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ABSTRACT
P. %%brie] constructed r}ngs of quotients by inverting elements
of multiplicative sets which satisfy the Ore and the reversibility
conditions. We employ this technique in our study of localizations of
non-noetheéian‘rings at Goldie semiprime ideals. The three types of clans
developed in tﬁis thesis enable us to decompose in a unique fashion

(weakly) classical sets of prime ideals into (weak) clans whick, in .

_essence, are minimal localizable sets of prime ideals, satisfying certain

properties. We further show that these {weak) clans are mutually
disjoint sets. The different types of rings, brought into consideration,
“exhibit many interesting properties in the context of our localization

theory.

We characterize the AR-property for the Jacobson fadica] of a
°§emi1dtal ring by conside}ing finitely generated modules. In the study
of rings which are module-finite over their céntres, we describe
expresgly the injective hull of the semi1oca1.ring moduto fts Jacobson
radfca].‘ These'two facts enab]g us to establish an interrelationship

\ 4 .
between the (strongly) classical semjiprime ideals of the ring and those

of its central subring. Furthermore, we show that under certain conditions
the Q-sets are precisely all the minimal localizable sets of prime ideals
of the ring. In the case of group rings, the flatness condition can Bé

Tifted without jeopardizing the validity of the.éSse%tipn.
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Lastly, we apply localization technique to characterize the ¢

group theoretic notion of g-nilpotency.

P’Lr
&

.

PRI

b T2 e

JEROA NN

o T

-y

P




ACKNOWLEDGEMENTS
The author wishes to express his heartfelt gratitude to his
supervisor Dr. B. J. Mueller whose unfailing guidance and encouragement
have been of inestimable value during the preparation of this thesis.
Sbeciaf thanks also go to the author's friend J. Royle for his many

helpful comments and suggestions. ’

The financial support provided by McMaster University is also

gratefully acknowledged.

KPR R B

LN 8 0 KT s T




TABLE OF' CONTENTS

PAGE
INTRODUCT TON ' ]
CHAPTER .
I | AN APPROACH TO LOCALIZATION ’ ‘ ‘ 5 é
E
.1. The Ore and the Reversibility Cond1t10ns 5 Z
2. Right Goldie Semiprime Ideals 8 )
3. Classical Semiprime Ideals and Perfect Rings 13 i1
4. The Structure of Clans 19 ¥
5. Examples.and Counterexamples - 32 %
I1 A VARIATION IN THE THFORY OF.CLANS . '35 o 7
1. Fp- 1nJect1ve Modules 36
2. Weakly Classical Semiprime Ideals 40 -
’ 3. The Structure of Weak Clans ’ 42
4, Right Valuation Rings . : 44
5. A Counterexample . ‘ . - 50 A
N ' ’ t
‘ ; | - [
I1T - RINGS .MODULE-FINITE OVER THEIR CENTRES f © 53 §
1. Central Lecalization - 53 ?
2. Minimality.of Localizable Sets ’ 56
3. {lassical Semiprime Ideals of the Ring ahd
Clans of its Centre o 61 ’ E
4.  Examples , ) 69 { -
: \ 5. Group Rings a , . 71 §'
BIBLIOGRAPHY - ' - ' 81

©vi . -




INTRODUCTION

In the study of commdtative rings, localization at muitip]icative
sets has been a well-understood and useful technique since the foundat%on
.of the theory. Similar techniques have been developed recently %rom
several different standpoints to handle non-commutative rings. As a
consequence of these generalizations, various concepts have evolved, for
1qstance, localizing subcatégory, torsion theory, Ore condition, etc.

The scope of this dissertatipn covers only one aspect ofr1oca1ization in
non-commutative rings. The’approgch, we have adopted hére, was initi?ted
by P. Gabfieirwho, in his thesis [6], d%tcussed the Ore and the
reversibility conditions on arbitrary mu]tip]ica;ive sets. The main
advantage of his technique lies hop only'inAthe fact.phat it closely
'}esembles the usual commutative ring‘]ocaiization but also.tﬁat it
provides a’certain strﬁéture for the ring of quotients in which every
element is expiipit}y expressjb]e }n terms of the elements of the 6rjgina1
ring.. Moreover, the resu]tihg'fd?sjoﬁ theory .is perfect, hence rendéripg

an explicit way. of describin@ the"quotient functor. ~(See.[22].)

In recent years, Gabr1e] S techn1que has béen emp]oyed in
;tudy1ng 1oca11zab111ty of sem1prime 1deals of non- commutat1ve noetherlan
rings. J. Lambek and G Mlchler ([16] [17]), A. V. dategaonkar ([11],*
[12]) and- B. J Mueller ([23], [24]) are among those who hd@e been

workxng along th1s 11ne of 1nvest1gat1on Our prlme obaect]ve is to,
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extract information from what has been known about noetherian ring
10ca1iza§j6ns and:to apply this to localizations of rings not necessarily
noe%herian. A few elementary results in the same direction have been
obtained by J. Beachy and W. Blair [2] and overlap partly some work in .

[22].

The first chapter begins with some foundational work for our later
undertaking. Here we make an introductory comment on the QOre and the
.reversibility conditions, and show by way 6f counterexamples that these
two conditions are independent of one another? At the same time, wé
fﬁdicate certain classes of non-noetherian ringé in which the reversibility

coﬁdition can be deduced from the Ore condition.

Even at the iﬁitia] stage of these deve]qpments, Goldie's Theorem
serves a; a, key technique in our investigatibns. The definition of a
localizable semiprime ideai entails Go]diens Theorem, the Ore and the
reversibility conditfons. The in&ispensabi]ity of Goldie's Theorem in
this definition is elucidated by the endomerpﬁism ring of~an'infinfte

dimensional vector space.' Moreover, the localization RS of a ring R at

a7 localizable semiprime ideal S is a semilocal ring with SR, as its

S
Jacobson radical. (See [2] or [22]) This observation facilitates our

further considerations.

" The concept of a clan of prime ideals, introduced in [24] for -
B poetherian rings, proves useful in -the localization theory of non-
‘ﬁqefherian‘rings as well. However, we find it négessaty to formulate

two.de?iﬁifﬁpns of clans which are termed "clansﬁ and "strong clans”.

1 By



At gke present moment we have no example justifying this distinction.
On the other hand, neither can we provide a pré%f to ascertain the
équiva]ence of these two concepts in general. We, however, do have
examples of certain classes of non-noetherian rings where these two
concepts merge together. As the name implies, stroﬁg clans are alwazs
clans. The disjointness of clans, the unique decomposition of a
classical set of prime ideals into clans and the(building—up of a
classical set from clans-are all assured just as in the noetherian
situation. The application of {stronq) clans to the class of perfect
rings is intended merely as an illustration of our theory and is by no

means an exhaustive treatment.

In the segond chapter, we introduce a variant concept of the
theory developed in the first chapter. The incentive for dojng this
is derived from the notion of FP-injective modules which was studicd b
by B. Stenstrom [34]. The concept of a weak clan, introduced here,
extends the concept of a clan. Indeed, it is shown that clans are
"always weak clans. The two concepté coincide when the ring under

consideration is noetherian. Although both of them share in common the

properties indicated in the preceding paragraph, they are two distinct

concepts; we inE]ude an example-to substantiate this. In other words,
prime ideals which constitute a clan remain together.to form a weak clan.
At the same time, under this new defjnifion; more prime ideals may
beloné to weak clans even if they %ai] to belong to c]ans The class of

valuation r1ngs is bréﬁght in for 1nvest1gat10n we find that all three

~

types of c]ans co1nc1de here and that the localization at a classical S l
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prime ideal gives rise to a noetherian local ring. .

Rings which are finitely generated as modules over «their centres
constitute’gyratﬁer'jmportant class of rings. This is the topic under
study in’the'thfrd chapter. A cémprehensive localization theo;y has been
fdrmulated by B. J. Mueller [24] and P. F. Smith [33] in this area within
the noetherian framework. Here we explore the interrelationship between
the (strongly) classical ;%miprime ideals of the ring and those of its
central subring by looking at the so-called Q-set. When Q ranges over
all the prime ideals cf.the centre ‘of the'ring, we see that under certain

conditions the Q-sets completely characterize the minimal localizable

sets of prime ideals. ‘It would be interesting to know if these constraints

can be 1ifted. For group rings, we are able to safely remove one of the

constraints.

Our pursuit in the third chapter also leads to an external
characterization of the AR-property for the Jacobson. radical J(R) of the

semilocal ring R as well as to an explicit description of the injective

~hull of the R-module R/J(R).

Finally, group rings of finite groups over commutative rings
provide substantial examples for thisﬁclass of. rings. Here we have .
patterned our argumehts after [24] by employing block idea]s in our .
delibefations[ With” the help of some group répresentatjon theory, we
establish a chachterizaiion of a gr&up theoretﬁc.property; namely, the
concept:o% qwni]poténcy, in ténms of the 10ca]izab}liﬁy of a certain Q-

augmentation ideal. Egaﬁblés are listed to serve as an illustration.

»
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CHAPTER I

AN APPROACH TO LOCALIZATION

>

Throughout this thesis all rings will have identity elements and
all modules will be unitary right modules unless indicated otherwise.
For any ring R, J(R) stands for the Jacobson radical of the ring. An
ideal of R is a}wéys understood to be two-sided Unless specified by a
qualifier such as left or right. The same cbnnotation extends to other
concepts 1ike noetherian, artinian, perfect, localizable, c1ass%ca1, etc.
A regular element of R is a non-zero divisor. A standard notation -for
the <injective hull of‘an R-module M is’ ER(M); when no confusion arises,

we simply write E(M).

‘

Just as for commutative rings, our localizations arise from suitable
multiplicative subsets of the ring, which will be studied in the follow-

ing section.

»
.

§1 %HE ORE AND THE REVERSIBILITY CONDITIONS

Definitions. A multiplicative subset X of a ring R is a right Ore

set if for any r ¢ R and s ¢ X, there exist r' ¢ R and s' ¢ X such.thgt

rs' = sr'. It is called right reversible if sr =0 for s € X, r € R

implies rs' = 0 for some s' ¢ X.

~

13

The left analogue is similarly defined. It should be noted that
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* these two concepts are independent of each other. There are right
reversible sets which are not right Ore, for instance, the set of all
regular elements of a left Ore domain which is not right Ore. Conversely,
a right Ore set is not necessarily right reversible as illustrated by the

following example. S

\
Example. Let R be the ring of endomgrphisms BK an X.-dimensional
vector space V over a field K with basis {ei | i eN}. Let f : V>V
be the K-endomorphism given by f(e2n) = e and f(ezn_]) = 0 for all
necN. Clearly, f is Surjective and hence is left reguiar (that is,
hf = 0 implies h = 0) in R, since V is a projective K-module. It is not
right regular because it is not an automorphism. Let X = {1, f, fZ,.:.}.
A straightforward checking will verify that X is a righi Ore but not a

right reversible set.

_However, there are rings in which the right Qre conditfon implies

the right reVersibi]ity condition. This is obviously true for any domains.

Another class of rings with this property consists of all those rings
which satisfy the ascending chain condition on right annihilators of the

form annR(c) < ann (cz) c ann (c3) c .:., where annR(A) = {r ¢ R| Ar=0}

R R
denotes the right annihilator of a non-empty subset of the ring R.

(cf. [35], Chapter 11, Propositfon 1.5.) Right perfect rings are
members of this class. This is because any (ight perfect ring has Fhe
descending chain conqition on principal left ; eals (see [1]) and hence
satisfies the ascend}ng chain condition on.right~§nnihilators of the |
form prescribed above. In partjcu]ar, semiprimary\kjngs are examples

« N \ .
of such ring$. These are perfect rings with nilpotent\gacobson radicals.
\
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‘ Another type of rings which also belong to the aforesaid class is
found in [13]. These are rings R with Krull dimension [8] such that
Kd(1) = Kd(R) for all non-zero right ideals I of R. Here Kd(M) denotes
the Krull dimension of an R-module M if it exists. It was shown that
these rings satisfy the ascending chain condition on right annihilators

at large. ([13], Theorem 7.)

Rings which can be embedded in rings with the ascending chain
condition on right annihilators certainly inherit this property. Indeed,
this is the situation where C. Procesi [28] proved that if R is an affine
algebra over a commutative noetherian }ing C, and if R can be embedded in
a C-algebra S which is'module-finite over its centre, then R has the
ascending chain condition on right as well as on left annihilators. The-
crux of the:proof of this statement 1ies essentially in the embedding of

R in a noetherian subring of S.

We shall call a right Ore and right reversible set right

'

localizable. P. Gabriel [6] has the following characterization for

right localizable sets.

Proposition 1.1. For a multiplicative subset X of a ring R,
the following conditions are equivalent: . .
(1) X is a right localizable set.

(2) There exists a classical right quotient ring for X.

A v

Such c{assica] right quotient ring is usually denofqd by RX. *

It.is well-known that if X is.a localizabie set, then the classical

.
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right quotient ring for X coincides with the classical left quotient

ring for X.

.2 RIGHT GOLDIE SEMIPRIME IDEALS °

Definition. A ring R is a right Goldie ring if it has the follow-

ing properties:
(i) R is a (semi)prime ring,
(i1) R has finite Goldie dimension, and
(i1i) R satisfies the ascending chain condition on right

annihilators.

A right Goldie ring is precisely the one which has a (semi)simple -

artinian classical right quotient ring for the set of all regular qlements.

Tﬁis\fact is generally known as Goldie's Theorem. ({7])

For a semiprime ideal S of a ring R, we define a multiplicative

set C(S) = {c ¢ R | c is regular modulo S}. S is called right Goldie if

R/S is a right Goldie ring. In this case, C(S) coincides with the set

{c e R] cx e S implies x ¢ S}.

