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ABSTRACT '

For a system of noninteracting fermions in a one-
bpdy potential it is possible to derive an expression for
the Jsmooth" part of the energy by findiﬁg correctioﬂs to
the Thomas-Fermi energy. By the "smooth" part of the énergy
we mean that part which varies smoothly as a function of
particle number and déformation.’ The. smooth energy is needed,
for example, to find the shell corrections used in conjunc-
tion with the Strutinsky energy theorem to obtain nuclear
deformation surfaces. In this thesis we find corrections
to thé Thomas;Fermi energy as a éower serie§ in h? using
the Wigner-Kirkwood eﬁpansion of the 6nerbody partition
fhnction, The resultant éxPreSSion is valid for any potential
whose dradients'and higher order derivativés exist. The
effects ofa spin—orbi; term in.the Hamiltonian are also
inclu@ed. ' The convergence of the‘ﬁ2 series is checked by

considering both the harmonic oscillator potential and realis-

© tic Woods-Saxon potentials. Expressions are also found for

the spatiai and kingtic energy.densities. Using these ex-
pressions the kinetic energy is expressed in. terms of the
density and gradients’ of the density.

The formalism is extended to the case of a con-
éfrained Hamiltonian. In particular the pushing and crank- ~

ing models are considered. When corrections are added to

the Thomas-Fermi result for the cranking model the moment of

inertia is found to depart somewhat from the rigid-body value.

\
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'.The extended Thomas-Fermi result is used to derive
E@e usual Strutinsky smoothing method and the good agreement
between tﬁe two methods shown numerically. The h-expansion
is. also compared to the A-expansion and is found to converge
slightly faster than the A-expansion. |
The formalism developed for the qranking model can

be applied with only minor modiﬁications to the problem of
finding the magnétic‘sugcéptibility of a system of eléctrons.
This fact is used to investigateesurface effects on the

magnetic susceptibility.
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CHAPTER I

INTRODUCTION

I.1l Review of Previous: Work.

To gain an understanding of a nucleus it is nec-
essary to employ simplified models. One such model, the
liquid drop model (LDM), considers the nucleus to behave
like-a charged liquid drop. With this model one may cal-
culate such propertiés as the nuclear binding energy as
a function of mass number A, atomic number Z, and nuclear
shape (von Weizs;cker 1935, Bethé and Bacher 1936, Myers
and Swiatecki 1966). Although the resulting LDM express-
ions "give reasonable fits thfoughout the periodid ﬁable
there remain systematic deviations which. cannot be éxplained'
with this model. The idea of a charged liquid drop also
provides a qualitative explanation (Bohr.and Wheeler i939,
Hill and Wheeler 1953) for the fissioning of a heavy nucleus
into two or more lighter ones although it fails to account
for many quantitative details (Clark 1971). This.is par- -
ticularly true in the éctinide region where the LDﬁ fails
~ to give the correct fission barrier shapes. Bgque one can
ge£ the correct baxrigr shapes in'this'régipn one must take
into’account’single particle effects.

At the other extreme is a model, fhe ;ndépendénp

particle model, where the nucleus is assumed to consist of

1
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nucleons moving in some average one;body potential. This

" model has had success in predxctlng the ground. state spmns
of odd—A nuclei and in calculating the ground state deforma-
thHS (Mottelson and Nllsson 1959). However it fails to re-
produce such bulk prOpertles as the total blndlng energy or’
nuclear deformation energy at’thh-large~deformations
(Nilsson et.al. l§6§§ necessary tokdescribe fission,

6ne way to calculate such properties as fission

barriéers would be to do a microscopic calculation such as

Hartree-Fock (Flocard et. ‘al. 1974) . Although this. yields

©° reasonable results 1t requlres a great deal of computer

@

time. A simpler method for calculatlng these propertles is

to comblne the LDM and the 1ndependant particle model. This
was first oone by Mfers and éwiatecki (1966) who added shell
corrections to the LDM by conSLderlng the grouglng of 51ngle~_
partlcle states 1nr) a degenerate Ferml gas. Strutlnsky
(1967, 1968) proposed a general procedure for obtalnlng the
shell correctlon from the lndependant partlcle model The .
Strutinsky method has been. successfully applled,to the cal—
culatlon of f1551on barriers (Nilsson et; al 1969, Bolsterll
et. al. 19g2,_Brack et. al. 1972) and has been-able to explain,
among other'pﬁenomena, the existence of'short—lived fission
isomers (Bjornholq and'Strotinsky 1969): It has also been
generalized to study the properties of rapidly ;otating"nuciei
(Pashkevich and F;hueooorf11975, Bengtsson et. al. .1975,

Neergard and Pashkevioh-1975), which can be important in
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heavy’ ion collisionms (Johnson and Szymanski, 1973).

As the Strutinsky method has been widely applied it
is of interest to look. at it more closely. The total bind-
ing éhefgy is writteﬁ as the sum of the LDM energy and the
shell correction. The shell correction is calculated in the
independent particle model as the difference between the
exatt sum of occupied single particle energies and a corres-
ponding sum over a'éﬁﬁéfh distribution of single particle
states. The sum ovefjthe émooth'distribution should yield an

energy which varies smoothly as a function of particle number
- {

i and deformation and will be referred to as the émooth energy.

In the Usual Strutinsky method the smooth distribution is
essentially obtained by.convoluting the‘exact sinéle particlg-
density éf states with a Gaﬁssian. Althougé this method works
guite well there remain ambighities (Jennings et. al. l97$a) es-

pecially for finite potential wells. Partly bhecause of these

ambityities other methods for obtaining the smooth energy

have been developed (Siemens’ and Sobiczewski 1972, Gross 1972,
Ramamurthy and Kapoor 1972, Balian and Bloch 1971, Bhaduri

and Ross 1971). This thesis will be concerned with the further

_devélopment of the alternate method first presented by Bhaduri

and Ross (1971).

I.2 The Present Work.

In this work we have two main objectives. The first

is to develop an alternate method of'obtaining'the smooth

. energy to check the Strutinsky. smoothing method in realistic
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cases. The second objective is to understand the nature and
behavior of the smooth energy. Throughout this thesis we will
only be concerned with systems of'noninteracting particles.
In the second chapter we develop an expansion for the smoo th
energy as a power series in fi. This expansion is obtained by
using the Laplace transform of the single-particle density
of states which inistatistical applications ié known as the
single-particle partition functionr The expansion, itself,
is valid for arbitary local potentials, finite or infinite,
which are'not too rapidly varying. The effects of a spip-
orbit term.in the Hamiltonian are also included. The rapid
convergence of this expansion'is demonstrated using harmonic
oscillator and realistic Woods-Saxon potentials. Expressions
for the density and kinetic ener§§ density are derived in
chapter thrée. The kinetic energy aensity is expressed in -
terms of the density and deriyatiVes éf'the density. ‘We'ob-
tain not only the Thomas~Fermi term and the Weizsacker correct-
ion term (von Weizsackexr, 1935) but also the néxt order term.‘
‘ In éhapter four the formalism is extended to the
case of a constrained Hamiltonian. In pafticular the pushfng
and dranking models for noninteracting pérticles are discussed -
and the relevant mass parameters are investigated. In the
case oflﬁhe cranking model small corrections to the rigid- -
body moment of inertia are found.

, ) . s
Attempts have been made to obtain the smdoth energy

1/3

as an expansion in A (Siemens and Sobiczewski 1972,
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Dworzecka and Moszkowski 1975). It is therefore of interest
to look at the A dgpendance of the smooth energy. This is

done in chapter four. The Al/3

expansién is found to converge
somewhat slower than the *Hh expansion used.in this work. |

In chapter six the usual Strutinsky smoothing method
(Strutinsky 1967, 1968) is compared with the method presented
in this work. Starting with this method the étrutinsky method
is derived including the form of the curvature corrections.
The case of finite wells is alsé discussed.

The formalism as developed in éhapterv3 for the
cranking podel ié‘aiso applicable with minor mbdification;”
to the problem of.aetermining the magneticasuécept}bility of
a noningeracting electron gas. This is illuétfated-in chapter.

seven where surface effects on the susceptibility are calcu-

lated.
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CHAPTER II

THE SEMICLASSICAL ENERGY

II.l. The Single-Particle Partition Function.

In this chapter we shall be concerned with developing
an expression for the smooth energy of a system oﬁ noninter-
acting particles in a one-body potential. This smooth energy
is useful, for example, in obtaining the shell correction
required by thé Strutinsky energy theorem (Strut;nskygl967,
1968) . The smooth energy is obtained here by findiﬁg‘systematic
corrections to thé Thomaé~Fermi (TF) results. In deriving
these corrections we will.make-use of a semiclassical expgnsion
of, the one-body.partition function (Wigner 1932, Kirkwood 1933).
It mus£ be stressed that the partitién function is>used only
as a mathematical tool énd Qe are in no sensé doing statistical
mgchanics. The tempéréture that normally appears in the éagti-
tion function beco;es in our approach only a mathematical
parameter that does not appear in our final expressiéns for
quantities ‘such gé the‘energy or the spatial density. 1In
spite of this, many of the usual fesults for the parﬁition
funcéion may be used.

:In éﬁe nucleug we are dealing with two types of fer-
mions, neutrons and protons. In our approximation 5f non-
interactiﬁg particles they may be considered cohpleteiy‘ip—

dependantly and the results trivially added in the final step.

6
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We shall therefore work with just one kind of particle.
As we are interested in the ground state, zero temperature
Fermi-Dirac stﬁtistics will be.used.

Before developing the A orlsémicl£§§ical expansion
it is useful to define some concepts. The first is the

single-particle density of states, g(e), given by:

g(e) =-Ei G(E-Ei) ’ ' (1)

-
where thé éi are Ehe.single particle energies. In terms of
ﬁhis density oﬁ states the particle number N and the energy

E are given by:

A C
N = J' g(edde - , 1 (2)

0 ) .

A, A €
E = I eg(e)de = AN - f de f g(e')de'

0 0 0

(3)

where A is the Fermi energy. The second expression im eq. (3)
is obtained by integrating by parts and using eq. (2). To
determine the energy for a.given particle npmber one must
Afirsé use eq. (2) to determine A and ‘then use this value of
A in eq. (3) to determine E.

‘The singlé particle partition_functioﬁ-can be.defined
in terms of the Laplace traﬁéform of the single particlé A

density of states as:

. -Be i '
z(8) = [lg(e)} = j e glelde =L e / (4)



where L denotes the Laplace transform and B is the trans~

formed variable. The partition function can also be. ex-

pressed as:-

~

Z(B) = +tr e—BH . : ‘ (5)

where H is the Hamiltonian operator. The quantities g(g),’

N.and E can now be expressed in terms of the paftition

function by the following equations: ‘ -
gle) = Jl;l[Z(B)].'f o - (
N-_‘*'Lz.l['z'éﬁ] : - " )

| o= amf}? [_z_é_g_)_:] . .

where l:;l denotes the inverse Laplace transform with respec£

to the variable A.C'To get egs. (7) and’ (8) from egs. ﬂ2) and .
(3) we have used elementary properties of Laplaceytrangforms
(Abramowitz and Stégun 19657xpx’1950). ‘After doing thé ?hr
verse transforms ig eqgs. (6)—(8) the dummy variable B is no

longer present.

o

-y

IX. 2 The Semiclassical Expansion.

The enexgy , E, does not vary smoothly as a function



of the nucleon number or the deformation parameters of the
potential because of the bunching of single particle levels.
The simplest way to wash out thgse quantum sheli'effec;s is
to reélace the exact partifion function in egs. (6)-(8) by
the classical partition functién'zcl(B). This, as we shall
shortly see, yields the TF expressions. The classical parti:
tion function is defined in terms of the phase space inpegral

aS: - -

_BH .
_ .2 cl .3_.3 o
ZCl(B) = ;1—? je , d pd r (9?

-The factor 2'comes from spin degeneracy. The classical

Hamiltonian, H is given by:

cl’

2

_p° ‘ , '

When the potential, V(E),'is momentiim independant, the p-

-integration may be done -analytically to vyield:

. 1 o \3/2 1 “BV(X) 5 ,
o () fe T o

The expréssions for gCl(e),<N and E may now be obtained

o ' Cl
from egs. (6), (7).and (8}:

. 3/2 '
9oy (€) = ij (&) ]dBr(e-v)l/'z 0 (e-V) (12)
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, . 3/2 ,Eici '

N o= _;_2_(_2_:_;_) J adr (Agq=V) 3/2 (13),

. 3n°\h | :
: 3)2 r
.2 Zm) j~c1 3. 5/2

Eny = Ay N - —=5 (5 d7r (AL, -V)

c1~ ‘a1 ity . c1

_ (_2_:3) 3/2ﬁcld3r[g(i 5%, v _V)a/z]
2 52 5(Aey c1 .

(14)

where the integrals for N and E are cut off at the classical

Cl

turning pointy-rcl, such that V(rCl) = AC In obtaining these

l.
results we have used the following identity (Abramowitz and

Stegun, 1965, p. 1021 and p. 1022):

TRV v VT

-1l e _ _
'C)\ B\) " YD) 8 (A V(E)) ro (15)

!

where I'(v) is the usqgl gamma fﬁnction and e(X—V(E)) is the unit
step function. The exprgssions (12), (l3)-aﬁd (14) may.be
édsily recognized as the standard Thomas-Fermi'(TF) results
(see for ‘example Kifzhnits, 1967 p. 45). Smooth corrections

1to the TF -result may now be'obtained'by finding semiclassical
correction terms to the classical partition function. Just

" such a sémiclassical partition funection, ZSC(B), was.déveiépéd
by Wiéner (1932) and Kirkwood (1933), in which the correction
éerms appear as a.power series in 4. 'Although this result .

*®

. is quite old, a derivation of it will be given here as it -
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forms the bésis for the following chapters and it will be
.useful to present the derivation in this simple case before
doing the more complicated cases in chapter Iv. To do this
we must express the trace in eq. (5) in terms of plane waves.
This gives us:

2

z(8) = -5

3 .3 _iE'E/h .-Bﬁ ig-f/ﬁ
Jd rd”p e e e . (16)
h . .

We now write:

-gfi .ip.x/A  -BH,; ip-r/h

e e = e e

5
H
o
o)
|

u(r,p,B) .
(17)

-

_where this equation serves to define both w and u. It is

easily seen that u satisfies the Bloch equation:

du -

My Bu=9d , : | . (18)

with the boundary condition:.

lim = e .
B0
Usiﬁd eq. (17) we can write eq. (18) jin terms of w, thus

obtaining:
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%%:-dﬁ[%(gﬂWw-—%(pﬂwH
w2 2, 2 2 2
+Zn‘[8 (VV)“w = B(V'V)w + Vw
~ 28(VV-Tw)] (19)

with .the boundary condition w=1 at B=0. Although this
equation cannot- be solved exactiy, it‘is, however, possible
to make an e#pansion of- w in a power series in h by
substituting:

W = l-kﬁwl-+ﬁ2w2-+-- - -, (20)

in eq. (19) and.solving to each oréer in . ?he expressions
for the w's, which contain x,p and dérivatives of Vv, are ‘
Ggiven,.ub'to Wyt in Appendix A. The w's associ;ted with odd
pbwers of‘h(&l,w3/etc.f are imagiﬁary‘anq contain odd powers
of .p. The w's associated with even powers of & are real.
ahd contain eVen‘poyers.of P. ‘With this’ expansion we may

write the semiclassical partition function, ZSC(B), as:

2 -BH K

_ Cl PR S :
Zsc(?) _-;§ fe (l+ﬁwl*h Wt )d"pd r -
(21)

The first_terﬁ is just the classical partition function
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as given by eq. (9). Although the p-integrations in éq. (21)

can be done in a straightforward maﬁner in cartgsian coordinates,
this is an extremecly tedious process and techniques for doing
them quicker will be given in Appendix B. Upon doing the p-

integrations we obtain upto order nt:

. 3/2 2,2 .
_ ! ._2_“_1 3 ~BV _ _B_” ’I_’l___ 2
Zsc®) = 572 377 (ﬁz ) fd'r e [1 iz zm " Y

m

(22)
In getting eq. (22) we have also used the fact that the

space integral over a gradient is zero to obtain identities

of the form: ' . ' ' : -

jd3r-e'?V(VV)2 = jd3r eV vty . (23)

wj -

. The semiclassical partifion. function that we have.derived .

14

may now be used in eq. (7) to obtain the Fermi energy Ao

and ;hen in eq. (8) to find ES . It is shown in Appendix C,.

c

that to obtain Esc correct-.to order -h, it is only'nécessary
_ to take ZSC(B) to ‘order A Y in eq. (7); although terms of
“ofder “h . are needed in-eq. (8). Eg. (22) can now be used

in connection with eqs. (7) and_(8) to obtain semiclassical

results for N and E,.- In doing this we rieed to use eg. (15)
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and the identity:
"‘BV\)
o BV _ _ % v Ve2 (24)
(Vv)
in connection with results like eq. (23). The final ex-
pressions are:
: 3/2 -
N =~ (2% [d3r [(ASC—V)3/2 - é%— vV (V) 1/2]
3r” \h !
(25)
' 3/2
% - 2m 3 5/2
) = A N - ) [d r (A__-V)
o = =
1/2 3
+-;l§<’3§) - Id3r vV () 12
24 H
o L
v211/2 )
- g (%H) jd3r '11/2 -‘zk[‘7(V4V)(vv)2
5760 (A =)~/ “(vy) -

sSC
+ 5033 + 1009v.v (V2 172V - 5(92v) 2yv. 7 (vv) 2/ (vvy 2

w (VA v2ony 2 + wyevvd(vw) 2 - v2(VV)2vv.V(VV)2/(VV)2] . (26)

In these equations all integrals are cut off at the turning

~-points, r

rsor 9given by‘V(Esc) =_xsc'

; " Although it is not negessary'for our main objective.

. s . . .|
of o%tainlng the expressions for N and Esc' we will give the



expression for gsc(e) for completeness. It is : ’
3/2
_ 1 m 3, g 1/2 _
9. (€) = ——2-{-—:7_-) jd r(e-v) 8 (e-V)
1 /2m\2 5 (3. 6(e-v)viy
- ) 3¢ J4F 1/7
481° \h (e-V)
2\ 1/2 0 3
-+ ———-]b—z—(’%ﬁ') __3_3_ Jd3r e(C—V)[ l4(€ -V) 1/2
5760m ’ 3e _
(V2V)2 VZ(VV)2 - ‘
+ 5 77 * 77 . : - (27)
' (e-V) (e-V)

In obtaining this result we have used the identity (van der

Pol and Bremmer 1955, p. 48 compare p. 50):
[t etz = 2L ze) (28)
‘ A

which is valid because the unit step functions are included
explicitly. |

We have thus completed the derivation for the smooth
energy in this simple case of a momentum independant potential.
We stress agaln that althougﬁj we have used -the partition
function in this derivation the result is ‘essentially an '
ﬁrexpéﬁsion and not a high temperature result. In fact-our
_resuld can be regarded as an extended TF expression where
correEtlons have been ddded to the usual TF result, that

are $mooth functions of N and deformatlon. Similar results,

'
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up to order'ﬁ—l, ﬁave been obtained (Balién and Bloch 1971,
Gfoss 1972) by quite different methods which do not introduce
the parfipion function. ‘The essential equivdlence of the
results obtai?ed by Balidniand Biqch (ié%l) and those obtained
here has been shown by Jennings K (1974)., -

. N ' 2rad
II.3 The Finite Well Problem.

