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SCOPE AND CONTENTS:
' Dynamic (small) signal stability of multimachine
power systems is cénsidered. Efficient techniques’ for
modeling and anaiysing this <class of stability are
developed. - L
System dynamics are aﬁalysed using eigenvalue
methods. Eigenvalue sensitivity techniques ‘are developed
and employed for stability predictions. The relationships
between different mode dynamics and components in the system
are investigated. .
These computat_ional techniques aré applied to a

{ 1 ‘ .
number of practical problems - 1in. particular situations

- . . s
involving insufficient damping torques due to system

composite -loads and c¢ontrol interactions, subsynchronous

resonance and dynamic induction motor loads.
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ABSTRACT

This&thesis describes an efficient approach for
modeling and analysing small signal (dynamic) stability of’
balanced interconnefted power systems. Systems are modeled
into the state-space form where a partitioning technique is
used to systematically reduce system equations into that
form. Consequently, eigenvalue and eigenvalue sensitivity
methods are used for dynamic stability prediction.

The formulation technique allows the inclusion of
nonl inear and dynamic load representation and network and
shaft dynamics in addition to detailed generator, turbine-
governor and excitation system simulations currently being
used by industry. The partitioning approach eliminates the
need fo} storing large blocks 6f null elements. It also
preserves the identity of var ious sub-systems.
Consequéntly, this approach 1is particularly economical in
studies .involving system modification updating.

An a;gorithm is" developed to calculate eigenvaiue
second-~order sensitivitieé with respect to system control
and design parameters. The sensitivities are‘obfained in
terms of/the eigenvalues and eigenvectors of the base case
coefficient matrix. It is shown that the inclusion of the

second-order terms in an overall sensitivity package does

not add any computational complexity.
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Eigenvalue first and second-order sensitivities are

combined with an inverse iteration technique in an efficient

.

algorithm for tracking possible movement of any sensitive
subset of system eigenvalues due to parameter changes. The
method is applicable in situations where a relatively small
number of eigenvalues are critical in describing system
dynamic stability. The efficiency of this algorithm over
the repeated eigenvalue method is demonstrated.

These concepts and technigues are applied to a number
of practical problems currently receiving attention in the
power industry. In particular situations involving
insufficient damping torgue due to interacffon between
turbine-generator and neéwork dynamics, turbine-generator
and stabilization control, and the effect of statig

-

excitation and induction motor loads are analysed.

) The interactions between system composite 1loads and
excitation-stabilization control loops are examined 6n a
reasonably ‘general basis. It is sﬁown that 1load
characteristics have a considerable’ effect on system
stability. It 1is also shown that there are speciffE
situations where the choiée of the load model can make a
difference in stability prediction. In particular, at light
gengration levels tﬁe use of a power s&stem stabilizer witﬁ
a constant power lécal load leads to a .prediction of

instability while stability is predicted for a constant

inipedance load model.
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Chapter 1

INTRODUCTION

1.1 Dynamical Properties of Power Systems

Present day interconnected power systems are typical
examples of large scale complex multivariable systems. They
generally comprise a large number of dynamic¢ units {(synchro-
nous generators and dynamic loads such as synchronous and
induction motors). The generated electrical energy .is
transmitted ovér an interconnecting network which suﬁplies,
in turn, the denfinded power to load centres. The system
loads may be dynamic or static in nature. Much of the
complexity arises from the fact that in the analysis of any
one segment of the system the whole interconnected system
should be considered. *

The study of system dynamics around the steady-state,
and under trEnsient, conditions is of primary interest to
power system engineersi Dynamics of power systems covers a
wide spectrum of phenomena: electrical, electromechanical
and thermomechanical 1in nature [1}. The problems and
effects involved in power system dynamic studies have been
always associated with the phenoménon of power system

stability. This concerns the question of whether or not a

system remains in synchronism after a credible disturbance

1



[1]/4

e
\\/4 In recent years, due to the increase in system size

and the tendency to operate systems near their stability
limits, emphasis has been placed gn the design of additional
control loops for the synchronous machines. Conseguently,
it is of paramount importpnce to study the effect of
different system components and parameters on system
stability. Generally, it is. not only required to know
whether a system 1is stable or not; but it 1s also very
important to evaluate the system performance or the guality
of stability.

Dynamic problems in power s§stems have been

classified [1] under the major categories of:

(1) Electrical machine and system dynamics

(2) System 9overning and generation controls

(3) Prime-mover energy supply system dynamics and
controls.

Usually, the second class of dynamics last for many
minutes whereas the third class of dynamics last for several
seconds to a fgw minutes. Hence, for the analysis of system
dynamics inciuded in these two classes the network and
‘machine electrical transients can be neglected.

Thé first cléés of éynamics is the most involved in

¥
stability studies being performed by electrical utilities.

It is related to machine and.system dynamics, and hence the

2
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interaction between machines, excitation systems, turbine-
governors, and system loads should be considered. Usually,
the simulated dynamics in this class result in relatively
large eguivalent systems. This requires, in turn, efficient
modeling and analysis technigues. Furthermore, these
techniques should render simple ways of appropriate
interpretation of the results. Concurrent with these
requirements is the need fbr good understanding of the
fundamentals and the physics involved in system
interactions.

A variety of field tests in a number of util}ties

have recently demonstrated the importance of accurate
h ]

modeling of loads in system stabilit& studies [1])-[{4]. This
is becoming of particular importance with the trend towards
sophisticated representation of system coqtrols.

This thesis is mainly concerned with the aspects of
modeling and analysing the first class of dynamics. The
emphasis 1is on the establishment of an efficient
computational analysis approach. This approacﬁ is used to
develop the basic concepts related to the interaction

between system loads and excitation control.

-3



1.2 Transient and Dynamic Stability

Power system stability is usually divided into two
main categories. These are t?ansient and dynamic stability.
Dynamic stability 1is concerned with the behaviour of the
system following a "small perturbation” around a steady-
state operating condition. On the other hand, transient,
stability 1is concerned with the behaviour of the system
following a "major or large disturbance".

Major disturbances can arise as a result of a variety
of abnormal conditions such =as short ciécuit faults, the
outage of major generation: etc. In this case the
differential equations describing the dynamic performance of
the system are fundamentally nonlinear due m;inly to the
sinusoidal nature of the torque-load angle relationships.
Nonlinearities are also due to magnetic saturatfbn, control
limits, the sindsoidal transformétion~of teference frames,
and nonlinear load characteristics. The system behaviour
after a major disturbance is a function of the nature of the
fault and the system properties.

Until recently, utilities were only concerned with
the transient stability aspect and it was considered that. a
transiently stable system was sure to be dynamically stable
[5]. T?is is no longer the case for present day systems..

The use of ‘high response fast static exciters, while

improving transient stability properties, deteriorates

~ 4



dynamic stability by introducing negative’damping [6].
Another reason for an lincreasing tendency towards concern
for dynamic stability 1is the decreased strength of
transmission systems relative to the size of generating
stations [5].

In dynamic stability studies the nonlinear equations
describing system performance can be linearized around the
chosen operating point. This facilitates the use of linear
system tﬁeory and the application of modern control theory
concepts.

Throughout this thesis attention will ﬁe limited to
dynamic stability aspects since the 1nteractlon§\1nvolved in
the problems under investigation can be adequately studied
using the linearized aﬁalysis approach. However, it should
be noted that the inherePt approximations, and therefore the

H

limitations, in this analysis are taken into consideration.
It is also understood thét it is essential to complement the
linear analysis by performing transient stability studies
for the overall evaluation of power system stability. The
subject of transienFystability analysis is outside the scope
of this thesis. A.number of excellent references on the

subject are [7]~-[12].

1.3 Dynamic Stability: Operation and Design Studies

Small signal stability studies are very important in



the operation of interconnected power systems. This kind of

analysis can predict different instability modes 1in the

system. One example is monotonic instability caused
Fe
primarily by & lack of synchronizing torgque. This is a

si1tuation typical of a machine working at, or above, the
dynamic stability 1limit (6], [fl13}. Other instability
problems might arise due to a 1lack of damping of the
synchronous machine torgue-load angle 1loop [5]), [6] or of
the mechanical shaft modes (14}, [15].

The use of different types of excitation -systems and
stabilizing signals has made it essential to stuéy the
effect of different parameters and components in the system
on the damping o¢of different system modes [1l6]. The effect
of voltage regulatof‘characteristics on dynamic stability
has 1long been studied [17]. The effect of excitation
systems on the dynamic stability 1limit has also been
analysed ([18]. Recently, the effect of static exciters on
dynamic¢c stability has been explored and the philosophy of
_power system stabilizer ‘design has been establféhed {6].
The general concepts in (6] have been extended in [19], to
include the effect of another commonly used type of exciter
under different operating conditions, and in [20] where a
two-machine situation has been coﬁsidered. Practical
experiencé in the area of skatic excitation and deer:system

\ ]
stabilizers has been pioneered by implem%ntatioh in the

-
-
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Ontario Hydro system (18], (21}, {[22}.

The subject of subsynchronous resonénc; is of eurrent
interest. This phenomenon can result in negative damping
and hence instability of the mechanical shaft modes. Shaft
damage due to this effect has been recorded in a series
compensated system [l4]. Shaft instability can also occur
due to the use of a speed sensitive power system stabilizer
[15]. A general discussion on series capacitor compensation
is in {23] and a number of analysis‘papers on the phenomenon
of subsynchronous resonance and related problems have
recently appeared [24]—[32i.

T;e modeling and “éffect of load characteristics is
one of the most important aspects currently being studied
[4}. The importanée of load effects on system stability has
long been recognized ([33]. Recently, the IEEE_ Computer
‘Analysis Power Systems Working Group (CAPS) documented the
need for improved load representation in stability analysis
programs ([2].. There are two different aspects related to
the 1load problem. OCne - is the development of realistic
models that can represent the actual behaviour of loads.
The' second 1is the analysis of 1load effécés on system
stability through the investigation of the interaction with
other system componenté.

Two different approaches have been followed in the

development of -lcad models. The first examines the system

AN



data to determine the most approprlate model to use "in
subsequent studies (2], {3}, [341ff The second constructs
the load model by analysing and combining the ‘simulateg
characte;istics of each individual component in a composite
load [35]-[38].

System loads can be represented as either static or
dynamic elements according to their inherent characteris-
tics. While static representatidn of loads as nonlinear
functions #of load bus voltage has been recommended .in
references [2]), [3], and [35], dynamic repregentations have
been emphasized in some specific situations }2}, [34].
Dynamic modeling 1is neceéé@ry in the case of 1large
industrial 1loads including large induction and synchronous
motors. These motq&; can have significant inertial‘time
constants as compared to the system generation. The subject
of induction motor representation in stability studies has
been treated in [39], [40]. More recently, the eguivalence
of induction motor groups has been studied ([41], [42].* A
recent state gm' the art paper has been presented by
Concordia [4].

Nonlinear statid'load models have been used %n
different wayé to assess the effect of load characteristics
on transient and- dynamic stability [11], [43}, [44]:

Induction motor load effects on system stability- have .also

been analysed [45]-[47]. ) S

o
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It was mentioned in Section 1.2 that the damping of
different modes related to system dynamical response can be
destroyed as a result of system component interaction.
Conséquently, different stabilization schemes have been
proposed in ‘order to maintain satisfactory dynamic
ngration. Each stabilization loop design is dependent on
the aspect of stability intended to be improved. Generally,
it is of great importapce to investigate the possibility of
any coﬁflicting effects on other aspects of stability. For
example, the use of static exciters is beneficial in
improving transient séability“properties. However, they can
destroy inherent machine damping and hence cause dynamic
instability [6]. On.the other side the incorporation of a
po&er system stabilizer designed to improve dynamic
stability properties can provide adverse éffects on
~tran'sient stability properties ([48]. The possibility of
. exciting shaft instability modes due to the use of a power
system stabilizer with a thermal unit is also known [1l3].

The design of a power system stabilizer for dynamic
stability improvemeht has been achieved using a variety of
methods. Among these methods, the damping and synchronizing
torque eoncegts have Beén used most successfully [6], [15],
[2i]. fThe successful use pf the roét locus techniqug has
also been reported. 149]. Pract{cal considerétionﬁ for power

system stabilizing signals have been documented in [21].

o
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Optimal control theory has been applied in a variety
of ways to improve dynamic stability [50]1-[53]. Design
procedureé of suboptimal controllers, using low-order system
models, have also been considered ([54]-[57]). These control
theory technigques have generally considered single machine -
infinite bus problems though multimachine examples have also

been studied [58].

1.4 Dynamic Stability Evaluation

The differential and algebraic equations describing
the performance of a power system are basically nonlinear.
System performance can be described by a set of first-order

differential equations [59], [60]

I

¥ = £(x) + g

(1.1)
Y = b(x) + k(u)

. Lz
where x, u, and y are vectors of state, input, and algebraic

variables of orde} ;, m and r respectively and f, g E and 5
are vector functions [61].

When dealing .with small disturbance stability of a
system, equation (l1.1) can be expressed in terms of
ﬁeviations from the equilibrium point. If tﬁg,disturbénce
is small enough, Second~order and highérforder terms are
negligible in a Taylor "series expansion. The equations

therefore take on the linear form:

"10
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ax = [A] ax + [B] au
(1.2)
aY = [€C) ax + [D) pu
[A], [B}, [IC}) and |[DP) are real constant matrices with

appropriate dimensions. The entries of these matrices fre
functions of all the system parameters as well as the
steady-state operating conditions. The st;te—space form,
equation (1.2), is convenient for the application of modern
control theory concepts [62], [63].

After the system equations are formulated in the
state-space form, system stability can be analysed using
different approaches. The most straightforward method is
the direct integration of the system differential equations.
However, numerical integration is not an efficient tool to
determine system dynamic stability. An alte;natfbe and
economical approach is to apply modern control theory
technigues. .

Thus, evaluation of the dynamic stability of a power
system involves two related aspects: First is the use of a
formulation which reduces the system equations into
state-space form. Second is the use of an appropriate
analysis technique to assess system stability.

It should be noted, at this stage, that modeling, and
formulatioﬁ and analysis techniques are highly dependent

upon the problem under invesfigation. This has been
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strongly emphasized in [1] and the relation between modeling
precision and the various aspects of stability being studied

has been aiscussed in the literature [13], [64].

l1.4.1 Formulation Approaches

The application of modern control theory technigues
to the analysis of power system dynamics requires the
manipulation of system equations into state-space form. For
small problems such as a single machine connected to an
infinite bus, the number of differential and algebraic

~

equations describing the system performance is relatively
small. The reduction of these equations into state-space
form is rather simple and can be performed by hand.
However, for interconnected systems the situation 1is
different and it is of primary importance to use a
systematic reduction technigue.

The formulation of a state-space model for multi-
machine systems has‘bee? a subject of interest since the
ear1§ work of Enns et al [65] and Laughton [66].

-Enns et al suggested a systematic \formulation
techniqué. The system linearized differential aﬁd algebraic
equations are arranged in the following form:

X . '

iP] =[Ql x+ [Rlu = . (1.3)

12
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where the state, algebraic, and inpu; vectors X, ¥ and glare
considered now as the vectors of perturbatiéns from the
steady—s&ate eguilibrium point and are of the same
dimensions as tﬁose of egquation (1.2). (P, [Q), and [R]
are real constaht matrices of compatible dimensions with X,
Yy and u. These matrices are functions of the system
structure and the steady-state operating conditions.
Equation (1.3) is then premultiplied by the inverse of the
[P] matrix. Conseqyently, the‘state—space form is obtained
by appropriate partitioning.

The approach by Enns et al has been extended in later
work [60], [67] where the method was termed by Anderson the
PQR method. Nolan et al have used the PQR method with a-
sensitivity analysis technique ([68] and then modified the
method to allow the inclusion of network and shaft dynamics
[69]. ‘

Alternatively, Laughton [66] recommended, a matrix
build up technigue to ‘formulate the system coefficient
matrix [A] from the subsystem models.

This approach‘has been extended by Undrill [70] with
emphasis on the efficiency that results by avoiding large
blocks - of null elements. The proposed method in Chapter 2
combines the organizational simplicity of the PQR‘ technigque
with the efficiency of submatrix build up.

-

In all the above formulation techniques, the state
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grouping approach is an important feature of each’method.

The two possibilitieé are [61]):

(1) Type grouping, i.e., all states associated with the
same process iq,each machine are grouped together,
e.g., the grouping of rotor angles of all machines,
rotor speeds of all machines, etc. N

(2) Generator grouping, i.e., all states associated with

a particular dynamic unit are grouped together.

The first approach has been adopted in [S5], [66],
[70], [71] whereas the second appoach has been used in [61],
(e7)}, [72)], [73}]. The second scheme is simp}er than the
first, especially for the general case with different
degrees of generator modeling, and also for system/updating.
The generator grouping approach has been uséd by the author
in’ [72], [73] with a specific ordering technique for system
variables. This technique results in a considerable saving
of computation time and improved flexibility for subsegquent
stability analysisy

‘The advantages of this method over others, in
s£ability studies of interest, are demonstrated in Chapter
2. h

The procgdures ad;pted for formulating the linearized
state—%pace equation of a power system in these methods are

basically similar. They begin with the nonlinear

differential and algebraic equations of each subsystem

a ..
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model, linearize the eguations about an operating condition,
then formulate the overall system equation. The steady-
state equilibrium condition of the overall system 1is usually
obtained using a loaq fiow routine [74].

Recéntly, an‘appkbach has been recommended (75] to
construct the state matrix equation of the linearized system
from a nonlinear time simulation program which models the
system. This approach 1is specifically useful if it is
desired to examine both system transient and dynamic
stability under several operating conditions. However, it
suffers from computa;ifnal difficulties in the analysis of
system dynamic stabii%iy under different parameter settings.

The simulation of an integrated power system and the
subsequent analysis of its behaviour requires a fuﬁdamental
underslanding of each 1individual subsystem model and its
dynamic characteristics. Fortunately, edgh of these
subsystems has been in itself a subject of extensive study.
The modéls describing the subsystems considered 1in this
thesis are briefiy reviewed in Appendix A. . The modeling
concepts and dynamic properties have been déscribed in

detail in the following references:

(1) Synchronous Machines [8], [60], [76]1-(80]
ﬂﬁ - "

(2) Excitation Systems [81]-([83]

(3) Turbine~Governors, Boilers {[84]-[891]

(4) Mechanical Shaft Systems (23], [26], [90], [91]
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(5) Transmission Networks {92]-[94]

(6) Induction Motors [39]), [40].

1.4.2 Analysis Techniques

As was mentioned earlier, the numerical integration
of the system differential egquations is a straightforwagd
method for determining stability. This method 1is very
effective 1in studying the transient stability of power
systems since it easily admits the inclusion of the effect
of nonlinearities inherent in the system behaviour. More
importantly, it is flexible enough to &accommodate system
changes during transients such as circuit breaker and under-
voltage relay operation, etc. However, for dynamic
stability evaluation it 1is not economical ¢tgo perform-
numerical integration. Since this thesis is concerned with
dynamic stability, the subject of numerical integration 1is
considered to be outsidé our scope. A number of excellent
references on the subject are (8], [10], [95]}-[97].

Alternatively, many of the 1linear control theory
techniques have been successfully applied to analyse power
system dynamics. These include Routh-Hurwitz {[17], Nyquist
[98]-[100]), and root 1locus (49}, [101}. The concepts of
damping and synchronizing torgues, based on a frequency
response_ technique, have been applied in the analysis of

synchronodg machines [102]-[104] and the study of excitation .




systems and load parameter effects [6]), [19], [44}, These
concepts have also been used to design power system
stabilizing signals [15], ([21}. Although damping and
synchronizing torque techniques are valuable in building up
the basic concepts related to system parameter and.component
effects, they are restricted to the analysis of small
systems. An example is a single machine connected to an
infinite bus.

Among all these methods, eiéiﬁyalue technigues have
received widespread application in fhe analysis of power
system dynamics ([105]-(107]. The methods of finding the
eigenvalues of a linear system are well established in the
literature (108}, [109), and are in use in most computer
centres {110]. Methods for calculating eigenvectors -or
mode-shapes are also available [(108], [1l11].

The efficiency of eiéenvalue analysis techniques has
further been ‘enhanced by the application of eigenvalue
sensitivities (with respect to variable paraﬁeters) [69],
[72}, 1[112}, ({113]. First-order eigenvalue sgnsitivity
expressions have been derived by a number of different
methods (108], ([114], [115]. _ The application of these
expressions concerned a variety of problems. Eigenvalue
sensitivity analysis has been applied in numerical analysis
(108, [114], perturbatison theory [108] and in 1inéar

systems theory [}12]}, [I115]. The advantages of using first-
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order sensitivities have been complemented by the develop-
ment and application of second-order sensitivities to
different studies of power system dynamics [116]-[118].

In dynamic stability studies, it is of interest to
idGéstigate the effect of different parameter settings on
dynamic/st ility. Usually, under certain parameter changes
only a small subseteof the whole eigenvalue pattern would be
sensitive and exibit considerable movement due to parameter
variation. This situation has been considered in a recent
publication [119} which summarizes a technique to track the
movement of only this small sensitive subset. In some other
cases, it might be of interest to study the stability® of a
small subsystem including the effect of the whole system
ifiteractions. This situation has been recently considered
in [120]) where a diakoptic approach has been recommended.

.Eigenvalue and eigenvalue sensitivity techniques have
also been used in design procedures for synchronods machine

controllers {121], ([122].

1.5 Objectives of This Thesis

The main effort in.thié thesis is directed toward the
establishment of an efficient computational approach to
evaluate tﬂ%.dynamic stability of an interconnected power
system. This approach is divided into two; specific

sections. First is the developmént of a technigue to

-
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manipulate the system linearized equations 1nto the
state-space form. The formulation allows ease of updating
system parameters 1In subsequent stability studies. Second
1s the development of an eilgenvalue tracking technique 1n
which only a critical subset of eigenvalues 1s tracked over
a practical range of parameter variation.

