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Abstract

Optical waveguide is a very important component in numerous optical structures,

devices and photonic circuits. With the rapid development of fabrication technologies,

increasing integrated complexity and different materials characteristics, there is higher

demand on high-index contrast waveguide with arbitrary cross section and anisotropic

material, which indicates the need to develop an efficient, high-performance mode

solver to analyze optical waveguides to reduce the fabrication cycle and total cost.

Modeling and simulation methods, including Finite Difference Time-Domain (FDTD)

method, Finite Element Method (FEM), Beam Propagating Method (BPM), Mode

Matching Method (MMM) and Couple Mode Theory (CMT), etc, have been popular

for years. Among those methods, FEM is a good and efficient method, especially for

its superiority on arbitrary meshes.

In this thesis, both scalar and vectorial FEM mode solvers are implemented with

an emphasis on dealing with the radiation and evanescent modes by enclosing the

whole region with the Perfect Matched Layer (PML) and Perfect Reflecting Boundary

(PRB). Thus, the unbounded and continuous radiation modes together with evanes-

cent modes are replaced by what we called ”complex modes”, but still keeping the

completeness and orthogonality properties.
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Notation and Abbreviations

2D two-dimensional

3D three-dimensional

BC Boundary Condition

BVP Boundary-Value Problem

CMT Coupled Mode Theory

FDM Finite Different Method

FDTD Finite Different in Time Domain

FEM Finite Element Method

LP Linearly Polarized

PML Perfectly Matched Layer

PRB Perfectly Reflecting Boundary

SFEM Scalar Finite Element Method
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Problems and Methods

Boundary-value problems (BVPs) have been a major topic in the physics and math-

ematics simulation in a variety of areas such as thermal, mechanical, electrical, mag-

netic and fluid flow. For many boundary-value problems, a mathematical model can

be extracted, resulting in one or a group of related algebraic, differential or/and

integral equations [1], and in most of the cases, differential equations.

However, finding a analytical solution which satisfies the differential equations as

well as the boundary condition in the entire region is often difficult if not impossible

in most of the circumstances except for the very simple cases. In practice, one seek

numerical solutions by approximating the governing equations by expanding the so-

lution in terms of some qualified base functions and/or discretizing the equations by

certain numerical schemes. With the development of computer-aid design (CAD) in

1
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recent decades, the latter is becoming more and more popular, accurate and faster.

In this thesis, we will concentrate on the eigenvalue problems related to the modal so-

lutions in three-dimension(3D) straight optical waveguides with two-dimension (2D)

cross sections.

There are a number of available methods and techniques which can solve the

eigenvalue problems numerically, such as the finite element method (FEM), the finite

difference method (FDM), the mode matching method (MMM),etc[2].

The Finite Element Method [3], which I will present in this thesis, is a widely used

numerical technique for obtaining rigorous solutions to boundary-value problems.

1.1.2 Introduction to Finite Element Method

Starting from aircraft structure, the Finite Element Method (FEM) has been widely

used in the past 40 years in different disciplines and specializations including electro-

magnetic problems. A broad definition of FEM is given as [1]:

The Finite Element Method is a computer-aided mathematical technique for ob-

taining approximate numerical solutions to the abstract equations of calculus that

predict the response of physical systems subjected to external influences.

Similar to other numerical solution techniques, the finite element method divides

an entire region into small subregions so that one can obtain an approximate solution

within each subregion that satisfies the boundary conditions of the adjacent subre-

gions. And within each subregion, the simpler solution can be derived compared with

the entire region.

2
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In the earlier decades of FEM’s application in waveguides and antennas, it is

restricted because of the so-called spurious solutions in vectorial FEM, which are

false mode solutions. Recently, the introduction of edge elements has solves this

problems successfully. FEM sees a revival since then with the revolution in computer

hardware and software.

1.2 Introduction to Perfectly Mached Layer

1.2.1 Why PML

The set of Maxwell Equations is the very basic governing equation for waveguides.

However in open waveguides, the boundary is in fact the boundless infinite space

theoretically which makes it impossible to solve by discretization only. What’s more,

the computation region that we are interested in is actually limited in the waveguide

cross-section. And the modes in open waveguides are classified into three groups:

the guided modes, the radiation modes and the evanescent modes, with discretized,

real propagation constant, continuous, real propagation constant and continuous,

imaginary constant, respectively. However, these ”real” values have some restrictions

while applied into reality: the unbounded mode field of radiation mode can’t not

be normalized in normal way but in terms of Dirac delta function; the continuity of

the propagation constant limits its application in many mode-based method, such as

Coupled Mode Theory (CMT) and Mode Matching Method (MMM).

In following chapters, we use the Perfectly Reflecting Boundary (PRB) condition

and it’s size is restrained, which is good and has been used for years. The modes

then are reduced to discretized and bounded solutions which can be classified into

3
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the guided modes, the box modes and the evanescent modes. This technique is a

good approximation while the dimension of the guiding region is much small than

that of the box, but due to the PRB, there is always reflection on the boundary. As

the power constrained in the core gets lower, the reflection is becoming more and

more significant, especially for the box modes and evanescent modes.

Another drawback is that box modes and evanescent modes depend on the box

size critically, including the number of modes and the spacing between two modes.

Nevertheless, this problem still could be solve by applying special boundary condi-

tions in order to absorb the outgoing waves, such as techniques like radiation boundary

which is popular in the 70’s last century, and the ”matched layer” which consists of an

absorbing medium surrounding the computation domain, whose impedance matches

those of the free space, etc. However, these techniques have their limits, such as

some only suitable for specific cases: propagation on specific direction, in a specific

frequency, a thick boundary which increases the computation nodes, etc. Thus we

introduce the Perfectly Matched Layer as the boundary condition in this FEM tech-

nique.

1.2.2 What is PML

The perfectly matched layer is a non-physical fictitious medium that is used to anti-

reflectively match a real physical medium, and attenuates the incident waves of any

frequency and at any incidence angle without reflection theoretically. This is proved

by Berenger in 1994 [4].

4
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1.3 Organization of Thesis

In this thesis, we will first give a basic introduction to the theory of FEM, then we

will derive and validate the scalar FEM and vectorial FEM.

For detail, in chapter 2, the governing equation, including the set of maxwell equa-

tions, modified maxwell equations with coordinate stretching method are presented.

In chapter 3, theory and basic FEM methods and steps will be given.

In chapter 4, a Scalar FEM (SFEM) formulation in inhomogeneous waveguide

is derived and applied to waveguides of arbitrary transverse shape. The examples

of a rectangular dieletric waveguide, a circular waveguide and a ridge waveguide

are presented and analyzed to validate the Scalar FEM with boundary condition of

Perfectly Reflecting Boundary (PRB) and Perfectly Matched Layer (PML) boundary

condition.

