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Abstract 

This thesis provides new regression methods for the removal of structured noise 

in datasets. With multivariable data, the variables and the noise can be both 

temporally correlated (i.e. auto correlated in time) and contemporaneously 

correlated (i.e. cross-correlated at the same time). In many occasions it is possible 

to acquire measurements of the noise, or some function of it, during the data 

collection. Several new constrained latent variable methods (LVM) that are built 

upon previous LVM regression frameworks are introduced.  These methods make 

use of the additional information available about the noise to decompose a dataset 

into basis for the noise and signal. The properties of these methods are 

investigated mathematically, and through both simulation and application to 

actual biomedical data.  

In Chapter Two, linear, constrained LVM methods are introduced. The 

performance of these methods are compared to the other similar LVM methods as 

well as ordinary PLS throughout several simulation studies. In Chapter Three, a 

NIPALS type algorithm is developed for the soft constrained PLS method which 

is also able to account for missing data as well as datasets with large covariance 

matrices.  Chapter Four introduces the nonlinear-kernelized constrained LVM 

methods. These methods are capable of handling severe nonlinearities in the 

datasets. The performance of these methods are compared to nonlinear kernel PLS 

method. In Chapter Five the constrained methods are used to remove 

ballistocardiographic and muscle artifacts from EEG datasets in combined EEG-
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fMRI as well as single EEG experiments on patients. The results are shown and 

compared to the standard noise removal methods used in the field. Finally in 

Chapter Six, the overall conclusion and scope of the future work is laid out.  

Index terms - LVM, PLS, EEG, Regression PCA, eigenvalues   
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Chapter 1 

Introduction 

In many regression situations structured noise or disturbances (Z) affects both 

the regressor variables (X) and the response variables (Y).  If nothing is known 

about this noise then certain assumptions are made and default regression 

methods based on these assumptions are used (e.g. ordinary least squares, Partial 

Least Squares (PLS) regression, etc.).  But if one has additional information by 

way of some independent measurements on parts of the noise (Z), then this 

information can be used to improve the estimation of the true relationships among 

X and Y.  The goal of this thesis is to provide new regression methods for the 

removal of structured noise in datasets. Several new constrained latent variable 

methods are introduced that make use of the additional information, available 

about the noise, to decompose a dataset into subspaces belonging to noise or the 

signal. The properties of these new methods are investigated mathematically, and 

through both simulations and applications to actual data.  

The success of a regression model depends on several issues such as the amount 

of information the input variable (X) holds about the response variable (Y), the 

degree of linearity between X and Y and also the magnitude, nature and 

distribution of the noise in X and Y.   In general any variation in a dataset that is 

irrelevant of the desired response can be called noise. The presence of noise can 

severely degrade a regression model and the prediction quality for future 

observations. The model’s success also depends on the knowledge available 
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concerning the noise and the signal. The regression method should be chosen 

based on the type of noise present in the dataset. The noise can be uncorrelated  or 

correlated (i.e.  structured). 

With multivariate data, the variables and noise can be both temporally 

correlated (i.e. auto-correlated in time) and contemporaneously correlated (i.e. 

cross-correlated at the same time). An example of temporally correlated noise is 

the presence of the 60Hz oscillations in the power lines. This type of noise 

exhibits a structured power spectrum.  An example of contemporaneously 

correlated noise is the ocular artifacts randomly contaminating many 

electroencephalogram (EEG) channels at the same time. The noise can have both 

temporal and contemporaneous structures. For example, the cardio artifacts in the 

EEG affect many channels at the same time and in addition they are periodic in 

nature and hence temporally correlated. In this thesis we refer to structured noise 

as  contemporaneous noise in the signals and it is this noise that needs to be 

treated in order to uncover the true relationships among the signals.   

 When no information is available about the noise, perhaps the most convenient 

regression method is ordinary least squares (OLS) or its multivariable counterpart, 

multiple linear regression (MLR).  In MLR it is assumed that the noise is only 

present in Y and it is independent and identically distributed (iid).  The success of 

MLR regression, however, depends on the condition of the input matrix. Regular 

MLR only works when X is full rank and does not contain any missing elements. 

It also assumes that X is free of noise. When X is rank deficient, other regression 
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methods such as ridge regression or partial least squares (PLS) [
1
] should be used. 

The use of PLS has several advantages over the ridge regression; for example, it 

can handle the presence of missing values. It also makes use of the 

contemporaneous  correlation among the X and Y variables to improve the model 

and can also provide a model for the variations in X that can be used for visual 

inspection or detection of outliers.  If X is full rank and both X and Y contain no 

missing elements, then the final prediction for PLS, provided that enough 

principal components are extracted, will be the same as that for OLS. 

The presence of noise in the input variable can lead to biased estimates of the 

model. One way to remove the noise is to use latent variable methods such as 

principal component regression (PCR) [
2
] or PLS which are less sensitive to 

random variations in X. However, in the presence of structured noise the situation 

changes. When the noise is structured, there is a chance that its variations can be 

modeled by the latent variables, leading to biased estimates and incorrect 

predictions. If the noise is only present in X or only in Y, the final prediction 

results will remain unchanged but more components may have to be extracted by 

PLS in order to achieve the same quality of fit. When there is common structured 

noise in both X and Y, building a model between X and Y will result in modeling 

all the structured variation, including the common structured noise 

. In these situations, ordinary regression methods such as PLS and MLR cannot 

provide the best models for the true relationship between X and Y without being 

impacted by the presence of the common structured noise. In such situations, the 
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noise needs to be accounted for when building the model.  

In many occasions it is possible to acquire measurements of the noise, or some 

function of it, during the data collection. For example in EEG recordings the 

ocular artifacts are recorded using the extra electrodes that are placed around the 

eye area [
3
]. These extra electrodes record information about the ocular noise (Z). 

This information can be used later to preprocess the data to identify the ocular 

artifacts such as eye movement or blinks and remove them from the EEG dataset. 

A simple yet very efficient way of removing the noise is to project the response 

data (Y) onto the orthogonal complement of the noise (  = QZY), which removes 

the noise components from Y, and then build a model between X and  . There 

are several problems with this approach; one is that if the noise matrix Z is also 

noisy, then the projection into QZ will not be accurate. This situation will be 

discussed further throughout the thesis. Also, Z must be orthogonal to the signal’s 

subspace or some of the useful information in Y or X will also be filtered out. For 

instance, in the EEG example, the ocular electrodes  also record some of the 

useful signal coming from the brain. Therefore the use of  straight projection in 

this example can reduce the signal to noise ratio (SNR) of the EEG electrodes [
3
]. 

Using PLS to build a model between X and   is also not a very good option, since 

the components of the noise still reside in X. The PLS method is likely to extract 

some of these noise components as latent variables, hence more principal 

components will be required to achieve the same quality of fit which will result in 

less reliable and biased estimates.  
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In this thesis one step latent variable-type solutions are proposed in which a 

constrained partial least squares model is built between X and Y, but 

simultaneously suppresses the effect of noise, using the auxiliary noise matrix 

provided (Z). Two variations of this method are proposed: Hard-Constrained PLS 

(HC-PLS) and the Soft-Constrained PLS (SC-PLS).  In HC-PLS a set of principal 

components are extracted from X that are highly correlated with Y, but at the 

same time are orthogonal to Z. As in the PLS algorithm these scores can be used 

for visualization of the X space as well as for prediction of the future Y variables.  

The components extracted by these constrained methods are less likely to 

contain noise components, which makes them more suitable for prediction of the 

true underlying response and interpretation of the data (such as in score plots).  

Since these components are orthogonal to the noise space, they can be used for 

prediction of future noise free Y variables as well.  

In the case where the noise matrix Z is not orthogonal to the signal’s subspace 

or is not properly conditioned, a case which is discussed later, a less restrictive 

algorithm can be implemented to compromise between residual noise and better 

fit to the model. An example of this is the use latent variable methods for removal 

of the ballistocardiographic (BCG) artifacts [
4
] from EEG. The objective is to find 

a way to separate the EEG matrix into two subspaces:  the noise subspace , and 

the brain signal subspace, each with their respective set of latent variables. This 

objective leads to the development of a soft constrained version of HC-PLS that is 

named Soft-Constrained PLS (SC-PLS).  The advantage of the SC-PLS over HC-
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PLS is that the rigidity and the sensitivity of the model to noise can be adjusted 

manually. This algorithm is also less sensitive to the condition of the noise matrix, 

such as the rank or its orthogonality to the signal subspace. These features as well 

as the other advantages of the SC-PLS algorithm will be discussed in detail in the 

upcoming chapters of the thesis. This algorithm was used to remove the 

ballistocardiographic (BCG) and muscle artifacts from the electroencephalogram  

(EEG) data in a study. The results are presented in chapter 5 of the thesis.  

Wold et al. [
5,6
] developed the “non-linear iterative partial least squares” 

(NIPALS) algorithm for PLS which is an extension of the power iteration method 

[
7
] for extracting the eigenvalues in matrices. The advantage of using Wold's 

algorithm is an improved computational cost for large datasets as well as its 

inherent ability to handle missing points. Inspired by the NIPALS algorithm, we 

developed an iterative algorithm for SC –PLS that can also account for the 

missing values in X, Y and Z while building the model and while predicting the 

future responses. This algorithm is presented in chapter 4.  

In many practical cases the relationship between X and Y and Z is linear or 

mildly nonlinear; however, there are cases in which the relationship between the 

X and Y or the X and Z can be defined using a nonlinear function Φ(.),  as Y = 

Φ(X)Β. In other words Y is a linear mixture of nonlinear transformations of X. In 

such cases if the transformation is known, Φ(X) can be calculated and a simple 

LVM algorithm or regression can find the relationship between Y and Φ(X). 

However, if the nonlinearity is strong and the transformation function Φ(.) is 
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unknown, then a linear regression or LVM method may no longer provide 

satisfactory results. For such problems, nonlinear algorithms, known as kernel 

methods, have been developed for regression and have also been extended to the 

PLS algorithm known as the Kernel PLS (KPLS) [
8–10

]. These methods take 

advantage of a certain property known as the “kernel trick” [
11,12

] to perform 

regression in a nonlinear feature space without explicitly knowing the nonlinear 

transformation Φ(.). In chapter four the kernel idea is extended to SC-PLS and 

HC-PLS algorithms. The resulting nonlinear algorithms, named SC-KPLS and 

HC-KPLS for soft and hard constrained methods respectively, can also handle a 

nonlinear relationship between X and Y and Z matrices and simultaneously 

suppress the structured noise.  

The organization of this thesis is as follows: In chapter two of the thesis a 

framework for regularized latent variable methods is provided. The hard 

constrained PLS and the soft constrained PLS methods are introduced. Later 

throughout the chapter, these methods are compared against a variation of 

Orthogonal Signal Correction methods (OSC) developed by Fearn et al.  [
13

] and 

ordinary PLS regression using simulation studies. An industrial example in which 

HC-PLS is used to improve product optimization is also presented. In chapter 

three, the iterative NIPALS extension of the SC-PLS algorithm (NIP-SCPLS) is 

introduced and the quality of the model is validated using simulation studies. 

Later in that chapter it is shown and analyzed how the NIP-SCPLS is able to 

handle missing data. In chapter four the nonlinear constrained PLS methods, SC-
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KPLS and HC-KPLS are introduced. Again the quality of these algorithms is 

compared to KPLS and linear LVM methods using simulation studies. Finally in 

chapter five, the SC-PLS algorithm is implemented on real EEG and simulated 

EEG data to remove ballistocardiographic and muscle artifacts from EEG 

datasets. Conclusion and suggestions for future work are presented in chapter 6. 

. 
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Chapter 2 

Latent Variable Methods In the Presence of Structured 

Noise 

 

Abstract 

Latent variable methods are presented that are aimed at extracting models for true underlying 

relationships among  a set of regressor and response variables when those measurements are 

contaminated by structured noise.  It is assumed that one not only has  measurements  on the variables 

of interest (X, Y), but also information on some part of the structured noise, either as simultaneous 

measurements on variables (Z) that contain some of the structured noise.   The latent variable methods 

are developed from objective function formulations that maximize the covariance explained among the 

X and Y variables, subject to hard or soft orthogonality constraints on the structured noise 

information.  The various algorithms are evaluated on simulated and industrial data to illustrate and 

compare their performances against one another and against traditional PLS algorithms.  The results 

illustrate the substantial improvements possible when one has such auxiliary information on some of 

the structured noise. 

 

Index terms- Principal Component Analysis, Partial Least Squares, Structured noise, Modeling and 

Prediction, Constrained Optimization  

 

 

2.1 Introduction 

The object of statistical inference is to extract information from measurements 

that are contaminated by noise (alternatively one might refer to noise as errors or 

disturbances).  With no specific details on the noise, one usually makes certain 

assumptions about the nature of the noise and proceeds with the analysis under 

these assumptions. For example, with multiple linear regression one usually 

assume that all the errors reside in the response measurements ( Y ) and are 

identically and independently (iid) distributed usually as a Normal distribution. 

With error-in-variables regression [
1
] errors with some assumed distribution are 

assumed to be present in both the regressors ( X ) and response ( Y ) variables. 
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However these methods require knowledge of the distribution of the errors. With 

large multivariate data sets Partial Least Squares (PLS) is often used to handle 

both the reduced rank nature of the data and to allow for errors of unspecified 

distribution in both the X  and Y  data.  But if the noise or errors are structured, 

that is they are not independent of one another, then the PLS model will also 

extract latent variables that model the covariance structure of the noise. If the 

structured noise in the X  and Y  spaces is independent, then this should not 

influence the relationships extracted among the X  and Y , only the uncertainties 

in those inferences. However, if the structured noise has a strong presence in X , 

even though the model may have the same prediction results, more components 

need to be extracted and results become harder to visually interpret.  

Structured noise is considered to be multivariate noise where the elements of 

the noise vectors are correlated with one another (contemporaneous noise ) as 

well as possibly temporally correlated, as opposed to white noise where the 

elements are independent and not auto-correlated. Such structure in the noise 

implies that PCA performed on it will have significant components, i.e. structure.  

Structured noise can be exclusive to one subspace (uncommon structured noise) 

or can affect both X and Y with the same source (common structured noise). The 

reader should distinguish between these two terms. In the case of common 

structured noise any PLS regression model may also contain latent variables 

related to this noise.  After all, PLS is simply providing models for the measured 

X  and Y  spaces, regardless of the source of the variations. 
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If the objective of the study is to uncover the true underlying relationships 

among the noise free X  and Y  spaces in the presence of common structured 

noise contaminating  both X  and Y , then further information on the specific 

noise present in these measurements is necessary. This noise information may be 

available in different ways.  In some cases, at the same time as X  and Y  are 

measured, one might have available measurements on additional variables ( Z ) 

that contain information on the structured noise.  Alternatively one might have 

data collected at other times that provide information on the covariance structure 

of the noise. To illustrate these situations, consider the following examples. 

1. Bruwer et al [
2
] considered the problem of predicting the textural 

properties of snack foods (crispiness, hardness, surface texture, etc.) 

from measurements of vibrational spectra collected from multiple 

vibration sensors (accelerometers) affixed to a stainless steel chute onto 

which the snack food was falling in the process of being delivered to the 

next processing stage.  The signals from these accelerometers ( X ) are 

also affected by the structured noise from machines and other vibrating 

equipment located in the same vicinity as the chute, affecting the 

measurements on the vibrational spectra. This noise could be monitored 

either simultaneously with X  and Y  using microphones ( Z ) or 

measured at other times and its covariance matrix ( ) estimated.  

2. Consider the situation of trying to relate process data ( X ) to product 

characteristics ( Y ) as measured from a NIR spectrometer.  In many 
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such cases both the process data and the response data are affected by 

common disturbances such as temperatures and humidity and one might 

have a simultaneous measure of variables related to these environmental 

disturbances ( Z ). An example, in the oil exploration industry was 

reported by [
3
] where soil samples collected from the ocean floor were 

subject to spectroscopy to detect oil and gas residues. These samples 

were contaminated with larger amounts of other organic residues that 

reduced the ability to detect the residues of interest. However, 

spectroscopic measurements on some of the major contaminating factors 

were available elsewhere and could be used to improve the final 

analysis. 

3. Another example concerns the presence of ballistocardiographic noise 

(BCG) during the recording of electroencephalogram (EEG) signals [
4
]. 

Available simultaneous measurements from an electrocardiogram can be 

used to remove BCG from EEG signals giving a better measure of the 

true brain physiological activity. Another example from the same field is 

the presence of background brain activity in task- related 

electroencephalography. The background activity appears as structured 

noise. However, its covariance matrix can be calculated by performing 

resting estate EEG ( ) and used to remove the structured noise. 

4. As another example, while recording (EEG) signals from the brain an 

extra electrode is placed on the face to record eye movement (which in 
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this case can be considered the auxiliary noise matrix ( Z ). This 

additional noise data can be later used to remove eye movement artifacts 

from the EEG data [
5
].     

5. In combined EEG-fMRI analysis motion artifacts can affect both the 

fMRI and EEG data. Since the motion affects both EEG and fMRI data, 

inference between EEG and fMRI will result in a model that may 

explain the common motion artifact rather than the true underlying 

physiologic changes relating EEG and fMRI data. In such a case, extra 

measurements from motion sensors can be incorporated (Z) and used to 

remove the common motion noise artifact from both EEG and fMRI 

 

In this thesis we present and compare various latent variable methods that use 

this ancillary noise information collected simultaneously ( Z ) with the regressor (

X ) and response ( Y ) measurements, to obtain improved estimates of the 

underlying noise free models for X  and Y .  

 In the realm of latent variable data analysis, several  methods have been 

introduced by [
6–9

] and other authors to remove unrelated components from X  

prior to regressing against Y . However, none of these methods exploit the 

additional knowledge that might be available on the noise. In the presence of 

common structured noise in both X and Y , these methods fail to remove the 

impact of the structured noise. This issue will be discussed in further detail in the 

upcoming sections.  
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One way to eliminate the effect of structured noise, when an auxiliary noise 

matrix “Z ” exists, is to project the data onto the orthogonal subspace of Z  prior 

to performing any latent variable data analysis. However, this method tends to 

complicate the process of predicting the future response values [
7
]. In addition, it 

can be shown that the condition and presence of random noise in the auxiliary 

matrix ( Z ) can greatly reduce the efficacy of a simple projection method, leading 

to inaccurate results and predictions [
10

]. We shall discuss this problem in further 

details in the appendix.  

This paper provides a framework for constrained latent variable methods that 

utilize information on some of the structured noise present in the data, either in 

the form of a simultaneous measurement matrix ( Z ) or a covariance estimate ( ) 

of the noise. It introduces the concept of soft and hard constrained (regularized) 

latent variable methods. What distinguishes this paper from previous articles is 

the concept of utilizing noise related matrices for directly extracting latent 

variables without any preprocessing (noise removal) steps. The methods provided 

here have the same properties as well known latent variable methods such as PCA 

and PLS, but with built-in noise constraints. Therefore, the principal components 

(or latent vectors) extracted can be used in the very same way they would have 

previously in regular methods such as normal partial least squares (PLS) or 

Reduced Rank Regression (RRR). 

In Section II, hard-constrained latent variable methods are discussed and 

expanded into partial least squares and principal component type of regressions. 
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Later, we shall discuss some of the properties and shortcomings of hard 

constrained LVM methods. In section  2.3 we introduce the concept of soft 

constrained LVM. Finally in sections  2.4 and  2.5, we present some simulation 

results and well as an industrial optimization example to assess the properties of 

the methods proposed here and to compare them with standard methods. The 

Appendix discusses the extension of these constrained methods to other LVM 

models which are beyond the scope of this thesis but yet still fall within the 

concept of constraint LVM. As mentioned earlier we shall discuss the advantages 

of using the latent variable noise removal methods (i.e. those discussed in this 

thesis) as opposed to ordinary projection methods discussed earlier    

Notation: Bold upper (lower) case Arabic symbols represent matrices or vectors 

respectively, and regular-faced symbols are scalars. Bold-faced, lower-case Greek 

symbols are matrices. The notation, e.g. Xi represents the i
th

 column of the matrix 

X . The notations (·) and (·)  denote the null-space and range of the 

argument respectively. In the following chapters we use the following naming 

scheme: methods that include hard constrints are accompanied by the prefix “HC” 

and those that include soft constrints will have the prefix “SC”.  

 

 

 

2.2 Hard Constrained Latent variable regression in the Presence of 
Structured Noise 
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In ordinary LVM methods the assumption is that only two matrices, the matrix 

of regressor variables X (n×k) and response variables Y (n×m) are available. 

However, assuming the availability of an auxiliary noise matrix Z (n×b) that 

contains information about some (or all) components of the structured noise, one 

can exploit Z  to obtain a better model for the underlying noise-free behavior of 

X  and Y .  In this section we look at several methods for finding latent structures 

that provide improved latent variable models for the underlying noise-free 

variations in X  and Y  by imposing various  orthogonality constraints between 

the latent variable spaces of Z  and X and Y .  

2.2.1 The OSC-PLS approach: 

 

Orthogonal signal correction (OSC) and projections onto orthogonal latent 

structures (O-PLS and later extended to O2-PLS) were introduced [
6,8,9,11

] that 

prove effective under reasonable conditions. These methods remove variations in 

X (or Y) that are unrelated to Y (or X) before determining a model. As long as the 

structured noise resides in either X or Y these methods perform reasonably well. 

If both spaces are contaminated with structured noise but the noise structure is 

different in each dataset (different source), these methods still provide adequate 

results. However, in the presence of common structured noise, with a same 

(common) basis for structured variations in both X and Y, these methods fail. 

Take for example a variation of OSC PLS introduced by  Fearn [
7
]: In this method 

the covariance matrix X′X is projected onto the orthogonal complement of X′Y. 

In the case when common structured noise resides in both X and Y, X′Y will also 
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be a basis for the noise as well and hence the components extracted from X will 

be also orthogonal to noise subspace. In such a case, when the common noise is 

not properly removed from the datasets, the resulting model will be biased 

towards the structured noise. In other words instead of building a relationship 

between the input and the true underlying responses, the resulting model may be 

better at predicting the variations in the noise rather than the desired Y values. 

Fearn’s method does not have the essential ingredient that is the focus of this 

paper;  namely, an independent measurement of a matrix Z  that contains 

elements of structured noise in X  and Y . However, Fearn’s method has a 

solution structure that is parallel to those we consider here. It is also a 

methodology that many are familiar with and so provides a good starting point for 

this paper. Fearn’s problem is formulated as: 

 

max ,

s.t.

, 1, ,

  

. 

i i

i j ij

i i q



 



 



  

w
w X Xw

w

0Y

w

w X

 (2-1) 

The objective of the problem is to find a set of latent vectors ( 1k
i

w ) that 

maximize the above objective function considering the constraints included. Here,  

ij  is the Kronecker delta. Rao [
12

] has shown that the solution ,,
1 q

w w to this 

problem is given by the q  principal eigenvectors of the matrix 
XY

M X X . XY
M

(k×k) is a projection matrix (onto the orthogonal complement of X′Y) defined as: 

  
†

.    
XY

M I X Y Y XX Y Y X  (2-2) 

Instruction on how to calculate the eigenvalues of 
XY

M X X  (a potentially non-
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symmetric matrix) are given in Rao’s publication mentioned above. The general 

idea common to most latent variable methods, including the Fearn method and 

those derived in this paper, is to sequentially extract a set of orthonormal weight 

vectors , 1 ,,i q
i

w  according to some specified objective function. From the 

weight vectors, a set of orthogonal latent vectors  it  (n×1) are defined as a linear 

combinations of columns of iX  with 1X  being the original X   

 .i i it X w  (2-3) 

Since the i
t are linear mixtures of X , they provide a basis (latent vectors) for 

directions in X that carry the desired properties included in the objective function. 

To ensure the orthogonality between basis component vectors (eigenvectors), they 

are extracted iteratively and then X is deflated at each step by projecting it into 

the orthogonal complement of i
t : 

 1 .i i i i
 X X t p  (2-4) 

where  

 1( )i i i i i

   p t t t X   (2-5) 

 This deflated 1iX is then used in (2-1) - (2-5) until q eigenvectors are 

determined. The vector ip  (k×1) is the projection coefficient (loading) vector 

obtained by regressing iX  on it  (2-5). In the OSC-PLS algorithm the principal 

components extracted (3) contain variations in X  that are orthogonal to Y . Once 

a sufficient number (q)  of principal components are extracted, the residual X



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

21 

 

contains mainly variation that is relevant to Y . The residual matrix (
qX ) can now 

be used to perform regression with Y .  

A problem with the OSC method is that the number of principal components (q) 

extracted from X must be determined separately. If the structured noise is only 

present in X this method will perform well (given that a sufficient number of 

components are extracted). However, in the case where an insufficient number of 

principal components are extracted or when the structured noise is present in both 

X and Y this method fails to provide the best model between the true (noise free) 

matrices since the structured noise will not be removed from X .  We illustrate 

this expected result later through some toy examples.  

Other OSC-PLS methods that provide advantages over Fearn’s method [
6
] have 

been proposed. However, at best the OSC-PLS method still provides the same 

prediction as ordinary PLS between X  and Y  and makes no attempt to remove 

any common structured noise in X and Y .  

In what follows, we will assume that we have a matrix of auxiliary 

measurements Z  available that is related to at least some elements of the 

structured noise in X  and Y . In other words, the structured noise present in X

and Y is partially within the range of Z .   We develop latent variable algorithms 

that are aimed at using this auxiliary noise measurement Z  to account for some of 

the structured noise in X and Y during the latent variable regression. We refer to 

the first approach as Hard-Constrained Principal Component Regression (HC-

PCR). This is an algorithm similar to Fearn’s method but the orthogonalization is 
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forced between X and the auxiliary noise matrix Z  rather than between X and Y

. 

2.2.2 HC-PCR 

 A modification of Fearn’s method that accounts for the presence of structured 

noise is shown in (2-6) and (2-7). The orthogonal latent variable set ; :1, ,i i qt

extracted from this objective function explains maximum variance in the subspace 

of X  that is orthogonal to the auxiliary measurement matrix Z . Since the 

structured noise is (partially) within the range of Z  the orthogonalization process 

will suppress the structured noise components in X . The HC-PCR formulation 

can be cast as the following optimization problem: 

 
s

m

.

ax

t.

,i i

i j ij

 

 

w
w X Xw

w w
 (2-6) 

 .  w X Z 0  (2-7) 

The t 's form a basis for the subspace of X that is orthogonal to Z  (and hence a 

partial subspace of the structured noise). Once a sufficient number of t s are 

extracted they are then used for regression on Y . Defining 
1[ ,..., ]qT t t , a 

predicted value 
pY  of Y  can be obtained from: 

  
p

Y TQ  (2-8) 

 
1( ) ,   Q T T T Y  (2-9) 

where Q (q×m) is the projection coefficient obtained by projecting Y onto T . 

The quantity pX  is defined in a corresponding manner by projecting X onto  T as: 
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  
P

X TP  (2-10) 

where 

 1( ) .   P T T T X  (2-11) 

This projection (
P

X ) contains only variation in X that is orthogonal to the 

partial subspace of the structured noise that is within the range of Z . We call this 

method Hard-Constrained Principal component regression (HC-PCR) due to its 

similarities to the conventional principal component regression.  A problem with 

this method, as with any PCR-based method, is that it does not inherit the 

desirable properties of the PLS method; i.e., it only finds linear combinations of 

X  that maximize the variance in the subspace of X , but does not consider the 

relationship between X  and the regressing variables Y . If the variation within X  

is large compared to its correlation with Y there is no guarantee that Y will be 

explained properly by the number of principal components extracted. In the 

succeeding sections of this paper, we extend the proposed method to develop 

PLS-type algorithms that take into account the structured noise in both X  and Y . 

2.2.3 The HC-PLS approach 

To describe this approach, we consider the PLS objective function [
13

] but 

include a hard constraint to enforce orthogonality between X  and Z . Following 

the Burnham and Fearn formulations we can write: 

 

max ,

s.t.

, .

  

,  1 ,

i i

i j ij

i i q



  



 



  

w
w X YY Xw

w w

w X Z 0

 (2-12) 

This formulation is similar to that of ordinary PLS regression.  However, the 
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addition of the last line ensures orthogonality of the latent variables with the 

auxiliary noise subspace ( Z ). The solutions 
1 ,, qw w to this constrained partial 

least squares problem are obtained by sequentially finding the principal 

eigenvalues of the matrix 
XZ

 
M X YY X  [

12
] where the X  and Y ’s at each 

sequential stage are the deflated matrices obtained by projection into the 

orthogonal complement of the prior i
t as per equation (2-4).  The matrix XZ

M is 

the projector onto the orthogonal complement of X Z defined similarly to that 

between X and Y in equation (2-2).  This method, in addition to eliminating 

structured noise from the latent vectors extracted, also inherits the properties of 

conventional PLS, namely high covariance between the extracted it  and the Y

matrix.  

 

2.3 Soft Constrained Latent variable regression in Presence of 
Structured Noise 

In the previous section we showed how to generate latent variable structures 

that enforce orthogonality to the auxiliary noise matrix Z , and therefore 

completely suppress any influence of Z .  However, as will be illustrated and 

discussed in more detail later in  2.4, in some cases it may be preferable only to 

penalize colinearity with the auxiliary noise rather than enforce exact 

orthogonality to it. In other words, we trade off the degree of influence of the 

structured noise into the estimated latent variable space against a model with 

potentially improved prediction capabilities. This will be further discussed in the 
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following subsections.  

 

2.3.1 Soft Constrained PCR (SC-PCR1) 

In SC-PCR, we replace the hard constraint in (2-6) by a penalty on “squared” 

value of the covariance between X  and Z  (i.e.  X ZZ X ). The term  w X Xw  is to 

be maximized while the term   w X ZZ Xw , which explains the covariance with 

the auxiliary noise matrix, is to be simultaneously minimized. Hence a suitable 

form for the SC-PCR at each deflation step is defined by: 

 
s.

x

t.

ma
.

i i i i

i j ij





    

 

w
w X Xw w X ZZ Xw

w w
 (2-13) 

The parameter λ is treated in this case as a manually-controlled meta-parameter 

which regulates the degree of trade-off between maximizing the variance of X  

(first term) and enforcing a small covariance with Z (the second term). The 

orthogonality between loading vectors (wi) is conserved through orthogonal 

projection at each deflation step. To solve the above problem a Lagrangian 

operator is constructed as follows 

 ( ) ( 1)i i i i i i i iL           w w X Xw w X ZZ Xw w w  (2-14) 

Applying the chain rule and recognizing that d/dα sgn(α) = 0 (except at α = 0), we 

have  

 
( )

sgn( ) ( )i
i i i

i

L
  


    



w
X I ZZ Xw w

w
 (2-15) 

where sgn(.) is the sign operator and  is the argument of the absolute value 

                                                     
1 A prefix SC denotes the corresponding method is soft-constrained. 
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operator in (2-13) and  i  is a Lagrange multiplier. Defining a new variable:  

 ˆ sgn ,( )i i    (2-16) 

And by setting the above to zero, we have 

 ˆ .( ) i i i    X I ZZ Xw w  (2-17) 

Thus, we see the desired first latent variable for this case is the dominant 

eigenvector of the matrix  

 1 ( )   U X I ZZ X  (2-18) 

with corresponding eigenvalue ˆi . Once again, the corresponding eigenvectors 

and principal components are extracted iteratively by deflating X , the same way 

described in equation (2-4). The soft constraint approach no longer enforces 

orthogonality between i
t and Z  but rather tries to achieve a softer version of it by 

penalizing  the covariance between i
t and Z . We can write the matrix argument 

of the first line of (2-13) as: 

 ( ) ( )             w X I ZZ Xw t I ZZ t t t t ZZ t  (2-19) 

Now let’s consider a particular iteration when the dominant eigenvalue ̂ of the 

matrix 1
U in (2-18) is positive. Then sgn( )  in (2-15) is +1, and the solution w to 

(2-13) is the corresponding eigenvector, and from the right most equation of 

(2-19) we have   t t t ZZ t , thus the corresponding t  is dominated by the term 

t t  and consequently t  tends to be in a direction which explains maximum 

variation within X  while suppressing the directions along Z .  We define s
T  as 
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the matrix whose columns are the t ’s corresponding to positive values of ̂

obtained over all iterations of the process. The matrix S
T  is used in SC-PCR in 

place of T  in (2-8)-(2-11)  for predicting values for X  and Y .  

