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Abstract

Given colourful sets S1, . . . ,Sd+1 of points in Rd and a point p in Rd, the

colourful linear programming problem is to express p as a convex combination

of points x1, . . . ,xd+1 with xi ∈ Si for each i. This problem was presented by

Bárány and Onn in 1997 and it is still not known if a polynomial-time algorithm

for the problem exists. The monochrome version of this problem, expressing p

as a convex combination of points in a set S, is a traditional linear programming

feasibility problem. The colourful Carathéodory Theorem, due to Bárány in

1982, provides a sufficient condition for the existence of a colourful set of points

containing p in its convex hull. Bárány’s result was generalized by Holmsen

et al. in 2008 and by Arocha et al. in 2009 before being recently further

generalized by Meunier and Deza. We study algorithms for colourful linear

programming under the conditions of Bárány and their generalizations. In

particular, we implement the Meunier-Deza algorithm and enhance previously

used random case generators. Computational benchmarking and a performance

analysis including a comparison between the two algorithms of Bárány and Onn

and the one of Meunier and Deza, and random picking are presented
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3.1.2 Second Bárány-Onn Algorithm . . . . . . . . . . . . . . 15

3.2 Meunier-Deza Algorithm . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Random-Picking Algorithm . . . . . . . . . . . . . . . . . . . . 20

4 Software Implementation for the Algorithms 23

4.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Input Data Structure . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Internal Data Structure . . . . . . . . . . . . . . . . . . 24

4.1.3 Output Data Structure . . . . . . . . . . . . . . . . . . . 25

4.2 Normalizing the Input Points . . . . . . . . . . . . . . . . . . . 26

4.3 Testing whether a Colourful Simplex Covers the Origin 0 . . . . 26

4.4 Computing the Minimum Norm Point in conv(T) . . . . . . . . 27

4.5 Selecting an Interior Point in Facet σ . . . . . . . . . . . . . . . 28

4.6 Computing Intersection of a Ray r with a Facet of conv(T) . . . 29

4.7 Finding a Point v ∈ Si such that v ∈ H+(U) . . . . . . . . . . . 32

4.8 Converting an Integer to a Binary Number . . . . . . . . . . . . 32

4.9 Generating Random Integer and Real Numbers . . . . . . . . . 33

viii



5 Random Case Generators 35

5.1 Random Case Generator of CLPP-TH1 . . . . . . . . . . . . . . 36

5.2 Random Case Generator of CLPP-TH2 . . . . . . . . . . . . . . 37

5.3 Random Case Generator of CLPP-TH3 . . . . . . . . . . . . . . 39

6 Testing and Results 43

6.1 Testing against the Cases of CLPP-TH1 . . . . . . . . . . . . . 46

6.2 Testing against the Cases of CLPP-TH2 . . . . . . . . . . . . . 47

6.3 Testing against the Cases of CLPP-TH3 . . . . . . . . . . . . . 48

7 Conclusions and Future Work 51

Bibliography 53

ix



x



List of Figures

4.1 3 colours with 3 points of each colour in R2. . . . . . . . . . . . 25

5.1 A case generated by the Random Case Generator of CLPP-TH1. 37

5.2 A case generated by the Random Case Generator of CLPP-TH2. 39

5.3 A case generated by the Random Case Generator of CLPP-TH3. 42

xi



xii



List of Tables

6.1 The problems solved by different solvers. . . . . . . . . . . . . . 44

6.2 Test results of iteration against the cases of CLPP-TH1. . . . . 46

6.3 Test results of running time against the cases of CLPP-TH1. . . 46

6.4 Test results of iteration against the cases of CLPP-TH2. . . . . 47

6.5 Test results of running time against the cases of CLPP-TH2. . . 48

6.6 Test results of iteration against the cases of CLPP-TH3. . . . . 49

6.7 Test results of running time against the cases of CLPP-TH3. . . 49

xiii



xiv



Chapter 1

Preliminaries

In this chapter, we introduce some fundamental concepts and notations in d-

dimensional geometry used throughout this thesis.

1.1 Points and Vectors

In this thesis, a point in d-dimensional Euclidean space Rd is denoted by a

symbol with bold font and lower case character, and it can be represented by

a column matrix with d coordinates. The origin is denoted by 0.

A point set is a set which contains a finite or infinite number of points,

and is denoted by a symbol with bold font and upper case character, such as

T = {t1, . . . , tk} with k points.

A vector which originates from 0 towards point t is identified to the point

t.

1.2 Norm, Distance and Projection

Given t ∈ Rd and k ∈ N, the k-norm is ‖t‖k = k

√
|t1|k + . . .+ |td|k. We often

use the Euclidean 2-norm, and simply call it norm and write it as ‖t‖. The

1
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2-norm can be expressed as ‖t‖ =
√
t21 + . . .+ t2d =

√
〈t, t〉. The normalized

vector or unit vector of a non-zero vector t is represented by t =
t

‖t‖
.

The distance between two points t1 and t2 in Rd is the norm of their

difference, namely dist (t1, t2) = ‖t1 − t2‖. The distance between two point

sets S1 and S2 in Rd is the minimum value of ‖t1 − t2‖, where t1 ∈ S1 and

t2 ∈ S2.

The projection proj
S

(t) of a point t on a point set S is the point p ∈ S

which minimizes the distance from t to S, i.e., proj
S

(t) = argmin
p∈S

‖t − p‖. The

projection of one set A onto another set B is {proj
B

(a) : a ∈ A}. If t ∈ S, we

have proj
S

(t) = t.

1.3 Ball and Sphere

The d-dimensional ball of radius r ≥ 0 centered at point p ∈ Rd is the set{
x ∈ Rd : ‖x− p‖ ≤ r

}
, and denoted by B(p, r). The d-dimensional sphere of

radius r ≥ 0 centered at point p ∈ Rd is the set
{
x ∈ Rd : ‖x− p‖ = r

}
, and

denoted by S(p, r). The unit ball Bd−1 and unit sphere Sd−1 correspond to

Bd−1 = B(0, 1) and Sd−1 = S(0, 1) respectively.

1.4 Convex Hull, Affine Hull and Affine Sub-

space

The convex hull of S = {x1, · · · ,xk} in Rd is the set of all linear combinations

with non-negative coefficients whose sum is one, i.e.

conv(S) =

{
k∑
i=1

λixi : xi ∈ S, λi ≥ 0,
k∑
i=1

λi = 1

}
.

2
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The affine hull of S = {x1, · · · ,xk} in Rd is the set of all linear combina-

tions with the sum of coefficients being one, i.e.

aff(S) =

{
k∑
i=1

λixi : xi ∈ S,
k∑
i=1

λi = 1

}
.

The expression
∑k

i=1 λixi with
∑k

i=1 λi = 1 is called affine combination of

x1, · · · ,xk. If none of xi ∈ S can be an affine combination of the others in S,

then x1, · · · ,xk are affinely independent.

1.5 Affine Hyperplane, Hyperplane and Half

Space

An affine hyperplane is a (d−1)-dimensional affine subspace of Rd. A hyperplane

is an affine hyperplane that contains 0 and it is a generalization of the plane

in Rd. Each hyperplane can be expressed as H = {x : nTx = c}, where n ∈ Rd

is called the normal vector of H and c ∈ R.

A hyperplane H = {x : nTx = c} in Rd divides d-dimensional space into

two open half space {x : nTx > c} and {x : nTx < c}.

1.6 Dimension of Point Set, General Position

and Degeneracy

Let S be a finite point set in Rd, the dimension dim(S) of S is k if S is in

a k-dimensional affine subspace; and S is not in a (k − 1)-dimensional affine

subspace.

A finite point set S ⊂ Rd is in general position if for any k < d there is no

k-dimensional affine subspace which contains k + 2 points from S. A finite set

S not in general position is degenerate.

3
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1.7 Transversal

Given a collectionC of sets, a transversal is a set containing exactly one element

from each member of the collection. Partial transversal is a set containing at

most one element from each member of the collection.

1.8 Convex Polytope, Face, Facet and Vertex

A convex polytope is the convex hull of a finite point set in Rd. Another def-

inition is that convex polytope is the intersection of finitely many closed half

spaces in Rd and is bounded. The two definitions are equivalent. In this thesis

we omit the word convex and simply use the word polytope. A polytope P ⊂ Rd

is full dimensional if dim(P) = d.

Let P be a d-dimensional polytope in Rd, a closed half space is valid if P

belongs to it. A hyperplane associated with a valid half space is called a valid

hyperplane. A face of P is the intersection of P with some valid hyperplanes.

The 0-face, 1-face, (d-2)-face and (d-1)-face are called vertex, edge, ridge and

facet respectively. A vertex of a polytope is a point.

