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Abstract 

 

 As secondary colorectal liver cancer is the most widespread malignancy in 

patients with colorectal cancer, the main aim of this study is to identify and differentiate 

between benign and malignant secondary colorectal liver cancer tissue. Low energy X-ray 

interaction techniques were used (X-ray Fluorescence and coherent scatter). XRF and 

coherent scattering data were collected for all 24 normal and 24 tumour matched pair 

tissues. Measurements of these parameters were made using a laboratory experimental 

set-up comprising a 
42

Mo X-ray tube, Si Drift detector and Scintillation (NaI) detector.  

Twelve elements of interest (P, S, K, Ca, Cr, Fe, Cu, Zn, As, Se, Br and Rb) were 

statistically explored for normal and tumour samples. Comparing normal and tumour 

tissues, statistically significant differences have been determined for K (p = .046), Ca      

(p = .040), Cr (p = .011), Fe, Cu, Zn, Br and Rb (p < .01). However, for P, S, As and Se, 

no statistically significant differences have been found (p > .05).  

 Coherent scatter profiles were collected and fitted for all the samples and three 

peaks were observed at momentum transfer values: adipose peak: 1.1 nm
-1

, fibrous peak: 

1.6 nm
-1

 and water content peak: 2.2 nm
-1

. The Amplitude, FWHM and area under these 

peaks were statistically analysed. These parameters were found to be significantly higher 

in secondary colorectal liver tumour compared to surrounding normal liver tissue (p < 

.05) for both fibrous and water content peaks. However, no significant differences were 

found for adipose peak parameters (p > .05).   

 Multivariate analysis was performed using the XRF, coherent scatter and 

elemental ratios data separately and the accuracy of classification results of 20 unknown 

samples was found to be 50%, 30% and 80% respectively. However when all the 

variables were combined together, the classification models were improved. 17 out of 20 

unknown samples were classified correctly. This study has shown that the XRF and 

coherent scatter data of normal and secondary colorectal liver cancer are statistically 

different and the combination of these variables in multivariate analysis has the potential 

to be used as a method of distinguishing normal liver tissue from the malignant tumour 

tissue. 
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2 

Introduction 

 Cancer is a disorder that initiates in the cells. The human body consists of various 

tissues and organs and each of them are made up of millions of cells. Each cell grows, 

functions, replicates and dies with the help of genes inside them. As long as the cells 

follow these orders normally, the organs and subsequently the whole body remain 

healthy. Once they disobey the routines, tumours start to form and in worse cases spread 

through the bloodstream to other organs. However, tumours can be either benign or 

malignant. The latter ones are invasive and can cause damage to nearby tissues and in 

advanced stages spread to other organs and lead to metastases. (Canadian Cancer Society) 

 The abnormal growth of cells that line the inside of the colon and rectum is known 

as “Colorectal Cancer”. It is known to be the fourth most common cancer worldwide 

among men and women (Jemal et al, 2009) and the third most commonly diagnosed 

cancer in Canada according to Canadian Cancer Society statistics in 2011. Out of 177,800 

new cases of cancer reported in 2011 in Canada, 22,200 cases were due to Colorectal 

Cancer and 8,900 deaths were estimated (12% of all type). Newfoundland and Labrador 

have the highest colorectal cancer incidence rates among men and women and British 

Columbia has the lowest rates for both sexes (CCS, 2011).  

 In 30% of patients with colorectal cancer, the liver is the only site of metastasis 

which leads to the death of these patients (Pawlik and Choti, 2007). Hepatic resection is 

the well known therapeutic modality for most patients with colorectal liver metastasis 

(CRLM). However, it is difficult to define the surgical margin with 100% accuracy prior 

to the surgery, and if a narrow surgical margin is noted on a pathology report after the 

initial surgery, this may lead to a second and even in some cases multiple surgeries. One 

of the success factors in surgical oncology is the safe removal of all tumor tissue while 

preserving as much healthy tissue where possible, and this means accurately determining 

surgical margins. Surgical margin is a tumor free margin which is visible to the surgeon 

with naked eye. 

 Hence, there is a need for a rapid, accurate diagnostic tool that can differentiate 

between benign and malignant tissue at the time of surgery. The objective of this study is 

to develop a technique, which measures low energy X-ray interaction data that is 

modelled to tissue classification, and used as a method of predicting clear margins. For 

this end two main X-ray interactions with soft tissue; X-ray Fluorescence (XRF) and 

Coherent Scattering are used to identify trace elements and structural composition 

respectively. XRF analysis is a non destructive method and is independent of chemical 

bonding of the element in the sample, and has been widely used to estimate the elemental 

content of human tissues. On the other hand, the pattern of the scattered X-rays contains 
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information about the molecular structure of the tissue. Some of these studies and their 

results will be reviewed in this chapter. 

 The physics of these two interactions are discussed in detail in the next sub 

sections and are followed by an overview of studies using these X-ray techniques in 

human soft tissue. The behaviour of trace element and diffraction patterns are compared 

in the healthy and cancerous tissues according to previous studies and literature. 

 In the second chapter, the methodologies used for sample preparation, data 

collection, peak fitting, statistical analysis and multivariate analysis will be introduced. 

All the results are presented in the third chapter followed by a complete discussion.  

 

1.1 Interactions of X-rays with Matter 

 X-rays, a form of electromagnetic waves, have been widely used for research and 

medical purposes since the German scientist, Wilhelm Conrad Rontgen, accidentally 

discovered them while experimenting with vacuum tubes. As an X-ray beam passes 

through a material, it can interact with that material. It can interact with the matter and be 

completely absorbed by depositing its energy (Photoelectric Absorption). It can also 

interact and be scattered or deflected from its original direction (Scattering).   

 

1.1.1  Photoelectric Absorption 

 In a photoelectric interaction, the incident photon with energy h , interacts with 

an inner shell electron such as a K or L shell. If the photon energy is higher than the 

binding energy of the shell (Eb), the electron is ejected from the atom with the kinetic 

energy of Ee given by: 

                                                   be EhE                                   (1-1)           

 

The interaction cross section of photoelectric absorption is proportional to 

  3
h (incident photon energy) and Z

5
 (atomic number) (Knoll, 1979), therefore the less 

the energy of incident photon and the higher the atomic number of material, the higher the 

probability of photoelectric absorption occurring. 
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 After this interaction the atom is excited. The de-excitation process following the 

photoelectric absorption can occur through two main mechanisms; Characteristic X-ray 

Emission and Auger Electron Emission. 

 

1.1.1.1   Characteristic X-ray Emission 

 In a photoelectric absorption process, when the incident photon energy overcomes 

the binding energy of the inner shell such as the K shell, and has all of its energy 

absorbed by the electron of that shell, it causes that electron to be ejected from the atom. 

This leads to a vacancy in K shell which is filled by an electron from another orbit, such 

as the L or M shell. This transition results in the emission of an X-ray photon. If the 

vacancy occurs in the K shell and is subsequently filled with an electron from the L shell, 

the emitted X-ray photon is called a K characteristic X-ray and its energy is equal to: 

                                
LshellbKshellbrayx EEE                         (1-2) 

 In quantum mechanics there are four quantum numbers which specify the state of 

the electron. According to Pauli’s exclusion principle, it is impossible for two electrons in 

an atom to have the same quantum numbers. The quantum numbers for the three first 

inner shells: K, L and M are shown in table 1 (Lachance, Claisse, 1995).  

 

Table 1-1. Quantum numbers of K, L mad M shells 

Where: 

n: Principle quantum number 

l: Orbital angular momentum: from 0 to n-1 

ml: Magnetic orbital quantum number:  

ms: Magnetic spin quantum number: ± 1/2 

l  ml  l
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The transition between shells is subjected to the quantum selection rule, which determines 

the permitted and forbidden transitions. Among all, those transitions are allowed that 

satisfy the conditions stated in equations (1-3) and (1-4): 

                                                                                               (1-3)     

                                         

                                                                                             (1-4)  

                                

Where L is the total orbital angular momentum of the atom and J is the total angular 

momentum of atom.   

 Thus, K characteristic X-ray indicates that the photoelectron ejected from the K 

shell and subsequently the hole is originated in K shell. It is called α because it is filled 

from the outer orbit, L shell. Since each element has different and unique binding 

energies due to the unique atomic number, the emitted X-ray is the characteristic of that 

particular atom; hence it is called a characteristic X-ray.  

 There is another possibility that the vacancy in the K shell is filled from the 

electron of the next outer orbit, M shell. In this case the emitted X-ray photon is called 

K  characteristic X-ray, and the photon energy would be: 

                                             
MshellbKshellbrayx EEE                      (1-5)  

    

Clearly, the energy of K X-ray is higher than the K one, since the binding energy of the 

L shell is higher than the M shell and increases with atomic number of element.  

 

1.1.1.2   Auger Electron Emission 

 The second mechanism that can occur following the photoelectric absorption 

interaction is the emission of an Auger electron, in which the energy is not carried away 

by the characteristic X-ray emission but by the electron from one of the outer shells of the 

atom. The kinetic energy of the Auger electron is the difference between the atomic 

ionization energy and the binding energy of the shell from which the Auger electron was 

ejected. In low Z atoms, due to the smaller electron binding energies, Auger electron 

emission is most likely to happen. In the low Z materials the probability of the Auger 

electron emissions is higher than the characteristic X-rays emission. (Knoll, 1979) 

L  1

J  0,1
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 Considering the fact that all the incident photon does not result in X-ray 

fluorescence, the fluorescent yield, , is defined as the fraction of all cases in which the 

excited atom emits a characteristics X-ray photon in its deexcitation. Fluorescent yield 

depends on the atomic number Z and it increases as Z increases (Knoll, 1979). The K 

fluorescence yield k is given by the number of photons emitted by all K lines during a 

given time interval divided by the number of K level vacancies created during the same 

time interval. For instance k for Mg and Zn is about 0.022 and 0.490 respectively 

(Lachance and Claisse, 1995).  

 

1.1.2  Scattering 

 Scattering is another resultant mechanism of interaction of an incident photon 

with an atom. Considering the energy before and after scattering, it is categorized into 

coherent scattering and incoherent scattering. The former one, which is also called 

Rayleigh scattering, is an elastic scattering in which there is no loss of energy after 

scattering. In incoherent scattering, also known as Compton scattering, the scattered 

photon has less energy than the incident photon, so it is called inelastic scattering. In this 

study we will only use coherent scattering and Compton scattering is beyond the purpose 

of this study. Therefore only the coherent scattering is discussed in more details in the 

following subsection.   

 

1.1.2.1   Coherent Scattering 

 In the coherent scattering process, also called elastic scattering or Rayleigh 

scattering, the incident photon interacts with the whole atom, and causes the electrons in 

the atom to oscillate and accelerate and in the process of decelerating emit the scattered 

photon at an angle θ, while, there is no loss of energy. Therefore, the recoiled atom is not 

ionized or excited. X-ray diffraction occurs when these scattered photons constructively 

interfere at certain angles. This is also known as the Bragg effect (Fig. 1). The Bragg 

condition is an equation relating the angle θB, at which the interference between the 

waves takes place, and X-ray wavelength, λ, and the interplanar distance, d: 

                                                                           (1-6)   

Where n = 1, 2, 3,... is the order of reflection. 

n  2dsinB
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Fig 1-1. Bragg’s Law (Schlot R and Uhlig S, 2000-2006) 

 

 When the photon energy is much less than the rest mass energy of the electron and 

the target is a free electron the classical Thompson differential cross section is used: 

                                     xF
r

xF
d

d

d

d eT 222 cos1
2

















       (1-7)                 

                        

Where re is the classical electron radius and dΩ is the differential solid angle. The 

Thompson differential cross section for coherent scattering, in which the target is the 

whole atom, is modified with a form factor. In this case the atomic electrons act as 

scattering centres and the result is the coherent superposition of the amplitudes of these 

contributions. The differential cross section per solid angle for coherent scattering is 

given by: 

                            xF
r

xF
d

d

d

d eT 222 cos1
2

















        (1-8)     

 This form factor depends on the momentum transfer which is generally defined as: 

                                         cos'2'
222 kkkkq                          (1-9)              

              

Where k and k’ are the wave numbers for the incident and scattered photon respectively. 

