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ABSTRACT 
	  

Grain structure and secondary phases play a critical role in determining the 

mechanical properties of industrial alloys. The spatial variation of such phases is very 

closely correlated to the liquid pooling established during late stage solidification and 

grain boundary coalescence. Obtaining a theory that correlates the evolution of length 

scales during grain boundary coalescence is a critical step toward the optimization of 

commercial alloys. This thesis highlights various phenomena that enter such a theory. 

They include coarsening and coalescence of dendrites, nucleation mechanisms and 

changes in composition of inter-dendritic liquid where second phases tend to initially 

form. Quantitative phase field models of solidification to simulate casting conditions and 

microstructure evolution are used in combination with characterization techniques to 

illustrate the connection between number, size, and distribution of liquid pools. 

Characterization techniques include spectral analysis, and clustering analysis by way of 

the Hoshen-Kopleman algorithm.  By characterizing late-stage liquid pools, this thesis 

aims to be a first step towards developing a statistical scaling theory of length scale of 

liquid pooling.  
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INTRODUCTION 
Even though history prescribes important lessons, much of Materials Science is rarely 

conditioned in such a manner that highlights its importance through the ages. The excellent book: 

A History of the World in 100 Objects (by Neil MacGregor, British art historian and museum 

director), paints a wonderful picture of history of humanity as a history of invention and 

innovation. This is exemplified in key objects that allow readers to understand the world’s 

current state of affairs. 

By extension of Neil MacGregor’s argument, it is very appropriate to state that these 100 

key objects existed in their useful state only because of the right materials. It is then only 

appropriate to state that materials make history. The importance of use of materials in shaping 

human history is such that periods of history have been labeled with materials: Stone, Bronze and 

the Iron Ages. The author finds that the importance of materials in culture and philosophy, and by 

extension art and science, is frequently understated.  

If the Earth is imagined as a fiery ball at its inception 4 billion years ago, then all/most 

material that exists today came into being through a phase transformation from liquid to solid. 

This process is now known as Solidification. Nowhere is the process as prominent as it is in metal 

forming. 

The need for more innovative alloys has allowed for solidification to evolve into a science, 

and phenomena that characterize it have been the subject of extensive publication in materials 

science for the last six decades. These phenomena include nucleation, grain growth, coalescence 

and coarsening, and second phase formation. There has been work done to connect and scale 

these phenomena to generate a bigger picture, and it is the aim of this thesis to add to this work. 

Specifically, structural analysis of dendritic microstructure and late-stage liquid pools 

following coalescence are discussed in the context of identifying the spatial and size distribution 
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of second phases formed during coalescence. This will be addressed by using phase field 

simulations and size analysis algorithms that will aim to reduce and present the problem in its 

bare bones form. 

The remaining parts of this thesis are organized as follows: 

• Chapter 1: Review of Solidification Theory – Basic concepts are outlined. Thus, a basic 

framework will be set up, allowing for the author to elucidate phenomena that are the 

subject of this thesis. 

• Chapter 2: Problem Statement & Goals– Based on the review in the previous chapter, 

gaps in solidification where this thesis will focus on are identified. A problem statement is 

formalized with industrial manufacturing in mind to give purpose to research in these 

areas. Lastly, some goals are stated that capture the bigger picture that the author 

visualizes the sequel to this work to expand into. 

• Chapter 3: Background – Some key studies are outlined. The aim here is to comment on 

some original work that the author finds relevant, and to point out shortcomings that this 

thesis will address. 

• Chapter 4: Methods Background – Quantitative details that will equip the reader to grasp 

the tools used in this thesis are outlined in this chapter. These quantitative details pertain 

to the phase field model used to simulate microstructure, the phenomena of nucleation 

and techniques used to analyze microstructure. 

• Chapter 5: Results and Discussion – The techniques described in the previous chapter are 

applied to characterize simulated solidification microstructure. The results’ implications 

are discussed in the context of liquid pooling and second phase formation, and 

suggestions for future work made. 

• Chapter 6: Conclusions – A brief summary of the entire thesis is presented.  



MASc	  Thesis	  –	  Rameez	  Ashraf	  	   McMaster	  –	  Materials	  Science	  &	  Engineering	  

	   3	  

CHAPTER 1 – REVIEW OF SOLIDIFICATION THEORY 
Solidification, in its most basic form, is best visualized as the transformation of liquid to 

solid. This is a phase transformation, where the atomic-scale structure of the same substance 

changes. It is driven by an external temperature change, and the temperature at which this 

transformation begins is known as the freezing/melting temperature. This temperature change is 

accompanied by the extraction of latent heat from a liquid into the surrounding environment. In 

this process, heat is continuously redistributed during the process. 

Solidification in any system undergoing a first-order phase transformation begins as tiny 

seeds/clusters of solid, separated from each other, which then grow -often in the pattern of 

beautiful snowflakes called dendrites- until they meet and merge with each other. This merger 

can be dynamic in its nature, resulting to the creation of grain boundaries at low enough 

concentrations or secondary phases when inter-dendritic liquid is at a sufficient concentration so 

as to trigger their nucleation. When this happens, the process of solidification is considered 

complete, and solid-state processes begin.  

Formally, this process is summarized as follows: 

• Solid seed formation – Nucleation 

• Growth of solid seeds – Free (Dendritic) Growth 

• Merger – It is this merger phenomenon that this thesis expands upon. This merger 

phenomenon can itself be broken down into constitutive processes: 

o There is an initial coarsening process, when the growing solid snowflakes interact 

with each other via impingement of their temperature and concentration fields. 

Snowflake arms thicken and some may coalesce. 

o Coalescence follows, which is the merging of dendrites to form a coherent solid 

network. 
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o If the temperature remains close to the freezing temperature during coalescence, 

i.e. cooling rate is low, then there may be further solid-state coarsening and 

merging of dendrite arms, and the liquid pools that surround them. 

1.1 – SOLIDIFICATION IN PURE SYSTEMS VS. ALLOYS 

The phenomena associated with the solidification process described above pertain to both 

pure and alloyed materials. In alloys, the removal/redistribution of impurities is analogous to the 

redistribution of heat in pure materials. Therefore, well-accepted equations that describe 

redistribution of heat in a pure material solidification can also be used analogously to describe the 

redistribution of impurities in binary alloys. There is thus an analogy between solidification of 

pure materials and isothermal solidification in binary alloys. If the equilibrium value of one or 

more thermodynamic variables is plotted as a function of intensive variables, a phase diagram is 

obtained. In pure systems, a phase transition is an atomic re-arrangement process. On the phase 

diagram, different phases are represented by lines that separate different arrangements/phases. In 

alloy systems, a phase transition may involve an atom re-arrangement process. However, it also 

involves transfer of impurities from one phase to another. Examples of pure material and alloy 

phase diagrams are given below in Figure 1: 
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Figure 1–PHASE DIAGRAMS FOR WATER (LEFT) AND IRON-CARBON ALLOY (RIGHT) 

The phenomena that characterize solidification are described in the following sub-sections 

in a comparative manner to outline the indiscriminant fundamental processes that create and drive 

them. 

1.1.1 – NUCLEATION 

For solidification to begin, formation of tiny solid seeds/clusters has to occur. These 

precursors to nuclei form due to movement of atoms driven by tiny thermal fluctuations of the 

stochastic kind, inherent in any system at non-zero temperature. They are responsible for 

randomly bringing about tiny groups of atoms in arrangements that are representative of a solid 

phase. At any given temperature, there is a probability distribution of possible sizes of these 

clusters, given by: 
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Nnuc

Nl

= exp !
"Gnuc

kBT
#

$
%

&

'
(

 

Eq.	  1

 

whereNnuc  is the number of clusters of some arbitrary size, Nl  is the total number of atoms in the 

solidifying system,!Gnuc  is the free energy of a cluster containing n  atoms, kB  is the Boltzmann 

constant and T  is the temperature of the system. Because this distribution pertains to a 

temperature driven phenomena, it derives from Boltzmann statistics. 

An external temperature change,!T = T2 "T1 , where T2 < T1 ,causes a shift in this cluster 

size probability distribution. A driving force for nucleation is generated whenever T2  is lower 

than the melting temperature. Below the melting temperature the liquid becomes metastable and 

!Gl"s becomes negative, which implies an energetically favorable reaction. However, a 

nucleation event creates an interface between the liquid and solid bulk phases. This interface 

creation costs energy. Therefore, the total free energy change associated with a nucleation event 

in the bulk can be written as: 

!Gnuc =
4
3
!r3!Gl"s + 4!r

2" sl
 

Eq.	  2 

where! sl is the solid – liquid interfacial energy. These competing contributions amass to a critical 

threshold for the energetics and size/radius of a cluster, given by: 

   

rnuc
* =

!2! sl
"Gl#s  

Eq.	  3 

and 

!Gnuc
* =

16!" sl
!Gl"s( )2

. Eq.	  4 
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!G*
nuc is frequently called the ‘activation energy’ of nucleation. These can be found by setting

dGnuc

dr
= 0 and solving for r. 

 

Figure 2 - DEPENDENCE OF CLUSTER SIZE DISTRIBUTION ON TEMPERATURE(Fisher & Kurz, 1998) 

Nucleation events are classified into two types:  

• Homogenous – Nucleation in bulk liquid 

• Heterogeneous – Nucleation on a substrate 

Equations 6 through 8 describe homogenous nucleation. Therefore!Gnuc , !G*
nuc and r*nuc

can be effectively labeled !Ghom , !G*
hom and r*hom . Heterogeneous nucleation is much more 

common, and occurs on a substrate, usually present in melts in the form of impurities or added 
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inoculants. These impurities/inoculants effectively lower the!G*
hom , which implies a lowering of 

the cost of creation of an interface, i.e. the effective surface energy is lowered. This effect can be 

expressed through a heterogeneous factor given by: 

f (! ) = (2+ cos! )(1! cos! )
2

4  
Eq.	  5 

where!  is the wetting angle between the substrate and the cluster/nucleus. 

