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Abstract

Infectious diseases spreading in a human population can occasionally exhibit sudden
transitions in their qualitative dynamics. Previous work has been very successful
in predicting such transitions in New York City’s measles incidence rates using the
standard SIR model (susceptible, infected, recovered). This work relied on a dataset
spanning 45 years, which we have extended to 93 years (1891-1984). We continue
previous research in transition analysis on this larger dataset, and compare reso-
nant and transient periods predicted to exist in NYC’s measles incidence rates with
those observed through a continuous wavelet transform of the data. We find good
agreement between SIR predictions and observation, and in particular note the likely
existence of previously unobserved hysteresis early in our new time-series.
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1 Introduction

A mechanistic mathematical model is a scientific tool that represents the governing
causal mechanics of a system of natural phenomena in mathematical terms. The
application of mathematical modeling to biological systems, and in particular to the
spread of infectious diseases within human populations, has proven to be a very pow-
erful method for understanding and predicting natural dynamics [4, 10, 11, 14]. One
general approach to this type of study is to acquire historical records of aggregated
cases of infection for a particular population, and to attempt to use a mechanistic
mathematical model to make sense of the data, and this is indeed our an approach
for the case of measles in New York City (NYC).

1.1 Measles in the 20th century

A case study on a population and disease requires precision at various levels. First,
when considering the types of public health records within which cases of infection
are usually reported, one must have reason to believe that the disease in question has
been accurately reported throughout the population. Measles is a childhood viral
infection to which the human body usually, following recovery, develops permanent
immunity. Measles was endemic to most populations in the world prior to the de-
velopment and thorough distribution of its vaccine, which was first introduced to
the NYC population in 1963. Its high prevalence (nearly everyone became infected
at some point in their lives), combined with a very recognizable symptom (koplik’s
spots), resulted in very accurate reporting of cases which were brought to the at-
tention of a medical professional. Furthermore, its symptoms are such that infected
individuals (usually children) were very likely to be seen by a medical professional
who was required by law to report cases to a central body, which resulted in health
institutions acquiring accurate counts of measles cases. As vaccine uptake increased
after 1963, the total number of measles cases per unit of time dropped drastically,
and eventually the disease was virtually removed from the NYC population, with
at most small outbreaks occurring periodically. With medical professionals encoun-
tering the disease less often, and the general population becoming less aware of its
symptoms, the quality of measles reporting decreased following vaccination. In this
paper, we present a case study of measles in NYC while the total number of cases
was high, relying on the accuracy of reporting as a result.
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1.2 The dataset

In 1973, London and Yorke [20] published measles incidence rates for NYC spanning
the years of 1928–1973. The published data are aggregated monthly totals of measles
cases for the whole of NYC for the duration of the noted time span. This dataset
has been extensively studied [6, 8, 10, 20, 22], and this fact in part motivated the
undertaking of the research presented in this paper. We extend the dataset to span
a wider range of dates, and in addition improve the quality of at least part of the
data published by London and Yorke [20]. Compiling data from various sources, we
produce a time-series that includes aggregated counts of reported measles cases for all
of NYC, along with concurrent demographic data (total population and total births),
which spans the 94 years 1891–1984, more than doubling the length of the time series.
§2 details the process of data acquisition, compilation, and quality-checking that was
undertaken.

1.3 Compartmental Modeling of Infectious Diseases

Mathematical epidemiological modeling is often done by compartmentalizing the
population according to possible states related to infection, and by representing the
rates of transfer between these states as a system of ordinary differential equations
(ODEs). The SIR model is a very common compartmental model used for dis-
eases that confer permanent immunity to recovered individuals, as is the case for
measles [4, 10, 17]. The acronym ”SIR” stands for the compartments of the model,
which are Susceptible, Infected, and Recovered. This model is the simplest possible
compartmental model describing this type of disease, and numerous modifications
and extensions of the model have been developed to improve on inadequacies of this
simple form. However, Krylova and Earn [18,19] showed that for measles, the simple
version of the SIR model is sufficient for our purposes (details in §3.1).

1.4 Spectral Analysis

Measles, like many other infectious diseases, exhibits recurrent epidemics within
a population, and the pattern of recurrence in part resonates with the seasonal
year. This occurs for numerous reasons, but for measles the primary reason is the
systematic change in population behaviour from winter to summer, and in particular
the gathering of children in schools during the winter [20]. Yearly outbreaks of
measles, however, are not fixed in size. For instance, measles is often observed to
exhibit a biennial pattern of alternation between a small epidemic one year and a
large epidemic the next. Moreover, measles dynamics are not limited to annual and

2
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biennial patterns, and in fact analyzing the frequency structure of a measles time-
series can be very informative when trying to understand the governing mechanics
of its epidemiology. This is true because the frequency structures of disease time-
series can shift suddenly due to small changes in demographic conditions [11]. In
the measles data we will be examining, for instance, a sudden transition from an
annual cycle to a biennial cycle, and the reverse, can be observed (see Figure 13 for
a plot of the complete time series). Understanding these transitions using the SIR
model — the central goal of this paper — is done by using a parameterized version
of the model [19] along with demographic data to determine predicted behaviour of
the time series, and comparing these predictions with the actual patterns observed in
the data. Previous research [10, 19] has shown good agreement between predictions
of the SIR model with patterns observed in the NYC measles data published by
London and Yorke [20], and we extend this analysis for our new extended dataset.

2 The Data

We compiled data from a number of sources, some of which have — to our knowledge
— not yet been made available in digital form. As a result, it is important to
understand these sources, and to verify the accuracy of the data as we proceed
in compiling them into a larger set. Moreover, the time-series we will construct
is a patchwork, and may inherit sudden shifts in systematic inaccuracies from its
disparate sources, a possibility against which we must control. We will attempt to
deal with any such problems in the coming section. For summaries of which data
are available and which are used for compilation into a continuous time-series, refer
to §2.8, Tables 1 and 2.

2.1 Required Data

For our analyses, we make use of the following types of data tables:

• Weekly and monthly tabulated total reported cases of measles for all of NYC.