The purpose of this section is to investigate somevof the basig
properties of.right Goldie semiprime ideals. In [12], the fight Ore
condition of C(S) is characterized in term§ of ER(§/S) for a semiprime
1deél S of 'a right noetherian ring R. We waﬁt to show that-this'

* characterization is also true for non-noetherian rings at large.

A




Notation. For any ring R, let mod-R be the category of a]l
R-modules, and S a right Goldie semiprime ideal of R. Then the S-torsion
theory is the one determined by C(S), or equivalently cogenerated by
E(R/S). We shall denote this torsion theory by (T_, F_, ¢_, QS) where

ST S 'S

T is the torsion class, F is the torsion-free class, p is the torsion
S T

radical and QS is the Gabriel filter.

For any R-module M, m ¢ M and a submodule N of M, let
m!N={reR ]| mreN} The closure of N in M with respect to the S-
torsion theory is {m e M | mIN € 95}. In shorf, it will be called the
S-closure of N in M. For any right ideal I of R, we shall simply speak

of the S-closure of I with the understanding that it is taken in R.

Proposition 1.2. Let S be a right Goldie semiprime ideal of a

ring R. Then C(S) is right. Ore if and only if every element of C(S)
. operates regularly on E(R/S). (That is, for any e € E(R/S), ¢ ¢ C(S),

= 0 implies e = 0.)

Proof. Suppose C(S) is a right Ore set and there exist non-zero
e ¢ E(R/S) and c e C(S) with ec = 0. By essentiality of E(R/S), there
exists r ¢ R-such that 0 # er € R/S. Moreover, the right Oreéfondition
of C(S) imp]ies ré' =cr' for some r' eR,c'e C(S), and so
grc' = ecr' = 0, forcing erc' = 0 in R/S. But ' is a regular element of

R/S. Hence er = 0, a contradiction.

E Conversely, assume that every element of C(S) operates regu]arly
on E(R/S). Our first c]awm is that R/cR e T¢ for any ¢ e C(S).

Suppose on the contrqry that there exists some ¢ e C(S) with R/cR £ TS.

R T P A A N
o o
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Then for such e]gment ¢, there must exist a non-zero R-homomorphism

f : R/cR » E(R/S). Let e = f(1) which is obviously non-zero. However,
ec = f(T)c = f(C) = 0, contradicting the assumption. This proves our
claim. That means ¢R r QS for all ¢ e €(S). Hence,

D=1{xeR | rxecR}c QS for any given r ¢ R, and so rDc qﬁ.

Pick an element ¢' ¢ DN C(S). Then rc' = cr' for some r' e R. ||

&

Given an S-torsion theory, its quotient ring will be denoted by
RS. When C(S) is righ£ localizable, RS is actually the classical right
quotient ring for ((S). Henceférth, we will call a semiprime ideal S

right localizable if it is right Goldie and C(S) is a right localizable

subset of R. ' One further point to be noted is that in any ring, a right
Goldie semiprime ideal S is uniquely expressible as a finite irredundant
intersection of prime ideals. Each of the;e prime ideals is right Goldie,

and they account for all the minimal prime ideals over S. ([22])

-
o
L4

n ‘ .
Proposition 1.3. Let S = f\Pi be a right localizable semiprime
‘ i=1

ideal of a ring Rand T = (\IPi for some subset I of {1,...,n}. Then
ie :

C(T) is right Ore.(respectively, right reversible) in R if and only if

C(TRS) is right Ore (respectively, right reversible) in RS . h

. Proof. (1) First we claim that C(TR.) = {cs™'e R(| ¢ e C(T)}.

. Sl
Let ce C(T). It suffigés to show that c17! ¢ C(TRS). Suppose

‘c17'at™! ¢ TRS, that is, cat™! ¢ TR«

which then implies acTas cec C(T). Hence at7! ¢ TRS and so’

Because T is S-closed, cae T

"¢l e C(TRS).

aa wmw‘, ey .- . ;,:,E,zul'
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Conversely, suppose c¢s~' € C(TRS). Let c¢cx ¢ T for some x ¢ R.
Then cs™'sx17! e TRg implies sx17' e TRg , from which it follows that
x1=! € TRg since s is invertiblé in Rg . Hence x e T. This proves
our claim.

i

%

(2) Next we want to show that both C(T) and C(TRS) are right Ore
if either one is. Observe that ER(R/T) takes on an Rs—modu]e structure

and Eo(R/T) = @ E (R/P,) =~ @ E, (Ro/P.R.) = E, (R/TR.) as Rc-modules.
R o FRIRPy) = @ Bp (Re/PsRs) = Ep (Rg/TR s

Proposition 1.2 and (1) above then complete the proof.

(3) Finally it remains to show that both C(T) and C(TRS) are
right reversible if either one is. First, we assume the right feversibi:

Tity for C(T) and let cs™! ¢ C(TRS), at™ & R. with cs™'at™! = Q.

S
Then s~'a = bd™! for some bd™! ¢ Rg - So, cs™lat™! = cbd™'t™! =
(cb)(t.d)’l = 0. which means 'cbx =0 for some x ¢ C(S). By assumption
and (1) above, there exists é' € C(T) with bxc' = 0. WNow we have
(at™!)(tdxc')1"! = (adxcl:')l”l = (sbxc')1™! = 0. This establishes the

right reversibility of C(TRS) as tdxc' e C(T).

Conversely, suppose C(TRS) is right reversible. Let c ¢ C(T)
and r e Rwith cr=0. Then .(c17')(r1!) = 0 in R . By assumption,
there ijf%s st™! ¢ C(TRS) with krl")(st") = 0, from which we have

7 F

rsd = or some d € C(S). This proves the right reversibiiity of C(T)

ye

Remark. While right localizable semiprime ideals of a ring are

as sd e C(T). |[]

"right Goldie by definition, the converse is false. (See [24], Lemma 12,

for instance.) There are non-noetherian rings where none of the prime



/

ideals is Goldie; below is an example.

12

Example. Consider again the example in §1. Let I _be the set of
all endomorphisms of finite rahk. Then I is an ideal of R. In fact,

0 and I are the only prime ideals of R and are not Goldie. We will %\

i
N

provide proofs of these facts for the convenience of the reader.

[
‘Claim 1. 0 and I are the only prime ideals of R.

Proof. Note that I is the only non-zero ideal of R, so it is
maximal, hence prime. To show that O is prime, suppose ¢Ry = 0 and
Yy # 0. Let B be a basis for im y and complete it to a basis ¥ of V.
$v = 0 implies im ¢ < ker ¢ from which ¢{w) = 0 for all w e B. Take
any y e D —-—Band w ¢ B. Define an endomorphisﬁ f: V>V by

: y :1f X = W

£(x) = { .
0 ifxeD - {w} : -
Let z e Vwith ¢(z) = w. By assumption, ¢fy = 0, that is,
0 = ¢fu(z) = 6F(w) = o(y). Hence ¢ = 0. ||

Claim 2. Both 0 and I are not Goldie." - ‘ C T
Proof. Take a basis {vi ] i e N} of V. For every prime number

p, define an endomorphism f
v, if7i is a power of p

f;(vi) = { !

0 otherwise

: V-+V by

7
Note that (fp)2 = fp and fbfq'= 0ifp#q. So thesé”gﬁﬁﬁﬁorphisms
produce an infinite direct sum in R. Therefore, R does not have finite
Go]die;dimehsién. 'In other words, 0 is not right Goldie.

Clearly, all fp ¢ 1 and so ?p # 0 in.R/1. By the same token,



-
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- R/1 does not have finite Goldie dimension. Hence I is not right Goldie.

Likewise, 0 and I are also not left Goldie. ||

The above examp]e further illustrates the following fact. Observe
that C(0) consists of all automorphisms of V, and hence satisfies the Ore
and the reversibil1ty\§onditions. However, the classical quotient ring
of R for C(0) is R itself, which is not a Goldie ring by Claim 2. This
observation clearly indicates that 'in our definition of a right localizable

semiprime ideal S, the right localizability of C(S) alone is insufficient
to make S right Goldie.

On the other hand, there are rings whére every prime ideal is
right Goldie, such as commutative rings, left or right perféct rings,
PI’rings and rings with Krull dimension. Prime ideals of the firs£ three
types of rings are even left Goldie. The reason for being so varies in
each case. For commutative rings, every prime ideal is completely ptimé,
hence Goldie. For one-sided perfect rings R, every prime ideal P
contains J(R) and so R/P is simple artinian. In the case of PI rings,
Posner s Theorem [28] accounts for this ‘fact. F1na11y, it has been shown

in [8] that a semiprime ring w1th Krull dimension is right Goldie.

<83 CLASSICAL SEMIPRIME IDEALS AND bERFECT RINGS

. preliminary atiembt, we will investigate it in the context of perfect rings.

The notion of classical semiprime ideals has been studied mainly

in noetherian rings, for instance, in [12], [17], [24] and [32]. Here

we qdopt this notion for the study of non-noetherian rings. As a

v

L

v
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Definitions. (a) An ideal I of a ring R is said to have the right
AR-property if for every right ideal A of R, there exisfs an integer n > Q

such,;chat AN I1"c AL

(E) A right localizable semiprime ideal S of a ﬁgﬁg R is called

right classical if E(R/S) = #:4 anng p/s) s". It is called strongly

It can be easily verified that a strongly right c]assicél semi-
prime ideal is always'right classical. (cf. [17], Proposition 4.3.)
For noetherian rings, there is no distinction between tﬁese two definitions.
Whether this will be so for non-noetherian rings in general is yet to be
settled. However, there are quite a few kinds‘of non-noetherian rings
where such a distinction also di;appears: Such examples-will be given in

§5.

‘The proof of the next proposition is adapted from [24] for semi-
primary rings. We include the proof here as we will’ it later for

right perfect rings.

Prgpositioh 1.4. Let S be a semiprime ideal'of a semiprimary

ring R. Then the fﬁ]]owing conditions are equiva]gnt:

(1) S.is strongly right glﬁssical.

(2) S is right 1oca1izab1g.

(3) S has the right AR-property.

(4) There exisés an idempotent element e ¢ R such that-
eR(1-e) = 0 and S = Re + J(R) - eR'+ J(R).

In this situation, Rg is a semiprimary ring. '
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Proof. (1) implies (2) trivially. Given (2), let K = pc(R).
First, we claim that C(S)c< C{(K) and Kc S. Let ¢ e C(S) and suppose
cx ¢ K for some x £ R. Then there exists y € C(S) with c¢cxy = 0. Since
C(S) has ‘the right'reversibility condition, xyc' = 0 for some ¢' ¢ C(S),
which implies x ¢ K. Thus C(S).< C(K). That K< S is obvious from the

definitions of K and of C(S). This proves our claim.

Now we put S =!%EP1 which is the unique representation‘of S as .
a finite irredundant inL;rsection of prime ideals. Our next claim is that
the Pi are the only prime ideals containing K. Suppose this is not the
case. Then let Q be a prime fdé%] containing K but different from all
the Pi' Since prime ideals of R are maximal, Q + Pi = R for all
i = 1,...,n. This implies C(Pi)cj Q + P. and thus C(Pi)f\ Q#9 for
all i. For each i, pick an elément c; ¢© C(Pi)(\ Q. Then there exist
X; € R such that ¢ = § cii

i=1
is right regqular, hence invertible in R/K. We then have cx =1 + k for

;e C(S). So c e C(K)N Q. That means c
some X € R-and -k ¢ K, from which follows 1 = ¢x -~ k € Q, a contradiction.
n .
This proves our second claim. Therefore, J{R/K) =/ P./K = S/K. By
_ o ) i=] )
nilpotency of the Jacobson radical, there exists an integer m > 0 with

EXYr-e

To verify the right AR-property, take any right ideal A of R. We
now claim that AN'S < AS. Let re ANS". Then rd = 0 for some

d e C(S)'because r € K. Note ‘that d is invertible modﬂ]o_Si and so

dz =1+ s for some z « R and s ¢ S. Therefore, rdz =r +rs =0, or

simply r = -rs € AS, thus proving (3).

. .
% ’




16

L4

Assume (3). Since R is a semiperfect ring, by 1ifting idempotent
modulo J(R), there exists an idempotent e ¢ R, unique and central modulo
J(R), with S = eR + J(R) = Re + J(R). It remains to show that eRf =0
where f = l-e. Applying the right‘AR-property to the ideal A = RfR,
we obtain an integer n > 0 with AN s" ¢ AS. Observe that e « S".

Therefore, eRf c A N S" ¢ AS = RfR(Re + J(R)) = RfRe + RfJ(R), which

1

leads to eRf ¢ eRfJ(R)F = eRFJ(FRF). This implies eRF = 0 since fRf

is a perfect ring and eRfJ(FfRf) is small in eRf as a right fRf-submodule.

Finally, the implication of (1) from (4) proceeds as Follows:
we first identify the ring R Wwith the matrix ring
eRe "0 '
[ fRe  fRf ] . ’ ‘
Then S is the ideal
. “e(Re+ J(R))e 0 ) eRe 0
['f(Re + J(R))e f(Re + J(R))f ] i [ fRe  fJ(R)f ]

and C(S) is the multiplicative set
{ [ ﬁ g ] ' ¢ is invertible in fRf } .
S is evidently a Goldie semiprime ideal. To show that it is right

localizable, take any.e]emgnts‘
a 0 x 0
(39 e ana [12)en
A direct checking will verify that

SR EIE)

Hence C(S) has the right Ore condition, from which follows the right
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reversibility condition since R is semiprimary. Moreover,

eRe 0] ‘ ’
OS(R) = ?

fRe 0
Hence, RS = R/DS(R) - fRf, that is, RS is a semiprimary ring, and J(RS),

being nilpotent, obviously has the -AR-property. |

Remark. If the ring R in the preceding proposition is merely a
right perfect ring, we still retain the equivalence of (2) ané"?h?5 the

proof will be given below.