Thus,  

!Ghet =
4
3
!r3!Gl"s + 4!r

2" sl
#

$
%

&

'
( f (# )

 
Eq.	  6 

which implies that: 

  

rhet
* =

!2! sl
"Gl#s  

Eq.	  7 

and 

!Ghet
* =

16!" 3sl
3 !Gl"s( )2

f (! )
 

Eq.	  8 

This implies that the critical size/radius of the cluster/nucleus is independent of the type 

of nucleation. It suggests that for a given ! sl ,!Gl"s and thus the undercooling!T  determines the 

nuclei density for any solidification process, and by extension, grain density. Athermal nucleation 

in 4.1.2 will expand on this discussion. 

Although the derivation above pertains to pure systems, it can be extended to systems 

with more than one component, i.e. alloys. This can be done by allowing the energetics to vary 

not only with cluster/nucleus size, but also with composition. In this case, the critical thresholds 

can be found by setting: 
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dGnuc

dr
= 0

 
Eq.	  9

 

and 

dGnuc

dc
= 0

 
Eq.	  10 

where c  is the nucleus composition. The energy can then be visualized as a landscape, with the 

critical threshold defining a saddle point. 

By extension of the arguments presented above for the cluster probability distribution, the 

rate of formation of nuclei, i.e. the nucleation rate, can also be expected to follow Boltzmann 

statistics. A cluster of critical size only becomes a nucleus upon further attachment of atoms, 

which is also a thermally activated process. Therefore, the nucleation rate can be imagined to be 

the sum of two successful events: formation of a cluster of critical size and growth of the cluster 

by further attachment of atoms. This argument was first made by Volmer and Weber(Volmer & 

Weber, 1926) and is mathematically represented as follows: 

N
•

= Nl exp !
"Gnuc +"Gatt

kBT
#

$
%

&

'
(

 

Eq.	  11 

where N
•

is the nucleation rate, !Gatt is the activation energy associated with competing 

energetics of surface creation and bond formation for atom attachment. 

Equation 11 pertains to the homogenous nucleation rate. It can be transformed to the 

heterogeneous nucleation rate by the addition of the heterogeneous factor: 

N
•

= Nl exp
!"Gnuc f (! )+"Gatt

kBT
#

$
%

&

'
(

 

Eq.	  12 
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Near the melting temperature, !Gl"s =Gl #Gs can be approximated by
L!T
Tm

. This means that the 

!Gnuc  term displays a ! 1
T"T 2  behavior while the !Gatt  term displays a ! 1

T
 behavior. This 

leads to a maximum in the nucleation rate being observed, where the rate of clusters becoming 

nuclei and atoms attaching to these nuclei is at its highest. 

Zeldovich (Zeldovich, 1943) proposed an updated version of nucleation rate equation: 

N
•

= Z!Nl exp !
"Gnuc

kBT
#

$
%

&

'
(

 

Eq.	  13 

where!  is the attachment frequency which encompasses the !Gatt  term and Z  is the Zeldovich 

Factor that incorporates the probability of decay of critical sized clusters into smaller sizes 

(growth of a cluster is a reversible reaction). Equation11 does not account for this decay. 

As with equation 11, Zeldovich’s updated nucleation rate can also be extended to 

heterogeneous nucleation: 

N
•

= Z!Nl exp !
"Gnuc

kBT
f "( )

#

$
%

&

'
(

 

Eq.	  14 

1.1.2 – FREE GROWTH 

Upon nucleation, growth of nuclei having snowflake patterns are usually observed. 

Formally, this snowflake form of growing solid nuclei is referred to as a dendritic structure, and 

this structure determines properties of a solidified system. For instance smaller dendrites 

generally lead to an increased ductility in an alloy.  

The exquisite nature of this dendritic structure has been the subject of much fascination 

and study, and it is best described in terms of a Stefan problem. The problem is named after Jožef 

Stefan, a Slovene physicist, and it describes a phase boundary that can move with time. It is 

particularly applicable in the case of a homogeneous medium going through a phase change, i.e. 
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solidification. This formulation consists of a partial differential equation (PDE), which describes 

this moving phase boundary in time. 

The driving force, a temperature change, that causes expulsion/redistribution of (latent) 

heat, is given by: 

      
!cp

!T
!t

= k"2T
 

Eq.	  15 

where !  is the density, t  is time, cp  is the volumetric heat capacity, and k  is the thermal 

conductivity. Equation 15 is applied twice, once in each phase and assumes equal values of ! , 

cp , and k  in each. 

The physics of the problem dictate that at the solid – liquid interface, the temperature field 

remain continuous and energy be conserved. 

Respectively, 

                                                                                   
k !T
!t s

" k !T
!t l

= Lf vn  
Eq.	  16 

and 

                                                                           
Ti ! Ts ! Tl = Tm "#! ""vn  

Eq.	  17 

where Lf
l!s  is the latent heat of fusion expelled at the interface, vn  is the velocity of the interface 

to the normal direction, Ts  and Tl  are the temperatures on the solid and liquid side of the 

interface, Tm  is the melting temperature of the pure material, and !  is a kinetic coefficient that 

captures the properties of the interface at vn .! is the Gibbs Thomson constant, which captures 

the effect of curvature on the temperature across an interface. The Gibbs-Thomson effect is 

expanded upon in the next section, 1.1.3. The Gibbs-Thomson coefficient is defined as: 
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! =
Tm! sl
Lf
l"s

 

Eq.	  18 

The description above pertains to pure systems. An analogous description can be derived 

for binary alloys as per the arguments at the beginning of section 1.1. For a binary alloy, the PDE 

description is altered to account for impurity concentration, i.e.: 

    
!c
!t
= Dl"

2c
 

Eq.	  19
 

whereDl  is diffusion coefficient of the impurity in the liquid, and c  is the concentration of the 

impurity in the liquid. The temperature field is assumed constant, since heat is assumed to diffuse 

much faster, rendering the need for a PDE of the kind relevant to pure systems irrelevant. The 

PDE for impurity concentration also assumes zero diffusivity in the solid, since liquid diffusion 

may be orders of magnitude larger relative to solid diffusion. 

Boundary conditions to be satisfied in this case require zero impurity flux. At the solid – 

liquid interface continuity and conservation of the concentration field are required: 

  
Dl!nc = c(1" k)vn  

Eq.	  20 

and 

cl =
c0
k
!
! slTm
ml Lf

!"vn
 

Eq.	  21
 

where cl  and cs  are the concentrations on the solid and liquid sides of the interface respectively, 

c0  is the average composition of the alloy, ml  is the liquidus slope, !  is the local radius of 

curvature, and k  is the partition coefficient as given by the equilibrium phase diagram for the 

binary alloy, defined as follows:
 

k = cs
cl  

Eq.	  22 
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The equations listed above describe a dilute binary alloy, and track the solidification 

process by keeping track of the phase boundary. The phase boundary (from now on referred to as 

the interface) is assumed to be of zero thickness. Therefore, it can be imagined to be atomically 

smooth. The Stefan problem has therefore come to embody what is now known as the sharp 

interface model. Numerically, these models are hard to implement. The interface needs to be 

explicitly tracked, and complex topological features of the dendritic structure of several growing 

nuclei are hard to capture accurately. This is especially true during merger. Also, an atomically 

smooth interface is an unrealistic feature in solidifying binary alloys, i.e. it has a finite width 

usually on the order of nanometers. 

A more recent class of models known as Phase Field models address these concerns, and 

one such model has been used to simulate microstructure for this thesis. The phase field model is 

described in section 4.1.1. 

1.1.3 – MERGER: COARSENING& THE SUBTLE DIFFERENCES BETWEEN 

FUNDAMETALLY SIMILAR PHENOMENA 

As the growing nuclei, called grains herein, close in on each other, they undergo a process 

known as coarsening. This process is analogous to that where tiny oil droplets suspended atop a 

liquid coming together to form big ones, whereby bigger droplets grow at the expense of smaller 

ones. Formally speaking, coarsening is the growth of bigger droplets or particles at the expense 

of smaller ones. 

Coarsening is driven by the Gibbs-Thomson effect, which is the establishment of a 

pressure differential across a curved boundary/interface. This leads to an energy differential 

known as a chemical potential differential, and it makes systems exhibiting it unstable. Therefore, 

a driving force to move away from this unstable state is established. In other words, a system 

exhibiting the Gibbs- Thomson effect changes so as to lessen/eliminate the effect. In pure 

materials, this chemical potential differential manifests itself as a pressure differential, whereas in 

impure materials such as binary alloys it appears as an impurity concentration differential. The 
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Gibbs – Thomson effect, formalized by equation 18 in section 1.1.2, is stronger for higher 

curvature, so in the scenario depicted above, the smallest of oil droplets would be most unstable 

and disappear first. So on and so forth until the chemical potential differential is eliminated.  

It is beneficial at this point to summarize the three related phenomenon that the author 

considers to fall under the umbrella of coarsening and merger process. The author also feels that 

most literature and materials science texts do not deal with subtle differences adequately. 

Coarsening can manifest as three processes in a solidifying system: 

• Ripening –– this is seen as smaller dendrite arms melting to deposit themselves onto 

larger arms, resulting in a smaller number of dendrite arms. It also leads to an increase in 

average dendrite arm spacing. This was described above. 