In chapter 5, an edge-based Full-Vectorial FEM (VEFM) is introduced with two-

dimensional edge elements for analyzing inhomogeneous waveguide. And same exam-

ples are presented to validate the method and the orthogonality property is analyzed.

5



Chapter 2

Governing Equations

2.1 Maxwell Equations

Differential form of Maxwell equations is shown as

∇× E = −jωµ̂H (2.1)

∇×H = jωε̂E (2.2)

∇ · (ε̂E) = 0 (2.3)

∇ · (µ̂H) = 0 (2.4)

where E and H are the phsor expressions and ε̂ = ε0ε̂r, µ̂ = µ0µ̂r. ε̂r and µ̂r may be

tensors (tenser a denoted as â or [a] in this thesis ) in anisotropic medium. Substitute

(2.1) into (2.2), and (2.2) into (2.1) we have the curl-curl equations as

∇× (
1

µ̂r
∇× E)− k2

0 ε̂rE = 0 (2.5)

6
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and

∇× (
1

ε̂r
∇×H)− k2

0µ̂rH = 0 (2.6)

where k2
0 = ω2ε0µ0. Equation (2.5) and (2.6) may be written as (2.7)

∇× ([p]∇×Φ)− k2
0[q]Φ = 0 (2.7)

where

Φ = (Φxx̂+ Φyŷ + Φz ẑ)exp(−jβz) (2.8)

and

[p] =
1

µ̂r
=


1/µxx 1/µxy 1/µxz

1/µyx 1/µyy 1/µyz

1/µzx 1/µzy 1/µzz

 , [q] = ε̂r =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (2.9)

for Φ = E, and

[p] =
1

ε̂r
=


1/εxx 1/εxy 1/εxz

1/εyx 1/εyy 1/εyz

1/εzx 1/εzy 1/εzz

 , [q] = µ̂r =


µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

 (2.10)

for Φ = H.

Equation (2.7) is the vector three component wave equation without any approx-

imation.

7
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2.1.1 Vector Mode Equations

If we separate the field into transverse and longitudinal direction components Φ =

Φt + Φz with (2.8) in isotropic and non-magnetic (i.e. ε̂r = εr, µ̂r = µr = 1) medium,

we have the vector mode equations (2.11) and (2.12) for the transverse fields.

∇2
tEt + (n2 − n2

eff )k
2Et = −∇t

1

n2
(∇tn

2 · Et) (2.11)

∇2
tHt + (n2 − n2

eff )k
2Ht = − 1

n2
∇tn

2 × (∇t ×Ht) (2.12)

where neff is the effective refractive index and neffβ = k where β is the propagation

constant and k the wave number. And the coupling between Et and Ht are given as

(2.13) and (2.14)

Et =
Y0n

2

neff
ẑ ×Ht −

Y0

neffk2
ẑ × [∇t × (∇t ×Ht)] (2.13)

Ht = − Z0

neff
ẑ × Et +

Z0

neffk2
ẑ × [∇t ×

1

n2
(∇t × Et)] (2.14)

2.1.2 Semi-vector Mode Equations

In most of the cases, one of the polarization directions of the Et field or Ht field in

the full vector modes is much larger than the other one. Under this circumstance,

the cross-coupling terms in (2.11) and (2.12) can be neglected. Consequently, the

hybrid full vector modes, often referred to as quasi Transverse Electric (TE) modes

and quasi Transverse Magnetic (TM) modes, are reduced to pure TE and pure TM

modes. This approximation is referred as the semi-vector approximation.

8



M.A.Sc. Thesis - TINGXIA LI McMaster - Electrical Engineering

2.1.3 Scalar Mode Equations

In Semi-vector approximation, the transverse field has two polarizations, TE and

TM. The modes associated with the two polarization have different field profiles and

mode effective refractive index. If the refractive index discontinuity is very small

(δn ≈ 0), the wave equations can be further reduced into the scalar wave equation

with potential φ as (2.15) and the polarization dependence between the TE and TM

modes vanishes and the mode effective refractive index become degenerate.

∇2
tφ+ k2φ = 0 (2.15)

2.2 Modified Maxwell Equations

The PML layer is a non-physical fictitious medium and can be regarded as artificial

anisotropic media where ε̂ = ε0[Λ], µ̂ = µ0[Λ]

A formulation similar to what is used by Berenger [4] is used in this thesis which

is derived using coordinate stretching approach in [5]. A set of modified Maxwell

equations of differential form are as below

∇e × E = −jωµ̂H (2.16)

∇h ×H = jωε̂E (2.17)

∇h · (ε̂E) = 0 (2.18)

∇e · (µ̂H) = 0 (2.19)

9
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where

∇e = x̂
1

αex

∂

∂x
+ ŷ

1

αey

∂

∂y
+ ẑ

1

αez

∂

∂z
(2.20)

∇h = x̂
1

αhx

∂

∂x
+ ŷ

1

αhy

∂

∂y
+ ẑ

1

αhz

∂

∂z
(2.21)

where αep and αhp, p = x, y, z are coordinate-stretching variables that stretch the

x,y,z coordinates for ∇e and ∇h. And zero-reflection, i.e. the matching condition is

αep = αhp = αp, p = x, y, z (2.22)

where

αp = 1 non-PML region (2.23)

αp = 1− j σp
ω0ε0n2

PMLp

PML region (2.24)

and αp is called the complex coordinate-stretching factor and σp the electric or mag-

netic conductivity in p direction p = x, y, z and in non-PML region, σp = 0.

The coordinate stretching method is equivalent to treating PML as special anisotropic

medium but could be easily implemented and understood. Thus in this thesis, PML

is implement with stretching coordinate methods.

10



Chapter 3

Finite Element Method Theory

3.1 Boundary Value Problems

A typical BVP can be defined by a governing differential equation in domain together

with the boundary conditions on the boundary as (3.1).

L Φ = f (3.1)

where L is a differential operator and f if the excitation and Φ is the unknown quan-

tities. The Boundary Condition (BC) may be the simple Dirichlet (or first-type)(3.2),

Neuman (second-type)(3.3), or hybrid boundary conditions, such as mixed Dirichlet

and Neuman condition as shown in Figure (3.1), Robin conditions(impedance condi-

tions, third-type)(3.4), or the complicated radiation conditions.

Φ |r= Φ0 (3.2)

11
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Figure 3.1: Mixed Dirichlet and Neuman boundary condition

∂Φ

∂n
|r= g0 (3.3)

(aΦ + b
∂Φ

∂n
) |r= g0 (3.4)

Most of the problems do not have an analytical solution for the unpredictable

shape and material characteristics.