Notation. For any right perfect ring R, let i denote the right
transfinite powers of an ideal [ of R, defined inductively as follows:
= 1 fora=p+1; 1= MNi1%if o« is a limit ordinal. It is easy
. B<OD

to check that J{(R)® = 0 for some ordinal a. In the same manner, we define

the left transfinite powers of an ideal of a left perfect ring.

Propésition 1.5. Let S be a semiprime ideal of a right peffect

ring R. Then the following conditions are equivalent:

(1) S is right localizable.

(2) There.exists an idempotent element e ¢ R such that
eR(1-e) = 0 and S = Re + J(R) = eR + J(R).

~In this situation; RS is a right perfect ring.

.Proof. We go over the proof of.the implication of (4) from (2)
via'(g) in Proposition 1.4, replacing J(R/K)™  with an appropriate right
transfinite power. Then we obtain the implication of (2) from (1). -The

v s e . e \os . .
proof of the converse }mpl1cat1on is identical with that of (4) implying

(1) in the_precedihg proposition, except that we do‘not get‘the right .

.

SRR, vv,., o v TE
B

s

e



AR-property for J(RS). That RS is right perfect is also evident. ||

The left analogue of-Proppsition 1.5 can be easily formulated for
left perfect rings. With this we obtain immediqte]& the following
3

corollary.

’

Coroliary 1.6. If R is a ring-directly indecomposable perfect
: -~

¥

ring, then its Jacobson radical is the onlyiiogalizab1e semiprime ideal. _

Proof. The assertion fq]]ogg directly from (2) of Proposition 1.5

and its left analogue. []

Proposition 1.7. Let S be a right localizable sem?p?TﬁE ideal

of a Teft perfect.(ing R. Then S is strongly right classical if and

only if it has the Tight AR-property. Moreover, Rg is semiprimary.

Proof. qupose S is stroﬁg]y right classical. First we want to
show that Rs is semiprimary. Let A be the right Rs»socle of J(Rs). Then

there exists an integer n > 0 such that AN J(Rs)nc: AJ(RS)Z But

AJ(RS) = 0, and so A NJ(R)" = 0. Therefore J(RS)n = O—by essenfiality

S
ofIA. This proves that RS is semiprimary. Since J(RS) = SRS, we have

|

S"Rg =70, implying S"c pg(R).. A diréct checkipg verifies INS"c TS -
for any right ideal I of R. ’ R

bonversely, assume the right'AR—property for S. We need to prove
that J(RS) also has the right AR;broperty. Let A be any right ideal of
RS and I = es‘}(A) where eg ! R » Ré “is the locatization~map. Then

there exists an inﬁeger n > 0 such that I N S ¢ IS, which then yields
b \ :

3
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n
IR N S'Rc < IR(SR by flatness of Rg as a left R-module. I

Corollary 1.8. The Jacobson radical of a Jeft perfect ring R has

the right AR-property if and only if R is semiprimary.

Remark. For a semiprime ideal S of a righ? perfect ring R, the

right AR-property for S is sufficient to make S strongly right classical.

$4 THE STRUCTURE OF CLANS ' ‘

This section studies the structure of classical set of prime
ideals. First and foremost, given such a set, we will partition it into
mutually disjoint non-empty subsets in a certain way that each subset is
a clan. Secondly, we will prove that no two distinct clans contain a
common prime ideal, and that a classical set of prime ideals can be

constructed from clans.

To begin with, a few remarks on notatlon and term1nology are
necessary. Two pr1me 1dea}s are 1ncomparab1e if neither one og them is
a subset of the other. A non-empty f1n1te set {P1,...,Pn},of pairwise
1ncomparab1e prime ideals of a ring R is a (strongly) classical set if

the assoc1ated semiprime ideal S = /"}P is (strong]y) classical.

Such a set is a (strong) clan if no proper non- empty subset of 1t is

(strongly) classical. In general, we shall also speak of a ]oca]1zab]e

set of prime-ideals when-its associated semiprime ideal is localizable.

Al

Recall that a (semi)loca}’ ring R is a ring such that R/J(R) is

(séhi)simp}e aftinian. Given such a riné/R, we denote by R_the,dompletion'

- o L
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of R with respect to the J(R)-adic topology on R. For brevity, it is
usually called the J(R)-adic completion. When J(R)¥ = gi}J(R)n = 0,
we may identify R with a subring of its Hausdorff completion R. Moreover

~

. R is a semiperfect ring with J(R) = J(R) , the closure of J(R) in R.

~

~

In general, I shall denote the closure in R of any right, left or two-
sided ideal I of R. Note that R/(J(R)n) = R/J(R)" for all n > 0. The
reader may consult [15] and {36] for more details of J(R)-adic topology

*and completion.

Lemma 1.9. If a semiprime ideal S of a ring R is right classical

in R, so is J(RS) in RS . :

g

/
Proof. ;Lﬁé assertion follows obviously from the fact that ER(R/S)
takes on an RS—modu1e structure and is indeed the injective hull of

RS/J(RS) in mod-Rc . [

Lemma 1.10. If R is a semilocal ring with a right classical

Jacobson radical, then the J(R)-adic topology on R is Hausdorff.

Proof. (1) Let e ¢ E(R/J(R)). Then eJ(R)n = 0 for some n > 0,
" and a fortiori eJ(R)” = 0. Hence E(R/J(R))I(R)® = 0.

(2) Let X be an R-module with an essential socle U. Then
U= .C)Ui‘ where each U, is a simple submodule of X. Since R is semi-
loca;fleach Us is isoéorphic to some submodule of R/J(R). Let
S U~ .H‘E(R/J(R)) be the composite of two canonical R-monomorphisms
U'»',n R}S%R) and 1 _R/J(R) » 1 _E(R/J(R)). Then & extends to a map
igl iel iel - .

'z X » ian(R/J(R)) which is an R-monomorphism by essentiality of U in
€ 4 .

PPN L
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X. It follows from {1) that XJ(R)* = 0.

(3) For a given right ideal A of R, consider the composite
£, A » E(A/AJ(R)) of two canonical homomorphisms A - A/AJ(R) and
A/AJ(R) -» E(A/AJ(R)). Then there exists an element e ¢ E(A/AJ(R)} such
that 7(x) = ex for all x ¢ A. Note that A/AJ(R) is an essential socle
of E(A/AJ(R)). Hence E(A/AJ(R))I(R)Y = 0 by (2). 1In particular,

w

eJ(R)” = 0. That means AN J(R)*c A Nker £ = AJ(R).

~

(4) Now let x ¢ J(R)” and A = xR. By (3), A NJ(R)*c AJ(R).

That is, A = AJ(R). Thus x = 0 by Nakayama's Lemma. !|'

m
Lemma 1.11. Let S = {"}Pi be a right Goldie semiprime ideal of
1:
. - n = Mp. wi
a ring R such that E(R/S) é?i anNg (p/s) S". Suppose T iaIP1 with
I < {1,...,m} is such that T/S" is right_localizable in R/S" for al

n>0. Then T is right classical in R.

Proof. (1) First we want to show that C(T) is a right Ore set.

Suppose on the contrary that there is some non-zero element e e E(R/T)

v

such that ec = 0 for some ¢ ¢ C(T). Since E{(R/T) < E(R/S), es" = 0

. n _

for some integer n > 0. So e ¢ an"E(R/T) S = ER/Sn(R/T). By

assumption, the elements of C(T/Sn) operate regularly on E | n(R/T)
. ‘ R/S

as R/T = (R/S")/(T/S"). However, o(1/s™) = c(T) + s™/s".  Therefore

BC = 'eC = ‘

0, a contradiction.

(2) Next we élaim that C(T) is a right reversible set. Take any

c ¢ C(T) and*r ¢ R with cr = 0. Pick an arbitrary element e ¢ E(R/T).

Q
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Thén eS" = 0 for some integer n -~ 0. By assumption, C(T/Sn) is right
reversible in R/S". So &F = 0 in R/S" implies the existence of an

element b e C(T) with rb =he s Thus erb = eh = 0 which then implies
er = 0 by (]). As e is an abitrary element, we have

roc annRE(R/T) = pT(R). Hence there exists c¢' € C(T) such that rc' =0

since C(T) 1is right Ore.

. O n .
A{3) It remains to show that E(R/T) = h:GannE(R/T) T'. Since

Pj 7 RT for all j £ I, SRy = TRT . Take any e e E(R/T). Then

es" = 0 for some integer n > 0. Therefore 0 = eSnRT = e(SRT)n = eT"R

.
as both S and T are Goldie. Hence eT" = 0, given the fact that E(R/T)

is also an R.-module. ||

wien Do loa prv mer

We now come to the first structure theorem for classical semi-

prime ideals.

Theorem 1.12. Let R be a ring with a (strongly) classical semi-

m
prime ideal S = f}Pi . Then there is a one-to-one correspondence
i= :

S et e
.

" between the central idempotents of RS 5hd the localizable subsets of

{P1,...,Pm}. Such subsets are also (strongly) classical.

Proof. (1) First consider the given S as a classical semiprime

m

ideal. We want to associate a given localizable subset of {P1,..:,P }
with a central idempoten%‘af Rg .- Let (P, !‘i € I} be a lTocalizable

subset and put T = (\}Pi . By Proposition 1.3, TRS is tocalizable in
ic '

RS . Then ?ﬁs is localizable in §S = RS/O(RS)" for every n > 0 since

RS is semiprimary. By Proﬁosition 1.4, there exists a unique central




.
{
4

!

X - = . = = —
idempotent e, RS r1th TRS = ehR + J( S) for each n. Let e be
a representative of 'the coset'En modulo J(Rs)n. We claim that (enz

form a Cauchy seduehce in RS' Observe also TRS = enRSA+ J(RS) for all

n. Then for gy pair of integers k and n with k > n, we have

- _— .= n
= ekRS + J(RS) in RS = RS/J(RS) .

Enﬁs + J(RS) The uniqueness of the

central idempotent ensures e =%, . Thatis, e - e, « J(R.)" for any
n k n k S
k > n. This proves the claim. Hence there exists uniquely an element
o . _ S n .
e RS with 1im e, = e. Since RS = 1jm RS/J(RS) , the element e s
a central idempotent of RS‘ We associate such e with the given

localizable subset.'

(2) Conversely, we want to associate a given central idempotéht
of Rg with a ltocalizable subset. Let e be a central .idempotent of Rc ,

and let « : R » RS be the composite of the localization map £g of R

and the completion map of RS . We claim that T = a"‘(eRs + J(RS)) is

A~

a semiprime ideal of R. Put T* = (eRg + J(Rg)) MR . Then T is a

semiprime ideal because J(RS)«: T* and R is semilocal. Moreover, the

map ¥ : R/T » Re/T*, given by CW(F) = es(r), is a well-defined R-
monomorphism. Thus .y(J(R/T)) c:J(Rg/T*) = 0 implies J(R/T) = 0, from

which we conclude that T is semiprime and our claim is proved.

S

Notice TR = (eRg + J(Rg)) N Ry and RS/(J(RS)f) > RS/J(RS)"
for all n > 0. We deduce from this observation that ’

eRg + J(RI/(I(Rg)") = TRg/I(RG)™. But' eRg + J(RG)/(I(RG)") s |
localizable in RS/(J(RS)")- by Propositien 1.4 since e ‘'is a central

idempotent of the semiprimary ring ﬁs/(J(RS)n) . Hence ?ﬁs is

A\ el e v

it " SE VRS

LA < AP
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lTocalizable in ﬁs = RS/J(RS)n. Notice also J(RS) is classical in RS
by Lemma 1.9. In order to conclude that TRS is classical in RS by invoking

Lemma 1.11, we need to show that TRe = {h\PiRS for some .subset 1 of
ic
{1,...,m}. This is equivalent to showing that T = Mp
: icl
turn, will imply the Tocalizabiiity of T in R according to Proposition 1.3.

i This, in

We associate ({P, | i ¢ I} with the given e.

f

, we now show that T = fﬁ\Pi for some
ie

—r

(3) Continuing from (2

A ~

S%TiE:iES,?déh" eRS + J(RS) = f;\Qu

where QU are prime ideals of RS . For each wu, we claim that

subset I of {1,...,m}. Being

>mf

-1 = . f : . . . * = . N
o (Qu) P]U or some 1u ¢ {1,...,m}. Consider Qu Qutﬂ RS which will

be shown to be prime as follows: let a, b € R. with aRSb c Qﬁ. Then

S

aRSb c:(aRSb) - Qu since Qu is closed in RS .  Therefore a ¢ Qu or

b é_Qu , that is, ace Qﬁ or be Qﬁ. So Q; is a prime ideal. On the

other hand, J(RS) c Q;,-thus PlRS"'PmRS c Qﬁ . imp]yipg PiuRS C-Qﬁ

for some L But each PiRS is a maximal ideal, hence Pi RS = Q;
which leads to a"‘(QU) = as"(Q;) ='Pi" This completes the proof of
H
our claim. Hence T = a '(eRe + J(R.)) =a™2(NQ ) = Na (q) =Nrp, .
, S > AT W L T

- (4) Next we will show that the associations jn'(i) and (2) are
inverse of each other. - Suppose {Pi | i e .1} and {Pi | ie1'} are two -

localizable subsets which associate with the same central idempotent
M Ga 4

¢ e R via (1). Let T=-0p, and T' = {\ P,: Then by (1)}, there
. S 7. ’ jel ¥ - jel' 1 .