The results of the previous section are strictly only
valid for potentials thét go to infinity as r goes to in#
finity. If the poténtial ‘does not do this the space integrals
in equations, such as eq. (21), for the partition funct;on
divgrge although thé egs. (25) and (26) for N ‘and gscircmain
well defined. There are two methods of making the derivation

. g .

valid for finite wells. 'For the first we notice that the
- space integrals ip eq. (25) and (26) aré only. over the classi;
cally allowed region. Thislmeané_that'the result will not
change if the potential, V, is repl§céd by a potential”ﬁha?
is almost equal to V inside the classically allowed rgqiog :
but goes to infinity at large r. This is essential}y the
same as cohfining the system in a large box. Tﬁe derivation
would then bé valid and the resuit would nét depend on tﬁe
constraining potentiél. The potentialhpould for example
be replaced by V plus an harmonic oscillator potential wi£h
a very small oscillator frequency. . ‘ o

The second method is only valid for potentials whose

volume ‘integrals are finite. Instead of considering directly
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the single-particle density of states we consider rather
‘the difference, gd(s), between the density of states, g(e),
of a particle in the £finite potential and the gensity of
states, gf(e), of a free particle (see for example Huang
1963, p. 309). Hence we have:
. . L
ga(e) = gle) - ggle) . (29)
b | | .
For the case of spherical symmetry this reduces to the wéll

known result (Huang 1963, p. 309):

*

ds ;. ~
(29+1) —= , . (30}

gd(e) = Zé(e—ai)+ % e

P>
J .
whgre the €; are Fhé bound states andiéJ are the scattering
phase shifts. This‘dengity of'states, eq. (29), may be
used _jinstead 6f.g(e) in gqs. (2) and (3) to determine A and
N.. It may also be ‘used in eq. (4) to give the‘partition

i

function., The partition function becomes (Gibson 1970):

e -BH
2,(8) = tr(ePe F) . (31)

where Hf is the free particle Hamiltonian. When the trace

is taken in the plane wave, the eigenfunctions of He o basis

' we get:
. p2
‘ —ip.xrA  _,o -B5= =-ip-r/A
Zd(p) =‘i% Id3rd3p e T 7 (e BH _ e 2m) e 7 .
. h )
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This'equdtion replaces eq. (l6) for finite wells. 1In the
semiclassical partition function, eq. (22), this affects only
"the classical term. The semiclassical partition function now

becomes:

3/2 '
1 2n 3 -gv 8V
2 (B) = -—-) Jd re [l—e
c ;;§ﬁ§ﬁ7§'(hz

2,2
N ()
15 >m vV + 1440 (-7¢ V+58(V V)

+-sv2(vv)2)] . (33)

This partition'function remains finite if V{r) goes to zero

faster than r—l. This partition function‘can now be used,in
egs. (6), (7) and (8) to determine gsc(e), N, aﬂd Escf The

new classical density of states is:

9oy (€) ='—l§<£%)3/zfd3r{(e-v)l/26(e-;?iel/zefe)] .
. 217 Vh -
(34)
The additional term, s}/ze(e), contributes to the density
of states only when € is above the top of the well. Similarly
the new term contributes to the expressions for N and E
only when Asc is above tﬁe top‘of the well and hence can be
ignored.in most cases.
.As using'a finite potential causes.oniy minor changes
in the derivation and does not afﬁeét Ehe<results we shall
) ' /

AN
~

o)

/
~
(/

Jpm
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~

n~t explicitly consider finite wells in the derivations in

the following sections. ) »

-

II.4 Spin-orbit Effects.

n this section we shéll consider the effects of a

~
- term: )'
AN
v._ = XK (VEXD) » 5 ’
LS m
52 ~
= ik Eﬁ»(VfXV)Vc (35)
in the Hamiltonian pn the semiclassical energy. Here K is
a dimensionless strengt@ facéor, f(r) is a dimensionless
form factor and we have used the relations p = ~iAV and
§ = %—ﬁa, where 8 is the unit Pauli matrix. The quantﬁm
partition function now becomes: ’
—B(H, +V._ )
7(8) = tr-e 0 LS (36)
where HO is the spin independant part of the Hamiltonian:
Hop = 5 * VD) - . (37)

.

~ ' . ' -~
Since VLS does not in general commute with HO' we cannot

writg Z (B) as the trace over a product of two exponentials.

We can however write:
-B(H %V )  -BR. . . '
e 0B 05, (38)
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and develop a differential equation for S (8) by differentiating

both sides of eq. (38) by B. This gives us:-

a BH ~ =BH

3S(B) _ _.7 0 5 0 _ _&

38 - ¢ Vs © = Vg (Br (39)
where this equation serves to define GLS(B)' It is easily

seen py direct substitution that:

~ . (B - B B'.
S(B) =1 - jo Vg (B')dB'+ jo Vg (B )fo Vi (8")aB" ag' + ---

(40)
provides a solution of eq. (39). The operator GLS(B) may

be further expanded as (Messiah 1965, p. 339)

. 2 . A
~ _ ~ A ~ B_— A o

27 LS
. ' (41)

From eqs., (36) and (38), using the plane wave basis, we get:

1 ~ip-x/A —BHO ~ ip-x/h 3 .3
Z2(B) = — L [e T e S(B) e 7 7 d"pd
h™ ¢
1 1 "'"BHO lp r/fl x A ~'£/ﬁ 3 3 ‘
| = ;j z J(e e ) S(B)e d'pdr (42)
o] ' .

In obtalnlng the second expression we have used the fact that .
BHO 1s Hermitian: We may now use eq. (40) in connection .
- with _eq. (42) to pbtain an expression for Z(B) as a powerx

series in the spin-orbit strength constant x. The first
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term is k- 1ndep%?9ant and is the same as the partition
functlon discussed in section (II.2). The term linear in

¥ is also ;inear in\a and hence vanishes upon taking -the 3.
trace as o(is traceless. This leaves the KZ and higher order
terms. We will only consider the KZ,K3 and K4 terms as higher
order terms are negligible as shown in ﬁext section where

explicit examples are considered.

We will now use the semlcla551cal egqs. (17) and (20).

and the definition:

I(z.p.B) =e . S(Ble ~ -1, (43)

to obtain:

=~ RH

z (B =‘ar% ) f L1mag « 2% + ---)I(g,g,s)df.nd:*p
Ah ) '.. ..',
e
+ 2l (8) S <L (4d)
sC ,

4

where Z (B) is the partltlon functlon as glven by eq. (21)
or (22). It now remains to evaluate I(r Pr B). This may be
done in a straightforward manner to-any order in ‘h by using
egs. (40),,(41) and .(43). The expression for I(E,E,BY,

l

after the.g;summaﬁion,a;s given in appendlx D. Upon doing

the p—lntegratlons as qutlined ln appendlx B we get:

2 . /2m 1

' /2 .
_ 0 K 3 a2\ 2
2gc (BY = 2, (B) + g3/ 251 2(4;5) [d re " (V)
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-

1/2
g1/2 (1 A2 3 o-BV[.2 2.2
o 75 L r e BV 2(-p(ve) 2 (vPW)

v3(ve) 2 - (v26)2 4 vEeviv2e) 3 23((vE)2 vs

+
N

- % VE-V(VE) %) + 2K4(Vf)f]

;\\_-J// (45)

_To get the final results for N and».ESc it is only necessar§
to use th?se expressions in egs. (7) and (8). We will here
only write down the extra terms due to the spin-orbit as the
K-independaht terms are already given in’eqs. (25) aﬁd (26).

The ‘additional term to be added to the N equation, eg. (25),

is:

2 1/2 \, . . ,
K 3 vy 1/2 -
Z;—f(%z—) jd r (vVE) 2 (V) T80 )

»
L

. €™ R s

while the additional tefms .to be added to eq: (26) for E .

‘rare: : _— ' , .o .

-

1/2
_ _k°/2m o372, 00
__5.(__.) | Jd r(v6) 2 (v 20 (n, v)

e eni\n?) )
o 2"1/2 2 y
S Jd3r}x ~vy1 2[ £ v2(ve) 2-(v25) 2
48112 (2m> ) 2
4 VE-V(V%E)- 1321—132 }-26> ¢ (v£) 272 78 5 Ve V(Vf) 23

2_(ASC

-

.

+ z.<4<v'f)4]'9<xsc-v) ' . - (a7)



The complete expression forﬂEsc‘in the case Of spherical

symmetry is given in appendix E.

"IX.5 "The ﬁ-Expanéion for Harmonic Oscillator.

In this Qection, we consider a simple model where the
one-body potential is aﬁ isotropic harmonic oscillator with
a constant spin—orbi£ term. In this case Z o cén be directly
obtained from the eigenenérgy spectrum without going ‘through

the Wigner-Xirkwood expansion. The relevant equations for

Zsc and,ESc derived in the earlier sections can therefore be

"checked here. Also the convergence of the series can be

“

examined for reasonable values of ‘the oscillator parameter,

w, and the spin-orbit strength, «x.

r

, 'The one-body Hamiltonian is taken to be:
- f: . e
O ' .
2 >

.(

As -8 0?4 Lne? - ki . (48)

[

I

»

where & = —i(§XV).' Comparing VLS of  the above Hamiltonian

with eq. (35), we'find the form factor .f for this case to

»

be: : : , . o

<

£(r) = (/A . . ST (49)

The resulting single particle;spectrum is given by:

-

-t . ] . B
"

» 4 . i - ‘ . ' s
€impe1/z = (201243/2)T0 - khod R -
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.
~Ay

€j=2-1/2’= (2n+2+3/2)hw + <Bhw(2+1) . -, (51)

»
y

The degeneracy of the states for a given j is (2j+1). 'The

quantum partition function, from eq. (4), is

e—ZnﬁQBzzo[(l+l)ethw(l—K)+2é-Bﬁw£(l+K)

—Bth ) (52)

/\\
The sums over n and % oan be done exp11c1é1y to glve

(8. “th/Z 1 e-KﬁwB
z(8). = N
q sinh(th) sinh? [aﬁwB(l—K)] sinh?[%ﬁw8(1+K)]
. éﬁws(l—K)
f ’ '2e2
, + . (53)

sinh[% hwB (1-k)] _

Note that for k=0, the right hand side of the above equation
reduces to the usual form 1/4 coseqh?tﬁwB/Z). ' The semi-
classical partition function may now be obtained by expanding

the hyperbolic and exponential functions with the result:

/ | ,
z . (8) = —L— [ 2 () ? - 2o L (349,?
(1-x“) thwB) thwp) 12hwp.
- | | 6
-106h) + S(sk7-2¢ )Jgggo(syf3qaxz—3s4n4+g4k Y

+ --——] . . (54)
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In the above eguation for Z;C(B) we have'ah expansion in.powérs,
of 4 whereas the Wigner-Kirkwood series, given by egs. (22)
and (45), is in power of ﬁz. This‘is bgpquse in the present
model the form facﬁor, f(r), contains.an explicit factor of

hal. This will not be so when more realistic fdrm factors

"are chosen in the next section. - ” ’ .

For the Hamiltohiaﬁ (48), a reasonable value of k is
xo.i, so that we may further expand the factor (l—Kz)2 in -
eq. (54). It is then éonvepient to Fplié the resulting Z;c

as in eq. (45), writing:

_ 0 - o '
2sc —.st.+ 2is ) (54)
We then get: : . )
2 s 2o - —=— & g+ - ' (55)
(hwB) ™ 4 (hwg) l
.with the k dependant terms in ZLS' This result is in agree-

—

ment with that obtained by Bhaduri ahd,Roés (1971). It is
easy to verify that eq. (Zé), which makes no use of the spectrum,
exactly reproduces eq. (55) when we put Vv ='mw%r2/2 énd pexr—
form the relevant integrations. Note that two small expan- '’
sién pérameters,‘ﬁ gna K; are involved. Arraﬂging éhe terms

in the expansion such that all terms within a square bracket

are of the same order, we may’write:
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2 4 3 2
_ 6K 10k~ _ 2k _ 5 «x
Zy,s (B) ”["——“] * [ a‘m—s}

¢hwg) > hog)>  hwg)
6 5 4
l4k 4 17 « 5 3 9 2
+ - - S a7t 5 K+ =7 K CﬁwB)]+ —-——,
‘ -[(‘th)3 e 2 12 EeB T I2 64

(56)

It is again easy to cﬁeck that all terms in the first two

brackets in the above equétion are reproduced by the Wigner-
Kirkwood férmula (45) when £ = (mw/hfrz. The last term will
be/éhown to make a negligible contribution to Esc'

For a given number of particles, Asc can now be calcu-

- lated using ZS of egs. (55) and.(56). The smooth energy E .

c
is then calculated with Aéc using eqg. (8). . The resulting

expression for.ES is:

C
A T 2 ,
_ — sc sc _ 17 ;7
By )\S‘CN.) YY" WE * Bhe ~ g0 MW
| 4 2 3 . .4
- Ei Asc +.(§;K2 Xsc + Ei Xsc _ ;§_K4 Ase )
) 4 he) S 8 huw 3 (ﬁw)‘ﬁ 12 o) >
4 3 2
)\ A A
_ 1 6 sc 2 5 "sc 17 4 "sc¢ _ 5 3
+( 25 God 3° ey 2N Re T 1F Asc
- '5‘91 sz)Jé —— . o (57)

It is not difficult to check that above equation, neglecﬁing
the 'expression in the last bracket, is reproduced if one uses

the Wignef—Kirkwood equnéion, eqs. (22) and (45) or as given
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* in appendix E, with V = mw2r2/2 and £ = (mw/h)rz. To
eséiﬁate the felative iméortance of'thesg terms in a heavy
nucleus, we assume hw = 7MeV and arbitrarily set Asc = 42 MeV.
The firs£ three’ terms of eq. (57) are respectively -756.00,
31.50 and -0.12 MeV. The leading k° term gives -22.68 MeV
while the three terms in the first bracket give respectively
1.58, 0.50 and —0.58 MeV. It is seen‘that the K3 and K4
terms almost cancel. This seems to be a general result for
realistic valu%g of k. The terms in the second bracket give
ohlv —0.005 MeV. Considerations of this simple modei there~
fore indicate that the semiclassical series (22) and (45) is

accurate to 0.1 MeV and that the*neglectéd terms are, in facﬁ,

negligible.

II.6 The h—ExpahsiOn for Woods~-Saxon Potentials.

In this section we consider the semiclassiéal expansion
for Woods-Saxon pofentials both with and without a'spin—orbit
potential. We first look at the case of hypothetical sphefical
"ﬁuclei" with N=2=A/2 and no Coulomb potential: Tﬁe potential

is gi&en by:

V{xr) = = Vof(r) T . (58)

‘with:s

f(r) = [1 + exp(r—R)/a:]“l . (59)
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72
164
204
260
© 292
416

Table 1.

energies are in MeV.

(~3)
Ese

~717.7

-1368.3
-3344.7

-4229.8
-5484.8
-6208.4

-9045.1

i
36.2
52.5
88. 8

102.3

119.7

129.1

162.5

Table 1

SC

~680.8
-1315.0
-3254.9
-4126.5
~-5364.0

-6078.2

~8881.5

28

st

N
-1315.4(1.2)
~3256.0(1.2)
~4126.6(0.8)
-5364;4(0.8)
-6078.6(0.8)

-8882.8(1.2)

Smooth enérgy in a spherical Woods-Saxon well. All

The parameters of the well are as given

.in the text. The first column giveé the nucleon‘number A=2N=22Z.

The second, third ahd fourth columns give

E(l)
sc

TF term,
1

the A~

" column gives the Strutinsky energy.

p(=3)

N

sC

g (-1)

and-

which are the contributions to E.. from respectively the
term, and the ©h term. The fifth column

gives the total semiclassical energy Egc’ while the last
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I

For these calculations we choose VO = 44 MeV, a = 0.67 fm,

1/3 fn, while ©2/(2m)

and R = 1,27 A 20,748, The cal-
culations for E_  were done, using eq. (25) and (26), for
about twenty "nuclei" in the range A = 40 to 500 and a few
typical results are displayed in table 1. It can be seen
that for such potentials the numerical convergence qf our
series is exqellent; and we can claim to have found ESc

to én absolute accuracy of 0.1 MeV.

Our results are also compared, table 1, to the smooth
energies,‘Est, obtained from carefully done Strutinsky cal-
culatipns‘(Jennings et. al. 1975). Due to ambiguities in-
the Strutinsky result the comparison 'is not made for A < 70;
for the other cases the agreement is quite good.

| To see the effects of spin-orbit we will consider
the cases of 126 and 184 neutrons moving in a sphericai
Woods-Saxon well, as parametrized by Blomquist and Wahlborn

(1960). The central part is as given by egs. (58) and (59)

while the spin-orbit part is, in the notation of eq. (35);

bl
Q1Q
H|th

=

2 ~ : ’

with £ as .given by ed. (59). The numerical values of the

parameters for N = 126 are Vy, = 44 MeV, R = 7.52 fm a = 0.67 fm

and k = -0.7491; and for N = 184 there are Vo = 43 MeV,

R = 8,48 fm, a = 0.67 fm and ¥k = -0.7321. In both cases
N ‘ ’

b

(TS



N g{=3)
SC

126 -2314.69
184 -3267.29

HO

Table 2 Smooth energy in a spherical Woods-Saxon well with

£ (-1)
sSC

50.87
6l1.24

31.50

AR

Table 2

2:1) gLS (1) . pLS(1)

SC . 8cC . 8¢ sSC
197  -23.92  4.24 -2282.43
1.47  -30.13  4.97 -3229.74

-0.12 -22.68 1.70

spin-orbit. All energies in MeV. The parameters are given

in the text. With the ekception of the first, fifth and

éixth,columns-are as in table 1. The first column gives

the neutron number N while the fifth and sixth give, the

contributions from Vig of c>,rder‘h-"l and h fespectively.

The last row gives the harmonic oscillator results from the

iastAsection._ The Strutinsky results are from Ross and

Bhaduri (1972).

30

Egt

~2282.5

-3230.0
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2. Compared to the

ﬁz/(Zm) was taken to be 20.7219 MeV-~-fm
harmonic'osbillator model of sect. (II.S5), k is of the opposite
sign and much larger. This is because df/dr is negative here
and it is nonzero only in the surfaﬁe region, so tha@?a

larger k is needed to yield the same level splitting. For ,

the same peason the contribution of V to E__ is of the same

LS
order of magnitude as in the harmonic oscillator model, and
the perturbation scheme remains satisfactory. The results
for Esc were obtained, usiné egs. (25), (26), (46) and (47),
and are given in table 2. Also given are-the corresponding
pumbers for the harmonic oscillator as obtained in the pre-
vious section. ‘Although the convergence here is not as good
as for the harmonic oscillator it is still adequate. As we
noted in the last section the next higher order contribution
of VLS to LI in the harmonic oscillator model is only 0.005
MeV., Even if it'wére twenty times bigger for the Woods~‘
Saxon case, the neglected term would-still be oniy 8.1 MeV.
We again see tbk good agreement between the semiclaésic and
Strutinsky values. These Strutinsky values were obtained
by Ross and Bhaduri (1972). |

Calculations have also been done for potentials in-
cluding Codlomb effects as well as for deformed potentials
(Jennings et. al“l975 a,b).. In both cases results similar .

to those quoted were obtained. The computer time needed to

c! for axially deformed nuclei

-

complete the calculation of Es

at a single deformation, was about 8 sec. on a CDC-6400
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computer. In most cases checked the agreement with Strutinsky
results was reasonéble. The formal relation between these

two results will be discussed in chapter 8.