• Coalescence –this is seen as agglomeration of dendrite arms when matter diffuses 

preferentially onto solid regions of stronger negative curvature. It is driven by curvature, 

thermodynamic driving force and the solid-liquid versus solid-solid grain boundary 

energy differences. Like in ripening, this process also leads to an increase in average 

dendrite arm size(Mortensen, 1989). 

• Grain coarsening –this is seen as redistribution of solid network of grains from smaller 

grains onto bigger ones, leading to an increase in the average grain size. This process can 

be driven by the ripening kinetics described above as well as (in pure materials) solely the 

elimination of interface curvature. 

In all three flavors of coarsening, the characteristic features are an increase in feature size, 

and result in a proportional decrease in the amount of interface present in a system. This change 

in size of characteristic features shows interesting scaling dynamics, in which the features at late 

times at large scales are statistically similar to earlier times at smaller scales. Great consideration 

therefore has been given to characteristic lengthscales that describe evolution of features in a 

solidifying system. A very brief description of this lengthscale evolution is presented below. 
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An example of lengthscale evolution is the increase in grain size when a solidified system 

is subjected to a high temperature, where the average grain size increases to minimize surface 

energy by decreasing interface area. This is because interface creation costs energy, which was 

pointed out in the previous section. Therefore the rate of change of grain size is large for large 

amount of interface present in the system. Conversely, a large amount of interface is 

accompanied by small grains. Therefore rate of change of grain size is inversely proportional to 

average grain size: 

d
dt

d( ) = K 1d  
Eq.	  23 

whereK  is a proportionality constant dependent on time. Therefore the time taken to reach a 

particular grain size is given by the solution of equation 23 above: 

d ! d 0 = Kt
1
2

 Eq.	  24 

where the time exponent is indicative of kinetics. A time exponent of size half represents volume 

diffusion limited kinetics, and gives a parabolic growth law. 

Dendritic coarsening occurs through matter transport in a finite liquid medium, therefore 

surface diffusion limited kinetics are expected to be at play. This has been confirmed through 

experimental measurements of exponents of around ⅓.In reality, the diffuse nature of the 

collective measurements underpins a departure from ideal conditions. In other words, it indicates 

a mixture of transport mechanisms at work at any given point in time(J. Cahn, 1962; Glicksman, 

Smith, Marsh, & Kuklinski, 1992; Grey & Higgins, 1973; Kailasam, Glicksman, Mani, & 

Fradkov, 1999). 

Henceforth, the comparison between pure and alloys stops, and this thesis will deal only 

with the more complex case of binary alloy solidification.  
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CHAPTER 2 – PROBLEM STATEMENT 
The phenomena described in Chapter 1 underpin all solidification microstructure, which 

in turn determines properties of alloys. Therefore, ever better control of microstructure gives 

purpose to all materials science research. Notably, the aerospace industry has demanded 

increasingly stronger alloys while simultaneously attempting to reduce weight for energy 

efficient vehicles. This has been accomplished in two principal ways: newer heat treatments and 

increasing the concentration of/adding alloying elements. Both of these result in a change in grain 

boundary segregation. This leads to additional constituents, dispersoids and precipitates, i.e. 

second phases, in the microstructure. Such phases are desirable as they are either the cause of 

strengthening, or act as precursors for strengthening phases that appear downstream during post-

processing. Some second phases however are unwanted as they cause hot tearing, reduction in 

durability and fracture toughness, etc.(Starke & Staley, 1996).For e.g., Figure 3 shows how the 

number density of precipitates affects strength in 2090 alloys. 

 

Figure 3 - RELATION OF PRECIPITATE DENSITY AND YIELD STRESS(Starke & Staley, 1996) 
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Specifically, it has been found that the size and distribution of second phases drastically 

affects the desired properties. Not surprisingly, this connection is quite intimate and complex. In 

order for has been postulated that by understanding this connection, better control over industrial 

manufacturing can be achieved(Heinz et al., 2000; Mikhaylovskaya, Ryazantseva, & Portnoy, 

2011; Quested & Greer, 2004). 

There has been work done to quantify the size distribution of second phases in alloys, but 

the employed approach has always been investigative rather than predictive. A common 

technique is to dissolve the primary phase away, leaving behind the second phases that are then 

analyzed(Lu, Wiskel, Omotoso, Henein, & Ivey, 2010). Some of this work is reviewed in the 

next chapter. 

This thesis aims to adopt a predictive approach to understanding length scale selection in 

the topology of second phase sites during late stage solidification. It highlights analysis of liquid 

pooling evolution and structure during the late stages of solidification. These liquid pools are the 

precursors for the first second phases to form. Consequently, a working assumption made here is 

that the structure of these late stage liquid pools is very similar to that of the first second phases 

to form. Due to this similarity, it is hypothesized that the sizes and distribution of second phases 

can illuminated by studying the structure of their precursors, i.e. late stage liquid pools. In 

particular, the effect of cooling rate on liquid pool evolution will be examined. The argument for 

this thesis’ hypothesis is visually depicted in Figure 4. 
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Figure 4 - HYPOTHESIS FOR THIS THESIS 

This thesis also aims to be a first step towards a longer-term goal, which is to obtain a 

theory that correlates liquid pool evolution to second phase formation. Such a theory will then 

truly act as a predictive tool.  
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CHAPTER 3 – BACKGROUND 
To create a backdrop for the analysis presented in this thesis, this chapter highlights and 

critiques some studies. The aim throughout is to keep in touch with the problem statement and 

goals discussed in the previous chapter. 

The effects of second phase sizes and distributions are briefly discussed along with 

associated experimental techniques. This chapter then adopts a computational tone, and examines 

some work done to simulate early second phase growth on a sizable scale. A novel analysis 

technique that is exploited for results in this thesis is also reviewed. 

Finally, in the context of the long-term goals proposed in the previous chapter, some 

thermodynamic and scaling observation about liquid pool topology are made that lay ground for 

future work. 

3.1 – EXPERIMENTAL DETERMINATION OF SECOND PHASE SIZES AND 

DISTRIBUTIONS 
Optical techniques have been the norm for analysis of microstructure, and are well suited 

within a laboratory context. They have been used to determine a wide variety of features such as 

grain size, second phase sizes and distributions, thickness of coatings, etc. Results of such 

analysis are usually averaged over multiple locations in many samples of the same microstructure. 

Such techniques are also time consuming, and may not be useful in a manufacturing environment.  

Matrix dissolution via chemical or electro-chemical dissolution is a popular technique for 

obtaining quick and reliable results to characterize second phase particles. It is quite challenging 

due to the fact that some second phases dissolve more readily than others. Therefore a host of 

chemical procedures exist to extract such particles. The extracted particles are identified using 

Energy Dispersive Spectra. Size distributions of the extracted particles are obtained using 

Transmission Electron Microscopy. The sequence of methods described above remains more or 

less uniform across various studies. Such analysis remains investigative rather than predictive. 
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The reader is directed to references(Ekström, Hagström, & Östensson, 2000; Gupta, Marois, & 

Lloyd, 1996; Lu et al., 2010)for relevant examples. 

3.2 – COMPUTATIONAL SIMULATION OF MICROSTRUCTURE ON A 

SIZEABLE SCALE 
In addition to identifying the second phases, there has been considerable interest in 

modeling second phase growth itself. In doing so, it is hoped that details of growth kinetics will 

elucidate growth modes of, for e.g. second phases of the eutectic kind. Different growth modes 

lead to different eutectic structures that vary in size and distribution, which in turn dictates 

properties and downstream processing (Dahle, Lee, & Nave, 2001).  

The Cellular Automaton (CA) technique has been an attractive avenue for simulating 

systems on a large scale to study realistic problems. The idea behind a CA model is to define a 

volume or a grid of cells, where each cell is in a particular state. The cells can change states 

reversibly or irreversibly using a pre-defined set of transition rules. Khajeh and Maijer(Khajeh & 

Maijer, 2010) employed the CA technique to study the case of solidification. Here, the possible 

cell states are solid, liquid and eutectic. Primary dendritic solidification microstructure can then 

be determined dynamically by assigning the appropriate number of cells to solid. In(Khajeh & 

Maijer, 2010)the initial primary structure was obtained from solidification experiments using x-

ray microtomography performed on Al-Cu alloys with 20-wt% Cu. The alloys were quenched 

after the start of eutectic transformation, seen via the measured temperature, to lock in the 

primary structure for the x-ray microtomography. 

A nucleation and growth algorithm was then employed to simulate the eutectic growth in 

the liquid pools regions. The number of active nuclei per unit volume, i.e. clusters that have 

grown to become nuclei, is given by: 

Nv = !1!T
!2

 
Eq.	  25 
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where !1  and !2  are fitting parameters that depend on the alloy type, and !T  is the local 

undercooling. 

The growth of eutectic nuclei is driven by: 

dR
dt

= !3!T
2

 
Eq.	  26 

whereR  is the radius of the eutectic grain and !3  is a growth coefficient unique to the alloy. 

These coefficients were determined using a least squares fit from experimental data. The results 

of their simulations are shown in Figure 5. Here, grey represents primary phase, and every other 

color is a unique eutectic grain. 

 

Figure 5 - 3D REPRESENTATION OF MICROSTRUCTURE OBTAINED FROM CA STUDY(Khajeh & Maijer, 2010) 

This study takes first steps in envisioning a process that would try and look at structure on 

a larger scale in order to analyze microstructure spatially. However, it doesn’t present such 

analysis, and limits itself to prediction of diameter of eutectic grains and the eutectic grain 

density. Additionally, their initial condition/microstructure determined from x-ray 

microtomography essentially put in the answer regarding the second phase topology ‘by hand’. 