• Yearly tabulated total reported births for all of NYC.

• Yearly tabulated total population for all of NYC.

3
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2.2 Data Sources

The compiled disease data sets span 1891–1984, and were pieced together from four
different sources:

1. 1891–1932: Newly digitized weekly data from weekly bulletins published by
the NYC Health Dept. (§2.3).

2. 1928–1973: Monthly data published by London and Yorke [20].

3. 1958–1976: Newly digitized weekly data recorded by the NYC Health Dept. (§2.4).

4. 1976–1984: Monthly data available online in the NYC Heath Dept. Annual
Vital Statistics Reports [1].

Demographic data, namely total reported births and total population data were
pieced together from two sources:

1. 1891–1932: Newly digitized weekly data from weekly bulletins published by
the NYC Health Dept.. (§2.3.2), which included vital data.

2. 1900–1950: 5-year totals from the NYC Heath Dept. Vital Statistics Reports [1]

3. 1950–1984: Yearly totals from the NYC Heath Dept. Vital Statistics Reports [1]

§3.1 describes the use of birth information in the SIR model, and it is important to
note that what is actually of interest is the number of new individuals entering the
population that are susceptible to measles. When children are vaccinated against
measles, this number is reduced, and so vaccination data is required in order to
properly conduct our analysis. However, we do not extend our analysis far past the
introduction of the measles vaccine in 1963 for reasons noted in §1.1. We use the
same vaccination rates as Krylova and Earn [19] for 1963–1973, and assume that the
proportion of newborns vaccinated in NYC remains high (≈95%) until 1984.

2.3 The Health Dept. Bulletins: 1891–1932 Weekly Data

Near the end of the 19th century and in the first half of the 20th, the NYC Health
Department published weekly bulletins containing information regarding a wide va-
riety of public health related issues (see Appendix B for sample photographs of such
a bulletin). Some of the details provided in these bulletins were incidence rates for
numerous infectious diseases, including measles. Spanning the years 1891–1932, the
weekly bulletins were published in two volumes. We acquired access to these through

4
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the NYC Academy of Medicine Library 1 As noted previously, vital statistics for the
whole of NYC were acquired through the NYC Health Dept., which provides data
going back to 1900 [1]. However, we require data going back to the beginning of
measles incidence data in 1891. To fill in the missing years of 1891–1899, we ex-
tracted vital statistics from the health bulletins.

An important note must be made about these bulletins regarding their reporting
area. The data tables in the bulletins provide data for only Manhattan Island up
until 15 January 1898, after which the reporting area was enlarged to cover Man-
hattan, The Bronx, Brooklyn, Queens, and Richmond. We wish to retain as high
consistency as possible between the reporting area of both measles incidence data
and vital statistics. It is therefore advantageous to use disease incidence data and
vital statistics from the same source, especially through a change in reporting area.

2.3.1 Disease Incidence, Volume 1: 1891–1914

City-wide reported cases of measles were extracted from a table as shown in Figure 1.

1The NYC Academy of Medicine [2] is a public institution independent of the NYC Health
Department. Its library maintains a collection of books and literature related to health in the NYC
population throughout its history.

5
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Figure 1: Health Bulletin table reporting weekly cases of infectious diseases. See
Appendix B for full page.

2.3.2 Vital Statistics, Volume 1: 1890–1899

Tables of the form shown in Figure 1 in volume 1 of the bulletins provide needed
vital data where it could otherwise not be found.

2.3.3 Vital Statistics, Volume 1: 1898 Change in Reporting Area

The bulletin published for the week of Jan 15, 1898 was the first to include the larger
reporting area mentioned previously. Vital statistics tables for that week and the one
prior are shown in Figure 2 and Figure 3 to demonstrate the transition. Notice that
though these consecutive bulletins occur in the same volume, their format changes
to include data from the different boroughs.

6
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Figure 2: Health Bulletin table reporting vital statistics for only Manhattan Island,
week of Jan. 8, 1898.
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Figure 3: Health Bulletin table reporting vital statistics for Manhattan, The Bronx,
Brooklyn, Queens, and Richmond, week of Jan 15, 1898. The hand corrections are
uncommon in these documents; they are the result of Health Dept. reorganization.

2.3.4 Disease Incidence: 1915

Sometime between 1914 and 1916, the NYC Health Dept. adjusted the form of its
bulletins, and the transitional year, 1915, presents some difficulty. Figure 4 shows
the only available data tables regarding cases of reportable infectious diseases found
for that year.

8
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Figure 4: Health Bulletin table showing reportable infectious diseases, week of Feb.
20, 1915. See Appendix B for full page.

Notice that city-wide totals of cases are not reported. Instead measles cases are
reported only for three hospitals within the city. These numbers are themselves
not representative of the entire city, but fortunately we can re-sale them using an
independent data source (see §2.6).

2.3.5 Disease Incidence, Volume 2: 1916–1932

The format of the tables from which disease incidence data were drawn changed
slightly compared to the previous volume, and tables appeared as shown in Figure 5.

9
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Figure 5: Health Bulletin table reporting weekly cases of infectious diseases. See Ap-
pendix B for full page.

2.3.6 Tabulation

For the tables containing disease incidence rates in volumes 1 and 2, notice that for
each week’s bulletin, a full quarter-year of previous weeks’ worth of reported cases
are shown. This means that in order to extract a year’s worth of data, no more than
five sample bulletins are required. As a result, we did not photograph all Weekly
Bulletin pages, but instead sampled pages periodically such that completely over-
lapping disease incidence tables were acquired. Notice that the table providing vital
statistics shows only information for the week in question. For the total population
of NYC at the time, this did not present a problem; weekly changes in population
are not significant compared to the total population, we can therefore estimate a
yearly average population from these numbers. Birth rates oscillate throughout the
year [13], and so for years in which a full set of bulletin photographs had not been
acquired, we use weekly data points available periodically throughout the year to
estimate the yearly value.