In the coherent scattering case it is considered that , therefore eq. (1-9) is reduced 

to: 

                                            









2
sin2


kq                                        (1-10)                             

                        

k  k '
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In the spectroscopy field the incident photon on the sample deflected through an angle θ, 

due to the momentum transferred variable defined as a function of wave length and 

scattered angle θ and its unit is the inverse of length (Ryan and Farquharson, 2007): 

                                            









2
sin

1 


q                   (1-11)                            

           

1.1.3  Attenuation of X-Rays 

 Passing through material, X-rays undergo attenuation. For instance, bones absorb 

more X-rays than biological soft tissues, meaning that X-rays are attenuated more in bone 

than in tissue. The transmitted intensity for a parallel monochromatic X-ray beam with an 

incident intensity of I0 is given by equation (1-12): 

                                                                       (1-12)                      

          

Where μl is the linear attenuation coefficient of the material and has the unit of inverse 

length. For convenience, the mass attenuation coefficient is used instead of linear 

absorption coefficient: 

                                               



 l

m                                  (1-13)                                 

           

where ρ is the density of material in g/cm
3
. We can rewrite equation (1-12) with 

substituting (1-13): 

                                            (1-14) 

                                               

where ρx is mass thickness, the mass per cm
2
. The main advantage of mass attenuation 

coefficients is that they are directly comparable. It is an atomic property of each element 

and depends on the wavelength. It is the fraction of the intensity that is not transmitted in 

the same direction as the incident beam. At the energy ranges in this study, the loss of 

intensity is due to two processes, which were discussed in previous sections: absorption 

and scatter (coherent and incoherent scattering). 

 

Ix  I0e
(l x)

Ix  I0e
(mx)
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1.2 Overview of using X-ray techniques in human soft tissues 

 As mentioned in the previous section, X-ray Fluorescence and Coherent 

Scattering are the two main interactions of X-rays with matter in this study. Each of these 

methods can reveal information on composition and structure of the matter. Hence, 

scientists and researchers have used these techniques for human tissue analysis to identify 

the differences between normal and malignant tissues in various organs in the body.   

 In the next two subsections, an overview of trace element and X-ray coherent 

scatter studies in human soft tissues; such as breast, kidney, prostate, lung and liver, are 

presented. 

 

1.2.1 Trace element behaviour in healthy and cancerous tissue 

 XRF has been widely used to measure the elemental content of materials. 

Particularly, XRF has been used for trace element analysis in healthy and cancerous 

biological tissues, such as breast, prostate, kidney, lung and liver. Benign and malignant 

neoplastic breast tissue trace elements were analysed by Majewska et al (2007) with 

TXRF. They found significant differences of Fe and Se concentration distribution 

between benign and malignant neoplastic breast tissue, whereas no significant differences 

observed for Cu and Zn. However, Geraki et al (2002, 2004) reported elevated amount of 

Fe, Cu and Zn in the cancerous tissue compared to benign. Likewise, Poletti et al (2002, 

2004) reported significantly higher amount of K, Ca, Cu and Zn in neoplastic breast tissue 

compared to the healthy tissue. They concluded that XRF using synchrotron radiation 

seems to be an appropriate method to study trace elements in breast tissues and as a 

strong cancer diagnostic tool. Similarly, the results of Silva et al (2009) showed 

statistically significant (p < .001) higher concentration levels of Ca, Fe, Cu and Zn in 

neoplastic tissue than in normal surrounding breast tissue. They also found the 

concentration level of Fe and Cu are correlated in malignant breast tissue as well as the 

level of Ca and Zn. In 2010 Magalhaes et al using TXRF, revealed the same trend of 

results. P, S, K, Ca, Cu, Zn, Fe, Ni, Br, Se and Rb were all observed to be higher in the 

cancerous breast tissue compared to the healthy tissue. Farquharson et al (2009) worked 

particularly on Zn presence in invasive ductal carcinoma of breast and reported a 

significant increase of Zn in tumour regions with ER+ve (Estrogen Receptor) compared 

to surrounding tissues and non significant increase in tumour regions with ER-ve 

samples. 
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 Using XRF Spectroscopy, Carvalho and Marques (2001) found an increased 

amount of Zn in Kidney tissue from patients with cirrhosis. In 2002 Dobrowolski et al 

quantified trace element distribution in Renal Cell Carcinoma (RCC) depending on stage 

of disease using Synchrotron Radiation Induced X-Ray Emission (SRIXE). K, Ca, Zn, Se, 

Br and Rb contents were found lower in RCC tissue compared to the  healthy kidney 

cortex, however Cr, Fe and Cu contents were higher in RCC tissue. Their results 

indicated that with the progress of malignant disease the concentration of trace elements 

were changed. For instance, the concentration of S and Fe were decreased, whereas the 

concentration of Ca, Zn and Se were increased in both RCC and kidney cortices. Kwiatek 

et al (2002) also compared the trace elements in cancerous and non-cancerous kidney 

tissue. Cd, Cr, Ti, V, Cu, Se and Zn were found at a lower concentration level in the 

cancerous tissue compared to the non-cancerous tissue. Contrarily, Fe concentration level 

was observed higher in cancerous tissue. Al-Ebraheem et al (2008) have measured the 

level of Fe, Cu, Zn and K in malignant and normal kidney tissue. Fe, Cu and K were 

reduced in tumour tissue by 150%, 8% and 90% respectively, while Zn was found to 

increase in tumour by 26% compared to normal tissue. 

 There are few trace element studies in Prostate tissue determining the differences 

between benign and cancerous tissue, which the final results are consistent with each 

other. Kwiatek et al (2004) quantified higher concentration levels of Fe, Cr, Mn and Ca 

and a lower level of Zn in cancerous prostate tissue compared to benign. Pereira et al 

(2010) observed lower amount of Fe and Cu and higher amounts of Zn in prostate tissue 

with HPB, using an XRF microtomography method. Shilstein et al (2006) proposed a 

new diagnostic method for prostate cancer based on in vivo prostatic Zn mapping by XRF 

trans-rectal probe. In their study they presented higher levels of Zn in BPH (benign) and 

CAP (cancerous) tissue and they summarised that the Zn concentration level is more 

indicative parameter than PSA level for the prostate cancer. 

  An early trace element study on the lung tissue was carried out by Drake and 

Sky-Peck in 1989 using Ultramicro Energy Dispersive X-ray Fluorescence. They 

accomplished a discriminant analysis of trace element distribution in normal and 

malignant breast, colon and lung tissues. Cr, Fe, Cu, Zn, Rb and As concentration were 

found elevated and Ca, Br and Sr concentrations were suppressed in normal lung tissue in 

comparison with the malignant tissue. They presented Fe, Mn and Cu as the most 

substantial elements in discerning between malignant and normal lung tissue. Kuala-

Kukus et al (1999), quantified the concentration of P, S, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, 

Se, Sr, Hg and Pb in 65 squamous lung cancer tissues and in 5 benign lung tissues with 

two different methods of PIXE and TRXRF. Ti, Cr and Mn concentration levels were 

found higher, whereas concentrations of Sr and Pb were found lower in female cancerous 
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lung tissue compared to male cancerous tissue. In 2007 Majewska et al determined the Cu 

and Zn concentrations in malignant and benign lung tissue using TXRF. They also found 

lower amount of Cu and Zn in malignant neoplastic lung tissue compared to the normal 

tissue. Recently, Zhange et al (2011) quantified 15 trace elements in 60 lung tissue 

samples from residents of Xuanwei and Fuyuan, two counties with extremely high lung 

cancer incidences in Yunnan province, China, of which only 8 trace elements were found 

to be significantly different between cancerous and benign tissues. Ni, Cu, Se and Pb 

were found to be higher while V, Fe, Zn and Cd were found to be lower in lung cancerous 

tissue than those in the benign ones. 

 XRF work on secondary colorectal liver cancer has been carried out by Gurusamy 

et al (2008) using synchrotron radiation. Unlike the breast tissue, the amount of Fe, Cu 

and Zn were reported lower in the cancerous tissue than in the normal surrounding liver 

tissue. Farquharson et al (2009) quantified the concentration level of Fe, Cu, Zn and K in 

colorectal liver metastasis by XRF using synchrotron radiation. Lower levels of Fe, Cu, 

Zn and K were observed in the cancerous tissue. They performed Receiver Operator 

Characteristic (ROC) analysis for all the four elements and only Zn was demonstrated to 

be a reliable indicator of tissue classification. Likewise, Al-Ebraheem et al (2008) have 

measured the level of Fe, Cu, Zn and K in healthy and malignant liver tissue. A 

significant reduction was found for all the elements in tumour tissue compared to the 

normal tissue by 72%, 29%, 63% and 43% respectively.  

 

1.2.2 X-ray Diffraction Studies in healthy and cancerous tissue 

 X-ray diffraction allows the exploration of the atomic or molecular structure of 

tissue (Theodorakou and Farquharson, 2002). The pattern of the scattered X-rays has 

information on the molecular structure of the tissue. The number of coherently scattered 

photons depends on the scattering angle, thus each diffraction pattern is a signature of a 

unique molecular structure. Hence, coherent scattering is a well known and standard 

method in quantitative and structural analysis of tissues and it has been widely used for 

several decades. In 1987 Kosanetzky et al presented diffraction patterns for some plastics 

and several biological samples using the small angle X-ray scattering technique. Their 

results demonstrated that fat and bone have different forms of scattering profile from 

water, liver and muscle. Theodorakou and Farquharson (2009) investigated four peaks in 

the X-ray diffraction profile of normal and secondary colorectal liver metastasis tissues: 

adipose peak at 1.1 nm
-1

, fibrous peak at 1.6 nm
-1

, water content peak at 2.2 nm
-1

and a 

peak due to incoherent scattered radiation at 3.4 nm
-1

. Since the peak values were shown 
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to be dependent on material characteristics, any differentiation can be mainly due to the 

type of sample material. 

 Most studies have been carried out on malignant breast and normal breast tissue. 

Results of some of these studies are presented here. Kidane et al (1999) measured 

scattering properties of breast tissue with Energy Dispersive X-ray Diffraction (EDXRD). 

They found a correlation between the peak height of adipose and fibrous tissues, with the 

histologically estimated amount of adipose and fibrous tissue.  Furthermore, Changizi et 

al (2005) studied the application of Small Angle X-ray Scattering (SAXS) for 

differentiation between normal and cancerous breast tissue using EDXRD. They found a 

sharp, high intensity peak at low momentum transfer region, about 1.1 nm
-1

 for adipose 

tissue. Fernandez et al (2002) reported that the average intensity of scattering from 

tumour parts is an order of magnitude higher than the intensity from healthy regions. 

Poletti et al (2002a, 2002b) and Ryan and Farquharson (2004) also studied the X-ray 

diffraction patterns for healthy and cancerous breast tissue using Angular Dispersive X-

ray Diffraction (ADXRD). ADXRD is more accurate than EDXRD, since the momentum 

transfer only depends on the angular resolution of the set up of experiment, whereas in 

EDXRD, it also depends on the resolution of the detection system and polychromatic 

spectrum. The results of both of these studies also showed that adipose tissue has a sharp 

peak at low momentum transfer (1.1 nm
-1

), while carcinoma has a sharp peak at higher 

momentum transfer region, at about 1.6 nm
-1

. The scattering signatures of fibroadenoma, 

carcinoma, fibrocystichange and other benign diseases were found to be similar to water 

spectra and peak position. This is expected because of the high water content of these 

tissues.  

 In 2005 Castro et al studied the X-ray scattering patterns for healthy and 

neoplastic uterus and kidney. Similar patterns were observed for healthy and cancerous 

tissue in both uterus and kidney, consisting of a peak at momentum transfer of about 1.57 

nm
-1

 followed by a broad low intensity region. They measured the peak heights relative to 

background ratios and they showed that this parameter is higher in healthy tissues than in 

cancerous tissue for both uterus and kidney.  

 Theodorakou and Farquharson (2009) used their ADXRD data and multivariate 

analysis technique and classified secondary colorectal liver cancer tissue and surrounding 

normal liver tissue. They declared that X-ray diffraction data can be used as a tissue 

classifier. Recently, Sidhu et al (2011) carried out measurements with SAXS and used the 

diffraction data and multivariate analysis to differentiate between tissue types in breast 

tissue. The principal component analysis results indicated that, the amplitude of the fifth-

order axial Bragg peak, the magnitude of the integrated intensity and the full-width at 
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half-maximum of the fat peak were significantly different between tissue types.  Their 

discriminant analysis showed that the best classification result would be achieved if all 

the 16 parameters were used. 