CHAPTER III
THE .SPATIAL AND KINETIC ENERGY )

DENSITIES

III.1 The Spatial Density.

“Inmthe last chapter we developed semiclassical ex-
pressions for the total energy. It is also of interest
to develop éxpressions for the spatial and kinetic energy
densities. We shall start with the spatial density, p(x).
It is useful for this purpose to define a mixed density

g{e,x) given by:
gle,r) = I ] ()0, (£)8(emey) (1)
i ,

where wi(g) is the wave function corresponding to €« The
normal density of states, g(e), of eqg. (II.l) may be obtéined
by integrating g(e,x) over all space. The spatiagl density,
p({) is obtained‘by integrating g(e,r) from the bottom of

the well to the chemical potential A, In analogy with the
partition function of eq. (Ii.4) we may define the diagonal
Bloch density, C(E,B), (March et. al. 196% p. 13) as the

Laplace transform of g(e,r). This gives us:

i

C(r,B) Iig(elg) =_j q(s,g)eusede
-, . 0

* -Be, . ’
Ly;(r)y;(rle = . - - (2)
l »

33
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Integrating over r yields the usual partition function of
eq. (II.4). The spatial density is given in terms of C(r,B)

as: -

ptry = [3F [S5R] (3)

As in the previous chapter we shall do our expansion in B-
space, only here it is - C(r,B) we must evaluate, not Z(B).

It is convenient here to introduce the\off-diagonal

Bloch density, C(x,r',B) given by:

-Be,
Clr,x',8) = Iy (x)v,(re * (4)
z |

~ e

»

The diagonal Bloch density is given in terms of the off-

diagonal Bloch density as:

C(EIB) =3 C(EIE /B . (5)

It is easily seen that C(r,r',B) satisfies the differential

.eaquation:
- : oC(r,r',B) _
}.iE'C(EIS"B) + aB = 0 (6) ‘

3

with boundary condition:

Lim C(r,r',8) = é(r-r')

(7
B+0

-
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~ ‘ .
The operator Hr' is the Hamiltonian acting in r' space.

By direct substitution it can be seen that the solution of

eq. (6) with correct boundary condition .is:

J -ip-f/ﬁ :—Bﬁr' ip.r'/h
e

C(x,r',B) = —%- e = e d3p (8)

T h

The diagonal Bloch density is obtained trivially from eq. (5).
We now use the semiclassical results (II.17) and (II.20) to
write the diagonal Bloch density as:
| ~BH.,
C. . (x,B) = 2 Jd3p e Cl (L + hw, + h2w + —-==) , (9)
c'= 'h3 - 1l ' 2
where the w's are given in appendix.A. The p-integrations

are identical ‘to those done in obtaining ZSC(BS. The result

for the C(r,B) after the p-integrations is: ' ‘

h

3/2
_ 1 2m BV 2, _ B 2
Csc(ziB) = 3723 2( ) [1 12m vy - 3 (w7l

4,3 4
h'B Y 8 2,42 B 2 B 02 9:4 2

24m2 20 1;
% o2 2 _ 8 , B 4
-5 v en? - fwevon? + B aw) ]+ —-_-}. ,

(10)

The partition function of eqg. (II.22) may.be recovered from
this expression by integration over r and using identities
such as eq. (IT.23). Unfortunately the density cannot be- .

obtained by a straight forward application of eq. (3) because
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for most terms in/eq. (L0) the Laplace inverse does not,
ét:ictly speaking, exiéé. If however we were to multipiy
C(E}B) by gl/462Y2 the in&erse trgnéform will éxist. This
corresponds to convoluﬁing the mi#ed densiéy with a Gaussian
(see appendix F). If y is small this shbuld have little.
beffect on the smooth semiclassical density. This proceduré
is similar in spirit to a technique used by.Balian and Bloch
(1971) in whi¢h they iptroduced a Lorentzian smoothing in
g-space in order to justify their ﬁ;expansion. The mathe-
matical details of using the Gaussian smoothing are ‘given

in appendix F. The final result for the Laplace inversion

formula, .from eq. (F.8) is:

Lot pntl/2 BV e(x-\‘r)myz (11).
I'(-p-1/2) (A-V)
which is valid eécept near the turning point, where A=V.
Fof negativé n this is just the usual inversion formula
kAbramowitz and Stegun i965,'pi iozzr and is valid for all.X.
With the use of.this formulae the semiclassical expression
for Pgc May be easily obtained from egs. (3) and (10). The
result‘is:. |
3/2

| 1/2
1 /2m - 3/2 1 /om
Pac (D) = 27 (] 05 - ——7(—-—-) .
BE " 32 \g?)  SC 247% \ 2%

_(yny L+ v2v /}*" 1 (@3) { viv .
~ 372 o172 Z\2m o1 3/2
40 ) (Ag V) sgon? ¥/ v
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, Table 3
r Per psfc—:l) Pst P
0.000 1.751 1.758 1.758 1.571
0.333 1.730 1.737 * 1.737 1.694
0.667 1.668 1.674 1.674 1.716
1.000 1.566 ©1.572 1.572 1.549
1,333 1.426 1.431 1.432 1.443
1.667 . . 1.253 1.258 1,258 1.270
2,600 . 1.053 -+  1.056 1.057 1.038
2.333 0.831 . 0.832 0.837 0.848
2.667 0.598 0.596 - 0.595 0.611
3.000 0.367 '0.360 0.340 0.332 .
3.333 0.157 . 0.139 0.137  0.129
' 3.667 0.011 ~0.168 - 0.035  0.036
£.000 " 0.000 0.000 0.006 _  0.007
4.333 . 0.0000  0.000 0.001 0.001

Table .3 The smooth spatial density for'é three-dimensional
harmonic oscillator. The particle number is 112 and units
are chosen such thét'ﬁw=h2/m=l. The first column qives the

' radius at which the densi£;eé are evaluatéd. The remaining
give, iniorder, the following densitiés; the TF density, Pppi
’ éhelsemiciéssical densi£y tO‘ordep é;l} pé:l), the-Strﬁtinsky

~density, p ., and the exact density, p.

.



+ 1 1 73 (5 v* )% + svv.vv?y + 2&72(\7\_/)2)
(A__.~V) '
sSC
5 1 2 2 2
+ = 5 73 (S(V Y)(vv) + 3VV.V(VV) )
sSC
L5 (! },» . L e (12)
64 () _v)9/2 ‘ ‘
sc ,

for (ASC—V) greater than zero and p=0 otherwise. This ex-
pression‘is not valid near the turning points where it diverges.
The leédiné term in this expansion is just the TF result
(Kirzhnits 1967, '‘p. 45). The toéal'expfession, to order A,
has also been'obtained by Kirzhnits (1967, p. 53)‘using
completely differeﬁt methods. .

For the harmonic oscillator the density obtained from
'this semiclassical result is in good agreement with the
Pgr (Jennings and Bhaduri 1975), for r
inside the classical tu;niﬁg points, This is shown in

Strutinsky density,

table 3 where the TF density, ppp, and p_"to ofder hl are
.compared to both the Stfutinsky and the exact p. '

The semicdlassical density was also found for a Woods-
Saxon'poténfial with the same'paraﬁgters as,giVen in the
first part of section II.6. For the closed shell case,
N=92, both the semlclaSSLCal and the exact den51ty are plotted
in fig. 1. It may be seen that semlclassmcal den51ty is qulte

smooth except near the turning points where it dlverges. The

exact density oscillates about the semiclassical value.
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The Strutinsky density in a Woods-Saxon well, unlike
the semiclassical density, gontains oscillations (Bfack et..al.
1972, Brack 1976) as a function of r. We believe that these
oscillations in the smooth density are spuribus and reasons
for their presence will be discussed in chapter 6 where the

Strutinsky method is dealt with in more detail.

III.2 The Kinetic Energy Density.
The kinetic energy density; t(r,)) is defined in

terms of the single particle wave functions, wi(r), as

1 .
_h * -
T(r,A) =5z f V-V 6(A-e) (13)

. ¢
As in previous sections we shall take the Laplace transform.

b

‘This gives us:

, . 2 ~ i
w8 = Leon) =55 37 vup ve ™y, (14)

)

x

We now wish to express this in the plane wave basis. This
can be done by .expanding wi in a plane wave basis:
. _ 1 3 . ig-4/n ' ‘ ,
S h—sfz‘J‘?”i‘B"’: | | ( (13)
. This expression can be used in eq. (14) along with the

.comnletehess relation on the ¢i(g) to yield:
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(16)
The semiclassical relation (II.17) and (LI.20) can now be

used to yield:

2 -BH
1
Jd?’P [%‘%ﬁ E'V] e Tl

+'hzw2+-——) . an

1 1
T (E'B) = = -
sc ‘8 h3

-~

In this‘equation we have already let the del-operator act
on the second plane wave to yield the p2 term. Using the
expressions for the w's from appendix A this equation may
be stréightforwardly evaluated and with the help'df eq. (11)

the final result is obtained:

5/2
3/2 (A__-V) 1/2 '
Tsc(r'l) =(’Z%> Sg + 12(2§) '{} % VZV(Asc~v)l/2'
h” /. 5m° ‘ 8n°\h
1/2 : 2
L3 (wn? }_ 1 (112_) {_7_ . viv L1 (A
4(X _V)l/Z 24ﬂ2 2m 20 (A _V)l/2 48 (A ~V)3/2
sc sc sc
1 ogv.ewvdv 1 2, 2 2.2
+ F + Vo (VV) 11 (Vv) V7V
sc- ¥, sc
2 4 .
+ 32 W-V(VV)/ + 75 (VV) v } : ] (18)
160 5/2 256 \1/2 * .
o (geV) o Age™V) :
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It is of interest in many applications to have T in
terms of p and gradients of p rather than in term of (A-v)
and gradients of V. Such an expansion may be obtained by
inverting eq. (12) to obtain an eéxXpression for V in terms of

P and using the result in eq. (18) . This is a straightforward

but tedious procedure. The result is:

2 2/3 2
=h_ {3 2 5/3 , Vp . (vp)?
(r) = 5= {5 (317) p o=t 350

4 2 2 .2 2,0 .2
1 Voo Vp-Vv7p (V7p) V_(Vp)
24 -60 ~28 -14 L t70)
1320 (312, 273 ( 273 T 573 573 4 5573

4
280 (Vp) (V p) 184 Vp. V(Vp) 1152 (Vp) .
3 BT T3 R 7 N )} (19)

The first term is the TF result, the second term vanishes

upon r integration whiie the tﬁird term is the Weizsgcker

term with the correct coefficient (Kirzhnits 1967, p. 53).

The terms in thé last bracket are additional corrections.

This expres51on as derived is only valld when the dens;ty used
is the sem1c1a551cal density. When the semlcla551cal density
is used the expression is not valid near the turning points..
In spite of this limitation in the derlvatlon it 1s interest-
- ing to abply the result to a continuous density such as the

exact,or Strutlnsky density. In particular it is interesting

to u#e ‘this type of expression to calculate the total kinetic

/

)
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energy. When eq. (19) is integrated o&%f all space it-can

——

be simplified by using the fact that th ntegration ovex

a gradient gives zero. Thus eq. (19) bé&comes:

1/3

2 2 4
3_13,,.2,2/3 5/3 (Vp) P : [VQ]
T = = [ x{=(3717) o) + + 8
2m.j {5 36p 6480 (31%) %/ { P

. 27(322) (Ypﬂ)z + 24 (‘—7-2—")2 :]} ‘. | - (20)

This expression differs from Kirzhnits (1957) although it
agrees with Hodges (1973). We believe this discrepancy

is due to an algebraic error in Kirzhnits' result.

Eq. (20) was checked (Brack, 1976)‘by using the exact
density from Woods-Saxon potentials for various particle
numbers. The resultant T was found to differ from the true
T by an amount of the same sign and approximately the same
size as the shell cofrection. ‘This_seems to indicate that
for this p we pick up most of the smooth conFribution to
the kinetic energy as well as some bﬁt not all of the shell
correction contribution. The Strutinsky density, for both
harmonic oscillator and Woods-Saxon potentials and various
particle‘numbers, was then used (Brack 1976). The T.obtaineq
from eg. (20) was in m&st cases within one MeV of the
Strutinsky smoothed Toe™ In a few céses the difference was
larger (2-4 MeV)r ;t is believed that the,d%éérepancy in

these cases was due to a poor determination of the Strutinsky
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) .
density. To indicate the relative size df the various terms
in eq. (20) we will consider an'isotropic harmonic oscillator
with N=90 and fiw = 7.55 and use the Strutinsky smoothed
density. In this case the leading TF term gives 1636.65 MeV;
the Weizsacker term gives 21.62 MeV and the remaining term
7.71 MeV for a total of 1665.98'MeV. This compares’to the
Strutinsky smoothed Tsé of 1667.22. The numbers for Woods-
Saxon potentials tend to be similar although the last term
. is somewhat larger (V12 Mevﬁfor N=82).
We also tested eq.*(ZO) for Woods-Saxoﬁ potentials

by using a trial density of the form:

_ Po
I+ exp[(rfRo)/a]

(21)

where pg wWas chosen such that the central density was the
same as the semiclassical central density. The surface
thickness, a, was varied to minimize the tétal energy and R0

was chosen toirepréduce"the correct number of particles. The

total energy was then calculated by:
\;. 3 R » " . -
E = T + Jd r pvV , (22)

where T is given by eq. (20). This was then compared to the
semiclassical energy. For N=82 we obtained a total energy
that was more negative than the semiclassical energy by 5 Mev.

Similar results were found for other particle numbers with the



discrepancy increasing'slowly'with particle number. As
there is no strict varational principle for the density,

this‘discrepancy may be due to a poor choice of density.

3
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CHAPTER IV
SEMICLASSICAL ENERGY FOR

A CONSTRAINED HAMILTONIAN

IV.1 The General Constrained System.

Recent developments in heavy ion reaction experiments
have allowed the production of nuclei with high angular mo-
mentum (Joﬁ;son and Szymanski 1973). One theoretical method
for studying the effects of angular moﬁentum on the binding
energy and nuciearrstaﬁility is a generalization of the
Strutinsky method (Bengtsson et. al. 1975, Neergard and
Pashkevich 1975). As with the Sérutinsky method for the ﬂon—"
rotating case it is necessary to find the smooth energy for
a system of noninteracting particles, however here we must
use the cranking Hamiitonian. In this chapter we wil%'devqlop
a semiclassical expressiop for this smooth energy uéing a
generalized Wigner—kirkwood expansion. ‘

In the Thomas-Fermi appgoximaﬁion:the‘cranking model
for noninéeraqting particles givés the rigia body value\for;
the moment of inertia kBloch 1954). If corrections td the
Thomas-Fexmi approximatibn are considered, however; the momenﬁ:
of inertia is found to deviate fro& the rigia body value. We '
will obtain expressions fdr_theée deviations apd éhow'ﬁhat
they are quite small. |

Rather than beginning directly with thé:rotating case’

~46
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we shalffdevelop the ﬁormalism by considering the more general
case of a constrained Hamiltonian. This formalism will then
be used for the pushing model (Amado and Bruecker 1959) for
linear nmotion to demonstrate the techniques which have been
developed. We shall then consider the cranking model for
arbitrarily large angular momentum when the Hamiltonian has

no spin-orbit term. The Hamiltonian with spin-orbit intexr-
action will be considered for small angular momentum and the
order of magnitude Qﬁ the corrections to the rigid body moment
of inertia will be discussed. In section IV.4 we will discuss
the effects of axial symmetry on the moment of inertia.

" The formalism we have developed forthe crankiné model
can be applied with only minor'modifiéationsito the problem of
determining the magnetic suscéptibility of a system of non-
interacting electrons in a uniforﬁ magnetic field. This will
be done in chapter;VII;' ’

We will now set up our formalism for the case of a
constrained Hamiltonian. We want to find the wave functions

that minimize the energy while simultaﬁeously keeping the ex-

. pectation value,

F = <TF >. - (1) -

~3

. of some given one-body operator F fixed. This may be.done by

introducing a constrained- Hamiltonian:

-#* = H~pF |, K _ (2)
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i3

where H is the unconstrained Hamiltonian and p the Lagrange

multiplier used, to constrain F. The energy is now given by:

N .
B o= 1 e, (3)
i=1

where the ag are the eigenvalues of the constrained Hamiltonian.

The expectation value of F now becomes:
A

J¢§*(g> Fyl(nad’r = J g" (e)de , (4)
0 ' '

H
il
1 e A

i=1

where ¢§ is the eigenfunction corresponding to ag. In the
‘ second expression we have again introduced.the chemical po-

tential‘l. The density gF is gi&en by:

¥ (e) = ingf(f) Fyl(n)6 (e-era’r. @

In analogy with eq. (II.l) we introduce a density of states:

g'(e) = I 6(e-e}) (6)
1 . .

-Eqé. (II.Z) and (II.3) of chapter II are now replaced by the

thfee'equations:-\N‘ N

) . .. |
N = ] g"(e)ae . (7)



49

A . :
F = J gF(e)de ) (8)
0 . . .
A >
E = AN + uyF - J de [ gu(e')ds' ' (9)
- 0 . 0 .

Continuing as in chapter II we introduce the one-body partition

function:

© . _ _ "u
7' () = J " (e)e PEde = tr o PH (10)

0

In terms of ZzY(B) the two densities given by egs. (5) and (6)

may be expressed as:
' (e) = L7117 (8] | . (11)
F _ -1 l 8 LM o ' Cyn.
g (e) [8 TS (6)] | (12)
In obtaining eq. (12) we have used the identity:

2oy g BH-UF) . g o p p B (H-WF) ‘ (13)

au
ThlS ldentlty, which is true even when F and H do not commute
may be easily proved by Taylor expanding the exponentlals and
us;ng the fact that the order of operators under a trace may
be .cyclically permuted. - "

Rewriting egs.. (7)-(9) interms of the partition function,

in analogy with egs. (II.7) and (II.8) we arrive at our final
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expressions:
n =L ’Z“‘B’J - (14)
x |ITF .
_ =171 az¥(p)
P LU e (13)
B
. _ u ’
E = AN +prF-L]7 [5—2@-] (16)
8 » ,

For given values of F and N one uses egs. (14) and (15) to
determine A and u which are then used in eq. (1l6) to determine
E. By considering dE at constant N it is easy to show that:

dE

aF = B . (17)

.
This is grue even if approximate expressions are usedQ?g; Zu(B)f
in éqs.}la)-élG). ‘ )

If the expectation valie of ; is zero for u = 0 these
expressions may bé simplified for small u or F. The partition

. function may thgh be expanded as:

!

