. o .
{ o
. - “_ \
- “ ; ’ : 1
Ll )
—_l D
| I P :
. : -
(I . €
1 . . _
| ! (0)d
I a0
| ~
e =i
) I ‘ '
L4 ~ .
1
| S
P
P - ? fm.
I\l :
1 1 i | 1 1 {




.5 ‘ 1.0

Fig. 5-26 Calculated and experimental specific heat of Pb
------ from Ref. 48 (expt) eeeese Ref. 6 (expt),
~ calculated from isotropic tunneling
azF(w) .-

-+~+—-+ estimated correction to the calculation.
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Table 5-14
Addition of anisotropy effects to the quantities’
R calculated from the tunneling :szl’(w)
W . ’
i
(a) ‘&b) (c)
<
T, (deg K) o 7.19 7.41 7.19
H_ (Gauss) 818 838 811
D(t) (max) .025 .023 LOR22
Ces/YkBT ._ 3.50(3.82) 3.54(3.76)>3£35(3.57)

2 2 ‘ . -
Y(kBTC) H_ ' .13% .134 140
5C,(T,) (mJ/mole/deg) 58.4 (63.3) 55.6(60.6) >53(58)
-kdnc/dT)T (Gauss/deq) 2431 233 >225

~ C
(a) Calculated from isotropic tunneling sz(w).
(b) Obtained by adding to column (a) the anisotropy effects

(c) .

prgalcted by column-(g) of Table 5-11.

"

Obtained from column (b) by increasing u* to bring Tc down

”

to experiment. The derivatives used were aTC/Bu*‘= ~15,
BHC/au* = -1800, 3aD(.7)/3u* = -.055. The inequalities
’ C
were obtained from zor (o25) for Nb (A = .98) which is
Ju* “ykT c .
expected to be larger than 33* 7§§% for . Pb.
B c

Quantities in brackets are estimates of the values that
N . 4

wolld be obtained if the error in the specific heat just

(below Tc were corrected (see Fig. 5-26).
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- ’ CONCLUSIONS
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The preceding results lead to a number of conclusions
about isotropic and anisotropic superconductors. Concerning
isotropic systems,Aét is fair to say that the gap equations

)

on the imaginary axis used with thgaazF(w) derived from
tﬁhnelihg and N{(0) from the electréiiq specific heat can,
with u* as the only adjustable pdrametef, predict the thermo~
éynamic properties of the simple M&tals to within the experi-
mental accuracy .of a few percent. Thi§ holds ;}ue both for
absolute magnitudes such as Hé(O) and ratios such as the speci-
fic heat juﬁp, for strong and weak coupling alike, alsc for
Nb and NbBSn where there has been some doubt that the con-
ventiongl Eliashberg thebry is valié. But there are three
small but siénificant exceptions or troublesome péints in the
specific heat and the deviation funcgkon. First, for the

strongest coupling systems (A{(0) > 1.5) the calculated speci-

fic heat differxence betw( n the normal and_ superconducting

stgtés is léss thanfzke/déual expression ykgT for the normal
electronic specific heat below T/Tc = .2. For Pb at least,
hat <

this result seéems to agree with experiment; that suggests

the problem lies in the expression for the normal state, as

« L
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other theoretical work confirms. This difficulty with the
calculated specific heat at low temperatures is unfortunate
because this is the thermodynamic property most sénsitive to
gap anisotropy. The other two discrepancies, in the specific
heat jumé and the deviation functionswhich depend weakly on
the average gap anisotropy, do not provide such conclusive
evidence for the exiftence.of gap anisotropy. That all the

%

calcélated D(t) (and véry likely the specific heat’jumps too,
but here a small systeﬁétiq error in the calculation prevents
guantitative comparison) lie above the average experimental
value, and for some of the weaker coupling systems even above
the highest experimental value, is not in itself decisive,
because the azF(w), which were almost all obtained by the
same experimental group, could have been overestimated. Thanks
tac the functional derivatives of Tc, HC and D(t) with respect
to a’F(w), also 3T _/du*, 3H_/du* and 3D(t)/du*, it was
possible to estimate the small change in the azF(w) for Nb
needed to pull down D(t) to one of the experiments. 1In fact,
frop the thermodynamié properties and the functicnal deraiva-
tive alone a very reasdhablé estimate gould be made of the
most appropriate azF(w) for this syste%.’ This method of
analyzing an azF(w) is clearly useful in situations where
azF(w) is only known approximately, because even when u*

1s fitted to TC théjother thermodynamic properties are still

-

s 2
very sensitive to a F(w).
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The discrepandy between theory and experimen% cannot all
however be explained by a tendency of the tunneliné experiments
to overestimate azF(w). The calculation with Al reproduced
exactly the BCS prediction for D(t) and the specific heat,
despite the relatively large u*; therefore further weakening
of thé coupling stféngth in the weakest coupling systems
cannot explain the measured D(t). Moreover, for most of. the
elements studied, there is unambiguous experimental evidence
for anisotropy in the saturation of the transition temperature.

The conclusions reached from the isotropic calculationsican be

sumnarized as follows: The isotropic Eliashberg equations
[N

can predict the thermodymamic proverties of the simple
metals towithin a few bercent; conversely, they can be-used
to modify a calculated aZF(w) to get better agreement with
experiment. If no such modification is made, there remains a
small®difference between theory and experiment for which the
most likely explanation is gap anisotrooy.

A way of estimating the amount of gap anisotropy im-—
plied by this discrepancy was the ébject of the calculations
done on Al, Hg, Nb, Sn and Tl with a simple factorable model
anisotropy in the electron-phonon interaction chosen to con-
serve azF(w),‘the average interaction. The same model was
used for all the elements, to study systematically‘thé way
‘the coubling strength and pu* modify the effect of the interac-
tion anisotropy on gap anisotropy andon the thermodynamic

properties. A separable interagtion, although justifiable

I
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on other grounds, was chosen because aii earlierx theoretiqal
work was done with it. These previous investigations included,
however, several approximations whichwere avoided in the
present calculations to obtain an analvtical expression.