 

1.3 Colon Anatomy and Colorectal Cancer 

 The digestive system in our body consists of different organs where the intake 

food is processed to produce energy and the waste is stored until it passes out from the 

body. The colon and rectum are the last parts of this system and have important role to 

end the digestion process. Together, they make up a long, muscular tube called the large 

intestine. The colon is the first 6 feet of the large intestine, and the rectum is the last 8 to 

10 inches. 

 The colon consists of four parts namely the ascending colon, transverse colon, the 

descending colon, and the sigmoid colon (see Fig. 1-2). The rectum and the anus are 

under the sigmoid colon. The rectum is about eight inches and is a connection between 

the sigmoid colon with the anal canal. The anal canal is 2.5 - 4 cm long and is located 

between the rectum and anus.  

 

Fig 1-2. Colon and Rectum Anatomy (from Medindia) 

The main function of the colon is to extract water, salts, and nutrients from partially 

digested food, and to propel the residue to the rectum and anus for expulsion. 

 Cancer is uncontrollable growth of abnormal cells which forces out the normal 

cells and replaces them. The walls of the colon and rectum have several layers of tissues. 

Most colorectal cancers start in the innermost layer and slowly spread to the other layers 

as the disease progresses. Many cases of the colorectal cancers initiate as polyps which 

are small and non cancerous growth on the inner wall of the colon. If left untreated they 

may develop a cancerous one.  
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 Cancer cells can sometimes break away from a tumour and spread to other organs 

through the bloodstream or lymph system. Cancer that has spread in this way is called 

metastatic cancer. It is named a recurrence, if cancer comes back in a person who 

appeared to be free of the disease after treatment. In 30% of patients with colorectal 

cancer, the liver is the only site of metastasis which leads to the death of these patients 

(Pawlik and Choti, 2007). In the next section liver anatomy and secondary colorectal liver 

metastasis are discussed briefly.  

 

1.4  Liver Anatomy and Secondary Colorectal Liver Metastasis 

  The largest organ in the body is known to be the liver with approximately 1.5 kg 

weight. It is situated in the upper right corner of the abdomen, lies close to the colon, the 

intestines and the right kidney. The liver performs over 500 metabolic functions and 

processed about 720 litres of blood per day. In the metabolic processes and subsequently 

in the absorption of nutrients, liver is the organ that plays an essential role. Secretion of 

bile, storing various nutrients such as fat, carbohydrate, proteins and vitamins, producing 

substances required for the clotting of blood, detoxification processes and clearing the 

body of harmful substances are some of the major functions of the liver in the body. 

 The liver has eight functionally independent segments, and each segment has its 

own vascular flow, outflow and biliary drainage. Due to this self-contained anatomy, each 

segment can be resected without damaging the remaining parts (see Fig. 1-3). 

 The abnormal growth of cells in the liver causes liver cancer, which is categorized 

into two types of cancer: primary liver cancer or secondary liver cancer. The former one 

originates from the cells in the liver; however the latter one originates in some other 

organs of the body such as in our case, originates in the colon and spreads to the liver. In 

this case it is called secondary colorectal liver Metastases (CRLM). 
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Fig. 1-3 Liver Anatomy and eight independent segments (from Health Metz) 
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2.1  X-ray Fluorescence Spectroscopy 

 The goal of X-ray Fluorescence (XRF) is to measure the characteristic emissions 

and determine the chemical elements in the sample quantitatively and qualitatively. To 

this end, the sample should be irradiated, and some amount of energy (more than the 

binding energy of the inner shell) should be added to the innermost atomic shell. In the 

transition process of electron from the outer shell to the vacancy, characteristic X-rays 

arise. Irradiation of the sample can be done through different methods such as irradiation 

using elementary particles of sufficient energy (electrons, protons, α-particles, etc.), 

irradiation using X- or gamma rays from radionuclides and irradiation using X-rays from 

an X-ray tube. Due to safety and protection aspects, using an X-ray tube is technically the 

most straightforward method compared to the other methods.   

 In this study, The X-ray source is a molybdenum micro focus tube source that is 

monochromated to approximately 17.5 keV and focused to deliver a 1.8mm
 
× 1.8mm 

beam of approximately 3.5 × 10
6
 photons per second on to the sample, achieved using a 

multi layer x-ray optics device (see Fig 2-1). The light elements in the range of 1.88 keV 

to 13.7 keV consisting of P, S, K, Ca, Cr, Fe, Cu, Zn, As, Se, Br and Rb are excited by the 
42

Mo X-ray source. The resulting XRF spectrum shows the intensity of X-rays at different 

energies. Energy of Kα for these elements is represented in table 2-1. 

 

 

Table 2-1. Kα Energy for the elements of interest 
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Fig. 2-1 XRF and Coherent scatter measurement system 

 

2.2  Sample Preparation 

 A total of 58 samples were used in this study, 29 being secondary colorectal liver 

cancer tissues and 29 normal liver tissues. After resection, all samples were kept frozen at 

-80C.  At the time of measurement, the samples were defrosted and mounted in sample 

holders made from high-density polyethylene.  The holders are cylindrical in shape with a 

recess cut into the end that is 4 mm diameter and 2 mm deep.  The walls of the recess are 

100 μm thick (see Fig. 2-1).  To avoid contamination, the sample holders were cleaned by 

storing them in nitric acid over night followed by washing with de-ionised water in an 

ultrasound bath for approximately 3 hours. The sample holders were then stored in 70% 

ethanol until needed for measurement. Sample preparation was carried out in a bio-

cabinet and all the tools being used were cleaned with 70% ethanol beforehand. Each 

sample was transferred from the freezer to the air flow cabinet to be defrosted. The 

samples were placed into a sample holder using sterile surgical blades and tweezers, and 
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were then sealed in place using a small piece of 4 μm XRF Ultralene film and secured 

using an O ring that had been cleaned in the same manner as the sample holders.  

Fig. 2-2 Schematic and Dimension of Sample Holder 

2.3  Data Collection 

 XRF and X-ray scattering data were collected and analysed respectively. In order 

to prevent degeneration of the sample, a refrigeration unit encapsulates the experimental 

apparatus in order to maintain a constant sample temperature. Since the concentration 

level of trace elements in human tissues are quite low, long measurement times are 

required to obtain reasonable counting statistics. 

 

2.3.1  XRF Measurement 

 The experimental set up for the XRF measurements is shown in Fig. 2-3. The 

detector used is a silicon drift detector (SDD) that is collimated to have an active area of 

10 mm
2
 (XFlash LE SDD, Bruker AXS, GmbH, Karlsruhe, Germany) and is a distance of 

5 mm from the end of the sample, to avoid the air path attenuation of the XRF response.   

A 90° geometry between the incident X-ray beam and detector was used in order to 

minimise the scattered radiation reaching the detector. The sample is rotated in the beam 

about a central axis during the measurement so that all of the tissue is probed by the 

incident X-ray beam and the inhomogeneity effect is eliminated. Measurements were 

made during the day or overnight with the x-ray tube operating at the voltage of  50 kV 

and current of 500 mA with a counting time of 26100 seconds (during the day), or at 50 

kV and 320 mA with a counting time of 52200 sec (overnight). These voltage and current 

settings were chosen to have approximately the same x-ray beam intensity during the day 

and overnight measurements. The energy dispersive XRF spectrum is recorded using a 

software package (QM100) supplied by Bruker-AXS and data can be exported in excel 

format for processing. A typical XRF spectrum with all the elements of interest within the 

energy region of 1.88 to 18 keV is shown in Fig. 2-4. The Ar peak shown in the spectrum 

is due to the ionization of air in the radiation beam and it is not from the sample tissue. 
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Fig. 2-3 Schematic of Experimental Geometry for the XRF and coherent scatter measurements 

 

 

 

 

 

 

 

 

 

 

Fig 2-4 Typical XRF Spectrum for one of the Samples with the K   

of elements of interest within ROI 1.88 keV to 18 keV 
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Fig. 2-5 shows the averaged spectrum (all data; tumour and normal) for the ROI 

of 1.88 keV to 4 keV and the Kα and Kβ X-rays of the elements in this region (P, S, K, 

Ca). Fig. 2-6 depicts the averaged spectrum (all data; tumour and normal) for the ROI of 

5 keV to 10 keV and the Kα and Kβ  X-rays of the elements in this region (Cr, Fe, Cu, Zn).  

Fig 2-5. Typical peaks fitted in ROI 1 

Fig 2-6. Typical peaks fitted in ROI 2 
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Fig. 2-7 shows the averaged spectrum (all data; tumour and normal) for the ROI of 10.35 

keV to 13.7 keV and the Kα and Kβ X-rays of the elements in this region (As, Se, Br, Rb). 

 

 

Fig 2-7. Typical peaks fitted in ROI 3 

 

 

 

 

 

 

 

 

 

 

 

Compton 

Coherent 

Tail Si escape 

Fig. 2-8 Averaged Spectra for the ROI 14 keV to 18 keV (scattered region) 
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Fig. 2-8 shows the scatter region including the Si escape peak, tail, Compton 

(inelastic scattering) and coherent (elastic scattering) scatter peaks. Theoretically, the Si 

escape peak is the effect related to the characteristic X-ray generated by the interaction of 

incident radiation within the detector. A small X-ray escape peak is observed 1.8 keV 

below the full-energy peak. The tail is due to incomplete charge collection at the detector 

surface. 

 

2.3.2  Coherent Scattering Measurement 

 In this study, coherent scatter was measured using an angular dispersive 

technique.  Fig. 2-3 shows a schematic of the experimental set up.  The range of angles at 

which data was collected was from 5 to 25 at interval steps of 0.5 and then from 28 to 

52 in steps of 3. This set up is due to the fact that, the peaks which shows the structural 

composition of a tissue are mostly over an angular range of 5 to 24.5corresponding to  

a momentum transfer range of 0.615 nm
-1

 to 2.991 nm
-1

. After this range there is no 

structural information, therefore in order to save time and hard memory and to end the 

spectrum properly the interval steps of 3° are selected for this range. This can be seen in 

Fig. 2-9 clearly. The Fourth peak at 3.395 nm
-1

 is due to the incoherent scattering 

radiation which is not in the scope of our research. The sample rotation is programmed 

such that the sample undergoes one complete rotation for each angular measurement in 

500 sec during the day and in 1000 sec overnight measurements with the total counting 

time of 26100 sec and 52200 sec respectively. The result is a spectrum of photon counts 

as a function of momentum transfer (see Fig. 2-9). 

All the data are normalised to unity to remove any effects of changing in X-ray 

source flux and time of measurement. Since self attenuation correction was needed for the 

diffraction data, before each coherent scatter measurement, incident flux and transmitted 

flux from the sample were measured. The ratio of the transmitted and incident flux was 

used for the self attenuation correction of coherent scatter data for each sample. The 

averaged count of all the samples (normal and tumour) versus momentum transfer plot is 

illustrated in the Fig. 2-9. 
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Fig. 2-9 A typical coherent scattering profile 

 

2.4 Peak Fit 

 All the collected spectra were analysed using Peak Fit software (PeakFit
TM

 v. 

4.12, Seasolve Software Inc.). For peak fitting, first the background was subtracted 

followed by smoothing procedure. Smoothing of peak is done in order to suppress any 

statistical fluctuations which may be associated with the uncertainty of each channel 

contents. The peaks for each sample spectrum were fitted with peakfit’s Gaussian 

amplitude version separately, and the peak parameters (amplitude, FWHM, area under the 

peaks) were determined. 

 For the XRF part, each peak of the elements of interest in the 3 ROIs was fitted 

for all normal and tumour samples and the amplitude, FWHM, integrated area under the 

peak were determined. As an example, two fitted samples using the models shown in 

Figs. 2-5 to 2-8, one normal and one tumour sample, are illustrated in Fig. 2-10 and Fig. 

2-11, respectively. 

