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Abstract

YbyTisO7 is one member of a series of magnetic compounds with the py-
rochlore lattice structure. For specific types of single-ion anisotropy and ex-
change interactions, the geometry of the pyrochlore lattice frustrates near-
neighbor interactions and coaxes a wide variety of unusual magnetic ground
states from such compounds. YbyTiyO7 is unique among these compounds
in that the source of the frustration is not immediately obvious when one
considers the combination of single-ion anisotropy (XY-like) and the nature
of the exchange interactions (ferromagnetic) present therein. A conventional
magnetic transition was indeed initially expected based on the observation of
specific heat anomaly near 200mK. However, many studies produced no signs
of long-range magnetic order below this temperature. Intriguingly, above the
transition, evidence for unusual two-dimensional correlations came in the form
of rods of magnetic diffuse neutron scattering. This thesis contains four arti-
cles that detail the results of several neutron scattering studies on YbyTisO.
The goal of these studies was to determine the nature of the static and dy-
namic spin correlations throughout the magnetic field vs. temperature phase

diagram of YbsTizO5.

We first performed a time-of-flight neutron scattering experiment on a sin-
gle crystal of YbyTi,O7, which we prepared using the optical floating zone
method. This initial study provided a comprehensive survey of the phase di-
agram, including the previously unexplored response to a magnetic field. We
found that the rods of diffuse scattering change qualitatively upon cooling be-

low the temperature of the reported specific heat anomaly, showing signs for
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the development of short-range three-dimensional correlations. Additionally,
we discovered that a relatively small magnetic field applied along the [110]
direction could remove the diffuse scattering entirely, and produce sharp spin
wave excitations in the inelastic channel, indicating long range spin correla-

tions.

We further quantified the temperature dependence of the diffuse scattering
in zero-field using a triple-axis neutron spectrometer. The crossover from
two-dimensional correlations to short-range three-dimensional correlations was
found to begin at 400mK and reach completion near the temperature of the
specific heat anomaly, ~200mK. Our measurements of the low temperature
specific heat of several single crystal samples, as well as a powder sample,
revealed that significant sample-dependence of the magnetic properties exists.
The single crystal samples were shown to have broader features in the specific
heat at relatively low temperatures compared to the powder samples, pointing

to some amount of structural disorder in the single crystals.

To understand the nature of the structural defects in the single crystals,
we compared the structure of a crushed single crystal of YbyTisO7 to that of
a powder sample using neutron powder diffraction. The major conclusion of
that work was that the single crystal is non-stoichiometric, containing 2.3%
excess ytterbium on the (non-magnetic) titanium sublattice. The introduction
of additional magnetic moments into the system is expected to be the cause

of the sample-dependence of the specific heat anomaly.

Finally, we fit the spin wave dispersions in the field-polarized state, as

measured by time-of-flight inelastic neutron scattering, to an effective spin-
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1/2 anisotropic exchange Hamiltonian. The microscopic parameters extracted
from these fits place YbyTisO7 close to exotic Quantum Spin Liquid phases
predicted for the anisotropic spin-1/2 pryochlore model. The exchange param-
eters also reveal that the source of the frustration in YbyTi;O; comes from

the “quantum spin ice” nature of its exchange interactions.
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Chapter 1

Introduction

The phenomenon of one set of degrees of freedom (like spins) giving
rise to a qualitatively different set (like photons) is known as emer-
gence. This ability of condensed matter systems to mimic sponta-
neously and collectively different ones - possibly unknown or oth-

erwise unrealizable - is among their most fascinating properties.

— Moessner and Ramirez [1]

Over the course of this thesis project, our understanding of YbyTi,O7 has
grown from the observation of mysterious behaviour, to having in hand a
remarkably accurate microscopic description of its magnetic properties. The
detailed study of YbyTisO; has revealed to us unexpected outcomes. One
exciting result is the expectation that emergence is important in YbyTisO7, a
realization that has come from the discovery of its unusual “quantum spin ice”
nature. Almost simultaneous to this advancement of the microscopic model,
we developed an appreciation for some of the non-idealities that exist in the
real samples, which have caused confusion as to the true nature of the magnetic

ground state up to this point.