2.4 Health Dept. Records 1958–1976 Weekly Disease Incidence Data

The NYC Health Department kept detailed records of the incidence of many diseases
and conditions, including infectious diseases of interest to us. In particular, from
1958–1976, weekly records were kept of the incidence of diseases and conditions by
health district of residence, of which there are 27 in NYC (this date range represents
only what we were able to find, but all indications suggest that such data were

10
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collected for a wider range of dates). These are organized by boroughs and city-
wide totals are available for our purposes. See Figure 6 for a sample table providing
city-wide totals, and Appendix B for a sample of a full weekly report.

Figure 6: NYC Health Dept. table showing reportable diseases and conditions. See
Appendix B for full weekly report.

2.5 NYC Health Dept. Vital Statistics Reports: 1900–1984

The NYC Health Dept. website has made historical vital statistics reports available
to the general public [1]. These reports, for the years of 1976–1984, contain tables
showing city-wide monthly aggregated cases of reportable diseases. For years outside

11



M.Sc. Thesis - K. Hempel McMaster - Mathematics

of this range and going back to 1950, yearly aggregated data is provided in the reports
we obtained. For disease incidence, yearly data is by no means sufficient for our
purposes. However, these vital statistics reports, as the name would imply, contain
vital data, for which yearly numbers are adequate. Furthermore, 5-year aggregated
totals are reported from 1900–1950.

2.6 1915

We noted previously that we must further discuss the Weekly Bulletin data for the
year 1915. Disease incidence numbers prior to 1915 come from Volume 1 of the
Health Bulletins, and after 1915 come from Volume 2, as noted previously. The
data before and after 1915 represent measles cases for all of NYC, whereas the data
we have for 1915 represent counts taken for only three hospitals within the city.
Using yearly aggregated reported measles cases taken from the NYC Vital Statistics
Reports [1] and comparing them with yearly totals from the Health Bulletin data
(see Figure 9), we determine a scaling factor (5.04) with which to adjust the weekly
Health Bulletin Data. Figure 7 shows measles incidence rates recorded for the years
surrounding 1915 before we re-sale the 1915 data. We conclude from the apparent
consistency in the pattern of outbreaks that the adjustment is appropriate.

12
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Figure 7: Time series plot of tabulated Health Bulletin data from 1910–1920, showing
original and adjusted 1915 reported measles cases from three hospitals in the context
of city-wide measles cases for other years.

2.7 Formatting the Data

For our analysis, we make use of weekly and monthly aggregated measles data, and
yearly vital data. For large time spans (namely 1932–1958 and 1976–1984), we
have only monthly data, hence we interpolate pseudo-weekly data from the monthly
data points. To do this, we split the monthly total of cases between the weeks of
the month, and then smooth the weekly values linearly, fixing the number of cases
per week in the middle of each month. For vital statistics, we obtain yearly total
population and birth rates from the NYC Health Bulletins for 1891–1900 as detailed
previously §2.3.2, and from the NYC Dept. of Health vital statistics reports for 1900–
1984. Note that the vital statistics reports contain only data points every 5 years

13
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from 1900–1950, and so we interpolate yearly points linearly from these as well.

2.8 Summary of Available and Compiled Data

Since we are using data from various overlapping sources, we need to pick time points
where we transition from one source to the next. Since it is better to do analyses
using originally recorded weekly data rather than pseudo-weekly interpolation, we
will use as much originally recorded weekly data as possible.

Data Available
Data Source Measles Incidence Vital Statistics
Weekly Bulletins Vol 1 (Appendix B) 1891–1914 (W) 1891–1914 (Y)
Weekly Bulletins 1915 (Appendix B) 1915 (W) N/A
Weekly Bulletins Vol 2 1916–1932 (W) 1916–1932 (Y)
London and Yorke [20] 1928–1972 (M) N/A
Health Department Records 1958–1976 (W) N/A

Vital Statistics Reports 1976–1984 (M)
1900–1950 (5Y)
1950–1984 (Y)

Table 1: Frequency of data points are shown as weekly (W), monthly (M), yearly
(Y), or every 5 years (5Y).

Data Compiled
Time Period Measles Incidence Vital Statistics
1891–1900 Weekly Bulletins Vol 1 Weekly Bulletins Vol 1
1900–1914 Weekly Bulletins Vol 1 Vital Statistics Reports
1915 Weekly Bulletins 1915 Vital Statistics Reports
1916–1932 Weekly Bulletins Vol 2 Vital Statistics Reports
1932–1958 London and Yorke [20] Vital Statistics Reports
1958–1976 Health Department Records Vital Statistics Reports
1976–1984 Vital Statistics Reports Vital Statistics Reports

Table 2: Components of sources compiled into a continuous times series.

14
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2.9 Normalized Data

For our analysis of the disease incidence data, we need to control for changes in pop-
ulation size. To this end we have constructed a time-series of yearly total population
numbers, as detailed previously. Using the population data, we can normalize disease
incidence data with respect to population size. This serves to remove elements of
the dynamics which are simply artifacts of changes in population, and what remains
is a more consistent representation of the dynamics of measles. See Figure 8 for a
plot of total population with respect to time, which we use to normalize our data.
Note in particular the high rate of population growth in the early 1900s; much of an
apparent rise in measles incidence can be attributed to this. The sudden jump in
the population data is attributed to a change in reporting area (see §2.3)
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Figure 8: Time series plot of the total population of NYC from 1891–1984.
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2.10 Sanity Checks

Since much of the data we use is from original digitization, it is appropriate to
conduct a number of checks on the data to ensure that its quality is acceptable for
the analysis. We therefore cross-reference our new data with as much independent
information as we can. To this end we perform the following three sanity checks on
our new data:

1. The NYC Health Department Vital Statistics Reports [1] list yearly totals for
disease incidence from 1911 to the present. Our first check takes yearly sums
of our weekly data from the Health Bulletins in the timespan of 1911–1932,
and compares these yearly sums to data from the Health Department Vital
Statistics Reports. See Figure 9 for this comparison. We conclude that, with
the exception of the year 1915 (which we dealt with previously), the close match
of these totals evidences reliability of the Health Bulletin data.

16
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Figure 9: Overlapping time series plots of yearly measles incidence counts taken from
the Health Bulletins and the Health Dept. Vital Statistics Reports.