 The areas obtained from peak fit, were normalised to the incident scatter counts by 

dividing the elements’ integral area by the total integral area of the scatter region to 

remove any effects of changing in X-ray source flux and time of measurement.  
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Fig. 2-10 Peak Fitting for 3 ROIs for sample # 54 (Normal Sample) 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2-11 Peak Fitting for 3 ROIs for sample # 22 (Tumour Sample) 
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For the coherent scatter part, the fitted coherent scattering spectra of one normal and one 

tumour sample using the model shown in Fig. 2-9, are shown in Fig. 2-12 and Fig. 2-13, 

respectively. 

 

Fig. 2-12 A typical fitted coherent scatter spectrum for a normal liver sample 

 

 

Fig. 2-13 A typical fitted coherent scatter spectrum for a tumour liver sample 

 

Information presented on top of each plots are: type of peak (Gaussian), number of peaks 

fitted, Fit Standard Error (SE) and F-statistic (F).  
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2.5  Statistical Analysis Methodology 

 The XRF and coherent scattering data were statistically analysed using statistical 

software SPSS v.19 (SPSS Inc.) and the level of 12 elements of interest and coherent 

scattering parameters were compared respectively between all the 29 matched pair 

tumour and normal liver tissues. It was found that 5 matched pair samples had high 

amount of Fe and Zn, thus as outliers, they were excluded from the data for the rest of the 

analyses. Descriptive statistics was performed to find out the mean and standard deviation 

values for all the variables. Shapiro-Wilk test was used as a method of normality check. 

For all the elements and coherent scattering parameters of which data were normally 

distributed, the paired-samples T-Test was used with 95% confidence level in order to 

investigate the significant parameters. For those which were not normally distributed 

Wilcoxon test was used. These tests assess whether the means of the normal and tumour 

groups are statistically different from each other.   

 In order to investigate more statistically significant parameters between cancerous 

and normal liver tissue, forty six ratios of elements were examined. Out of forty six ratios, 

three ratios were normally distributed, and forty three were not normally distributed. 

Twenty one ratios were found to be statistically significant with p < .001. 

 In order to have a better visualization of the statistical results, box plots were used. 

It has advantages in that it displays the median, interquartile range and the smallest and 

largest values for a group of samples. A typical box plot of concentrations of Br, Rb for 

tumour and normal tissues is shown in Fig 14. The black horizontal lines show the 

median and each box extends from the 25
th

 to the 75
th

 percentile. Whiskers extend to the 

largest and smallest observed values within 1.5 box lengths. The circles are samples with 

values between 1.5 and 3 box lengths from the upper or lower edge of the box. Samples 

shown with stars are called extreme values, which are samples with values of more than 3 

box lengths from the upper and lower edge of the box. 
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          Fig. 2-14 A typical annotated Box Plot  

 

2.6  Multivariate Analysis and Modelling Methodology 

 The objectives of multivariate analysis are data description, discrimination and 

classification. Principal Component Analysis (PCA) is a useful method used for the first 

objective; descriptive and explorative data structure modeling. Discrimination copes with 

the separation of groups of data. Soft Independent Modeling of Class Analogy (SIMCA) 

is used for the classification. The main objective of classification is to assign new samples 

to the class to which they demonstrate the largest similarity.   

 Multivariate analysis software, Unscramble v. 9.8 (CAMO Software Inc.) was 

used for the data modelling. In order to perform SIMCA classification PCA must be 

carried out on the data set for each individual class of samples. Hence, firstly, PCA was 

carried out for all the normal and tumour samples and two PCA models were built to 

assess if samples fall into separate clusters and to determine significant variables and 

outlier samples. Samples were categorized as 24 normal, 24 tumour liver tissues. Four 

subgroups, each consisting of 5 samples, randomly, picked out of all the samples and 

treated as the unknown samples. These models were used in SIMCA approach to classify 

the unknown samples.  

 These procedures were performed four times with different variables. The first run 

was with the XRF elemental variables. Eight elements: K, Ca, Cr, Fe, Cu, Zn, 
35

Br and 
37

Rb, which showed a significant difference in tumour and normal liver tissues, were 

 

Extreme Value 

Whiskers Median 
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selected for the PCA modelling. The samples in four unknown subgroups were classified 

according to these set of variables. The second run was carried out with six coherent 

scattering variables: amplitude, FWHM and area under the fibrous peak and all those for 

water content peak. Once more, the samples in four subgroups were classified according 

to these six variables. The poor classification results of these two runs, lead to the 

selection of other variables which are strongly significant between tumour and normal 

tissues. As it was mentioned before, twenty one ratios of different elements were found to 

be prominently significant and therefore PCA was carried out once again with this new 

set of variables. The unknown samples in four subgroups were classified and the accuracy 

of the results was improved. Ultimately all these variables were combined together and 

the final PCA was performed. SIMCA classification procedure was carried out with these 

amalgamated variables for all the unknown samples of four subgroups. In all the cases 4 

PCs were used for the best and optimum results. 

 In the following subsections PCA and SIMCA procedures will be briefly 

presented (from Esbensen, 2006 guide book).        

 

2.6.1  What is PCA?  

 Principal component Analysis (PCA) is a mathematical transformation of data 

which entails breaking up X data matrix into a structure part and a noise part. X matrix is 

a n by p matrix, which n is the objects and p is the variables. The objects in this research 

are all the tumour and normal liver tissue samples while the variables are the 

measurements for each object, which in this case the variables are all the elemental 

contents (elements and their ratios) and structural composition of tissues from coherent 

scattering parameters (amplitude, FWHM, area of adipose, fibrous and water peak). All 

these variables unanimously characterise each and all of the samples. The main advantage 

of PCA is that there is no limitation on the number of variables for the characterisation of 

the samples. It is difficult to visualise more than 3 variables in the variable spaces, 

therefore to simplify this, assume that p = 3. Therefore the variable space has three axes; 

x1, x2 and x3 and each sample can be characterised by its coordinates (x1, x2, x3). In Fig. 

2-15a which is the plot of all the samples in the Cartesian co-ordinate, a prominent trend 

can be seen. The swarm of data is positioned along the direction of maximum variance 

(spread of samples) of the direction represented by the central axis. This central axis is 

called the first principal component or PC1. Least squares fit is the mathematical method 

to find out the principal components. For this purpose all the points are projected 

perpendicularly down onto the central axis, which this can be seen in Fig. 2-15a. This 

perpendicular distance of the sample i from the line is called sample residual, ei. PC1 is 
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then the line that minimises  
2

ie . The large object residual is the implication of poor 

fitting, meaning that the model does not represent the original data very well.  

 Usually the swarm of samples shows a trend in more than one direction. In this 

case the higher-order principal components can be defined. The second principal 

component (PC2) is the line perpendicular to the PC1 and in the direction of the second 

largest variance (see Fig. 2-15b). The process of finding these orthogonal axes is 

continued until the final set of PCs has the ability to completely describe any variation 

within the data set. In most of the cases the total variation in data can be described about 

99% only with PC1 and PC2. Thus, a transformation into a more relevant co-ordinate 

system and a reduction in dimensionality are the major objectives of PCA. 

Fig. 2-15 a. Samples’ co-ordinates in Cartesian space and data swarm with PC1. b. Data swarm with two 

PCs. c. Scores as PC-coordinates (Esbensen, 2006) 

 The coordinate of a sample in PC space is called a score which in Fig. 2-15c is 

designated as ti1 and ti2. This transformation to PC space is the result of PCA and it would 

be visualised by the score plot. Indeed, a score plot is the map of samples and can be 

viewed as how the objects are related to one another. The most commonly used plot in 

analysis is the score plot of PC1 versus PC2. A typical score plot of samples is illustrated 
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in Fig. 2-16. This is the plot of all the samples, and it is clear normal samples are 

separated from the tumour ones; however there is an overlap around the origin. Two 

numbers can be seen at the bottom of Fig. 2-16, which correspond to explained variance, 

computed as the complement to residual variance, divided by total variance and it is 

expressed as a percentage. In this example, PC1 explains 52% of variance in original data 

and PC2 explains 20%. This indicates that 52% of the variation in the data is described by 

the model while the remaining 48% are noise. Moreover, PC1 and PC2 together can 

describe 72% of the total variation in data. 

The relationship between the original p variables and the Principal Components is 

the information that can be obtained from the loading plot. Loadings build the direction of 

each PC relative to the original co-ordinate system and refer to variable space where the 

origin of variable co-ordinate space is moved to the average object. A typical loading plot 

is shown in Fig. 2-17. Simply, loading plot is the map of variables and it indicates how 

much each variable contributes to each PC. PCA-loadings are usually normalised to the 

interval (-1, 1).  The mathematical representation of PCs can be given by equation (2-7):  

                                   k

k

kaepp


                                            (2-7) 

where loadings are the coefficients (pka) in this linear combinations of the original unit 

vectors.  

Studying the score plot together with the loading plot gives the most valuable 

information about both the samples and the variables, and makes the data interpretation   

easier and more feasible. As it can be observed in Fig. 2-17 some of the variables fell into 

the right-hand side of PC1 and some into the left-hand side. The former ones correspond 

to a similar group of normal samples on the right-hand side of score plot (Fig. 2-16) and 

the latter ones correspond to a similar group of samples, mainly tumour samples, on the 

left-hand side of score plot. It can be interpreted that the normal samples have higher 

amount of Fe, Cu, Zn and Rb, whilst tumour samples have higher amount of Br and 

coherent scattering peaks parameters. 

In this research, the variables are of different types and the data consequently 

appear in significantly different ranges. Hence, to study and analyse them together, 

scaling or weighting variables was performed using the standard deviation, before any 

PCA. This prevents the influence of units of measurement variable for each data value, 

and makes all the variables to get the same variance.   
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Fig. 2-16 A typical score plot. T (red), N (blue), U (green)  

denote tumour, normal and unknown samples respectively 

 

 

Fig. 2-17 A typical loading plot.   
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Fig. 2-18 Clustering as founded in the overview score plot, samples in  

cluster 1 are similar, and are dissimilar to samples in cluster 2 (Esbensen, 2006) 
 

2.6.2  What is SIMCA?  

 Soft Independent Modelling of Class Analogy (SIMCA) is the classification 

method, simply based on similarities using separate bilinear modelling for each bona fide 

data class. Basically, a complete SIMCA classification model mainly made up of several 

PC models, one for each individual class identified. Each SIMCA class consists of similar 

samples, and those in different groups are essentially dissimilar (see Fig. 2-18). One of 

the purposes of using SIMCA classification is to identify the objective groups and to 

investigate the characteristics of each such class. The substantial goal of SIMCA 

classification is to assess whether a new sample is similar to the other samples, in order to 

assign this new sample to the class to which it shows the largest similarity.    

 In this research, the SIMCA system combines the information for each tissue type, 

plotting the PCA models for all tissue types back into a common set of axes with units of 

standard deviation. Each new sample is tested against the individual PCA models in turn. 

A residual is calculated as the sum of the distance between the sample variable value and 

the predicted value for each PC. Comparing this sample variable error with the class 

membership limit (confidence level) determines whether a sample may belong to a 

particular class or not. The ability of system to predict unknown sample membership 

accurately is dependent on how far apart each of the PCA models is. The further apart the 

component models are, the greater ability they have to distinguish between samples. 

Ideally no membership limits should overlap, as this allows samples to be able to belong 

to more than one class.   

 There are different plots available in this software helping to interpret the object 

class-model relationship. Coomans plot is the most useful plot that could reveal 

compressed valuable information about the class membership to any two models 

simultaneously. It shows the transverse distances from all new samples as well as the 
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calibration samples to two built PC models. A typical Coomans plot is illustrated in Fig. 

2-19. The samples in blue colour represent the calibration samples in normal model and 

those in red are calibration samples from tumour model. The new and unknown samples 

are shown in green colour being classified. If a sample genuinely belongs to a model, it 

must fall within the membership limit, i.e. in this example if a sample is normal it should 

fall into the left side of vertical line, and if it is tumour it should fall below the horizontal 

line. These two lines are the cut-off class membership limits, as it can be seen in Fig.      

2-19. Indeed if a sample falls outside of these limits, i.e. in the upper right corner, it 

belongs to neither of models, while samples that are within both limits, i.e. close to the 

origin, should be classified as belonging to both models. 