4



Chapter 2

Colourful Carathéodory’s
Theorems

This chapter introduces the colourful Carathéodory’s theorem and its general-

izations; and presents the colourful linear programming problem related to the

colourful Carathéodory’s theorem and its generalizations.

2.1 Carathéodory’s Theorem and its Linear

Programming Problem

Theorem 2.1.1 (Carathéodory’s Theorem). Given a set of points S ⊂ Rd, if

the origin 0 ∈ conv(S), then there is a subset T ⊆ S such that 0 ∈ conv(T)

with |T| ≤ d+ 1.

The theorem is named for Constantin Carathéodory because he first proved

this theorem in 1911. Based on this theorem, the following algorithmic problem

is proposed in [3] to suggest finding a subset T in S with |T| ≤ d+ 1.

Problem 2.1.1 (Linear Programming Problem). Given a finite set of points

S ⊂ Rd and origin 0, decide whether there is a subset T ⊆ S of size at most

5
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d+ 1 such that 0 ∈ conv(T), and if there is one, find it.

The Carathéodory’s theorem guarantees that if 0 ∈ conv(S), the corre-

sponding linear programming problem has at least one feasible solution. Since

this problem is a special case of the linear optimization problem, we can use

pivoting algorithms or interior point algorithms to solve it.

2.2 Colourful Carathéodory’s Theorem and its

Linear Programming Problem

In 1982, Imre Bárány firstly proposed and proved a colourful generalization

to the Carathéodory’s Theorem in [1]. Before we state it, we introduce the

following terminology: Given d + 1 sets, or colours, S1, . . . ,Sd+1 of points in

Rd, a colourful set is a set T ⊂ ∪iSi such that |T∩Si| ≤ 1 for i = 1, . . . , d+ 1.

A colourful simplex is the convex hull of a colourful set T, and a colourful set

of d points which misses colour Si is called an î-transversal.

Theorem 2.2.1 (Colourful Carathéodory’s Theorem). Let S1, . . . ,Sd+1 be fi-

nite sets of points in Rd such that the origin 0 ∈ conv(Si) for i = 1, . . . , d+ 1.

Then there exists a set T ⊂
⋃
i Si such that |T ∩ Si| = 1 for i = 1, . . . , d + 1

and 0 ∈ conv(T).

The monochromatic Carathéodory’s Theorem can be obtained from the

colourful Carathéodory’s Theorem by setting S = S1 = · · · = Sd+1.

In 1997, Imre Bárány and Shmuel Onn in [3] proposed the following al-

gorithmic problem suggested by Theorem 2.2.1, which is a generalization of

Problem 2.1.1.

6
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Problem 2.2.1 (Colourful Linear Programming Problem). Given colours

S1, . . . ,Sk ⊂ Rd and origin 0, decide whether there is a colourful set T ⊂
⋃
i Si

such that |T ∩ Si| = 1 for i = 1, . . . , k and 0 ∈ conv(T), and if there is one,

find it.

The specialization of this problem to linear programming is obtained by

taking S = S1 = · · · = Sd+1.

The colourful linear programming problem is denoted by CLPP. Paper [3]

shows that the CLPP is NP-complete. The colourful Carathéodory’s Theo-

rem 2.2.1 provides a sufficient condition for the existence of a colourful sim-

plex containing the origin 0. The sufficient condition is: k = d + 1 and

0 ∈
⋂d+1
i=1 conv(Si). In this thesis, we use CLPP-TH1 to indicate the CLPP

which satisfies the sufficient condition of Theorem 2.2.1.

In [3], two algorithms are proposed to find a colourful simplex containing

0 for the sets satisfying the condition of Theorem 2.2.1 and we will introduce

them in Chapter 3. It is proved that the number of real arithmetic operations

taken by these two algorithms is O( 1
ρ2

log1
ε
). Therefore the CLPP-TH1 is sug-

gested to be on the border line between tractable and intractable computational

problems.

Subsequently, Antoine Deza, Sui Huang, et al. in [4] and [5] provide multi-

update modifications to the two Bárány-Onn’s algorithms in order to achieve

big improvement in practical performance. In addition, they also present three

algorithms trying to find solutions for general CLPP : random picking, enumera-

tion with geometric heuristic and non-definite quadratic optimization approach.

We will introduce random picking algorithm in Chapter 3.

Paper [3] proves that counting the colourful simplices containing 0 for the

7
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CLPP is #P-complete. Let µ(d) denote minimum number of colourful simplices

containing 0 for sets satisfying the condition of Theorem 2.2.1. Paper [9] shows

that 2d ≤ µ(d) ≤ d2 + 1, that µ(d) is even for odd d, and that µ(2) = 5.

[10] provides a lower bound of µ(d) ≥ max(3d, dd(d+1)
5
e) for d ≥ 3, while [11]

independently provides a lower bound of µ(d) ≥ b (d+2)2

4
c, before [12] shows that

µ(d) ≥ d (d+2)2

2
e.

2.3 Generalization of Colourful Carathéodory’s

Theorem

The colourful Carathéodory’s Theorem 2.2.1 was generalized by A. Holmsen,

J. Pach, et al. in 2008 in [6] and by J. Arocha, I. Bárány, et al. in 2009 in [7]

independently.

Theorem 2.3.1 (General Colourful Carathéodory’s Theorem). Let

S1, . . . ,Sd+1 be finite sets of points in Rd such that the origin 0 ∈ conv(Si∪Sj)

for 1 ≤ i < j ≤ d+ 1. Then there exists a set T ⊂
⋃
i Si such that |T∩Si| = 1

for i = 1, . . . , d+ 1 and 0 ∈ conv(T).

The general colourful Carathéodory’s Theorem 2.3.1 provides a more gen-

eral sufficient condition for the existence of a colourful simplex containing the

origin 0. The sufficient condition is: k = d+1 and 0 ∈
⋂

1≤i<j≤d+1 conv(Si∪Sj).

In this thesis, CLPP-TH2 denotes the CLPP which satisfies the sufficient con-

dition of Theorem 2.3.1.

Until now, there is no published paper which proposes an efficient algo-

rithm for the CLPP-TH2. Paper [13] shows that the minimum number of

solutions for the CLPP-TH2 is d+ 1.

8
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2.4 Further Generalization of Colourful

Carathéodory’s Theorem

In 2011, Frédéric Meunier and Antoine Deza in [8] strengthened the colourful

Carathéodory’s Theorem 2.3.1 by further generalizing the sufficient condition

for the existence of a colourful simplex containing the origin 0. There are two

strengthened colourful Carathéodory’s theorems they proposed.

Theorem 2.4.1. Let S1, . . . ,Sd+1 be finite sets of points in Rd. Assume that,

for each 1 ≤ i < j ≤ d + 1, there exists k /∈ {i, j} such that, for all xk ∈ Sk,

the convex hull of Si ∪ Sj intersects the ray
−−→
xk0 in a point distinct from xk.

Then there exists a set T ⊂
⋃
i Si such that |T ∩ Si| = 1 for i = 1, . . . , d + 1

and 0 ∈ conv(T).

Before we state the second theorem, we introduce the following notations:

H+(Ti) denotes , for any î-transversal Ti, the open half space defined by aff(Ti)

and containing the origin 0.

Theorem 2.4.2 (Further General Colourful Carathéodory’s Theorem). Let

S1, . . . ,Sd+1 be finite sets of points in Rd such that the points in ∪iSi ∪ {0}

are distinct and in general position. Assume that, for any i 6= j, (Si ∪ Sj) ∩

H+(Ti) 6= ∅ for any î-transversal Ti. Then there exists a set T ⊂
⋃
i Si such

that |T ∩ Si| = 1 for i = 1, . . . , d+ 1 and 0 ∈ conv(T).

Theorem 2.4.1 can be derived from the slightly stronger Theorem 2.4.2. In

this thesis, we will mainly focus on the discussion of Theorem 2.4.2. The further

general colourful Carathéodory’s Theorem 2.4.2 provides a even more general

sufficient condition for the existence of a colourful simplex containing origin 0.

9
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The sufficient condition is: k = d+1 and for any i 6= j, (Si∪Sj)∩H+(Ti) 6= ∅

for any î-transversal Ti. CLPP-TH3 denotes the CLPP satisfying the sufficient

condition of Theorem 2.4.2.

An algorithm finding a solution for CLPP-TH3 is proposed in [8] based on

following proposition. We will detail this algorithm in the following chapters

of this thesis.

Proposition 2.4.3. Given d+1 sets, or colours, S∗1, . . . ,S
∗
d+1 of points in Rd

with |S∗i | = 2 for i = 1, . . . , d + 1, if there is a colourful simplex containing 0,

then there is another colourful simplex containing 0.

