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Preface
The following is a summary of the work done over the past four years in my pursuit of a PhD. As one

can see from the title and content, it is fairly apparent that my topics of interest are fairly separated

in the high energy community. This can be understood from the fact that during my masters, I

was primarily looking for classical solutions to higher dimensional supergravity theories, primarily

motivated by low energy string theories. The tools I developed naturally lend themselves to the

more active paradigm of large extra dimensions and brane dynamics as a potential solution to the

cosmological constant problem. This is the basis for chapter 2.

My years at McMaster further piqued my interest into condensed matter systems and methods

with its very strong and prevalent condensed matter group. Many of my peers have provided a

great deal of insight and understanding into modern developments in the condensed matter field.

Around the time I was starting my PhD, the field of holography from string theory applied to

condensed matter was beginning to take off following strong physicists starting research programs

into the topic such as Joseph Polchinski, Subir Sachdev, and Sean Hartnoll to name a few. Again the

toolset I developed from my earlier years naturally led me to pursue research into condensed matter

holography. A cursory introduction to holography in the context of condensed matter is presented in

chapter 3, while the resulting papers from this research is presented in chapters 4 and 5. While these

two topics are seemingly very different in that their applications differ significantly, they both stem

from very fundamental developments in string theory during the 1990s and so actually demonstrate

progress in which string theory could potentially make predictions outside of its initially intended

predictions as a theory of quantum gravity.

This thesis is organized as a series of papers. As such, the chapters that are papers (Chapters 2,

4, and 5) have separate bibliographies at the end of their respective chapters. The remainder of the

thesis has a single bibliography at the end of the entire text.
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Abstract
The purpose of this thesis is twofold and motivated by recent developments in string theory and

extra dimensional models. The first objective is to describe the development and progress in the

codimension-2 brane paradigm as a potential cosmological scenario. Secondly, it presents the Anti-

de Sitter/Conformal Field Theory (AdS/CFT) conjecture, also known as holography, as a tool for

calculating physical quantities in condensed matter system and goes on to model the quantum Hall

effect.

We first describe the initial development of treating back-reaction in codimension-2 branes sys-

tems with a scalar and gauge field. The purpose of this is to examine the low-energy effective

dynamics on the brane. Furthermore, applications are then explored for D7-branes in F-theory as

well as D3-branes in large extra dimensional scenarios explored as a model for the cosmological

constant problem. The result of this work is that the higher and lower dimensional scenarios are

consistent with each other once brane back-reaction is considered in these models. This work led to

a number of future works one of which is in relation to the cosmological constant problem. While

the subsequent work is beyond the scope of this thesis, we present a picture and further references

for the reader.

The larger, later, portion of this thesis introduces the concept of holography, its origins, and the

applicability to condensed matter systems. Furthermore, we discuss the applicability in particular

to the quantum Hall effect (QHE) and present a model in the holographic language that correctly

reproduces some of the physics of the QHE. This includes a paper in which we introduce the model,

along with demonstration of symmetry properties and conductivity calculations, as well as a paper

which examines the finite size scaling behaviour of the model. As a benefit to the reader, we present

a ‘starter edition guide’ to the AdS/CFT dictionary preceding these papers for non-experts such

that this thesis is self-contained.

The upshot is that these avenues of work, in particular quantum Hall-ography, have been very

successful in modeling physics using tools originally developed by string theory. As such, it provides

support for string theory as a model and framework, as well as providing more opportunities for

future predictions of physical quantities.
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Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

0.1 Conventions

High energy physics seems to be a particularly privileged field in physics where in addition to the

expected battleground between scientists on the fronts of various models, conventions in which to

approach a calculation invoke heated debate. As the purpose of this thesis is to in fact explicitly

show calculations for various physical quantities, we must inevitably pick a side to many of these

conventional debates. We start with a fairly innocuous and universally accepted convention. That

is, we take the charge of the electron to be negative. Now that we have lulled the reader into a false

sense of security, we move onto the more important and useful conventions that will be heavily used

throughout the remainder of this text.

Units

We work in natural units. Both ~ and c are set to unity, in addition to the less standard Boltzmann

constant, kB = 1, which will be important when calculating temperatures in the AdS/CFT formalism

in chapter 3. The consequence of this is that all dimensional quantities will be expressed in terms

of powers of mass (we could similarly use length instead, but standard convention dictates that we

count powers of mass.) If we use Newton’s constant, 8πGN = κ2, as an example, we conclude that

in 4 dimensions, it has dimensions [mass]−2. As such, the Planck mass in d dimensions is given by

M2−d
P = 16πGN = 2κ2.

While throughout the text, we will be primarily focusing on the gravitational constant κ2 instead

of the Planck mass, the Planck mass is an important scale to keep in mind as a reminder for the

validity of any calculation that uses classical (super-)gravity as its effective theory.

Geometrical conventions

These conventions are the more hotly debated and far from agreed upon in the literature. For

space-time distances, we choose to use the mostly plus metric,

ηµν =



−
+

+

+

.. .

+


.

1
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The benefits of this metric are quite numerous1. The primary advantage for this work is since there

are more spatial dimensions than temporal ones, any calculation involving geometrical quantities

(which amount to most in this text) would do well to have the number of minus signs minimized to

avoid propagation of errors. A secondary advantage is when performing a Wick rotation to calculate

physical quantities of the CFT in AdS/CFT, the metric becomes entirely positive and much more

intuitive.

Furthermore, we follow the less standard definition of curvature in general relativity and therefore

the subsequent curvature tensors and scalar, as per Weinberg [2]. These are

Rαβγδ = ∂δΓ
α
γβ − ∂γΓαβδ + ΓαδσΓσβγ − ΓαγσΓσβδ

Rαβ =Rγαγβ

R =Rαα. (1)

With regards to indices, when mentioning arbitrary dimensions, time will be labeled as x0. Further-

more, capital Latin indices, MN · · · denote all dimensions (when the total number of dimensions are

greater than 4). Greek indices, αβ · · · , denote either 4 dimensions or simply a subspace of a larger

dimensional theory, and lowercase Latin indices, ij · · · denote 3 dimensions and less.

1For a number of very good reasons as to why this is the ‘right’ metric to use, an excellent exposition is given in
appendix E of [1]
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Chapter 1

Introduction

For centuries, the foundation of science and its progress has benefited largely from large scale dif-

ferences and their decoupling. As an everyday example that perhaps lends itself to one’s intuition,

take the population of humans on Earth. One can study the sociology and economics of the pop-

ulous1 without needing to know a lot of the more complicated details of the subjects themselves.

For instance one persons purchasing decision will likely not have an impact on the general growth

trajectory of the world as a whole.

Similarly, as we move further and further to smaller scales in which complicated behaviour is

either unimportant or simplified, we see the same effect in the more ‘hard’ sciences such as biol-

ogy, chemistry, and physics. The detailed chemical properties of hydrocarbons are not necessarily

important in the behaviour of biological systems, for instance the simplification of hydrophobic or

hydrophilic strings are commonly employed in biophysics. The precise structure of a nucleus in an

atom is similarly abstracted from chemical reactions and potential chemical compounds possible.

At shorter distance scales, physics takes over as the field of study, from analyzing crystal structures

down to the Planck scale, or the motion of planets to objects on the size of the Hubble scale. Again,

due to the power of scale separation, many fields of physics exist as useful fields of study in their own

right without the need to study all areas of physics to get a good understanding of the system in

question. Indeed, the reason the Standard Model is a good description of particle physics at higher

energies (as opposed to atomic energies) is because the relevant degrees of freedom significantly

change from the weak scale instead to the atomic scale.

Of course this view of physics and science in general becomes a double edged sword. If someone

were to be given the final theory in which all of physics and science is based, there would be no way

of predicting the world we see around us for the same reasons2. Just as it is impossible to uniquely

predict the atom from the standard model, and DNA from chemistry, the laws of physics we see at

1While neither of these fields are strictly scientific due to their imprecise nature and large unpredictability, the fact
that they are collective behaviour of the scientific discipline of psychology still stands.

2For a particularly good exposition on this argument of “reductionism does not imply constructionism” see [3]
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lower energies will unlikely be a unique solution to this ‘final theory’.

One of the goals of current particle physics is the understanding of particles and scales beyond

those of the standard model. At the very least, there must be at least one ‘more fundamental’

theory that includes a consistent quantum mechanical description of gravity at very high energies3.

Superstring theory, over many years of research by the high energy community, has been shown to

be a perturbatively consistent quantum theory of gravity. The idea that string theory will ultimately

be the appropriate description of physics at the Planck scale has led to a large amount of models

at lower energies that incorporate the principles and mathematics of string theory to describe the

world around us. This ‘phenomenological’ approach has the benefit of having real-world observables

to compare results against for validation as a model, while still retaining distinct features one would

see in string theory at lower energies. Of course the downside is that this approach ultimately

requires a description of how to obtain these models from a more fundamental string theory. This

work consists of models that take this phenomenological approach with the view that one should be

able to reproduce real-world experiments as priority over obtaining our models from a string theory.

1.1 Major Developments in String Theory

In order to fully understand the work presented in this thesis, some context should be introduced

to properly motivate the models presented here. To that end, we give a brief overview of some of

the major developments in string theory from a qualitative standpoint. This exposition is by no

means exhaustive, and is largely based on the reviews of [4, 5, 6] and the introductory chapter of

Polchinski’s string theory text [7].

1.1.1 Strings, Supersymmetry, Branes, and Extra Dimensions

String theory, originally a potential model for the strong interactions [8], became a potential theory

for quantum gravity when it was realized that the lowest lying non-tachyonic mode of the closed

string spectrum was a massless spin-2 particle. However, for bosonic string theory, a tachyonic

(negative mass-squared) mode existed, indicating an inconsistent theory. This led to the immediate

conclusion that if we insist that string theory must be a theory of quantum gravity, then these strings

must be supersymmetric at the Planck scale. Moreover, one of the conditions for a Lorentz-invariant

vacuum to exist as a solution requires the strings live in 10 dimensions (9 of space and 1 of time) [7].

Unfortunately, we are acutely aware that at the energies we experience in our everyday lives that

supersymmetry doesn’t manifest itself as particles in the standard model. Even more importantly, as

of this writing, the only dimensions we can currently access are of 3 spatial and 1 temporal. Clearly

the lack of supersymmetry and extra dimensions up to and including the scale of the standard model

suggest that if string theory is to remain a viable theory at higher energies, some mechanism must

3Typically in modern proposals, many models include more in between the weak scale and the Planck scale
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exist such that at lower energies we see the world around us and not a bunch of supersymmetric

particles free to move in a 10 dimensional space-time!

In addition to the required existence of strings and supersymmetry, it was realized much later

that for open strings4, their endpoints behave in a collective way such that at low energies it is

more appropriate to describe them as surfaces spanned by the endpoints of the strings (see chapter

8 of [7]). These surfaces have been since denoted as ‘branes’ and have been the subject of much

extra-dimensional phenomenology.

The important point here, from a phenomenological perspective, is that there are now two meth-

ods of ‘hiding’ these extra dimensions from modern experiments. The first approach would be to

make any extra dimensions periodic and small such that no current experiment could probe the small

dimensions. This is referred to as ‘compactification’. The second approach is using the observation

that string endpoints (which are interpreted as particles at lower energies) are restricted to living

on these branes. It then becomes a reasonable possibility to suggest that our observable universe is

a 3-brane5 of which all particles we observe (aside from gravity which is much less constrained) are

restricted to the dimensions we’re familiar with, being 3 of space and 1 of time.

In fact, combinations of the above are also possible, where for instance compactifications oc-

cur over some dimensions, leaving a number of extra dimensions large, but utilizing branes as a

way of trapping the standard model in 4 space-time dimensions. Motivated by these many possible

realizations of low energy string theory, the phenomenological approach typically assumes a lower

dimensional theory with a number of ingredients motivated by string theory. These possible ingre-

dients include branes, supersymmetry, extra scalar fields, extra gauge fields, and of course extra

dimensions. As we have stated already, we take the phenomenological position, and while we expect

our models to be a low energy description of a string theory, as of this writing it is not known

explicitly how these models will manifest themselves as a low energy string theory.

At this point, we have made some very qualitative arguments in favour of the phenomenologi-

cal approach. To further motivate and quantify this approach, we give a brief overview of extra-

dimensional compactification and brane physics.

1.1.2 String Technology

Up until this point, we have given many arguments as to how to take a phenomenological approach to

model building and why this is a more feasible approach. While the approach we take is a bottom-up

one - where a model is constructed with the intention of embedding it in a string theory if the model

is viable - there also exists the top-down approach where one starts with a string theory and makes

a number of assumptions and compactifications to produce a lower-dimensional model. Here we

4In a string theory, there are generally two possible configurations for a string. Either a string is open, like a
spaghetti noodle, or it is closed, like a hula-hoop

5A p-brane is conventionally referred to as a p-spatial dimensional surface that also propagates through time, or a
p+1 space-time surface.
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sketch the technology used in the top-down approach, as to give a good understanding towards the

motivation of the bottom-up approach, where one simply ‘writes down a theory,’ and the justification

of the content of such a theory.

Compactification

Typically in extra-dimensional theories, one has to explain why we physically do not see extra

dimensions at energies that we currently can access. The simplest method of hiding any extra

dimensions is through toroidal compactification. That is, if we have an extra dimension xd, where

d+ 1 is the total number of dimensions, we make the identification

xd ' xd + 2πa (1.1)

such that the extra dimension is wrapped up like a cylinder. Clearly, as we take a → 0 the extra

dimension essentially vanishes and the only dynamics one would expect to see are in the remaining

dimensions. From a geometric point of view, this is essentially singling out one dimension in the

metric. If we rewrite the metric as

ds2 = gMNdxMdxN = gµνdxµdxν + e2φ
(
dxd +Aµdxµ

)2
, (1.2)

then we have essentially separated the extra, to be compactified, dimension from the rest of the

metric. When we take the remaining dimensions indices to be raised and lowered by the metric gµν ,

there are a few advantages to this parameterization. First we can see that the inverse metric takes

the simple form,

gMN = δMµ δ
N
ν g

µν − δMd δNµ e−2φAµ − δMµ δNd e−2φAµ + δMd δ
N
d e
−2φ (1 +AµA

µ) . (1.3)

Furthermore, we see the determinant of gMN separates nicely into6

det (gMN ) = e2φ det (gµν) . (1.4)

Finally, a diffeomorphism of the form

xd → xd + Λ(xµ), (1.5)

is equivalent to the gauge transformation

Aµ → Aµ + ∂µΛ, (1.6)

6To see this, note how the metric must be the inverse of the inverse metric. From the method of cofactors, we know
that gdd = det gµν/ det(gMN ). Since the inverse of the determinant is the determinant of the inverse, this completes
the proof.
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when we assume the metric functions are independent of the extra dimension. To see how the Ricci

scalar must decompose, consider the scaling

xd → xdλ. (1.7)

To leave the metric invariant, we must impose both Aµ → Aµλ and φ → φ − lnλ. Since we know

the Ricci scalar is diffeomorphic invariant, it is therefore gauge invariant in the extra dimensional

vector, Aµ. The only quantity consistent with gauge invariance and two derivatives is F 2, and from

the previous scaling argument, we see that it must appear as

Rd+1 = Rd +H(∂φ) +Be2φFµνF
µν , (1.8)

whereH is some function of derivatives of the scalar field, andB is a constant from the decomposition,

and Rd is built from gµν . Furthermore, since the kinetic term of the dilaton can not be coupled to

the gauge field7 the kinetic term of the dilaton must posses a shift symmetry. Writing the action

then becomes

S = −
∫

ddxeφ
√
−g 1

2κ′2
(
Rd + C(∂φ)2 +Be2φFµνF

µν
)
, (1.9)

where κ′2 = κ2/(2πa) is the lower dimensional gravitational constant and we have dropped boundary

terms. We can rescale Aµ to put B in standard form, but to determine C, we must keep track of

two-derivative terms on the scalar field in Rd. Due to gauge invariance, we we ignore terms with

the gauge field, Aµ as a multiplicative factor, as it must be canceled in the final result. The relevant

parts of the connections are then

δΓµdd =− e2φ∂µφ (1.10)

δΓdµd =∂µφ, (1.11)

where the δ’s signify these are not the full connection coefficients. When inserting these into the

definition of the Ricci scalar, (1), the compactified action becomes

S = −
∫

ddxeφ
√
−g
[

1

2κ′2
(
Rd + 2(∂φ)2

)
+

1

4
e2φFµνF

µν

]
. (1.12)

The upshot is we see how extra scalar and gauge fields naturally arise from dimensional compact-

ification, as well as the fact that the extra scalar field now plays a role of a dynamical coupling

constant for the gauge field. To see the behaviour on compactified fields, we look at the action of a

7If the kinetic term of the dilaton was coupled to the gauge field, it must be only through the field strength, Fµν .
However, to preserve general covariance, the indices must be contracted in such a way that the only allowed term
would be (∂φ)2F , but this has more than two derivatives, which could not descend from the Ricci scalar.
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massless free scalar,

Sψ = −
∫

dd+1x
√
−gd+1gMN∂Mψ

d∂Nψ
d∗. (1.13)

Since ψ must be periodic in the extra dimension, it must take on the form ψd = einx
d/aψ(xµ) where

n is an integer. Expanding the action gives us

Sψ = −
∫

ddx
√
−geφ

[
gµν

(
∂µψ +

in

a
e−φAµψ

)(
∂νψ

∗ − in

a
e−φAνψ

∗
)

+ e−φ
n2

a2

]
. (1.14)

Here we see not only does a massless field gain a number of different mass modes associated with

the extra dimensions, but that the charge with respect to the new gauge field is proportional to its

mass. This is known as a Kaluza-Klien (KK) tower of modes as each mass and charge are equally

spaced for all possible modes. As one would expect, if one makes this extra dimension small enough,

these additional modes become hidden by the large energy gap required to excite the particle, and

the particle looks entirely like a neutral d dimensional particle.

T-duality

Here we motivate the existence of branes. For a much more technical introduction, see [7]. Our

approach here is to motivate them from a heuristic standpoint. That is, using some very basic string

technology we hope to give some plausibility arguments as to the requirement of their existence as

degrees of freedom in a string theory.

If we take (1.14), and write down the zero-momentum energy states for this massless extra-

dimensional particle, the spectrum would have the form

Eψ ∼
n

a
. (1.15)

However, if instead of a scalar particle, we allowed for an extended closed string to propagate in

all of these dimensions, we would have an additional winding mode. The string itself, being closed,

could possibly wind around the extra dimensions an integer number of times. Remembering that

the energy contained in a string is proportional to the product of its tension times its length, it is

quite intuitive to say the contribution from these winding modes would be of the form δE ∼ nR.

Therefore the total contribution from the extra dimensions to the energetics of a closed string is

Estring ∼
n

a
+ma. (1.16)

Here we see an important feature of closed strings compared to a scalar field. In the case of the

scalar field, we can simply hide the extra dimensional energetics by making the extra dimension

small enough. In the case of closed strings, however, taking a → 0 yields a continuous spectrum of

winding modes as the KK modes disappear. This property of R ∼ 1/R for the degrees of freedom

8
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of strings is known as T-duality. The important point is that there is no way of hiding this extra

dimension from the point of view of strings.

However, if we were to consider an open string, it would still have the KK-modes associated with

a compactified extra dimension, but not have the winding modes a closed string has. This is simply

because there is nothing preventing an open string from unwinding itself around the compactified

direction. From the point of view of degrees of freedom, as we take R → 0, it naively seems that

closed strings preserve their degrees of freedom while open strings do not. This is inconsistent since

both types of strings interact with each other, and therefore one could lose or gain degrees of freedom

in a scattering process. The technical resolution to this apparent paradox is beyond the scope of

this thesis, but the sketch is as follows. As we take a → 0, the open string is further restricted

along this periodically identified hyperplane. However, just as open strings pick up a new massless

degree of freedom to propagate into, these closed strings must also be free to roam in this T-dual

dimension. An additional ‘stringy’ technicality is that the Neumann boundary condition of the open

string becomes a Dirichlet boundary condition in the dual co-ordinate.

This boundary condition suggests that the effective degrees of freedom at low energies would be

the collective behaviour of these string endpoints. Since these endpoints lay on a hypersurface of the

full dimensionality of the theory, we describe the collective behaviour of them as surfaces, or ‘branes’.

If these branes do not interact with any gauge fields of interest, their action is simply proportional

to their world-volume,

Sbrane = −Tp
∫

dpxe−φ
√
−?g (1.17)

where ? denotes the pullback of the metric. Simply put, the pullback is the action of evaluating the

metric along the hypersurface of the brane direction. If we oriented a p − brane such that it was

normal to the other d + 1 − p dimensions, the pullback would be the block of the metric in the p

directions evaluated at the position of the brane in the d + 1 − p directions. The additional scalar

field is a stringy feature that we take as a given from a phenomenological approach which will end

up being scaled out by putting the metric in the Einstein frame. In chapter 2, we assume the brane

action takes this form with the scalar field associated with this brane a constant. Furthermore, we

assume it has d − 1 dimensions and perpendicular to the extra 2 dimensions, giving it the form of

simply an integral over the 4 dimensional metric.

We can further write down a brane action that interacts with a U(1) charge. This action takes

the form

Sbrane = −Tp
∫

dpxe−φ
√
|?g + `2F |, (1.18)

where we have introduced a length scale for the gauge field, that is left arbitrary from a phenomeno-

logical standpoint and F only carries indices in the brane directions. Again, the derivation of this

action is beyond the scope of this work, but the form for this action can be motivated by requiring

9
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that the action only transform in the directions corresponding to the brane directions. This is the

brane action we use when considering the holographic quantum Hall model.

The upshot of these expressions is that they provide very real motivation for the extra dimensional

and holographic models as string theory provides a wealth of theoretical objects and tools in which

to construct these phenomenological models.

1.2 Overview

We’re now ready to give a summary of the work in this thesis given the motivation for the phe-

nomenological approach. Chapter 2 is work on the brane-world large extra dimensions paradigm.

The exact purpose of this chapter is setting up a formalism for brane back-reaction in the large extra

dimensions paradigm. In addition to this, solutions will be explored as the acid test to the reliability

of this framework.

From then on, this thesis concentrates on the gauge-gravity paradigm as applied to condensed

matter systems. This is also known as the Anti-de Sitter/Conformal Field Theory (AdS/CFT)

correspondence or holography. Chapter 3 gives an overview of this conjecture and outlines various

properties and relations to condensed matter systems. In this chapter, we also fill in the appropriate

calculations not included in the following papers for the benefit of the reader not familiar with the

AdS/CFT paradigm. Furthermore, we also introduce the quantum Hall effect as well as its current

theoretical and experimental understanding. Chapter 4 is a paper which introduces a particular

holographic model for quantum Hall systems and goes on to calculate a number of observables present

in real quantum Hall systems. Chapter 5 further refines this model by comparing another physical

observable, the dynamical critical exponent, to experiments and further constrains the parameter

space of this ‘Hall-ography’ model such that it reproduces experimental data.

Finally, chapter 6 summarizes all of the material contained in this thesis. We both provide a brief

recap of the reasoning of these particular research programs, as well as an overview of the importance

of this research taken as a whole in this research field in physics. Furthermore, we provide some

further motivation for potential future endeavors, as well as the current status of these paradigms

in the community.
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Chapter 2

Codimension-2 Brane-Bulk

Matching: Examples from Six and

Ten Dimensions

Preface

This work borrows from the ideas outlined earlier in string theory in section 1.1.2. In particular it

focuses on the concept of branes and their roles on the exterior geometry and their own particular

space spanned from a low energy perspective. The thrust of this paper is to extend the methods

introduced in [9] to include gauge fields and apply it to known examples of effective theories. That

is, we develop a formalism that directly provides a low energy, lower-dimensional theory from the

standpoint of brane-world phenomenology provides a step towards connecting extra-dimensional

models to current observables and therefore a testing ground for extra-dimensional phenomenology.

Indeed, recent research based off this formalism has been extremely fruitful. In addition for

providing an inflationary model from the large extra dimensions paradigm [10], it has provided

a perfectly ‘natural’ explanation to the cosmological constant problem [11]. This will be further

explored in the conclusion to this thesis, but the important takeaway is that this has become an

important tool and the start of a theme towards quantifying observables using models motivated by

stringy techniques.
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Abstract
Experience with Randall-Sundrum models teaches the importance of following how branes back-

react onto the bulk geometry, since this can dramatically affect the system’s low-energy properties.

Yet the practical use of this observation for model building is so far mostly restricted to branes

having only one transverse dimension (codimension-1) in the bulk space, since this is where tools for

following back-reaction are well-developed. This is likely a serious limitation since experience also

tells us that one dimension is rarely representative of what happens in higher dimensions. We here

summarize recent progress on developing the matching conditions that describe how codimension-2

branes couple to bulk metric, gauge and scalar fields. These matching conditions are then applied

to three situations: D7-branes in F-theory compactifications of 10D Type IIB string vacua; 3-branes

coupled to bulk axions in unwarped and non-supersymmetric 6D systems; and 3-branes coupled

to chiral, gauged 6D supergravity. For each it is shown how the resulting brane-bulk dynamics

is reproduced by the scalar potential for the low-energy moduli in the dimensionally reduced, on-

brane effective theory. For 6D supergravity we show that the only 4D-maximally symmetric bulk

geometries supported by positive-tension branes are flat.
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2.1 Introduction

Space-filling branes, situated around extra dimensions, provide a remarkable framework for approach-

ing phenomenological problems. Besides being well-motivated — for instance arising very naturally

within string theory — branes lead to novel kinds of low-energy physics that can cut to the core of

many of the naturalness issues that currently plague particle physics and cosmology.

The realization that not all particles need ‘see’ the same number of dimensions (because brane-

bound particles are trapped to move only along the branes) is the first type of brane-related insight

to have made a major impact on physics, leading to the recognition that the scale of gravity can be

much smaller than the Planck scale [1]. A second major revelation came with the realization that

the back-reaction of branes on their environment can strongly influence their low-energy properties,

such as by providing deep gravitational potential wells within the extra dimensions that redshift the

energy of those branes that live within them [2].

Although branes can in principle have a great variety of dimensions, almost all of the detailed

exploration of brane-bulk back-reaction is specialized to the case of codimension-1 branes: i.e. those

branes that span just one dimension less than the dimension of the full spacetime. This is partially

because tools for describing how branes back-react on their surroundings are only well-developed for

codimension-1 surfaces, since in this case the problem can be expressed in terms of the Israel junction

conditions [3]. This restriction to codimension-1 objects is potentially very limiting because the

special nature of kinematics in one dimension makes it unlikely that back-reaction for codimension-1

branes is representative of back-reaction for branes with higher codimension.

The main obstacle to understanding how properties of higher-codimension branes are related to

the bulk geometries they source is the fact that these bulk geometries typically diverge at the position

of their sources. (The most familiar example of this for a codimension-3 object is the divergence

of the Coulomb potential of a nucleus evaluated at the nuclear position.) It is one of the special

features of codimension-1 objects that the bulk fields they source typically do not diverge at their

positions. They instead cause discontinuities of derivatives across their surfaces, whose properties

are captured by the Israel junction conditions.

The next-simplest case consists of codimension-2 objects, whose back-reaction is complicated

enough to allow the possibility of bulk fields diverging at the positions of the sources. Although

bulk fields can diverge for codimension-2 sources, they needn’t do so in time-independent situations.

(For instance, they can instead give rise to conical singularities, such as for cosmic strings in 4D

spacetime [4]. When bulk fields do not diverge the relation between bulk and brane properties

is easier to formulate, and so better studied [5].) The potential for divergent bulk configurations

makes codimension-2 branes more representative of systems with more generic codimension than are

codimension-1 branes. But dynamics in two dimensions is still simple enough to allow explicit closed-

form solutions to be known for the bulk configurations sourced by codimension-2 branes, allowing a

detailed study of their properties.
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Tools for describing how bulk fields respond to the properties of source branes were recently

developed in the general case, including where the bulk fields diverge [6, 7, 8], opening up the

properties of codimension-2 branes for phenomenological exploration. These tools — summarized

(and slightly generalized) in S2 below for a fairly general class of scalar-tensor-Maxwell theories in

n extra dimensions — boil down to a set of matching conditions that relate the near-brane limit of

the radial derivatives of the bulk fields to the action for the brane in question.

In S3 we apply these tools to three kinds of examples: compact geometries sourced by D7 branes

in F-theory compactifications of 10D Type IIB supergravity; 3-branes coupled to a bulk axion within

unwarped, non-supersymmetric 6D scalar/Maxwell/Einstein theory; and 3-branes coupled to 6D

chiral gauged supergravity. We draw the following lessons from these comparisons:

� F-theory compactifications [10] of 10D Type IIB supergravity sourced by D7-branes serve as a

reality check, since string theory tells us the detailed form of both the brane and bulk actions

[9], and explicit solutions are known for the transverse spacetimes that are sourced by these

branes [21]. We verify the codimension-2 brane/bulk matching conditions by checking that the

asymptotic forms for the solutions are related to the known brane actions in the prescribed

way.

� In 6D axion-Maxwell-Einstein theory, flux-compactified solutions are known for the bulk that

interpolates between two 3-branes, and these are simple enough to allow the explicit calculation

of how branes contribute to the low-energy axion potential [11]. From the perspective of six

dimensions the resulting axion stabilization arises through the requirement that both branes

be consistent in their demands on the bulk. We show that the stabilized value agrees precisely

with the result of minimizing the low-energy axion potential as seen by an observer who has

integrated out the extra dimensions below the Kaluza-Klein (KK) scale. We also show how

this potential gives the same value for the curvature of the maximally symmetric on-brane

geometry as is calculated from the higher-dimensional field equations.

� Stable flux compactifications are also known for 6D chiral gauged supergravity [12], having up

to two singularities that represent the positions of two source branes [13]. These solutions are

known in explicit closed form for the most general solutions having a flat on-brane geometry

and axial symmetry in the bulk; and in a slightly more implicit form for solutions with de

Sitter or anti-de Sitter on-brane geometry. In this case we use the matching conditions to

show that the only bulk configurations that can be supported by positive-tension branes have

flat induced on-brane geometries, with (possibly warped) bulk geometries with nonsingular

limits as the source branes are approached. We also show how geometries that diverge at the

brane positions can arise from specific kinds of negative-tension branes, while no maximally

symmetric solutions exist at all for many kinds of brane sources (presumably corresponding to

time-dependent runaway bulk geometries, such as those considered in [14]).
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S4 briefly summarizes some of the implications of these results.

2.2 The Bulk-Brane system

We start by describing the brane-bulk framework within which we work. This starts with a statement

of the scalar-metric-Maxwell system whose equations we use, followed by a statement of how the near-

brane boundary conditions of the bulk fields are related to the action of the branes which are their

source. Finally we describe the contribution of each brane to the low-energy scalar potential that

is valid over distances much longer than the size of the extra dimensions, and identify a constraint

which allows a simple description of this contribution given the properties of the brane tension.

2.2.1 The bulk

The starting point is the statement of the equations of motion that govern the bulk.

General formulation

We assume the following action for the n-dimensional bulk physics, describing a general scalar-tensor

theory coupled to a Maxwell field,1

S =

∫
M

dnx LB +

∫
∂M

dn−1x LGH (2.1)

where

LB = −
√
−g

{
1

2κ2
gMN

[
RMN + GAB(φ) ∂Mφ

A∂Nφ
B

]
+

1

4
f(φ)FMNF

MN + V (φ)

}
, (2.2)

and the Gibbons-Hawking lagrangian [17] is

LGH =
1

κ2

√
−γ̂ K , (2.3)

and is required in the presence of boundaries in order to make the Einstein action well posed. Here

F = dA is the field strength of the Maxwell field, R is the Ricci scalar for the 6D spacetime metric,

gMN , and GAB is the metric of the target space within which the scalar fields, φA, A = 1, . . . , N ,

take values. γ̂ij = gMN ∂ix
M∂jx

N is the induced metric, and K is the trace, γ̂ijKij , of the extrinsic

curvature, of the boundary surface, ∂M.

This bulk action is chosen to be general enough to include the bosonic part of the supersymmetric

1Our metric is mostly plus, with Weinberg’s curvature conventions [15], which differ from those of MTW [16] only
by an overall sign in the definition of the Riemann tensor.
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theories of interest. Its field equations are

1

2κ2
(RMN + GAB ∂MφA∂NφB) +

f

2
F P

M FNP +
1

n− 2

[
V − f

4
FPQF

PQ

]
gMN = 0, (2.4)

GAB�φB − κ2

[
∂V

∂φA
+

1

4

∂f

∂φA
FMNF

MN

]
= 0 , (2.5)

and

∇M (fFMN) = 0 , (2.6)

where

�φA := gMN
[
∇M∂Nφ

A + ΓABC(φ)∂Mφ
B∂Nφ

C

]
, (2.7)

with ΓABC(φ) being the Christoffel connection built from the metric GAB.

Metric ansätze

Our interest is in configurations whose geometries are maximally symmetric in the brane directions,

for which it is convenient to specialize to the metric

ds2 = gMN dxMdxN = e2W ĝµν dxµdxν + gmn dxmdxn

= e2W ĝµν dxµdxν + e2C dz dz , (2.8)

where ĝµν(x) denotes a maximally symmetric (n − 2)-dimensional metric. The coordinates are

xM = {xµ, xm}, with xµ, µ = 0, . . . , n − 3 labelling the brane directions, and m = n − 2, n − 1 (or

z = xn−2 + ixn−1) being coordinates for the two dimensions transverse to the branes. The functions

W and C are generally singular at the positions of any source branes. For instance, if eC = (`/r)a for

r2 = |z|2, then the proper distance becomes ρ = [`/(1− a)](`/r)a−1 and eB = `(`/r)a−1 = (1− a)ρ,

showing that the metric in this case has a conical singularity at r = ρ = 0, with defect angle δ = 2πa.

For some applications, particularly very near a brane, it is useful to further specialize to the most

general ansatz consistent with cylindrical symmetry in the two transverse dimensions, {xm,m =

n− 2, n− 1}. This leads to the following metric:

ds2 = dρ2 + e2Bdθ2 + e2W ĝµν dxµdxν (2.9)

= e2C
(

dr2 + r2dθ2
)

+ e2W ĝµν dxµdxν

where θ labels the direction of cylindrical symmetry, and the functions B = B(ρ) and W = W (ρ)

depend on the proper distance, ρ, only — or C = C(r) is a function only of r.

The bulk scalars are similarly just functions of ρ, φA = φA(ρ), and a gauge can be chosen to that
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the only nonzero component for the Maxwell field is AM = Aθ(ρ) δθM , and so

Fρθ = −Fθρ = A′θ , (2.10)

where the prime denotes differentiation with respect to ρ.

The Einstein equations subject to this ansatz reduce to

1

n− 2
e−2W R̂+W ′′ + (n− 2)(W ′)2 +W ′B′ − 1

n− 2
κ2 e−2B f(A′θ)

2 +
2κ2V

n− 2
= 0 (µν)

(2.11)

B′′ + (B′)2 + (n− 2)W ′B′ +
n− 3

n− 2
κ2 e−2B f(A′θ)

2 +
2κ2V

n− 2
= 0 (θθ) (2.12)

(n− 2)
[
W ′′ + (W ′)2

]
+B′′ + (B′)2 + GABφA′φB ′ +

n− 3

n− 2
κ2 e−2B f(A′θ)

2 +
2κ2V

n− 2
= 0 (ρρ) ,

(2.13)

while the dilaton and Maxwell equations become

e−B−4W
(
eB+4W GABφB ′

)′
+ GABΓBCD φ

C ′ φD
′ − κ2

[
∂V

∂φA
+

1

4

∂f

∂φA
e−2B(A′θ)

2

]
= 0 , (2.14)

and (
e−B+4W f A′θ

)′
= 0 . (2.15)

2.2.2 Boundary conditions for codimension-2 branes

General formulation

Suppose an (n−2)-dimensional, space-filling, codimension-2 brane is located at a position, xm = xmb ,

within the 2 extra dimensions, with brane action

Sb = −
∫
xb

dn−2x
√
−γ

[
Lb (φA, Aθ, gθθ) + · · ·

]
, (2.16)

where Lb denotes the brane lagrangian, which is potentially a function of the bulk scalars, φA, and the

tangential components of the bulk Maxwell field and metric, AM and gMN , but not their derivatives.

(Ellipses denote the possible subdominant, higher-derivative effective interactions that can also be

present.) We imagine the geometry surrounding the brane to be given by the axisymmetric ansatz

of eq. (2.9), with the brane located at ρ = 0, so θ denotes the angular direction about its position.

Because our interest is in maximally symmetric solutions along the brane directions we do not

entertain a dependence of Tb on any components of AM and gMN apart from Aθ and gθθ.

The induced metric on the brane is γµν = gMN ∂µx
M ∂νx

N = e2W ĝµν . Because of the warp factor

appearing in this metric, for later purposes it is convenient to define the ‘warped’ tension, Tb, by

17



Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

Tb = e(n−2)WLb, so that the brane action becomes

Sb = −
∫
xb

dn−2x
√
−ĝ
[
Tb(φ,Aθ, gθθ,W ) + · · ·

]
. (2.17)

The back-reaction of such a brane onto the bulk geometry dictates the asymptotic near-brane

behaviour of the bulk fields nearby,2 through codimension-2 matching conditions that generalize

[6, 7, 8] the more familiar ones that are encountered for codimension-1 branes. For the bulk scalars

these state

lim
ρ→0

∮
xb

dθ

[
1

κ2

√
−g GAB∂ρφB

]
= − δSb

δφA
, (2.18)

where the integration is about a small circle of proper radius ρ encircling the brane position, xb,

which is taken to be situated at ρ = 0. Similarly, the Maxwell matching condition is

lim
ρ→0

∮
xb

dθ
[√
−g f F ρM

]
= − δSb

δAM

, (2.19)

Finally, the metric matching condition is

lim
ρ→0

∮
xb

dθ

[
1

2κ2

√
−g

(
Kij −Kgij

)
− (flat)

]
= − δSb

δgij
, (2.20)

where Kij is the extrinsic curvature of the fixed-ρ surface, for which the local coordinates are those

appropriate for surfaces of constant ρ: {xi, i = 0, 1, · · · , n − 2}. Here ‘flat’ denotes the same result

evaluated near the origin of a space for which the brane location ρ = 0 is nonsingular.