3.2 Methods

3.2.1 The Ritz Method

The Ritz method is a variational method in which the BVP of the form (3.1) is

formulated in terms of a variational expression called functional F (Φ). The mini-

mum of this functional corresponds to the governing differential equation under the

given boundary conditions. In [6], Mikhlin proves that if the operator L in (3.1)

is self-adjoint and positive definite, then the solution of (3.1) could be obtained by

minimizing the functional (3.5)

12



M.A.Sc. Thesis - TINGXIA LI McMaster - Electrical Engineering

F (Φ̂) = 0.5 < L Φ̂, Φ̂ > −0.5 < Φ̂, f > −0.5 < f, Φ̂ > (3.5)

where < g, f > is the inner product of function g and f . For details, please refer to [6].

Once the functional is found, the solution can be obtained by the procedure described

below. For simplicity, let us assume that the problem is real-valued. Suppose that Φ̂

in (3.5) can be approximated by the expansion (3.6)

Φ̂ =
N∑
j=1

cjvj = ~cT~v = ~vT~c (3.6)

where vj, j = 1, 2, 3 are the choosen expansion functions defined over the entire

domain and cj, j = 1, 2, 3 are constant coefficients to be determined. Substituting

(3.6) into (3.5), we have (3.7)

F (Φ̂) = 0.5~cj
T

∫
Ω

~vL ~vTdΩ~c− ~cT
∫

Ω

~vfdΩ (3.7)

To minimize F (Φ̂), we force its partial derivatives with respect to cj to vanish. This

yields a set of linear algebraic equations as (3.8)

∂F (Φ̂)

∂cj
= 0.5

∫
Ω

~viL ~vTdΩ~c+ 0.5~cT
∫

Ω

~vL vidΩ−
∫

Ω

vifdΩ

= 0.5
N∑
j=1

cj

∫
Ω

(viL vj + vjL vi)dΩ−
∫

Ω

vifdΩ

= 0 i = 1, 2, ..., N

(3.8)

13
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which can be written as the matrix equation (3.9)

[S]~c = ~b (3.9)

with the elements in matrix [S] given by (3.10)

Sij = 0.5

∫
Ω

viL vjdΩ (3.10)

An approximate solution for (3.1) is then given by (3.6) where cj are obtained by

solving the matrix (3.9).

Basic Steps of Ritz FEM

The Ritz FEM consists of a few basic steps as below

• Divide the domain into subdomains (elements) Ωe, e = 1, 2, ...,M

• Over each element, expand the unknown function as an interpolation of the

values of the elements nodes φe =
N∑
j=1

N e
j (~r)φej , r ∈ Ωe, where φej is the value of

φ at the jth node of the eth element and N e
j (~r) is the corresponding interpolation

function.

• Formulate the functional in terms of the unknown coefficients F =
M∑
e=1

F e(φ̂e).

• Apply the opimality conditions for a minimize of the functional ∂F
∂φi

= 0, i =

1, 2, ..., N

• Solve the resultant system of equations.

14
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3.2.2 The Galerkin’s Method

Galerkins method seeks a solution to the BVP in (3.1) by weighting the residual of

the differential equation, so it is a member of the weighted residual methods. Assume

that Φ̂ is an approximate solution to (3.1). Then the residual is

r = L Φ̂− f (3.11)

The best approximation for Φ̂ will be the one that resuces the residual to the least

value at all points of Ω. We define the ith weighted residual as

Ri =

∫
Ω

wirdΩ = 0 (3.12)

where are chosen weighting functions. When the weighting functions are selected as

wi = vi i = 1, 2, ..., N (3.13)

It usually leads to the most accurate solution. So that (3.12) becomes

Ri =

∫
Ω

(viL ~vT~c+ vif)dΩ = 0 i = 1, 2, ..., N (3.14)

This again will lead to (3.9). The FEM formula is the same between Ritz FEM and

Galerkin’s FEM now. The difference is only the selection of the trial function. In this

thesis, the Ritz FEM is utilized. If interested, please refer to [3] for the Galerkin’s

method.
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3.3 Finite Element Meshes

The finite element meshes can be classified into two types based on the nature of

element: two-dimensional (2D) and there-dimensional (3D) meshes. Most popular 2D

mesh are quadrilaterals and triangles as shown in Figure (3.2) and for 3D mesh, there

are hexahedra, tetrahedra, square pyramids and extruded triangles shown in Figure

(3.3). Each element is independent locally but is connected to each other globally

but the field tangential continuous condition. In this thesis, the 3D waveguide mode

problems are analyzed so only 2D meshes are used, specifically the triangles because

good discretization could be achieved.

Figure 3.2: 2D finite element meshes

Figure 3.3: 2D finite element meshes

16



Chapter 4

Scalar FEM

4.1 Scalar Mode Equation

Scalar wave equation for 2D straight waveguide can be used to simulate the prop-

agation of electromagnetic fields in optical waveguides with relative weak refractive

index difference over the cross section. The scalar wave equation (2.15) for an inho-

mogeneous isotropic medium is rewritten as

∇2
tφ+ k2φ = 0 (4.1)

where k2 is the eigenvalue. With (3.7), we could derive the corresponding functional

given by (4.2) as

F (φ) = 0.5

∫∫
Ω

[(
∂φ

∂x
)2 + (

∂φ

∂y
)2 − k2φ2]ds (4.2)

where Ω represents the cross-sectional area of the waveguide. And

k2 = n2k2
0 − β2 (4.3)
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where k0 =
2π

λ0

is the free space wave number, n the refractive index of the medium,

which varies across the cross-sectional area, and β the propagation constant.

4.2 Finite Element Formula

4.2.1 FEM Approximation

For numerical simulation, the cross-sectional area is discretized into small triangles,

called elements. Hence we discretized functional (4.2) and get (4.4)

F (φ) =
Ne∑
e=1

∫∫
Ω

0.5[(
∂φe
∂x

)2 + (
∂φe
∂y

)2 − k2φ2
e]ds (4.4)

where e represents the element number, Ne represents the total number of elements

and Ae represents the area of the element e over which the functions are integrated.