In this chapter I will begin by introducing relevant concepts in solid state
magnetism, which will allow the introduction of the anisotropic exchange
Hamiltonian that has been so successful in describing YbsTisO7. I will then
provide context for the study of YbyTisO7 by describing results on some of
the closely related compounds, the rare-earth titanates. Then I will review the
literature on YbsTisO7 that set the stage for the work in this thesis. Finally, I
will introduce the basics of neutron scattering, which is the main measurement
technique used in these studies, as well as optical floating zone crystal growth,

which is the method by which our single crystals of YbyTisO7 were produced.

1.1 Magnetism in localized electronic systems

A large subfield of condensed matter research focuses on the magnetic
properties of materials containing unpaired electrons. In particular, in ionic
solids one may find that the valence state of the constituent ions is such that
they have a non-zero magnetic moment. In the case of insulators such as
YbyTisO7, these magnetic moments are localized and they form a magnetic
sublattice within the crystal structure. In YbyTi;O7, the only ions supporting
a magnetic moment are Yb** and they take up the pyrochlore lattice, shown
in Figure 1.2. The pyrochlore lattice consists of an array of corner-sharing
tetrahedra. This geometry often leads to a phenomenon called geometric frus-
tration, which tends to suppress the conventional magnetic behaviour that
is described in Section 1.1.1.1, paving the way for a wide variety of exotic

magnetic effects (Sections 1.1.1.2 and 1.2).
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Magnetism of all types relies on the formation of a magnetic dipole mo-
ments, /i, which are either associated with the nucleus or with the electrons in
an atom. Electronic moments arise from the angular momentum of ions with
unpaired electrons. Both spin, S , and orbital, E, angular momenta combine
to give the total angular momentum vector operator , J =S+ L. The total

angular momentum, G = hj, then has a magnitude given by,
G=+/J(J+1)h. (1.1)

The quantum number J can take the values J = (L—2S5), (L—S+1),...(L+5).
Hund’s rules can be applied to a given ion to determine what value of J
corresponds to the lowest energy multiplet (see Ref. 2 for example). In the
absence of any mechanism to split the degeneracy, there are 2.J + 1 degenerate
states within that multiplet, corresponding to the possible M; values. The
magnetic moment induced by the angular momentum of the ion is proportional

to the total angular momentum vector é,

fi = —gusG, (1.2)

(J+1)+S(S+1)—L(L+1

57 (7 1) ) is the Landé g-factor, and up = he/2me

where g;, = 1 + J

is the Bohr magneton.

In the case of a free ion, the magnetic moment is then,

p=grpsyJ(J +1). (1.3)
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For ions located within a crystal environment, the degeneracy of the J
multiplet is split by the electric field generated by the other ions in the crystal.
The magnetic moment associated with these ions then depends on the manner
in which the multiplet is split. The resulting energy levels are called the crystal
field levels. The crystal electric field also puts constraints on how the magnetic
moment can be oriented with respect to the local point symmetry at the ionic
position. This is described by a tensor form for the Landé g-factor (the “g-
tensor”). These considerations are discussed in Section 1.1.2 for the specific

case of the rare-earth pyrochlores.

The preceding discussion treats the magnetic moment as arising from both
spin and orbital angular momentum. This is indeed the most general case.
However, in the literature it is common to refer to the magnetic moments
simply as “spins”, and magnetic Hamiltonians generally refer to the moments
in terms of vector spin operators S. In magnetic materials with transition
metal ions, contributions from the orbital momentum is often “quenched”, i.e.
rendered insignificant, by crystal electric field effects, leaving only the spin
angular momentum in the problem. This does not occur in the rare-earth sys-
tems, so the operator S should be written as .J. However, in what follows this
is not done, in order to avoid confusion between the total angular momentum
operator J and the exchange energy, which is commonly called J. Further-
more, in Section 1.1.2, a case will be made for treating the angular momentum
operators in YbyTisO7 as pseudo-spin 1/2 operators, which effectively absorbs

the orbital effects into the exchange coupling constants.
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1.1.1 Interacting magnetic systems