2. Much of the newly digitized data overlaps with monthly data previously pub-
lished by London and Yorke [20]. We can therefore use monthly tabulated
totals of our original weekly data in the overlapping periods and compare them
to London and Yorke’s data. The results of this second check are shown in
Figures 10 and 11. Interestingly, these numbers do not match up perfectly,
suggesting that adjustments were made by the NYC Health Department to the
data we acquired (both from the Health Bulletins and the Health Department
Records), prior to its tabulation in the paper published in 1973 by London and

17
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Yorke [20].2 The monthly sums of measles cases, however, match up closely
enough in both overlapping time periods that we conclude our weekly data are
reliable.
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Figure 10: Overlapping time series plots of London and Yorke’s monthly measles
incidence rates, and the Health Dept. Bulletins weekly measles incidence rates, from
1928–1932. To compare these numbers, we have summed the weekly Bulletin data
monthly, summing up the number of measles cases reported at the ends of weeks
that fall in the same month.

2London and Yorke give very little information regarding the source of the data published their
1973 paper [20], only mentioning that the provider was the NYC Health Dept. Bureau of Infectious
Disease Control (which no longer exists)
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Figure 11: Overlapping time series plots of London and Yorke’s monthly measles in-
cidence rates, and the Health Dept. Records weekly incidence rates summed monthly,
from 1958–1973.

3 Analysis

In this section we describe the statistical and analytic tools we use to examine measles
dynamics in NYC. We begin with a delineation of the SIR model, and describe how
we use R0,eff (see §3.1) as a predictor for the frequency structure of measles in NYC.
We then use demographic data from NYC to estimate values of R0,eff for each year
in our range of dates from 1891–1984, and use the resulting time-series of R0,eff

to predict the frequency structure of measles in NYC throughout this time period.
Using a continuous wavelet transform, we plot the actual frequency structure of the
observed time series and overlay the predicted frequency structure for comparison
(see Figure 13).
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3.1 The SIR Model

Krylova and Earn [19] have previously used the SIR model to study the dynamics of
measles in NYC, based on London and Yorke’s data (1928–1973). As a result, much
work regarding numerous aspects of our undertaking has already been done. Most
importantly, we already have access to good estimates of all model parameters, and
we use the same method as Krylova and Earn for the estimation of R0,eff at different
times during the time-series (see Equation (5)). More realistic (and complicated) ver-
sions of the model exist. However, Krylova and Earn [19] showed that the dynamics
of the model (when properly parameterized) are almost identical to the dynamics
of models with multiple stages of infection with realistically distributed durations.
The compartments of the SIR model, S, I, and R represent the individuals in a
population that are Susceptible, Infected, and Recovered, respectively. The following
system of ODEs represents the flow rates from one compartment to the next:

dS

dt
= Φ− βSI − µS (1a)

dI

dt
= βSI − γI − µI (1b)

dR

dt
= γI − µR (1c)

Notice that individuals remain in the recovered state after they have entered it. This
is consistent with the behaviour of diseases like measles, to which lifelong immunity
is acquired after first infection. The parameters β, µ, γ represent the rates of trans-
mission, per capita death, and recovery, respectively. µ represents the rate of death
from natural causes, and deaths resulting from infection are assumed to be negligible.
Φ represents the birth rate, and varies with time. N = S+ I+R is the total popula-
tion size, which remains fixed if Φ = µN , in which case births would balance deaths.
We do not assume this, however, because secular changes in Φ can cause dynamical
transitions [5,6,10,11,19]. Instead, we estimate Φ from demographic data for NYC.
The expression for the incidence, βSI, makes the assumption that the population
being studied is well mixed; all individuals infect one another at the same rate, and
this rate is given by β. This assumption of mixing is generally a good one for popula-
tions confined to a small geographic area, namely cities. Equations (1a) and (1b) do
not depend on Equation (1c), so the latter can be ignored. We derive a normalized
birth rate ν by relating real birth counts of the NYC population to concurrent total
population estimates. For the population size N0 at time t0, we write Φ = νN0 such
that ν is the per capita birth rate at exactly time t0. The system of equations then
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becomes:

dS

dt
= νN0 − βSI − µS (2a)

dI

dt
= βSI − γI − µI (2b)

dR

dt
= γI − µR (2c)

Technically speaking, we should be referring to ν as the per capita rate of recruit-
ment of susceptible individuals into the population, rather than the birth rate. This
distinction, however, is only relevant if not all births result in susceptible individu-
als entering the population, and as a result we must consider vaccinations kedit(in
principle immigration can also be a source of new susceptibles, but at such a low
rate compared to the NYC birth rate that it is insignificant). We make reference
to ν with the understanding that discrepancies between the birth rate and the rate
of susceptibles entering the population will be dealt with explicitly. Additionally,
we note that immigration does not significantly impact measles dynamics in NYC,
since immigrating infectives are only relevant in preventing disease fadeouts in small
populations, and the NYC population is too large for this to be an issue. As we
move forward, we will be making reference to a fundamental characteristic of an
infectious disease, the basic reproduction number R0. This number represents, for a
given disease, the average number of new infections that result from a single infected
individual in a completely susceptible population [4]. Theoretically, if its R0 < 1,
the disease cannot sustain itself in a population and will die out, and if R0 > 1 it
can spread. For the SIR model,

R0 =
νN0

µ

β

γ + µ
(3)

[19] The factor (νN0

µ
) is included in the expression for R0 because we did not define

Φ = νN , and instead use real demographic data to estimate ν. We assume that the
birth rate ν changes slowly enough that R0 can be defined at a given time taking ν
as a constant.