We now consider the case in which the dominant eigenvalue  is negative. In 

this case sgn( )  in (2-15) is -1 and the solution w maximizing (2-13) is again the 

eigenvector corresponding to the dominant eigenvalue. Here we have 

     t ZZ t t t . So now the second term of the right most equation of (2-19) 

dominates. Using reasoning similar to that of the previous case, we see that t  in 

this case corresponds to a direction in X  which is most closely aligned with the 

noise matrix Z . We define a matrix  n
T   in a manner similar to the way we have 

defined s
T , whose columns consist of the t vectors obtained over the various 

iterations of the solution that are associated with negative eigenvalues.  Since n
T  

is associated with the structured noise, components of this matrix are excluded 

from T in (2-8) – (2-11) for predicting values for X and Y using the SC-PCA 

method 

 

The sign of the dominant eigenvalue depends on the value of the meta-

parameter  . The larger the value of  , the more sensitive the equation will be to 

the colinearities  between X and Z . Further details on the properties of this 

phenomenon, as well as, on the choice of parameter values, is provided in the 

Appendix.  
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2.3.2 Soft Constrained PLS (SC-PLS) 

We now consider the PLS approach in the soft-constrained, structured noise 

framework. In this case, we wish to find components it  in X  which are closely 

aligned with Y  while simultaneously suppressing correlation with Z . Following 

the arguments presented for the SC-PCA method, a suitable criterion in this 

respect is 

 
m

s.t. .

ax i i i i

i i ij





     

 

w
w X YY Xw w X ZZ Xw

w w
 (2-20) 

 The corresponding Lagrangian is given by  

 ( ) ( 1)i i i i i iL            w w X YY Xw w X ZZ Xw w w  (2-21) 

where the parameters   and i  play the same role as in the SC-PCR case.  

After differentiating, rearranging and equating to zero, and assigning   i = sgn(α) i  

the solution in this case must satisfy 

   .i i i     X YY ZZ Xw w 0  (2-22) 

Thus the desired solution at each iteration is therefore the dominant eigenvector 

of the matrix 

  2    U X YY ZZ X  (2-23) 

In a manner similar to the previous section, we can rewrite (2-21) as: 

 ( ) ( )                w X YY ZZ Xw t YY ZZ t t YY t t ZZ t  (2-24) 

Thus in a particular iteration, when the dominant eigenvalue ̂  of the matrix 

   X YY X X ZZ X  is positive, from the right-most equation of (2-24), we have  
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' ' ' '
t YY t > t ZZ t , Thus in the SC-PLS case the corresponding t  is dominated 

by the term ' '
t YY t , and consequently t  tends to be in a direction which 

explains maximum variation along Y .  Since t  itself is a linear combination of 

the columns of X , t  in this case corresponds to a direction in X  which is most 

closely aligned with Y . Similarly when  is negative, t  in this case is along a 

direction in X  which is most closely aligned with the noise matrix Z . The 

matrices s
T  and n

T  for the SC-PLS method are defined in an analogous manner 

to the SC-PCR case, and have corresponding roles in the prediction of X  and Y .  

This use of latent vectors associated with positive and negative eigenvalues in this 

SC-PLS method will be illustrated with examples in the application section.   

 

 

2.4 Simulation Experiments: 

 

In order to show the characteristics of the proposed latent variable methods we 

design toy problems to demonstrate the performance of our various formulations. 

We consider two separate cases; the first is where strong structured noise 

contaminates only X , while the second is where the structured noise contaminates 

both X and Y .  

We consider a general structure for problems suffering from structured noise 

with system outputs m

iy  corresponding to settings of variables 
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, 1, ,k

i i n x , where ix  is a row vector. We assume that our measurements 

of X  and Y are contaminated with noise: 

  
0 Y

Y Y N  (2-25) 

 0 
X

X X N  (2-26) 

n mY and n kX is a matrix of measured variables. 
0

X  and 
0

Y  are their 

true underlying values that are then contaminated with the noise x
N and Y

N to 

obtain the measured values of X and Y . Without loss of generality it is assumed 

that n k m  . The matrices Y
N  and X

N are the noise terms, which contain both 

structured plus random noise components.  

 ;Y  
Y Y Y Y N Y

ZN E Z T C  (2-27) 

 ; 
X X X X XX N

Z E Z T CN  (2-28) 

 

The Z -terms are the “common” structured noise components; the columns of 

the matrix n s
N

T are assumed to be orthonormal latent vectors which describe 

the structured noise subspace, where s n . The elements of the matrices Y
E and 

X
E are iid random variables with unit variance that represent the unstructured 

noise components.  In addition to measurements of X and Y we assume that we 

also have available a matrix Z , which contains measurements of a linear mixture 

of some components of the structured noise. In other words, it is a linear mixture 

of some components of N
T  plus iid  noise defined as: 
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  
N Z Z Z

Z T C E  (2-29) 

In typical applications of interests, the matrices X , Y and Z  are of low rank 

and a statistical relationship exists between 
0

X and 
0

Y due to the common basis 

S
T : 

 
0 s x X X

X T A U B  (2-30) 

 
0 s y Y Y

Y T A U B  (2-31) 

 n a
S

T  is the score matrix of latent vectors that defines the common basis 

(latent structure ) of X and Y (common structured noise). The extra structured 

components X
U  (n×v) and Y

U  (n×j) are not correlated with each other nor with 

S
T  and define the structured directions in X  and Y  that are unrelated to Y  and 

X  respectively (uncommon structured noise). The mixing matrices X
A , X

B , Y
A

and Y
B are random mixing vectors with zero mean.  The objective is to discover 

the structure of 0
X  and 0

Y  and the relationship between them by making use of 

not only the measurement matrices X  and Y  but also the measurement matrix Z

, which contains information on some of the structured noise present in X and Y . 

We are interested in estimating the latent vectors from X  that maximally explain 

0
Y  and 0

X .  To do so efficiently we must account for the influence of the 

structured noise components in X
N and Y

N . In the case of large structured noise (

N
T ) common to both X  and Y , the latent variables yielded by ordinary PLS may 

become more colinear with N
T than with 0X  or 0Y . We will demonstrate this case 
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in the toy example in section  2.4. To estimate the true latent variable structure of 

0
X and 

0
Y  (contained in

S
T  ) it is therefore desirable to determine latent variables 

with maximum covariance with X  and Y , but also with minimum covariance 

with the structured noise effects contained in the auxiliary noise measurement 

matrix Z . 

Combining the above equations the matrices X and Y can be rewritten as: 

 s N   
Y Y Y Y Y Y

Y T A U B T C E  (2-32) 

 

 s N   
X X X X X X

X T A U B T C E  (2-33) 

 

The overall latent variable and measurement structure of the data is illustrated 

in Figure  2-1. 
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Figure  2-1: Latent structure and relationships between n, a dX Y Z and the noise structure 

 

 

 In order to generate the matrices for the experiments, four random orthonormal 

matrices are constructed for each simulation: 6n

S

T and 6

N

nT , 4n
X

U  

and 4n
Y

U , with n  equal to 10000 elements (observations) from which the 

various latent structures in   (2-25) - (2-33) are defined.  

The objective of the modeling effort is to obtain the best latent variable model 

for the true underlying signals 0
X  and 0

Y  using measurements on X, Y and Z as 

defined in equations (2-25) through (2-33). Since the major interest in building a 

model between input and response variables is to explore the common subspace 

between them, two additional variables are defined as: 

X 

Ts ×AX 

×CX 

×AY 

×CY TN 

×CZ 

Y 

Z 

  

UY × BY 

σY × EY σX× EX 

 

σZ× EZ 

UX×BX 

Y
0
 

X
0
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 o

s
Y

Y T A  (2-34) 

 o

s
X

X T A  (2-35) 

These two variables ( 0
X and 0

Y ) are different from 0X and 0Y  defined in 

equations (2-30) and (2-31) as they only define the common subspace of X and 

Y belonging to 
S

T . The rationale for choosing these variables for measuring  the 

quality of fit is that X , at its best,  can relate to Y  through the common basis 

identified by S
T  and therefore what we are interested in is to measure how much 

of this space can be captured using each method.  

 The individual quality of fit from a projection of some quantity Ψ onto the 

range of each principal component ti can be calculated by: 

 

2

2

2 1

ˆ
F

F

R





Φ
 (2-36) 

 

where Ψ can be any matrix or vector corresponding to the model such as X, X
0
, 

Y, Y
0
, or Z. The .

F
operator represents the Frobenius norm of a matrix. The 

quantity    is calculated by projecting Ψ onto the range of ti as: 

 †ˆ ( ) .  
i i i i

Ψ t t t t Ψ   (2-37) 

The cumulative quality of fit ( 2 ( )R cum
Ψ

 ) into the first q latent variables is 

obtained by calculating Ψ̂  as:  

 
†ˆ ( )q q q q  Ψ T T T T Ψ   (2-38) 
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where 
1[ ,..., ]q qT t t  .  

We shall compare the quality of fit between standard PLS, Fearn’s OSC-PLS 

(which performs PLS regression between X and Y after removing unrelated 

variance from X ), and the proposed methods: Hard Constrained PLS (HC-PLS), 

and Soft Constrained PLS (SC-PLS) with different levels of penalty coefficient (

 ). More details on the choise of λ is provided in Appendix. 

2.4.1 Toy Example: Case 1; Structured noise in X only 

The latent variable structure for this example is explained with the aid of Table 

 2-2.  We note that in this specific case, the coefficients YC  multiplying N
T  in  

(2-32) are zero, meaning that only X  is contaminated with the structured noise.  

It is assumed that simultaneous measurements of X , Y and Z  are available. The 

statistical norms for the coefficients of the mixing matrices are given in Table  2-1: 

TABLE  2-1 FROBENIUS NORMS OF THE MIXING MATRICES FOR THE FIRST EXAMPLE , 

CORRESPONDING TO 
2

X50, 
2

X
0
7, 

2
Y5.7, 

2
Y

0
6.3, 

2
UXBX3.9, 

2
UYBY3.8   

50
F


X
C   37

F


Y
C   

14
F


X
A   10

F


Y
A   

12.5
F


X
B   8

F


Y
B   

0.1 
X   0.1 

Y   

  

The size of the mixing coefficient matrices , ,
Y Y Y

A B C and , ,
X X X

A B C are 

6×18, 6×18, 4×18, 6×32,6×32 and 4×32 respectively. The mixing matrix for the 

noise matrix Z  ( Z
C ) is 6×6.  Hence the size of the produced datasets ,X Y and Z
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will be: 10000×32, 10000×18 and 10000×6 respectively. The number of 

components removed prior to performing PLS in the OSC-PLS method was 6 in 

all cases. We chose this number because the basis for the noise (TN) is constructed 

from 6 latent vectors.  

 

TABLE  2-2: TOY EXAMPLE, CASE 1, STRUCTURED NOISE IS ONLY PRESENT IN X 

Columns of T   10000 6

s

T  10000 6

N

T  10000 4
X

U  10000 4

Y

U  

100 30 20 X      

100 10 80 Y      

10000 6Z      

 

Our hypothesis is that the presence of significant noise in X will impede the 

ability of ordinary PLS methods from extracting components that properly explain 

the common structure of the datasets, that is 0
X and 0

Y  as defined in (2-34)-

(2-35). In such cases due to the strong presence of the structured noise in X some 

of the extracted components will predominantly explain the structured noise 

within X , even though it has weak correlation with Y .  This is not a major 

problem if enough PLS components are extracted. However the constraining 

methods provide a better basis for discovering the true underlying structure of 0
X

and 0
Y as they better explain subspaces of S

T  in fewer extracted components, 

making the interpretation of the results easier and, in addition, the predicted 

results will have less variance due to the lack of noise related components. Our 
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results show that the use of the proposed constrained methods can more 

efficiently separate the components belonging to subspaces of 
S

T (common 

underlying structure) and 
N

T (of structured noise). In the soft constrained case, the 

association of the positive and negative eigenvalue components with either 
N

T or 

S
T , as we have seen earlier, can greatly simplify the interpretation of the data.  

From Table  2-2 we note that TN is orthogonal to X
0
 and Y

0
. This is a favorable 

situation for our simulations.  Later we discuss the case where this property does 

not hold.  

  

Figure  2-2: The cumulative quality of fit R
2

X
0
  (left) and R

2
X    (right) versus the first 15 (positive) 

LV components  components extracted. 6 components have been removed prior to regression in 

OSC-PLS. 
 

 

In Figure  2-2  we compare the quality of fit of the measured values of X  and of 

o
X (subspace of X spanned by S

T ) for various partial least square methods 

described earlier, and for the first 15 positive components extracted from SC-PLS 
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methods (and PLS between X and Y after removing 6 components in OSC-PLS). 

These figures are the result of averaging over 100 independent Monte Carlo trials.  

The error bars indicate the one standard deviation on the results obtained. We can 

see that the methods which constrain X  to be orthogonal to Z or penalize it, 

either as soft or hard constraints, have much higher values of 2R oX
for the 

components extracted, even though these methods show lower quality of fit when 

capturing the overall variation of X  itself. Of course this is an expected result 

since the constrained methods have removed some of the structured noise 

components in N
T through knowledge of the structured noise subspace made 

available by the measurement of Z.   

 

  

Figure  2-3:Left- The cumulative value of the quantity of fit (R
2

Y ) versus the number of positive 

components extracted for each PLS algorithm. Top-Right: quality of fit (non-cumulative) for 

individual components of PLS method versus SC-PLS ( 1  ). The lower-right figure shows the 

sign of each eigenvalue extracted in the SC-PLS method. 
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Figure  2-3 (left) shows the cumulative 2R
Y

 vs. the first 15 components extracted 

for each method. For the soft constrained method only the positive eigenvalue 

components are counted. We can see that the proposed methods that constrain the 

noise, i.e. HC-PLS and SC-PLS, for the same number of (positive) components, 

provide latent vectors that better explain Y  compared to the methods which do 

not make use of the data on the structured noise, such as ordinary PLS. It should 

be mentioned again that if a sufficient number of components are selected all 

these methods (constrained or non-constrained), for this particular example, 

(when only X is contaminated with structured noise) will yield the same quality 

of fit eventually. However, constrained methods provide more information 

through less number of components.  

In Figure  2-3 (right) we show the non-cumulative (individual) 2R
Y

 and 2R
Z

against the number of components for the ordinary PLS method and the proposed 

SC-PLS approach ( 1  ). For a fixed value of   in (2-21) (the penalty on 

auxiliary noise), the dominant eigenvalue of matrix 2U  in (2-23) is either positive 

or negative after each sequence of extracting principal components. When this 

eigenvalue is positive, the corresponding eigenvalue component is weighted 

towards explaining variance in Y . This is evident from the plot of 2

YR  in Figure 

 2-3 (right) which shows significant values when the eigenvalue sign (indicated in 

the bottom panel of the figure) is positive.  From the corresponding plots of 2

ZR , 

we see these components explain relatively low variance in Z . On the other hand, 
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when the eigenvalue is negative, the extracted component explains variance in Z , 

(as is evident from the plot of 2

ZR ), yet relatively small variance in Y (we should 

remind that the cumulative plots shown in Figure  2-2 and Figure  2-3 are obtained 

by only using latent variables that correspond to the positive eigenvalues 

explaining Y). The reason for such a behavior can be explain by the fact that the 

SC-PLS tends to find a linear combination of X that maximizes the covariance 

with Y while minimizing the covariance with Z . Due to the nature of the 

algorithm, this problem can be solved by finding the largest eigenvalue (in 

magnitude) /eigenvector pair of the corresponding matrix in (2-23). If the 

corresponding matrix in (2-23) is (semi) negative-definite due to larger variation 

in Z  (or higher covariance with X  , in each iteration),  the largest eigenvalue (in 

magnitude) of 2U will be negative in sign which in turn means the latent vector 

and the corresponding component will maximize covariance with Z  while 

minimizing its covariance with Y .  

A comparison between the quality of fit of each positive component extracted 

and the noise ( 2

Z
R ) is shown in Figure  2-4. It is evident that the components 

extracted using the constrained PLS methods and in particular the Hard-

Constrained PLS, explain little or no variation of noise (only positive components 

are shown for SC-PLS)  
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Figure  2-4: Cumulative quality of fit (R
2

Z  ) for noise using the first 15 positive latent components 

extracted by each model    

   

2.4.2 Toy Example Case 2: Common structured noise in both X and Y  

In this case we assume that both X and Y are contaminated with the structured 

noise ( N
T ). This is a more important case for the use of the constrained methods 

outlined in this paper. We have mentioned earlier that the presence of structured 

noise in both X and Y can lead to misleading results. This example will illustrate 

the problem. The structure of the matrices generated is shown in Table  2-3: 

 

TABLE  2-3: TOY EXAMPLE, CASE 1, STRUCTURED NOISE IS PRESENT IN BOTH X AND Y 

Columns of T   10000 6

s

T  10000 6

N

T  10000 4
X

U  10000 4

Y

U  

100 30 20 X      

100 10 80 Y      

10000 6Z      
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Our hypothesis is that the constrained LVM methods are more capable of 

capturing the true underlying structure of 0
X and 0

Y compared to the 

unconstrained methods. In addition, we also show that OSC-PLS (2-1) will not 

perform properly when common structured noise is contaminating both X and Y

spaces. In such a case, OSC-PLS will only remove the uncommon structured 

noise components from X and will leave the common structured noise part in X 

intact. The settings used to construct the simulation data are given in Table  2-4 

TABLE  2-4: SETTINGS USED FOR SECOND SIMULATION DATASET, 
2

X12.8, 
2

X
0
5.8, 

2
Y11.3, 


2

Y
0
5.7, 

2
UXBX3.8, 

2
UYBY3.8   

 

13
F


X
C   9

F


Y
C   

14
F


X
A   10

F


Y
A   

12.5
F


X
B   0.8

F


Y
B   

0.1 
X   0.1 

Y   
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Figure  2-5: Right: cumulative (R
2

Y ) for the first 15 positive components extracted for various 

LVM methods explained earlier. Left: cumulative (R
2

Y
0
 ) for the first 15 positive components . 

Number of components removed before performing PLS in OSC-PLS was 6.  

 

As in the previous case, the data for this experiment is simulated using a 

sequence of 100 Monte Carlo trials. Figure  2-5 shows the cumulative 2
R  for 

various methods explained in the second toy problem for the first 15 components 

extracted (only positive components in case of soft constrained methods and only 

the PLS components after deflating X  in OSC-PLS). In Figure  2-5 (right) we can 

see that even though 2

Y
R  for the constrained methods is lower, the extracted 

components in these methods explain 0
Y (the part of Y  in S

T ) better (within the 

confidence intervals) than the non constrained methods.. It should be noted that 

SC-PLS does not necessarily improve computational cost but rather improves the 

component selection criteria as proper components are identified by their 

eigenvalue signs.  When both Y and X are contaminated,   OSC-PLS will not 

remove the common structured noise components. This is apparent from the plots 

in Figure  2-5 (only slight improvement over PLS). Since OSC-PLS was unable to 

remove the common structured noise, the noise still remains in the subspace of X

and will contaminate the extracted components. The reason for having very 

similar plots in both OSC-PLS and regular PLS is that the same noise components 

exist in both X and Y subspaces. Therefore projecting X into QXY will not remove 

any components related to the structured noise at all.  A major consequence of 

having common noise in both X and Y and not accounting for it in the model is 
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that the model does a presumably good job  in modeling the relation between the 

measured X and Y  matrices but in reality it is also modeling the relationship 

between the common structured noise components contaminating X and Y and 

not the true underlying structure of interest. This will result in lowered quality of 

prediction and higher number of components that need to be extracted. It should 

be noted that even when there is common structured noise in both X and Y 

subspaces the quality of fit (R
2
Y

0
 and R

2
Y) will be high in all cases, however, the 

prediction rates will be very different. Such behavior is a clear case of over fitting 

data and should be avoided.   

In order to shed more light on this subject a new set of data (“test set”) was 

generated using the same parameters used for the current simulation study. The 

test set data (X
ts
 , Y

ts
) was later used to measure the quality of each model to 

predict the corresponding values  
ts
 of Y

ts
’s for the test set. The cumulative 

quality of prediction for ˆ ts
Y  (Q

2
Y) for the first q components was calculated from: 

 F

2

2

F

2
ˆ

1Q  
ts ts

Y
ts

Y Y

Y
  (2-39) 

In addition to Q
2

Y we define an additional quality parameter denoted by Q
2
Y

0
 

as: 

 0

F

2

2

F

2
ˆ

1Q


 

0ts ts

Y 0ts

Y Y

Y
  (2-40) 

This parameter measures how close the predicted   and Y
0
 (which is the only 
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part of Y that can be predicted by X) are to one another.  

The quality of prediction ( 2Q ) is calculated for various methods (i.e. PLS, 

OSC-PLS, SC-PLS and HC-PLS).   and  
ts
 are calculated from  

ts
 =X

ts
W*Q′. 

The mixing matrix W* is obtained from the training dataset by regressing training 

set T on X [
14

].  2Q
Y

 measures the overall quality of prediction for the test set 

values which also include noise components whereas the 2Q 0Y
measures the quality 

of fit to the true underlying relationship between X  and Y  which is defined by 

S
T . 

 In Figure  2-6, We can see that despite higher 2

YQ  in the non constrained 

methods, the constrained methods provide much better prediction results for Y
0
 

compared to regular PLS and OSC-PLS ( 2Q 0Y
).  

 

  

Figure  2-6: Left: cumulative quality of prediction for Y (Q
2
Y).  Normal PLS ostensibly provides 

the best results, but measuring the quality of prediction for Y
0
 (Q

2
Y

0
), on the right shows that non-

constrained methods are actually modeling the common structured noise. The quality of fit to the 

noiseless data is much lower compared to the constrained methods.  
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2.4.3 Toy Example: comparison of performance between SC-PLS vs. HC-
PLS  

    A few notes on Hard Constrained latent variable methods  

Hard Constrained LVMs are powerful methods for removing unwanted 

variance from datasets.  It is possible to assume the following general structure for 

hard constrained signal correction methods including OSC-PLS: 

 

max

s.t

( )

( )

(

.

)

a

b

c





 

    

w w

w w

w X K w 0 .

 (2-41) 

where in HC-PLS K = Z and in OSC-PLS method K = Y. (2-41)-(c) indicates 

that: 

 0 ( ') M
     w w w c  (2-42) 

This means that w  lies in the null space of '  (w=Mc). A basis for the null 

space of  is M defined by (2-2). The vector c is an arbitrary vector of 

appropriate length.  The rank and dimensions of can produce various outcomes. 

We consider the cases where   can be tall, square and rank deficient matrix, 

square and full rank or short. Each of these conditions will lead to a different 

outcome, as we now discuss: 

 is tall or rank deficient: 

This situation can arise when Z in (2-7) or (2-12) ( Y in OSC-PLS case) has 

fewer columns than (rank of) X . In this case '  has a non-empty null space, and 

hence  has an orthogonal complement which serves as a basis for the null space 

of  .  
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 is full rank square or short:   

This situation is the opposite of what was mentioned above when Z (in HC-

PCR or HC-PLS) or Y (in OSC-PLS) have more columns than X  has. In this 

case if the rank of Y or Z is larger than the rank of X  then ' has an empty null 

space and hence an orthogonal complement for   does not exist. An example of 

such a situation is when multiple sensors are used to measure  a low rank 

structured noise in a plant environment which are generated by fewer number of 

sources. Due to the contamination of the structured noise matrix ( Z ) by random 

noise, it will become full rank and because there are more sensors than real 

sources of structured noise the '  in (2-41) will have fewer columns than rows 

and hence will be full rank. In this case a proper null space for ' cannot be 

found.  

Why soft constraints?  

If the auxiliary noise matrices Z or Y in OSC-PLS are conditioned the way we 

mentioned above (      is empty) then applying hard constrints may not provide 

a good solution.  Again, let’s assume that the noise subspace has a rank of “s” but 

Z has r>s columns and the measurements are noisy. Then Z will behave as a full 

rank matrix with rank r >s. Now if this matrix is used to impose hard constraints, 

it will actually remove some of the directions in 0X that are not  relevant to the 

underlying structured noise. Another issue that can be raised while using hard 

constraint is the fact that in many applications the structured noise components 

cannot be measured purely (to contain only information about the noise subspace)  

and they might also contain some information on the latent structures of X and Y
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. In other words Z is not completely orthogonal to subspace of TS. In such a case, 

imposing a hard constraint on Z can actually remove some components of the 

underlying latent structure between X and Y (
S

T ) which will lead to lowered 

efficacy of the model. In order to circumvent this difficulty we proposed 

incorporating soft constraints rather than the hard constraints.  

In this toy example we compare the performance of soft constrained versus the 

hard constrained PLS (SC-PLS vs. HC-PLS) for two  particular cases; 1- when the 

auxiliary noise matrix also contains some components of S
T  (in other words Z is 

not orthogonal to S
T ) and 2- when the auxiliary matrix Z  is full rank (mainly 

because of the addition of noise , not just because we have more columns in N
T

than X ). The first case is a very common situation. An example of the first 

situation was mentioned earlier in the introduction (example  4). In this example 

the EOG electrode, in addition to the ocular artifacts from the eyes, also records 

some weakened (due to distance from the brain) brain signals ( S
T ) arising from 

the stimulations. An example of the second case is when numerous sensors are 

located in various areas of a plant to record the instances of the systematic 

structured noise, with low rank. However, even though the actual number of noise 

source components may be limited, the rank of the noise matrix is full due the 

presence of unstructured noise picked up by the sensors.  

For each case a new simulation dataset is generated. In the first case, some 

components of s
T are added to Z  by adding S Z

T A to equation (2-29), and in the 
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second case the rank of Z is changed by changing the number of columns of 
Z

C in 

(2-29)  and adding white noise to it. As mentioned earlier, our hypothesis is that 

in these circumstances using soft constrained PLS can perform better than the 

hard-constrained method.  

 

   When Z contains components of s
T  ( Z not orthogonal to S

T ) 

In this example we assume measurements of Z also contain components of S
T . 

Hence Z is generated in the simulation as:  

   
N Z Z Z S Z

Z T C E T A  (2-43) 

The new structure and the corresponding combination tables are shown in 

Figure  2-7 and Table  2-5.  

 

X 

Ts ×AX 

×CX 

×AY 

×CY TN 

×CZ 

Y 

Z 

  

UY × BY 

σY × EY σX× EX 

 

σZ× EZ 

UX×BX 

×AZ 
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Figure  2-7: Relationship between system components when Z is contaminated with components 

of 
S

T  

 

The following table shows how these components are generated for this 

simulation: 

 

TABLE  2-5: RELATIONSHIP BETWEEN X , Y AND Z AFTER ADDITION OF COMPONENTS IN 
S

T TO Z  

Columns of T   10000 3
,...[ ]




s1 s3
t t  

10000 3
, ...[ ]




s4 s6
t t  

10000 6

N


T  

10000 4


X
U  

10000 4


Y
U  

100 30 20 X  
     

100 10 80 Y  
     

10000 6Z  
     

 

Figure  2-8-right shows the quality of prediction for the dataset we generated by 

adding components of S
T into Z ( as in Table  2-5) and the plots on the left belong 

to a normal case where Z does not contain any components of S
T ( Z being 

orthogonal to X as shown in Table  2-2). In this scenario, the following coefficient 

values are used: 

 13,  12,   9 ,    8,   0.1
F F F x YF

     
X X Y Y

A A BB . 

 As hypothesized, imposing hard constrints on the model when Z is not fully 

orthogonal to 0
X (when Z contains components of S

T ) does not produce very 

satisfactory results.  
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Figure  2-8: comparison of two cases; when Z is orthogonal to X (left plots) versus the case in 

which Z is not orthogonal to X (right plots). The quality of prediction (Q
2

Y
0
 (cum)) for the hard 

constrained method degrades when there is not a true orthogonality between Z and X.   The 

simulation data for the right plots were generated using the same setting as the left case but with 

three components of Ts randomly mixed and added to Z 

 

We can see that compared to the hard constrained case, the soft constrained 

method provides better results because it does not fully orthogonalize i
t ’s to the 

subspace of Z . Since Z contains components of S
T , hard constraints will 

orthogonalize the i
t to those components of S

T , thus removing some of the signal 

variation in X
0
 and lowering the quality of fit to subspace of Y .  

    HC-PLS vs. SC-PLS when the rank of Z changes  

The efficacy of hard constrained LVM methods relies on the proper collection 

of the auxiliary noise matrix Z . As mentioned earlier, there are many cases where 

the number of columns in Z  exceeds the number of columns in X  and, even if 

N
T is very low rank, due to the presence of unstructured noise in Z (when 

recording the data) Z becomes full rank. In such cases imposing hard constraints 

can reduce the quality of fit as the orthogonal complement of X Z does not exist, 
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or spans very few directions. For these cases it is better to use soft constraints as 

they only penalize these extra dimensions and do not fully discard them. To show 

this, we generate a simulation dataset using the parameters shown in the caption 

of Figure  2-9. However in each simulation trial we change the rank of the 

auxiliary noise matrix Z by changing the number of columns in the mixing matrix 

(
Z

C ) and adding iid noise to it. The simulation results show that as Z becomes 

larger (more columns), the quality of fit for HC-PLS degrades and eventually will 

have a lower quality of fit compared to SC-PLS. This example shows that in such 

cases it is advantageous to use soft constraints which are less sensitive to the 

conditions of the auxiliary noise matrix.  