Cooperative behaviour can occur in magnetic sublattices when the inter-
actions between the spins are not negligible. The angular momentum degrees
of freedom at each site are influenced by each other through three main inter-

actions:

1. Exchange interactions: These arise when the wavefunctions of neigh-
boring ions overlap spatially. The statistics of identical fermions, such
as electrons, requires that the overall wavefunction for a two-fermion
state must be anti-symmetric when the particles are exchanged with one
another. The wavefunction of a two-electron system, for example, is
composed of both a spatial and spin part. The product of the two parts
must be anti-symmetric with respect to exchange. Thus, depending on
the details of the spatial parts of the overlapping wavefunctions, the
spin part will be be required to be either symmetric or anti-symmetric.
The former case is called ferromagnetic exchange, and the latter, anti-
ferromagnetic exchange. In magnetic insulators, exchange interactions
can occur because of direct overlap of magnetic wavefunctions (direct
exchange), or it could be mediated by an intervening, non-magnetic ion,
such as O?~ (superezchange). The exchange interaction can be written

as,

Iy S-S, (1.4)
(i.d)

where J is called the exchange energy constant, which could be positive
or negative, corresponding to anti-ferromagnetic or ferromagnetic inter-

actions respectively. The sum in this term is written over all nearest
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neighbor pairs of ions. This specific form of the exchange interaction
term treats each component of the spin operators equally, and is there-

fore isotropic.

. Dipolar interactions: The magnetic dipole moments interact with
each other through the magnetic fields they create. The energy for a
magnetic moment /i in a magnetic field is £ = —fi - B , where B is the
field created by a magnetic dipole,

B= (1.5)
The dipolar interaction energy falls off as 1/r3, implying that including
dipolar interactions between only the nearest neighbors is often sufficient
for modestly sized magnetic moments. However, this need not be the case

for larger moments which can dramatically affect the magnetic ground

state of the model (for example, in the classical dipolar spin ices [3]).

. Dzyaloshinskii Moriya interactions: When the magnetic sublattice
lacks an inversion center between neighboring ions, as in the case of the
pyrochlore lattice, Dzyaloshinskii Moriya (DM) interactions are allowed
by symmetry[4]. The DM interaction takes the form of a cross product

of neighboring spins:

Hpy = [jz] - (Si % j) (1-6)



A simple Hamiltonian including all of the above interactions between near-

est neighbors can be written as:

)
+> Diy(SixS)—gnpy_ Si-H (1.7)

where J is the (isotropic) exchange coupling, g is the scalar g-factor (which
equals 2 for a spin-only single unpaired electron, but more generally is the
Landé g-factor given with Eqn. 1.3), r is the distance between the sites i and
7, 7 is the unit vector along the direction connecting sites ¢ and 7, 5,5 is
the Dzyaloshinskii Moriya vector, and H is the applied magnetic field. The
last term is not an interaction between spins, but describes the effect of a
magnetic field on the spins through Zeeman splitting of the angular momentum

multiplets.

This Hamiltonian, or subsets of these terms, can be used as a first approx-
imation for understanding magnetic states that arise from spin-spin interac-

tions.

1.1.1.1 Paramagnetism vs. conventional magnetic order

In a material lacking any intersite interactions, the magnetic moments

are free to be oriented randomly (to within the constraints imposed by the
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crystalline electric field, see Section 1.1.2). In all real materials, however,
there are always some interactions between the moments. The free energy of
the system at a particular temperature T is given by F' = U — T'S, where U
is the thermodynamic internal energy, obtained from a probability-weighted
average of all eigenvalues from a Hamiltonian such as Eqn. 1.4, and S is
the entropy of the microcanonical ensemble. This equation has the usual
implications that when the temperature is higher than the relevant energy
scales in the system, entropy will dominate and the configuration will remain

disordered, or paramagnetic.