.are two Cauchy sequences (en) and (en) such that TRS = enRS + J(RS}

and T'Rg = e’Rg + J{R). . Since e =-(8) = (E;), it follows that

WA o L. NI X
M"‘u&; *;\ xm"’""”“z P
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, n o - g .
e, - et J(Rs) . Thus TRS = enRS + J(RS) e RS + J(RS) T RS which

then implies T =T' as both T and T' are S-closed. Therefore

(Pl icIy=1p | icI'}

Now take any central idempotent e of RS . Then T = a“(eR + J(RS))

is a semiprime ideal of Rand T = (A}P for someslocalizable subset
ic

{P. | i € I}. By (1), there exists a Cauchy sequence (en) in RS with

TRS = enRS + J(R S) for all n. We claim that e is the limit point of

. R oo n . .
(en). Let Ky RS/(J(RS) ) RS/J(RS) be the natural jsomorphisms.

: n _ T n .
Then Kn(ER + J(RS)/(J(RS) ) 2 = TRS/Q(RS) , that is,

wr

JR—, — ————

= TR. = € R. +-J(R

.= n .
in RS = RS/J(RS) . By uniqueness,
- _ = o=\ - .. n

Kn(e) = en. But 'n(e) = ¢n(e) where ¢ ° RS RS/J(RS) are the.

projection maps. Hence En = ¢n(e), that is, e = lim e

(5) Let {P, | i« I} be a localizable subset and put T = (\}Pi.
ie
TRé is localizable in RS by Proposition 1.3 and hence classical by
. L

- Lemma 1.11. It follows that T is classical since ER(R/T) = ER (RS/TRS).
‘ S

(6) Finally, we assume that S is strongly classical. Since
strongly classical semiprime ideals are always classical, it suffices to
show that every focaiizab}e subset is strong]y,é]assica]. Lét {Pi | eI}
‘bé a 1oca1izab1e subset and put T = (~§Pi . Take any right ideal B of
RT . Then B-= ART where A is the i;iersg image of B hndér the
Tocalization map :fT : R » RI . Since J(RS) ha§ the right Aﬁ-pﬁoperty,
there exists an integer k > 0 such that ARg N SkRS.C ASRg . Moreover,

T = TR and R is a flatileft Rs-module ' Thus we have ,
(ARSnSR)®R (ARS§-R)H(SR ® kp) - ART(\SkR = AR N TR,
‘ RS S R -~

SR

-

Santa e g
o LT e R
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L -k
Likewise ASR<@® Ry = KSR = AR;TR; . Thus AR; N'T'Rp c AR;TR.. The

Rs

left AR-property is similarly verified. ||

Corollary 1.13. Every strong clan is a clan. The latter is

also a minimal localizable set.
-

Before making an aftempt on the second main result, we need a
lemma whith is supposedly well-known. Nevertheless we provide the proof

here for the convenience of the reader. (cf. [22])

: m
Lemma 1.14. Let S = !F\Pi be a right localizable semiprime
1dea1 of a ring R. Then any right Goldie prime ideal P contained in

kﬂP is S-closed. Moreover, PRS is a prime ideal of RS'
1= -

Proof. Let P be a right Goldié prime ideal which is contained
. m ’
in &,/Pi . Take any x € cL(P), the S-closure of P. Then xc ¢ P for
some ¢ € C(S), hence XC = 0 in R = R/P. 710 ensure x e P, it suffices

to show that c¢ is regular modulo P.

" By Goldie's Theorem, R has a simple artinian classical right
quotient ring 9. For any element z € 0Q, denote the Teft and the r1ght
annihilators of z in Q by £(z) and a(z) respectively. We apply the
left and the r1ght max1mum conditions on Q to the sets.

{£(t) | t e C(s), z(c) c £(t)} and n(t) | t e c(S), #(c) c #(t)}
to get an e]ement t e C(S) such that.t(f).and n(t) are maximal in

their respective sets.” Suppose iabf‘ = 0 for some non-zero ab™! e Q

where a, b e R. Then ta = 0. On.the one hand, R, being p}ime, ensures

e S PR W ST

S e i
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the existence of an element d ¢ R with adf2 # 0. On the other hand,

the right Ore condition of C(S) yields elements u ¢ C(S) and w e R
2 %G = t%w, implying
2

with adt“u = tw. Therefore 0 = tadt

W E n(fz) = n(t), thus tw'= 0. That is, adt°i = 0 or simply

adt ¢ £(t3) which leads to £(f) < ¢(tu), contradicting the maximality

Y

of ¢(tJ. Hence t is right regular in Q and so is c. Since @ is artinian,
¢ is invertible in Q and is certainly reguiar in R. Because P is S-closed,

PR is prime, given the observation that it is an ideal of R - [T

-

Theorem 1.15. Every prime ideal of a ring R belongs to at most

I3
one clan.

Proof. Consider two clans {P,,...,P } and {Q],...,Qm}. Put
n m :
S = {:\Pi and T = 5:\Qj . Assume P; c Q]m and let Py,...,P be

exactly all the P. which are contained in &v{Qj . Forany ie{1,...,8},
. J=
PiRT"S a prime ideal of RT by Lemma 1.14. For ény i>s, PiRT.z RT‘

= AR

S
where A = MNP, . S
T i=] 1

I
First we want to show that C(A) is an Ore set. Suppose there argz

_elements e E(R/A) and c e C(A) with ec = 0. Then there exists an
k= 0. Since A is T-closed by Lemma 1.14, we
K

integer k > 0 s&ch that- eS
_may view E(R/A) as an-Ry-module. Hence eSkRT = 0, implying eA"R; = 0.

That is, eaK = 0. 4

For any b ¢ C(A), bl™! ¢ C(ARS)-dnd is therefore regular, even
invertible modulo ARS since‘RS/ARS » being a factor ring of RS-/SRS , 18

semisimple artinian. Let ﬁS = RS/AkRS . Then J(ﬁs) = Kﬁs . AN

these imply 63:7 is invertible in ﬁs for any b« C(A)._ Moreover,

.
=
2
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i,
E(R/A) is an Rs-module because A is S-closed. Singe eAk = 0, we may

consider eRS as an ﬁs—module. Thus ecl™ =ecl™ =0 implies e = 0

as cl7! is invertible in ﬁs . Proposition 1.2 then completes the proof

of the Ore condition for ((A).

By Proposition 1.3, C(AR.) is an Ore set in RS and so C(ARS)

s)
is localizable in the semiprimary ring RS/SnRS for every integer n > 0.
By gémmas 1.9 and 1.11, ARS is classical in RS from which we deduce that
A is classical in R by virtue of Proposition 1.5 and Theorem 1.72. Hence
A =S as {P],,,l,Pn} is a clan. That means };4Pi c ;;1Qj , implying

each Pi is contained in some Qj . In-particular, if P] = Q1 , then by

symmetry the two clans coincide. ||

The corollary below is a consequence of Thearems 1.12 and 1.15.

It describes how to partition a classical set into clans in a unique

fashion. To accomplish this, a partial ordering is necessary to facilitate

oyr.proof. For a ring R, we define a partial ordering on the set B of

all the central idempotents of R as follows: given two central idempotents

~

e-and f, we say that e < f if and only if fhe following equivalent

conditions are satisfied:

(1) ef = 6. ' o
(2) eR + J(R) < fR + J(R). ;SP
(3) _eR < fR.

(4) f =e +e' for some e' € B such that ee' = 0.

Remark. With this partial ordering defined on the set of all the

- central idempotents of RS in Theorem 1.12, it can be shown that for any

s
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two localizable subsets L] and L2 together with their respective central

idempotents e and €y, € e, if and only if L] > LZ.

_ Corollary 1.16. Let {P],...,Pm} be a classical set of prime
ideals of a riné R. Then this set is the disjoint union of clans in a
unique fashion. A subset is loca]i;ab]e if and-only if it is thq%ynjon
of some of tﬁese clans.

n

Proof. Let S = ;”}Pf . Then R, is a semiperfect ring. Let
":

S
] = ey * eetoep where all the e; are non-zero mutually orthogonal
centrally~indecomposable central idempotents of RS . Let fi =1 - ey

for i = 1,...,n.
£
(1) First we <laim that each clan of the classical set corresponds

to some f. in the sense of Theorem'1.12. Let L be a clan together with
its corresponding central: idempotent e of~RS . Then e = ey +.o..t e,

' 1. k
for some subset {i1,...,ik}c{1,...,n}. Clearly k < n-1, otherwise

e = 1 in which case NL = R. Suppose k < n-1. Then there exists a

non-zero central idempotent g € RS with e+ g=1-e,=f. for some

J J
je{1,...,n}, 1'mp1y1'\ng e < f;. Therefore L; c1 where L. is the
localizable subset corresponding to fj . Hence Lj = Las L is a &lan.

By Theorem 1.12, e = fj which contradicts k < n-1. Hence k = n-1 as

required.

(2). Conversely, we want to show that each fj corresponds to a

clan. Let L‘j be Lhe Tocalizable subset which corresponds to fj and let

L be a clan contained in tj .. By (1), L corresponds to some fk . So

-

S
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fj < f that is, 1—ej < 1-e So there is a central idempotent h

k'’ k-
with 1-ek = (1—ej) + h and (1—ej)h = 0 from which we get e * e, or

equivalently fj = fk‘

In view of (1) and (2) there are exactly n clans and according to .=
Theorem 1.15, they are mutually disjoint. Therefore {P],...,Pm} is

expressible uniquely as the disjoint union of these clans.

v

S e g AR i

~

(3) Now take r distinct clans L]""’LF together with their

r
corresponding central idempotents fi ""’fi . Let e=1- 7§ e,
) 1T r k=1 'k
and L be its corresponding 1oéalizab1e subset. We claim that
r .
L = \'ij . Notice that e, e = 0 for any e, . That means

f, e=e, hence e < f, or equivalently, L[, <L for each k. Therefore
k k :

r
kﬁGLk‘:L' To reverse the inclusion, take any P ¢ L. Then P belongs to

some clan Lj < L. Let fj be the central idempotent corresponding to Lj'

Suppose f. # f. for any k. Then e.e ='e,. On the other hand, L. C L
J Tk . J J J

A . Y s .
implies e < fj, that is, ij = e. So eey = 0, a contradiction. This

S

r
establishes L = E‘{Lk as required.

A repetition of the.arguments in (1) and (2) will yield the fact

that, every localizable subset -is the union of some of the clans. |}

Corollary 1.17. The localization R¢ of a ring R at the semiprime .

ideal S associated with a clan is ring-directly indecomposable.

Erégfl This follows frivia11y from Cérol]ary 1.16. ||



Remark. The building-up of a localizable set from clans in

13

Corollary 1.16 is done within a given classical set. The question

whether the same can be done from clans which do not necessarily come
~ . \\‘

. . . \

from a fixed classical set has an affirmative answer to certain extent. -

Proposition 1.18. Let U be the union of a finite collection of

(strong) clans of a ring R. Suppose no two prime ideals from U are

comparable. Then U is (strongly) classical.

«Proof. Let S],...,Sm be- the semiprime ideals associated with
the given clans and U = {P ,...,Pn}, the union of all the given clans
such that no two P are comparable. Then l"\S = /“\P

m j=1 9 =1
c(s) = ﬂc( ) = (\](“(Pi) and E(R/S) = .®]E(R/SJ) From these follows
. i= j=

J
, immed1ate1y the Ore condition of C(S) via Proposition 1:.2. For the
reversibility condition of C(S), suppose cr = 0 for some ¢ ¢ C(S) and
r ¢ R. Then for each j = 1,...,m, there exists c. ¢ C(Sj) such that

J

rcj = 0. Since C(S) is an Ore set, there exist Xy € R with

m
=_2“cjxj e C(S). Thus rc' = 0. The left reversibility condition is

similarly verified.

To show E( R/S) \v/ann E(R/S) k, take any element e ¢ E(R/S).
Then' e = (e ],...,em) for some fej £ E(R/Sj). For eéch js there exists
an integer k(j) > 0 §uch that ej(Sj)k(j) = 0. By fakipg k = the maximum
‘ integer among a]] the k(j), we see that ’ejSk =:0 for all'j agd hence

eSk

= (0. .Therefore S is classical: v

Now suppose all the above Sj are strongly classtical. Clearly S

N\

&
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is localizable by the above reasoning. Therefore it remains to show

that J(R.) has the AR-property. Take any right ideal I of R. and let

S) S

‘A = ss"(l) where tg R » RS is the localization map. For each j,
there is an integer k{(j) >~ 0 such that ARS N (SJRS )k(j) c ARS SJRS
° J J J J

Note that SRS = S.R for every j. Let k =max {k(j) | j =1,...,m}
i3 |

Then we have (A N Sk)RS < ASR , which implies
J J .

m
k

ANS C _m]Sj—cF(AS) = S=c¢(AS). Therefore
J:
. k _ k _ . . .
ARSr\ S RS = (ANS )RS C ASRS = ARSSRS . Likewise we also have the left

AR-property. ||

§5 EXAMPLES AND COUNTEREXAMPLES

In this section we list a few examples and counterexamples
» .

pertinent to this chapter.

~-{A) Rings in which every localizable semipriég ideal is strongly .

classical:

a) Semiprimary rings are of this type. This is obVious from Propesition

1.4, _

b) A ring R is a fb]]y_]eft (respectively right) idempotent ring if

I =_}?"for every left (respectively right) ideal I of R. A1l such

_rings R have J(R) = 0; the E1a§§ of these rings is closed under
]oca]izétion at any localizable set. In-fact the localization at a
1ocalizablé semibriﬁe'ideai is semisimple artinian. Examp]es)of such
ringslére von Neumanﬁ regular rings dand left {respectively Eight) V-rings.