. S u 2 .21
’ . J u=0 . H lu=0 _' u u=0 .

|
/ (18)

The conditioz/thaf F is zero at u = 0 means that the linear

‘term is zeﬁf. This then gives us for F:

¥



: - ' E
-1 }) 87z e
Lfpmel o e
B ou n=0 g
where I is independant of u. Using this result and expanding

the partition function in eq. (16) we have:

1 n S |
E =N+ 57T [ z(e)l ~ - {20)

The cheﬁiéal‘potential, XA, has no texm linear in and hence
by arguments such as given in appendix C we can use the
chemical potential determined at y = 0. It therefore follows

that:
2 2 2 I 7 (21)

where EO is the u independant energy.:
' If we wish to obtain the semiclassical enexgy in the

case of aconstfé'int we must replace Zu.( B) by its fi~expansion

- .
n

in the relevant equatlons. If the constraint opexatox ¥ de-~
pends only on the coordlnates, the quadrupole operatoxr for

example, the'ﬁ~expan510n may be obtalned by a straight for-

,Ward application of the ngner~K1rkwood expansmOn as given
:;in chapter IX. If on the other hand F lS momentum dependant

) ”the wlgner~K1rkwood expansion is nontr1v1ally modified., . In-

the rcmaxning sections of this chaptex two such examples will

’ . . : ) AL A
. be considered. The first is the pushing model where ¥ = p_,
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the momentum in the x-direction and p can be identified as

(3

the velocity in the x-direction. The second is the cranking
model where F = J,. the angular momentum in the z-direction

and u becomes the angular freqﬁency of rotation.

|
i
1

IV. 2 The Pushing Model.

In this example we put the constraint on the total
momentum, P_, in the x-direction. The F of the previous
section is taken to be EX and F becomes just P . The con-

strained Hamiltonian is now:

2.2
. Au _= _ ,h V , _ fl a . .

We now proceed to develop expressions for the partitidn
function as in section (II.2). Using plane waves to take

the trace in eq. (10) we get:

i i : u
- oY ~ /\u I -BH B
2 (8)= ;%je ﬁ? ~ o"FH éHE ~d3rd3p = ;%je Oy d3rd3P
h h | (23)

where this equation defines w. The classical Hamiltoniah,

Hgl is éiven by: _ ‘ . ' .
2 : . R

u b—1 E—- -— ' A . . ’ )

Hoy = 55 ¢ Vir) WP, . - . ' (24

|

A differential equation may now be developed for w.as in
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section (II.2). In this case the differéntial'equation

" becomes:
i 8 1 v o
W - inlErs. u_ L PwHY - oy JH ow
5B 1ﬁ[;(p VWiw = (p+Yw"™)-uB e W T H 3y, .
ﬁ2 2 2y 2 'u 2 U | ‘
+ 55[8 (V) "W =B(V" V)W +V"w —ZQ(VV-VW )] (25)

w

This differs from eq. (II.19) by the addition of two terms

proportional . We now. define a new variable, p':
= p . " (26)

With these variables eq. (25) reducesto eq. (II.19) with the

only change being p is replaced by.g'. Hence we have:

b}

Il

w'(p,x,B) = w(p',r,B) | (27)
since they both satisfy the same differential equation with
the same boundary condition. Eq. (27) hélds for the semi-
classical wlés Qell és for thetexact w. For a semiclassical
expansion w is expanded as in eq. (I1.20); this is however
unnecessary. Thg partition function méy be written using

'eqs. (23) and (27).asé'

2V (8) = 5
/ " on

We now change the p-vaxiable of integration to -p'. This

wip'r,8) . . (28)

-~
, .
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gives us:
. ~(E—+v<r))
' (p) = % o™ 12 jd rd’p’ e w(p',£,8) .
h
gm 2/2 0 ‘ '
L A () B (29)

where ZO(B) is the u indéﬁendent partition function.” This
leads to simplifications in egs. (14)-(16). In eq. (15) the

it derivative.may be done explicitly to yield:

x=mu£1[——zu(8)]=mNu ; ] . (30)

Using the relation (Abramowitz and Stegun 1965, 'p. 1021)

Lt [esazw’)] L i+a [zpsy] : 6D
' Wwe can see tﬁat:
A=1" - % muz_ . , , (32)

Where 10 is the value of A at u équals zexo. Using this relation

along with egs. (30), (31) and (16) we have for E:

'E=A°N+5mNu [\," [ ]
. p2 '
0.1 .2 _ 0, Fx
= B + i'mNu = B +‘§ﬁﬁ- (33)

where E0 is t} value of E at u equals zero. This yields the
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total mass, mN, for the mass parameter as it should (Amado
and Brueckner, 195). This example illustrates how simply
some problems may be solved using the partition function

formalism.

IV.3 The Cranking,Modei.
e In this section we will - consider a system with a
constraint‘upon the -z-component of the angular momentum,

A~

Sz. Note Fhat_the operator Jz gonsists of the sum of two
parts. The first is the orbital angular momentum‘lﬁzz while
the second term is the spin angular momentum, ﬁcz/z, ex-
pressed here in terms of the Pauli spin matrix, o,- The
‘expecéation value of 32 will be denoted by M which corres;
pond to the F of section (IV.l). The Lagrange multiplier
" will be denoted Sy @ in recognition of the fact that it here
represents the %ngulaf freéuency'of rotation. The éonstrained
Hamiltonian of eqg. (2) become$: |
~ 52 9 - Coa Ny
Hy = - 3= V7 + V() -0l (34) /
| | o ' /
.In this equation we.have not put any restyibtidn on the symmeﬁgy‘
of V(). In particular we have not assumed that it is axial y
symmetric abou£ the z-axis. The case where it is aﬁially
symmetric about the z-axis will’be dﬁséussed in section IYCS. “
The effects of a spin—oxbié éérm in the potential will not be
/
/.
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considered in this section. The partition function in the

plane wave basis is:

- r -Bﬁm- i
- - —=DeX
2% (B) = hi3- tr JdBrd3p e BET e BE'S  (35)
, 2

. The spin trace, tr0 , can be done explicitly to yield a

z
‘factor of 2 cosh(Bhw/2) and the partition function can be

‘rewritten as:

. ~2 A
’ 1 B (B - i
i, BBtV (r) -0l ) L.y
Z(&)(B) = cosh .Bj.z_g—) __2§Jd3rd3p e'h?. e 2m ~ zZ efTE -

ﬁ

ty

(35)
where Ez is the operator for the orbital part of the angular
momentum. It is now necessary to develop an h-expansion
for this partition function. The cosh factor may be expanded
‘straightforwardly and a modified Wigner-Kirkwood expansion

may be used to expand the expression under the integral. As

in section (II.2) we define w by: _ . -

A2 n ' ) . ) .
-8 (E- 4V (r)-wt ) -Zp.r ~BH., -ig.r ,
e ™ - 2le X > g TCL o AR YW (37)
with H., denoting the classical Hamiltonian:
B E—%‘ - ..
Hoy = 55 + V(E) - wz? . . (38)

where zziis the cléssical angular momentum. The differential

- ) ‘
equation for w becomes:
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A

\% oV
= —rh[g(p VWiw - l p.Vw - wh (x 2? i y ﬁf) w

d
9

g

™

39
-Bw (xp, +YP Jw +ow(x 5;“‘Y BX)] | .

\J 2, 2
%—[B (7V) 2w-208° (py, gx - P ay) w8 u (px+py)w

Y
_g(vzv)w+y2w~28VV.Vw+2Bw(py %% - Py %%0} . (39) .

N

It is now poésible to write w in a power series in R as in
eq. (II.20) and solve to each order in i. This was done to
order'hz. The term proportional to h is:,
121 vV Vv, 2
W, = 5 3 { H(E.VV)+w(x 5y y §§)+w (xpx+ypy)} . (490)
The term proportional to ﬁz contains thirteen terms and is
not written down-due to its length. The p-integrations may

be done as.outlined in appendix B if the substitution,
.= p' - . /
Py = Py, — mwy : |
= p' + mw 5 (41)
Py = Py .%
is first made. The partition function correct to order”ﬁ2

can now be written as:

3/2 - . =BV o (x) 2.2 '
w - 1 2m\° -1 3 eff = _h"B 2
Zoc(B) “-Z;§7§{g§) g§7§Jd x e {} Iom- [% Vets

1 2 .B 2 )
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where Veff is given by:

) _ _ 1 2 2 : .
Veff =V 7mw rl ’ (43)
where ri = (x2+y2). With this partition function we can now

calculate the expressions for N,Msc and Esc' Before doing

this let us rewrite the partition function as:

. \3/2 - =gV 2, 2
0 _ 1 [2m 1 3 eff [ g%n?| 2
Psc(B) = =377 2(;:?) 5372 Jd re {1 Y [V Vees

TT

. ' ) .+ mw?‘]} ’ T (44)
}
{ . .

where we have used eé. (IT.23). Using egs. (14)-(16) we obtain

for N'Msc’ and Esc;

1 a2 s 372 52 YV Vgpgtmw
N = — [ = A rd (A _ -V ) - (45)
2 2 X sc eff 32m
g O v 172
sc eff
3/2 2 (V3v +mw2)
M o MO (2m> Jd3r{(k v )3/2rJ2_ _ A eff 2
sc 2.2 sc eff 32m — 1/2
312\g . g Vogs) 1
2 .
52 . 12
+ m (Asc Veffg J ' (46)
= % 1 ramV/2(.3 (2 -~ 5/2
E o = ASCN+wM 3n2 (57) a’r S(Asc-veff) / '
£2- 2 2 ) 172 g
T 16m (v Veff+mw )(Asc veff) . (47)

-

—
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where all integrals are cut off at the turning point, Lo

-given by Veff(Esc) ='léc. These equations should be compared
with egs. (II.25) and (II.26) of the nonrbtating case.

Ié is possible in this case also to develop an ex-
pression for the density. Thig is done in strict analogy
with section (III.l). The diagonal Bloch density, Cgc(E,B)
is éiven by same expression as the partition function of
eq. (42) with the only difference being that for the Bloch
density we do not do the E—intggration. The density is ob-
tained by taking the Laplace inverse of the diagonal Bloch | ~

‘density as described in section (III.l). The semiclassical

density is given by:

1-

» 2 1 2
(@>3/2 S V28 572 [v Vegst R

sc eff lém 1/2
(XSc"ﬂ;ff)

# . .‘
Ty )2 Ny Dok
+ eff }- (48)
3/2
4“‘scﬂveff)

for r inside the turning points. Otherwise pgc is zero.
This eXpression 1is, of course, not valid near the turning points.
F] s * \ i
The expression, eq. (47), for-ESc can be rewritten in

terms of pS;in the same way as the kinetic energy of section
) 4

(III.2), In this case eq. (48) is inverted ‘to find Voer in
terms Of'p:c and this used in connection with egs. (46) and
(47). Realizing that:

ap¥ = (A*Vekf)pw+V9?—-% mwzrzpw p , (49)

S

LY
4
©



and then proceeding in the same way as in section (III.2) we

have:

' 5/3 w
E = [Vp d r %— Id3r %(3n2)pw + LEQEL— + %-mM .
36p ~ ;

(50)

Due to the singulari;ies of p:c at the turping points this is
not strictly valid, but is only valid in the same sense as

eq. (III.20) for 1. The effec; of the rotation is to add an
extra term % wM, Wthh looks llke the classical rotation energy,
and to modlfy the denSLty.

‘ It is possible to define a moment of inertia, I, as:
- M '
I - w . . (sl)

We shall also define a rigid-body moment of inertia, 1. as':
: ’ . ,

. 3 2 7-11m 3 2
] Ig=m Jd_r r'p = L)\ [-g Jd x rlc(gfﬁl] . (52)
In the semiclassical approximation the second form bf this
equation must be used to “avoid problems with fhe density .
diverginé at the turning points. When the Thomas-Fermi re-

sults for "p and M, as given by the leadlng texms in eqs. (45)

'a§§>(46), are used we .get the well~known result (Bohr and

Mottelson l955) that. I reduces to the rlgld—body value. For

4

our semiclassical result this is not true. To see this it is

-
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most convenient to use the partition function of eg. (42).

Using egs. (15), (42) and (52) we immediately have:

rd 2/, 2

1/2
_ _ _m gm 3 _ 1/2 _
1=1 127 [h ) Jd rO\sc veff) eO‘s;c Veff) ’

(53)

With .a level density defined in analogy with eqg. (II.1l2)

2

we hate I = I - h ggl(k)/l2. The moment of inertia -can

rd
also be written in a form consistent with eq. (50) as:

’

J x5’ pl/"7‘3 . (54)
I =m rio, p - R :
) [1 4(3“2)2 3] )

Although there is a correction to the rigid-body value it is
quite small. The order of magnitude wiil be\éstipated in the
next section where we consider the small-w case.

In ending this section we will just note that eq. (17)

in this case reduces to the canonical relation: -

%% = W _ ) (55)

IV.4 The Cﬁank;ng Model ip the Presence of a Spin-Orbit Foxce.

In thié section weiﬁill_investigate the effecté.of é
spin-orbit term in the Hamiltonian bn the‘crénking modél'moment
of ;nertia; We §hall only cohside£ the case when uw is émall

and gaﬁ be treated perturbatively. From egs. (18)-(21) we see
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that .if the term in the partition function proportional to w
'is zero the effects of rotation can be easily calculated once
the moment of inertia is known. We shall first develop an
expansion for the partition function correct to order wz. The
term proportional to w will be seen to be zero and the term
proportional to w? will yield the moment of inertia,

’ The constrained Hamiltonian which we will use here
Cis:

2 2 ~ ~

W h 2 it _
+ V(E)'+ ik 5= (VEXV) .0o-w JZ . /(56)

H =--2-THV‘

The unconstrained part of the Hamiltonian is as discussed in
section (II:4), while the constraint is the same as the -one
~discussed in the- last section. The‘p@rtition function is now:

-B(H0+VLS~sz)

Au) .
e B ir e L (T

z%(B) = tx

with the same notation as in section (II.4). We shall proceed
to do a perturbative_expansion on both k¥ and w. In both cases
we éhall keep only terms to second order. The expangiOns are
aone as described ih section (IX.4). See particularlf equa-

tizns (38) through (41). Doing the w-expansion we have:

-B(ﬁ +V -w3 ) ) ' -3(1';1 +€7 ) A
tr e 0 "L . 2 =¢tre 0 LS_(J + cuBJz +
8 (B'BU(H V. Ja ~(B'-B") (HytVy )a.  ~B"(H 4V, )
wZJ .dB'J are O Mg e 0 L& 3, e 0 LS
0 0

b o) - : (58)
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The first term is just the partition function of section (fI;4)'
and will not be discussed further here. In obtaining the
second term we have used the fact that operators under a
trace may ke cyclicly permuted. To see that this term is
zero let us break Sz into two parts; an orbital part and a
spin‘part. The orbital part is just Ez. If we take the trace
in plane wave basis the w term may be written as in eq. (II.44)
The only difference is that we will have an extra'ﬁactér of
(xpy—ypx) from EZ acting‘on the plane wave. The real terms
in ;he resultant expression will have an odd power of b and
hence vanigh upon p—intégration. The imaginary terms must
vanish as tﬂe partition function is real since it involves
only the trace of Hermitian operators. Slmllar arguments
may be used ‘for the spin part. Thls leaves only the m2 term.
Weshall work out only the leading term in # for both x and

2

k“. The k-expansion is now done as described in section

(I1.4). The final result for the partition function is:

oo
. 3/2 2,2
W oy 0 m -8V _h"g
Z27(8)=2 (8)+w —-—7—( ) —B-m-jd r e {L -f-z?ﬂ—-'

B 3y

C 2
6k " 2.2 1 .
- ———-—B ((Vf) r - 5 (x 'ay - Y ax) )]}

u?g/2 (zm)B/zjd% e BV
ogn3/ 2" B -

[rfvzv -—-(VV) 3 + VV~V(x2+y2)-—6g'<- (x %ﬁ +y 2

r SC(-"B)J—

= ZO(B)+m2mB[d3r
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. ’_ ) 2 3
{—1 + 6K (x gi +y 8 )+ 3k [(V_f)zr2 -~ (x i Y gz) ]}"
(59)

In the last expression we have separated the terms £hat con-
tribute to the -rigid-body moment of inertia and have put them
in the second term. There is a term in Csc(E'B) proportional
to K2. It is just equal to the first K2 term in the last
bracket.' Using eqs. (19), (51) (52) and (59) we have for

the moment of -inertia:

' r—,’"
3/2 e
_ 1l  (2m) 3 R V) B of 3f.
I=1I.4t -————24"2 = [d r(i, .~V) {1+6K(X =ty By)
+3 e %e? - (x - 'ig)z' ' (60
oy Y 3% )

Thus we see that the presence of a spin-orbit term in Hamiltonian
has an effect on Fhe moment of inertia not only through I.q
(fhere is a.KZ term in I ) but also through the presence of
Aaddltlonal terms. Unllke the w= 0 case we here have a term
proportlonal Ko We shall lnvestlgate the size of the varlous
terms by con51der1ng the spherlcalqbarmonlc asc;llator model,
with‘spiﬁforbit term,given-in section (IX.5). The Hamiltonian
., is-given-by eq. (II.4é)u It is s@raightforward to work-qgt:

the integrals in this case to get:
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3 2,4
+.2 Klsc N 5 K Asc (613
3 hzvz 6 ﬁsvs

We have used v for the oscillator frequency here in order to
avoid, confusion with the angular frequency. 'The terms in
the first bracket give the rigid-~body value while £né seco;d
bracket gives the correction terms. Using k=0.1, Av=7 MeV

and Asc = 42 MeV as in section (II.5) we have,

2 2
_ _h _ h-
I = — [30 86 + 1. 54 0. 4%] Mo

[;0.43 + 2,06 + lWS%]
(62)

where the numbers correspond to éhe terms in eq. (61). In

the case where k=0 the correction to the rigid body value is
seen to be the order of A éeroent. The spin-orbit term is

. seéﬁ to contribute gbout five perbeng to the rigid-body moment
of inertia, while the correction to rigid-body moment of in-
ertia has increased from one peroent to about ten percentf

The total effect of the spin-orbit termsiis seen to be about
fifteen percent. The deviation from the rigid-body value here
~ is larger than the deviation found by Pashkevich and Frauendorf .
-(1975) .° They'investiqated the ﬁoment of inertia in a Woods*
Saxon potentlal w1th a spln-orblt term us1ng the Strutlnsky
\method and found that the smooth value of the moment of 1nertia
'dlffered from the rigid- body value by about three percent for
hoavy nuclel. Thls.dle;rence;ls probably due to the fact that
the density in tﬁé ha:mqpic oscillatof'i§ concehtrated ;ear'r=0

V3
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giving too small a value of the rigid-body moment of inertia
while not_similarly decreasing the correction tenms.
Other velocity dependent terms in the Hamiltonian can
cause still larger deviations from the rigid-body value of the
moment of inertia., For example the zz_term in the'Nilsson'

model (Nilsson et., al. 1969) can easily cause a forty percent

deviation (Brack and Jennings 1976).

IV.5 A Further Discussion of the Cranking Model.

In this section.we will consider the effect of axially
symmetric potentials on the moment of inertia. In the crank-
1ng model onelusually conSLders potentlals that have a symmetry
axis perpendlcular to the axis one is cranking about. It is
however also possible to constraln the angular momentum along
a symmetry axis (Bohr and Mottelson 1975, P 80) of the po-
tentlal In thls case the angular momentum is generated by
aligning the angular momentum of the 1nd1v1dual partlcles.
Although the densmty is still ax1ally symmetrlc in the presence
of the constralnt, the wa;eﬁfunctlon 1é not. The equatlons
developed in sectiOn (IV 1) and used for the cranking model
in sectlons (IV. 3) and ° (IV 4) will stlll be valid 1n this case.