Axially symmetric ansatz

Specialized to the ansatz of eq. (2.9) the scalar-field matching condition becomes[
2π

κ2
eB+(n−2)W

√
−ĝ GAB φB ′

]
xb

=
∂

∂φA

[√
−ĝ Tb

]
. (2.21)

With the same ansatz, the corresponding result for the Maxwell field reduces to

[
2π
√
−ĝ e−B+(n−2)W f A′θ

]
xb

=
∂

∂Aθ

[√
−ĝ Tb

]
:=
√
−ĝ Jb(φ) , (2.22)

where the last equality defines the quantity Jb.

Finally, for fixed-ρ surfaces in this ansatz, Kij = 1
2 ∂ρgij , and the comparison ‘flat’ metric is

ds2
flat = dρ2 + ρ2dθ2 + e2Wflat ĝµν dxµdxν , with W ′flat → 0 as ρ → 0. Since Kθθ = B′e2B and

Kµν = W ′ e2W ĝµν , we have K = gijKij = B′+(n−2)W ′, and so the (µν) components of the metric

2A familiar example of this from electrostatics is the 1/ρ dependence of the Coulomb potential that occurs in the
immediate vicinity of a point charge situated at ρ = 0.
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matching conditions give[
−2π

κ2

√
−ĝ e(n−2)W [eB ((n− 3)W ′ +B′)− 1]

]
xb

=
√
−ĝ Tb(φ) , (2.23)

while the (θθ) components are,[
2π

κ2

√
−ĝ eB+(n−2)W ((n− 2)W ′)

]
xb

= −2
∂

∂gθθ

[√
−ĝ Tb

]
(2.24)

:= (n− 2)
√
−ĝ Ub(φ) ,

where the last equality defines Ub. Just as Tb physically represents the brane tension, Jb can be

interpreted as describing microscopic axial currents within the brane, or equivalently any microscopic

magnetic flux these currents enclose within the brane. Once the dimensions transverse to the brane

are dimensionally reduced, Ub turns out [6, 7] to be related to the brane contribution to the scalar

potential within the low-energy 4D effective theory defined below the KK scale (as is seen in more

detail later).

2.2.3 The brane constraint

These matching conditions, when combined with the bulk equations of motion, imply an important

constraint relating the quantities Tb, Jb and Ub [18, 6, 7]. This constraint comes from eliminating sec-

ond derivatives, ∂ 2
ρ , of the fields from the field equations, and so can be regarded as the ‘Hamiltonian’

constraint on the initial data when integrating the field equations in the ρ direction. When written

in the form given above, the relevant combination of Einstein equations is (n− 2)(µν) + (θθ)− (ρρ),

which imply

(n− 3)(n− 2) (W ′)2 + 2(n− 2)W ′B′ − GAB φA′φB ′

−κ2e−2Bf (A′θ)
2 + e−2W R̂+ 2κ2V = 0. (2.25)

To turn this into a constraint on brane properties, multiply it through by e2B+2(n−2)W and take

the limit x→ xb, using the above matching conditions to eliminate the derivatives φA′, B′, W ′ and

A′θ in favour of the brane functions Tb, Jb and Ub. The required matching conditions are

[
eBφA

′
]
xb

= e−(n−2)WGAB ∂Tb
∂φB

with Tb :=
κ2Tb
2π[

κA′θ

]
xb

= e−(n−2)W Jb
f

with Jb :=
κ eBJb

2π[
eBW ′

]
xb

= e−(n−2)WUb with Ub :=
κ2 Ub

2π
(2.26)

and
[
eBB′ − 1

]
xb

= −e−(n−2)W
[
Tb + (n− 3)Ub

]
,
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where each of Ub, Tb and Jb is dimensionless (keeping in mind eB has dimensions of length). Using

eqs. (2.26) in eq. (2.25) we find the desired constraint:

(n− 3)(n− 2) (Ub)2 + 2(n− 2)Ub
[
e(n−2)W − Tb − (n− 3)Ub

]
(2.27)

−GAB ∂Tb
∂φA

∂Tb
φB
− (Jb)2

f
+ e2B+2(n−2)W

[
e−2W R̂+ 2κ2V

]
xb

= 0 .

This crucially simplifies once we use the fact that near the brane eB → 0 as ρ → 0. (This

states that the circumference of small circles about the brane must vanish as the radius of the circles

vanishes. If not true, the object at ρ = 0 would not be interpreted as a codimension-2 brane.) The

key observation [6, 7] is that the quantities κ e2BJb, e
2B−2W R̂ and κ2e2BV also tend to vanish in

this limit (as would be true, for instance, if e−2W R̂, V and Jb were bounded at the brane positions),

implying that the constraint becomes

(n− 2)Ub
[
2e(n−2)W − 2Tb − (n− 3)Ub

]
− (T ′b )2 ' 0 , (2.28)

where (T ′b )2 = GAB ∂ATb ∂BTb.

What is important about this last form of the constraint is that the on-brane curvature drops out

in this limit, meaning that eq. (2.28) cannot be read as being solved for R̂. Instead, this constraint

expresses a consistency condition for the brane action and junction conditions, imposed by the bulk

equations of motion. In practice it provides a very simple method for computing the quantity Ub(φ)

once expressions for Tb(φ) are given, since solving eq. (2.28) implies

Ub =
1

n− 3

[(
e(n−2)W − Tb

)
±

√(
e(n−2)W − Tb

)2 − (n− 3

n− 2

)
(T ′b )2

]
. (2.29)

Here the root is chosen for which Ub → 0 when (T ′b )2 → 0, and so is ± according to whether sign(
e(n−2)W − Tb

)
is ∓. This means that Ub has the same sign as does

(
e(n−2)W − Tb

)
. Notice also that

requiring the square root never be complex requires

n− 3

n− 2
(T ′b )

2 ≤
(
e(n−2)W − Tb

)2

. (2.30)

This last condition can be nontrivial, even though control over the semiclassical approximation

requires |Tb| � 1 and (T ′b )2 � 1. This is because it can happen that eW → 0 at the brane, in which

case eq. (2.30) becomes a constraint on the size of (T ′b )2/T 2
b .

For (T ′b )2 �
(
e(n−2)W − Tb

)2
eq. (2.29) becomes

Ub '
(T ′b )2

2(n− 2)
(
e(n−2)W − Tb

) +
(n− 3)(T ′b )4

8(n− 2)2
(
e(n−2)W − Tb

)3 + · · · . (2.31)
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2.2.4 The classical low-energy on-brane effective action

Over distances much longer than the size of the two compact dimensions transverse to the brane

the classical bulk dynamics is governed by the motion of the massless Kaluza-Klein states. The

dynamics are effectively d-dimensional, with d = n − 2. To understand the dynamics from this

d-dimensional perspective, it is useful to integrate out the extra dimensions to obtain the low-energy

lower-dimensional effective theory. At the classical level this amounts to eliminating all of the massive

KK states as functions of their massless counterparts, using the bulk classical equations of motion.

In the present instance the massless KK states consist of the on-brane metric and Maxwell fields,

ĝµν and Aµ, as well as any d-dimensional scalars, ϕa, descending from φA and/or from moduli in the

metric components, gmn, in the extra dimensions. To obtain the low-energy potential, V eff(ϕ), for

the various d-dimensional scalars, ϕa, we eliminate the massive Kaluza-Klein modes in the action,

as functions of ĝµν and ϕa. The transverse metric, gmn, is eliminated by using the trace reversed

(mn) Einstein equations, which single out the kinetic terms for gmn:

1

2κ2
(Rmn + GAB ∂mφA∂nφB) +

f

2
F P

m FnP +
1

n− 2

[
V − f

4
FPQF

PQ

]
gmn = 0, (2.32)

These comprise two independent equations, which we take to be the sum and difference of the (ρρ)

and (θθ) components. The difference gives

(n− 2)
(
W ′′ + (W ′)2 −W ′B′

)
+ GAB φA′φB ′ = 0 , (2.33)

while the sum is equivalent to contracting eq. (2.32) with gmn, to give

1

2κ2

(
R(2) + GAB∂mφA∂mφB

)
= − n− 3

2(n− 2)
f FmnF

mn − 2

n− 2
V , (2.34)

where we write the higher-dimensional curvature scalar as

R = gMNRP
MPN = R(n−2) +R(2)

where R(2) = gmnRP
mP n = R(2) + (n− 2)(�W +∇W · ∇W )

= R(2) + (n− 2)
[
W ′′ + (W ′)2 +B′W ′

]
(2.35)

and R(n−2) = gµνRP
µPν = e−2W ĝµνR̂µν + (n− 2)[�W + (n− 4)∇W · ∇W ]

= e−2W ĝµνR̂µν + (n− 2)
[
W ′′ + (n− 4)(W ′)2 +B′W ′

]
.

Here R(2) = gmnRpmpn and ĝµνR̂µν respectively denote the curvature scalars built from the 2D

metric, gmn, and the 4D metric, ĝµν .

Using eq. (2.34) to eliminate R(2) from the bulk action then yields the bulk contribution to the
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lower-dimensional lagrangian density.3 Using
√
−g =

√
−ĝ √g2 e

(n−2)W , we find

Leff(ϕ) = −
∫

d2x
√
g2 e

(n−2)W

[
1

2κ2
R(n−2) +

4− n
4(n− 2)

f FmnF
mn +

n− 4

n− 2
V

]
= −

∫
d2x
√
g2 e

(n−2)W

{
1

2κ2

[
e−2W ĝµνR̂µν + (n− 2)

(
W ′′ + (n− 4)(W ′)2 +B′W ′

)]
+

4− n
4(n− 2)

f FmnF
mn +

n− 4

n− 2
V

}
= −

∫
d2x
√
g2 e

(n−2)W

{
1

2κ2

[
e−2W ĝµνR̂µν + (n− 2)

(
(n− 5)(W ′)2 + 2W ′B′

)
−GABφA′φB ′

]
+

4− n
4(n− 2)

f FmnF
mn +

n− 4

n− 2
V

}
.

= −
∫

dn−2x
√
−ĝ

[
1

2κ2
N

ĝµνR̂µν + VB

]
, (2.36)

where the second to last equality uses the second independent bulk field equation, eq. (2.33), the last

equality defines the bulk potential, VB , and the lower-dimensional Newton’s constant, κ2
N = 8πGN ,

is given by
1

κ2
N(ϕ)

:=
1

κ2

∫
d2x
√
g2 e

(n−4)W . (2.37)

In general this depends on the low-energy scalar fields, a dependence that can be removed by per-

forming a Weyl rescaling to reach the lower-dimension Einstein frame.

To obtain the complete low-energy scalar potential, V eff , the bulk contribution, VB , must be

combined with two other contributions, both associated with the source branes. The first of these

comes from the boundary terms of the bulk action [6, 7], such as the Gibbons-Hawking term for the

metric, evaluated at a small surface, Σb, situated a short proper distance, ρ = ε, from the position

of each of the source branes:

SGH =

1∑
b=0

lim
ε→0

∮
Σb

dθ dn−2x
1

κ2

√
−γ̂ K

=
2π

κ2

1∑
b=0

(−)b
∫
ρ=ρb

dn−2x
√
−ĝ eB+(n−2)W

[
B′ + (n− 2)W ′

]
= −

1∑
b=0

∫
ρ=ρb

dn−2x
√
−ĝ

{[
−Tb − (n− 3)Ub

]
+ (n− 2)Ub

}
= −

1∑
b=0

∫
ρ=ρb

dn−2x
√
−ĝ
(
Ub − Tb

)
. (2.38)

Here we use the axisymmetric ansatz, as is appropriate very near the source branes. The relative sign,

3Although in principle the extra-dimensional part of the trace reversed (µν) Einstein equation, ERµν(x, y) = 0
could also be used to eliminate massive KK modes, this cannot be used to eliminate R(n−2) from VB because the
integration in eq. (2.36) projects onto the zero-mode component of Eµν = 0.
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(−)b, and the overall sign in the second line arise because primes denote d/dρ while the derivatives

appearing in the Gibbons-Hawking action and matching conditions are outward directed, and this is

in the dρ direction for one brane and −dρ for the other. The last line uses the matching conditions

described earlier to exchange W ′ and B′ for terms involving the brane action, using the fact that

the contribution of [eBK]flat cancels between the two branes.

The second contribution to the 4D scalar potential comes from the contribution of the brane

action itself, eq. (2.16). Combining these with V4B above gives the full 4D scalar potential in the

classical limit as in [7],

−
∫

dn−2x
√
−ĝ V eff =−

∫
dn−2x

√
−ĝ VB +

1∑
b=0

[
Sb + lim

ε→0
SGH

]
(2.39)

=−
∫

dn−2x
√
−ĝ VB −

1∑
b=0

∫
dn−2x

√
−ĝ
[
Tb+

(
Ub − Tb

)]
,

where the notation Wb is a reminder that W is evaluated at the brane position. This shows that

(within the classical approximation) the effect of the Gibbons-Hawking terms is to ensure that

the net contribution of each brane to the low-energy scalar potential is given by the quantity Ub,

appropriately warped. The complete low-energy scalar potential is therefore,

V eff = VB +
∑
b

Ub

=
∑
b

Ub +

∫
d2x
√
g2 e

(n−2)W

{
1

2κ2

[
(n− 2)

{
(n− 5)(W ′)2 + 2W ′B′ − GABφA′φB ′

}]
+

4− n
4(n− 2)

f FmnF
mn +

n− 4

n− 2
V

}
.

Stationary points

For some purposes it is sufficient to obtain the value of the potential, V eff(φ0), evaluated at its

stationary point, where V ′eff(ϕ0) = 0. This can be obtained from the higher-dimensional action by

eliminating fields using all of the equations of motion, and not just those of the massive KK modes.

In this case we may directly use the equation of motion,

1

2κ2

(
R+ GAB ∂MφA ∂MφB

)
= − (n− 4)

4(n− 2)
f FMNF

MN − nV

n− 2
, (2.40)

rather than eq. (2.34) for R(2). Using this to eliminate R from the bulk action yields

S ext =−
∫

dnx
√
−g

[
1

2κ2

(
R+ GAB ∂MφA∂MφB

)
+

1

4
f FMNF

MN + V

]
cl

=− 2

n− 2

∫
dnx
√
−g

[
1

4
f FmnFmn − V

]
. (2.41)
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When comparing with the low-energy theory we must also evaluate the low energy action at its

stationary point. That is, we evaluate the action

S eff = −
∫

dn−2x
√
−ĝ

[
1

2κ2
N

R̂(n−2) + V eff

]
, (2.42)

at the solution to the low-energy field equations,

1

2κ2
N

R̂(n−2) = − (n− 2)

n− 4
V eff , (2.43)

leading to

S ext =
2

n− 4

∫
dn−2x

√
−ĝ V eff(ϕ0) . (2.44)

Using the previous results for V ext and the brane contribution then gives

2

n− 4
V eff(ϕ0) = −

∑
b

e(n−2)WbUb −
2

n− 2

∫
d2x
√
g2 e

(n−2)W

[
1

4
f FmnFmn − V

]
. (2.45)

In many cases of interest the bulk contribution to this expression can itself also be written as a

sum of contributions localized at the position of each brane. This is true, in particular, whenever the

bulk action, SB =
∫

dnx LB, enjoys a classical scaling symmetry, under which LB[λpiψi] ≡ λLB[ψi],

for arbitrary real, constant λ. (This type of scale symmetry generically holds for higher-dimensional

supergravity theories in particular.) When this is true the lagrange density satisfies the identity

LB ≡
∑
i

pi

[
ψi
∂LB
∂ψi

+ ∂µψi
∂LB

∂(∂µψi)

]
=

∑
i

{
∂µ

[
pi

∂LB
∂∂µψi

]
+ piψi

[
∂LB
∂ψi

− ∂µ
(

∂LB
∂(∂µψi)

)]}
, (2.46)

which shows [20] that the action becomes a total derivative whenever it is evaluated at an arbitrary

classical solution. Whenever this is true the entire low-energy potential can be interpreted as the

sum over brane contributions, much as was done for the Gibbons-Hawking term above.

2.3 Examples

It is instructive to test the above construction by applying it to situations for which explicit solutions

are known for the higher-dimensional theory. We do so in this section using F-theory compactifica-

tions of 10D Type IIB supergravity to 8 dimensions in the presence of space-filling D7 branes, and

using compactifications to 4 dimensions of supersymmetric and nonsupersymmetric six-dimensional

theories.
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2.3.1 D7 branes in F-Theory

We start with F-theory [10] compactifications of Type IIB supergravity to 8 dimensions, which serves

as an example where explicit forms for the bulk and brane actions are known, as are closed-form

expressions for the bulk sourced by various space-filling brane configurations [21]. This provides a

check on the validity of the matching conditions, and on the low-energy on-brane scalar potential.

The bulk fields to be followed in this case are the metric, gMN , and the axio-dilaton,

τ = C0 + i e−φ , (2.47)

where C0 is the Ramond-Ramond scalar and φ is the 10D dilaton, for which the string coupling is

gs = eφ. The bulk action for these fields in the 10D Einstein frame is

SB = − 1

2κ2

∫
d10x
√
−g gMN

[
RMN +

∂Mτ ∂Nτ

2 (Im τ)2

]
, (2.48)

which is invariant under PSL(2,R) transformations

τ → aτ + b

cτ + d
, (2.49)

with the real parameters a through d satisfying a d− b c = 1. Quantum effects are expected to break

this to PSL(2,Z), for which the parameters are restricted to be integers. Since eφ ≥ 0 the field τ

lives in the upper-half τ plane, but because of the symmetry it suffices to consider τ to live within

the fundamental domain, F , defined by modding out the upper half plane by a PSL(2,Z).

Bulk solutions

The scalar field equation for this action is

∂∂ τ +
2 ∂ τ ∂ τ

τ − τ
= 0 , (2.50)

which is satisfied by any holomorphic function, τ = τ(z), for which ∂ τ = 0.

Explicit solutions to the field equations to this model are known [21], for which two of the

dimensions are compactified. Using complex coordinates, z = x8 + ix9, for the compact dimensions,

the solutions are given by

j(τ(z)) = P (z) and ds2 = ηµν dxµdxν + e2C(z,z) dz dz , (2.51)

where the properties of the functions j(τ), P (z) and C(z, z) are now described.

The function j(τ), is the standard bijection from the fundamental domain, F , to the complex
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sphere, given in terms of Jacobi ϑ-functions by

j(τ) =
1728 [E4(τ)]

3

[E4(τ)]
3 − [E6(τ)]

2 , (2.52)

where Ek(τ) are the Eisenstein modular forms [22]. For large Im τ , j(τ) diverges zero exponentially

quickly, and the factor of 1728 is chosen so that it asymptotes to j(τ) ' e−2πiτ + · · · .

P (z) is a holomorphic function, whose singularities occur at the locations of the source branes,

z = zi for i = 1, ..., N . Since the singularities of the metric turn out to be conical when P (z) has

isolated poles as z → zi, it is convenient to choose P (z) to be a ratio of polynomials. The simplest

case could be taken as P = 1/z, describing a source at z = 0, but it turns out that the metric

obtained from the Einstein equations is not compact in this case. The metric is compact when P (z)

has 24 zeroes, such as for the choice

P (z) =
4(24f)3

27g2 + 4f3
, (2.53)

with f(z) a polynomial of degree 8 and g(z) a polynomial of degree 12. This gives a compactification

of Type IIB supergravity on CP 1, corresponding to an F-theory reduction on K3 [10].

Finally, the metric function C(z, z) is chosen by solving the Einstein equation. Using Rzz =

2 ∂∂ C and ∂ τ = 0, this equation of motion is

2 ∂∂ C =
∂ τ∂ τ

(τ − τ)2
= ∂∂ ln

(
Im τ

)
. (2.54)

The required solution is

e2C(z,z) = (Im τ)

∣∣∣∣∣η2(τ)

N∏
i=1

(z − zi)−1/12

∣∣∣∣∣
2

, (2.55)

where η(τ) = q1/24
∏
k(1−qk), for q = e2πiτ , denotes the Dedekind η-function, and the product runs

over the singularities of P (z). The first factor of this expression is chosen to satisfy eq. (2.54), and

the holomorphic factors are chosen to ensure invariance under PSL(2,Z), and by the requirement

that the result does not vanish anywhere.

Brane sources

The presence of branes in these solutions is signaled by singularities where P (z) ' ci/(z − zi), for

which q = e2πiτ ' (z − zi)/ci, and so the above solution implies

τ(z) ' 1

2πi
ln(z − zi) + · · ·

and e2C(z,z) ' k Im τ , (2.56)
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for constant k. As z → ∞, on the other hand, P (z) remains bounded and so τ approaches some

finite value. In this case the metric function becomes

e2C(z,z) ∝ (zz)−N/12 , (2.57)

and so if we change coordinates to z = 1/w we have e2C dz dz ' |w|(N−24)/6 dw dw, which is

nonsingular because N = 24. But each individual brane contributed to this an amount e2C '
|w|1/6 dw dw ∝ r1/6 (dr2 + r2dθ2), which we saw below eq. (2.9) corresponds to a deficit angle of

δ = π/6.

Matching conditions

We are now in a situation to use these solutions to test the matching conditions found in earlier

sections. We can do so even though the geometry involved is not axisymmetric, because it becomes

effectively axisymmetric in the near-brane limit.

To this end we assume a brane action of the form

Sb = −
∫

d8x
√
−γ Tb(τ, τ) , (2.58)

where for a D7-brane in the Einstein frame we expect

Tb = T∗ e
φ =

T∗
Im τ

=
2i T∗
τ − τ

, (2.59)

for constant T∗.

Keeping in mind that W = 0 for the bulk solutions given above, the matching condition for the

bulk scalar, eq. (2.21), becomes

2π

κ2

[
eB

4 (Im τ)2
∂ρτ

]
xb

=
2π

κ2

[
r

4 (Im τ)2
∂ rτ

]
xb

=
∂ Tb
∂ τ

=
T∗

2i (Im τ)2
. (2.60)

This uses the change of variables dρ = eC dr and eB = r eC to convert from proper distance to

conformally-flat coordinates near the brane. Using the near-brane limit τ ' ln r/2πi to evaluate

[r ∂ τ/∂ r]xb ' 1/(2πi), we find the matching condition becomes T∗ = 1/(2κ2).

Notice that since eφ is the string coupling constant, this semiclassical reasoning presupposes

Im τ = e−φ is large near the brane, so that κ2Tb = κ2T∗/Im τ = 1/(2 Im τ)� 1. This is automatically

satisfied as r → 0 because Im τ ' −(ln r)/2π.

The metric matching conditions can be understood in a similar way. First, matching the on-brane

components of the metric gives, from eq. (2.23)

−2π

κ2

[
eB∂ρB − 1

]
xb

= −2π

κ2

[
r ∂rB − 1

]
xb

= −2π

κ2

[
r ∂rC

]
xb

= Tb(τ, τ) =
T∗

Im τ
, (2.61)
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which again uses eB∂ρ = r ∂r as well as B = C + ln r. Using eq. (2.55) gives e2C ' Im τ near

the brane, and so r ∂rC ' 1
2 (r ∂rIm τ)/Im τ to get [r ∂rC]xb = −1/(4π Im τ). Once again the

dependence on Im τ is consistent on both sides and so the matching condition boils down to the

statement 2κ2T∗ = 1, as above.

A further check comes from using the values for κ2 and T∗ for a D7-brane predicted in string

theory [9]. Using T∗ = 2π/`8s and κ2 = `8s/4π, where `s = 2π
√
α′ is the string length, we have

2κ2T∗ = 2

(
`8s
4π

)(
2π

`8s

)
= 1 , (2.62)

as required.

Finally, the absence of warping in the bulk solution — W = 0 — implies that the remaining

metric matching condition, eq. (2.24), degenerates to Ub = 0. To compute Ub in the present instance

we use the constraint, eq. (2.29), specialized to n = 10 dimensions

Ub =
1

7

[
(1− Tb)−

√
(1− Tb)2 − 7

8
(T ′b )2

]
, (2.63)

where Tb = κ2Tb/2π = κ2T∗/(2π Im τ), and use

(T ′b )2 = 2 (Im τ)2 ∂Tb
∂τ

∂Tb
∂τ

=
1

2 (Im τ)2

(
κ2T∗
2π

)2

=
1

8π2 (Im τ)2
. (2.64)

Clearly (T ′b )2 = 0 because Im τ →∞ as one approaches the brane, and this in turn ensures Ub = 0,

as desired.

As a final check we compute the effective scalar potential, V eff , for the KK scalar zero mode in

the 8D theory on the brane, after dimensional reduction. Because Ub = 0 this simply amounts to

evaluating the action, eq. (2.48), at the classical solution to the extra-dimensional Einstein equations,

which state

Rmn +
1

4 (Im τ)2

[
∂m τ ∂n τ + ∂n τ ∂m τ

]
= 0 . (2.65)

We see that V eff = 0 in the effective theory, which is consistent with the maximally symmetric

on-brane geometry being flat.

2.3.2 Brane-axion couplings in 6D

We next apply the above matching conditions to the example of two branes coupled to a bulk

Goldstone mode (axion), φ, in six dimensions. Since 6D examples with flat on-brane geometries

are already discussed in some detail in refs. [7], we concentrate here on solutions to the higher-

dimensional equations for which the on-brane geometry is known to be curved. Our purposes is

to provide a nontrivial example for which the shape of the full low-energy potential, V eff(ϕ), and
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its value at its stationary point, V eff(ϕ0), can be computed explicitly directly from the higher-

dimensional theory. Because this allows a check on how V eff varies from its minimum, it allows us

to verify that the extremal point is actually a local minimum of the low-energy potential.

The simplest such a system starts with gravity coupled to a single bulk scalar and Maxwell field,

with the bulk lagrangian density given by,

LB = −
√
−g

{
1

2κ2
gMN

[
RMN + ∂Mφ∂Nφ

]
+

1

4
FMNF

MN + Λ

}
, (2.66)

where Λ is a bulk cosmological constant whose value can be chosen to obtain any desired curvature

on the brane. Notice that the choices f(φ) = 1 and V (φ) = Λ ensure the action has a shift symmetry,

φ→ φ+ ξ, that guarantees the existence of a scalar KK zero mode having a constant profile across

the bulk. This is the only such classically massless scalar KK mode, because the presence of the

bulk cosmological term, Λ, breaks the rigid scaling symmetry that the Einstein action normally has.

This breaking ensures that the presence of Λ removes the ‘breathing’ mode corresponding to rigid

expansions of the extra dimensional geometry, that would have otherwise have been a low-energy

scalar zero mode.

Bulk solutions

The field equations in this case admit explicit solutions for which the 4D on-brane geometry is

maximally symmetric and the extra dimensions are axially symmetric [5, 11]. Using the ansatz of

eq. (2.9), a simple solution is

ds2 = ĝµν dxµdxν + dρ2 + α2L2 sin2
( ρ
L

)
dθ2 (2.67)

Fρθ = αB0L sin
( ρ
L

)
, (2.68)

with φ = φ0 constant. The bulk field equations imply the following relation amongst the constants

B0, L and Λ:

R(2) = − 2

L2
= −κ2

(
3B2

0

2
+ Λ

)
, (2.69)

and the curvature of the on-brane metric is given by

R̂ = 2κ2

(
B2

0

2
− Λ

)
. (2.70)

When α = 1 the extra-dimensional metric describes a sphere of radius L. When α 6= 1 the

geometry would still look like a sphere if we redefine θ → αϑ, although ϑ is then not periodic with

period 2π. This indicates there are conical singularities at both ρ = 0 and ρ = πL, with defect angle

given by δ = 2π(1− α).
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Brane properties

We now ask for a pair of brane sources located at these two singularities that can support this

geometry. We again take codimension-2 brane actions of the form

Sb = −
∫

d4x
√
−γ Tb(φ) . (2.71)

Because the bulk solution has constant scalar, φ = φ0, its derivative, ∂ρφ, vanishes at both

branes. This is only consistent with the scalar matching condition if T ′b(φ) also vanishes for both

branes when evaluated at the same place: φ = φ0. The vanishing of T ′b(φ) at φ = φ0 also ensures

Ub(φ) vanishes there, and this is consistent with the (θθ) matching condition, eq. (2.24), because

W = 0 throughout the bulk in the classical solution ensures ∂ρW = 0 at the brane positions.

Finally, the (µν) matching condition, eq. (2.23), reads

−2π

κ2

[
eB B′ − 1

]
xb

= Tb(φ0) . (2.72)

Using eB = αL sin(ρ/L) gives eB B′ → α as ρ → 0, and so this matching condition gives the usual

expression for the defect angle in terms of the brane tension,

δ = 2π(1− α) = κ2 Tb(φ0) , (2.73)

and so Tb = κ2Tb/2π = 1− α.

The 4D perspective

We now show how the above picture is reproduced in the low-energy 4D effective theory below the

Kaluza-Klein scale. Although we cannot ask in the low-energy theory about the profiles of bulk

fields within the extra dimensions, we can use it to understand the curvature, R̂, of the 4D on-brane

geometry and the value, φ0, to which the low-energy scalar field is fixed.

To this end we explore the scalar potential, V eff , for the KK zero mode of the scalar, φ, as it is

moved away from φ0. To do so requires more information about the shape of Tb(φ), so we choose

for simplicity,

Tb(φ) = M4
b +

µ4
b

2
(φ− φ0)2 , (2.74)

although any choice for Tb(φ) would do, so long as both tensions share a common zero for ∂ Tb/∂ φ.

With this choice we have

Tb =
κ2M4

b

2π
+
κ2µ4

b

4π
(φ− φ0)2 , Tb ′ =

κ2µ4
b

2π
(φ− φ0) , (2.75)
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and so to lowest nontrivial order in κ2

U b =
1

3

[
(1− Tb)−

√
(1− Tb)2 − 3

4
(Tb ′)2

]

' (Tb ′)2

8(1− Tb)
+

3(Tb ′)4

128(1− Tb)3
+ · · · . (2.76)

Specialized to the above tension this becomes

Ub '
κ2µ8

b

16π
(φ− φ0)2 + · · · . (2.77)

Notice [26] that because Ub is quadratic in Tb′, both it and its derivative U ′b naturally vanish at zeroes

of Tb′. Furthermore, the coefficient of (φ− φ0)2 in U b is suppressed relative to the same term in Tb

by an additional power of the small dimensionless factor κ2µ4
b/8π � 1. The full expression for the

effective potential (2.40) in this case reduces to

V eff =
∑
b

Ub + VB(φ0) +
1

2
V ′′B (φ0)(φ− φ0)2 + · · ·

=
∑
b

Ub +

∫
d2x
√
g2 e

4W

{
−1

8
FmnF

mn +
1

2
Λ

}
+

1

2
V ′′B (φ0)(φ− φ0)2 + · · ·

=
∑
b

Ub +
π

2

(
Λ− B

2
0

2

)∫ πL

0

dρeB +
1

2
V ′′B (φ0)(φ− φ0)2 + · · ·

=

(
Λ− B

2
0

2

)
2παL2 +

1

2

[
V ′′B (φ0) +

∑
b

κ2µ8
b

8π

]
(φ− φ0)2 + · · · .

using that both W ′ and φ′ vanish when φ = φ0. More explicit progress requires the calculation of

V ′′B (φ0), although this can be expected to be non-negative due if the bulk solution is stable. This

shows that V eff(φ) is minimized at φ = φ0, and this is how the 4D theory understands the value at

which φ is stabilized.

The value of the potential at this minimum has a direct physical interpretation, since it sets the

value of the 4D curvature through the 4D Einstein equations. These read, as usual

R̂µν −
1

2
R̂ ĝµν − κ2

NV eff ĝµν = 0 , (2.78)

where the 4D Newton coupling is

1

κ2
N

=
2π

κ2

∫ πL

0

dρ eB =
4παL2

κ2
, (2.79)

and so

R̂ = −4κ2
NV eff(φ0) = 2κ2

(
B2

0

2
− Λ

)
, (2.80)
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in agreement with the higher-dimensional result, eq. (2.70). Notice that this agreement requires, in

particular, that the brane tensions Tb(φ0) = M4
b drop out of the low-energy potential.

Finally, notice that evaluating the potential, eq. (2.78), at its minimum by evaluating the action

at the classical solution gives a result that agrees with the general expression (2.45), which in the

present instance evaluates to

V eff(ϕ0) = −
∑
b

e4WbUb −
1

2

∫
d2x
√
g2 e

4W

[
1

4
f FmnFmn − V

]
=

1

2

(
4παL2

)(
Λ− B

2
0

2

)
. (2.81)

2.3.3 Warped and unwarped supersymmetric examples

A large class of examples of explicit flux compactifications with nontrivial warping and scalar profiles

in the extra dimensions is provided by solutions [19, 20, 23, 24, 25, 13, 14] to chiral 6D supergravity

[12]. Our goal with this example is to identify the properties of the branes that are required to source

the known solutions. In general the existence of solutions hinges on the consistency of these brane

properties with the form of the intervening bulk, but these solutions are not known in closed form in

the case where the on-brane dimensions are curved. In this situation it is much easier to investigate

the existence of solutions using the equivalent formulation in terms of minima of the low-energy

scalar potential, since it is much easier to determine when such solutions exist.

The solutions of interest take as their starting point the following bosonic part of the supersym-

metric action

LB = −
√
−g

{
1

2κ2
gMN

[
RMN + ∂Mφ∂Nφ

]
+

1

4
e−φ FMNF

MN +
2g2

κ4
eφ
}
, (2.82)

where the constant g denotes the 6D gauge coupling for the Maxwell field. Because this lagrangian

enjoys the property LB → λ2LB when eφ → λ−1eφ and gMN → λgMN , the arguments of section 2.2.4

imply it becomes a total derivative once evaluated at an arbitrary classical solution [20]:

LB(gcMN , A
c
M , φ

c) =
1

2κ2

√
−gc �φc . (2.83)

Bulk solutions

For this system it is useful to choose a slightly different metric ansatz [23],

ds2 =W2 ĝµν dxµdxν + a2
(
W8dη2 + dθ2

)
, (2.84)

where a = a(η),W =W(η) and ĝµν is, a maximally symmetric 4D de Sitter metric, with R̂ = −12H2.

With these choices the proper circumference of a circle along which θ varies from zero to 2π at fixed

η is 2πa(η), and dρ = aW4dη. The dilaton is similarly taken to depend only on η, φ = φ(η), and
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the Maxwell field is given by Aθ = Aθ(η), so that

Fηθ = Qa2 eφ . (2.85)

In this case the content of Maxwell’s equations is that Q must be a constant, while the dilaton

and the trace-reversed Einstein equations become

φ′′ =
2g2

κ2
a2W8eφ − κ2Q2

2
a2eφ , (2.86)

and

(µν) :
W ′′

W
− (W ′)2

W2
+

1

2
φ′′ =

(
W ′

W
+

1

2
φ′
)′

= 3H2a2W6 (2.87)

(θθ) :
a′′

a
− (a′)2

a2
+

1

2
φ′′ =

(
a′

a
+

1

2
φ′
)′

= −κ2Q2 a2eφ . (2.88)

In all of these equations primes denote d/dη. The ‘Hamiltonian constraint’ — i.e. the (ηη) Einstein

equation — in these variables is similarly

1

2
(φ′)2 − 4 a′W ′

aW
− 6(W ′)2

W2
=

2g2

κ2
a2W8eφ − 6H2a2W6 − κ2

2
Q2 a2eφ . (2.89)

The scale invariance of the full 6D field equations under eφ → eφ/λ and gMN → λgMN can be

seen from the invariance of the above equations under

{
φ, a,W, H

}
→
{
φ+ φ0, a e

−φ0/2,W, H eφ0/2
}
, (2.90)

for φ0 an arbitrary real constant. In the case H = 0 this symmetry implies the existence of a

one-parameter family of classical solutions, and a corresponding flat direction (labelled by φ0) that

represents a classically massless KK zero mode coming from a combination of the metric and φ fields.

The above field equations are written so that their right-hand-sides tend to zero in the near-

brane regions, for which a→ 0. For regions where these right-hand-sides are negligible the equations

simplify to

φ′′ '
(
W ′

W

)′
'
(
a′

a

)′
' 0 , (2.91)

and so, letting b = {0, 1} for the branes at η = {−∞,+∞} respectively,

φ ' (−)bqbη , W 'Wb e
(−)bωbη and a ' ab e(−)bαbη , (2.92)

with different choices for the constants αb, ωb and qb applying for the two limits, η → ±∞. For both
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asymptotic regions these are related by the constraint, eq. (2.89), so that

q2
b = 4ωb(2αb + 3ωb) . (2.93)

Notice that it is only consistent in the near-brane limit to ignore the quantities a2W6, a2eφ and

a2W8eφ on the right-hand sides of eqs. (2.87) through (2.89) if

2αb + 6ωb > 0 , 2αb + qb > 0 and 2αb + 8ωb + qb > 0 . (2.94)

The first of these also guarantees the convergence of the 4D gravitational constant, which is given

by (c.f. eq. (2.37))
1

κ2
N

=
2π

κ2

∫ ∞
−∞

dη a2W6 . (2.95)

Furthermore, since our interest is in solutions where a→ 0 at the positions of the brane sources,

we demand αb > 0. This ensures that the circumference of small circles encircling the branes vanishes

in the limit that the branes are approached. But if αb > 0, then ωb must also be non-negative. To

see this, suppose ωb were negative. Then eq. (2.93) would imply −2αb− 3ωb > 0, and so adding this

to the first of eqs. (2.94) would give ωb > 0, in contradiction with the assumption that it is negative.

By contrast, the constant qb can take either sign.