Paper [8] shows that the minimum number of colourful simplices containing

0 for the CLPP-TH3 is d+1.

From the generalizations of colourful Carathéodory’s theorem, we know

that the algorithms designed for solving CLPP-TH3 are also suitable for finding

solutions for CLPP-TH2 or CLPP-TH1.

2.5 Thesis Outline

This thesis mainly focuses on the design and implementation of algorithms for

the CLPP which satisfies different sufficient conditions. Three kinds of random

case generators are constructed to meet the sufficient conditions of CLPP-TH1,

CLPP-TH2 and CLPP-TH3 respectively. Finally the proposed algorithms are

tested and benchmarked against different random case generators and some

conclusions are given.

Chapter 1 presents some fundamental geometric concepts in Rd which will

be used throughout this thesis.

10
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Chapter 2 introduces the colourful Carathéodory’s theorem and its gener-

alizations, and their colourful linear programming problems.

Chapter 3 discusses the algorithms designed for solving the problems of

CLPP-TH1, CLPP-TH2 and CLPP-TH3.

Chapter 4 provides the details of software implementation for the algo-

rithms proposed in Chapter 3.

Chapter 5 describes the methods of the three kinds of random case gener-

ators which satisfy the three sufficient conditions of CLPP respectively.

Chapter 6 deals with the benchmark testing for the algorithms proposed

in Chapter 3 against the random cases generated by the generators presented

in Chapter 5, and some analyses are given.

Chapter 7 contains conclusion remarks and suggestions for future work.

11
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Chapter 3

Algorithms for Colourful Linear
Programming Problem

In this chapter, Bárány-Onn algorithms in [3] are presented, Meunier-Deza

algorithm in [8] is detailed, and Random-Picking algorithm is introduced.

For simplicity of algorithm design and without loss of generality, we intro-

duce the colourful configuration of the CLPP :

• All points in ∪iSi ∪ {0} are distinct and in general position;

• For every point s ∈ ∪iSi, ‖s‖ = 1, i.e. the point s is normalized ; if not,

scale all the points onto the unit sphere Sd−1.

We assume that all the CLPPs which satisfy one of the three sufficient condi-

tions described in Chapter 2 will satisfy the colourful configuration.

3.1 Bárány-Onn Algorithms

Paper [3] provides two algorithms for the CLPP-TH1, both of which are based

on geometric theories and involve certain iterative pivoting steps. We will

discuss these two algorithms as follows:

13
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3.1.1 First Bárány-Onn Algorithm

Algorithm 1 : Solver-Bárány-Onn-1

Input: S =
⋃d+1
i=1 Si

Output: T = {t1, . . . , td+1}, where ti ∈ Si
1 begin
2 initialize T = {t1, . . . , td+1} such that ti ∈ Si for i = 1, . . . , d+ 1
3 while 0 /∈ conv(T) do
4 x← argmin

t∈conv(T)

(‖t‖)

5 find an i such that x ∈ conv(T\{ti})
6 ti ← argmin

t∈Si

(〈t,x〉)

7 end

Note that Algorithm 1 picks an arbitrary colourful set T1 = {t1, . . . , td+1}

at first. In the kth iteration, either 0 ∈ conv(Tk) and the algorithm stops, or

the algorithm involves a minimum norm computation over the conv(Tk) in step

4, which is a fairly heavy task. After the minimum norm point xk is acquired,

it is possible to find a colour i to be exchanged in step 5: either conv(Tk) is

full dimensional and xk lies on it boundary, or conv(Tk) has affine dimension

less than d; in both cases xk can be expressed as a convex combination of at

most d points from Tk. Step 6 is to find a new point t in colour i with 〈xk, t〉

being minimum and form a new colourful set Tk+1.

The following proposition establishes the correctness of Solver-Bárány-

Onn-1.

Proposition 3.1.1. Let ε > 0 and 0 ≤ ρ ≤ 1, and let S1, . . . ,Sd+1 ⊂ Rd

be normalized sets of points, each satisfying B(0, ρ) ⊂ conv(Si). Then, when

14
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Solver-Bárány-Onn-1 is applied, the following recursions hold while xk 6= 0:

If ρ > 0 : ‖xk+1‖2 ≤ (1− ρ2)‖xk‖2; If ρ = 0 :
1

‖xk+1‖2
≥ 1 +

1

‖xk‖2
.

Proof. Consider the kth iteration. The point q = −ρxk/|xk| lies in the ball

B(0, ρ) hence in conv(Si), and satisfies 〈xk,q〉 = 〈xk,−ρxk/|xk|〉 = −ρ|xk|.

Therefore, there must be a point in Si, in particular the new point ti chosen by

the algorithm, which satisfies 〈xk, ti〉 ≤ −ρ|xk|. Let p be the projection point

of 0 onto the line segment [xk, ti], hence

p =
〈ti − xk, ti〉xk + 〈xk − ti,xk〉ti

〈ti − xk, ti − xk〉
and ‖p‖2 =

‖xk‖2‖ti‖2 − 〈xk, ti〉2

‖xk‖2 + ‖ti‖2 − 2〈xk, ti〉
.

Since 〈xk, ti〉 ≤ −ρ|xk|, we have

‖p‖2 ≤ (‖ti‖2 − ρ2)‖xk‖2

‖ti‖2 + 2ρ‖xk‖+ ‖xk‖2
.

Since the input is normalized, i.e., ‖ti‖ = 1, we get

if ρ > 0, ‖p‖2 ≤ (‖ti‖2 − ρ2)‖xk‖2

‖ti‖2
≤ (1− ρ2)‖xk‖2;

if ρ = 0,
1

‖p‖2
≥ 1

‖ti‖2
+

1

‖xk‖2
≥ 1 +

1

‖xk‖2
.

From the fact that p is on the line segment [xk, ti], we know that p ∈ [xk, ti] ⊂

conv(Tk+1). Since xk+1 is defined as the point in conv(Tk+1) of minimum norm,

we have ‖xk+1‖ ≤ ‖p‖ and the proposition follows.

3.1.2 Second Bárány-Onn Algorithm

Finding a point x of minimum norm in conv(T) in each iteration of Solver-

Bárány-Onn-1 is a time-expensive task which involves the minimization of a
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Algorithm 2 : Solver-Bárány-Onn-2

Input: S =
⋃d+1
i=1 Si

Output: T = {t1, . . . , td+1}, where ti ∈ Si
1 begin
2 initialize T = {t1, . . . , td+1} such that ti ∈ Si for i = 1, . . . , d+ 1
3 x← t1
4 while 0 /∈ conv(T) do
5 find an i such that x ∈ conv(T\{ti})
6 ti ← argmin

t∈Si

(〈t,x〉)

7 p← proj
[x,ti]

(0)

8 if conv(T) is full dimensional containing p in its interior then

9 compute boundary point αp of conv(T) firstly stabbed by ray
−→
0p

10 p← αp
11 x← p
12 end

quadratic equation. To avoid this, an efficient variant of the algorithm is pre-

sented in [3], in which only linear algebraic computations (such as solutions of

linear equations) are required.

Note that Algorithm 2 picks an arbitrary colourful set T1 = {t1, . . . , td+1}

at first and chooses t1 ∈ T1 to be x1 such that x1 =
∑d+1

i=1 λiti with λ =

(1, 0, . . . , 0). In the kth iteration, if 0 /∈ conv(Tk), it is possible to find a colour

i in step 5 because xk can be expressed as a convex combination of at most d

points from Tk: either conv(Tk) is full dimensional and xk lies on its boundary,

or conv(Tk) has affine dimension less than d. Step 6 is to find a new point t in

colour i with 〈xk, t〉 being minimum and construct a new colourful set Tk+1.

In step 7, the projection point p of 0 onto the line segment [xk, t] is computed.

If conv(Tk+1) happens to contain p on its boundary or is not full dimensional,
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then p is expressible as a convex combination of d or fewer points from Tk+1,

so p itself can be taken as the next point xk+1. Otherwise, conv(Tk+1) is a

d-simplex containing p in its interior. In this case it is possible to compute the

boundary point αp of conv(Tk+1) where the simplex is firstly stabbed by the

ray from 0 to p as in step 9. This boundary point αp can then be taken as the

next point xk+1.

3.2 Meunier-Deza Algorithm

Frédéric Meunier and Antoine Deza in paper [8] presents an algorithm based

on Proposition 2.4.3 to find a colourful simplex containing 0 for the sets sat-

isfying the sufficient condition of Theorem 2.4.2, i.e., for CLPP-TH3. In this

section, we will specify this algorithm in detail and make it easy to implement

in Algorithm 3.