Thi1s computational approach 1is applied to the
analysis of a variety of practical problems in dynamic
stability., One important condern currently receiving a good
deal of ggtention is the analysis of load effects on system
stabili?yﬁ Instead of applying the eigenvalue tracking
approac? directly to study 1load effects for specific
systemg, an attempt is made to analyse interactions between

em loads and the excitation-stabilization subsystem on a
reasonably general basis. In order to reach quite general
conclusions regarding these 1interactions, the simple
concepts of damping and synchronizing torques are followed.
However, the validity of using this simple approach 1is
justified by applying the eigenvalue tracking approach té
specific situations where load effects are expected to be
critical in system 'stability predictions.

The objectives of - this thesis can be stated as

follows:
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1.5.1 Theoretical Development

(1) To develop an efficient state-space formulation for a
power system comprising an arbitrary number of
generating units. The formulation is to be flexible
in order to accommodate the modeling aspects of
machine controllers, network transients, and 1load
effects.

(2) To develop new appropriate ‘expressions for second-
order eigenvalue sensitivities with respect to system
parameters. h

(3) To use the techniques developed in (1) and (2) 1in an
efficient algorithm for the purpose of evaluating the
dynamic stability of interconnected power systems.
This algorithm is to be appropriately designed to
compute a critical system eigenvalue/eigenvector
subset over a wide range of parameter settings. The
proposed algo;ithm is particularly useful at ghe
system planning stage where it 1is the practice to
analyse the effect of different control and design

parameter settings on system stability.

1.5.2 Application

To apply the above technigques to dynamic stability
studies of practical systems. Special attention will be

devoted to developing the basic concepts associated with the
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interaction of composite loads with differegt
characteristics and machine static excitation and
stabilization control. This phenomenon *will be illustrated
by considering small perturbations around a wide range of
operating conditions. Other studies include subsynchronous
résonance instabilities and the effect of different
components and parameters on these instabilities. Also the
stability of modes corresponding to the torque-angle

performance in a multimachine system are studied.

1.6 Thesis Stgucture

In Chapter 2 the formulation of the linearized
state-space model for a multimachine system is outlined.
The éevelopment and use of first and second-order eigenvalue
sensitivities are considered in Chapter 3. The overall
approach of tracking sensitive eigenvalues of a system with
varying parameters is constructed in Chapter 4. Chapter 5
is devoted to the analysis of possible interactions between
system composite loads and synchronous machine excitation-
stabilization control. /7

The formulation and analysis technigues developed in
Chapters 2-4 and the concepts regarding load effects
developed in Chapter 5 are gapplied to three specific studies
in Chapter 6. The first concerns the instability of a

lightly loaded hydro-unit supplying a composite local load.
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The second examines the effect of dJdifferent system
parameters and components on subsynchronous resonance modes.
The third study illustrates the use of the overall tracking
approach in the evaluation of multimachine dynamic
stability. In Chapter 7 the main conclusions of the thesis
are summarized and the specific contributions of the

research and suggestions for future work are outlined.
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Chapter 2

STATE-SPACE FORMULATION OF INTEGRATED POWER SYSTEMS

2.1 : Iniroduction

This Chapter presents the development of .an efficient
technique to formulété a small signal multimachine model in
the normal state-space form. "Once the'equations are
obtained in this form, the eigenvalues of the system
coefficient matrix can be calculated and examined to obtain
information on the -system dyﬁamic performance. The
) state—spaqs form is also convenient for most control studies
where modern cont;ol theory can be applied.

‘Methods for formulating multimachine dynamlc models
from‘the system dlfferentlal and algebraic equatlons have
been proposed by Enns et g; [651 and Laughton [66]. These
in‘ turn have been extended Sy Anderson [67] and Undrill
[70}. The approach ptoposed in [65] ané f671"has tended to
concentrate on a systematlc formulation :of the ofiginal
d1fferent1a1 amd algebralc equations for the system 1n the
PQR form, equat;on;(l.i).. On the othernhand, the procedure
.recommended in‘[66] and’' [70] is a-téchnique for building up
the system coeffmc1ent matrix from submatrLces representing
system segments and thus avpldlng 1arge blocks of. null

elemegts. The formulatlon descrlbed in this chapter

o ’
o
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combines the organizational simplicity of the PQR technique
with the efficiency of submatrix build up while retainfng
the identity between submatrices and system components.
This allows greater flexibility and convenience in varying
parameters and system structure in control studies.

In all of these methods for formulating a dynamic;
multimachine model, system loads have been modeled as 
constant impedance elements, which is not true in many
practical situations. Also network dynamics have been
neglected to avoid very high order systems. " Reference {[69]
describes a -procedure Es'include‘the effect of network and
shaft dynamics in subsynéhronous‘tesonénce studiés. This
procedure follows the approach of Enns et al [65] in
bu%lding up the system coefficient matrix. The férmulation
‘presented here, while presérving efficiency isb flexible
enougﬂ to include network‘dynamics in systems with medium
length tie lines. Furthermore,,the piocedure éan be adapééd
ko ‘include the effects of dynamic and 'nonlinear séatic

loads.

In Section 2.2 the system equations are given and the

-

vector grouping énd ordering technigue is'descfibéd. The
state—-space coeffLC1ent éggrlces are derived 1n Section 2. 3.

L The practical advantages of u51ng this techn1que over
.others 1n‘ dynamlc stablllty analy51s of 1ntegrated power

systems 1s presented in Sectlon 2 4..
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Section 2.5 documents the procedure of including tige
network dynamics whereas in Section 2.6 the incorporation of
loads with different characteristics in the overall
formulation is described. \

The important' aspects in the overall approach of

—
formulating a multimachine dynamic model are summarized in

Section/ﬂ.?. ‘g?

2.2 Formulation

In. dynamic (small signal) stability studies of power
systems, 1t 1is wuseful to manipulate the 1linearized
differential and algebraic equation sets describing the

‘performance of the system into the state-space form:

o, v

]

[Alx + [Blu
(2.1)

-

y = [Clx + [Dlu

[
In general, it is difficult to write the equa%ions directly
in the above form. Alternatively, they can be written in a
straightforward manner as in equétiqn:(l.B) as:

X

[(P1{ .|= [Q] x + (R}

{1

(2.2)

b4

If the [P] matrix is arbitrarily constructed then
equation (2.1) can be obtained by a standard matrix

inversion routine. On a large system the inversion .time is
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relatively long and has to be performed every time a
parameter setting is changed. The formulation developed in
this thesis is based on the ordering of the state, algebraic
and output variables of each individual machine in such a
way as to set up the [P] matfix in guasi block diagonal form
to avoid the inversion of a large matrix. This enhances the.
computational efficiency of the inversion time initially and
for most parameters eliminates the need for any further
inversi¢én of the [P] matrix in the eigenvalue analysis.

An interconnected power system is usually constructed

with " three major components; -these are:

Synchronous generators; each unit is usually equipped
with two main controllers, the exciter and governor
control.‘ | .
2. Théeefphase transmission network; this is represented

by a linear, multiport, lumped-parameter electrical
network. . : -
3. Electrical loads; these may be dynamic or static.

The majbrity of the dynamic loads are synchronous or:
asynchronous motors. Static loads may be considered

as linear or nonlineaf components depending on their

’
4

inherent characteristics.
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Figure (2.1) shows a simplified diagram of the basic

system considered.
v

2.2.1 1Individual Generating Unit Model

A general model based on Park's equations for each
single synchronous machine is adequately documented in the
literature and has been ﬁormulétmﬂ in many recent papers
{601, [76] - [80]. The excitation and governor schemes are
described in two IEEE committee reports [8l1], [85]. 1In the
formulation of the overall system model, each subsystem
model 1is taken directly from the appropriate references.
These models with their state-space representation are-
documented in Appendik A,

The‘equations 6f a model based on linear gggzoxima—
tion around an appropriate operating condition are, for the

ith unit, written aszy

a%; T “o[R] 8lai T ”o[L] AVmi
(2.3)
” Aui
= w [IF] ay; + [IC] |
' , 8€£ai].
3

where: ey
vi : vecﬁor of total’ fluxes of the stator and rotor

circuits of‘the ith machine )
- R
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Dynamic units (synchronouis generators
and dynamic loads)

Three-phase linear
nmultiport network

s L T LT \U/
\L \J “

Static nonlinear loads

' Figure 2.1 , Interconnected Power System Structure

1 i

Figute ' 2.2 - Machine (diigi) and. Géneralized Reference
‘ . (D.Q) Frames
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"

mi vector of currents in the stator and rotor
circuits of the ith machine

Vmi = vector of terminal voltage co s referred
to the ith machine reference frame -

@ g 2 rotor angular speed of the itD machine (elec.
rad./sec)

€fdi E field vbltage of the ith machine

W = the synchronous angular speed (elec. rad/sec.)

[R]

resistances.

diagonal matrix of stator and rotor

circuit

(L], [IF], [(IC] matrices of compatible order containing

values of steady-state variables.

1

The structure of the matrices in equation (2.3) are given in

Appendix A.

Ihre state-~space form of the governor and excitation
A

controls, as in Appendix A, for the ith ‘machine ‘can be

s

written as:

¥gi ~ [CNI dwy = [0g5] g3 + [Bgy) Ugy
Xo; - [TV av, = [0 ;] X ; + [B ;] u_,

Teil by ~ei
The algebrajic’ and output'eqﬁations are:
avy = [X;] adp,

avey = IVC aypy

o>
'
|

‘ 01 = [CT] avpy + [VI] aiy;
Q -
g

(2.4)

(2.5) -

(2.6)
(2.7)

(2.8)
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ATei = [CI1] Ayi + [S1] A}Ml (2.9)

The coefficient matrices in equations (2.4) to (2.9)
are given as explicit functions of the initial conditions
Y

and system parameters in Appendix A. The notation of system

variables is also given.

2..2.2 Formulation of Network Equations

The equations of each 1individual machine, as

described in Appendix A, are expressed with reference to two

-

. - {
perpendicular axis (d,g) which rotate in synchronism with

the machine rotor. In order to establish the relationship
between the internal 5§%ntities of the different machines in
the system, a reference frame (D,Q) which rotates, at the
ahgular frequency of the stéady' state network currgnt is
considered. The relationship between internal machine
reference frames (d;, q4) and the general network reference

frame (D,Q), at steady state, is illustrated in Figure

(2.2).

Thus, one can refer 1ndlv1dua?\mach1ne quantities to.

‘the deneral reference frame as:
Vai cos 6i sin 83 Vpi
= ’ T . : - {2.10)

. -sin §. cOS §. ' S
Vagi 63 3 Qi

or symbolically as:
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v =

~mi

(T33) Yni

A

Considering all the units connected to the network
0 ]

vy (2.11)

or simply

.t

For small perturbations in the system, egquation

(2.11) can be linearized around the operating condition.

This yields:

i i
vql 0 :.o 0
: i }

"le 0 . e 0 Asl
ave = [Ti, ayy =] O Vg2 8685
. —YGZ 88,

. . 0 .o vqn

0 )] “Van

The network is assumed to be completely described by

the nodal admittance matrix equation [92]:

I.= [Y] vy (2.13)
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For the present approach, all the linear static loads
are incorporated in the [Y] matrix as constant admittances.
This is achieved by eiiminating all the nongenerator buses
that supply only linear static loads. The construction of
the [Y] matrix from the bus admittance matrix, which Iis
usuvally formulated in load flow studies, is developed in
Appendix B.

Laf us consider for the time being that system loads
can be represented by constant impedances, i.e., they are
static and .linear. - Loads\ with different characteristics
will be considered in Section 2.6. Under this assumption
thé (Y] matrix is complex and of an order equal to the
number of the system generator buses n. It is necessary in
this formulation to separate the n complex equations (2.13)

into 2n real equations as proposed by Taylor [92]. Hence we

obtain: ./

A L
in1 931 “P11 +++ J1n  Piun| | VD2
l1gal | P11 911 Pin . 9m| | Yaa
LS Bl B : 3 : : (2.14)
ipn 9an  Pan Vbn
‘iQn‘ ] bnn gnn‘ i ?an -
]

. Equation (2.14) can‘'be written symbolically as:

. »
iy = [G) vy C

The power invariance theorem of Krén [93] requires that:

N
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iN f (T) iM - (2.15)

where [T]t is the transpose of the matrix ([T]. It can also

be proved that:

(tr1t17t = [t1, ana (T}t = T°1 (2.16)
therefore
) iy = [T] (G) vy (2.17)
or

[(T1® iy = 1G] vy - (2.18)

Equation (2.18) can be .linearized for small perturbations,

considering a constant nodal admittance matrix, as:

- 9 r -

101 .0 .o 05 _A61
) - -iDl 0 - o0 ,0 X A62 .
(Tt iy - [G] syy =| © 152 0 : {2.19)
0 =ip, 0 AGn
. —iQn . . ) 7
e. iDn ’
- Jt J

-

2.2.3 Inclusien of an Infinite Bus
o

+

L

An infinite bus is considered to have constant
voltage and freqaenci; hence, #£ the system‘hgs an infinite

- bus, eguafion (2.14) is re-formulated in the form:

S

~ N B
B . - »

) Nt . YNI} . o Y.
‘.{'...‘.. = rG] :‘-7—_-— ‘ . Ty . . i (2- 20)
N N 1



Also the infinite bus transformation matrix is

1 0
[TI] = (2.21)
0 1
Noting that:
bvngr = 0 (2.22)
and if aiy; is the change in the infinite bus current,
equation (2.20) can be perturbed to obtain:
0 0 ... 0 |
r~ "
0 0 ... Q a8y
] . . ‘
[Ty) 0 g o1 o1 0 as,
I .
YT AT I i K 'p1 0 :
0 ! [T]o al G . : AS
! 0 i L nd
Qn
I 0 _an_
(2.23)
If the system does not include an infinite bus,
equation (2.19) replaces equation (2.23) and the time

invariant reference for the rotor angles is lost.

This can

be accounted for by allowing a synchronously rotating
reference frame that will contribute a zero eigenvalue for

the [A] matrix. Undrill [70} used an alternative approach

whereby one angle, and hence state, is eliminated by using

ohe machine rotor as a rotating reference frame. Useful
comments on the latter approach have beerymade in reference
[61). It is important to notice .that th appiicability of

the proposéd formulation is not affected in either-case.
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2.2.4 Ordering of the System Vectors

" The state variable vector fgr each individuai-machine
can be easily constructed f;bm the perturbed values of the
internal flux 1linkages, relative rotor position and speed,
governor and exciter state variables. The state variable

vector for the itP generating unit is:

= t t t t
.}fl [Agil AGir Amiv i(gi( .}.{Ei] (2.24)

The state variable vector of the whole system 1is then
constructed from all of the individual vectors of each
machiﬁg as:

f = [xg, ftz:' e v oy x: t ’(21 25)

-~ ~

The algebraic and output vectors are caonstructed from

the algebréic and output variables of each individual

.

machine as;: -

) . o .t o t t
Y = allme Ippr coor Ipne Ymie Ym2r cocr Yamnt Verr Vezr -
. . . t,t
.o oy th, Tel' Te2' ..‘-\’ Ten, e« o o7 lDI' lQI, .YNI

. ‘The input veqtoé, u, can_bé constructed simply from

the input vectors of each machine as:

~

. ‘\ f u = _[EE' U%, co‘og ﬁg]t . (2. 27)
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2.3 State-Space Formulation
The (P], [Q] and [R] matrices of equation (2.2) can
now be simply constructed. The ([P] matrix is partitioned

as:

— emm — o — —

(2.28)

where ns and nv are the number| of state and algebraig
variables respectively. [I] is an identity matrix, [0] a
null matrix, and {AQO} is very Spar;e. The matrix [GXS] is
of particuiér_ihterést since it has to be igverted. A Ewo
machine structure examble is given in Figure (2.3). It is

itself partitioned as:

X

{1 ©

[GXS] = |-

~ - ' (2.29)
VP S z T . ]

9]

!
|
l—
|
i

-~

Both the [X] and [GS] matrices are further.partitioned,to

reduce the inversion computation.time as followss

[ %! o] R S
Xl [P ! |
' —— = 0 . I 0 0, -T
x 3 lx . . , Lt adi e enditen B otk i e B i B
[]' L 2_J' and [GS] = vc{\ I: 0 : 0
T a S e a0 (2030)
. ololxl -ex ,
\‘___ ‘-—-_—r ~~~~~~
o I'xp, 070 01X |
: . T T

- Thus,, only a fiactionebf‘the [P] matrix has_ in fact’

-

to be inverted. .The TXij,ar? the :eéctanee'hatrices, one_'

per chhine,’épd‘{Gj is the real network admittance matrix.

I . n ~ s \
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Performing the inversion by partitioning we obtain:

}
(x1-1 , h 0 .
[gxs]-l =|————— ——~——— i (2.31) "
~[Gs] [vp] [x]-1 [GS] '
where
1 lolol m et
Gs1-1 = | -tvell {0 | (vel [Tl (-61-1
N i (2.32)
0 1 0 | I | [GI] [~G}
0 - : 0 } 0 : [-G]-1
and hence ' _ i
]
1 ! -[po) (exs)-1
-1 S S e S . .
S A e ‘ L(2'33)

The [Q] and [R] matrices are partitioned as:

-

QA | ns " RB Ins
Q] = [——  [R] = |7—= , (2.34)
QC | nv | RD nv . N ’

and the coefficient matrices of equation (2.1) are then

obtained as:

(A) = [QA] - [aO] [C]
{B] = [RB] . ,
) (2.35) .
fc] = [exs]-1 [qQc] :
(b} = [G_XS]‘{l [RD]
2.4 Use of The Formulation in Dynamlc Stability Studles

The use of thls techm.que results in a linearized

. State varlable model for a. multlmachine pcwer system in h

ﬁbigh each generator can be s;mulated> to any deg:ee of

-
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complexity desired. Consequently, one may represent a

certain segment of a power system explicitly while

represénting another in much less detail. Undrill [70]
recommended a pr&Eedure for computihg a multimachine model
which represented each generator with the same degree of
complexity and required a matrix invers&on of order l1lln. On
the other hand, the formulation recommended by Anderson et
al [67} requires the inversion of n matrices of order 15 to
produce the same model. The procedure developed here
requires only the inversion of n machine reactance matrices,
of order 5 or less, and the real network matrix, [G]: of
order 2n. The -inversion of this last matrix is not required
if.the network impedance matrix is developed instead of the
admittance matrix. This reductién in computation gives
significant savings in computer time for a moderately large

power. system,. since the matrix inversion accounts for a

‘reasonably large portion of the solation time. ‘Knowing that
- N N . .

the inversion time is proportional. tc the cube of the matrix

order [108], the difference between. the family of methods

* “

. can be ‘easily preaicted.

The sav1ng in Jcomputéfion time. 'is eveh more

'31gn1f1cant if one wzshes to evaluate the effect of changlng

control parametets on the OVerall system stablllty. An

example of thxs sltuatlon is .an elgenvalue plot tc detenmlne

. the effect of changlng regulator galn.\ Under these

-
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conditions the method in reference [70] would still require
the inversion of an 1llnth-order maprix while the method
presented in reference [67] will require the.inversion of
one 15th-order matrix (if all parameters undergoing change
belong to one machine). 1In the method. recommended he;e, the
[A] matrix is coﬁposed of two matrices as imxféeuation
(2.34). Most of the significant parameters that are likely
"to be changed do not appear in the second matrix and are
'1ike1y to appear as’' simple explici£ functions ‘in the [QA]
matrix. .. Hence, in the’ majority of cases of parameter
updating and stability evaluation no further matrix
inversion is needed at all, only simple division' or
multiplieation of elements in the corresponding rows of the
matrix [QA}l. |

' It has been shown in- [72], and .it will aiso be
:demonstrated in the next twe chapters, that this property of
the [A] metrix‘ is particularly useful if - eigenvalue
sensitivity techniques are applied in the. analysis of powef
system dynamics. . s o . , ,

: Alternatively, Cif  an ana1y51s is reguired for a
variety of genetaticn conditlons, there ‘is. no need for
additional matrix ;nversxon. It is cnly required to re~run
- the 1oad flow program and change the appropriate eIements in

'the [AQ], [GXS] and {QCI-matrices. )

[ o ’ . . . i B .
- PR . Lo » - .- . .
. - .
N . .
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2.5 Inclusion of ‘Network Transients

The amount of detail in the overall system model is
highly depenﬁent on the kind of problem under investigation
(13], T[64]. For example, 1if one 1is concerned about the
stability of the dominant modes corresponding to slow rotor
oscillations, the inclugion of network transients |is
practically insignificant and one would favour ignoring them
to avoid very large system orders. Whereas if the study is
directed toward the analysis of subsynchronous resonance the
consistant inclusionoof network and stator transients [13]
is necessary to predict the éight interactions. The
inclusion of network transients in- multimachine formulations
for dynamic stability.séudiés has been considered in [69]
and [73] .

Considering the medium tie-line model dep}cged‘ in
Figure k2.4),;the.liﬁearized two axis dynamic equations of

’the network :eférré& to a synchrohously“}otating frame {(D,Q)

are "taken directly from [61) as:

adpey | | O “Ba1 | 2¥p1 B |4Vp1
L= . ’ . +° e -
algel B [ A“’Ql cug [AVq1

and



- i 1r 9
A' -‘ l _‘ - .
lD — 0 Ale Asz mo A107
e
= wg w R
. 1 1 o e .
A -A A
lQ 0 — LAle vQz 1Q
L . L e | ) L e - )
(2.37)
Consequently, to account for network transients, the
state vector in (2.25) should be extended toAinclude the
tie-line states:
 §
= A ' i i 1t
X = [Vch VQI' Vp2r VQZ' ilps lQ]
and in the output variable vector (2.26), the network
voltage components [8v,, AvQ] should be replaced by the

shunt capaciﬁor current components [AiDC’ These

AiQC].
changes wi;l result in further diagpnelization of the [P]
matrix and eliminate the need for inverting the real network
matrix [G]. .