Solutions to these equations are known to exist for nonzero H [25], although not yet in an explicit

closed form. Closed-form solutions are known, however, in the special case where H vanishes, given

by [23, 20]

eφ = W−2eφ0−λ3η

W4 =

(
κ2Qλ2

2gλ1

)
cosh[λ1(η − η1)]

cosh[λ2(η − η2)]
(2.96)

and a−4 =

(
2gκ2Q3

λ3
1λ2

)
e2(φ0−λ3η) cosh3[λ1(η − η1)] cosh[λ2(η − η2)] .

Here ηi and λj are integration constants, and there is no loss of generality in choosing, say, λ2 ≥ 0.

The equations of motion require the constants to satisfy λ2
2 = λ2

1 + λ2
3 — and so, in particular,

λ2 ≥ |λ1| (with equality if and only if λ3 = 0). φ0 is an arbitrary constant corresponding to the scale

invariance associated with the flat direction.

Because the terms involving H in the equations of motion become negligible in the near-brane

limit, the H = 0 solutions also provide a more detailed picture of the asymptotic regions at η → ±∞.

The corresponding metric singularities are generically curvature singularities, except when λ3 = 0,

in which case they turn out to be conical [24]. The λ3 = 0 solutions include the unwarped, constant-

dilaton ‘rugby ball’ configurations of ref. [19] as the special case where η1 = η2. Notice also that the
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limiting behaviour is as given in eq. (2.92), with

αb =
1

4

[
3λ1 + λ2 + 2(−)bλ3

]
≥ 0 , ωb =

1

4
(λ2 − λ1) ≥ 0 , (2.97)

and

qb = (−)b+1λ3 −
1

2
(λ2 − λ1) . (2.98)

Notice that the condition ωb ≥ 0 follows from λ2 ≥ |λ1|, while αb ≥ 0 is a consequence of

3(λ2 + λ1)− 2λ3 =
√
λ2 + λ1

(
3
√
λ2 + λ1 − 2

√
λ2 − λ1

)
≥ 0 . (2.99)

A special role is played by the combination

ωb +
qb
2

= (−)b+1λ3

2
, (2.100)

since this dictates the size of the Hubble constant, H. This can be seen by integrating eq. (2.87),

and using eq. (2.95) to obtain [25],

3H2

∫ ∞
−∞

dη a2W6 =
3κ2H2

2πκ2
4

=

[(
lnW +

φ

2

)′ ]η=+∞

η=−∞

= −
∑
b

(qb
2

+ ωb

)
. (2.101)

When evaluated for the solutions of eq. (2.96), this reduces to the Friedmann equation

H2 = −2πκ2
4

3κ2

∑
b

[qb
2

+ ωb

]
=
κ2

4

3

[
2π

κ2

∑
b

(−)b
λ3

2

]
= 0 (2.102)

as required. For more general solutions eqs. (2.96) hold only approximately in the near-brane region,

so the constant λ3 could differ for the asymptotic region near each brane.

Notice, in particular, that eq. (2.101) shows that H2 > 0 (4D de Sitter space) requires at least one

of the qb to be negative. Furthermore, choosing qb < 0 is sufficient to ensure that the contribution

to H2 of the corresponding brane is positive, because

−
(qb

2
+ ωb

)
=
|qb|
2
− ωb =

√
3ω2

b + 2αbωb − ωb = ωb

(√
3 +

αb
ωb
− 1

)
≥ 0 . (2.103)

This uses both eq. (2.93) and the property that αb and ωb are both non-negative.

Brane properties

As usual, the matching conditions relate the asymptotic bulk solutions to the properties of the

source branes. Using W = eW , a = eB and aW4dη = dρ, and taking the brane action to be
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Sb = −
∫

d4x
√
−γ Lb = −

∫
d4x
√
−ĝ Tb, the scalar matching condition, eq. (2.21), becomes

2π

κ2

[
eB+4W ∂ρ φ

]
xb

=
∂

∂φ

[
e4W Lb

]
=⇒

[
(−)b∂η φ

]
xb

= qb =
κ2

2π

(
∂ Tb
∂φ

)
, (2.104)

where the sign arises because the direction away from the brane is (−)bdη in the two asymptotic

regions. The (θθ) metric matching condition, eq. (2.24), similarly becomes

2π

κ2

[
eB+4W ∂ρW

]
xb

= Ub(φ) =⇒
[
(−)b

(
∂ηW
W

)]
xb

= ωb =
κ2Ub
2π

. (2.105)

Finally, the (µν) components of the metric matching conditions are

−2π

κ2

[
e4W [eB (3∂ρW + ∂ρB)− 1]

]
xb

= Tb(φ) , (2.106)

and so {
(−)b

[
3

(
∂ηW
W

)
+

(
∂ηa

a

)]
−W4

}
xb

= 3ωb + αb −W4(xb) = −κ
2Tb
2π

. (2.107)

There are now two qualitatively different cases that are worth considering separately, depending

on whether or not ωb = 0 or ωb > 0.

Solutions with only conical singularities:

If ωb = 0, then eq. (2.93) implies qb = 0 as well, and so both φ and W asymptote to constants near

the brane. Because ωb = 0 implies W ' Wb is constant in the near-brane regime, the behaviour

a ∼ eαbη implies the extra-dimensional metric is proportional to

e2αbη(W8
b dη2 + dθ2) = dρ2 +

(
αbρ

W4
b

)2

dθ2 , (2.108)

showing that it has only a conical singularity at the brane position, with defect angle δb = 2π(1 −
αb/W4

b ).

When ωb = qb = 0, the matching conditions boil down to

κ2T ′b
2π

=
κ2Ub
2π

= 0 and δb =
κ2Tb
W4
b

= κ2Lb . (2.109)

The last of these relates the tension to the size of the conical defect angle in the usual way, while the

first states that the value taken by φ near each brane must be at a stationary point of the tension

on that brane. (Since this is also automatically a zero of Ub, the second condition is redundant.) In

order for solutions to exist the two tensions must be related to one another by the known asymptotic

limits of the given bulk solution. That is, if φb = limφ(η) as η → −(−)b∞, then Tb must satisfy
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T ′b(φb) = 0 at both ends.

Since its right-hand-side is non-negative, eq. (2.87) shows that it is only possible to have ωb =

qb = 0 at both branes if H = 0. If H = 0 the solutions given in eqs. (2.96) have this property (for

both branes) when λ3 = 0 (and so also λ1 = λ2 := λ). Notice that W and eφ = W−2 need not be

identically constant in this case unless η1 = η2.

From the point of view of the 4D theory the result H = 0 is understood for these solutions in

terms of the vanishing of the classical low-energy 4D effective potential,

V eff = VB +
∑
b

Ub = 0 . (2.110)

This vanishes because eq. (2.83) (when φ′ = 0 near the branes) shows that the bulk contribution to

the low energy potential vanishes, VB = 0, and eq. (2.109) implies Ub = 0 for both branes.

If T ′b should vanish identically, then so must also Ub and V eff . In this case the vanishing of V eff

shows that the flat direction, corresponding to the scaling φ → φ+ φ0 and gMN → e−φ0gMN , is not

lifted by the classical couplings to the branes. But if Tb depends nontrivially on φ, then Ub becomes

nonzero as soon as φ differs from its asymptotic value φb, implying that V eff depends nontrivially on

φ0. Since Ub(φ0) is given by

Ub =
1

3

[
(W4 − Tb)−

√
(W4 − Tb)2 − 3

4
(Tb ′)2

]
, (2.111)

where Tb = Tb(φb + φ0), it is non-negative (provided Tb < W4). Because the bulk action is known

to be stable against small fluctuations about the bulk solutions [27], it follows that V eff(φ0) must

be minimized by any configuration for which it vanishes, such as φ0 = 0 (which corresponds to

limφ = φb). This shows how the 4D theory sees that the flat direction, φ0, of the bulk equations

becomes fixed at the same value as is chosen by the matching conditions when viewed from the

higher-dimensional perspective.

Solutions with ωb > 0

On the other hand, if ωb > 0 then eW =W → 0 as the brane is approached. In this case the scalar

and (µν) matching conditions are

qb =
κ2T ′b
2π

= Tb ′ and 3ωb + αb = −κ
2Tb
2π

= −Tb . (2.112)

Since αb and ωb are both positive, the last of these conditions implies Tb < 0. The third matching

condition in this case is

ωb =
κ2Ub
2π

= Ub =
1

3

[
−Tb −

√
T 2
b −

3

4
(Tb ′)2

]
, (2.113)
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which also requires Tb < 0 if Ub and ωb are to be positive.

Because we use coordinates for which the branes are situated at η → ±∞, we demand that these

matching conditions be satisfied as identities in η in the asymptotic regimes. Use of the asymptotic

forms for the bulk solutions in this regime corresponds to expanding the brane tension about the

value taken by φ at the brane.

This determines the functional form for the brane action, Tb(φ, a,W ) = e4WLb(φ, a), required to

source the given bulk solution. Because eφ and all metric functions behave as exponentials near the

branes — c.f. eq. (2.92) — the brane action must have the form Lb = −Λb e
ξbφF

(
a eζbφ

)
, where

F(x) is an arbitrary function and the powers ξb and ζb are chosen to ensure the η-independence in

the near-brane regime of

Tb = −ΛbW4eξbφ F
(
a eζbφ

)
, (2.114)

for constant Λb. The parameters ξb and ζb therefore satisfy

4ωb + ξb qb = αb + ζb qb = 0 . (2.115)

In terms of F(x), the scalar matching condition becomes

qb =
κ2

2π

(
∂ Tb
∂φ

)
= −κ

2Λb
2π
W4 eξbφ

[
ξb F(x) + ζb xF ′(x)

]
x=aeζbφ

, (2.116)

while the metric matching conditions similarly give

3ωb + αb = −κ
2Tb
2π

=
κ2Λb
2π
W4 eξbφF

(
a eζbφ

)
, (2.117)

and so on.

To go further requires making choices for the function F(x). We discuss for simplicity a power-

law, F(x) = xσb , which to concretely illustrate the brane-bulk interaction.

Power-law tension: F(x) = xσb

Perhaps the simplest choice for the function F(x) appearing above is a power: F(x) = xσb , for σb a

constant. In this case

Tb = −ΛbW4aσb eλbφ , (2.118)

where λb = ξb + ζbσb, and so

4ωb + σbαb + λbqb = 0 , (2.119)

is required to ensure that the η-dependence cancels in Tb within the near-brane regime. This last

equation is to be regarded as being solved for σb.
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The scalar matching condition, eq. (2.104), then boils down to

qb = −λbW4
b a

σb
b

(
κ2Λb
2π

)
. (2.120)

The (µν) metric matching condition, eq. (2.107), similarly gives

3ωb + αb =W4
b a

σb
b

(
κ2Λb
2π

)
. (2.121)

Combining (2.120) and (2.121), gives the parameter λb as

λb = − qb
3ωb + αb

. (2.122)

Clearly qb < 0 implies λb > 0 and vice versa, because αb and ωb are both positive. Notice that

λb > 0 implies Tb → 0 in the ‘weak-coupling’ limit eφ → 0.

Given αb and ωb, solving the above conditions gives qb = ±2
√
ωb(2αb + 3ωb) (from eq. (2.93)),

λb (from eq. (2.122)), and the combination W4
b a

σb
b

(
κ2Λb/2π

)
(from eq. (2.121)). The power of a

appearing in Tb works out to be

σb =
4ωb

3ωb + αb
> 0 . (2.123)

One might think that the last matching condition, involving Ub, gives an independent equation that

can be used to relate ωb to αb, but this turns out not to be independent due to the relation between

Ub and Tb and the constraint, eq. (2.93).

The 4D perspective

In this section, we evaluate the full action at its classical solution to determine the value of Veff at

its minimum. For supergravity the full bulk action evaluates to a total derivative at any classical

solution, giving

SB,ext =
1

2κ2

∫
d6x
√
−g �φ =

π

κ2

∫
d4x

√
−ĝ
[
∂ηφ

]∞
−∞

= −
∑
b

T ′b
2
. (2.124)

Adding to this the brane action and Gibbons-Hawking term, which combine to

∑
b

(
SGH + Sb

)
= −

∫
d4x
√
ĝ Ub (2.125)

gives the total action evaluated at the classical solution

Sext = −
∫

d4x
√
−ĝ

∑
b

(
Ub +

T ′b
2

)
. (2.126)
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Comparing this with eq. (2.44) (for n = 6) gives

V eff(φ0) = −
∑
b

(
Ub +

T ′b
2

)
. (2.127)

Using this in the four-dimensional Einstein equations gives the 4D curvature

R̂ = −12H2 = −4κ2
NVeff(φ0) , (2.128)

and so

H2 =
κ2
N

3
Veff = −κ

2
N

3

∑
b

(
Ub +

T ′b
2

)
= −2πκ2

N

3κ2

∑
b

(
ωb +

qb
2

)
, (2.129)

where the last equality uses the matching conditions to rewrite Ub and T ′b in terms of the bulk

solution. This agrees with the bulk field equations, eq.(2.101), and so shows that the 4D and 6D

pictures agree. In order to identify the value of φ0 itself requires calculating Veff away from its

minimum, which requires a full dimensional reduction of the supergravity action.

2.4 Conclusions

This paper summarizes the bulk-brane matching conditions for codimension-2 objects (following

the presentation given for scalar-tensor theories in [7], with generalizations to include a general

coupling to the Maxwell field [6]), and describes several applications to higher-dimensional brane

systems: F-theory compactifications involving space-filling codimension-2 D7-branes situated within

10 dimensions; unwarped 3-brane flux compactifications in 6 dimensional scalar-Maxwell-Einstein

theory; and warped and unwarped 3-brane flux compactifications of 6D chiral gauged supergravity.

The latter two cases involve geometries that are maximally symmetric — but possibly curved — in

the directions parallel to the branes.

The comparison with the F-theory compactifications provides a sanity check on the junction

conditions, since both the brane and bulk actions are explicitly known for Type IIB string vacua

[9], as are explicit solutions for the surrounding bulk geometry [21]. We show that the near-brane

asymptotic form of the bulk configurations in this case precisely agrees with what the matching

conditions would predict, given the explicit D7-brane action. Furthermore, this comparison lies

within the weak-coupling regime since the bulk solution implies the string coupling becomes weak

in the near-brane limit.

When applied to six-dimensional systems, the bulk-brane matching conditions can provide a

stabilization mechanism for the bulk scalars (like a bulk axion, or the dilaton) provided the brane

couplings break the appropriate symmetry that protects the scalar’s mass. When this is so, the

value to which the scalar stabilizes can be understood from the higher-dimensional point of view

as being due to the consistency of the matching conditions at the two branes. Alternatively it can
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be regarded as the value which minimizes the effective potential in the low-energy, on-brane action

below the KK scale, although this requires a calculation of the potential away from its minimum.

Although many of the bulk solutions considered in six dimensions (supersymmetric or not) have de

Sitter curvature along the four brane directions [5, 14], we show that for 6D gauged chiral supergravity

only 4D-flat branes can be sourced by positive-tension branes. To establish this we first show that

for any 6D theory a codimension-2 brane tension must be negative whenever the warp factor tends to

zero near the brane. We then prove that the supergravity field equations imply the warping vanishes

near the brane unless the near-brane geometry has a conical singularity. Finally, the desired result

follows once the field equations are used to see that any geometry having only conical singularities

necessarily is flat in the 4 brane directions.

This necessity for negative tension in order to obtain de Sitter and anti-de Sitter branes echoes

the various no-go theorems for finding 4D-de Sitter solutions from extra-dimensional gravity [28],

even though the curvatures of the bulk geometries considered make these theorems not directly apply.

This suggests that the curvature assumptions made in these theorems may be somewhat stronger

than is necessary.

The relation to 4D de Sitter geometries has potential applications to searches for cosmic inflation

within an extra-dimensional context. This is because inflationary configurations often lay nearby

pure de Sitter solutions. In particular, a broad class of time-dependent solutions are known [14]

for the bulk field equations in 6D supergravity, and for some of these the on-brane 4D geometry is

likely to undergo an accelerated expansion. The extension of the arguments of this paper to these

time-dependent situations would be most worthwhile, since they could provide instances of explicit

inflationary models for which there is both a higher- and lower-dimensional understanding of why

the universe accelerates. (By contrast, current inflationary models typically rely on the low-energy

4D effective theory to conclude that the universe inflates.) Work along these lines is in progress [29].
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Chapter 3

Gravity-Gauge Duality and the

Quantum Hall Effect

In this section, we present the basic concepts of the holographic principle as well as its motivation in

the application of this framework to the quantum Hall effect. While it is far from a comprehensive

review, the purpose of this chapter is to make the reader familiar with the calculations to be done

in the later sections while introducing some ideas that are not made explicit in the following papers.

For an introduction of AdS/CFT to non-specialists, see [12]. See [13] for reviews from a high energy

physics perspective, and [14] for a condensed matter perspective.

The holographic principle was originally proposed by Maldecena [15] and further explored by

Witten [16] in the context of Yang-Mills theory and in particular QCD and phase transitions [17].

While at the time of writing, the AdS/CFT conjecture is only shown to be exact for the case of Type

IIB string theory and the dual being N = 4 Super-Yang Mills, there is more and more evidence

piling up in favour of this correspondence.

We first briefly review the original conjecture, as presented in [18], and provide further evidence

for this correspondence as well as some sample calculations that are typically done from a phenomeno-

logical standpoint. Typically one starts off with a stack of N D3 branes in type IIB supergravity.

In this theory, there are simply two parameters, the string coupling gs and the string length ls. The

other parameters in this theory, such as the brane tension and gravitational coupling, are related to

these parameters through TD3 ∼ 1/gs and κ2 ∼ g2
s with their engineering dimensions provided by

the string length scale. Each of these branes carry an independent U(1) charge. Remembering that

the theory of D-branes is the T-dual version to a theory of open strings, the effective theory of these

string endpoints can be thought of as particles in a QFT transforming under an SU(N) symmetry

from this stack of branes.

The solutions to these D3 branes in type IIB supergravity correspond to black p-brane solutions.

In the limit where N →∞ and gs → 0 such that the ’t Hooft coupling, NTD3κ
2 = Ngs = λ remains
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fixed, the near-horizon region of these black p-branes correspond to an AdS5×S5 space described by

the metric

ds2 =
r2

L2

(
−dt2 + dxidxi

)
+
L2dr2

r2
+ L2dΩ2

5. (3.1)

The AdS subspace of this metric has its AdS scale, L, related to the ’t Hooft coupling by L2 ∼
√
λ

and again its dimensions given by the string scale. On the CFT side, the large N limit corresponds

to the planar limit with the ’t Hooft coupling, λ, now the gauge coupling of the CFT when we relate

the string coupling to the CFT gauge coupling by gs = g2
YM . We can now see the importance of the

’t Hooft coupling. When λ � 1, then the CFT is perturbative, but the AdS scale on the gravity

side is smaller than the string length, and so supergravity is no longer a consistent description of

the geometry. Similarly, at large ’t Hooft coupling, the CFT is no longer perturbative, but the AdS

scale is much larger than the string scale, so supergravity is now an appropriate description of our

system. This particular system has a number of specific features that also have a correspondence

in the CFT as well as its gravity dual, however we focus on the main result with regards to the ’t

Hooft coupling of these two systems.

The upshot is as follows. A strongly interacting non-perturbative CFT can be seen as a weakly

interacting gravitational theory in an extra dimension. It is this particular aspect of the correspon-

dence this thesis will concentrate on. Calculations of a strongly interacting CFT can be done using

gravity in an AdS geometry in one extra dimension.

Possibly one of the most convincing arguments in general is that the calculation of entropy using

the holographic principle is identical to that of Hawking’s original proposal of black hole entropy

[19], and provides an alternate method of calculating the entropy of the system. From a theoretical

standpoint, the holographic correspondence is a step towards understanding why a black hole, which

has the maximum entropy configuration of an object of that size, has an entropy proportional to its

surface area. Naively one would expect the entropy of a system to be proportional to the volume,

as available states increase with volume. However, the gauge-gravity duality tells us the relevant

degrees of freedom exist entirely on the AdS boundary for a black hole, which is proportional to the

black hole surface area.

Aside from these more philosophical questions on the nature of entropy in black holes, the

AdS/CFT correspondence provides us a very real way of doing calculations in a CFT that would

otherwise be intractable. The basic AdS/CFT proposal is

ZCFT = Zgravity-string. (3.2)

At this level, the correspondence isn’t very useful, since typically it is hard to calculate anything on

either side of this equation. As was shown above, the large-N limit and large ’t Hooft coupling allow

us to make calculations in a CFT using classical gravity. The correspondence that we’re interested
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in investigating is then along the lines

Z(J)CFT = e−iSAdS-on-shell(φboundary). (3.3)

This is a statement that operator expectation values (coupled to some source J) in the CFT corre-

spond to boundary values of fields in the AdS space. In general, the operator expectation value is

related to the functional derivative of the CFT, and therefore AdS action, given by

〈O〉 =
δSAdS-on-shell

δφ

∣∣∣∣
boundary

. (3.4)

At this point we can introduce the AdS/CFT dictionary. For scalar operators such as order param-

eters or mass gaps, the corresponding bulk field is a scalar. Similarly fermionic fields correspond to

fermionic operators in in the CFT. Conserved vector operators, such as the current, correspond to

gauge fields in the bulk. In fact, the conservation of the current in the CFT directly corresponds to

gauge invariance in the bulk. This can be similarly expressed as conservation of local symmetries in

the bulk correspond to to global symmetries on the boundary CFT.

3.1 AdS/CFT: A simple picture

We further illustrate some intuition that can be gained from this correspondence. Consider the

action of a CFT unbroken by quantum effects,

SCFT =

∫
dd−1xLCFT. (3.5)

Because this action is truly conformal, a rescaling of co-ordinates can be absorbed by the rescaling

of the fields since there are no other scales in the theory. These fields will carry dimensions such

that the total action of rescaling the co-ordinates and fields cancel at the level of the action. If

we were instead to understand the dimensions of these fields as an energy scale, then rescaling the

co-ordinates corresponds to rescaling the energy scale. If we wanted to recast this statement as

a gravitational theory with the understanding that the gravity theory lives in an extra dimension

corresponding to the energy scale, the metric would be

ds2 =
L2

z2

(
ηµνdµxdνx+ dz2

)
, (3.6)

where we can see a rescaling of x → λx is canceled by a rescaling of z → λz. From dimensional

analysis, we conclude that z is the inverse energy scale, and z → 0 is the UV of the CFT.
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3.2 Temperature and Free Energy

In the interest of giving the reader a better understanding of the calculations involved in the gauge-

gravity framework, we present some calculations of quantities not explicitly computed in chapters 4

and 5. We start by introducing the temperature for a metric of the form

ds2 = −eξ(r)h(r)dt2 +
dr2

h(r)
+
r2

L2
ds2

boundary, (3.7)

with the assumption that at some radius, h(rh) = 0 as well as the assumption that this metric

asymptotes as r →∞ to

ds2 = − r
2

L2
dt2 +

L2

r2
dr2 +

r2

L2
ds2

boundary. (3.8)

We can see that this is simply the metric of (3.6) with the identification z = L2/r. The reason for

this asymptotic assumption is that the CFT metric is given as

ds2
CFT =

L2

r2
ds2

AdS

∣∣∣∣
r→∞

, (3.9)

with the truncation of the r direction in the CFT metric. This allows us to obtain a finite CFT

metric under the assumption that the metric is asymptotically AdS. The temperature of the CFT

is defined as the inverse periodicity in β = it. The way to see this periodicity is by expanding the

metric near the horizon, h(rh) = 0. If we assume h(r) ≈ h′(rh)(r − rh), the metric then becomes

dss = eξ(rh)h′(rh)(r − rh)dβ2 +
dr2

h′(rh)(r − rh))
, (3.10)

where we have ignored the CFT spatial directions. If we change to polar co-ordinates with Aρ2 =

(r − rh) for some arbitrary constant A the metric is then

dss = eξ(rh)h′(rh)Adβ2 +
4Adρ2

h′(rh)
. (3.11)

For this metric to be in standard polar form , A = h′(rh)/4. Now we see that in order for there not

to be a conical singularity (or a deficit angle), β must have periodicity 4πe−ξ(rh)/h′(rh). Because

the periodicity, β is identified with temperature as T = β−1, the temperature of the CFT is

4πT = eξ(rh)h′(rh). (3.12)

The free energy of the CFT is defined by

F (T ) = −T ln (ZCFT) , (3.13)
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and by the correspondence this becomes

F (T ) =− T ln
(
eiSAdS-on-shell

)
=− iTSAdS-on-shell. (3.14)

Finally, since we work at finite temperature defined by the Euclidean time, the free energy takes on

the form

F (T ) = −TSAdS-on-shell. (3.15)

Here we have seen not only the reasoning and intuition behind the AdS/CFT correspondence,

but also a number of calculations that have potential to make contact with physical observables for

the particular system we’re interested in. These ideas will be important in understanding the entire

motivation behind the motivation for the application of this technique to condensed matter systems.

Furthermore, these quantities calculated complete the calculations of interest in the quantum Hall-

ography proposal, which include further observables such as the conductivity, system size, and explicit

calculations of the free energy.

3.3 Condensed Matter and the Quantum Hall Effect

Up until this point, we have motivated why AdS/CFT is an excellent calculational tool. Methods

and techniques theorists have been using for years in gravity can now be applied to strongly coupled

systems of which have resisted other more conventional tools. Implicit in the AdS/CFT correspon-

dence is that the field theory is conformal, and any deviations from this are done by introducing

operators that deform this conformal symmetry. To understand how this relates to condensed matter

systems, consider a typical correlation function in condensed matter,

∆(x, y) ∼ e−|x−y|/ξ

|x− y|d−2+η
. (3.16)

where ξ is the correlation length, d is the number of dimensions of the system, and η is the anomalous

dimension of the correlator. As the temperature of the system reaches a critical temperature for a

phase transition, the correlation length diverges. That is, each particle effectively sees each other

particle in the system, without any screening effects. As the critical temperature is reached, the

divergence of the correlation length tells us there is no longer a scale in the system, and so all

physical functions must be self-similar in |T − Tc|, or power laws. This can be explicitly seen in

(3.16) as we take ξ → ∞ and the correlator is a pure power law in the separation of the operators.

This lack of a scale is precisely what a conformal theory is, and this tells us that the theory of critical

phenomena can be understood as a conformal field theory. That is, near a transition, observables

become power laws and can be described by a conformal field theory. Indeed, this is the exact
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motivation as to why we wish to apply AdS/CFT methods to condensed matter systems. The one

extra condition we require is for the system to be strongly interacting, as was stated above to be

able to use this correspondence to do calculations on the gravity side. In the next section we explore

the quantum Hall effect to justify the use of AdS/CMT on this system.

3.3.1 The Quantum Hall Effect

Figure 3.1. Cartoon

of the various plateaux of

the quantum Hall effect for

varying magnetic field across

the various Landau levels.

Source: Glenton Jelbert li-

censed under the Creative

Commons Attribution 3.0

Unported license

.

The integer quantum Hall effect was initially discovered by [20], and in a

triumph of theory, immediately described by Laughlin in [21]. Initially,

a strong magnetic field was applied to a semi-conducting material, and

the Hall voltage (and thus conductivity) was measured. Doing a simple

calculation using standard electrodynamics, we can calculate what the

hall conductivity would be. If we define a resistivity tensor as

Ei = ρijJj , (3.17)

and then assume the Ohmic resistivity (ρii) approaches zero as we lower

the temperature of the system, we can calculate the Hall resistivity from

the Lorentz force law. That is

Fi =q(Ei − εijkvjBk) (3.18)

0 = Ei − εijzJj
Bz
ρq
, (3.19)

where ρq is the charge density of the system. Comparing (3.19) with

(3.17) gives us the expression for the Hall resistivity,

ρxy =
Bz
ρq
. (3.20)

And so we see that the Hall resistivity1 should linearly increase with the

magnetic field at sufficiently low temperatures. However, experiments

have shown this not to be the case, and instead observe resistance curves

such as figure 3.1. That is the Hall resistivity (and therefore conduc-

tivity) take on plateaux for large values of magnetic field, and quickly jump to another plateau at

some critical magnetic field. This clear quantization stems from the fact that the system is quantum

mechanical and to preserve gauge invariance. To understand this effect, we borrow the arguments

made originally by Laughlin. To understand this effect, consider the Hamiltonian for a charged

1It should be noted that throughout the remainder of the thesis, aside from this introduction, we will be focusing
on the conductivity matrix, which is defined as σij = (ρij)

−1. Note from this definition, for non-zero Hall resistivity,
vanishing Ohmic resistivity implies vanishing Ohmic conductivity.
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particle in the x − y plane with the y direction periodically identified and in a constant magnetic

field in the z direction,

H =
1

2m
p2
x +

1

2m
(py − eBx)2 + eEx, (3.21)

where we have specifically made a gauge choice for the vector potential, Aµ, to be entirely in the

y direction, and the periodicity of y is b such that y + b ∼ y. Since there is no potential in the y

direction, we can treat py as a constant of the Hamiltonian in the x direction. Pulling out a factor

of the magnetic field gives us

H =
1

2m
p2
x +

1

2
m

(
eB

m

)2 ( py
eB
− x
)2

+ eEx, (3.22)

which is simply the harmonic oscillator with energy levels separated by eB/m - known as ‘Landau

levels’. How does this explain the clear quantization of resistivity conductivity levels? Consider the

fact that each particle has access to each of these Landau levels. We also know that fermions have

a Fermi energy in which they fill up all the available states below that energy level as in figure 3.2.

Now consider the fact that the Fermi energy is fixed, and due to finite temperature effects, these

Landau levels are broadened (but not enough such that they overlap.) Clearly as we sweep through

values of the magnetic field, the Fermi energy will not cross a Landau level for a range of magnetic

fields. In this region, the system is gapped and the conductivity becomes fixed at a specific value.

Only when the Fermi energy reaches a Landau level may the conductivity vary, and this is the point

where the Hall conductivity varies to a new plateau.

To determine the value of the conductivity at a plateau, we vary the Hamiltonian with respect

to the vector potential, with the response being the current. Clearly since there is no Ax, the

only current is in the y direction, in response to an electric field in the x direction. This tells us

immediately in the gapped region the ohmic conductivity vanishes, and the Hall conductivity is

non-zero. To see the value of the Hall conductivity, we use the relation

∂〈H〉
∂Ay

= jy. (3.23)

We now assume that any variation of Ay takes the form δAy = δΦ/b. For this particular variation

our Hamiltonian takes the form

δ〈H〉 =
δΦ

b

∫
dx

∫
dyjy =

δΦ

I y
, (3.24)

which can similarly be rewritten as ∂〈H〉/∂Φ = Iy. We have re-expressed the variation in terms

of Φ due to the constraint coming from the periodicity of the gauge transformation. In particular,

when δΦ = nh/e = nΦ0, this simply changes the periodicity of the wavefunction in the y direction
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and is a gauge transformation. If we now assume that the system is varied by Φ0 we get the response

Iy =
∆〈H〉

Φ0
. (3.25)

Finally to understand how the Hamiltonian responds to this variation, we realize that the addition

of a quanta of flux Φ0 is equivalent to shifting the periodicity of the wavefunction in the y-direction.

To see this, we can see that adding a Φ0 flux is equivalent to taking py → py − eΦ0/b in (3.21). This

tells us that an integer number of electrons can change their contribution to the conductivity. The

change in the Hamiltonian then must be

∆〈H〉 = νe∆V (3.26)

from dimensional considerations if we assume any energy shift comes from the electrons. The pref-

actor ν is restricted to be an integer if we require an integer number of electrons contributing to the

energy shift. Finally, from this relationship, (3.25) and Φ0 = h/e we get the conductivity

σxy = ν
e2

h
. (3.27)

The physical picture that emerges is as follows. As one adjusts the magnetic field at a plateaux,

for each quanta of flux that is added, an integer number of additional electrons contribute to the

conductivity such that the conductivity is constant as a function of magnetic field. It is in this sense

in which we attach flux quanta to electrons in the quantum Hall effect.

In fact, this quantization can also be seen from an effective field theory approach, in addition to

topological considerations, which will be further outlined in 4.2.2. For now, we briefly mention the

fractional quantum Hall effect.

Aside from the integer quantum Hall effect mentioned above, it was noticed in [22] that for lower

temperatures and stronger magnetic fields that n was no longer an integer, but a fraction, p/q (for

most known fractions, q is odd). While it is specifically this effect that is the thrust of the remainder

of this thesis, it should be noted why this effect is so interesting. The fact that the coefficient, n, is

a fraction suggests that the charge carriers of the system are now fractionally charged. This implies

that the degrees of freedom of the system has drastically changed from the non-interacting state.

It is for these reasons that the fractional system is generally believed to be a strongly interacting

one. Because of this, AdS/CFT provides an excellent tool for beginning to understand the dynamics

of the quantum Hall effect and its low energy degrees of freedom. To further apply AdS/CFT,

it is clear that the inter-plateaux transitions are perfect candidates for a conformal field theory

since the degrees of freedom become ungapped in these regions. For these reasons we can consider

the effective theory in between plateaux as a phase transition and therefore a perfect candidate

for AdS/CMT. In this chapter, we have motivated AdS/CFT in general and how it was originally
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used and implemented, as well as some basic calculations in this framework. Furthermore, we have

motivated the application of holography to condensed matter systems using the theory of phase

transitions as a particular motivation. Finally, we have introduced the quantum Hall effect, some

basic features, as well as the way in which AdS/CFT can be a useful tool in explaining some of

its strongly interacting features. In the following chapters, we introduce a particular model for the

quantum Hall effect in AdS/CMT, in addition to calculating many observables, their ramifications

and comparison to modern experiments in these quantum Hall systems.

Figure 3.2. Cartoon of the density of

states for strong magnetic fields at finite

temperature. Increasing magnetic fields

spreads the Landau levels apart, making

it clear that for a wide range of mag-

netic fields the system is gapped. Source:

Glenton Jelbert lisenced under the Cre-

ative Commons Attribution 3.0 Unported

license

.
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Chapter 4

Quantum Hall-ography

Preface

After having previously introduced the ideas of gauge-gravity duality in chapter 3, we can go on to

present a model in which uses this framework to account for the observables in the fractional quantum

Hall effect (FQHE). The particular benefit of this model is that it inherently has the symmetries

and dualities of the quantum Hall effect built into the model. Furthermore, it also has the benefit of

allowing us to model and predict other measurable quantities based on the holographic dictionary.

The overall purpose of this paper is to introduce the quantum Hall-ography model, and calculate

the conductivity. It is then shown that the theoretical conductivity has some remarkable similarities

to those of experiment, as well as agreeing with a particular scaling exponent.
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Abstract
Transitions among quantum Hall plateaux share a suite of remarkable experimental features, such as

semi-circle laws and duality relations, whose accuracy and robustness are difficult to explain directly

in terms of the detailed dynamics of the microscopic electrons. They would naturally follow if the

low-energy transport properties were governed by an emergent discrete duality group relating the

different plateaux, but no explicit examples of interacting systems having such a group are known.

Recent progress using the AdS/CFT correspondence has identified examples with similar duality

groups, but without the DC ohmic conductivity characteristic of quantum Hall experiments. We use

this to propose a simple holographic model for low-energy quantum Hall systems, with a nonzero DC

conductivity that automatically exhibits all of the observed consequences of duality, including the

existence of the plateaux and the semi-circle transitions between them. The model can be regarded

as a strongly coupled analog of the old ‘composite boson’ picture of quantum Hall systems. Non-

universal features of the model can be used to test whether it describes actual materials, and we

comment on some of these in our proposed model. In particular, the model indicates the value 2
5 for

low-temperature scaling exponents for transitions among quantum Hall plateaux, in agreement with

the measured value 0.42± 0.04.
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4.1 Introduction

Applications of AdS/CFT duality [1, 2, 3] to condensed matter physics [4] carry a whiff of a fishing

expedition. The goal is to explore the properties of strongly interacting conformal field theories

(CFTs) using their calculable gravity duals in anti-de Sitter space (AdS). The jackpot would be to

find a model that describes a strongly correlated system of real electrons; systems that have resisted

approaches using other theoretical tools. Without a systematic way to derive the magic CFT directly

from underlying electron dynamics one throws theoretical darts into field space, hoping to find that

right ‘hyperbolic cow.’

Like any fishing expedition, it always helps to have some local guidance towards the good fishing

holes. What would be useful are a set of simple properties, like symmetries, that are known to be

prerequisites for a successful description of a particular system. Knowledge of these properties could

help guide the search for theories that are relevant to life in the lab.

In this paper we argue that quantum Hall systems [5] are likely to be profitable places to fish,

for two reasons. First, they involve strongly correlated electrons, and for decades have been a source

of new experimental phenomena requiring theoretical explanation. But their phenomenology also

points to symmetry properties that seem relatively easy to find in an AdS framework, and these

symmetries can help narrow down the search for the killer model. Our purpose is threefold: to

briefly summarize the relevant phenomenology and the symmetries to which we believe they point;

to propose a particular class of AdS/CFT models that captures these symmetries; and to identify a

class of tests for such models that go beyond the implications of the symmetries, to be used to home

in on an experimentally successful model.

The symmetries of interest are not symmetries in the usual sense. Rather they are a large group

of duality transformations that appear to map the various quantum Hall states into one another, and

which commute with the RG flow of these systems at very low temperatures as one approaches the

many quantum Hall plateaux. In particular, we summarize in S2 the evidence for the existence of

discrete duality transformations of this type, acting on the ohmic (σxx) and Hall (σxy) conductivities

according to the rule

σ := σxy + iσxx →
a σ + b

c σ + d
, (4.1)

where a, b, c and d are integers satisfying the SL(2, Z) condition ad−bc = 1, but with c restricted to

be even. The consequences of this symmetry include a number of well-measured effects for quantum

Hall systems, including the kinds of fractional states that can arise as attractors in the low-energy

limit; which states can be obtained from which others by varying magnetic fields; detailed predictions

for some of the trajectories through the conductivity plane as the temperature, T , and magnetic field,

B, are varied; as well as others.