Figure 4.1: First order triangular element

As shown in Figure (4.1), the φ value at the point of P (x, y) inside the triangle

18
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may be approximated linearly as (4.5)

φ(x, y) = a+ bx+ cy (4.5)

φ(x, y) = [N(x, y)]T{φe} (4.6)

where

{φe} = [φe1 φe2 φe3]T

and

N = [N(x, y)] =


L1

L2

L3

 =
1

2Ae


a1 b1 c1

a2 b2 c2

a3 b3 c3




1

x

y

 (4.7)

with

2Ae = det


1 1 1

x1 x2 x3

y1 y2 y3

 (4.8)

ak = xlym − xmyl bk = yl − ym ck = xm − xl (4.9)

where xk, yk (k = 1, 2, 3) are the Cartesian coordinates of the corner points 1 to 3

of the triangle and the subscripts k, l,m are 1,2,3; 3,1,2; 2,3,1, which are cyclically

progressing around the threee vertices of the triangle. Hence we have (4.10) and

(4.11)

∂φe(x, y)

∂x
= {b}{Φe} (4.10)

∂φe(x, y)

∂y
= {c}{Φe} (4.11)
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which are not dependent on x and y, with {b} = [b1, b2, b3], {c} = [c1, c2, c3] and

{u} = [a1 + b1x+ c1y, a2 + b2x+ c2y, a3 + b3x+ c3y], functional (4.4) could be written

as (4.12)

F (φ) = 0.5

∫∫
Ω

[(
∂φ

∂x
)2 + (

∂φ

∂y
)2 − k2φ2]dΩ

= 0.5
Ne∑
e=1

∫∫
Ω

[({b}{Φe})T{b}{Φe}+ ({c}{Φe})T{c}{Φe}

− k2({u}{Φe})T{u}{Φe}]dΩ

= 0.5
Ne∑
e=1

[{Φe}T [Pe]{Φe} − k2{Φe}T [Qe]{Φe}]

(4.12)

where

[Pe] = Ae[{b}T{b}+ {c}T{c}] (4.13)

and

[Qe] =
Ae
12


2 1 1

1 2 1

1 1 2

 (4.14)

with the help of ∫∫
Ω

ul1u
m
2 u

n
3dΩ = Ae

l!m!n!2!

(l +m+ n+ 2)!
(4.15)

to abtain [Qe].
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4.2.2 FEM Matrix

Please note that, in (4.2.1), the subscripts of e in [Pe] and [Qe] means these 3 by 3

matrixes are local matrixes. But the operation of summation
Ne∑
e=1

means the assem-

bling process, a mapping process in reality, of the local matrixes to global matrixes

of [Pg] and [Qg], which are Nn by Nn matrixes, where Nn is the number of nodes.

Thus, functional (4.12) can be written as (4.16)

F (φ) = 0.5[{Φe}T [Pg]{Φe} − k2{Φe}T [Qg]{Φe}] (4.16)

where [Pg] =
Ne∑
e=1

[Pe] and [Pg] =
Ne∑
e=1

[Pe]

4.2.3 Forming FEM Equations

The finite element solution is obtained by minimising the functional (4.16) with re-

spect to each of the nodal values. Set

∂F (φ)

∂φk
= 0 for k = 1, 2, ..., Nn (4.17)

Thus we have

{Pg}[Φ]− k2{Qg}[Φ] = 0 (4.18)

4.3 PML Scheme in Finite Element Method

For many years, PML is most implemented as numerical boundary condition in

many mode solvers with Finite Different in Time Domain (FDTD) or Finite Dif-

ferent Method (FDM), such as those in [4] and [5]. In this thesis, we are going to
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apply the PML in the technique of Finite Element Method in frequency domain.

According to the modified Maxwell equations, PML can be seen as anisotropic

medium with complex refractive index contribution within the layer. However, as in

section 2.2, we can used the coordinate stretching method [5] to solve the equations.

4.3.1 The complex coordinate-stretching factor

The complex coordinate is

p̃ =

∫ p

0

αp(p
′)dp′ (4.19)

where p = x, y, we got

1

αp

d

dp
=

d

dp̃
(4.20)

and

d̃PMLp =

∫ p1

p0

αp(p
′)dp′ (4.21)

Thus PML medium is regarded as a real medium with complex spatial coordinates

or thickness.

For σp(ρ),where ρ = x− x0, the reflection coefficient is

RPMLp(φ) = exp{− 2cosφ

nPML

√
ε0/µ0

∫ dPML

0

σp(ρ)dρ} (4.22)

where ρ is the distance to the interface inwards between PML and inner medium

and φ is the incident angle to the normal of the interface. We can see that the best

performance occurs while the incident wave is perpendicular to the interface.

The conductivity σp, p = x, y is gradually growing from zero to the maximum value

σmax. There are various profiles for the conductivity specified by a profile function
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fp(ρ) as below

σp = fp(p) · σmax (4.23)

For polynomial grading of the conductivity used in this thesis, we set

fp(ρ) = (
ρ

dPMLp

)m (4.24)

Typically optimal values are 2 ≤ n ≤ 6. And the bigger m is, the smoother the

change of σp(p) close to the interface and the steeper to the PRB boundary,which

means reflection occurs deeper numerically in the PML region close to the PRB.

With Equation (4.22), the reflection coefficient is as below [4]

RPMLp(φ) = exp{− 2σmaxcosφ

nPML

√
ε0/µ0

∫ dPML

0

(
ρ

dPMLp

)mdρ} (4.25)

And we solve σmax and plug into the complex coordinate-stretching factor in (2.23),

we have

α(φ, ρ)p = 1− j λ

4πnPMLpdPMLpcosφ
[(m+ 1)ln(

1

RPMLp

)](
ρ

dPMLp

)m (4.26)

As we could see from Equation (4.26), unlike the 1-D problems, the complex coordinate-

stretching factor is α and the incident angle φ dependent if we set a RPMLp. However,

in most of the pratical problems, PML is placed relatively far from the core region,

thus φ is arround 0. Let’s set φ ≈ 0, we have (4.27). Please note that in corner

region, the reflection is larger.

α(ρ)p = 1− j λ

4πnPMLpdPMLp

[(m+ 1)ln(
1

RPMLp

)](
ρ

dPMLp

)m (4.27)
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4.3.2 PML Scheme in 2-D Problems

Figure 4.2: PML + PRB Scheme in 3-D Waveguides

The PML scheme in 3D waveguide cross section used in this thesis is shown in

Figure (4.17). If the interface of PML inwards is perpendicular to x(or y) direction,

the waves attenuate along x(or y) direction and the conductivity of y(or x) direction

must be zero in order to ensure the tangential continuity. At the corner region, either

is zero. And the complex coordinate-stretching factor in (4.27) is applied.