3.2 Seasonal Transmission Rate

A very typical addition to infectious disease models is seasonal forcing [10,11,20,22],
and in our instantiation of the SIR model this is introduced into the transmission
rate β. The reason for introducing this added complexity was discussed in §1.1:
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contact between individuals varies seasonally. In particular, contact among the most
likely individuals to be infected or susceptible—namely children—increases drasti-
cally during the school term. Seasonal variation can also be modeled in the birth
rate, however He and Earn [13] showed that for the SIR model parameterized for
measles, seasonal variation in the birth rate does not significantly impact dynamics.
Seasonal forcing is usually introduced into the SIR model in one of two ways, sinu-
soidal forcing or term-time forcing [16]. Both of these methods change the parameter
β into a seasonally varying function of time β(t). Term-time forcing assigns either a
high or a low value to β(t) according to the time of year when school is in session.
Sinusoidal forcing treats β(t) as a continuous function of time:

β(t) = β0(1 + α cos (2πt)) , (4)

where β0 is the mean transmission rate and α is the amplitude of forcing. In either
case, the period of the forcing function is one year. Krylova and Earn [19] showed
that for the simple version of the SIR model which we make use of, dynamics are
virtually equivalent using either term-time or sinusoidal forcing (with different α
for each case). We use the latter since it is easier to implement. We remark that
making β a seasonally oscillating function of time changes our expression for R0

(Equation (3)) slightly; Ma and Ma [21] showed that one can replace this β with the
β0 from Equation (4).

3.3 Transition Analysis

3.3.1 Effective R0

As noted previously, we generate predicted behaviour of measles in the NYC pop-
ulation from the SIR model. The parameter we use to predict the dynamics of the
disease incidence time series is R0, which in the SIR model depends on the per capita
susceptible recruitment rate (see Equation (3)). For some anchor time t0 in the time
series, we use an estimate of R0 for measles 3. Then, using this anchor value of R0,
we calculate changes in the effective value of this parameter over time as the rate
of susceptible recruitment changes. We take ν to be time dependent: ν(t), where
ν0 = ν(t0) is the susceptible recruitment rate at our anchor time t0. Our equation

3Estimating R0 is not trivial. It must be done for a particular city and disease at a particular
point in time. Krylova and Earn [19] used a 1960 estimate from Anderson and May [4] for England
and Wales of approximately 17, and assumed this value to be common with NYC at the same point
in time. However, an estimate of R0 using data from NYC has not yet been produced.
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for R0 therefore becomes a modified version of Equation (3):

R0 =
ν0N0

µ

β0

γ + µ
(5)

This represents our R0 estimate at t0, but at other times we will need an estimate of
the effective R0, which we will refer to as R0,eff, and this varies with time. We give
the following expression for R0,eff based on the changing susceptible recruitment rate
ν(t):

R0,eff =
ν(t)N0

µ

β0

γ + µ
(6a)

=
ν(t)

ν0

ν0N0

µ

β0

γ + µ
(6b)

=
ν(t)

ν0

R0 (6c)

3.3.2 Attractor and Transient Analysis

With a parameterized version of the SIR model one can generate predicted behaviour,
and the type of behaviour with which we are concerned is frequency structure.
The two methods we will use to determine the predicted frequency structure of
our time-series are attractor analysis and transient analysis [6, 19], previously re-
ferred to as asymptotic and perturbation analysis, respectively. Attractor analysis
identifies attractors in the model, along with their associated periods if they are
periodic [8, 10, 11, 18]. Using the SIR model parameterized for measles, we use XP-
PAUT [12] to generate numerical solutions. From arbitrary initial conditions, and
using R0 as a control parameter, we run each solution until invariant behaviour is
reached. In our case we find cyclic attractors with periods resonating with the sea-
sonal year. We determine a range of asymptotic behaviour of our parameterized SIR
model by varying R0 over many values and identifying the attractor to which the
system converges in each case. A stroboscopic map of each attractor is generated by
sampling the system once per year (January 1st) once invariant behaviour is reached.
Results of this analysis are plotted in a bifurcation diagram Figure 12. For a given
value of R0, the period of the attractor to which the system converges is referred to
as the predicted resonant period.
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Figure 12: Asymptotic bifurcation diagram for measles in NYC. For each value of
R0 on the x-axis, yearly values of the Infected SIR compartment are shown (on a
log-scale, in red) from long term solutions of the system. When R0 . 15.8, an
annual attractor is predicted (seen as a single red line on this plot). At R0 ' 15.8,
there is a period doubling bifurcation. For 15.8 . R0 . 23.2, a biennial attractor is
predicted, since yearly levels of I alternate between a high and a low value. When
23.2 . R0 . 26.3, both an annual and a biennial attractor are predicted. Long term
solutions of the system will fall to one or the other, depending on initial conditions.
For 26.3 . R0 an annual attractor is once again predicted. Dashed lines show
repellors, which can have important influences on dynamics [23]. Krylova [18, Fig.
7] showed that many higher period attractors exist for this parametrization of the SIR
model, but their basins of attraction are small and they have not been observed in
real world systems. Additionally, solutions locked onto these higher period attractors
visit such low values of disease prevalence that they are very unlikely to exist in the
NYC population. Finally, the seasonal forcing amplitude α has a significant impact
on model dynamics, and we keep it fixed at 0.08 throughout our analysis (following
Earn et al. [11] who studied who studied the NYC measles time-series for hte period
1928–1973). We revisit this issue later in §4.1.1.

For given values of R0, the system shows convergence to a cyclic attractor with
a resonant period. However, the system of ODEs we integrate to determine this
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fact are idealized; an infinite population size is assumed. In a finite population,
demographic stochasticity is always present [6, 10]. Bauch and Earn also showed
that if a system converges to the asymptotic attractor through damped transient
oscillations, they have a very specific period depending on the value of R0. Since
stochastic fluctuations prevent the system from reaching the asymptotic attractor,
these transient oscillations are sustained [6], and as a result the system exhibits
not only a resonant period, but also a non-resonant transient period sustained by
stochasticity. For each cyclic attractor found in the previously described attractor
analysis and over the same range of R0 values, one can linearize the system about
the cycles in the associated stroboscopic map. For an attractor with period k, its
transient period Tk is given by 2πk

|Arg(λk)| , where λk is the dominant eigenvalue of the

associated stroboscopic map [5, 6]. Following previous work [6, 19], we refer to this
as the predicted transient period4.