S2 describes the qualitative picture: at low energies the flow in coupling-constant space appears

to be onto a two-dimensional surface that governs the final approach to the various quantum Hall
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ground states. The flow in this two-dimensional surface is constrained by the emergent symmetry,

eq. (4.1), and can be traced experimentally by varying both B and T . What is missing is a simple

class of candidate models to describe this two-dimensional flow, including the emergent duality.

Besides providing an existence proof, having such a model in hand would allow this picture to be

sharpened considerably by allowing its implications to be explored in more detail.

What is encouraging is that there is good evidence that transformations like eq. (4.1) arise

quite generically in CFTs having conserved currents in two spatial dimensions [6, 7]. Furthermore,

the development of the AdS/CFT correspondence has opened up new tools for exploring strongly

interacting 2+1 dimensional CFTs, with the conserved current being dual on the gravity side to an

electromagnetic gauge potential. In this language the dual version of the CFT’s discrete dualities

are rooted in electric-magnetic duality. Applications of these tools to condensed matter remain very

promising [4], and studies of the simplest holographic charge-carrying systems do reveal a number

of duality-related features [8, 9].

The most striking examples to emerge to date of explicit systems with symmetries like eq. (4.1)

are those based on dilatonic black branes [10, 11] — briefly described in S3 — for which the electric-

magnetic duality is also accompanied by an action on the dilaton and axion fields (as in Type IIB

supergravity in 10 dimensions). If the duality symmetries provide a good guide, it is among this

type of AdS/CFT system that a description of low-energy quantum Hall systems is likely to reside.

(See also [12] for other discussions of quantum Hall systems within an AdS/CFT context.) The

main drawback of the simplest dilaton black brane models is their prediction of vanishing DC ohmic

conductivity at nonzero temperature. This clearly cannot describe real quantum Hall systems, for

which the evidence for eq. (4.1) relies almost exclusively on DC charge-transport properties.

For this reason we propose, in S4, a slight modification of this model, following a recent proposal

[13] for strange metal holography. In this proposal the field content of the AdS dual is the same as

for ref. [11] — i.e. gravity, Maxwell field, dilaton and axion — but with the Maxwell kinetic term

described by the (dilaton) Dirac-Born-Infeld (DBI) action rather than the dilaton-Maxwell action.

The DBI action shares the desired duality of the dilaton-Maxwell action, but also allows nonzero

DC conductivities with which to probe its implications. Following [13] we treat the charge carriers

in the probe-brane approximation, coupled to an uncharged black brane. (The brane geometry can

also be chosen to have Lifshitz form if it is desired to introduce different powers, z, for temporal and

spatial scalings.) Physically, this corresponds to regarding the charge carriers as perturbations to

the CFT described by the black hole.

Finally, S5 describes a number of the model’s predictions that go beyond its basic duality

properties. These are tests whose comparison with experiment ultimately provide the scorecard of

how successful this, or any other, model is. A hopeful feature of the model explored here is that

it provides a simple calculation of the scaling exponents that are measured in transitions between

Hall plateaux and between plateaux and the Hall insulator (see S2 for details), that agrees with
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observations. Yet the most important message is probably not whether this model succeeds or fails;

rather what is important is that there is now a good class of AdS/CFT models having duality

properties that closely resemble those of real quantum Hall systems. Hopefully the fishing will be

good.

Figure 4.1. Experimental traces of the Hall and ohmic resistances for a quantum Hall system, reproduced
from ref. [14].

4.2 Quantum Hall systems

This section has a two-fold purpose. First, it is meant to summarize briefly the experimental evidence

for duality in quantum Hall systems, since this motivates using duality to guide the search for

theoretical descriptions. This is followed by a description of the low-energy effective theory, including

a discussion of the ‘composite boson’ model that allows some intuition for the potential origin of the

underlying duality transformations, and are the precursors for the effective theories described in the

remainder of the paper.

4.2.1 Evidence for duality

Quantum Hall systems are remarkable in a number of ways, not least of which is the very existence,

stability and precision of the various plateaux — see Fig. 4.1 — for which the ohmic DC conductivity,

σxx, vanishes1 and the DC Hall conductivity, σxy, is quantized (in units of e2/h, or e2/2π when

1Notice that the vanishing of the conductivity, σxx, also ensures the same for the resistivity, ρxx, when the Hall
conductivity is nonzero, σxy 6= 0.
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~ = 1). The quantized value for σxy at a plateau is always consistent with a fraction, p/q, and (with

a very few exceptions, to do with other kinds of physics) q is odd.

Figure 4.2. Evidence for the semi-circle law in the trace of the conductivities during a transition between
two plateaux, reproduced from ref. [15].

Some relevant experiments

The evidence for duality lies in the nature of the transitions that are observed to occur between these

plateaux as B is changed, as well as in the details of how they are approached at low temperatures.

For example:

Selection Rule: As Fig. 4.1 shows, for clean samples a large number of plateaux can be accessed

with changing magnetic field, but there is a pattern to the plateaux that are found adjacent to one

another. Whenever two plateaux, labeled by the fractions p/q and r/s are clearly adjacent, they

satisfy |ps− qr| = 1. There are only two exceptions to this rule in Fig. 4.1 — 5
3 →

7
5 and 4

5 →
5
7 —

but in both cases these two plateaux are not cleanly adjacent to one another.

Semi-circle Law: The precise shape of the resistance curves between two well-defined adjacent

plateaux becomes striking once it is drawn as a curve in the σxx − σxy plane. A sample experi-

mental trace of this appears in the inset of Fig. 4.2, which shows that the trajectory sweeps out a

precise semi-circle, with centre midway between the two plateaux.

Critical points: The remainder of Fig. 4.2 shows the dependence of the resistivities on magnetic

field, for several choices of temperature. These show that at fixed B, the resistivity ρxx (and so
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also, for nonzero B, σxx) fall to zero with decreasing temperature near a plateau. But for very large

magnetic fields, eventually the ohmic resistivity grows as the temperature falls, defining a regime

called the quantum Hall insulator [16]. The crossover between these two regimes defines a critical

magnetic field, Bc, for which ρxx is temperature-independent (also visible in Fig. 4.2). The value,

ρ? xx = ρxx(Bc), of the resistivity at the critical field appears to be universal inasmuch as it is

largely sample-independent. For the transition from the σxy = 1 state to the Hall insulator the

critical resistivity takes on a value consistent with ρ? xx = h/e2 — see Fig. 4.3. (As both Figs. 4.2

and 4.3 show, the universality of this critical value is not completely clear in all experiments. The

interpretation of this is examined more carefully in [17], where it is found that this implication of

duality symmetries can be more sensitive to perturbations (like Landau-level mixing) than are some

of the others (like the semicircle law).)

Figure 4.3. Evidence for universality of

critical resistivity, ρ? xx = ρxx(Bc), from

ref. [18].

Duality: The dependence on temperature and magnetic

field of ρxx in a transition from a plateau to the Hall insu-

lator is measured to be consistent with

ρxx = ρ? xx exp

[
− (ν − νc)

ν0(T )

]
, (4.2)

where

ν :=
∣∣∣ ρ
B

∣∣∣ (4.3)

is the filling fraction and νc is the filling fraction at the

critical field. The phenomenological function ν0(T ) is con-

sistent with a power law down to very small temperatures,

below which deviations from a power are seen [22]. In particular, if the ohmic resistivity is compared

at equidistant points on opposite sides of the critical magnetic field, with distance measured by filling

fraction, ν, then eq. (4.2) implies

ρxx(νc −∆ν) =
ρ2
? xx

ρxx(νc + ∆ν)
. (4.4)

More remarkably, this duality also appears to hold beyond the linear-response regime. This is

shown in Fig. 4.4, whose left panel plots the entire current-voltage relation for the corresponding

points on either side of the critical point. Curves equidistant from the critical point (measured

using filling fraction) are mirror images of one another, reflected through the line V = I. This is

shown in the right panel, in which the upper curves are reflected and superimposed on the lower

curves. This reflection invariance implies the relation ρxx → 1/ρxx when restricted to the slope

of the approximately straight lines near zero voltage, which is the linear-response regime. But the

Figure shows it also applies in the regime for which I(V ) is noticeably curved. The full nonlinear

reflection symmetry is equivalent to the condition ρxx(V ) → 1/ρxx(V ), where ρxx(V ) := dI/dV is
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Figure 4.4. Evidence for the duality, ρxx → 1/ρxx, for resistivities equally spaced (in units of filling fraction,
∆ν) from the critical field, reproduced from ref. [19].

the nonlinear, potential-dependent, resistivity.

Super-universality: Historically, the first evidence for duality came from the study of scaling be-

haviour as the temperature is lowered for magnetic fields chosen to lie at the transition between two

plateaux (for a review, see e.g. [20]). The scaling occurs in the slope of the inter-plateau step in

the Hall resistivity, which diverges in the zero-temperature limit. The width, ∆B, of the region of

nonzero ohmic resistivity between the two plateaux also scales, in that it vanishes like a power of

temperature:
dρxy
dB

∝ T−α and ∆B ∝ T β . (4.5)

Remarkably, measurements not only show α = β = 0.42±0.04 for the transition between two specific

plateaux; they also show that the values of α and β are the same for the transitions between different

pairs of plateaux [21]. This equivalence of scaling exponents for different transitions is called ‘super-

universality’, and is seen in Fig. 4.5. A nontrivial check on the AdS/CFT picture described below is

its ability to account for this kind of scaling and these observed values for α and β.

Connection to duality

What is not yet clear is why these striking observational features are evidence for duality.

Historically, early indications for duality in interacting systems [23] combined with the observed

equivalence of scaling behaviour at the transitions between different critical points, together with

the shape (in the conductivity plane) of the flow to low temperature to motivate the guess that a

duality group might be relevant to quantum Hall systems. Early observations about duality [23]

in field theory, and the similarity between the phase structure seen in the temperature flows and

properties of SL(2, Z) led the authors of ref. [24] to propose the existence of a group of symmetries
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acting on the complex conductivity σ = σxy + iσxx (in units of e2/h) according to

σ → aσ + b

cσ + d
, (4.6)

where the integers a through d satisfy the constraint ad−bc = 1. It was subsequently noticed [25, 26]

that odd-denominator plateaux are singled out as endpoints to the temperature flow if the group is

restricted to the subgroup Γ0(2) defined by the condition that the integer c must be even,2 leading

to predictions for the universal values for the conductivities, like ρ? xx, at the critical points.

Figure 4.5. Evidence for the super-

universality – the sharing of scaling ex-

ponents for transitions between different

plateaux, reproduced from ref. [21].

Similar conclusions were reached at much the same time

in the condensed-matter community [27], where more de-

tailed thinking about the microscopic dynamics led to the

Law of Corresponding States, whose action on filling frac-

tions implies an action on conductivities of the Γ0(2) form.

Once restricted to zero temperature these can be regarded

as a set of transformations relating the ground state wave-

functions for the various quantum Hall plateaux, as was

implicit in the work of Jain and collaborators [28]. Al-

though the concrete connection of the experiments to what

the electrons are doing was a step forward, a downside was

the necessity to resort to mean-field reasoning (see however

[29]).

The precise relation between the above observations

and a duality group came with the observation that all

of the above experiments — including the semi-circle law [30], universal critical points for transitions

between general plateaux [31]3 and the validity of ρxx → 1/ρxx duality, even beyond linear response

[33] — follow as exact consequences of particle-hole invariance together with the assumption that

the Γ0(2) action commutes with the RG flow of the conductivities in the low-energy theory. (Fig. 4.6

illustrates what it means for the action of the group to commute with the RG flow, and Fig. 4.7

shows a pattern of flow lines that is consistent with commuting with the duality group Γ0(2).)

Furthermore, there are good reasons to believe that such duality transformations, acting on the

conductivities as in eq. (4.6), should actually arise in low-energy systems in two spatial dimensions.

This was first argued [6] as a general consequence of the similar kinematics of weakly interacting

pseudo-particles and vortices, in a picture (like the ‘composite boson’ framework, described below)

where these were the dominant charge carriers in the low-energy effective theory.4 In this language

2In terms of the generators S and T of SL(2, Z), defined below, Γ0(2) can be regarded as that subgroup generated
by ST 2S and T .

3Spin effects can also modify the precise position of the critical points [17, 32].
4Because this argument only relies on using duality to relate the conductivity produced by a vortex with that

produced by a quasi-particle — as opposed to trying to explicitly compute either result separately, as done in [27] —
it can apply equally well at zero- and finite-temperature and so side-steps the objection of [8] based on the subtleties

67



Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

the two independent generators of Γ0(2) turn out to be particle-vortex duality [35], and the freedom

to add 2π statistics flux to any quasi-particles.

Figure 4.6. The relation between RG flow

and the action of the duality group, in the

conductivity plane. If A flows to B, and D

is B’s image under the group Γ, then the

RG flow must take C to D if C is A’s image

under Γ.

Similar arguments showed that it would be a slightly

different subgroup of SL(2, Z) — the subgroup5 Γθ(2) —

that would be relevant to quantum Hall systems built from

microscopic bosons rather than fermions [6]. Because this

group differs in detail from Γ0(2), it leads to the prediction

of a suite of experimental results for bosonic quantum Hall

systems that are similar to those described above (such as

by including a semi-circle law), but which differ in detail

(such as by predicting different plateaux)6 [6]. In particu-

lar, the bosonic subgroup Γθ(2) contains the weak-strong

duality transformation, σ → −1/σ, that is not present for

the observed quantum Hall systems, but which was ob-

served early on to be a symmetry of scalar electrodynamics

in 2+1 dimensions [36].

It has since been argued [7] that eq. (4.6) should emerge on very general grounds for any 2+1

dimensional CFT having a conserved U(1) symmetry, making its emergence at low energies essentially

automatic for any system having such a CFT governing its far-infrared behaviour. In particular,

ref. [7] shows that it is the full SL(2, Z) group that generically emerges in this way for theories

of the ordering of the T → 0 and ω → 0 limits.
5This subgroup is generated by the elements S and T 2 of SL(2, Z).
6Γθ(2) can also have implications for quantum Hall effects in more complicated systems, like graphene, where there

is more than one species of conduction electron [34].

Figure 4.7. A plot of some of the flow lines (for decreasing temperature) for the conductivities that are
dictated by Γ0(2) invariance. The vertical axis represents σxx and the horizontal axis is σxy (in units of
e2/h). Flows are attracted to odd-denominator fractions at zero temperature, with bifurcations between
different domains of attraction at specific magnetic fields. Notice that the semicircles that describe flow at
constant magnetic field at the bifurcation between two basins of attraction are also lines along which the
system moves when magnetic fields are varied at vanishingly small temperatures (colour online).
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defined in geometries that admit a spin structure, while only the subgroup Γθ(2) emerges if a spin

structure is absent.

4.2.2 The low-energy picture

The overall picture that emerges from the convergence of theory and experiments for quantum

Hall systems is as follows. In two spatial dimensions the huge degeneracy of Landau levels in a

magnetic field leads to ground states that can be very sensitive to electron interactions, allowing

the possibility of the strongly correlated Laughlin ground states describing the various quantum

Hall plateaux. Transport properties near these plateaux at the low temperatures relevant to the

conductivity measurements is governed by a low-energy effective theory obtained by integrating out

the short-distance electron modes.

Far infrared: Integer quantum Hall systems

In the very far infrared the effective zero-temperature theory obtained by integrating out all of the

high-energy excitations is a function of the electromagnetic probe field, Aµ, used to explore the

electromagnetic transport:

ΓIR = − k

2π
e2

∫
X

d3x εµνλAµ∂νAλ , (4.7)

where the electron charge, e, is temporarily restored, and X denotes the region containing the

quantum Hall fluid. Topological considerations [7] imply the coefficient k is in general quantized to

be an integer.7 The current arising from the probe field Aµ inferred from eq. (4.7) is

Jµ =
δΓIR

δAµ
= −ke

2

2π
εµνλFνλ , (4.8)

which when evaluated with only Ex = Ftx nonzero and compared with Ji = σijEj implies the

conductivities

σxx = 0 and σxy = −σyx = k , (4.9)

in units of e2/h = e2/2π (using ~ = 1). Thus is captured the integer quantum Hall plateaux.

A potential puzzle about the low-energy action ΓIR is that it is not gauge invariant when X

has a boundary, as real quantum Hall systems do. In this case the failure of gauge invariance in

eq. (4.7) is canceled by a related failure coming from degrees of freedom that live exclusively on

the boundary, ∂X. These degrees of freedom are the ones that actually transport the charge in the

low-energy theory, which moves along the boundaries of the quantum Hall domains. Because these

are restricted to the boundaries they are described by a chiral 1+1 dimensional CFT, whose U(1)

7Given a spin structure k could be half-integer, however we take the case of no spin structure because for the
quantum Hall experiments of most interest the Zeeman splitting is larger than the Landau level spacing. See however
[5] for a review of more complicated cases where electron spins can be important, and [17, 37] for preliminary discussions
of how duality arguments change in this case.
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anomaly provides the required cancelation.

Far infrared: fractional quantum Hall systems

Another puzzle about eq. (4.7) is that the quantization of k seems to preclude on general grounds

the possibility of having fractional quantum Hall plateaux. A resolution to this puzzle is suggested

by the ‘composite boson’ picture of quantum Hall systems, as is now described [38].8

The composite boson model starts with the observation that statistics is a supple concept in 2+1

dimensions where fractional statistics are allowed, and in particular can be explicitly implemented

through the artifice of having particles carry with them flux tubes of a fictitious electromagnetic

field, aµ [41]. Specifically, if S[ψ,A] is the action for point particles, ψ, having charge e coupled to

an electromagnetic field, Aµ, then the deformation

Sϑ[ψ,A, a] := S[ψ,A+ a]− e2

2ϑ

∫
d3x εµνλaµ∂νaλ , (4.10)

describes the same theory where the statistics of the ψ particles is shifted by the angle ϑ. For

instance, if a two-particle state described by the action S[ψ,A] originally acquired a phase η when

the two particles are interchanged, then when described by Sϑ[ψ,A, a] they instead acquire the phase

ηeiϑ on interchange. They do so because the gaussian integral over aµ produces a saddle point that

sets its magnetic field, b = ∂xay − ∂yax, proportional to the charge density, and so which is nonzero

where the particles are but vanishes where they are not. For point particles this is equivalent to

attaching a flux quantum to each particle, and it is the Aharonov-Bohm phase of this flux that

produces the change in statistics.

With this in mind, the electrodynamics of 2+1 dimensional fermions can instead be regarded as

that of bosons coupled to a statistics field with angle

ϑ = (2n+ 1)π . (4.11)

In this picture the quantum Hall plateaux with fractions 1/(2n+ 1) can be qualitatively understood

using the following mean-field picture. For a macroscopic number of bosons, the accumulated sta-

tistical flux can be thought of as a constant background field, b. But because the charge carriers

couple only to the sum Aµ + aµ, special things can happen when the real magnetic field cancels this

background statistics field. For these special values where B+ b = 0 the bosons see no net field, and

so are free to Bose-Einstein condense — producing a superconducting phase. This condensation is

how the strongly correlated fractional quantum Hall state is understood in this picture. Due to the

choice, eq. (4.11), the cancelation happens when the filling fraction is ν = 1/(2n+ 1), corresponding

to the principle series of fractional states described by the Laughlin wave-function.

8The related ‘composite fermion’ model [39] is widely used in theoretical studies of quantum Hall systems, and has
also been discussed within an AdS/CFT framework [40].
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In this picture there is also a qualitative understanding of the stability of these plateaux to

small changes of B. The ‘superconductor’ then sees a net magnetic field, but the idea is that the

superconductor is a Type II superconductor for which this field penetrates as a vortex without

destroying the condensation. These vortices have fractional statistics, and correspond to the quasi-

particles of the Laughlin fluid. The plateau ends for fields, B, large enough that there are so many

vortices that the superconductivity is ruined. The picture then is that the vortices themselves

condense, producing a quantum Hall state, p/q with p 6= 1. This process continues generating the

many plateaux observed in a hierarchical way [28]. Although the mean-field arguments are suspect,

this is a conceptually attractive framework for understanding quantum Hall dynamics, for which

notions of particle-vortex duality are likely to be useful [6].

Coming back to the far-infrared effective action, the above picture suggests that eq. (4.7) should

be generalized to

exp
{
iΓIR[A]

}
:=

∫
Daµ exp

{
−ke

2

2π

∫
X

d3x εµνλ(Aµ + aµ)∂ν(Aλ + aλ)

− e
2

2ϑ

∫
d3x εµνλaµ∂νaλ

}
. (4.12)

If the first term is the result that would be obtained, as above, from a system of electrons, then

electrons could also give eq. (4.12) for ϑ = 2nπ, since any shift of statistics by an integer multiple of

2π has no effect. Integrating out aµ, leads to the Hall conductivity

σxy =
k

2nk + 1
, (4.13)

which is a fraction (in units of e2/h = e2/2π), though always with an odd denominator.

For future reference, notice that a quantum Hall system built from bosons would instead corre-

spond to the choice ϑ = (2n+ 1)π, leading to

σxy(bosons) =
k

(2n+ 1)k + 1
. (4.14)

In units of e2/h = e2/2π this is a fraction p/q, with q odd if p is even, and vice versa. Note in

particular that if all else is equal, then shifting statistics angle by ϑ → ϑ + π shifts the complex

conductivity by9

1

σ
→ 1

σ
+ 1 . (4.15)

Not quite so deep in the infrared

The interest in this paper is in the approach to the quantum Hall plateaux for small temperatures,

rather than in the ground states themselves, and so the goal is to obtain an effective low-energy

9In terms of the generators S(σ) = −1/σ and T (σ) = σ + 1, this corresponds to σ → ST−1S(σ).
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description that is not quite so far in the infrared as the Chern-Simons action just described. It is

for this effective theory that any emergent duality group should be found if it is to be relevant for the

experiments that probe the approach to, and transitions between, different quantum Hall plateaux.

The observational evidence is that this regime is described by some system with a Γ0(2) duality

group that commutes with its RG flow, but real progress in constructing candidate effective field

theories has been blocked by the lack of examples of strongly correlated systems explicitly displaying

the emergent duality. Once such a model is in hand its implications that go beyond implications of

duality can be tested, to see if it describes the experimental systems.

The remainder of this paper identifies a first candidate using recently developed tools from the

AdS/CFT correspondence. As discussed in the introduction, for the present purposes, the great

virtue of this correspondence is twofold: it provides a calculable laboratory of strongly interacting

2+1 dimensional systems; and it naturally produces systems having emergent duality groups.

4.3 Holographic Duality

AdS/CFT formulations of 2+1 dimensional CFTs involve electromagnetic gauge fields in 3+1 di-

mensional asymptotically AdS backgrounds. Particle-vortex interchange in the CFT corresponds to

the interchange of electric and magnetic fields on the AdS side, so part of the ease of having an

emergent duality in the CFT is the propensity on the AdS side for the electromagnetic theory to be

invariant under electric-magnetic interchange. Since this transformation takes the electromagnetic

coupling from weak to strong (and vice versa), on the AdS side it is useful to have a scalar field, φ,

whose value tracks the size of this coupling.

Another generator is needed to obtain a group like SL(2, Z) — or one of the level-two subgroups,

like Γ0(2) or Γθ(2) — and given the above discussion it is natural to seek this as the freedom to

change particle statistics by 2π. Since particle statistics are described by a Chern-Simons term in

the CFT, on the AdS side it is natural to seek a symmetry that shifts the coefficient of F ∧ F . For

this reason it is also useful to have a scalar field, χ, whose value tracks this interaction.

The minimal set of fields to follow in the AdS formulation should then be gravity, the electro-

magnetic field plus the two scalars: the dilaton, φ, and axion, χ. These fields naturally appear in

the low-energy limit of string theory, so the kinds of theories entertained here are likely to arise

generically in more explicit string constructions. (In this paper we take a phenomenological point

of view, and do not try to embed the 3+1 dimensional field theory into an explicit stringy frame-

work. Although this would be instructive, most of the additional bells and whistles live at very high

energies and so are likely to decouple from the low-energy limit that is always of interest for the

applications we have in mind.)

The holographic interpretation of black holes with this field content has recently been worked

out [10, 11]. Although these models cannot themselves directly provide descriptions of quantum Hall
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systems, since for nonzero magnetic fields their DC ohmic conductivity vanishes at finite temperature,

they are interesting in their own right. This section briefly recaps some of their features, with the

goal of describing the duality transformations of interest for the model of real interest in the next

section.

4.3.1 Maxwell and the axio-dilaton

The starting point is the Einstein-Maxwell action coupled to the axio-dilaton in 3+1 dimensions:10

S = −
∫

d4x
√
−g

{
1

2κ2

[
R− 2Λ +

1

2

(
∂µφ∂

µφ+ e2φ ∂µχ∂
µχ
)]

+
1

4
e−φFµνF

µν +
1

4
χFµν F̃

µν

}
, (4.16)

where F̃µν := 1
2 εµνλρF

λρ, and εµνλρ has a factor of
√
−g extracted so that it transforms as a

tensor (rather than a tensor density). The constant Λ = 3/L2 is the AdS cosmological constant

and κ2 = 8πG is Newton’s constant, so weak curvature requires κ2/L2 � 1. Similarly, the Maxwell

coupling is g2 ∝ eφ so weak coupling corresponds to eφ � 1.

4.3.2 Duality relations

The couplings of this action are chosen to ensure the existence of a duality group, and at the classical

level there is an embarrassment of riches since the equations of motion are invariant under the group

SL(2, R). To see the action of this group define the axio-dilaton by

τ := χ+ ie−φ , (4.17)

for which weak coupling corresponds to large Im τ . Then the χ and φ kinetic terms become

∂µφ∂
µφ+ e2φ ∂µχ∂

µχ =
∂µτ ∂

µτ

(Im τ)2
, (4.18)

which is invariant under the transformations

τ → a τ + b

c τ + d
and gµν → gµν , (4.19)

where a, b, c and d are arbitrary real numbers that satisfy the SL(2, R) condition ad− bc = 1.

To define the action on the Maxwell field, following [44] define

Gµν := − 2√
−g

(
δS

δFµν

)
= e−φFµν + χF̃µν , (4.20)

10We use a ‘mostly plus’ metric signature and Weinberg’s curvature conventions [42], which differ from those of
MTW [43] only by an overall sign in the Riemann tensor.
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which takes the simple form

Gµν = τ Fµν , (4.21)

when written in terms of the complex quantities

Fµν := Fµν − iF̃µν and Gµν := −G̃µν − iGµν . (4.22)

Eq. (4.21) is invariant under the transformation, eq. (4.19), provided the Maxwell field transforms

as (
Gµν
Fµν

)
→

(
a b

c d

)(
Gµν
Fµν

)
, (4.23)

Since the Maxwell equations and the Bianchi identity are

∇µImGµν = ∇µImFµν = 0 , (4.24)

these are also invariant under SL(2, R). The Maxwell contribution to the axio-dilaton equation is

similarly invariant [44].

4.3.3 From SL(2, R) to SL(2, Z)

Although SL(2, R) is a larger group than bargained for, in string theory it is generically only an

artefact of the classical approximation, and is broken down to a discrete subgroup by quantum

effects. Since the quantum plateaux ultimately prove to be in a strongly coupled part of parameter

space (over which the unbroken discrete symmetries ultimately give calculational access – see below),

their properties are strongly affected by the breaking.

The low energy supergravity of Type IIB string theory has an action in 10 dimensions that is

similar to the one described above, whose equations of motion are SL(2, R) invariant. In this case

the symmetry is broken by the presence of objects whose charges are quantized. For example, a

(m,n)-string (i.e. a bound state of a fundamental F-string with charge m with a D-string with

charge n)11 has tension,

τm,n = eφ(m+ χn)2 + e−φn2 . (4.25)

Under SL(2, Z) transformations, the (m,n)-string transforms into a (m′, n′)-string, where

m
′

= dm+ cn , n
′

= bm+ an . (4.26)

Because m and n are quantized SL(2, R) is broken to SL(2, Z).

For holographic applications similar considerations are very likely to apply. In particular, probing

the CFT at finite temperature and density require studying the AdS theory in the presence of a

11We use (m,n) rather than the more traditional (p, q) to avoid notational conflict with our later use of p and q.
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charged (dilatonic) black hole. This becomes a dyonic black hole — with both electric and magnetic

charges, Qe and Qm — if the CFT is probed in an external magnetic field. Although these black

holes are usually studied in the classical limit, in principle the AdS/CFT duality is exact and so

quantum effects can also be studied. In particular, the Dirac quantization conditions for magnetic

monopoles should apply, requiring the electric and magnetic charges to be quantized relative to one

another. In microscopic brane constructions, dyonic objects in the bulk can be identified as charged

solitons in the boundary CFT [45].

It then suffices that there should be a minimum electric charge to learn that magnetic and

electric charges must be quantized in terms of this minimum charge. As we see below, such a

quantization on the AdS side naturally leads to a quantization of the Hall conductivities on the CFT

side: σxy ∼ Qe/Qm ∼ p/q, for integer p and q. The precise pattern of fractions that is allowed

depends on the precise discrete subgroup — possibly SL(2, Z), Γ0(2) or Γθ(2) — of SL(2, R) that

is left unbroken by the full string dynamics. Since several specific stringy ultraviolet completions

are likely to exist for the given low-energy action, eq. (4.16), and since different systems give rise

to different discrete symmetries [46], in the phenomenological approach followed here we imagine

ourselves to be free to choose this unbroken discrete symmetry.

4.3.4 Conductivities

To compute the ohmic and Hall conductivities as functions of temperature, charge density and

magnetic field requires studying the response of the above AdS system to small electromagnetic

perturbations about a dyonic axio-dilaton black hole. This is explored in some detail in refs. [10, 11].

Action of SL(2, R)

In particular, these authors compute the action of the underlying SL(2, R) symmetry on the con-

ductivities, and show that they take the form of eq. (4.6). We reproduce a version of the argument

here that generalizes easily to the case of later interest.

The starting point is the AdS/CFT translation table,12 which gives the electromagnetic current,

Ja, when the CFT is perturbed by an electromagnetic field, Fab. On the AdS side the perturbation

is obtained by solving the linearized Maxwell equation, and evaluating the action as a function of the

perturbation on the boundary. Differentiating with respect to Aµ to get the current gives a simple

form when expressed in terms of Gµν :

Ja =
√
−g Gva

∣∣
0
, (4.27)

12There is generally a choice of CFT, depending on the precise form of the boundary conditions used in AdS [47, 48].
In the present instance ref. [7] argues that one of these choices can be regarded as equivalent to treating the gauge field
on the boundary as dynamical, as would be done when coupling to a statistics field in 2+1 dimensions. Furthermore,
such choices are implicitly made when comparing theories related by transformations involving S-duality, τ → −1/τ .
These complications do not play a direct role in what follows.
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where v is another radial coordinate (i.e. a function of r) for which conformal infinity lies at v = 0

and the horizon is at v = vh.

Focusing on the spatial components, Jx and Jy, and using the (real part of the) transformation

rule eq. (4.23), then implies (
J
E

)
→

(
a b

c d

)(
J
E

)
, (4.28)

where13

J :=
[
−G̃tx + iG̃ty

]
0

=
[
−
√
−g
(
Gvy + iGvx

)]
0

= −i (Jx − iJy) , (4.29)

and

E := [Ftx − iFty]0 = Ex − iEy . (4.30)

But in linear response the conductivity tensor is defined14 to be J i = σij Ej , or equivalently

(keeping in mind σyx = −σxy and σxx = σyy for rotationally invariant systems),

J = −Jy − iJx = − (σyxEx + σyyEy)− i (σxxEx + σxyEy)

= − (σyx + iσxx) (Ex − iEy) = σ−E , (4.31)

where σ− := σxy−iσxx. Consistency of this relation with the transformation, eq. (4.28), then implies

σ− →
aσ− + b

cσ− + d
. (4.32)

Complex conjugation – we consider here only DC conductivities, whose imaginary parts vanish —

then also implies the desired transformation, eq. (4.6), for σ = σ+ = σxy + iσxx.

Classical conductivities

The authors of refs. [10, 11] also show that the low-temperature properties of the conductivities

predicted by this theory are relatively simple. The strategy is first to compute explicitly in the case

of a purely electric black brane with a vanishing axion field. The general result for dyonic branes

with an axion is then found by performing an appropriate SL(2, R) transformation.

The appropriate black brane geometries have the form

ds2 = −h2(r)dt2 +
dr2

h2(r)
+ b2(r)

(
dx2 + dy2

)
, (4.33)

13Our convention is εtvxy = +1/
√
−g, so is opposite to [11].

14From this point on we adopt consistent tensor conventions for the conductivity, which is naturally contravariant.
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for which the Maxwell field equation ∇µGµν = 0 has solution

Grt = − Qe
b2(r)

, (4.34)

and so using the constitutive relation, Gµν = e−φFµν + χF̃µν , then gives (with Fxy = Qm)

F = (Qe − χQm)
eφ

b2
dr ∧ dt+Qm dx ∧ dy . (4.35)

Given the SL(2, R) transformation rules for the Maxwell field, these expressions imply an action

of SL(2, R) on the charges Qe and Qm. Our strategy is to start with an electric dilaton brane

with unit electric charge, zero magnetic charge, φ = φ̂0 and χ = 0. φ̂0 is then chosen so that this

configuration is mapped into a more general configuration with Qe, Qm, φ = φ0 and χ = χ0.

The behaviour of the purely electric brane with no axion is simple because at low temperatures

and frequencies it is governed by the near-horizon limit of the near-extremal geometry, which is [49]

ds2 ≈ −r
2

l2

[
1−

(rh
r

)2ζ+1
]

dt2 +
l2 dr2

r2[1− (rh/r)2ζ+1]
+ r2ζ

(
dx2 + dy2

)
. (4.36)

This benefits from an attractor mechanism [50, 51] that makes the near-horizon geometry indepen-

dent of the boundary data for the scalar fields at infinity. This implies that the constants l and ζ

are determined by the field equations, leaving the position of the horizon, rh, as the only important

scale. The same geometry also describes the near-horizon limit when the dilaton-Maxwell action is

replaced by the dilaton-DBI action discussed below (as is shown in Appendix D).

In particular, the prediction ζ = 1
5 [10, 11] — which comes from solving the field equations

for the SL(2, R)-invariant action given above, eq. (4.16) — is likely to be significant because the

geometry of eq. (4.36) is Lifshitz-like, with different scaling assigned to time and space directions.

This is true even though the asymptotic geometry near infinity is relativistic, due to the presence

of the dilaton. The dynamical exponent predicted at low temperatures in this case is z = 1/ζ = 5

(though the asymptotic value, z = 1, would apply in the UV). To the extent that this metric also

describes the near-horizon limit of the background geometry in DBI-based model discussed below,

we shall see in S5 that this value for z gives scaling exponents at very low temperature that agree

with observations.

The dilaton also varies logarithmically with r in the purely electric solution, eφ ∝ r4ζ , which

vanishes on the horizon in the extremal case (rh → 0). For magnetic branes (Qe = 0 and Qm 6= 0)

the dilaton is instead driven to the strong-coupling regime at the horizon in the extremal case.

Control is nonetheless maintained in refs. [10, 11] by taking T to be nonzero but small, so the brane

is not quite extremal. Then an asymptotic value for the dilaton at conformal infinity can be chosen

to ensure that the coupling remains weak enough right down to r = rh 6= 0. This tendency to

strong coupling at low enough temperatures (for fixed dilaton) is an important feature of these dual
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systems, that in later sections also limits our ability to compute conductivities directly near quantum

Hall plateaux using semiclassical methods. (It is recourse to the unbroken discrete symmetries, like

SL(2, Z), that ultimately allow progress nonetheless.)

The explicit form obtained in this way for the AC conductivities in the limit ω � T � µ (where

µ is the chemical potential required to maintain a charge density ρ ∼ Qe) is [11]

σxy =
ρ

B

[
1 +O

(
ω2
)]
, and σxx = O (ω) . (4.37)

In particular, there is no DC ohmic conductivity. This ultimately vanishes because the ohmic

conductivity is infinite at zero B due to translation invariance [11]. Although SL(2, R) is nicely

realized by the RG flow, dτ/dr, of the axio-dilaton [11], it cannot directly describe the temperature

flow of DC conductivities in quantum Hall systems.15 For this reason we next explore a slightly

more complicated system for which SL(2, R) invariance coexists with nonzero DC conductance.

4.4 Quantum Hall-ography

In order to obtain DC conductivity in an SL(2, R) invariant way, we follow ref. [13] and study the

case of a probe brane, described by the DBI action, situated within the background geometry of an

appropriately chosen black brane. As discussed in [13], the probe limit is crucial for obtaining DC

ohmic resistance because the infinite bath represented by the black brane can provide the required

dissipation. Ideally, one would prefer not to have to rely on the probe approximation to achieve DC

resistance, such as by incorporating disorder or some other breaking of translation invariance. We

regard our reliance on the probe approximation here to be a temporary crutch that will not survive

more sophisticated modeling.

4.4.1 The setup

The action for the revised model has the following form

S = Sgrav + Sgauge , (4.38)

where the gravitational sector is the same as before,

Sgrav = −
∫

d4x
√
−g

{
1

2κ2

[
R− 2Λ +

1

2

(
∂µφ∂

µφ+ e2φ ∂µχ∂
µχ
)]}

+ SLifshitz , (4.39)

with the possible addition of a ‘Lifshitz’ sector, whose purpose is to build in various features of the

background geometry. For instance, in [13] this sector is imagined to involve various Kalb-Ramond

15Ref. [11] also models DC conductivity due to disorder by giving the frequency a small imaginary part.
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fields, Hµνλ, whose presence is used to generate an uncharged black-brane geometry that asymptot-

ically scales spatial and temporal directions differently. The resulting asymmetric exponent z = 2

was then chosen to achieve some strange-metal properties, like a resistivity linear in temperature.