 The discrimination power plot is another informative plot that gives useful 

information about the ability of variables to discriminate between any two models. The 

discrimination power value of 1 is an indication that the variable has no discrimination 

ability and the values of higher than 3 is the indication of good discrimination of a 

specific variable. A typical discrimination power plot is shown in Fig. 2-20 for eight 

elements as the variables and two normal and tumour models. 

 

 

Fig. 2-19 A typical annotated Coomans plot 
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Fig. 2-20 A typical discrimination power plot for eight elemental variables 

In Fig. 2-20, the data from the normal model are projected onto the tumour model. 

This plot demonstrates which elements are the most important in distinguishing between 

these two models.  It can be seen that P, K and As have a discrimination power of less 

than three and therefore may not be useful in the overall classification.  

In order to have information about the relevance of each variable in modelling of 

the individual models, there is a modelling power plot in SIMCA, indicative of the 

importance of a given variable for a given model and this can lead to the improvement of 

each model. Those variables which have a large influence on the model are those that 

have a large modelling power (more than 0.3). Those variables with a low modelling 

power (less than 0.3) are not useful and may make the model under perform. As it is 

shown in Figs. 2-21 and 2-22, all the elements have the modelling power of more than 

0.3. 

In some cases with poor classification results excluding the variables with low 

discrimination power and modelling power can help to improve the models and 

consequently the classification results. 

For a full description of both PCA and SIMCA the reader is pointed to Esbensen, 

2006. 
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Fig. 2-21 A typical modelling power plot for eight elemental variables for normal model 

 

 

Fig. 2-22 A typical modelling power plot for eight elemental variables for tumour model 
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3.1  XRF Study 

 The average concentration levels of 12 elements in the energy range of 1.88 keV 

to 13.70 keV are calculated for both 24 normal and 24 tumour tissue samples. The mean 

amounts of all the elements in normal samples are compared with those in tumour 

samples in Fig. 3-1.  

 

Fig. 3-1 Average concentration level of 12 elements compared in tumour and normal liver tissue 

 

 The statistical analyses were performed for all the elements and the results shown. 

Using elements, those that vary significantly between normal and tumour tissues, in 

building the normal and tumour models, SIMCA modelling is carried out and the 

classification results for four subgroups of unknown samples will be presented.  

 

3.1.1  Statistic Results 

 Descriptive statistic results for 24 matched-pair samples are shown in table 3-1 for 

the first four elements. Mean values are compared in normal and tumour tissues. Only K 

and Ca are statistically significant between normal and tumour tissue, with p-value of 

0.046 and 0.040, respectively.   
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 Table 3-1 Statistic results of four elements in ROI 1 for normal and tumour liver tissue 

              (Mean ± std. of normalised peak area for each element) 

 

 

Fig. 3-2 Box Plot of K and Ca for normal and tumour liver tissue    

 To have a better visualisation of these results, a box plot is presented for the two 

significant elements; K and Ca (Fig. 3-2). It is apparent from the box plot that the 

Concentration level of K is lower in the tumor tissue, unlike the Ca concentration level 

which is higher in tumor tissue compared with the normal tissue.  
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 Descriptive statistic results for the second ROI containing four elements are 

shown in table 3-2. Box plot is shown in Fig 3-3. From these, it is possible to observe that 

Fe, Cu and Zn are found to be significantly higher in concentration in normal tissue        

(p<.01) compared to tumour tissue. While, Cr is the element that is found significantly 

lower in normal tissue (p = .011) compared to the tumour tissue. 

 

Table 3-2 Statistic results of four elements in ROI 2 for normal and tumour liver tissue 

(Mean ± std. of normalised peak area for each element) 

 

 

Fig. 3-3 Box Plot of Cr, Fe, Cu and Zn for normal and tumour liver tissue    
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 The descriptive statistic results for the last four elements of interest (ROI 3) are 

presented in table 3-3. It is observed that As and Se are not significantly different in 

tumour and normal liver tissue (p=.219 and p=.137, respectively). However, Br is 

significantly higher (p<.01) in tumour and Rb is significantly lower (p<.01) in tumour 

tissue compared to the normal liver tissue. These results are visualized graphically with 

box plot in Fig. 3-4. 

  

Table 3-3 Statistic results of four elements in ROI 3 for normal and tumour liver tissue 

(Mean ± std. of normalised peak area for each element) 

 

Fig. 3-4 Box Plot of Br and Rb for normal and tumour liver tissue  
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3.1.2  Multivariate Results 

 Multivariate analysis and classification modelling were conducted for four 

different subgroups of unknown samples, with the elemental content data, (those which 

were statistically significant) using Unscramble version 9.8 (CAMO Ltd). The four 

subgroups, which are chosen randomly from all the samples, and their type were 

identified by histopathology, are presented in table 3-4 by the sample number.   

 
Table 3-4 Four subgroups of samples for classification given by sample number 

From the statistics analysis, Ca, K, Cr, Fe, Cu, Zn, Br and Rb were found to vary 

significantly between tumour and normal liver tissue. Therefore, only these eight 

elements were included in the modelling process and the remaining elements were 

excluded.  

 Multivariate analysis, consisting of PCA and SIMCA modelling, using elemental 

data as variables were carried out for each subgroup separately and the results are 

presented as following.  

 

3.1.2.1 First subgroup classification results  

 PCA was carried out for all the normal, tumour and unknown samples in order to 

obtain a clear visualization of the overall data set structure and to observe a clear 

grouping in the PC1-PC2 plot. The score plot of all the samples is illustrated in Fig 3-5. 

From the score plot, which is the map of samples, two distinct clusters of normal and 

tumour, with a small overlap in the middle can be seen. Normal samples are mostly on the 

right hand side of PC1 and tumour samples are mostly on the left hand side of PC1. It is 

clear that three of the unknown samples are among normal cluster and two of them 

among tumour cluster.  PC1 explains 46% variation of raw data matrix and PC2 explains 

14% and both together can explain 60% variation of data.                   
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 Fig. 3-5 Score Plot of PC1 vs. PC2 (first subgroup) 

 

  

Fig. 3-6 Loading Plot of PC1 vs. PC2 (elements as variables-first subgroup) 

 

Fig 3-6 is showing the loading plot for all the samples. It indicates the map of 

variables, in this case eight statistically significant elements: K, Ca, Cr, Fe, Cu, Zn, Br 

and Rb. It can be interpreted that the normal samples have higher amount of Fe, Cu, Zn 

and Rb, whilst tumour samples have higher amount of Br, Ca and Cr. These results are in 
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agreement with statistical results (see Fig. 3-1). This plot shows how much each element 

contributes to each PC. As it can be observed, Cu, Cr, Fe, Cu, Zn, Br and Rb contribute 

strongly to PC1 and slightly to PC2, while Ca mostly contributes to PC2 and K 

contributes to both PC1 and PC2. 

 In next step, PCA was carried out for normal and tumour samples separately and 

the models were saved and used in the SIMCA modelling process to classify the unknown 

samples as normal or tumour. Samples 1 and 48 were marked as both normal and tumour, 

showing that it had a distance that is within the critical limits of both models 

simultaneously. Samples 19 and 33 are uniquely allocated to the normal class and 

samples 24 to the tumour class. Thus, three out of five samples were classified correctly. 

The result of the SIMCA classification for the first unknown subgroup is demonstrated 

with the Coomans plot in Fig 3-7. If a sample truly belongs to a model it should fall 

within the membership limit. This can be conspicuously seen in the graph for samples19 

and 33, they both fall in blue region and for sample 24 falls in red region. 

 

 

Fig. 3-7 Coomans Plot, classification result (elements as variables-first subgroup) 

 

 

 

 

 



MSc Thesis - S. Darvish Molla; McMaster University – Medical Physics 

45 

The discrimination power plots of each element of interest for each subgroup and 

SIMCA modelling is presented in Fig. 3-8. It is clear that Fe has the highest 

discrimination power, since all the four subgroups it has a discrimination power of more 

than 5.  

 

 
 

Fig. 3-8 Discrimination Power Plots of eight elements for each four subgroups  

(from top left to bottom right: subgroup one, two, three and four respectively) 

 

The modelling power plots for the eight elements in the four subgroups for normal 

and tumour models are illustrated in Figs. 3-9 and 3-10 respectively. All the eight 

elements have a modelling power of more than 0.3 in normal model. While in the tumour 

model, most of the elements have a very low powering model. Hence, PCA and SIMCA 

were performed with the four elements (Ca, Fe, Zn and Br) with a relatively high 

discrimination power. The results are presented in the next part.  
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Fig. 3-9 Modelling Power Plots, for the coherent scatter variables for four subgroups for Normal model 

(from top left to bottom right: subgroup one, two, three and four respectively) 

 

 

Fig. 3-10 Modelling Power Plots, for the coherent scatter variables for four subgroups for Tumour model 

(from top left to bottom right: subgroup one, two, three and four respectively) 
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Summary of all four subgroups classification results for the elemental data analysis with 

5% confidence level are reviewed in table 3-5: 

 

Table 3-5 Summary of the classification results with eight elemental variables  

(K, Ca, Cr, Fe, Cu, Zn, Br, Rb) and 5% confidence level 
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 The PCA and SIMCA modelling were performed using Fe and Zn, both of which 

show high discrimination power (more than 3) and they are both higher in normal liver 

tissue compared to tumour tissue, and Ca and Br, both of which are higher in tumour liver 

tissue compared to normal liver tissue. The discrimination power plots are demonstrated 

in Fig. 3-11. Explicitly, these four elements have a large discrimination power ( 3 ). 

 

 
 

 Fig. 3-11 Discrimination Power Plots of four elements for each four subgroups (from top left to 

bottom right: subgroup one, two, three and four respectively) 

 

 

The Summary of classification results for the twenty unknown samples is shown 

in table 3-6. It is found that with these four elements as PCA variables, 14 samples were 

classified correctly out of 20 samples with 95% confidence level. 
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Table 3-6 Summary of the classification results with four elemental variables (Ca, Fe, Zn, Br)  

and 5% confidence level 
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The discrimination power of the SIMCA modelling was checked with the Fe as an 

element significantly higher in normal liver tissue compared to tumour tissue and Br as an 

element significantly higher in the tumour tissue. The discrimination power plots for 

these two elements and for the four subgroups are illustrated in Fig. 3-12. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-12 Discrimination Power Plots of two elements for each four subgroups (from top left to bottom 

right: subgroups: one, two, three and four respectively) 

 

The summary of the classification results for all the 20 unknown samples is 

presented in table 3-7, and indicates that 15 samples were classified correctly. 
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Table 3-7 Summary of the classification results with two elemental variables (Fe, Br)  

and 5% confidence level 

 

The score, loading and Coomans plots for the three other subgroups are presented in 

Appendix III. 
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3.2  Coherent Scatter Study 

 The averaged scatter profile spectra for both 24 normal and 24 tumour samples are 

shown in Fig. 3-13. It is observed that the first peak is slightly lower in tumour, unlike the 

second and third peaks which are higher in tumour. This observation is approved 

numerically by the statistical analysis results which will be presented in the following 

subsection (see table 3-8).  

 

Fig. 3-13 Averaged normalized coherent scatter profile for tumour and normal samples   

 

Four peaks were fitted to the data and demonstrated in Fig. 3-14: Adipose peak at 

1.1  nm
-1

, Fibrous peak at 1.6 nm
-1

, Water content peak at 2.2 nm
-1

 and a peak at 3.4 nm
-1

 

due to the incoherent scattered radiation which are in agreement with the results 

previously reported by Geraki et al (2004). The fourth peak is not due the coherent 

scattering and also it does not carry any structural information, hence, for the rest of 

analyses it is excluded from the data and the parameters of the first three peaks are 

analysed only.  
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 Using this model, all the sample data were fitted and three peak parameters; the 

amplitude, FWHM and area under the peak are extracted. The statistical analysis and 

multivariate analysis for the scattered data will be presented in the next two subsections. 

 

3.2.1  Statistic Results 

 The descriptive statistics are shown in table 3-8 for 24 matched pair samples. All 

the parameters except FWHM of adipose peak were normally distributed; hence the 

paired T-Test was used. Wilcoxon test was used for the FWHM of Adipose peak. The 

results in the table indicate that the three parameters associated with adipose peak are not 

seen to vary significantly between normal and tumour tissue (p>.05). Whereas, the 

amplitude and integrated area for both fibrous and water content peaks are statistically 

significant (p<.01), the same for FWHM with p value of .039 and .027 respectively.     