 

  

Figure  2-9: quality of prediction (Q
2

Y
0
) for various mixing sizes of Z.  When Z gets larger and 

under determined SC-PLS outperforms HC-PLS. CZ determines the size of Z. (parameters used 

for this simulation:                                                    

            

 

2.5 Industrial example 

In addition to latent variable methods being used for removing structured noise, 
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in latent variable methods, the constrained Latent Variable methods are also 

applicable to other cases such as constrained optimization problems. As an 

example, we will look at a problem where it is desired to optimize a response 

through adjusting the process variables, but at the same time constrain the values 

of other response variables.  In such optimization problems  the number of 

variables is often high and the models are reduced rank in nature (i.e. number of 

LV’s is less that the number of X  variables) and so the only space where one has 

a causal model within which one can optimize is the low dimensional LV space 

[
15,

 
16,

 
17

].  In this section we show how the constrained latent space methods 

developed in this paper can be used to create search spaces that conditionally 

optimize some of the final product quality properties ( Y -space), while retaining 

others at specified values. This approach does not allow for inclusion of other 

constraints on the solution such as hard constraints on some of the X ’s, etc. A 

more general optimization based approach is laid out in the references cited.  

However, if there are no operating constraints in the X -space, the approach using 

the constrained latent variable methods proposed in this thesis provides a simple 

and less computationally intense solution. This example is provided here mainly 

to illustrate the extension of the proposed methods to additional types of 

problems, beyond noise removal.   

The process considered is a high pressure process for the manufacture of low 

density polyethylene.  A discussion of the process and PLS modeling are given in 

[
18

]. In this particular polymerization process example there are 53n   samples of 
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the X -variables (input measurements) and the corresponding observations in Y , 

14k   process variables ( X ) and 5m   product quality variables ( Y ). The 

response ( Y ) variables are denoted “Conv, Mn, LCB, SCB and Mw” 

respectively. The objective of this study is to find conditions in X  that will 

minimize the “Mw” variable while not affecting the other four Y variables. This 

problem can be reformulated into the context of the HC-PLS algorithm by 

dividing the Y columns into two groups: the first group consists only of the 

column corresponding to the observation Mw, (Y= [Mw]) , while the second 

group (consisting of the columns corresponding to the remaining product quality 

variables) is assigned to the Z block (Z = [Conv, Mn, LCB, SCB]).  The latent 

variables obtained using HC-PL are in ( )X , and are correlated only with Mw, 

and are orthogonal to all the other quality variables. If X  is decomposed by the 

HC-PLS algorithm into two subspaces, a latent variable space defining Y1 and X  

and a residual space:  

 
res

X = + .....+ XTP  (2-44) 

then the components of X that cause variation in other quality variables (Z) are 

captured in resX  . Hence moving in the space defined by the components in T  

should only modify “Mw” while keeping the other product properties almost 

constant. An optimization problem (in our case minimization of “Mw” while 

keeping the other responses unchanged at their measured values for each 

observation) can be written for each observation i as: 
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new

min

min( ) max( )s.t.

i

new

y

 

t

T t T
 (2-45) 

 i new i resy = (t p'+ x )B  (2-46) 

B  is the regression coefficient obtained by projecting Y into X  and can be 

obtained from any suitable regression method. The indiced, underlined variables 

represent i
th

 row of the matrix, corresponding to the i
th

 observation. If it is 

desirable to minimize quality variables for all observations, the optimization is 

looped through all observations (as in this example). Since the X  components are 

highly correlated in most of such examples it is suggested to use PLS, PCR or 

regularized regression.   

  

Figure  2-10: Left: individual component quality of fit. Right: cumulative quality of fit (R
2

X  , R
2
Y  

and R
2

Z  versus q, the number of latent variables for the industrial simulation example). Y = [Mw], 

Z = [Conv, Mn, LCB, SCB] 

 

To test the proposed method, the matrix P  was determined using (2-12) and 

(2-11).  Predicted values for X  and Y  were then calculated from (2-44) and 

(2-46). Figure  2-10 shows 2R
X

, 2R
Y

 and 2R
Z

 vs. q  (number of components 
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extracted) resulting from this procedure.  We can see that 2R
Z

 is near zero as 

desired, meaning that the extracted latent variables are orthogonal to Z (the 

matrix containing product qualities that are required to remain unchanged).  We 

also see that the process yields latent variables which are predictive of that 

subspace of X  that is both correlated to Mw ( Y ) and orthogonal to the other 

responses ( Z ). The lower R
2
Y is because the model is predicting only that 

subspace of Y that is orthogonal to Z . In other words, it is the independent part 

of X affecting only “Mw” which was captured by T . This means only this small 

change can be applied without affecting the quality of the other output variable 

from their current values.  

 

Figure  2-11: Normalized Mw vs. observation index, comparing pre-- vs. post--optimization 

values. The values are normalized by dividing the difference by the standard deviation of the 

original quality variables. 
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Figure  2-11 compares normalized pre- and post-optimization Mw values.  It can 

be seen that the optimization process is indeed effective at reducing the level of 

this quantity. Further, Figure  2-12 shows normalized pre- and post-optimization 

changes (the plotted values are equal to 
pre post pre( ) /y y  ).  We can see that this 

procedure preserves the levels of all the other quality variables except for Mw, 

which has been reduced in value by somewhat less than a standard deviation. 

 

 

Figure  2-12: changes in output product quality values for all the observations in the dataset 
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experiment remained unchanged.  This procedure results in a minimal change to 

all remaining quality variables.  It may be possible to reduce the level of Mw 

further using one of the soft-constrained methods of Sect.  2.3.2 at the expense of 

some variation in the values of the remaining outputs. 

  

2.6 Conclusion  

 When there is strong structured noise in either X  or in both in X  and Y  and 

there is some information available on the noise, either as simultaneous 

measurements ( Z ) or as a covariance matrix (), then constrained latent variable 

methods can provide improved models for the true (noise free) underlying 0
X  and 

0
Y  spaces. In the case that there are low levels of noise or there is no information 

available about the noise, normal latent variable methods still provide the best 

solution. But, in the case where one has such auxiliary information on the noise, 

the constrained latent variable methods presented here, that make use of this 

information, are shown to provide better models. These latent variable algorithms 

are developed from an objective function framework in which the covariance 

among the X  and Y  variables are maximized subject to various hard or soft 

orthogonality constraints  on the noise information ( Z  or ).   

Our results suggest that in the presence of common structured noise in both X 

and Y subspaces the use of PLS method can lead to misleading results. The 

method we have proposed here shows more stability and less over-fitting in such 

cases. However these methods prove to be effective when the signal to noise ratio 
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is very low and contamination from structured noise is so large that it can 

overcome the latent components of the signal (roughly speaking SNR<3 db). If 

the SNR is high, then normal PLS can provide adequate results. We also showed 

that if common structured noise is contaminating both X and Y then methods such 

as OSC-PLS will perform poorly. An specific example that we showed was the 

case where the same subspace of noise was contaminating both X and Y. In such 

case OSC-PLS will only remove structured noise (from X) that is uncommon to 

Y.  

The effectiveness of SC-PLS depends on choice of . We have offered some 

insights into the choice of  in the appendix; however, this matter requires further 

investigation and is a topic of future work.  Another advantage of our proposed 

methods is better component selection. Even in the case that only X is 

contaminated by noise, incorporating the additional available information about 

the noise in our methods can reduce the number of components required to 

properly identify a system. Although regular PLS and OSC-PLS still provide 

good quality of fit and prediction they require more components to obtain the 

same quality of fit and prediction. Such performance is required in many cases 

such as visualizing the data through the score plots or in cases such as nonlinear 

kernel methods where the dimension of the datasets are potentially very large.   

The SC-PLS method provides the ability to identify the noise and signal latent 

components through their corresponding eigenvalue sign. This property can be 

very useful in signal processing, for example, in removing ocular artifacts from 
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EEG data.  In the case where only X is contaminated with structured noise (to 

which we have access through Z) using constrained methods and PLS eventually 

provides the same quality of prediction and fit as the proposed constrained 

methods. However in engineering we are not only interested in prediction of Y 

alone. This is often only a part of the problem. We are also interested in modeling 

the X space as this is used in monitoring, interpretation and optimization.  

2.7 Appendix  

In addition to the methods mentioned in the article, latent variable methods can 

be modified to suppress noise from the components extracted when auxiliary 

noise information is available. We shall introduce some further additional Hard 

and Soft Constrained methods in the following appendix. Additionally, more 

insights into the parameter selection in soft constrained methods will be provided.   

2.7.1 Further insights into soft constrained methods 

The choice of meta-parameter λ can change the outcome of the modeling. This 

topic requires further investigation and is a subject of future work. However, we 

can offer some insight into the choice of the meta parameter  in (2-22) and 

(2-18) in section  2.3.1 as follows:  Let ( , )i i v  represent the eigen-decomposition 

of the matrix ZZ  where the eigenvectors are normalized to the unit norm.  Then 

1U  can be written in the form 

 

1

1

( ) ( )

( )

q

i i i

i

j j j i i i

i j

  

  





       

 
       

 





U X I ZZ X X I v v X

X I v v X X v v X

 (2-47) 
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By choosing 1/ j  , the term in the round brackets in (2-47) becomes a 

projector onto the orthogonal complement space of the j
th

 eigenvector 
jv  of 

ZZ . Thus (2-17) is equivalent to 
i i i X Xw w , where 

j
 vX M X  is the 

projection of X  onto the orthogonal complement space of 
jv  and thus X   has no 

components along the direction 
jv .  Thus the latent variables 

i it Xw  are also 

orthogonal to 
jv .  Therefore, by choosing   in this manner, we can suppress one 

specific component of Z .  

Following subsection includes alternative formulation of regularized LVM 

method that are suggested for future work:  

 

2.7.2 Hard-Soft-Constrained PLS (HSC-PLS) 

The discussion in this paper has focused on the case where the auxiliary noise 

matrix Z  is simultaneously measured along with the observations of X  and Y .  

There are many cases where such simultaneous, auxiliary noise measurements are 

not available, but additional information on the covariance structure of the 

background noise is available (possibly in addition to a measured Z ). For 

example, it is possible to collect the background noise when a system is running 

in idle mode (where the effects of X  and/or Y are suppressed and the data 

recorded is mostly representative of the noise subspace and its covariance matrix 

can be calculated). We denote this covariance matrix of the noise byΛ . It should 

be noted that Λ differs from Z even though it may contain components of Z in it, 
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it will have a different nature and is collected in a very different manner.  A very 

relevant example is the presence of background brain activity in 

electroencephalography or functional MRI recording. This background noise can 

be measured in between the experiments while the brain is in resting state and its 

covariance matrix Λ  estimated. Such a covariance matrix directly represents a 

major component of the background or the structured noise in X  and Y . 

 The reader should distinguish between the covariance matrix ( ) computed 

from data recorded at a different time and the auxiliary structured noise ( Z ) 

measured simultaneously with X  and Y . In addition the information content of 

Z  and Λ is different in most cases. This additional background noise matrix can 

be added to equation (2-12) along with the hard constraint on Z  to further 

suppress its components in addition to removing the effects of simultaneous noise 

collected in Z in the following manner: 

 

 

max

s.t.

i i i i

i j ij





    

 

  

w w X YY Xw w Λw

w w

w X Z 0

 (2-48) 

  controls the degree of influence by Λ .  

We name this method the HSC-PLS algorithm. In the MRI example the matrix 

Z contains the cardiac noise known as ballistocardiographic noise [
5
] whereas the 

matrix  contains information about the background brain activity such as waves 

known as alpha rhythms [
19

]. The information content of   is not the same as Z . 

Therefore, each constraint suppresses a different type of effect and can be used 
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together when both are available.  

2.7.3 Alternative formulation for HC-PLS method  

An alternative form of PLS [
13

] modified, to include the constraints on both X 

and Y, is shown here. In this approach, we wish to find two sets of latent variables 

iw and , 1, ,i q 
i

c  so that iXw  is maximally correlated with iYc , while 

rejecting the structured noise components. The objective function for this second 

formulation therefore becomes  

 

( , )

 

 

max

s.t.

.

 

i i

i j i j ij

 

 

   

 

 

w c
w X Yc

w w c c

w X Z c Y Z 0

 (2-49) 

It is shown [
20

] that the solutions ,w c  to the above objective function 

correspond to the principal right and left singular values respectively of 

XZ YZ

 
M X YM . 

2.7.4 Hard Constrained Reduced Rank Regression (HC-RRR) 
Reduced rank regression is defined as:  

 
max

s.t.  

i i

i j ij

  

  

w
w X YY Xw

w X Xw
 (2-50) 

The solution satisfying (2-50) is given as the q  largest eigenvectors associated 

with the generalized eigenvalue problem.  

 .    X YY Xw X Xw 0  (2-51) 

In reduced rank regression the goal is to extract components that maximally 

correlate with Y  and capture the maximum variance in Y and only Y . This 

method is insensitive to the presence of noise in X , however, in the presence of 

structured noise in  both X  and Y it can be extended to suppress the structured 
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noise in Y by adding the orthogonality constraint to (2-50) as follows: 

 

max

s.t.

,

 i j ij

  

  

  

w
w X YY Xw

w X Xw

w X Z 0

 (2-52) 

for which the solution is given as the principal eigenvalues associated with the 

following generalized eigenvalue problem: 

 ,     P X YY Xw X Xw 0  (2-53) 

Where  

 
1 1 1,[ ( ) ] ( )         P I X Z Z X X X X Z Z X X X  (2-54) 

which is the oblique projector onto the orthogonal complement subspace of 

( )X Z  in the metric 
1( )X X .  

2.7.5 Alternate form of HSC-PLS 

As mentioned in section  2.7.2, a hard constraint can be applied along with a soft 

constraint on the covariance of the background noise to account for both types of 

noise in a system. If we are not interested in obtaining orthonormal latent vectors, 

instead of applying the soft constraint, a hard constraint can be applied to the 

background noise by including the background noise in the following context:  

 

max

s.t.  

 

i i

i j ij

  

 

  

w w X YY Xw

w Λw

w X Z 0

 (2-55) 

which is similar to the hard-constrained reduced rank regression algorithm 

explained previously, with the latent vectors being chosen to be along the 

direction of the noise covariance matrix.  
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2.7.6 Hard-Constrained Canonical Correlation Regression (HC-CCR) 

 

In the presence of structured noise and in the case of canonical correlation, we 

can extend the objective function for the ordinary canonical correlation to include 

an orthogonality constraint on the structured noise.  That is, we wish to find a set 

,i iw c  of latent variables which satisfy the following conditions: 

 

( , )

 

 

max

.t  s .

i i i i

i j i j ij

i j i ij



 

 

     

  

     

w c w X Yc

w X Xw c Y Yc

w X Yc

w X Z c Y Z 0

 (2-56) 

where i  are the canonical correlation coefficients.  The constraint in the last 

line in the above objective function indicates that ,w c  are in the nullspaces of 

Z X  and Z Y  respectively. Therefore if ,H G  define a basis for 

( ), ( ) Z X Z Y  respectively, there exists a ,θ γ  for which w Hθ  and 

γ Gγ .  Therefore (2-56) can be replaced with [
21

] 

 
( , )max

s.t.

i i i i

i j i j ij i j i ij  

  

           

θ γ
θ H XYGγ

θ H X XHθ γ G Y YGγ θ H XYGγ

 (2-57) 

 

which is the ordinary canonical correlation specification on a new covariance 

matrix  H X YG . A suitable choice for ,H G  is given by XZ
M  and YZ

M  

respectively.  By constructing the Lagrangian “L ” corresponding to this problem 
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and differentiating with respect to both θ  and γ   respectively and setting the 

results to zero, we get 

 

 

1

2

,

,






      




       



XZ YZ XZ XZ

XZ YZ YZ XZ

L
M X YM γ M X XM θ 0

θ

L
M X YM θ M Y XM γ 0

γ

 (2-58) 

where 1  and 2  are Lagrange multipliers.  Solving for θ  in the first equation 

and substituting into the second equation leads to the following generalized 

eigenvalue problem for the solution of γ  [
22

]  

 †

2  A B Aγ Cγ 0  (2-59) 

where †  represents pseudo inverse, and 

 

 

 

  

  

  

XZ YZ

XZ XZ

YZ YZ

A M X YM

B M X XM

C M Y YM

 (2-60) 

Using similar techniques, it is easily verified that the solution for θ  satisfies 

 †

1 .  AC A θ Bθ 0  (2-61) 

 

2.7.7 A few notes justifying the use of constrained LVM methods 

 

We mentioned earlier that an alternative method for removing the structured 

noise is to project the input dataset (X) into the orthogonal complement of the 

noise matrix (Z) before performing a regression against Y. However, as we shall 

show in this section, this direct projection method is sensitive to the presence of 
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uncertainties in Z and can lead to biased estimates of the model whereas LVM 

methods are less sensitive to the presence of uncertainties.  

This appendix offers some insights into the advantages of using OSC type 

signal correction as opposed to using direct projection of data into the orthogonal 

complement of the noise subspace.  Here, we would like to show that methods 

such as orthogonal signal correction (OSC) or HC-PLS are less sensitive to the 

presence of noise in the auxiliary noise matrix (Z). This is a common situation as 

in many cases Z cannot be recorded without additive noise.  

First we will show that in both methods the accuracy of the model depends on 

the quality of projectors into some orthogonal complement of a space. Later we 

will show that asymptotically  in the first case, (direct projection method) the 

coefficients in the projector component are biased and will have less accuracy as 

the noise levels in Z increases. On the other hand we will show that 

asymptotically, in the constrained methods the projection  coefficient matrix is 

unbiased and therefore, results in more accurate estimates of the projector and less 

sensitivity to the presence of noise in Z. Finally we will show some simulation 

results to back our hypothesis.  

2.7.7.1 A typical direct projection vs. OSC 

In direct projection method, prior to regressing Y  against X , either X , Y  or 

both X  and Y  are projected into the orthogonal complement of Z . In other 

words we are interested in performing (PLS) regression between X  and Y  

where: 
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  ( )   1
X I Z Z Z Z X  (2-62) 

  ( )   1
Y I Z Z Z Z Y  (2-63) 

Once X  and   are calculated PLS regression can be performed between X  and 

Y (or  ) as follows: 

 
s.t. .

max   

 

w X YY Xw

w w 1
 (2-64) 

Having:  

 ( ( ) )   1

z
Q I Z Z Z Z  (2-65) 

Or in other words Qz = I – Pz where: 

 ( )  1

Z
P Z Z Z Z   (2-66) 

And since 
Z Z Z

Q Q Q one can rewrite (2-64) as: 

 
s.t

a

.

m x    

 

Z Zw X Q YY Q Xw

w w 1
 (2-67) 

Or:  

 

max

. 1.

w

s t



 

w w

w w  (2-68) 

Where    is defined by: 

 ( ( ( ) ) ) '( ( ( ) ) )       1 1
Y' I Z Z Z Z X Y' I Z Z Z Z X  (2-69) 

 

 

In HC-PLS (and in general other OSC methods) we try to find principal 
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directions (components) that maximally explain a covariance structure    (  = 

X′YY′X in HC-PLS) constrained to be orthogonal to subspace of the structured 

noise (Z).  

In general the objective function can be written as:  

 

max ( )

. ( )

( )0

w a

s t b

c



 

  

w w

w w 1

w X Z

 (2-70) 

Equation (2-70)(c) can be written as: 

  Z Xw 0  (2-71) 

which means w is in the nullspace of Z′X: 

 ( ).w Z X  (2-72) 

One subspace representing the ( )Z X is the orthogonal complement projector 

of X Z  denoted by X Z
Q : 

 ( ( ) ).X ZQ 


     1

I X Z Z XX Z Z X  (2-73) 

Again, we can write QX′Z = I- PX′Z. where  

 ( )     1

X Z
P X Z Z XX Z Z X   (2-74) 

 Assuming w = QX′Zα, where α is a vector of appropriate length,  we can 

rewrite (2-70) can reformatted as: 

 0

max ( )

. . ( )

a

s t b

  



  

 

X Z X Z

X Z

α Q Q α

α Q α  (2-75) 

The solution to this maximization problem can be found by finding the 

dominant eigenvector of   
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  X Z
Q

.
 (2-76) 

Where, with regards to the HC-PLS method: 

    X YY X . (2-77) 

Therefore in both equations (2-68)  and (2-76), the accuracy of the model 

depends on proper estimation of the projectors 
Z

Q and X Z
Q respectively. The 

quality of these projectors depend on how well X is projected into the range of Z  

(in normal projection method) or how well X  is projected into the range of X ′Z  

(in HC-PLS algorithm)    

Hence, in ordinary projection method (direct projection onto QZ) the projected 

value of X  into the range of Z  (PZ) can be obtained from:   

 

 ˆ ,o Z X  (2-78) 

where     are regression coefficients (“O” for ordinary). Therefore, it is 

essential to properly estimate the projection coefficient    o . Similarly in the HC-

PLS method the accuracy of the model depends on how well X′Y is projected into 

the orthogonal complement of X′Z, which in turn, depends of the quality of the 

estimated projection coefficient   c (assuming X, Y and Z are mean centered): 

 ˆ( ) . X Z X'Y  (2-79) 

Where again   c   are regression coefficients (“C” refers to constrained ). 

2.7.7.2 ordinary projection method is biased: 

In this section we show that the projection coefficients in PZ (ordinary 
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projection method) in the presence of error in Z, is biased, which can lead to less 

accurate results. To simplify the subject, let’s assume a case where x  (m× 1) and  

z  are uni-variate (they are   m× 1 vectors). In this example x  denotes the input 

vector defined earlier.  In a linear regression model we can write the regression of 

x into the range of z as: 

 * x z  (2-80) 

Where  

 ( *, ) 0.z  (2-81) 

Assuming that x is error free but z is prone to errors we can write: 

 
* z z η  (2-82) 

where η(m× 1) is a vector that contains the noise associated with z and 

 (.) is the expected value operator. Now,  we can write (2-80) as: 

  x z u  (2-83) 

where u (m× 1) contains the error terms: 

 . u η  (2-84) 

In the regression model (2-83) the coefficient ̂ can be calculated from:   

 
Est(cov( , ))ˆ

Est(var( ))
 

z x

z
 (2-85) 

Where Est(.) means the estimated value.  Assuming that z* and η are 

independent, the covariance between z and u (the error term),  is be given by: 

 cov( ) ov( , ) var( ).c     *
z,u z +η η η  (2-86) 



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

71 

 

The probability limit is defined as the expected value of an estimator as the 

number of observations reaches infinity. In other words, the probability limit for β 

as n reaches infinity can be calculated from: 

 
cov( )ˆ( )

var( )
  

z,u

z
 (2-87) 

Replacing (2-86) into (2-87) and multiplying by var( )z we get 

 
0

0

var( ) var( )ˆ( )
var( )

[var( ) 2cov( , ) var( ) var( )]

var( ) 2cov( ) var( )

 




 




  

 


*

*

* *

z η η

z η

z z η η η

z* z*,η η

 (2-88) 

 Since cov(z*,η)=0 above equation simplifies to: 

 
var( *)ˆ( )

var( v
.

) ar( )
 



z

z* η
 (2-89) 

 We can see that as the noise level (η) increases in z the projection coefficient β 

becomes biased and hence the accuracy of the projector (into the range of z

decreases). 

The estimators in OSC algorithms are unbiased: 

For the sake of simplicity, we now assume that X is a (m× n) matrix and Y and 

Z are single mean-centered vectors.  

In this case we assume: 

 * . X X E  (2-90) 

Combining (2-90) and (2-82), now we shall have: 

 * * * * ,       X z X z E z X η Eη  (2-91) 
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and we can rewrite (2-79)  as: 

 * * ** * .            X y E y X z E z X η E η  (2-92) 

In other words: 

 * * * ,   zX X uy  (2-93) 

where 

 
* * .        u E z X η E η E y  (2-94) 

Since we have assumed that  

 ( , ) ( , ) ( , ) ( , ) 0   X E X η z E z η  (2-95) 

 the bias term in (2-89) for the OSC or HC-PLS cases becomes:  

 
cov( )

var( )
0






X z,u

X z
 (2-96) 

Thus, the estimated covariance between X’z and u becomes zero, as the number 

of observations increases. Hence, the bias in the expected value of ̂  will become 

zero, which means ̂ in the HC-PLS method is an un-biased estimator of β. The 

reason that this fraction converges towards zeros is the fact that ( , ) 0X η  

which will force the probability limit of the numerator to converge towards zero.  

2.7.7.3 Simulation 

The following figure shows  simulation results for the quality of prediction 

when different levels of random noise are added to Z. The simulation is the same 

as that in section  2.4.2; with structured noise contaminating both X and Y.  Three 

datasets X, Y and Z were generated using the same simulator program, and the 
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random noise levels in Z were changed in three steps; σZ = 0, σZ = .5 and σZ = 2.  

In the first simulation σX and σY were both equal to zero meaning no additive 

random noise was added to either X or Y  

Following figure shows that when the random noise levels in Z are increased, 

the quality of prediction for Y
0
 decreases drastically in the projection method, 

however they do not change as much in the HC-PLS method. These results 

support our hypothesis that the simple projector into orthogonal complement of Z 

is a biased estimated whereas the OSC method projection produces unbiased 

estimates, resulting in better models.  

 

Figure  2-13: Quality of prediction (Q
2

Y
0
) for future values of Y

0
. The results show that as the noise 

level increases in Z, the quality of prediction decreases in the projection model (Proj. ) however 

the constrained methods (HC-PLS and SC-PLS) relatively keep the same level of prediction rate. 

 

The next figure shows the simulation results when there is random noise in both 
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X and Z.  We can see that even when there is substantial amount of noise in X σX 

= 1.5, the overall results for the HC-PLS method do not change very much. 

 

Figure  2-14: Quality of prediction (Q
2

Y
0
) for future values of Y

0
. In this second study both X and 

Z were contaminated with random noise. The results show that,  same as in the first case, as the 

noise level in Z increases, the quality of prediction decreases in the projection model (Proj. ) 

however the constrained methods (HC-PLS and SC-PLS)  keep the same relatively level of 

prediction rate.   

 

2.7.7.4 Conclusion: 

It appears that using covariance projections, such as those used in orthogonal 

signal correction, will produce projection coefficients that are less sensitive to 

noise, as they are unbiased estimators. However in the case of normal projection, 

presence of noise in Z will result in attenuated and biased estimates in the data, 

resulting in lowered quality of fit and prediction rates.  
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Chapter 3 

An iterative NIPALS type algorithm for SC-PLS with ability 

to handle missing data

 

 

Abstract—An iterative algorithm, based on the NIPALS algorithm for the Soft Constrained PLS 

method is introduced. The advantage of the iterative algorithm is its ability to handle missing data 

during the model building process and also for prediction of the future observations. 

 

Index Terms—PLS, PCA, SC-PLS, constrained PLS, structured noise, NIPALS algorithm. 

 

3.1 INTRODUCTION 

Latent variable methods (LVM) are used for regression between input variables 

(X) and response variables (Y) when the data is low rank and ill conditioned. The 

scores obtained from LVM methods can also be used for visual interpretation of 

the data. Another advantage of these methods is that they can handle missing 

points in a dataset. An example of the latent variable methods is the partial least 

squares PLS introduced by Wold et al. [1,2].  Wold introduced the NIPALS 

(Nonlinear Iterative Partial Least Squares) algorithm for iterative extraction of 

latent variable components in PLS. NIPALS is based on the power iteration used 

for extraction of eigenvectors in a matrix [
3
]. The advantage of NIPALS algorithm 

is its ability to handle datasets with large covariance matrices.  

In a case where there are missing elements in the data matrix the ordinary PLS 

algorithm would work only if the rows of data containing the missing elements 

are removed prior to building the model. As well, they cannot handle any new 
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observations containing missing elements. During the model building process, if 

there are many observations, elimination of a few rows does not significantly 

degrade the model. However if the number of rows with missing elements, with 

respect to the size of X or Y is relatively high, the model will degrade. Even 

worse, if the missing points are scattered through many variables and 

observations, as opposed to be clustered in a few rows, many rows need to be 

deleted before building the model.  

In this chapter an iterative algorithm for solving the soft constrained partial least 

squares (SC-PLS) [
4
] based on the NIPALS algorithm is introduced. This method 

is also capable of handling missing points during the model building process, and 

for the prediction of the future observations. In the following sections the PLS 

method and the NIPALS algorithm are reviewed. Then, one of the methods for 

recovering the missing points is discussed. Later it is shown how the NIPALS 

algorithm is modified to accommodate for SC-PLS case, enabling it to handle 

missing points. Finally some simulations are performed, showing how the 

algorithm behaves for various levels of missing elements in X , Y and Z matrices.  

Notation: Bold upper (lower) case Arabic symbols represent matrices or vectors 

respectively, and regular-faced symbols are scalars. Bold-faced, upper-case Greek 

symbols are matrices. The notation, e.g. ix represents the i th column of the 

matrix X . The notation (·) and (·)  denote the null-space and range 

respectively of the argument.  
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3.2 SC-PLS Iterative Algorithm 

3.2.1 Partial Least Squares NIPALS algorithm  

Partial Least Squares (PLS), is a latent variable regression method which is 

mostly suitable for building a latent model between X (r×k) and Y (r×m) when 

one or both are rank deficient. In PLS, a linear combination of X (t = Xw) and Y 

(u = Yc) are found, iteratively, that have maximum covariance with each other. 

This problem can be solved in the context of a maximization problem: 

 

 
,

max

.
.

.s t

 

 

 

w c
w X Yc

w w 1

c c 1

 (3-1) 

It can be shown that the solution to this problem ( 1kw , 1mc ) are the 

dominant eigenvalues of X′YY′X and Y′XX′Y respectively [
5
]. The eigenvectors 

can be found using the power iteration as: 

 
 




X YY Xw
w

X YYXw
 (3-2) 

and  

 .
 


 

Y XX Yc
c

Y XX Yc
 (3-3) 

Where ||.|| is the two norm operator. The sequence is iterated until the difference 

between two subsequent values is less than a specified threshold.  The associated 

eigenvalue, with w, can be obtained from: 
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 .
  




w X YY Xw

w w
 (3-4) 

Wold et al. introduced the NIPALS algorithm, which is based on power 

iteration, for extraction of the principal components and the loadings in PLS 

algorithm. In the NIPALS algorithm the following steps are iterated until the 

iterations converge towards the largest eigenvectors of the respective matrices.  

1. Initialize u as a column of Y 

2.  w  = X′ u 

3. w ← w/||w|| 
4. t = Xw 

5. c = Y′ t/(t′ t) 
6. c ← c′ /||c|| 
7. u = Yc 

8. repeat steps 2 to 5 until convergence 

9. p = X′ t/(t′ t) 
10. X  X-tp′  

11. Go to step one and repeat for next principal component  

 

The choice of normalization depends on the application and the algorithm. In 

many algorithms instead of w and c, t and u are normalized. However the end 

results at least in theory will be the same. The convergence criterion is usually 

calculated as the difference between two subsequent components and the iteration 

is stopped when it is less than a threshold value. Deflation of X at each step also 

ensures orthogonality between the subsequent principal components extracted. 