In the proposed procedure, a medium tie-line model is
cons1dered for the transm1351on lines in the network. - A
practical drffrculty arLSesﬂln the inclusion of the feeder
and transformer‘cohhected:direCtly to:the machine terminals.
" Here the choice of current ‘in the serles inductance as é
_state is rnconsistent Jith the ch01ce of ;éatOr flux 1inkage
in the machlne. This can be resolved in’ one of three ways-
(1) include the external serxes inductance WLth the- stator
Q,leakage inductance, (2) use statcr cutrent znstead ef ‘stator
lflux llnkage as the state [51]. and (3) add a shunt path at
o . e AP AN '

-~



the machine terminals representing the capacitance to ground

.

I

that might btherwise have been omitted.

N
G .

2.6 Inclusion of Nonlinear and Dynamic Loads

In power systeém studies, loads can be represented in
different ways according to their inherent dynamics and
"characteristics. In the past, due to the lack of knowledge

about load behaviour it was traditional to représent the

loads as shunt lumped impedances at the different load,-
/- S——

buses. In Chapter 5 a variety of load models are coBSidered )
and their effects on the overall system perfor g are also -
analysed. 1In this section the procedure of including loadﬁ}//

with different characteristibs, in the overall formuliﬁjbn

of the integrated system is described.

*
’
.

2.6.1 Inclusion oﬁfNoﬁlihear Composite Loads

Composite loads can Ee‘repgesentéd b& a static ‘model
where load power is considered as an exponenpiél function.of
load bus terminal voltage. _The equatipns'describing this
model are stated in Chapter,5'as:_

K . ‘t

. = * P
AT B o
] - K (2.38)
Qz Cz Vt - . ) . . . R
. we . . 1

A3 .. -



where K and K

q .
constants determined from field measurements.

are the load 1indicesy Ci

small perturbations, the 1linearized

v

lal

and C2 are

Considering

version of equation

(2.38) can be obtained as in Appendix C as:
- 4 e & -  r 4 r - -
aP, L ° i, o, ||%p Vo Vol |4l

t

= 0 « AVy = +
_AQL - "oy by | [%Ye | [Ye- Vb | 81g, ]
I (2.39)
Using the relationship between the pertubations in the

L

terminal voltage and the direct and gquadrature components of

the voltage in Tecbion C2.1 we obtain:

..V v E —Ai - (1P£KPVD - ) (PzKPVQ
P Q D2 oz Db T
ve ve
g K Q K v
- ; L q : Q
Vo Vp AlQL (———7*— + lQL) (-——7—~
L J L . v v
L + t

and hence to account for static nonlinear loads,

h

"
. I~ h
19s) | [%VD
lDL) LAVQJ
J (2.40)
the output

varlable vector in (2 26) should be extended to include the

_components of the load current [Ai .’ AIQ 1.,

‘at hxch the loads are grouped.

rator bus,

. = 44

. . 4 . . . .
T e . .. - .
- ot . L4 - € .
‘ .

In the build up. procedure of the nodal admittance
rix, considerihg nonlinear loads, the size'and construc-—
of the mattxx is different depending on. the type of bus
‘ If the loads are grouped at

the cu:rent components of the lnad can’ be



subtracted from the generator current components. The net
current is equal to the sum of all currents leaving the bus
through all the transmission lines connected to the same
bus. Consequently, the order of the [Y] matrix |is
unchanged. On the other hand, if loads are grodped at a
separate load bus the voltage of this bus should be retained
in constructing the [Y] matrix. This matrix now has an
order which is greater than n by the number of nongenerator
nonlinear load buses in the system.
Thus, in thé overall formulation of the system model,.
the inclusion of each group of nonlinear loads resultslin a
further inversion of only a (2x2), matrix. In addition, the
order of the [G] matrix may be increased by 2.
' py

. 2.6.2 Inclusion of Dynamic Loads

Synchronous motor loads in a system can be described
by the same model as the generator exceét that . the governor
effects are neglected and the shéft system is modified to
account for mechanical load aynamiés. ’

Induction motor groups ;iﬁh signifiéant {nertial gime
coﬁsgéhts can be simulated by 'éne sr more 'anémically

- equivalent uni£s at a high voltage bus.- It-wgil‘bg shown 1in .

Chaptét 5 that'thg equatiéns for each equivalent unit can be

o . I - ~ ¢
represented in the form: - :

.
. . , . . .
. - N R A
D B LN .
s P . . N - . .
e . . - - B * :
. - - N * .
. . . . B s - s
. B v H - s ' -
.
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v = (R] 1 + [(X] i + [Go] i (2.41)
o
2Hm . ,
w u¥ =
= r + D :r + Tm Te ; (2.42)
o -
Te = XSr (er ISQ T lrQ lsD) : (2.43)

The structure of the matrices in equation (2.41) and the
notation of the variables in equations (2.41l) - (2.43) are
given in Section 5.2.

Thus, for systems incquing induction motor groups,
the nodal admittance matrix can be constructed by following
the proceduré described in Section 2.6. IE is ap%a;ent from
equations (2.41) - (2.43) that the proposed partitioning
approach to invert thg [P] matrix requires the inversion of
a reactance matrix for each induction motor group. 'Each
reactance matrix is usually of order 4 or less.

> . > \
2.7 Summar

a prgcedure has Seen derive in this chapter to
formulate the llnearlzed equatlons of a multimachlne system
in state-space_fprm. The baslc PQR technique has been usea.
‘wh}ch .;5 ideally suited gor -the systemaiéf assembly of
equations fegn a realistic power isYsttm. - It allows
flexibility of tépreseniation for different system. portiéns
’whxle tetaxning a sxmplicity .of form that is gn lmportant

'fe'atur,e in assembling a complicat:ed analysxs program.
- * B . 46
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Careful consideration of the system structure with a special
ordering of sy8tem variables results in an efficient
fqrmulation'that‘fedpces significantly both the initial time

to compute thi coefficient matripes [al, ([(B], [C] and [D]

and in certain cases' eliminates  the need for additional.

~

matrix inversion in subsequent analysis.

AN
1

An " important feature of this formulation . is the
flexibility to include or neglect the effect of network
transients and system loads with different characteristics.

- The proposed partitioning approach is ®conomical with

regard to storage requirements in .that large null sections

of the. [P] matg;x are never stored. An added convenience-is,

the fact that ;he system inputs remain explicit throughout

thexganipulatiOns:

Y

J

o



Chapter 3

EIGENVALUE SENSITIVITIES APPLIED TO POWER SYSTEM DYNAMICS

3.1 Introduction

In dynamic sﬁability studies of large interconnected
power systems described in the state-space form (2.1) the
evaluation of system performanée under a variety' of
operating conditions 1is necessary in both planning and
'operatioﬁ. Dynamic stability prediqpion of such systems is
a direct function of the system éoefficient matrix’
eigenvalugs. Eigenvalue techniques are feceiving widespread
application in the analysis of power system dynamics ([51],
[70}, (105] - [107]. , )

Normally, it is required’ to locate the system
eigenvalues for' certain operating conditions and, in
addition, it_ié nece§séry to examine the p;;sible movement

of the critical subset under changes in system control and

design parameters around the chosen base condition. This

can generally be achieved by either_eigenvalue recalcula;ion

for differeht parameter "settings or 'by ‘employing eignevalue

sensitivitfes around the base case. The second approach is

more effi;ient' and cbqveniéht, esPecially for

-
‘-

' aéively large systems.

In thi§~cﬁapter anélytiéal ) essions.are déveloped~

-

P s S
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for first. and second-order eigenvalue sensitivitf
coefficients with respect to general system parameters,.
Different expressions for first-order coefficients have been
derived by a number of different methods [(108], [l11l4], (115]
and have been applied to a variety of problems as indicated

-

in Chapter 1.

Expressions'for seqond—order eigenvalue senq@tivity
coeff&cients are given‘in {1081, ([115]}. These expressxons
have been developed“ln terms of system matrix entries rather
than system parameters, and it 1is very difficult to
reexpress their formulations'as éach element of .the system
lfmtrix can be a complex function of more than one parameter
andbmore than one element can be a function of a particular
system parameter. Fof'use in physical systems wé require
the sensitivities }n terms of the system parameters.,e%his
has been ‘done for first-order sénsitivities 5§ Faddéei and
Faddeqvg [114] and is extended in Section 3.3. for
second-order terms. o

The sen%itivity ekpressions, as éeveIoped here, are{
'partlcularly‘su1table for systems wlth dxstinct eigenvalues,*
which is- usually the case for large physical systems.

.

Sectlon 3 2 dxscusses the meortance of emplcying

first-onder sensxtivzty in the é?qéysis of ~_power sﬁs?eﬁ
\dynahidﬁ. ) The lmmitat;ons‘qﬁ us;pg only ghe-f;rg;-dfdep

termgl are also ~ﬁiscussed.“:tfrﬁ‘;SgéfiéhJ 3.3 the actpal

. . e RN
Xy, . R - > AT | - N
Lt [ « - . .
-
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eigenvalue sensitivity expressions are developed: Then, the
system matrix qerivatives with respect to system parameters
are derived im a very straightforward manner._

The use of eigenvalue sensitivities is illustrated in
Section 3.4 through their application'te two specific
examp}esFef simplified second and fourth-order systems. The
efficiency and coénvenience of the’ eigenvalue sensifivity
approach is further illustrated by applying the method to
systems with higher orders in Chapter 6 of this thesis,

The practical limitations of the method as applied to
the analysis of power sysfem dynamics are discussed in
Section 3.5. ‘ ‘

" A general, discussion of the method is éresented in

Section 3.6. . L Coe—
. . X : .

3;2 First-Order Sens1t1v1ty

v

The elgenvalues cf the system coeff1C1ent matrix -fA]
are indlcatlve of the system dynamic: stablllty. . These ,
eigenvalues are, 1b.§enepai.'functione of 'all coﬁtrbl and
des;gq,parameters Ln the system. A ehange'in any of'these
parameters affects the systemﬂperforménce, and hence, causes
a shift, 1n theewhole eigenvalue pattern.

An est1mated value A of a specific eigenvalue *i due
‘to. a change AE 13 a certain parameter £ can be obtalned

us%ng Taylor series exgans;on around the base value x ~as

. . 3 : s

o .. - 5T . . . S ) -
s T 1 . :50 ' , . o ‘ .
x . . N . - ~ . N - . -
-~ N . . ) . B . R .. o '
b . [ ' . Lo .
. '



follows:

2 .
’ ~ axa 3 A‘ °
4 1 1 1
A Toage Y| fee) T3 %+ ... (3.1
£ Yl

provided that there is no correlation between the control
parameters, which is true in most practical situations.

In equation (3.1) the term

811

3E : .
. E [o} I &,

.

is definéd as the first—order sensitivity coefficient'offthe
eigenvalue A g with respect to the parameter £ at o If . tne
estimation process ‘is termlnated after the second term, the
) estimation is a ‘flrst—order approximatlon and .it is only
valid for _small ’parameter' changes. Conseguently, a low
‘sensitivity . value can not be taken; in genera;) as an
indication that larger vaplation in the paramete} will
continue to have a small effect‘onJSYStem stability [116}].

A Elgenvalue fxrst—order sen51t1v1ty analysis has_ beén
applled in. [68], [69}, [72], {112}, [113]}. These studies
'have presented a varxety' of results that. demonstrate the

‘

advantages of employing eigenvalue sensxt1v1t1es in:

-;;“_3 Identifging dxfferent system modes', .
2. Choos;ng approprlate model pre0131on. -
3.- Estkmatlng : the requlred accuracy of ?fielé:

measurements for system 51mu1at10n studies.

o |~
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The’ expression‘ for the first-order sensitivity

coefficient with respect to a general system'parameter is

.
Ea
«

derived in Section 3.3 .as a step in the overall derivatiaon

of second-order coefficients.

3.3 Second-Order: Sensitivity

The second-order partial derivative t

»

2

axi

& 3 HEg , R S . o

in eguation (3.1) is called the second-order senéitiqity
c0efficiea;'QE the eigenvalue i, with fespeet te the sysﬁeﬁ
pén:amete;;T .;. The use of a secend—order term in equ’at;ibn’
(3.1) tends to -impreye thé accuracy of the sensitivity
analysis [117} and therefbre results in the‘following‘
adéantages:- ' |
1. . The’ sensitiviéy' calculation 15 valie over a wider
range of parameter varlatlon.
2. Fewer elgenvalue computations need to be performed,:'
,'Thls 1mp1;es:that the accuracy eﬁ_track%ng exgenvalue
movemeﬁf:bVer a relafideli wiée paeametéi variatiod
ﬂcan be meroved fon the same total computatlon costf

[y

'and thus forms a good basis for optimal parameter
selectlon., 5 ' . '

- SV o
' The;;aﬁaiytjeal;'exgteseiope Lof',the :§ep9ndf&rdekx

s L ’ . - < -
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3

sensitivity coefficients are .derived, 1in th¥s section, in

terms of the eigenvalues and normal and transposed eigen-

vectors at the base condition. )

4

3.3.1 Méthematical,névelopment

The eigenvalués Xi "and - eigenvectors zZ; of the

' coefficient matrix [A] .of equation {2.1) satisfy the

equation: . .

b

Al zy o=

l‘i‘ Z-i, i,= 11 2’ Q;h' n . ' - - (3-2).
. , . . ! . . L PN ‘
ané'zi'is non-trivial if Mg is a.root of the determintal

~

'
3

equation:
. jA - Ia= 0 - . S 3.3

Differentiating equation- (3.2 with respect %o '@
genergl syéfem parameter-e we.obtain: '

“ . . N . LI « -

. : 32 ‘ : 3%z, 3
. =i 3 fa] - C2i e |
D Bl =Y S 2T et 3g i ’ )iil4)
. e ' . t ' . '

The transposed matrix ([A]  has the same set of

eigenvalues. -qsh Ehé matrix [Aj' but a different set of
S
‘e genvectors v {1o8}. Post*multlplyxng equatlon (3.4) by

i
t
i

/!

-4 .
and cancelllng ‘out equal terms*

- . . ~
. . : .o .

-1

-~ R . . -~



2 [A] ' “ -
e 2ir Vil (zie vy) 1 (3.5)

Ay
— =
2 €

where (£, g) signifies the inner product ef f and g.
' Differentiating equation .{3.4) once agéin with

respect to another system parameter n yields:

322

. A} ~i g 3 (Al %5 + 21A] 2%i 22[A] Y
3gan . 3n -3¢ 3 - 3n 3gan ~1i
.2 e d " 2" } \
= 3. ? i + axi’afi'+ 3 s z, + iii iii Lo (3.,6)
k 2g2n dn. 3§ | 8EaIn ~1 . 3 an .

Post—muitiplyingn‘equatidn' (3.6) by v§ and cancelling out

equal terms furthet y1e163'

, vz S Ay . .
(ﬂ—i—l z2g, vy). (i——l =l e @2y -
dganm o1 an g ~1 3g-an ' ~1
azx ' AN éz“ © 3 3z o
X ' i w i e b LSl S :
. = R — . . + JrTrE... e - + —ee Sty N 3.170)
’ ggan ~4f Y1) In Ge U ¥ .(3n 7 23) =(3.7)
- : N . + - . A . ~ N f

We assume throughout that all the eigenvalues are

_distinct, s0 that there ar s 1ndependent eigenvectors z‘,”

PN -
.

i= 2, cees ns, and any arblt:any ns-space vector can, be

S expressed as a 11near‘ combinatlon of aIl e1genvectors.',[_

‘Consequently, the 'partial, derivatLVe csensit1vity) -of a11
=, system elgenvectors with respect to a system parameter can .
-1be expressed as’ a linear function4of all eigenvectors at the ;_

T \-_..,,, ~
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e 5L %13 %3
(3.8)
323 = IZIS . 2. S
an 42y P13S3 ‘ o
where a5 and Bij are taken direc‘tly‘ from reference [114]
ass:’
_o@ldl oy - |
P 1Y R (2 x:) " (3.10)
ij Y S S R ~h b M :

It. is clear from équatlons {3.9) an (3.10) that'a ¢ "and By

are uhdefined,fbut terms 1neludin‘ them wxll _cancel out.

Substltutlng equations (3 9) and (3 10) in equat;on (3 7) we

‘obtaint - SV




using the fact that:

(fi’ Yj) = 0 for all 1 # 3

therefore
¥ :
3 A 22[a] . . [2IA] gs i
3tan dgan. ~1' o 3t 4op i3 %0 i
AL
afal M® ‘ Lo ,
i [ an jfl 039 235 ¢ Yijp '/ (Zpe vy (3.12)

and hence:

‘ 2y l' : ns - e
A} . a{Al) :
B R T

3

]
Q‘
A

U (3.13),
2 - - '
°1Eqﬁ$tiod‘1§‘13) gives théxsecond~ordér éenSitiGLty‘
coeffic;ent with ‘:espect to different control .parametexs ‘i'.
under the assumption that ﬁhey are uncortelated whereas -
"equatlon (3 12) alléws any twa.parameters to be correlated..’
The expressions for second—order sensitivxty as given Ln'.l,
>‘§' requatxons (3 12) and (3 13) do not add any slgnxficant _
'}‘ ~computatldnal complexlty The only addlt1ona1 computatlon ". “}i T
' requxred over the flrsﬁ—order calculation ‘iS‘ that ch; t‘he:'_. |
seco\nd*oraer deriva:ive of the System mat;ix [Al and:f:»'he‘
'.v'icoefficient& mi] and Bij.._The ggstem eigenv%lues and-ﬁye S '
"’normal and transposed eigenveetors have to be computed fq:,’-f_' o

t?f flrstﬂuxder calculation in. any case and these,“l - i :Qﬂ-

€
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[

‘ e
computations take the largest proportion of the time. .Hence

-for a practicéL system the increase in computation time to

include the second-order term is insignificant.

3.3.2 Computation of System Matrix Derivatives

It was shown in Chapter 2 that in dynamic stability
studies, the set of linearized differential and algebraic
equatioﬁs éescribidg the system performance are sysﬁema—

tically manipulated into the PQR form as in equation (2.2),

If this eéuatipn isvpredmuléipliéd by-{P};l, one obtains:

¥

X
=[Sl x+ (1w - 0 (3.9
Y ‘ ‘
where: : ] <o
‘ oy B
[s] = [P , B = P17 [R] = |---
= - - ' - r{ ) - ‘. : . .. D

It is clear from the . derivatlon of the state—spaCe

matrxces that the :IA]' matrxx _is the result of matrix .

manlpulatlons including 1nverses and products of constituent:'

= -

) ~matr1ces*,f‘ Therefore,'3tpé,\relationsh1p between 'thé~

individual elemenxs of the IA] matrix and system parameters,

is: usually highly compllcated. 1.;‘-; i‘ L 2 " -

L
.

The technique aescribed ‘in “the prevzous chapteff

formulates fhe taj matrix frﬁm tﬁé additiop.uf two matrlces .

e



One of Ehem.contafne most of the control and‘desigﬁ
parameters in the system as simple explicit functions. This

~(faci.lita.tes the. direct calculation of the [A] matrix
de?ivaﬁives:

On the other hand, 4if it is required to compute
eigenvalue sensitivities with respect to perameters that
appear in the matrlx [P], the technique used by Nolan et al
[68] for calculatlng matrix first~order. derlvatlves can be
extended to calcufate the second- o?dex matrix derivatives as
follows. . ) .

Dxfferentlatlng equi/zon (3. 15) w1th respect to . the,

parameter :.

. ‘ S =1 , ‘
a[ 1 ~ 3 -1 ) l a[Q] -9 [P = o ‘3.
L g {[P] . [QJ}‘ [Pl . ?z +'; vy Q] { 16)
USan'the definieion of-the matr#x inverseé

Ll L

B 1333 m
‘where\JI} xs the unit matrlx, we obtaxn.

: CatpiT "['1."']' = - [-P}?l ”3———-“’.1'- '[P]-"-:?‘ SN (3.17)
L Tag L o Ty b L , -
jand'hepde'if‘ il‘f » R

R

b;therefpre;.,. I 1':u LT -

4 - > . ‘ * -
. ’

alslam -t alBlgsy . Lo 0 (3as)



then 3[A}/a¢ is the matrix containing the ns-top rows of
al{S1/s¢.

Differentiating equation (3.18) gives:

22081 [ -t 2Rl gy, o alPL alS) (3.19)
aE2 ) aE2 2L AE ’

Again azfA]/agz is the matrix containing the-ns-top rows of
the matrix 32[5]/3£2. |

fhe matrices {P], a{A]/ag and 2[A]/352 are' very
sparse soO that spatse matrlx techn1ques can be employed to
overcome storage problems that might arlee_WLth very large

systems.

‘e

s

3.4 Use ongigehvalue Sensitivities in the Analysis of
. . Power Systems o )

The use of elgenvalue sensxtxvities in the analysis
of synchronous ‘machipe dynamxcs is 1llusirated. in this
~section by con51der1ng two 51mp11f1ed systems. ) The fi;st
; example 1s a s1mpllfied second-order system representlng the
'performance of the maxn torque-angle ﬁoop cf a synchronous
machlne ccnnected to an ‘infinite bus. The second example

-

’examlnes the effect of statlc excxter parameters on -the

»

stablllty of a synchrcnous machxne connected to an 1nf1n1te
"bus where the machlne is representea by a sxmpleled thlrd-'

order model..