Although not strictly necessary for quantum Hall plateaux, a similar construction can be used

here to build in an arbitrary value of z. What proves to be a more attractive choice, however, is

instead to choose the Lifshitz sector such that its background metric is that of a dyonic black brane,

whose extremal near-horizon geometry is that discussed in S3 , above, or its DBI generalization

discussed in Appendix D. This is attractive because we shall see that agreement with some low-

temperature experiments suggests z ' 5 in the IR, while other arguments16 instead indicate z ' 1

in the UV.) Potential sources for such a background are discussed below, after describing the gauge

action, Sgauge.

For the present purposes the main change relative to S3 is the gauge action, which replaces the

dilaton-Maxwell form of eq. (4.16) with the DBI form

Sgauge = −T
∫

d4x

[√
−det

(
gµν + `2 e−φ/2Fµν

)
−
√
−g
]
− 1

4

∫
d4x
√
−g χFµν F̃µν

= −T
∫

d4x
√
−g

[√
1 +

`4

2
e−φFµνFµν −

`8

16
e−2φ

(
Fµν F̃µν

)2

− 1

]

−1

4

∫
d4x
√
−g χFµν F̃µν , (4.40)

where the second line holds in 3+1 dimensions.

Eq. (4.40) is the unique SL(2, R)-invariant generalization of the DBI action [44], and has the

same form as would the action of a D3-brane written in Einstein frame if the quantity ` were given

by

`2 = 2πα′ , (4.41)

with T representing the brane tension. However, our approach here is phenomenological and nothing

would change if this action were instead to emerge as the low-energy limit of some more complicated

configuration involving other kinds of branes. Although we do not try to do so here, any full

string embedding would require a precise statement of the position of the relevant branes in the

extra dimensions, and of what stabilizes their motion (and gives mass to any other potentially light

degrees of freedom). Presumably, the DBI action describes the dynamics of 2+1 D matter fields

coupled with a strongly interacting CFT modeled by the background geometry. The matter fields

are also coupled with the 3+1 D U(1) gauge field on the probe brane. We imagine there to be a

suitable large-N limit in play, allowing us to neglect quantum fluctuations of fields on the AdS side.

This kind of dilaton-DBI action could also be used for the Lifshitz sector in the case where

the background geometry is taken to be the near-horizon, near-extremal form described in S3 and

16We thank E. Fradkin and S. Kivelson for pointing out the UV evidence for z = 1.
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Appendix D. If so, it would require a different U(1) gauge potential and a parametrically larger

tension T →∼ NT to justify the use of the probe approximation for the brane that produces the

conductivity. It seems (and probably is) redundant to have the additional Lifshitz sector to produce

such a background, when the same geometry would also be produced if Sgauge were treated beyond

the probe approximation. We only do so here since we require the probe approximation in order

to obtain a nonzero DC ohmic resistivity, and regard this as a feature to be improved in future

iterations.

4.4.2 Duality relations

The important property of the DBI action used above is that it shares the duality invariance [44] of

the dilaton-Maxwell action described earlier. The main change relative to the earlier discussion is

the form of the constitutive relation between Gµν and Fµν , which in this case is

Gµν = − 2√
−g

(
δS

δFµν

)
=
T `4

X

[
e−φFµν − `4

4
e−2φ

(
Fµν F̃

µν
)
F̃µν

]
+ χF̃µν , (4.42)

where

X :=

√
1 +

`4

2
e−φFµνFµν −

`8

16
e−2φ

(
Fµν F̃µν

)2

. (4.43)

In terms of this quantity gauge field equations and Bianchi identities have the same form as

before,

∇µGµν = ∇µF̃µν = 0 . (4.44)

It can be shown [44] that these — and the other field equations and the constitutive relation, eq. (4.42)

— are invariant under the same SL(2, R) transformations of the dilaton-Maxwell theory, eqs. (4.19)

and (4.23):

τ → a τ + b

c τ + d
and

(
Gµν
Fµν

)
→

(
a b

c d

)(
Gµν
Fµν

)
, (4.45)

with gµν fixed. As before Fµν = Fµν − iF̃µν and Gµν = −G̃µν − iGµν .

Because the symmetry acts in the same way on Gµν as in the last section, the same conclusion

is also true for the transformation laws for the current,

Ja =
√
−g Gva

∣∣∣
0
. (4.46)

It immediately follows that the conductivities of the dual CFT also transform as before, eq. (4.6):

σ → a σ + b

c σ + d
. (4.47)
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Beyond linear response

The fact that the quantities Gµν and Fµν transform under SL(2, R) in the same way as they did

for the dilaton-Maxwell theory carries some potentially interesting implications. In particular, since

the constitutive relation, eq. (4.42), states that Gµν is a linear combination of Fµν and F̃µν (with

field-dependent scalar coefficients), it can always be written in a form similar to eq. (4.21):

Gµν = τ eff Fµν , (4.48)

for some field-dependent quantity τeff = τeff

(
τ, F 2, F · F̃

)
, satisfying τeff(τ, 0, 0) = τ . But the

invariance of this relation under SL(2, R) implies that the quantity τeff must also transform under

SL(2, R) as

τeff →
a τeff + b

c τeff + d
. (4.49)

The quantity τeff plays the role of a ‘dressed’ axio-dilaton for the DBI theory.

A similar observation also holds for the quantities J = −i(Jx − iJy) and E = Ex − iEy of the

CFT. These inherit from Gµν and Fµν the same transformation as for the dilaton-Maxwell theory,

(4.28): (
J
E

)
→

(
a b

c d

)(
J
E

)
. (4.50)

Defining the effective, field-dependent, conductivites, σxyeff and σxxeff , by

σeff − = σxyeff − iσ
xx
eff :=

J
E
, (4.51)

then implies that these must transform under SL(2, R) as

σeff − →
a σeff − + b

c σeff − + d
, (4.52)

and similarly for σeff := σxyeff + iσxxeff .

We see here within an AdS/CFT realization how the implications of duality can apply beyond

the strict linear-response regime, to include the nonlinear dependence of the conductivities on the

applied fields. This is precisely what is required to account for some of the observations discussed in

S2 (see Fig. (4.4) and refs. [19, 33]).

4.4.3 Holographic DC conductivities

We next turn to the calculation of the conductivities as functions of temperature and magnetic field,

to verify the presence of a nonzero DC ohmic conductivity.
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Background geometry

Following [13] we take the background metric to solve the field equations generated only by Sgrav,

and regard the effects of Sgauge as a perturbation to this geometry (the probe-brane approximation).

We return below to the limitations of the domain of validity of this approximation.

We assume the background 4D geometry sufficiently near the black hole is

ds2 = L2

[
−h(v)

dt2

v2z
+

dv2

v2h(v)
+

dx2 + dy2

v2

]
, (4.53)

where L is the length scale defined by Λ = 3/L2 (set to unity in what follows), and the Lifshitz

parameter, z, measures the difference between the scaling dimension of the space and time directions,

with z = 1 corresponding to equal scaling.17

Not much is required to be known about the function h(v), apart from that it is positive, ap-

proaches unity as v → 0, and is assumed to have a simple zero, h(vh) = 0 for vh > 0, corresponding to

the horizon of the black brane. The position of this horizon provides a temperature for the boundary

theory in the usual way,

T =
|h′(vh)|
4πvz−1

h

∼ 1

vzh
, (4.54)

with the approximate equality following from the assumption that h′(vh) ∼ 1/vh. As before, the

position of conformal infinity is taken to be v = 0.

If the black brane of the background geometry does not couple to a Maxwell field, as for the

Lifshitz sector of ref. [13], then the dilaton and axion fields can be taken to be constants: φ = φ0

and χ = χ0. In this case the parameter z can be taken to be a knob to be dialed essentially at

will. Alternatively, if the background geometry carries a charge and so approaches an extremal black

brane at low temperature with an attractor form, then φ generically has a nontrivial profile. When

necessary we take this to be eφ ∝ 1/v4 (suggested by the dilaton-Maxwell solution of [49, 10] or the

dilaton-DBI solution described in Appendix D). In either case the axion can be set to zero and then

later regenerated by performing an SL(2, R) transformation.

17As discussed in [13] the presence of z complicates the discussion of the boundary conditions (see also footnote 11),
particularly once z >∼ 2. Following [7], we expect these to be automatically incorporated into the duality transforma-
tions, but do not expect them to affect our conductivity calculations in any case. In particular, we expect the large
value z ' 5 indicated by experiments to be generated in the far IR by an attractor mechanism for near-extremal black
holes, without requiring z 6= 1 at conformal infinity.
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Conductivity calculation

We proceed following closely the steps of ref. [13] (see also refs. [52, 53]. The field equations for the

gauge field are ∇µGµν = 0, with Gµν given by (4.42). Those for the axio-dilaton are

0 = �φ+
κ2T `4

2X

[
e−φFµνF

µν − `4

4
e−2φ

(
Fµν F̃

µν
)2
]
− e2φ∂µχ∂

µχ

= �φ+
κ2

2

[
Gµν − χF̃µν

]
Fµν − e2φ∂µχ∂

µχ (4.55)

and

∇µ
(
e2φ∇µχ

)
− κ2

2
Fµν F̃

µν = 0 . (4.56)

The strategy in the probe limit is to solve the Maxwell equation, but neglect the corrections to the

background metric and dilaton. The above equations show this requires the neglect of quantities

like κ2T /X and κ2Fµν F̃
µν relative to 1/L2 (which itself must satisfy 1/L2 � 1/`2). Because

κ2 ∼ `8/Ω � `2 — with Ω the volume of the extra dimensions not made explicit here — these

conditions need not imply that quantities like `4e−φFµνF
µν are also small, so it remains consistent

to keep the nonlinearities in the DBI action. In addition to these conditions are the more ‘stringy’

conditions for weak coupling, eφ � 1, and the absence of runaway string pair-production [54] (more

about the domain of validity later).

It suffices to compute the ohmic conductivity in the absence of a magnetic field and axion, since

the general case can then be recovered by performing an appropriate SL(2, R) transformation. To

this end we require the solution to the Maxwell equation subject to the ansatz

A = Φ(v) dt+
[
A(v)− Et

]
dx . (4.57)

The corresponding components to the field strength then are

Fvt = Φ′ , Fvx = A′ , Ftx = E

and F̃ xy = − Φ′√
−g

, F̃ ty =
A′√
−g

, F̃ vy = − E√
−g

, (4.58)

and so Fµν F̃
µν = 0.

Since the equations of motion can be written ∂ν [
√
−g Gνµ] = 0, the equations corresponding to

µ = a = {x, y, t} immediately integrate to give
√
−g Gva = Ca, where Ca are three v-independent

integration constants. The absence of an axion allows the choice Cy = 0, but the other two equations

determine Φ′ and A′ in terms of Ct and Cx, as follows:

√
−g

(
T `4e−φ

X

)
gvvgtt Φ′ = Ct and

√
−g

(
T `4e−φ

X

)
gvvgxxA′ = Cx , (4.59)
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where

X =

√
1 + `4 e−φ

[
gvvgtt(Φ′)2 + gvvgxx(A′)2 + gttgxxE2

]
. (4.60)

Using these expression to eliminate Φ′ and A′ gives the following result for X as a function of Ct

and Cx:

X =

√
N

D
, (4.61)

with

N := 1 + `4 e−φ
(

E2

gttgxx

)
D := 1 +

eφ

T 2`4

[
(Ct)2

g2
xx

+
(Cx)2

gttgxx

]
. (4.62)

Notice that when v → 0 all of the metric functions diverge, and so both N and D approach unity.

But when v → vh we instead have gtt → 0− and gvv → ∞, while gxx and
√
−g remain finite. This

implies both N and D approach −∞ in this limit, requiring they both change sign somewhere in

the interval 0 < v < vh. A quick way to solve for the relation between Ca and E is the observation

[52] that the reality of the action requires both N and D to change sign at the same point, v = v?,

implying

−(gttgxx)? =
h(v?)

v
2(z+1)
?

= `4 e−φ?E2 , (4.63)

and

− (Cx)2

(gttgxx)?
=

(Ct)2

(g2
xx)?

+ T 2`4e−φ? . (4.64)

The first of these can be used to infer the value of v? as a function of E, and the second then

imposes an E-dependent relation between Cx and Ct. Notice that as E → 0, eq. (4.63) implies

v? → vh ∝ T−1/z.

Now the usual AdS/CFT translation tells us that the integration constants found above are the

currents18 in the CFT: Ja = Ca, so using Cx = Jx = σxxE and Ct = J t = ρ in the last equation

gives the ohmic conductivity as

σxx =

√
(T `4e−φ?)

2
+ (`4e−φ?) ρ2/(g2

xx)?

=

√
(T `4e−φ?)

2
+ v4

? (`2ρ)
2
e−φ? , (4.65)

where the last line uses the explicit form of the metric, eq. (4.53). The absence of a magnetic field

and axion in this case also require vanishing Hall conductivity σxy = 0. Notice the limiting forms,

18A note on units of charge: this can be changed for the carriers in the CFT by rescaling Aµ → ξAµ. This
is a symmetry of the action — contained in SL(2, R) — if e−φ → ξ−2e−φ and χ → ξ−2χ. Under this rescaling
Gµν → χ−1Gµν , Jµ → ξ−1Jµ and σab → ξ−2σab.
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depending on the relative size of v4
? and v4

c := e−φ?(T `2/ρ)2 � 1,

σxx ' T `4 e−φ? if v? � vc

σxx ' v2
?(`2ρ) e−φ?/2 if v? � vc . (4.66)

Provided T `4 ' O(1), as would be true for a D3 brane, this shows that weak coupling (i.e. e−φ? � 1)

implies σxx starts at a fixed, large value — σxx ' O
(
e−φ?

)
� 1 for v? < vc, and then climbs to

still larger values with growing v?. As shown in Appendices C and D, for sufficiently large σxx

the probe-brane limit can eventually fail, corresponding to the need for a better approximation to

understand the limit of vanishing T .

The temperature-dependence of this expression is encoded in the value of v?, whose determination

requires a fuller specification of the metric function h(v). For small E we know v−4
? ' v−4

h ' CT 4/z.

This implies

σxx ' e−φ?/2√
C T 2/z

√
(`2ρ)2 + C(T `4)2 e−φ? T 4/z , (4.67)

and so σxx asymptotes to the fixed, large value T `4 e−φ? for high T , but grows with falling tem-

perature, like σxx ∝ T−2/z for temperatures T � Tc, where Tc = T (vc) � 1/L because vc � 1.

This shows that it is indeed small T that corresponds to large σxx, and so the breakdown of the

probe-brane approximation.

Validity of the probe approximation

It turns out that the details of the domain of validity of the probe-brane approximation differ for the

cases where the background geometry describes a neutral black brane (with constant dilaton and z

arbitrary), or when it is that of a charged, near-extremal black brane (with a dilaton profile and an

attractor value z = 5). As is argued in detail in Appendix C, a necessary condition for the probe

approximation is

ρ�
(

`2

κ2L2

)
e−φ?/2

v2
?

, (4.68)

where ρ is the charge density and φ? := φ(v?) with v? (defined above) approaching the horizon,

v? → vh, for small applied electric fields, E. Since v? ≤ vh, the probe approximation can work well

right down to the horizon, v = vh, provided vh is not too large (and so temperatures are not too

close to zero).

For neutral branes, where φ is constant, the probe approximation ultimately fails for small enough

temperatures because eventually v? ' vh is large enough to invalidate eq. (4.68).

If, on the other hand, the source brane is charged then the above bound is more complicated

because φ? depends nontrivially on v? (and so also on T ). In particular, in the very low temperature

limit the near-horizon geometry can be independent of the asymptotic values of the dilaton and

axion, and in the dilaton-Maxwell described above [11] (and the dilaton-DBI system of Appendix
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D), e−φ?/2 ∝ v2
?. This makes the right-hand-side of eq. (4.68) constant, and so it need not be

violated at very small T . Appendix D explores the value, Xh, approached by X in the near-horizon,

near-extremal geometry; showing that if the background geometry is supported by a DBI action with

tension NT , then κ2NT /Xh > 1, although κ2T /Xh can be small if N is sufficiently large.

Conductivities with nonzero magnetic fields

To obtain the conductivities for general magnetic fields and asymptotic axion fields, we act on

the previous result using an SL(2, R) transformation. Notice in particular that this automatically

ensures that the result found for σ(ρ,B, T ) has a temperature flow that commutes with the action

of the group, as assumed in S2 to reproduce the observed phenomenology from a discrete duality

group — see Fig. 4.6.

The transformation law, σ → (aσ + b)/(cσ + d), implies that the ohmic and Hall conductivities

obtained starting from σxy0 = 0 and σxx0 := σ0 (with σ0 given in eq. (4.65)) are

σxx =
σ0

d2 + c2 (σ0)2
and σxy =

ac (σ0)2 + bd

d2 + c2 (σ0)2
. (4.69)

We require only the values of the parameters a, b, c, and d that are required to take the pure dilatonic

electric case to a general axion and dyonic field.

The required transformation is computed in Appendix A, and has parameters a = 1, c = −B/ρ =

1/ν (where ν = −ρ/B is the filling fraction appropriate for a negatively charged particle) and

b =
ν
[
χ(ν − χ)− e−2φ

]
(ν − χ)2 + e−2φ

and d =
ν(ν − χ)

(ν − χ)2 + e−2φ
. (4.70)

These lead to the conductivities

σxx =
ν2
[
(χ− ν)

2
+ e−2φ

]2
σ0

ν4 (χ− ν)
2

+
[
(χ− ν)

2
+ e−2φ

]2
(σ0)2

(4.71)

σxy =
ν
[
(χ− ν)

2
+ e−2φ

]2
(σ0)2 + ν4(χ− ν)

[
χ (χ− ν) + e−2φ

]
ν4 (χ− ν)

2
+
[
(χ− ν)

2
+ e−2φ

]2
(σ0)2

. (4.72)

where σ0 is the ρ- and T -dependent, but B-independent, result given in eq. (4.65) (corresponding

to the ν → ∞ limit of σxx). The temperature-dependence is simplest to describe in the regime of

small E, in which case eq. (4.67) can be used. In particular, for small temperatures in this case

σ0 ' C ′ρ/T 2/z and so is large for small T .

These expressions are graphed in Fig. 4.8, which plots σxx on the vertical axis against σxy on

the horizontal. Each curve corresponds to an integer choice for ν, stepping between the values ν = 1

and ν = 10, while the parameter σ0 varies along each curve. Each curve approaches σxy = ν in

86



Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

the large-σ0 limit (see below), and is a semi-circle centred on the σxx = 0 axis that passes through

the point σxy = χ and σxx = e−φ (so σ = τ). Each is a semi-circle because it is the image under

SL(2, R) of the straight line σxy = 0, obtained for χ = B = 0. Each curve passes through σ = τ

because σ and τ transform the same way under SL(2, R) and there is always a choice for σ0 for

which the initial value of σxx agrees with e−φ.

Figure 4.8. The conductivities (σxx plot-

ted vs σxy), as computed using eqs. (4.71)

and (4.72) with τ = 2 + i. Each curve cor-

responds to a different choice for ν, step-

ping from ν = 1 to ν = 10 through in-

teger values. σ0 is the parameter along

each curve, with σxy → ν in the limit of

large σ0. All lines are semi-circles centred

on the real axis, and all pass through the

point σ = τ , for the reasons explained in

the text (colour online).

There are several limits for which the conductivities

take a particularly simple form.

1. If e−2φ � ν2, (χ− ν)2 (or if χ = ν, or ν � 1, or if σ0 is

sufficiently large) then

σxx =
ν2

σ0
and σxy = ν . (4.73)

In particular, unless ν or χ are taken to be parametrically

large, this result holds to the extent that we neglect loop

corrections, which are controlled by powers of eφ. In par-

ticular, using the large-σ0 limit obtained at small T gives

the form:

σxx =
ν2

σ0
' ρ T 2/z

C ′B2
and σxy = ν = − ρ

B
. (4.74)

2. The limits of weak and strong magnetic field are also

simple. Weak magnetic field corresponds to ν →∞, which

gives

σxx → σ0

[
1− 2χ

ν
+ · · ·

]
and σxy → χ+

(σ0)2 − e−2φ

ν
+· · · ,

(4.75)

where the ellipses denote terms that are of relative order χ2/ν2, e−2φ/ν2 and σ2
0/ν

2. This generalizes

the calculation of the previous section to nonzero χ. By contrast, both conductivities vanish, σxx =

σxy = 0, in the limit of large B (or vanishing density) corresponding to ν → 0. The approach to

zero for small ν is given by eq. (4.73).

4.4.4 Plateaux, semi-circles and the low-temperature limit

Although remarkable, at face value the formulae of eqs. (4.71) and (4.72) do not generically describe

quantum Hall plateaux, which should have vanishing ohmic conductivity, σxx = 0, combined with

the defining plateau behaviour for which σxy does not change as B varies. By contrast, the generic

low-temperature limit of the above formulae produce a Hall conductivity that takes a continuous
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range of values, σxy = ν, as B is varied, and so does not show the characteristic plateau-like feature

of remaining constant as B varies over a finite range. As a result, at low temperatures and magnetic

fields the fluid has an ohmic conductivity that tracks the temperature and a Hall conductivity that

tracks the magnetic field (or filling fraction), as shown in the left panel of Fig. 4.9.

Figure 4.9. Left panel: Curves of constant σ0 and ν as computed semiclassically using the holographic
model in the regime ν � σ2

0 , e
−2φ � 1. Horizontal lines represent loci of fixed σ0 (and so also temperature),

while the sloped lines describe those of fixed ν (and so also fixed magnetic field). Right panel: the same
curves mapped to the strongly interacting near-plateau regime using an element of SL(2, Z). The semi-
circles radiating from the tip of the fan at the real axis represent lines of constant B, along which T varies.
Those transverse to these are lines of constant T . These illustrate a plateau behaviour inasmuch as all curves
converge to the same values of σxx and σxy for all values of magnetic field at low temperatures (colour
online).

The special point, σ = τ , in Fig. 4.8 where the many semi-circles cross is more plateau-like,

however. It is plateau-like in the following specific sense: once the temperature is adjusted to

sit at the point σ = τ , changes in ν do not change the value of the conductivity. What differs

between this point and those observed in quantum Hall systems is that for real systems the ohmic

conductivity should also vanish, corresponding to taking Im τ = e−φ → 0. Although plateaux with

Im τ 6= 0 cannot describe quantum Hall systems, it would be of great interest to compute their full

electromagnetic response to better understand their properties.

Clearly real quantum Hall systems (with Im τ → 0) cannot be captured by the semiclassical

limit, for which SL(2, R) is a good symmetry. Another hint that strong coupling should play a role

comes from the recognition that the classical near-horizon configuration for e−φ vanishes for extremal

magnetic black holes. Similarly, ref. [11] computes the compressibility of the fluid for the dilaton-

Maxwell system of S3 , and find that it is generically compressible, but would be incompressible

at strong coupling if the weak-coupling formulae were simply formally extrapolated into the strong-

coupling regime.
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Happily, there is a way to probe strong coupling if it is assumed that a discrete symmetry like

Γ = PSL(2, Z) (or one of its subgroups) survives in the strong-coupling limit. In this case the

behaviour near σxx = 0 is often the image under Γ of a calculable region with much larger σxx for

which the above calculations are valid. This is possible to the extent that it is only the weak-coupling

approximation that fails, since this is controlled by e−φ = Im τ � 1 and Γ maps regions with large

Im τ to regions where it is small (precisely as it does for Im σ).

For instance, imagine starting from σ = iσ0 at B = 0 and performing the transformations,

eq. (4.69), with a = p, b = r, c = q and d = s restricted to be integers, which yields

σxx =
σ0

s2 + q2 (σ0)2
and σxy =

pq (σ0)2 + rs

s2 + q2 (σ0)2
, (4.76)

where the domain of validity is large σ0, as before, and the assumed exact validity of the discrete

transformation. In particular, although we cannot compute the explicit T -dependence of σ0 very

close to T = 0, we need not be able to do so in order to explore the implications of the SL(2, R) and

SL(2, Z) transformations so long as σ0 →∞ as T → 0. In this limit

σxx ' 1

q2σ0

[
1 +O

(
1

σ2
0

)]
and σxy ' p

q

[
1 +O

(
1

σ2
0

)]
, (4.77)

where σ0 � 1. These show that as T → 0 the Hall conductivity, σxy, assumes a B and T -independent

quantized fractional value, p/q, while σxx vanishes. The behaviour near this point as ν and σ0 are

varied over values ν � σ0 � 1 is illustrated on the right-hand panel of Fig. 4.9, which plots the

image of the left panel under the discrete transformation, σ → σ/(σ+1), that maps σ =∞ to σ = 1.

These fractional values become bona fide quantum Hall plateaux if we also take e−φ →∞ together

with σ0 →∞, since then the same discrete transformation that maps σ → σ′ = σ/(σ+ 1) also takes

τ → τ ′ = τ/(τ + 1) as well as ν → ν′ = ν/(ν + 1). This ensures that the ν′-independent plateau at

σ′ = τ ′ occurs for Im τ ′ = Imσ′ = 0, rather than off in the interior of the σ-plane as was the case

for Fig. 4.8.

The precise values of p and q appearing in the fraction depend on the discrete group that is

assumed to be valid, and ref. [7] argues this generically to be SL(2, Z) (generated by S and T – see

Appendix A) in the presence of a spin structure, or Γθ(2) ⊂ SL(2, Z) (generated by S and T 2) for

no spin structure. In neither case does the above expression agree with real non-degenerate quantum

Hall systems, since SL(2, Z) allows arbitrary p, q, r and s, subject only to ps − qr = 1 and Γθ(2)

requires both r and q to be even (in which case p and s must be odd), or both r and q to be odd (with

both p and s even). Both cases allow even q, unlike the usual situation in Zeeman-split quantum

Hall systems.19

In particular, for spin-split systems with unbroken Γθ(2) symmetry this predicts Hall plateaux

19There is evidence for some Hall states with even denominators, but these are the exception rather than the rule
in the absence of more than one electron label (like spin, or layer number for bilayers or band label in graphene), for
which SL(2, Z) is the appropriate group.
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at fractions σxy = p/q where p is odd and q is even, or with p even and q odd. This is precisely

the duality group and Hall plateaux predicted [6] for bosonic Hall systems, described in S2 — c.f.

eq. (4.14) — suggesting the CFT is a strongly coupled analog of scalar electrodynamics.

Fermionic quantum Hall systems

Given this identification of the the CFT as a bosonic Hall system, it is clear what is required to obtain

a fermionic candidate to describe real quantum Hall systems. This is obtained from a bosonic system

by coupling to a boundary statistics field having an odd statistics parameter, ϑ = π, as in S2. Within

the present framework this is most easily done by performing the SL(2, Z) transformation, eq. (4.15),

that implements the addition of such a flux: g = S T−1S. The duality group that survives to strong

couplings for the fermionic system is then ΓF = gΓBg
−1, where ΓB is the corresponding group in the

boson system before the addition of the statistics flux. Assuming, as before, that ΓB = Γθ(2) for the

bosonic system leads to the fermionic group ΓF = gΓθ(2)g−1 = Γ0(2) (generated by S T 2S and T ),

as is shown in Appendix A. This is precisely the group (defined by the condition that q be even, and

so for which p and s must also be odd) multiply proposed over the years [24, 27, 6] as providing a

good phenomenological description of quantum Hall systems.

To find the T and B dependence of the conductivities in this case, first act on the initial bosonic

conductivity with g = S T−1S, for which p = s = q = −1 and r = 0. Starting with the dilaton-DBI

result without a magnetic field, σxy0 = 0 and σxx0 = σ0 given by eq. (4.67), then gives the fermionic

archetype:

σxx0 =
σ0

1 + σ2
0

and σxy0 =
σ2

0

1 + σ2
0

, (4.78)

which in the low-temperature regime approaches an integer quantum Hall level, σxy0 → 1.

The expression for general χ and B can then be found in one of two equivalent ways. One can

either directly act with S T−1S on the general bosonic result, eqs. (4.71) and (4.72); or one can act

on eq. (4.78) using the fermion SL(2, R) transformation obtained by conjugating the boson duality

transformation, (4.70), using g = S T−1S. This latter is obtained by using

g

(
a b

c d

)
g−1 =

(
a− b b

a− b+ c− d b+ d

)
. (4.79)

The plateaux themselves for the fermionic system can be found by acting on the basic case,

eq. (4.78), using a Γ0(2) transformation. Defining σ̂ = σxx0 + iσxy0 , with components taken from

(4.78), the conductivity near a plateau is

σ =
p σ̂ + r

q σ̂ + s
, (4.80)

where q is even (and so p and s are odd). In the low-temperature limit, where σ0 → ∞ we have
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Figure 4.10. Left panel: Curves of constant magnetic field (or ν′ = g(ν)) as computed semiclassically using
the holographic model and mapped onto a plateau using an element g ∈ PSL(2, Z). Right panel: the same
curves for lines of constant T (or σ0). Constant B lines are semicircles, while those along which B varies
become semicircles at sufficiently low temperatures (colour online).

σ̂ → 1 and so

σ → p+ r

q + s
, (4.81)

which clearly always has an odd denominator. The plateau-like behaviour is as illustrated on the

right-hand panel of Fig. 4.9.

Semicircles

The generation of conductivities using PSL(2, R), followed by mapping weak to strong coupling using

a discrete symmetry also naturally ensures the observed semicircle behaviour as one approaches a

quantum Hall plateau. This can be seen in Fig. 4.10, which plots how lines of constant ν and T

approach the plateau. Lines of constant ν obtained in this way are always semi-circles because they

are the images under PSL(2, R) and PSL(2, Z) of the straight line along which only σxx varies when

B = 0. Experiments varying B at sufficiently small T are also semicircles because these coincide

with semicircular temperature flow lines. This can be seen in Fig. 4.7.

4.5 Discussion and conclusions

We see that the DBI-based model examined here provides an example of a 3+1 dimensional grav-

itational system that has two desirable properties: (i) it admits an SL(2, R) duality group at the

classical level; and (ii) it has nonzero DC ohmic and Hall conductivities. The model is phenomeno-

logical, in that it is not part of an explicit string construction, but this is also unlikely to be relevant

for low-energy purposes so long as all of the other string ingredients do not play an important role

and so can be integrated out. These other stringy ingredients do play one important role, however,
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and that is to break the classical SL(2, R) group down to a discrete subgroup. The general properties

of 2+1 dimensional CFTs make this subgroup generically likely to be SL(2, Z) in situations where

a spin structure is relevant, or Γθ(2) ⊂ SL(2, Z) if a spin structure is not relevant.

These two properties are the minimal two things that would be required for a candidate descrip-

tion of low-energy quantum Hall systems, based on the phenomenological evidence in these systems

for an emergent discrete duality symmetry (summarized in S2 ). Any system with these properties

automatically captures all of the implications of the discrete symmetry that survives in the strongly

coupled regime, and in particular those enjoying an unbroken Γ0(2) duality group merit a closer

inspection to see how well they capture other properties of real quantum Hall systems. This section

discusses several kinds of observables of this type that are not simply consequences of duality.

4.5.1 A model-building wish list

Figure 4.11. Experimental plots, repro-

duced from ref. [55], of the temperature de-

pendence of the approach to various quan-

tum Hall plateaux, showing an exponential

form.

There are two kinds of predictions made by the specific

dilaton-DBI model examined here, that are typical of the

kinds of comparisons that can be made that go beyond the

implications of the duality groups.

Approach to zero temperature

Although having a duality group commute with the RG

flow to low temperatures predicts the properties of some of

the trajectories, σ(B, T ), in the conductivity plane [30], it

does not predict them all. The duality itself also does not

predict the dependence on T along the flow lines, although

these are often reasonably well-measured (c.f eq. (4.2), for

example). Since specific models predict this dependence

in detail, comparison with the measurements can help sort

out those models that provide the best description.

For instance, Fig. 4.11 shows how the ohmic DC con-

ductivity drops exponentially with T as one approaches

various quantum Hall plateaux, ∝ e−∆/T , over a wide range of temperatures. Like the incompress-

ibility of the quantum Hall state, this is consistent with the existence of a gap at low energies. By

contrast, the CFT corresponding to the gravity dual described above predicts a power-law for this

approach, such as the dependence σxx ∝ T 2/z seen near σxy = 1 in eq. (4.77).

When the background describes a neutral brane, the probe-brane approximation prevents our

direct exploration of the T → 0 limit and so cannot exclude a crossover to exponential behaviour at

very low temperatures. The same need not be true for the near-horizon extremal geometry explored

in S3 and Appendix D, however, and does not appear to indicate such a crossover. It is possible
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that this exponential is associated with the approach to the low-energy 2D surface in coupling space.

It is also intriguing that Fig. 4.11 shows deviations from an exponential form at sufficiently low

temperatures (although this may equally well just prove to be an experimental issue). This motivates

a more detailed study of the very low-temperature limit, as well as AdS/CFT systems having gaps

like the D7 system studied in [13]. We leave it as an open problem whether an alternative brane

construction could be made that leads to a duality-invariant form for the low-energy 4D effective

action consistent with an exponential temperature dependence.

Critical exponents

Another experimentally accessible feature not purely dictated on symmetry grounds is the powers,

α and β, governing the scaling of the resistivities in the low-temperature limit (c.f. eq. (4.5)) and

Fig. 4.5. As discussed in S2, these are measured to satisfy β ' α ' 0.42±0.04 [21], a result that can

be usefully compared with the predictions of a particular CFT. How does the dilaton-DBI gravity

dual described above do on this score?

The numerical equivalence α ' β would be easy to understand if the resistivity, ρab, near the

critical field, B = Bc + ∆B, depended only on T and ∆B through the one scaling combination

ρab ' ρab (x) with x :=
∆B

T p
, (4.82)

for some power p. This dependence implies(
dρxy
dB

)
Bc

=
1

T p

(
dρxy
dx

)
x=0

. (4.83)

Similarly, if ∆B is defined by the shape difference ∆ρxx = ρxx(x + ∆x) − ρxx(x −∆x), for a fixed

∆x, then

∆B ∝ T p ∆x . (4.84)

Comparing these two equations gives the prediction α = β = p.

Does this follow from the CFT explored above, and if so what is the predicted numerical size

of p? In the present instance σab and ρab come as functions of ν and σ0, and for small E we

have σ0 = σ0(ρ/T 2/z). For a neutral background brane z is a parameter that is free to be dialed by

adjusting the ‘Lifshitz sector’ that sets the background geometry, but the prediction σ0 = σ0(ρ/T 2/z)

eventually breaks down for sufficiently small T . Alternatively, for a charged background brane this

prediction survives to lower temperatures, and the near-horizon, near-extremal geometry gives the

universal value z = 5 along the lines described in S3 and Appendix D. In either case we have the

following scaling form for the conductivities

σab = σab(ν, σ0) = σab
(

ρ

T 2/z
,
B

T 2/z

)
, (4.85)
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where the same power of T appears with both the charge density, ρ, and magnetic field, B, because

both have no anomalous dimension (since both Jµ and εµνλFνλ are conserved currents in 2+1

dimensions). Near a critical field, B = Bc + ∆B, this is a function of two variables

σab ' σab
(

∆ν,
∆B

T 2/z

)
, (4.86)

and so has the form of eq. (4.82) for temperatures small enough that ∆B/T 2/z � ∆ν. This regime

then predicts α ' β ' p ' 2/z. The observed exponent, p ' 0.4, corresponds to the choice z ' 5

for the dynamical exponent. Remarkably, this is precisely the universal value found for z in S3 and

Appendix D for the near-horizon geometry of the near-extremal black hole.

Summary

Quantum Hall systems are characterized by an impressive suite of phenomena — quantization of

the Hall conductivity; selection rules for allowed transitions between plateaux; semi-circle behaviour;

ρxx → 1/ρxx duality — that control the properties of, and the transitions between, quantum Hall

plateaux. The observational evidence for these phenomena is remarkably robust; more robust than

the extant theoretical explanations that are based directly on the detailed dynamics of the underlying

electrons.

All of these phenomena would be robustly explained if the very low-energy approach to the

quantum Hall plateaux were controlled by the RG flow through an approximately two-dimensional

subspace of the space of couplings, that commutes with the duality group Γ0(2) ⊂ SL(2, Z). There

is good evidence that duality groups of this type can robustly emerge within 2+1 dimensional CFTs.

What has been missing is an explicit class of CFTs within which this hypothesis can be made precise,

and compared in more detail with the extant experiments.

The advent of AdS/CFT models including both a discrete duality group and nonzero DC ohmic

and Hall conductivities opens up the first class of models of the required type, and so opens up a

new way to describe the low-energy behaviour of quantum Hall systems. We provide an explicit

calculation of the DC conductivities in a simple example of this class, and describe its predictions

for the low-energy approach to the quantum Hall plateaux. It generically predicts an approach for

which the ohmic conductivity vanishes as a power T 2/z, and some observations suggest z ' 5. Most

remarkably, z = 5 is precisely the value predicted at low temperatures if the background is described

by a charged dilaton-Maxwell or dilaton-DBI brane. Better yet, in this case the near-horizon, near-

extremal geometry predicts z = 5 in the far IR even if z = 1 in the asymptotic geometry describing

the UV.

The dilaton-DBI model examined here has several attractive ingredients likely to be worth in-

corporating into future AdS/CFT modeling of quantum Hall systems: the presence of the SL(2, R)

symmetry, broken by quantum effects to SL(2, Z) or a subgroup; a DBI-like dynamics that natu-
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rally incorporates nonlinear effects that go beyond linear response; and the attractor near-horizon,

near-extremal geometry that can make universal predictions (like z = 5) for very low energies if

taken beyond the probe approximation. Its main drawback is the necessity to work within the probe

approximation to obtain a DC resistance, requiring the invocation of a separate ‘Lifshitz’ sector

whose sole purpose is to generate the same background geometry.

But more interesting than this particular example is probably the opening up of a class of modular

models, within which the drawbacks can be removed and a variety of more detailed comparisons with

observations can begin to be explored.