The assumption is that the eutectic transformation starts at a temperature determined through an 

Scheil-Gulliver approach, which assumes no diffusion in the solid. This is inaccurate, and a finite 

solid diffusion coefficient has been shown by Ofori-Opoku et al.(Ofori-Opoku & Provatas, 2010; 

Rappaz, Jacot, & Boettinger, 2003) to be necessary for coalescence and closure of grains. Lastly, 
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the experiments were carried out at low cooling rates, it remains questionable whether their 

approach/results can be used for any cooling rates to determine large-scale structure of second 

phases. 

3.3 – A THERMODYNAMIC ARGUMENT FOR EVOLUTION OF LIQUID 

POOLS AND SUBSEQUENT FORMATION OF SECOND PHASES 
It was pointed out in the CA study outlined in the preceding section that the determination 

of the start of the eutectic transformation was sufficiently arbitrary due to lack of consideration of 

the effect of back diffusion. Notably, back-diffusion serves to alter the concentration of solute in 

the late-stage liquid (also known as microsegregation), and also allows for additional coarsening 

during closure. Coarsening has been shown to play an important role in determining the final 

scale of microstructure (Prasad, Henein, Maire, & Gandin, 2006), and by extension, can be 

expected to play a major role in spatial distribution of liquid pools and second phases. To address 

this shortcoming, it is important to consider the microsegregation that precedes formation of any 

second phase. 

D. V. Malakhov et al.(Malakhov, Panahi, & Gallerneault, 2010) showed that the 

conditions for nucleation for any arbitrary second phase are two fold: 

1. A positive driving force for nucleation 

2. Compositional similarity of the nucleating phase to the liquid. 

If there are multiple second phases that can form in a late-stage liquid pool, for e.g. in a 

multicomponent alloy at high cooling rates, then the second condition strongly influences which 

second phase nucleates. This argument is visually depicted in Figure 6. 
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Figure 6 - INTERPLAY BETWEEN DRIVING FORCES AND COMPOSITIONAL SIMILARITY 

The driving force for formation of any second phase i  can be calculated as follows: 

DFi =GL !Gi + xi ! x0( ) "GL

"xL

#

$
%

&

'
(
x=x0  

Eq.	  27 

whereGL  and Gi  are the molar Gibbs energies of the liquid and the second phase respectively, 

x0 is the average composition of the liquid, and xi  is the equilibrium composition of the second 

phase. 

Compositional similarity can be measured in terms of Euclidean distance: 

! =1" xi " x0( )
1
2

 
Eq.	  28 

In Figure 6, phase 2 would be expected to form in preference to 1 if cooling rates were high 

enough. This is because phase 1 is compositionally similar to the liquid pool, despite having a 
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lower driving force of formation. The preferential formation of phase 2 as opposed to phase 1 

reflects rapidly decreasing mobilities, and it becomes energetically more favorable for liquid to 

partition into a compositionally similar phase. 

In multicomponent alloys, driving forces for multiple second phases become positive at 

high cooling rates. Most of these second phases are of the metastable kind, which are not 

predicted by the equilibrium phase diagram. Therefore expected amounts of second phases using 

equilibrium conditions do not match the amounts found in industrial casts. Malakhov et al. 

showed that the change in segregation behavior at high cooling rates is significant enough to 

allow driving forces for metastable phases to become positive. Using the compositional similarity 

argument Malakhov et al. were able to accurately predict and experimentally validate the 

formation of metastable phases. 

Bringing the CA study back into focus, at the start of the eutectic transformation its 

subsequent growth mode (fibrous or lamellar) is affected by cooling rates and the resulting 

change in microsegregation. To accurately predict second phase growth selection, alongside sizes 

and distributions, this change in microsegregation must thus be considered. 

With regards to the long-term goal of a theory that correlates liquid pool evolution and 

second phase formation, compositional similarity can be expected to play a major role. 

Consequently, models that capture microsegregation dynamics with changing cooling rates 

accurately are crucial in any study that hopes to connect liquid pool evolution to second phase 

formation. 

3.4 – AN ARGUMENT FOR EXISTENCE OF SCALABLE BEHAVIOR OF 

LATE-STAGE LIQUID POOLS 
Coarsening, which drives late-stage liquid pool evolution, has been shown to exhibit a 

scaling behavior. As outlined in section 1.1.3, it comes in many flavors.  
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The classic analysis of Lifshitz and Slyozov (Lifshitz & Slyozov, 1961) showed a 

universal behavior in coarsening systems. In coarsening systems, the cube of the average of the 

radius is linearly dependent on time, according to: 

                                                                      
R = kt = 4

9
dDcet

1
3 =
8! vDce
9RT

t
1
3

 
Eq.	  29 

where k  is the rate constant, d  is the capillary length, D  is the diffusivity of solute in the matrix 

phase, ce  is the equilibrium concentration of solute species across a flat interface, !  is the 

interfacial energy, !  is the molar volume of the solute species in the coarsening phase and R  is 

the gas constant. 

This implies cube root kinetics, and an example of scaled size distributions that result 

from what is now known as the LSW theory is given in Figure 7. These distributions plot 

normalized particle size distribution P*  vs. reduced size z
1
3 . 

 

Figure 7 - SCALED SIZE DISTRIBUTION OBTAINED FROM LSW THEORY (Lifshitz & Slyozov, 1961) 
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Additionally, S. Gurevich et al. showed linear dependence on the cube root of time for the 

ripening and coalescence of liquid pools in directionally solidifying systems (Gurevich, 

Amoorezaei, Montiel, & Provatas, 2012). 

Another notable contribution to the study of merger behavior comes from Aagesen et al. 

(Aagesen et al., 2010). Their analysis illustrates universal dynamics for merger in solidifying 

systems. Self-similar morphological features, i.e. the interface shape, are shown to follow cube 

root kinetics. Their results are shown in Figure 8. They show that a pinching event assumes a 

conical morphology (as shown in the thumbnails in figure 8). The conical morphology reduces in 

size in time, and the data can be scaled when time is plotted in a normalized fashion. A scaling 

exponent of ⅓ for time indicated coarsening processes predominantly active during a pinching 

event. Universality in this context implies that the interface shape is independent of initial 

conditions, and could potentially be used to determine the time needed for onset of liquid pool 

isolation. 

 

Figure 8 - UNIVERSAL DYNAMICS FOR MERGER BEHAVIOR(Aagesen et al., 2010) 
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The studies presented in this section hint to existence of an overall pattern/trend for liquid 

pool evolution. By extension, the structure of the initial second phases at least can also be 

expected to show some scalable behavior. 

3.5 – A NOVEL TECHNIQUE FOR QUANTIFYING EVOLUTION OF 

MICROSTRUCTURE 
One way of viewing late-stage liquid pooling is through the theory of percolation. Almost 

no attention has been given to the percolation transition in solidifying microstructures. The author, 

to the best of his ability, is aware of only one such study, highlighted subsequently. 

The phase distributions is solidifying systems is correlated, where the correlations 

manifest in a highly networked structure. This arises from interaction of primary phase nuclei, 

either through soft impingement of diffusion fields or through ‘hard’ impingement upon contact. 

Brunini et al.(Brunini, Schuh, & Carter, 2011) investigated the percolation transition with respect 

to system size for two kinds of phase transformations: spinodal decomposition and nucleation 

and growth (non-dendritic). Their results are shown for the nucleation and growth case in Figure 

9. Different curves correspond to different system sizes, given by L , where a higher L  indicates 

a bigger square system. 
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Figure 9 - PROBABILITY OF FINDING A SPANNING CLUSTER VS. PERCOLATION THRESHOLD(Brunini et al., 

2011) 

 

 

Their results were fitted to an error function of the form: 
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Eq.	  30 

where!(p)  is the probability of finding a spanning cluster defined as the fraction of simulations 

containing a spanning cluster,  p  is the liquid fraction, pceff  is the effective percolation threshold 

in terms of liquid fraction for the phase in question defined as the intersection of the three curves 

shown above, and !  is the width of the percolation transition which is defined as the liquid 

fraction for which the value of the error function lies between 0 and 1. 
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For the case of nucleation and growth, the percolation thresholds show an increase 

compared with the standard random lattice threshold. It is speculated to be due to the coarsening 

mechanisms at play throughout the growth process.  

This speculation arises from a spatial correlation analysis, where the time evolution of a 

characteristic length obtained from pair correlation functions shows three regimes: 

1. Independent growth at early times, 

2. Coalescence of neighboring particles at intermediate times, 

3. Self-similar coarsening process at late times. 

The results from their spatial correlation analysis for the nucleation and growth case are shown in 

Figure 10. Chapter 5 uses these concepts to elucidate liquid pool evolution, which also displays a 

highly networked structure. 
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Figure 10 - PAIR CORRELATION FUNCTION VS.DISTANCE (TOP) AND GROWTH OF THE CHARACTERISTIC 

LENGTH SCALE VS. TIME (BOTTOM) (Brunini et al., 2011)  
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CHAPTER 4 – METHODS BACKGROUD 
In this chapter the phase field model used to simulate microstructure along with some of 

its features is discussed. In addition, techniques to analyze microstructure are highlighted and 

critiqued. Some thermodynamic and scaling arguments are also made that build upon the 

literature review in the previous chapter. These arguments will serve to elucidate some of the 

results present in Chapter 5. 

4.1 – PHASE FIELD MODEL 
The phase field method has been recognized as a powerful tool to model complex 

topological features, and phase field models that build on this method are ubiquitous in many 

scientific areas of study(J. W. Cahn & Hilliard, 1958; Hohenberg & Halperin, 1977; Rowlinson, 

1979).  