If the waveguide extends to the PML region shown in Figure (4.3), as in Ridge

waveguides where in theory it is boundless along x direction, we could set the refrac-

tive index in the PML region A, B,C values of n1, n0, n0 naturally.
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Figure 4.3: Overlap section between waveguide and PML

4.4 Validation of Scalar FEM with PRB Boundary

Condition

Numerical examples with Scalar FEM for circular waveguide (two-layer step-index

optical fiber particularly in this thesis), rectangular dieletric waveguide and ridge

waveguide are presented in this section, which are all typical examples and structures

widely used in the opitical area.

4.4.1 Circular Waveguide

Analytical Modal analysis of Step-index Fiber

In [7] chapter 3, a rigorous analysis of step-index fiber as in Figure (4.4), including TE,

TM and Hybrid Modes, is presented as well as the Linearly Polarized (LP) modes,

which are important in practical weakly guiding fibers. For more details, please refer

to chapter 3 in [7] . The dispersion relationships are concluded as in Table (4.1).

In most of the circumstances, the refractive-index difference ∆ of practical fiber

is of the order of 1%. Thus, with the approximation of n1/n0 ≈ 1, the analysis of
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Figure 4.4: Circular waveguide

optical fiber could be simplified as Table (4.2).

The approximation of n1/n0 ≈ 1 means the confinement in the core is not so tight.

Thus it is called weakly guiding approximation. And this group of modes under the

approximation is designed as Linearly Polarized(LP) modes. Compare the relation

between LP modes in Table (4.2) and conventional rigorous mode in Table (4.1), we

could conclude the LP modes as in Table (4.3).

Numerical Results of Circular Waveguide Example

Modal analysis of two-layer step-index fiber as in Figure (4.4) with Scalar FEM is

presented in this section. Simulation is implemented of cross-section as in Figure

(4.5) with PRB condition applied. The parameters are listed in Table (4.4).

The fundamental mode profile is shown in Figure (4.7).Figure (4.6) is an example

of the finite element mesh grids. The effective refractive index of the fundamental

mode compared to the analytical effective refractive solved with the previous discussed

dispersion equations is shown in Table (4.5). Figure (4.8) shows the convergence of

the fundamental mode.
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Table 4.1: Dispersion equations for conventional rigorous modes in the step-index
ciruclar waveguide

Mode Designation (l ≥ 1) Dispersion equation

TE0l
J1(u)

uJ0(u)
= − K1(w)

wK0(w)

TM0l
J1(u)

uJ0(u)
= −(

n0

n1

)2 K1(w)

wK0(w)

Hybrid(n ≥ 1) [
J ′n(u)

uJn(u)
+

K ′n(w)

wKn(w)
][
J ′n(u)

uJn(u)
+ (

n0

n1

)2 K ′n(w)

wKn(w)
]

= n2(
1

u2
+

1

w2
)[

1

u2
+
n0

n1

)2 1

w2
]

Note: Jn(u) is the n-th order Bessel function and Kn(w) the 0-th order Bessel function
of second kind. u and w is the transverse wave numbers with u = κa = a

√
k2

0n
2
1 − β2

and w = σa = a
√
β2 − k2

0n
2
0. Normalized frequency v is given as v2 = u2 + w2 =

k2
0(n2

1 − n2
0). l means the l − th zero-point of the dispersion equation.

Table 4.2: Dispersion equations under the weakly guiding approximation

Mode Designation (l ≥ 1) Dispersion equation

TE0l or TM0l
J1(u)

uJ0(u)
= − K1(w)

wK0(w)

EHnl, n ≥ 1
Jn+1(u)

uJn(u)
=
Kn+1(w)

wKn(w)

HE1l
J0(u)

uJ1(u)
=

K0(w)

wK1(w)

HEnl, n ≥ 2
Jn−1(u)

uJn−2(u)
= − Kn−1(w)

wKn−2(w)

Note: Same with Table (4.1).
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Table 4.3: Comparison of dispersion equations between LP and conventional modes

LP Mode (l ≥ 1) Conventional Mode Dispersion equation

LP0l HE1l
J0(u)

uJ1(u)
=

K0(w)

wK1(w)

TE0l

LP1l TM0l
J1(u)

uJ0(u)
= − K1(w)

wK0(w)
HE2l

LPml,m ≥ 2 HEm+1,l

EHm−1,l
Jm(u)

uJm−1(u)
= − Km(w)

wKm−1(w)

Note: Same with Table (4.1).

Table 4.4: Parameters of the step-index circular waveguide shown in Figure (4.5)

Parameter Value Unit

r 0.6 µm
n1 2.36
n2 2.2
lambda 1.55 µm

Note: Box size is length×width =
2.4µm*2.4µm, enclosed by PRB.

Table 4.5: Effective refractive index for LP modes

Scalar FEM

Mode Type 1038 nodes 1894 nodes Analytical Values

LP01 2.271154 2.271437 2.271900

Note: Single mode fiber condition: normalized frequency v =
2πa
λ

√
n2

1 − n2
2 < 2.405
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Figure 4.5: Cross section of a circular waveguide with PRB

4.4.2 Rectangular Dielectric Waveguide

Another examples, a rectangular dielectric waveguide (known as buried waveguide) is

also presented. The buried waveguide cross section are shown as Figure (4.9), and its

parameters are shown in Table (4.6). The finite element meshes are shown as Figure

(4.10). The simulation results are shown in Table (4.7). E field mode profiles are as

Figure (4.11)

4.4.3 Ridge Waveguide

The modes of a typical integrated optical waveguide such as the one shown in Figure

(4.12) can be separated into two groups: the Ex
pq modes (also called Hy

pq modes or

HEy modes) and the Ey
pq modes (also called Hx

pq modes or EHy modes), where p

and q are the mode numbers. And further more, these two kinds of mode could be
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Table 4.6: Parameters of the buried waveguide

Parameter Value Unit and Note

wwg 0.8 µm
lwg 0.8 µm
n1 3.54 Core
n2 3.17 Cladding
λ0 1.30 µm

Note: Box size is length×width =
2.4µm*2.4µm, enclosed by PRB.

Table 4.7: Effective refractive index of the buried waveg-
uide

Simulation neff , Node Number

Mode Type 800 2172

1st 3.434063 3.434041
2nd 3.282078 3.281872
3rd 3.282067 3.282036
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Figure 4.6: Finite element meshes of the step-index fiber

approximated by the TEy (Ey = 0) and TMy (My = 0), respectively. And If the

refractive index along the x-direction varies slowly in the area where the energy is

concentrated, these TEy and TMy modes can in turn be approximated by quasi-TE

modes and quasi-TM modes for which Ez and Hz are negligibly small, respectively.