- -
hd -
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>_ damping coefficient D can be obtained directly from equatinn

3.4.1 Simplified Second-Order Example

In small perturbation studies of a s&nchronous
machine and at- a certain ffequency of oscillation, the
machine braking torque can be analysed into two components
[6]: the damping componerit in phase with the machine eotor

speed deviation {aw), and the synchronizing component in

'‘phase with the rotor angle deviation (a$). Hence, the
!

system can be described by the black diagram in Figure

-{3.1). The two roots of. this sysﬁem ares

e D o K " 2 1/2
‘1,2 = A 3 egr vg | IR " qﬁz (3-20)
14 b i IGH . .
where o is the angular syhchronous speed.

.

> It is desirable to introduce a damping tordque

.

component without affecting the synchronizing torque

comporient [6}.  In another words, to increase the damping

. | { .. .
coefficient D keeping the synchronizing coefficient K  or

the natural frequency of osc1llat10n, practlcally constant. . “‘-%

The analyt1ca1 expre351ons for. the flrst and -second=-

order sensitxvities of the _system roots with respect to the

{3.20) ds:.

- 311 mo _l «* ) '
——— D - ‘h- ! .t * 3.2’1
5D~ 3 ;EEE (ug) ; A )

-. ;.d A A 5 +

- L% B * “
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’Figure 3.1 ' Second-Order System Block Diagram

]
h w, =”377. rad/sec., H = 4.29 sec.
. c Ks = 2.0 , (2 = 415“7
« "‘ ) . » - - . .
Table "3.k% . Emgenvalue and Eigenvalue Sensztivitles i
: Coo T Fox Second~-Order System :

‘ }1,2 - ‘1(¥l32?n. -t 1275 o

| #3.55:38.8  |-3,55¥31.42 ]| 0.0¥j.82



2 . 4 2

2
LA = 0.0 + 3 "’—Ez (ug) 2+ 2 (wp ™} (3.22)
D 256H° . 16d

s

ypical values‘of parameters for a hydraglic’machine
are shgwn in Figure (3.1). These valugs are taken directly
from reference [72{. Hence, the cbrrésponding eigehvalues
and their normalized sensitivities are obtained and stated
in Table (3.1). Thé sensitivities are.normalized in'the
sense tﬁat they give directly ‘the shift in the eigenvalue
due to a gnit change in the corresponding parémetér. The

¢
estimated shift is, of course, a second-order ‘approximation.

1

For example, if in{ and 1 are the normalized sensitivities

ni
of the eigenvalue xi with respect to D, the estimated
eigenvalue for a 50% increase over the base value of D is
_ . 2 ga
A T %io T 05) Ay v 05T g, (3.23)
- . 3 * PR .

-

First and second-order eséimates of the imaginary
- part 6f~ the complex pair of. eigenvalues :are plotted ip
Figure f3.2) together with a blot of the directly computed
~valuZzs over:a Qidé range of damping cqefficient. .
_‘ ’ The’ amount of damping,\ in the mode considered is
1adequate if the equivalent second—oréer damping ratio lies

between .2 and - which co:respgnds respectiveiy to values
:of -086 ‘arid .23/ ﬁot ‘the damping coefficient D. Under thef‘
tprescribed range of the damping ratio variation; the

icorresponding change in the- frequency' of osetllatxoa fs

.- ] AN _"\71
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relatively small and ‘the assumption of a constant synchro-

" nizing coefficient is valid. It can also be seen from .

2

Figure (3.2) that second-order approximation is fairl§ good,

especially in the practical range!'of the damping torque .

coefficient variation.
A X >
i v
3.4.2 Slmpllfied S1ngﬁe Machlne Inflnlte Bus With Static
Exciter‘ {

4 ‘In this ex mple, eigenvalue and elgenvalue

~

senSLtiv1ty techniqu?s are employed to’ examlne the effect of

static exciter par%heters on the dynamlc Stability of a

I\

-

steam unit connecq{ed to an infinite bus through a trans-

'
'miSSlOn llne. A ﬁlngle line dLagram of the system is shown

:in Fxgure (3. 3) " The system data are obtained dlrectly from

reference [6]. ;Uﬂder small perturbations, the system can be

(3 4)." Thiégmodel neglects thé
stator registance, .flux derlva'?:f

The bloc élagram moael, in spite oﬁ 1ts simplicity,yhas
been s?ed by many authors [61, {%3} to analyse and des1gn
machine excitation systems unde: .- ¥ vaniety of condxtions.
The block d:.agram ccefficxents (Kl '"f;‘ﬁ) are functsions of
the machine and tie lxne panameters ané thegsystem opezating

coaditioms. The values of tfxese coefficients.. as obtamed

-
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in [6]), are given in Figure (3.4).

The‘system equations are arranged in state-space formx

and system eigenvalues as well as their sensitivities with

respect to exciter gain (Ke) and time constant (Te) are

’

listed in Table (3.2).

Eigenvalue sensitivities are then. used to obtain

estimates for the movement of system eigenvalues around the

base case. These estimates as eompared to the exact -

movemenf are illﬁstrated in Figures (3.5) and (3.8). It is
;‘apparent‘ from tﬁefsé)/figures that,” in general,' the second-
order estlmates ‘are signlficantly better than the first-
order estxmates, ané are neveelworse. Th1s lS spec1fica11y

true for up to a 100% change in the parameters,considered.

-

*

3.5 Practical 'leltatmns L o T

oo It has been stated at the begmm.ng of this Chapter

-

"4
are orxly velid for Bystems of non-—repeated eigenvalues.

This is usually true for large power systems. However.,- if

;dentical elgenvalues occu:. the base ,,case parameters can be

-modxfiaed slxghtly so thaﬁ the met.hod can be applied;f

.‘J :.-

- Ea.genvalue fixst .and,seeond-‘-nrder Sensitivibxes have been_

,‘-

- »' ~

"calculatea for: nelatively 1arge poWer systems f117], tll?] _
and no diffu:ulty has‘ been exyerienced in obtaining the :

"_.’

H

"‘senmtrvit;y ebefficre"nts, even" 'thou‘ h some; of the eigen- ‘

that the elgenvalue sen51t1vity expresgions, as developed,.

r
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values were very close, since the difference was in the

second decimal place for base 'eigenvalues of magnitudes in
e \ ~ .

the order of ten [119]. .

The exgenvalue sensitivity approach can be used to
examine the critlcal roots and then to adjust the des1gn'
parameters in such a way as. to achieve stability improve-
ment. ;tecalling the eensitivity expressions, it can be
noticed that they are ftncti_ans of the base values. Ther‘e:-
fore, the sengitivities will.chahg'e, as a consequehee of any
parametet cﬁange‘. Consequentql'y, the desig-n pr'ocedure
reduces to a step by step optimipation search ,so that the
.process is repeated and after a few iterations the most

convenient parameter setting can be chosen. The process

should also be repeated over a practmal range of operating ;

conditlons. ‘ - '
‘ This approach is very convement for relatively large -

sést’ems, especially 1f interactive co;nputation 1s usea,‘

's:[nce it qrovides the engineer vzith a good feel for the -

et'fect of dif:‘fenent parameter se.leeti,on On the stability of |
4

..Vthe different laops in the system; Bov:ever 2 the choice of

'the apéroptiete set of parameters tusiqq the. 5ensitivity

: "’approach) should be 3ustified by exewlniné the large distur~

1 ibancé getformance ef the BYStem so J:hat thg eﬁfect of nan-
".Linearitj.es can be taken into ceneideration.

'.Ehe employment of the e“igenveiue een&ﬂ:ivity

tﬁ‘.ﬂ
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techniques is efficient’in the analysis of large‘scale power
~system éynamics. It is important to realize however, that
_there is always a limit to the order of systems that can be
handled by this mthod. This limit depends on,the size of
the available memory of the computer under use. Ho&ever, a
relatively large portion of the ‘matrices involved in ;he‘
eigenvalue sensitiviey computation are extremely sparse so
ﬁhat'thealiﬁit on syetem'order can_be:eXtehded by employing

sparse-matrix techniques. L . S

.13.6  Summary
The development and use of first' and second-order

elgenvalue Sensitivities‘ have been . presented. ~ The

a“

elgenvalue :eggitlvity coe£f1c1ents are. glven in terms of

.

system parameters rather than system matrix entrles. Thxs
- aliows greater flex1bility and, convenience ‘in - the analyszs-

" of. 1arge scale power systems, especially, with the use of.

interactive computation.“l,* ,jéj;' Gt .',‘ _

TWOo simplified examples have been considered to
'?Fiilustfate the applicability of’the methaﬁ., Tme inciusionzi

> of secondworder tenms 1n an eigenvalue sensitivity package o
N e < .w -
is :ecommeqipaf since the ~adaitiona1 ccmputation cost is

« . ox

telatively small compared to the improvement in efficienoy .

of the sensitivity package ana its attendent use/in eigen~

~ P

Value analysis.u,‘?~"~ "’-fﬁ°‘f~ff*'$f‘ o e

¢



Chapter 4

EIGENVALUE ESTIMATION AND TRACKING

4.1 Introduction

.In the previous chapeer it was stated that dynamie't
stability'evaleatiod of interconnected power s&s;ems throuéh
eéigenvalue iocation and{movement is attractive beceuse it is
far more efficiene than .the alternative of time integration
to'eredict system gimeiresponee. In the analysis of such

,_,.n.

large systems‘i one is usually interested in 'tracking the

~

movement of a. simall number of eigenvalues under specific

‘parameter variation. " This small subset can, generally,

include eigenvalues wieh. &ifﬁerent\ magnitudes spreeé' ali‘
over the complete eigenValue pattétn.:_

In’ the literature one _éan. find a method 1like the
Power method [108], [1093 that provides a well established.’

algorithm to find selected eigenvalues 1n the upper or lower

'range of the whole eigenvalue pattern. Unfortunately. this’

method is only useful if it is required to compute the few L

i

::_glargest or smallest eigeoyalnes of a general matrix, but not
“:ﬁany of the miadle ones,ﬁ‘Heoee, the application of the Powex
iﬂlmethgd is limited to SOme particulex pfoblems [109] and it

. \)‘

is not suitable for our purpose.( On the othet hand, iﬁ,ﬁs

e ¥
. . N e P - .' .
Y CE R, - A -



IFEJ,Vectors fbr aifferent Parameter,settinQS" }:; f >

<
.inefficient to recoqpute the complete set of eigenvalues for
every parameter selection, especially with relat%vely large
systems and many parameieg'changes.

As an alternative approach, this Chapter describes a
highly efficient coﬁputer based procedure for determining
system dynamic stability as a function of system parameters.
The method is particularly applicable %n situations where a
relatively small.number of the system eigenealues are known

to be critica} in describing stability. A full set of

eigenvalues and'eigenvectors is determined once, as a base

case, then the movement of these critical eigenvalues. is’

tracked over relatively wide parameter variations without
the need 'to. recomphte~‘phe wheie set of eigenvalues or
eigenvectors. The new values are estimated using first and
secend~order‘ eigeﬁvalhe sensitivity terms followed by ae
iterative technique to{nefiee'the estimate.

" fhe eXpressions developed for the eigenvaiﬁe sensi-
tivity terms in the pnevious Chapter form the basis for the
proposed method._ The inverse iteratioﬂ method developed by

wllkinson [108] and the modificatzon develoPed by Van Ness

e 2[1111 were primarily concerned with finding of system eigen-

) vectors. These eigenvectors axe insensitive to smalI erzors

in the correSponding‘eigenyalues.' mhis method 1s uébd hete

.~

‘ _to find accux:ate eigenvalues wii:h the cerrespendlng eigen-f,

ar
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Section 4.2 describes the estimation procedure of the

eigenvalue movement and outlines the overall “"tracking"

approach. In Section 4.3 the procedure of refining the

estimates of eigénvalue movement is developed. The proce-
du;eigis divided into two steps: first to calculate an
accurste eigenvector using the inverse iteration technique,
and second to use this eigenvector to obtain an accurate
value for the correspopding eigenvaiue.

The use of thg method is oiscussed in Section 4.4.
"Real and complex eigenvalues,are'codsidered and the computa-
‘tional asﬁects associated with both situations are studied.
The ﬂconvergence properties of the method under practical
sxtuations are considered. Finally the computasional

efficiency of the proposed approach as compared with the

repeated ezgenvalue approach is dxscussed . .l

‘The practical limltatlons of ‘the method as applied to .

the analysis of power system dynamic stab;lity are di8cussed/

¥

in Section 4.5.
A summary of the overall approach and its practical
use 'is pnssented in Sectipn 4 6. ' \

- r
Ty

*

4;@<~ Biggnvalue Tracking Approach

”_; “In this methoé the first and seoond-order sensitivi—
'ties of Ehe system eigenvalues wihh respect to a‘specific

‘ parametef are computed at a certain hase conaition.' Then,

°
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the corresponding second-order approximation uy due to a

change Af in a system parameter & is obtained using Taylor

series expansion around the base condition as:

Al

aX: 3 1.
1 1 i 2
. = + — + =

1!1 Xio AE 3 (AE) 2 352 {o (AE)

(4.1)

Examining the results obtained for the examples
studied in Section 3.4 and for further systems analysed in
Chapter 6, it can be seen that second-order estimates are
satisfactory for relatively wide Parameter changes (up to
-50% change in a system paramete;.on both sides of the base
value). For a wider change in the parameter, or where the
second-order approximaﬁion is 1inaccurate, the inverse
iteration technique is used to converge to the exact eigen;
vector and the corresponding'eigenyalue with the estimated
values as the starting guess. : .

\ Thus. the tracking appzoach for the movement of the
eigenvalues of interest can be summa:1zed in the following
‘steps: ‘ Co _ ' N
PR 'C'émpute /tl'ie system e.i.geqvélues, and Ehe .ndt:i‘nai and
‘I ’ ixansposed eigenvectors at- the paee'éondition.

2, ,Compute first and:éécbﬁa:QfEéE_Qensiti&iﬁieé 6f the

"‘eigenvalues 'with respect to system parameters of

PSR - o~ Tk e

:finterest, ~_‘a;,rﬁ*; ';Y.ana:}“Ff “f‘é .
. 3. Con31aering a specxfic parameter, i&entify the Subset

fhsensxbive eigenvalués ana chgose the one{s} to be ‘

- 4
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S N .- B pte LI s .
LR N . o s . h . N -
- . N - .



tracked over di¥ferent settings of the pai
4. Estimate the new eioenvalue location due to a

specific chaage in the parameter (using Taylor serlies

expansion and first and second-order sensitivity

terms at the base case).

5. If an accurate value for the eigenvalue of interest

is ’required at, the ‘new parameter setting, the

estimated value can be used with the updated system
matrix to compute the exact value (using the inverse

iteration technique). '. SR S .

Usually, at the beginning of the tracking, second-

order approximation 1is  obtained followed by inversec

iteration and elgenvalue computation at the lower and upper
,limits of the’ parameter settings. If the difference between
the estimated and the exact eigenvalues is relatively large,
the operation should be repeated at eome point closer to the

base value until there is po significant ﬂifference. Bence,

'all the closer points tQ the base valne are obtained using;

‘only second-o:der‘estimatee, ;'\{;i;f L

'v B . -
- ’ > v o,

A J AN e . ..

3‘3‘ Refinement of Estimabidm Lt R f, R

’ <

The error in the ‘estimated vaiue oﬁ a specific

e eighnvalue shift due to a. parameter change (M;), using

£

equation (4 l), is proportional to t&z) Consequently, pih

is a good approximatlon to the exact value. especially for a

] I . - . %
» ‘«,,, - . - -
.3 i

v‘j
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relatively

"~

L

small per unit change in the parameter £. If a

more accurate value is desired, the eigenvalue estimation My

: . : LGS .
can be refined using the inverse iteration

the exact eigenvector.

This eigenvector can

method to find

then be used to

find the corresponding accurate eigenvalue under the new

parameter setting.

S

4.3.1 The

Inverse Iteration Method

The
Wilkinson

equations:

-/
fj)lA - ouy I) Wouy = g
)
//
X - Wetl ¢
N s+l max (W, )
where:
B =’the estimated value of Xy
max(ws+l) = the element of ?s+1 with the largest
magnitude
XO= the .initial value of X
crl = the current estimate of the desired

basic inverse iteration method,

[1081, [js described by the

i

as developed by

following two

. (4.2)

(4.3)

-

eigenvector corresponding to Ay
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The iteration process is terminated when no further

significant improvement can be achieved in X. To prove the
convergence of the method, first consider the iterative
scheme as in equation (4.2) without applyin; the normaliza-
tion process in equation (4.3).

-1

W = - I Xs

~s+1l (4.4)

. -
N

For systems with non-repeated eigenvalues, the
arbitrary vector XO can be expreésed as a linear combination
of the system eigenvectors as in equation (3.8) so that:

ns
Xo = I ap Z, (4.5)
r=1 .o

Expanding equation (4.4) we obtain:

117 x_ = (1A - w, 117N x

W = [A - ~s i Zs-1

~s+1l
- i — - —.1 (S+1)
." . - - . . . « = {[A ui I] } §0 (4.6)

Combining equations (4.5) and (4.6) yields:

ns a
= ' -(s+1)
ws+1 = E @ (kr "i) z, (4.7)
r=1
or
' a, Z. ns ] Zz
W = > b o + L L ~r (4.8)
~s+1 s+l - s+1
(A]-. ui) r—l,(lr'ui)
If u; is a good estimate to x; so that the factor (2§
= ouy) is smaller in magnitude than any other factor (a_ -

r
“i)' and if a; is not zero, the process will ultimately

»

reduce to:
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oy % (s+1)

Woel = (3.-n.) 5TD) e (4.9)
- i¥i
where e(s+1) is a vector with very small components'compared

~

to the corresponding components of WS+1'

The difference between the estimated and the exadt
eigenvalues 1is usually small. Therefore, each successive

y :

Qector in the iteration. process 1is normalized, as in
equation (4.3), in order to keep numbers within range.
Since any eigenvector can be divided or multiplied by an
agbitrary constant and still be an eigenvector, the norma-

lization process as described earlier does not, basically,

affect the convergence of the method.

4.3.2 Calculation of Correct Eigenvalues

Examining equation (4.8), it can be seen that the
computed eigenvector does not depend on the error in the
estimation of the corresponding eigenvalue. It 1is also
apparent that, the eigenvector can{be obtained as accurately

- ’ ! .
as necessqé? depending on the chosen error allowance to
terminate 2tbe iterative process. Thus, the calculated
eigénvector,can be used in either one of the following™two
methods to obtain the correct eigenvalue.
i. Rayliegh Quotient: This method gives the desi}ed
eigenvalue in term§ of the updated system coefficient matrix

fA] and the corresponding correct eigenvector z; as:
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c—

z% (A] z;
ry = :”—E“~—:‘ (4.10)
z; z.W
~1 i
2. Residual Correction: Recalling equation (4.8), the

dominant term on the right corresponds finally to the value

(xi TR This quantity is ultimately the ratio of the

In the

S s+l°

~

components of the vector W to those of W
normalization process the element of the eigenvector Yurrent
estimate with the largest magnitude is set to unity at every
iteration. Hence, after the process converges. to the
correct eigenvector, the reciprocal of the largest component

is the current estimate of (Ai - uw.) and thus, the desired

i
eigenvalue is obtained as:

Xi = ui + l/maX(ws+l) .(4.11){

Both methods have been used and the results obtained

o

in Section 6.4 are jn agreement with the direct repeated

“"eigenvalue computations.

e

4.4 Use of The Method e

The use-of the ;nverse iteration method involves the
iterative solution of the set of linear equations (4.2). 1In
practice, it is inefficient to solve this set of equations
by inverting the matrix [A - My I}, but better to solve

successively with the same left-hand side matrix but with

different right-hand sides. This can be achieved by

£
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performing LU-factorization [108]) of the matrix (A - g 1].

4.4.]1 Real Eigenvalues

In tracking the movement of a,real eigenvalue the

estimate My is also real and the iterative salution of

equation (4.2) involves the LU-factorization of the real.

matrix ([A - My Il. A standard Gaussian elimination method

L}

with row interchange is used. This process can be described
as in [108] and [111] as follows:

K] [A - w; I} = [L] [U] (4.12)

where [K] 1is a matrix qpntaining information about the row
interchange. This matrix 1is never stored, but the
information contained in [K] 1is kept in a table. [L] is a
lower triangular matrix with all diagonal elements equal to
unity, and [U] is an upper triangular matrix.

Forward and backward substitution is then used to

solve for W as in [111}. The solution is described by

-s+l

the follewing two equations:

L] b = [K] X : (4.13) -

(U] Wgpy =B (.14
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where b is an ns-dimentional vector.

The basic criterion for convergence 1is that the
estimated eigenvalue My is cMoser to the exact eigenvalue A4
than any other eigenvalue *j' As the estimate My approaches
the exact value oy the matrix [A - My Il becomes 1ill-
conditioned. This matrix is singular under the 1limiting
case of identical to A; and hence, the last diagorial
element in the [U] matrix will be zero [1l1ll1].

Actually, this gituation seldom occurs with the use
of the "tracking" approach sﬁnce our estimate My is only a
second-order approximation of Ay in addition to the effect
of round-off errors invo%ved in the computational procedure.
If the corresponding eigenvector is needed, as well, the
zero element in the [U] matrix can be taken as a very small

number, such as ‘2°°C

in a t-digit decimal computer, and we
proceed in the solution as described before. This has been

suggested in {109] and has been. successfully used in [111].