The exact numerical solution ©f the model shows tha£ these
approximations matter in several ways. First, the relation-
ship between anisotropy in the gap and anisotropy in the in-
teraction as measured by the directional Ak(O) depends sig-
nificantly oﬁ the coupling strength, altho;gh the relation-
ship between the"gap aniso%ropy and the change in Tc is very
well estimated even for very strong coupling. Secondly,

the analytical expressions fail very badly for guantities
other than T_, thé worst being the critical field, although
it is not known why. Possibly the discrepancies between

- Y

anisotropy éstimates based on these expressions from different
btypes of experiments ol the same material have the same cause.
The calculations presentéd here are meant as alternative
guide to the interpretatiﬁn of experiment, since no expression
has been derived here except a simple proportionality rela-
tionship between the gap anisotropy at any impurity concen-
tration aﬁd the rate of change in TC;" This foqula is
moreover not based on any model or approximation.

Since the separable approximétion'fof the intefacéion

was’ felt to be inadequate for a real metal, where the interac-

tion was expected to depend on frequency and the momentum
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transfer rather than a product of functions of k and k', a

realistic leculation of the interaction and the gaop was

.

done in Pb that included these complications. A computer

program was written to solve the gap equations in an ortho-

normal basis appropriate for the Fermi surface, namely the

Fermi Surface Harmonics

(which turned out te be very good for

expanding the Xk(O)).but this program was in the end more

complicated than necessary. In Pb most of the gap aniso-

tropy arises from the differences in the mean values on the

four disjoint pieces of

Fermi surface, which greatly simpli-

fies matters. Moreover, when averaged over frequency (as

in the calculation of the A, ,(m)) the interaction was to a

very good approximation

k]

separable. In fact, enornous simpli-

ications of the anisotropy im the interaction were possible

without affecting the thermodﬁﬁgm{E~E?Q€erties. This was

guite a surprise, and it ce ainlyipas important impliqations
AN —

for other kinds of calculations requiring\Z§tailed knowledge
v

of the electron-phonon interaction. The

Yy high symmetry

(cubic) of Pb is thought to be the cause, for the symmetry

averages out everything that is not iﬁcasiant under group

operations. The verification of this idea, and its validity

for other metals remain
The singularity
thermal phonons washing

merical calculations in

to be invéstigated.
ih GTC/GazF(w) at w=0, caused by the
out anisotropy, was shown by the nu-

Pb to be unimportant. The negative

o
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region in GTC/GQZF(w)) was at very low frequency where any

realistic azF(m) is expected to be small. The thermal phonéns

did no£ cause any significant temperature dependence of the

gap ani;%trOpy either for any of the systems studied. “
The calculation in Pb also tied together anisotropy

in the gap edge on the.real axis with anisotropy.in Zk(l),

the first Matsubara' frequency. It was identical to_

the anisotropy in the gap edge at T=0 calculated on the real

axis. Finally, the calculated anisotropy turned out to

about the right amount to bring the deviation function and

specific heat juﬁp obtained from the igotropic azF(m) down

to experimént. These calculations have therefore been more

successful than expected.

-
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APPENDIX I

THE FULL CUBIC GRQPP Oh AND GROUP REPRESENTATIONS

The following exposition is greatly condensed, and
many important results with no bearing on the construction

of FSH were omitted. The most important reference used for

. . . (107) :
this appendix was Tinkham . -
Definition of a group
A group is a set of elements Ry s Ry, Ry ... together

with an operation called multiplication that associates any

ordered pair of edements with another element. This multipli-

cation Thust satisfy the following conditions: "\

1. Closure. The product of any two elements also belongs to
the set. |

2. The associative law holds. Rl(R2R3) is the same as

s (RlR27R3.

3. Existence of the identity eleﬁent. There is an elemgnt E

*

such that ER=RE=R for any R.

4. Existence of inverses. For every element R there is in the

I r7lp=g.

group an element R™! such that RR™
The set of prbper and improper rotations that map a
cube or octahedron into itself are the elements of a group if

we defined mdiltiplication as "followed by"; e.g. if Ry =

rotation by # about (00l) and R2 = rotation by w/2 about (010),
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then

RlR2 = rotation by 7n/2 about (010) followed by rotation by m
about (001). -
A "proper rotation" is what is ordinarily understood by
the term "rotation"; an improper rotation is the product of
a proper rotation with’ the inversion operator i which changes
the cube into its mirror image. Reflections are particular
examples of improper rotations.
The element§ of a group may be diyided into mutually

=
exclusive subsets called classes as follows.

Definition of a class

The elemeﬁts belonging to the same class as R are the
RiRR;l where the R, are all the elements of the-group.

Some of the class elements will appear more than once
in such an enumeration. The identity forms a class by itself.

The full cubic group Oh consists of six classes of proper

rotations:

E the identity (1 element)

Cs rotation by 21/3 about any [111l] axis (8 elements)
Ci’ rotation b; ™ ébout any’ [001] axis (3 eleménts%
C2 rotation by n about any {[101) agis.\(G eléments)
C, Arotation by n/2 about any [(001] axis (6 eléments)

an8l six similar classes of improper rotations.
N

Definition of a group representation by square matrices

. If for 'evgry group element'Rﬂﬁhefe‘corresponds a square

matrix T (R) sugh that f(le)F(kz) = I (RyR,) then the [ (R) are’
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- a representation of the group. They need not have the same
multiplication table as the group, nor be all different. A
seemingly trivial example is the iepresentation where T (R) is
the unit 1lx1l matrix. This represehtation is in fact the most
impoftant one 1in the next two appendices. A group represen-
tation is called reducible if there.exists a similarity
transformation that simultaneously block-diagonalizes (in the
same way) all the matrices:of the representation. If there

is no such similarity transformation then the representation

. is irreducible. That the iﬁfeducible represehtations are the

fundamental guantities follows from the fact that the matrices
left}strung along the diagonal after block-diagonalization

are none other than the irreducible reprqsentatians. A re-

ducible representation ' is described by I CiF(l) where the
»

F(l) are irreducible representations, Ci is the number of

times that F(1) appears on the diagonal, and the summation

does not mean matrix addition but the "decomposition" of T.