3.3.3 Wavelet Spectrum

In order to compare predicted resonant and transient periods from the SIR model
with the frequency structure of our observed NYC measles data, we conduct a
continuous wavelet transform on our NYC time-series of measles cases. A wavelet
transform is similar to a Fourier decomposition: for some range of periods, it deter-
mines how prevalent each of these periods is in the time series by producing a power
spectrum associated with each period. A wavelet transform, however, includes time
as a variable in the decomposition: a power spectrum is produced for each period
and for each point in time, giving the prevalence of periods as a function of time.
Standard methods exist for doing this [3, 9, 24]. Results of the transform are typ-
ically summarized in a colour depth plot (See Figure 13, panel 3 for a colour depth
plot of measles in NYC).

3.3.4 Analysis Summary

In conducting asymptotic and perturbation analysis on a parameterized version of
the SIR model, we produce predicted resonant and transient periods for measles in
NYC for the years 1891–1984. Predictions are largely based on estimates of R0,eff at
each point in time, and to produce these we use normalized yearly births from NYC

4Details on how to compute the resonant period with attractor analysis using the bifurcation
analysis and continuation software XPPAUT [12] can be found in Krylova and Earn [19]. Computing
the non-resonant period using perturbation analysis has also been done previously [6,18], and note
that the range of non-resonant periods we make use of in this paper are the same as those presented
in Krylova [18, Fig. 5].
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along with an estimate of R0 = 17 at the anchor time 1960, as well as vaccination
data after 1963. We compare predicted periods in the time series with those observed
in a continuous wavelet transform of the time-series of normalized weekly measles
cases in NYC. Results are summarized in Figure 13
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Figure 13: Top panel, left axis: Overlay of original weekly measles cases for 1891–
1984 with normalized cases using yearly total population estimates. Right axis:
Yearly total population. Middle panel, left axis: Overlaid raw yearly estimates of
births with normalized births using total population estimates. Right axis: Estimates
of R0,eff used for analysis. Dotted line shows estimates of vaccine uptake. Bottom
panel: Colour depth plot of a continuous wavelet transform of the normalized measles
cases, where colour warmth scales with power. We have overlaid the predicted res-
onant and transient periods generated from analysis. Note that only the predicted
transient period of the annual attractor appears in the spectral range shown in this
diagram; the longer period attractors have much longer transient periods. [18].
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4 Results

We now proceed with an examination of the results of our analysis, which are summa-
rized in Figures 12 and 13, and we make reference to these throughout this section.
We begin by dividing the time-series into intervals which appear to be separated
by transitions in frequency structure. We then individually discuss each interval,
along with the transitions that divide them, and compare predicted and observed
behaviour. We list the following time intervals to this end, noting that the years
given represent only the approximate locations of transitions:

• 1891–1910: Very high values of R0,eff drive the predicted dynamics of the sys-
tem to a region where only annual asymptotic behaviour is possible, R0 > 26.3.
There is relatively good agreement between the predicted annual attractor and
the power of the one-year period in this region, and we take this as the correct
interpretation. What is puzzling, however, is the slight disagreement between
the transient period predicted to be slightly below 2, and the observed power
which seems to align itself exactly with a period of 2. The discrepancy is small,
but it is possible that the annual attractor is incorrectly predicted, and that
the system was locked in a biennial attractor in this period.

• 1910–1914: As R0,eff continues to fall, the predicted dynamics enter the region
in which both annual and biennial attractors are predicted. Either annual or
biennial dynamics in the wavelet spectrum would be consistent with model
predictions, noting that we would observe a non-resonant period near 2 if the
real system was locked in an annual cycle. If our interpretation of the previous
time interval is correct, then the latter is in fact the case, and we note that the
transient period fades as we approach approximately 1914, a year in which we
observe a transition in frequency structure.

• 1914–1929: Around 1914, we observe the high annual power in the wavelet
spectrum transition into biennial power. Estimates of R0,eff fall low enough
that only a biennial attractor is predicted. If previous interpretations are cor-
rect, then the observed system falls off the annual attractor and lands on the
biennial attractor. In other words, as R0,eff decreases, the predicted model
dynamics pass through a period-halving bifurcation at R0 ≈ 23.2. This bifur-
cation divides the region where annual and biennial behaviour is possible from
the region where only biennial behaviour is possible. In our interpretation,
the disappearance of the annual attractor onto which the observed dynamics
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appeared to have been locked causes the system to enter a period of hysteresis:
convergence to the biennial attractor is not immediate, there is a time delay
between when the system falls off of one attractor and lands on the other.
The time delay is caused by the difference between prevalence, I, of a system
locked onto the annual attractor just above the period halving bifurcation, and
one locked onto a biennial attractor just below it. Strong agreement is found
between the predicted biennial dynamics and the observed frequency structure
in this time interval (note that biennial behaviour appears as both annual and
biennial power in the wavelet spectrum).

• 1929–1950: We now move into a time interval which has been previously stud-
ied [19], but we will describe its contents for the sake of continuity. As R0,eff

continues to fall, predicted behaviour reaches a period-doubling bifurcation at
R0 ≈ 15.8, after which an annual attractor is predicted. Note that—unlike the
transition described in the previous time interval—this transition of the system
dynamics from biennial to annual is smooth, as one can see from the bifurcation
diagram that the levels of I transition smoothly through the period-doubling
bifurcation. The upshot is that we should observe an immediate shift in the
system dynamics from biennial to annual. Observation is consistent with the
system now being locked onto an annual attractor, as well as exhibiting a tran-
sient (non-resonant) period. In this region, 12 ≤ R0,eff ≤ 17. As R0,eff drops to
a low near 1940, and rises again, we observe excellent agreement between the
predicted transient period and high power in the wavelet spectrum.

• 1950–1964: R0,eff continues to rise through 1950, but slows its rate of increase
and remains at approximately 17 for the duration of this time interval. These
values of R0,eff place the predicted dynamics just to the right of the period-
doubling bifurcation at R0 ≈ 15.8, and so the SIR model predicts a biennial
attractor. We observe both period 1 and period 2 power in the wavelet spec-
trum, which—as previously noted—is how a system locked in a biennial cycle
appears on a wavelet spectrum. We conclude that there is strong agreement
between predicted and observed dynamics.