When kgT is comparable, or smaller, to the interaction energy, one expects
the system to form a state that minimizes the internal energy. In particular,
for the simple case of isotropic exchange between spins on a bipartite lattice
such as a square lattice, one expects the system to select a global configura-
tion in which they are all parallel or anti-parallel, for J negative or positive,
respectively. These two states are called a ferromagnet (FM) and an anti-
ferromagnet (AFM), and are illustrated in Figure 1.1 a) and b) . Other, more
complicated spin configurations can arise, such as the 120° state for classi-
cal AFM Heisenberg spins on a triangular lattice (Fig. 1.1 ¢). All of these
examples are called long-range ordered (LRO) states because the local spin
configuration is repeated “infinitely”, i.e. the correlation lengths are the size

of the system itself.

Typically, ordered ground states will be reached as the system goes through
a thermodynamic phase transition at a given temperature, T,, which will be

on the order of the interaction energy. The phase transition can be charac-
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Figure 1.1: Three types of long-range order, illustrated on 2D lattices: a)
ferromagnetic collinear order, b) anti-ferromagnetic collinear order, and c)
anti-ferromagnetic 120° order on the triangular lattice.

terized as either first or second order. In a first order phase transition, the
order parameter (for example, the bulk magnetization of a collinear ferromag-
net) changes discontinuously at T,, while in a second order phase transition,
it is the first temperature derivative of the order parameter that changes dis-
continuously. Both types of transitions produce sharp peaks in the specific
heat as a function of temperature. Thus, the presence of a sharp specific heat
anomaly is a sign of a phase transition, and in magnetic systems, this usually

corresponds to the development of long-range order.

Information on the type of interactions present in the system, and an es-
timate of the ordering temperature, can be obtained from studying the para-
magnetic state. This is accomplished by using a mean-field treatment, which
takes into account the internal field created by the magnetic moments as they

begin to order. The Curie-Weiss law, which can be obtained from a mean-field
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treatment, predicts a linear dependence of the inverse magnetic susceptibility
on temperature,
1 T QCW

=5 (1.8)

where C' = %% with p being the effective moment (Eqn 1.3), and the Curie-
Weiss temperature, oy, gives an estimate of the ordering temperature. If
Ocw is positive, this indicates overall ferromagnetic interactions, while a neg-
ative value indicates overall anti-ferromagnetic interactions. If both signs of
interactions are present with different energy scales, one may see a non-linear
behaviour of the inverse susceptibility. Anisotropies also give rise to non-
linearity of the inverse susceptibility [5]. Both effects are present in YbyTiy0O7,

but the application of the Curie-Weiss law can still be of use in comparing

between different samples of YbyTisO7, as was done in Chapter 5.

1.1.1.2 Magnetic and geometric frustration

Occasionally, the interactions between moments in the lattice compete with
one another, leading to what is known as “magnetic frustration”. For example,
the J;-Jo model on the square lattice is frustrated for anti-ferromagnetic J;
and Jo (Figure 1.2 a). The relative strength of these two exchange interactions
“tunes” the amount of frustration, in the sense that the individual ordered
ground states preferred by J; and Jo have energies that are closer or farther
from each other depending on the ratio of Jy/J;. If the two energies are
identical, then the system will not be able to select one or the other by energetic
means, and will remain disordered even as the temperature is lowered through

an energy scale comparable to J; and J,. Thus, for finely tuned problems (in
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this case, where Jo/J; = 0.5), one can possibly realize a disordered ground

state at T'= 0 [6].

The above discussion relates to frustration caused by competing interac-
tions. The same concept can be applied in the case of a single interaction
that is frustrated by the geometry of the lattice. This is called geometric
frustration. The prototypical example is shown in Figure 1.2 b), a triangular
plaquette with AFM interactions between Ising spins. The exchange energy
cannot be minimized for all three pairs of spins simultaneously, which creates
a degeneracy of the lowest energy configuration. Tiling these triangles to form
a repeating lattice, for example in the triangular (edge-sharing) or the kagome
(corner-sharing) lattice (Figure 1.2 ¢) and d)), extends the degeneracy. The
degeneracy is said to be macroscopic, since the number of lowest energy config-
urations scales with the system size (this is also called “extensive” degeneracy).
The same idea can be applied in three dimensions, using the tetrahedron as
the basic unit with which to tile the lattice. They can be made edge sharing,
resulting in a face-centered cubic lattice, or corner sharing, resulting in the

pyrochlore lattice (Figure 1.2 e) and f)).