The number of irreducible representations for a given group

is in one sense finite, since itican be shown that the number

of elements in the group = ; ii where £, is the dimensionality
of irreducible representatién ?(i), but in another sense in-
finite, since sets of matrices differing only by a similarity
transformation will have the same multiplication table. (The sum

“

2, . . .
z Ciai is a sum over inequivalent representations not related
i . .
by a similarity transformation.) Therefore it is useful to

differentiate the distinct irreducible representation by

a property remaining invariant under such transformations,

P
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the trace = sum of the diagonal elements. For a given irre-
ducible representation, matrices representing elements belonging
to the same class have the’same trace, which ;E called the
" character of that class. It is therefore possible to summarize

the invariant properties of a group and its irreducible re-

presentation in an array known as the character table. Thi§

is the character table of the full cubic group: ]

\\\sjasses
I.R. 3C

-

B 3c; 6C, 6C, 8Cy| i 3icy 6ic, 6ic, 8iC,

ry 1 1 1 1 1)1 1 1 1 1
T, 1 1 -1 -1 111 1 -1 -1 1
ry5 2 2 0 0 -1 2 2 0 0 -1
rls' 3 -1 1 -1 o3 -1 1 -1 0
Toe' 3 -1 -1 1 o3 -1 -1 1 0

1' 1 1 1 1 1 -1 -1 -1 -1 % -1
Ty 1 1 -1 -1 1 -1 -1 1 1 -1
rlz' 2 2 0 0 -1 -2 =2 0 0 1
Fys 3 -1 1 4l 0 -3 1 -1 1 0
Fye 3 -1 -1 1 0 -3 1 1 -1 0

-
Y

The labelling of the irreducible}representation follows the

convention of Bouckaert, Smoluchowski and Wigner(‘7).

JIn

common with all character tables, this one has an equal number «
of rows aﬁd columns, the rows are linearly independent, and the
character of E is the ‘dimensionaljty of the irreducible represén—

tation. The upper left-hand corner is the character table

of an important subgroup Oh consisting of the proper rotations
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only, the octahedral group O.

Definition of basis functions

-

A set of linearily independent functions T¢l,¢2,...¢N}
that transform into linear combinations of each other underx
the group operations generates a representation of the group

in the following way (with R operating on the arguments of ¢i)

Q
These ¢, are basis functions for the N-dimensional re-*

presentation ', which will in general be reducible. To find
how I' decomposes, it is sufficient to find the trace of T (R)
for any R from ali the classes of the group. Since the trace
of Q(k) is the sum of the traces of the irreducible represen-

.

tation hidden in I, this set of tra

5 myst be a linear

combination of the rows of the charactef t 1e,gthe coeffisgents

of each row being the number of times that parficular irreducible

representations would appear ;f I' were block-diagonalized.

Thus it is made apparent for which and for how many of the ir-

-~

reducible representati itable linear combinations of the

-

¢i can serve as basis ions. There are systematic ways
of finding these linear combinations, but in practice it is

easier to guess at them. . <

It is the basis functions of the irreducible represen-—

. tations T; and s :that are of special interest. The first

row of the character table implies that a set of basis functions



-

for Fl consists of a single function which remains invariant
under all group operations. Comparison of equation (I-1)
with the character table shows that therxe are 3 bg§$s functiorns

for I')s and that they transform among themselved under the

15
\
group operations like {x,y,z}. Therefore the basis functions

for I', are appropriate to expand the gap and the kernel

1
*of the Eliashberg equations, and those for Fls\are appropriate
for transport properties. The Fls functions are not used

V// anywhere in this thesis. They are included because it was

convenient to obtain them at the same time as the others.
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APPENDIX II

-~ CONSTRUCbeN OF GLOBAL FSH

rae machinery of the last chapter was set up Eo con-
;truct from linea§ combinations of terms like xlyjzk|
(i,3,k > 0) functions that transform like r, and Fyg - The
key to the method lies in eguation (I-1) and the character

table. To see how they are used, it is simpler to do a

specific example, the decomposition of the representation
generated by some 4th order polynomials. The functions

{xly:’zk , i+j+k = 4} <can be separated into subsets that will

2.2 2 2 2
not be scrambled by any group operation: {x4,y4,z4},{x Y «¥ 2 ,x 2

{xyzz,yzxz.zxyz}, ixyB,yx},...etc.}. Each of these sets 1s used
to find the trace of the T (R) that they define by equation (I-1)
for some convenient element R from each of the five classes of O.
Because of redundancy it 1s unnecessary to use the full character

table when the functions are all even or all odd under inversion.

From class Ci, choose (arbitrarily) rotation by n about (001) = R

from class C choose rotation by w/2 about (001) = R,,

Sl

}In appendices II and III, X,y,2 instead of the actual arguments
3
Vo vy, v, of the FSH are used for typographical convenience.
The reader will have to do some double-think to forget that

2. .2 .2 . .
x +y +2 is constant.
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from c, choose rotation by 7 about (110) = Ré, &

from C, choose rotation by 2w/3 about (11lI) = R4.

4

Then for the set {x4,y ,24} a table can be constructed whose

i .. (R):
entries are_Fll( )

Table II-1

Character of the representation generated by {xq,y4,24}

- )

x3 1 1 0 0 0
vy 1 °o - 0 0
- 1 1 1 1 0

3 3 1 1 . 0

(I1f different operations had been chosen from the classes, the

zeroes and ones would be transposed within each column without

altering their sum, the trace.)
.The sum of the columns is the trace of I' for each

class. By inspection, this is the+*sum of the first and third
* N . R . ~
rows of the character table, implying T ='F1 + Flz. The Tl

. . . . 4 4 . ;
basis function is obviously x +y4+; . With more effort, a

pair of basis functions for TI';, are found to be"‘x‘l-y4 and

4 4 4 - ) . %
2z ~y —-X . . .
It is clear that the decomgosigion,qf the representation.

geﬁe;aﬁed by xlyjzk depends not on the identity of intégers i j

>

k but on guestions such as, Are they all even? .Are two equal

and even while one is odd?, etc. The decomposition of I' and the
M 1

-

-~
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basis functions for the 10 possible xlyjzk are listed in

Table II-2. The decomposition of the representations genera-

ted by all the xiyjzk of a given order are listed in Table

I1-3.
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’ APPENDIX III
CONSTRUCTION OF LOCAL FSH FOR A FERMI .SURFACE
WITH SEVERAL DISJOINT PIECES
Gy In Appendix II explicit functional forms were listed

-

for the basis functions ¢f all irreducible representationsi

instead of just Fl and rlS‘ This was done because they are

the most convenient building blocks for local FSH. In
the previous appendix sets of {x1y32k, i+j+k = constant}
were used to generate reducible representations, which when

broken down, revealed for which irreducible representation the

3k

i . . .
set of X'y were basis functions. Here the process is re-

peated using sets consisting of {¢;l)
(l)(x,y,z) is the jth partner of the li-

J
dimensional irreducible representation F(l), 5U is unity

(XIYIZ)suI J =1, g'il

u =1, NRJ where ¢

(zero) if (x,y.,2) lies inside (outside) the piece of Fermi

surface,labelléd by the crystallographic axis yp, and NR the -

number of symmetry~related pieces. A particular example

z6

is the l8-member set {xaodtl' y500ilr

. >,
0:10°*%31007 ¥Y®:100¢ %%:100
of a T'yg basis confined to the piecgs of Fermi surface related

00:1°%%01107Y%:10"

z$ } which consists of the partners

by symmetry to region 1 of Fig. . For this set construct

Table III-1 on the same principles as Table II-1, but now in-
cluding the improper rotations as well since the basis functions of
the new irreducible representation may now have different defi-

nitiohs on pieces related by inversion such as §

100

and iiOO'
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Zeroes appear wherever the group operation maps 6u into some
other piece; elsewhere the entries are identical to those

in the Fls row of the character table of the full cubic group.