/

T e
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|
2
¢} In [29] apﬁears the following ring. Consider the commutative poly-

nomial ring K[x,y] in two indeterminates x and y over a field K. Let

o f : (0,
R—{—d*f,gcK[x,y]WIthg(O,y)anndgo,y EK}

Then R is a commutative non-noetherian local ring with

J(R)={5,Rif(o,y)=o} N

For any non-zero ideal I of R, there exists an integer n > 0 such that
J(R)n < I. Hence J(R) is the only non-zero prime ideal of R and has the

AR-property.

(B) Rings in which every right classical semiprime ideal is
also strongly right classical:

This class of rings abviously includes all the rings mentioned
in (A). Another kind of rings which belong to this glass is the right
FGS rings. These are rings over thch every cyclic module has a finitely
generated socle. One of the characterizations of right FGS rings R is
‘the fact that évery finitely generated R-module has f%nite Goldie

dimension. (See [14]) Examples of Such rings include right valuation

rings and rings with Krull dimension [8].

To see why a right classical semiprime ideal S of a right FGS
ring R is strongly right classical, we can imitate the prdof of Theorem
3.5 in (23], béaring in mind the key step to be observed in this proof
is the fact\tﬁat.eveny cyé]ic Rs—modu1e has a finitely generated socle.

We shall demonstrate this observation in the case of a right FGS ring.

-~
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Proposition 1.19. Let S be a right localizable semiprime ideal

of a right FGS ring R. Then R. is also a right FGS ring.

S

Proof. By Proposition 2.2 in [14], it suffices to show that

every cyclic R.-module has finite Goldie dimension. Take any M = eR

S S
and put N = eR. Then by hypothesis N has finite Goldie dimension, say n.

Suppose on the contrary that M has no finite Goldie ‘dimension. Then

n+]}
there must exist S M, forming a direct sum 1§HeiRS in M.
For each i, e, = eric]."1 for some rici—l ¢ Rg . By finding a common i
right denominator, we may as well assume Ci_l = ¢~ for all i. Thus %
1
e;c = er,. Evidently Y e;CR cannot be a direct sum in N. Without 3
_ i=1 ;
Toss of generality, we may assume there is a non-zerp element )
n n
X € 1_f;]e].cR F\en+]cR. That is, x = en+]cb ='i2]eiCdi nfor some b, d. € R.
. . » —l - »
This implies c¢bl # 0 in RS . Therefore en+1RS r\ig]eiRS 0, a
contradiction. ||
(C) Rings in which some right locali2able semiprime ideals are . .
not (strongly) right classical: %

a) Let R = C?&(IR) and M = {f ¢« R | f(0) = 0} which_is a maxiﬁil—/////)

ideal of R. Then J(RM) is not classical since the J(RM)-adic topology
on RM is not éven Hausdprff. |

b) Let R be a 1eff'perfect but not semiprimary ring. Then J(R) is
localizable but not gtrong]y right classical according to Corollary 1.8.

However, the question remains open as to whether there exists a left

perfect but not semiprimary ring with a right classical Jacobson radical.
s

-
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CHAPTER 11

' A VARIATION IN THE THEORY OF CLANS

This chapter is devoted to a further generalization of our
localization theory develaped in Chapter I. Just as thg module theoretic
concept of FP-injectivity extends that of injectivity, we introduce here
a more generalized concept of a c]én. Consequently, many of the‘previous
results will find their respective analogues here. This new development
proves useful at least in the tase of coherent rings where some of these
rings reveal the timitation of our earlier thgory. Suffice it to say in
the meantime that our effo}t in formulating this new theory calls for

the help of the FP-injective modules.

Definition. Let R be a ring. An R-nodule M is called finitely
presented if there exists a short exact sequence
0 K*PM-0
where P is a finitely generated projéctive R-module and K is a finitely

generated R-module. A

+
i

A ring R is right coherent if every finitely generated right

ideal of R is finitely presented. A coherent fing is & ring which is beth

right and left céherenp. Right noetherian rings and right semi-he}editary

rings are right coherent. So are right valuation domains and von Neumann
regular rings. We will examine later some specific examples of right

coherent rings.

35
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51 FP-INJECTIVE MODULES

The notion of FP-injective modules was introduced in [34] as anb
extension of the notion of injective modules. For any ring R, an R-
module M is called FP-injective if it satisfies the following equivalent
conditions:

(m Ext&(F,M) = 0 for every finitely presented R-module F.

(2) 'For every short exact sequence Q ~ A S B>F -0 withF
finitely presented and any homomorphism f : A + M, there exists a
homomorphism f' : B >~ M such fhat fla = f.

The verification of the equivalence of these two conditions is just a

matter of straightforward checking and hence is omitted.

For a while our ring R will remain arbitrary until we further
" confine our attention to specific types of rings.  Recall that given a
multiplicative subset X of R, it determines a torsion-theory

(TX, FX, Oy > QX), called the X-torsion theory. A monomorphism is
called X;dense if its cokernel is X-torsion. An R-module M is called
X-divisible if for every X-dense monomorphism f = A >~ B and any
homomorphism h : A » M, there exists a‘homomorphism hf : B+ M such

that h'f = h. Denote by A the guotient category of mod-R determined by

the X-torsion theory, and let Q denote the corresponding quotient functor.

3

For any R-module M, D(M) denotes the divisible hull of M with respect

to the X-torsion theory, or simply the divisible hull of M when the
torsion theory under consideration is unambiguous. Explicitly,

D(M) = K“(px(Ec&)/ﬁ)) where « : E(M} » E(M)/M is the canonical

3

N— G rme =
L s S deve

o v e bt
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epimorphism. It is the smallest X-divisible submodule of E(M) containing

M.

Proposition 2.1. Let X be a right Ore subset of a ring R and E

an X-torsionfree FP-injective R-module. Then E is X-divisible. i

Proof. Take any right ideal I ¢ QX . Then I NX4#P. Pick an
element ¢ ¢+ I n X. Then the short exact sequence

o B
0~ I/cR-»>R/cR->R/I » 0

3
in which o and B are natural maps induces a long exact sequence 3
. X 3
Hom, (1/cR,E) —1s Ext}(R/I,E) —2bs Ext! (R/CR,E) —s ;
R , R , R . - ]
Since X is right Ore, I/cR is X-torsion. So Homg(I/cR,E)'= 0. On the ’
other hand, the FP-injectivity of E renders Ext&(R/cR;E) = 0. Hence
Ext;(R/I,E) = ker 81 = im 0, = 0 from which it follows that E is X-
divisible. |]
Corollary 2.2. In the above situation, E has an Rx-modulé }

structure.

Proof. Q(E) = D(E/ox(E)) = D(E) = E € A by Proposition 2.12 Then

—— ey ar

by Theorem 2.8 in [22], E = HomR(RX,E) e mod-Ry . i

Definition. A Silver right localization.of a ring R is a ring

epimorphism f : R~>S such that S is a flat left R-module.

Proposition 2.3. Under the same hypotheses as in Proposition 2.1,

if in addition X is right localizable in R, then E is an FP-injective Ry~

module. . ) : C e
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Proof. Corollary 2.2 asserts that E is an Ry-module. Thus we
only need to show that it is FP-injective as an Rx—module. Take any
.~ finitely presented Rx-module F and consider a short exact sequence in
mod-RX

O»K‘-}(Rn»F)O,

x)
m n .
Then K= 7} ejRX for some ej £ (RX) . Multiplying the components of

-1
jnl )

A

each ej by a common denominator, we may write ej = (ajll“,...,a

. . m
where all a., e R. ‘Let e! = (a ;a, ) and K' = 7§ e!R. Then
Jk J j=1 J

317058
consider the short exact sequence in mod-R

0+ K SR" > F' >0
where o is the inclusion map énd F' = coker a. Since the right
1océ]ization map ey : R -+ RX is Silver, we still have, after tepsoring
with RX , a short exact seduence .

0>K ®R, »R"®@R, > FF®R, »~ 0
R X R X R X

which gives rise to the fo]ldwing commutative diagram

n
0K @R, » R"®R, > F' @R, ~ 0
R X g X R X

+~ F > 0
where u; and p, are -defined by mbltiplication in a natural way. But both
"yp and u, are isomorphisms. Hence the induced map between the coke%ne]s,
making the second square cqmmutat}ve, is also an isomorphi%m. Then by
Proposition 4.1.3 ([4], Chapter 6, §4), we have
) Ve . 1 /e - 1
ExtR(F ,F) ExtR (F QQRX,E) = ExtR (F,E) )
: XR X h
which implies Ext; (F,E) = 0 as desired. || . '
X .
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Given below is a characterization of the right Ore condition in
terms of FP-injective modules. This result generalizes Proposition 1.2

in Chapter I.

Proposition 2.4. Let S be a right Goldie semiprime ideal of a
ring R and E any FP-injective submodule of E(R/S) with R/S <« E. Then
C(S) is right Ore if and only if every element of C(S) operates regularly

on E.

Proof. If- C(S) is right Ore, then every element of C(S)
operates regu]ariy on E(R/s) by Proposition 1.2 and even more so on E.
Conversely, suppose every element of C(S) operates regularly on E. We
claim that for any c¢ ¢ C(S}, R/cR € TS'
exists an element ¢ ¢ C(S) with R/cR ¢ Tg . Then there must exist a

Suppose on the contrary there’

nnon-zero R-homomorphism f : R/cR ~ E{R/S). Let e = f(1) which is non-
zero. By essentiality of E(R/S) over E, theré exists x.e R with
0 #exeE. Let g be the restriction of f to xR + cR/cR. Then g is
a non-zero homomorphism from xR + cR/cR to E. Consider now the';hort
exact sequence

0 > xR + cR/cR > R/cR + R/XR + cR + 0
where the maps are defined canonically. Obvjous]y R/%XR + cR s
finitely presented. Since E is FP-injective, g is then extended to a map
g' :"R/cR - E. “Therefore z = g'(1) # 0. Herver, zé = 0 which theﬁ
implies z = 0 as c operates regularly on E. This contradicts the fact
that.g_is non-zero, hence asserting the claim. That is, cR e QS fok_
all ¢ ¢ C(S) and hence follows the right Ore condition for C(S) as

-

required. || | ' | ’
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52 WEAKLY CLASSICAL SEMIPRIME IDEALS

n .
Definition. A semiprime ideal S = {C}Pi of a ring R is called

weakly right classical if S is right localizable and if there exist

\
FP-injective R-modules Ei with R/Pi c Ei c E(R/Pi) for i =1,...,n

= Uann Sk.
k=1 Eg

n
such that ES = ®E.
j=1 1

Notice that R/S c.ES < E(R/S) and ES is again an FP-injective
R-module by Corollary 2.4 in [34]. With this definition we proceed to
establish below several lemmas which lay the groundwork for gpe'main

results in the next section.

n
Lemma 2.5. Let S = {j\Pi be a right localizable semiprime
ideal of a ring R. Then ES is an FP-injective Rs—module with embeddings

RS/J(RS) »_ES'+ Ep (SS/J(RS)) as Rs—module?.

S
n .
Proof. Let Eg = ﬁB]Ei. Then each E; is an FP-injective Rq-
1=
' ‘
module by Proposition 2.3, hence so is Eg. Moreover, since

ER(R/S) = Ep (RS/J(RS)) as Rs—modu1es, there is a natural embedding of
. s '
Ec into E, (R</J(R.)). For each i, R/P, ¢ E, . Therefore tensoring with
S RS s roea i< H
RS, we get RS/PiRS = R/Pi %? Rsv+ Ei %? RS = E} which yields an Rs-
: nd n ' .
monomerphism RS/J(RS) » @E. = E. since R. is a flat left R-module. ||
.i=-'1 S S ) . .

Corollary 2.6. If S is a weakly right classical semiérime-iéea]

of a ring R, so is J(Rs)iin RS‘

" Proof. 'The assertion is an immqgiate consequernce of Lemma 2.5. |]

[P Y]
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n
Lemma 2.7. Llet S = ("\Pi be a right Goldie semiprime ideal of
A i=1

a ring R and ES , as defined previously, be such that ES = QtﬂannE Sk.

S
Suppose T = fA}Pi, with I < {1,...,n}, has the property that T/S'k is
ic ’

right localizable in R/Sk for every integer k > 0. Then T is weakly

right classical in R.

Proof. Let E @ E, . By imitating the

S icl
argument used in the proof of\Lemma 1.11 with E(R/T) being replaced by

. n
= 1(:)1%:1. and put ET =

»ET , we obtain almost the entire proof of our assertion except for the
right reversibility condition of C(T). To this end, it suffices to prove

anng ET = anng E(R/T). Obviously anny E(R/T) c'anng ET.

For the reverse inclusion, take any z ¢ annp Ex. By FP-
injectivity of ET » every R-homomorphism f : zR -+ ET can be extended
toamap f'':R +\ET' That“mean§ there is an element e ¢ ET such
that f(zr) = ezr for a]j r e‘R. But ez = 0. Hence HomR(zR,ET) = 0.
We now claim that HomR(zR,E(R/T)) = Q. SJppose'on the contrary there
is a non-zero homomorphism h : zR -~ E(R/T). Then there exists a non-
zero element w e E(R/T) such that ‘h(zr) = wzr for all r e R. ‘Since
ET is an essential submodule of E(R/T), there exists b e R with
0#wzbe ET . Let g be the restriction of h to zbR. Then g is an R-
homomorphism zbR + ET and is non-zero because wzb # O. This contradicts
HomR(sz,ET) = 0 proven .above. Thérefére HomR(zR,E(R/T)) =0 as

‘clé%med. This further implies Ze anng E(R/T).‘ H . ‘

Lemma 2.8. Let R be a semilocal ring with a weakly right

classical Jacobson radical J(R). Then the J(R)-adic topology on R is =

o e e ot

S

-
e

-t B

?
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Hausdorff. : . g

Proof. Let EJ(R) be the FP-injective R-module -associated with
the weakly right classical J(R). Sinc? anng EJ(R) = annp E(R/J(R)) as
indicated in the proof of Lemma 2.7, EJ(R)J(R)w =0 implies \
E(R/J(R))JI(R)” = 0. The rest of the proof proceeds as in that of

Lemma 1.10. ||

§3 THE STRUCTURE OF WEAK_CLANS

The observations made in the preceding section enable us to
formulate statements parallel to Theorems 1.12, 1.15, Proposition 1.18
and some of their corollaries. Their proofs can be carried over mutatis

mutandis. Far this reason ﬁgﬁsimply sta£;\tgg§e analogues without proofs.