Algorithm 3 firstly picks an arbitrary colourful set T = {t1, . . . , td+1}

and, without loss of generality, chooses c = 1 to be an outside colour. In the

kth iteration, if 0 ∈ conv(T), the algorithm stops. Otherwise the algorithm

obtains d points from T forming a ĉ-transversal P = T\{tc} in step 5. A

colourful (d − 1)-simplex σ is generated by the ĉ-transversal P in step 6 and

a ray r is selected from the origin 0 towards point x which is in the interior

of σ in step 7. Thus, the ray r intersects (d − 1)-simplex σ in its interior. In

the following steps, the algorithm selects a distinct point t from colour c each

time, and then the ĉ-transversal P and the point t form a new colourful set T

which constructs a new colourful d-simplex having σ as a facet. If 0 ∈ conv(T),

the algorithm stops. Otherwise, if there is a facet τ of the colourful d-simplex

intersecting ray r before facet σ, a closer facet is found in the d-simplex and
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the outside colour c is set to be the colour without appearing in the facet τ ,

and then the algorithm continues from step 4. If none of the two cases happens,

the algorithm goes to the subroutine Find-Closer-Facet.

Note that in step 13 the algorithm to find a facet τ ⊂ conv(T) intersecting

ray
−→
0x before facet σ will be discussed in Chapter 4.

Algorithm 3 : Solver-Meunier-Deza

Input: S =
⋃d+1
i=1 Si

Output: T = {t1, . . . , td+1}, where ti ∈ Si
1 begin
2 initialize T = {t1, . . . , td+1} such that ti ∈ Si for i = 1, . . . , d+ 1
3 c← 1
4 while 0 /∈ conv(T) do
5 P← T\{tc}
6 σ ← conv(P)
7 x← interior point of σ
8 f ← false
9 for point t ∈ Sc do
10 T← P ∪ {t}
11 if 0 ∈ conv(T) do
12 return

13 else if there is a facet τ ⊂ conv(T) intersecting ray
−→
0x before σ

14 c← the colour not included in τ
15 f ← true
16 break
17 if f 6= true
18 T← Find-Closer-Facet(T, c,x)
19 end
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Subroutine 1 : Find-Closer-Facet
Input: T = {t1, . . . , td+1}, where ti ∈ Si,

c = outside colour,
x = interior point of conv(T\tc)

Output: T = {t1, . . . , td+1}, where ti ∈ Si
1 begin
2 U← T\{tc}
3 for i← 1 to d+ 1 except c do
4 find a point t ∈ Si such that t ∈ H+(U)
5 V← t
6 y← antipode of x
7 for i← 0 to (2d − 2) do
8 convert i to a binary number b
9 for j ← 1 to d do
10 if bj = 0 then
11 W← vj, where vj ∈ V
12 else
13 W← uj, where uj ∈ U
14 T←W ∪ {tc}
15 if 0 ∈ conv(T) then
16 return
17 T←W ∪ {y}
18 if 0 ∈ conv(T) then
19 T←W ∪ {tc}
20 return
21 end
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In Subroutine 1, the vertices of (d−1)-simplex σ form an upper ĉ-transversal

U in step 2. Let H+(U) be the open half space delimited by aff(U) and

containing 0. From each colour except the outside colour c, the subroutine

finds a point t which is in the half space of H+(U) in step 4. All of these

points form a lower ĉ-transversal V in step 5. The ĉ-transversal V is guar-

anteed to exist because of the sufficient condition of Theorem 2.4.2: for any

i 6= c, (Si ∪ Sc) ∩H+(U) 6= ∅, i.e., for each colour i, there is a point either in

Sc∩H+(U) or in (Si\{ui})∩H+(U). From the main routine, we know that the

algorithm enters into the subroutine because of Sc ∩H+(U) = ∅, therefore we

have (Si\{ui})∩H+(U) 6= ∅ for each colour i 6= c. Considering point y of the

antipode of x in step 6 and point tc of colour c, we get 0 ∈ conv(U∪ {y}) and

0 /∈ conv(U ∪ {tc}). Enumerate a colourful (d− 1)-simplex by taking vertices

from the two ĉ-transversals U and V with at least one vertex in V and without

any two vertices being of same colour. From the Proposition 2.4.3, we know

that there exists a new colourful d-simplex containing 0, which is formed by a

colourful (d− 1)-simplex enumerated and point tc or y. If tc is a vertex of the

new d-simplex, we do find a colourful simplex containing 0; otherwise, if y is

a vertex of the new d-simplex, the facet of the new d-simplex not containing y

is a colourful (d − 1)-simplex τ intersecting ray r before facet σ since aff(U)

forms the boundary of H+(U). In either case, the subroutine returns to main

routine.

3.3 Random-Picking Algorithm

In [5], a simple guess and check algorithm was proposed where colourful set T

is randomly sampled until one conv(T) is found covering 0. This algorithm can
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be used to solve general CLPP in low dimension.

Algorithm 4 : Solver-Random-Pick

Input: S =
⋃d+1
i=1 Si

Output: T = {t1, . . . , td+1}, where ti ∈ Si
1 begin
2 initialize T = {t1, . . . , td+1} such that ti ∈ Si for i = 1, . . . , d+ 1
3 while 0 /∈ conv(T) do
4 for i← 1 to d+ 1 do
5 ti ∼ Si
6 end

Note that in Algorithm 4 the symbol “∼” denotes the operation of selecting

an element from a point set, or colour Si, randomly and uniformly.

Algorithm 4 first arbitrarily selects a colourful set T in step 2 and tests if

its convex hull covers origin 0. If not, the algorithm randomly selects a point

from each colour to form another colourful set T in step 4-5 and tests if its

convex hull covers origin 0. This process will continue until a colourful set T

containing 0 in its convex hull is found.

Intuitively we would not expect Solver-Random-Pick to find the solution

efficiently for general CLPP cases. However, as discussed in [9]–[12], solutions

to a given colourful linear programming problem may not be all that rare, and

in some cases can be quite frequent. Since guessing and checking are relatively

fast operations, it is possible that this naive algorithm may perform well in

special cases or low dimension.
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Chapter 4

Software Implementation for the
Algorithms

The algorithms introduced in Chapter 3 are implemented by MATLAB lan-

guage. This chapter will describe the implementation details for the algorithms

including the data structure and some key subroutines.

4.1 Data Structure

4.1.1 Input Data Structure

We use a pair of matrix variables named Pts and ColorPartition together to

represent a colourful configuration S =
⋃d+1
i=1 Si.

Pts : an d−by−(d+1) matrix variable with each column storing the coordinates

of a colourful point from S. Each point is numbered by column index, and all

the points of a colour are bunched together and stored in consecutive columns

of the matrix. This variable is a mandatory input for all algorithms.

ColorPartition: an 1 − by − (d + 1) matrix, and the ith element holds the

number of points of colour Si. This variable is optional. If omitted, the program
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assumes that every colour has d+ 1 points.

b: a point being covered by a colourful simplex. It is an optional input. If

omitted, the program assumes that b is the origin 0.

options.initT : an 1−by− (d+ 1) matrix which contains the point indices of an

initial colourful simplex T. It is an optional input. If not given, the program

will choose every first point of each colour to form a colourful simplex T.

Example 4.1.1 (3 colours with 3 points of each colour in R2). The colourful

configuration S is:

S1 =

{[
−0.8428
0.5383

]
,

[
−0.3821
0.9241

]
,

[
−0.5012
0.8654

]}
S2 =

{[
0.4405
−0.8978

]
,

[
−0.3401
−0.9404

]
,

[
−0.9975
0.0711

]}
S3 =

{[
0.6296
−0.7769

]
,

[
0.9532
0.3024

]
,

[
0.6623
0.7492

]}
.

And above points are normalized onto the unit sphere Sd−1 which is centered

at origin 0 as shown in Figure 4.1.

These points are inputted into solvers as:

Pts=[-0.8428 -0.3821 -0.5012 0.4405 -0.3401 -0.9975 0.6296 0.9532 0.6623;

0.5383 0.9241 0.8654 -0.8978 -0.9404 0.0711 -0.7769 0.3024 0.7492].

The solvers set ColorPartition=[3, 3, 3], b=[0, 0, 0]T, and options.initT =

[1, 4, 7] as default values if they are not given in the input.

The initial colourful simplex T is represented by the dash lines in Fig-

ure 4.1.

4.1.2 Internal Data Structure

ColorMap is an (d + 1)-structure array. Each array’s index corresponds to a

colour and the elements of an array hold the indices of points of a colour in Pts.
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Figure 4.1: 3 colours with 3 points of each colour in R2.