: ] 1 ] -
The representation reduces to 2F15 + r25 + (T1+T12+F15+F25)

where the unbracketed terms are those where the basis function
of the new irreducible representétion is defined in the same
way on Gu and 6ﬁ and the others are those where they are de-

fined with opposite signs on 6u and 65. Hence the old (x,y.,2)

basis functions generate one Tl and two FlS irreducible re-

presentation basis functions for region 1. The new Fl function
is x(éloo-éioo) + y(6010—60i0) + 2(6001—6001). The z-component
of the new Pls functions is" 2(6001+6001)‘§nd 2(6100+6ipo+6010+
5010). _Any basis function of T,¢ would have produced the

" same decomposition, and similar neW»Fl and Pls basis functions.

Therefore, if this procedure is- repeated for region 1 with
typical global basis functions of the other nine irreducible
representations, "the origin of all the irreducible represen-

Eations of T, and T for region 1 can be found. Such infor-

~— 1 15
’

mation ?br all four regions is summarized in Table III-2.
The brééke;s have the same meaning as in the paragzggﬁ refer-
ring to Table III-1. The ndmericalxcoefficient is the number
of new irreducible representations tha£ can be coqstructed
from the old ones. Combining Tables III-2 and II-3 gives
the number of FSH of a given order for each region.

.

The number of basis functions is larger for those re-

gions of lower symmetry, because'high_symmetry puts more con-

*
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straints on the possible basis functions. In region 2 for
example, thé<rl basis functions need be invariant under only
reflection in the plane x=y, whereas in region 1 they must

" be invariant under eight group Operations.~

- Tab¥es III-2 and Ii-3, together with the knowledge
of the operations under which the basis functions are invariant,
is generally sufficient to construct the local F.S.H.. Table
III-4 lists some of the lower order ones. The Fl basis func-

tions of odd order show with particular clarity hbw they

. t
were constructed from the old global T, and FlS and I._ basis

25
fukctions. (FiZ does not appear until 5th ordgr.) The origin
of the other functions listed is sometimes less clear because
some are linear COmbinations of functions generated from dif-
ferent global basis functions. For example, the 2nd order Tl
functions in region 1 are not so obviously related to the old
Fl and Flz from which they originated. The linear pombinations
‘were usually chosen for the maximum siipliﬁity of the func-

tional form-on the 48th.

+
»

In evaluating the expansion cvoefficients of a guantity
with full cubic éymmetry, only the definition of the basis
function - 6n the irreducible 48th matters. The definitions on

the other pieces qéf included as verification of the full

cubic symmetry of the basis functions extended outsidé the 48th,

To evaluate.the expansion coefficients_of a guantity 7
- transforming like the z component of the basig‘ior [y5r such

as those involved in trxansport problems, the definition of

the FSH need be known only on the region described by

_,/'-\ 4 —



212

-

planes y = 0 and x = z. Table III-2 implies that such a

.

function can be constructed from a linear combination of the

X, y, and z components of a TES global representatitn.

Table II-2 gives the functional forms of these components

and also says wheg?er or not a IES representation‘exists for

a given set of exponents i, j k. When the functional form

is known, it becomes clear that the required linear com-
bination is -the y component alone.l Functions 423 and 446

in Téble EII-4 are examples contructed from'TES basis functions.
To obtain tge functional forms on the pieces 6u related by
symmetry to region 4, the same group operation that maps

region 4 into du is applied to the linear combination of T}S
components that is used in region 4. For¢eXampl§, Ry maps

8101 into 6 and the y component of a IES basis function

011
into -the x component.
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Fig. II1I-1, the irreducible 16th for the z component.
| (0o1)

{101)

(100) (110}

Fig. III-1

Labelling of the pieces of Fermi surface in the irre-
ducible l6th, The uppermost triangle is the irreducible 48th.

{(The regions are not drawn to scale. See Fig. 5-20)

-

. 1

In using Table III-4, it should be kept in mind that
any linear combination of basis functions for a given region
and order is also the basis function of an irreducible represen-

tation. For example, the second 2nd-order function for region

. 2 2 2 2 .2 2

1 could just as well be (x"+y +2z )(6001+600i)+(x +27+2y ")
2,2 2, . .

(6010+6010)+(y +z27+2x )(6100+61p0).. The particular linear

combination given in Table III-4 is thereforecto a certain
degree arbitrary.

For the lowest orders, guess-.work will ggneral;y
hsuffice to construét the FSH.H Still, some genefal princip%és
are worth discussing. Consider tne functional form tnat a
T& basis function must have in region 4. It must be

invariant under the following operations: reflection’'in the

-



214

0 2 0 b 0 0 0 z z- 81

.0 0 % 0 T 0 0 0 0 0 ¢ 00%g(zrarx)
0 0 0 1 0 0 o - 0 o g O0To(z1xx)
0 0 0 1 0 0 0 o o e 905 (zraixy,
0 0 0 1 0 0 0 0 0 ¢ OM0g(z-&ix
0 1 0 0 0 0 0 1 - ot 00 zipx
0 T 0 0 0 0 0 T 1- e 00 (zr&m)

Fan T Gen T G T Tan T o Fo T Gt Gt do T (@) g

-7 uotbhax o3 Axzsuwds Aq pajerax soo9Td a8yl uo sSuUOTIDUNF STISER] mﬂh \
Teqo1h, Aq pojeisusb uoTileiluasaidsI [QTIONPST BU3 IO Is3ovaeyd 9yl .

T-II1 STI9®L



1!