Since geometric frustration does not require any fine tuning, we expect
many real materials with triangular or tetrahedral motifs to be geometrically
frustrated. The lattices that have corner-sharing plaquettes (i.e. the kagome
lattice in 2D or the pyrochlore lattice in 3D) have lower connectivities than
their edge-sharing counterparts, allowing a greater degree of internal freedom

for each plaquette and hence a more degenerate ground state [1]. Thus, to look
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Figure 1.2: a) The frustrated J;-Jo model on the square lattice. Jy is the
AFM nearest neighbor exchange, and Jy is the AFM next nearest neighbor
exchange. b) Geometric frustration for AFM Ising spins on a triangular pla-
quette. The red spin cannot minimize its exchange energy with both of its
nearest neighbors. ¢) Triangular lattice, made of edge-sharing triangles. d)
Kagome lattice, made of corner-sharing triangles. e) Face centered cubic lat-
tice, made of edge-sharing tetrahedra. f) The pyrochlore lattice, made of
corner-sharing tetrahedra.
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for highly frustrated magnetism, one is drawn to the pyrochlore or kagome

systems.

A disordered ground state scenario, such as one resulting from “ideal” or
robust frustration, violates the third law of thermodynamics because the en-
tropy of such a system does not vanish at zero temperature. Thus, a single
ground state must be selected eventually if the system remains in equilibrium
(i.e. does not freeze). In real systems, this ground state could be selected
by weaker terms in the Hamiltonian that are not accounted for in the simple
models, such as long-range dipolar interactions, further neighbor exchange in-
teractions, structural distortions, low energy excitations, etc. Even if a weaker
term causes the transition to LRO, the effect of frustration is to suppress the
transition to a temperature scale that is low compared to the strength of the
exchange. This creates a strongly interacting system without LRO, which
can give rise to rich physics. In such a system, the magnetic moments could
be strongly correlated and remain dynamic, or they could freeze into static
disordered configurations. The type of correlations experienced is different
depending on the details fo the weaker terms in the Hamiltonian, leading to a
wide variety of low temperature states that can be explored. A fine example
of such a diversity of magnetic behaviour is found in the rare-earth titanate
series of compounds, which have structures that include a magnetic pyrochlore
sublattice. A discussion of some of the observed magnetic states in that series

is presented in a recent review on pyrochlore oxides, Ref. 7.

On the pyrochlore lattice, geometric frustration is known to arise in two

types of models; i) AFM coupled Heisenberg spins, or ii) FM coupled Ising-like
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Figure 1.3: a) The AFM nearest neighbor isotropic exchange Hamiltonian on
the pyrochlore lattice can be rewritten as the square of the sum of spins on a
tetrahedron. This form makes it clear that any spin configuration in which the
total moment per tetrahedron adds to zero will be a ground state. This leaves
two degrees of freedom in choosing the spin configuration for each tetrahedron,
as illustrated here by the angles ¢ and 6 (bottom panel reprinted from Ref.
[1]). b) Combinations of different types of local single-ion anisotropy (XY or
Ising like) with different types of exchange interactions (FM or AFM) on a
tetrahedron. Only the Ising-like anisotropy with ferromagnetic exchange leads
to a degenerate ground state. The frustrated bonds are shown in red and the
local Ising directions are shown by the dotted lines.

spins. Figure 1.3 a) shows the degeneracy that is inherent in the AFM coupled
spins on a single tetrahedron. For the AFM Heisenberg model on a pyrochlore
lattice, any configuration where the total spin for each tetrahedron sums to
zero will be a ground state. This gives two internal degrees of freedom for the
spin configurations of each tetrahedron (angles # and ¢ shown in Figure 1.3
a)), and this results in a macroscopic degeneracy of the ground state[1]. Case

ii), FM coupled Ising spins, may seem a more surprising route to frustration.
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But it is because in this case, the Ising-like nature of the FM coupled spins
is not global. Instead, the Ising axis is defined locally for each corner of the
tetrahedron - the local (111) axis. FM coupled spins with this constraint
can be mapped onto the AFM global Ising model on the pyrochlore lattice,
which is indeed frustrated [8]. Case ii) is realized in the classical spin ice
pyrochlores Ho,TisO7 and DysTisO7. The neutron scattering experiments
presented in this thesis have shown that YbyTisO7 can also be described by
such a model, but with the addition of quantum fluctuations (see Chapter 4).
The combination of frustration and quantum fluctuations in YbyTi;O7 makes

it a possible candidate for “quantum spin liquid” behaviour, described next.