Several methods have been developed for the handling of missing points 

through the PLS algorithm; such as i) Complete Object method [6] in which the 

rows that contain the missing elements are eliminated from the calculation and 

therefore only the data with no missing elements are included in the model 

building process, ii) the single component projection method used in the NIPALS 
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algorithm [7] which is a single pass method, Expectation maximization method [8] 

which is an iterative algorithm which can either start with a guessed value for the 

missing elements, or can start using the estimates of the NIPALS single 

component projection method and iii) Maximum Likelihood PCA method [9], are 

among such methods. The method implemented in our current algorithm is the 

expectation maximization (EM) method. In this algorithm the missing points are 

replaced with an initial guess value (for example mean value for each column) 

and the components are extracted using the NIPALS algorithm. Once all the 

principal components are extracted X  and   are calculated as: 

 ˆ X TP  (3-5) 

and  

 ˆ .Y TC  (3-6) 

T, P and C are automatically provided by the NIPALS algorithm. The missing 

values in the original matrix are replaced with their estimated values from X  and 

  and the algorithm is run again to obtain new values for the missing points that 

had been previously replaced by their estimates. The PLS algorithm is run again 

and a new estimate for the missing points is calculated. These new estimates are 

closer to the actual values of the missing points. This iteration is repeated until the 

change in the estimates of the missing values is less than a threshold level.   

  Once the algorithm has converged, the missing elements can be replaced using 

their final estimates from (3-5) and (3-6), and the remaining matrices, such s W* 

to be defined in (3-11), can be extracted at this point. 
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 The NIPALS algorithm is specifically useful where the missing points are not 

clustered in a few rows or columns in the dataset [
10

]. A good rule of thumb is that 

the number of missing points should be less than 20% of the total number of 

elements in each dataset. However good results for larger number of missing 

points can be obtained when the dataset is large [
10

].  

3.3 Soft Constrained PLS (SC-PLS).  

In soft constrained PLS (SC-PLS), the PLS problem is reformulated to find a 

linear combination of X (t = Xw) that maximizes the difference between the 

covariance matrices t′YY′t and t′ZZ′t . As seen in chapter two, this problem can 

be formulated as a maximization problem: 

 
max

. . 1.s t

     

 

w
w X YY Xw w X ZZ Xw

w w
 (3-7) 

The solution to this problem is found by finding the largest eigenvectors of the 

following matrix  

 ( ) .   H X YY ZZ X  (3-8) 

The latent vectors (w’s) are the eigenvectors associated with the eigenvalues i

of above equation (3-8) at each iteration. Subsequent eigenvectors are found by 

deflating the matrix X and performing the optimization using the new X value. 

The eigenvalues can become positive or negative depending on whether H is 

positive definite or negative definite. When the eigenvalue is positive the equation 

is equivalent to maximizing i   t YY t t ZZ t . However when λ < 0 then the 

problem is equivalent to maximizing ' 'i  t ZZ t t YY t . In the first case the 
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extracted components will be associated with Y while having low colinearity with 

Z and vice versa in the second case.   

In order to derive the iterative algorithm for the soft constrained PLS, it can be 

rewritten as finding a linear combination of X (t = Xw) and Y (u = Yc) and Z (f = 

Zk) where:  

 

, ,

1

max

. . 1

1.

s t

     

 

 

 

w c k
w X uu Xw w X ff Xw

w w

c c

k k

 (3-9) 

Compared to regular PLS algorithm, the objective function involved here is to 

find the difference of the two covariance matrices. Therefore the power method 

for finding w is used throughout the iteration steps. Hence the modified NIPALS 

algorithm will have the following form: 

 

1. Initialize u as a column of Y and f as a column of Z, and w as a row of X 

2.  w  = (X′ uu′ X - ρ X′ ff′ X)w 

3. w ← w/||w|| 
4. t = Xw 

5. c = Y′ t/(t′ t) 
6. c ← c /||c|| 
7. k= Z′ t/(t′ t) 

8. k ← k /||k|| 

9. u = Yc 

10. f  = Zk 

11. λ = w′ X′ (uu′  - ρff′ )Xw/(w′ w)  
12. repeat steps 2 to 10  until convergence 

13. p = X′ t/(t′ t) 
14. X  X- tp′ , YY - tc′ , Z  Z – tk′  

15. Go to step one and repeat for next principal component  

 

The convergence is determined the same way as in the NIPALS algorithm for 

PLS. The second and third line of the iteration are adopted from the power 
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iteration in which “w” is updated sequentially until it converges towards the 

largest eigenvector of H. Once a convergence has been reached, X will be 

deflated as before (X= X- tp′) and a new component will be extracted by iterating 

through steps 1 to 11 using the new deflated X,Y and Z  

As with the EM algorithm, when the missing points are present in the dataset, 

the missing points are initially replaced by an initial values (here, the mean value 

for each column) and then all the components are extracted sequentially. Once the 

components are extracted the estimates X  ,  and   are calculated using (3-5), 

(3-6) and (3-10) 

 ˆ Z TK  (3-10) 

and the missing points in the original matrix are replaced by these estimates. 

Again the SC-PLS is ran iteratively, for all the components, using the new X,Y 

and Z with the missing points replaced. Then the missing point values are 

updated. The iteration is repeated until convergence is achieved.   

Following diagram shows the steps of the NIPALS SC-PLS algorithm 

incorporating the single component expectation maximizing idea.  
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Figure  3-1: diagram of the different loops in the NIP-SC-PLS algorithm when there are missing 

elements in the datasets. 

 

 

3.4 Future observations  

Assuming that a model is already available (no missing data or the missing data 

problem has been resolved during the model building stage), the mixing 

components “W” are calculated in each step using deflated versions of X. 

Therefore, for conversion of the future observations a new mixing matrix that 

operates on the original X and obtains latent variables s the deflation method 

needs to be calculated. This new mixing matrix, called W* is calculated as [
11

]: 

Impute all the missing elements by setting them equal to zero (mean values 

in unscaled terms) 

 

Component 

extraction loop 

Internal NIP-SC-

PLS loop  

Missing point 

update loop  

Until the changes in missing values stabilizes 

| 

| For 1 to the number of desired components 

| | 

| | Loop until ||Δλ||/||λ|| < ε   

| | Run the NIPALS type algorithm for SC-PLS 

| | |   

| | |   

| | |   

| | |Check convergence rate for each component 

| | End loop  

| | 

| |Deflate the known values in X,Y and Z 

| End Loop 

| 

|Replace the missing elements with their estimates from  

|X  = TP′  

|  = TC′  

|  = TR′  

End loop      
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 1* ) .(   1
W W P W  (3-11)  

Once the W* is calculated, the score matrix T
ts
 for the new (future) 

observations is calculated from X
ts
 (test set): 

 *,ts tsT X W  (3-12) 

and using the projection coefficient “C” (the projection coefficient of Y onto 

the subspace of T during the model building process) it is possible to predict the 

previously unseen (future) values of Y
ts
. 

 ˆ .ts ts Y T C  (3-13) 

When the model is obtained using the SC-PLS algorithms, some of its 

eigenvalues will be positive and some will have negative signs. It was mentioned 

earlier that the eigenvectors associated with positive components have high 

correlation with the Y variables whereas the components associated with negative 

eigenvalues have high correlation with the noise matrix (Z). Hence, when 

predicting the future values of Y, only the positive principal components should 

be used to predict the new Y variables: 

 ˆ
new  

Y T C  (3-14) 

where T+ is a matrix containing all the principal components associated with 

positive eigenvalues and C+ is the matrix containing their corresponding loading 

vectors.  

In the event of missing points in the future observations (prediction set) a 

method known as the “future imputation” [
12

] is implemented. This method 

employs the following iterative steps to estimate the missing values for the new 
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observations.  

 

1. Replace missing points in X with zeros (W* and P are already available from the 

model) 

2. T = XW* 

3. X   = TP′ 
4. Replace missing points in X with the ones estimated in X    

5. Repeat steps 2 and 3 until convergence is reached.  

 

Convergence is reached when the changes in subsequent T’s are less than a 

threshold value. Once convergence is achieved, the new T values are used the 

same way as in (3-14) to predict the future response values (Y).  

3.5 Simulation studies 

The simulation dataset used for this study was exactly the same as the one used 

for the linear SC-PLS method (Chapter 2). For the examples in which datasets had 

missing points, the missing points for each of the matrices X,Y and Z were 

selected randomly using Matlab’s random integer generator. The number of 

missing elements is chosen as a fraction of the total number of elements in each 

matrix. Once the random generator identified a set of random numbers, the 

corresponding element associated with that random element was be set to “NAN”.  

Throughout the study the goodness of fit for each dataset’s results is measured 

as: 

 
  
  

2

2

2

ˆ

1
ij ij

ij

R

 


 

 

 
Φ

 (3-15) 

where ij is the element in the i
th

 column and the j
th

 row of the matrix Φ . For 
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our purposes Φ  can be either X , Y or Z . The quality of fit for NIP-SC-PLS, 

with various levels of missing points, for both cases: where there is noise only 

present in X and the case where structured noise is present in both X and Y, was 

compared.  

For this simulation, once the datasets were generated, the observations in the 

datasets were divided in half. The first set was used for building the model, 

known as the “training set” (denoted by superscript “tr”), and the other set was 

used to measure the goodness of prediction, denoted by superscript “ts” and is 

called “test set”.  Each dataset contained 1000 observations. Quality of prediction 

is calculated as measure of the goodness of the model in predicting the future 

observation (i.e. test set) values. It can be calculated as:  

 
  
  

2
ts ts

2

2
ts

1

ˆ
ij ij

ij

y
Q

y

y
 

 

 
Y

 (3-16) 

where ts

ijy is the test set’s response variable and tsˆ
ijy is its corresponding 

predicted value obtained using (3-14). Overall the results of the SC-PLS and NIP-

SC-PLS were identical whenever there were no missing points present. Therefore 

the remaining portion of this simulation section focuses on the properties of the 

NIP-SC-PLS algorithm in the presence of missing elements in X, Y and Z or 

multiple matrices 

3.5.1 Convergence properties of the NIP-SC-PLS algorithm.  

The NIPALS-SC-PLS algorithm is a stable algorithm; converging quickly for 
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most of the components. The simulations showed that in most cases the two-norm 

of the relative change of the obtained eigenvalue (from Equation (3-4)) reduced to 

less than 1E-7 after 30 to 40 iterations. In some cases minor instability was 

observed. However these instabilities usually are treated with a change in the 

initial guess and rerunning for that particular component.  

As mentioned earlier, with the expectation maximization (EM) method, the SC-

PLS (or PLS) algorithm is run with an initial guess replacing the missing elements 

in X, Y and Z. Once all the required components are extracted, the missing 

elements are replaced with their estimates from X ,   and  , obtained from 

equations (3-5), (3-6) and (3-10) respectively. Once again the algorithm is run 

using the new updated X, Y and Z and a new estimate is obtained which is closer 

to the true estimate of the missing elements. This iteration is continued until a 

convergence is achieved.  

Figure  3-2, (left) shows the changes in the first 5 eigenvalues of the extracted 

components during iteration steps mentioned above for the SC-PLS algorithm. 

Figure  3-2, (right) shows the quality of fit (R
2
) for the missing elements in X, Y 

and Z as the iteration continues. It is observed that as the iteration advances, the 

quality of fit improves and eventually converges towards a certain value. Total 

percentage of missing elements (total number of elements) in X, Y and Z was 34, 

22 and 27 percent respectively.  
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Figure  3-2: Left: changes in Eigenvalues (1 to 5) as the iteration proceeds. Right: changes in 

quality of fit (R
2
) for the missing elements in X,Y and Z (5 principal components ). Number of 

components extracted in total was 15. Total percentage of missing elements (to total number of 

elements ) in X, Y and Z was: 34, 22 and 27 percent respectively.  

 

This figure shows that as the iteration continues, some of the eigenvalues 

change sign, resulting in a jump in the eigenvalue and in turn a change in the 

value of the mixing matrix “w”.  The reason for such a behavior is that as 

eventually the missing elements get estimated, the matrix H in (3-8) changes from 

being positive definite to negative definite (or vice versa) and the components 

start converging using the new eigenvalues. However no radical behavior, such as 

instability, was noticed when the components changed sign within the iterations. 

This change in the eigenvalue sign usually appears in smaller eigenvalues as the 

model becomes more sensitive to noise. The results suggest that the convergence 

rates are almost exponential and usually stabilize after 10 to 15 iterations. The 

next figure shows the comparison between SVD based SC-PLS method (no 

missing points) and the SC-PLS-NIPALS algorithm with 25% missing points. It 

can be seen that the eigenvalues and the quality of prediction is in good 
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correspondence with the standard SC-PLS algorithm.  

  

Figure  3-3: Left: Quality of prediction Q
2

Y  for original SC-PLS (no missing values) and the NIP-

SC-PLS with 25% missing data. Right: eivenvalues for the same simulation. Both plots show good 

agreement between the two methods even with 25% missing elements in the NIP-SC-PLS method. 

                                                     

 

3.5.2 Effect of missing points in the quality of fit 

The following plots in Figure  3-4 show how much of the missing elements are 

recovered during the model building process for various amounts of missing 

points. The algorithm was run with various levels of missing points in X, Y, Z.  

For all the runs the following parameters were chosen for the simulation datasets: 

3, 0, 0.1, 0.1
F F F F
   

X Y X Y
C C B B . The || . ||F  operator represents the 

Frobenius norm. 0
F


Y
C  means that the noise is only present in X. In all 

simulations a total number of 15 components were extracted prior to measuring 

the quality of fit or prediction  

The plots on the left show the quality of fit whereas the figure on the right 

shows the quality of prediction for new observations when the model was built 
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with a training set that contained missing points (same dataset as shown in plot of 

Figure  3-4-Left). It can be seen that the major determining component is the 

number of missing points in X. This of course is an expected result as the missing 

elements in Y and Z are also calculated using components (T) extracted from X 

from equations (3-5)(3-6) and (3-10).   

  

  

Figure  3-4: quality of fit using the SC-PLS algorithm for missing points in X,Y and Z. when the 

fraction of missing points (to all the points in the matrix) changes In each run a total of 15 

components were extracted and λ  was set to be equal to 1. Left figure shows the quality of fit to 

the missing elements (in X, Y or Z) while the right figure shows the quality of prediction for 

future observations (test set) when the model was built using a training set that contained missing 

elements (same dataset as left plots).  There were no missing points in the future observations. 

 

It should be noted that the quality of fit and prediction are also sensitive to the 

total number of components extracted. The following figure (Figure  3-5) shows 

the changes in the quality of fit for the missing values in X, for different 

simulation runs having a different number of components extracted. It is clear that 

if an insufficient number of components are extracted the prediction in the X 

variables can either under fit or over fit which will degrade the prediction results. 
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The strange behavior shown in Figure  3-5 is caused by the fact that only 10 latent 

variables were included in the original simulation model. Extracting more than 10 

components from the model will result in over fitting and will ultimately add 

noise to the missing elements of X. However this added noise does not affect 

prediction of Y and Z as they are projections into the subspace of X and hence 

less sensitive to the error added into the missing elements in X. These results 

show that just like any other model, a proper number of components must be 

extracted. One of the methods that can be used in choosing the number of 

components is cross-validating the results on a test set to ensure proper number of 

components are extracted.  

 

Figure  3-5: quality of prediction for future observations when the model was built using a training 

set that contained missing elements (corresponding to plots in Figure  3-4). If there are missing 

points in the training set, the prediction of the future observations can be affected accordingly.   
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solving the SC-PLS problem was introduced. The advantage of the proposed  

algorithm compared to a direct component extraction approach is the same as the 

advantages of the ordinary NIPALS algorithm for selection of components 

compared to the methods based on direct SVD extraction. 

The results of the NIPALS algorithm for SC-PLS are shown to be identical to 

the original SC-PLS algorithm when there are no missing data. The NIPALS 

algorithm (as well as the SVD based methods) can be altered to account for 

missing elements in the matrices. However, the advantage of NIPALS algorithm 

is its less computational cost when handling large datasets. The method used to 

recover the missing points in the algorithms presented here was the Expectation 

Maximization algorithm (EM). This method however is not the most advanced or 

statistically accurate method that is available. Other methods such as maximum 

likelihood method [
9
] have been shown to give better performance and therefore 

need to be investigated as alternatives to EM method. Nonetheless the EM 

method provides a simple and yet acceptable algorithm for recovering missing 

points during the model building process in NIP-SC-PLS algorithm. Overall the 

algorithm is stable, and in the case of large covariance matrices, can substantially 

reduce the computation cost compared to methods that use the whole matrix or 

extract all the components simultaneously (e.g. Singular Value Decomposition) .  
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Chapter 4 

Constrained Nonlinear Latent Variable Methods 

   

Abstract—Nonlinear Kernel methods have been widely used to deal with nonlinear problems in 

latent variable methods. However, in presence of structured noise these methods have reduced efficacy. 

We have previously introduced constrained latent variable methods that make use of any available 

additional knowledge about the structured noise. These methods improve performance by introducing 

additional constraints into the algorithm.  In this paper we build upon our previous work and 

introduce hard and soft constrained nonlinear partial least squares methods using nonlinear kernels. 

The addition of nonlinear kernels reduces the effects of structured noise in nonlinear spaces and 

improves the regression performance between the input and the response variables.  

 

Index Terms— PCA, PLS, kernels, structured noise, latent variables 

 

4.1 INTRODUCTION 

Latent variable methods such as principal component analysis (PCA) and partial 

least squares (PLS) [
1
] are very powerful techniques in de-noising datasets or 

performing regression in rank deficient environments. These methods tend to 

extract the major directions of variation within a dataset (PCA) or directions with 

most colinearity with respect to a response matrix (PLS). Despite their advantages 

in dealing with rank deficient datasets, these techniques also have certain 

shortcomings. One of the major problems with these techniques is their sensitivity 

to the presence of structured noise. Structured noise can be either temporally or 

contemporaneously correlated. Contemporaneous noise affects many variables of 

a dataset at the same time instant but does not necessarily have a structured 

                                                     
. 
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temporal power spectrum. Contemporaneous noise can also be referred to as 

unwanted systematic variations in a dataset. In this paper we take structured noise 

to be contemporaneous noise.  

  Large structured (systematic) variations affecting many variables of the input 

matrix(X) or both the input and response matrices (X and Y) can limit the extent 

to which latent variable methods (LVMs) can extract relevant latent components 

corresponding to the true underlying structure between X and Y.   Regardless, 

orthogonal signal correction (OSC) and orthogonal projection to latent structures 

(O-PLS) methods [
2,3,4,5

] were introduced that prove effective under reasonable 

conditions. These methods remove variations in X (or Y) that are unrelated to Y 

(or X) before determining a model.  As long as the structured noise resides in X or 

Y, these methods perform reasonably well. If there is structured noise in both X 

and Y but the systematic variation in each dataset is independent of the other one, 

these methods can still be applied with reasonable success [
5,6

] . However, in the 

presence of common structured noise , with the same (common) basis for 

structured variation in both X and Y, these methods fail. Take for example, OSC 

method by Fearn et al. [
3
] : In this method the covariance matrix (X′X) is 

projected into the orthogonal complement of X′Y. in a case when noise resides in 

both X and Y, X′Y  will be a basis for the noise as well and hence the components 

extracted from X will be also orthogonal to noise subspace.   In such a case, when 

the common noise is not properly removed from the datasets, the resulting model 

will be biased towards the structured noise. In other words, instead of building a 
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relationship between the input and the true underlying response, the resulting 

model may be better at predicting the variations in the noise rather than the 

desired Y values.  

In the case where X and Y are related through some nonlinear relationship 

( )Y X , direct application of  linear LVM methods or the orthogonal signal 

correction methods fail to provide optimal results.  In order to overcome the 

nonlinearity problem, several methods such as principal curves [
7
], locally linear 

PCA methods [
8
], nonlinear NIPALS algorithm for PLS [

9
,
10

] and kernel PCA [
11–

13
] have been introduced. The nonlinear kernel regression methods were further 

extended to kernel PLS methods [
14–16

;
17

 ]. Comprehensive reviews of linear and 

nonlinear PLS methods can be found in [
18,19

]. Kernel methods, which will be 

discussed further in this paper, use the so-called “kernel trick” to perform 

nonlinear expansion and regression in a potentially higher dimensional and 

nonlinear feature space without explicitly requiring direct access to Φ.   In the 

presence of structured noise, especially when either X  or both the X  and Y

spaces are contaminated, these methods suffer the same shortcomings as their 

linear counterparts.  

We have previously addressed the problem of structured noise in the linear 

framework. In this  methodology additional available information about the 

structured noise in the form of additional observations are imposed into the model 

to remove or reduce its effects [
20

] Several variations of constrained LVM, such as 

Hard-Constrained Principal Component Regression (HC-PCR), Hard-Constrained 
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Partial Least Squares (HC-PLS) and Soft-Constrained Partial Least Squares (SC-

PLS) have been developed. These methods perform well when sufficient 

information about the noise subspace is available; however, they only perform 

well in the linear case. .   

Nonlinear versions of OSC and OPLS [
21,22,23

] were introduced to overcome the 

undesired presence of nonlinearity in the underlying model. However, none of 

these methods exploit any additional information that might be available about the 

structured noise subspace and hence suffer the same shortcomings as their linear 

counterparts, especially in the presence of common structured noise residing in 

both X and Y.  

 In his article we expand our previously-developed linearly constrained LVM 

methodology to kernel-based nonlinear methods in the presence of structured 

noise. In this vein, we propose two LVM methods that can adapt to nonlinear 

models and are capable of exploiting any additional information available about 

structured noise that may be present in X and Y. 

 The remainder of this paper is organized as follows:    Section II reviews the 

use of linear kernels in the context of the PLS algorithm, and then discusses the 

nonlinear kernel PLS algorithm. Section III reviews the previously-developed 

HC-PLS and SC-PLS algorithms, which extend the PLS concept to the case of 

structured noise.  We then extend these PLS-based algorithms to the nonlinear 

case through the use of kernelization.   We propose two algorithms for this 

purpose;  the hard-constrained kernel PLS (HC-KPLS) and the soft-constrained 
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Kernel PLS (SC-KPLS) algorithms. Section IV explores the properties of these 

methods through simulations.  Finally, in the Discussion and Conclusion section 

we address some of the advantages and issues associated with the proposed 

methods.  

Notation: Bold upper (lower) case symbols represent matrices or vectors 

respectively, and regular-faced symbols are scalars. The notation, e.g. ix

represents the i
th

 column of the matrix X and 
jx represents the vector consisting 

of the j
th

 row of the matrix X. The quantity ,( )k
i j

x y  represents a kernel operation 

between i
th

 and j
th

 rows of X  and Y respectively. The notations (·) and (·)  

denote the nullspace and range the argument, respectively. In the following 

chapters the following naming scheme is used: methods that include hard 

constraints are accompanied by the prefix “HC” and those that include soft 

constrints include the prefix “SC”. The prefix “K” denotes a nonlinear kernel 

version of the respective algorithm. Superscript ′ denotes matrix transpose.   

4.2 Kernel-latent variable methods 

Linear Kernel methods were initially introduced in “linear” latent variable 

methods to reduce the calculation cost by performing feature extraction or 

regression directly from the covariance matrices rather than from the original 

variables [
14,24,25

]. To set the stage for a discussion on kernels, we first consider a 

simple partial least squares (PLS) algorithm: 
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4.2.1 The Ordinary  PLS method  

In partial least squares (PLS) the objective function is defined as finding  a 

linear combination of the predictor matrix X (n×k) 

 t Xw  (4-1) 

that maximizes the following objective function  

 
s.t.

ma

1

x   

 

w
w X YY Xw

w w
 (4-2) 

where Y (n×m) contains the response values. The vector w (k×1) is called the 

loading vector and t (n×1) is called a latent variable (latent component) The 

solution to this problem can be found by differentiating the Lagrangian 

corresponding to (2) with respect to w and equating it to zero, to obtain  

 0   X YY Xw w . (4-3) 

The w and  satisfying (4-3) are the dominant eigenvalue/eigenvector pair of 

 X YY X .  The matrix X  is then deflated according to  

   X X tp  (4-4) 

where p (k×1), the loading vector, is found by projecting X into the range of t: 

 ' ( )  1
p t t t X . (4-5) 

The subsequent latent variables are found by reiterating through (4-1)-(5) . 

Once q principal components are calculated, X and Y can be written as  

 ' X TP E , (4-6) 

  Y TC F  (4-7) 

where 1[ ,..., ]qT t t  and 1[ ,..., ]qP p p  and the matrices E (n×k) and F (n×m) 
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are the remaining residuals after the decomposition. The projection coefficient C

(m×q) is calculated by projecting Y into the range of T :  

 1( )  C T T T Y . (4-8) 

 

Typically in LVM analysis, a training set of data containing values of X and 

corresponding values of Y are assumed to be available.  These are used in the 

training procedure to determine the matrices P and C in (4-6) and (4-7)  

respectively.  Then in test or operational mode, a value Ŷ of Y can be predicted 

from a new or previously unseen set (the test set) ts
X  of  X values according to 

 ˆ .ts T CY  (4-9) 

In calculating the values Ŷ ,   
ts

T  must be calculated directly from ts
X . Since 

the w’s were obtained from deflated X values, they cannot be used to calculate 

ts
T  directly from ts

X ; however, it is possible to calculate a new matrix: W* = 

WM such that 

 *ts tsT X W , (4-10) 

where W* (k×q) operates directly on X
ts
 (see Chapter Two)  In the ordinary 

linear PLS method, the matrix M is calculated as: 

 ( )    1
M T TP W T T  (4-11) 

giving:  

 * ( )   1
W W T TP W T T . (4-12) 

Predictions for the future observations can now be calculated directly from ts
X
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as: 

 ˆ *ts ts Y X W C . (4-13) 

 

4.2.2 Linear Kernels  

Linear kernels were originally introduced to handle datasets with many 

variables and fewer observations in X [
24

]; i.e., n<k. In such datasets the 

generalized covariance matrix X′ X ( where   is an arbitrary     positive 

semi-definite matrix) can become quite large and hence computationally 

expensive to calculate. These methods take advantage of certain properties of the 

loading vector w to reduce the size of the objective function’s covariance matrix. 

It can be easily shown that when T=XW, W is within the range of X′ [
11

],so that : 

 w Xα . (4-14) 

Replacing w with X  in (4-2) results in: 

 
( ) ( )

s.t.

m

1

ax


   

  

α XX YY XX α

α XXα .
 (4-15) 

After differentiating the corresponding Lagrangian with respect to α  and 

equating it to zero, we have:  

 ( ) ( ) 0    XX YY XX α XXα  (4-16) 

or  

 ( ) ( ) 0   K YY K α Kα  (4-17) 

where K (n×n)  equals 

 K XX . (4-18) 
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The α solving (4-15) is the eigenvector associated with the largest generalized 

eigenvalue of (4-17). Once  is calculated, t can be calculated directly from K as  

 ( )t X Xα  (4-19) 

or  

 t Kα . (4-20) 

The matrix K is called a kernel. The advantage of using kernels is two-fold.  

First, in this case where    , all matrix operations are performed in the smaller 

dimension (n) of X. The second is that once the kernel is constructed, there is no 

further need to access X directly and all calculations can be done through the 

kernel matrix. As in the ordinary PLS context, once each component is calculated, 

the kernel is deflated and the new kernel is used in (4-17) to extract the 

subsequent principal components. K is directly deflated as: 

 ( )( )   K X tp X tp . (4-21) 

Eq. (4-21) can be rewritten as: 

 .
( )( )

   
   

   

tt tt tt Ktt
K K K K

t t t t t t t t
 (4-22) 

This procedure of using kernels instead of X directly is known as the “kernel 

trick” .  It plays  a key role in the development of the nonlinear kernel methods,  

which are discussed next. 

 

4.2.3 The Kernel Trick Applied to the Nonlinear PLS Problem  
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A linear LVM objective function which requires only inner product operations 

for its evaluation can be conveniently extended to the nonlinear case using 

nonlinear kernels. When the transformation ( ) : R R fn k n  X  is known, where 

Rn f  is referred to as the feature space (which is possibly of very high dimension 

(f ≫ n) [
11

]), then a linear inference method such as regression or PLS can be used 

to build a model between Y and ( ) X , instead of between Y and X directly.  The 

nonlinear version of the PLS problem may therefore be stated as: 

 
( ) ( )

s.t.

m x

1.

a    

 

w
w X YY X w

w w
 (4-23) 

 The difficulty with this approach, even if ( ) X  is known, is the 

dimensionality of  f. When ( ) X  involves larger polynomial orders, or when the 

dimension of  X  becomes large, the dimensionality of Φ grows very quickly and 

eventually the computation of Φ(X) becomes very expensive and impractical to 

calculate. This problem may be overcome using the kernel trick to implement the 

nonlinear transformation. Under certain conditions, the kernel trick permits 

implementation of the nonlinear transformation without the need to access ( ) X  

directly.  As indicated earlier, w can be written as: 

 ( ) w X α . (4-24) 

By inserting (4-24) into (4-23): 

 
( ) ( ) ( ) ( )

s.t. ( ) ( ) 1.

max       

   

w
α X X YY X X α

α X X α
 (4-25) 

And having  K = Φ(X)Φ(X)′ , the corresponding problem becomes: 
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s.t.

ma

1

x   

 

w
α KYYKα

α Kα .
 (4-26) 

  

 

The kernel trick allows us to implement the transformation Φ(X) indirectly in a 

very efficient manner, using only linear operations on K, in cases such as the 

current situation where the underlying algorithm is assumed to  involves only 

inner product operations. A nonlinear transformation ( ) X  may be induced on 

the feature space by replacing an inner product in the feature space, such as 

ϕ(X)ϕ(X)′ , where ϕ(X) is the i
th

 row of Φ(X). with a kernel function k(xi,xj), 

which is defined later.   In this case, there exists (see [
11

]) a nonlinear 

transformation ( ) x  such that ( , ) ( ) ( ) 'ij jik  x x X X for any xi, xj , provided that 

the matrix K, whose elements are k(xi,xj), is positive definite (Mercer’s theorem) 

[
26

].  

The ability to perform all computations directly from K allows us to impose 

nonlinearity in the model, using only linear operations on the kernel,  in an 

effectively higher dimensional feature space,  without having to access Φ(X) 

directly. 

There are several well-known kernel functions that satisfy Mercer’s theorem. 

Two such kernels are the polynomial kernel defined as:  

 , ) ( )( dk   x y x y  (4-27) 
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where θ and d are parameters to be determined, and  the Gaussian kernel 

defined as:  

 

2

2
( ,, ) ek xp

c

 
 










 

x y
x y  (4-28) 

where c is also a parameter. Other kernels with different properties are also 

available [
27

].   See also [
28

].  

 

Thus, a nonlinearity is induced on the feature space by assigning K =kij, (i,j) = 

1,… n. The connection between the kernel function and the corresponding 

transformation Φ(X) is indirect and difficult to establish.  Nevertheless, the choice 

of kernel function and the value of its parameters can be learned from the 

available training data (using, e.g., cross-validation methods)  to best fit the 

underlying nonlinearity ( ) X . The use of kernel methods facilitates this process, 

due to the fact that the kernel is specified in terms of only a few parameters.  In 

contrast, the determination of the nonlinear function ( ) X  can be very difficult 

due to the potential high dimensionality of Φ. 

 

4.3 Regularized latent variable methods 

Chapter 2 introduced the concept of regularized latent variable methods [
20

]. 

The advantage of these methods over previous LVM techniques is their ability to 

utilize auxiliary information that is sometimes available to improve component 

selection and regression in the presence of structured noise contaminating X  
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and/or Y . The Hard-Constrained Partial Least Squares (HC-PLS) method and its 

soft constrained counterpart (SC-PLS)  are briefly reviewed here.    Later, we 

extended these methods to the nonlinear case through the use of kernels.  