We will now conSLder the case when w is small and the
potential does not neoessarily have an axis of Symmetry. The

partition function will be expanded to second order in w by

u31ng second order perturbatlon theory to flnd the e.. To second

. I
t
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W . .
order ei is given by:

. - 12
o ~ 2 1< l3 15> |
eg = &g ~wY T v> 0t X — e (63)
j#i i j
The partition function now becomes:
w
-Be. -Be. A -Be.
w i i i
2 (B) = § e = i e + w82<wi|JZ|wi> e
2 | <y |3 [ v >12 -Be 2,2  -Be
-l B ; .2. i Z j e i'_+.w B 3 l<u) IS, lw >12 e‘ i.
i j#1i €5 - sj ‘ 2 - i il ztvi

(64)

‘The first term in thi$ equation is just the w independent
term and is of no interest to us here. The term linear iﬁ'
W ié'more difficult to. deal with. As we have seen it is zero
in the seﬁiclassical paftitiop fuhctioh, however for the exact
pargition function it may bg-finite. It }s this term ﬁhat
give$ the angular momentum at_m=03ana will be finite ifathe
unconstrained ground‘state ﬂas finite tstal angular momentum.
This term however gives exactly'zeré contribution to the par-
tition function when the potential is axially symmetric. For
simplicity we will. consider only cases where it is zero.

There are two terms proportianal to Qz which we will
‘nsw use to find the moment of inertia. From eq. (19) we have:
( SEACAIALR R
I R R EA AT

G(Si"A)’ .
i SESR s IR § j . .
ocC:  (65)

IZ
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The first term is just the usual cranking formulae term
(Inglis, 1954). It vanishes if the'z—agié is a symmegry
axis. The second term is zero if the potentia; is axially
symmetric about an axis perpendicular to the ;—axis becauge
the matrix elemenﬁs are zero. In other cases this term will
be zero or infinite depénding on the value of A. This term
likely indicates a break-down in the w—expanéion due to the
fact that if a degenerate ievel is not. completely filled the
angular moﬁent'changes discontinuously with & at w=0. This
discontinuity occurs begause'as w goes f?om slightly positive
to slightly negaﬁive the occupancy of the degenerate stétes
may change. Despite this problem with the éxact moment of
inertia the semiclassical moment of inertia is well defineﬁ.
As we have seen differené_terms in eq. (65) contribute to the
exact moment of inertia dgpeﬂding on the ofientation of the
symmetr§‘axis of the potential however the Thomas-Fermi result
.YiéIGStﬁe rigidlbody moment of 'inertia in all cases and the

semiclassical result is only SIightly affected by axial

symmetry.



CHAPTER V
THE LARGE A—~EXPANSION /

FOR NONINTERACTING PARTICLES

V.l The Large A-expansion.

In the simplified model where nuclei are assumed to
consist of equal numbers of neutroﬂe and protons and Coulomb
effects are ignored the. smooth part of the binding energy may

1/3

be expanded as a power series in A of .the form:

L 2/3 1/3 0, ___
E =CyA + C,A + cﬁé S U ¢ O I

/

. / :
where the first three termé are respectively referred to

as the volume, surface é/a curvature terms. . This equation'
has been used (Dworzeeya and Moszkowski 1975) to compare the
Hartree-Fock and energy denSLty functional approaches for .
obtaining the blnd;pg energy. In thlS case they fltted both
the Hartree-Fock’ eréy‘whieh contains shell effecgs and the
energy-density fpncﬁional energy which does not conrain shell”
effeets to eq.'(lf'to see 1f the energy-densiﬁy functionel
energyacorrec ly reproduces the smooth part of the Hartree-
Fock energy, By con51deratlon of a simpllfled system of non-
interacti pertlcles we lnvestlgate.how much lnformae}on can

be obtaipred by using least sguared fitted energies that con=

tain shell effects. 'For this purpose it is only necessary to

69 o |
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consider noninteracting particles since by the Strutinsky
energy theorem the shell effects in the Hartree-~Fock energy
can be reproduced from an independant particle model
(Strutinsky 1967, 1968). - |
The expansion of eq. (1) has also been used by
(Siemens and Sobiczewski'1972) in an attempt to obtain the
smooth energy of a system of noninteracting particles by
considering systems of darge A; They - were able to obtain
" the first two coefficients in éq. (). Using a léast sqﬁare

_ fit we will show that gthe seﬁiclassical energy dgives the same

value of these two coefficients and furthekr more that the A-
expansion is somewhat slower converéing than the h-expansion
for ‘the cases considered.

We shall first consider a system of noninteracting
particles moving in a square well. The square well is used.
.becauéé in that case the"A—expansion of the semiclassical
energy can be worked out énalvtically; The coefficients
‘tgined from this expaﬁsion will be compared to those obtained
by doing a least squares fit of eq. (1) to both the semi-
classical and exact énergies. To obtain the semiclassical
eﬁergy'wé cannot use the.expféssions developed in chapter II
as the gradients of fhe potential must ekist for tha
sion to be valid. A semiclassical expression for t
‘ partlcle partltlon functlon and denSIty of states

'cas€ has however been developed by Bhadur1 and RoOS (1971) .
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The semiclassical partition function in this caseg is:

2 3/2

1l,2mL mR ,1/2 2, nB
2. (B)= F(=~) [}f3ﬁ( ) + 307 ( )
sC 4 n2ra 2mr.> 2mEL?
3/2
o I I (2)
2nL )

where L 1is the length of a side of the square wefll. For the

sake of this discussion we' shall take:

L =17, \ (3)

where L0 is just a proportionality constant. Using the fact

that A=2N as well as egs. (IX.7) and (II.8) we have for A

and E__:
sc
w2 2?3 030 30 am?
3"2 ,ﬁzv sc 2m ﬁi . 8scC
‘1/2 .
3 ,2mL 1/2 1l
+ T ( 2) Asc -7 (4)
»I-l .
2 3/2 2 2
E - 2 (2mL ) A5/2____1;_ (ZmL ) + 1 (2mL )‘A3/2-
sc 5H2 ,ﬁz sc 4w {,hz , T ﬁz sc

4
P

(5)

1/2 and

Eq. (4) which deﬁermines A is a cubic equation in A
hence may be solved exactly for A. It is héwever easier to

. . i
define a variable Y. as:

Cpnp2 1/2
Y = (~E—E) _.Rsc .
) A2y
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With this variable eqs. (4) and (5) ‘become:

3 9,2 9 "3 _ 3A _ ‘ .

Y—ZY +—2-1TY“Z—“-'"2"1T"0 ’ (6)
2_2

B, = I AR5 -3yt 3 (7)
2mL

It 'is now relatively easy to solve for Y and obtain E. Keep-

ing terms to order A~ +/3 we have:
E_ = ("‘2"2>{3 ETRAMINE I FE AN VE
sC 2 2 5 '2m 8 ‘2w’ -
mL
0
‘ 2/3
3 9m _ oyal3 L (3 T gy A5
| tow (g o AR 4 (5 (4 + g
|
| -1/3,3,1/3,9 . . 189% 3
tAT T gy 5*1‘2—8—)] : (8)

In déttiné this eqﬁation we have used eqg. (3). Thus we

now have analytip.expreésions for the coefficients in thé

A expansion. These coeff;cients may no@ be comparéd wfﬁﬁ‘
those obtained by least square fitting both the semiclassical
energy obtained directly from eqgs. (4) and (5) and the exact

energy calculated using the eigenvalues:_:

2.2 :
€ '==('h"2) (n}2(+n§,+n§) '
2mL
-where the N ny and n, are positive'integers. In the fitting

we, used A_froﬁ 4 t? 400 ‘in g;gpéﬂof\4. For‘the purpose of-
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N
o~ Table 4 g
c; . c, c, c, o
23,04 - 55.26 46.04 16.04 3.50

Se  23.04 55.16 46.75 13.77 T 6.71
Ex 9.97 274,80 <1227.28 3013.19 -2376.09
sc 22.99 5?.98 42.39 23,05°

EX 28,54 ~16.01 317.97 -273.94

Sc 23.55 49.25 65.70 ?

Ex - 21.88 63.95 40.93

. 4 .

Sc 19.01 [ 88.07

EX 19.05 / 88.13

Sc ‘ 53,29 59.58

Ex 54.87 " 54,71

Sc ’ ’ 55.45  44.14 21.40

Ex ) 46.68 113.35 -81.28

Sc ‘ 55,24 46.34 14.60 6.12

Bx | 77.58 - 219.47. 945,12  -924.71

Table 4. The coefficients of the A-expansion for a squafe
well. All numbers are in MeV. The parameters of the well

are as described in the text. The cOlumns are respectively
‘the coefficients of A, A2/3, Al/3, AO and 3-1/3. The first
row gives the coefficients as determined froﬁ)eq. (8). The
remaining rows give the coefficients as determined by least
‘square,iitting the semiclassical energies (marked as Sc) and
the exact energy (marked as Ex). Coefficients not fitted .

are left blank. When Ci is not given it is fixed at 23.04 MeV.
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this coﬁparison we have taken‘ﬁZ/Zm-to be 20.747 and
L0 = 1.805. -It was found that with the five coefficients
given by eqg. (8) the' semiclassical energy was reproduced
" within .5 MeV for A greater than 4, while with only four
coefficients ﬁhe error is 1.5 MeV for A=20 and increasés as
A decreases. The fourth term itself gi&es 16 MeV for all
particlé numbers. This means that four terms are sufficient
to réproduce the semiclgssical energy for medium and heavy
nuclei. The‘coeffigients obtained from the least squared
fitting as well as tﬁose given by eq. (8) are given'in table
.4."The'fitting has peen done using»g to 5 terms in the A-
expansion. It has also been done with the wvolume term
fixed at the value taken from eq. (8). With the semi-
classical energy four terms were necessary to obtain.a goéd
fit althouéh the coefficients obtained in the five para-
meter fit agreed more closely with those of eq. (8). With
"less than four terms the agréemenp deteriorated somewhat.
By fiéting the exact energies we céuld not reproduce the
smooth energies, Howeyer when only the first thfee'termé
_— of éq. (1) were ﬁsed teasonable values oflihe coefficients
b were obtained. /This was particularly true when the volume
,'térm Qas'fixed/and only tw cbéff;cients fitted. fhis in-
dicates thatwés more freedom ig allowed in the fit one starts
to fit the shell fluctnations rather than reéproducing the
—ﬁ\h) smooth enérgy. Ituis interest;nq that Dwarzecka and
Mogzkowsk;'(;975) in their comparisonm fittea Cy, and C, of _
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eq. (1) with C, fixed, for as we have seen abové fitting

1

" these two coefficients gives the best results.

C

We have also looked at the A-dependance of the
semiclassical energy for a Woods-Saxcen potential without a
spin-orbit term. The same parameters as given in the fi;st
part of section (IIX.6) were used. In this case it is imi
possiﬁle to obtain analgtic expressions for all the co-
efficients in the A-expansion. ﬁowever the first two co—‘

efficients have been obtained by Siemens énd_Sobiczewski

(1972) by considering the limit of large A. In least sduare

fitting the sem1classxcal energy we found that five terms
were necessary to obtain’'a good fit. The coefficients are’

given by: C; = -26.10 MeV, C, = 37.65 MeV, C, = -7.13 MeV,

2 .3

= -80.48 and C. = 94.46. The first two terms are in good

4 5
agreement with those‘given,by,Siemaes ané Sobiczewski (1972).
In this'case it can be seen that the A;expansion cenverges
slower than the fi-~expansion which requires only three terms.'
In the case of the square well potentlal the leadlng

h-term in eq. (2) gives only the volume term while. the higher
order terms in -h give the remaining terms in the A-expansion.
A 51m11ar result is true for the harmonlc oscillator-where

the leadlng term in the ﬁ-expan51dn, the Thomas-Fermi term,'

2/3

gives just theAvolume term. ~The, A term or surface term’

for ‘the harmonic oscillator is zero and the corrections to

the Thomas-Fermi term first gontribute to order ﬁl/a. The

-

resulte are however quite‘diffegent for more realistic
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potentials like the Woods-Saxon potential discussed above.
In that case the Thomas—Fermilﬁzves not only the volume term
but also makes substantial contributions to higher order
terms. To show this we have fitted the Thomas-Fermi energy
from egs. (II.1l3) and (II.14) to eq. (1). The coefficients
are C; = -26.10 MeV, C, = 34.81 MeV, G,
C4 = TSi‘75 MeV and CS = 54.85. It is seen thet all co-

. efficients are tlose to those obtained by fitting the semi-

= -7.83 MeV,

classical energy. The'fact that the Thomas-Fermi result
contains more than just the volume term can also be seen
by looking at fig. 2 where we have plotted the energy per

-1/3 for the exact energy, the

particle as a function of A
semiclassical energy and the Thomas-Fermi energy. If the
Thomas~Fermi term geve only the volume contribution it mould
be a horizontal straight line. It can eléo be seen .that in’
contrast to the harmonic Qecillator potential tﬁe Sujface'
term is nonzero. '

| Another important point can be seen from the graph.
Nameiy thet the difference between the exact and the semi-"
,classieal result does not everage to zero if it is averaged .
over a large ranée of A. This means that the_shell'cqrreetion
obtained using the semiclassical ehergy will similarly not '
be iero when averaged. If the smooth energy were obtained
by a least squared flttlng tﬁls average would be zero.. This

- feature of the sem1classxcal energy, which 'is shared

(Strutlnsky and Ivanjuk 1975) by the usual Strutihsky smoothed
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energy, is not to be looked on as.a fault in the method.

In fitting the liquid drop mas§ paraméters it is necessary
to first extract a theoretical.shell correction from ex-
perimental binding enepgies (Myers and Swiatecki 1966) and
hence when using the liquid @rop méss:parameters the maih
point is to use a shell correction that is consistant with
the one used in obtaining the liquid drop parémeteys. Also
in deriving the expressions that are fitted one ﬁses semi-
classical arguments (Myers and Swiatecki 1966) that are very
much in the épirif of an extended, Thomas-Fermi theory such

<&
as used here.
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. CHAPTER VI
A DERIVATION OF THE STRUTINSKY

SMOOTHING PROCEDURE

VI.1l Introdéduction.

Tbe smooth energy used to obtain shell corrections is
usually found (Brack et. al. 1972) by using the Strutinsky 9
smoothing procedure. In this chapter we shall derive the
Strutinsky smoothing procedure as an approximate method ‘for
finding the semiclassical energy. To do thls it is necessdry
to cons;der the exact partltlon functlon and to see what .
‘properties of ‘the exact partition function give rise to shell
effects. " By studying these properties of thé pdrtition func-
tion aod osing analytic properties of the Laplace trensform
it is possible to‘derive the Strutinsky é@oothing procedure_
" including the'form of_the‘curvature corrections. This deriva-
tlon of the Strutlnsky smoothlng procedure gives new"1n51ght
1nto the SmOOthlng procedure. For example the reaeons why the
, Strutlnvky smoothlng method works better for the harmonlc
oscillator than the square well potentlal or why the plateau
deterigQrates for very large deformations can be eaSLIy seen in
thlS derlvatlon. |

" Another method which has been proposed for flndlng the
smooth energy is the temperature ayeraglng method’ (Ramamorthg
et. al. 1970, Ramamurthy énd'Kapoor 1972). Inhtﬁis mgthod one

L

-

“<



'uses the fact,that at high temperatures the smooth Fetmi. (/
occupation. factors for the single particle states should make
shell effects disappear. The enetgy (or other appropriate

\V thermodynamlc functlon) is evaluated at temperatures high
enough to have waéhed out shell effects and then the smooth
part, thue obtained; is extrapolated back to Zero teﬁperature.
As thls method of obtalnlng the smooth energy is equlvalent
to the Strutinsky method (Bhadurl and Das Gupta 1973) we will
only discuss the Strutlnsky method here. . |

For the harmenie oscillator potential it is possible:'
to optain explicit exp%essions not only for the smooth.part
of .the density of states but also for the oscillating part.
vThis makes the harﬁohic oscillator especially useful as ah
exp11c1t example and it will be used eften51vely as such in
the present chapter. /ﬁowever our derivation of the Strutlnsky
method is valid fer quite geﬁeral potentials.’

, As we'will be distuseing the Strutinsky method ex-

) tensxvely a brief descrlptlon of it will be presented here to
‘£ix .the notatlon and to show the reader the type of expressxon
"we are trylng to’ derlve.- Details of theimethod w111 be glVen_
iatér as thef are' derived., 1In the Strutinsky method one con-

olutes a smoothlng ;unctlon, S(e), with’ the exact densmty of

states to obtaln a Strutlnsky smoothed den51ty of states: gst(e),

o . . o l
Y . g..(e).= j =
_ .St 0 ¥ ®

| z 1 ei"eu ) . ) ‘ . . (1)
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The second line follows immediately using the fact that gle)
is a sum of delta fundtions (eq. (IL.1)). In this equation ¥y

is the smoothing‘parameter and has been introduced ekélicitly
here to simplify the notation that will be used throughout
_this chapter. The enexgy is oBtained from ghe smoothed density
of - states through egs. (II 2) and (IX; 3)} The smoothing fupc-

tlon that is usually used is (Strutinsky 1967, 1968), «

s = S 1M2(eh) (2)
n
whére Li/z(e) is the adsdciated Laguerre polynomidl (Abramowitz
and Stegun 1965, p. 775) and n° is the curyadure order. The
Li/z(ez) in this context ds:oftgn’referred'to as the curvature
correction and their significance will bedome clear in later
parts of this chapter.' Other forms of the sﬁobﬁhing function
have been proposed (Brack and Pauli 1973) althodgh none are in
common use. The parameter y and n of eqgs.'(l) and (2) are
determined f;om the condition that they have valuyes in a region
where the. énergy is inseﬂsitive to the actual valde chosen.
In this chapter we shall start by conSLdeang in de-

tail the partition functlon of the three-d1mensmonal harmonlc o
osciallator tO'galn.more 1n31ghp into the separation of the
eﬂefgy inﬁo,a sﬁoofh dnd an'oscillétiﬁg pgft; _ﬁe willithen*
derlve the Strutinsky method. 1In this'dérivation we ﬁili '

flrst dlSCU§S smoothlng the densxty of states in- detall and“

then at the end extend the results to physlcal;y Lnterestlng"
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properties such as the total energy or the spatlal denSLty.
Flnally we shall discuss the modifications necessary in the

case of a finite well.

VI.2 Oscillating Terms in the Density of States
of the Harmonic Oscillator.

For sipple potentials such as the harmonic oscillato£
potential it iS'poesi?le to find explicit expressions not only
for the smooth part of energy but also fqr the oscillatiné
contributions. In this section we will consider only the
three dimensienal harmenic oscillator although the énalysie S
is easily extended to the harﬁoﬁic oscillator in_other_di-

" mensions or to the harmonic oscillator in the presence ‘of
the spin-orbit term of section (II.5).