215

Table III-2

Origins of Fl and T

15 irreducible representations for each of

the four regions in terms of the old global irreducible

representations

I.R. - .
Region 1 15
1 Ty Ty 2T15 Tog
(Ty5) (T} Tpy Tig Tps)
2’ Iy Typ Tis 273 Py 2ry 31, STyg 4T,
(T} Ty 20y5 Tpg) (20, T, 3Ty, 4Tpg STy)
] t 1
3 Iy Tas Ty T1p 235 Tys
(T, F151)) (Ty Typ Tyg 2755)
4 Py Tyo Tas ry Typ 3Tyg 2Ty
(F15 Tas) (F) T, 20, 2015 2T5)
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Table III-3

Number of FSH of type ?l and rlS of a given order
for all four regions.

Region T3 Number of Kubic har-
Oorder 1 2 3 4 Total monics of type I,

1. 1 1 1 4 1
1 2 1 5 0
2 4 2 3 11 7
2 6 3. 3 143 0
4 9 4 6 23 1
4 12 ] 6 27 0
\\\\\Effiii\ T1s Total
Order 1 2 3 4
0 1 2 1 1 4
1 2 5 2 3 12
2 ) 3 10 4 5 22 .
3 5 16 6 9 35
4 7 24 9 12 52
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Table I1II-4

Listing of FSH of Type Fl

The number of functions listed for

and T

217

15 of lower order

each region is roughly pro-

portional to the weight of each region as listed in Table .

For 'y functions of odd order, and
Su is an abbreviation of (8u-du);

of even order and T functions of
(u+dp), unless bot% duy and §u are

Zeroth order Fl

15 functions of even order,
conversely, for Ty functions
odd order, du stands for
written out.

functions are simply unity on all the pleces

related by symmetry to a given region.

', BASIS FUNCTIONS

-1
Region 1 u = 100, 010, 001 Val%%oi?'ABth
lst order
111 28,4, +Y8; 9% %8140 2
2nd order
2. 2 2 2
121 =2 0001 + vy 6010 + x sioo z 5
2. 2 2.2 <C+y
122 (X" 4y )6001+(x +Z )6010+(y +Z )6100
3rd order
3 .3 3 3
131 278441%Y 851 0%% 9190 z
2, 2 2. 2 2 2 2 2
132 2z(x"+y )6001+y(x +2 )6010+x(y +z )6100 Z(X +y")
4th order
4 4 4 4
141 z 6001 Y 6010+x 6100 h 4
4. 4 4 3 4 4
142 (x +y )6001+(x +2z )6Olo+(y +2 )5100 X +y
2, 2 2 2 2 2 2,2 2
143 z (x +y )6001+y (%" +2z }6010+x (y“+z2 )6100 (x“+y7)
2 2. 2. 2 2.2 2 2
144 xTy"04017¥ 2 8410*%Y 278y 4 X'y .
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Region 2 | 3
The label is u,v where p = nearest 4 fold axis, v = nearest
3-fold axis, uy = 001, 0+10, :100; and v = 111,111,111,111.
. . . R
In the summation impossible combinations such as = 001,
v = IIT are understood to be excluded. .
Value on 486th
1st order (001,111)
211 2884y *¥Z8g 4\ + XIS 0 z
212 {x+¥) {8403,1117%001,111) Xry
*(x=¥) (®401,1117%001,111]
*(2+x) (8410,111%% 010,111
*(2=x) (8470,111%%070,111’
+(¥+2) (81 46,111%%700,122)
= (y=2) (844 ,371. *9T00,111)
3
2nd order
2 2 2 2!
221 272800y, * ¥ 8410,y *. X 8100,y z
2 2 ’ 2. 2 2
222 (x"+y )260011v+(x +2 )EdolO,v X4y
2.2, .. °
.+ (y"+z )°6100,0
- . .
223 x¥(8463,121%%001,111 7 %001,171 " %001,112) X
+Yz(5100,111*5100,111'6100,111‘6001,111)
, .
+2x08030,111%%010,2117%010,711 %010,111)
2 L 2 2
224 ; 6u,1¥}(x+y+z) +26u'111( xX+y+27) (x+ty+2)

’ e oy 2 - ~ 2 -
+ ; au,lll( xoy z) “+L 5u,lll(x~y+zt

[



Region 2

(continued)

231"

232

233

234

235

236

X

'+(z3+x3)(6

3rd order

3

28 3

3
wiY I8 030, 28500, v

+vy (x2+22) Zé

001,

2 2
2(x"+YTILS 5y

+x(y2+z2)is

001,v

100,V
~%901,I11’

~8501,311’

(- Y)‘5001 111

(z+x)(6 )
)
)

)

010,111%°%0T0,111
(z-x) (8530,112%%070,112

100,111

+6
8
x“ (y+2) (8750,112%9
(y- 2)(5100 171%%100,112

~3%001,111’

;5

2
2
2
2
2
3

(x +Y )(6001 111

+(x -y )(6 001,111)

)
)

001,111

010,111%%070,111

3
-x

L

+(z ) (8510,T217%0T0,111

W
W

+y +27) (8,455 111%%700,111°

+& )

W
w

~{y -27) (3790,111%%100,111

xyzﬁ (6p,lll+6u,iil~6u'illuéuflil)

2-x2))(6 ~8501,3111

2 2
(x(z"=y )+y(z 001,111 001,111

+ (x(22-y?) ~y (2%-x )’(5001 111 %001,711’

.pudy2—2)+z(y -X ))(5010 111+6 1 1’

) 010,111
_ 2 2 2 s -

2 2 2 2 -
+(y (xT=2")+2(x"=¥y")) (81454 111%%T 00,121’

2 2 2 2
y(x-2")-z(x -yw))(5100,111+5 )

h

100,111

219

value on 48th

3
z

z(x2+y2)

2(x+y)

Xy z

x(zz—y2)+y(22

x2)
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Region 2 (continued) .
4th order ‘ - Value on 48+t
241 z425001,v+y4£6610,v+x4z‘5100,v 2
242 (x4+y4)26001,v+(x4+z4)250101v xdayd
+(y4+2426100,v
243 ‘X3Y+Y3X)(6001,111+5001,i11‘5001,1i1’5001,111) x3yay 3y
+‘Y32+23Y)(5100,111*5100,111‘6100,Iil“éloo,111’
+(Z3X+x32)(6010,111+5010,111'5010{111“6010,Iil)
244 ZGu,lll(x3y+y3x+z3x+x3z+y3z+23y-rir§-rzr;)i:j#u:i#jc[y32+23y
+26u'ill&x3y—y3x—z3x—x3z+y3z+z3y—rir§—rirj)i,j#u,i#j +z23x+x 2
+ Z6u,iil (+x3y+y3x—z3x—x32~y32—23y—rir§-rzrj) _
i,3#u,i#j
+ zéu,l'i'l (-x3y-y_3x+23x+x3z-y32—z3y-rirgérzrj)
1,37, i%3 '
245 ¥2y226001’V+y222£61001v+x222Z6010;vj xy?
246 22(x2+§2)25001,v+y2(x2+22)26010'v+x2(y2+22)26100’v 22 (x%+y2)
247 zzxy(6001,111*6001,i11'5001,111'5001,111’ 2%xy
+y2xz(6010,111+60i0,111—6010,111-5010,1I1)