Numerical Results of Ridge Waveguide Example

Modal analysis of a ridge waveguide as in Figure (4.12) with Scalar FEM is presented

in this section. Simulation is implemented of cross-section as in Figure (4.13) with

PRB condition applied. The parameters are listed in Table (4.8). The finite element

meshes are shown in Figure (4.14).
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Figure 4.7: Fundamental mode amplitude. Note that phase of the profile is -π

The guided mode profiles are shown in Figure (4.15). And the effective refractive

index compared to the papers in [2] is shown in Table (4.9).

4.5 Validation of Scalar FEM with PML and PRB

Boundary Condition

4.5.1 Examples

Applying PML to the boundary of the examples the of circular waveguide and ridge

waveguide in Chapter 4, we have the structure as Figure (4.17) and Figure(4.19).

And the results are shown in Table (4.10) and Table (4.11) below. The convergence
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Table 4.8: Parameters of the ridge waveguide in Figure (4.12)

Parameter Value Unit

w 2.4 µm
t 0.0,0.2,0.4 µm
h 1.0,0.8,0.6 µm
d 0.2 µm
nc 3.38
ns 3.17
na 1.0
λ0 1.55 µm

Note: Box size is length×width =
3.0µm*3.6µm, enclosed by PRB.

Table 4.9: Effective Refractive index for the fundamental quasi-TE mode

Scalar FEM Reference Values[2]

Mode Type 1200 nodes 2000 nodes SFEM VFEM

t = 0.0 µm 3.1949595,1333 3.1950611,1929 3.1965312 3.1945511
t = 0.2 µm 3.1990136,1254 3.1992126,2019 3.1995419 3.1983379
t = 0.4 µm 3.2029277,1314 3.2030688,1994 3.2024854 3.2021418

Note: For purpose of comparison of published results in [2], with normalized fre-

quency b =
n2
eff − n2

s

n2
c − n2

s

, we convert b in the paper to the neff shown in the table.

Please note that for quasi-TE (∂φ/∂n = 0) and quasi-TM (φ = 0).
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Figure 4.8: Convergence of effective index of the fundamental mode

of the imaginary part of neff is shown in Figure (4.18)

Figure (4.16) is the 3rd mode of ridge waveguide where we can see the difference

before and after applying PML BC.

4.5.2 Orthogonality

In many application of modes, for example the Mode Matching Method, the basic

preposition is always the completeness and orthogonality within modes, which makes

it important to validate the orthogonality between modes.

In General, the time average power for the m-th mode is [8]

1

4

∫∫
Ω

( ~Etn × ~H∗tn + ~E∗tn × ~Htn) · ẑds = Pn (4.28)
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Table 4.10: Effective Refractive index of LP modes of step-index circular
waveguide

Scalar FEM 1955 nodes

Mode Type PML+PRB PRB Analytical Values

LP01 2.2714369+8.26e-9i 2.2714368 2.271900
2nd 2.1896205+7.28e-5i 2.1886926

Note: RPML = 10−3, dPML = 0.4× 10−6

Table 4.11: Effective refractive index of the buried
waveguide

Simulated neff , 2172 nodes

Mode Type PML+PRB PRB

1st 3.434559+1.21e-7i 3.434041
2nd 3.283670+5.84e-6i 3.281872
3rd 3.283659+5.82e-6i 3.282036

Note: Rpml = 10−3

Table 4.12: Effective refractive index for the fundamental quasi-TE mode
in the ridge waveguide

SFEM 2000 nodes Reference Values[2]

Mode Type PRB+PML PRB SFEM

t = 0.0 µm 3.1949708+7.69e-5i 3.1950611 3.1965312
t = 0.2 µm 3.1983795+4.38e-4 3.1992126 3.1995419
t = 0.4 µm 3.2003960+4.62e-4i 3.2030688 3.2024854

Note: Rpml = 10−4. Others is the same with Table (??).

35



M.A.Sc. Thesis - TINGXIA LI McMaster - Electrical Engineering

Figure 4.9: Cross section of a buried waveguide

where Ω is the entire region, asterisk denotes complex conjugate and power carried

by each mode is normalized to 1 by the power Pn.

We could derive the mode orthogonality between n-th and m-th mode from Re-

ciprocal Theorem as (4.29)

< ~Etn, ~Htm >=
1

4

∫∫
Ω

( ~Etn × ~Htm + ~Etn × ~Htm) · ẑds = δmn (4.29)

which is denoted as General Orthogonality property which holds for media with loss

or gain.
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Figure 4.10: Cross section of a buried waveguide
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(a) 1st mode (b) 2nd mode

(c) 3rd mode

Figure 4.11: Guided mode amplitude of rectangular dielectric waveguide. Note that
phase of the profiles are -π in fundamental mode and either π or -π in 2nd and 3rd
modes
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Figure 4.12: Ridge waveguide

Figure 4.13: Cross section of a ridge waveguide with PRB
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Figure 4.14: Cross section of a ridge waveguide with PRB
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(a) t=0.0 µm (b) t=0.2 µm

(c) t=0.4 µm

Figure 4.15: Guided mode amplitude of ridge waveguide. Note that phase of the
profile is the same, π
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(a) 1st mode (b) 2nd mode

Figure 4.16: 3rd mode amplitude of ridge waveguide (t=0). Note that phase of the
profiles is either π or -π

Figure 4.17: Cross section of a circular waveguide with PML + PRB
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Figure 4.18: Convergence of the imaginary part of effective refractive index of the
fundamental mode for step-index circular waveguide

Figure 4.19: Cross section of a ridge waveguide with PML + PRB
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Chapter 5

Vectorial FEM

For strong guided problems, the scalar FEM is not that accurate. Thus, the vectorial

FEM is derived in this chapter. However, nodal-based FEM as shown in Figure (4.1)

is proved that nonphysical or spurious solutions, which are generally attributed to the

lack of enforcement of divergence condition [9], appear. So we introduce edge-based

FEM [10] [11] [12]. There are various types of edge-based meshes [10]. We will use

one as Figure (5.1) shows.

5.1 Nodal, edge-based Vectorial FEM and Spuri-

ous Modes

The full vector equation (2.11) and (2.12) are often discretized by the nodal vectorial

elements, which is vector-valued, continuous, piecewise linear basis fields, and thus

determined by degrees of freedom which are the nodal values of the field. However,

there are two drawbacks of this approach: the difficulty to set boundary conditions
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and the failure to converge. The former, a minor drawback, means that a normal has

to be defined at boundary nodes but there is no rational basis for such definition.

The latter is a major drawback witch the essential argument on which to base a

converge proof is lacking, thus the convergence cannot be guaranteed [9]. Thus the

nodal vectorial FEM is a non-consistent method.

A new edge-based vectorial FEM, which is consistent, became popular in the

90’s. It gives the right kind of continuity for H field and E field on the boundary.