The partieion function foruthe three dimensional‘
harmonic oscillator is given by (Bhaduri and Ross 1971) -as:

(8= fosen’ By . @
The correspondiné semiclassicai expansion is given by‘eq..
(II.55) and it is’ easy to see that the semiclassical bartit;on,
function is just the firse few ferme of the Laurent series
for the exact partltlon function about B=0 so the exact-and
semiclagsical partition functlons will agree ﬁor small B. -
They differ however far frdm B=0 and in partlcnlar the exact

. partltlon function has 'poles. along the imaginary B= axls. . We
» 'h
‘ Nspall now show ‘that it is these_poles that give rise to’

&
»
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£

oscillating terms (shell effects) in the density of states.
Using an explicit form of the Laplace inversion formula

{(van der Pol and Bremmer 1955 p. 16) we have from eq. (II1.6):

L

_ 1 c+iw Be
g(e) = 5aT [c—-iw e Z2(B)ds , , (4)‘

where ¢| is an arbitary positive constant. For: the partition
function of gq. (3) this iptegral may bé do?e by contour:in_
tegration after closing the contou% to the left or to the
right. For € negative Ehe contour is chsed to the right ané
th intégral gives zero. For ¢ éosftivé £he contour is closed
to the left and we get contributions from each ppie of the
partition function. Thus we have the.Qensity of states given
by the sum of the residues. Hence we must find the residues
of exp(ée) times the bartition function. The'péles are given

by:

_‘ 2rin . ) '
B =I5 : : : (5)

for n running through all the integers both negative and

positive. The corresponding residues, RA, are given‘by:'
—yn- Zninq/ﬁw - éé 1 - ,
(=1)" e ( - ) . | (§)

aw)®  to

" The density oﬁ‘staﬁes.is now obtained by summing over n. It

carr be immediately_seeh that the n=0 term gives the first two



Summing over n we have:

" Eq. (XI.57) for the semlclaSSLCal energy gives exactly the N
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and (II1.55). The terms with n#0 give oséillating contributions.

L -
!

. 2 o .
g(e) = ((h€)3 - 4%w) [l+2n;l(—1)ncos(ane/ﬁm)]e(e) (7)
N :

In this exprgssion we have combined the contributions from n
and.-n. The step function arises because as we have noted
abéve'g(s) is .zero for ¢ negative; Eq. (7) can noﬁ be used
with eq. (II.3) to Sbtain an expression for the energy.

This gives us:

™

o fA € ' 8'2 . 1 et n T
E = AN -~ j de[ de' (— 5 - - )[l+2n§l(-l) cos(2ﬂne'/ﬁw)]‘

o o (fiw) thw
. 4 2 o n, o ' n
= W- Ak g g gy R gy, (T
12 thw) . (2mn) ~~ (2mn)
+ oscillating terms. ‘(8)

The terms pontain;ng fhe n-sums come from integrating the terms
qontaining éog factorg and looking .at the contribution from

the ioWer limit on the ¢ integral. The osc1llat1ng terms _con-
tain eXpllClt factors of cos(ZHnA/hw) and give rise to the
shell effects. The sums over n may bé done (Gradshteyn

and Ryzhik 1965, p. 7) to yield a comblned total of —17'ﬁw/960.

noﬁOSCil;ating tarims of eq. (8) when the spin~orbit effects

are not included in eq: (II.57). .

. M - v N !
. N /
. * !
o - . -
. . S . .
< . * * .
- . * ,‘ R R ¥

4
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%
Using the.relation’ (van der Pol and Bremmer 1955,

p. 102),

© . o )
r e2™M™ _ » s(x-n) , (9)

n=-—oo© n=—wo

eq. (7) for the density of states reduces to:

=]

82 1 | € “ 1
(. 5 - )[z §[= - (aep)Jece)
(hw) 4hiw / tn=-= lhw ) '

n(n+1)5(e—(n+%ynw)- , (10)

1l

g(e)

i
o~ 8

n=1

which is’just the'usugl éxpression for fﬁe density of states
of the harmonic oscillator.

The osé¢illating térms in the density of states arising
from the éoles of the oné~body partition function give rise
to effects in other physical situations as well. A prime
example of this is the de Haas-van Alphen effect (Pathria
1972, p. 231f for electrons in a maénetic field. In this case
the magnetic suscéptibiliﬁy oscillateé as a function of appiied'
magnetic field. TheseJoscillations can be traced directly to.
the poles éf thé one-body partitidn ﬁunctionﬁ(Son&heimer and

‘Wilson, 1951).

VI.3 Smoothing and the Partition'Fqﬁction.'
In the prev1ous~parts ef thts thes1s we have obtained -
the smooth part of the energy by doxng an-ﬁ~expan31on of the

partition function. - Such‘an expansion is expecteq to reprpduce'
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the exact partition function when B is small (Uhlenbeck and
Beth 1936); Thus we expect that\the smooth part o£ the energy
can be obtained by looking at the partition function for small
8. In the last section‘we‘havewshown that, for the three-di-
mensional harmonic oscillator, the smooth or %emiclassical
terms iﬁ the density of states come from the B=0 singularity
of the partition function while oscillating terms comé from
singula;itieé off the réal axis. Although this is shown only -
for the harmonic oséillator similar results are expected for
other potentials. This means that it is possible to reproduce
the semiclassical results by multiplying the exa&t partition
function by a function, f(vB), that is one near B=G and goes’
to zero whgn the imaginary part of B becomes large. The pané—
meter Yy determines how fast f£(yB) falls off as the iméginary

part of B increases. One choice of f(By) would be:

2

2.2 ’
£ (yB) = eB y°/4 . v . " (1)

We will show shortly that this choice of- £(B) givé the Strutinsky
smoothing of eqgs. (l) and (2) with n=0 and Y being the-smobth;ng

parameter. The corresponding density of states, which we will
¢ . .

¢all, anticipating our results, the Sfrutinskx density of states,

is given by: *
; Y » )

EMCED SR OIS

- .. : c%iw' : B ‘
: . _ 1 . - Be o .
s m et e

o
-
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s

where ¢ is a ‘positive constant. In getting the second ex-
pression we have used the explicit form of the Laplace in-
version formulae (van der Pol and Brémmer~l955, p. 16).
Using the convolution theorem (van der Pol and Bremmer 1955,

p3_§9).we have from eq. (12):

€)

It JO e 71, 50 ae -

)]

L e a3
l .

s

where we have uséd exp;icitly the fact that g(e) is a sum of

delta functioms. This equation is already in the same form<

‘as eq. (1) for Strutinsky smoothed density of states.

We now'investigate.the conditions on f(By) more care-
fully. The behaviour of f£(By) far from the imaginary axis

is of little interest as the line of integration can be,
Y ;

" taken arbitrarily close to the imaginary axis. We now im-

pose two conditions on f(By) for the sake of mathematical
simplicity. .First we insist that f(By) be analytic function
in a strip of the imaginary B plane parallel to and including

the imaginary B-axis. The imaginary B-axis cannot lie on the

boundary of this strip but must beeactualiy inside the strip.

>

The second condition is that £(By) is an even function of B.

This condition is purely for éon#eniencg and can be relaxeqd

at the cost of losing some simplicity.

As the imaginary part-of B incneaseg ﬁ(By) must

-

—

o
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decrease fast enoﬁgh to be close to zero once we are outside
the region where the semiclassical and exact partitioﬁ func-
tions agfeé. To make this more preeise let us again consider
the harmonic oscillator. In this case the partition funcgion
has singularities at B = + 27in/fiw and hence the exact and
semiclassical partition functions can only agree for the ab-
solute value of B less than 2n/hAw. The f(By) must already -be
gquite small for(the above value of §. For the £(BY) given by
. eq. (11) this'means exp(-nzyzﬁﬁzwz) must be small which im-
plies Yy must be the order of fiw or larger. This will céuse
£(By) to be.down by fiye order of magnitude at the first
singularity. This is reasonable as the smooth energy must be

known to at least four figures to obtain the shell corrections

for heavy nuclei. If one were to consider a deformed harmonic

osciliator the location of the pole nearest $=0 is determined
by #he largest frequency and not an average‘frequency; Hence
the smoothing parameter y must increase as the deformation
‘incfeaées if one keeps the.product of the three frequencies

constant for volume conservation. If the same effect holds

true for other potentials it would account for the deterioration

of the plateau in. the Strutinsky smoothed energy for Woods-

Saxon potentiais with ve£§ large deformation [Brack 1976). If

——— ~
N v N

these conditions on f (BY) Fre'sat;sfied the exact partition
function in eq. (12) may be repiéced by the semiclassical one.

This gives us:

- 1 Be : ‘ '
9ee (€) = 331 dB ez (BIE(BY) . (14)

A

e
.
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We would like the semiclassical and Strutinsky densities of
states to agree for all e€.. However this is too strong a con-
dition and we will only impose the condition that the two be-

come equal asymptotically for large €. To see what condition

-

this imposes on f£(By) let us look at the equation:

) ~Be !
)= (6)] Prde = Z_ (B)-2Z f ]
f_m[gsc(e - 9o (€) e € sc (B) SC("B) (By)

(15)

@

where the second term on the left side of this equation follows

immediately from eq. (14). TheAintegral over £ is taken from
-» to +» because we have no guarantée that'gst(e) will be‘zéro
for negative . In fact it will in éeneral.not be zero. This
‘'méans we are working with the two-sided Laplace transform

(van der Pol and Bremmer, 1955). For the sake of simplicity

. we shall write:

D(e) = goo(€) = ggele) . | (16)

With this notation eq.ilS) becomes :

N

-0

L@ = fener e -z @ n-geny . an

The céndition on the Strutinsky density of stétes given above
means D(e) must go to zero for large e...This in turﬁ implies
that as é goes to zero ZSC(B)[l—f}BQ)].must diverge slower
than 8"1. Hence [i;f(By)l,muét go;to zero fast enough.to

e ‘ N . . .
cancel out part of the divergence of Zéc(B)‘ For the Harmonic

WAL T
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oscillator ZSC(B)'diVerges as g~3 (egq. (II.55))-and hence
[l—f(By)a must go to zero faster than 82. It does not do
this for thé f(By) of ey. (11). Howéver if we replace f(BY)
by the function fm(BY) defined by:

m

. 2n 2n
= (By) J 1
£ (By) = £(By) I 2 [ ] (18)
L n=0 (W7 lygy)2n FBYIlgg

the new function [l-fm(By)] can bé made to. go to zero.as
rapidly as we like by increasing.ﬁ. For the harmonic
osciilator m must be equai to or greater than one. Note

that the series in eq. (18) is just the first m terms in

the Maclaurin series for'l/f(BY)7 hence fm(BY) will reduce to,

one as m goes Eo infinitg. The odd Ferms-in 8 are zero
_because f(B8y) is an even function of 8. Thus fm(By)'is the
fupction we must ﬁultiply_the exact ﬁartition by in order to
extract the smooth dénsity. For £ (BY) to fall off as the
imaginary part of B becomes large f£(By) must fall off fagter

than B—2n

$

anélogy with eq. (13),

. The Strutinsky.density of states now beég;es, in

-

IIOQA(E:") [,;}s. [£ (By)lde* (19)

gst(E)

This is in the same form as eq. (i) with,

ste) = L7ME (8)]
. (20)
i 2n pa2n .
! JC“ a8 BCscay 3 B [a 1 ]
S B e""£(By L
273, C"i°°. . " n=0 Z2n5. asﬁn Eza; 8=0

PPN J—

T

~ evemea

§ Pt "
C .
Lo N



91

We have thus derived the Strutiﬁsky smoothing. procedure for
the dens}ty of states with the generalized smoothing func-
tion as given by é&. (20). We will now look at the proper-
ties of this function in e-space. In partlcular we will show
that our. generallzed smoothing functlon, S(e), is very 51n11ar
to the one discussed by Brack and Pauli (1973) and that for
the choice- of £(BY) glven by eq. (11) we get the usual Gaussian
smoothing of eg. (2). . -,

As f(éy)”or equiva}ently fm(By) is analytic in a strip
of the complex f-plane.including the imaginary axis, S(e) of .
eq. (20) must fall off at least exponentiﬁlly for ¢ large
negative or'lafge positive.' This ‘may be seen by looking at
the interval of cdnvergence of the Laplace transform integral.
The analytic properties of-fm(By) also means t@at the c¢ in
eq. (20) may be iero. By replacing B.by -8 in-eq. (20) one
can see that because f (BY) is an even fzhctlon of B, Sfe) is
an even functlon -of €. . Tpls implies that the odd moments,

H2n+i' of S(c) given by:

. ””’;\\

- 2n+l ) .
bzngifi J_w s(e)de . | o (21

LN

will be zexro. The even moments will be nonzero and are equal

&”ﬁ L

_ 3%g¢p)
2n. aBZn

to:

b (22)

BfO N

This equation is derived by differentiating the Laplace trans-

forﬁ;integral. None of the moments diverge because S(g) falls

et S S % e e
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off at leasg,exponentLally. By looklng it .either the Laplace
transforn integral or the Laplace inversion lntegral with c=0'
we see that fm(B) along the imaginary B-axis is just the
Fourier transform of.S(e). Since fm(B) goes to zero for the
imaginary part of B large,.the higher Fourier components of
S(e) must be smail and S(é) hust be }n some sense smooth,

We wi;l now explicitly taketthe Laplace inéerse in eq..(20).
Using eq. (IX.28) we-ha&e:

¢

2n

m q 2n - a%hg {g) .
_ 1 8% ol
Sle) = I Ty EE So2n (23)

. “ i * B 0

where S, (¢) is. the Laplace inverse of f(B). ‘The coefficients

may be expressediin terms of the moments of eq. (22) if one

takes the B-derivatives explicitly and uses eq. (22) to ex-

press the derivatives of £(B8) at B=0 in terms of the moments
' : \

bzn'

The sméothing function of eq. {23) corresponds closely

&

to the one dlécussed by Brack. and Pau11 (1973). The main

’

difference is that they do not explxc1tly impose the smoothness
condition discussed above, They‘do however insist.that S,(e)
is;continuous.and that all defivatives.exist. To get ;he‘
coefficients of the.cufvathre corrections they say that terﬁs

to order asto(e)/aezm in:

‘; b2n aan(e).

3
n=g (2n): 3¢ 2D

RN

e B aem e
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must be zero. Using eq. (22) it is easy,to.seé tha
satisfied for S(e) given.by eq. k23) and hence our co
agree with theirs. .

The function £ (B)may tgke on many diffe;ent explicit
forms besides the one given b? eq. (11). Bach of these will
results in different forms of the smoothing functiod S(e).
The value of g_, () Qill-not depend on the form of ), at
leést for large €, if fm( ) sati;fies the above conditions.

Various forms of S(g) are iscussed by Brack and Pauli (1973).

We will now work out the form of the smoothlng func- \

tion when f(B) is given by eq. (11). In thlS case S (e) is

|

given analytlcally by'

i

' '32 hd . ’
Sole) = E— . < : ' ) . (24)
/T : . .

This may be sﬂdﬁniby.explicitly taking the Lgpﬁgce transform
of eq. (24). The coefficients in eq. (23) -may be worked out

and this equation becomes:

S(e) = . (25) |

s
=

This may be further simplified using the three relations

y

(Abramowitz and Stequn, 51965, chapter 22)

n 2 -~ .2 ‘ .
-3-—5 e = (-1fu (e (26)
£ . ) ' ' :

A

A
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1 j ‘ .
"7 2/ LD |
Lt Vs g, (27)
ll l e
- . m - . .
2 oe? = 1n?ed (28)
© n=0

Nf -

where Hn(e)’is the Hermite polynbmfal and Lm tﬁe_generalized,

Laguerre ﬁélynomial. B4. (25) now becomes idgntical to eq. {2)
which gives tﬁé usual.Strutinsky smoothing function. Thus we
have derived the usual Strutinsky spoothing proquure for thé
vdensity of states. ~ X - . . %
An intéresting difference\arises when we compare
Strutinsky smoothing in’'a squakre well with Strutinsky smoothing
in a harmonic oscillator‘weli. The ﬁifference between the
* d

semiclassiecal and Strutinsky density of states as we haye seén.

can be w;itten as:
D(e) =[;1 [ZSC(B) [l-fm'(s')]] . _ (29)

For the harmonic oscillator the function we are taking the
Laplace inverse will be anaiytic at =0 if m is greater
than one._ On the other hand for the square well ZSC(B) goes

like 8-3/2, see eq. (V.2), and the function we are taking the

Laplace inverse of in eq. (296 will never be analytic at B=0  ~~

D

(E}for any finite m. T6 see the significance' of this let us iook<
Qgt eq. (17).  The integral in this equation will converge for

negative'ﬁ'if and only if D(e) falls off exponentially or




" 'faster for largg €. In this case the integral will be an
‘/(7F§;Zlytic function of B along the imeginaryA%~axis. If on the
ﬁ?er hand D(e) falls off slower than exponentlally the 1ntegral
,wg%ivdrverge for negatlve B and there must be at least one sin-
gularity on the 1magthary B-axis (van der Pol and Bremmer, 1955
p. 104). Thus the presence of 2 singularity on the imaginary
B- axis glves us lnformatlon on the behaviour of D(e) for large
€. Hence we see D(g) must . fall off exponentlally or faster
for the harmonic oscillator while 1t’must fall off slpwer than
exponentially:for the squate well. In this discussion we ‘have-
ignored the error due to using eq. (14) rather then eq. (12)
"which should he negligible. This difference between the.two
potentiels accounts for the fact that the Strutinsky brééedure'
works better for the harmonic osc111ator than the square weil
(Bhadurl and Ross 1971, Brack and Pauli 1973) as well as the
fact that for the square well the Strutinsky results although
. poor for small particle numbers improve for large'partiche
‘humbers. '

Since S(g) falls off at 1eeet exponentiai for large €
we see from eqeg (19) and (2[ that the Strutinsky density of
states evaluated .at € @epends only on the exact density of

. states nearie. Hence from a practical point of view it will
be only the behavxour of g(s) near ¢ that w111 be lmportant
in determlnlng the condltlons on f (By) If the conditions

on f (BY) dlscussed above are met the value of gst(e) will not

depend on the precise form of. f (BY)s In particular ' if we take

~

<
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f (By) from eq. (11) the result should not -depend on Yy or

m for certain ranges of these Varlables. This leads to the
plateau condltlon (Strutlnsky 1967 1968) that y and m should
be chosen in a region where the Strutinsky density of states

is insensitive -to the actual values chosen.