For instance, in Example 4.1.1, ColorMap can be expressed as: ColorMap(1).list =

[1, 2, 3], ColorMap(2).list = [4, 5, 6], ColorMap(3).list = [7, 8, 9]

4.1.3 Output Data Structure

T : an array which holds the point indices of a colourful simplex covering 0.

x : a column array which contains the coefficients of the convex combination of

all points in Pts.

info: a structure which includes the computing status, such as iterations of

finding a solution, time being used, and whether a solution is feasible.

In Example 4.1.1, the results are shown as follows:

T =[1, 4, 9],

x=[0.3802, 0, 0, 0.4062, 0, 0, 0, 0, 0.2136]T,

info=[iter: 2, time: 0.0960, feasible: 1]T.

The final solution of a colourful simplex covering the origin 0 is represented by
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the solid lines in Figure 4.1.

4.2 Normalizing the Input Points

The solvers firstly translate the input point b to the origin 0. Then every

point in Pts will be translated to 0 and scaled to the unit sphere S(0, 1), i.e.,

the points are normalized. These operations can be implemented by following

formula:

Pts(i) = (Pts(i)− b)/norm(Pts(i)− b) (4.2.1)

where norm is the function in MATLAB to calculate norms of a vector.

4.3 Testing whether a Colourful Simplex Cov-

ers the Origin 0

During a solver being executed, it selects a colourful set T = {t1, . . . , td+1} in

each iteration to test whether the origin 0 is covered by conv(T). This testing

is implemented by following steps:

Firstly, we use the function linsolve in MATLAB to solve following linear

system: [
t1 . . . td+1

1 . . . 1

]
x =

[
0
1

]
(4.3.2)

where x = [x1, x2, · · · , xd+1]
T is the variable.

Secondly, determine if the linear system is feasible from the output of

linsolve. If the system is feasible, we can use x to determine whether 0 ∈

conv(T): If all coordinates of x are not less than 0, we get a colourful set T

containing 0 in its convex hull; otherwise, we can conclude that 0 /∈ conv(T).
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Thirdly, if the linear system is not feasible, i.e., the colourful set T is not

in general position, we use the function linprog in MATLAT to solve following

linear optimization problem:

min: 0Tx

s.t.

[
t1 . . . td+1

1 . . . 1

]
x =

[
0
1

]
x ≥ 0

(4.3.3)

where x = [x1, x2, · · · , xd+1]
T is the variable.

If the linear optimization problem has feasible solution, we obtain a colour-

ful set T containing 0 in its convex hull; otherwise, the linear problem is infea-

sible and we conclude that 0 /∈ conv(T).

In our implementations, we use double precision floating number to repre-

sent a number in R and the coordinates of a point in Rd. Since the arithmetic

operations introduce round off errors, a constant variable TOLERANCE is defined

as numerical error tolerance which is a very small positive value. When a num-

ber is less than this value, it can be considered zero. In our program, we set

TOLERANCE to be 10−10, since from testing we observed that if setting TOLERANCE

less than 10−10 some cases will produce loop conditions for the algorithms.

The maximum iteration, which is the maximum pivoting steps to search

for a colourful simplex covering 0, is set to be 1,000,000.

4.4 Computing the Minimum Norm Point in

conv(T)

In each iteration of Solver-Bárány-Onn-1, it needs to find the point x of mini-

mum norm in conv(T), which involves the minimization of a quadratic equation.
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Since the point x is in conv(T), it can be expressed as

x =
d+1∑
i=1

λiti (4.4.4)

with
∑d+1

i=1 λi = 1 and λi ≥ 0 for 1 ≤ i ≤ d + 1, and ti ∈ T. Meanwhile, the

square of the norm of x can be expressed as

‖x‖2 =
d∑
i=1

x2i (4.4.5)

and we want ‖x‖2 to be minimum. Substitute Equation 4.4.4 into the right

hand of Equation 4.4.5, we get following quadratic optimization problem with

λ1, . . . , λd+1 as variables.

min:
∑

1≤i,j≤d+1

tTi tjλiλj

s.t.
d+1∑
i=1

λi = 1

λi ≥ 0 for 1 ≤ i ≤ d+ 1

(4.4.6)

We use the function quadprog in MATLAB to solve this quadratic opti-

mization problem and it is a time-expensive task to solve this problem. After

the solution [λ1, . . . , λd+1]
T is found , the point x of minimum norm can be

obtained by x =
∑d+1

i=1 λiti and there is at lease one λi (1 ≤ i ≤ d+ 1) being 0

because x is on the boundary of conv(T).

4.5 Selecting an Interior Point in Facet σ

In Solver-Meunier-Deza, it needs to select an interior point of a facet σ ⊂

conv(T). Assuming the facet σ has vertices t1, . . . , ti−1, ti+1, . . . , td+1 in Rd
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and colour i is not included in the facet, then the interior point can be selected

as the center point of facet σ, which can be calculated by following formula:

p = (
d+1∑

j=1, j 6=i

tj)/d. (4.5.7)

4.6 Computing Intersection of a Ray r with a

Facet of conv(T)

Proposition 4.6.1. Let set T = {t1, . . . , td+1} ⊂ Rd in general position and

[
t1 . . . td+1

1 . . . 1

]−1
=

 yT
1 b1
. . . . . .

yT
d+1 bd+1

 , (4.6.8)

where yi ∈ Rd and bi ∈ R for 1 ≤ i ≤ d+ 1, then we have

yT
i ti = 1− bi for 1 ≤ i ≤ d+ 1; (4.6.9)

yT
i tj = −bi for 1 ≤ j 6= i ≤ d+ 1. (4.6.10)

Proof. According to the properties of inverse matrix, we have

 yT
1 b1
. . . . . .

yT
d+1 bd+1

[t1 . . . td+1

1 . . . 1

]
=


1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1

 . (4.6.11)

Perform the row-column multiplication of the left hand of Equation 4.6.11 and

compare each element to the right hand of the equation, we can get the result

of the proposition.

Corollary 4.6.2. Let colourful set T = {t1, . . . , td+1} ⊂ Rd in general posi-

tion and Ti be an î-transversal of colours S1, . . .Sd+1, then the equation of the
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hyperplane passing through î-transversal Ti is:

yT
i x = −bi (4.6.12)

where yi and bi are the elements of Equation 4.6.8.

Proof. From the Equation 4.6.10, we know that every point of the î-transversal

Ti satisfies the Equation 4.6.12. Therefore the conclusion can be drawn.

Corollary 4.6.3. Given a colourful set T = {t1, . . . , td+1} ⊂ Rd in general

position, and a ray r originating from 0 towards point p. If the ray r intersects

a hyperplane passing through a (d − 1)-simplex τ formed by an î-transversal

{t1, . . . , ti−1, ti+1, . . . , td+1} for 1 ≤ i ≤ d+ 1, then the intersection point is αp

and

α =
−bi
yT
i p

. (4.6.13)

where yi and bi are the elements of Equation 4.6.8.

Proof. From Corollary 4.6.2, we know the equation of the hyperplane, which

passes through an î-transversal {t1, . . . , ti−1, ti+1, . . . , td+1} for 1 ≤ i ≤ d+1, is

yT
i x = −bi. The equation of the ray r is x = αp. Substituting the ray’s equation

into hyperplane’s equation, we get yT
i αp = −bi. Since the ray intersects the

hyperplane, i.e., yT
i p 6= 0, we get α = −bi

yT
i p

.

Assuming p is an interior point of a colourful (d− 1)-simplex σ, if the ray
−→
0p intersects the hyperplane passing through an (d− 1)-simplex τ at point αp

with 0 < α < 1, we can say the intersection point αp is between 0 and p. In

order to determine whether τ intersects the ray
−→
0p before σ, we need test if

the point αp is in τ . The task of testing if αp is in τ can be achieved by using
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the function linsolve in MATLAB to solve following linear equation

[t1 . . . ti−1 ti+1 . . . td+1]x = αp (4.6.14)

where x = [x1, x2, · · · , xd]T is the variable, and
∑d

k=1 xk = 1 with xk ≥ 0 for

1 ≤ k ≤ d. If the solution exists, we can determine that the intersection point

αp is in the (d− 1)-simplex τ .

Algorithm 5 illustrates the method of finding a facet τ ⊂ conv(T) in-

tersecting ray
−→
0p before facet σ, which is required by Solver-Meunier-Deza.