Theorem 2.9. Let R be a ring with a weakly classical semiprime ideal .

m

S = /“\Pi. Then there is a one-to-one correspondence-between the
i=1 ~ '

central idempotents of Rg and the localizable subsets of {P],.J.,Pm}.

Such subsets are also weakly classical. ¢

Here we take the liberty of calling a localizable set of prime
ideals weakly classical when the associated semiprime ideal..is weakly

classical. Furthermore, Theorem 2.9 gives rise to the following coricept.

Definition. A weakly classical set of -prime ideals is called a

B

weak clan if no proper non-empty subset of it is weakly classical.

<

Remark. It can be deduced immediately from Theorem 2.9 that a

~ ‘

it
s i

Tt
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weak clan is actually a minimal localizable set of prime ideals.

Theorem,2.10. Every prime ideal of a ring R belongs to at most

one weak clan.

Corollary 2.11. Every weakly classical set {P],...,Pm} of prime

ideals of a ring R is expressible uniquely as a disjoint union of weak
clans. Moreover, a subset of {P],...,Pm} is localizable if and only if

it is the union of some of these weak clans.

Corollary 2.12. Every clan of a ring is also a weak clan.

The assertion of Corollary 2.12 follows trivially from Corollaries

1.16 and 2.11. We now see that th;é weaker notion of clans does not alter

the structure of clans as defined in Chapter I. At the same time, primé

ideals which fail to belong to clans may now belong to weak clans.

Corollary 2.13. The localization of a ring at a weak clan is

Fing-direct1y indecomposable.

Proposition 2.14. Let U be the union of a finite collection of
weak clans of a ring. Suppose no two prime ideals from U are comparable.
Then U is weakly classical. ’

Remark. In the above propositioﬁ we may take ES = '@bEi

. ie
S = NU and the Ei are thefFP-injective R-modules associated with the

corresponding weak clans.

For noetherian rings a weakly classical semiprime ideal is also

classical. -This is because FP-injective modules over a noetherian ring

where .

Lt i 19

A L R ¢
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are actually injective. Hence the ES coincides with E(R/S) for any
semiprime ideal S. Apart from noetherian rings, a weakly classical semi-
prime ideal is no longer classical in general whereas the converse of it
is always true. The distinction between these two concepts will be

elucidated by an example of a coherent ring in §5.

§4 RIGHT VALUATION RINGS

In this section we confine our attention to the class of right

valuation rings. These are rings for which the lattice of all right
ideals is linearly ordered by inclusion. They need not be domains in

. contrast to a more conventional definition of valuation rings. (cf.

(311)

©

Proposition 2.15. Let P be any prime ideal of a right valuation

ring R. Then
(1) C(P) is a right Ore set if P is right. Goldie.

(2) P is right Goldie if and only if P is completely prime.

Proof. Let re R and c e C(P). Then either cR c rcR or

. rcR c ¢R. Suppose cR c rcR. Tﬁen ¢ =.rct for some t e R.. Note that
this element t belongs to C(P). Thus ct e C(P). On the other hand,
rcR ¢ cR %mp]ies }c = or' for some r''e R. -In either case C(P) is.

right Ore, hence proving (1).

Suppose now P is right Goldie. .Then R/P has a simpje artinian
classical right‘qudtient ring Q@ for C(P) modulo P. Q, being a right
valuation ring also, must therefore be a division ring. Hence R/P is a

N
A
L
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domain. That is, P is completely prime.

Conversely, suppose P is completely prime. Then R/P is a domain.
This renders 411 elements of C(P) = R —P regu]aﬁ modulo P, and 5?53 is
then right ‘localizable in R/P via the same argument used in proving (1).

Therefore the classical right quotient ring of R/P for C(P) is a division

ring. This shows that P is right Goldie. ||

Corollary 2.16. If R is a right valuation domain, then a prime

ideal is right localizable if and only if it is completely prime.

Proof. This follows directly from the two assertions of

Proposition 2.15. |]

v

Remark. We do not know whether there exists a right valuation
ring with a prime but not completely prime ideal, or equivalently, a

right valuation prime ring which is not a domain.

However, H. H. Brungs and G. Torner have settﬁed this pﬁob]em
affirmatively under a rather specialized setting. In [3], they studied
right valuatjon rings R of the following types:

(i) J(R) is the oﬁiy prime-ideal of R

(ii) J(R) and 0 are the only prime ideals of R
subject to . o

(iii)‘ char R # char R/J(R) 2
Then ‘in this setting they proved

s (1) Every right valuation ring with (1ji) of type (i) or (ii)

i$ a right duo ring.
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From (i) follows

(2) Every right valuation ring satisfying (ii) and (iii) is a

domain.

A right duo ring is a ring in which every right ideal is two-
sided. A1l the prime ideals of a right duo ring are completely prime.
Hence the types of right valuation rings described in (1) must have all
the prime ideals right Goldie according to Eroposition 2.15.

Proposition 2.17. Let P be a right localizable non-zero prime

\,

ideal of a right valuation ring R. Then P is strongly right classical

if and only if the J(Rp)—adic topology on Ry is Hausdorff.
/In this case, RP is a principal right ideal ring with J(Rp) as

The only non-zero prime ideal. If J(RP) = 0, then Rp is a division ring.

Proof. For simplicity we set J = J(Rp) and S = Rp - TIf P s
strongly right classical, then J“ = 0 by Lemmas 1.9 and 1.10.

Converseiy,ﬁsuppose 3 = 0. Then for any non-zero ideal I of S, there

exists a smallest integer'n > O such that 1¢ . This implies MNe 1.

since RP is a right valuation ring. Hence J has the right AR-property.

The above consideration further shows that J is the only non-zero.

prime ideal of S. If J = 0, then S is a division ring since it is koth
a simple artinian and a right-yg}uation }ing. So it remains ta prove

that S is a principal right ideal ring in general.

Assume J # 0. Take any integer n > 0 and supéose J"[d"+1 # 0.

Then J"/J"f] is a semisimple S-module. Actually it i§ a simple S-mo&u]e

sy

—— e =

. PR
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-~
s

due to the fact that S is a right valuation ring. This leads to J" = xS

n+l

for some x ¢ S. On the other hand, if J"73 = 0, then J is nilpotent

for the J-adic topology is Hausdorff. In this case, take n to be the index

n-1 is a simple S-module by the same token and

of nilpotency of J. Then J
is therefore a principal right ideal. This shows that all non-zero

powers of J are principal right ideals. Furthermore, they account for
all the non-zero right ideals of S because for any non-zero right ideal

n+} cAcd". A repetition

A of S, there exists an integey n > 0 with J
of the above argument will yield either A = Jn+] or A= Jﬁ. Hence y:

" S is a principal right ideal ring. || .

Corollary 2.18. Suppose R is a domain in addition to the

hypotheses in Proposition 2.17. Then the height of such P is one.

L S X AT

Proof. The Hausdorff property of J(RP) renders '/thn =0 via
n=1
the canonical ring monomorphism R - Rp . Then the assertion follows

trivially since R is a right valuation ring. ||

Remarks. “(a) Proposition 2.17 indicates that there is no
distinction between weak clans and strong-clans as far as valuation rings
are concerned. Hence the three definitions of classical semiprime ideals

coincide here.

(6) When the ring R is a right valuatibn'dpmain, Corollary 2.18

assures that any right classical non-zero prime ideal is indeed a .minimal
prime. The converse, however, is false. Such is the case for instance ,

.when we consider the commutative ring pf fractional power series

B . .
.
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R = K[[x(l/z’)n [ n=0,1,2,...]] over a field K with addition and multipli-
cation defined as usual. The Jacobson radical J(R) is the only nén—zero
priﬁe.ideal of R,‘is idempotent andtheréfore is not classical. 'On:the
other hand, the next example, extracted from [8], is a commutative domain

whose minimal prime is classical. ..

Let A be a discrete valuation domain with maximal ideal xA and
let B = A[y}(y) , the localization of the polynomial ring A[y] at“(y).
Then the commutative domain R = A + yB is\a'non—nbétherian rank 2
valuation ring. The prime spectrum of R~consists of xR, yB aﬁd 0. ~The

minimal prime yB is classical.

{¢) The. quest1on whether the assert1on of "Corollary 2. 18 remains

valid for right valuation rings other than domains seems open. However,

we do have,sa partial affirmative for right valuation right duo r?ngéz We .-

o

shall demonstrate this fact in the fo]lowing.

Proposition 2.19. Let R be a right va]uat%sn righ% duo ring and
P a right ¢lassical non-zero prime ideal of R. Then the height of‘b is

at most one. BT chis

Proof. Suppose the height of P is greater than one. Then there
must exist prime ideals Q.l and Q_2 such that the inclusions Q]<:‘Q2 cP
"are proper. Since every prime ideal of a right duo r1ng 1# completely
prime, both Q] and 02 are right Go?dle by Proposition 2.15. Hence both
Q] P. and- QZRP are prime ideals of RP by Lemma 1.14. We now have two )

cases to ‘consider, namely,

&
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Case 1: If QZRP = 0, then Q]RP = QZRP = 0 which implies

O
—
{

= 02 since both Qi are P-closed. This contradicts the proper inclusioh

Case 2: If QZRP # 0, then QZRP = PRp by Proposition 2.17.

This yields Q, = P and hence contradicts the proper inclusion Q2 <P M

As a matter of fact, Proposition 2.17 can be equivalently formulated ~~ ™~

as follows: a right localizable prime ideal P of a right valuation ring

(n)

is right classical if and only if for P = P-closure of Pn,

0 for some ¢ ¢ R — P}. Moreover, if P(n) = P(n+])

A:}P(n) ={reR| rc

(n) (n+k)

for some n, then P p for all k > 0. In this situation, Rp is
a right artinian right valuation ring with only a finité number of right

ideals. For domains there is another interesting aspect, namely,

Proposition 2.20. Let P be a minimal'prime ideal of a right

o]
valuation domain R. Then either P is idempotent or fﬂ}Pn = 0.
n=

Proof. -Suppose I = /‘\Pn # 0. Our aim is to show that I is a
rn:

prime ideal of R. Consider aRb < I with both a, b £ I. Then there

must exist an integer k > 0 with a, b ¢ Pk. So both aR and bR properly

contain P¥. From this we obtain aRPX c aRbR which leads to PZX

| < aRbR.
Hence I & aRbR, an obvious contradiction. This proves that I is a non-
zero prime ideal and therefore Wust coincide with P, since the latter is

a minimal prime. That is, P is idempotent. ||
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55 A COUNTEREXAMPLE

The following example is a commutative coherent ring having a

prime ideal which constitutes a weak clan but fails to be classical.

Let R = K[xi | i ¢ NJ], the commutative polynomial ring in
countably many indeterminates X; over a field K. It is a coherent ring
and the ideal M, generated by {Xi | i £ N}, is a maximal ideal of R.
Since K = R/M, we may endow K with an R-module structure via the natural
map R -~ R/M. Henceforth, K, when viewed as an R-module, is always
understood in this context. Now let T = K[[x;] | i € N]], the ring of
formal power series in countably many 1ndeterminates.x;] over K where

the expansion of each element of T could involve an infinite number of

-1
the X;

For i, ne N, we write X;n = x;1...x;] (n factors). Let T

-

carry an R-module structure via the defining relations

Y -V u u ~(vy-uy) -(v
1 q 1 qy _ 17
(ax] ..xq )(Bx.| “eXg ) = aBxy ...xq

“Hg) .
79 df < v, for each i

0. otherwise

where o, B ¢ K and Vi Hy € N.

For each positive integer n, let Rn = K[x],...,xn] and
v, = K[x{],...,x;]], each being a polynomial ring in n indeterminates over.
K. By restrictiﬁg_the ébové‘defining relations to x],...,x;, we can turﬁ
Vm into an R -module for every m > n. Moreover, for m.; n, R..1is a flat
R,-module (in facf, it is even a free Rn—module) and so R, being the up;

directed union of Ri » is a flat module 6ver every Rn‘

(Y
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Claim 1. For m > n, Vm is an injective Rn—modu1e.

Proof. Take any Rn—modu]e X. It suffices to show that

1

) . . ] .
ExtR (X,Vm) = 0. Since Rm is a flat Rn-modu1e, ExtR (X,Vm) is then

n n

jsomorphic to Ext; (X @)Rm,vm) according to Proposition 4.1.3 ([4],
m Rn
Chapter 6, §4). However, Vm is an injective Rm—modu1e by Theorem 2 of
1 _ 1
[26]. Hence‘ ExtR (X @{Rm,vm) = 0. That means Extp

m n
Rn

(X,Vm) = 0 as

required. ||

Claim 2. V = \gvn is an injective Rn-modu]e for every n.

Proof. For any n > 0, it is clear that V = \/v_ . By Claim1,
: m>n

each Vm is an injective Rn-module. This implies that V is an injective

R,-module as R is a noetherian ring. (See [34]) ||

Claim 3. V is an FP-injective R-module.