The phase field method allows for discrimination between different phases that may exist 

at identical temperatures, concentrations, etc., through an order parameter/field that has one value 

in one phase, and a second value in all others. Its principal characteristic is the presence of a 

diffuse interface, which is a realistic feature in solidifying systems. The method as it pertains to 

phase transitions was first formalized by Ginzburg and Landau, and was used by Cahn and 

Hilliard to model spinodal decomposition in their 1958 – 1959 series of papers(J. W. Cahn & 

Hilliard, 1958, 1959).  

A phase field model can be constructed using physical arguments, where these physical 

arguments enter the model via a global free energy that describes the different phases’ 

dependence on each other. For this thesis, a phase field model for a dilute binary alloy developed 

by Ofori-Opoku et al.(Ofori-Opoku & Provatas, 2010) is used that has been successfully applied 

to many alloy solidification studies(Amoorezaei, Gurevich, & Provatas, 2012; Gurevich, 

Amoorezaei, & Provatas, 2010; Ofori-Opoku & Provatas, 2010). The global free energy is given 

by: 
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Eq.	  31 

where!i  is an order parameter for a thermodynamic phase having a value of 1 in the solid 

and 0 in the bulk liquid,!
!

 is an order parameter that describes misorientation between two solid 

phases, !("
!

) is an anisotropic gradient free energy associated with misorientation between either 

two solid-solid phases, or solid-liquid phases, f (!
!

,c,T )  is the bulk free energy, and forient (!
!

)  is 

interaction energy between two solid phases of different orientations. 

In the free energy above, the interplay between different phases, their concentrations and 

the temperature of the solidifying system captures the interfacial, bulk and interaction 

contributions to the free energy of a solidifying system. 

Evolution of solidification microstructure can be described by solving the Cahn-Hilliard and 

Allen-Cahn equations, given by: 
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Eq.	  32 

and 

!!i
!t

= "K!

"F
"!i  

Eq.	  33 

whereM (!
!

,c)  is an interface mobility coefficient and K!   is a kinetic coefficient that describes, 

in a coarse-grained manner, atom attachment/detachment to and from a solid phase. The above 

equations are variational in their formulation. However, in the model developed by Ofori-Opoku 

et al., non-variational forms have been used to simulate dynamics. The reader is directed to the 

source (Ofori-Opoku & Provatas, 2010) for the detailed formulation, but the key features of the 

non-variational formulation will be discussed in this section. 
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The most important feature of the non-variational formulation is a modified diffusion 

equation (analogous to equation 33) that incorporates an anti-trapping flux term. This term 

accounts for solute trapping caused by employing a large diffuse interface. Use of an 

unrealistically large diffuse interface is justified since the scale of the diffuse interface is much 

smaller than the scale of the microstructure. Therefore the interface can be set at a reasonable 

value that makes numerical simulation possible. Therein lies the phase field method’s core 

strength. 

The simulated microstructures presented in this thesis are performed using a code 

developed by Greenwood (Greenwood, 2004) that implements an adaptive gird/mesh. An 

adaptive mesh is a non-uniform grid, which at any given time interval, adopts square elements of 

a large size where local variations are small and vice-versa. For e.g. local variations are small in 

bulk, but large at interfaces and grain boundaries. The adaptive mesh thus adds to the numerical 

efficiency allowing for microstructure on a large scale to be simulated. Examples of simulated 

microstructure are shown in Figure 11. The order and concentration maps are both shown for 

convenience. The order map shows variation of the order parameter across different phases. In 

the context of this thesis, there is only one such variation, which is from solid to liquid. The 

concentration map shows variation in solute concentration spatially, where the degree of hotness 

indicates the concentration of solute. 
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Figure 11–TYPICALEXAMPLESOFMICROSTRUCTURESIMULATAEDUSINGTHEPHASEFIELDMODEL 
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4.2 – NULCEATION AS IT PERTAINS TO THE PHASE FIELD MODEL 
An important feature of equiaxed microstructure is the grain density, which is determined 

by the nucleation per unit volume (nucleation rate) and is directly correlated to late-stage liquid 

pooling. The intimate connection between grain density and nucleation rate is discussed below. 

Nucleation as described in section 1.1.1 is also known as thermal nucleation. It is a 

suitable and realistic theory, but has some shortcomings. The nucleation rate is always expressed 

as a probability distribution that is a function of the number of sites(atoms/inoculants) in a system. 

Each atom/inoculant particle is a potential site for a cluster/nuclei to originate. This implies that 

upon sufficient lowering of temperature, every site is turned into a nucleus. This can mistakenly 

lead to the conclusion that the grain density for a system is a constant, which is contrary to 

observation (Figure 12). 

 

Figure 12 - GRAIN DENSITY VS. TIME AS PREDICTED BY HETEROGENEOUS NUCLEATION (Dantzig & Rappaz, 

2009) 

The grain density of a system is highly dependent on cooling rate, where a higher cooling 

rate, i.e. a higher undercooling, results in a higher grain density. The theory of athermal 
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nucleation, discussed below, takes into account the effect of cooling rate on the nucleation 

rate(Dantzig & Rappaz, 2009). 

It can be pointed out at this juncture that the terms homogeneous and heterogeneous 

nucleation are identifiers for the nucleation mode, whereas the terms thermal and athermal 

nucleation describe the temperature dependence of the nucleation rate. In addition, it should be 

noted that homogeneous nucleation is always of the thermal kind, whereas heterogeneous 

nucleation can be either thermal or athermal. This is because for the case of homogenous 

nucleation every atom is a potential site, i.e. a cluster/nucleus can be arbitrarily centered on any 

atom. 

In athermal nucleation the dependence of the nucleation rate on cooling rate is a result of 

the existence of a distribution of sizes of inoculants. The cooling rate determines the size range 

that is ‘active’ and available for heterogeneous nucleation. All inoculant sizes may become active 

if the undercooling is large enough, and the nucleation process would then resemble the thermal 

kind. If the undercooling is not large enough, then there would exist a fraction of inoculants that 

do not become active. The fraction of inoculants that do become active would then be prescribed 

by the theory of athermal nucleation. 

In the context of equiaxed solidification, there are two ways in which the inoculant size 

can limit the nucleation rate at a given undercooling. 

• Case 1: The critical cluster size is bigger than all possible range of inoculant sizes (Figure 

13). 

• Case 2: The inoculant size permits formation of a cluster, but free growth is limited by the 

inoculant size. As can be seen in Figure 14, curvature needs to increase for further growth 

to occur. 
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Figure 13 - CASE 1(Dantzig & Rappaz, 2009) 

 

Figure 14 - CASE 2 (Dantzig & Rappaz, 2009) 

Both these cases represent situations where all or some fraction of inoculants are not active. If the 

undercooling is kept constant, then the fraction of active inoculants is set, fixing the grain density 

in the system. For case 2, free growth (that minimizes curvature) is possible if the undercooling 

increases beyond the geometrically limited undercooling, defined as: 

!Tg =
4"
!  

Eq.	  34 

where!  is the Gibbs-Thomson coefficient (equation 18), and !  is the wetting angle between the 

substrate and the cluster/nucleus. 
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Figure 15 - EFFECT OF THE WETTING ANGLE ON THE EFFECTIVE UNDERCOOLING FOR 

NUCLEATION(Dantzig & Rappaz, 2009) 

The size distribution of inoculants can be modeled in various ways, but was first done by 

Oldfield(Oldfield, 1966). Oldfield noticed that the grain density N  was proportional to the 

square of the undercooling achieved. Mathematically this can be described as: 

N =!!T 2
 Eq.	  35 

where!  is a fitting parameter. A size distribution in which regions are activated upon reaching a 

certain undercooling can be obtained by differentiating the above equation with respect to the 

undercooling: 

dN
d!T

= 2!!T
 

Eq.	  36
 

Note that the last two equations are similar to the ones comprising the nucleation and growth 

algorithm from the CA study highlighted in chapter 3. 
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A more realistic distribution comes from the observation that natural phenomena often 

display a lognormal behavior. Such a distribution can be formalized as follows: 

dN
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Nmax
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Eq.	  37 

whereNmax is the maximum number of inoculants in the system,!T  is the inoculant size, !T0  is 

the mean inoculant size, and !T!  is the standard deviation. 

Athermal nucleation can also appear due to existence of different types of inoculants, and 

is analogous to the size distribution effect. It serves to change the effective wetting angle ! , 

which in turn affects the geometrically limited undercooling !Tg . 

In the context of the phase field modeling of microstructure, thermal fluctuations that 

drive nucleation are impractical to capture as they occur on incredibly short time scales and 

length scales below even that of the interface width. Therefore, a stochastic approach based on 

effective nucleation probabilities is employed (i.e. coarse grained to larger volumes and 

times)(Simmons, Shen, & Wang, 2000). It captures the effect of cooling rate on grain density, 

and is discussed below. 

The nucleation rate was identified in section 1.1.1 as: 

N
•

= Z!Nl exp !
"Gnuc

kBT
#

$
%

&
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Eq.	  38 

where!  is the attachment frequency, Z  is the Zeldovich Factor, Nl  is the total number of atoms 

in the system, Gnuc
* is the ‘activation energy’ of nucleation. 

On an adaptive mesh, each element is arbitrarily defined as a test volume where 

nucleation can occur based on a probability P!v,!t  over that volume and in one numerical time 

step. Nucleation in an element !v occurs if the probability of nucleation, a function of the 
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nucleation rate N
•

, is greater than a number between 0  and 1 , chosen from uniform random 

distribution by a random number generator at each element at every time step. When this occurs, 

a circular grain of size sufficiently greater than the critical radius is placed at a seed within the 

element. The seed is then ‘burned", which means that it is no longer available as a nucleation site. 