4.4.2 Complex Eigenvalues

If the eféenvalues of interest are complex, the
tracking method, as outlined in the previous section, |is
still wvalid. However, some.difficult%es will arise such
that the stofage requirement will be doubled and also the

computation time will increase because of the complex

arithmetic operations involved. =~ Wilkinson ([108] has

'82



proposed four different methods to overcome these
difficulties. Hi5 fourth method has been used by Van Ness
fl111) and it will be used here as well.

Let uy be replaced by (a + j B8), X be Q + jR and W be

~ . -~ -~

M + JN. Solving for. the real and imaginary parts of

equation (4.2) gives:

[((a - aD)? + 8% 1) Neyp = 8 Qg + [A - aI] R

R (4.15)

B Mo,y * [A - aI) N_,; = R, (4.16)

Consequently, the ~iterative solution in this case
involves the LU-factorization of the left hand matrix of
equation {4.15) which has the same order as [A] following
the squaring of the matrix [A - aI]. The iteration requires
the squaring of the matrix [A] only once. "~ The solution is
performed for equation (4.15) in th? same way as for
equation (4.2) in the real case. Then NS+1 is used *to
obtain M_, , from eqguation (4.16).

If the eigenvalue is complex and the estimate is very
close to the exact eigenyalue, more than one diagonal
element in the (U] matrix can‘be very small or zero. In
this case, these elements can be replaced by small numbers

as described in 4.4.1 in order to obtain the desired eigen-

vectors.
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4.4,3 Convergence Properties

The rate oé? convergence to the correct solution

depends partly on the constants «_ in equation (4.8), but

r

more effectively on the ratio of the factor |r; - u;]| for

the desired eigenvalue 1; to each other factor for the
remaining system eigenvalues. The smaller these ratios are,
the faster will be the convergence.

The rate of convergence depends as well on the ratio
laj/(xy = wy)l. If a; is very small, the convergence will
slow down. The limiting case is when o is zero, and the
solution does not converge to the required eigenvector. In

practice, we work with a fixed number of figures, and

successive vectors are rounded, so that instead of producing

exactly ¥s+l from %s we produce §s+l + & [109), where § is a
vector formed from the rounding errors. If this vector

contains a non-zero multiple of zZ; its effect will grow in
later iterations and will ultimately be the dominant part of
the vector. An example of 'this_ situation with detailed
discussion is presented in reference [109].

In all the systems studied in preparing this thesis,
the initial vector has been constantly chosen as one and no
convergence problem haé been experienced [119}. The mefnod
usually converges after three or four iterations.

The ‘tracking approach 1is particularly useful for

systems having well separated eigenvalues of interest. If

84
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the eigenvalues being tracked are close, the convergence
rate will be relatively slow since the first interfering
root will be significantly close to the desired eigenvalue.
It can also be noted that one should be careful in choosing
the step size of the parameter change, since it is essential
to have good estimates for the eigenvalue movement to start
with, so that the method converges to the correct
eigenvalue. This may require the computation of first-order
sensitivity in an intermediate step. On the other hand, the
repeated eigenvalue approach can provide the correct
solution every time. However, apart from the expense, it
will leave us with an identification problem since it will
be very difficult . to keep track of whichieigenvalue is
which unless the eigenvalue computations ,are repeated for
very small -incremental parameter changes. The tracking
approach does not suffer from the‘pidentifhcation problem
since the calculation of the corresponding eigenvector and
eigenvalue sensitivities provides useful information about
incremental eigenvalue movement under specific parameter
variations. o

*

94.4‘ Comparison of the Computation Cost

<' Normally, when plotting eigenvalue movement, the
N

complete set of eigenvalues and eigenvectors is obtained at

an appropriate operating condition and first-order
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sensitivities are obtained to aid in the choice of the
appropriate step size of parameter change. Then, eigenvalue
computation of the complete set can be repeated over a
specified range of parameter variation. Unfortunately,
using this method, the requirgd computational time |is
prohibitive, especially for large systems.

A widely used algorithm for obtaining the eigenvalues
of a general real matrix is the so calided QR algorithm
(108}]. Using this algorithm, the system coefficient matrix
[A] is first reduced to ﬁpper Hessenberg form by means of
similarity transformations [108]. This reduction process

(using the Householder ﬁethod) involves approximately 5/3

///\h§3 arithmetic operations [108] for a matrix of order ns.

Each arithmetic operation equals one multiplication and one
addi£10n. The QR double step method [108] is a numerically
stable technique to obtain all the eigenvalues (real and
complex) for a real matrix. This, technique uses an
iterative process where each step of iteration involves 8ns

arithmetic operations. The number of the required
operations to obtain the whole system eigenvalues depends on
the accuracy desired in the computed eigenvalues. For all
program runs performed duriﬁb the preparation of this
thesis, it has been noticed that the time required for
matrix reduction to upper Hessenberg form is relatively

small compared to the computation time. for all eigenvalues.
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In other words, the iterative process in the QR method takes

the majority of the computation time.

Teble k.l Typical Executlion Times of

Eigenvalues and Elgenvectors

Matrix ® Time to compute Time to compute
Order Eigenvalues (sec.) | Eigenvalue/eigenvector
llnﬂ
10 .026 .989 . \
30 7.867 16.686 )
50 31.368 69,221 :

To further 1illustrate how fast the amount of
computation grows with system size, Table (4.1} 1lists the
excution time for a CQC 6400 computer to compute the
eigenvect5rs and/or é}genvalues for selected systems with
various orders. A standard library subroutine has been used
for the eigenvalue/eigenvector computations. This sub-
routine uses the QR double-step and Householder methods.
These times” demonstrate the fact that the amount of
computation grows rapidly with the increase of the system
order,

On the other hand, the’only time required for the
"tracking" approach, compared to eigenvalue repetition, is

that involved in computing second-order sensitivities, LU-

.. . h . .
factorization of an nst -ordér matrix and the time to solve
\ .
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iteratively an nsth-order linear matrix equation. The

number of arithmetic operations required to combute the
second-order sensitivity of an eigenvalue with respect to a
specific parameter is (3 ns? + ns). The number of arith&e—
tic operations needed for factorizing a real matrix of order
ns is ns3/3 [108]), and those required for solving the nsth—
order matrix equation are nsz. Thus, for very large systems
the number of arithmetic operations required for the
tracking algoritﬁm is approximately proportional to ns3-

In order to compare the actual computational times of
the proposed tracking approach to the repeated eigenvalue
apprbach the following expressions are developed for the
computation time of one base case and N additional evalua-
tions in order to form a set of (N + 1) values. The
expressions are given for both methods in terms of the
computation time required for each step.

At the base condition the eigenvalues and the normal
and transposed eigenvectors are needed as base data for

efigenvalue sensitivity calculations. If the normal and

transposed eigenvectors are normalized so that
z2: v, =1 (4.17)

and considering the fact:

z{ v4 = 0 for all i # j (4.18)
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then, it follows that:

-

=1 t

{z z, .o z ) = [Yl v, .o v ] (4.19)

.
*

hence, the computation of the whole set of transposed
eigenvectors ihvolyes the inversion of a complex matrix of
order ns.

For repeated eigenvalue calculations the total

computational time in seconds can be expressed as:

TR = IV + 2 x INV x E x p+ IV x N X P (4.20)
where: ‘
IV = time® 40 compute the complete eigenvalue~ set
(sec.) ’
INV = time to compute a norm&l or a transposed gjgen—
vector by inverse iteration (sec.)
E = number of eigenvalues whose movement we are
) specifically interested in
’ 8]  number of parameters that we wish to study for

eigenvalue movement.
b

If .the time required to compute the base values for
the repeated eigenvalue approach (normal and transposed

eigenvectors corresponding to eigenvalues of interest) using

the inverse iteration technique is greater than the time to
'l

obtain the complete set, the expression for Tr becomes:

TR = IVC + IVT + IV x N x p (4-21)

89



3

where: o

, IVC time to compute the complete eigenvalue/eigen-

vector set (sec.)

A

time to compute the whole set of transposed

eigenvectors (sec.)

1

The cofrssponding expression for the computation time

(Tp) using the tracking algorithm is:

Tp = IVC + IVT + I2 x E x p+ INVX N x E x p (4.22)

where I2 is the time to compute each eigenvalue second-order
sensitivity with respect to a specific parameter in seconds.

"The expressions developed in equations (4.20)-(4.22)
are used in Chapter 6 to compare the computation times for a
simulated power system of order 50. It has been concluded

that the fewer the number of eigenyalues of interest,

v

‘compared to the total number of system eigenvalues, the

greater the efficiency of the "tracking" method over the use
of repeated eigenvalues. The time saving aslo depends on
the number of parameters of interest; .the greater their

number the better the saving. 1In praé%ical situations, one

~oniy needs to compute the sensitivities and track a small
5] ’ .

subset of the whole eigenvalue pattern (<10%). In this case
the tracking method comprises about 20% of the time of thes

repeated eigenvalue computation method.
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4.5 Practical Limitations

b3

The approach presented for eigééval&g estimation and
tracking 1is essentially based on the use of éigenvalue
sensitivities to apprOxipate thé movements of selected
eigénvalues under the variation of specific system éara—
meters. Hgnce, the kind of practical limitations that have
been discussed in Section 3.5 for the émployment of eigen-
value sensitivities in power system spudies are actually

.
applied to the use of the proposed tracking method.

Second—ord;r approximation is acceptable in practice
for a parameter chénge of about one per unit (.5 p.u. change
on each side of ~the base wvalue)* [11l6], [117], [119].
“Consequently, the inverse iteration is only needed to be
performed for, in general, less than 40% of the total points
used to track eigenvalue movement over the practicai range
[119]. The computational efﬁicieécy of the proposed
‘approach over the repeéted eigénvalue approach\can be easily
predicted in cases where the effect of many parameters need
"to be studied. However, it shoul&ubé ment ioned that the
tracking approach is particularly advantagéus if the number
of the critical eigenvalues is small (<20% of the total
number’ of system‘eigenvalues). If it is required to- study
the movement of more than 50% of the total number of the

eigenvalues,” one would favour the wuse of the repeated

eigenvalue method.



4.6 Summary ‘ ¢ .

Eigenvalue tracking is a useful tool available to
power engineers who wish to examine trends in system dynamic
staBility as some parameters of the system are changed. In
this Chapter, an algorithm has bBeen presented to track a
small number of the total system eigenvalues. The use of
this technique enhances the speed of cémputation in cases
where the other eigenvalqes are known to be insensitive to
the changes being examined.

The use of the method in cases of real and complex
eigenvalues has been described with a detailed @iscqssion of
the convergencé properties of the method. The computational
efficiency of the proposed method compafed to the repeated
éigenvalue method has been discussed and expressions given

\{for the computation time for each of the two methods.
" It has been concluded that Ehe same practical limita-
L tions associated with thg use of eigenvalue seqsitivityv

( téchniques apply in the use of the tracking method in the

analysis of power system dynamics.
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Chapter -5

EFFECT OF LOAD CHARACTERISTICS CN POWER SYSTEM
DYNAMIC STABILITY

5.1 Introduction

The efféct‘of load characteristics is a significant
part of the current interest in power system stability
studies. This general interest developed 1in recent
years as stability margins have qé;:aieduced due to economic
and environmental pressures. Aé‘developments have occurred¢
in the representation and analysis of generation and
transmission systems, attention is now being focuéed on the
adequacy of 1load representation in the analysis programs.
The incorporétion of ‘realistic load models is specifically
important with the representation of generation controls
which has made iL essential to evaluate the contribution‘of
21l elements (including the 1loads) to system damping in
order to obtain reasonable results (4]. .

In general, there are two aspects. to the load
"problem. One is the examination of systém data to determine
the most appropriate model to use in subsequent studies.
The othef, the main concern in this Chapter, is the exami-
nation of possibie interactions between the loads and

generation controls and hence the investigation of the

effect of a range of load models on system stability
93 ’



_evaluation. In the present analysis emphasis will be placed
on the usual static representation of composite ioads as
function of bus voltage, but cases where dynamic
representation is necessary will be briefly discussed. The
family of load models considered in this study have been
recommended by the IEEE Computer Analysis of Power Systems
Working Group (CAPS) [2}].

In ‘order to apply this range of models, unlike the
method presented in reference [43], the conceptual block
diagram approach of deMello and Concordia (6] is extended to

include the effect of static loads with different character-
‘istics. Consequently, their effect on system stability is
analysed through the evaluation of damping and synchronizing
torques. The general conclusions reached in using the
simplified block diagram model are then justified by
considering a more detailed and aeccurate machine model.

In Section 5.2 the available information ~on 1oad@
modeling in stability studies is briefly reviéwed. The
mgthod of analysis is described in Section 5.3 and the
effect of the range of models on system dynamic stability is
investigated under  the consideration of m&chine excitation
and stabilization controls in Section 5.4.

Section 5.5 extends the analysis to include
situations where composite loads are remote from the

M

generation bus.

[~
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~. Finally, the important aspects relating the effect of
1035§’ and machine controls interaction on system dynamic

stag?iity are summarized in Section 5.6.

5.2 System Load Representation
The ‘importance éf load behaviour as a function of
voltage 1in stability studies of power systems has been
recognized long ago [33]. Even though, du; to the lack of
knowledge about the actual 1load behaviour, it was
traditional to represent 1loads in stability“ studies as
constant power, constant current or constant impedance
elements. Recently, power system engineers have devoted
ﬂhmuch‘effort to the éroblem of realistic load modeling by
performing and analysing actual field measurements [(2), (3},
[34). The analytical approach of constructing accurate\}oad
models by analysing and combining the characteristics of
each of the individual components of the load has also been
considered [35]-[37].
The¢ following is 'a review of the available
information on load characteristics, mainly as a function of
load bus voltage. »

-
i

5.2.1 Dynamic Representation

Large industrial 1loads can, .generally, includée

-

synchronous and ' asynchronous motors. These motors might

. 895 ) A |
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have significané inertial time constants compared to system
generators. Hence, 1in some stébility studies, it may be
necessary to represent these loads with détailed dynamic
modeling to the same extent that generation is modeled.

It has been mentioned in Chapter 2 that a synchronous
motor can be represented by a generator model except that
governor effects are neglected and the shaft system is
modified to account for mechanical load dynamics.

The modeling of induction motor loads in dynamic and
t;ansient stability studies 1is the subject of many papers
[39)-[42]. Induction motor loads are usually numerous and
scattered th;;;ghout the distribution nétwork.
Consequentlg, different approachés have beén pfesented to
construct dynamical equivalents for asynchronous motor

groups in stability studies [41], [42].

The mathematical equations describing the performance

s

of a single induction motor can be arranged with reference’

to a synchronously rotating frame (D, Q) as:

1 T

v = [R}] I+ — [X] 1 + [G] i (5.1)
2Hm = . p gy + T =T (5.2)
. r r m e *

Te = Xsr (1rD lsQ j lrQ LSD) (5.3)

[ ]

where the stator-rotor voltage component vector is:
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v [VsD' v

o~

the stator-rotor current component vector is:
\

A s . . t

{ [lsD’ . lrp” 1rQ1 !

sQ’
the stator-rotor resistance matrix is: K

A .
[R] £ diag [rs, Lor Tov rr],

the motor reactance matrix is:

) s -
Xs 0 Xsr 0
0 X 0 X
(X] = s sr
XSr 0 Xr 0
0 Xep O X,
L _
and
- 7
0 —Xs 0’ —Xsr
. \
G = XS 0 Xsr 0
0 Ko (wgmuw,) 0 “Xp(egy=w)
°
Lxsr(wo-mr) 0 Xp(wy-vp) 0

t - -

T is the electrical torgue and T is the mechanical shaft

torque, w, is the synthronous angular frequency and w_ is

the motor rotor sﬁeed (elec. rad/sec.). All the motor -
parameters in eguations (5.1)-(5.3) are in per unit based on

the indpction motor ratings.

. has been stated in reference {39] that induction

P

motor stator transients usually have negligible effects in

-
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power system stability studies and these transients can be

disregarded by setting the derivatives of the stator flux

terms to zero, i.e.

(5.4)

The above physical assumption results in a third-
-l
order model for an induction motor and can be used as in
- »

{41] to construct the dxnamical equivalent of a group of

induction motors. -

5.2.2 Static Composite Load Representation

fearching through the ayailable literature, one can
find different static models that represent composite load
characteristics as a_function of load bus voltage. Some of
these models have been developed based on actual field tests
[2)], (3] and others based on analytical methods [35}-[37].
The availableomode;s for composite loads, including dynamic
load@ components with insignificant inertia, can be
classified as follows:

1. Exponential Model: this model has been recommended
by the IEEE working group [2]. The equations representing
the relationship between load active and reactive powér (P,
QL) and load bus véltage v are:

4
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(5.5)

where C1 and C, are proportionality constants and Kp and Kq

are the power-voltage sensitivity coefficients depending on’

9he type of load. The coefficients Kp and Kq are usually

" obtained from approximating the curves representing the

actual d?nam;c behaviour of the load.

Tﬁéﬁygnlinear load model given by equation (5.5) can
represent tﬁétihree load-voltage characteristics provided in
most digital stability progyrams. The constant power model
is ‘obtained by setting the sensitivity coefficient to zero.
If this coefficient 1is unity one obtains thé constant
current model, and the constant impedance model can be as

easily obtained by setting K =Kq=2. Thus, the exponential

P
load model is adequa%e in most transient and dynamic

¢

stability studies [11], [43], [44].

2. Polynomial Model: I? this model the actual 1load
power is expressed as a poly%omial function in the load bus
voltage as:

_ 2" n
Pz—¢0+Clv+,C2v +...+Cnv (5.6)

with simildr expression for Q This model has been

E.
suggested in reference [38] to account for the significant

inertial effects in motor :loads. A special case 1is the

-~
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quadratiq& function where only the first three terms in
equation (5.6) are considered, the coefficients Cor €y and
C2 are obtained from field tests. The quadratic function
model as presented in reference [3] has been criticized due
to the fact that it does not pass through a zero p, or Qz
point for zero voltage. However, it is as acceptable as the
exponential model for the range of voitages encountered
during swings [2].

‘3. Incremental Model: This -has been introduced by Berg
et al ([35], [(36] and it offers both voltage and frequency
dependence. The egquations relating thg incremental change

in load power due to incremental changes in bus voltage and

frequency (Av, Aw) are:

~ -

I | ] 3P, 9P,
AP!. IV dw av
= (5.7)
3Q 3Q )
so, | | o2 el
i !.J _av Jw

The incremental model 1is particularly suitable for

dynamic stability studies. The sensitivity coefficient

%&étrix in egmation (5.7) can be obtained analytically for
composite loads as in [35])] and ([37].

Throughout the analysis of possible interactions

between system coﬁposite loads and machine exc{;ation

control, we will follow the recommendation of the IEEE

working Agroupr [2) . in utilizing a static model of the

exponential form for composite 1load representation.
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However, it should be noted that both the quadratic function
and the incremental models (considering only voltage

dependence) can just as easily be applied to the method of

analysis if desired.

Ly

5.3 Method of Analysis

The analysis of load effects on synchronous mfchine
dynamic stability and the investigaéion of possible
interactions between system 1loads and machine excitation
control can be achieved by either one of two methods. First
is the use of the damping and synchronizing torque concepts.
Thege are usually associated with the use of simplified, but
syfficiently accurate, mpdels. ‘This hethod facilitates the\\
derivation of simple expressions that can be used in turn to
build up the basic concepts and to derive general con-
clusions concerning the interactions. Alternatively, eigen-
value and eigenvalue sensitivity techniques can be applied
to study specific systems and hence the amount of detail
desired can be incorporated in the system model.
Consequently, this approach provides a good opportunity to
justify the general conclusions that can be derived by using
the simplified model. ~

Reference [43] details a state space’ system formula-

y

tion incorporating a variety of load representations from

dynamic .dnduction motor models to static models of the
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exponential form and constant impedance. The authors
indicated that computational difficulties may arise in the
calculation of the coefficient matrix with a "not very
large" system. They also noted the difficulty 1in
simplifying the order of their system.

The method presented here was developed in order to
attempt such a simplification. In order to verify the
suitability of the simplified block diagram model for this
purpose, results ﬁave been compared by using a detailed
generator model and the evaluation of system eigenvalue

location and movement.

5.3.1 Block Diagram Representation

The investigation of load effects, through the
evaluation of synchronizing and damping torque coefficients,
is based on the well known block diagram approach of deMello
and Concordia [6]. The system under study is shown 1in
Figure (5.1). The generator is modeled with a constant
prime mover power, no damper windings, no stator copper
loss, and in addition, stator flux derivatives are
neglected. The loads are modeled in the exponential form as
indicated earlier. Under small perturbations, the system

can be described by the block diagram in Figure (5.2). ' The
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coefficients Ky-Kg which appear in the block diagranm,
relate the machine variables to each other at a particular
operating condition. The dotted pathé“ represent the
additional signals coming through the machine static exciter
and power system stabilizer. The block diagram coéfficients
are functions of the locad point and system configurétion as
well as the load characteristics (Kp, Kq). For a constant
impedance static load (Kp=Kq=2), the exbressions for the
coefficients Kl-Kg are straight forward amd@ well known ([6].

If the load is nonlinear, this is no longer thexaase.