Proof. V takes on an R-module structure via the same set of
defining relations. Let F be a finitely presented R-module. Since R is
the up-directed union of the Rn.’ by virtue of Lemma 2.15 1in (18], there

exist an integer n > 0 and a finitely presented Rn—modu1e Fn such that

n .
we obtain Ext; (Fn,V) = Ext;(Fn ®R,V) = Exté(F,V). Claim 2 forces
. R
. n

| _n . 1 PR

n

Claim 4. Vv = Uann, M.
n=1 v

Proof. Llet z eV’ Then there exists an integer n >0 with

Fn @)R'z F. Therefore, by applying Proposition 4.1.3 ([4], Chapter 6, §4),
R .

e —————
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zeV . Hence MK = 0 for some sufficiently large integer k. ||

Claim 5. As an R-module, V is essential over K but is not the
injective hull of K.

Proof. Let z be a non-zero element of V. Then 2z e V_ for some
) -u -u
n. Select a non-zero term Bx] ]...xn " from z so that the sum
N 2
Myt is as large as possible. If YXp e X is any other

non-zero term in z, then X, + ...+ A <y ...+ My s and so Ag < g

for at least one i. This leads to (yx] cen X n)(x] ...xnn) = 0. %
s Hn . .
Therefore 0 # z(x] e X ) = B ¢ K. We conclude that V is essential

over K as an R-module.

PR N SN W I RN

- For the second assertion, it suffices to prove that V is not
isomorphic to ER(K). Consider the element e = x{] + .o+ x M+ of
T. For any integer n > 0, exh =1 ¢ K, implying K ceR. Take any s ¢ R

and suppose es #.0. Then es is' a formal power series of the form

Y =~V . . .
ByX; Lt ce. t ani N where each 8. # 0. Without ioss of generality, '
1 n J - !
N - \) »'
we may assume v, = max {Vl""’vn}' Then esxi] =By e K. That is,
- 1

eR is-essential over K. Hence we may identify eR with a submodule of
ER(K). Moreover, 'eMn # 0 for any integer n > 0 because ex: =17

Therefore Claim 4 indicates that V cannot be isomorphic to ER(K). H

The proof of Claim 5 a]sd demonstrates ‘that E,(K) # \U ann M7
4 _ R n=l - ER(K)

This together with Claim 4 establishes'the.assertjon that the ideal M forms

a weak clan but not a clan.

4
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CHAPTER 111

RINGS MODULE-FINITE OVER THEIR CENTRES

Rings which are finitely generated as modules (or in short,
module-finite) over their centres constitute an interesting class for
study. In this chapter we concern ourselves with the application of the

localization theory, deve]oped in Chapter I, to this particular class of

N SV

PR
Ay
e 5

"rings. More specifically, we.are going to examine the relationship

between a localizable semiprime ideal of such a ring R and its counter-

part in the centre of R. The latter gives rise to the usual locdlizations .%
at prime ideals in commutative ring theory. We begin our study by simply %
assuming that §
(T) the given ring is module-finite over a subring of its centre. ;

4

Further on, our assumptions will be more restrictive.

§1 CENTRAL LOCALIZATION

Let A be a central subring of a ring R satisfying (I). Take any

prime ideal Q of A. Then the set X ='A —Q 1is evidently an Ore and .

reversible mu]tip]icativé subset of R. Hence there is a 1oéalizati6n,of

"R/at X which will be denoted by RQ and will be Ea]led.the central localiza-
f{on of R at Q. -Denote the canonical localization map by €Q : R~» Rq.
- The set (P« Spec(R) | P n A =71Q) is called the Q-set. With this set-up,

g . [ . . ’
we 1ist below a few basic observations.

LV _ 53
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Proposition 3.1. Let Q, A and R be as abovementioned. Then

(M) RQ is module-finite over AQ ; and RQ/QRQ is an artinian ring.

(2) J(RQ) contains QRQ and hence RQ is semilocal.

(3) The Q-set is finite and localizable in R. Moreover, RS ~ RQ
where S = MQ-set.

k

(4) There exists an integer k > 0 such that SR c.QRQ

Q

Proof. The module-finiteness of RQ over AQ\is a direct consequence
of that of R'over A.” Likewise, RQ/QRQ is also module-finite over AQ/QAQ.
The latter being a field makes RQ/QRQ a finite dimensional AQ/QAQ—vector

space. Hence RQ/QRQ is artinian. This proves (1)- -

hQ being module-finite, hence integral over Ay impiies
J(AQ) = J(RQ)/\ AQ by a result in [10]. Therefore QAQ c:J(RQ) which
further yields QRQ C:J(RQ). Now RQ/J(RQ) = (RQ/QRQ)/(J(RQ)/QRQ)

indicates, that BQ is semilocal, thus confirming (2).

.

Let X=A-Q. Nofe that all the prime ideals from the Q-set
are X-closed and, upon pass1ng to RQ » account for all maximal ideals of
RQ since RQ/QRQ js artinian. Moreover, the fact that RQ is semi]bca]

establishes the finiteness of the Q-set.

AN

~ Denote the Q-set by {P], «+sP } and put S = Jj§P1 ;‘ Clearly all
the P are pairwise 7ncomparab1e as they are X closed. Furthermore, R
is a PI ring since it sat1sf1es a standard identity s (x1, . ,x ) for
some suitab]e m. Therefore atl prime 1dea]& of R are Gold1e ,So {t

suffices to prove ‘that C(S) is ]oca11zab1e. First, observe . that



55

n n
:1“’1%%) = [A(PRg) = J(Ry). Also

RQ/J(RQ) = RQ/SRQ = (R/S)X . Now take any t e C(S). Then t is regular

n
SR, = P. RA =

Q (1=1 i) %’ Q
in R/S and hence is also regular in (R/S)X since X <C(S). In fact, t
is invertible in (R/S)X for (R/S)x is a semisimple artinian ring. Via
the ring isomorphism, eQ(t) becomes invertible modulo J(RQ) and therefore
is invertible in RQ . By Proposition 1.1, C(S) is 1ocq]izablé and so

L

R = RQ,. This proves (3). :

Statement (4) results trivially from the nilpotency of

J(Ry/QRy) = SR/QRy . ]

Remarks. (a) The torsion theory determined by X, that is, by
taking {I | I is a right ideal of Rwith I N X # #} as the Gabriel
filter, coincides with tﬁe S-torsion theory. Thié)is because both torsion
theories are perfect and correspond to the same Silver localization as

asserted by (3). (See [221,‘C0r011ary 2.10.)

(b) When b ranges over Spec(A), the Q-sets are then in a one-to-
one correspondence with the prime ideals of A. In fact,}they.induce‘an
equivalence re]ationion Spec(R) in which the equivalence classes are
precisely all the Q-éets. Assertion (3) ensures the localizability of
these equivalence c]assgg. It is then natural to ask.when they,wil]

become minimal localizable sets or better still (strong) clans. We shall

undertake the study of this problem in the next_ two sections.

R N
AT T .

STl
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52 MINIMALITY OF LOCALIZABLE SETS

Let R be a ring which satisfies the following two assumptions:

(IT) R is module-finite over its centre C.

A

(111) For any prime ideal Q of C, the J(CQ)-adic completion CQ

is a flat CQ-module.
We want to show.that these two conditions are sufficient for the minimality

of the (Q-sets among the localizable sets. But first we need two Temmas.

Lemma 3.2. If « : A+ B isa flat homomorphism of commutative
rings and D is a ring which'is module-finite over A, then CQ® B is.the
) A
centre of D ®B where C is the centre of D.
A
The above lemma is due to P. Gabriel ([6], p.432). Applying it

to the flat homomorphisms C - CQ and CQ -> EQ , we may identify CQ and

~

CQ with the centres of RQ and ﬁQ respectively. Here ﬁQ is the J(RQ)-adic

Q- Because CQ is a local ring, RQ is ring-directly

A

-completion of 'R

indecomposable.

‘Lemma 3.3. There exists an 1nteger k > 0 such that R /J(R )k

has ne non-trivial central idempotents.

'Proof We proceed to prove the lemma.by contradiction. Then
for each 1nteger n > 0, the set B », consisting .of all non-trivial central

1dempotents of RQ/J(RQ) s 15 by assumptzon a non-empty finite set. .

n+1

Denote by Sn the canonical map RQ/J(RQ) e RQ/U(RQ)". Obviously

¢ (Bn+l) c 8B, By Konig's Graph Theorem, there exists a sequence (e )

n+1) n

such that en e B, and 8 (e

e, . By definition of §_, (en) is a
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central idempotent of ﬁQ . But RQ is ring-directly indecomposable. Thus

(en) = 0 or (en) = 1, a contradiction. This completes the p}oof of the

lemma. |}
" We are now ready to prove

Prqpogition 3.4. Every Q-set is a minimal localizable set.

Proof. Let {P],...,Pn} be a Q-set. Then {P]Rq,...,PnRQ} is a
localizable set in RQ since RQ :*RS with S = MQ-set. By Lemma 3.3, we

may pick an integer k > 0 such that RQAJ(RQ)k has no non-trivial central

jdempotents. Since ﬁQ = RQ/J(RQ)k is a semiprimary ring,

{E;ﬁQ,...,E;ﬁQ} is localizable, hence strongly classical in ﬁQ by virtue

of Proposition 1.4. In fact, it is a strong clan by Corollary 1.6, henqe

a fortiori a minimal localizable set. From this follows the minimality

of the Q-set in view of Proposition 1.3. ||

Observe that given a finite collection of Q-sets such that all

the prime ideals in the union U of these Q-sets are pairwise incomparable.

Then U is localizable in R. The proof of this observation is.identical
with that of Probosition 1.18, except that we do not have the semiprime

e :
ideal, associated with U, to be classical.

> Concerning the converse implica;ion of Proposition 3.4, we do
not know wﬁethe} it holds in general. Nonetheless, we do have an
affirmat%ve aﬁswer in a more specié}fzed ;ituation, espec}ally if we
further iﬁpose |

(V) A1l the prime ideals of R are maximal.

R E"M e e
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This condition is equivalent to having all the prime ideals of C maximal.

(See [9])

So now the ring R satisfies assumptions (II1), (III) and (IV), and
. for such a ring R, we propose to show that the Q-sets give a complete
description of the minimal localizable sets of prime ideals in R. We

commence our pursuit with a few lemmas.

Notation. Let {P],...,Pq} be a minimal localizable set of prime

q
ideals of R. Let S = 1,F_\)P]. and Qi = Pi nC ﬁor i =‘1,...,q. We may

assume, without loss of generality, the first t Qi are exactly all the

distinct prime ideals among the Qi . Clearly they are pairwise incomparable
t .
because of condition (IV). Let X = ["}(c —Q;) which is an Ore and
» 1 - .
reversible subset of R. Through an abuse of notation, we write R instead
t
of Ry where - Q = {:}Qi .

Lemma 3.5. The maximal ideals of RQ are precisely those PRQ where

P belongs to the union of all the Qi-sets for i = 1,...ft.

Proof. Observe that C !ga;sg;;slocal ring with maximal ideals

: )
0;Cy for i =1,....t ad Ry is module-Finite over Co. With this

Q-
observation, a direct verification will establish. the lemma. ||

i

~

Lemma 3.6. C, is a flat C.-module and E 3 E
— Q _ Q ( o Q

Q] X oo X CQt as
rings. .
Proof. Consider the Iocaiization maps
(43 '
C-»C
gl ¢
C

-,
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Then the induced map v : CQ > CQ, is a flat ring homomorphism, making
: i
the diagram

¢S Cq

A

.

i

commute.

~

By (I11), the completion map & : CQ > CQ is flat. Hence the
. i i
composite map &y : CQ > CQ is flaty This gives the flatness of
i

[P
x
x
(w)

as a C,-module. It remains to show that

Q¢ Q
CQ ~ L, X s X EQt as rings.

Assume now rc”!  r'c”! (Mod QnCQ) for rc7!, r'c7! ¢ CQ.
Then there exists z ¢ X with (r—r')z e Q" ¢ Q? for all i = 1,...,t.
This leads to rc™! = r'c™! (Mod Q" CQ ) since X < C —Q; for all 1.

t
Therefore the diagonal map ¢n : CQ/QnCQ > H CQ /Q Q is a well-

defined ring homomorphism.

To show ¢n is one-to-one, consider rc-!'e C. such that

Q
rc’! ¢ Q?Cd_ for all i. -Then for each i, there exists c; € C - Qi
with re; € Q? . Since by (1V) Q?, cee ,Qg are paifwise re]ativély
prime, we ﬁay invoke the Chinese Remainder Theorem to get an element c'
of C with ¢' = (Mod Q ) for all 1 0bv1ous]y, c' € X, and so

LI - -1
rc' = re. (Mod Q?), implying rc' f}Q Q". Thus rc™! e Q" CQT'
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As for surjectivity of ¢n;j consider ric;‘ € CQ for i = 1,...,t.
i
Again the Chinese Remainder Theoreni yields elements r « C and c . X

with r = r. and c - c; (Mod Q?). From this follows c¢™' = ¢

n -1 -1 n -
(Mod Qich)’ and so rc ! - fici (Mod QiCQi) for 1 1,...,t.

D VI

Therefore ¢_ is a ring isomorphism for every n. Furthermore, they 4
: n

induce a ring isomorphism between CQ and CQ X x C

e o
] Q
The above lemma with the help of Lemma 3.2 identifies the centre ;
of R with C X ... x Cy . Thus R, has exactly t centrally indecom-
Q Q o o .
posable central idempotents. Let 1 = eyt ... ¥ e, where each e, is a
centrally indecomposable central idempotent of RQ , and et v_  be the

n

canonical maps RQ > RQ/J(RQ) . For any integers n, i > 0, vn(ei)“ is 4

a céntra! idempotent of RQ/J(RQ)n.

Lemma 3.7. For each i, there exists an integer n; > 0 such*that_ ~

~v_ (e;) 1is centrally jiindecomposable.