Algorithm 5 : Find closer facet τ ⊂ conv(T)

Input: T = {t1, . . . , td+1},
p = interior point in facet σ ⊂ conv(T),
c = colour not included in facet σ

Output: closer facet τ ⊂ conv(T)
1 begin

2

 yT
1 b1
. . . . . .

yT
d+1 bd+1

← [
t1 . . . td+1

1 . . . 1

]−1
3 for i← 1 to d+ 1 except c do
4 m← yT

i p
5 if |m| > 0
6 α← −bi/m
7 if 0 < α < 1
8 solve linear equation [t1 . . . ti−1 ti+1 . . . td+1]x = αp

9 if
∑d

k=1 xk = 1 and xk ≥ 0
10 return the facet not including colour i
11 end
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4.7 Finding a Point v ∈ Si such that v ∈ H+(U)

In the subroutine Find-Closer-Facet of Solver-Meunier-Deza, every colour Si

except the outside colour needs to find a point vi ∈ Si such that the point vi

is in the open half space H+(U) delimited by aff(U) and containing 0, where,

without loss of generality, U = {u1, . . . ,ud} is a d̂+ 1-transveral. This task

can be fulfilled by following method.

By arbitrarily selecting a point t from the outside colour Sd+1, the point set

{u1, . . . ,ud, t} forms a colourful set with n+1 points. From the Corollary 4.6.2,

we know that the equation of the hyperplane passing through d̂+ 1-transversal

U is:

yT
d+1x = −bd+1 (4.7.15)

where yd+1 and bd+1 are the elements of

[
u1 . . . ud t
1 . . . 1 1

]−1
=


yT
1 b1
. . . . . .
yT
d bd

yT
d+1 bd+1

 .
For a point v in colour Si, if −bd+1 ≥ 0 and yT

d+1v < −bd+1, or −bd+1 < 0 and

yT
d+1v > −bd+1, we can determine that the point v ∈ H+(U).

4.8 Converting an Integer to a Binary Number

In the subroutine Find-Closer-Facet of Solver-Meunier-Deza, step 8 needs to

convert a non-negative integer n to a binary value b. We employ the function

bitget(n, bit) in MATLAB to finish this job, where n is an integer to be con-

verted and bit is the maximum bits to hold a binary value. Now, the maximum

value of bit is limited to be 52, i.e., the biggest integer which can be converted
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into a binary value is 252. This integer is big enough for our software to per-

form the enumeration operation. However, if the number of colours is greater

than 53, the number of bits of the binary value will be more than 52. In this

case, the function bitget(n, bit) can only produce the first 52 bits of the binary

value; for the rest of bits beyond 52-bit, we can fill them with zero because in

the softwere we set the maximum iteration to be 1,000,000 and the software

already terminates when the enumeration operation could reach 252.

4.9 Generating Random Integer and Real Num-

bers

In the algorithm of Solver-Random-Pick and the random case generators in

Chapter 5, random integer and real numbers need to be generated. The follow-

ing methods introduce how to generate random numbers.

For real numbers, the following formula generates an m-by-n random real

number matrix whose elements are in the interval (r1, r2):

R = r1ones(m,n) + (r2 − r1)rand(m,n), (4.9.16)

where rand(m,n) is a MATLAB function which generates an m-by-n random

matrix whose elements are uniformly distributed in the interval (0, 1), and

(r1, r2) is the interval of the real numbers.

For integer numbers, The following formula generates an m-by-n random

integer number matrix whose elements are in the interval [r1, r2]:

R = r1ones(m,n) + floor((r2 − r1 + 0.99999)rand(m,n)), (4.9.17)

where ones(m,n) is a MATLAB function generating an m-by-n matrix with all

elements being one, floor(A) is a MATLAB function which rounds elements
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of A to the nearest integers less than or equal to A, and [r1, r2] is the interval

of the integer numbers with r1 and r2 being integers.
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Chapter 5

Random Case Generators

This Chapter will describe the algorithms and implementation details of the

random case generators which satisfy the three kinds of sufficient conditions of

colourful linear programming problem: CLPP-TH1, CLPP-TH2 and CLPP-

TH3 respectively. With these random case generators, we can carry on the

benchmark testing for the algorithms which are proposed in Chapter 3 and

compare their performances.

We assume that, for each case, d + 1 colours need to be generated and

each colour has d + 1 points which are normalized onto unit sphere Sd−1, i.e.,

‖s‖ = 1 for s ∈
⋃d+1
i=1 Si in Rd. And we express the d+1 points of colour Si for

1 ≤ i ≤ d + 1 in Rd as {si1, si2, . . . , sid+1} and sij(k) is the kth coordinate of the

point sij for 1 ≤ j ≤ d+ 1 and 1 ≤ k ≤ d.

The symbol “∼” is used to denote the operation of randomly and uni-

formly selecting an element from a set which has finite or infinite, bounded or

unbounded, elements. Here we introduce the concept of random convex combi-

nation of a set T, which means, for every point ti of T for 1 ≤ i ≤ d+ 1 a real

number λi ∈ (0, 1) is randomly generated to be as a coefficient of ti, and then
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the convex combination of T is computed as follows: t =
∑d+1

i=1 λiti/
∑d+1

i=1 λi.

This operation can be expressed as: t ∼ conv(T). The methods of generating

random integer and real numbers have been discussed in Chapter 4.

5.1 Random Case Generator of CLPP-TH1

The sufficient condition of CLPP-TH1 is 0 ∈
⋂d+1
i=1 conv(Si). In order to gen-

erate d + 1 colours with d + 1 points for each colour to satisfy this sufficient

condition, we randomly generate d points for a colour Si (i = 1, . . . , d + 1),

and then the last point of this colour can be achieved by the random convex

combination of the antipodes of the first d points of this colour. The algorithm

is shown as follows:

Algorithm 6 : Random-Generator-CLPP-TH1

Input: d

Output: S =
⋃d+1
i=1 Si

1 begin
2 for i← 1 to d+ 1 do
3 k ∼ {1, . . . , d+ 1}
4 for j ∈ {1, . . . , d+ 1}\{k} do
5 sij ∼ Sd−1
6 sik ∼ conv(si1, . . . , s

i
k−1, s

i
k+1, . . . , s

i
d+1)

7 sik ← −sik/‖sik‖
8 end

In Algorithm 6, step 2 repeatedly generates the points for colour Si from 1

to d+1. In step 3, an integer number k is randomly selected from {1, . . . , d+1}.

Step 4-5 randomly generate d points for the ith colour and scale them onto the

unit sphere Sd−1. To fulfill this, we employ the MATLAB function rand(d, 1)

to generate a random point in Rd and normalize it. In step 6-7, the algorithm
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computes the random convex combination of the antipodes of these d points,

then normalizes this value and sets it as the kth point of the colour Si. The

value of the random convex combination guarantees that the colour Si contains

origin 0 in its convex hull, i.e., 0 ∈ conv(Si). Therefore, the cases generated by

this algorithm satisfy the sufficient condition of CLPP-TH1.

Figure 5.1 illustrates a case in R2 which is generated by the Random Case

Generator of CLPP-TH1.

Figure 5.1: A case generated by the Random Case Generator of CLPP-TH1.

5.2 Random Case Generator of CLPP-TH2

The sufficient condition of CLPP-TH2 is 0 ∈
⋂

1≤i<j≤d+1 conv(Si ∪ Sj). In

order to generate d+ 1 colours with d+ 1 points for each colour to satisfy this

sufficient condition, we construct the colours in following sequence: for the first

colour S1, randomly generate d + 1 points, then generate all the first points

for the rest of colours by selecting different d points from the colour S1 each
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time and computing the random convex combination of the antipodes of these

d points; for the colour S2, randomly generate all the points which are not

produced by the previous colour, and then generate all the second points for all

the next colours by choosing different d points from this colour each time and

computing the random convex combination of the antipodes of these d points;

and so on. The algorithm is shown as follows:

Algorithm 7 : Random-Generator-CLPP-TH2

Input: d

Output: S =
⋃d+1
i=1 Si

1 begin
2 for i← 1 to d+ 1 do
3 for j ← i to d+ 1 do
4 sij ∼ Sd−1
5 for k ← i+ 1 to d+ 1 do
6 ski ∼ conv(si1, . . . , s

i
k−1, s

i
k+1, . . . , s

i
d+1)

7 ski ← −ski /‖ski ‖
8 end

In Algorithm 7, step 2 repeatedly generates the points for colour Si from 1

to d+1. Step 3-4 randomly generate the rest of points for the ith colour, which

are not produced by the previous colours, and scale them onto the unit sphere

Sd−1. In step 5-7, for every next colour Sk for i < k ≤ d + 1, the algorithm

gets d points from colour Si except the point sik and computes the random

convex combination of the antipodes of these d points, then normalizes this

value and sets it as the ith point of the colour Sk. The value of the random

convex combination guarantees that the colour Si and one of its next colours

Sk (k > i) contain origin 0 in their convex hull, i.e., 0 ∈ conv(Si∪Sk) for k > i.