In constrained LVM methods, in addition to the matrices X and Y , it is 

assumed that an auxiliary noise matrix Z (n×b) containing (partial) information 

about the noise is also available.   The observations Z  are assumed to be gathered 

simultaneously with the observations of X  and Y .  It is further assumed that 

( )Z intersects with the range of the structured noise components contaminating 

X  and Y .The information in Z  can be used to suppress the effect of the 

structured noise when building a model between X and Y, thereby improving the 

component selection and the prediction values. In the  HC-PLS method, Z is used 

to formulate an additional constraint in the PLS objective function:  

 
s.t.

ma

1

x   

 

w
w X YY Xw

w w
 (4-29) 

 0  w X Z . (4-30) 

Equation (4-30) restricts the extracted components to be orthogonal to the 

auxiliary noise matrix Z , thereby suppressing the structured noise. The solution 

to the above optimization problem is obtained in an iterative fashion as before.   

First, w is determined as  the dominant eigenvector of :  

  
XZ

Q X YY X  (4-31) 

where: 
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 ( )     1

XZ
Q I X Z Z XX Z Z X . (4-32) 

XZ
Q (k×k) is a projector into the orthogonal complement of X Z . The details of 

calculating the eigenvalues, eigenvectors of the above non-symmetric matrix are 

given in [
29

] .  Once the latent vector w is calculated, the corresponding principal 

component t is calculated as in (4-1). After each component is extracted, X is 

deflated and new components are extracted iteratively as shown in (4-4). The  

deflated X is used in equations (4-29)-(4-32) to extract the subsequent 

components.  The projection vector p is calculated using  (4-5).  

 

Imposing hard constraints on the noise components can have various outcomes 

that depend on the condition and the size of the noise matrix. Rewriting equation 

(4-30) we get: 

 ' ' 0 0  w X Z Λw , (4-33) 

where         This means that w resides in the null space of Λ′  . Different 

outcomes are possible, depending on the structure of Λ.   If Λ is tall and full rank 

or rank deficient, Λ′ has a non-empty nullspace. Therefore a vector w always 

exists that can satisfy (4-30).  However, if Λ is full-rank square or short, then 

( ')Λ  will be empty.  In this case, a w  satisfying (4-30) does not exist. 

In addition, if Z  is not orthogonal to X , imposing hard constrints may remove 

some of the variations in X that relate to Y , reducing the efficacy of the results. 

Therefore when Λ is full-rank square, or short, or is not orthogonal to X it is 
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better to relax the orthogonality constrain and impose a soft constraint on the 

covariance of the auxiliary noise and the input data. We refer to this method as 

soft constrained PLS (SC-PLS). In SC-PLS the hard orthogonality constraint is 

replaced by a penalty on the square of the covariance between X and Z (i.e., 

 X ZZ X ).  The corresponding objective function is formulated as 

 
s.t.

m

1

ax
.

     

 

w
w X YY Xw w X ZZ Xw

w w
 (4-34) 

The w resulting from solving (4-34) is a vector that maximizes the absolute 

difference between the terms   w X YY Xw and   w X ZZ Xw . The meta-parameter

  controls the relative weighting of the two terms.  

To solve the above problem a Lagrangian operator is constructed, yielding 

 max( ) | ( ) | ( ' 1)L        
w

w X YY X X ZZ X w w w . (4-35) 

The solution to this problem is found by differentiating the Lagrangian with 

respect to w and equating it to zero: 

 sgn( )( ) 0       X YY X X ZZ X w w  (4-36) 

where sgn(.) is the sign operator and α is the argument of the absolute value operator in 

(4-34).   The solution to  (4-34)  is therefore the dominant eigenvector of the matrix

   X YY X X ZZ X . 

 

The procedure to generate the latent variable model is as described previously. 

The components are extracted iteratively where X  is deflated before each 

iteration. The matrix argument of the first line of (4-34) can be written as: 

             w X (YY - ZZ )Xw = t (YY - ZZ )t = t YY t - t ZZ t . (4-37) 



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

 

111 

 

We first consider the case, in a particular iteration, when the dominant 

eigenvalue   of the matrix    X YY X X ZZ X  of (4-35) is positive.  Then 

sgn(α) in  (4-35) is +1, and the solution w0 to (4-34) is the corresponding 

eigenvector, and from the right-most equation of (4-37), we have  

   
0 0 0 0

t YY t > t ZZ t , where 
0 0

t = Xw .  Thus the corresponding t0 is dominated 

by the term  
0 0

t YY t , and consequently t0 tends to be in a direction which 

explains maximum variation along Y.  Since t0 itself is a linear combination of the 

columns of X, t0 in this case corresponds to a direction in X which is most closely 

aligned with Y.  We can define the matrix P
T  as that whose columns are the t’s 

corresponding to the positive values of   obtained over all iterations of the 

process.   

Now, let us consider the case where the dominant eigenvalue   is negative.   

The solution w0 is again the eigenvector corresponding to the dominant 

eigenvalue.  In this case;, sgn(α) in (4-35) is -1, leading to      
0 0 0 0

t ZZ t > t YY t .  

So now the second term of the right-most equation of (4-37) dominates.   Using 

reasoning similar to that of the previous case, it can be seen that the t0 in this case 

corresponds to a direction in X which is most closely aligned with the noise 

matrix Z.     

We define a matrix N
T , in a manner similar to the way we have defined P

T , 

whose columns consist of the t0 values associated with the negative eigenvalues 

obtained over the various iterations of the solution.  Since N
T is associated with 
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the structured noise, no component of N
T is used  for the prediction of Y.   Thus, a 

predicted value Ŷ of   is obtained using only P
T from (4-7) as  

 ˆ  P P
Y T C , (4-38) 

where the rows of    are a subset of those of   in (4-8), corresponding to the 

columns in P
T .  This use of latent vectors associated with the positive and 

negative eigenvalues in this SC-PLS method is illustrated further with examples 

in the application section.  

4.3.1 Hard-Constrained Kernel PLS (HC-KPLS) method 

Both the soft and hard constrained LVM methods can be modified to extract 

components using the “kernel trick”. Assuming a nonlinear transformation of 

( )X X , equations (4-29) and (4-30) can be rewritten as: 

 
( ) ( )

s.t. 1

max    

 

w
w X YY X w

w w
 (4-39) 

 ) .( 0  w X Z  (4-40) 

We have shown previously that the loading vector w  which solves above 

objective function is the eigenvector corresponding to the dominant eigenvalue of 

following equation: 

 ( ) () 0' )( 
   

X Z
Q YY X w wX . (4-41) 

 

Rewriting (4-41) using (4-24)  we obtain: 

 
†( ) 0       K YY Kα KZ ZKZ ZKYYKα Kα . (4-42) 
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Hence,   is calculated as the eigenvector associated with largest generalized 

eigenvalue of (4-42). The “† ” symbol represents any suitable inverse. The 

solution for finding the eigenvectors of this problem is given in [
29

] 

Once  is calculated, the corresponding latent vectors are calculated as 

described by equations  (4-19) and (4-20). The latent vectors and the 

corresponding  vectors are extracted iteratively and K is deflated before each 

iteration as described in section  4.2.    Once the latent vectors are extracted, the 

prediction coefficient   for Y is obtained by projecting Y into the range of 

[ , ,..., ]q
1 2

T t t t  using (4-8).  

We now discuss the prediction of values Ŷ  with the kernel method.  

Nominally, the latent variables could be extracted directly from the original kernel 

( 0
K ), in a manner similar to that shown in (11) – (13): 

 ( ) ( )* .  T W T X WMX  (4-43) 

However, with the kernel method, there is no direct access to W and hence we 

must derive the latent variables using only the available matrix  

              .   To this end, we formulate a matrix *Α  (analogous to W*)  

so that the latent vectors can be extracted using the original (undeflated) 0
K .  We 

assign 

 

 *
0

T K Α , (4-44) 

or in other words: 
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 .
0

T K ΑM  (4-45) 

 After multiplying both sides by     and re-arranging, we have 

 1( ) * ( )       1

0 0
M T K Α TT Α Α TK Α TT . (4-46) 

 

   Predicted values     can now predicted from previously unseen values     of  

  as 

 ˆ ts Y T C . (4-47) 

  
ts

T can be obtained directly from the original    (   ) and ts
X  as follows 

 ( ) ( ) ' * *ts ts ts ts  T X X A T K A  (4-48) 

where the         element of       is defined as  

 ( ) ( , )ts

ij j

ts

ikK x x  (4-49) 

which is a kernel matrix constructed from the rows of the previously unseen 

observations and the rows of tr
X ,used in building the model prior to deflation.    

The matrix    in (4-47)  is calculated as described previously from  (4-8).    

 

4.3.2 Soft Constrained KPLS (SC-KPLS) 

 

 

As in the linear case, in the soft constrained kernel PLS (SC-KPLS) method,  

the orthogonality condition is replaced by a soft constraint, leading to the 

following equation:  
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' '

s.t. 1

max
.

   

 

α K YYKα αK ZZKα

αKα
 (4-50) 

The rigidity of the penalty term is again controlled by changing the value of    

. We call this method “Soft Constrained Kernel PLS” (SC-KPLS). In (4-50), the 

quantities α and  correspond to the largest generalized eigenvector, eigenvalue 

pair of the following equation: 

 ( ' ' ) 0.    K YY K K ZZ K α Kα  (4-51) 

In a manner analogous to the linear case, it is assumed that ( )t X w  and the 

components are extracted iteratively by deflating the kernel matrix as described 

by (4-22).   Again, the dominant eigenvalue of (4-51) can be either positive or 

negative, and using the same arguments as for the linear case, a predicted value 

Ŷ of   is obtained using only the latent vectors associated with the positive 

eigenvalues, using (4-38) as before.  

 ˆ  P P
Y T C  (4-52) 

where P
T is the matrix consisting of only those t’s that are associated with 

positive eigenvalues and P
C consists of those rows of C that correspond to the t’s 

in P
T . T for new prediction set is calculated from (4-44) 

4.3.3 Kernels for noise  

 

To provide extra flexibility in the underlying modeling process, it is also 

possible to kernelize the noise matrix  , when it appears in the form    , e.g.,  as 
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in (4-34).  In this case, the SC-KPS objective function becomes  

 ( ' ' ) 0    
Z

K YY K K K K α Kα  (4-53) 

where  

 ( ) ( ) ' 
Z

K Z Z . (4-54) 

In general, when modeling nonlinear relationships between Y and X or Y and X 

,Z, it is not necessary to kernelize the Y-variables.   

4.4 Experiments  

In this section, we construct toy problems to compare the performances of the 

KPLS, HC-KPLS and SC-KPLS methods against their linear counterparts, which 

are PLS, SC-PLS and HC-PLS respectively.  

In this toy problem it is assumed that 3 datasets; 
n kX , n mY  and 

n bZ  are available where X and Y contain the measured values of the input 

and the response variables, respectively, and Z represents the dataset containing 

the additional auxiliary information about the structured noise contaminating X 

and/or Y. It is assumed that the relationship between X, Y and Z is nonlinear. The 

structure of the noise is discussed later. The purpose of the simulation is to 

compare performances of various LVM algorithms in extracting the principal 

components and in providing better relationship between the true and nonlinear 

underlying structure of X and Y while suppressing the noise effect.  

Two separate cases are considered: the first is where strong structured noise 

contaminates only X , while in the second case the structured noise contaminates 
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both X  and Y . The aim of the first study is to show how the inclusion of the 

auxiliary noise information can improve component selection by suppressing the 

covariance of t with the noise subspace. The second problem shows that the 

constrained methods perform better at revealing the true underlying structure 

between X and Y , and also  reduces error by suppressing the choice of latent 

variables which model  the common noise between the input and the response 

variables.  

In latent variable models the relationship between input and response variables 

is assumed to be non-causal, meaning that X, Y and, in this toy problem, Z are 

related to each other through a set of underlying, low rank, latent variables that 

are denoted by n a
S

T and n s
N

T , for the signal and the noise subspaces 

respectively. The quantities X, Y and Z are nonlinear functions of N
T  and S

T .   

As in chapter two, it is also assumed here that the measured values of X and Y 

consist of the true, uncontaminated, input and response values, n k
0

X and 

n m
0

Y , plus the additive noise, n m
Y

N  and n k
X

N .  

  
0 Y

Y Y N , (4-55) 

 0 
X

X X N . (4-56) 

Without the loss of generality, it is assumed that n k m  . The matrices Y
N  

and X
N contain the noise terms, which consists of both the structured plus random 

unstructured noise components. The structured noise components, n m
Y

Z  and 
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n k
X

Z  in both X and Y, are assumed to be linear mixtures of nonlinear 

functions of 
N

T . 

Therefore:  

 ( );Y f 
Y Y Y Y Y N Y

Z E Z TN J , (4-57) 

 ( ); f 
X X X X XX X N

Z E Z TN J . (4-58) 

 

In this toy problem it is assumed that the columns of the matrix N
T are 

orthonormal vectors which describe the structured noise subspace with s n . The 

elements of the matrices n m
Y

E and n k
X

E are iid random variables with 

unit variance that represent the unstructured noise components in X and Y 

respectively, scaled by values X and Y which set the variance levels for random 

noise components in X and Y.  The nonlinear functions (.)f
X and (.)f

Y  map the 

latent variable N
T into matrices  of the same size.  In addition to measurements of 

X  and Y , it is assumed a matrix Z containing measurements on the structured 

noise is also available.  The matrix Z  has an analogous structure to that of X  and 

Y , as follows: 

 

 )(f  
Z N Z Z Z

JZ T E  (4-59)   

 

where  ( )f
Z N

T  scribes a nonlinear transformation of the structured components 
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of the noise. This means that some elements of the measured auxiliary noise 

matrix are nonlinearly related to the underlying structured noise affecting 
0

X  and

0
Y .  s b

Z
J is a mixing matrix constructed from iid (in dependant and 

identically distributed) random elements. n b
Z

E is an uncorrelated additive 

noise that is assumed to have contaminated the measurements of the auxiliary 

noise matrix. In typical applications of interest, the matrices X , Y and Z are low 

rank.  

 

A statistical relationship exists between 0
X and 0

Y due to the common signal 

subspace latent variable S
T between them: 

 ( )g 
0 X s x X X

X T A U B , (4-60) 

 )(g 
0 Y s y Y Y

Y T A U B , (4-61) 

where it is seen these components are statistically dependant due to the common 

signal subspace latent variable TS between them. The nonlinear terms ( )g
X S

T and 

( )g
Y S

T  again map the matrix argument S
T  into one of the same size.  The 

additional components n v
X

U  and n j
Y

U  are structured components in X 

and Y that are not correlated with each other nor with S
T  and define the variations 

in X  and Y  that are uncorrelated to each other. The mixing matrices a k
X

A ,

v k
X

B , a m
Y

A and j m
Y

B are random mixing matrices with zero mean.  
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Our objective is to discover common structure between 
0

X  and 
0

Y  defined by 

s
T  , in the presence of unknown nonlinearity, by making use of not only the 

measurement matrices X  and Y  but also the available auxiliary noise matrix Z , 

which is (partially) in the range of NT , which describes the structured noise 

present in X and Y .  It is desired to determine latent vectors in X  that maximally 

explain 0
Y and suppress the influence of X

N and Y
N .  Our hypothesis is that 

partial knowledge about NT  contained in the observations Z can improve the 

estimation of the latent variables S
T .  Suppressing these structured noise 

components improves the detection of the true underlying nonlinear relation 

between 0
X and 0

Y  and leads to a better estimation of S
T  , and thus to an increase 

in the prediction accuracy of 0
Y . In the case of large structured noise in the linear 

or nonlinear case, the latent variables extracted by ordinary PLS or KPLS 

respectively may become more collinear with N
T than with S

T , and thus the 

selected principal components will not optimally explain the true relationship 

between  0X  and 0Y .  

Overall, the matrices X and Y can be written as: 

 ( ) ( )s Nfg   
Y Y Y Y Y Y Y Y

Y T A T JU B E  (4-62) 

and 

 ) ( )( s Ng f    
X X X XX X XX

JX T A U B T E . (4-63) 
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This overall relationship between the components is explained in Figure  2-1. 

  

The objective of the modeling effort is to obtain the best latent variable model 

for the true underlying signals 
0

X  and 
0

Y as defined in equations  (4-60) and (4-

61) using the measurements of X and Y as defined in equations (4-62) and (4-

63). Since the major interest in building a model between input and response 

variables is to explore the common subspace between them, two additional 

variables are defined as:  

 ( )o

sg
Y Y

Y T A  (4-64) 

and 

 ( )o

sg
XX

X T A . (4-65) 

Hence , equations (2-30)-(2-31) can be rewritten using 
0

X and 
0

Y as:  

 

  0

0 X X
X X U B , (4-66) 

  0

0 Y Y
Y Y U B . (4-67) 

These two variables only define the variations common to the subspace S
T and 

are different from 0
X and 0

Y , in that X0 and Y0 contain UX and UY which are 

unrelated to each other. The motive for defining such variables is that X is related 

to Y through S
T , and therefore, at best, only that part of Y  that is a function of 

S
T  ( 0

Y ) can be explained by that part of X that is also a function of S
T  ( 0

X ). 

Hence 0
Y  and 0

X  can be used as a measure of the true common variation 
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between X and Y.   

 

Figure  4-1 Relationship between n, a dX Y Z and the noise structure 

 

In order to generate the matrices for the experiments, in each simulation four 

random orthonormal matrices are constructed: 6n

S

T and 6

N

nT , 4n
X

U  

and 4n
Y

U ,  with n  equal to 2000 elements (unless otherwise stated), from 

which various latent structures in (2-32) - (2-33) are defined. The columns of S
T ,

N
T , X

U  and Y
U are all mutually orthogonal. 

The individual quality of fit from a projection of some quantity Ψ into the range 

of each principal component ti can be calculated by: 

 

2

2

2 F

F

1

ˆ

R





Ψ
 (4-68)

 

X 

Ts ×AX 

×JX 

×AY 

×JY TN 

×JZ 

Y 

Z 

  

UY × BY 

σY × EY σX× EX 

 

σZ× EZ 

UX×BX 

.)(g
Y

 

.)(g
X

 

.)(f
X  .)(f

Y

 

.)(f
Z  

Y
0 X

0 



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

 

122 

 

 

where Ψ  can be any matrix or vector corresponding to the model such as  X ,

0
X , Y , 0

Y or Z . The quantity Ψ̂ is calculated by projecting Ψ into the range of ti 

as: 

 †ˆ ( )i i i i  t t t tΨ Ψ . (4-69) 

 

In the following simulations, we divide the simulation dataset into two equally-

sized subsets. The first set of observations (the training set) is used to build the 

prediction model, whereas the second set (the test set) is used to test the quality of 

the model. In the experiments we denote the training dataset by the superscript 

“tr” and the test datasets are denoted by the “ts” superscript. All the predictions 

are performed on the test sets. The quality of prediction for previously unseen 

observations (i.e., those in the test set) is obtained from: 

 F

2

2

F

2
ˆ

1Q  
ts ts

Y
ts

Y Y

Y
 (4-70) 

where ˆ ts
Y is the predicted value of ts

Y .  In addition to 2Q
Y

, we define an 

additional quality parameter denoted by 0

2

Y
Q as: 

 0

F

2

2

F

2
ˆ

1 .Q  
0ts ts

Y 0ts

Y Y

Y
 (4-71) 

 

This parameter measures how close the predicted   and Y
0
, which is the only 
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part of Y that can be predicted by X, are to one another.  

 
ts
 for the first (i) extracted latent variables is obtained from: 

 ˆ ts ts

i i Y T C  (4-72) 

where Ti
ts
 = [t1,…, ti] and columns of Ci consists of the corresponding coefficient 

vectors. The cumulative quality of fit ( 2 ( )R cum ) is obtained by cumulating the 

quality of fit and prediction for the positive components respectively. The 

cumulative plots are generated using these cumulative quality variables.  

We compare the quality of fit (and prediction) for ordinary PLS (i.e., PLS), soft 

constrained PLS (SC-PLS) with different levels of penalty coefficient (  ) and 

hard constrained PLS (HC-PLS),  against their nonlinear correspondents: KPLS, 

SC-KPLS (different penalty values  ) and HC-KPLS.  As previously mentioned 

the methods that utilize soft constraints such as SC-PLS and SC-KPLS may 

extract principal components with negative eigenvalues. Since these principal 

components are associated with variation in the noise subspace, they are excluded 

from the cumulative plots (i.e. Q
2
Y, Q

2
Y

0
).  

 

It is possible to include a nonlinear transformation for each function (.)g
X ,

(.)f
X

(.)g
Y , (.)f

Y and (.)f
Z . However, to simplify the presentation, only the 

following functions were (arbitrarily) chosen to undergo nonlinear 

transformations.  The remaining transformations were kept linear.  For the 

following transformations, the nonlinear transformations )(g
s

T and )(f
N

T  are 
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chosen as: 

 1 2 3 4

2 3 4 5 1 6) [( ,( ,( ,( ,(( ) ) ) ) ,() )]g 
Y S S1 S S S S1 S S S

T t t t t t t t t , (4-73) 

 4 3 2 1

2 3 4 5 1 6) [( ,( ,( ,( ,(( ) ) ) ) ,() )]f 
Z N N1 N N N N1 N N N

T t t t t t t t t , (4-74) 

 ) )( (sinf 
X N N

T T . (4-75) 

The above transformations represent very common and relatively severe forms 

of nonlinearity in real situations. (tsi)
r 

represents the thi column of S
T to the r

th
 

power (element-wise). The operator ( ) represents element-wise multiplication 

of its two vector arguments, resulting in a vector of the same length. In the Matlab 

context, this multiplication is denoted by the “.*” symbol. The power sign is also 

the same as the element-wise power operation (denoted by “.^” in Matlab 

software) for each element of the vector, and sin( X ) represents the sine transform 

of each  element of the matrix. In practical situations the level of nonlinearity is 

usually much less severe. However for the sake of this study we chose a more 

complicated nonlinear relationship (especially between noise matrix Z and X) to 

study the ability of nonlinear kernels in such transformations 

 

4.4.1.1 Case 1; structured noise only present in X 

 

 

In nonlinear methods, due to the large size of the kernels, usually the number of 

components extracted will be much greater than linear methods, However, one 

advantage of latent variable methods is in compression of information using latent 
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variable methods. We will show that the use of constrained methods, in the 

presence of structured noise, can improve component selection (compression of 

more information into fewer latent variables).  

When the structured noise is only present in X , constraining the structured 

noise in a kernelized framework allows for selection of latent variables that are 

more likely to be in the subspace of 
S

T  rather than 
N

T .  We shall see that latent 

variables extracted using the proposed method provide a better basis for the signal 

and explain both the input and response spaces through fewer components. In 

addition, in the soft constrained methods, the corresponding eigenvalue sign for 

each component determines whether the extracted component has a stronger 

covariance with the noise or the response variables.  This allows for easier 

interpretation of the noise or the signal structure.  It should be noted that if a large 

number of components are selected, the non-constrained methods eventually 

reach the same accuracy as the constrained methods; however, the presence of 

noise in the input will result in biased estimates of the response variables in the 

nonlinear case. In this simulation example the structured noise in Y is set to zero 

by setting 
Y

J 0 .  It is assumed that simultaneous measurements of X , Y and Z  

are available. The relation between the remaining components are determined 

through the following choice of parameters: 0.1  
X Y , 3,

F
 

X Y
J J 0  .  

The remaining scalar coefficients are set to 1. The .
F

operator denotes the 

Frobenius norm of the matrix. The size of the mixing coefficient matrices 



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

 

126 

 

, ,
Y Y Y

A B J and , ,
X X X

A B J are 6×18, 6×18, 4×18, 6×32,6×32 and 4×32 

respectively. The mixing matrix for the noise matrix Z  (
Z

J ) is 6×6.  Hence the 

size of the produced datasets ,X Y and Z will be: 2000×32, 2000×18 and 2000×6 

respectively. The datasets were later divided into the equal size training and test 

sets (1000 observations each) 

A Gaussian kernel (4-28) was used in the simulation. The kernel parameter c 

was chosen manually by trying several different values and choosing the one that 

provides the best prediction rate. In practice however, c must be selected using a 

formalized cross validation procedure. This is detailed further in the conclusion 

section. 

 

The datasets X , Y and Z  were constructed by first computing a 1000×20 

orthonormal matrix. Then the latent variables S
T ,  and N

T   and the auxiliary 

variables    and    were constructed by selecting columns from this matrix 

according to Table  2-2.  Dataset variables were then synthesized from this 

orthonormal set in the manner described earlier in this section. 

 

 

 

TABLE 6: TOY EXAMPLE, CASE 1, STRUCTURED NOISE IS ONLY PRESENT IN X. THE CELLS SHOW 

WHICH LATENT COMPONENTS WHERE COMBINED IN CONSTRUCTING X, Y AND Z 

 1000 6

s

T  1000 6

N

T  1000 4
X

U  1000 4

Y

U  



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

 

127 

 

321000,tr ts X X      

1000 18, ,tr ts Y Y      

1000 6,tr tr Z Z      

 

 

Figure  4-2 shows the quality of prediction between ts
Ŷ and Y for various linear 

and nonlinear methods described earlier.   In this and subsequent examples, the 

model-building process (i.e., the determination of the latent variables and the 

kernel parameter values) is performed using only the training subset.  The 

prediction (testing) procedure uses only the test subset.  This figure shows that the 

methods based on a linear model (PLS and HC-PLS) fail to provide adequate 

predictions in this nonlinear scenario, since it may be observed that prediction 

quality does not improve with increasing number of latent variables.  Thus, the 

linear methods fail to model the problem adequately.  In contrast, it is apparent 

that the kernelized methods are capable of adapting to the nonlinear structure of 

the underlying model and consequently provide better predictions. A comparison 

between the KPLS and the constrained versions of KPLS (i.e., SC-KPLS and HC-

KPLS) shows that imposing constraints further improves the quality of prediction, 

in the important case when the number of extracted components is moderate or 

low.  On this basis, we may observe the proposed methods are capable of 

producing a latent variable basis that is effective in the presence of nonlinearity, 
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and that can adequately exploit additional information contained in structured 

noise observations. 

 

 

 

Figure  4-2: Quality of prediction as the number of components increase, for various linear and 

nonlinear models between ˆ ts
Y and 

ts
Y Q

2
Y  

 

 

Figure  4-3 shows the individual quality of fit (by projecting into each individual 

latent variable ti) for the response values ( ˆ tr
Y ) and the auxiliary noise matrix ( ˆ tr

Z

) in the training set,  for all components regardless of the sign of the 

corresponding eigenvalues, for the SC-KPLS method (λ = 200). The bottom chart 

shows the sign of the eigenvalue associated with each of the extracted 

components.  

In the discussion on the SC-KPLS method in Sect.  4.3, we explained that when 

the dominant eigenvalue of the matrix    X YY X X ZZ X   in (4-33) is positive, 

the extracted latent variable explains variation in Y, and in Z when negative.  This 

behavior is demonstrated in Figure  4-3.  It may be observed that in the positive 
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eigenvalue case, the fit of the corresponding component t to Y is significant, 

whereas the fit with Z can be seen to be negligible.  The reverse behavior is noted 

when the eigenvalue is negative.  The individual quality of fit for Figure  4-3 is 

obtained from (4-68), where ˆ ( ) tr

tr 1

i i i i
Y t t t t Y   and )ˆ ( tr

tr 1

i i i i
t t t ZtZ for 

individual components in T
tr

. 

 

 

Figure  4-3: Quality of fit for  
tr
 and  

tr
  from projection into the individual components of ti ,i = 

1,… 20 respectively (
2R
Y

,
2R
Z

from  (4-68)), for the first 20 components extracted. The bottom 

plot shows the sign of the respective eigenvalue associated with each latent variable ti.  

 

The plots in Figure  4-4 show the individual quality of fit into the subspace of ti, 

for ( )g
Y S

T , ( )f
Z N

T  and ( )f
X N

T which represent the nonlinear transformations of 

the signal  subspace in Y, and the noise subspaces in X and Z  respectively.   The 

plots shows the contribution of each extracted latent variable (ti)  to the nonlinear 

variations of noise and signal in X and Y and Z, in association with the respective 

eigenvalue sign.  It is apparent that the latent variables do indeed capture 

substantial variation in each of these respective functions and that the components 

capturing variations in noise ( ( )f
Z N

T  and ( )f
X N

T ) capture very small variance in 
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the signal subspace ( ( )g
Y S

T ), and vice versa.  

 

 

 

Figure  4-4: Training set’s individual (non-cumulative) quality of fit from projecting the nonlinear 

transformations of  TS and TN,  i.e. (gy(Ts) , fz(Tn) and fx(Tn)) for each of the datasets: X, Y and Z 

respectively  into the range of each extracted principal components (ti) (training set data).  It can 

be seen that latent variables corresponding to positive eigenvalues are associated with the signal 

subspace and the negative ones are associated with the noise subspace.  

 

4.4.1.2 Case 2; structured noise present in both X and Y  

 

When structured noise, with the same source, is affecting both X and Y, then 

regular non-constrained methods can not remove variations caused by noise (Z) 

without external information, using constrained methods proposed earlier allows 

for removal or reduction of the noise allowing for better selection of latent 

components and prediction of future true values of response.  The latent variables 

extracted in the presence of structured noise in both X and Y (without 

constraining the noise subspace) are capable of modeling the noise components 

rather than the desired relationship between X and Y .  The extent to which this is 
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possible is dependent on the structured noise level. 

 In such a case it is desirable to suppress the noise during the model 

construction procedure. The proposed constrained PLS methods take advantage of 

the additional knowledge that is available to reduce or eliminate the common 

structured noise. In this second toy problem new simulation datasets are generated 

by  allowing both the input and response variables to be contaminated with 

structured noise, by assigning random (nonzero ) values to the elements of both 

X
J and Y

J  (the mixing matrices).   Use of the proposed constrained methods 

leads to the extraction of components that better predict the true underlying 

relationship between 0
X and 0

Y .  

In this particular example the following parameters are used: 0.1  
X Y ,

0.9
F F
 

X Y
J J .   Setting Y

J  to nonzero values adds structured noise to 0
Y .  

Figure  4-5 shows the cumulative quality of projection (Q
2
Y ) between ˆ ts

Y  and 

Y  and also the quality of  prediction (Q
2
Y

0
) between ˆ ts

Y  and 0
Y  (2-34) from 

various nonlinear methods mentioned earlier (Left and right respectively). Figure 

 4-5-right shows the quality of prediction between ˆ ts
Y and 0

Y  which represent the 

only part of Y that can be explained by X. Figure  4-5-left shows the prediction 

rate between ˆ ts
Y  and the “measured” Y variables contaminated with the noise. 

Comparing the left and right plots shows that even though the quality of 

prediction to Y  is comparable for the linear and nonlinear models, the true 

quality of fit, to 0
Y , is lower when the structured noise is not suppressed. The 
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reason is that non-constraining methods tend to model the common structured 

noise as well as the true underlying structure, leading to false predictions .  It is 

also apparent from the left- and right-hand figures that the kernelized methods 

perform significantly better than their linear counterparts.  