2
+x-Yz(6100,111*‘5i00,111’5i00,ih 5100,111)

P
H
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Region 3 lue on 48
w o= 111, 111, 111, 111 (z11)

lst order

311 (x+y+z)6111+( x+y+z)6111+(x y+z)<5lll h X+y+2

+ (=X~y+2z) 8~

111 ¢
2nd order
321 (x2+y2+22)26u x%4y2az?
322 (xy+yz+zx)élll+(—xy+yz—zx)6ill ; Xy+yz+xz
+(xy-yz- zx)6111+(~XY-yz+zx)6lil
3rd order -
331 xyz(élll+5iil-éill—6lil) Xy 2z
332 (x+y+z)3slll+(—x+y+z)36ill+(x—y+2)36111 ' (x+y+2)3
+ (=-x- y+z)6lll
333 x(y +z )(6lll 6111 6711787710 - ’ {x€y2+x2)
+y (x+2 "6111 1117911179111’ +y (ez?)
+2 P4y ™) (81114617, 463; 1 +677)) vzl

4th order

341 (x4+y4+z4)zdu

342 (x2y2+y222+22x2)250 x24y222+x222

4 4 4
X +y +2

2 2 .

343 (z xy+x yz+y22x)6111+( z xy+x2yz ZXy )6111 z xy+x yz+yd>
+(z Xy—X yz—y zx)6111+(-xyz —yzx2+zxy )5111 .

344 (x+y+z)4dlll+(—x+y+z)4GIll (x+y+z)4

*“X'Y+Z)4Giil+(X'Y+z’461i1



Region 4

411

421

422

423

431

432

433

441"

442

443

444

445

446

w = 110, 110, 101, 101, o0ll, 011
1st order
(x+y)6llo+(x y)6110+(x+z)610l (%~ 2)6 l
+(y+2)6011~(y 2)6 11

2nd order

2
(x*+y?) 110% 1707 (Y +27) ( o11* 170’
2,4 -
FxTH2) (6445145701

2 2 -
270811076, 70) TY (891 +65 5y ) #x (S011%80T7)

XY“Sl"lo“‘s-’lio”xz(6101"5i01’+yz‘5011‘5oi1)g
3rd order

3, 3 3 .3 3,.3
(x7+y )Gllo+(x -y )6110+(x +z )6101
3 3 3, 3 3 _3
-(x"-2z )51 l+(y +z )6011 (y -z )6011
(x(y +z )+ (x +z ))6llo+(x(y +z ) y(x +z ))6110

+(x(y +z ) +z x2

+y ))6101—(x(y +z )—z(x +y ))5lol
+(y(x +2%) 42 (5 +y Y1845y, (y (x2+22) - z (x? +y ))GOIl
(x(z -y )+z(x Y ))5101-(x(z -y ) z (x? -y ))6101-
+(x(y -z )+y(x -z ))6llo+(x(y -z ) Y(x -z ))6110

+(z(y -X )+y(z -x ))6Oll+(z(y -x ) y(z -x ))6

4th order

.
110 110)+Y (6101 ‘3101’+x (6611%%071)

(x* +Y )‘6110 110’”x +z* ) (3101%6701)

24(6

) +(y +2 )(6 +§ =.)

0l1
2? (x%sy "6110+ 110)+Y2‘X2+22’(6101+5101)
+x% (y2+22) (6, +6 =)

0119012
x°y2 (8., +6.~ )+x222(5 +5- 4y222(s +8 =)
110 110 01¥%701) 011"%011
2

(x> y+y x)(éllo 8110 VF (%3242 x)(é 01" iol)

+(y z+z y)(6 -y

222

Value on 48th

(10l)

X+z

[x(y%+22)

+z(x2+y2)]

[x(22—y2)
+Z(x2—y2){
4 -

Y

‘.
x4

(x2+z )
x222
xzy2
x3z+23%
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T BASIS FUNCTIONS

15
Region 1 Value in
Region 1 Region 6
(001) (100)
Zeroth order \ y
101 6001 ’ 1 B 0
lst order
111 'z84, 2 , 0
112 2(6010+6100) » ' 0 X z
2nd order
2 ’ 2
121 =z 6001 & z 0
2. 2 \ . 2 2
122 (x +y )600l X +y 0
123 x26100+ ¥25010 - 0 . XZ
3rd order
3 3
131 =z 6001 . z 0
132 22 (8,0 146, 1) 0 23
010 100"
2,2 2 .2
133 z(x“+y“) 84, z (x“+y°) 0
. 2 2 2,2
134 z(x"+y )(6010+6100) o . z(x"+y")
. 2 2 2
135 zx 6100+zy 5010 _ 0 ‘ zx:
4th order
4 4
141 =z 6001 2 0
2,2 2 . . 2,2, 2
142 =z" (x"+y )6001 , 27 (xT+yT) 0’
) 4, 4 . 4. 4
143 (x"+yh ey, X ry 0
. 2 2 ’ 2. 2. 7 -
144 x"y 6001 X"y ‘ 0
3 3 - 3
145 zx 6100+zy 601b » 0 ZX
146 z3x6 +23 8 ' 0 z3x
1007 ° ¥%p10 -

147 y2x25010-+x2y26105 i 0 xzyz
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- 153 =z (x +y )6

Region 1 (continued)

5th order
5
151 =z 6001
152 = ‘5010 5100)

001
155 z(x +y?)s

001
156 z(x4+y4)(6100+6010)
157 zx2y26001
158 zx°y’ 8100* 6010*
159 zx éloo-bzy 6010
1510 27%%8, vz y78,

Region 2 ypu=nearest 4~-fold axis,

224

vValue in

Region 1
001

0

v=nearest_ 3-fold axis

u=001,0£10,+100, v=111,111,111,311

Zeroth order

201 26U v (u # 001)

'4

202 £8 . {4 #*100,0£10)
u,v ]

lst order »

211 288 - (u # DOL)

[

212 226001,v

213 (x+y) 344y 1117 %01,311]

)

+“"3’)(‘5001 ,1117%001,121)

214 x({¢§ +45-
“ -5

Y e

100,111 )

100,111

215 x(8340;1117%700,112%%100,112

i

010,121 %070, 111

010,111%°0I0,1727%010,111
610,110 %Y ¥100,111*%T00, 11

pe s

Too, 111 *¥ 8oy0;121 %010,

Region ‘2
(001,111)

0
1

x+y

Region 6
. 400

ion
(l 0., lll)



A ~

. 225

Region 2 (continued) , Value in
Region 2 Region 5
2nd order .