Therefore, the cases generated by this algorithm satisfy the sufficient condition
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of CLPP-TH2.

Figure 5.2 illustrates a case in R2 which is generated by the Random Case

Generator of CLPP-TH2.

Figure 5.2: A case generated by the Random Case Generator of CLPP-TH2.

5.3 Random Case Generator of CLPP-TH3

The sufficient condition of CLPP-TH3 is for any i 6= j, (Si∪Sj)∩H+(Ti) 6= ∅

for any î-transversal Ti. Here we will not introduce the general method to

generate cases satisfying this sufficient condition. We will present a special

generator which can generate cases satisfying the sub-condition: Si∩H+(Ti) 6=

∅ for any î-transversal Ti, but not satisfying the sufficient conditions of CLPP-

TH1 or CLPP-TH2. The main idea of the generator is that at first a regular

colourful simplex containing origin 0 is generated in Rd as a reference, then,

for every colour Si (i = 1, . . . , d+ 1), d+ 1 points are generated and clustered

around the ith vertex of the regular simplex. The algorithm takes a parameter
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r to control the maximum allowed perturbation between a generated colourful

point and its reference vertex. Note that while this algorithm cannot guarantee

all the (d + 1)d+1 colourful simplices contain 0, it can assure that the number

of colourful simplices containing 0 is very high.

Firstly we introduce the algorithm of generating a regular colourful simplex

containing origin 0 in Rd. The algorithm obtains an additional vertex for an

additional dimension by updating a lower dimensional regular simplex vertex

set to a higher dimensional one. It uses the fact that, if the edge length of an

d-dimensional regular simplex is L, then its height is L
√

d+1
2d

. After all vertices

are generated in Rd, they are scaled to the center point of the regular simplex

and make the center point as the origin 0. The algorithm is shown as follows:

Algorithm 8 : Regular-Simplex-Generator

Input: d
Output: p1,p2, . . . ,pd+1

1 begin
2 initialize P = [p1,p2, . . . ,pd+1] to be zeros
3 P(1, 1)← −1
4 P(1, 2)← 1
5 L← 2
6 for i← 2 to d do

7 H ← L
√

i+1
2i

8 P(i, i+ 1)← H
9 for j ← i+ 2 to d+ 1 do
10 P(i, j)← H/(i+ 1)

11 c← (
∑d+1

i=1 pi)/(d+ 1)
12 for i← 1 to d+ 1 do
13 pi ← pi − c
14 pi ← pi/‖pi‖
15 end
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In Regular-Simplex-Generator, step 2-10 generate a regular simplex from

the points p1 and p2 with the edge length being 2. After an d-dimensional

regular simplex is generated, the center point of the simplex is calculated by

step 11. Step 12-14 scale all the vertices of the simplex to the center point and

normalize them onto the unit sphere Sd−1.

In order to generate the cases satisfying the sub-condition of CLPP-TH3 :

Si ∩H+(Ti) 6= ∅ for any î-transversal Ti, Algorithm 9 is introduced in which

all the points of a colour are clustered around a reference vertex of a regular

simplex. It is shown as follows:

Algorithm 9 : Random-Generator-CLPP-TH3

Input: d, r

Output: S =
⋃d+1
i=1 Si

1 begin
2 generate a regular simplex in Rd with p1, . . . ,pd+1 being vertices
3 for i← 1 to d+ 1 do
4 for j ← 1 to d+ 1 do
5 t ∼ Rd

6 t← pi + rt/‖t‖
7 sij ← t/‖t‖
8 end

In Algorithm 9, step 2 calls the Regular-Simplex-Generator to generate a

colourful regular simplex with p1, . . . ,pd+1 being vertices. After that, for every

point of colour Si for i = 1, . . . , d + 1, the algorithm randomly selects a point

t in Rd in step 5. We employ the MATLAB function rand(d, 1) to generate

a random point t in Rd. Then the point t is normalized and multiplied with

the perturbation parameter r whose maximum value is 1/d as we specified.

In step 6-7, the colourful vertex pi of the regular simplex is added by the
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perturbation value rt, and this perturbed point becomes a point of colour Si

and is normalized onto the unit sphere Sd−1. This perturbation process can

assure that all the points of a colour are clustered around a reference vertex of

a regular simplex within a small perturbation range.

Figure 5.3 illustrates a case in R2 which is generated by the Random Case

Generator of CLPP-TH3.

Figure 5.3: A case generated by the Random Case Generator of CLPP-TH3.
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Chapter 6

Testing and Results

In this chapter, we will carry on the benchmark testing where the four CLPP

solvers proposed in Chapter 3 will be tested against the random cases generated

by the three generators presented in Chapter 5.

We use following abbreviations to denote the four solvers in Chapter 3.

• BO1: Solver-Bárány-Onn-1,

• BO2: Solver-Bárány-Onn-2,

• MD: Solver-Meunier-Deza,

• RP: Solver-Random-Pick.

And we use following notations to represent the three random case gener-

ators in Chapter 5:

• TH1: Random-Generator-CLPP-TH1,

• TH2: Random-Generator-CLPP-TH2,

• TH3: Random-Generator-CLPP-TH3.
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From the discussions in previous chapters, we know that BO1, BO2 can

theoretically solve all the cases generated by TH1 but cannot solve all the cases

by TH2 and TH3; whereas MD and RP can solve all the problems generated

by TH1, TH2 and TH3. We summarize this condition in Table 6.1.

BO1 BO2 MD RP
TH1 X X X X
TH2 × × X X
TH3 × × X X

Table 6.1: The problems solved by different solvers.

In this chapter, BO1, BO2, MD and RP against TH1 will be tested in Sec-

tion 6.1; MD and RP against TH2 will be tested in Section 6.2; and Section 6.3

will test MD and RP against TH3.

Even though there is no warranty that BO1 and BO2 can solve all the

cases generated by TH2 and TH3, in practice they might work well on TH2

and TH3. Therefore, in Section 6.2 and Section 6.3, we will also investigate

how well BO1 and BO2 work with TH2 and TH3, and test their performance

against TH2 and TH3.

In order to compare the solvers’ average performance, in each section the

solvers are tested with the same set of generated cases. The testing is performed

by following process:

1. Select a random case generator from TH1, TH2 and TH3, the dimension

d, and number of cases;

2. Randomly generate a case in Rd by the selected generator and solve it by

the solvers respectively;
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3. For each solver, if a valid solution is obtained, record to a MAT file the

iteration number and the running time used to find the solution;

4. Repeat step 2 until the number of cases is reached;

5. For each solver, read the MAT file to sum the iteration number and the

running time of all validly solved cases respectively, and then divide them

by the number of the validly solved cases to get the average number of

iterations and the average running time.

The dimension d of the testing cases is selected by d = 3 × 2n for n=0,

1, 2, 3 and so on. This selection will generate reasonable random cases of

low, intermediate and high dimensional colourful linear programming problems.

1,000 cases will be produced for the dimension d ≤ 24, and 100 cases for each

dimension after that. The notation “N/A” in the tables of test results indicates

that the testing cannot be done by the specified solver due to the running

time being too long. The symbol “*” after a testing value in the testing table

indicates that the specified solver cannot find valid solutions for some generated

cases; and below the symbol is the ratio of the cases with valid solutions to the

total generated cases.

The server used to perform the testing is a machine with Intel Core2 Duo

CPU E4500 at 2.20GHz each and random memory is 2GB. The operating sys-

tem is Windows Vista and the MATLAB version is 7.0.019920 (R14) with Op-

timization Toolbox. All the algorithms proposed in this thesis are implemented

by MATLAB language and executed in MATLAB Development Environment.
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6.1 Testing against the Cases of CLPP-TH1

In this section, the solvers BO1, BO2, MD, RP are tested against the cases

of CLPP-TH1 with dimension d=3, 6, 12, 24, 48, 96. The test results are

presented in Table 6.2 and Table 6.3.

d
Average (Maximum) Number of Iterations

BO1 BO2 MD RP
3 2.324 (5) 3.228 (28) 2.487 (7) 7.921 (60)
6 3.575 (8) 5.919 (14) 4.927 (14) 66.701 (399)
12 5.857 (10) 12.168 (20) 12.299 (41) 3843.67 (25468)
24 9.893 (17) 25.958 (38) 34.694 (120) N/A
48 17.29 (23) 53.74 (68) 145.9 (464) N/A
96 29.97 (36) 107.87 (122) 11598.89 (81700) N/A

Table 6.2: Test results of iteration against the cases of CLPP-TH1.

d
Average (Maximum) Running Time (seconds)

BO1 BO2 MD RP
3 0.007428 (3.531) 0.000936 (0.094) 0.000502 (0.046) 0.000675 (0.016)
6 0.009089 (0.031) 0.001868 (0.016) 0.001485 (0.016) 0.009176 (0.063)
12 0.028805 (0.062) 0.005762 (0.016) 0.006661 (0.032) 0.88856 (5.859)
24 0.13266 (0.25) 0.023398 (0.047) 0.041438 (0.141) N/A
48 0.92339 (1.266) 0.10497 (0.125) 0.62441 (2.015) N/A
96 11.6281 (14.546) 0.5877 (0.687) 315.4681 (2120.469) N/A

Table 6.3: Test results of running time against the cases of CLPP-TH1.