• 1964–1984: As noted in §1.1, measles vaccination was introduced into the NYC
population in 1964, and as uptake increased thereafter, overall measles cases
decreased. Near the end of this time interval, the total number of measles cases
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per unit time are small enough that stochasticity becomes very important, and
a stochastic model is required to fully understand the observed dynamics. That
being the case, annual power is still observed briefly at the start of this time
interval, which is consistent with the predicted annual attractor forR0 ≤ 15.8.

4.1 Comparing Predicted to Observed Periods

4.1.1 Resonant Period

There is very good agreement between predicted and observed resonant periods
throughout the time-series we have studied. The only time interval in which agree-
ment is less than perfect is 1891–1910, where—as noted previously—the predicted
transient period does not precisely match the observed second peak of power in the
wavelet spectrum. This discrepancy suggests, in the worst case, that our prediction
is wrong and there is actually a biennial attractor, or in the better case that the
predicted transient period is underestimated by ∼ 10%. In either case, it is likely
that the parameterization of the SIR model is not precisely correct in this time inter-
val. It is not clear which parameter requires attention, however several suggestions
present themselves as most plausible. Values of the time dependent parameter R0,eff

were generated from an estimate of R0 for measles in England and Wales at anchor
time t0 = 1960. An estimate of R0 for measles in NYC in the early part of the 20th
century would be very helpful in elucidating the issue with the SIR model parame-
terization early in our time-series. Without such an estimate on hand, however, we
can speculate as to the source of the discrepancy between prediction and observation
noted previously. In the definition of R0 found in Equation (3), consider only the
factor β

γ+µ
(the first factor concerns our estimation of R0,eff from an anchor value).

µ is small with respect to γ, and thus we can consider R0 ≈ β
γ

and speculate as to
why estimating R0,eff from an anchor time in 1960 may be problematic near 1900.
The recovery rate, γ, is characteristic of measles and does not change in the time-
span we are dealing with. The transmission rate, β, varies seasonally with time with
amplitude α and average β0. As noted in §1.1, the seasonality of measles derives
in large part from the pattern of school terms, which causes an increase in contact
in the winter. Methods exist for fitting α(t) through the whole time series (rather
than taking it to be constant),and may improve agreement between prediction and
observation [15,18].
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4.1.2 Transient Period

Bauch and Earn [6, Fig. 3] present a plot comparing predicted transient periods to
those observed in various time-series and for various diseases. We produce a similar
plot to show the same relationship derived from our analysis of measles in NYC (see
Figure 14).
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Figure 14: For all intervals of time in the span 1891–1984 for which an annual
attractor is predicted, we find high spectral power at period 1, and a second spectral
peak at some higher period (see Figure 13). For each such year, we determine the
location of the second spectral peak in the wavelet spectrum (plotted on the y-axis)
and compare with the concurrent predicted transient period (plotted on the x-axis).
For each data point, the last two digits of the associated year are shown in the figure.
The plotted line is y=x (observation=prediction), not a fitted linear regression.
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5 Conclusion

In light of the usefulness of NYC measles incidence data published in 1973 by Lon-
don and Yorke [6, 8, 10, 20, 22], we extended the dataset to more than twice its
previous length (1891–1984), adding large spans of higher quality (weekly rather
than monthly) data. Concurrent demographic data was compiled for use in analysis,
namely birth and total population numbers, aggregated yearly. We performed sanity
checks on the new data we added to the time-series and verified its quality, making
a few adjustments where needed.
We continued previous work done using the SIR model to understand measles dy-
namics in NYC [10, 19], using R0,eff as a predictor for dynamical transitions. We
obtained estimated values of R0,eff throughout the years 1891–1984 using the rate
of susceptible recruitment in NYC determined form birth rates and vaccine uptake.
We used a continuous wavelet transform on the normalized time-series of measles
incidence to observe its time-dependent frequency structure, and compared this with
predicted SIR behaviour using R0,eff values obtained from demographic data (Fig-
ure 13).
With the exception of periods of time near the beginning and end of our time-series,
there is excellent agreement between SIR model predictions and observation. We
attribute the slight disagreement early in the time-series to a need to fit the sea-
sonal forcing amplitude α(t) throughout the time series. Very late in the time-series,
stochastic simulation is required to fully understand the observed dynamics, as total
measles cases per unit time fall drastically in response to high vaccine uptake. In
our interpretation of the dynamical transitions, we find hysteresis—previously unob-
served for measles in NYC—in the first half of our time-series. It should be noted
that our interpretations of measles dynamics in NYC thus far have been based on
analysis of the deterministic SIR model. In addition to further work examining the
extremities of our newly extended time-series, future research should also quantita-
tively examine the relative powers of concurrent resonant and non-resonant spectral
peaks using stochastic analysis [6, 7].

33



M.Sc. Thesis - K. Hempel McMaster - Mathematics

Appendix A Scripting and Programming Languages

Current work was done in “R” version 2.12.1.
To compute our continuous wavelet transform, we used an unpublished “R” package,
“WaveletPackage 2.0.R”, written by Michael Johansson [3]. Other “R” packages used
include the following:

• “sfsmisc”

• “animation”

• “demography”

• “fields”
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Appendix B Sample Photographs from Data Sources

Figure 15: Weekly Bulletins Vol 1: Page 1
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Figure 16: Weekly Bulletins Vol 1: Page 2
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Figure 17: Weekly Bulletins Vol 1: Sample Page from 1915.
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Figure 18: Weekly Bulletins Vol 2: Only Relevant Data Page
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Figure 19: Health Department Records: Page 1
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Figure 20: Health Department Records: Page 2
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Figure 21: Health Department Records: Page 3
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Figure 22: Health Department Records: Page 4
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Figure 23: Health Department Records: Page 5

43



M.Sc. Thesis - K. Hempel McMaster - Mathematics

References

[1] New York City Department of Health and Mental Hygiene, Office of Vital
Records. Summary of Vital Statistcs, 1961-2007 Archived Reports. Available
from: http://www.nyc.gov/html/doh/html/vr/vr-archives.shtml.