221 (x2+y2)26u’v (v # 001 0 xZ 4y

222‘\sizau’v (4 # 001) 0 22

223 (x2+y2)26u'v (v # £100, 010) eyl 0

224 zzzau'v (W # +100, 0:10) 22 o -

225 xz(5100,111*6100,1il+5100,ii1 0 x*
+5ioo,iil)+Y2‘5010,111+501o,111
* 8610,111%%010,112)

226 xy{8401,111%%001,172 ~%001,T11 Xy 0

- %001,1211)
227 xy(84519,111%%100,111%% 070,111 0 Xy
- *8100,112 "%010,1117%100,111
“%0I0,1117%Tgo, Tar)

228 xz(5001,111+6001,11@1?@51,11i xz+y32 0
~%001,1T1)*¥%8g01,111%%001, 112
~8401,111" %001, 111 :

229 x218340,111%%100,1117 %100, 112 0 xz
'GIoo,i11)+Yz(5010,111+6010,i;1 .
~8010,1117 %610, 112’

2210 ¥z(81400,111%%700,1217 %100, 211" 0 Y2
~®T00,1127**2(8010,111%¢010,112
-5

o - s —
010,111"%010,111).

R



Region 2 (continued)

3rd order

231 2326uv (n # 001)

232 z(x2+y2)25uv * e # 001)

293 232‘SOOJ.,\).

234 2(xHy I8,

235 22("’“3’”5001,111 S001,111)
+22‘X’Y)‘5001 111 ~%001,111’

236 (x° +Y )‘6001 111" %001,112)
+(x7-y )(5001,111’6001,i111

237 x3(6010 111 6010,111 %0T0,111

~8010,112° " ®100,111%700, 111
'5100 1i1'6ioo 111! '

238 x(y>+z )(5010 111%%070,1211
~8070,111"%010,111]
+y<x2+22’(5100,111+5100,111
~5100,1117%10p,112’

239 x3(6100,111"5100y11175100,lIl
=300, 121 *¥° 010,111~ 80T0, 111

5010 111 ~%010,111] ;
2310 x(y’+2 ’(5100 i11 Gioo,iii

‘ *0100,1117%T00,111’

+y(x2+z2)(5010,111‘5010,i11)
510,111 %070,111)
2311 %2‘X'Y)[5100,111'6010,111

‘5ioo 1117%010,1217%100,112) .

+z (x+y)(5010 111 6100 111

+6 -85 )

100,111 ®plo,111

value in

Region 2

226

Region 5

y(x2+22)

x{y +22)

Zz(x—y)



227
Region 2 (continued) ) Value in
3rd order - (continued) Region 2 - Region 3
2 2
2312 zx7(8349,111%%100,171%%100,T11 0 2x
+$100,112’
2 : -
*2¥ (80930,111%9010,111 *%070,111
+8010,172)
2.3 « 2. 2
2313 (xy +yx )(6001’111 6001’111) Xy “+vx 0
2 2
F=xyT-yxT) (8441 3117%001,111
2. 2 2, .2
2314 (xy“+yx )(6100,111+6010,lll 0 Xy tyx
— L ad oy - J —
700,111 %010, 111’
2 2
*=xyT+yxT) (§519,711%%700, 121
~8100,1117%010,111 _
2315 xy2 (8441 111%6001,1117%001,111 . xyz 0 i
~8901,111’ (;\v? |
2316 xy2(8;456 1117 %100,11%%1 00,112 0 tifx
~$010,112 *S010,1217%010,T11" ,
*8910,1127%010,1T1’ )
Value in Region
Region 3 (“3.1) %
Zeroth order (
301 ZGU 1 ?
lst oxder
Z
311 zzéu - - .
312 (x+y) Glll— (x+y)6iil+ (x-y)6111+(-x+y)5ill X+y ~




y

Region 3 (continued)

2nd order

321 2226
u
322 (x2+y2)26u
323 xy(8;413%9777707117%1171)

324 z(x+y)(Glll-éiil)+z(x—y)(Glil-éill)

3rd order
331 2326 :
n
332 z(x2+y2)2<su
333, (x4y )8y, (v 877, D
’ 3 3
+(x"-y )Glil+(—x3+y3)6ill
. ,
334 =z (x+y)6111—22(x+y)6111
2 2 _
+2 (x—y)élil+z (ﬁx+y)6ill
2 2 - 2.2
335 (xy +yx )(6111 Glll)+( xyl+yx )(6111—6111)
336 ayz(8y,,+0377787;,-031) D
4th order
341 218
u
342 22(x2+y2)£6u
" 343 (x4+y4)26u
344 x%y? 15 ‘
u .
11179711 %1127%110)
3.3
346 (xTy+yTx) (8,4,+67777871179:111)

345 " z2xy (6

3,03, 00 . 330 x L el
347 2 (xTyT) (8477877 +2 (xT-yT) (817, 7875,)
3 e E e 3 — &
348 .27 (ery) (847787730 +27 (ew) (857,-67,,)
, :

- 228

Value in regio
3 .

x2+y
Xy

Z (x+y)

z(xziyz)
3 3
Y

22(x+y)

xy (y+x)

Xyz

22(x2+y2)
x4+y4
2.2
Xy
2 )
27 xy
x3y+y3x
3

z(x +y3)

z3(x+y)

Xy2 (x+y)



Region 3 (continued)

5th order

5
51 )
3 z u

352 23(x2+y2)26p

353 z(x4+y4)26p

5

354 (x +y5)(6lllr6iil)+(x5

S -— e N —
“y7) (87777874,)
2, 3.3 2.3 3 e
355 z7 (xT+y Y (611178710 +2 (x7~y ) (8,7178711)
4 4
356 =z (:+y):%JJjéiIl)+z (x-y;(élzl—§ill)
357 (xy +yx )(5111'6ii1)'(xy -yx )(éill-slil)