And more important, edge-based elements are consistent. The convergence of this

numerical scheme is proposed in [9].

Also in [9], the question of spurious mode is raised. Spurious modes are the

wrong, divergent modes which could be solved together with the convergent modes

by conventional modes, such as nodal vectorial FEM. It is obviously not acceptable as

physical solutions. But yet it have ”polluted” the mode spectrum for years. However,

the tangential continuous edge-based FEM in this thesis would solve the problem.

5.2 Edge-based Finite Element Formula

5.2.1 Full Vectorial Mode Equation

The Functional for (2.7) is given by (5.1)

F =

∫∫
Ω

[(∇×Φ)∗ · ([p]∇×Φ)− k2
0[q]Φ∗ ·Φ]dxdy (5.1)
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where Ω is the waveguide cross section [11]. Consider anisotropic medium of (5.2)

[p] =


px 0 0

0 py 0

0 0 pz

 [q] =


qx 0 0

0 qy 0

0 0 qz

 (5.2)

where

px = py = pz = 1,

qx = εrx = n2
x

qy = εry = n2
y

qz = εrz = n2
z

(5.3)

for Φ = E, and

px = 1/εrx = 1/n2
x

py = 1/εry = 1/n2
y

pz = 1/εrz = 1/n2
z,

qx = qy = qz = 1

(5.4)

for Φ = H.

5.2.2 Discretization

Nodal methods will cause the appearance of spurious solutions. For full vector finite

scheme that we will use in this paper [11], three components on three edges of the

triangles will get involved shown as Figure (5.1).
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Figure 5.1: Edge triangular element

There are six nodes in this scheme which consist of three corner and three edge

nodes. The corner nodes are for the axial components of the propagation direction

φz, i.e. z direction, and the edge nodes are for the tangential components.

5.2.3 Shape functions

{φz}e is the nodal axial-field vector for each element and {N} is the ordinary shape

function vector for each triangular element linearly.

φz = jN(x, y)T{φz}e = jNT{φz}e (5.5)

where N = N(x, y) is the ordinary shape function for nodal element as shown in

Chapter 4 equation (4.7).

φt is the tangential component of the triangle, i.e. φt = Φ · t. The shape function

for edge element are U(y) and V (x) as
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φx = U(y)Tφte = UTφte (5.6)

φy = V (x)Tφte = V Tφte (5.7)

where

U =


ã1 + c̃1y

ã2 + c̃2y

ã3 + c̃3y

 (5.8)

V =


b̃1 − c̃1x

b̃2 − c̃2x

b̃3 − c̃3x

 (5.9)

with

ãk = [(ym+3cosθm+3 − xm+3sinθm+3)sinθl+3 − (yl+3cosθl+3 − xl+3sinθl+3)sinθm+3]/∆

b̃k = [(yl+3cosθl+3 − xl+3sinθl+3)cosθm+3 − (ym+3cosθm+3 − xm+3sinθm+3)cosθl+3]/∆

c̃k = (cosθl+3sinθm+3)− cosθm+3 − sinθl+3)]/∆ (5.10)

with

∆ =
3∑

k=1

(yk+3cosθl+3 − xk+3sinθk+3) · (cosθl+3sinθm+3) (5.11)

and

0 <= θk+3 = tan−1(yk − yl)/(xk − xl) < π (5.12)

where subscript n + 3, n = k, l,m means the midpoints of the nodes, i.e. point 4,5

and 6 in . And k, l,m goes modulo 3 arround the the edges. Thus the expansion of
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the transverse components φx, φy and the axial component φz in each element could

be concluded as equation (5.13)

Φ =


φx

φy

φz

 =


UTφte

V Tφte

jNTφte

 (5.13)

One of the two drawbacks of nodal vectorial FEM is the difficulty to set boundary

conditions because a boundary normal has to be defined. In this edge-based FEM,

however, since both φz and φt are tangential to material interfaces, the tangential

continuity can be straight forwardly imposed.

5.2.4 Finite Element Matrix

Substituting equation (5.13) into equation (5.1), equation (5.14) could be obtain

[K]Φ− k2
0[M ]Φ = 0 (5.14)

with

[K] =

 [Ktt] [Ktz]

Kzt [Kzz]

 (5.15)

[M ] =

 [Mtt] 0

0 [Mzz]

 (5.16)
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where

[Ktt] =
∑
e

∫∫
e

[pxβ
2V V T + pyβ

2UUT + 4pzUyU
T
y ]dxdy (5.17)

[Ktz] = [Ktz]
T =

∑
e

∫∫
e

[pxβV N
T
y + pyβUN

T
x ]dxdy (5.18)

[Kzz] =
∑
e

∫∫
e

[pxNyN
T
y + pyNxN

T
x ]dxdy (5.19)

[Mtt] =
∑
e

∫∫
e

[qxUU
T + qyV V

T ]dxdy (5.20)

[Mzz] =
∑
e

∫∫
e

qxNN
Tdxdy (5.21)

where Wδ = ∂W/∂δ,W = U, V,N, δ = x, y and the intergrals are as follows

[

∫∫
e

UUTdxdy]kl = Aeãkãl + Aeyc(ãkc̃l + c̃kãl)

+ Aec̃kc̃l(y
2
1 + y2

2 + y2
3 + 9y2

c )/12

(5.22)

[

∫∫
e

V V Tdxdy]kl = Aeb̃kb̃l − Aexc(b̃kc̃l + c̃kb̃l)

+ Aec̃kc̃l(x
2
1 + x2

2 + x2
3 + 9x2

c/12

(5.23)

[

∫∫
e

UyU
T
y dxdy]kl = [

∫∫
e

VxV
T
x dxdy]kl

= −[

∫∫
e

UyV
T
x dxdy]kl

= −[

∫∫
e

VxU
T
y dxdy]kl

= Aec̃kc̃l

(5.24)
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[

∫∫
e

UNT
x dxdy]kl = (ãk + c̃kyc)bl (5.25)

[

∫∫
e

V NT
y dxdy]kl = (b̃k − c̃kxc)cl (5.26)

[

∫∫
e

NNTdxdy]kl = Ae/12 + δijAe/12

δij = 0, i 6= j; δij = 1, i = j

(5.27)

[

∫∫
e

NxN
T
x dxdy]kl =

1

4Ae
bkbl (5.28)

[

∫∫
e

NyN
T
y dxdy]kl =

1

4Ae
ckcl (5.29)

with

xc = (x1 + x2 + x3)/3 (5.30)

yc = (y1 + y2 + y3)/3 (5.31)

where all the intergrals are 3 by 3 matrix with subscript kl indicating the (k,l) element

within the matrix.