[2] New York Academy of Medicine. 1216 5th Avenue, New York, NY 10029, United
States. www.nyam.org.

[3] M Johansson, Biologist at the CDC. WaveletPackage 2.0, R package. Produces a
continuous wavelet transform from an inputted time-series. Received Feb. 2011.

[4] R. M. Anderson and R. M. May. Infectious Diseases of Humans: Dynamics and
Control. Oxford University Press, Oxford, 1991.

[5] C. T. Bauch and D. J. D. Earn. Interepidemic intervals in forced and unforced
seir models. In S. Ruan, G. Wolkowicz, and J. Wu, editors, Dynamical Systems
and Their Applications in Biology, volume 36 of Fields Institute Communica-
tions, pages 33–44. American Mathematical Society, Toronto, 2003.

[6] C. T. Bauch and D. J. D. Earn. Transients and attractors in epidemics. Pro-
ceedings of the Royal Society of London, Series B, 270(1524):1573–1578, 2003.

[7] A. J. Black and A. J. McKane. Stochasticity in staged models of epidemics:
quantifying the dynamics of whooping cough. Journal of the Royal Society
Interface, page doi: 10.1098/rsif.2009.0514, 2010.

[8] B. M. Bolker and B. T. Grenfell. Chaos and biological complexity in measles
dynamics. Proceedings of the Royal Society of London, Series B, Biological
Sciences, 251:75–81, 1993.

[9] B. Cazelles, M. Chavez, G. C. de Magny, J. F. Guegan, and S. Hales. Time-
dependent spectral analysis of epidemiological time-series with wavelets. Journal
Of The Royal Society Interface, 4(15):625–636, 2007.

[10] D. J. D. Earn. Mathematical epidemiology of infectious diseases. In M. A. Lewis,
M. A. J. Chaplain, J. P. Keener, and P. K. Maini, editors, Mathematical Biology,
volume 14 of IAS/ Park City Mathematics Series, pages 151–186. American
Mathematical Society, 2009.

[11] D. J. D. Earn, P. Rohani, B. M. Bolker, and B. T. Grenfell. A simple model for
complex dynamical transitions in epidemics. Science, 287(5453):667–670, 2000.

44



M.Sc. Thesis - K. Hempel McMaster - Mathematics

[12] B. Ermentrout. Simulating, analyzing, and animating dynamical systems: a
guide to XPPAUT for researchers and students. Software, Environments, and
Tools. Society for Industrial and Applied Mathematics, Philadelphia, 2002.

[13] D. He and D. J. D. Earn. Epidemiological effects of seasonal oscillations in birth
rates. Theoretical Population Biology , 72:274–291, 2007.

[14] H. W. Hethcote. The mathematics of infectious diseases. SIAM Review,
42(4):599–653, 2000.

[15] G. Hooker, S. P. Ellner, L. De Vargas Roditi, and D. J. D. Earn. Parameteriz-
ing state-space models for infectious disease dynamics by generalized profiling:
measles in Ontario. Journal of the Royal Society Interface, 8(60):961–974, 2011.

[16] M. J. Keeling and B. T. Grenfell. Understanding the persistence of measles:
reconciling theory, simulation and observation. Proceedings of the Royal Society
of London Series B-Biological Sciences, 269(1489):335–343, 2002.

[17] W. O. Kermack and A. G. McKendrick. A contribution to the mathemati-
cal theory of epidemics. Proceedings of the Royal Society of London Series A,
115:700–721, 1927.

[18] O. Krylova. Predicting epidemiological transitions in infectious disease dynam-
ics: Smallpox in historic London (1664-1930). Phd, McMaster University,
Canada, 2011.

[19] O. Krylova and D. J. D. Earn. Effects of the infectious period distribution on
predicted transitions in childhood disease dynamics. preprint, .

[20] W. London and J. A. Yorke. Recurrent outbreaks of measles, chickenpox and
mumps. I. seasonal variation in contact rates. American Journal of Epidemiol-
ogy, 98(6):453–468, 1973.

[21] J. Ma and Z. Ma. Epidemic threshold conditions for seasonally forced SEIR
models. Mathematical Biosciences and Engineering, 3(1):161–172, 2006.

[22] L. F. Olsen and W. M. Schaffer. Chaos versus noisy periodicity: alternative
hypotheses for childhood epidemics. Science, 249:499–504, 1990.

[23] D. A. Rand and H. B. Wilson. Chaotic stochasticity: a ubiquitous source of
unpredictability in epidemics. Proc. R. Soc. Lond. B, 246:179–184, 1991.

45



M.Sc. Thesis - K. Hempel McMaster - Mathematics

[24] C. Torrence and G. P. Compo. A practical guide to wavelet
analysis. Bulletin of American Meteorological Society, 79(1):61–78.
http://atoc.colorado.edu/research/wavelets/, 1998.

46


	Introduction
	Measles in the 20th century
	The dataset
	Compartmental Modeling of Infectious Diseases
	Spectral Analysis

	The Data
	Required Data
	Data Sources
	The Health Dept. Bulletins: 1891–1932 Weekly Data
	Disease Incidence, Volume 1: 1891–1914
	Vital Statistics, Volume 1: 1890–1899
	Vital Statistics, Volume 1: 1898 Change in Reporting Area
	Disease Incidence: 1915
	Disease Incidence, Volume 2: 1916–1932
	Tabulation

	Health Dept. Records 1958–1976 Weekly Disease Incidence Data
	NYC Health Dept. Vital Statistics Reports: 1900–1984
	1915
	Formatting the Data
	Summary of Available and Compiled Data
	Normalized Data
	Sanity Checks

	Analysis
	The SIR Model
	Seasonal Transmission Rate
	Transition Analysis
	Effective R0
	Attractor and Transient Analysis
	Wavelet Spectrum
	Analysis Summary


	Results
	Comparing Predicted to Observed Periods
	Resonant Period
	Transient Period


	Conclusion
	Appendix Scripting and Programming Languages
	Appendix Sample Photographs from Data Sources
	References