 

  

Figure  4-5. Left: Quality of prediction (Q
2

Y)   between  
ts
  and the  measured response value Y. 

Right: quality of prediction (Q
2
Y

0
)  between  

ts
  and  Y

0
  which is a function of S

T . It is evident 

that the constrained methods provide better models for the true underlying structure common to 

both the input and response spaces, as they suppress the structured noise during the model 

construction.  

 

4.4.1.3 Effect of noise on Quality of prediction 

Compared to the linear methods, kernelized methods can be more sensitive to 

noise and therefore constrained models are critical for maintaining performance of 

the kernelized methods.   In this section, we examine the sensitivity of the 

proposed methods to the level of structured noise and show that when the 

magnitude of the structured noise changes, the kernel PLS method’s efficiency 

degrades rapidly whereas the constrained Kernel methods have less sensitivity to 

the noise contamination levels. In such cases, using constrained methods can 
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greatly improve the quality of component selection. In this study various datasets, 

with same values for X and Y and Z, but with different values of 
X

J with different 

Frobenius norms were generated. 
Y

J  was kept constant for all the simulations.. 

Three magnitudes: 0.3,0.6,0.9
F


X
J were chosen arbitrarily and 

FY
J  was 

chosen arbitrarily to be constant at 0.5.  The following figure shows the 

cumulative quality of fit between ˆ ts
Y  and 0ts

Y  ( 2Q 0Y
) for KPLS and SC-KPLS. It 

can clearly be seen that as the level of noise increases, the quality of prediction 

degrades rapidly in the non constrained KPLS method. However, the quality of 

prediction for the SC-KPLS method remains relatively unchanged as the 

structured noise levels increase.   

 

Figure  4-6: Cumulative quality of prediction between   and Y
0
 (Q

2
Y

0
). As the noise level 

increases, the prediction quality in the non-constrained methods (blue curves)  reduces and more 

components are required to achieve same level of prediction.  In the soft constrained KPLS (SC-

KPLS λ = 300) methods (red curves) the quality of prediction and also the number of components 

required to achieve the same prediction level remains relatively unchanged. 
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number of observations increases, the size of the kernel grows larger.  Eventually, 

this requires the model to extract more components in order to properly model the 

underlying relationships.  This behavior becomes more prominent in the presence 

of structured noise.  The following simulations show that the constrained methods 

require fewer components to properly model the relationships between X and Y 

compared to their non-constrained counterparts. To illustrate this hypothesis, two 

datasets were generated, all using the settings: 0.1  
X Y ,

0.9, 0.5
F F
 

X Y
J J , with different number of observations. The plots in 

Figure  4-7 compare the cumulative predictions rates between Ŷ and 0
Y  ( 2Q 0Y

) 

when the number of observations is 600 versus the case in which the number of 

observations has increased to 1000. The figure shows that when the number of 

observations increases, the non-constrained methods compared to the constrained 

methods require more components to capture the same level of the prediction 

accuracy.  

  

Figure  4-7: Cumulative quality of prediction between   and Y
0
 Q

2
Y

0
, comparing KPLS versus 

constrained methods when the number of observations increases. The model in the left figure was 

constructed using 600 observations, whereas the model in the right figure was constructed using 
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1000 observations. As the number of observations increases, the number of components required 

to capture the maximum prediction rate increases in the KPLS method.  However this quantity 

remains relatively unchanged for the constrained methods. SC-KPLS values: SC-KPLS1: λ = 10, 

SC-KPLS2: λ = 100, SC-KPLS3: λ = 300  

 

 

4.5 Discussion and Conclusion  

We have demonstrated that when significant nonlinear relationships exist 

between X and Y, nonlinear kernel latent variable methods perform better than 

conventional linear methods in capturing the underlying model. However, as with 

their linear counterparts, they fail to provide the most reliable results when the 

model is contaminated with structured noise. In such cases, available information 

about the noise can be exploited to improve predictions.  We have developed and 

demonstrated two such kernelized constrained methods; the HC-KPLS and the 

SC-KPLS methods.  The latter has a parameter associated with it that controls the 

degree of constraint on the noise.   We have shown that kernelized latent variable 

methods are effective at modeling non-linearity in the model, and that 

performance in the presence of structured noise is improved with the use of the 

proposed constrained methods.  However, the improved performance of these 

methods comes at the cost of increased model complexity and the need to 

determine the optimal value of various parameters that affect performance.  

 

We realized several issues that need to be addressed while implementing the 

nonlinear methods and, in particular, constrained ones;  
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4.5.1.1 Choice of kernels 

Many kernels are available for model building. The type of kernel and the 

chosen values of the associated parameters can greatly change the effectiveness of 

the model. Thus another issue is that when there is structured noise in both X and 

Y, even cross validation results will not be reliable as the true underlying 

relationship between X and Y is hidden. 

4.5.1.2 Large Kernels sub-sampling in the feature space 

Kernel methods map the input data into a potentially much larger feature space, 

which is usually the size of the number of observations. Calculation of the kernel 

matrix in this condition, especially for a large number of observations, is not very 

cost effective and the obtained kernel can be ill-conditioned. Garcia et al., [
17

] 

proposed the implementation of a modified kernel constructed as:  

 'R R K  (4-76) 

where R is constructed from only a subset of observations in Φ. Choosing the 

modified kernel can reduce the computation costs as well as benefiting from 

having better conditioned kernels. However, if too few observations are chosen, 

the effectiveness of  the model is reduced, as this limits the level of nonlinearities 

permitted by the model. Using a very small subset of observations may not 

completely capture the nonlinear behavior.  A very large observation set, in 

addition to being computationally expensive, may also decrease model accuracy. 

A simulation study comparing this method with regular constrained methods is 

presented in the Appendix. 
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4.5.1.3 Number of components to be extracted 

The number of components to be extracted should be determined to avoid over-

fitting (or under-fitting ) of data. In our simulations, a good guess of the best 

number of components was determined using  a cross validation procedure.  We 

divided the observations into two equal sets. The first set was used to build the 

model, while the second portion was used to compute the statistical properties 

from which performance was evaluated. When structured noise is present in both 

the input and the response variables, the lack of access to the true response 

variables makes model selection more difficult. However, the use of constrained 

methods can improve the selection as these components are less likely to be 

correlated with the structured noise, leading to improved and more stable 

predictions.  

 

4.5.1.4 Rank deficiency of the kernels 

Since at each iteration step the kernels are deflated, eventually they become ill-

conditioned. This problem is more prevalent in the kernel case as the optimization 

problem is a generalized eigenvalue problem. Our solution was to add a 

regularizing diagonal matrix to the second kernel in equations (4-16) and (4-17) in 

order to prevent rank deficiency. This additional diagonal matrix biases the 

estimates but its effect is very minimal and our studies showed the results are 

relatively insensitive to the value of the diagonal matrix. 
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4.6 Appendix 

4.6.1 Subsampling in the feature space 

When the number of observations is high, the dimensionality of the kernel can 

row as large as the sample size. This issue is addressed by running simulations 

comparing two cases. In the first case all observations are used to build the model 

and in the second case only a subset (25%) of observations are used. Figure  4-8 

plots show the quality of fit to Y (left figure) and the prediction rate of 0
Y (right 

figure), which contains that part of Y that can be explained by X. The figures 

show that despite using only 25% of the observations to train the model using the 

method proposed by Garcia et al. the prediction rates are roughly the same.  

  

Figure  4-8: Left: Quality of fit for the training set when full range of  X is used to build the kernel 

versus using only 25% of the observations (compact model). Right: Quality of prediction for the 

test set, comparing the full model and the compact model.  

 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
Y

2
 in the training set. full model vs compact model

Number of Components

R
Y2

 

 

Full model,  = 41.6561

Compact model,  = 41.6561

0 5 10 15 20 25 30
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Q
Y

0
2

 in the training set. full model vs compact model

Number of Components

Q
Y

0
2

 

 

Full model,  = 41.6561

Compact model,  = 41.6561



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

 

139 

 

REFERENCES 

 
1. Burnham, A. J., Viveros, R. & MacGregor, J. F. Frameworks for latent variable multivariate regression. Journal 

of chemometrics 10, 31–45 (1996). 

2. Wold, S., Antti, H., Lindgren, F. & Öhman, J. Orthogonal signal correction of near-infrared spectra. 

Chemometrics and Intelligent Laboratory Systems 44, 175–185 (1998). 

3. Fearn, T. On orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems 50, 47–52 (2000). 

4. Trygg, J. & Wold, S. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics 16, 119–128 

(2002). 

5. Trygg, J. O2-PLS for qualitative and quantitative analysis in multivariate calibration. Journal of Chemometrics 

16, 283–293 (2002). 

6. Trygg, J. & Wold, S. O2‐ PLS, a two‐ block (X–Y) latent variable regression (LVR) method with an integral 

OSC filter. Journal of Chemometrics 17, 53–64 (2003). 

7. Hastie, T. & Stuetzle, W. Principal Curves. Journal of the American Statistical Association 84, 502–516 (1989). 

8. Bregler, C. & Omohundro, S. M. Surface learning with applications to lipreading. Advances in neural 

information processing systems 43 (1994). 

9. Wold, S., Kettaneh-Wold, N. & Skagerberg, B. Nonlinear PLS modeling. Chemometrics and Intelligent 

Laboratory Systems 7, 53–65 (1989). 

10. Gnanadesikan, R. Methods for statistical data analysis of multivariate observations. 321, (Wiley-Interscience: 

1997). 

11. Schölkopf, B., Smola, A. & Müller, K.-R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. 

Neural Computation 10, 1299–1319 (1998). 

12. Rosipal, R., Girolami, M., Trejo, L. J. & Cichocki, A. Kernel PCA for Feature Extraction and De-Noising in 

Nonlinear Regression. Neural Computing & Applications 10, 231–243 (2001). 

13. Jade, A. M. et al. Feature extraction and denoising using kernel PCA. Chemical Engineering Science 58, 4441–

4448 (2003). 

14. Rännar, S., Lindgren, F., Geladi, P. & Wold, S. A PLS kernel algorithm for data sets with many variables and 

fewer objects. Part 1: Theory and algorithm. Journal of Chemometrics 8, 111–125 (1994). 

15. Rosipal, R. & Trejo, L. Kernel partial least squares regression in reproducing kernel hilbert space. The Journal of 

Machine Learning Research 2, 97–123 (2002). 

16. Rosipal, R. Kernel partial least squares for nonlinear regression and discrimination. Neural network world 13, 

291–300 (2003). 

17. Arenas-García, J., Petersen, K. B. & Hansen, L. K. Sparse kernel orthonormalized PLS for feature extraction in 

large data sets. Advances in Neural Information Processing Systems 19, (2006). 

18. Fonville, J. M. et al. The evolution of partial least squares models and related chemometric approaches in 

metabonomics and metabolic phenotyping. Journal of Chemometrics 24, 636–649 (2010). 

19. Rosipal, R. & Krämer, N. Overview and Recent Advances in Partial Least Squares. Subspace, Latent Structure 

and Feature Selection 3940, 34–51 (2006). 

20. Salari Sharif, S., Reilly, J. P. & MacGregor, J. Latent Variable Methods in the Presence of Structured Noise. 

Journal of Chemometrics  

21. Rantalainen, M. et al. Kernel-based orthogonal projections to latent structures (K-OPLS). Journal of 

Chemometrics 21, 376–385 (2007). 

22. Kim, K., Lee, J.-M. & Lee, I.-B. A novel multivariate regression approach based on kernel partial least squares 

with orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems 79, 22–30 (2005). 

23. Zhang, Y. & Teng, Y. Process data modeling using modified kernel partial least squares. Chemical Engineering 

Science 65, 6353–6361 (2010). 

24. Rännar, S., Geladi, P., Lindgren, F. & Wold, S. A PLS kernel algorithm for data sets with many variables and 

few objects. Part II: Cross validation, missing data and examples. Journal of chemometrics 9, 459–470 (1995). 

25. Kettaneh, N., Berglund, A. & Wold, S. PCA and PLS with very large data sets. Computational Statistics & Data 

Analysis 48, 69–85 (2005). 

26. Mercer, J. Functions of positive and negative type, and their connection with the theory of integral equations. 

Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or 

Physical Character 209, 415 (1909). 

27. Smola, A. J. & Schölkopf, B. A tutorial on support vector regression. Statistics and Computing 14, 199–222 

(2004). 

28. Muller, K., Mika, S., Ratsch, G., Tsuda, K. & Scholkopf, B. An introduction to kernel-based learning algorithms. 

IEEE transactions on neural networks 12, 181–201 (2001). 

29. Rao, C. R. The Use and Interpretation of Principal Component Analysis in Applied Research. Sankhyā: The 

Indian Journal of Statistics, Series A 26, 329–358 (1964). 

 

 

 



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

 

141 

 

Chapter 5 

Removing Structured Noise from Electroencephalogram 

Data 


 

Abstract—An essential step prior to the analysis of electroencephalographic (EEG) data is the 

removal of noise artifact arising from muscle activity or mechanical disturbance of the electrode-skin 

junction.  In combined EEG-fMRI (functional magnetic resonance imaging ) analysis, another type of 

noise known as Ballistocardiographic noise (BCG) induced by the movement of blood in the static 

magnetic field also contaminates the EEG data. In both cases, the artifacts appear as structured noise 

affecting many channels. In most cases there is additional information about the noise that can be 

utilized to remove the artifacts from EEG data. In this article, we propose the use of a soft constrained 

PLS algorithm for removal of the noise-related components from the data.  This method makes use of 

the additional knowledge about the event related potentials (ERPs) and latent variable methods (LVM) 

to extract EEG components that are noise free. We applied the SC-PLS algorithm to EEG data 

contaminated with muscle artifacts or BCG artifacts (both experimental data and simulated data) and 

compared the results to those obtained by conventional methods. In both studies the results were 

satisfying and comparable to the current noise removal methods.   

 

Index Terms— EEG, fMRI, Structured noise, PLS, ICA, PCA, SC-PLS, Ballistocardiographic noise, 

BCG, Muscle artifacts 

 

5.1 Introduction 

This chapter looks into the problem of removing artifacts in the 

electroencephalogram (EEG). This includes muscle artifacts, as well as another 

type of artifact called, ballistocardiographic (BCG) noise, induced into EEG data 

in a medical procedure known as simultaneous EEG-fMRI (functional Magnetic 

resonance imaging). The EEG records the electric waves produced in the brain as 

a result of the neural activity in the brain. EEG data provides useful information 

about functional responses to stimuli including localization information.  

In the first section of this chapter, the EEG and fMRI are each introduced 
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briefly. Next, the combined method and its advantages and difficulties are 

discussed. Later, the problem of additive BCG noise, which is a consequence of 

the combined method, its nature and the current methods for removing it are 

discussed. In the remainder of the chapter, two new methods for removing noise 

are discussed that take advantage of additional knowledge about the BCG noise. 

In addition, we apply the constrained methods as discussed in chapter two for 

removal of muscle movement induced artifacts during standard EEG recording 

outside of the MRI environment. 

5.1.1 Electroencephalogram  

Electroencephalography refers to the technique of measuring the brain’s electric 

field from the surface of the scalp. Activity of the cells in the brain will cause 

intra- and extra-cellular current flows that can be measured using non-invasive 

methods. When large bundles of neurons fire synchronously, the changes in the 

local field potentials (LFP) can be sensed and recorded from the surface of the 

scalp. The measured voltage will be a weighted sum of the local field potentials 

throughout the brain. It is believed that the synchronous activations of the neurons 

that have laminar structure can be detected from the surface of the scalp [
1
]. The 

measured scalp voltage on each electrode will be a function of an activation site's 

strength, conductivity, distance from the active sources and their orientation. 

Therefore, each active site can be addressed as a dipole of specific orientation and 

strength. Most of the signal received by each electrode will be contributed by the 

local field potentials close to that electrode.  However, activations from large 
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bundles of neurons at distant locations can also be detected [
2
]. Recorded 

background scalp levels of EEGs range around ±75 μV [
1
], peak to peak; however 

potentials induced by the introduction of a stimulus (known as event-related 

potentials or ERPs) are typically an order of magnitude smaller. Thus, in order to 

reliably detect the ERPs, repeated measurements are usually required. These 

ERPs are usually averaged by time locking them to an external stimulus (trigger). 

We refer to them as averaged ERPs or A-ERP. An example of an ERP signal are 

the Visually Evoked Potentials (VEP) produced as a result of response to visual 

stimuli. The duration of the information processing during an event-related task 

can take up to several hundred milliseconds. The measured response wave for 

each ERP will include several peaks and valleys. These peaks and valleys (ERP 

components) are known to be associated with different stages of cognitive data 

processing and usually are named according to their polarity and the latency at 

which they occur. For example, a P300 component stands for a positive peak 

occurring around 300 ms after the onset of the stimulus. The latency and 

amplitude of some of these components are known to be associated with 

functionality of the brain. For example, Loudness Dependence of auditory Evoked 

Potentials (LDAED) components have shown to be predictive of serotonergic 

neurotransmitter levels and it has been used in prediction of electrophysiological 

changes associated with neurological disorders such as changes in 

neurotransmitter levels in the brain [
3,4

]. Researchers have utilized these 

biomarkers to predict the outcome of drug treatment in brain disorders such as 
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depression. [
5,6

]. Electroencephalography has also been widely used in epilepsy 

research to detect the onset and the location of the seizures [
7
]. Another 

application of EEG is to localize the source of brain activity. Examples of these 

studies can be found in [
8,9

].  

 

 

Figure  5-1: Extraction of the averaged ERPs. The EEG is time locked into the stimuli being 

presented to the patient (s11,s22 in left figure). In order to get Averaged-ERP response of the brain 

several repeated measurements (e.g. time locked to S11 component) are averaged over time to 

remove random noise and create a clear signal (right figure). The parameter nERP is the total 

number of ERP’s present in the study and ch represents each EEG channel.  

 

 

5.1.2 Functional Magnetic Resonance Imaging (fMRI) 

fMRI consists of a series of MRI images that are recorded using an MRI 

protocol that is specifically sensitive to oxy/deoxyhemoglobin levels in the 

vessels and tissue. Simply put, the difference in magnetic properties of 

oxyhemoglobin and deoxyhemoglobin will cause contrast changes in the fMRI 

image. This contrast change is called Blood Oxygen Level Dependant contrast, or 
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the “BOLD” signal. There is a close relationship between local BOLD contrast 

and neural activity in the underlying brain region [
10–12

]. In general, fMRI BOLD 

contrast is a function of cerebral blood flow (CBF), cerebral blood volume (CBV) 

and metabolic oxygen consumption [
13

]. This relationship is not yet fully 

understood; however, the general consensus is that during local activation of large 

bundles of neurons, oxygen demand in that region increases, resulting in a rush of 

oxygen rich blood flow into that region. The regional oxygen concentration 

changes will cause a detectable BOLD signal. Activation of small or individual 

bundles of neurons, especially if not synchronized, is unlikely to cause any 

detectable BOLD signal changes [
14

]. It is also believed that in low MRI magnetic 

field strengths, the BOLD signal changes observed can be influenced by venous 

flow rather than by the oxygen concentration changes in the tissue [
15

].  

Functional MRI has recently found increasing clinical usage. It is used to 

identify brain regions such as the motor and speech cortex for the pre surgery 

screening or for measuring the ability to stimulate the ear for cochlear 

implantations. Bartsch et al. [
16

] outlines a detailed survey on the clinical 

applications of fMRI. As well, fMRI data has been used in depression studies. 

Langenecker et al [
17

] performed a study using fMRI on two cohorts; controls and 

major depression (MD) patients. In that study, subjects were to complete a 

contextual inhibitory control test while they were scanned by MRI. The authors 

found that MD patients had a greater activation in the frontal area during correct 

rejection tasks. The fMRI hot spots have also been used as initial seeds in brain 
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tractography. [
16

]. 

5.1.3 Combined and Simultaneous EEG-fMRI  

Currently, combined EEG-fMRI studies are gaining popularity amongst 

researchers. The reason is twofold: the complementary nature of the two 

modalities in terms of information content and the spatiotemporal resolution of 

each modality. Despite EEG’s superior temporal resolution capabilities, it has 

very poor spatial resolution, and it relies on the solution of ill-posed boundary 

problems for localizing sources in the brain. Furthermore, it only reflects the 

subspace of the brain’s characteristics that is directly related to normal electric 

currents. On the other hand, fMRI suffers from poor temporal resolution and is 

mainly reflective of the metabolites and perfusion activity inside the brain. These 

activities are in turn related to activation of the neurons inside the brain. Each of 

these modalities provides information that the other lacks.  

Combined EEG-fMRI studies have been used to improve localization of the 

sources of brain activity in EEG studies [18]. In clinical applications, EEG-fMRI 

has been used to localize the sources of epileptic seizures [18–20] . 

Combining EEG and fMRI data collected separately has some disadvantages 

due to the variabilities caused by the changes in patient’s vigilance and also 

environmental factors [
21

]. Therefore, simultaneous recording is more favorable 

when such problems threaten the outcomes of the studies. In addition, in some 

applications such as seizure studies, it is necessary to perform EEG and fMRI 

simultaneously.   
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In simultaneous recording, besides the usual contaminations of the EEG data 

caused by blinking, eye movement, muscle activity or mechanical movement of 

the skin electrode junction caused by movement of the patient, the signals are also 

subject to additional noise from other origins. These additional noises must be 

removed before the signal becomes acceptable for further analysis. These 

additional artifacts are the Ballistocardiographic (BCG) and Gradient Artifact 

(GA) noise.  

5.1.4 Gradient Artifacts  

When an EEG is performed simultaneously with the MRI, the RF dissipation 

and the changes in the gradient fields of the MRI can create currents inside the 

EEG wires that will cause additional noise known as Gradient Artifact (GA).  

These  artifacts can be avoided by recording the EEG during the silent phase of 

the MRI between each slice acquisition section. This method is called interleaved 

scanning. If the EEG is recorded continuously while the scanner is acquiring 

images, the gradient artifacts must be removed manually using signal processing 

methods prior to any further analysis. Using the proper steps during or prior to 

scanning can significantly reduce the GAs. For example, studies have shown that 

twisting the EEG wires and recording the EEG in bipolar format can greatly 

reduce GAs [
22

] by relying on the differential amplifier's common-mode rejection 

to remove artifact induced equally on both of the twisted wires. It is also a good 

practice to use short-length EEG leads to reduce the amount of RF dissipation into 

the wires. In addition to producing GAs, the RF dissipation in the EEG leads can 
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heat up the electrodes, which may even cause discomfort in the patients [
23

]. Non-

ferromagnetic EEG leads such as pure silver or silver/silver-chloride are common 

options for preventing heating in electrode leads [
24

].  

Since fMRI sequences are almost perfectly periodic, they produce periodically 

repeated artifacts. The most common signal processing method to remove these 

artifacts is to average the time-locked signals and subtract the estimated artifact 

template from the EEG data at each time point that the slices are acquired. This 

method, to the best of our knowledge, was first introduced by Allen et al. [25] and 

is known as average artifact subtraction (AAS). Gradient artifacts generated in the 

MRI are synchronized to much higher clock speeds compared to the sampling rate 

of the EEG, and therefore, a perfect time locking of the RF signals using 

conventional EEG hardware is not possible. Using conventional EEG systems 

will result in imperfect averaging of the time-locked RF pulses, which will lead to 

incomplete subtraction of the GAs. One way to improve the averaging procedure 

is to use EEG systems with a much higher sampling rate (above 5 kHz) or by 

synchronizing the EEG clock with the MRI’s internal clock using additional 

hardware. After artifact subtraction, a low pass filter is usually required to be 

applied to remove any residual high-frequency artifacts remained in the data.  

5.1.5 Ballistocardiographic noise  

According the Maxwell’s Law of electromagnetism, movement or vibration of a 

conductive loop inside a magnetic field induces current flow inside that medium 

(loop). In simultaneous EEG-fMRI recording, conductive loops exist that consist 
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of the EEG electrodes, wires, the EEG amplifier and the patient’s body. The 

magnet’s cooling pump, vibrations caused by the MRI’s gradient coils and the 

cardiac pulsation of the patient or the body movements, all contribute to 

generation of BCG artifacts. The magnitude of these artifacts is proportional to 

the magnetic field of the MRI, and therefore, BCG artifacts can grow quite large 

in higher field magnets such as 3- or 7-Tesla machines. The exact sources of BCG 

artifact inside the patient bodies are not exactly known, but it is speculated to be 

generated by body motion caused by breathing and pulsation of the heart, as well 

as the flow of the blood (which is a conductive fluid) inside the vessels. Several 

procedures have been proposed to reduce these artifacts. For example, Gotman et 

al. [26] used sand bags to securely immobilize the EEG wires between the patient’s 

head and the amplifier. Other methods include immobilizing the patient’s head 

using cushions or bite bars [
27

].  Following these procedures can reduce the 

magnitude of the artifacts but will not eliminate them completely, and therefore, 

additional signal processing steps are required to eliminate these artifacts.  
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Figure  5-2: Left: BCG and GA noise affecting normal EEG. Top-Left: normal EEG recorded in a 

clean environment. Middle-Left: EEG recorded inside the MRI chamber. Bottom-Left: EEG 

recorded inside the MRI chamber while the MRI is running. Right: Averaged-ERP before (red) 

removal of BCG artifacts compared to a regular A-ERP obtained from a clean EEG dataset. Data 

shown has been obtained from an electrode located in occipital lobe (OZ).  

 

Various signal processing methods have been proposed for removal of BCG 

artifacts. For example, one method is to estimate the BCG profile (the shape of 

the heart beat) for each channel and then to subtract this profile from each 

instance of a heart beat for each channel [26,28,29]. In this method, a peak finding 

algorithm, run on separate electrocardiogram (ECG) electrode data (placed on the 

patient’s chest or back), finds the QRS peak in each cardiac cycle (the strong 

pulse at the start of the cycle), and then the time-locked data in each EEG channel 

is averaged to create a profile for the cardiac cycle. This cardiac profile is later 

subtracted from each cycle. This method is not, however, very effective, and its 
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accuracy depends on the performance of the peak detection algorithm. One 

problem with this method is the saturation of the ECG data by GAs during the 

MRI scanning periods. Because the ECG electrode lies far from the ground of the 

EEG loops and has much longer wire lengths it is prone to more RF interference. 

The blood flow and the breathing motion, in addition to the pulsation of the heart, 

all can create large enough voltages that might be mistaken by the algorithm to be 

the QRS peak. It is possible to detect the QRS peaks from the other electrodes 

placed on the head, but they are less likely to contain a significant QRS peak that 

can be clearly distinguished from other waveforms in the heart beat cycle. The 

following figure shows the ECG electrode waveform inside and outside of the 

scanner: 

 

  

Figure  5-3: Left: ECG recorded outside the MRI. QRS peaks are clearly visible. Right: ECG 

recorded inside the MRI (while the scanner is inactive). Due to the presence of BCG artifacts, the 

ECG recorded inside MRI has a completely different shape, and detecting the QRS peaks is much 

more difficult. 
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that they assume that the BCG artifacts have one unique profile. This is not 

entirely true, as the blood flow, heart rate and the breathing patterns change in 

patients over time, during the course of the scanning.  Adaptive AAS methods 

have been proposed [29] to account for these temporal changes in the BCG artifact. 

Another method known as the Optimal Basis Sets [
28

] uses PCA to create several 

instances (principal components) of the BCG artifacts to account for the temporal 

changes. To our knowledge, this method is the most widely used artifact-removal 

algorithm. The success of this method again depends on successful detection of 

the QRS peaks and uniformity of the heart beats. Whenever the heart beats are not 

detected correctly, these methods fail to provide satisfactory results. Other 

researchers have proposed using independent component analysis (ICA) or PCA 

over the entire data matrix [
30,31

]. In these methods, the whole EEG matrix is 

decomposed into ICA or PCA components, and the components that correlate 

with the BCG artifacts are eliminated and a clean EEG signal is reconstructed 

using the remaining components. The problem with these methods is that they 

cannot create components that only isolate the noise-related or signal-related data, 

and in most cases, a loss of signal-to-noise ratio occurs as a result of removing 

some useful signals contained in noise components. In many of these methods, 

component selection is not automatic, and some sort of user intervention is 

required to identify components that correspond to noise or signal. Such 

correlation measures are not always available and there is always a possibility of 

choosing the wrong components for artifact rejection. Other researchers have also 
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proposed combining one of the peak detection methods with latent variable 

methods to provide better results [
32

].  

5.1.6 Muscle Artifacts 

Muscle artifacts in EEG recordings are mainly generated as a result of eye 

movement, blinking or jaw movement, as well as activation of other facial 

muscles. These artifacts usually have a frequency range that is similar to the 

components of the ERPs; therefore, simple frequency filtering will not remove 

them effectively. Several methods have been developed to reduce the artifacts, 

such as average artifact subtraction or the use of PCA, ICA, as well as the use of 

extra channels that record artifacts and subtract them from the rest of the EEG 

data [
33,34

]. Perhaps the most successful method in removing the artifacts is the 

ICA component-rejection method. However, as in the BCG case, in LVM 

methods it is not possible to entirely extract components that solely account for 

noise (muscle artifacts) and not the signal (ERP).  Thus removing these 

components may result in deterioration of the signal-to-noise ratio. In addition, 

even if it were possible to use LVM methods to create components that are related 

to noise only, detecting such components without a proper reference would be 

difficult. Figure  5-4 shows the sample artifacts generated as a result of chewing 

gum on some arbitrarily selected EEG channels. 
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Figure  5-4: Example of muscle artifact when a patient is chewing gum during EEG recording. The 

EEG channels were selected arbitrarily.  The FP1 and FP2 electrodes also exhibit several eye-

blink induced artifacts. 

 

5.1.7 Objectives 

In this chapter, we propose the use of Soft Constrained PLS (SC-PLS) for 

removal of the BCG and muscle artifacts. This method exploits the additional 

knowledge about the noise (muscle or BCG artifacts) and the true signal (ERP) to 

improve the component selection and noise removal. Here we use the constrained 

PLS method to extract components of a basis matrix that accounts for all the 

variations in the EEG data other than those estimated by the ERP averages. The 

method first creates an initial estimate of the ERP using the noisy EEG dataset 

and iteratively improves the results by detecting and removing latent variable 

noise components from the EEG dataset. A method similar to ours was proposed 

by Bonmassar et al [
27

] which uses the estimates of the ERPs collected in a clean 

environment. They reduce the problem into a generalized eigenvalue problem and 
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extract components that maximize the covariance of the noise while minimizing 

the covariance of the stimuli-related data. In our proposed method, we use soft 

constrained PLS and its component-selection properties to iteratively build a basis 

for the noise that is later used to remove the noise from the EEG data and hence 

improve the ERP averages extracted from the updated EEG dataset. The improved 

ERP averages are reused in the constrained algorithm to provide even better 

estimates of the noise basis.  

The remaining sections of this chapter are organized as follows: in Section II, 

we propose our algorithm and its mathematical explanation. In Section III, we 

define the details of the experiment used to produce datasets to test our algorithm. 

In Sections IV and V the results are shown, and finally, Section VI includes the 

conclusion and discussion of the results.  