¥

5.3.2 Derivation of Block Diagram Coefficients

Considering nonlinear static composite local loads,
Figure (5.2) 1is unchanged but the expressions for "the
coefficients must be derived anew. The equations for the
" machine, network, and ;tatic load are given in Appendix C.
The machine is represented with a third-order model as
mentioned before. The {inearized version of these equations
as well as analytical expressions for K and K. are also
giveq. It may be seen that these expressions are cumbersome
and complicated and do not permit the kind of simple
interpretation that is the strength of the block diagram
approach for linear load model. It is also noted that the
. other expressions have not beeﬁ included because they are

even more complicated and hence less useful.
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The alternative approach 1is to obtain the coeffi-
cients numerically. The linearized edquations are arranged
in the PQR form as in egquation (2.2) where:

the state vector is:

! t
x = A[E_, w, §] (5.4)
z ] ’
o
the input vector is: ‘
- t

u = A[Efd, Tm] (5.5)

the output vector is: ' a

-

- . . ¥ . 4 . . t
tz = A [Vd rvqr 1dgl lqgt ldeEquethr ID’-' lQl' lDNI IQN’VDIVQ]

(5.6)
In a manner similar &8 that in Chapter -2, advantage
is taken of the sparsity of the matrices [P], [Q] and [R].

The structure of these matrices is shown in Figure (5.3)

using the notation: {77771 is a matrix of non zero

3

elements, and | ] is a null matrix.

Using the procedure described in Chapter 2, the state

space coefficient matrices can be obtained in a very

-

straight forward manner. Again, the structure of these

matrices 1is 1illustrated in Figure (5.4) using the same

notation. Noting that:

y = [C]7x : C(5.7)

~

*
and

e

as & x(3) , ar, & y(m) . (5.8)

e
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)
and recalling the definition of Ky = ATe/AG for Eq constant

yields the relationship:

‘ Ky = ¢ (7,3) (5.9)

In a similar manner one can obtain:

c (7,1)

=
N
"

Ky = =1 /[Tg4q a(l,1)]

Kg = c(8,3)
Kg = c(8,1)

Thus, due to the independence of the output variables

on machine rotor speed deviations, it is possible to obtain

. «
the coefficients in a very simple manner as indicated above.

It is possible to check the algorithm by setting Kp = Kq = 2

"and comparing with the original method of deMello and
Concordia [6].

Fd

5.3.3 Effect of Load Characteristics on the Block Diagram
1 4

Coefficients

The block diagram coefficients have been calculated
for the system shown in Figurg {5.1) and the variation of
these coefficients with the change in load parameters (Kp»
Kq), for a variety of generation and load conditions, have

been plotted in Figures (5.5) and (5.6). Plots of those
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coefficients which did .not change more than 5% have been
omitted.

Effect of MW-Sensitivity to voltage:

The variation of K, and Ky versus the change in the

-

load parameter Kp is illustrated in Figures (5.5.a) and
{(5.5.b) for a variety of generation and 1load. The other
coefficients K, and K4—K6 do not éhange significantly with

B Typical values are noted in Appendix C.

Examining. Figure (5.5.a), it can be noticed that the
coefficient K, exibits large variation to changes in the
load index kp. This may be explained as follows.

In the system studied, the static composite load is
supplied by two sources, the local hydro-electric machine
connected directly to the load bus, and the remote infinite
bus source which supplies the load through a tranémission’
line reactance. If the load bus voltage varies, the 1load
active power changes, the amount depending on the MW-voltage
sensitivity (Kp). This .change’-in demand power will be
balanced by the two sources. If Kp is relatively large, the
generator active power is reguired to change to. a greater
degree, causing larger electiic torque variationé which
result in greater variation ef K, with Kp. -
Effect of MVAR-Sensitivity to Voltage:

<

" The two important parameters changing with‘ieactive

power sensitivity (Kq) are KS and KG‘ These represent,

vy
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respectively, the proportionality constants of the terminal
voltage deviations due to changes in machine rotor angle and
the voltage proportional to direc@ axis flux linkage. It
can be.%gen from Figures (5.6.c) and (5.6.d) that there |is
quite a difference in the behaviour of these parameters with
different local inductive or capacitive loads. These
digferences may be explained in the following way.

If, in the case of an inductive local load drawing
reactive power, the sensitivity of this reactive power to
voltage 1is high (Kq is high), and in thg‘ event that the
terminal bys voltage ﬁecreases; the rgactive power drawn by
the load will also decrease. This has”a damping effect on
further voltage reduction due to the lower internal goltage
érops caused by machine currents. This is illustrated by
curve (a) in Figure (5.7), This means in turn that both Kg
énd K¢ should decrease in maglPitude with the increase in Kq.

If, we consifder a reduction in the bus terminal
voltage of a capacitive locgi load which delivers reactive
power rather than absorbing it, the -machine is required to

supply additional reactive power, hence the internal voltage
drops increase, causifg a further decrease in terﬁinal
voltage as illustrated in curve (b). Curve (c)ﬂi}lustrates
the effect with an inductive 1local 1load with zero
sensitiviéy. Iﬁ'this.cgse the damping effect on voltage

swings is reduced and the variation is seen to be greater

N
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than in curve (a}). .

To understand the behaviour of the coefficient K5, we
note that in the model chosen the machine is represented
with a constant voltage behind a reactance. There 1is a
cross-coupling between the generation of active and reactive
power so that ahy inc;ease in reactive power causes an
increase in active power and hence torque and the
coefficient K,. Inductive and capacitive loads cause
opposite effects in the internal voltage drop and thus it

follows that_K2 increases with Kq for capacitive loads but

decreases for inductive loads as shown in Figure (5.6.a).

5.4 Effect of Load Characteristics on System Stability

Dynamic stability prediction of ‘the system under
study is a function of the block diagram coefficients (K1 -
KG). It has been shown in the previous section that some of
these coefficients are highly dependent oﬁ the static load
characteristics and hence it 1is of interest to evaluate
their effect on thg system stability.

Under small pertﬁrbations and at any oscillation
frequency, the develbped braking torgue can. be separated

into two components\ {6];: one is in phase with rotor angle

deviation called synckronizing torque, the other in phase

with rotor speed deviatl called damping torque. The

o~

condition for stability is that both of the respective c%L
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efficients are positive. The expressions of these coeffii
cients are functions of the bldck diagram coefficients, and
hence the 1load characteristics, and the excitation-
stabilization loop parameters.

The salient advantage of the block diagram model is
its good accuracy for many practical studies ‘despite the
simplifying assumptions inherent in the machinéjrepresenta—
tion. To ensure that this simple model is valid for varying
degrees of load sensitivity to voltage, a detailed model has
been used to include the effects of damper windings, stator
resistance, stator flux derivativés, and governor action.
Thus, eigenyvalue plots have been obtained to illustrate the
validity of the general conclusions- reached based on the
simplified model using the synchronizing and damping torque

concepts,

5.4.1 Machine Equipped With Static Exciter

Static exciters are used because of their fast
response and hence ability to provide synchronizing torque
under transient conditions. The concurrent disadvantage 1is
the reduction of damping torgque under dynamic conditions
[6]. The transfer function of a static exciter is given
below:

Ge = AEfd/Aet = - Ke/(l + S Te) {(5.11)
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where Ke is the exciter gain and Te is the time constant

which is usually very small compared to Tdo’

Simple expresijyﬁg for the damping and synchronizing

torque coefficients,”for a 'machine equipped with a static

exciter, have been derived in [19]. They are valid for the

2 . .
w Te T << 1, K K3 K6 >> 1. This is

case where Te << Te q Te e

ql
generally the case for a static exciter. These expressions

are:
K K
2 4
&, s * 1] :
K (o) = K, - (5.12)
s 17T, 272

Kexﬁf/ X,
< Ks + g
6 —— (5.13)

1+ 4 Teq

KD(w) =

Teq = Tao’Xs Ke (5.14)

also the steady state synchronizing coefficient is given in

[6] as:
K, = Ky - Ky K3 Kg ' (5.15)

In practical situgtions K4/Ke is much smaller than K¢
and thus can be neglécted in the above expressions.

Effect of MW-Sensitivity to Voltage: .

Figure (5.8.a) shows the variation of the steady

state synchronizing torque coefficient Ks with the change in

115
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{a) Inductive Locad (b) Capacitive Load

Figure 5.8 Variation of Braking Torque Coefficients With X

Generation and Load Conditions same as for Figure 5.5
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K using equation (5.15). This coefficient is seen to

pl
increase under light generation. This is due essentially to

the fact that K,, while independent of K is negative for

p’
lighé generation, and the slight decrease in K3 is
overshadowed by the strong increase 1in K,. Under heavy
generation conditions, K4 is positive and Ks decreases as
the load sensitivity Kp increases.

The damping torque coefficient Ky, as obtained from
equation (5.13), is normalized (per unit torque/per unit
speed) and plotted against Kp at a frequency of oscillation
of 7.0 rad/sec. which is an average value for the chosen
machine bnder different generation condit}ons. It may be
seen that in general for heavy generation Kg is negative,
thus the damping is negative; while KS reverses and thus
both are positive for medium and 1light generation. The
amount of damping whether positive or negative, increases
significantly with load sensitivity, again the dominating
factor is K,.

For the system under study, positive synchronizing
torque exists under all conditions. The decrease in
synchronfzing torque as generation increases has been noted
and the effect of MW-Voltage sensitivity is seen to be
minimal. The significance upon Bamping torque however is
mar ked. In many systems using automatic voltage regulators

there is a trade-off between an improvement in synchronizing

-

117



torque and a degradation in damping torque where the damping
produced by voltage regulator action negates the inherent
machine damping. This is demonstrated by examining equation
{5.13)» The natural machine damping (through K4) is
positive while at high levels of generation the voltage
regulator caused damping (Ehrough Ke) is negative. It may
also be seen from the equation that as the exciter gain
increases, the relative effect of the natural damping is
reduced. Under conditions.of light generation where Kg is
positivé, the voltage regulator aids the natural machine
damping. Both conditions will be affected by Ko which tends
to be positive.l

These effects are verified by the eigenvalue analysis
of the more detailed model as indicated in Figure (5.9).
The fact that the critical eigenvalue is a complex pair with
varying .real part implies that the instability is- due to
lack of damping. |

Figure (5.10) demonstrates théz there are some
specific cases where the choice of 1local eload model is
critical. For example let us consider the case of 1light
local generation with a heavy local load. Using a constant
impedance model (Kp=2.0), K, is positive and suffi;iently
large that we .wquld predict adequate damping anq

,synchrbnizing torgques for stable operation. However, if we

choose another popular model for composite loads, that of

118
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constant active power (Kp=0), we should prédict instability
due to negative damping. The difference in predicted
performance is 1illustrated by the two rotor angle swings
corresponding to light load and the two values of Kg that
are given in.Figure (5.10).

Effect of MVAR~Voltage Sensitivity to Voltage:

I'e
The variation of KS and KD versus the change in K

q
under the same conditions of Figure (5.8) are plotted in

Figure (5.11). The behaviour of the steady state
syhchroni?ing coefficient is consisgenprwith the variation
of K, and K3, K; and k4 being practically‘constant. " The
vafiation of the normalized damping coefficient 1is also
consistent. The variations in K, apd Ko tend to cancel so
that the major effect is determined by K5 for large values
of éxciter gain which is true for static exciters.

The system perforhance is quite different under the
effect of inductive and capacitive local 1loads. Near.the
dynamic stability limit, where higher values of K increase

q
stability with an inductive local 1load, they have an

unstabilizing effect with local éapac{tive loads. This can
be explained with reference to the béhéviour of K, rand Kgq
with the change in Kq as shown in Figures (5.6.a) and
(5.6.c).

In the case of the inductive load, both K, and Kg

decrease in magnitude with the increase in K This in turn

q°
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reduces the magnitude of the damping torgque component
through the static exciter, equation (5.13). For negative
_values of Kg (near the stability boundary) the amount of
negative damping introduced by the stati’ﬁ%xciter becomes

smaller with larger vallues of K (Figure 5.1l.a) and the

!
net damping torgque can become positive due to the natural
damping of the machine. Thfs‘is illustrated and confirmed
by the movement of the complex eigenvalue for the more
detailed modelvin Figure (5.9). The opposite is true in
cases where K¢ is positive (light and moderate generation
levels) and %}ill decreases with the increase in Kq which
results in- a smaller positive damping torque component.
This again is confirmed by the eigenvalue analysis.

In the case of the local capacitive load where both

K, and K, increase in magnitude as K  increases, the effect

q
is oppogite to the inductive case for both the high and
moderate generation levels and this again is born out by
examining the movement of the dominanf eigenvalue in “the
more éetailed model.

-

5.4.3 Machine Equipped With Stabilizer

In the present analysis a stabilizing signal derived

from machine speed deviations is considered. The machine

-

- stabilizer. is represented by the transfer function Gg in the

block diagram of Figure (5.12). The output signal from the

L}
o
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stabilizer is-a function.of the oscillating frequency and it
is usually @esigned in such a fashion as to provide adequate
- damping over the spectrum of expected frequency of
oscillation, 1i.e., G, should have enough phase 1lead to
compensate a significant part of the phase lag contributed
by the machine and regulator [21]}. Figure (5.12) is taken
directly from reference [6]. This shows the elements of the
system in question relating the effect of speed through the
stabilizing function Gg through the voltage regulator loops
affecting AE; whicb produces a Fomponent'of torque ATsig'
Inspecting Figure (5.12) it can be seen that the

e

1] o~
stabilizing torgque signal ATsig is in phase of AEq with the

proportionality constant Kg. It can also be realized that

L
if the stabilizer is_ idealy designed (AEq is in phase with

Aw) éhe pure damping torque component supplied by the
stabilizer will be directly proportional to the block
diagram coefficient Kot On the other hand, it was shown in
Section 5.3 that the coefficient K_ is highly dependent on

P

the MW-voltage sensitivity coefficient Ké. Moreover, the

sign of K, changes under 1light generation conditions from

=

the case of constant active power 1load model (Kp=0) to
constant impedance load model (Kp=2). ‘Consequently, the
choice of the st;bilizer parameters, in this case, is very
sensitive to khe actual system load characteristics under

light generation conditions. -
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In order to further illustrate the interaction
between system loads with different characteristics, and the
stabilizer action; the machine rotor angle oscillations were
computed using the simplified model with a stabilizer. The
ftabilizer was designed to provide an adequate damping
torque component under the classical assumption of constant
impedance load model. This is illustrated by curve (a) in
Figure (5.13). = Curve (b) demonstrates the unstabilizing
action of the power syst?m stabilizer, with the same
transfer function as before, under the consideration of

constant active. power load model (K,.=0, Kq=2). The negative

P
.damping 1is attributed, in this case, to the use of the
stabilizer due to the negative value of K, while it was
assumed positive in the design procedure.

This phenomenon will be discussed in more detail in
the next Chapter using the same system structure*but with a
detailed model for the generating unit. The eigenvalue and

eigenvalue sensitivity techniques will be used in the

analysis.

5.5 System with Remote Composite Load

-
The analysis presented so far, considffs a system

with a local 1load ‘supplied in part with 1local hydro

generation, the balance goming from a remote infipite
‘ k)

v

source. It is of interest to extend the previously
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presented investigations- to the case where the load is
remote from the hydro generation and for dispatch conditions
which result in rotor angles of that generation to lead the
infinite bus. This case has been considered in this
section., Figure (5.14) shows a sinble line diagram of the
system.

" The block diagram coefficients (K;-Kg) have been
obtained using the same method as in Section 2.3, then the
steady state synchronizing coefficient Kg and the damping
coefficient Ky have been calculated. The variation of these
coefficients (Kg and Kj) versus the change in the load

P
(5.16) under a variety of operating conditions.

indices (K_ and Kq) are illustrated in Figures (5.15) and

Examining the behaviour of the damping and'synchro—
nizing torque coefficiénés in this case, it can be noticed
that the synchronous machine stability is affected by loads
with different characteristics. The effect is consistent
with the previously analysed case utilizing a local load.
It can also be seen that the co;fficients Ky and Kyexhibit
smaller changes in the practical range of load index
varition. Conseguently, it can be inferred that under the
situatioh of remote composite 1load, synchronous machine
stability is less dependent on the choice of the load model.

This is essentially due to the fact that the amount of

interaction between system 1load and machine. excitation
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(a) Inductive Load

(b) Capacitive Load ™~

Figure 5.16 Variation of Braking Torque Coefficidhts With K

Generation and Load Conditions same as for Figure 5.5
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control is reduced.

5.6 _ Summary

The simple block diagram approach has been extended
to include the effect of composite loads modeled as static
nonlinear functions of system bus voltage. The behaviour of
the block diagram coefficéents h;s been presented for a
variety of generation levels and load characteristics.
Consequently, the possible interactions between system loads
and machine excitation control have been investigated.
Hence, the eﬁfect of these interactions on synchronous
machine dynamic stability has been analysed using the
concepts of damping and synchronizing torque.

The analysis based on the simple block diagram model
has been verified by using a more detailed model for the
synchronous machine (13th Ath

ocrder compared to ) to plot the

movement of the critical eigenvalue pair with different load

P meters. ,

giga\)"I'he study has prédicted that th% choice of constant
poweg, or constant impedance 1load model 1is critical for
staﬁﬁliﬁy predictions where the 1local generation is 1light
relative to the load requirements. A constant impedance
model results in a prediction of stable operation whereas a
constZnt power model 'can result in a prediction of

N

instability due to negative damping. This negative damping
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is attributable to the use of a static exciter and is
expected to be worsened by the presence of a supplementary
stabilizing signal.

This type of analysis and the results obtained
reinforce the need for field test data in order to select an
adequate load model in stability studies, This is
particularly important in situations where the choice of
load model can make the difference between correct and

incorrect prediction relating to the stability of operation.
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Chapter 6

APPLICATION TO PRACTICAL SYSTEMS

6.1 Introduction

In Chapters 2 through 4 an approach has been
developed to model and analyse interconnected power systems
subject to small perturbations. The overall approach Iis
divided into two sections. The first describes a technique
to formulate the system equations in state-space form. The
second describes a technique to track the critical eigen-
values over the practical range of control and design
parameters. The tracking technique is based on the use of
eigenvalue sensitivities in estimating the possible eigen-
value movement. ‘

In Chapter 5 a simplified approach has been presented
to build up the basic concepts related to composite 1load
effects on system dynamic stability.

In this Chapter the application of these approaches
are considered for.three specific cases:

1. Employment of eigenvalue sensitivities to predict the

interaction between static loads with different_

characteristics and excitation control 1loop para-
meters. This 1leads to recommendations concerning
light generation operation, in particular the use of
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stabilizing signals. This is reported in Section
6.2,

Prediction’of the dependency of subsynchronous modes
on system parameters for a th%imal generating unit
with a large induction motor load. - The machine'is
connected to a large external sysgﬁﬁ via a compen-
sated transmission 1line. Eigenvalue sensitivities
are used to determine which parameters have a linear,
and which have a nonlinear, effect on subsynchronous
resonance instabili;y. Section 6.3 gives a detailed
analysis of this situation.

Dynamic stability evaluation of a 3-generator, 5-bus
system. The eigenvalue trécking approach is used to
re-evaluate system stability as some parameters of
the system are changed. The computational efficiency
of the tracking approach over the repeated eigenvalue
approach is demofstrated using the expressions

. .
developed in Section 4.4. The overall study is

presented in Section 6.4.

General concluding comments are made in Section 6.5.

»
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6.2 Lightly Loaded Hydro Generator With Local Composite
Load

This section demonstrates the use of second-order
eigenvalue sensitivities in clariffing the interaction
between machine excitatién control and composite local loads
with different characteristics and hence the effect én
damping the synchronous machine slow oscillations. it will
be shown that this is particularly significant under 1light
generatfzn operation where a static excited generator is
equipped with a power system stabilizer. The stabilizing
signal is derived from the generator speed and it is
designed to improve the steady state stability under heavy
generation conditions. |

Figure (6.1) 1is a single 1line diagram of a hydro
generator connected to a large interconnected sfstem
(represented by an infinite bds) through a transmission line
(reactance) . The generator is -equipped with a static
exciter and a supplementary stabilizing signal, governor
effects are also ;ncluded. The terminal bus is feeding a
composite load with its power consumption represented as an
exponential function of bus voltage as in equation (5.5).
The system data are given in Figure (6.1).

In the simulation of  the .system, ne;workmelectrical

transients have ‘been neglected 'since they do not have a

significant effect on the stabiliﬁy! of the synchronous

3
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L

Synchronous ' Transmission
Machine Line
l E Infinite
- Ll 755\ E Bus
.
Local Load
. Figure 6.1 Hydro System
Data for Figure 6.1
o, -
Machine 66 MVA, 13.8 KV Rating
In pu based on machine rating:
=, = .14, X_, = .087, X__ = .33, X__ = .163,
Xad 567, Xf ’ rd ' aq * ’ kq T e
= , = . = ,02, r = .04, H = 4.29 sec.
= ,2 = .7 '
PG ’ QG .
. % \
Exciter—-Stablizer
K = 200, K. = 20
e "0 .
— — = . - - T = - 0 3 secC.
Te .002, TQ l.4, T4 .121, T, 033, v
Table 6.1 Normalized First and Second-Order Sensitivities
Kp = Kq = 2 . .
System Load Real Power Load Reactive Power .
Eigenvalucs Index C) p Index cq Stabilizer Gain KQ Exciter Gain Xe
A 2 A J) An An An An An An
1 1-127.25738 | -81.95560.0]14.20233442/46.3£j65.3 |-19.4+j23.2]-.17225.342 .353%j.899 [.001%j.002
2 -508.,0 -.76 -.033 Nd 2,60 -.843 -1.39 T .007 -8.04 - .230
3 - 81.6 -1.74 ~.288 -1.67 190 -1.39 .145 13.42 -6.93
4 - 69.1 1.36 \ ~.250 - .461 .114 .633 - .l00 1.70 .776
5 |-25.72j27.0/4.48+j5.00 |-1.4935.420|1,59%§7.20 |.287£j1.45 |5.33235.84 [-1.775j.389 -7.53£j28.8/6.683j5.00
6 - 40.5 -4.86 2.36 -2.80 . -.145 +6.38 2.95 7.15 -7.45
7 |-1.27236.69 -.9743j1.13 .312+5.007 |0.115.015 |-.004+j.005]-.874%j1.01].267].000 . .0535§.276 |.001+j.304
8 |-3.15£31,78|-.022+5.095|-.004%j.016 ~.020j.084|-.003%3.008 }.001+j.011 }-,0027j.015
9 - 1,44 .028 . 002 .026 .003 - .002 .
10 R £ - .022 -.002 ~-.020
11 | -.1752j7.55{ ~, 04325, 004 -.002£3.003 no stabilizer KQ =0 -
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machine tordue—angle loop which is of concern in this study.