Acknowledgements

We thank Shamit Kachru for giving a head’s up about ref. [11], and Sean Hartnoll, Gary Horowitz,

Clifford Johnson, Rob Myers and Al Shapere for useful conversations. CB thanks summer students

A. Chan, U. Hussein, Z.Y. Niu and Y.F. Wang for their help, and the Aspen Center for Physics for

providing the spectacular environment where parts of this work were done, and BD thanks McMaster

University and the Perimeter Institute for hospitality as work progressed. This research has been

supported in part by funds from the Natural Sciences and Engineering Research Council (NSERC)

of Canada. Research at the Perimeter Institute is supported in part by the Government of Canada

through NSERC and by the Province of Ontario through the Ministry of Research and Information

(MRI).

4.A Some useful properties of SL(2, R) and SL(2, Z)

The purpose of this appendix is to group together useful facts about the groups SL(2, R), PSL(2, R)

and their subgroups.

The group SL(2, R) consists of real-valued (or, for SL(2, Z), integer-valued) two-by-two matrices

with unit determinant:

M :=

(
a b

c d

)
, (4.87)

where det M = 1 requires ad− bc = 1.

The group PSL(2, R)

Complex quantities can contain the action of this group through fractional-linear transformations,

z → a z + b

c z + d
. (4.88)

As is easily checked, repeated applications of this transformation rule reproduces the same group

multiplication law as is obtained by multiplying the matrix representation M . Because eq. (4.88)
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is invariant under a simultaneous change of sign in all four parameters, a, b, c and d, it is more

properly regarded as a realization of the group PSL(2, R) obtained from SL(2, R) by identifying

group elements that are related by M → −M .

The real and imaginary parts of eq. (4.88) arise often in the main text, and are given by

z1 → ac (z2
1 + z2

2) + (ad+ bc)z1 + bd

c2(z2
1 + z2

2) + 2cdz1 + d2
(4.89)

z2 → z2

c2(z2
1 + z2

2) + 2cd z1 + d2
, (4.90)

where z := z1 + iz2. The second of these equations is simplified using ad− bc = 1.

The group SL(2, Z) and some of its subgroups

Any element of the group obtained when the elements of M are integer-valued can be generated as

a product of powers of two specific elements, traditionally called

S :=

(
0 1

−1 0

)
and T :=

(
1 1

0 1

)
, (4.91)

for which the fraction-linear transformation, (4.88), becomes

S(z) = −1

z
and T (z) = z + 1 . (4.92)

Direct matrix multiplication shows these have the property (S T )3 = 1.

Regarded as acting on the complex variable z, the group PSL(2, Z) maps the upper half-plane

onto itself since both S and T preserve the sign of z2. Any point in the upper half-plane can

be reached from a ‘fundamental domain’, which can be taken as the intersections of the regions

− 1
2 ≤ z1 ≤ 1

2 and |z| ≥ 1.

The subgroup Γθ(2)

The subgroup20 Γθ(2) can be defined as that subgroup of SL(2, Z) that is generated by S and T 2,

rather than S and T . Since T 2 written explicitly is

T 2 :=

(
1 2

0 1

)
, (4.93)

it is clear that both S and T 2 have the property that either b and c are both odd, or they are both

even. Since this property is preserved under matrix multiplication, it is true for all of the elements

of Γθ(2), and it can be regarded as an alternative definition of the group.

20Our notation is taken from [56].

96



Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

A fundamental domain for Γθ(2), from which the entire upper half-plane can be generated, can

be taken as the intersection of the regions −1 ≤ z1 ≤ 1 and |z| ≥ 1.

The subgroup Γ0(2)

The subgroup of SL(2, Z) whose properties are relevant to fermions (and so to real quantum Hall

systems) is Γ0(2). It can be defined, as in the main text, as that group obtained by conjugating the

elements of Γθ(2) by the element g = S T−1S ∈ SL(2, Z):

Γ0(2) = g Γθ(2) g−1 . (4.94)

To see what the generators of Γ0(2) are it suffices to conjugate the two generators of Γθ(2), to get:

g S g−1 = (S T−1S)S(S TS) = S T−1S TS = S T−1(S T )−2S

= S T−1(T−1S)2S = S T−2S T−1 , (4.95)

which uses (S T )3 = 1 to write S T = (S T )−2. Similarly,

g T 2g−1 = (S T−1S)T 2(S TS) = S T−1S T 2(S T )−2S

= S T−1S T 2(T−1S)2S = S T−1S TS T−1

= S T−2S T−2 . (4.96)

But any group element that can be obtained from products of powers of these generators can equally

well be generated by products of powers of the more usually chosen generators

S T 2S =

(
−1 0

−2 −1

)
(4.97)

and T . Notice that both S T 2S and T have the property that the lower-left element c is even, and

since this is preserved under group multiplication it is true for all of the elements of Γ0(2). The

condition ad − bc = 1 then implies that both a and d must be odd. The condition of even c turns

out to provide an equivalent definition of the group.

A fundamental domain for the group Γ0(2) can be taken as the intersections of the region 0 ≤
z1 ≤ 1 and

∣∣z − 1
2

∣∣ ≥ 1
2 .

The group element as a function of B, χ and ρ

In S4 of the text the SL(2, R) transformation is required that maps the special case of B = χ = 0

onto the general case. This subsection determines the required transformations.
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Starting with the xy-component of (4.23), we see

Fxy = d (Fxy)0 − c (G̃xy)0

−G̃xy = b (Fxy)0 − a (G̃xy)0 , (4.98)

so using Fxy = B and G̃xy = −εtvxyGvt =
√
−g Gvt = ρ, and B0 = 0, gives the relations

c = −B
ρ0

and a =
ρ

ρ0
. (4.99)

Finally, performing the inverse transformation to

e−φ =
e−φ0

d2 + c2 e−2φ0
and χ =

ac e−2φ0 + bd

d2 + c2 e−2φ0
. (4.100)

gives

χ0 = 0 =
−dc(χ2 + e−2φ)− ab+ (ad+ bc)χ

(a− cχ)2 + c2 e−2φ
, (4.101)

which can be solved for d once b = (ad− 1)/c is used, giving

d = ρ0

[
ρ+Bχ

(ρ+Bχ)2 +B2e−2φ

]
, (4.102)

and so b = (ad− 1)/c is

b = ρ0

[
χ(ρ+Bχ) +B e−2φ

(ρ+Bχ)2 +B2e−2φ

]
. (4.103)

The final form for the conductivities is therefore found by choosing ρ = ρ0
21 and therefore a = 1,

leading to c = −B/ρ = 1/ν, where ν = −ρ/B is the filling fraction (with the sign appropriate for a

negatively charged particle). The remaining two parameters then are

b =
ν
[
χ(ν − χ)− e−2φ

]
(ν − χ)2 + e−2φ

and d =
ν(ν − χ)

(ν − χ)2 + e−2φ
, (4.104)

These are the results quoted in section S4.

4.B DBI thermodynamics

This section reproduces some of the thermodynamic properties of the dilaton-DBI system, which do

not differ significantly from the non-dilaton case studied in ref. [13].

21As discussed in the main text, keeping ρ 6= ρ0 allows the formulae to be generalized to arbitrary values for the
charges of the carriers in the CFT.

98



Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

Free Energy

The free energy (density) is found by evaluating the bulk action at the classical solution, and re-

garding the result as a function of the boundary values. Since the asymptotic value of At gives the

chemical potential, the result is naturally viewed as a thermodynamic potential whose variables are

T , µ, and B. It is convenient to instead work at fixed charge density, so we follow [13] (see also [57])

by performing the Legendre transformation to obtain the potential whose natural variables are T , ρ

and B:

f(T ) =
TSgauge

V2
+ µJ t. (4.105)

For the purposes of thermodynamics it suffices to work with the following gauge field ansatz,

A = Φ(v) dt+Bx dy. (4.106)

The solution to the field equations for Φ is then

Fvt = Φ′ =
1

v1+z

C√
v−4 +

(
`2

L2

)2
(B2 + C2)

, (4.107)

where C is an integration constant. Eq. (4.107) can be integrated, to obtain

Φ(v) = µ(vh) +

∫ v

ε

dv̂

v̂1+z

C√
v̂−4 +

(
`2

L2

)2
(B2 + C2)

. (4.108)

Here µ is another integration constant, to be interpreted as the chemical potential, whose value is

determined by the condition that Φ(vh) = 0 at the black hole horizon. This gives the following

expression for the chemical potential as a function of horizon position (temperature),

µ(T ) =

∫ vh

ε

dv̂

v̂1+z

C√
v̂−4 +

(
`2

L2

)2
(B2 + C2)

. (4.109)

Expanding the solution near the conformal boundary, v = 0, gives

Φ = µ− 1

vz−2

(
C

z − 2

)
+ · · · , (4.110)

which shows that the constant, C is related to the boundary charge density by

J t = T `4 C . (4.111)
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The free energy becomes

f(T ) = −T L4

∫ vh

ε

dv

v1+z

v−4 +
(
`2

L2

)2

B2√
v−4 +

(
`2

L2

)2
(B2 + C2)

+ µ(T )J t , (4.112)

with the second term evaluated using eq. (4.109). The resulting integral diverges, but since these

divergences are independent of temperature they can be regulated by subtracting the free-energy at

zero temperature, giving the finite result

∆f := f(T )− f(0)

= −T L4

∫ vh

∞

dv

v1+z

√
v−4 +

(
`2

L2

)2

(B2 + C2) (4.113)

∝ T `2 L2T
√
B2 + C2 +

T L6 T 1+4/z

`2
√
B2 + C2

+ · · · , (4.114)

where the ellipses denote higher orders in temperature. Without an exact form for h(v) it is impos-

sible to keep track of numerical factors in these expressions.

First and Second Order Quantities

Differentiating eq. (4.114) gives various thermodynamic quantities. The entropy is

S = − ∂f
∂T
∝ T `2 L2

√
B2 + C2 +

T L6

`2
√
B2 + C2

T 4/z , (4.115)

while the specific heat is

cV = −T ∂
2f

∂T 2
∝ T L6 T 4/z

`2
√
B2 + C2

, (4.116)

at low temperatures.

The regularization described above, simply subtracting the zero-temperature result, is insufficient

to render the magnetization density finite since this doesn’t involve differentiating with respect to

temperature. It consequently receives a contribution from the diverging zero-temperature terms.

The required integral is a hypergeometric function, which at low temperatures gives

m = − 1

V2

∂f

∂B
∝ T `2 L2 T√

B2 + C2
+ T `2L2Bε−z+2 , (4.117)

where ε is a cutoff representing the UV sensitivity of the temperature-independent contribution.

Finally the magnetic susceptibility is (at zero magnetic field)

− 1

V2

∂2f

∂B2
∝ T `

2L2 T

C
+ T `2 L2 ε−z+2 , (4.118)
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where numerical factors are not followed in the relative normalization between the two terms.

4.C Validity of the Probe-brane Approximation

Here we investigate the region in which the probe brane approximation is valid, closely following

[13]. We vary the action with respect to gtt to find the energy density, and insist it must be less than

the background energy density ∼ 1
κ2L2 .

Our action (assuming ohmic conductivity and a constant electric field) takes the form

Sgauge = −T
∫

d4x
√
−g
√

1 + `4e−φ (gttgvv(Φ′)2 + gvvgxx(A′)2 + gttgxxE2) (4.119)

= −T
∫

d4x
√
−gX. (4.120)

Varying this action with respect to gtt gives

T√
−gX

(
g2
xxgvv + `4e−φ(A′)2gxx

)
, (4.121)

Similarly, the background energy density is found from varying
√
−g 1

κ2L2 . This gives

g2
xxgvv√
−g

1

κ2L2
. (4.122)

The probe brane condition is therefore

γ :=
1

X

(
1 + `4e−φ(A′)2gvvgxx

)
� 1

κ2L2T
. (4.123)

Since we’re only interested in the conductivity calculation, this condition only needs to hold at v?.

We evaluate γ using equation (4.22) of the main text,

√
−gT `

4e−φ

X
gvvgxxA′ = Cx and

√
−gT `

4e−φ

X
gvvgttΦ′ = Ct, (4.124)

and plug this into the definition of γ. As in the conductivity calculation, we opt to trade the

functions, Φ and A, for the conserved quantities, Ct and Cx. This gives us

γ =X

(
1

X2
− (Cx)2gxxgvv

gT 2`4e−φ

)
(4.125)

=X

(
1

X2
− (Cx)2

gttgxxT 2`4e−φ

)
(4.126)

=

√
N

D

(
D

N
−D + 1 +

(Ct)2

T 2`4e−φg2
xx

)
, (4.127)
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where

N :=1 + `4e−φ
(

E2

gttgxx

)
(4.128)

D :=1 +
1

T 2`4e−φ

[
(Ct)2

g2
xx

+
(Cx)2

gxxgtt

]
(4.129)

X =

√
N

D
. (4.130)

For small electric fields the conductivity is evaluated at v? ' vh. Near the horizon gtt → 0 and

so

X =

√
N

D
→ `4e−φT

σxx
as v → vh. (4.131)

We still haven’t assumed that v = v? yet. When we assume v = v?, N = D = 0. Finally, taking

v? → vh, γ becomes

γv? =

[(
σxx

`4e−φ?T

)
+
`4e−φ?T
σxx

+
(Ct)2

T σxxg2
xx?

]
. (4.132)

The conductivity itself is given by

σxx =
√

(T `4e−φ?)2 + `4e−φ?(Ct)2/(g2
xx?), (4.133)

allowing us to write γ? in terms of the ohmic conductivity as

γ? =
2σxx

`4e−φ?T
. (4.134)

We can now put a constraint on the conductivity, σxx, instead of γ?. Using (4.123), our condition is

(dropping factors of order unity)

σxx � `4e−φ?

L2κ2
. (4.135)

To be clear, we took the limit v → v?, and used the fact that N = D = 0 in this limit, while keeping

their ratio undetermined. We then took the limit22 v? → vh, which then fixes the ratio N
D in terms

of the conductivity, σxx. Notice how this condition on σxx is independent of brane tension and just

on the ratio of the coupling strengths of the gauge and gravity sector.

We can use this relation to put a constraint on the charge density instead. Since we know at low

temperatures, σxx behaves as

σxx ' v2
?`

2ρe−φ?/2, (4.136)

there is a condition on rho,

ρ� `2e−φ?/2

v2
?κ

2L2
. (4.137)

22The alert reader will notice that the argument above takes these limits in the opposite order, but the same result
can be obtained by first letting v → v? provided l’Hôpital’s rule is used to resolve the limit N/D = N ′/D′ that arises
in the result.
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This ensures that we can not go to zero temperature (v? ∼ vh → ∞) for finite values of ρ without

taking our gauge coupling, `2e−φ to infinity (weak coupling).

Dilaton Field Equations

We can now ask what happens to the dilaton equations of motion near the horizon. We again focus

on χ = 0 and an ohmic conductivity with a constant electric field. Looking at the source term of

the dilaton equation,

�φ = −κ
2T `4e−φ

4X

[
gttgvv(Φ′)2 + gvvgxx(A′)2 + gttgxxE2

]
, (4.138)

we can again trade out the gauge functions for the conserved quantities. This makes the source of

the dilaton equation,

�φ = −κ
2T (X2 − 1)

4X
. (4.139)

We take the near-horizon limit and use (4.131) to express this in terms of the ohmic conductivity,

4�φ
κ2

= −T
2`4e−φ

σxx
+

σxx

e−φ`4
. (4.140)

This is actually quite interesting - it seems that the dilaton is driven to strong or weak coupling de-

pending on the initial value of the dilaton and the conductivity. In fact, with too large a conductivity

the dilaton is driven to strong coupling, ruining our probe brane approximation near the horizon.

Of course, this can always be remedied by choosing a sufficiently weak coupling as our initial value

of the dilaton when integrating the equations of motion.

4.D DBI near-horizon extremal geometry

In this section we compute the attractor exponent z for the near-horizon geometry of the extremal

black hole using the dilaton-DBI action beyond the probe-brane approximation, verifying that z = 5

as for the dilaton-Maxwell case. Although our real interest is the near-extremal case in order to

maintain calculational control, the simpler extremal geometry suffices for the purpose of identifying

z. For simplicity we work with the purely electric black brane in dilaton-DBI gravity, with both

the magnetic and axion fields set to zero. We return to generalizing to near-extremal and nonzero

magnetic and axion fields at the end.
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Action and field equations

With the axion set to zero the action becomes

S = −
∫

d4x
√
−g

{
1

2κ2

[
R− 2Λ +

1

2
∂µφ∂

µφ

]
+ T

(
X − 1

)}
, (4.141)

with

X =

√
1 +

`4

2
e−φF 2 − `8

16
e−2φ(FF̃ )2 , (4.142)

as before. The field equations for this action are

∇µGµν = 0 , (4.143)

�φ+
κ2

4
GµνFµν = 0 , (4.144)

with

Gµν =
T `4

X

[
e−φFµν − `4

4
e−2φ(FF̃ )F̃µν

]
, (4.145)

and

Rµν +
1

2
∂µφ∂νφ− Λ gµν +

κ2T
X

[
`4 e−φFµλFν

λ − (X − 1)gµν

]
= 0 . (4.146)

Radial ansatz

We seek solutions to these equations subject to the ansatz φ = φ(r) and F = Frt(r) dr ∧ dt, with

metric

ds2 = −h(r) e−ξ(r) dt2 +
dr2

h(r)
+ r2

(
dx2 + dy2

)
. (4.147)

These coordinates are related to those in the main text by r = 1/v, so conformal infinity is at r →∞
and the horizon is at r = 0 (for an extremal black brane).

The Maxwell equation, eq. (4.143), integrates to give

Grt = − Qe e
ξ/2

r2
, (4.148)

where Qe is an integration constant. Combining this with the constitutive relation, eq. (4.145), then

gives (after some algebra)

−e−φF 2 =
4Q2

e

2Q2
e`

4 + 1
4 (T`4)

2
r4 e−φ

. (4.149)

The dilaton equation, eq. (4.144), evaluated using the above ansatz becomes

(
r2e−ξ/2 hφ′

)′
− κ2Qe

4
Frt = 0 , (4.150)
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where primes denote differentiation with respect to r. Evaluation of the Einstein equations requires

the following components of the Ricci tensor,

gttRtt =
h′′

2
− 3h′ ξ′

4
− h ξ′′

2
+
h (ξ′)2

4
+
h′

r
− h ξ′

r
,

grrRrr =
h′′

2
− 3h′ ξ′

4
− h ξ′′

2
+
h (ξ′)2

4
+
h′

r
,

gxxRxx = gyyRyy =
h′

r
− h ξ′

2 r
+
h

r2
. (4.151)

With these, the (tt)− (rr) Einstein equation becomes

ξ′ +
r

2
(φ′)

2
= 0 , (4.152)

while the (xx) and (yy) Einstein equations give

h′

r
− h ξ′

2 r
+
h

r2
= Λ + κ2T

(
X − 1

X

)
. (4.153)

Solutions

Eq. (4.153) has a simple power-law solution for any region where X is approximately constant. These

resemble the known solutions [49] for the pure dilaton-Maxwell case, which are included here as the

special case r →∞ since e−φ F 2 → 0 implies X → 1 in this regime. The power-law solution is

h ∝ r2 and e−ξ ∝ rωξ , (4.154)

for any ωξ. Eq. (4.152) then implies φ is also described by a power law,

eφ ∝ rωφ , (4.155)

with ωξ = 1
2 ω

2
φ. There are two ways that Frt can then scale consistent with having X constant, and

these define the regimes of large and small r that are of particular interest.

Large-r regime

The large-r regime exploits the above solution by choosing ωφ = ωξ = 0, which implies r4e−φ →∞
as r → ∞ and so — from eq. (4.149) — we have e−φF 2 ∝ 1/r4 → 0 and so X → 1. In this limit

eq. (4.145) implies the Maxwell field falls off as

Frt ∝
1

r2
, (4.156)
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which, when used in the dilaton equation, eq. (4.150), gives the sub-dominant fall-off: φ−φ∞ ∝ 1/r4.

This gives the asymptotic geometry

ds2 ' h∞ r2 dt2 +
dr2

h0 r2
+ r2

(
dx2 + dy2

)
, (4.157)

and so defining the anisotropic exponent z by gtt ∝ r2z when gxx = gyy ∝ r2 shows that z = 1 in

the UV (large-r) limit.

Small-r regime

The other regime of constant X is the near-horizon limit, r → 0. In this case X can be constant

if eφ ∝ r4 as r → 0, so that r4e−φ in the denominator of eq. (4.149) approaches a constant. The

same arguments as given above using the Einstein equations then show h ∝ r2 and e−ξ ∝ r8. The

constitutive equation, (4.145), then implies Frt ∝ r6, which when used in the dilaton equation,

eq. (4.150), gives the consistency condition

(
r4e−ξ/2φ′

)′
∝ r6 , (4.158)

which is consistent with the above choices: φ′ ∝ 1/r and e−ξ/2 ∝ r4.

This gives the asymptotic near-horizon geometry as

ds2 ' h0 r
10 dt2 +

dr2

h0 r2
+ r2

(
dx2 + dy2

)
. (4.159)

Again defining the anisotropic exponent z by gtt ∝ r2z when gxx = gyy ∝ r2 shows that z = 5 in the

IR (near-horizon) limit.

Once these powers are chosen the values of the pre-multiplying constants are also fixed by the

field equations. That is, if h ' hh r
2, eφ ' eφh r4 and e−ξ ' e−ξh r8 then the constants hh, φh and

ξh can be computed using the field equations. This implies a prediction, in particular for the value,

Xh, obtained by the function X as r → 0, given by

Xh =

√
(6 + 2T̂ )2 + 5T̂ 2 − (6 + 2T̂ )

T̂
, (4.160)

where T̂ := κ2L2T is a dimensionless brane tension. Notice this has the property that 0 ≤ Xh ≤ 1,

with Xh varying from zero to unity as T̂ varies from zero to infinity, and always satisfies κ2L2T /Xh >

1.

Generalizations

We next record in passing several easy generalizations to these solutions.
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Near-extremal black hole

There is a simple generalization of the r → 0 solution to include a nonzero temperature. This comes

from the recognition that h ∝ r2 is not the only solution to eq. (4.153) in the regime where X is

constant. Since this equation is linear in h a more general solution is obtained by adding to this the

solution to the homogeneous equation,

h′

r
− h ξ′

2 r
+
h

r2
=
h′

r
+

5h

r2
= 0 , (4.161)

where the first equality uses the same solution for ξ as before: ξ′ = −8/r. The more general solution

is then clearly

h = h0 r
2

[
1−

(rh
r

)7
]
, (4.162)

where the integration constant, rh, denotes the nonzero position of the horizon of the now non-

extremal black hole.

Since only h(r) is modified, eqs. (4.152) and (4.149) remain solved using the previous solutions

eφ ∝ r4 and e−ξ ∝ r8. Furthermore, since F 2 is independent of h(r) it is still true that X is constant

for this new solution. All that remains is to check the dilaton equation, eq. (4.150), which is easily

seen to be solved because rh drops out of

(
r2e−ξ/2 hφ′

)′
= 4h0 e

−ξ0/2
{
r7

[
1−

(rh
r

)7
]}′

= 28h0 e
−ξ0r6 . (4.163)

This solution provides the near-horizon, near-extremal geometry that governs the low-temperature

limit. In particular, it verifies that the presence of a nonzero temperature does not change the value

found earlier for z = 5 in the far IR.

Nonzero axion and magnetic field

Another trivial generalization is to act on the above near-horizon solutions with SL(2, R) to generate

their analogs having nonzero axion and magnetic fields. Because the field equations and Bianchi

identities demand G̃xy =
√
−g Grt = −Qe and Fxy = Qm are constants, it is useful to use the

SL(2, R) transformations

(−G̃xy) = a(−G̃xy)0 + b(Fxy)0 and (Fxy) = c(−G̃xy)0 + d(Fxy)0 , (4.164)

to learn a = 1 (if we demand we do not change Qe) and c = Qm/Qe (if we start from zero magnetic

charge, Qm = 0). Then after transforming the axion and dilaton become

eφ = c2 e−φ0 + d2 eφ0 and χ =
ac+ bd e2φ0

c2 + d2 e2φ0
' Qe
Qm

[
1 +O

(
r8
)]
, (4.165)
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which uses eφ0(r) ∝ r4 as r → 0. This shows that eφ is driven to strong coupling (for which the above

classical arguments break down) as soon as Qm 6= 0. The axion is similarly driven to χ → Qe/Qm

as r → 0, and although this classical conclusion cannot be trusted in the strong-coupling limit,

the attraction to quantized fractions is an exact consequence of unbroken PSL(2, Z) (or one of its

subgroups).
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Chapter 5

Holographic Finite Scaling

Preface

While the preceding paper in chapter 4 presents a model for the quantum Hall effect using gauge-

gravity duality that captures much of the experimental physics, a number of issues still remain. One

of these issues is the experimental observation that the dynamical critical exponent in quantum Hall

systems has been measured to be z = 1 in a number of experiments. However, the quantum Hall

model which predicts p = 0.4 = 2/z requires that z = 5. This apparent contradiction creates a

potential problem for the Hall-ographic model. One of these experiments measuring z = 1 is quickly

resolved when it is understood that the measurement is done in the UV [24], which is in agreement

with the quantum Hall-ography since z = 1 in the UV. Another experiment measuring z = 1 is done

through the measurement of the finite size scaling of the quantum Hall system [25]. The purpose

of this paper is first and foremost to develop a framework in which to treat finite size effects in

AdS/CMT, and then applying it to our quantum Hall-ography model. In particular, the finite size

scaling paper is to see whether the it is possible to produce the results of [25] while still maintaining

the z = 5 result in the IR. It turns out in the purely scale-invariant case, our framework does not

agree with experiment. This is due to very basic scaling arguments in which the only parameters

entering the system are temperature, system size, and charge density. However, this paper does

leave the door open for interesting scaling behaviour in the non-scale invariant case, in which an

additional dimensionful parameter becomes a relevant quantity in the system. While this paper

doesn’t have a definite conclusion in which way this new parameter affects the scaling, its existence

leads to potential future research programs to better understand the field theory corresponding to

our quantum Hall-ography model.
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Abstract
At low temperatures observations of the Hall resistance for Quantum Hall systems at the interface

between two Hall plateaux reveal a power-law behaviour, dRxy/dB ∝ T−p (with p = 0.42 ± 0.01);

changing at still smaller temperatures, T < Ts, to a temperature-independent value. Experiments

also show that the transition temperature varies with sample size, L, according to Ts ∝ 1/L. These

experiments pose a potential challenge to the holographic AdS/QHE model recently proposed in

arXiv:1008.1917. This proposal, which was motivated by the natural way AdS/CFT methods

capture the emergent duality symmetries exhibited by quantum Hall systems, successfully describes

the scaling exponent p by relating it to an infrared dynamical exponent z with p = 2/z. For a broad

class of models z is robustly shown to be z = 5 in the regime relevant to the experiments (though

becoming z = 1 further in the ultraviolet). By incorporating finite-size effects into these models we

show that they reproduce a transition to a temperature-independent regime, predicting a transition

temperature satisfying Ts ∝ 1/Ln+1, even though z = 5 governs the temperature dependence of the

conductivity in all cases. The parameter n depends on how a brane tension, T , scales as L varies, with

n = 4 (so Ts ∝ 1/L5) if the tension is negligible or scale invariant. Ts ∝ 1/L corresponds to T ∝ L2.

The possibility of a deviation from naive z = 5 scaling arises because the brane tension introduces a

new scale, which alters where the transition between UV and IR scaling occurs, in an L-dependent

way. The AdS/CFT calculation indicates the two regimes of temperature scaling are separated by a

first-order transition, suggesting new possibilities for testing the picture experimentally. Remarkably,

in this interpretation the gravity dual of the transition from temperature scaling to temperature-

independent resistance is related to the Chandrashekar transition from a star to a black hole with

increasing mass.
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5.1 Introduction

In essence the AdS/CFT correspondence asserts that the space of field theories is smaller than had

been previously thought: two theories previously believed to be unrelated to one another turn out to

be different descriptions of the same physics [1]. This equivalence was not understood earlier because

it is the strongly coupled limit of one theory in the pair that is equivalent to the weakly coupled limit

of the other, and vice versa. What is most remarkable is how dramatically different the two related

theories superficially are: a non-gravitational theory in d dimensions is equivalent to a gravitational

theory in d+ 1 dimensions. See ref. [2] (or refs. [3]) for an intuitive (or more detailed) review.

This observation has generated considerable recent interest in applying AdS/CFT methods to

condensed matter systems (for reviews, see [4]). The desired end-game for these studies is to find

a gravity dual that correctly predicts the properties of a system of strongly correlated electrons.

The hope is that AdS/CFT methods might shed light on dynamics to which current tools have no

access by providing a new class of relatively simple physical models of strongly interacting systems.

Quantum Hall systems — for which strongly correlated electrons exhibit a variety of surprising and

remarkable properties [5] — provide a promising point of potential contact for AdS/CFT methods

[6].

For this paper our interest is in a particular AdS/QHE approach, ref. [7], which starts from the

observation that transitions among quantum Hall plateaux exhibit a number of robust experimental

properties [8, 9] that have a simple and universal phenomenological interpretation [10] in terms of a

class of emergent ‘symmetries’ [11]. These symmetries act directly on the Ohmic and Hall conduc-

tivities: if σ = σxy + iσxx is measured in units of e2/h, then a variety of remarkable observations are

consistent with (and derivable from) the statement that the flow of σ with changing temperature

commutes with the action of a discrete duality group: σ → (a σ + b)/(c σ + d), with integers a, b,

c and d satisfying ad − bc = 1, with c even. Although evidence has been accumulating over many

years [12] that (2+1)-dimensional conformal systems very often enjoy such symmetries, this property

turns out to be particularly manifest within the AdS/CFT framework [13, 14].

Of course, given a class of theories that capture these symmetries, the acid test is to find models

that also get other experiments right that do not follow immediately from symmetry considerations.

An encouraging feature of the proposal of ref. [7] is that it correctly models a measured scaling

exponent whose numerical value is not simply a consequence of the emergent symmetries. Specifically,

as described more fully below, between two Hall plateaux the differential Hall resistance at low

temperatures behaves as (
dRxy
dB

)
Bc

∝ T−p , (5.1)

with p measured to be p = 0.42 ± 0.01 [9, 15]. In [7] this is predicted to be p ' 2/z, where z is an

infrared dynamical exponent [18] whose value evaluates (for a broad class of models – see below) to

5.
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But the real power of having an explicit model is that it allows different measurements to be

related to one another. In particular, because z is a dynamical exponent (i.e. describes the relative

scaling of time and space as one coarse-grains high-frequency modes), a prediction for z can be tested

in other ways besides through its implications for p, and these must also agree with experiment. And

for quantum Hall systems several other measurements appear to indicate z = 1 [15, 17].

Our purpose in this paper is to argue that the experimental evidence for z = 1 is consistent with

the AdS/QHE framework proposed in [7], including its successful description of p. There are two

separate reasons for this, both of which come down to the precise domain of validity of the theory’s

reproduction of z = 5. First, although the theory allows z = 5 for the dynamical scaling exponent in

the far infrared, it also predicts a crossover to z = 1 in the ultraviolet. So experiments that indicate

z = 1 in the ultraviolet, such as AC conductivity measurements [17], do not actually disagree, even

at face value, with the z = 5 temperature scaling found in the deep infrared by [7].

More problematic are experiments like [15], that find evidence for z = 1 directly in the same

regime where p is measured. As described in more detail below, these measurements find that at small

enough temperatures the scaling behaviour, eq. (5.1), eventually stops, with dRxy/dB becoming

T -independent for T < Ts. The evidence for z = 1 comes because the crossover temperature between

the scaling and T -independent regimes is observed to vary with system size, L, as Ts ∝ 1/L.

To address these measurements we extend the analysis of [7] to include finite-size effects, in order

to see if the AdS/QHE model properly captures the onset of a T -independent regime. We find that

it does, predicting a transition to a T -independent (but L-dependent) Hall resistance for T < Ts.

More remarkably, we find that the transition between dRxy/dB being T -independent and scaling

like T−2/5 occurs at a transition temperature that scales as Ts ∝ 1/Ln+1. The system contains a

space-filling brane that is required on the AdS side to describe the charge carriers, and the parameter

n parameterizing how the brane tension, T , varies with L: T ∝ L2−n.

Ultimately, the possibility for having two kinds of L-scaling for Ts without changing the T -scaling

of the Hall resistance can be traced to the presence of this brane tension, which provides an intrinsic

scale to the problem and so causes deviations from naive scaling behaviour. In particular, we find

that T causes the transition point between the IR and UV scaling regimes to vary in an L-dependent

(but not T -dependent) way. When the tension is negligible (or scale-invariant, in a sense described

in detail below) we find n = 4 and so Ts ∝ 1/L5, as expected for simple scaling with z = 5. We find

Ts ∝ 1/L when T ∝ L2.

We incorporate finite-size effects by generalizing standard AdS/CFT methods introduced by

ref. [19], which argues that black holes are not the appropriate solution for describing finite-size

systems at sufficiently low temperatures. In the absence of a chemical potential in the CFT (which

corresponds on the gravity side to a black hole with no charge) ref. [19] argues that the better

low-temperature solution — i.e. the one with lower free energy — is empty anti-de Sitter space.

Entropy density is discontinuous across the transition to the low-temperature phase indicating that
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the transition is first order.

Our main generalization of this argument is to the case of nonzero chemical potential, for which

the preferred low-temperature solution is instead an electrically charged star, rather than empty

anti-de Sitter space. (See [21, 22] for similar considerations with a chemical potential in the infinite-

volume limit.) Remarkably, this links the quantum Hall transition from temperature-scaling to

temperature-independence with the Chandrashekar transition from a star to a black hole as its mass

is increased. The transition between the black-hole and stellar phases is again first order, suggesting

the possibility of there being experimental tests of this picture if the thermal properties of the electron

gas can be accessed (certainly a difficult experimental challenge for samples this small).

We organize our presentation as follows. The remainder of this section does two things: first S5.1.1

summarizes the AdS/QHE proposal of ref. [7]; and then S5.1.2 outlines the finite-size experimental

results of [15]. S5.2 then describes how to incorporate finite-size effects into an AdS/CFT framework,

starting in S5.2.1 with a summary of ref. [19]’s analysis in terms of a Hawking-Page transition.

S5.2.2 then describes the extension of this analysis to the AdS/QHE system, for which the main

complication is the nonzero chemical potential. For nonzero chemical potential the transition at low

temperatures on the gravity side is pictured to be into a phase described by a charged star. S5.3

develops the gravity description of the star and what its properties imply for the AdS/QHE system.

S5.3.2 calculates the free energies of the two phases and demonstrates that the new stellar phase is

preferred at sufficiently low temperatures, T < Ts. S5.3.3 then shows that the transition is related

to system size by Ts ∝ 1/L5 when brane tension is negligible or Ts ∝ 1/Ln+1 otherwise, while also

identifying specific parts of parameter space for which this behaviour could break down. Finally,

S5.4 briefly summarizes our results together with potential future directions.

5.1.1 The AdS/QHE system

The action for the AdS/QHE model proposed in ref. [7] has the following form

S = Sgrav + Smatter + Sprobe , (5.2)

where the equations of motion for Sgrav + Smatter give the black-brane solution that describes the

CFT’s thermal properties at infinite volume. Sprobe describes a probe brane whose charge carriers

give rise to the Ohmic and Hall conductivities of interest for quantum Hall phenomenology. By

assumption Sprobe only responds to, and does not perturb, the fields sourced by Sgrav + Smatter (we

comment below on the necessity for both Smatter and Sprobe).
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The bulk

With duality in mind the gravitational sector is chosen to be SL(2, R) invariant,1

Sgrav = −
∫

d4x
√
−g

{
1

2κ2

[
R− 6

L2
+
ζ

2

(
∂µφ̃ ∂

µφ̃+ e2φ̃ ∂µχ∂
µχ
)]}

, (5.3)

with SL(2, R) acting according to

τ → a τ + b

c τ + d
and gµν → gµν , (5.4)

where a, b, c and d are arbitrary real numbers that satisfy the SL(2, R) condition ad− bc = 1 and

τ := χ+ ie−φ̃ . (5.5)

We choose ζ = 1, as supersymmetry would require if we were to embed this into a more complete

description.

For the matter sector we take a Maxwell field, Bµ, governed by the SL(2, R)-invariant Dirac-

Born-Infeld (DBI) lagrangian

Smatter = −
∫

d4x
√
−g T

(
X − 1

)
− 1

4

∫
d4x
√
−g χFµν F̃µν

with X :=

√
1 +

`4

2
e−φ̃FµνFµν −

`8

16
e−2φ̃

(
Fµν F̃µν

)2

, (5.6)

where F := dB is the usual 2-form Maxwell field strength and2 F̃µν := 1
2 εµνλρF

λρ.

Notice that the square-root term reduces to the usual Maxwell action (with a non-minimal dilaton

coupling) in the limit ` → 0 with T `4 fixed. Unlike the Maxwell action, the DBI action has the

advantage of being able to handle nonlinear situations where the conductivities themselves depend

on the applied potentials. The action of SL(2, R) on the Maxwell field is most simply written as [23]

(
Gµν
Fµν

)
→

(
a b

c d

)(
Gµν
Fµν

)
, (5.7)

where script fields denote the complex quantities

Fµν := Fµν − iF̃µν and Gµν := −G̃µν − iGµν , (5.8)

with

Gµν := − 2√
−g

(
δS

δFµν

)
=
T `4

X

[
e−φ̃Fµν − `4

4
e−2φ̃(FλρF̃

λρ)F̃µν
]

+ χF̃µν . (5.9)

1Strictly speaking, SL(2, R) is a classical symmetry, and only a discrete subgroup like SL(2, Z) or a smaller
subgroup is expected to survive quantum effects [7].