Two types of EEG noise are being investigated: BCG artifacts and muscle 

artifacts. In the BCG case, we compare our results to the results obtained from the 

OBS algorithm [
28

] and the reference EEG data recorded for each patient in a 

noise-free environment.  In the OBS method the EEG data are reorganized 

according to the “qrs” peaks of the BCG artifact and after performing PCA on the 

rearranged EEG data a few principal components, which represent the BCG 

artifact, are projected out of the dataset and then the cleaned EEG is reorganized 

back to the previous arrangement. This method is very much the gold standard in 

BCG artifact removal methods.  

In the muscle artifact case, the muscle artifacts induced by chewing gum during 
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data collection are removed using the SC-PLS algorithm and the results are 

compared to a manual ICA rejection method.   

5.2 Algorithm  

5.2.1 Signal Structure 

In the following, we propose a method for estimation of an ERP signal in the 

presence of background EEG activity, muscle artifacts and BCG noise. 

  Briefly, the method works as follows: create an initial (rough) estimate of the 

ERPs (for each EEG channel) using the noisy data (or any external, clean data if 

available); use SC-PLS to find major variations in the data that are irrelevant of 

the ERP estimates; and improve the results by iteratively removing these 

components from the original EEG dataset. The advantage of using constrained  

PCA or PLS approaches for estimating the ERPs is that the information regarding 

the evoked responses will be retained while other variations irrelevant to the ERPs 

are removed.  

First, the structure of an EEG dataset contaminated with noise is important to 

discuss. In an EEG experiment, the data recorded in the presence of noise can be 

decomposed into the following structure: 

  X Y Z E  (5-1) 

 , , , n chX Y Z E  (5-2) 

where X is the raw EEG data recorded, n is the number of samples recorded 

(rows), and ch is the number of EEG channels (number of columns). Y is the 

actual brain-generated signals, which consist of the brain background noise as 
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well as the brain’s response to the stimuli. Z is the structured external noise (such 

as BCG or muscle artifacts), and E is random noise with standard deviation . In 

many cases, it can be assumed that both Y and Z have latent structures with lower 

dimensionality than the number of channels recorded.  Hence,  

 
Y Y Y

Y T C E  (5-3) 

 
Z Z

Z T C  (5-4) 

where Y
T (n×r) and Z

T (n×s) are the latent vectors (n,s < ch), or sources of the 

brain waves and the external structured noise respectively, both with lower 

dimensionality than the actual number of channels recorded. 
Y

E (n×ch) in (5-3) is 

the background noise caused by background brain activity, and Y
T is the brain 

response to external, time-locked, stimulation such as the visual stimuli in the 

upcoming experiments. 
Y

E , which defines the additional brain activity signals, 

may or may not be structured. Since the event related (ER) brain response is 

almost within the same range of the background brain activity, event-related 

potentials, which we denote by ( ), are usually averaged over several trials to 

provide reliable estimates known as the averaged ERPs ( ). The shape and 

latency of the averaged ERP (A-ERP) components provides valuable information 

about the brain response or the location of the stimulated sites in the brain. Hence, 

they are often required to be extracted for analysis and comparison reasons. In the 

presence of strong noise, a higher number of trials must be recorded and 

averaged, or the noise needs be removed prior to averaging the trials. Assuming 
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the presence of structured noise in the EEG data, it is possible to use methods 

such as Principal Component Analysis (PCA) [
35

] or Independent Component 

Analysis (ICA) to remove the components of noise (
Z

T ) or to extract the low-rank 

components containing the ERPs, or in other words, to extract ERP components 

that belong to the column space of 
Y

T  

 

 ( ).
Y

T  (5-5) 

Because both the noise and ERPs are structured and have low rank, latent 

variable methods cannot distinguish between the noise and signal components, 

unless additional information and constraints are provided. When these methods 

are used, there is always a chance that some information overlap between the 

noise and ERP latent components will exist, resulting in reduced SNR in the 

averaged ERPs when the noise components are removed.  

5.2.2 Formulating EEG problem as a constrained LVM method: 

Since both Z
T and Y

T are low rank and reside in the subspace of X , additional 

prior information about Y  and/or Z can be implemented in the LVM method to 

decompose X into the noise and signal components, where the noise components 

are used to remove the structured noise without compromising much of the ERP’s 

SNR. The idea is to find ti (n×1) as a linear combination of X : 

 i it Xw  (5-6) 

that ideally, only belongs to the ERP subspace and contains minimal 

information about the noise subspace.  
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The soft constrained PLS method has been previously introduced, in which the 

data is decomposed into two latent variable sets that maximally separate noise and 

the signal subspaces. In these methods, a series of latent vectors are iteratively 

extracted by maximizing an objective function of the following form: 

 
s.

ma

.

x

t

i i i i

i j ij





   



 



w
w X YY Xw w X ZZ Xw

w w
 (5-7) 

This optimization problem can be solved by constructing the Lagrangian as  

 

 ( ) ( 1)i i i i i i i iL           w w X YY Xw w X ZZ Xw w w  (5-8) 

 

This objective function finds a linear combination of the X that maximizes the 

absolute covariance difference between Y and Z. The parameter λ controls the 

tradeoff between covariance of X  and Y and Z . The solution to this problem (

i
w ) can be found by differentiating with respect to w and equating it to zero, 

which leads to finding the dominant eigenvalues and eigenvectors associated with  

 1 ( )   U X YY ZZ X  (5-9) 

 

As discussed earlier in Chapter Two, an interesting feature of this method is that 

the sign of γi determines whether the components have a stronger correlation with 

Y  or with Z . This allows for choosing only those components that are either 

maximally correlated with the noise or the brain response’s subspace. The 
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components can be extracted all at once using the eigen-decomposition algorithm, 

or they can be extracted one at the time using iterative procedures. Extracting all 

components iteratively results in principal components (Ts) that are orthogonal to 

each other. Components extracted this way provide better visualization; however, 

the procedure will be much slower and more time consuming.  

In the iterative procedure, before each step, X is deflated using  

 

 i i
 X X t p  (5-10) 

where p is a projection coefficient defined  as: 

 
1( )  p t t t X  (5-11) 

and subsequent components are extracted, using the deflated X in (5-7). This 

deflation process ensures orthogonality between principal components ( t ’s). In 

the eigen-decomposition method, all of the eigenvectors ( w ) are extracted at the 

same time without deflation. In such a case according to Rao [
36

] the objective 

function will translate into: 

 

s

ax

.

m

.t

i

i j ij





 



     



W
W X YY XW W X ZZ XW

w w

 (5-12) 

which is a more general case of the previously discussed soft constrained PLS. 

Again principal components can be calculated from the latent matrix W using: 

 .T XW  (5-13) 

These principal components, depending on their eigenvalue sign, have strong 

covariance with Y  and small covariance with Z (when their corresponding 
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eigenvalues or positive) and vice versa. However, the principal components t’s 

are no longer orthogonal to each other.  

Let us assume that a matrix n chY exists, with n samples and ch columns, 

that contains an initial (rough) estimate of the ERPs, obtained from averaging the 

noisy EEG data. The matrix is constructed by defining a matrix of zeros, the same 

size as Y. Once this matrix is constructed, at each instance and for each channel 

that a trigger was recorded, the zeros are replaced by an initial averaged ERP 

according to the following procedure: 

 ( ) ( ( )) ( ) 0 | 1 ,, 2i sec sec

ch ch cht t i t t t      y ψ τ ψ  (5-14) 

where τ(i) is a vector containing the onset time for the stimuli recorded during 

the original experiment. Figure  5-5 shows how such a matrix can be constructed. 

 

 

Figure  5-5:   is constructed by replacing zeros with averaged ERP values for each channel from -1 

seconds to +2 seconds after the trigger was recorded. This creates a vector resembling a rough 

estimate of the brain response to the stimuli.  
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Now the objective function defined in (5-12) is used to decompose the original 

EEG data (X), or any suitable basis of it, e.g. an ICA decomposition of the EEG 

data. denoted by X , into two sets of components: those that have strong 

covariance with the epochs and those that have strong covariance with the noise. 

Having a rough estimate of the epochs in Y , the noise in the EEG data can be 

roughly estimated as: 

  Z X Y  (5-15) 

Replacing  X,   and    in (5-7) will result in: 

 

 

s.

x

t. .

ma

i j i

i

j





 



     



W
W X YY XW W X ZZ XW

w w

 (5-16) 

By extracting the eigenvectors, a set of components are obtained from 

 T XW  (5-17) 

  that are either maximally correlated either with the noise or the ERPs.  

 Once a set of latent components is computed, the components correlated with 

noise, which are associated with negative eigenvalues, are used to deflate X and 

reconstruct Y using the new deflated EEG data ( RX ). Since XR contains less 

noise, the estimated ERP values ( Y ) will also contain fewer artifacts and will be 

closer to the true value of the ERPs. As the process iterates: the new Y can now 

be reused in the algorithm with the original EEG ( X ) or X (e.g., the ICA 
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components of X ) to obtain an updated set of components that are more likely to 

estimate the noise in X . The following flow chart shows the steps of the proposed 

algorithm:  

 

 

Figure  5-6: Flow diagram showing the steps of the noise removal algorithm.  
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The steps of the algorithm are hence as follows:  

1. Preprocess the data and calculate X ,   and Z   

2. Let 
R

X X  

3. Calculate a rough estimate of the ERP matrix ( Y ) using the noisy EEG 

data (X) 

4. Calculate a rough estimate of the noise (Z   = X-  ) 

5. Use this estimate in equations (5-16) to (5-17)  to calculate a basis for 

the noise 

6. Deflate XR by projecting onto the orthogonal subspace of noise as in 

(5-10) 

7. Re-estimate the average ERP ( ) from the new RX . 

8. Repeat above step 3 to 7 to refine the estimates  

If the noise components are extracted and identified correctly, and provided that 

a proper initial estimate of the ERPs (ψ ) is available, this algorithm will 

eventually converge towards a set of components that capture the majority of the 

noise variance (e.g., BCG or muscle artifacts) and contain very little information 

about the ERPs. Compared to the regular PCA algorithm, the noise components 

extracted by the constrained method are much less likely to contain any 

information about the ERPs, as they have been penalized in the algorithm, and 

therefore, the estimated ERPs will have a much better signal-to-noise ratio.  
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5.2.3 Iterations and convergence: 

At each step, 
R

X  is refined by projecting original X (or X ) into the orthogonal 

complement of the noise basis. The iteration should be repeated until a stable 

result is obtained. However, we realized in most cases, best results are obtained 

after two or three iterations, and iterating too much may result in loss of SNR and 

lowered correlation. Throughout the upcoming experiments, at each step the SNR 

was estimated and the iterations were stopped once the maximum average SNR 

was reached. 

5.2.4 Moving average (MA) filters: 

For the MRI datasets, in the experiment section, the EEG datasets were 

preprocessed using a moving average filter. This filter, constructed from the ECG 

data “ω” (n×1) removes some of the BCG artifacts, which will improve the initial 

estimates of the ERP averages.  

To construct this filter, equation (5-1) is re-written for individual EEG channel 

at time point t in ( )chx t  as: 

 
1

0

( ) ( ) ( ) ( )( )
m

c

r

chch ch hty rx t t r t  




    (5-18)  

where ( )chy t is the noiseless signal at channel " "ch at time t and chα (m×1) is a 

weighting coefficient vector obtained by regressing chx against ω and m is the 

number of lags in the MA model. ( )ch t is the residual noise that cannot be 

removed using this method.. Once chα is calculated, the projection of X into the 

ECG basis is subtracted from it. Experimental results indicate it is possible to 
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remove up to 50% of the BCG artifacts by applying this method alone. This 

preprocessing step can be used to remove some of the BCG artifacts before using 

the SC-PLS algorithm.  

 

5.2.5 Wavelet filters  

The initial estimates of the ERPs obtained by averaging the noisy data contain a 

significant amount of physiological artifacts such as muscle artifact or BCG noise. 

If the noise is strong, the initial estimates will contain large artifacts that will 

result in improper component selection, which may cause the algorithm to fail to 

converge. To provide better ERP estimates, the data in R
X was pre-filtered at each 

iteration step using wavelet filters. This type of filter removes high-amplitude, 

impulse-shaped artifacts at different frequency bands. In wavelet filtering, first, 

each signal is decomposed into a set of wavelet coefficient vectors. After 

calculating the standard deviation of the coefficients at each level, any coefficient 

in the vector that has an absolute value larger than a threshold number of standard 

deviations is trimmed to the threshold value. Once all the coefficients have been 

trimmed, the filtered signal is reconstructed from the new coefficients. Figure 8 

illustrates the process. 



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

 

166 

 

 

Figure  5-7: Wavelet thresholding of a signal (4 level, dB1). Original signal (top-left) is 

decomposed using wavelets at several stages (plots on the left below the original signal). Once the 

signal is decomposed at each stage (detail) the standard deviation of the signal is measured for 

each detail (σ) and any component having a value larger than a pre-determined threshold value 

(e.g. 2σ ) is set to this threshold value (plots on the right below the reconstructed signal). The 

thresholded details are later used to reconstruct the signal. The reconstructed signal is shown in 

top-right  

 

The advantage of using wavelet filtering compared to thresholding (setting large 

components of signal into a threshold value) is that the signal will have smooth 

transitions even in the thresholded segments. The thresholding only affects those 

elements of the wavelet coefficients that have very large deviations in that 

wavelet band. Therefore, normal variations in the data are much less likely to be 

affected by the wavelet thresholding. The following figure shows a portion of the 

EEG data before and after being filtered by wavelet filters:  
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Figure  5-8: EEG data before and after filtering using wavelet filters (filter: ‘bior4.4’, levels: 6, 

threshold: 1.5 standard deviation). 

 

 

5.3 Experiments  

To test and compare the efficiency of the current noise removal algorithms 

against SC-PLS method proposed here, a visual evoked experiment (VEP) was 

designed. The EEG was recorded inside and outside of the MRI chamber, in a 

separate room, in various scenarios, introducing muscle or BCG artifacts. The 

experiments were conducted at St. Joseph’s Hospital, (Hamilton, Ontario, 

Canada). The study was approved by the hospital’s board of ethics.  The EEG 

data was later used either directly or to create simulation datasets, which were 

used to test the performance of the proposed algorithms and to compare them 

against conventional noise removal methods. MRI studies were performed inside 
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a 3T scanner (General Electric), with a dedicated 8-channel head coil. The EEG 

system used in the study was manufactured by brain products GMBH (BrainAmp 

MR and BrainCap MR), consisting of an MR compatible amplifier, with 64-

channel electrodes positioned on a cap according to the 10-20 standard [
37

]. The 

extra electrodes were located between the standard 10-20 channels as shown in 

Figure  5-9: 64 electrode locations used in the BrainCap MR EEG caps).  

  

Figure  5-9: 64 electrode locations used in the BrainCap MR EEG caps. Left: 10-20 format, Right: 

corresponding electrode number 

 

 One of the 64 electrodes was attached to the patients’ back (in mid section) to 

record the ECG signals, and one was attached to the patient’s cheek to record the 

eye movements (EOG). All channels were referenced to an electrode located 

between channels 17, 18, 21 and 22. The EEG wires connecting the electrodes to 

the amplifier were sandwiched between a wooden board and pieces of memory 

foam strips (held by tape) to reduce and dampen the machine-induced vibrations. 
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The amplifier was placed in the back of the scanner 50 cm away from the 

scanner’s bore. Twelve patients (7 male, 5 female, average age 29 yrs) 

participated in the study. Not all participants completed all the studies, and 3 of 

the MRI datasets were discarded due to bad equipment setup. All EEG data were 

low-pass filtered at 250 Hz and then recorded at a sampling rate of 5 kHz, later 

down-sampled to 100 Hz. During the VEP experiments, every time a visual trial 

was presented, a trigger was recorded in the EEG dataset indicating the exact 

temporal location at which the stimuli were presented. These triggers are denoted 

on the dataset with the label “S21” (shown in Figure  5-1). The experiments were 

carried out inside and outside of the scanner. In the experiments that were carried 

out inside the scanner, the patient was asked to lie down while his or her head was 

immobilized using memory foam cushions placed between the patient’s head and 

the head coil.   

5.3.1  Visual stimulation paradigm  

A visual paradigm consisting of an alternating black and white target pattern, 

shown in Figure  5-10, was designed to induce visually evoked responses in the 

patients while keeping an iso-luminant visual field. Inside the MRI chamber, the 

visual stimulus was shown to the patient using an overhead projector projecting 

the stimuli into an oblique mirror located 6 inches away from patient’s face, 

corresponding to a viewing angle of 90 degrees. The overhead projector was 

placed 5 meters away from the scanner. The head coil used in this experiment had 

a bar passing along the patient’s nose that partially covered the patient’s view. To 
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avoid partial viewing, the centre of the target board was shifted towards the right 

eye, and all patients had their left eye covered with a piece of foam, limiting the 

viewing to the right eye. The visual paradigm was constructed using “Presentation 

Software” developed by Neuro BS.  

 When the experiments were carried outside of the scanner, the patients were 

asked to sit in front of a 19-inch monitor located 1.3 meters away from them 

(which corresponds to a 40-degree viewing angle). The room was kept dark 

during the experiments. 

The VEP paradigm consisted of 170 trials.  During the experiments, the patients 

were asked to concentrate on the centre of the target board to reduce involuntary 

eye movements. Once the experiment was started, the target board would flicker 

(invert colors back and forth from black to white and vice versa) at random 

intervals of 1.8 to 2.2 seconds. The flicker time (time it took for the target board 

to invert and revert the colors) was fixed at 0.2 seconds. This type of VEP 

experiment produces visual responses in the brain in the occipital lobe, with a 

unique shape as a result of the flickering back and forth.  
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Figure  5-10: Visual paradigm, Left: the eccentric target board used for the VEP experiments. 

Right: one of the participants wearing the EEG cap with the left eye covered.  

5.3.2 Procedure 

The EEG data was recorded in several different conditions:  

1. Noise-free EEG was recorded in a dark room while the patient was sitting 

1.3 meters away from a computer screen watching the VEP presentation 

(40 degree viewing angle). This data, labeled as reference EEG, was used 

to obtain the reference average ERPs used for comparison between ERP 

obtained from the proposed algorithm (de-noised) data as well as to 

produce simulated EEG datasets that were used to further test each 

method’s effectiveness. 

2. EEG was recorded inside the MRI chamber while the patient watched the 

VEP experiment, without the MRI running, hence with no GA artifacts 

induced. SC-PLS and OBS algorithms were applied to this data set to 

recover the ERPs. These recovered ERPs were compared against the 

reference ERP collected in condition 1.  

3. EEG was recorded inside the MRI chamber while the patient watched the 

VEP experiment with the MRI running, hence inducing GA artifacts. SC-
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PLS and OBS algorithms were applied to this dataset to recover the ERPs 

from it. The quality of the recovered ERPs from each algorithm was 

compared to the reference ERPs collected in condition 1. The fMRI 

sequence consisted of a gradient echo sequence with a flip angle of 90 

degree, 30 slices and TR equal to 62 msec. The gradient artifacts were 

removed using EEGLAB’s [
38

] (version 10) built-in GA artifact removal 

toolbox. Details are provided later in the chapter.  

4. EEG was recorded in a dark room while the patient was sitting 1.3 meters 

away from the computer screen and watching the VEP experiment. The 

patients were asked to chew a piece of gum during the experiment to 

induce muscle artifacts in the EEG dataset. SC-PLS and manual ICA 

rejection algorithms were applied to this dataset to clean and recover the 

ERPs. The quality of the recovered ERPs from each algorithm was 

compared to the reference ERPs collected in condition 1.  

5. Background EEG data was recorded while the patients were inside the 

MRI. They were asked to relax and look at a bright computer screen 

without any stimuli being shown to the patient. These datasets were later 

used to create simulated EEG datasets contaminated with BCG artifacts. 

6. Background EEG data was recorded while the patients were in a dark 

room watching a bright screen without any stimuli being shown to the 

patients. The patients were asked to chew a piece of gum during the EEG 
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data collection. These datasets were later used to create simulated EEG 

datasets contaminated with muscle artifacts. 

 

Changing the environment in EEG experiments can influence the patient’s 

vigilance, resulting in non-identical ERPs even for the same paradigm [
39

]. For 

this reason, the ERPs, extracted from EEG recorded inside the MRI are not 

identical to those acquired outside of MRI (Reference ERPs). Therefore, to have a 

better assessment of the properties of the proposed algorithms and to compare 

them to the other methods, simulated EEG datasets were created by adding 

reference ERPs to the noisy background EEG data collected in conditions 5 and 6 

above. In addition to comparison between the extracted ERPs from experimental 

EEG datasets, the extracted ERPs from the simulated datasets, after de-noising, 

were also compared to the reference ERPs. Two sets of simulation datasets were 

created using the background EEG inside the MRI (BCG-EEG) and the 

background EEG recorded while the patients were chewing gum. Performing the 

experiments inside the scanner bore induces BCG artifacts onto the EEG data. 

The magnitude of the BCG artifacts depends on each patient’s physiological 

status. Since the MRI study aims specifically at removal of the BCG artifacts, the 

data used for MRI simulation only consisted of the BCG artifacts and no fMRI 

gradient artifacts.   

 To create simulation datasets, the Reference ERPs were added to the 

background gum-EEG or the BCG-EEG background data at 100 random time 
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points. The minimum temporal distance between each trial was chosen to be at 

least 2.5 seconds to avoid any overlapping of the trials.  

Overall, six dataset were obtained to study and compare the algorithms: 

1. VEP experiment inside the scanner, no fMRI (VB-EEG) 

2. VEP experiment inside the scanner, with fMRI (VBf-EEG) 

3. Simulated VEP experiment with EEG data contaminated with BCG 

noise (SVB-EEG) 

4. VEP experiment in a dark room while chewing gum (VG-EEG) 

5. Simulated VEP experiment with the EEG data contaminated with 

muscle artifacts (SVG-EEG) 

6. And finally, the Reference EEG (Ref-EEG) recorded in a dark room to 

extract the reference ERPs from 

5.3.3 Quality measurement 

Once the noise is removed from the EEG datasets, averaged ERPs (
ˆ
 ) are 

calculated from the de-noised datasets. To compare the quality of the ERPs before 

and after noise subtraction, several quality measures are acquired for each 

averaged ERP in each channel, for each experiment. In each experiment, the 

correlation (CRRch) between the Reference ERPs in each EEG channel and the 

de-noised ERPs was calculated. In addition, the standardized root mean-squared 

error between the Reference ERPs and the de-noised ERPs was calculated using 

the following formula: 
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where v=300  is the total number of points in each average ERP. ( )ch n is the 

averaged Reference ERP vector from -1 (samples 1 to 100) to +2 seconds after the 

onset of the trigger (samples 101 to 300 ), and ˆ ( )ch t is the averaged estimated 

ERP for that particular channel, extracted from the noisy EEG after noise removal 

steps. The scalar values;  
1
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n

n
v


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  and 
1

(1 ˆ )
v

ch

n

n
v




 are the mean values 

(baselines) for the original ERP and the extracted ERPs, respectively.  

           

The averaged RMSE over all channels is defined as: 

 ( ), [1,.
1

6
..30,32...64]

2 CH

RMSRMS E c chE h   (5-20) 

 

Channels 31 and 32, corresponding to EOG and ECG channels, were excluded 

from averaging. In addition, the signal-to-noise ratio (SNR) for each channel was 

calculated as a logarithmic ratio of the averaged ERP variance until 2 seconds 

after the onset of the trigger (n = 101,…, 200) to averaged ERPs variance until 

one second before the onset of the trigger (n = 1, … , 100): 
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We assume that the averaged ERP prior to the unset of the stimulus should 

consist of random noise and hence have a small variance compared to after the 

onset of the stimulus. Therefore, a high SNR means good signal quality compared 

to the background noise.  

The average SNR over channels near occipital lobe is calculated as: 

 

1
( ),

16

[9,20,10,59,45,64,46,60,7,37,19,38,8,23,63,24],

O

H

C

OC

SNR SNR ch

OCH






 (5-22) 

 

which are the electrodes positioned over the occipital region, at the back of the 

head. This is the region associated with the processing of visual stimulus. 

The quantity varch the variance of the difference between averaged odd and 

even ERP values for channel ch:  

 2

, ,( )ˆ (ˆva 1/ ( )r )ch ch odd ch even

N

nN n     (5-23) 

Δvar measures the squared error in the ERP values. Ideally, the odd ERP 

average should be very similar to the even ERP average. Therefore, in the 

presence of noise, the value Δvarch from (5-23) gives an estimate of the noise 

variance on the respective channel. The scalar value N is the number of data 

points in the averaged ERP. 
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Average ΔVAR can be calculated over channels near occipital lobe as: 

 var var
1

( ),
16
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ch    (5-24) 

where “OCH” contains the 16 occipital channels defined in (5-22). Another 

quality indicator that was measured for each dataset after noise removal was the 

plus-minus ratio, originally proposed by Schimmel [
40

]. The positive-negative 

ratio (±R)  represents an estimate of the SNR on the respective channel in db. It is 

calculated as a ratio of averaged ERP variance to the variance of the plus-minus 

ratio calculated as: 
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 (5-25) 

The quantity ±R is a measure of signal-to-noise power (variance) ratio, where 

the noise is estimated from the value Δvarch. Averaged ±R value over the 

channels near the occipital lobe is calculated as: 

 
1

( ).
16

OC

OCH

R R ch    (5-26) 

 

5.4 Results (muscle artifact) 

5.4.1 Gum simulation data: 

The gum simulation data for each patient was created by adding 100 

occurrences of reference ERPs into the patient’s background gum-EEG data 

(SVG-EEG) at randomly chosen intervals of 2 to 3 seconds. SC-PLS and manual 
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ICA rejection algorithms were used to remove the muscle artifacts from this 

dataset. The averaged ERPs calculated from the de-noised datasets were later 

compared against the original Reference ERPs to measure each method’s success 

in removing the noise.    

5.4.1.1 . Results for subject “S-S” (Simulation study) 

The following figure shows the EEG signal before and after removal of the 

muscle artifacts in simulated EEG data for patient “S-S”. The detailed results for 

the other participants are given later in the Appendix. It can be seen that SC-PLS 

has removed the majority of the variations in the dataset; however, because the 

algorithm is constrained by the ERP estimates, the residual signal preserves the 

information about the ERP values.  The signal on the right-hand side of the traces 

are processed to extract the ERP components.  
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Figure  5-11: EEG signal before and after removal of noise for some of the channels. Signal on the 

left is the EEG data prior to removal of the noise; signal on the right of the screen represents the 

same portion of the EEG data after removal of the noise (subject S-S, simulation data) 

 

Figure  5-12 shows the topographical maps of the epochs at a latency of 150 ms, 

corresponding to the P150 component of the ERPs. The figure on the left shows 

the topographical map of this component obtained from the Reference EEG data. 

The middle map shows the P150 component obtained from the noisy dataset prior 

to noise removal, and the topographical map on the right represents the ERP’s 

P150 component obtained from the EEG dataset that was de-noised using SC-PLS 

algorithm. It is evident that removing the muscle artifacts allows visualization of 

the P150 component in the topographical maps.  
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Figure  5-12: Topographical maps of the P150 component; Left: Reference EEG data. Middle: 

P150 component obtained from the noisy EEG dataset prior to noise removal. Right: P150 

component map from the de-noised EEG dataset, using SC-PLS algorithm (subject S-S, 

simulation data). Note scale differences 

 

 

Figure  5-13 shows the quality measurements, described earlier in equations 

(5-21) to (5-26), at each iteration of the SC-PLS algorithm. Figure  5-13-Left 

shows the average RMSE from (5-20), in dB, between the de-noised and the 

Reference ERPs.  Figure  5-13-Right shows the averaged correlation between the 

Reference-averaged ERPs and the averaged ERPs obtained after noise removal 

using SC-PLS at each iteration. In all of the plots, the blue-square line shows the 

averaged statistical measures near the occipital lobe and the red-cross line shows 

the statistical parameters averaged over all EEG channels. These plots show that 

the de-noising process considerably enhances the ERP quality in the occipital 

channels. Since the source of the evoked responses is concentrated in this region 

of the brain, the electrodes standing farther from this region do not actually have 

any significant correlation with the visual stimuli, resulting in very small signal-

to-noise ratio in the ERPs collected from these farther channels.  

The plots in Figure  5-14 show the signal-to-noise ratio and ΔVAR calculated 
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using equations (5-23) to (5-26). These measures are independent of the 

Reference signal and can be used to estimate the convergence of the algorithm. 

For this patient for example, these figures suggest that the algorithm should be 

stopped after 4 iterations.   

 

  

Figure  5-13: left: Averaged root mean-squared error between the Reference ERPs and the ERP 

estimates de-noised at each iteration step. Right: averaged correlation coefficient between the 

Reference ERPs and the ERP estimates de-noised at each iteration step. Crossed-Red plots show 

the average statistics over all EEG channels, and blue-square curves show the statistical values 

averaged over the channels near the occipital lobe (subject S-S, simulation data); 
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Figure  5-14: Left, Averaged ±R for the de-noised ERPs at each iteration step. Crossed-red plots 

show the average statistics over all EEG channels, and blue-square curves show the statistical 

values averaged over the channels near the occipital lobe (patient S-S, muscle simulation study)  

 

The plots in Figure  5-15 show the averaged ERP in some channels before 

(dashed line) and after the noise removal process (dotted red line) compared to the 

averaged Reference ERPs shown in thick-solid blue line. Each plot shows the 

correlation, RMSE, ΔVAR and ±R values of the de-noised ERPs compared to the 

reference ERP in each channel shown.  

Overall the ERPs from de-noised signal should have higher correlation and ±R, 

while having lower RMSE and Δvar.  The results show that the SC-PLS algorithm 

is very effective in removing the noise while retaining the ERP information. 

However, in channels that have relatively small ERP amplitudes, the algorithm 

can induce artifacts not present in the original average. An example of such an 

induced artifact can be seen in channel 12 (F8).  The same artifacts are also 

present when the ICA rejection method is used to de-noise the data, suggesting 

that the reason is somehow related to ICA decomposition and not because of the 
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SC-PLS algorithm. These similarities between ICA and SC-PLS results can also 

be seen in the plots shown in Figure  5-17.   
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Figure  5-15: Averaged ERPs before and after removing noise from the EEG data, in channels 9, 

10,64,35,47 and 11. (Subject S-S, simulation EEG) 

 

The results obtained from the SC-PLS algorithm were also compared to those 

obtained from ICA component rejection. For ICA component rejection, 20 ICA 

components were rejected using visual inspection of the component maps 

(Topoplots; EEGLAB). The component maps and the rejected components, 

highlighted in red, are shown in Figure  5-16. Dominant ICA components with 

strong positive or negative amplitude in the temporal regions were removed. 

These components are most likely to be associated with jaw muscles.  