The set of eqdations describing the dynamic
performance of the system has been arranged in state space
form as proposed in Chapter 2. The eigenvalues of the'
system coefficient matrix fA] have been examined for

stability including and neglecting power system stabilizer

.

Before examining the eigenvalue sensitivities, it

action.

6.2.1 Generator With Stabilizer

-

should be mentioned that the characteristic of the 1local
load present in this system is significant in evaluating the
steaéy state stability. If the Igad approximates constant
active power combined with constant reactance (Kp = 0.0, Kq
= 2.0), then the system is expected to be unstable. The
eigenvalue pair corresponding to the synchronous machine
torque angle mode is +.053%j7.74. If the load approximates

1

constant impedance (Kp = Kq = 2.0), then the system is
expécted to be stable (the eigenvalue pair is -1.27%j6.69).
Thus we knbw*that for this system the damping of the machine
totor slow oscillations is related to thg'value of Kp that
describes the load characteristic. A

Table (6.1) 1lists both first' and second-order’
normalized eigenvalue sensitivities with respect to 1load

indices and "the stabilizer and exciter gains. The relevant

Qe
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system eigenvalues are lfétéd at the left. "The eigenvalues
corresponding to the stator and rotor modeé (rows 1-4) and
governor modes ]rows %—1OL are included for comparison as
are the sensitivities to the reactive power index of the
load. ’

' Examining the entries of the table it can be noted
that the second-order sensitivities are relatively large in
rows 5, 6 Qnd 7. The eigenvalues in these rows correspond
to the AVR, exciter and the main torque angle modes
respectively. The real'part of the second-order sensitivity
is approximately one third to one half of the first-order ,
term for each of these eigenvalues for both the active power
logd.index (Kp) and the stabilizer gain.(KQ). The sensi-
tivities of the imaginary parts tend to bé mucp smaller
implying that the major ~effect will be related to the
d;mping in these modes and not to the frequency of,
oscillation. Both 'thq AVR and the exciter modes are
affected by the static exciter gain (Ke), the second—ordér
term being approximaéély equal to the first-order real part.

Of the three 'modes, the oné corresponding to the
torque—angle (row #7) 'is of most importance because the
gensitivity terms indicate significant movement of the real

part of the eigenvalue with . moderate parameter changes;

i.e., the dampz(gll present in this mode will. be SLgnlfxcantly

affected if either the load characteriSt1c (the index K ) or
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the stabilizer gain changes. In rows #5 and #6 the
second~order term will affect the accuracy of prediction but
this prediction is less critical.

Figure (6.2) illustrates the improved accuracy in the
eigenvalue movement prediction obtainable by including the
second-order terﬁs. An eigenvalue plot obtained by repeated
eigenvalue computation is shown corresponding to the main
torque~angle mode for a practical range of values of Kp.
Using a starting point of Kp = 2 where the eigenvalué is
computed, the other Qalues are estimated by using the firsﬁ
and second-order sensitivity calculations. It can be seen
that the use of second-order terms allows one to explore the
complete range of valﬁes for Kp with only one eigenvalue
computation whereas tﬁe use of first-order terms only would
necessitate additional eigenvalue computations of the
complete set, particularly at thé low end of KP which is
critical in this case. The error is seenr to be almost
completely in the real part of the eigenvalue corresponding
to the degree of damping present.

This is further demonstrated in Figure (6.3) where
the reél part of the eigenvalue is shown plotted against the

parameter K_ to illustrate the nonlinear relationship,

P
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k =3
P + 3
#——e Repeated Calculation
o~——+ 1st Order Estimation T3
® » »  2nd Order Estimation + 2
P

+ 1
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Figure 6.3 Calculated and Estimated Values' of o
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6.6.2 Removal of The Stabilizer

The use of a static exciter can be detrimental to the
damping of the machine rotor slow oscillations especially
under full load conditions [6]. Consequently, a stabilizing
signal may be included to improve the damping of this mode
and thereby to extend the steady state stability limit.

However, under 1light generation conditions, the
presence of the stabilizing signal may have the reverse
effect. In particular, Figures (6.2) and (6.3) illustrate
that the system is expected to be unstable if the load is
characterized by a constant power model but stable if it is
closer to a constant impedance. Removal of the stabilizer
signal at light generation level worsens the damping for a
constant impedance load model but improves it for constant
power by removing the negative damping that previously
existed. This reduced sensitivity to the load characteris-
tic is noted in row #11 of Table (6.1).

This instability pqenomenon has two practical
implications. One 1is the need for system measurement to
detegmine 1oad‘representation for adequate system control,
the other is the need to know the range of possible load
characteristics for stabilizer design.~

The results obtained in tﬁis study confirm the

general conclusions reached in the previous Chapter.
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6.3 Subsynchronous Resonance Effects

This section demonstrates the effect of different
system parameters on the subsynchronous modes for a thermal
generator with a long compensated traﬁsmission network.

éigure (6.4) is a single line diagram representing a
large thermal generating unit feeding an induction motor
load through a compensated transmission 1line. This sub-
system is connected to an infinite bus through a rglatively
shorter transmission 1line. The syncﬁronous machine is
represenfed with one damper circuit in each axis as in
Appendix’A. The gehnerator mechéﬁical shaft is represented
aé a five mass 'system, these represent one equivalent
rotating mass corresponding to eacm,tﬁrbine stage and one

. ’
equivalent mass represegting the generator rotor. The

-

13

parameters of the synchronous machine, shaft system, static
éxciter—stabilizer, and the governor: system are taken
directly from reference [13)} and are given with block
diagram illustrations in Figures k6.4) and (6.5). Network
and stator electrical transients are included in order to
obtain correct subsynchronous resonance effects. The
induction motor load is represented by an equivalent fifth-
order model as described in Bection (5.2), the 1load
parameters are given in Figure (6.4).

The system coefficient matrix [A]" is obtained as

described in Chaptéi 2. Then, the system eigénvalues and
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generator -~ B)

Figure 6.4 Thermal System Configuration

DATA: Machine
555 MVA, 24 KV Rating
In pu dased on machine rating:

Xaq = 1138, Xg = 0781, X4 = .088

Koo = 1.038, Xy = 227, r, = .00153

rp = .000748, req = 00805, Ty = .00253, H = 3.38 sec.
Po = -9, Og = .44

Network

R, = .04, X3 = :5, Xg = -2, Rgpy = .015 Y

X, = .15, By = .10, By = .12

Induction Motorx

29.0, XSr = 28.5, rg = xr. = .019 pu

1
.bo72, H = .44 sec.

200., Te = .002, T_ = .09, T, = 1.41

a

Q
.033 sec.,'KQ = 7., 2 = .5 pu.
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(a) Mechanical System Model j

3

steamchest reheat . crossover 1
1 -1 i
*11+S¢ 1+5t
1+Svehn %rh co .
. servomoter speed relay speed sensor
1 1
e K -
1+ “em (g ) *STer g

ref

(b) Governor and Turbine Model

»

Figure 6.5 Mechanical Shaft and Turbine Governor Models

DATA: Shaft
M, = 1.71, M

1 5 = 2.38, My = 2.31, M
Mg = .248, Dy = 0, 52 = .249, D, =
D, = .255, Dy = .237, §;, = 62.3
S,3.= 75.6, S5, = 48.4, S45 = 21.8
Turbine-Governor
Teh = .3, Ten = 7., Teo = 2, Ty
Tem = -3 secs, Ry = 25., Fyp = .4,
BFIP = .3, Fip = 15
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eigenvalue sensitivities are calculated .at a generating

level of 1.0 per unit at .9 .power factor lagging.

6.3.1 Effect of Network Parameters

The set of eigenvalues corresponding to different

system modes is listed in column 1 of Table (6.2). These

" reflect the instability of three oscillatory modes corres-

ponding to the three shaft freéuencies of 103.5, 151, and
190 rad/sec. ,Applying sensitivity analysis, .it can be
determined that the shaft instabilities afe due to the
interacﬁion of the network mode at 173.5 rad/sec. (#6) and
the shaft modes corresponding to the first three eigen-
values.

In columns 2 and 3 are shown the normalized first and
second-order sensitivities with respect to the network para-
meters X and X ;¢ Considering first-order sensitivities,
the conclusions which can be drawn from the results s$hown
are in general agreement with these presented in [69]. A
relatively small increase in the tie line reactance xel is
seen to reinforce the shaft instability mode at 190 gad/sec.
(#2) and cures shaft instabilities at 151 and 103.5 rad/sec.
($1 and #3). This is reasonable since a‘small increase in
xel increases the frequency of the interacting electfical

mode at 173.5 rad/sec, (#6) and hence moves it towards the

mechanical mode at 190 rad/sec. (#2) and away from the other

143-

-



Normalized First and Second-Orxder Sensitiviﬁies

Table 6.2
.
1 2 X 3 Xoy 4 R, 5 H,
A An n n An “An '\n An ln
1 .19725151. |2.585).087 | +8.23:36.00 -.86435j.075] 1.385j.526
& 2| .04423190. |-1.58%j.754] 8.74251.88 | .3505).166 | .289%j.178
8 3] .021£5103.5] .5474¢31.46 | 1.002j1.62 -{226:;).893 .309¢3.885 |-.025¢§,003
4] -.30055276 :
5] -8.00¢j 2065 ,2703§45.3 | ~.136£§21.%-.575%§ .000
6113.325173.5| . 09737104.5} -17.52327.6] 5.582}28.6 [ -3.685j17.4 .4585).036
3 7] -14.2£§2932f -.1032§5.74 9.671§362.7410.923335.4 -.40%j .00
2 9 8| -14.4£§580.] -.058¢3101.] .0647J25.8 | 3.913§26.9 | -2.652316.3 -.1275j.010)
39 o -18.6:53742] ~.069¢j8.51 12.453681, | -13.5£j626.] -.172¢3.000
) F101-55.55j 10241 . -.23543152.}.2135§153.4
L1l - 768 - .020 -.01 .018 - .015 - .016 020
= w12l - .930 .033 .013 - .030 .023 .029 - .039 - .
5:13 -2.175511.6} ~1.075§2.10| -.44653.705 1.02¢§1.92 | -.831231.37 -.092%j.482| .1745).060 [.25223.749 [.15225.386
514 -10.5£314.1)1.01551.79 | .6105§.776 | -1.08251.64] 1.043§1.34 | -.04325.187) -.231¢§.113 .0463].620 | .472¢3.207
g.als -30.}) -.014
= J16] -51.8 -1.32 -.030 1.59 -1.03 D
5 17{ -500.$ - 067 .042
s 518 -3, 542518.2] -. 24323915} -. 41425 .463] . 20455 . 871 | -.4025.783 | -2.8955.463{ .15973.300 ~.3805)7.4¢ -.314236.76
& S19f- s.51 - .864 -.529 .779 - .741 -6.06 -4.24 .138
£2019.57+§376.8 .0005§.132
“5{21 - 142 . ‘ .
2 2221 - 2.90 - .263 -.104 237 - .179 - .091 .209
5 623{ -3.89¢5.901) .1317§.194 | .04655.066 | -.119j.174] .08425.123 | -.1635§.231 .868%j.332
5 324 - 4.96 - 0%, .01 029 . - .201 2.11
Table 6.3 Normalized First and Second-Qrder Sensitivities
< | ! 2 Xq 3 z 4 o s Top
A ll"i ll‘l xﬂ Al‘l An A!‘l kn An
o 1 .197%5151. | .100%5.614
% 2| .0s4+j190. { -.1205j.025 -.50735.136
& 3}.021:j103.5 .0553j.217 -.124%3.432
41 -.30053276
5] -8.00%j 2065 . - -
o 6F13.3£3173.5 .061£§.328 .5907j.174 | .0125j.010
25 7 -14.2¢52932 ‘
3 2% g -14.4%3580.
7 2 o -18.62j3742
10-55.5331024 -
:; 1 - .768 - .102 -.103 ) -
Suld - .930 .164 .103 , .016
814 -2.17%511.4 -3.4333.537] -.85023. 085} .012+j.01 -.01775.017} ,023j . 000
g:.‘u -16.52j14.1] 4.29+5.321 |1.865}.498 :
£ 515 -30.1 .152 -.015
= S16f -91.8 - .081 - .018 | ]
g ©*17] -500.5 - .01l - .01
. w18l -3.542918.% -1.112j1.23] -1.0225.519} . 02035 .000 . -
2219 - s.51 &J .121 .09s -.964 .227 -.704
220}9.572§376.
» 2 \ 1
a2} - 142 T~
g g24 - 2,90 ! ,358 .508
[~ 623 -3.892j.901] .0242§.037 -.0885).015] -.196%5.178| 2.2925.118 | -2.685j3.46
lgéu - 4.96 .0110 v 5.08 -3.65 -,151 .511
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two modes.

The above analysis is only true under the assumption ¢~
of small changes in Xel. Using the complementary frequency
concept [23], the resonating frequency in a stationary net-
work is proportional to the reciprocal of the square root of
the total inductive reactance in the resonating loop. This
explains the relatively high second-order sensitivities, due
to changes in Xel for both the corresponding network modes
(especially #6 and #8) and the first three unstable shaft
modes . Sensitivities to changes 1in X, indicate opposite
effects compared to corresponding changes in xel’

Eigenvalues #13 and #14 are seen to be sensitive to
variations in Xc .and Xel, this is expected since these
eigenvalues correspond respectively to the main torque-angile
loop and the AVR oscillatory modes. Aéain the relatively
high second-order sensitivitie§ demonstrate the fact that
these eigenvalues are not simple linear functions of network

parameters.

6.3.2 Effect of Induction Motor Loads

The sensitivities of eigenvalues #6 and #3 QO an
increase in the indﬁction motor rotor resistance (kr) show
the effect of negative damping on the mode a£ﬁ173.5 rad/sec.
and the positive damping' effect on the mode _at ROB.S

. N
rad/sec. This is in agreement with the results presented in

N . {
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[69] and the analysis in [29]. At subsynchror@®us

frequencies, currents at that frequency flow in the motor

a

DY
‘'stator causing the equivalent induction motor rotor

resistance to be negative (induction generator action);

-~

hence, the increase in the magnitude of the equivalent rotor

resistance causes an opposite effect compared to the
\Y . N

-

increase in the positive tie line resistance.

Sensjtivity of eigenvalues #18 and #19 to changes in
r, demonstrates the effect of rotor resistance in damping
induction motor rotor oscillati?ns. The increase in the

-inertia constant of the induction motor load (Hm) is seen to

increase the damping and decrease the frequency of induction
Y

. motor rotor oscillation (#18). This reflects back an:

. . x
unstabilizing effect on the main torque—-angle loop of the
synchronous machine (#13). This is reasonable since the

induétion motor load is frequency dependent.

LI

6.3.3 Stabilizer Fffecgs_ ‘

Examining column 2°of Table (6.3) yields the fact
that Ehe increase in the stabilize; .gain -(Kgiﬁ adds a
positive damping- component at 11.6 rad/sec. (#13) and the
amount of daﬁpiqg is seen to be practically proportional to

KQ vhich 1is to be eﬁpected "if the stabilizer is appro-

.briaéely designed. It follows that the démping effect on

2

the dominént QSciliaqions at ll.g rad/sec. due to the

A N 4
I : \\ 13 > g
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iﬁcreé;e in KQ causes in .turn additional damping to the
induction motor rotor oscillations at 18.2 rad/sec; (#18).
-Examining the sensitivities of the first threef
eigenvalues to changes in KQ illustrates the ,interactio?
between machine stabilizer and shaft instabilities [15].
Increasing KQ is seen to provide ﬁésitive damping at 190
rad/sec. (#2). HOWevgr, it contributes negative damping at
151 and 103.% rad/sec. (#1 and #3). The insignificgnt
second-order sensitivities at the&hbdve three frequencieg in
.this case can be " explained by examining the stabilizer
produced damping for the shaft oscillatory modes. These
damping torques cin be positive or negative depending on the
mode frequency [15). Since the frequency of the shaft modes
are‘changing insignificantly, the améunt of damping torque
is proportional to changes in Kg- ‘ ,
" The sensitivities listed in column 3 show the

‘?ignificant effect of the selection of the speed. pick up

point (Z) on the stability of shaft modes (#2 an #3). o

6.3.4 Governor Effects -~
In the last two columns of Table (6.3), are listed
the sensitivities with 7espect to two of the governor time

constants. . These are presented to demonstrate the

N ¢

importance ‘of second-order sensitivities. For example,

relying on the first-order sensitivity of eigenvalue #24 to

~
2 -
T =
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changes in Teo (crossover time constant), a one per unit
increase in Teo is seen to cause instability to the mode
corresponding to ‘eigenvalue #24. Consideration of the

second~order term demonstrates the nonlinear relationship

between eigenvalue #24 and rt_, with the result that system

stability is preserved even with relatively wide changes in

T .
Cco : r

6.4 Three Machine-Five Bus System

This Section demonstrates the .application of the
eigenvalue "tracking" .approach to the dynamic stability
~analysis of‘ a, five-bus system. Figure (6.6) shows the
struqture'and the operating conditions of the interconnected
system. The system comprises three generating units at
buses $1, $2 and $#3; the first is fossil, the second is
nuclear, and the third is a smaller hydro unit. Machines #1
and #2 are equipped with static .exciters and stabilizing
signals derived from each machine speed, machine #3 is
eguipped with a ;ypg 1 excife;. Govgrnor effects are
included in the simulgtion of the three machines. System
loads are represented as linear static elements at buses $#2,
$3 and #4 in addition to two ‘éynamical equivalents for
i;duction motor loads at buses #1 and $4. The values given
in" Rigure (6.6) are in per unit’baséd on 600 MVA and 24 'KV.

The values of different subsystem parameters are also given.
- \
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6.4.1 Eigenvalue Sensitivities

The system equations, linearized around the chosen
operating point, were developed in the state space form
using the technique described in Chapter 2 with programming

on a CDC 6400 computer. The eigenvalues listed in Table

(6.4) were obtained for the system using a standard 1ibrary'

subroutine.

First and second-order sensitivities of ‘the whole
eigenvalue pattern were obtained with reépect to a variety
of control parameters. Using this information, the three
complex pairs of eigenvalues corrésponding to the main
torqhé:angle loops of the multimachine system were identi-
fied. These are listed in Table. (6.5) with the
sehsitlvities normalized with resﬁeét to a small number of
control paraheters_of interest.  The three eigenvalues are
seen to be significéhtlg sensitive to the selected para-
meters and_ it\ would be of interest to track them over
apprépriate ranges of the chosen parameter variatioﬂs.

13

6.4.2 Eigenvalue Tracking

4

Figures (6.7)-(6.10) show the first and geqond-oréer
approximations to the different eigenvalue movements as
'cbmpared to the exact values‘ computed uéing Fhe inverse
iteration method. Thesé results clearly dempnéﬁfate that

. the second-order estimation 1is sufficiently accurate for

t
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Figure 6.7 Re(ll) vs Gen. #1
'\Stabilizer Gain
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Figure 6.9 Re(),) vs Gen. #2
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changes in the control parameters pyp to +.5 pu except for

the case in Figure (6.8) which illustrates the change in the
real part of the first eigenvalue versus the change in the

gain of machine #1 static . exciter (Kel). In this case, the

relation is shown to be highly nonlinear and it is bene-
ficial to wuse the inverse iteration to find the exact
movement. Results obtained using the inverse iteration

technique were double checked using repeated eigenvalue

computation at selected points. The results obtained by

both methods are in complete agreement to six decimal
places.
6.4.3 Time Comparison .

The time to cbmpute one base case and nine additional
evaluations to fonn a set of ten values was obtained for

both the repeated elgenvalue and the t:acklng approach using

the expressions developed in Sectioy 4. The gime was com-

pared on the CDC 6400 computer uging a standard 1library

subrout ine for eigenvalue/eigenvectr evaluation and the

f1Ve—bus example of order 50.

Table 6.6 cOmputatlon Time COmparlson

One Eigenva;ue Fifteen Figenvalues
Pl Ty | Ty E T | Ty %
1| 316 83.9 | 26.6 | 344 -214.T | 62.2
2| 601 93,2 15.5 640.2 | .353.6 | 55.2
3| 885 102.5 11,5 922,2 493.1{ 53.5
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In. the first method the eigenvalue computation is

repeated 9 times whereas in the second method thg second-

1

order sensitivities are calculated for the Exp combinations

followed by the 9 inverse iterations for each of the Exp

cases. In Table (-6.6) the time in seconds for each method.

is given along with the percentage of the time for the
second method compared to that for the first. It can be
seen that if only one eigenvalue of the fifty is of interest
the computation time is reduced to approximately 18%
deperiding on the number of parametekrs for which the
eigenvalue movement is required, the greatef the number the
better the saving. If fifteen of the 50 eigenvalues need to
be checked the saving is ’about' 40%. Thié _éffecti'vely means
atgoué haELf the total :‘s‘ince a large porE'iOr} of the
eigenvalues occur as complex conjugate pairs. A more

realistic case would be E = p = 3. for which the tracking

method comprises about 20% .of the time for the repeated

eigenvalue computation method. .