1.1.1.83 Spin Liquids and Quantum Spin Liquids

An interesting possibility for an alternative ground state that could emerge
from a strongly correlated system in the absence of LRO is called a “spin
liquid”, a term which correctly calls to mind dynamic spin correlations. In
a spin liquid, the spins do not freeze into any static configuration, neither
long- nor short-range correlated. In one-dimensional models, the spin liquid
is known to exist all the way to 7" = 0. In two-dimensions and higher, its

exsitence as a true ground state remains a matter of some debate.

In 2D and 3D, it is true that for temperatures above absolute zero the
spin liquid can indeed exist as a state where spins are highly correlated but
remain dynamic due to thermal fluctuations. This type of classical spin liquid

is also called a co-operative paramagnet [9]. It is a state that may arise in the
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temperature regime below the energy scale of the interactions, but above any

“perturbatively” induced transition to LRO.

A related state, and one which is more exotic and represents a true ground
state (i.e. it exists at T=0), is called a “quantum spin liquid” (QSL). One cri-
teria of a QSL is long-range quantum entanglement between localized spins on
the lattice [10]. This means, for example, that anti-ferromagnetically coupled
spins with s=1/2 can become entangled within singlet states having total S=0.
One particular type of QSL, the Resonating Valence Bond (RVB) state [11],
is written as a superposition of all possible pairwise entangled states. Thus,
any individual singlet-covering of the lattice is not stable, and the system will

fluctuate between all possibilities even at T=0, via quantum fluctuations.

The QSL is of interest both for its fundamentally quantum mechanical
character, and for the novel emergent qauntum excitations it is known to
support. In a particular type of QSL that is relevant to spin-1/2 moments
on a pyrochlore lattice, Coulombic physics arises from the U(1) symmetry of
the model [12]. The excitations within the Coulombic “universe” made by the
QSL ground state are anologues of magnetic monopoles, electric monopoles,
and photons. This U(1) QSL is predicted to occur in the phase diagram for
spin-1/2 pyrochlores (or effective spin-1/2 pyrochlores like YbyTi5O7), but it
is not the only type of QSL that has been proposed. There is a wealth of
literature relating to different types of QSLs and their excitations. See, for

example, Ref. 13.

Experimentally, the signatures of any kind of QSL are quite ambiguous.

One of the first tests is a lack of magnetic LRO of the ground state, which can
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be determined by puSR, neutron scattering, and susceptibility studies. Beyond

this, one approach is to look for signatures of the unique excitations that arise.

Neutron scattering offers a powerful probe of the QSL. Firstly, neutrons
can rule out conventional LRO, and secondly, the emergent excitations give
unusual signals in the dynamic structure factor observed using inelastic neu-
tron scattering. Spinon excitations, i.e. two free S=1/2 particles arising from
a broken singlet, manifest themselves as a continuum of states observable in
the dynamic structure factor. This continuum arises instead of a well-defined,
resolution-limited spin wave type excitations with precise energy vs. momen-
tum dispersions. In the case of a spinon excitation, the neutron creates two
particles instead of just one, the latter being the the case of a magnon (a
single spin flip) from a conventional ordered state. Because there are three
particles involved in the scattering process, the momentum transfer of the
neutron is not uniquely tied to its energy transfer, and one observes a broad
range of scattering over energy and momentum space, with sharp upper and
lower bounds (see, for example, the spectra arising from CsoCuCly [14]). While
such a continuum is not unique to a spin liquid ground state (it could come
from two-phonon creation, for example), it is consistent with such a state, and

is not commonly observed in conventional ground states.