2In our conventions the Levi-Civita symbol, εµνλρ transforms as a tensor rather than a tensor density.
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SL(2, R) invariance of the field equations allows a great simplification when seeking black-

brane/black-hole solutions, since they can always be used to set χ and any magnetic charge, Qm, to

zero. It suffices therefore to consider black branes with electric charge, Q, (defined more precisely

by (5.33), below) in the presence of a nonvanishing dilaton field. Some simplifications are possible

even in this case, however, since the SL(2, R) transformation with b = c = 0, a = 1/d preserves the

choice χ = Qm = 0, while transforming

φ̃→ φ̃− 2 log a and Q→ aQ . (5.10)

This shows that Q and φ̃ should only appear in the invariant combination Q2 eφ̃.

The field equations for this action admit charged black-brane solutions [7] that have the following

large- and small-r forms3

ds2 ' h∞ r̃2 dt2 +
dr̃2

h∞ r̃2
+ r̃2

(
dx2 + dy2

)
(large r̃ or UV)

ds2 ' h0 r
10 dt2 +

dr̃2

h0 r̃2
+ r̃2

(
dx2 + dy2

)
(small r̃ or IR) , (5.11)

where h0 and h∞ are constants. These solutions closely resemble those found for the non-DBI

Maxwell-axio-dilaton theory in ref. [14]. Notice in particular they are invariant under rescalings

x → λx and y → λ y provided h0 and h∞ are fixed while r̃ → r̃/λ and t → λz t, with z = 1 in the

UV (large-r̃) and z = 5 in the IR (small-r̃) limits.

The probe

The probe system couples to the real electromagnetic field, Aµ, for which we again choose precisely

the same DBI action as given in eq. (5.6).

Sprobe(Aµ) = Smatter(Bµ → Aµ) , (5.12)

but with a much smaller tension (to justify the probe approximation).

It might seem redundant to have two almost identical sectors, Smatter and Sprobe, and it probably

is. Both sectors are needed in [7] in order to achieve a finite DC conductivity for general magnetic

fields, with the CFT described by the black brane providing a source of dissipation for the charge

carriers described by Sprobe [24]. Without the probe sector the remaining black brane does not

break translation invariance and so conservation of momentum suppresses the dissipation required

for generating a generic DC resistance.

However from the point of view of the long game this likely only reflects how poorly developed

is the present state of the holographic art. It would seem more efficient to drop Smatter altogether

3The near-brane form shown here relies on the choice ζ = 1, made above.
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while simultaneously dropping the probe approximation for Sprobe, so that Sprobe can play Smatter’s

role in shaping the form of the black-hole geometry. It is likely that Smatter could be dropped in this

way once an efficient formulation of disorder becomes available for AdS/CFT systems [25].

Domain of approximation

Since our analysis is semiclassical, we must stake out its domain of validity. The first approximation

required is weak coupling, which amounts to the requirement

eφ̃ � 1 . (5.13)

Next comes the low-energy/small-curvature approximation that allows one to work within a low-

energy field theoretic (gravity) description. As discussed in [24] this requires the curvature radius,

L, to be much larger than the string length, `/X, in the presence of the background Maxwell field:

L� `/X.

Of particular interest in what follows are situations where the near-horizon geometry is well-

described by the near-horizon z = 5 solution given above, for which the dilaton profile satisfies

eφ̃ ∝ r̃4. In this case X is approximately r̃-independent and the condition L� `/X simplifies to

1� `2

X2L2
' `2

L2

(
1 +

Q2eφ̃

T 2`4r̃4

)
' Q2eφ̃

T 2L2`2r̃4
' Q2eφ̃h

T 2L2`2r̃4
h

, (5.14)

where r̃h represents the position of the black brane horizon and φ̃h := φ̃(rh). Eq. (5.14) uses

the approximate expression for X, eq. (5.37), that we find from the near-horizon solutions of later

sections, together with the observation that Q2eφ̃

T 2`4r̃4 is typically large in the asymptotic near-horizon

regime of interest.

In principle this represents a lower bound as to how small L can be made, which is of interest

in the finite-volume case for which L ends up playing the role of system size. In practice, however,

no matter how tiny L becomes eq. (5.14) can always be satisfied by demanding the gauge coupling

g2 := eφ̃h/(T `4) to be sufficiently small. It turns out that the dilaton profile grows monotonically

with r̃, and so eφ̃h < eφ̃0 , where φ̃0 is the asymptotic dilaton value at large r̃. This ensures that

small eφ̃h can be ensured by choosing eφ̃0 to be sufficiently small.

The probe approximation, which we use when calculating the conductivity (see appendix 5.A), im-

poses additional constraints. Denoting the probe-brane tension by4 Tp, we must demand κ2(Tp/X)�
1/L2, where Tp/X is the size of the DBI brane stress energy and 1/L2 is a typical background cur-

4For instance, if the matter source is a stack of N identical branes then T = NTp, for some large N .
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vature. Equivalently, κ2L2Tp � X or

T̂p �

[
1 +

Q2eφ̃

T 2`4r̃4

]−1/2

, (5.15)

where T̂p := κ2L2Tp.

5.1.2 Experimental finite-size effects

This section briefly summarizes the measurements of ref. [15], mentioned in the introduction, that

provide evidence for z = 1 through the low-energy temperature dependence of the Hall resistance

midway between two plateaux.
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R
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Figure 5.1. Hall resistance vs magnetic field for various temperatures, reproduced from [15]. Bc is the
critical magnetic field where resistance doesn’t change as temperature varies (colour online).

The measurements in question are performed at the critical inter-plateaux magnetic field, Bc,

defined as the field for which the Hall resistance remains constant as the temperature varies (see

figure 5.1). The quantity of interest is the slope of the resistance profile evaluated at the critical

field, (∂Rxy/∂B)Bc .

This quantity is observed to be fairly sensitive to the amount of doping, x, in the AlxGa1−xAs/Al0.32Ga0.68As

heterostructure, but for 0.6% < x < 1.6% a power-law behaviour(
∂Rxy
∂B

)
Bc

∝ T−p , (5.16)

is observed over two decades of temperature. Whenever this broad a range of scaling is seen the

power is given by p = 0.42± 0.01. This is seen in the top panel of figure 5.2.

The significance of the sensitivity to doping is not yet clear, but deviations from p = 0.42 only

arise when the power-law behaviour does not apply over as large a temperature range. The range of

doping for which the robust scaling occurs reflects a regime where short-range scattering from the
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doped Al disorder dominates [15, 16], and further studies of this doping dependence could shed light

on the domain over which the low-energy behaviour is universal, and so described by the CFT dual

to our AdS description.5
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Figure 5.2. Top panel: ∂Rxy/∂B measured at

B = Bc, as a function of temperature (reproduced

from [15]), showing the transition from power-

law temperature dependence to temperature-

independence. Bottom panel: The transition tem-

perature between these regimes vs system size

(colour online).

Finite-size effects are observed when the deriva-

tive (∂Rxy/∂B)Bc is measured for samples small

enough that the system size can compete with tem-

perature effects in charge transport. The experi-

ments find that at small enough system size, there

exists a temperature, Ts, below which (∂Rxy/∂B)Bc

becomes independent of temperature. By repeating

the measurements for samples of different size (see

the bottom panel in figure 5.2), it is found that the

transition temperature varies inversely with system

size,

Ts ∝ 1/L , (5.17)

where L is the sample width.

This relation has an interpretation in terms of

critical scaling exponents [18]. At a critical point

coherence length, ξ, and temperature are related by

a power law, ξ ∝ T−s/2. If we follow ref. [15] and

assume the coherence length saturates at the sys-

tem size, ξ ∝ L, for low enough temperatures, then

eq. (5.17) implies s = 2. On the other hand, a dy-

namical scaling exponent z would give L ∝ T 1/z

and so comparison shows z = 2/s, and so z = 1.

The connection to temperature scaling of conduc-

tivities comes through the localization length, which scales as a function of the magnetic field as

ζ ∝ |B −Bc|−ν . If physical quantities like conductivities depend only on the ratio ξ/ζ then they

depend only on the scaling combination |B −Bc|/T s/2ν . This implies p = s/(2ν).

It is the apparent mismatch between this evidence for z = 1 and the use of z = 5 of the model in

[7] that we set out to understand in the next sections.

5.2 Finite-size effects in AdS/CFT systems

In this section we describe how finite-size effects are included into the holographic system of interest.

Because the size introduces a new scale, L, this can be combined into a scale-invariant combination

5We thank Michael Hilke and Gabor Csáthy for helpful conversations on this point.
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with temperature, T , allowing physical quantities to depend on these variables in a complicated way,

even for scale invariant systems (like CFTs). In S5.2.1 we first briefly review standard arguments

about how finite-size effects can be used to describe a transition [19] for AdS/CFT systems in the

absence of a chemical potential. We then describe in S5.2.2 how this argument generalizes to the

AdS/QHE case, where a chemical potential plays an important role.

5.2.1 Finite size with no chemical potential

In this section we briefly summarize the discussion of ref. [19], which discusses how to include

finite-size effects for the simplest AdS/CFT system, and how these can change the low temperature

properties of the system. Following [19], consider the following bulk action

S = − 1

2κ2

∫
d4x
√
−g
(
R− 6

L2

)
, (5.18)

whose equations are solved by the black-hole metric

ds2 = −h(r̃) dt2 +
dr̃2

h(r̃)
+ r̃2dΩ2 , (5.19)

with dΩ2 = dθ2 + sin2 θ dφ2 and

h(r̃) =
r̃2

L2
− r̃3

h

r̃L2
+

(
1− r̃h

r̃

)
. (5.20)

Here the integration constant is chosen so that h(r̃h) = 0.

This differs from the translation-invariant black-brane solutions because the asymptotic, large-r̃,

geometry is a sphere rather than a plane. Because the radius of the sphere provides a scale, this

asymptotic geometry only becomes scale invariant at large r̃/L. Consequently the AdS radius, L,

enters differently into observables, and ultimately plays the role of the CFT system size (as we now

clarify).

CFT system size

Let us be a little more precise about what we mean by the system size for the CFT dual to the

black-hole geometry, eq. (5.19). To this end consider the limit of large r̃ in (5.19), for which the

metric along slices of constant r̃ is

ds2
r ' −

r̃2

L2
dt2 + r̃2 dΩ2 =

r̃2

L2

(
−dt2 + L2 dΩ2

)
. (5.21)
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ds2
r is not quite the metric of the CFT, since the circumference of the time circle must be 1/T for a

CFT at temperature T . Rather, ds2
r is conformal to the CFT metric, which is given by

ds2
CFT = −dt2 + L2dΩ2 . (5.22)

Clearly this metric describes a finite-size system with a real-space circumference of 2πL, giving the

precise relationship between system size and the AdS scale. Notice how this argument is independent

of the small-r geometry, so as long as the system is asymptotically AdS.

Temperature and system size

An important consequence of having a finite system size can be seen from the expression for the

Hawking temperature for this metric,

4πT = h′(r̃h) =
3r̃h
L2

+
1

r̃h
. (5.23)

This expression is obtained, for example, by going to euclidean signature and requiring the time

coordinate to be periodic, t ' t + β, with β = 1/T chosen to remove the conical singularity that

would otherwise appear at r̃ = r̃h.

What is noteworthy about eq. (5.23) is that it has a minimum at r̃2
h = L2/3, with the temperature

bounded below, T ≥ T?, with

4πT? =
2
√

3

L
. (5.24)

The system has a minimum temperature inversely proportional to the system size. But if the black

hole does not describe temperatures lower than T?, what does? Ref. [19] proposes the system is

better described by the alternative solution corresponding to r̃h = 0, for which h(r̃) = 1 + r̃2/L2

does not vanish. In this case the periodicity, β′, of the euclidean time direction can be arbitrary

(and so in particular can describe arbitrarily low temperatures).

To determine which solution the system prefers for any given temperature and system size we

compare the two free energies, F (T ), for these solutions, using the AdS/CFT prescription that

F (T ) = −TSon-shell. (Here Son-shell denotes the classical action evaluated at the classical solution,

regarded as a function of its boundary values at large r̃.) Since the Einstein equation implies

R = 12/L2 for both solutions we have

Fβ′(T ) =
3T

κ2L2

∫ β′

0

dt

∫ r̃∞

0

dr̃

∫
d2Ω r̃2 =

8πTβ′r̃3
∞

κ2L2
, (5.25)

and

Fβ(T ) =
3T

κ2L2

∫ β

0

dt

∫ r̃∞

r̃h

dr̃

∫
d2Ω r̃2 =

8πTβ (r̃3
∞ − r̃3

h)

κ2L2
, (5.26)

with r̃∞ being a temporary regulator that is ultimately taken to infinity.
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The parameters β and β′ are related to one another in an r̃∞-dependent way, by the condition

that both actions describe the same temperature, T , since this requires their euclidean time directions

must have the same circumference for large r̃. That is, using the form of the two metrics at r̃ = r̃∞,

β′
√

(r̃∞)2/L2 + 1 = β
√

(r̃∞)2/L2 − r3
h/(r̃∞L

2) + (1− r̃h/r̃∞)

to give us the same CFT temperature at infinity, (that is, the S1’s from the time component have

the same circumference.) Using this in the free-energy expressions gives

∆F := Fβ(T )− Fβ′(T ) =
4πT

κ2L2

[
(β − β′) r̃3

∞ − β r̃3
h

]
=

4πβT

κ2L2

[
r̃3
∞

(
1−

√
1− r̃h(r2h/L

2+1)
r̃∞(r̃2∞/L2+1)

)
− r̃3

h

]

=
2πr̃h
κ2

(
L2 − r̃2

h

L2

)
, (5.27)

where r̃∞ is taken to infinity in the last line. This calculation indicates a transition at r̃h = L,

with the black-hole solution having lower free energy at larger r̃h (or higher temperatures), while the

other solution has lower free energy for smaller temperatures. Notice in particular that this transition

happens above the minimum temperature of the black-hole solution, which occurs at r̃h = L/
√

3.

The value of the transition temperature can be seen by writing ∆F in terms of T , using (5.23):

∆F =
4πr̃h
κ2

1− L2

36

(
4πT +

√
(4πT )2 − 12

L2

)2
 , (5.28)

which shows that ∆F = 0 occurs at a transition temperature inversely proportional to the system

size: Ts ∝ 1/L.

5.2.2 Finite size AdS/QHE black holes

We now repeat the above finite-size analysis for the quantum Hall-ography model. This involves

several steps: construct the black hole solutions for asymptotic spherical geometries and see whether

they have a minimum temperature; and if so, identify a candidate alternative gravity dual that

describes the low-temperature phase. Once a low-temperature description is found we check whether

its conductivity is temperature independent, and find how the temperature, Ts, changes with system

size.
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Field equations

We start with the Hall-ography action of S5.1.1, and use the SL(2, R) freedom to set χ = B = 0, so

Sgrav + Smatter = −
∫

d4x
√
−g

[
1

2κ2

(
R− 6

L2
+

1

2
∂µφ̃ ∂

µφ̃

)
+ T

(
X − 1

)]
, (5.29)

and seek black hole solutions with spherical geometry at fixed radius and time. Adopting a dimen-

sionless radial coordinate,

r̃ = Lr , (5.30)

and using the metric ansatz

ds2 =

[
−h(r) eξ(r)dt2 +

L2dr2

h(r)
+ L2r2dΩ2

]
and φ̃ = φ̃(r) , (5.31)

we find (as above) that it is L that plays the role of the CFT system size, with the CFT metric

conformal to the asymptotic bulk metric. The temperature associated with this metric is

4πT =
1

L
eξ(rh)/2 h′(rh) , (5.32)

where h(rh) = 0.

The Maxwell field equation integrates simply to give

Grt =
T `4

X
e−φF rt =

Qe−ξ/2

L3r2
(5.33)

where Q is the black hole electric charge. It is shown in [7] that the CFT current density is given by

J i =
√
−g Gri|∞, and keeping in mind that gµν is only asymptotically conformal to the CFT metric

in the finite-volume case, the CFT charge density turns out to be related to Q by

Q = L2ρCFT . (5.34)

Consequently Q scales like L2 if L is varied with fixed CFT charge density. Since this expression also

shows that Q counts the total number of charge carriers in the CFT, Q� 1 is the regime appropriate

to real quantum Hall systems. How finite size affects the conductivity calculation for this system is

explored in appendix 5.A.

The field equations differ slightly from the black brane case solved in [7], because of the curvature

of the surfaces of fixed r and t, which appears in the θθ Einstein equation. This difference is less

and less important for larger r. The field equations to solve are

rξ′ − 1

2
(rφ′)2 = 0 , (5.35)

128



Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

and

h′

r
+
hξ′

2r
+
h

r2
− 1

r2
− 3− T̂

(
X − 1

X

)
= 0 (5.36)

e−ξ/2

r2

(
eξ/2 r2hφ′

)′
+
T̂
X

(
X2 − 1

)
= 0 ,

where r is the dimensionless radial coordinate, and the other quantities in these equations are

X−2 = 1 +
Q2eφ

T̂ 2r4
, (5.37)

T̂ = κ2L2T and φ = φ̃− 4 log(`/κ).

Asymptopia: the far-field z = 1 region

The first region of interest is the asymptotic far-field regime, for which r � 1. An approximate

solution in this regime is obtained by expanding fields in powers of 1/r plugging the result into

(5.36). The approximate solution obtained in this way is ξ(r) ' 0,

h(r) ' r2

(
1 +

1

r2
− r3

b

r3
+
Q2eφ0

2T̂ r4

)
= r2

[
1− r3

h

r3
+

(
1

r2
− rh
r3

)
+
Q2eφ0

2T̂

(
1

r4
− 1

rhr3

)]
and φ ' φ0 +

φ1

r3
+
Q2eφ0

4T̂ r4
, (5.38)

where φ0 and φ1 are boundary data to be specified, and rb is an integration constant that is traded

in the second line for rh, defined as the position satisfying h(rh) = 0.

More specifically, this solution assumes that

1

r2
∼ Q2eφ0

T̂ 2r4
∼ φ1

r3
� 1 , (5.39)

so that anything quadratic in these quantities can be neglected. But we can only use eq. (5.38) to

infer that h(r) vanishes for some r if rh is large enough to ensure that eqs. (5.39) is valid for all

rh < r < ∞. When this is true a horizon exists in this region, terminating the solution at r = rh.

Using equation (5.32) the temperature for this metric becomes

4πT =
1

L

(
2rh +

1

rh
− Q2eφ0

2T̂ r3
h

)
. (5.40)
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Attractor: the near-horizon z = 5 region

A different solution describes the near-horizon geometry if Q2eφ0/T̂ 2r4
h is not much smaller than

unity, and provided rh is still large enough to be in the large-r limit. Then what was an exact

solution for the black brane in ref. [7],

h(r) = h0r
2

(
1− r7

h

r7

)
, ξ(r) = 8 ln

(
r

rc

)
and φ(r) = 4 ln

(
r

rc

)
+ φ0 , (5.41)

also solves eqs. (5.36), provided we drop terms of relative order r−2. In these expressions rc is an

integration constant, which is ultimately fixed by matching to the large-r z = 1 region below (c.f.

eq. (5.44)).

Figure 5.3. Semi-log plot of the dilaton

profile for Q = 1000 and T̂ = 10−5, for

two asymptotic initial conditions (colour

online).

For this solution the quantity X evaluates to a constant,

X := Xh =
−(6 + 2T̂ ) +

√
(6 + 2T̂ )2 + 5T̂ 2

T̂
, (5.42)

which has the limits Xh → 1− 2/T̂ +O(1/T̂ 2) as T̂ → ∞
and Xh → 5

12 T̂ + O(T̂ 2) as T̂ → 0. The equations of

motion then fixe the quantity h0 to be

7h0 = 3 + T̂
(
Xh − 1

Xh

)
. (5.43)

Notice that h0 ' 3/35 when T̂ � 1 and h0 ' 1/7 for

T̂ � 1.

As discussed6 in ref. [14], this solution is an attractor

inasmuch as all solutions eventually approach this one in

the near-horizon limit, regardless of their boundary condi-

tions at large r. We have checked numerically that these

solutions exist, and fig. 5.3 shows two examples where φ(r)

asymptotes to eqs. (5.38) for very large r, but then crosses

over to the attractor form, eq. (5.41), as the horizon is ap-

proached. The figure also shows how the solution for φ(r)

crosses quite quickly from the logarithmic behaviour of eq. (5.41) to the asymptotically constant

limit of eq. (5.38) (similar to what was also found in ref. [14]).

In what follows it is crucial to determine how the integration constant rc depends on system

parameters like L and ρCFT , a dependence that arises when the attractor solution is matched onto

the solution at asymptotically large r. To this end it is useful to treat the transition between (5.38) to

6Although ref. [14] uses the Maxwell action, ref. [7] shows their attractor solution also applies for black branes with
the DBI action, and so also in the present case for large enough black holes.

130



Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

(5.41) as occurring at a specific transition radius, since fig. 5.3 shows this to be a good approximation.

Since ξ = 0 in the asymptotic region, matching ξ(r) using eq. (5.41), shows this transition radius is

given by r = rc. The dependence of rc on other parameters is then obtained by similarly demanding

continuity of φ(r) at r = rc, leading to

Q2 eφ0

r4
c

=
T̂ 2(1−X2

h(T̂ ))

X2
h(T̂ )

' 4T̂ +O(1) if T̂ � 1 (5.44)

' 119

25

[
1 +O(T̂ )

]
if T̂ � 1 .

Notice in particular that no choice for T̂ > 0 allows Qeφ0/2/r2
c � 1.

Eliminating Q using Q = ρCFTL
2 and using the definition T̂ = κ2L2T in eq. (5.44) then gives

r4
c ' L2ρ2

CFTe
φ0

4κ2T
if T̂ � 1

' 25

119
ρ2
CFTe

φ0L4 if T̂ � 1 (5.45)

which shows how rc depends on L. For fixed φ0 and ρCFT , r4
c scales as L4 when T̂ is small. By

contrast, for large T̂ we have r4
c ∝ L2/T and so in order to know how rc varies with system size in

the CFT we must know how T varies with L.

From the AdS point of view the possibility that T could depend on L is very natural, since within

an explicit embedding into string theory the branes in question could wrap cycles in any additional

‘internal’ dimensions, whose size typically is also set by L. (See refs. [20] for more explicit examples

of this type involving D5 and D7 branes in a top-down AdS/CFT construction.) In the absence of

such a construction we parameterize the scaling of tension with system size as T = Tn L2−n, which

implies the crossover radius scales as

r4
c ∝ Ln (5.46)

when T̂ � 1. Notice that any choice but n = 4 breaks scale invariance in the IR, since scale

invariance of the metric of eq. (5.11) requires h0 to be held fixed, and this in turn requires T̂ be fixed

(c.f. eq. (5.43)).

This L-dependence of rc is of interest because it enters into the relation between the temperature

and rh. Using eq. (5.32) as before to connect T and rh, using the z = 5 attractor geometry gives

4πT =
7h0r

5
h

Lr4
c

, (5.47)

where the rc dependence arises from the form of ξ(r) in (5.41). Finally, using eqs. (5.45) to eliminate
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rc in (5.47) gives a form which makes the scaling of the T−rh relation with system size more explicit:

4πT =

(
4κ2Tnr5

h

ρ2
CFTe

φ0

)
7h0

Ln+1
if T̂ � 1

4πT =

(
119

25

r5
h

ρ2
CFTe

φ0

)
7h0

L5
if T̂ � 1 . (5.48)

This last pair of equations has two important consequences if we anticipate two results from

subsequent sections.

1. Temperature scaling:

First, as is shown in Appendix 5.A (and ref. [7]), the power-law temperature dependence of the

Hall conductivity (and resistivity) arises because it scales proportional to 1/r2
h. Whenever rc > rh

eq. (5.48) then implies a temperature scaling proportional to T−2/5, for both large and small T̂ .

What is required to ensure7 rc > rh � 1? For T̂ large inspection of eq. (5.44) shows this requires

1 � r2
h � Qeφ0/2/T̂ , which is a non-empty region only if T̂ � Qeφ0/2. In particular if T̂ � 1 a

large-r crossover between the two solutions requires Q must be even larger, since the use of semi-

classical reasoning requires eφ0 � 1. Happily, as mentioned earlier, large Q is the regime of interest

for real quantum Hall systems.

2. Scaling with System Size:

The second important consequence of eq. (5.48) is what it says about how T scales with L when

rh is fixed. Fixed rh is of interest because this is what subsequent sections show is required for the

transition temperature, Ts.

Eq. (5.48) shows that if T̂ is negligible then T varies with L (for fixed rh) as expected for z = 5

scaling: T ∝ 1/L5. The same is true for T̂ � 1 if we make the scale-invariant choice, n = 4. In

either case the only scales that arise are those characterizing the CFT, such as ρCFT , T and L.

However, more generally the presence of T introduces an additional scale and so changes the

L-dependence of both rc and T , with T ∝ 1/Ln+1 when rh is held fixed. In particular, T ∝ 1/L

when n = 0 (i.e. when T ∝ L2).

Relaxing the large-r approximation

This section describes how the black hole temperature is related to rh and other system parameters

in the regime where the above approximate forms need not apply because we no longer neglect the

1/r2 term in (5.36); i.e. where the black hole solutions can differ from the black-brane solutions of

ref. [7]. Our goal is to motivate the existence of a transition to a new regime by showing that T (rh)

is bounded from below, with a minimum temperature, T?, below which some other solution must

replace the black-hole description.

7Recall the condition rh � 1 is required to use the large-r black-hole solution described above. (The discussion of
later sections examines what happens if this condition is relaxed.)
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Figure 5.4. Left panel: A plot of h1 and ω as functions of rh. Note that h1 diverges and ω → 0 as rh → 0,
a reflection of the minimum temperature discussed in the main text. Also note that ω → 4 and h1 → rh at
large rh, in agreement with the analytic large-rh solution in the z = 5 region. Right panel: A plot of T (rh)
and dT/drh(rh) against rh showing that temperature has a minimum for the black hole solution. In both
cases we choose the value T̂ = 1 (colour online).

Although we don’t have the luxury of an explicit solution in the general case, because our main

interest is in how the temperature depends on other parameters like rh we can proceed by expanding

the metric in powers of r − rh, as follows

h(r) = h1(r − rh) + h2(r − rh)2 + · · ·

φ(r) = φh +
ω

rh
(r − rh) + · · · (5.49)

ξ(r) = ξh −
ω2

2rh
(r − rh) + · · · ,

where we define φ1 := ω/rh and eq. (5.35) is used to relate the linear terms in φ and ξ to one another.

In the special case where rh � 1 the solutions of the previous sections apply, with the solutions of

eqs. (5.38) corresponding to the choices ω ' ξh ' 0 and φh ' φ0, while those of eqs. (5.41) being

captured by ω ' 4, φh ' φ0 + 4 ln(rh/rc) and ξh ' 8 ln(rh/rc).

Since eq. (5.35) has been used already to relate ξ to φ, there are only two other field equations

to solve. Expanding equations (5.36) about r = rh gives

h1

rh
− 3− 1

r2
h

+
T̂
Xh

(1−Xh) (5.50)

+

[
2h2

rh
+

2

r3
h

+
ω2h1

4r2
h

− (4− ω)Q2 eφhXh

2r5−ω
h T̂

]
(r − rh) + · · · = 0 ,
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and

ωh1

rh
+
T̂
Xh

(1−X2
h) (5.51)

+

[
2ωh2

rh
+
h1ω

3

4r2
h

+
(4− ω)Q2eφh

r5−ω
h T̂

Xh

(
1 +X2

h

)]
(r − rh) + · · · = 0 ,

where

X−2
h = 1 +

Q2eφh

T̂ 2r4−ω
h

. (5.52)

Since these equations hold for all r satisfying |r − rh| � 1, the coefficient of each power of r − rh
must separately vanish. Working to linear order in r − rh then implies four conditions, which we

solve for h1, ω, h2, and φh as functions of rh. The left panel of figure 5.4 plots sample numerical

solutions for h1 and ω obtained in this way, as functions of rh. In principle this can be continued to

higher orders in (r − rh), though the higher terms have no bearing on how the temperature of the

system depends on rh.

Figure 5.5. Plots, from top to bottom, of

ω?, h1? and rh? vs T̂ = κ2L2T , were ‘?’ de-

notes evaluation at the rh that minimizes

the temperature T (rh). (colour online).

While these equations don’t all have analytic solutions,

the equation for h1 is a quartic equation and so does have

a closed-form solution in principle. This allows a check

on our numeric solutions, since one can compare with the

known z = 1 and z = 5 solutions found earlier by taking

the large-rh limit. To obtain z = 1 take Q→ 0, to find

h1 = 3rh +
1

rh
and ω = 0 , (5.53)

agreeing with eqs. (5.38). Similarly, to get the z = 5 so-

lution take rh � 1 while ensuring that Q2eφ0/T̂ 2 >∼ r4
h, in

which case ω = 4 and the value found for h1 agrees with

(5.41) (as is also seen from the left panel of fig. 5.4).

In terms of these quantities the temperature for the

system is given by eq. (5.32),

4πT = eξh/2
h1

L
, (5.54)

where we keep in mind that this expression implicitly depends on the quantities T̂ and Q through

their appearance in ξh and h1. A plot of this expression for T (and its derivative with respect to rh)

is shown in the right panel of figure 5.4, which explicitly shows how T has a minimum at a particular

value rh = rh?.

The upshot is that there is a minimum temperature the black hole can describe, and so some

other solution must describe the physics below this temperature, similar to the discussion in section
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S5.2.1. In the present instance this new solution cannot simply be anti-de Sitter space because of

the existence of the black hole charge. Our proposal for this new solution is a ‘stellar’ configuration,

described in section S5.3 below.

L-dependence of the minimum temperature

Before turning to what describes the very low-temperature regime, we first pause to examine how

the minimum temperature, T?, varies with L (when ρCFT , φ0 and are fixed). We do so as a warm-up

to a similar discussion for the transition temperature, Ts, between the high- and low-temperature

regimes.

Naively, eq. (5.54) suggests that T? is inversely proportional to L, however this ignores the poten-

tial L-dependence that the parameters ξh? and h1? might acquire due to their implicit dependence

on the quantities Q = ρCFTL
2 and T̂ = κ2L2T appearing in eqs. (5.50) and (5.51), as well as through

the dependence on rc that ξh implicitly acquires once the solution is matched onto the solution at

infinity.8

The dependence on Q can be understood analytically as follows. In general we can regard (5.50)

and (5.51) as being solved for h1, h2, ω and Q2eφh as functions of rh and T̂ : i.e. h1 = h1(rh, T̂ ) and

so on. In particular, it follows that none of h1, h2 or ω can depend on Q at all if rh and T̂ are fixed.

Furthermore, the T̂ dependence of h1, h2 and ω is also usually weak. The dependence of rh?,

h1?, and ω? on T̂ as computed numerically is plotted in figure 5.5, showing this dependence to be

comparatively weak, and becoming weaker for larger T̂ .

To see why this is so, recall that eq. (5.42) shows that Xh = O(T̂ ) for small T̂ and Xh =

1 + O(1/T̂ ) when T̂ is large, and so the quantity T̂ (1 − Xh)/Xh is independent of T̂ in both of

these limits.9 When this is true the only other relevant T̂ -dependence comes from the combination

Q2eφhXh/T̂ , which is again independent of T̂ when T � 1. By contrast, when it is large T̂ only

appears in the combination y := Q2eφh/T̂ , in which case eqs. (5.50) and (5.51) give y, h1, h2 and ω

as a function of rh only.

We see in particular that the factor h1 appearing in eq. (5.54) is independent of Q and becomes

approximately independent of T̂ when T̂ is very large or small. The only remaining potential L-

dependence in T? can only appear through ξh?.

To address this, return to the exact equations, eqs. (5.35) through (5.37), governing ξ(r), φ(r)

and h(r). The first observation is that these equations have a symmetry under which ξ is shifted by

a constant, and the constant part of φ only appears in eq. (5.37), which can be written

X−2 = 1 +
Q2eφh

T̂ 2r4
eΦ(r) = 1 +

C(rh, T̂ )

T̂ 2r4
eΦ(r) , (5.55)

8See, for example, the discussion below eq. (5.49) showing ξh ' 8 ln(rh/rc) in the large-rh limit.
9Strictly speaking, these asymptotic limits assume rh � 1, however they can be checked ex-post-facto also in the

small-rh limit.
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if we redefine φ(r) = φh + Φ(r). In this case Φ(rh) = 0 and eq. (5.55) uses that the quantity

Q2eφh = C(rh, T̂ ) can be found by solving eqs. (5.50) and (5.51), and so is a function only of rh and

T̂ . Furthermore, we also saw that C is independent of T̂ when T̂ � 1 while C/T̂ is independent of

T̂ when T̂ � 1.

If we now solve eqs. (5.35), (5.36) and (5.55) for ξ(r), Φ(r) and h(r), it is clear that the results

must be independent of Q. They must also be largely independent of T̂ , when this is very large or

small, as may be seen either from (5.55) using the limiting forms of C(rh, T̂ ), or (in the attractor

regime, but for larger r) by using the large- or small-T̂ limits of eq. (5.42).

Figure 5.6. Here we plot the function

X(r) defined in (5.37) for two different val-

ues of Q with T̂ = 10. (X1 uses Q =

200000 and X2 uses Q = 800000.) In

the attractor region X is approximately

constant, X(T̂ ), until r becomes suffi-

ciently small that the large-r approxima-

tion fails. Even when r ∼ 1 X remains Q-

independent, and Q only determines where

the crossover between the z = 5 and z = 1

regions occurs.

The result is a set of universal profiles for ξ, Φ and h

in the attractor region, which then fan out to different Q-

and T̂ -dependent asymptotic forms at r > rc to satisfy the

boundary conditions at infinity. This is shown numerically

in fig. 5.6, which shows how X(r) takes a universal profile

for r < rc for different values Q. Finally, the L-dependence

of ξh is fixed by this matching to the asymptotic region

at rc, and since rc is large we may do this matching as

before using the approximate expression, (5.41), to obtain

eξh/2 = K(rh)(rh/rc)
4, where K(rh) is a function whose

form we do not need in what follows.

Using this in 5.54, our temperature has the form

4πLT =

(
rh
rc

)4

h1(rh)K(rh), (5.56)

for small rh � rc. We see that we find the same rc depen-

dence as found earlier even when rh ∼ 1.

From here on the argument proceeds as in the discus-

sion below eqs. (5.48): processes taking place at fixed

rh = rh(LTr4
c ), (5.57)

lead to a T vs L relation of the form T ∝ 1/Lr4
c , which

becomes T ∝ 1/L5 in the scale invariant case or T ∝ 1/Ln+1 more generally, depending on the size

and scaling behaviour of the tension.

Fig. 5.7 gives a cartoon of the finite-size picture. This figure plots cartoon profiles of rh/L and

rc/L as a function of system size for fixed temperature and charge density. The quantity r/L = r̃/L2

is drawn because it is what tracks the energy scale of the CFT. In both panels the upper rh curve

uses a temperature corresponding to the z = 1 regime (i.e. rh > rc) and the lower curve one for the

z = 5 region (rh < rc). The left panel chooses T small enough that T̂ � 1 throughout, showing how
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Figure 5.7. Two cartoons of rh/L and rc/L as a function of system size for fixed temperature and charge
density. The upper (lower) rh curve uses a temperature corresponding to the z = 1 (z = 5) region. The
shaded area marked 1/L shows where finite-size effects become important. The curves for rh(L) stop for
small L due to the existence of a minimum temperature. The left panel chooses T small enough that T̂ � 1
throughout, while in the right panel T is larger so T̂ is negligible only to the far left. The curves assume
n = 0 (i.e. T ∝ L2).

both rh and rc are proportional to L in this regime. In the right panel T is larger so T̂ is negligible

only to the far left, and we choose n = 0 in the figure so T ∝ L2. The shaded area marked 1/L in

the figure shows in the same units where r < 1 and so where finite size effects become important. In

particular, for each temperature the curve rh(L) becomes undefined for sufficiently small L in this

region, due to the existence of a minimum temperature for the black hole. This also shows how the

large-L limit gives us back the black brane case, as the finite size effects coming from the energy

scale 1/L become vanishingly small in the infinite system limit.

5.3 The low-temperature phase: a charged star

We now describe the alternative solution that describes the AdS/QHE system for small temperatures.

This cannot be the empty AdS solution considered in ref. [19] because of the requirement that the

solution carry electric charge Q. For this reason in this section we propose a charged star as the

alternative low-temperature solution, and interpret the transition between the low-temperature and

high-temperature phases of the CFT as corresponding on the gravity side to the transition, with

increasing mass, from a stellar solution to a black hole solution.

This section develops this proposal in three steps. First S5.3.1 solves the equations of hydrostatic

equilibrium to obtain the properties of a charged star. Then S5.3.2 compares the free energy of this

solution with the corresponding black hole solutions, identifying in particular the temperature, Ts,

at which the transition between a star and a black hole occurs. Finally, S5.3.3 examines how Ts

changes with L.
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5.3.1 Hydrostatic equilibrium for a charged star

To find the new low-temperature solution we solve the Tolman-Oppenheimer-Volkoff (TOV) equa-

tions for a charged star in asymptotically AdS space. We ultimately solve these equations numerically,

using values for the stellar mass and charge (and asymptotic dilaton) corresponding to those used

in calculating the free energies for both the black hole and stellar solutions in later sections.

For the action of a charged perfect fluid in the stellar interior we follow [21] and use

Lfluid = −
√
−g
[
ρm + λ1(uµuµ + 1) + ρc u

µ(∇µλ2 +Aµ)
]
, (5.58)

where uµ is the fluid’s 4-velocity, and ρm and ρc are is its mass and charge densities. λ1, λ2 are

Lagrange multipliers, introduced to enforce the 4-velocity condition uµuµ = −1 and conservation of

charge ∇µ(ρcu
µ) = 0.