32 3.2
X

358y ry®x®) (871 =657 - Oy -y P (81,76, 7y)

2
359 zz(xyg+yx2)(Glll~6iil)-22(xy ~yx?) (8711-8,77)

3510 xyz <X2+Y2+22)(Gllzisiil_dill*élif’
3
35}1 Xyz (6111+6lil—6111_6111)
2. 2
3512 TS
\kijijz W

229

Value in region

3

22

z31x2+y2)
z(x4+y4)
x5+yS

22(x3+y3)
24(x+y)

xy4+yx4 .

x3y2+y3x2
xyzz(x+y)
xyz(x2+y2+zz)
Xyz

2.2
x“y Tz



N

230
-
. Region 4 u = l01,Ioi,110,1io,011,011 Value in
‘Region 4 Region 7
Zeroth order
401 6101+6101+6011+60il ‘ 1 0
lst order
411 2(8y ;48751 +801;+8570) z 0
412 ‘5110+ 110’ 0 k
413 011’;‘5011’*"“‘3101’5101’‘~ x 0
2nd order
421 x (5101 STo1) 4" (807, $o11) x? 0
422 (y3+z )(§101+5101) y2 0
+(x2+2~2) (5o11+5011) -
123 (2°-x )(5101 3017 . 2%’ 0
+(z -y )(<SOll 6011)
424 xz(G101 101)+yz(6011-6011) Xz 0
425  z(xt+y) (644,86 1100 T2 (x=¥) (6774576714 O . z (x+y)
3rd order
431 23 (8. . +6= 46 S+ =) 23 ‘ -0
1017°101%%011% %012
432 z(x2+y2)(6101+6i01+6011+6011) 2 (x%4y%) o
433 2 ‘5110 8110 | o8 | 2
439 z(x° +y 2) (61105170 0 z (x%4y?)
135 ¥ (55117843003 (81017 1oy x’ 0
436 y(x2+22)(6011~60i1) x (y2+22) 0
+X(Y2+22)(6101f5101)
437 zy2(6101$6101)+zx2(GOliféoll) zyz 0
438 XY2‘5101‘5I01’+£§ (601170110 xy? 0

439 xyz(éllO—Slio) 0 ~ XyZz

e i e e TR T T
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PPENDIX IV

PROOF THAT THERMAL PHONONS ARE THE ORIGIN OF
THE NEGATIVE GTC/SazF(w) IN ANISOTROPIC
SUPERCONDUCTORS

It Y\ s convenient to write the real part of the
linearized rm of egqn. (2-32) in the following way (using

the identity (2-30) to express ImAk(w) in terms of Re Ak(w)):

Re Akmn dsk, < @
- LY L) , 2 o
p(T) m -—J W [ dw [I df (o F(Q))]f_}f'(f( w')+n{(Q))
L) - 5
1 l
(w'+ﬂ+w + w'+Q-w )
]
-1 u*tanh w! 1Re AEf(w ) - Re(A£(w))Re(wz (w))
2 ZkBTc w‘ k
o Re Ak(w')/w'
_l_ ] — IV—l)
+ = Im(mZE(w)) dw =5 " (
where

4as o o0
k' .
ka(w) 5w -" T;;TT { dﬂ(ﬂzF(Q))E&. [ dew" (n(R)+£(-w"))

-

1l : 1 )
w"+Q+w+id W +Q-w-148" .

( (IV-2)

and as usual, only the variation in the eigenvalue which passes
through zero at T_ will be considered. Egn. (IV-1) is of

the form
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] B () P 7 SR ()

(T) Re = dw' Re ———— % Vlwew')  (IV=3)
° TGETT ; w! gy KETO
where

1 + 1
w'+Q+w w'+02-w

(£f(~w')+n(Q)) ( )

(1) "y = [ 2
Kkk,(w w') = J dQ (a F(Q))E£,
0

1 * w'
- I tanh ——
2 2kBTc
k(%) (0, 01) = =8 (w-w')6 (k-k') Re (0Z. (1))
Kk ! LSS k
. Im( Zk(w))
K2 (wow " = L5 (k-x") -
! m = = w'~w ‘

-—

From the theory of homogeneous Fredholm equations of. the
second kind it follows that the infinitesimal change in Tc
due to a variation of the kernel is proportional to

w w ds,. as, , A, (")
dw | dw’ IV§T' El ﬁ (w) : - 8k L) (w,0') Re —E—T——— (IV-4)
: k Vi! j=1 X w _

o o0

I
where 3 (w) is the solution of the adjoint of egn. (IV-1),.’

and a denominator (Bp/aT)T has been omitted.

If 6(& F(w))kk‘ = Ed(w-wo), then
() ' —_ —_—n t 1 ] l -
kk'(m'w ) = (f(~w )_+n(m0))(m,+w0+m + w'+w0~w) (IV-5)
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-

N (2) Yy U JU S n —_—n l —_ l
GKEE'(w'w.)—B(w w')§(k~-k )[ dw ff( w )+n(wo))(§w?631$ ;W:GE:G)
- -0
(IV-6)
and o o
SR 2D (wiw') = L 8 (k-k") [dw"(f(-w")+n( 1) (-8 (w"+w +ow)
}.Sl(_. ’ 1 K—K J wO wo w
—né(w"+mo—m))/(w'-w) {ﬁ?
= =8(k=k") (2n (wy) +£ (wtw )+ {wy-0)) /(o' -w) . (IV-7)

In egns. (IV-6) and (IV-7) the identity

1 o i 1
m_ lﬂ§(w)+Pw

was used., ,

At ‘this stage the limit wO/kBTC + 0 can be taken,

since it is now clear how ZK(l) can be expabded in powers of

wy i in particular, it is obvious that the only source of

terms proportional Yo wal is n(mo), as was to be proved. There

are no other inverse poyers of w, pPresent.

The mathematical methods used here'differ significant-

ly from those pioneered by Appel(l3) for isotropic super-

conductors. He did not introduce an eigenvalue p(T) explicitly,

working directly with Tc instead, and chose a different kernel:

Re{z'l(w)x(l)

o ) (w+id,w")}.
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Since SReZ-l(w) and 6Im2 Y (w) were very awkward to
evaluate, he apprqfimated them in such a way that the low-
frequency phonons did not cancel out, leading to an in-
correct functional derivative that turned negative as in an

anisotropic superconductor instead of going linearly to zero.

’
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14.
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