&

SS far we have just discussed the smoothed density _
ofattates but we ate in féct interestéd in the smooth energy.
This means we must use the above arguments on éqs.'(II.7) and
(IX.8) which detérmine A and E. The only difference is thét
thege equations have respectively one and two more factors of
B in their denominators. This.méans we must take m  laxger by
one when determining the energy. If this condition on m is
met one can then usé th; Strutinsky denéity of stétes_given
by eq. (19) or equlvalently eq.’ (1) in egs. (II.2) and (IIL.3)
to determlne the energy as is usually_done (Brack et. al. 1972).
In the case of the harmonic oscillator m must be greater
than ti equal to twd. The‘aboée arguments can élso be used
wheﬁ working with the donstrained Hamiltonian of cﬁapter Iv.
The procéddre of multiplying the partition function 'by. an
approprlate function in that case tells us to Strutlnsky—

smooth not only the den51ty of states given by eq. (IV 69 but

also the subsidiary density given by eq. (Iv,s). Thgse two

.densities are then used in egs. (IV.7)-(IV.9) to determine

the energy.f It is necessary to smooth two densities as one
alone is not enough to determine.the energy. This is done in

actual numerical calculations (Bengtsson et., al. 1975). The:

-
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vaiue of ‘m requifed iq this case is determined by the same
arguments as';n the uncgnstrained case.' Even when using
Strutinsky #;oothed quantities the canonical réiation given
by eq; (IV.17) or eq. (IV.55) is still satisfied. i
If one is smoothing quantities other than the denézty

\ﬁhst be careful that the conditions on fm(By)
have not, changed. This happens ﬁs we have noted wpen we
determined the energy. In that case we saw that m had to

be taken larger. The conditions on fm(By) also changes when

we want to find the smoothed spatiaL density given by:

pe (o) =3 [ 3 c<r,e)fm<sy)] : - (30)

|

In this case fm(By) must fall off more quickly as B goes off

the real axis. To see why this is so let us again consider
+

the spherical harmonic oscillator. 1In this case the lowest

*

frequency in the density of. states is given by 1/hw (éectiod_

VI.S5).1t™bs» this frequency that causes the singularity in the

- partition function' at B=2wi/hw. For the spatial.density the

lowest frequency is half this va;ue. This is particularly
ébvious for r=0 where the:dénsity is zero for alternating
sﬁellsximplying a period of 2hw or a frequency of 1l/2hw.

This implies that tﬁe smooﬁhinq‘parameter, Y, must Be‘twipe
as }aige~when'one is smoothing thé>density. This we séﬁ whgn
wé obtained the Struﬁinéky sﬁbothed density for the harmonic

oscillator in.Chapter IiI. 'It also accounts for the spatial

oscillations in density for thg‘WobdsvSaxons potential

o

ity s
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discussed in Chapter III.

In the afguments given above we have assumed that
the one-bedy potential is infinite. In a finite Qell the
Amoothing fpﬂction extends above the top of the well and
iﬁto the continuum. This means that even if we are working
at energies below the top of well we are sensitive to con-
tributions frog the continuém (Baliaﬁ and Bloch 1974). .We
rmust therefore apply the Strutinsky smoothing to a density
of states that is well behaved even above the top of the
well. Such a density of states is provided by eq. (II.29)

where we include é%e effects of the resonances in the con-

tinuum. The smooth or semiclassical part of this density is,

as shown in settion (IX.3), well defined and continuous for
eneigies above the top of the potential'weil’if the volume

integral of the pdtential is finite. It is then even con-

* tinuous at the top of the well. . The partition function of

‘ eq. (II.3i) corresponding to this density of states is the

natural extension (Huang 1963, p. 309) of the partitioh
function for finite wells.{ Thus it is reasonable to use
the fesonancgs in the Strutinsky smoothing procedure. In

fact numericél,calculat;ons (Ross and Bhaduri 1972) using

‘the resonances yield results in good agreement with the

ééﬁiclassical results (see section ;1.6). It is worth

noting agaiﬁ that this is only valid if the volume integral

- of 'the potential is finite.

The pfcceduré described above is not thé one usually

‘o
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used in doing étr;tinsky cg}éulationé in finite wells. The
.usua; procedure (Boléterli et..al;ml97é, Brack and Paﬁ}i.1973)
iﬁyolveé usingfé set of artificial states generated.in the
continuum by diagonalizing the Hamiltonian in a finite basis.
‘This procedure is different from the one deécribed above in
that it works even when the volume integral of the potential
is infinite. This:indicateﬁ thét the arﬁiﬁiﬁial‘sgates are
not to ﬁe.looked on as approximating.the resonances (seé also

Bolsterli et. al. 1972) but only as an arfificial means' of

continuing the "density of states in a sméoth manner into ﬁheﬁ,

-

continuum region.

S i
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CHAPTER VII
- SURFACE CORRECTIONS TO THE

LANDAU DIAMAGNETIC SUSCEPTIBILITY

'VII.1 In;roduqtion. !
By &?nsidefing a system of free electrons”éénfined in
~ - —_ !
a largé box and neglecting surface effects dueto the walls of

the box, Landau (1930) obtained the'diamagnetic susceptibility
of the electron gas. in the weak field limit, simple ex-

-

pressions for this quantity are obtaiPed for both the zero

témperature dggeheratgvgas (Pathfia 1972£ p. 227) and the

’ high tempe;atqfe Boltzmann gas {(Haung }96&, p..243). These
expressions give the so—éalled Landau values.” We are not con-

. cerned, hére, about:thaxfpart of theorbitai.suécepﬁibility S

- which oéciliqtes with a varying field_and'sﬁows ¥p at 1lgw tém—

peratures as the de.Haas-vaﬁ Alphen effect. This oscillation

in the susqeptibi;ity comes from'oscillating terms in the

'single~particle density of states (Pathria 1972, p. 231) and

hence are similar to nuclear shell effects_(section‘vxlz.)‘ We

o

however are concerned only with the smooth part of the magnetic

suscéptibility: One méy then ask as to how the steady value
of the ‘'susceptibility is.affected by the presence 4f a surface.
Since the electrons are confined by ‘some sort of otential

barrier, one may expect changes from the Landau values as the

. classical radius of gyrdtion of the ‘electron becomes comparable,
. o .

100~
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»

co the confinement size. Since the redius Bﬁ gyration of

an electron is inversely propcrtional to the applied maghetic
field strength, oﬁe may expect surface effects to be important
in the weak field limit. -This que%tlon has been lnvestlgated
by Fr(edman (1964) and Thomas (1973)' whe_copsidered explicit
for@s for the constraining potential agd worke® out sus-—

ceéptibility by considering the eigenspectrum in the presence

v
-

of a magnetic field.

[ 3‘

In this chapter we will develop semlcla531cal ex-
pressions for the susceptibility, in the weak field limit,
that are valid for quite general potentials. To do this the
susceptibility is first -expressed }n‘terms of the single
particle electrqpic partitiop function. This partition
function may then be éannded-in a power series in 4 gsipg
'exacply the same techniques as used in'cﬁapter iv for the
cranking model partition function. <It is possible by this
method.td get generaliexpreeeiéhs because we do not deal
directly with the E1genspectrum The general semiclassical
expressions for the susceptlblllty will then be evaluated

for specific constraining potentials and the results' compared

with those obtained by Friedman (1964) and Thomas (1973).

(3
&

A%

VII.2 Semiclassical Expressions for the Magnetic
Susceptibility. .
"* Consider an electron gas, in which each electron moves

independently of the others, but in a cne—body potential V(g)

\.

—
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whose form need not be épecified. A magnetic field B will
1
couple with the orbital as well as the spin angular momentum

of the electron. The spin couplihg will give rise to para-

magnetism, and is not important in the present context. We -

b o4 cdSededbans A

shall therefore regard the electrons as spinless in what
follows. For completeness the modification due to the inclusion |
of spin will be given in appendix g. The orbital Hamiltonian

of an electron in a magnetic field B is:

B =L o+ a4 v ‘ - SO ‘

P . . 1

g 1

where -e is thé charge and m the mass of the electron. For ;

a unifomm magne%ic field, the vector potential A = % (QXE). ) j
Thé above Hamiltonian may be simplified by.taking the z-axis

along the direction of the magnetic field.E This gives us: . . ’1’ }

ﬁ? = -'%é vz.f V(xY + :iij‘rf +‘§§E Ez . (é)

with the same notation as in sectiog IV.3. This Hamiltonian
is very similar to the cranking Hamiltonian of eq. (II.34).
The only differences are the absence'of the spin term here '

d *
and the presence of_ﬁfrm proportional to ;3. The w of that

R S fn b 23 S et e aio patre BB o e £ =

S ST

case can be identified with the eB/2mc .in, this case. The one-
body partition function can now be defined, as in previous,

f.

chapters {(see eq. (IY.lO)),by¥) ) Ny . :

. B .
2B(g)" = tr e™PH L (3 A




The magnetization, M, at a temperature
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‘ ';“ ‘
The magnetic susceptibility is comp etely determined in terms

of ZB(B), both in the\Qero and the high~temperature limits.
is given by (Pathria

1972, p. 228):

‘M =" KT (g5 1n.Q), o (4)

CRe

where Q is the grand-canonical partition function and X the

Mg

chemical potential. 1In the high temperature limit we may use
Boltzmann statlstlcs instead of Ferml-Dlrac statlstlcs (Reif
1965, p. 352). For nonlnteractlng particles the grand-

canonical partition function becomes (Pathria 1972, p. 104):

‘

1n Q = eBX 2B (8) | , (5)

whe;e we are fof-the first timg in this thesis using B as

the reciprocal of the tempeéature, i.e. 8=1/KT where k 'is
the Boltzmann constant anﬁ T the'temperature. In this case
N=1ln Q so the magnetization. per particle can be written, '

using eqgs. (4) and (5) as:

B
1 _ 1 3z~ (B) S :

= . (6)
B 2B gy 9B : !

M.
"N
In the weak field limit it is only necessary to evaluate’

Z (B) to order B The f1eld~1ndependent susceptlblllty,

given by x = M/B (Pathrla 1972, p. 223) in thls case

.
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becones:

(7Y

where ZO(B) is the partition function .for B=0.

To express the Zzero-temperature susceptibility of a

degenerate gas in terms of ZB(B) we again use eq. (4). ' In
the low temperature case we must use Fermi—Dipaé statistics.

The grand-canonical partition is then (Patﬁria 1972,'p. 228),

ln Q = J‘ gB(s)ln(1+e(A—€)/kT) de. _ (8)
0 _ .

-

i

where gB(e) is the density of states obtained by taking the.

Laplace inverse of ZB(B). For .a degenerate gas, in the.

zero temperature limit, this reduces to:

A B )
kT 1In Q ='J g (g) (A-€)de &
o . . ' .
A e! . '
= J de [ g®(e')ae’ -‘7\“ (9)
0 0 Sl
J/

where the sécond evpression has been obtained by integrating
by parts., As in chapter II we may express gBTt) in terms of
the one-baqdy partitioﬁ function and write in analogy with

eq. (II.8): . g . .

' . B :
KT 1n'Q ='£;1 [?'—%9)—] . S o)
8™ .

e e g
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Substituting this in eq. (4) we get the zero temperature

magnetization:

]

. B -
: ~1 1l 9
Moo= L] [Ez‘ 2 (1)

The weak-field susceptibility X of a degeneréte gas at zero -

temperature is. thus:

oM _ 1 p-1 [-1 2z3(g) R
x=5-35 4 [Bz‘""a'is"’“J ' (12)

Notegwthat again here B i just a dummy variable as in chapter

II.. To examine the bghaviour of X in the zero or high tem-
perature limits,*it is only nécessary-to evaluate the one-
body’partition function to order B2.

o

partition function: .

2B(g) = tr e 2 (13)

As the semiclassical expansion‘for verj similar partition
functions has’ been done in section (IV.3) and (IV.4) we will

“not repeat -the detail; He;e_but.refer the reader to those

sections. The partition function to order‘h and 52 is given by:

2,2 " ) :
B _ .0 B“h 2m 3/2 _ ,
Tgc (B) = Zgo(B) - —sz . {—-7—83/2‘ Ja re BV[l -

8%n? 2, [ et afv azv)]} . g
24 e A :

We now want the semiclassical expansion for the exact -

[ S

Pannn
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v

(B) is’ the B independent partltlon function of

eq. (II.22). ThlS equatlon may be rewritten, using eq. k}ﬂgﬁZ)

as D ,
* - \/ J
2, 2
_ _ e8%n° 2 0
(B) = z__(B) ;%5? B 27, (B)
2, 2 2 2 2
B-ﬁ 4 A °V T 3%V 0
+ B < )> 2. (B) (15)
24mzcz . 60m ax2 oy 2
where} : ) ' ’
2 2 ‘ 2 2
<(§_%.+ E_%)> = {d r e_BV(a V + 2—%)/Jd3r e -8V .
X ay- : .

Bx R:>%
- (16)
Eq. (15) differs from eq. (1l4) in terms of order higher than
. This is not important.aejeq.,(i4) is only accurate to
erder fi, anyway. The abqye'eﬁpressien for ch(B) may now be
used in eq. (?) or- eq. (12) to determine the magnetic sus-

ceptibility. The high:%emperaturé susceptibility per particle

is: Lo ) [\‘

2

22 1 e%a? 1+ n? 2y 2

~ w73 360m<(:2+zv)> A(17)
X .

12m%c ‘12m“c” (kT)

where the first term is just the Landau value, and the second

term the sought after correctlon.

Egs. (11l) and (15) may be used to obtain the zéro tem-»

peraegre susceptibility of the degenerate gas. The Laplace

-

inverse here is done in the same manner as the Laplace inverse
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used in determining gsc(e) in chapter II. See in particular
eq. (II.28). The result for the susceptibility is:

E 4

. 2.2 ' T 1/2 2 2,
‘ e“h [o 1 ;2 1 3[.3._,9v ., 3%y
X == —5 lg_ ) - () = Jdr( + )
1amfc? 'S¢ gy xj 30 3% axZ oyl
« 8O-V) J , (18)
AV

where ggc(l) is the density of states, eq. (IIX.27), for an
electron in the absence of any magnetic field evaluated at’
the Fermi energy A. Again the first term.is ;heiwell—known
Landau term, while the nexp'tefm i§~the sought after correction

term. _ L C

VII.} Magnetic Susceptibiiﬁty for Specific Examples.

In this section, we shall ap?iy théAformulae (17)
and (18) to evaluate the dianagnetic susceptigilitxigﬁk some
simple potentjal barriers. In the first example we ;;ll-con—

. . . . . . | .
sider a one-dimensional harmonic barrier. In this case,

) o . . . ) ) .
= %-m?zy . where Q@ is the oscillator "frequency". We then

have;
2., 2 . '
37V v 2 ; .
_— = 0 r . "'2' = mQ ' ’ . (19)
%2 " dy ’ .
and hence
.2 2 : .
< (x_"...‘_z’. " L\2£)> = o’ (20)
ox 3y '




Substitutiné this in eq. 17), vwe get for the Boltzmann

~gas:
X - ) ﬁznz
=y (1 - 220
60 (kT)
where
X, = - e’n? 1
L 12m%c? kT
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(21)

N\
(22)

—

is the Landau value. Hence the correction ;erm‘to the Landau

value goes to zero at'high temperatures irrespective of the

‘parameter Q. This is in agreement with eq. (4.10) of Thomas

-

(1973).

To calgulate the zero-temperature suséeptiBility of

a deggnerate gas for The same potential, we use eq. (18):

this case it is necessary tq»eﬁaluate the integral:

i

6 (A-% ma2y?)

I = ' dy sz‘ /—=-;==2=‘—2———
A-E-mﬂ 8%

and then take its deriwvative with respéct to X.

the step functlon, the y- lntegratlon is cut off at y= +(2A/mQ

In

" (23)

-Because of-

The result now becomes (Gradshteyn and Ryzhlk 1965, P. 86)

[ 4

(24)

Since this is independent of )\, the derivative with respect

.

LT T SIS S

2)1/2.

~tamin




109
L
to A is zero and hence the correction to the Landau value
of the susceptibility at zero temperature vanishes to this

order in A.

We will now consider the case where: ‘
- 1 -

Using eq. (17) ;t'is straightforward to show that the high-

_temperature susceptibility is:

X

5) (26)
30(kT)

Y X = -
N = xp (1

— .

Again the correction to the Landau value vanishes at high

temperature. : ) ; ,
To evaluate the correction at zero temperature it is

necessafy to evaluate the integrals
5 5~1/2 -
I = 2mp? Jd3r()\°—% m?x?) e s me’r?) . (@)
This may be done in a manner similar to that used in the last
case. The result is:
2

572 1A B : -
I = 2°/° : ] . (238)
(mQ?21/2 .

P

<

Substituting this in eq. (18), we get for the zero temperature

1
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susceptibility: .
2,2
- . _&h 0 -1 ]
X = 2 2 [gscm '30ﬁSZJ .

12m”~c

As the semiclassical density of states for a harmonic oscillator
potential, without spin degeneracy, is (Bhaduri and Ross 1971):
% 1

(e) =" - ' (30)
sc 2(hQ)°  8AQ
. | :

¢

" we see that the correction to the Landau term is very small.

Lastly we shall -evaluate the high temperature sus—

ceptibility for the potential:

3

1 : LA o
V=3 n@? y #“V0b4y ' | (31)
discussed by Thomas (1973). Here we have:

-

2
: 3V | 3V, L _ .2 .
‘ U=z + ~—3)>-= maT+12V b, T (32)
ox dy

+

. 2 2 4

Ln y2e 6(—-m€2 Yy +Vgb,y )dy
I.="— -

I B(-gmﬂzyz

.

+V0b4y )dy

o

2 9 -
- == 35 gp —we ) 1dy . (33)

1 2.2 .. 4
[“ -B(imﬂ Y +V0b4y ) B
BQ .

R Y
v

gy e gt "“ia alg -
‘.

T e
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The integral may be expressed in terms of the modified Bessel
function Kl/é as (see Grad§ teyn and Ryzhik 1965 p. 339 and

P. 952): Z

N ae

1 .22 4 ‘
Jw e-ﬁ(imﬂ v +V0b4y )dy _1 m92< xp(e 1n294)
o : 2V 2V b, 32 U b,
. 2.4
B m™Q .
X Kl/4(§§ VEEZ) . } (34)

Using eq.‘(34) nd the identity (op. cit, p. 970):

~—

d _ : )
Ix Kv(X} = ;— K, (x) K,_q (x) . (35)
3 —~
we immediately obtain: . o DT
. w20 B‘ 2,4
t= [‘l + X307 7 b )/"1/4 32 vT)] : (36)
.8V b, .

-

T

To take the proper high teméerature llmlt of thlS, ve assume
the parameters of the potentlal V to be flxed and let B+O.

Using the relation (Abramowitz and Stegun 1965, p. 375)

Mm K, (x) = 3 T(v) G (37)
x-+0 :
we can simplify eq:k36) in the limit
" w2t C : :
1 m-Q ‘ . )
558 - << 1 A ‘ (38)

""l\.‘,.' N

v e e n *
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We then get:

r(3/4) 1 ‘
PTGy 2 ‘ (39)

The highltemperature susceptibility can now be immediately

written down using egs. (17), (32) and (39). It is:

2 SR ‘
. X - xlreze 1 1/2
T SN T X [l 55 T(L/4T oqy 372 V0% ' (40)
where we ‘have neglected terms of order (kT)-Z. This ex-
pression again reduces to the Landau value at high ﬁém-
perature. Wé emphasize that eqg. (40) was not obtained by

Thomas (1973), since he did not evaiuate X in the high
|

temperature limit. Rather, he used a perturbation formalism

and allowed the strength of the y4'term'in V to be adjustable

at high temperatures, so that the condition

V.b : B _
04 g : (41)

[y

'N//”’ \\Vﬁs satisfied. This is actually the opposite condition to
eq. (38). Using the' asymptotic relation ‘(Abramowitz and

Stequn 1965, p. 378): : : ' -

2

K_y, (x) v/ e ¥ (1 + 1L . (42).