 

 

 

 

Adipose 

 

Fibrous 

 

Water content 

 

Incoherent scattered 

radiation 

Fig. 3-14 Four peaks were fitted with background subtraction for average 

diffraction spectra from the normal and the tumour samples  
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Table 3-8 Statistic results of coherent scatter data for normal and tumour liver tissue 

(Mean ± std. of normalised peak area) 

 

 These results can be better interpreted from the box plots. In Figs. 3-15 to 3-17 

box plots for the amplitude, FWHM and integrated area of three peaks are shown. A 

similar trend can be observed from these plots. All three parameters for fibrous and water 

content peaks are higher in tumour than in the normal liver tissue, while those are slightly 

lower in tumour for the adipose peak. 
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Fig. 3-15 Box Plot of amplitude of adipose, fibrous and water peaks  

for normal and tumour liver tissue  

 

Fig. 3-16 Box Plot of FWHM of adipose, fibrous and water peaks  

for normal and tumour liver tissue  
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Fig. 3-17 Box Plot of area under the adipose, fibrous and water peaks  

for normal and tumour liver tissue 

 

3.2.2  Multivariate Results  

 Multivariate analyses were carried out using the coherent scattering variables. 

With respect to the statistic analysis it was shown that the adipose peak parameters were 

not significantly different between tumour and normal liver tissue. Therefore, these three 

parameters were not included in the modelling process. Total of six parameters: 

amplitude, FWHM and integrated area of the other two peaks were selected as the 

modelling variables. The analyses were performed for the same subgroups mentioned in 

table 3-1 and the results are presented in the following subsections.  

 

3.2.2.1 First subgroup classification results  

 The score and loading plots of all the 21 normal, 22 tumour and 5 unknown 

samples are shown in Fig 3-18 and 3-19, respectively. It can be seen that the two clusters 

of normal and tumour are not as clear as in the score plots of previous sections (elemental 

data). In this case there is more overlap.   
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 Fig. 3-18 Score Plot of PC1 vs. PC2 (first subgroup) 

 

 

Fig 3-19 Loading plot of PC1 vs. PC2 (coherent scatter data as variables-first subgroup) 
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SIMCA modelling results show that samples 19 and 33 are allocated to normal model and 

sample 24 to tumour model, while samples 1 and 48 could belong to both normal and 

tumour models.  The Coomans plot is shown in Fig 3-20. Therefore, three out of five 

samples were classified correctly. 

 

Fig 3-20 Coomans plot, classification results (coherent scatter data as variables-first subgroup) 

 The discrimination power plots for coherent scatter variables for the four 

subgroups are shown in Fig 3-21.   

 

Fig 3-21 Discrimination Power Plots, for the coherent scatter variables for four subgroups 

(from top left to bottom right: subgroup one, two, three and four respectively) 
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Fig 3-22 Modelling Power Plots, for the coherent scatter variables for four subgroups for Normal model 

(from top left to bottom right: subgroup one, two, three and four respectively) 

 

 

Fig 3-23 Modelling Power Plots, for the coherent scatter variables for four subgroups for Tumour model 

(from top left to bottom right: subgroup one, two, three and four respectively) 

Modelling power plots for the coherent scatter variables for normal and tumour 

models in all the four subgroups imply that although these variables have low 

discrimination power, they have a very large modelling power (>>0.3), meaning that they 

are helpful for building normal and tumour models but not very helpful for the 

discrimination goal. 
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Summary of all four subgroups classification results for coherent scattering data analysis 

with 5% confidence level are reviewed in table 3-9: 

 

Table 3-9 Summary of classification results with coherent scatter variables  

(Amplitude, FWHM and Area under the fibrous and water content peaks) and 5% confidence level 

 

The score, loading and Coomans plots for the three other subgroups are presented in 

Appendix IV. 
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3.3  Elemental Ratio Study 

 In order to investigate more significant variables between normal and tumour liver 

tissue, for the purpose of better multivariate analysis and modelling, the ratios of twelve 

elements were determined. Forty six ratios were statistically analysed and the results will 

be presented in the next subsection. Afterward, the most statistically significant ratios will 

be selected to implement the PCA and SIMCA modelling. The results of multivariate 

analyses will be reported in subsection 3.3.2. 

 

3.3.1  Statistic Results 

 The statistical results for the 46 ratios of elements are shown in table 3-10.  

 

Table 3-10 Mean comparison between normal and tumour tissue  
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Forty three ratios were normally distributed, thus the Paired-Sample T-Test was carried 

out to compare the mean values in normal and tumour samples and find out the most 

significant ones. However, the ratios with asterisk in the table 3-8 are the ratios that were 

not normally distributed, thus Wilcoxon Test was used to compare the mean values.  

 Clearly it can be observed in table 3-10 that thirty four ratios are significantly 

different between normal and tumour samples. Amongst these, only those that have p-

value less than 0.001 were selected. Descriptive analyses were performed for these ratios 

and the results are presented in table 3-11:   

 
 

Table 3-11 Mean comparison between normal and tumour tissue  

for the most significantly different ratios  
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3.3.2  Multivariate Results 

 Multivariate analysis was carried out using twenty one ratios mentioned in table   

3-11 as the significant variables between normal and tumour samples. PCA and SIMCA 

classification results for the four unknown subgroups mentioned in table 3-4 will be 

reported in next subsections. 

  

3.3.2.1  First subgroup classification results 

 PCA was carried out for all the samples and the result is shown in score plot (see 

Fig. 3-24). Two separate clusters of samples, one normal and one tumour can be seen 

seemingly. The unknown samples fell into one of the clusters distinctively. PC1 explains 

52% variation of raw data matrix and PC2 explains 12% and both together can explain 

64% variation of data. 

 
 Fig. 3-24 Score Plot of PC1 vs. PC2 (first subgroup) 

 The map of variables is shown in Fig. 3-25. Studying loading plot together with 

score plot may give us useful information. It can be seen in the Fig 3-24 that all the 

variables that are on the right-hand side of loading plot have higher values in the tumour 

samples and all the variables on the left-hand side of loading plot correspond to normal 

samples in the score plot. It is evident that all the variables have contribution to PC1, 

while some of the variables, i.e. those on the PC1 axis or close to that, only have 

contribution to PC2. 
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 Fig. 3-25 Loading Plot of PC1 vs. PC2 (elemental ratios as variables-first subgroup) 

 

 Fig. 3-26 Coomans plot, classification result (first subgroup) 

 The classification result is shown in Coomans plot (see Fig. 3-26). Samples 1, 19 

and 33 are all among normal membership and are uniquely classified as normal. Samples 

24 and 48 fell into tumour membership and are uniquely classified as tumour. Therefore, 

in this case SIMCA procedure classified all the unknown samples correctly.  
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 Summary of the classification results for the elemental ratio data analyses are 

reviewed in table 3-12: 

 

 Table 3-12 Summary of classification results with elemental ratio variables and 5% confidence level 

 

The score, loading and Coomans plots for the three other subgroups are presented in 

Appendix V. 
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3.4  Combined Data Study 

 Ultimately, all the elemental, coherent scattering and elemental ratio variables 

were combined and multivariate analysis was performed with the total of thirty five 

variables for the four unknown subgroups. PCA and SIMCA classification results for 

each subgroup will be reported in the following subsections. 

 

3.4.1  First Subgroup Classification Results 

 The scores plot is illustrated in Fig. 3-27. Two separated clusters of normal and 

tumours can be seen evidently in score plot. PC1 explains 47% variation of raw data 

matrix and PC2 explains 10% and both together can explain 57% variation of data.  

 

 
 Fig. 3-27 Score Plot of PC1 vs. PC2 (first subgroup) 

 

 Loading plot which shows the similarities and differences of the samples is shown 

in Fig. 3-28. It can be seen that the variables which are similar between tumour samples 

are in the right side of PC1 line, and the variables which are similar between normal 

samples are in the left side of PC1 line. It is evident that all the variables lie far away 

from the origin. Since PC1 explains 47% and PC2 only 10%, then variables with large 

loadings in PC1 are much more important than those with large loadings in PC2, indeed 5 

times as important. 
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 Fig. 3-28 Loading Plot of PC1 vs. PC2 (combined data as variables-first subgroup) 

 The SIMCA classification result is demonstrated by Coomans plot in Fig. 3-29. 

Explicitly it can be seen samples 1, 19 and 33 fell within the normal membership and 

therefore they accurately classified as normal. Likewise, samples 24 and 48 fell within the 

tumour membership distinctly, so classified precisely as tumour. In this case all the 

unknown samples were classified correctly.  

 

 

 Fig. 3-29 Coomans plot, classification result (first subgroup) 
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 Summary of the classification results for the combined data analyses are reviewed 

in table 3-13: 

 

Table 3-13 Summary of classification results with combined variables and 5% confidence level 
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The classification results for the four studies are summarized in table 3-14. It can 

be seen that combined variable study has the most correct classification and the Coherent 

scatter study has the least correct classification. 

 

 

 
 

Table 3-14 Summary of classification results for four different studies 
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4.1  Discussion  

 The bulk of the human body is comprised of hydrogen, carbon, nitrogen, oxygen 

and sulphur, which their concentration levels can be expressed in grams per kilograms. 

There are other elements in the periodic table called macrominerals, which act as 

structural components of tissue and the body fluids and are vital for the function of all 

cells. Na, Mg, P, Cl, K, and Ca are macrominerals and their concentration levels are 

lower than bulk elements, but still expressed in grams per kilograms (Merts, 1981). The 

rest of the elements in periodic table have much lower concentrations about milligrams or 

micrograms per kilogram of tissue. Since these elements were not readily quantified by 

the early analytical methods, and a very small amount of element could be detected, they 

were described as being present in “traces” and hence they have been called trace 

elements. They are categorized into essential and nonessential elements. In the absence of 

former ones, a deficiency syndrome develops however for the nonessential elements no 

proof of essentiality exists until now. Merely, seven essential trace elements were 

established until 1957: Mn, Fe, Cu, Zn, Co, Mo and I (Versieck, 1985). Several other 

elements have been added to the trace elements since then: F, Si, V, Cr, Ni, As (Schwartz, 

1977), Se and Sb.  

 Elements of interest in this research are P, S, K, Ca, Cr, Fe, Cu, Zn, Ar, Se, Br and 

Rb (see table 2). However as it was presented in the results section, only K, Ca, Cr, Fe, 

Cu, Zn, Br and Rb were observed significantly different in human secondary colorectal  

liver tumour and normal surounding tissue. Hence, the focus is on these elements only. 

 The first element, potassium (K), has a substantial role in generating resting cell 

membranes and action potentials, sustaining intracellular osmalarity and in protein 

synthesis. Moreover, it is also a cofactor for acquiring maximum activity of the pyruvate 

kinase enzyme which is entangled in glycolysis energy production (Al-Abraheem et al, 

2008). Ogawa et al (1999) reported an increased level of glycolysis in cancer cells in 

comparison to normal cell. This implies that K concentration level in cancerous tissue 

must be higher than in normal tissue, however, according to our result this is not the case 

for liver tissue. In Fig. 3-2 it can be clearly seen that the mean value in normal tissue is 

significantly higher than in tumour tissue (p=.046). This result is in agreement with       

Al-Abraheem et al (2008). 

 Over 90% of Calcium (Ca) in the body is restored in bone and about 19 mg/100 g 

is distributed in liver (Watts, 1990). It has a crucial role in skeletal structure and teeth. 

Barrage (1975) proved that Ca is a messenger, carrying signals through specific Ca 

channels within cells to target activities. In addition Ca ions are important for glycolytic 

enzyme activation and stability and affecting cell division and differentiation. 



MSc Thesis - S. Darvish Molla; McMaster University – Medical Physics 

 

72 

Malfunction of Ca
2+

 sensing receptor may lead to a progression of cancer disease. 

Kirchhoff and Geibel (2006) reported increased amount of extra cellular Ca
2+

 in colon 

carcinoma. Likewise, Al-Abraheem et al (2009) found higher Ca levels in tumour liver 

tissue. Our result for level of Ca supports this as well. According to table 3-1 and Fig. 3-2 

Ca concentration level in secondary colorectal cancerous liver tissue is significantly        

(p = .040) higher compare to surrounding normal tissue.  