From the test results, we know that:

• Before d ≤ 48, there is no significant difference in the number of iterations

among BO1, BO2 and MD; MD is faster than BO1 but a little bit slower

than BO2.
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• After d > 48, the number of iterations and running time taken by MD

increase rapidly; but the average running time of BO1 and BO2 is still

acceptable and BO2 is much quicker than BO1.

• RP is a very efficient solver when the dimension is very low, such as

d ≤ 12, but after that the solver is unacceptable to solve problems.

6.2 Testing against the Cases of CLPP-TH2

In this section, the solvers BO1, BO2, MD and RP are tested against the cases

of CLPP-TH2 with dimension d=3, 6, 12, 24, 48, 60, 96. The test results are

presented in Table 6.4 and Table 6.5.

d
Average (Maximum) Number of Iterations

BO1 BO2 MD RP

3
2.6644 (5)* 3.5069 (33)*

3.435 (28) 7.763 (47)
(867/1000) (795/1000)

6
5.0841 (8)* 7.2165 (16)*

8.917 (135) 57.181 (486)
(963/1000) (924/1000)

12
10.1882 (14)* 14.5568 (24)*

24.792 (57) 3703.55 (23450)
(999/1000) (995/1000)

24 20.303 (26) 28.989 (43) 111.002 (291) N/A
48 40.3 (46) 56.48 (68) 1620.51 (4942) N/A
60 50.23 (57) 69.82 (82) 12808.9 (117891) N/A
96 79.59 (87) 112.92 (132) N/A N/A

Table 6.4: Test results of iteration against the cases of CLPP-TH2.

From the test results, we know that:

• Before d ≤ 48, the performance of MD is pretty good; but after d >

48, the number of iterations and running time increase dramatically and

become unacceptable after d > 60.
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d
Average (Maximum) Running Time (seconds)

BO1 BO2 MD RP

3
0.0040842 (0.016)* 0.00076352 (0.062)*

0.000688 (0.047) 0.000576 (0.047)
(867/1000) (795/1000)

6
0.013238 (0.032)* 0.0019903 (0.016)*

0.002033 (0.016) 0.007431 (0.062)
(963/1000) (924/1000)

12
0.055647 (0.094)* 0.0068111 (0.016)*

0.013084 (0.047) 0.77833 (4.891)
(999/1000) (995/1000)

24 0.323 (0.515) 0.024326 (0.047) 0.15126 (0.422) N/A
48 2.5234 (2.859) 0.10609 (0.141) 8.0753 (23.813) N/A
60 5.1099 (5.969) 0.16932 (0.203) 110.7931 (1048.047) N/A
96 33.0814 (36.453) 0.57654 (0.671) N/A N/A

Table 6.5: Test results of running time against the cases of CLPP-TH2.

• Before d < 24, BO1 and BO2 cannot solve all the cases, but as the

dimension increases, they work better than before. And BO1 can solve

more cases than BO2.

• After d ≥ 24, BO1 and BO2 can solve all the cases and their performance

is much better than that of MD after d ≥ 48. Especially in higher dimen-

sion, BO2 is very fast. But we still cannot guarantee that BO1 and BO2

can solve any case of CLPP-TH2 in high dimension.

• RP is a very efficient solver for solving the cases of CLPP-TH2 when the

dimension is very low, such as d ≤ 12, but after that the solver become

unacceptable to solve problems.

6.3 Testing against the Cases of CLPP-TH3

In this section, the solvers BO1, BO2, MD and RP are tested against the cases

of CLPP-TH3 with dimension d=3, 6, 12, 24, 48, 96, 192. The test results are
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presented in Table 6.6 and Table 6.7.

d
Average (Maximum) Number of Iterations

BO1 BO2 MD RP
3 1 (1) 1 (1) 1 (1) 1 (1)
6 1 (1) 1 (1) 1 (1) 1 (1)
12 1 (1) 1 (1) 1 (1) 1 (1)
24 1 (1) 1 (1) 1 (1) 1 (1)
48 1 (1) 1 (1) 1 (1) 1 (1)
96 1 (1) 1 (1) 1 (1) 1 (1)
192 1 (1) 1 (1) 1 (1) 1 (1)

Table 6.6: Test results of iteration against the cases of CLPP-TH3.

d
Average (Maximum) Running Time (seconds)

BO1 BO2 MD RP
3 0.000749 (0.004) 0.000295 (0.002) 0.000545 (0.002) 0.000115 (0.002)
6 0.000631 (0.003) 0.000466 (0.003) 0.000578 (0.004) 0.000188 (0.003)
12 0.001069 (0.014) 0.000877 (0.016) 0.001022 (0.01) 0.000253 (0.005)
24 0.002726 (0.029) 0.002692 (0.008) 0.002877 (0.007) 0.000333 (0.006)
48 0.01312 (0.023) 0.01288 (0.017) 0.01363 (0.018) 0.00075 (0.008)
96 0.07049 (0.113) 0.07094 (0.117) 0.07401 (0.096) 0.00184 (0.004)
192 0.46217 (0.567) 0.46094 (0.603) 0.47604 (0.621) 0.0073 (0.01)

Table 6.7: Test results of running time against the cases of CLPP-TH3.

From the test results, we know that:

• All the cases can be solved very fast in one iteration even in very high di-

mension, because the cases are special ones of CLPP-TH3 and the density

of colourful simplices containing 0 is very high.

• The average running time of RP is much faster than that of other solvers

because RP does not need to perform some extra processes in each it-
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eration; meanwhile, the running time of BO1, BO2 and MD has no big

difference.
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Chapter 7

Conclusions and Future Work

In this thesis four algorithms, BO1, BO2, MD and RP, are presented and

implemented to solve the colourful linear programming problems (CLPP) sat-

isfying three different kinds of sufficient conditions: CLPP-TH1, CLPP-TH2,

CLPP-TH3. We mainly focus on the software design and implementation for

the Meunier-Deza algorithm because it is a more general algorithm proposed

recently and can solve all the three kinds of CLPP. For the sake of comparing

the algorithms’ performance, three random case generators are designed and

implemented to meet the three sufficient conditions respectively. Finally the

four proposed algorithms are tested and benchmarked against the three random

case generators and testing results are given.

From the testing results, we can conclude that MD has very good perfor-

mance to solve all the three kinds of CLPP before d ≤ 48; it is almost as fast

as BO2 to solve CLPP-TH1 and very quick to solve CLPP-TH2 and CLPP-

TH3. But after d > 48 the running time of MD to solve CLPP will increase

rapidly because it gets into the subroutine Find-Closer-Facet to execute an

enumeration operation which is a very time-expensive task.
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The algorithms BO1 and BO2 can solve all the cases of CLPP-TH1, and

BO2 is the most efficient algorithm for this kind of problem while BO1 is not

recommended because it involves the time-expensive computation of minimum

norm. There is no warranty that BO1 and BO2 can solve all the cases of

CLPP-TH2 and CLPP-TH3 ; but in practice they can solve most of the cases

of CLPP-TH2 when d < 24, and after d ≥ 24 all the cases of CLPP-TH2 can

be solved and BO2 has very good performance.

Theoretically algorithm RP can solve all the problems of CLPP, and actu-

ally it is very efficient when the problems are in low dimension such as d ≤ 12

or in special condition such as the problems generated by TH3. But generally

after d > 12 the performance of RP is unacceptable.

Since the Meunier-Deza algorithm is the only one that can solve all the

three kinds of CLPP, it can be regarded as a reliable and time-effective algo-

rithm to solve CLPP-TH1, CLPP-TH2 and CLPP-TH3 in intermediate di-

mension.

For the future work, in order to improve the performance of Solver-Meunier-

Deza and make it competent to solve CLPP in high dimension, an efficient

method needs to be found to replace the enumeration operation in the subrou-

tine Find-Closer-Facet.
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