' 8x

valid for large x, eq. (36) for I reduces to:

o

e T ki

N

lw“m‘m »7
[P
'
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I o~ . : (43)

Using this in egs. (17) and (32) we get:
3 .
F. .

/

a2 xle? Vob
60 (xT)2 ST} 29 P

(%2

4
D - (44)

\

SRS
%his i; the same résult as obtained by Thomas (1973), after
minorhalgebraic exrrors in his paper are corrected.

To summarize, we have used the semiclassical partition
to derive expressions for the weak field susceptibility f§r both
thg Boltzmann‘and degenerate electron gas subject to a smooth
potential barrier of arbitfary shapé. ‘Even in this weak B

| ‘ |

field limit, -when surface effects should be ﬁost effective,

we find that the corrections to the Landau values of the o : .

—t e Y

‘ o
susceptibidity are unimportant.

{
{
i




CHAPTER VIII

) CONCLUSION
“ & . +

An expression for the smooth part of the energy of a
1 \

. system of noninteracting particles has been de&eloped as an

) ’exﬁansion in 4#i. This expansion, which is valid for finite

. or ?nfinite poﬁen?ials, gives to leading‘order just the Thomas-
Fermi resulty. The final expression can therefore be regarded

v . as-‘an extended Thomas-Fermi expression. It is to be stressed

: . , that although. we have used the -one-body partition function

ALY
Y

the result is an A-expansion and not .a thermodynamic result.

In fact £he same results,-to a lower order in © have been
derived by both Balian and Bloch le?l) and Gross (1972)
& usihg methods thet made no use of the partition function or
thermodjhamics. We have used the partltlon function only
'« as an analytic tool to simplify the mathematlcs. ThHe effects
of .a spln—orblt term in the Hamlltonlan are included exp11c1tly
in our formalism. The. ﬁ-expan91on was shown to converge ' v

rapidly for realistic potentials by considering specific 'J

.'examples.

3

The analysis was then extended to the'case-of a con--
' _f strained Hamiltonian. In partlcular the' pushing and cranking
4o models Gere considered. ‘In the cranking model the moment of -

- inertla was calculated. It was found that although the moment

. of 1nert1a takes on the rigid body- value in the Thomas—Ferml

114~
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% . , approximation, small corrections to this value arise when
b _ higher terms in the ﬁ—expénsion are considered. The correc-
tions. to the rigid body value were found to become more im-
portant Qhen the one-body poténtial contained momentum de-
pendant terms, .
e The sgmiclassical ‘expansion was also used to ¢btain
expressions for the spatial and kinetic energy densities.
L These expressions were not Qalid‘near the classical turning
points where they diverged. Anféxpressioﬁ was then obtained
T | for the kinetic energy densitg ?n terms of spatfgl density.
f The first term in this expfessibn was the usual Thomas-Fermi
{ | p5/3'term while the second term was the Wiezs;cker term with
! thé correct coefficient. Higher order terms were also ob-
! tained.

The semiclassical results for.the énergy were compared
to the Strutinsky smoothed energy.‘-It was found'both-qg—
merically and analytically the two energies were the same.

In fact the Strutinéky smoothing method -may be. regarded as

a practical numerical method for finding the semicléssical

N MRLIWLE AN o b o o

ﬂ enerqgy.
The semicléssical expangion was compared Qith the
A—expansion; It was found-tﬁat the semiclassical expansion
7convergeq somewhat faster. The volume .and surface terms

] . found by leaét‘square fitting the gemiclaésical energies for

a0 o

a Woods—-Saxon well are in good with the values obtained

analytically by SiemanS éﬁd Sobiczewski (1972). It was also
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observed ﬁﬁat the shell correction obtdined using the sémi—
classical energy did not average to zero when averaged over

a large region of A. This is not a disadvantage as it merely
causes a slight change in the liquid drop mass formula
parameters.

The formalism developed for the érankipg mode} was
applied to, the formally very similar problem, of neh-interacting
pértiClesvih a magnetic field." In particular surfadglefﬁects
on the diamagnetic susceptibility were investigated. It was
found th%t at high témperatures the diamagnetic susceptibility
reduced to the Landau value while at zéro temperature small

L3

effects remained.
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APPENDIX A

THE EXPRESSIONS FOR w

In this appendix we will givé the expressions for

Wy through W, as required by eq. (IX.19). They .are: : o T &

.l
iB

V=" BV
2 3 4 3

- _ B 2 B 2 _ B 2 B Z
W2 = '—m Vv + -—-—6 (VV) —f(E.VV) + —T(B.V) v ’
8m 6m” -

183 2. ig* [y

Wy, = - —{(p.V)VV + [ (p.V)

3 2 -
6 . 4m
5 L2 _(E.V)3
+ 13, (V) (VW) 7 + —a v]

a5 2 '
. _ iB (VV) e A 2
4m2'[ 3 E'Vv t e (g.j)(E.VV) ]

4
188
48m

3 (B.VV)3 7 '

8

. . 4 .
= - B B [1 o242 , 1 2
.W4— -—7 V4\’ + '-;2- [ (V V) 4 vv.vwov

. 24m 4 é

5
l1 ,2 2. 1l 2,2 _ B }_ 2 2
+ iz AN QA'S) + m,(E.V) v V] -4——2- [6‘ (Vv V) (V)
) . — . _4m
2 ery 2 1l 2 2 .1 2 ~.
+ is .VV-'V(VV) + = (Vv (p.V)V + m.VV.V.(L:.V) v

ek

N Al e

i

v PR P 4
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3w (Bv) 77 p, vx%" —§7~ 1) 2 (vv) 2
+ =2y (p'\f)%} 82 [‘VV’4 + L (vvé\w 2y
0m° < 4m? L 18 9m 3 .
| |
;.
1 2. 2 5 2 '
F 55 (V°v) (g-VV) + I (E.VV) p.v. (VV)
¥ — (p.WWV) (g.V)‘3V.+ [(p.v)zv]2 ] : ’ .
871 2, 2 -1 2 2
T =3 [—6- (Vy) (E.VV) + 3 (p..VV)' (p.V)%v ]
8m ~ ~
. 8 .. s “ ' o ° -
+—'———Z<pVV) . L = -
384m ] ? o T )
\ )
. . 3 o
3 -‘ IS
's' ‘ ' .
.
» '
) !
.
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APPENDIX B

: , THE p-INTEGRATIONS

"In order to obtain the semiclassical partition’

function it is necessFry to.do integrations of the form:

2 - '
Cx= @ M pa e S

where the é,'g and g's.are either ordinar& vectors or vector‘
operators. Although integrals such as this may be done in.~
caftesian coordinates,, it is much easier to use the follow-
ing rules, which may be easily verified by using cartesian
coordinates. The.ruies are: '
1) thé.i@tegiél is zero if there are an odd numbex

of é'sﬁ ’ .o ] .I, ’

3/2- .

2). there is always a factor of m <

»
-

3) if there are 2n p's there is ah overall factor'

. of (Zm/B)n+3/2/2nA’ ‘ .

-

L

4) . the A;.B and C's are takeg in all possible’ scalar

combinations as often as théy occur, :

5) a facﬁbr of p2 1s'w;itten,as p.ip.i+g.ig. +p.KP.K,

~ A ng

.
taye]

’ wgere i, j and k are ‘the three cartesian coordinate

. . L~ s~ s - :

L 4 - -'." { . .
basxs.‘ »

‘ If any of the A, B or C s are qperators care must be taken

. to see that they act on the same factor in both the 1nter— T N,

gxaTd the. result.v As an example let us con51der the integral:

. ~gE ' T
T = f&sp e . oM p21g.VV)2(§.?)2V A _(2)

»

. . ,
. .
- ' ’ . .. ‘ - ‘ .
.
] ~ ’ .
, .
. . R ) . .
v

R VWA T SNSRI TS SRR
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This may be written using rule (5)

!

I= fd pe (E‘EE‘E+E'QE'1+E'E .K) (p W) (p v): V~ (3)

e

Using rules (2), (3). and (4) we get:

9/2 ‘
1= n3/23 700 A i ) (0) 2 (02)
) 53 LlEeatldtes

TR

~
.

~ o~ NN~ o~

—

e TV, ) T2V 2T 2L (LT 4 (T + kL (KT TY)

« -

C +8VVL (1. VLV 4 §.9V5.V 4 S.VVE.V)VV] , N

This reduces to: .
- N ’ . %
N el .

'

/ p .
I= 3/2( £ % [(3+2+2) (VV)2(V.2V)‘+(6+’8)_

w. (vv.V)_vv]

—

/2 2 9/3 7. [(W) 320+ 0702 ] s

T

s s
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APPENDIX C

.

The semiclassical energy, E__, may be written as:

sC
) A
} sc .
Esc = AscN - 10 n(e)de K , ‘ (1)
where:

Y . b

n{e) = J gsc(e)de ‘ - (2)
.0 '

P .

[}

v

In gsc(ﬁ), obtained by using eq. (II.22) ih eq. (II.6), we
include the‘leading term of order ﬁ“3 qnd correction terms
of order .t and 4, so that n(e) is correct to order f. The

quantity Asc is determined from the equation:

s

1

N o= n(i)) ' L (3)

| o .
Iif, howéver, we use in eq. (1) an approximate Fermi energy,

] B v
'Asc,=.ksc{+'sk’ obtained through the equation:
L . .
YAy = ‘ .
. n (}gc) =N , (4)

. | ‘ 1'
. | L J |
where n' is cO7r¢ct only tq o;der‘ﬁ-l, we get: '
T Al _ . .
Eéc = Aéc N - Io. n(e)de . " . (sw

»

—

. - L : . .
Note that in eq. (5),'theJiqﬁegrand of the second term still

, .
Find LN

o oie i b ot st b

.




N
— M *
ey \

contains n(e).. It is easy.to see that:

.. ' . 1 2 . '
Bl - E=3 (N0, . J/ (2

From eq. (3) and (4), we obtain:

n (.)\SC) ~n’ ()\SC)'

' . .
g (ASC) , | | \

\

SA

ee

- -
P . « %

Since the numerator of the above equatlon is of order h,

l\ and the denomlnator is of order ﬁ , 6A is of order- h4
. Hence Eéc - E ;, from eq. (6), is of order ﬁ It then

sc
follows that eq. (4), rather than egq. (3), may be used to

determine A_ . . _ S : : .

sC

wr




e

‘KPPENDIX D
: ' |

The expression for I(g,g, B) as needed'in eq. (II..44)

-

is:
222 .

T I(r,p,8) = BN ‘{pz(Vf)z - (p.Vf)z}

Y (2m) = .

2 % ) -

+ip° £ 2{- 2 .70 % + (p.ve)v%s + B (ve)2(p.vv)

"(2m) 2% 3
B ' AT A 2 |
= 3 (p.VE) (VE.W) - B E- VEV(p.VE) + 5(p.V)“f p.VE

v

-

| . , |
+.g3c2 A& B_ v£.vv%E + 2(p.vV2E)p.7E + 2(p.v) 2 vig
(2m3 L3 3= < 3

' . ¢
‘e . . . . 7'
N .

[P

~

- 30000 ? - g vE v (. + B (p.v) 3 puve

O

m
. B £12 B (p. vy 2 B ex2, 2
€ E.V(V‘ ) g._VV - (E.V) f VE. UV + -g(Vf) (g.V) \'4

: 9 ) .
- §evnvEV(R.I) + BB wvvve)? - B wvivip.vn) (E.Vf)}

3,3 4.
+ &8 B (VExp)x (VEXV) . (VExp)
3 “l (2m)3 ) ~ - " E ]
44 .4 '
gicd x 2.2 2.2
+ ‘ [(VE)"p™ - (p.VE)")
-]‘2. (2m)4 :

“

.....
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" APPENDIX E

The expression for Egc in the case of spherical

symmetry réduces to:

B o= A N - 8 (-"3-‘33/2 rscdr 2 —y)3/2
sC sc 15w ﬁz 0 sc
1 oam W2 (Tsc l/ZdV 2 av
- (——2-) J dr r (7\ V) + = a—)
‘A 0 dr
r ¢ .
- (‘Eﬁ)l/zj “ar 200 - 1/2{.1._1. 1 a5 alv
1207 "2m 0 . sc '’ 32 4.2 12 Z
p11@y et 1ty v et 7 ZV';’(dV,“"}
6 r drz dr 6 dr2 dr3 dr 12 d 2’ ‘dr
2 1/2, sc ‘ 2
_ 2% 2m “Tar £2. ¢ vy 372 (9
37 2 0 Mg dr
. k2 a2 2 Jrscdr 2 0 l/Z(df)z a%v.
] 247 ‘2m 0 sc dr drz
' 2 1/2 rx 3
_.1' 4 oy 1/2]f 2 1 af 4°f
I (—E) jo dr r“ (A V) [ —2- ar dﬂ? \
r
1 af g__g,_ } 31 df)3 »<4 (df)4
r dr X '

where Yoo is %he turning. point given by V(rsc) = A_ .

]

o

L A e Nt L bl oS
.
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APPENDIX F

In order to obtain expressions for the semiclassical

density it is useful tco define a "smoothed" mixed density:

.
® . e (e=e")?/v? :
gY(CiE) = f gl(e 'E) YT-TT‘ ‘ de (1)

0 |
.“ .
where y is a small but finite smoothing parameter; The

factor of Y/f is needed to insﬁre proper normalization. In
the limit y+0, the Gaussiaﬁ becomes a delta funétieq and .
gY(é,E)-reducés to'g(e,g). lThis means that for small thg

smoothing has little effect. In taking the Laplace fransform

A

of gY(e,r) we must deal explicitly with the two sided Laplace

transform (van.der Pol and Bremmer 1955): ‘ . S

co - ...BE: . . . .
' = . i
CY(E'B j_, gY(s,r).e de (2)

Using the convolution theorem fox Laplace transforms (van der Pol
F g . .

and Bremmer 19551p. 39) we obtain: . ' é
© 2,2 . ) -

' e TET Lge K

C (x,B) = C(E'B)I | e - de . (3) "

Y ) Rl YV,T? ‘j

_ L 4

The integral may be done by completing the square to yield: . g
c (z.8) =cp) FY /A (4)

.. %.

L _ ’ . ) L \ ) .{‘J.
* . This equation may now be used ip connection with egs. (III.3) .. 4
. i'

.?: .
1 é‘%
| 4
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and (III.10) to obtain a semiclassica} density Pg Y.(r). In

.

doing this we need to take Laplace inverses of the fo :
LG e !

S
o

2.2
T =,£;l Bn+1/2 o BV eB Y°/4 . L (5)
where n is an integer. Using the explicit form of the

inversion formulae (van der Pol and Eremmer 1955, p. 16} we

have:

CHico _ 2.2
L J gHL/2 o BV oBTYT/4 B g, (6)

21i /c-ie 2

o
where ¢ is a positive constant. By rmaking the change of’

variable x = BY/Y2 we get:

—43/4

nof X

; /Ix .
crie S22 Y (A-v)

Y : '
e . e dx (7)
+3/2 Jc—i?

_ 1
I= 271

<, ;w

The integ¥al may now be' recognized as an integral re-
presentation (Abfamowitz ané»8£egun 1965, p. 688) of thé
parabolic cylinder function U(a,x). Hence we have:

) .
1= 2 ' e“f*“v’z/?Yz‘U(-n-l,—ff(x—V)/Y) (8)
As we are only lnterested in vy small we may use the asymtotlc

form of U(a,x) for large x QGradshteyn and Ryzhik 1965, pu 1065

and P. 1066). This gives us: ' . '”

L ‘ ) - .
5 G(X‘V) L PR ?

= 8¢ | ‘ 9)
\> I(-n-1/2) A-v)?*3/2 . . |

-

PN

5 N e s o e g K R e 2
. N St i
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This should be valid except near the turning points where

A=V, Due to.the fact that vy is small the convolﬁtion of

€q. (1) should not effect the value of the semiclassical
fi

result, it only serves ?p validate the mathematics., A

Similarranalysis for thé\Paplace inverse of Bn yield the
\ 1

usual result (van der Pol and Bremmer 1955 p. 395) of the

n plus first derivative of the delta function. . This

tends tollenducredence to the method.

=%~
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APPENDIX G
THE EFFECTS OF SPIN ON THE .

MAGNETIC SUSCEPTIBILITY

Y
" The effects of spin on the weak field magnetic

susceptibility is easily included in the formalism of

chapter VII. -The Hamiltonian in this case becomes:

B e .2 -
H = oY (E + 3 a)° + v(r) B-us ; . (1)
where:
= - S0 | .
Ve =" S 3 - ‘

As in chapter VII we take B along the z-axis. The Hamiltonian

then reduces to:

~ ”2 22 ~ ~
B = -0 v v + &85 22 4 2 (Lo L
8mc ‘ “
o (2)

Notice that in this case the orbital term, Rz, and the spin

terﬁ,‘hoy come with the same coefficient. In the cranking
N ~ ? . ) , .
Hamiltonian.the«hoé,term had a relative one-halZ. The 4

partition function may be written in analogy with eq. (IV.10)

»

-as::

z3(g) = tr e PH : ' (3)

Y
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The spin part of the trace may be done using the eigen-

A ~ a
functions of g, as a basis. ThHe partition function is then:

B efh -Bﬁg' ’
Z°(B) = 2 COSh(EEE) tr0 e P (4)

“ ) _ ‘

"~

where Hg is the_Haﬁiltonian of eq. (VII.2) which contains

only the orbital part of the interaction with the magnetic
g%ield. The trace in eqg. (4) is.ﬁhe same as in eq. (VII.3)
and does not iﬂc}ude the sum over spin variables. As we

are only interested in small values of B the cosh factor

may be expanded to yield:

- 22 ~0
B - 0 eBhi g -BH .
Z (8) = 2 tro e + (-Q—In—-c——-) tro e B (5)

<

The firs;\ﬁégh here is just the partition function of eq.
v ” .
(VII.3) with an overall factor of two which arises from the

s

spin degeneracy. As this term was discussed in chapter VII

it will not be discussed here. The second term will give the
. ] )
contribution to the susceptibility from the spin. The B

"N

indepeﬁdant Hamiltonian,ﬂHo, can be used in tHis term because
. f’

we are only interested in the partition function t
The,contribution to thé s%sceétibility,from this te
found from-éq. (VII.7) or eq. (VII.1l2). 1In the ‘ b ofo) tempepgtpre
lim%t eqf (VII.12) gives the additional contribntgiqi '

o | |
_-1 eh ,2 -BH )
Xg =k3 ["fm—c) 2 trp e ] x - (8

s

o
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where Xg is the contribution to susceptibility due to spin.

0
0 e BH 5 just the partition function of chapter II,

complete with a factd;«gf&two due to spin degeneracy. Eq. (6)

The 2 tr

therefore reduces to:

_ e’n’ (A) 7
Xs¢ = —37 ¢ '

im~c

where g(l) is the déﬁsity of states (see eq. (II.6)) in the

absence of a magnetic field. This is'just the expression for
the well known Pauli paramagnetic susceptibility (Péuli 1926)
and should be added to eq. (VII.1l8) to obtain the complete
expresqun for the susceptibility.

In t£he high témperaturé limit we similarly éet an
additional term. From edq. (VIi.?).iﬁ is ‘

Xg 1 e’n? ' . kS)

T D 4mzcz‘

The complete expression for the susceptibility is found by

adding this term to eqg. (VII.1l7).
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