 In 1959, Cr was assumed as an essential element for mammals by Schwarz and 

Mertz (1959). It has an important role in keeping up proper carbohydrate and lipid 

metabolism. It is also important for the nucleid acids structure and metabolism. 5 to 6 mg 

is the total body content of Cr in adults; indeed it is higher at birth and decreases with age 

(Watts, 1989).  Meat, whole grain, vegetable oil and beer are the good nutrition sources of 

Cr (Gross and Stosnach, 2009). Deficiency in Cr causes some disease: diabeties, 

peripheral neuropathy, cardiovascular heart disease, stress and depression (Watts, 1989). 

However Kristin et al (2011) published an article, using effects of a low-chromium diet, 

showed that Cr is no longer considered as an essential element in the body. In our study, 

it is found that Cr level is significantly higher (p<.011) in secondary colorectal liver 

tumour tissue compared to the surrounding normal tissue (see table 3-2 and Fig. 3-3).  

    Iron (Fe) is the trace element that exists in every cell. In the adult women body, 

the iron content is about 25 mg/kg and about 35 mg/kg in men (Watts, 1988). Electron 

transport via cytochromes in the Krebs cycle, oxidases, and oxygenates are the processes 

that Fe is involved with (Vitale, 1982). Moreover, it plays a major role in cell growth (Al-

Ebraheem, 2008). Weinberg (1981, 1984, 1992a) found strong evidence for the dangerous 

effect of iron which is the ability to favour cancerous cell growth, and the fact that Fe can 

be carcinogenic. This was observed by Weinberg (1995). He explains the carcinogenic 

mechanism of Fe. Iron catalyses the development of hydroxyl radicals and suppresses 

activity of the host defence cells and advances cancer cells proliferation. In this study it is 

observed that the Fe level in tumour liver tissue was significantly lower (p<.01) than in 

normal surrounding liver tissue (see table 3-2 and Fig. 3-3). This result complies with the 

results reported by Al-Ebraheem et al (2009), Farquharson et al (2009) and Gurusamy et 

al (2008). The reduction in the level of Fe in tumour liver tissue could be justified by the 

fact that tumour cells consume more Fe for growth and results in the depletion of iron 

content in these tissues. 

 Copper (Cu) is the next essential element in the human body and its content in a 

healthy adult has been approximated to 80 mg/kg. Liver and brain are the two organs in 

the body with the highest level of copper. Cu has been accepted to be an essential factor 

of many enzymes including cytochrome c oxidase, superoxide dismutase (cytoplasm), 
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Ceruloplasmin, dopamine B-hydroxylase, lysyl oxidase, tyrosinase and monoamine 

oxidase (Watts, 1989). Copper is essential in protecting cells from damage via oxygen 

toxicity. Lower tissue copper contents are commonly observed in most metastatic cancers 

(Watts, 1989). Comparing tumour and normal liver tissue, it is found that copper level in 

tumour tissue is significantly lower (p<.01) than in normal liver tissue (see table 3-2 and 

Fig. 3-3). Supporting our result, lower level of copper in tumour liver tissue was reported 

by Gurusamy et al (2008) and Farquharson et al (2009) as well. 

 In 1869, the importance of Zinc (Zn) for the growth of living organisms was first 

discovered. Zinc has an important effect on human health and now it is confirmed that it 

is essential to over 300 enzymes in the human body. Zinc was discovered to be involved 

in the synthesis of RNA. (Watts, 1988) Furthermore, it has a role in anti-oxidation, 

immune function and inflammation (Tapiero, 2003). In our research, it is found that Zn is 

significantly lower (p<.01) in secondary colorectal liver tumour tissue than in surrounding 

normal liver tissue (see table 3-2 and Fig. 3-3). This result agrees with that reported by 

Al-Ebraheem et al (2008), Farquharson et al (2009) and Gurusamy et al (2008).  

 Bromine (Br) is not considered as an essential element for life functions. Br 

content in the human body is approximated to 260 mg. Bromine existence in the body is 

mostly due to the food intake, notably seafood. Br is easily absorbed by the body and it is 

particularly found in fluids around cells and in saliva. (Roza, 2009) In secondary 

colorectal liver tumour, it is found that Br levels were significantly higher (p<.01) when 

compared to normal surrounding normal liver tissue (see table 3-3 and Fig. 3-4).  

   Rubidium (Rb) is the 16
th

 most common element in the earth crust (Anderson, 

1955), however in the human body there is little information about the biological 

importance of rubidium, and moreover evidence of Rb deficiency or intoxication has not 

been reported accurately. But, since it belongs to alkali metals and has close physiological 

relationship to potassium, there is huge interest in the biological properties of rubidium 

recently. Rb exists in all human tissues, however testis, liver, ovary, lymph node, kidney 

and muscle were found to have the highest concentrations (Selin et al, 1991 and Hamilton 

et al, 1972/1973). The biological role of rubidium is still unknown (Milman, 2006), 

although some observations imply that rubidium may be an essential trace element for 

human body (Schroeder, 1960). In our research it was found that Rb level was 

significantly (p<.01) lower in tumour tissue compared to normal liver tissue (see table 3-3 

and Fig. 3-4). 

 The statistical differences between concentration levels of all these elements in 

normal and cancerous tissues can be due to the failure in the mechanism of chemical 

homeostasis. Cancer causes alteration in the permeability of cancerous cells` membranes 
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and leads to all of these differences in concentration of different elements between normal 

and cancerous tissues. (Majewska et al, 2007). The change of cell permeability is because 

of cancerous cells secretion of soluble factors into the cells (Payne et al , 1994). 

  Twenty one elemental ratios were found significantly different (p < .001) 

between normal and tumour liver tissue. These results suggest that ratio of the elements 

can be a more effective marker than the elements in liver tissue individually. For instance, 

in this study, As and Se were not significantly different (p = .219 and p = .137 

respectively) between normal and cancerous liver tissue, however, their ratio was 

significant (p = .04). This result suggests that As/Se ratio could be a more effective 

marker of secondary colorectal liver cancer and a more important variable than changes 

in individual As and Se levels.  With the intent of understanding the relationship of the 

trace elements and the mechanism related to tumour growth, the correlation between the 

eight elements in the normal and tumour liver tissue were checked using Spearman Rank-

Order Correlation test. Correlation in normal liver tissue was found only for Zn and Se 

with the spearman coefficient of .521 and p value of .009. In addition, correlation 

between normal and tumour tissue was checked for all the pairs of elements. A strong 

correlation was found between Fe in tumour tissue and Br in normal tissue with spearman 

coefficient of .603 and p value of .001. This could be the reason behind the good 

classification result that was found with only these two elements. After extensive 

literature search, there is no work that represents a quantitative correlation between all 

these eight elements in the secondary colorectal liver tissue, so that the comparison would 

not be possible. However Silva et al (2009) observed a correlation between Ca and Zn in 

normal adjacent and tumour breast tissue with the coefficient of 0.551(p = .004) and 

0.482 (p = .0.17) respectively. They also found a correlation between Fe and Zn only in 

normal breast tissue and between Fe and Cu in tumour breast tissue. However in the liver 

tissue further study is required with different sets of tissues to verify our results or to 

investigate such a link.   

 In our coherent scattering study, four peaks were used in the samples spectra, 

which gave us useful information about the structure and composition of tissue samples. 

The first peak, appeared at 1.1 nm
-1

 momentum transfer, is related to the adipose (fat) 

content of tissue. As it can be seen in table 3-6, the three parameters of this peak were not 

significantly different (p > .05) between tumour and normal liver tissue (amplitude:         

p = .051, FWHM: p = .950 and Area: p = .053). The second peak, appeared at 1.6 nm
-1

 

momentum transfer, and is related to the fibrous content of tissue. For this peak all the 

three peak parameters were significantly higher in tumour liver tissue compared to normal 

surrounding liver tissue (amplitude: p < .01, FWHM: p = .039 and Area: p < .01). The 

third peak, appeared at 2.2 nm
-1

 momentum transfer, and is related to the water content of 
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tissue. Similarly to the fibrous peak, all the three peak parameters for the water peak were 

significantly higher in tumour tissue when compared to normal liver tissue (amplitude:    

p < .01, FWHM: p = .027 and Area: p < .01). The position (momentum transfer) that each 

peak appeared at, are in agreement with results previously reported by Theodorakou and 

Farquharson (2009). They also found significant difference between tumour and normal 

tissue in amplitude and area for both fibrous and water content peaks (p < .001), however 

their result for the adipose peak showed a significant difference for adipose peak as well, 

contrarily to our adipose results.  

The accuracy and repeatability of measuring the trace elements in liver and other 

human tissues using XRF are between 98 and 99% (Carvalho and Marques, 2001; 

Laursen et al, 2001 and Milman et al, 2000). The accuracy of our laboratory XRF for 

quantification of the trace elements in different tissues, including liver was checked in 

another study in this group (Moldovan, 2012) by analysing a standard reference material 

(homogenized lobster [LUTS-1, “Non defatted lobster hepatopancreas reference material 

for trace elements,” National Research Council, Canada]) of the same samples weight. 

For instance Fe with the certified value = 11.6 ± 0.9 mg/kg and the experimental        

value = 12.4 ± 2.5 mg/kg (Moldovan, 2012). This validation indicates that our XRF 

method is accurate and reliable for trace elements measurement in human tissue samples. 

Most of the problems around us are not univariate but multivariate in nature in 

which many variables contribute, and therefore there is a need of multivariate analysis 

which provides tools to mine the data, understand and visualize the relationships between 

samples and variables, either for pattern recognition, or to create models that can be used 

to classify new samples. The mean, median, standard deviation, normal distribution etc. 

are univariate statistics, which are useful but limited by only looking at one variable at a 

time. (CAMO Software white paper, 2011) For discriminating between normal and 

tumour liver tissue more than one variable is involved, so using only univariate analysis 

cannot tell the whole story and may lead to the wrong conclusions. In this study the 

difference in elemental content and structural composition between secondary colorectal 

liver tissue and the surrounding normal liver tissue were analyzed using multivariate 

analysis to develop normal and tumour models and classify the unknown samples based 

on the similarities to each model.   

 Multivariate analyses with different variables: elemental variables, coherent 

scattering variables, elemental ratio variables and combined variables, were carried out 

for twenty unknown samples. It was found that a two-element composite of Fe and Br 

correctly classified 7 of 10 normal and 8 of 10 tumour liver tissues for an overall accuracy 

of 75%.  The best eight- and four-element PCA and SIMCA modelling for liver tissue 
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were less powerful, classifying with overall accuracy of 50% (6 of 10 normal and 4 of 10 

tumour tissues) and 70% (8 of 10 normal and 6 of 10 tumour tissues). 

It can be clearly noticed in tables 4-1 that classification results were improved 

prominently when all the elements, elemental ratios and coherent scattering parameters 

were employed for PCA and SIMCA modelling. If we consider “both” and “none” as a 

wrong classification result, then 50% of samples were classified correctly using 8 

elements of interest as modelling variables (6 of 10 normal and 4 of 10 tumour liver 

tissue), 30% (3 of 10 normal and 3 of 10 tumour liver tissue) and 80% (7 of 10 normal 

and 9 of 10 tumour liver tissue) were classified correctly using coherent scattering 

parameters and elemental ratios respectively. However, when all these variables were 

combined in multivariate analysis, interestingly the percentage of correct classification 

increased to 85% (8 of 10 normal and 9 of 10 tumour liver tissue). All of the models have 

been performed with a 5% significance level. It is worth mentioning that all these samples 

were provided from a tissue bank, and the analyses relied on the labels which were 

written on the vials at the time of resection. So there is a possibility of mislabelling, or the 

fact that tissues were not precisely resected from the tumour or normal part of the tissue. 

For future work all the samples should histologically analysed over the measurement 

volume to have accurate information about the samples, and the classification results 

must be compared with the histological results. 