The probability of nucleation in an element !v  is obtained as: 

P!v,!t =1" exp("N
•

!v!t)
 

Eq.	  39 

where!t  is a time interval chosen to be large enough to capture the spatial compositional 

fluctuations (noise) responsible for at most one nucleation event in the time window t, t +!t( ) . 

Referring back to Equation 39, for a constant temperature window, the size of the time 

window in which nucleation events occur is inversely proportional to the cooling rate. Therefore, 

for low cooling rates a larger time window will allow seeds that nucleate on the onset to grow 

and hinder nucleation of other seeds at a later time. This hindrance is due to solute segregation 

and a decrease in the ratio of liquid-to-solid volumes. This does not occur for sufficiently high 

cooling rates, where the time window for nucleation is so small that nucleation events do not 

interfere with each other. As a result most/all active sites nucleate. Consequently, a higher grain 

density for high cooling rates is observed compared to low cooling rates. Microstructures for 

various cooling rates are shown in Figure 11. 

4.3 – SPECTRAL ANALYSIS: DIRECTIONAL VS. EQUIAXED 

SOLIDIFICATION 

The phase field model described above and the theories that constrain and shape its 

behavior only serve to produce quantitatively accurate microstructure. Therefore, in the context 

of this thesis, it is but a tool to produce such microstructure. Consequently, prominence is given 

to analytical techniques that can be used to elucidate and quantify trends and patterns within this 
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microstructure. Accordingly, results presented and discussed in chapter 5 of this thesis are a 

product of the analytical techniques presented in this section and the next. 

Spectral analysis has been an invaluable tool for making sense of an apparently stochastic 

process to draw out patterns and periodicities. It has wide variety of applications, from the 

analysis of light from stars to electrical signals, In essence, discrete spectral analysis consists of 

sorting data into bins where the ‘weight’ of each bin indicates the prevalence of a given 

frequency of oscillation of signal. This is appreciated when it is realized that all continuous (or 

piece-wise continuous) signals can be decomposed into a series of sine waves. 

Examples of power spectra of three different signals are shown in Figure 16. The green 

wave is a linear combination of the red and the blue waves. Its power spectrum has two peaks, 

which tells of two predominant wavelengths. The frequencies of the two predominant 

wavelengths are indicated on the x-axis, and the amplitude on the y-axis indicates equal 

significance/contributions from the two predominant wavelengths. 
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Figure 16 - EXAMPLES OF POWER SPECTRA OF VARIOUS WAVES 
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The idea presented above is formalized using a Fourier Transform for a continuous 

analytic function or a Discrete Fourier Transform (DFT) for discretely sampled date. The one-

dimensional DFT of a set of data fn{ }  representing samples of a function f (x) is given by: 

Fk =
1
N

fne
2!ink/N

n=0

N!1

"
 

Eq.	  40 

where k  is the wavenumber index and Fk is in general complex. The one-dimensional (1D) power 

spectrum is defined as the real-valued squared amplitude of the Fourier Transform: 

	   Eq.	  41 

For the analysis of two-dimensional (2D) data, one needs the 2D Fourier Transform. A 

convenient tool for analysis of 2D data is the radially averaged power spectrum, which can be 

defined as: 

S(k) = F(k
!

)
2

rad  

Eq.	  42 

where the brackets indicate radial averaging in reciprocal space over values of k  of equal 

magnitude. In other words, a 2d data set is binned into predominant inverse wavelengths (i.e. 

frequencies) along the x and y directions, also known as wavevectors, and then circularly 

averaged about the origin. An example of such a 2d data set is a picture of microstructure 

produced from phase-field simulations (to be discussed in the next chapter), shown in Figure 17 

along with its radially averaged 2d power spectrum. 

F(k) 2
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Figure 17 - POWER SPECTRA FROM MICROSTRUCTURE 

Spectral analysis has also been successfully used to elucidate length scale selection in 

other contexts. In the case of directional solidification, it was used by Greenwood et. al and 

Amoorezaei et al.(Amoorezaei, Gurevich, & Provatas, 2010; Greenwood, 2004; Gurevich et al., 

2010) to identify mean primary dendrite spacing. Results from Amoorezaei et al. are shown in 

Figure 18. Here, the mean peak of the power spectra is proportional to the inverse of the primary 

dendrite spacing. 
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Figure 18 - POWER SPECTRA RESULTS FOR PRIMARY DENDRITE ARM SPACING(Amoorezaei, 2012) 
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Returning to the case of equiaxed solidification, the radially averaged 2d power spectrum 

identifies a variety of features/lengthscales. Figure 17 is presented again with these features 

identified in Figure 19. Here, smaller features are represented at large k values on the x-axis, with 

their relative amounts given by the intensity values on the y-axis. 

 

Figure 19 - POWER SPECTRA FROM MICROSTUCTURE WITH FEATURES 

Note that the liquid pool structure can be identified visually, but is not obvious in the 

power spectrum. In the case of directional solidification, the feature of interest (primary arm 

spacing) was obvious as a well-defined peak. In the case shown here, there is a weak peak 

corresponding to the inter-grain spacing. However, the more interesting feature is the self-affine 

scaling that exists through some length scales of the liquid pool. The power law in the spectrum 

in the figure above evidences this. The power spectrum in the high wavenumber region, i.e. 

where the interfaces (as opposed to the dendritic structure) become the predominant feature in the 

system, is expected to conform to Porod’s Law, which states the following power law behavior 

(in 2D): 

S(k) ~ k!4  Eq.	  43 
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In the case of equiaxed structures, power spectral analysis is inadequate, alone, to 

highlight liquid pool evolution. This is further discussed in section 5.1, where results from 

simulations representing various cooling rates are discussed. 

4.4 – CLUSTERING ANALYSIS 

As briefly noted in the previous section, spectral analysis as a tool for the analysis of 

liquid pool evolution has some limitations. Therefore an additional technique is required that can 

highlight various aspects of late-stage liquid pools. 

To that aid, the method of clustering analysis is employed. For a given data set, a 

clustering algorithm groups together data points that are similar to each other. The similarity 

criterion is often prescribed based on the nature of the application, and usually requires a 

tolerance to be specified by the user of the clustering algorithm. This tolerance sets a limit on 

how different two data points can be with respect to each other before they are considered to 

belong to two different groups. 

Clustering algorithms are notoriously prevalent in our daily lives. One example of a 

clustering algorithm is of the kind that recommends books on Amazon.com, the online retailer. 

When a particular search query is made, a clustering algorithm is usually at work that organizes 

the entire amazon.ca library into two groups of data: one that contains books matching the search 

query, and one where books do not match the search query. 

Analogously, clustering analysis applied to simulated microstructural data such as one 

shown in Figure 17groups together data points that are liquid (blue), and data points that are solid 

(red). Therefore it identifies individual liquid pools. The clustering algorithm applied here also 

counts and tracks the size of individual liquid pools, effectively tracking liquid pool evolution. 

In the context of this thesis, the clustering algorithm used is known as the Hoshen-

Kopleman algorithm(Fricke, 2004). It is visually depicted in Figure 20.  
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Figure 20 - HOSHEN-KOPLEMAN ALGORITHM(Fricke, 2004) 

For the case of a data set such as a 2d binary matrix, a cell (data point) is considered 

occupied if it contains a ‘1’, and is considered unoccupied otherwise. The Hoshen-Kopleman 

algorithm scans the matrix for occupied cells, and determines their connectivity by looking at any 

occupied neighbors. The matrix is actively re-labeled as the algorithm scans it, with each unique 

label indicating a cluster. The value of the maximum label gives the number of clusters in the 

system, and the amount of labels in any given cluster indicated its size. In other words, when 

applied to microstructure data, the number and the size of liquid pools in the system are obtained. 

The result of the clustering algorithm when applied to simulated microstructure is shown in 

Figure 21, where each color in the right thumbnail represents a cluster. 
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Figure 21 - HOSHEN KOPLEMAN ALGORITHM APPLIED TO MICROSTRUCTURE  
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CHAPTER 5 – REULTS & DISCUSSION 
In this chapter, the effect of cooling rates and solid diffusion coefficient (back-diffusion) 

on liquid pool evolution is investigated using the methods presented in chapter 4. Specifically, 

spectral analysis is used to highlight the effect of cooling rate, while clustering analysis and the 

subsequent percolation methods are used to highlight the effect of cooling rate and solid diffusion 

coefficient. 

5.1 – SPECTRAL ANALYSIS OF LATE-STAGE LIQUID POOLS 
Figure 19 in section 4.1.4 highlights a typical power spectrum with marked features. In 

time, the marked features shift on the power spectrum, and the displacement in either the left or 

the right direction indicates feature evolution from a small to big length scale or vice-versa. The 

average center-to-center grain distance (red marker) doesn’t change in time, since the position of 

grains is set once nucleated. The average grain size (yellow marker) shows a slight shift towards 

the left as it increases over time. The secondary arm spacing (green marker) also shows this 

behavior, since secondary arms coarsen over time. The liquid pool width (purple marker) shows 

displacement towards the right on the power spectrum, as it shrinks and disappears as grains 

merge. 

Another notable characteristic of the power spectrum over time is the decrease in the 

intensity, shown in Figure 22. This is due to the coarsening and disappearance of structure over 

time. As the microstructure becomes increasingly homogenous, the only distinguishable peak 

corresponds to the average grain size. 
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Figure 22 - Evolution of the Power Spectrum over time for a given system. The term ‘conc’ represents concentration in the 

figure. 