£

6.5 Summary

The techniq.ués“ and concepts'ﬁev&loped xn Chapters 2
to 5 have been applied to three specific systems. The
fornmulation Adescribec.i in Chapter 2 has -been used to arrange
the linearized system 'eciuati.ons in state .space form. -Eigen-

value first and second-order sensitivities have been used to
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reveal the interaction between system composite loads with
different static characteristics-and the excitation control
parameters of a hydro unit. It has beed.demonst;ated éhat,
where a stabilize£ is &sed based on a full load design,‘the
stabilizer can cause instability at light generation 1levels
if the load approximate)s a constant real power requirement.
This analysis reinforces the need for accurate system data
on load characteristics since the type of load rather than
.the amount may cause the instability.

Eigenvalue sensitivities have been also employed to
study the compléf intérackions involved‘with subsynchronous
resonance instability. 'These have been shown to give rise
to certain second-order sensitivities as large as or larger
than first-order ones. This re-emphasizes the édvantage in
using second-order terms in such sensitivity analysis where
the relationship is significantly nonlinear. It is also
useful to know which relationships are 1linear. In
particular, the damping introduced by the stabilizer at
shaft natural frequencies has been found to be  1linearly
dependent on stabilizer gain énd speed pickup point.

Thejt:acking apgroach,‘as presented in Chépter 4, has
been uséd to study the effect of control parameters on the
dynamic stability of a five-bus system. Eigenvalue sensi-
tivities have been used to identify the modes sensitive to

- parameter changes. Then, thé"eigeﬁvalues ébxresponding to

~
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these modes have been tracked over the praptical range of
control parameter variation. The computational efficiency
of this approach over the repeated eigenvalue approach has
been demonstrated. The repeated evayuation of only a few of
the eigenvalues as described enhances the speed of computa-
tion in cases where the other eigenvalues are known to be

e

insensitive to the changes being examined.
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Chapter 7

CONCLUSIONS

An efficient approach for power system dynamic
stability analysis has been presented. The development is
divided into two sections. The first describes a technique
to formulate the system equations in state-space form. The
second section descrjibes a technique to track the critical
eigénvalues over the pra;zzéél range of control and design
parameters.

The formulation is based on grouping the states of
each individual ~machine together. Then all the system
states and variables are ordered in such a fashion as to
reduce the computational expense in fdarming the state-space
model. This approach has flexibility for differeﬂﬁ degrees
of representation of generating: systems and a variety of
loads. The technique.;lso allows the inclusion of network
transients and machine shaft dynamics. }he formulation has
been shown to be particuiarly suitable for eigenValue
sensitivity applications and in subsequent studies that need
system updating. '

The tracking algorithm has been constructed for the
purpose of computing the dominant ox critical system

-

eigenvalues over a wide range of system parameter settings.
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This algorithm is essentially based on the use of the
second~-order sensitiQity technique in obtaining a good
estimate for the eigenvalue pattern shift due to parameter
changes. It has been shown that this /approach is more
economical than the/repeated eigenvalue approach, especially
if the number of eigenvalues to be tracked is small and the
number of parameters to be varied is large. The application
of the tracking appfoach is, limited to systems with
nonrepeated eigenvalues which is usually the case in power

systems.

L
»

The gpplication of these techniqueg to the analysis
of systems with practical data pgovided by Ontario Hydro has
' shown consistency with other results and conclusions reached

by other researchers in the field. One of the important
problems now receiving interest is the analysis of load
effects on power sistem dynamics. An aétempt has been made,
~in this thesis, to derive some general conclusions related
to the interaction between systechomposite loads and
machine static excitation and stabilization controls. These
conclusions have been derived using a simplified system
representation with the use of damping and synchronizing
torque concepts. ‘The general concepts déyeloped using this .
method have resulted in a prediction of some specific'
“~gsituations where the choice of a '1load model can make a

critical difference in describing system stability. These
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predictions have been further illustrated by applying the
eigenvalue tracking approach, considering these specific.
situations, to a system with a more detailed representation.

This cqmputational approach has also been applied to
other ﬁractical probléms. The effects of different
parameters and components of a system exhibiting subsynch-
ronous resonance have been analysed. Also, the stability of
modes corresponding to the performance of the main torque-
angle loops of a multi-machine system has been investigated

under a multiplicity of control parameters changes.

7.1 Contributions of the Thesis

-

The specific contributions of the overall study are

considered to be as follows.

7.1.1 Theoretical Development

(1) Development of an efficient multimachine formulation
technique. The formulation is flexible and accomo-
dates system loads with different static and/or
dynamic characteristics. It also allows the
inclusion of network transients and machine shaft
dynamics.

(2) Dérivaﬁion and application of simple qxpressions for
eigenvalue second-order sensitivities Qith respect to

general system parameters.
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(3)

7.1.2

Development 'and use of an efficient .eigenvalue
tracking approach. This approach 1is specifically
useful if #t is required to track the movehent of
only a small number of system eigenvalues..

¥
Ll

Application

These techniques have been employed to analyse

“various' practical problems currently receiving interest in

the electric utility industry. The system data have been -

provided by Ontario Hydro. These studies have contributed

toward the following.

(1)

(2)

e

'excitation control. These concg

Developmené of basic concepts related to the inter-
\ .

action between system composite leoads ggd generation

-,
¥k have been
A ;

developed using simplified models‘;a" ¥t em repre~
e .

sentation. owever, the computdtional techniques
developed 'have been applied tO\\stud& ,& more

accurately rébreéented system .tp justify - the

stability predlctxons using the simple model.

_Predlction of 1inear and nonlinear dependence of sub-

\‘ »

synchponous responance modes,ontéifferent systen

.
L

¢

- parameters. - _ " ; .

- L. . ~
w, .
¢ s ) ) : -
.

The- uSe of these techniques and- concepts in the .

stu@;es performed 1n Chapter ﬁ-demonsttate the applicabilzty
: v

"

of these< techniques 1n. the analysis» of power system‘
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dynamics. ‘These studies have, contributed to a better
understanding of the correspondence between system eigen-
values and eigenvectors and the different modes in the
system. It has been demonstrated that the use of these
technfques renders a simple way"to interpret physical
interactions involved in power system dynamics. This is

considered as a further important contribution of the

overall study.

7.2 Suggestions for FutdreaWork

Specific topics which seem worthy of further study

are: ,
(1) Second-order estimates,for eigenvalue movement have
| been shown té be acceptable in practice for
relatively wide parameter variation. 'These have been
used under the situation of changing one parameter at
a tiﬁe. It would be of interest to apply the
’sensitiviéy analysis methed in similar studies but
with more than one pérameter variation. »
(2) The overali tracking apprdachﬁgas been deéeloped for

systenfs with mpnrepeﬁted gfgepvalues. Fortunately,
- tﬁis'is the case for lérge scale power systems. Fér

other sgstémé,'jit ,ypﬁ?q:ﬁéeem usefui to stu&y the

situation‘q% ;deqticéljdr'Véryfclose“eigenvalues.

(3 The inverse itéraiion method. has been used ‘with ’
.- . . ® -

- h N 1
L3 " hd -
N . « .
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second~order estimates to traé¢k eigenvalue movement.

Alternativeiy, this method can be used in a diakoptic

approéch (120] to %alculate only the eigenvalues and

eigenvectors of a particular subsystem without  the

) need to compute the'bverall system eigenvalues. This

can be achieved by using the overall system coeffi-

cient matrix with the eigenvalues of the isolated

subsystem, as estimates, in the inverse iteration
method.

(4) The effect of composite logds on system Qynamic"

staSility has been analysed éonsidering a generator’

equipped with a s'ta;:lic exciter and e; supplement‘:ary

stabilizing signal derived from the. machine rotor

speea. Investigatidn and comparison of load effects

under thé“égse of other types of exciters is

desirable.

s

This_Thesis Q;Aj;resented'aﬁ efficiéﬁt comprehensive
approach to\study the .dynamics of lafgé power systems. *This
appjroach, has been applied. to the  analysis. of various
'‘practical problems. = The results obtained\gre:;ncouraging
since _they ha%e$shOWnidohéistenéyrwith other ‘results
obtalned in the literature: .One of‘éhe'systems Studied in
‘-Chapter 6 is of order fifty which ‘%is oﬁ comparable szzé’to
. systems bexng analysed by electrzc utilitles.; It would be

“%f' lntepegt if this computational apptoach’ were to be
- !
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adopted by a utility where it can be applied to the analysis

of existing systems of even larger sizes.
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APPENDIX A

SUBSYSTEM MODELS

It was mentioned in Section 1.4 that tﬁe development
of subsystem models is oqéside the scope of this thesis. A
number of appropriéte references were given in Section 1.4
for each subsystem modeling. In this Appendix the equations
describing the \performance of each subsystem will be
presented. The models are taken directly from the appro-
priate references but the equations representing them are
rearranged in a matrix form which is compétible with the

overall formulation presented in Chapter 2.

Al Synchronous Machines

,
The modeling of a synchronous machine in state spacé\

form has been considered by many authors. Two different

approaches have been adogpted in choosing the states of the
{

mpﬁéll Anderson [60] used the stator and rotor currents

t
greferred to the machine rotor frame) as states.
H " r
Alternatively, Undrill [70] used the stator and rotor fluxef

' . . .
'(referred to the machine rotor frame) as states. The choice
o . :

of the machinilfluxes as states hds clearer physical
significance over currents in stability studies. This

approach is followed in this thesis. .
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The equations of a model based on linear approximation
around appropriate operating condition, for a synchronous
machine, are taken, directly from reference [70]. These

equations are presented in matrix form in Figures (A.1l) and

(A.2).

A2 Excitation Systems .

Throughout this thesis two types of exciters are
used. These are a - modern static. exciter and a type 1
rotating exciter [ér]. ﬂachines equipped with static
exciters are likely' to be provided with a supplementary
stabilizing signal. |

The block diagram describing a static excitér~and_a
power system stabilizer, using a signal derived froﬁ machine
rotor speed, is shown in figure (A.3a). This model has been
developed for thé exciter-stabilizer being used by Oqfario
Hydro [15]. A state space representation of this model is'
given in reférence {61}. The exciter is represented by a
single time constant transfer function. The inputs‘are the

stabilizing signal (e_.) and the difference between the
-~

=

reference voltage (eref ) and a signal corresponding to the

L3

machine terminal voltage (e
PR

)« ' The function of th& washout

. . . ”‘ ) ~ B
circuit is to eliminate any steady state offset of fthe speed

'signal into the exciter #input. The phase Lead compensator

’

is used to cancel out the bhase lag contributed by the

179



ref.
o Sensor exciter
Avt 1 ey Ke
1+81v_ l+Sre
es
Aw X § Th s Ta e
Q T*STQ ’ I+Stx
. oy
washout circuit compensator

(a)

-

Block Diagram Description

r 1 r at 1
-1 i 1
=== =~ | v bw
ev *v ev + Tv t +
e [ Ko sa Gal% Koyl 147 2) Kg¥e Xe
fal [T Te *x e Ye fd Y% Te Te
X
-1 || O
e == e -
T
X Q X :TQ
> -7 -1 K
e _____23 ';'}- (<] o
Y P X b 4 1 ‘X
. x
L 4L b J1 ] ! ] i

or sjﬁéolieally: P

Ye

’ {b)

- 1TVY avg = Lo ) x, + [B.) u .

State~Space Fouations

Figure A.3 Static Exciter-Stabilizer Model

-

180

fa

ref



or

Figure A.4

it 3
T
v
- (KE+SE) 1
TE b 1
a -1
1R TA
-KF(FE*SE) K
e YE'F .
gymbolically

(a)

Saturation function

S

E

amplifier

Stabilization loop

SKF

!+ST;

Block Diagram Description

L ¥

-
'

-—

%e = ] Avt = [Qe] S * [Be] Cref.

(b)

I

State-Space Equations

Type 1 Exciter Model

181

1
+| T, AV,

Cy

-

ref



machine and exciter.

The equations describing the performance of the
exciter-stabilizer subsystem are ’arranged in state space
form-.and are given in Figure (A.3b).

The block diagram representing a type 1 (rotating)

" exciter, is taken directly from reference [81]). This is

depicted in Figure (A.4a). The first summing point compares
the regulator reference with the output of the voltage
sensor to determine the voltage error input to the regulator
ampl%fier. The second summing point combines voltage error
with the excitation major damping loop signal. The next
summing point subtracts a signal which represents the
saturation function of the exciter.

Thé equa%ions describing thé performance of a type 1
exciéer are arranged in state space form and are giveﬁ in
Figure (A.4b). ’

Although oniy two exciter models have been considered
throughout this éhesis, the application.of the technique in
Chapter 2 is not restricted to the use of these models.
Other, exciter models can be as easily }pcorporated in £he

overall formulation. .

+

A3 Turbine-Governor

-

In this Section two simplified models for turbine-

governors are described. The models are taken directly from

i
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reference [85] where the two models have been recommended
for steam and nuclear units and hydroelectric units.

The turbine-governor model for steam and nuclear
units is shown in Figure (A.5a). The turbine is modeleé by
a single time constant transfer function. The input is the
difference between the control power (PC) and the feedback
signal through the governor (g). The governor 1is also
described by a single time constant transfer function. The
state space representation of the model is given in Figure
(A.5b). —

The dynamic model for a hydro turbine-governor sub-
gystem is shown in Fiqgure (A.6a). The governor model
includes two single time constant transfer functions
representing the speed relay and servomotor. The turbine
representation in Figure (A.6a) is an egquivalent for the

block diadram description in Figure (A.6b). The state space

representation is given in Figure (A.6c).
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APPENDIX B

FORMULATION OF THE NETWORK ADMITTANCE MATRIX

A YBUS matrix relates the network bus currents to bus
voltages, including non-generator load buses. This matrix

can, generally, be arranged in the form:

. I
Y121 Yn

t
=
<
fu
[

(B.1)

-
v

'
c
a4
=
<
<

™
a8
1

c

I
[
|
i
}
!
|
———
!
I
|
1
I
|
|

= - —

L
T
L

-~

where Iy and Vg are the currents and voltages of all the

A

generator buses. IL and Vi are the currents and voltages of

-

all non-generator load buses.

The network admittance matrix, [Y]), relates the
generator bus currents to the generator bus voltages. The
construction of this matrix from the YBUS matrix can be
achieved by eliminating all the non-generator 1load buses.

This can, generally, be performed by two methods.

“

Bl Partitioning Method’

Expanding equation (B.l) yields:

b=
!

N = Y1) Vi + (¥, v

- ~— -

. 3

-
i

If all system 1loads are represented by constant

186
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,‘admittances, the current-voltage relationship at gll non-~’
generator load buses can be described as:

Iy == Bl Yy (B.3)

2

where [YLL] is a diagonal complex matrix with each element
representing the load admittance at the corresponding load

bus. Combiﬁgng equations (B.2) and (B.3) and upon reduction

~

I

one obtains:
Iy = Y1 Vy (B.4)
where

1

[Y] = [[¥q] = [¥po] ([¥pp] + {¥o,1) 7 [Yy 11 (B.S)

Thus, the construction of the [Y] matrix from the
YBUS matrix, using this method, requires a complex matrix
inversion of an Eiier eqdal to the number of all non-

«generator load buses in thelsystem.

B2 Eljimination Method

This méthod is a modification of the partitioning
method in order to avoid the inversion of a complex matrix
whicp can be of high order. In this methoé the load buses
are,eliminated one by one. Consequently, if we start with
the last load bus a{;anged in equation (B.1l), [lel will be
a column vectcr.'[YZI] a row ‘vector, and heﬁce, Y22 andthL

will become complex elements. Repeating the process in

eguation (B.3) we finally obtain the [Y] matrix.
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APPENDIX C

BLOCK DIAGRAM MODEL~INCLUDINGJLOAD EFFECTS

In this Appendix the equations ;ijribing the block

diagram model considered in Chapter 5/{are presented. The

reader is referred to reference [6] forxgdefinitions of thf:)

block diagram coefficients. (//) .
- ’ "\.

Cl Nonlinear Equations

Cl.1 Generator

The performance equations of a synchronous generator,
”»
Figure (5.1), neglecting damper winding effects, armature
o -
} resistance copper loss, and armature flux derivatives, as

documented in reference [6], are:

Va T *q 'qg
t . L} .
vq = Eq - xd ldg
] [}
E =E + (x_. - x.,) 1
q q q dag 49 &
2 2 .2
vp = Vg + vq
]
Bg = ¥aa ‘fq (xg = %g) 144
- ] 1 1 a
PEy= 13, ©ra ~ ¥aa’"a0 lfg
Te = Eq~1§§
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+3

!
-3
]

n e (2 H/uo) P w

s = Vp py * Vo lgw

Ccl.3 Network

The voltage-current relationship between the terminal

and infinite buses, neglecting network transients, is:

The interframe transformation at the terminal bus is:
1Dg cos & -sin & ldg

]

ng sin ¢ cos § 1

c2 Linearized Equations

Small perturbations of the system around any
operating point ngsults in the

following 1linearized

equations.
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c2.1

c2.2

c2.3

Generator
AV, = Al ’
a =¥ ag
. ] .
Av._ = AE - xd Aldg
L}
AEq = AE_ + (xq - xd) Aldg @
NG v v o
Ay, = — Av, + 9O vy
t v d Vio q
3 . 1 .
” | ] .
P AEq = 1/730 A?fd X.a’"30 2lfq
T =E i + i. E
2% Alag ago *“q
2H
o P A = ATm ATe
o)
p A% =
Load
on'KE . . . .
APL = Vio AvVe = VDOAIDz+lDzoAvD+onAle+lozo
AQ, = 9&9;,3 Av, = v bi_ +1 Av . -y Al -1
| X Vio t Qo "Dy Dro Q Do TQr QRO
Network
[ - 7 s
AVD-] 0 "'xe AIDNW
LAvQ i Xg 0 AlQN
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cos & -sin & ai ai Al i i T
o o dg | _ D2 + DN + Qgo A G
sin & cos & Alqg aign, |t AlQN ngo
AV cos § sin 6 Av v
dai _ o o D| ., qo A
A -si -
] Vg sin 6 cos § AVQ Vdo

The subscript "0" refers to steady state quantities.

C3 Analytic Expressions for K. and K¢

Using the 1linearized equations for the system in

Figure (5.1), the following expressions are derived for the

block diagram coefficients Kg and Kc: 4
Eo
K5 = xq vto(A-B) {(alvqo~a2vdo)cosso—(alvdo+a3vqo)51n5}
Ke = xT vl (5=By (21Vg0*23Ygo!r Where
d Vto q
Al = (v iy - v iA ) vl ’
1 do “dro do “gao to
2 2 ®
v 7
= ; ‘ _ _to _ _to 2
a; = (Vg0 lqro * Vgo *dro X xé AP
O , T v2
= : ; to to 2
az = (vgo lqro + Vgo 'dro + Xg M Xq ) Vo
- a2 _
A = ay a, a3

191 -

s



£

~, - 4 2 _ 2. _ -
e . B i Ky Pyo(a1Y46721Y30722%30%g0™23Vdo g0 .
to ;

>
+ K_Q (a v2 ~-2a.,v, v __-a v2 )
g “20'"2°do 1"do'gqo "3 go

C4 lock Diagram Coefficients

this Section representative values of block
diagram gcoefficients that do not change‘significantly with
the parameters Kp and Kq are listeb in Tables (C.l) to
(C.3). These values have not been included in Figures (5.5)

and (5.6) in Chapter 5.
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Table C.1 , Block Diagram Coefficients

4

Fig. S: Kq - 2, Kp = 0+3.5, 1.25 PU LOAD 0.8 PF INDUCTIVE

) X
! K X 5
p ) 3 5| o0 |3 8 |0 .4 |8 o T 41 5

= ,21{1.33|1.3911.38} .024 |-.013] -,045| .041 ‘»Qﬂ}, - 053] .56 .56 | .56
- .6 ]1.3711.40]11.37] .265.} .195] .136| .0l6 .018T 017} .56 .56 ] .56
» 1.0{1.41 |1.42]11.36] .475 | .381 .305]~.018})-.022}~.023] .54 | .55 | .56

C;v Qv C;n Ge

Table C.2 Block Diagram Coefficient

e

Fig. 8: Kq = 2.0, Kp = 0+3.5, 1.25 PU LOAD 0.8 PF CAPACITIVE

4 Kg Xe
= 0 .4 .8 0 .4 .8 0 .4 .8 0 .4 .8

= ,211,02{.96|.82§-.062 [-.109 |-.148] .070} .083] .095}{.69].71] .71
= .6_15;03 .93 1.77 | .162 { .081 L0157 .032| .035} .042| .71 }1.71{ .7}
l.q 1.02}1.89}.71 .348 | .248 .1641-.016}-.017j-.015 | .69 | .69

varw —— 7

a’a’al |

Table C.3 Block Diagram Coefficients

4 Fig. 6: Kp = 2.0, Kq = 0+3.5 1.25 PU LOAD

.8PF INDUCTIVE .8 PF CAPACITIVE
N -

" J K, K, .
- 0] .4] .80 4 .8 0 ] .4 ] .8 0 |.4 .8

&

Py = .2/11,34 11.394{ 1.39] .026{ -.016 | -.045["1.03] .96| .82 |-.048 [ -.105 | -.149
PG' 6 11.37 {1.40] 1.38] .267] .195| .136{1.03| .94} .78 | .166 | .086 | .019
PG = 1.0[{1.41 11.40} 1.35} .475} .382| .308 1.01f .89 .71 | .345] .248 | .163

Machine Data

66 MVA, 13.8 KV Hydro unit ratings (PU base)

g = = . P, = . R x = .33
Xpg = -567, Xg = .14, Xy, = .087, X = )
Xy = -163, ¥, = .00279, 1y = 00035, ry, = .02
= 2 = L, o= .3
qu .02, H 4.29, \L
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