 

Table. 4-1 Summary of SIMCA classification results: a. Classification result with elements as variables    

(8 variables) in modelling. b. Classification result with coherent scattering parameters as variables               

(6 variables) in modelling. c. Classification result with elemental ratios as variables (21 variables) in 

modelling. d. Classification result with all combined parameters as variables in modelling. 
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 Therefore SIMCA analysis has proven effective in differentiating between 

samples. This study is the indication of this fact that this technique has potential for 

creating effective tissue classification models. However it needs to be optimized clinical 

application. Optimization has to be performed to decrease the measurement time 

prominently to make it possible for use in the surgery room during the operation time. So 

far, the best method to differentiate between normal and tumour tissue is a 

histopathological test, which have to be carried out after the surgery and it takes time in 

order to provide an accurate result. Apart from detection of clear surgical margin, this 

method can be effectively used for diagnostic applications in different cancers such as 

breast or prostate cancers. The ideal and favourable cancer diagnostic method ought not 

to depend on the physician or patient characteristics. For instance, there are many factors 

that affect mammographic accuracy in diagnosing a breast cancer (Smith-Binman et al, 

2005). Their results showed that the false-positive rate for the patients younger than 40 

years old is lower (6.5%) than for the patients older than 70 years old (10.5%). Also, 

patients with the considerably fatty breast density, have lower false-positive rate. 

Furthermore, they founded that the mammographic accuracy not only depends on the 

patient characteristics but also in a large portion depends on the physician characteristics 

such as age, sex, annual mammographic volume, time since receipt of medical degree and 

a focus on screening mammography. Contrary to Beam et al (2003) their results support 

those of Elmore et al (1998) and Esserman et al (2002) that more experienced physicians 

have lower false-positive rates which are defined as: 

“No breast cancer was diagnosed within 12 months of a positive screening  

mammogram”.  

Statistically they found the mean sensitivity was 77%, and the mean false positive rate 

was 10% without adjusting for the patient characteristics. After adjustment their results 

showed higher specificity associated with three factors:  

“At least 25 years since receipt of a medical degree ([OR] = 1.54, 95% CI = 1.14 

to 2.08; P =.006), interpretation of 2500 – 4000 (versus 481 – 750) screening 

mammograms annually (OR = 1.30, 95% CI = 1.06 to 1.59; P = .011) and a high 

focus on screening mammography compared with diagnostic mammography    

(OR = 1.59, 95% CI = 1.37 to 1.82; P <.001).” 

 

However, if the method described in this work is optimized, its accuracy would not 

depend on the physician characteristics, hence it would be clinically favourable for 

diagnostic purposes as well.  
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One of the biggest sources of inaccuracy in this study comes from this fact that, 

there were not a constant calibrating normal and tumour samples to build the constant 

normal and tumour models. The unknown samples were picked out from the calibrating 

data samples; hence in the classification of each subgroup, the normal and tumour PCA 

models were built with the data from different samples. This cause a change in the model 

each time, so the decision to choose which variables (using discrimination and modelling 

power) help the improvement of modelling, would be hard and not accurate. For instance, 

in Fig. 3-8, K has a large discrimination power of more than 4 in subgroup 3, while it has 

a low discrimination power of less than 3 in subgroups 1 and 4. From all the 

discrimination powers it can be seen that subgroup 3 has a different trend compared to the 

other three subgroups, and this proves that changes in the data set, from which the normal 

and tumour PCA models were developed, would affect the accuracy of the classification 

result considerably. However this limitation is due to the number of samples used to 

develop each model. Ryan and Farquharson (2007) calculated the minimum required 

sample size for each tissue type should be 30. In this study the models built with 21 and 

22 normal and tumour tissues. Hence, picking out subgroups out of this small sample size 

can really affect the models. Therefore in order to optimize and increase the accuracy of 

the classification result, for future work, much bigger sample size has to be used.   
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4.2  Conclusion 

 The main aim of presented research is to study the differences in elemental 

composition and structural information between normal and secondary colorectal cancer 

in human liver tissue. The results implied that XRF is a potent and effective technique to 

evaluate elemental composition of liver tissue. It was concluded that the level of P, S, As 

and Se were not statistically significant (p > .05) between tumour and normal liver tissue, 

however, the level of K (p = .046), Ca (p = .040), Cr (p = .011), Fe, Cu, Zn, Br and Rb 

were statistically significant (p < 0.01) between tumour and normal liver tissues. K, Fe, 

Cu, Zn and Rb were significantly higher in normal liver tissue than in secondary 

colorectal liver tumour tissue, while Ca, Cr and Br were significantly lower in normal 

liver tissue. These results are consistent with those obtained by the others. All the 

coherent scattering peak parameters were statistically significant (p < .05) for fibrous and 

water content peaks. It was found that amplitude; FWHM and area under these two peaks 

were significantly higher in secondary colorectal liver tumour tissue compared to 

surrounding normal liver tissue. However, the amplitude, FWHM and area under the 

adipose peaks were not seen to vary significantly different (p >.05) between tumour and 

normal liver tissue. 

 Using XRF data, elemental ratios and coherent scatter profiles separately in 

multivariate analyses, classification models have been built, and it was found that the 

classification accuracy for each set was 50%, 30% and 80% respectively. Ultimately, the 

classification results accuracy was improved to 85% when the amalgamation of all these 

variables was used in a final classification model.  

 This study proved that X-ray interaction techniques: XRF and coherent scattering, 

together with Principle Component Analysis and Soft Independent Modelling of Class 

Analogy approach can be used as a discriminator for human secondary colorectal liver 

cancer tissue samples and surrounding normal liver tissue samples. Since hepatic 

resection is still the best known therapeutic modality for patients with secondary 

colorectal liver metastasis, it would be our future goal to use this technique and optimize 

this model to develop a rapid, accurate diagnostic tool that can differentiate benign from 

malignant tissue at the time of surgery for this and other cancers. 
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APPENDIX I: RAW DATA: Normalized Peak Area (XRF) 

 

 
Table AI-1 a. Normalized Area under K Peak (peak area/scatter area ratio) and ratios of K peak area with 

other elements for both normal and tumor tissues 
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Table AI-1 b. Normalized Area under K Peak (peak area/scatter area ratio) and ratios of K peak area with 

other elements for both normal and tumor tissues 
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Table AI-2 a. Normalized Area under Ca Peak (peak area/scatter area ratio) and ratios of Ca peak area with 

other elements for both normal and tumor tissues 
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Table AI-2 b. Normalized Area under Ca Peak (peak area/scatter area ratio) and ratios of Ca peak area with 

other elements for both normal and tumor tissues 
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Table AI-3 a. Normalized Area under Cr Peak (peak area/scatter area ratio) and ratios of Cr peak area with 

other elements for both normal and tumor tissues 
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Table AI-3 b. Normalized Area under Cr Peak (peak area/scatter area ratio) and ratios of Cr peak area with 

other elements for both normal and tumor tissues 



MSc Thesis - S. Darvish Molla; McMaster University – Medical Physics 

 

90 

 
Table AI-4 a. Normalized Area under Fe Peak (peak area/scatter area ratio) and ratios of Fe peak area with 

other elements for both normal and tumor tissues 
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Table AI-4 b. Normalized Area under Fe Peak (peak area/scatter area ratio) and ratios of Fe peak area with 

other elements for both normal and tumor tissues 
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Table AI-5. Normalized Area under Cu Peak (peak area/scatter area ratio) and ratios of Cu peak area with 

other elements for both normal and tumor tissues 
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Table AI-6. Normalized Area under Zn Peak (peak area/scatter area ratio) and ratios of Zn peak area with 

other elements for both normal and tumor tissues 
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Table AI-7. Normalized Area under As Peak (peak area/scatter area ratio) and ratios of As peak area with 

other elements for both normal and tumor tissues 
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Table AI-8. Normalized Area under Se Peak (peak area/scatter area ratio) and ratios of Se peak area with 

other elements for both normal and tumor tissues 
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Table AI-9. Normalized Area under Br and Rb Peaks (peak area/scatter area ratio) 
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APPENDIX II : RAW DATA : Normalized Peak Area (Coherent Scatter) 

 

 

 
Table AII-1. Normalized Area under Adipose Peak (normalized to unity and attenuation coefficient) 
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Table AII-2. Normalized Area under Fibrous Peak (normalized to unity and attenuation coefficient) 
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Table AII-3. Normalized Area under Water Content Peak (normalized to unity and attenuation coefficient) 
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APPENDIX III : Score, Loading and Coomans Plots for Second, Third  

          and Fourth Subgroup (XRF Study) 
 
 

AIII. 1  Second subgroup classification results 

  

Fig. AIII 1-1 Score Plot of PC1 vs. PC2  

  

Fig. AIII 1-2 Loading Plot of PC1 vs. PC2  
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Fig. AIII 1-3 Coomans Plot, classification result  

 

AIII. 2  Third subgroup classification results  

 

 

 Fig. AIII 2-1 Score Plot of PC1 vs. PC2  
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 Fig. AIII 2-2 Loading Plot of PC1 vs. PC2  

 

 

Fig. AIII 2-3 Coomans Plot, classification result  
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AIII. 3  Fourth subgroup classification results 

   

 
 

Fig. AIII 3-1 Score Plot of PC1 vs. PC2  

 

  

Fig. AIII 3-2 Loading Plot of PC1 vs. PC2  
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Fig. AIII 3-3 Coomans Plot, classification result  
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APPENDIX IV : Score, Loading and Coomans Plots for Second,  

  Third and Fourth Subgroup (Coherent Scatter) 

 

AIV. 1  Second subgroup classification results   

 

  

Fig. IV 1-1 Score Plot of PC1 vs. Pc2  

 

 Fig. IV 1-2 Loading Plot of PC1 vs. PC2  
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 Fig. IV 1-3 Coomans plot, classification result  

 

AIV. 2  Third subgroup classification results 

   

 
 Fig. IV 2-1 Score Plot of PC1 vs. PC2  
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Fig. IV 2-2 Loading Plot of PC1 vs. PC2  

 

 

 

 Fig. IV 2-3 Coomans plot, classification result  
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AIV. 3  Fourth subgroup classification results  

  

  

Fig. IV 3-1 Score Plot of PC1 vs. PC2  

 

  

Fig. IV 3-2 Loading Plot of PC1 vs. PC2   
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 Fig. IV 3-3 Coomans plot, classification result  

 

 

 

 

 

 

 

 

 

 

 

 

 



MSc Thesis - S. Darvish Molla; McMaster University – Medical Physics 

 

110 

APPENDIX V : Score, Loading and Coomans Plots for Second, Third 

   and Fourth Subgroup (Elemental Ratio study) 

 
AV. 1   Second subgroup classification results  

  

Fig. AV 1-1 Score Plot of PC1 vs. PC2  

 

  

Fig. AV 1-2 Loading Plot of PC1 vs. PC2  
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 Fig. AV 1-2 Coomans plot, classification result  

 

AV. 2  Third subgroup classification results 

  

  
Fig. AV 2-1 Score Plot of PC1 vs. PC2  
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Fig. AV 2-2 Loading Plot of PC1 vs. PC2 

 

 

 Fig. AV 2-3 Coomans plot, classification result  
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AV. 3  Fourth subgroup classification results 

   

  

Fig. AV 3-1 Score Plot of PC1 vs. PC2  

 

  

Fig. AV 3-2 Loading Plot of PC1 vs. PC2  
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 Fig. AV 3-3 Coomans plot, classification result  

 

 

 

 

 

 

 

 

 

 

 

 

 



MSc Thesis - S. Darvish Molla; McMaster University – Medical Physics 

115 

APPENDIX VI : Score, Loading and Coomans Plots for Second,  

  Third and Fourth Subgroup (Combined Data Study) 

 

AVI. 1   Second Subgroup Classification Results 

  

Fig. AVI 1-1 Score Plot of PC1 vs. PC2   

 

  

Fig. AVI 1-2 Loading Plot of PC1 vs. PC2 (combined data as variables-second subgroup) 
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Fig. AVI 1-3 Coomans plot, classification result  

 

AVI. 2   Third Subgroup Classification Results 

 

  

Fig. AVI 2-1 Score Plot of PC1 vs. PC2  
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Fig. AVI 2-2 Loading Plot of PC1 vs. PC2  

 

 

 Fig. AVI 2-3 Coomans plot, classification result  
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AVI. 3   Fourth Subgroup Classification Results 

 

  

Fig. AVI 3-1 Score Plot of PC1 vs. PC2  

 

  

Fig. AVI 3-2 Loading Plot of PC1 vs. PC2   
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 Fig. AVI 3-3 Coomans plot, classification result  

 

 

 

 

 

 