It was also argued in the section 4.1.4 that power spectral analysis is inadequate, alone, to 

elucidate liquid pool evolution due to lack of any obvious corresponding peak. However, there is 

one feature of the power spectrum that elucidates the structure of the liquid pools. This feature is 

the region of linearity (in a log-log plot) associated with all wavelengths that are of relevance 

within the system. This is shown in Figure 23. At best, the right and left extremes of this linear 

region indicate the liquid pool colony size and potential liquid pool colony spacing, where a 

liquid pool colony is an isolated interconnected liquid pool. Alternatively, the right and left 

extremes tell of the smallest and the biggest features in the microstructure of the system. In this 

context, the smallest features are the spaces between secondary arms and the biggest features are 

the grains. 
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Figure 23 - Power spectrum with region of linearity indicated 

A shortcoming of such an analysis is the arbitrary nature of the linear region, i.e. there is 

no unambiguous way to determine the left and right extremes. This was also the case in(Gurevich 

et al., 2012). It must be noted that despite the approximate nature of the linear region, its 

implications are quite clear. 

A linear region is indicative of a power law that maps onto self-affine features existing 

within a system, where the slope of the linear region is related to the evolution kinetics. A classic 

example of a self-affine morphology is a dendrite. Therefore in this context, the linear region 

indicates the kinetics of evolution of dendritic features that coarsen over time. The decreasing 

slope and extent of this linear region in time tells of decreasing mobilities of diffusional species 

associated with coarsening, and physically manifests in a lowering of the number of dendritic 

features and their coarsening rate. 
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Power spectra for three cooling rates are highlighted in Figure 24. These have been 

averaged over 10 simulations for each cooling rate. A Gaussian filter was applied to smooth out 

any rough features. There is a definitive shift of the main peak downward and to the right of the 

power spectra, indicating the presence of smaller grain sizes. 

	  

Figure 24 - Power Spectra for varying cooling  rates 

5.2 –CLUSTERING ANALYSIS OF LATE-STAGE LIQUID POOLS 

An adequate scheme of presenting the results from the application of the Hoshen-

Kopleman clustering algorithm (described in section 4.4) is the variation in number of liquid 

pools vs. liquid fraction in the system. Figure 25shows one such typical result. Solidification 

proceeds from right to left along the curve, and some snapshots of microstructural evolution are 

shown alongside for convenience.  
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Figure 25 - Typical example of Evolution of Liquid Pools obtained from the Hoshen-Kopleman clustering algorithm 

As with all results presented in this section, this plot was obtained by averaging ten 

simulation trials at the same cooling rate, but different initial conditions by way of random 

nucleation. 

This typical number vs. liquid fraction curve exhibits two maxima and one minimum, 

highlighted by the red arrows. The first maximum corresponds to the point where nucleation 

stops occurring, i.e. the point at which nucleation rate has decreased to zero. The increase in the 

number of clusters is due to entrapment of liquid pools between secondary arms. The large 

average size is due to the contribution of large networks of liquid pools, where each network is 

considered a cluster. The following decrease in the number (and also average size of clusters, 
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seen, for e.g., in Figure 28)corresponds to the onset of soft impingement processes that lead to 

merger of secondary arms and decrease of width of networked liquid pools. The minimum 

corresponds to the onset of coalescence whereby the existing liquid pools networks are pinched 

off to form isolated liquid pools. This leads to a sharp increase in the number of liquid pools (and 

also a rapid decline in their average size seen, for e.g., in Figure 28). The second maximum 

corresponds to the point where mostly coalescence processes are in operation. This leads to rapid 

closure of liquid pools and consequently a rapid decline in their numbers. 

Using the Hoshen-Kopleman clustering algorithm, evolution of liquid pools with respect 

to varying cooling rates and solid diffusion coefficients was investigated. The results are shown 

and discussed in the following sub-sections. 

5.2.1 – EFFECT OF COOLING RATE ON LIQUID POOL EVOLUTION 

The trend described in the preceding section is shown across various cooling rates, which 

are shown in Figure 26. An increase in cooling rate leads to a higher overall number of clusters of 

smaller sizes, consistent with experimental observations of large number of smaller sized second 

phases with an increase of cooling rate(Sarreal & Abbaschian, 1986). The apparent contraction of 

the curve in the horizontal direction can also be attributed to the cooling rate, where the sizes of 

liquid pools formed are constrained by the increased number of nuclei/grains in the system. 
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Figure 26 - Evolution of Liquid Pools(Number of Liquid Pools vs. Liquid Fraction)for varying cooling rates 

The evolution of the number of clusters can be tracked with respect to other variables, 

notably temperature and average pool size. The shape of the curve remains relatively the same, 

along with the features and trends described earlier for the number vs. liquid fraction plot. These 

plots for various cooling rates are shown in Figure 27 and Figure 28. For the case of number of 

pools vs. average size, a close up of the region where most of the liquid pool evolution occurs is 

shown. 
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Figure 27 - Evolution of Liquid Pools (Number of Liquid Pools vs. Temperature) for varying cooling rates 
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Figure 28 - Evolution of Liquid Pools (Number of Liquid Pools vs. Average Size) for varying cooling rates  
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5.2.2 – EFFECT OF SOLID DIFFUSION COEFFICIENT ON LIQUID POOL EVOLUTION 

Another effect that was investigated was with respect to the diffusion coefficient in the 

solid. Three diffusion coefficients were investigated. Plots similar to Figure 26, Figure 27 and 

Figure 28 were produced and are shown in Figure 29, Figure 30 and Figure 31.  

	  

Figure 29 - Evolution of Liquid Pools (Number of Liquid Pools vs. Liquid Fraction) for varying solid diffusion coefficients 
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Figure 30 - Evolution of Liquid Pools (Number of Liquid Pools vs. Temperature) for varying solid diffusion coefficients 
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Figure 31 - Evolution of Liquid Pools (Number of Liquid Pools vs. Average Size) for varying solid diffusion coefficients 

Figure 29 through Figure 31 show an almost negligible difference with varying solid 

diffusion coefficients. However, it will be discussed shortly that this difference can be drawn out 

and expanded upon. 

5.2.3 – COMMENTS ON RESULTS OF CLUSTERING ALGORITHM 

It can be pointed out at this juncture that the similar shapes and features of each of the 

three types of plots elucidates the coupled nature of the number of liquid pools, their sizes, liquid 

fraction and temperature. In other words, they are not independent of each other. It should also be 

noted that the number of liquid pools times the average size equals liquid fraction. Thus, it is 

possible to determine the amount of liquid pools from a number vs. size plot, and the size of the 

liquid pools from a number vs. liquid fraction plot. 
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The type of plot that is arguably the most adequate scheme to highlight further analysis is 

of the number vs. liquid fraction type. This is because unlike temperature or average size, the 

values of liquid fraction are bounded. That is, it does not discriminate between solidification 

processes occurring in very different systems (for e.g. different alloys, compositions, freezing 

ranges, etc.) and displays any prevailing trends in a pseudo-‘normalized’ fashion. The region of 

interest with regards to the distribution of second phases within such plots is arguably between 

the first maximum and the minimum. This is because the distribution of liquid pools within this 

region is very similar to the distribution of second phases as seen from literature (Czerwinski, 

2011). In addition, it can be argued that the chances for second phase formation are reduced upon 

onset of coalescence processes. Coalescence is accompanied by back-diffusion, which reduces 

the solute content within liquid pool, which in turn may be required to nucleate a second phase. 

Additionally, coarsening also implies a reduction in the available liquid for nucleation of a 

second phase, which in turn may decrease the final amount of second phases. 

5.3– APPLICATION OF PERCOLATION METHODS TO CLUSTERING 

ANALYSIS 

Bringing the work of Brunini et al. (Brunini et al., 2011) back into focus, liquid pool 

evolution for equiaxed solidification can also be analyzed as a percolating network. The number 

of liquid clusters vs. liquid fraction plot can be extended to the kind seen in Figure 9, where 

probability of having a spanning cluster is plotted vs. liquid fraction. For the analysis presented 

subsequently, each set of data has been averaged over 10 simulations. These plots, shown and 

discussed in the following sub-sections, are relatively rough despite being averaged over ten 

simulations. The address this, the rough averaged data was fitted with a function of the form of a 

cumulative probability for a normal distribution. The fitting function is of the form: 

P(S) = 1
2
1+ erf w fl ! fl

avg( )( )"
#

$
%

 
Eq.	  44 
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whereP(S)  is the probability of finding a spanning cluster at a liquid fraction fl , flavg is the 

average liquid fraction threshold/average percolation threshold, and w  is the width of the 

percolation transition. The trends exhibited by the fitting error functions can be viewed as the 

variation of two parameters: flavg  and w , where they are responsible for horizontal shifts and 

broadening/sharpening respectively. These parameters connect with Figure 26 and Figure 29by 

way of w  mapping on to the distance between the first maximum and the minimum, and flavg  

corresponding to its midpoint. The values for these two parameters for the cases of different 

cooling rates and diffusion coefficients are given in Table 1. 

 

Table 1  - Fitting parameters for application of percolation methods to clustering analysis 

Cooling Rate ( ) Solid Diffusion Coefficient (Ds ) 

 w  fl
avg   w  fl

avg  

      

      

      

	  

R
•

160!C / s 20 0.38 1e!14 25 0.35

320!C / s 27 0.36 1e!15 35 0.35

640!C / s 33 0.345 1e!16 45 0.35
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5.3.1 – PERCOLATION METHODS RESULTS FOR VARYING SOLIDDIFFUSION 

COEEFICIENT 

	  

Figure 32 – Probability of having a Spanning Cluster vs. Liquid Fraction for varying solid diffusion coefficients 

Figure 32 and Figure 33 show the raw and fitted spanning cluster vs. liquid fraction plots 

for the case of varying solid diffusion coefficients, the only observable trend in the data is a slight 

sharpening of the error function fit with an increase in solid diffusion coefficient. This implies 

that for a higher solid diffusion coefficient, the percolation transition starts at a lower liquid 

fraction and leads to a slower pinch off of liquid pool networks to form isolated pools. This is 

facilitated by the faster rate of back-diffusion, which reduces the curvature of approaching 

interfaces, and delays coalescence processes (Ofori-Opoku & Provatas, 2010; Rappaz et al., 

2003). Another feature of the fits for this case is that the error function fits have a common 

intersection point at  and , which suggests that at these values the liquid pool 

structure is statistically the same. 