5.3 Validation of Full Vectorial FEM with PRB

Boundary Condition

5.3.1 Examples

In order to evaluate the performance of the Full Vectorial FEM, the same examples

are used as in Scaler FEM Validation in Chapter 4. The modal analysis of a circular

waveguide, a rectangular dielectric waveguide and a ridge waveguide is presented and
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the effective refractive index are compared to both the scalar FEM and analytical

values or the reference values (ridge waveguide) as shown in Table (5.1), Table (5.5)

and Table (5.3).

Table 5.1: Effective Refractive index for the circular waveguide

Vectorial FEM, PRB

Mode Type 609 nodes 1022 nodes Analytical Values

HE11 2.268483 2.268515 2.268776
2nd 2.189032 2.194706
3rd 2.186837 2.195157

Note: H field is calculated.

Table 5.2: Effective refractive index of the fundamental quasi-TE
mode for the ridge waveguide

neff Reference Values[2]

Mode Type VFEM 1300 nodes VFEM

t = 0.0 µm 3.1948536 3.1945511
t = 0.2 µm 3.1988334 3.1983379
t = 0.4 µm 3.2027885 3.2021418

Note: For purpose of comparison of published results in [2], with nor-

malized frequency b =
n2
eff − n2

s

n2
c − n2

s

, we convert b in the paper to the neff

shown in the table. H field is calculated. PRB boundary condition.

5.3.2 Orthogonality

In order to validate further for this Vectorial FEM, the orthogonality of the guided,

box, and evanescent modes are shown in this section. As the definition in chapter 4
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(a) Within guided modes (b) All modes

Figure 5.2: Mode orthogonality of the buried waveguide

Equation (4.29), the orthogonality of the all modes, including guided and box modes,

are ensured in the Full Vectorial FEM as we could see from Figure (5.2). Please note

that ~Et and ~Ht are coupled to each other as Equation (2.13) and (2.14) shows. And

it is easy to find out from the results and the reference paper that calculating by E

field is not as accurate as H field. Thus in the following section, ~Et is calculated from

~Ht.

5.4 Validation of Full Vectorial FEM with PML

and PRB Boundary Condition

We use the same PML scheme as in Figure (4.17) and coordinate-stretching factor

in Formula (4.27). In this chapter, we are going to explore the complex mode rather

than just the accuracy of the method.
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5.4.1 Examples

Examples of a circular waveguide, ridge waveguide and buried waveguide are pre-

sented and characteristics explored in the following section.

Table (5.5) is the results of same structure of a circular waveguide in Figure (4.17).

Selected mode profiles, one guided mode and one leaky mode is shown in Figure (5.3).

Table (5.6) is the results of same structure of a ridge waveguide in Figure (4.19)

and Table (5.7) buried waveguide in Figure (4.9).

Table 5.3: Effective Refractive index of the step-index circular waveguide

Simulated neff , 1022 nodes

Mode Type VFEM PML VFEM PRB Analytical Values

HE11 2.268515-1.02e-8i 2.268515 2.268776
2nd 2.195264-8.61e-4i 2.194706
3rd 2.189565-2.55e-3i 2.195157

Note: H field is calculated. RPML = 10−3, dPML = 0.4× 10−6

5.4.2 Orthogonality

The orthogonality characteristics of a buried waveguide is shown in this section. Fig-

ure (5.4) is the inner production defined in Equation (4.29) between each modes.

5.5 Discussion

It is obvious that the performance of Vectorial FEM is much more better than Scalar

FEM. And the PML boundary condition increases the accuracy compared with PRB

boundary condition especially on higher order modes.
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(a) Hz, RPML = 1 (b) Hz, RPML = 10−3

(c) Hz, RPML = 1 (d) Hz, RPML = 10−3

Figure 5.3: (a)(b) fundamental mode (HE11) profiles (c)(d) 3rd mode profiles of the
circular waveguide
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Table 5.4: Effective refractive index of a ridge waveguide

Simulated (neff , 1300 nodes) Reference Values[2]

Mode Type VFEM PML VFEM PRB VFEM

t = 0.0 µm 3.1948112-1.53e-4i 3.1948536 3.1945511
2nd 3.1862457+3.75e-5i
3rd 3.1603734-2.92e-3i
4th 3.1542455-3.78e-3i
t = 0.2 µm 3.1987257-5.92e-4i 3.1988334 3.1983379
2nd 3.1908089-1.80e-5i
3rd 3.1798299-6.62e-3i
4th 3.1664520-2.12e-3i
5th 3.1535007-8.66e-3i
t = 0.4 µm 3.2010806-1.28e-3i 3.2027885 3.2021418
2nd 3.1931707-3.34e-4i
3rd 3.1864368-6.32e-3i
4th 3.1746380-4.44e-3i
5th 3.1513228-1.08e-3i

Note: For purpose of comparison of published results in [2], with normalized frequency

b =
n2
eff − n2

s

n2
c − n2

s

, we convert b in the paper to the neff shown in the table. H field is

calculated.
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Table 5.5: Effective refractive index of the buried waveg-
uide

Simulated neff , 899 nodes

Mode Type VFEM PML VFEM PRB

1st 3.4303519-7.12e-4i 3.4304140
2nd 3.4289856+4.30e-4i 3.4287722
3rd 3.2816529-8.80e-3i 3.2812465
4th 3.2809211+1.54e-3i 3.2804437
5th 3.2737933 +7.45e-3i 3.2701605
6th 3.2711433-2.13e-3i 3.2674448
7th 3.1523069-1.67e-2i
8th 3.1498120-1.86e-2i
9th 3.1345361-1.55e-2i

Note: H field is calculated. RPML = 10−3.

(a) Within guided modes (b) All modes

Figure 5.4: Complex mode orthogonality of the buried waveguide
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With PRB boundary condition, the orthogonality between each modes is obviously

good. However, in PML and PRB scheme, the orthogonality is good within guided

modes but has error on higher order modes. One of the reason might be that the

mesh size is not small enough. Compared with PRB BC, PML BC need a finer mesh

within the PML region because the equivalent effective index is relatively high in

PML region which means a high-contrast refractive index. Energy of higher modes is

constrained in the PML region (such as the PML modes). With the same mesh but

larger energy constrained, the error becomes larger.

So smaller grid and higher order algorithm are needed. However, as a frequency

domain technique, the memory required is very large, which limits a finer mesh. The

order of this algorithm is low because it assumes that the tangential component is

constant along the element edge. Higher order FEM can be obtained if we set the

tangential component changing linearly on a compromise of a larger dimension of the

eigen matrix by Koshiba’s method in [10].
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