 

Figure  5-16: ICA component maps for the first 34 ICA components (sorted by RMS power). The 

ICA components highlighted in red boxes were rejected. (Subject S-S, simulation study)  

 

The following plots show the averaged ERP obtained from the dataset after de-

noising with ICA rejection superimposed with those obtained from de-noising 

with the SC-PLS method. Rejecting ICA components by inspection is a time-

consuming task, and the results depend on the inspector’s experience. In addition, 
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component rejection requires a reference for comparison; for example, in this 

case, the muscle artifacts are very likely to be produced by the temporal muscles, 

which will dominantly affect the temporal electrodes. There are many other cases 

for which such information is not available and component selection cannot be 

done efficiently by visual inspection. In these cases the advantage of SC-PLS is 

that the additional information about the ERPs is incorporated into the algorithm 

itself in the removal of irrelevant components. In the SC-PLS case, the 

components are extracted according to their statistical relevance to the ERPs.  
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Figure  5-17: Averaged ERPs for some of the channels. Blue solid curve: Reference-averaged ERP. 

Dashed-black curve: ERPs extracted from the EEG data de-noised by manual ICA rejection. 

Dotted-red curve: Averaged ERP obtained from EEG dataset de-noised using SC-PLS algorithm.  

 

5.4.1.2 Subject S-S (Experimental data) 

SC-PLS and manual ICA rejection algorithms were applied to the experimental 

EEG data collected from the same participant. As mentioned earlier, experimental 

EEGs were collected by recording an EEG while the subjects were watching the 

VEP displays. The muscle artifacts were induced by asking the patient to chew a 

piece of gum during data collection. The ERPs obtained from experimental results 

were compared to the Reference ERPs. Because of the changes in the 

environmental factors, (i.e., chewing gum while watching the experiment), the 

Reference ERPs will not be quite the same as the experimental ERPs, but will be 

very similar. Therefore, they were used to compare the effectiveness of each de-

noising algorithm.  The plots in the following figure show the averaged 

correlation, RMSE and ±R of the algorithm at each iteration step: 
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Figure  5-18 , Top-Left: RMSE between Reference ERPs and the ERP averages extracted from de-

noised signal at each iteration step (SC-PLS). Top-Right: correlation coefficient between the 

averaged Reference ERPs and the ERPs extracted from de-noised signal at each step. Bottom Left 

and Right: average ±R of the de-noised signals at each iteration step (Subject S-S, actual EEG) 

 

Similarly to the simulation study, the noisy experimental EEGs were cleaned 

using SC-PLS and manual ICA rejection. Figure  5-19 shows the topo-plots for the 

first 35 dominant components for the experimental data obtained from subject “S-

S”. For the ICA component rejection algorithm, 21 dominant components having 

strong temporal presence were visually identified and rejected from the EEG 

dataset. The rejected components are highlighted by red boxes.  
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Figure  5-19: ICA component maps for the first 34 ICA components of the noisy EEG data, sorted 

by RMS power. The ICA components highlighted in red boxes were rejected (Subject S-S, 

experimental EEG). 

 

The following figures show the ERP averages for some of the channels after 

removal of the noise using SC-PLS and manual ICA rejection algorithms. The 

ERP averages shown in solid blue represent the Reference-averaged ERPs, 

dashed black lines show the ERPs after cleaning the EEG using ICA rejection, 

and the dotted-red line shows the ERPs obtained by cleaning the EEG using SC-

PLS. These results show that both methods obtain satisfactory results. However, 

the advantage of SC-PLS is that it is an automated procedure that requires 

minimal manual intervention. This method can perform as well as the manual 

ICA rejection and, in most cases, even better, as the components extracted are not 

just deleted ICA components but mixtures of various ICA components to achieve 

optimal results.  
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Figure  5-20: Averaged ERPs before and after removing noise from the experimental EEG data in 

channels 9,10,64,35,47 and 11. Dashed-black curve: manual ICA rejection. Solid blue curves: 

Reference ERP averages. Dotted-red curves: SC-PLS method. (Subject S-S, Experimental EEG) 
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5.4.1.3 Overall results for the muscle artifact study 
 

The SC-PLS algorithm was applied to simulation and experimental data 

obtained from 6 participants. The number of iterations was determined by 

observing the ±R plots. The iterations were stopped at the first maximum peak in 

the ±R plot. The following charts show the changes in correlation, RMSE, ±R and 

SNR of the averaged ERPs after removing muscle artifacts from each simulation 

dataset. The quality measures were first averaged over either all EEG channels or 

the channels near the occipital lobe, and then the averaged statistics from the 

noisy ERPs were subtracted from the averaged statistics of the de-noised ERP 

statistics. 

The quality statistics were measured for both SC-PLS as well as the ICA 

component rejection algorithms. The results shown for correlation, ±R and SNR 

are obtained by averaging the values over the channels near the occipital lobe. 

The RMSE values are obtained by averaging over all EEG channels. The 

simulation results show that, compared to ICA method, 4 of 6 subjects were found 

to have achieved much better correlation with the reference ERPs when SC-PLS 

was applied. Overall, the SC-PLS algorithm performed better than did manual 

ICA rejection in the simulation study.  
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Figure  5-21: Changes in statistical values (De-noised – Noisy values) averaged over EEG channels 

near the occipital lobe (RMSE averaged over all channels). Top-Left; Average correlation of OCC 

channels, Top-Right; Average RMSE over all channels, Bottom-Left Average ±R (dB) -OCC 

Channels, Bottom-Right; SNR (dB), OCC-channels.  (Results obtained from the Simulation Gum 

datasets) 

 

Similarly to the simulation study, in the experimental EEGS, the average values 

for correlation, SNR and ±R over all electrodes near the occipital lobe and the 

average RMSE over all EEG electrodes, from the de-noised experimental EEG 

datasets for each participant was measured. The following charts show the 

changes in these parameters for each participant. The results show that for 

experimental data, like the simulation data, SC-PLS outperforms manual ICA 
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rejection across all subjects. However, in the experimental cases, the overall 

improvement for both ICA component rejection and SC-PLS are lower than the 

results achieved in the simulation data. Of course this is a expected outcome, as in 

the simulation study the dataset is obtained under a controlled situation, and the 

ERP waveform averages added to the dataset are all identical and do not change 

with time. In the experimental study, the ERP values are different at different time 

points, and hence, the experimental data shows poorer performance compared to 

the simulation study results.  
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Figure  5-22: Changes in quality measures (De-noised – Noisy values) averaged over EEG 

channels near the occipital lobe (RMSE averaged over all channels). Top-Left; Average 

correlation of OCC channels, Top-Right; Average RMSE over all channels, Bottom-Left Average 

±R (dB)-OCC channels, Bottom-Right; SNR (dB), OCC-channels. (Results obtained from the 

Experimental Gum datasets) 

 

In both simulation and experimental studies, the results show superiority of the 

SC-PLS to manual component selection. Visual inspection required by the ICA 

method requires a great deal of experience and proper references for the artifact 

component maps. In addition, the outputs will vary based on the inspector’s 

experience and the process is very time consuming. The SC-PLS algorithm does 

not reject components but rather finds linear combinations of them that explain 

the variations in the dataset, and at the same time minimizes their correlations 

with the ERPs. The new components are extracted based on their statistical 

relevance to the variation in the dataset as well as to their correlation with the 

ERP values. Another advantage of the SC-PLS is that it does not require any 

knowledge about the source of the artifacts, but rather uses the available 

information about the ERPs to constrain the component selection. However we 
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realized that it is more likely with SC-PLS to have additional artifacts added to 

the signal if the initial guess is far from the true values. This problem became 

more prevalent in the MRI study as the frequency content of the artifacts and the 

EEG signal overlap more closely. These problems will be discussed in further 

detail in the next section 

5.5 Results (MRI study) 

As in the previous study, a simulation dataset using the background EEG was 

recorded inside the MRI chamber. Reference ERPs collected outside were 

constructed for 6 of the participants. Averaged ERPs were randomly added 100 

times to the background EEG at randomly chosen 2 to 3 seconds intervals. Both 

the OBS and SC-PLS algorithm were used to remove the BCG artifacts in the 

simulation datasets, and the results from each algorithm are compared against 

each other.  

Since the objective of this study is the removal of BCG artifacts, the 

background EEG recorded for simulation was recorded inside the magnet but 

without the fMRI running. Therefore no Gradient artifacts were present and most 

of the artifact present was BCG noise. In the experimental studies, the EEG was 

recorded in two modes: without fMRI running and during fMRI image 

acquisition. Again in the first set, only BCG artifacts contaminate the 

experimental data, while in the latter case, both BCG and GA artifacts 

contaminate the EEG. In the datasets contaminated with GA artifacts, RF noise 

was removed using the built-in Gradient artifact removal tool provided by 
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EEGLAB package, for which the following parameters were used: up-sampling: 

10 folds; slice triggers chosen and low pass filtering of 50 Hz after noise removal. 

In the OBS toolbox provided by the EEGLAB software, the OBS algorithm was 

run several times using 3 to 6 principal components, and the one producing the 

best results was chosen for comparison against SC-PLS method.  

 

5.5.1.1 Simulation Study   

This section presents detailed results for subject “E-N”. the overall results and 

the detailed results for the other subjects are given in the latter sections. The 

overall results for the rest of the subjects for both the simulation and experimental 

studies are shown in the next section. Both the SC-PLS and OBS algorithms were 

applied to the simulation EEG data. The SC-PLS was applied iteratively until the 

SNR values reached their first maximum peak.  Figure  5-23-Left shows the EEG 

data before and after removal of the BCG artifacts in subject “E-N”. The 

amplitude of the BCG artifacts is almost an order of magnitude larger than the 

EEG data, thus can seriously affect the ERP shapes. Figure  5-23-Right shows the 

ERPs calculated from the contaminated EEG data for this participant prior to de-

noising and are compared to the reference ERPs. It can be seen that unless the 

BCG artifacts are removed, the ERP values are hardly distinguishable from the 

noise artifacts. 
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Figure  5-23: Left:  EEG signal before and after removal of BCG artifacts for some of the channels. 

Signal on the left is the EEG data prior to removal of the noise, signal on the right of the screen 

represents the same portion of the EEG data after de-noising. Right: comparison of the averaged 

ERP in channel 20 before removal of the BCG artifacts against the reference ERP recorded 

outside the magnet in the same channel. (Subject E-N, simulation MRI study) 

 

The next figure shows the averaged RMSE and overall correlation and the 

averaged correlation over the occipital lobe channels.  Since the VEPs are 

concentrated near the occipital lobe, there is a higher signal-to-noise ratio and 

correlation between ERPs in that region with the Reference ERPs. 
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Figure  5-24: Average root mean-squared error between the Reference ERPs and the de-noised 

ERPs at each iteration step. Right: correlation value between the ERPs obtained after de-noising at 

each iteration step and the Reference ERPs. Correlation curves in crossed-red curve are averaged 

over all EEG channels, and the curves shown in square-blue are averaged over the channels near 

to occipital lob (Subject E-N, simulation MRI study) 

 

The following figures show the averaged ERP values obtained from 

experimental data after removing the noise using SC-PLS and OBS algorithms. 

Five principal components were chosen to be removed in the OBS algorithm. 

Both methods show nearly the same overall correlation; however, the SC-PLS 

results have higher signal-to-noise ratio and lower RMSE values.  
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Figure  5-25: Averaged ERP values after removing noise using SC-PLS and OBS algorithm, 

compared to the reference ERPs shown in solid blue curve. (subject E-N, simulation MRI study) 
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can be seen that in this particular dataset, very good results are obtained after 

three or four iteration steps. Figure  5-27 shows the averaged ERP values obtained 

from the experimental dataset after removing the noise using OBS and SC-PLS 

methods. The results are compared to the Reference ERP values for each channel. 

The graphs show that both the OBS and SC-PLS algorithms produce agreeable 

results. In both cases, the improvement in correlation value is the same; however, 

the signal-to-noise ratio and RMSE are slightly improved when the SC-PLS 

method is implemented.  

  

Figure  5-26: Root mean-squared error between the actual epochs (EEG without artifacts) and the 

de-noised epochs at each iteration step. Right: correlation coefficient between the de-noised 

epochs and the original epochs at each iteration step; averaged over all EEG channels and for EEG 

channels near to occipital area (subject E-N, experimental MRI study, no gradient artifacts) 

 

The following figures show the epochs cleaned using the OBS algorithm and 

the SC-PLS algorithm for several channels for E-N: 
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Figure  5-27: Epochs before and after removing noise from the EEG data in channels 9,10, 

64,35,47 and 11 (subject E-N, experimental MRI study, no gradient artifact) 

 

 

5.5.1.3  Overall Results 

The following graphs show the quality measures obtained from the simulation 

study for six patients.  The simulation results as well as the experimental results 

obtained without gradient artifacts (Figure  5-28 and Figure  5-29) show that SC-

PLS provides slightly better results compared to the OBS algorithm. However, it 

appears that unless the datasets are pre-processed and a good initial estimate 

exists, the SC-PLS algorithm tends to retain some of the artifacts in the EEG 

signal. This issue mostly affects the high-frequency components of the ERP 

averages, such as the P150 components. However, the overall correlation values 

are better than the OBS method. Another issue that was encountered using SC-

PLS was the problem of selecting proper penalty values (λ) for the algorithm. It 

appears that SC-PLS algorithm is more sensitive to the value of λ when it is used 

to remove BCG artifacts, and a poor choice of λ can affect the method’s success. 

-0.5 0 0.5 1 1.5 2

-7.5

-5

-2.5

0

2.5

channel: 47 (F5)

time,seconds


V

 

 

Original ERP

OBS ERP, Corr: 0.66  ,RMSE: 0.79 ,SNR: 3.9 ,RMSR: 1.6

SC-PLS ERP, Corr: 0.65  ,RMSE: 0.77 ,SNR: 5.7 ,RMSR: 1.5

-1 -0.5 0 0.5 1 1.5 2

-7.5

-5

-2.5

0

2.5

channel: 11 (F7)

time,seconds


V

 

 

Original ERP

OBS ERP, Corr: 0.63  ,RMSE: 1.1 ,SNR: 4.9 ,RMSR: 1.4

SC-PLS ERP, Corr: 0.63  ,RMSE: 0.83 ,SNR: 7 ,RMSR: 1.6

Reference ERP 

OBS ERP, Corr.: 0.66, RMSE: 0.79, SNR: 3.9dB,±R: 1.6 

SC-PLS ERP, Corr.: 0.65, RMSE: 0.77, SNR: 5.7dB, ±R: 1.5     

Reference ERP 

OBS ERP, Corr.: 0.63, RMSE: 1.1, SNR: 4.9dB,±R: 1.4 

SC-PLS ERP, Corr.: 0.63, RMSE: 0.83, SNR: 7dB, ±R: 1.6             



Ph.D. Thesis - S. Salari Sharif; McMaster University – Chemical Engineering, 2012 

 

213 

 

  

  

Figure  5-28: Simulatoin Data: Changes in quality measures (De-noised – Noisy values) averaged 

over EEG channels near the occipital lobe (RMSE averaged over all channels). Top-Left; Average 

correlation of OCC channels, Top-Right; Average RMSE over all channels, Bottom-Left Average 

±Ratio (dB)-OCC Channels, Bottom-Right; SNR (dB), OCC-channels.  (Results obtained from the 

Simulation MRI datasets) 

 

The results after applying the SC-PLS and OBS in the experimental data without RF 

running are plotted below:  
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Figure  5-29: Experimental data: Changes in quality measures (De-noised – Noisy values) averaged 

over EEG channels near the occipital lobe (RMSE averaged over all channels). Top-Left; Average 

Correlation of OCC channels, Top-Right; Average RMSE over all channels, Bottom-Left Average 

±Ratio (dB)-OCC Channels, Bottom-Right; SNR (dB),  OCC-channels.  (Results obtained from 

the experimental MRI datasets after removal of Gradient and BCG artifacts 
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Figure  5-30: Changes in quality measures (De-noised – Noisy values) averaged over EEG 

channels near the occipital lobe (RMSE averaged over all channels). Top-Left; Average 

correlation of OCC channels, Top-Right; Average RMSE over all channels, Bottom-Left Average 

±R (dB)-OCC Channels, Bottom-Right; SNR (dB), OCC-channels.  (Results obtained from the 

experimental MRI datasets after removal of Gradient and BCG artifacts) 

 

5.6 Conclusion 

 

In this study, the SC-PLS algorithm was implemented to remove two different 

types of structured noise from EEG data: muscle artifacts and the BCG noise 

induced by recording the data inside the MRI chamber. In both cases, satisfactory 
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results were achieved; however, the accuracy of this method depends heavily on 

selection of the weighting coefficient (λ), which regulates the tradeoff between 

noise and the signal components. A very small λ value will result in loss of 

correlation, as the noise components selected will not be entirely free of stimuli-

related signal. If the λ value is selected to be high, the components selected will 

not be strongly correlated with the noise. It was realized that in most cases 

choosing a value of  

 





 

 

 X JJ X

X RR X

 (5-27) 

which is the ratio between 
 X YY X

,the largest eigenvalue of X′   ′X,  and 

 X ZZ X , the largest eigenvalue of X′ZZ′X, will provide satisfactory results. In 

most experiments (excluding those MRI experiments having to remove GA 

artifacts prior to applying SC-PLS), three to four iterations were enough to obtain 

the optimal results. It was also noted that a good initial guess is required for the 

SC-PLS algorithm to converge towards satisfactory results. In the MRI 

experiments, the data were preprocessed by applying a moving average filter to 

remove some of the BCG artifacts. This step is not necessary when the initial 

signal-to-noise ratio is high (roughly higher than 2 dB). However, it was realized 

that in most MRI experiment cases, the initial SNR was very low, and the 

algorithm did not achieve satisfactory results without the preprocessing step.  

Wavelet filters were also used to improve the value of Z  at each iteration step.  

A very good strategy for initializing the SC-PLS algorithm is to perform the 
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EEG outside the MRI and use the Reference ERP averages as the initial guess. 

This idea was used by [
27

] in an algorithm that is somewhat similar to SC-PLS to 

create spatial filters to remove BCG noise. Their method has been described 

earlier in Section I. However the advantage of our method is that it does not 

require an initial estimate acquired in a clean (noise free) environment (or 

condition) and also it improves the results by iteratively removing the noise and 

enhancing the signals. 

Another issue to note here is the choice of the basis matrix (  ) in (5-15)-(5-17). 

The Basis matrix can either be the original noisy EEG data or a linear 

combination of the EEG data. Both datasets were tested in the above experiments. 

Using the ICA decomposition of the original EEG data as the basis for SC-PLS 

method seems to provide slightly better results. ICA is a very strong method for 

separating independent signals from each other. Our experiments showed that if 

the original EEG dataset is used as a basis, the convergence will less stable and 

the iterations should be stopped after two or three iterations or the SNR will 

reduce sharply.  

Overall, the SC-PLS algorithm can be used to remove noise artifacts when there 

is some information available about the stimuli (for example the initial ERP 

values or estimates of the ERP obtained elsewhere). It does not require any 

knowledge about the noise, as it tries to retain the stimuli-related information 

while removing all the other variations in the dataset. In any case, where there is 

extra information available about the noise, it can be easily incorporated into the 
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algorithm by modifying matrix Y .  

5.6.1 GA artifact correction problems 

It was realized that using gradient artifact correction can seriously obscure the 

shape of the ERP averages. A simulation study was conducted by adding 

Reference ERP averages randomly to the EEG data recorded with gradient 

artifacts. The gradient artifact removal tool from EEGLAB software was used to 

remove GA artifacts. We found that the algorithm greatly reduces the amplitude 

of the P100 components of the ERPs. This is probably due to the chosen number 

slices acquired per second (10 slices/sec) which was very close to the P100 

component.  

5.7 Appendix  

Following section includes the results obtained from individual patients from 

the muscle artifact experiment.  

 

5.7.1 subject M-T, Simulation results (muscle artifact) 
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Figure  5-31:  EEG signal before and after removal of noise for some of the channels. Signal on the 

left is the EEG data prior to removal of the noise, signal on the right of the screen represents the 

same portion of the EEG data after removal of the noise (subject M-T, simulation data, Muscle 

artifact removal) 
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Figure  5-32: left: Root mean squared error between the averaged Reference ERP values and the 

averaged ERP values extracted after denoising the signal using SC-PLS at each iteration step. 

Right: averaged correlation (subject M-T, simulation study); 
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Figure  5-33: Averaged ERP values before and after removing noise from the EEG data in channels 

9,10,64,35,47 and 11. Solid blue curve shows the reference ERP  (subject M-T, simulation EEG) 

 

 

   

Figure  5-34: Topographical maps of the P150 component; Left: Reference EEG data. Middle: 

P150 component obtained from the noisy EEG dataset prior to noise removal. Right: P150 

component map from the denoised EEG dataset, using SC-PLS algorithm (subject M-T, 

simulation EEG).  
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5.7.2 Subject “M-T”, experimental results(muscle artifact removal) : 

  

Figure  5-35. Left: averaged RMSE between Reference ERP values and the denoised ERP values 

using SC-PLS, at each iteration step. Right: averaged correlation values for all the channels and 

the channels near the occipital lobe at each iteration step (subject M-T, actual EEG); 
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Figure  5-36 Averaged ERP values before and after removing noise using SC-PLS in channels 

9,10,64,35,47 and 11. (subject M-T, Experimental EEG data) 
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Figure  5-37: Topographical maps of the P150 component; Left: Reference EEG data. Middle: 

P150 component obtained from the noisy EEG dataset prior to noise removal. Right: P150 

component map from the denoised EEG dataset, using SC-PLS algorithm (subject M-T, 

Experimental EEG data).  

 

 

 

 

5.7.2.1 Subject “J-R”, simulation results (gum experiment) 
 

 

Figure  5-38: EEG signal before and after removal of noise for some of the channels. Signal on the 

left is the EEG data prior to removal of the noise, signal on the right of the screen represents the 

same portion of the EEG data after removal of the noise (Subject J-R, Simulation data).  
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Figure  5-39: Topographical maps of the P150 component; Left: Reference EEG data. Middle: 

P150 component obtained from the noisy EEG dataset prior to noise removal. Right: P150 

component map from the denoised EEG dataset, using SC-PLS algorithm (subject J-R, simulation 

data). 

 

  

Figure  5-40: Left: averaged RMSE between Reference ERP values and the denoised ERP values 

using SC-PLS, at each iteration step. Right: averaged correlation values for all the channels and 

the channels near the occipital lobe at each iteration step (subject J-R, simulation data) 
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Figure  5-41: Averaged ERP values before and after removing noise from the EEG data in channels 

9,10,64,35,47 and 11. Solid blue curve shows the reference ERP  . (subject J-R, simulation EEG). 

 

5.7.3 Subject “J-R”, experimental results (muscle artifact study): 
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Figure  5-42: Left: averaged RMSE between Reference ERP values and the denoised ERP values 

using SC-PLS, at each iteration step. Right: averaged correlation values for all the channels and 

the channels near the occipital lobe at each iteration step (subject J-R, experimental EEG, muscle 

artifact study).  
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Figure  5-43: Averaged ERP values before and after removing noise from the EEG data in channels 

9,10,64,35,47 and 11. Solid blue curve shows the reference ERP  .. (subject J-R, experimental 

muscle artifact EEG).  

 

 

   

Figure  5-44: Topographical maps of the P150 component; Left: Reference EEG data. Middle: 

P150 component obtained from the noisy EEG dataset prior to noise removal. Right: P150 

component map from the denoised EEG dataset, using SC-PLS algorithm (subject J-R, 

experimental muscle artifact EEG) 

 

 

5.7.4 Subject “E-N” Simulation data (muscle artifact study) 

 

  

Figure  5-45: Left: averaged RMSE between Reference ERP values and the denoised ERP values 

using SC-PLS, at each iteration step. Right: averaged correlation values for all the channels and 

the channels near the occipital lobe at each iteration step. (subject “E-N” simulation muscle 

artifact study) 
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Figure  5-46: : Averaged ERP values before and after removing noise from the EEG data in 

channels 9,10,64,35,47 and 11. Solid blue curve shows the reference ERP (Subject “E-N” 

simulation muscle artifact study) 

5.7.5 Subject E-N , Experimental dataset (muscle artifact study) 
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Figure  5-47: topographical maps of the ICA components for the noisy EEG data. The ICA 

components highlighted in red boxes discarded in the ICA component rejection algorithm (Subject 

“E-N”, Experimental muscle artifact study) 

 

  

Figure  5-48: Left: averaged RMSE between Reference ERP values and the denoised ERP values 

using SC-PLS, at each iteration step. Right: averaged correlation values for all the channels and 

the channels near the occipital lobe at each iteration step. (Subject “E-N” experimental muscle 

artifact study) 
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Figure  5-49: Averaged ERP values before and after removing noise from the EEG data in channels 

9,10,64,35,47 and 11. Solid blue curve shows the reference ERP (subject “E-N” experimental 

muscle artifact study) 
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5.7.6 Subject “L-X” simulation muscle artifact study 

  

  

  

Figure  5-50: Averaged ERP values before and after removing noise from the EEG data in channels 

9,10,64,35,47 and 11. Solid blue curve shows the reference ERP (Subject “L-X” simulation 

muscle artifact study) 
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Figure  5-51: Topographical maps of the P150 component; Left: Reference EEG data. Middle: 

P150 component obtained from the noisy EEG dataset prior to noise removal. Right: P150 

component map from the denoised EEG dataset, using SC-PLS algorithm (subject “L-X” 

simulation muscle artifact study) 

 

5.7.7 Patient “L-X”, BCG experimental study 

5.7.7.1 Patient L-X 

We applied the SC-PLS algorithm to remove the BCG noise from the EEG data 

for patient L-X.  

 

5.7.7.1.1 Subject  L-X, actual EEG data 

  

Figure  5-52: Left: averaged RMSE between Reference ERP values and the denoised ERP values 

using SC-PLS, at each iteration step. Right: averaged correlation values for all the channels and 

the channels near the occipital lobe at each iteration step (subject L-X, experimental EEG, MRI 

study) 
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Figure  5-53: Averaged ERP values before and after removing noise from the EEG data in channels 

9,10,64,35,47 and 11. Solid blue curve shows the reference ERP, (subject L-X, Experimental MRI 

study).  

5.7.8 Subject “L-X” Simulation MRI study: 

Following figures show the simulation study results for patient L-X , we used 

both SC-PLS and OBS algorithms to clean the EEG data contaminated with BCG 

artifacts, following figures show the results : 

 

  

Figure  5-54: : Left: averaged RMSE between Reference ERP values and the denoised ERP values 

using SC-PLS, at each iteration step. Right: averaged correlation values for all the channels and 

the channels near the occipital lobe at each iteration step  (subject L-X, simulation MRI study) 
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Figure  5-55: : Averaged ERP values before and after removing noise from the EEG data in 

channels 9,10,64,35,47 and 11. Solid blue curve shows the reference ERP (subject L-X, simulation 

MRI study) 
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Chapter 6 

Conclusion and Future work 

This thesis introduced new methods for data regression and latent component 

selection in the presence of structured noise.  These methods have applications in 

signal, image processing and optimization which need to be further explored. 

In chapter two we introduced the constrained, linear latent variable methods 

which exploit additional knowledge about the noise to suppress its effect. These 

method are superior to regular projection-out method as they are more resistant to 

presence of random noise in collected auxiliary noise matrix and provide the same 

structure as regular LVM methods. The hard constrained method is useful when 

the collected noise matrix is well conditioned and the data collected is orthogonal 

to the signal subspace. The soft constrained method introduced provides a flexible 

way of noise removing when the noise matrix is not collected in the best way 

possible. We tested the efficiency and performance of these algorithms against 

regular PLS and OSC PLS algorithm using simulation data. in all cases the 

constrained methods outperformed the other methods when the structured noise 

was present in the system. Throughout the simulations we realized that the choice 

of the penalty term can change the outcome of the analysis. We mentioned earlier 

that the choice of penalty is related to the ratio of the eigenvalues of the datasets; 

however, we only investigated one case (SC-PCR) other cases such as SC-PLS 

need also be investigated to clarify the true relationship between component 

selection and choice of penalty term. In the appendix of Chapter Two several 
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other constrained, LVM methods have been introduced and the framework has 

been laid out mathematically. However, the performance of these algorithms need 

to be further investigated. and additional applications of these methods need to be 

discovered.  

In chapter three we introduced the NIPALS SC-PLS which is a variation of the 

NIPALS algorithm. Like the original NIPALS algorithm, this method capable of 

handling large covariance structures as well as the cases when there are missing 

elements in the dataset. the advantage of the iterative algorithm is that it is much 

less sensitive to the size of the covariance matrix and hence, is more efficient in 

extracting principal components in such datasets with large number of variables. 

We tested the performance of the matrix for various levels of components missing 

in the dataset. Our simulation results show that the algorithm is much less 

sensitive to the missing points in either Y or Z matrices but is more sensitive to 

the presence of missing elements in X.  

In chapter four we introduced the constrained, nonlinear, kernel LVM methods. 

The nonlinear methods introduced provide a simple way to account for complex, 

nonlinear interaction for model building. These methods use kernel methods to 

create a general nonlinear transformation of X which can be used to regress 

against Y. The advantage of using kernel methods is that the level of nonlinearity 

is generalized and does not require specific knowledge about the system and the 

level of nonlinearity can be adjusted using few parameters.   We have introduced 

the nonlinear constrained KPLS algorithms that exploit these properties of the 
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kernel trick to build a nonlinear relationship between X, Y  and at the same time, 

constrained the subspaces to be orthogonal to the auxiliary noise matrix Z.  These 

methods are well capable of handling structured noise as well as the nonlinear 

relationship between the components. Again, the performance of these algorithsm 

were tested against non-constrained KPLS and linear PLS method and we showed 

that they outperform the latter methods. The choice of kernel parameter requires 

further investigation and additional methods such as cross validation need to be 

implemented for proper selection of kernel parameter. Our results show that these 

methods had very good performance in handling strong nonlinearities and 

outperformed regular KPLS method when the data was contaminated with 

structured noise.  

In chapter five we implemented the constrained methods for removal of EEG 

artifacts. We introduced an iterative algorithm that uses SC-PLS to initially 

estimate a basis for the noise  and signal subspaces and gradually, through 

iterations, improve the basis matrix for the noise and signal. The improved noise 

subspace matrix is later used to remove the noise from the EEG dataset by means 

of projection. We tested our algorithm against two types of structured noise 

contaminating EEG data; muscle artifacts and BCG artifacts. the results were later 

compared to the conventional noise removal methods such as ICA component 

rejection for muscle artifacts and optimal basis sets (OBS) for removal of BCG 

artifacts. We got very good results outperforming both ICA and OBS methods in 

the simulation data and in the experimental data our method outperformed manual 
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ICA rejection. In the experimental data for BCG artifacts we got comparable 

results to OBS method. the advantage of our method is that it is minimally 

operator dependant and unlike OBS method, it does not require the detection of 

QRS peaks in ECG signal. our studies showed that during the EEG data 

processing steps the choice of basis (X) can change the component selection 

outcome. For example, if instead of original X data another basis such as the ICA 

decomposition or PCA decomposition is used the results will change slightly, and 

then again the choice of penalty term can be influential in component selection. 

In summary further research needs to be done on the role of the penalty 

coefficients in the SC-PLS algorithm to understand its behavior, the application of 

these methods for visualization, control and monitoring need to be further 

investigated, the stopping criteria in the iterative SC-PLS algorithm needs to be 

further improved and further applications for SC and HC algorithms need to be 

discovered.  

 