A final point worth mentioning here is that there is a prediction for a
U(1) QSL-type ground state on the pyrochlore lattice that does have partially
ordered moments, the so-called “Coulomb Ferromagnet” [15]. This is possible

because a component of the spins may acquire a non-zero magnetization while
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the remaining components fluctuate and/or form entangled states. Such a

state has emergent Coulomb excitations similar to the U(1) QSL.

1.1.2 Spin-Orbit Coupling and Crystal Field Effects

Spin-orbit coupling, the interaction of the spin and orbital angular mo-
menta of an ion, can be appreciable in heavy ions such as the rare earths.
It can be conceptually understood using a relativistic argument. Though the
orbital momentum, E, is naturally described as being associated with an elec-
tron in an atom, it may also be thought of as a property of positively charged
nucleus which “orbits” around the electron from the reference frame of the
latter. Then, the magnetic field created by this accelerating charge couples
to the spin of the electron, S , through a usual Zeeman interaction. Thus, the
heavier, and hence more positively charged the nucleus is, the stronger the
magnetic field felt by the electronic spins will be [16]. Because the energy
term that describes spin-orbit coupling, L-S , does not commute with L and
S separately, we must take the full angular momentum, J=5+ E, as the
basic unit of angular momentum when treating rare-earth magnets. This also
implies that the angular momentum will take on the spatial dependence of the
orbital degrees of freedom, and thus the angular momentum eigenstates will

be anisotropic for any ions that have anisotropic orbits (i.e L > 0).

For an isolated ion, there is a (2J+1)-fold degeneracy of the J, eigenstates.
But this degeneracy is lifted via the Stark effect when the ion is placed in the
electric field generated by the ionic crystal lattice. The manner in which the

J multiplet is split, i.e. the energy eigenvalues and the eigenfuctions of the
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Crystal Electric Field (CEF) Hamiltonian, determines important low energy
properties of the magnetic ions. Specifically, the ground state of the CEF
Hamiltonian will determine the effective magnetic moment and the anisotropy
of the moments, both of which are characterized by the g-tensor. The g-tensor
plays the same role as the g-factor introduced in Section 1.1, but allows for
anisotropic moments. The g-tensor will have the symmetry of the point group
associated with the crystallographic site of the magnetic ion. In the pyrochlore
lattice, the symmetry of the rare-earth site is trigonal, so that the g-tensor has
two unique components; one parallel to the trigonal axis and the other in
the plane perpendicular to this. The trigonal axis corresponds to the (111)
directions at the rare-earth site that are directed along the the line towards

the centers of the tetrahedra (the dotted lines in Fig. 1.3 b)).

The splitting of the J multiplet will select a particular ground state. In
general, the ground state will be a non-degenerate energy level whenever pos-
sible. However, for an ion with an odd number of electrons, Kramer’s theorem
states that there must be at least a two-fold degeneracy of the ground state
because it is protected by time-reversal symmetry. Reversing the angular mo-
mentum, an effect of time-reversal, must not lead to a lower energy state.
Therefore, the ground state must consist of two time-reversed wavefunctions;

a “doublet”.

In some cases, the energy splitting to the next highest CEF level is very
large compared to the other relevant magnetic energy scales in the problem,
such as the exchange energy. In this case, we can treat the lowest energy level

as being isolated, and the ground state wavefunction can be thought of as the
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only contribution to the angular momentum. In the case of a well-isolated
Kramer’s doublet, the angular momentum can be treated as an “effective
spin-1/2”, because there are two degrees of freedom left in the low-energy
manifold. This is very convenient from an experimental perspective when
looking for exotic quantum mechanical states; the presence of spin-1/2 type
objects emphasizes quantum mechanical effects, but the size of the magnetic
moments can be quite a bit larger than a “bare” spin-1/2 (which has a mo-
ment of 1up, where for example, in YbyTisO7, the effective pseudo-spin 1/2
moment is 3.3up [17]). This makes effective spin-1/2 systems more amenable

to relatively weakly interacting magnetic probes such as neutron scattering.

In addition to t