P(S) = 0.5 fl = 0.35
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Figure 33 – Probability of having a Spanning Cluster vs. Liquid Fraction for varying solid diffusion coefficients fitted to 
equation 44 using parameters given in Table 1 
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5.3.2 – PERCOLATION METHODS RESULTS FOR VARYING COOLING RATES 

	  

Figure 34 - Probability of having a Spanning Cluster vs. Liquid Fraction for cooling rates 

Figure 34 and Figure 35 show the raw and fitted spanning cluster vs. liquid fraction plots 

for the case of varying cooling rates. In this case, the observable trends are more complex. There 

is a sharpening of the error function fit along with a horizontal shift towards lower values of 

liquid fraction with an increase in cooling rate. The sharpening of the error function fit has the 

same implications as described for the varying diffusion coefficients case. The horizontal shift 

implies that the percolation transition occurs at a lower liquid fraction, but does not lead to a 

faster pinch off. The combination of the error function sharpening and horizontal shift with 

increasing cooling rates leads to a percolation transition at a lower liquid fraction and leads to 

faster pinch off. This in turn leads a large number of small sized liquid pools in the system. 

Another way of interpreting the error function fits is to observe the corresponding number 

of liquid pools vs. liquid fraction plot, shown in Figure 26. There is a pronounced shift of the first 
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maximum towards lower liquid fraction as the cooling rate increases. The minimum however, 

barely shows any shift with changing cooling rate. This shows up as a tilt of the top of the error 

function relative to the bottom. 

	  

Figure 35 - Probability of having a Spanning Cluster vs. Liquid Fraction for varying cooling rates fitted to equation 44 
using parameters given in Table 1 

5.4–ANALYSIS OF SIZE DISTRIBUTIONS OF LIQUID POOLS 
Clustering analysis can also highlight the size distributions of evolving liquid pools. 

Normalized averaged size distributions for the cases of varying cooling rates and diffusion 

coefficients are discussed in the following sub-sections. For both cases the size distributions are 

very rough, even after averaging over ten trials. However, they do exhibit trends that explain 

liquid pool evolution further. Each set of size distributions shown correspond to the onset of 

coarsening, the onset coalescence, and when both coarsening and coalescence processes are 

active. Snapshots of simulated microstructure are also shown alongside. 
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5.4.1 – SIZE DISTRIBUTIONS FOR VARYING SOLIDDIFFUSION COEFFICIENTS 

For the case of varying diffusion coefficients, the normalized size distributions are shown 

in Figure 36 through Figure 39. They roughly overlay each other, implying little variance in 

structure. This can also be linked back to the error fits, which showed a minimal variation. Two 

small peaks can also be observed, with the larger one occurring at smaller normalized size. The 

large and small peaks speak to the number and sizes of liquid pool networks and isolated pools 

respectively. As coalescence processes start operating, the liquid pool networks are pinched off to 

form isolated pools, leading to disappearance of two distinct peaks. 

	  

Figure 36 - Size distributions of Liquid Pools with varying solid diffusion coefficients corresponding to the onset of 
coarsening. The second and third thumbnails show progressively magnified views, also indicated by the scales on the y-

axis 
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Figure 37 - Size distributions of Liquid Pools with varying solid diffusion coefficients corresponding to the onset of 
coalescence. The second and third thumbnails show progressively magnified views, also indicated by the scales on the y-

axis 
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Figure 38 -Size distributions of Liquid Pools with varying solid diffusion coefficients corresponding to the when both 
coarsening and coalescence processes are active. The second and third thumbnails show progressively magnified views, 

also indicated by the scales on the y-axis  
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5.4.2 – SIZE DISTRIBUTIONS FOR VARYING COOLING RATES 

Figure 39 through Figure 41 show size distributions for the case of varying cooling rates. 

In this case it is difficult to draw out a noticeable trend. An expected result would be to get 

distributions that roughly overlay each other as in the varying diffusion coefficients case, with the 

two peaks being taller and sharper for higher cooling rates. This would be consistent with visual 

inspection where the sharper peaks imply less available room/sizes at higher cooling rates/grain 

densities. The taller peaks would imply a larger number of liquid pools at these smaller sizes. As 

in the previous case, the normalized number times size would then be an indication of the amount 

(in liquid fraction) of such liquid pools.  

Additionally, the universality argument presented in (Aagesen et al., 2010) can be brought 

into focus, where the interface morphologies were shown to be universal across solidifying 

systems. Accordingly, a lower cooling rate produces microstructure that, at the same non-

equilibrium temperature, resembles that of a higher cooling rate at magnification. The chaotic 

appearance and evolution of liquid pools therefore has a universal semblance. This is evidenced 

in the normalized size distributions, where they overlay each other with varying cooling rates. 

Here it is hypothesized that the number of liquid pools as determined by the Hoshen-Kopleman 

clustering algorithm may be some scalable number where: 

	   Eq.	  45 

Regardless, any interpretation with the size distributions presented for the case of varying 

cooling rates is speculation. A larger data set that provides further statistics is needed to test this 

speculation. 

	  

Size( )NORMALIZED Number( )NORMALIZED
scalable

= Size( )REAL
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Figure 39 -- Size distributions of Liquid Pools with varying cooling rates corresponding to the onset of coarsening. The 
second and third thumbnails show progressively magnified views, also indicated by the scales on the y-axis 
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Figure 40 -Size distributions of Liquid Pools with varying cooling rates corresponding to the onset of coalescence. The 
second and third thumbnails show progressively magnified views, also indicated by the scales on the y-axis 
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Figure 41 - Size distributions of Liquid Pools with varying solid diffusion coefficients corresponding to the when both 
coarsening and coalescence processes are active. The second and third thumbnails show progressively magnified views, 

also indicated by the scales on the y-axis 

5.4.3 – COMMENTS ON RESULTS OF CLUSTERING ALGORITHM 

Finally, with regards to second phase formation the clustering analysis presented above 

and any associated percolation methods can be truly useful when coupled with a thermodynamic 

analysis that tracks the liquid pool compositions and actively computes nucleation driving forces 

for second phases. The liquid pool networks that are true precursors for second phases can then 

be identified, along with their numbers, sizes and spatial distributions. 

Improvements can also be made to the Hoshen-Kopleman algorithm, which would only 

serve to make it more robust and accurate. Notably, the algorithm sometimes does not recognize 

large connected pools. An example is given in Figure 42 where the white circles highlight 
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connected pools identified as separate ones. It is assumed that for the purposes of this study that 

the algorithm performs adequately, and averaging over many trials reduces any prevailing errors. 

	  

Figure 42 – Example of the Hoshen-Kopleman algorithm’s misbehavior 
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CHAPTER 6 – CONCLUSIONS 
In this thesis, late stage liquid pools were identified as an important morphological feature 

in the context of second phase formation and spatial distribution. Some studies were highlighted 

that focused on second phase selection and spatial distribution, along with some novel techniques 

and methods to analyze microstructural features. These included spectral, clustering and 

percolation analysis and subsequently were used to analyze simulated microstructure produced 

using a phase field model. 

Spectral and clustering analyses were shown to be complementary tools that each gives 

insight into liquid pool evolution in unique ways. Spectral analysis showed that self-affine 

scaling exists through some lengthscales of liquid pools, while clustering analysis was crucial in 

isolating liquid pools from among other features present in solidifying microstructures. Liquid 

Pool evolution was shown to exhibit a general trend, and variations in this trend were 

investigated with changing cooling rates and solid diffusion coefficient. 

The general trend shown by liquid pool evolution exhibits five regimes that tell of 

different processes active at various points in the solidification process. In the context of second 

phase formation, the coarsening regime is hypothesized to be the most important since it precedes 

coalescence processes that take away solute which may be required for initial second phase 

formation. Percolation analysis applied to clustering analysis results allowed for the changes in 

the coarsening regime to be quantified. Specifically, it was found that the onset of coarsening 

occurs at lower liquid fractions at higher cooling rates, leading to large number of small sized 

liquid pools. It was also found that higher solid diffusion coefficients (analogous to back 

diffusion) show more rapid coalescence processes, which also would lead to smaller sized liquid 

pools. However, this effect with varying solid diffusion rates was small. 

Additionally, size distribution analysis of liquid pool evolution was also performed, 

which at best allowed for speculation. It is hypothesized that the number of clusters across 

various cooling rates may be a scalable quantity, and as such implies extrapolation of results for 
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other solidification conditions. Investigating the limits of such an extrapolation in the context of 

industrial use is an absolute must. For such an analysis, there is a need for better statistics (and 

computational resources). Furthermore, a temperature dependant solid diffusion coefficient is a 

realistic feature for all solidifying systems, and corresponding results can be expected to be a 

mixture of the ones from varying cooling rates and solid diffusion coefficients.  

With regards to the long term goal of obtaining a theory that correlates liquid pool 

evolution with second phase formation, a thermodynamic analysis that couples with the ones 

presented in this thesis is crucial. It will particularly be useful for the study solidification of 

ternary systems, where multiple possible second phases will allow corresponding liquid pools 

(precursors) to be identified and spatial distributions unique to different second phases to be 

analyzed.  
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