The stress-energy tensor for this action is

T fµν = (ρm + p)uµuν + p gµν , (5.59)

to which we add the energy-momentum tensor for the dilaton and the DBI action,

TDBIµν =
2√
−g

(
∂LDBI
∂gµν

)
, (5.60)

to obtain the full energy momentum tensor for our DBI-charged star,

Tµν = (ρm + p)uµuν + p gµν −
1

4κ2

[
gµν∂

λφ∂λφ− 2∂µφ∂νφ
]

−gµνT (X − 1) +G λ
µ Fνλ . (5.61)

Because SL(2, R) invariance requires the stress tensor to be invariant, we imagine ρm, p and uµ

to be SL(2, R) invariant. We cannot also do so for the charge density, ρc, because we know that the

Maxwell field (and in particular the total electric charge Q) transforms. For general transformations

electric charge gets mapped into magnetic charge, and so specifying a fully SL(2, R) invariant fluid

would require having both electric and magnetic charge densities. We side-step this issue here, and

for the purposes of comparing to black hole solutions with axion and magnetic fields turned off we

consider only electrically charged matter and ignore the axion.

The Einstein equation is as before (but using this new stress energy tensor); the dilaton field

equation remains unchanged; and the Maxwell equation inside the star is modified to

∇µGµν = Jν = ρcu
ν . (5.62)
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The field equation describing the motion of the fluid is given by conservation of energy-momentum

∇µTµν = − 1

4κ2

[
2(∂λφ)∇ν∇λφ− 2(∂µφ)∇µ∇νφ− 2(∂νφ)�φ

]
+∇µ [uµuν(ρm + p) + p gµν ]

−T
[
∂X

∂Fµλ
∇νFµλ +

∂X

∂φ
∂νφ

]
− F νλ∇µGµλ −Gλµ∇µF ν

λ

= −gνσGµλ
(

1

2
∇σFµλ +

1

2
∇µFλσ +

1

2
∇λFσµ

)
− F νλJλ (5.63)

+∇µ [uµuν(ρm + p) + p gµν ]

= −F νλJλ +∇µ [uµuν(ρm + p) + p gµν ] = 0 ,

in which the fluid 4-velocity is uµ = δtµ
√
−gtt, and the right-hand-side has been simplified using the

other field equations.

To solve these we adopt the following ansätze for the Maxwell field,

Gtr =
D(r)

L2
√
−gttgrr

, (5.64)

and the metric,

ds2 = −e2a(r)dt2 +
L2dr2

1 + r2 − κ2m(r)/4πLr
+ L2r2dΩ2 . (5.65)

The equations for the unknown functions D(r), a(r), m(r), ρm(r), ρc(r), p(r) and φ(r) then simplify

to a set of coupled ordinary differential equations. The Maxwell equation becomes

D′ +
2D

r
− L3ρc√

1 + r2 − κ2m/4πrL
= 0 , (5.66)

and the dilaton equation is

(
1 + r2 − κ2m

4πLr

)(
φ′a′ +

2φ′

r
+ φ′′

)
+ φ′

(
r − κ2m′

8πLr
+

κ2m

8πLr2

)
+
T̂ (X2 − 1)

X
= 0 , (5.67)

while the Einstein equations are

m′ − 4πρmL
3r2 − 4πLT̂

X
(1−X)− Lπ

(
1− κ2m

4πLr
+ r2

)
(φ′)2 = 0 (5.68)

and 2a′ − r

4
(φ′)2 −

κ2m
4πL − 2r3 + r3

(
L2κ2p− T̂X (1−X)

)
2r2 (1 + r2 − κ2m/4πLr)

= 0 . (5.69)

Finally, conservation of energy-momentum becomes

p′ + (p+ ρm) a′ − ρc e
φ/2
√

1−X2

κ2L2
√

(1 + r2 − κ2m/4πLr)
= 0 , (5.70)
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and the function X reduces to

X−2 = 1 +
D2eφ

T̂ 2L4
. (5.71)

Figure 5.8. A plot of the properties of the inte-

rior of an incompressible star for Q = 1.25, T̂ =

1/1000. The assumption of constant mass and

charge density is used as an illustrative example,

since we are not interested in the exact values of

stellar masses or radii (colour online).

These equations are to be integrated subject

to a choice of equation of state, p = p(ρc) and

ρm = ρm(ρc), and in practice we solve these numer-

ically (see however [26] for a semi-analytic approach

to a similar problem). Figure 5.8 plots a solution as-

suming an incompressible equation of state, with ρm

and ρc constants. For pure gravity and asymptoti-

cally flat spacetimes the mass at which a star forms

a black hole with this equation of state is the largest

possible [27], and so for simplicity we use it here for

all explicit numerical integrations in the hopes that

it also provides the most massive possible stars in

this more complicated theory. However we do not

believe this plays a crucial role for the purposes of

identifying how the solutions scale with changes to

L.

The boundary conditions to be satisfied require

all fields be regular at r = 0, and so a′(0) = m′(0) =

m(0) = φ′(0) = D(0) = 0. They must also be con-

tinuous across the stellar surface — which is defined

as the radius, r = rs, where p(rs) = 0. For in-

stance, for the Maxwell field the function D(r) must be matched to the exterior solution, for which

Dext(r) = Q/r2, and so D(rs) = Q/r2
s . The metric functions similarly continuously match to the

exterior solutions described in the previous sections, and the stellar mass, M , is identified as the

ADM mass for the asymptotic external geometry.

All told, for a given equation of state we have a three-parameter family of initial conditions,

corresponding to our choice for the central values, φ(0) and p(0), as well as the periodicity, β′, of

the euclidean time direction at infinity. (There are four parameters if we also include the local

charge-to-mass ratio, rather than thinking of ρc(0)/ρm(0) as an equation of state.) Integrating the

equations then allows all other parameters to be computed for r > 0. For AdS/CFT applications

these three parameters are instead regarded as all being specified at infinity, by giving β, φ0 and

the stellar mass, and then integrating the solutions towards smaller r. (Q is the fourth parameter if

ρc(0)/ρm(0) is also regarded as to be specified.) Since we build the star from charged matter, it is

physically clear that no stable solution should be possible unless the mass is large enough compared

with the charge to allow gravitational attraction to overwhelm electrostatic repulsion.
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If we do scale the system size, L→ λL, then dimensional analysis shows that the field equations

remain invariant provided we also rescale, κ2p → λ−2κ2p, κ2ρm → λ−2κ2ρm, κ2m → λκ2m, and

ρc → λ−3ρc. This implies that calculable quantities like the stellar size, rs, and stellar mass, M ,

must obey scaling relations like

κ2M = LF
(
L2κ2p(0), L3ρc(0), T̂ , φ0

)
, (5.72)

for some dimensionless function F .

5.3.2 Energetics of the transition

In this section we work out the free energy of the black hole and stellar regimes and identify when

thermodynamics prefers the crossover to be from one phase to the other.

Comparison of the free energies

The free energy in both phases is computed in appendix 5.B, leading to the following expressions

FT (T ) =
4πLTβ

κ2

∫ r∞

rh

dr eξ(r)/2r2

[
3 +
T̂ (X − 1)

X

]
(5.73)

FS(T ) =
4πLTβ′

κ2

{∫ rs

0

drea(r)/2r2√
1 + r2 − κ2m/4πLr

[
3 +
T̂ (X − 1)

X
+
κ2L2

2
(p− ρm)

]

+

∫ r∞

rs

dr eξ(r)/2r2

[
3 +
T̂ (X − 1)

X

] , (5.74)

where FT (or FS) is the free energy computed with the black hole (or stellar) solution. β′ is the

periodicity of the time circumference for the stellar geometry, in the same way that β is for the black

hole.

Both solutions are labeled by their total mass and charge, the asymptotic value, φ0, for the

dilaton, and by the periodicity, β, of their time direction (in euclidean signature). As discussed

earlier, SL(2, R) invariance guarantees Q and φ0 only appear through the combination Q2 eφ0 , in

principle leaving three independent parameters.

For the black-hole solution the total mass can be traded for the horizon radius, rh, which should be

regarded as a function of the other externally fixed variables. Regularity of the (euclidean signature)

geometry at r = rh then also gives β as a function of these other quantities.

For a stellar solution, rather than specifying quantities like the central pressure deep within the

star and integrating out to larger r, we instead regard the asymptotic mass, charge and dilaton field

to be the quantities specified by the CFT parameters, and integrate in towards smaller values of r

to find the properties interior to the star. In principle the total stellar mass can be traded for the
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stellar radius, rs, given a specific internal equation of state.

Since both rs and rh can be computed for a given set of asymptotically specified parameters,

they can be compared with one another. Physically we expect rh < rs, since otherwise the metric

function, gtt, vanishes before the stellar surface is reached, making the solution a black hole. The

left panel of figure 5.9 verifies this expectation in a comparison between rs and rh for shared external

parameters, in the particular case where the geometry external to the star and black hole has the

z = 5 attractor form given above. The calculation is much easier in this case because the quantity

X is then a constant, and rs for the stellar solution can be computed from the condition that

X(r = rs) = Xh, with rh computed from h(rh) = 0 in this geometry. For small r we do this by

solving for rh numerically using the implicit expression for h(r) in (5.49).

Figure 5.9. Left panel: A comparison of the black-hole horizon radius, rh, and stellar size, rs, for a shared
choice of asymptotic boundary conditions in the special case that the external geometry just outside the
star or black hole has the z = 5 asymptotic form (see text for discussion). Right panel: The integrands for
the two terms in (5.75) for the free-energy difference between stellar and black-hole geometries. The red
curves labeled I1, I2, and I3 give the contribution of the stellar interior, for the following values of central
pressure: κ2L2p(0) = 105, 10, and 1 for which rs = 1.56, 1.42, and 0.74 respectively. The remaining three
(green) curves show the contribution from the exterior geometry. These curves rise sharply at rh, which can
be seen to occur at rh = 1.39, 1.25, and 0.66 respectively. All curves stop at the value r = rs appropriate to
the solution in question. The free energy difference evaluates to ∆F1 = −.21, ∆F2 = −.01, and ∆F3 = .045.
Left panel uses T̂ = 10−5, and right panel uses T̂ = 102 (colour online).

.

Because we specify the same quantities at large distances and integrate into the interior for both

stellar and black hole solutions, both the black hole and stellar phase will share the same exterior

geometry for r > rs at fixed Q, T̂ and φ0. Because of this β′ = β = 1/T , although for the black-hole

solution β is not regarded as being independent of the other quantities.

Given these observations, appendix 5.B shows that the free-energy difference, ∆F := FT − FS,
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takes the form

∆F =
4πL

κ2

{
−
∫ rs

0

dr
ea(r)/2r2√

1 + r2 − κ2m/4πLr

[
3 +
T̂ (X − 1)

X
+
κ2L2

2
(p− ρm)

]

+

∫ rs

rh

dr eξ(r)/2r2

[
3 +
T̂ (X − 1)

X

]}
. (5.75)

The right panel of figure 5.9 plots the integrands of this expression, with the red curves labeled

I1, I2 and I3 giving the contribution of the stellar interior (0 < r < rs) for successively smaller

choices of central pressure. This shows that this integral contributes a negative contribution to ∆F

for large central pressures (because of the explicit negative sign in front of the integral in (5.75)),

which becomes less negative for smaller central pressures. The three smaller green curves plot the

contribution of the external geometry (rh < r < rs) for the same external parameters, showing these

contribute a decreasing (and eventually negative) amount to ∆F , that decreases with decreasing

central pressure.

The figure shows that it is the black-hole phase that has the lower free energy (negative ∆F )

for large enough central pressures, although the free-energy differential between the two solutions

falls with falling stellar mass (and so also central pressure). Because the black-hole free energy has

a minimum temperature and the stellar free energy does not, the free energy difference eventually

changes sign, leading to an eventual crossover to the stellar phase (positive ∆F ) at lower central

pressures.

The physical picture that emerges is as follows. Imagine we fix the system size, L, and start the

system at high temperatures with parameters chosen so that a z = 5 region exists for sufficiently

small r. For sufficiently large temperatures only a black hole solution is possible, because the

euclidean time direction at large r has a small enough circumference to ensure that integrating the

field equations down to smaller r leads to a zero of gtt for some rh that is larger than the would-be

size rs of the star having the same mass and charge. Alternatively, large temperature means large

rh and for very large rh no stellar solutions are possible because large rh corresponds to a total mass

above the Chandrashekar limit, for which there is no central pressure large enough to support a star.

As we bring down the temperature, the asymptotic circumference in the t direction increases, and

so the value of rh where gtt vanishes decreases. Eventually we reach a point where rh lies sufficiently

below rs to ensure that the total mass is below the Chandrashekar limit, in which case the stellar

phase is permitted. Since the central pressure is high, the stellar phase at first has a higher free energy

than the black-hole solution, and so the system remains in the black-hole phase. As T continues

to fall, ∆F becomes less negative until eventually the stellar phase becomes preferable. Precisely

where this occurs likely depends on the details of the stellar equation of state chosen (although we

argue below that this is not important for the purposes of identifying how the transition temperature

depends on system size). At sufficiently small temperatures no black hole solution exists at all as an

143



Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

alternative to the stellar solution.

5.3.3 Shape of the transition curve

We now seek the shape of the transition curve, Ts(L), that is defined by the condition ∆F = 0.

Notice that the free-energy expressions expose the variables on which ∆F depends,

∆F =
4πL

κ2

[
FT (rh, Q e

φh/2, T̂ )−FS(rh, Q e
φh/2, T̂ )

]
. (5.76)

and we do not separately list rs because, as we have seen, rs and rh are not independent of one

another since they are both proxies for the total stellar (or black hole) mass.

If, however, the geometry of the region rh < r < rs lies within the z = 5 attractor regime, as is

required for successful description of quantum Hall temperature scaling, even fewer parameters turn

out to be independent. This is because X = X(Qeφ/2, T̂ ) evaluates to an r-independent constant in

this regime, whose value X(r) = X(rh) := Xh is completely determined by T̂ . X is kept constant in

this near-horizon regime because the dilaton adjusts itself as Q is varied to keep Qeφ/2 fixed at any

given r, allowing any dependence on Qeφh/2 to be traded for a dependence on rh and T̂ , and so

∆F =
4πL

κ2

[
FT (rh, T̂ )−FS(rh, T̂ )

]
. (5.77)

Finally, we know that T̂ drops out of the field equations and the integrand of the free energy

when it is either very large or small. So long as this is true, we are effectively left with the free

energy difference

∆F =
4πL

κ2

[
FT (rh)−FS(rh)

]
. (5.78)

This shows that the condition ∆F = 0 may be regarded as a condition that rh takes on a fixed value

(as anticipated in earlier sections).

Now the discussion follows the discussion below eq. (5.47), which tells us we may trade a depen-

dence on rh for a dependence on LT and rc as shown in 5.2.2, with rc depending differently on L

depending on whether or not T̂ is large or small, so the free energy difference becomes

∆F =
4πL

κ2

[
F̂T (LTr4

c )− F̂S(LTr4
c )
]
. (5.79)

Recalling equations (5.48), if there exists a Ts for which ∆F (LTsr
4
c ) = 0, then clearly Ts ∝ 1/L5 for

T̂ � 1 and Ts ∝ 1/Ln+1 for T̂ � 1.

Notice that this argument is fairly robust, since it rests on only a small number of assumptions.

The first is that the near-horizon geometry is well-described by the z = 5 attractor geometry, since

then the attractor mechanism guarantees the value of X is independent of the boundary value of

φ0 and Q. This assumption is always satisfied for the parameter regime describing quantum Hall
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systems, since it is this regime that ensures the success of the prediction p = 2/z for the scaling

exponent.

The second, more model-dependent, assumption is that the dimensionless tension, T̂ = κ2L2T
is either very large or very small. (If T̂ is large, then the discussion below eq. (5.51) shows that we

must also require that Q2eφhXh/T̂ � 1.) The robustness of these choices shows that it should be

generic that Ts ∝ L−1−n for large dimensionless tension and Ts ∝ L−5 occurs when the dimensionless

tension is very small. Finally, it should also be possible to choose special values T̂ ∼ 1 for which

these behaviours fail.

These choices fall within the domain of validity of the calculation, which was defined by two

separate conditions. The first is for small T̂ , in which Q2eφh is fixed by the attractor to a number

independent of T̂ , and the free energy has a transition that is only dependent on the quantity

LT . The second is for large T̂ , for which Q2eφh is again fixed by the attractor, although this time

proportional to T̂ because of (5.44). In both these cases Q can be large if eφh is small enough since

SL(2, R) ensures they always appear together.

Conductivity in the low-temperature regime

It is one thing to have a new low-temperature regime, but does it have the right properties to describe

real quantum Hall systems? Answering this is a research project in itself, but we suffice here to argue

that conductivities become independent of temperature in this regime, as they must to agree with

observations.

To see this, consider the formula for the Ohmic conductivity given in appendix 5.A,

σ2
θθ ' sin2 θe−2φ̃T 2`8 +

e−φ̃0Q2`4

L4r4
h

. (5.80)

For the black-hole solution quantities like rh can be traded for temperature, because the nonsingular-

ity of the horizon geometry relates the periodicity, β, to other geometrical quantities. The important

observation is that this is no longer true for the stellar solutions, because there is no horizon on which

to be singular. As a result, none of the variables appearing above depend on temperature, and so

both Hall and Ohmic conductivities should be temperature-independent.

Thermodynamic signature

A noteworthy feature of the above description is that the AdS/CFT picture predicts that derivatives

of F are discontinuous across the transition to a temperature-independent regime. This makes this

a first-order phase transition, with definite implications for the thermodynamic properties of the

quantum Hall fluid.
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This discontinuity is seen in figure (5.10), which plots the temperature derivative

dFT (T )

dT
=

dFT (T )

drh

drh
dT

= −4πL2

κ2

eξ(rh)/2r2
h

(eξ(rh)/2h1(rh))′

[
3 + T̂ Xh − 1

Xh

]
, (5.81)

obtained by implicitly differentiating the black-hole expression, eq. (5.91). The second line of this

equation uses eqs. (5.54) and (5.91). Here primes denote derivatives with respect to rh. Notice in

particular the kink as we approach the minimum temperature, caused by the vanishing of dT/drh

at T = T?. There is no similar near-divergence in the stellar-phase free-energy derivative, indicating

that it is the black hole free energy that dominates the discontinuity of dF/dT near the transition

(see, e.g. figure 5.9).

Although it might seem odd to have a discontinuous transition in a finite-sized system, such as

this, the discontinuity is a consequence of the large-N limit that is implicit on the CFT side of the

AdS/CFT correspondence when working at the classical level on the gravity side.

5.4 Conclusions

Figure 5.10. Derivative of the free en-

ergy in the black hole phase as a function

of horizon position (in units of 4πL/κ2).

Notice its singular behaviour as the tem-

perature approaches the minimum of the

black hole phase.

We present here a method for modeling finite-size effects

within the AdS/CFT description proposed for quantum

Hall systems in ref. [7]. We do so following standard tools

[19], but adapted to CFTs with nonzero chemical poten-

tial. We do so in order to see whether the very successful

AdS/CFT description [15], p = 2/z = 0.4, of a scaling

exponent for how a critical Hall resistance scales with tem-

perature, is consistent with the existence — in the same

experiments that measure p — of a crossover to a low-

temperature regime for which the Hall resistance is tem-

perature independent. The transition temperature, Ts, be-

tween these regimes is measured to depend on system size,

L, according to Ts ∝ 1/L, and we ask whether this is con-

sistent with the holographic identification of z = 5 as a

dynamical scaling exponent (which would naively predict

Ts ∝ 1/L5).

We find the holographic AdS/QHE picture is consistent

with a transition to a T -independent Hall conductivity at

very low temperatures in finite-volume systems. We find

that the transition temperature generically depends on system size, L, in a way that depends on how
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the brane tension, T scales as L is varied. Remarkably, the transition is described on the gravity

side by the Chandrashekar-like transition from an asymptotically AdS charged star to a black hole,

extending similar treatments of stellar objects in AdS/CFT to finite-size systems [22, 21].

Furthermore, we find that the phenomenology of the transition to finite-size effects — and in

particular the size-dependence of the transition temperature, Ts ∝ 1/L — can be consistent with the

prediction p = 2/z and the use of z = 5, if the dimensionless brane tension, T̂ = κ2L2T , appearing on

the AdS side is sufficiently large, and if the brane tension itself scales as T ∝ L2 (so T̂ ∝ L4). More

generally, when this tension is negligible then naive scaling prevails and the transition temperature

satisfies Ts ∝ 1/L5. Large T makes a difference because its presence alters naive scaling relations,

and it does so in a way that depends on how T itself varies as L is varied. If T ∝ L2−n then we

find Ts ∝ 1/Ln+1. The case n = 4 is scale-invariant in the sense that T̂ = κ2T L2 is fixed, and again

gives Ts ∝ 1/L5.

Tension changes the scaling relations by modifying the L-dependence of the radius, rc, that

defines the crossover between the z = 5 near-horizon geometry (relevant to the IR limit) to the

asymptotic z = 1 geometry that obtains at large r (and is relevant in the UV). Recalling that the

existence of different UV and IR scalings relies on the black hole being charged, it is no surprise that

rc grows with black-hole charge: r4
c ∝ Q2 = (ρCFTL

2)2, which implies in the absence of other scales

that rc ∝ L when the CFT charge density ρCFT is held fixed. A sizable tension instead changes this

relation to a different L-dependent result: r4
c ∝ Q2/T̂ = L2ρ2

CFT/κ
2T .

The L-dependence of rc makes a difference because within the near-horizon z = 5 geometry the

relation between the temperature and horizon radius, rh, is T ∝ 1/(r4
cL) for fixed rh. This predicts

T ∝ 1/L5 in the naive scaling limit, or conformal case, where rc ∝ L. But it instead predicts

T ∝ 1/L in the particular case rc is L-independent, corresponding to n = 0 or T ∝ L2.

Notice that because rc does not depend on T none of these considerations about rc modify the

Hall conductivity’s temperature dependence, which traces its roots to the relation σxy ∝ 1/r2
h and

T ∝ r5
h. It does modify how temperature scales with L, however, for any quantity (like the transition

temperature between low- and high-temperature phases) that is defined by a fixed value for rh.

In the AdS/QHE description the transition is predicted to be a first-order phase transition, for

which derivatives like dF/dT are discontinuous.10 This has implications for the thermodynamics of

the quantum Hall fluid at the transition regime, whose presence tests the entire framework. Although

such effects would be experimentally challenging to find, their detection would be worth the effort.

Likewise, since both Ts ∝ 1/L and Ts ∼ L−5 are possible, depending on the size of T̂ and our

particular UV completion, it would be worth better understanding what the parameter T captures

on the CFT side, in order to suggest how to obtain samples for which T scales differently than 1/L.

Our difficulty in doing so at present is a limitation of our phenomenological approach within which

the AdS field equations and brane properties are assumed without reference to a UV completion

10Discontinuities are allowed at finite volume in holographic descriptions due to the large-N limit that is implicit,
on the CFT side, when using semiclassical reasoning (as we do) on the AdS side.

147



Ph.D. Thesis - A.I. Bayntun - McMaster University - Department of Physics and Astronomy

(which would entail a full embedding into string theory).

This is one aspect of an important missing step in the AdS/CFT description of quantum Hall

systems: a precise enunciation of its bounds of validity. If this were known we would also know what

conditions were sufficient for the inter-plateaux behaviour to be universal and not sample-dependent.

Ref. [15] sheds some experimental light on this issue, since it also shows how scaling changes as the

samples are doped. Whenever scaling with T is robust — i.e. scaling lasts over two decades of

temperature — its power is given by the universal value 0.42± 0.01. But such robust scaling is only

found for a relatively small range of doping; a range for which scattering from the doped atoms is

likely to dominate the conductivity [15, 16]. For other dopings the temperature-dependence of the

conductivity is more sample-dependent. It is important to understand from a microscopic point of

view what it is about the quantity of dopant that promotes a universal description.

But the larger point is that the holographic AdS/QHE model presented in [7] still has the possi-

bility to be able to agree well with more observations than those that are guaranteed by construction

through its incorporation of emergent duality symmetries. We believe that the experimental success

of these predictions for p and Ts(L) provide strong evidence that holographic models provide the

natural theoretical language for describing quantum Hall systems. As such, quantum Hall systems

are also likely to be a rich environment for testing AdS/CFT methods.

Many steps in the AdS/QHE program remain incomplete. Perhaps most important is a robust

treatment of disorder in holography, since this plays a central role in producing DC conductivity.

Our present tools for exploring holographic conductors remain strongly hampered by an inability to

incorporate disorder in a simple way. Work on all these issues proceeds apace.
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5.A Conductivity for finite size

Since fixed-r surfaces in the finite-size case are spheres rather than planes, linear-response theory is

trickier since it is not possible to turn on a constant perturbing electric field. This section discusses

how we think about performing this calculation.

To calculate the conductivity at finite size we make two simplifying assumptions.

� We use the z = 5 attractor solution of ref. [7], which involves two separate choices. The first
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choice is that rh is large, so that the black-brane solution is a good approximation to the

black-hole solution. The second is to use the numerical value z = 5, that ref. [7] shows is the

near-horizon solution for dilaton-gravity coupled to the DBI action for a non-probe brane. (We

do so for the motivations given in the main text).

� The second assumption is to focus the conductivity calculation on a small patch of the sphere

in the region of the equator. We do this to avoid any singularities (e.g. near the poles) that

inevitably arise if a global electric field is applied everywhere on a sphere.

We assume the finite size background to be

ds2 = −h0
r10

r8
c

(
1− r7

h

r7

)
dt2 +

L2dr2

h0r2
(

1− r7h
r7

) + r2L2
(
dθ2 + sin2 θdϕ2

)
, (5.82)

which has the temperature

4πT =
7h0r

5
h

r4
cL

. (5.83)

Again, this solution is valid when rh � 1 and r4
h �

Q2eφ0

T̂ 2
(which is not the same dilaton in

what follows, since we use the probe brane approximation by taking a stack of branes to generate

the background, and a separate brane to probe the geometry), that is away from the minimum

temperature (and finite size phase transition.)

To get the conductivity, we place a flux through the surface of the sphere from pole to pole. That

is, along the θ direction. Corresponding to

Jθ =
√
−gGrθ

Eθ(θ) = Ftθ (5.84)

Q =
√
−gGrt ,

where Eθ(θ) has some angular dependence that satisfies its Maxwell equation. Proceeding with the

identical arguments of [7] we get the conductivity

σ2
θθ =

[
T 2`8e−2φ̃ gϕϕ

gθθ
+
e−φ̃Q2`4

g2
θθ

]
r=rh

= sin2 θe−2φ̃0T 2`8 +
e−φ̃0Q2`4

L4r4
h

. (5.85)
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For low enough temperatures the second term is dominant, provided

e−2φ̃0T 2`8 � e−φ̃0Q2`4

L4r4
h

or, equivalently e−2φ0T 2κ8 � e−φ0Q2κ4

L4r4
h

(5.86)

and so r4
h � Q2eφ0

T̂ 2
,

where the second line uses φ̃ = φ + 4 log(`/κ) and we set sin θ = 1 since we are calculating the

conductivity near the equator. This is the exact same condition as to be in the z = 5 region from

(5.39). Expressed as a function of temperature (for the black hole geometry) the conductivity in the

finite size case using (5.47), is then

σθθ = κ2ρCFT e
−φ0/2 ×


[

κ4T 2

(7h0)4πLTρ2CFT e
φ0

]2/5
if T̂ � 1,[

119
(7h0)100πL5Tρ2CFT e

φ0

]2/5
if T̂ � 1.

(5.87)

Here we learn that the scaling of the conductivity with system size is very different in both the large

and small tension cases. As we can see, in both cases the conductivity has the same temperature

scaling. This can be understood from the fact that the changes in finite-size scaling enter entirely

through the quantity rc, which is independent of temperature.

5.B Free-energy calculations

According to the rules of the AdS/CFT correspondence, to calculate the free energy of the phase

corresponding to the CFT we must evaluate the gravity action on shell; i.e. at the appropriate

solutions to the field equations.

The stellar phase

Taking the trace of the Einstein equations

1

2κ2

[
R+ 1

2 (∂φ)2 − 12

L2

]
= −T

X
(X − 1)2 +

1

2
(3p− ρm) , (5.88)
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and using the fact (see ref. [21]) that Lfon-shell = p, the free energy for the system described by a star

evaluates to

FS(T ) = −TSon-shell

= T

∫
d4x
√
−g
[

3

L2κ2
+
T (X − 1)

X
− 1

2
(ρm − p)

]
(5.89)

=
4πLTβ′

κ2

{∫ rs

0

drea(r)/2r2√
1 + r2 − κ2m/4πLr

[
3 +
T̂ (X − 1)

X
+
κ2L2

2
(p− ρm)

]

+

∫ r∞

rs

dreξ(r)/2r2

[
3 +
T̂ (X − 1)

X

]}
.

To evaluate the free energy, we numerically solve the field equations and then integrate these

functions to some asymptotically large cutoff, r∞. Since there is no horizon in this free energy to

relate to a temperature, one would naively expect that this free energy is independent of temperature

(since the temperature in the definition of free energy will cancel the temperature from integrating

the time circle.) While this is true at low temperatures, the free energy is only meaningful when

comparing to an alternative (in this case black hole) phase and appropriately normalizing the cir-

cumference of the S1’s at infinity as in S5.2.1. Doing so causes the free energy of the stellar phase

to behave as ∼ T 3 in a similar way to pure AdS space at large T .

The black-hole phase

To obtain the free energy of the black hole phase we again trace the field equations, but this time

without the presence of matter, to give

R+
1

2
(∂φ)2 =

12

L2
− 2κ2T

X
(X − 1)2 , (5.90)

and plugging this into the action gives the free energy

FT (T ) = −TSon-shell

= T

∫
d4x
√
−g
[

3

L2κ2
+
T (X − 1)

X

]
(5.91)

=
4πL

κ2

∫ r∞

rh

dr eξ(r)/2r2

[
3 +
T̂ (X − 1)

X

]
.

We use these expressions to compute the free energy difference between the two phases in S5.3.2.
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Chapter 6

Conclusion

From the outset, the purpose of this thesis is to demonstrate both the power of phenomenological

methods and thus effective theories, as well as to lend particular credence to stringy methods and

models. String models have in general provided a large array of theories and frameworks that were

not originally considered viable years ago. For instance, extra dimensional models and Kaluza-Klein

compactification was originally disposed of due to the instability of the size of the extra dimensions,

and the fact that there was no observation of a group of massive particles that were proportional

to their (integer) charge. Another instance of a revived model is the case of the Born-Infeld action,

which is now a required feature of any theory with open strings coupled to a gauge field.

Most important is the fact that extra dimensional models, when coupled with the existence of

branes, are now a viable option in theory space because of string theory. We have seen that this

allows for some very rich physics, whether these ideas and techniques are applied to cosmological

scenarios or strongly coupled gauge theories. Finally, when we couple these powerful constructs with

ideas learned about effective theories from decades of understanding quantum field theory, we can

build models without having to rely on explicit string constructs. This allows us to focus on the

physics resulting from these models without being buried in the details of the particular embedding

in string theory. Of course, the trade-off is that one loses one of the main advantages of string theory,

in that these phenomenological models end up having more free parameters than string theory itself

has.

We now give a brief overview and outlook on the upshot of the papers present in this thesis.

6.1 Codimension-2 branes: Epilogue

While the codimension-2 back-reaction study essentially fleshed out the framework in treating brane

back-reaction onto the full geometry of a theory, this was an important step towards developing

cosmological models. In particular, the inclusion of a Maxwell field in this back-reaction framework
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has allowed for a stabilization mechanism of the extra dimensions due to flux constraints [23]. Further

studies have produced the realization that the effective on-brane cosmological constant is related to

the dilaton and Maxwell field in the bulk and explored in [11]. This led to the observation that in

this particular set of models, it is possible to have a technically natural small cosmological constant,

at the expense of a large brane flux. However, the overarching theme of this study is the better

understanding of effective theories in brane-world models. The general feature that the effective

potential vanishes on the brane when one considers back-reaction onto the bulk is a striking feature

that goes against the intuition that the brane tension should contribute to the effective potential.

This allows for the creation of a broad class of cosmological models with the potential feature of

a vanishing cosmological constant from back-reaction calculations. It is clear from this study that

both string methods and the effective theory approach has led to a large potential of extremely rich

physics.

6.2 Quantum Hall-ography: An Outlook

The holographic quantum Hall proposal has a number of extremely promising features. From a

theoretical standpoint, it has furthered our understanding of AdS/CFT in application to condensed

matter systems. A striking feature of this proposal (and other similar proposals) is that the symme-

tries of the bulk gauge fields map to the symmetries of the conductivities of the boundary CFTs. This

is a rather remarkable feature that is entirely dependent on how the bulk gauge fields relate to the

boundary operators by the AdS/CFT dictionary. From this symmetry correspondence alone, many

potential models in condensed matter can be built by simply considering their CFT symmetries.

On a more specific point, even if it turns out that this particular model for the quantum Hall

effect is inaccurate at describing experiments, there are still other possibilities of finding other models

that also incorporate the SL(2,Z). The important aspect of this whole program is that we now have

a reliable method of constructing/vetting models of the quantum Hall system in AdS/CFT. This

applies equally well to a string-embedded (top-down) or phenomenological (bottom-up) approach

as one simply needs to check that one has the correct symmetries. Of course, the calculation of

exponents and other conductivity measurements becomes the quantity which truly separates these

models and determines the ones which should be taken seriously.

The other major development in this AdS/CMT paradigm is the quantification of finite size

effects. We have clearly shown that in the case where one considers a black hole solution, as opposed

to a black brane, the AdS radius can be interpreted as following the size of the system. While this

observation seems fairly innocuous at first, when it is realized that at low enough temperatures, these

black hole solutions are no longer able to describe the system, it is clear that an alternate phase is

required to describe lower temperatures. This is an entirely welcome feature as typically condensed

matter systems undergo some form of transition when the system size no longer can be neglected from
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physical quantities. The purpose of alternate ‘stellar’ solutions are simply a means of quantifying

the transition. However, based on recent studies by [26] there are additional interpretations of these

stellar solutions in the CFT and further studies of this low temperature phase could produce more

quantifiable predictions.

While there have been numerous other studies on finite size effects [27, 28] in Ads/CMT, these

typically introduce domain walls and other additional objects into the model. The advantage of our

approach is that by not introducing these additional objects, the calculations do not get too much

more complicated, while we preserve the very powerful scaling arguments when only dealing with

metric quantities.

Finally, with respect to the specifics of our model, we have been successful in reproducing some

quantum Hall experiments, while others still remain a theoretical challenge. From simply the symme-

try principles of SL(2,Z), we have managed to reproduce the semi-circle features in the conductivity

plane. In our particular model, we have seen that our model predicts the scaling exponent p = 0.4,

with the dynamical exponent z = 5 when we allow our model to source the geometry in addition

to probing it. Furthermore, microwave experiments that measure z = 1 in the UV are further con-

firmation that we’re on the right track. At present, the clear incompatibility lies in the fact that

finite size experiments measure T ∝ 1/L while generically the quantum Hall-ography model sees

T ∝ 1/Ln+1. One resolution comes from our lack of understanding of the tension on the CFT side

of the system, or the potential UV completion to our theory, which may provide a mechanism to

allow for T ∝ 1/L, or n = 0.

A potential solution to the disagreement between experiment and our result for Ts ∝ 1/Ln+1 lies

in the understanding of the critical exponents measured. In [25], at the transition between the high

and low (temperature-independent) temperature phase, there are only two relevant length scales in

the problem, the correlation length, ξ ∝ T−1/z, and localization length, ζ = |B −Bc|−ν . If we write

the conductivity as a function of these variables, the conductivity must take the form

σ ≡ σ (ξ/ζ) = σ

(
|B −Bc|
T 1/νz

)
. (6.1)

This form is different from (4.86) in that the additional exponent ν now is present, with the case

ν = 1/2 agreeing with (4.86). The authors in [25] interpret measuring z = 1 and 1/zν = 0.4 as the

condition that ν 6= 1/2. This suggests the localization length has an anomalous dimension associated

with it, and it is this anomalous dimension which simultaneously allows the measurement of p = 0.4

and z = 1. However, it is understood in condensed matter that the presence of an anomalous

dimension introduces a new length scale in the problem. Without the additional length scale, all

scaling behaviour would be entirely determined by dimensional considerations, or the mean-field

result 1.

In our AdS/QHE system we see similar effect happens in the case of the tension. This additional

1For a particularly good exposition on this idea, see chapter 7 of [29]
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scale changes naive scaling arguments, to allow for different dependence of the temperature on

the system size. We mention this apparent similarity between the experiment and our model not

as a suggestion that tension may model the localization length, but that the fact that we get an

unconventional scaling (that isn’t coming from the UV or IR region) may come from a similar

mechanism in which the localization length plays a role. These questions can be resolved through

either the introduction of localization in our model, or a better understanding of the tension on the

CFT side.

There are still potential research directions associated with this model. The most pressing is to

move away from the probe brane approximation since at this point we must distinguish between the

charge carriers and branes that source the geometry, and the charge carriers and probe brane in which

we calculate the boundary observables from. This is particularly awkward since it would be much

more preferable to have one sector of the action which sources the geometry and further produce the

CFT observables we’re interested in. This may be particularly helpful from a top-down standpoint,

since at some point it would be useful to embed our model in some string theory. Moreover, doing this

will help identify the degrees of freedom on the CFT, while providing more insight into the behaviour

of the electrons in these strongly correlated systems. Further directions include calculating the Hall

viscosity [30] from this model, investigating potential non-abelian anyonic statistics in producing the

even integer states, and potentially the states of graphene, which are known to be quantum Hall

[31].

At the end of the day, we have shown that while string theory may still be directly unreachable

by traditional collider methods (although this statement is becoming debatable), it has produced

numerous powerful tools in the theoretical community which are now allowing us to make contact with

experiment and observations. When string theory was originally being developed, it was famously

slated as “21st century mathematics in a 20th century world”. While this statement was likely

originally intended to give awe to the layperson on how far away in energy we are from string scales,

it is now entering the realm of truth. It is now the 21st century, and these string theories are making

predictions on how we see the world around us.
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