'
{
*
i
%
3
'}

1
§

Proof. Fix an "integer i and suppose .the assertion is fg]sei
" Then, vﬁ(ei) must be centrally decombosable for every n > 0. Let An
- denote the set ‘of all central idempotents of R /J(R )" and put

= {re A | v“(e ) = r +y for some non-zero y € A w1th ry = 0}.
By assumpt1on B 0D for all n > 0. Denote by Sn the canqn1ca1 maps
Q/J(RQ)n+] /J(R . Then the Konig's Grabh Theorem yields a sequence
"i(bn) with bn € B . and 8 (b

n+]) = b No*e that (b ) -is.a central

idgmpotent'bf RQ » and for each n, there ex1sts Cp € B, -with ’

0 [ " ~
'vn(ei)'= bn +c. . Obviously (cn) is also ‘a central ‘idempotent of‘Rq.

N

¢
-
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Therefore e = (b ) + (c ), a contradiction. ||

Corollary 3.8. There exists an ihteger n > 0 such that Vn(ei)

are centrally indécomposab]e for all i = 1,...,t.

Proof;‘/}he result follows readily from Lemma 3.7 by taking

n = max {n],...,nt}. H ) \

~

We finally come to ourTmain result:

" Theorem 3.9. {P],...,Pq} is a Q.-set for some i.
+ 2 .

@

Proof. It i; clear that {P]RQ,...,PqRQ} is a localizable set

in RQ . Alsg, Corollary 3.8 yié]ds an.integer n > 0 such that vn(ei)

are:centra11y indecomposable for all”i = 1,...,t. Since

1 =v (e1) + ... +v (e in

- _ n -—
0 t) RQ = RQ/J(RQ) , that means RQ has exactly

t ceptrally indecomposable central idempotents.

t

On the other hand, each Q -set, upon passing to RQ , becomes a

strong clén in §Q since théy constitute t mutually diSJo1nt strongly

classical sets in the semiprimary ring ﬁQ . Hence {5;§Q,...,5;§Q} is
a union of some of these strong'clans. This implies {P ,...,P } must
cohta1n some Q -set as subset, and thus must c01nc1de with that Q -set

by m1n1ma11ty \f = ' ) ' .

§3 bLASSICAL‘SEMIPRIME-IDEALS’OF TﬂE RING_AND CLANS OF ITS CENIRE

Th1s sectlon cons1st5'of two partsa The f1rst part .deals with' the

re]at1onsh1p between t]assxca] semiprime ideals of the ring R and those

PRI e
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of a central subring A over which R is module-finite. We are aiming to
establish here two results. First and foremost, every clan is contained
in some Q-set where Q ¢ Spec(A). Secondly, a Q-set is classical if and
only if Q itself constitutes a clan in A. In the same vein, we proceed
to analyze strongiy classical semiprime ideals for the second part of

this section. -
”~

To begin with, let R be a ring which is module-finite over a
central subring A. This setting will be assumed throughout the entire

section. .

Proposition 3.10. Every clan in R is a subset of some Q-set

with Q € Spec(A).

' n
Proof. Let {P],...,Pn} be a clan in R. Put S = jf\Pi
1:

Without loss of generality, we may assume Q = P]f\ A is a minimal prime

among all the Pir\ A. Also, by re-indexing the prime ideals in the clan,

we may assume that P1,;..,Pt are all the prime ideals from the clan
t .
such that P.N"'A=0Q. Put T = fT}Pi . Then a repetition of the
» ” 1= )
argument used in the proof of Theorem 1.15 will confirm T = S, and so

t =ln. ||

In [27], J. Osterburg proved the following result:

Propoéftion 3.11.< Let R be a ring which is module-finite over a.

semilocal-noetheriaﬁ.pentra] subring A. Then ER(R/J(R)) > HomA(R,V)
where V = EA(A/J(A)).
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Our first main theorem below requires in its proof a generalization
of the above proposition. Therefore our primary concern is to show that

the noetherian assumption in Proposition 3.11 is really superfluous.

Lemma 3.12. Let R be a ring which is module-finite over a

semilocal central subring A. Then ER(R/J(R)) = Homp (R,V)  where
V= E,(A7J(A)).

Proof. It is a well-known fact that H = HomA(R,V) is an
injective R-module. For brevity, we write J = J(R) and let
M= {fcH]|Jcker f}. Then as an R-module, M = ann, J. Therefore,
M is semisimple both as an R-module and as an R/J-module, since R is

semilocal. This implies M = R-socle (H).

From the definition of M follows M = HomA(R/J,V) as R-modules.

»

Furthermore, HomA(R/q,V) = HomA/J(A)(R/J,annV J(A)) = HomA/J(A)(R/J,A/J(A)),

and by Proposition.3.1], HomA/J(A)(R/d,A/J(A)) = R/J as R-modules.
Thus we may regard R/J as an R-submodule of H. To complete the proof,
" it suffices to prove that M is eésenpia] in H.

Le? V, = anny, J(A)"_ and observe that h:%vn— is ‘'essential in V.
Then we make the following claim: if Y‘= v]A5+ ...'+'vSA is a non-zero
finitely generated A-submodule of V, then there is an element a e/A
with the property that all. via e ;:{vn- and-.at least one v;a # 0. We
proceed to,prer_this ciaim by induction on s. For s =1, the claiff
is trivial. So take s ; 1.. By the inductive hypothe;is, there exists

an element a ¢ A such.that for i = 1,...,s-1, all via e \vévn and at
. . .n=

e R Skt AT w0 N
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least one v;a #0. If vea = 0, then a 1is the desired element. If,

on the other hand, v a # 0, then there exists an element b ¢ A with

0 # vsab £ \,ﬂvn by essentiality, and so ab 1is the desired element.
n:

This completes the inductive proof of the claim.

Now take any non-zero A-homomorphism f : R~ V. Then 1im f is

v.A.

a finitely generated A-submodule of V. So we may let im f = j
' 1

Ht~1n

i
By the above claim, there exists an element a ¢ A such that
all via e Vn for some n, and at least one v;a # 0. Thus f(ar) ¢ Vn
for all r ¢ R. This implies fa : R V,, s a non-zero A-homomorphism.

Hence ‘HomA(R,V) is an essential R-module over \igHomA(R,Vn). |
. n=1 ' .

Consider, next, any non-zero A-homomorphism g : R~V . That g
is, iﬁ g is annihilated by'J(A)v. We may assume n to be the smallest ' :
such integer. If n =1, then g ¢ HomA(R,V]). Suppose n > 1. Sincé : i
‘(jm g)J(AXn-? # 0, there must exist an element j ¢ J(A)n-] with . N
(im g)j-# 0. However, (im g}jJd(A) = 0. Hence g¢gj ¢ HomA(R,y]).. This

_demonstrates the essentiality of é;%HomA(R,Vn) over’ Hom, (R,V,).

"As_ J(A) c J(R) by a result in [10], M c Hom,(R,V,). Note that
R/J(A)R is an artinian ring with Jacobson radical J(R)/J(A)R due to its
module-finiteness over the commutative artinian ring A/J(A). (See [5])

Therefore J(R)kcz J(A)R. for some integer k > 0. This Yeads to

J(R)kcz ker f for any f e quA(R,V]), hehce proving the essentiality of

HomA(R,V]) over M. "Piecing together-.all the above observations, we see

that M is essential in Ho |
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Theorem 3.13. Let Q ¢ Spec(A). Then {Q} .is a clan in A if and

only if the Q-set is classical in R.

Proof. Suppose Q constitutes a cfan in A. That is,

>

V= EA(A/Q) = \_UV._ where V_ = ann Qn. Since R, is module-finite over
: n=1 n v Q

AQ , HomAQ(RQ,V) = h;%HomAQ(RQ’Vn)’ given the observation that V is the

injective hull of AQ/QAQ as an AQ-module. By Lemma 3.12, we have

Hom, (R.,V) = E
Aq 0 Q

there exists an integer m > 0 such that SmRQ C.QRQ . Now take any

R

fe Hom, (R Q’ ) for some arbitrary n. Then thRQ = 0, which implies
Q ,

fs‘““RQ = 0, and thus f & ann, s‘_"“RQ. Hence H = \Jann

words, S is classical since RQ > RS by Proposition 3.1.

.
H S RQ . In other

Conversely, suppose S is classical. Then by Lemma 3.12, we get
H = R/S) \,Iann P = éZ%annH Q" = HomAQ(Rq,V) kfiHom Q(RQ’Vn)'
{Note: The ﬂaAt equality is obtained by nepgaténg the preceding one.)
Now take any non-zero. v ¢ V and define an AQ-homomorpHism g : AQ - V‘
by g(x) = vx for all x ¢ AQ . Then the injectivity'of V extends g to
an AQ-homomorphism h : BQ.+ V. But then h is.a map with image contained
in' Vn for some n; as indicated above. Hence h(1) = g(1) = veV,
“This shows. V= \JV_: ]

n=] N

Remarks. Let C bé.ﬁhe centre of R. -In the context of:Theqrem'3.13,
the Q-set can be partitioned into pairwise disjoint clans by virtue of
Cono]]ary'].ﬁp. The number of prime ideals. of C lying over Q is at most

equal to the number of clans in the partition. All tbesé prime ideals

(RQ/q(RQ)) = H. Let S = (\Q-set. Then by Proposition 3.1,

[
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are also classical in C in view of Theorems 1.12 and 3.13 since R is
evidently module-finite over C. In particular, if the Q-set is a clan,

then there is only one prime ideal of C over Q.

Some groundwork is needed for the second part of this section on N
strongly classical éemiprime jdeals. OQur objective is to establish an .f
analogue of Theorem 3.13. First, we notice that in [17] the right AR- g

property for the Jacobson rédicd] of a semilocal noetherian ring has been
characterized internally as well as externally. As a mattgr of fact3 oné
of these characterizafions remains valfd for semilocal non-noetherian

rings. We will look at th{s observation again later when we give another

criterion for the right AR-property.. The latter characterization will

be U7Ed subsequently in aéhieviﬁg our objective. )

Lemma 3.14. Let R be a semilocal ring whose Jacobson radical J(R)

e e s it . e

has the right AR-property. Then for any semisimple R-module M,
E(M) = O R)".
( ) ,};j]annE(M) J( )

Proof. The proof for the implication of (b) from (a) in

Proposition 4.3 of [17] can be carried over here verbatim. ||

Lemma 3.15. Let R be a semilocal ring whose Jacobson radical J(R)
has the right AR-property. Then for any finitely generated R-module M,
there exists an integer n > 0 such'that socle- (M) N MJ(R)n = Q.

Pro6f. We are confronted with two cases: First, éuppese that:
socle (M) is essential in M. Then M.c ER(socie (M)). By Lemma 3.14,

MJ(R)? = 0 ‘for some n since M is finitely generated. Hence
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socte (M) A MI(R)" = 0 holds trivially.

Next, suppose that socle (M) is not essential in M. In this

case, the set {I | 1 is a non-zero submodule of M with I N socle (M)

0}
is non-empty. The Zorn's Lemma then yields a maximal member, say L, in
this set. We claim that socle (M) @ L is essential in M. Take any non-
zero m ¢ M such that m ¢ socle (M) @ L. Then socle (M) N\ (L + mR) # 0
by maximality of L. So there exists a non-zero X =z +mr e socie (M)
for some z ¢ L qnd reR. If 2z =\0, then sc;c']e (M) N mR # 0, and

a fortiori, (socle (M)@®L)N mR # 0. On the other hand, if z # 0, then
zs # 0 for some s € J(R). However, {z + mr)s = 0. This leads to

zs = m(-rs) which implies LNmwR # 0, and a fortiori, ‘

—

(socle (M) ® L) NmR #.0. Hence the claim is proved.

Therefore, E(socte (M)) @ E(L). By Lemma 3.14, we get

Mc
W = E(socle (M)) = A:%E; where Ey = ann J(RIM. Let M be ‘generated by -

Mps...om . Then for each i, mi.i X; +y; for some x; € W and

y; € E(L). Since each fi annihilates some powér of J(R), there exists’
an iﬁteger n > 0 such that x].J(R)n =0 for all i.. Thus |
mT.J(R)n = yiJ(R)n for all i. This implies MJ(R)nc: E(L), and so

socle (MI(R)") = 0. F}qm this follows socle (M) MI(R)" = 0. |

Proposition 5.]6. Let R be a semilocal ring with Jacobson radical

J(R). Then the following conditions are equivalent:

(1) 3(R) hds the right AR~propériy. . ‘

(2) Eor any finitely generated R-module M and any sﬁbmoduTe ﬂ.-- :
of M, tpere exists-an integer n > 0 such that-’N f\MJ(R)"cz'NJ(R).'
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(3) Every right ideal of R is closed in the J(R)-adic topolegy.

(4) For every semisimpie R-module M, E(M) = A;%annE(M) J(R)".

Proof. Assume (1). Let N bé a submodule of a finitely generated
R-module M. Apply Lemma 3.15 to M = M/NJ(R} to get an integer n > 0

such that socle (M)A FIJ(R)n = 0. Observe that N = N/NJ(R) ¢ socle (M).

Thus N N MI(R)™ = 0. That is, N MI(R)" < NI(R), hence proving (2)."

Given (2);, let I be a right ideal of R. Put R = R/I. By (2),

the J(R)-adic topology on R is Hausdorff. Thus f}(l + J(R)n) =1,
‘ . B n= .

yielding (3).
The proof of (d) implying (a) in Proposition 4.3 of [17] can be

used to establish the implication of (1) from (3).

The implication of (4) from (1) is actually the assertion of
Lemma 3.14. Conversely, suppose (4) is given. Let & be a right ideal
.0f R. Then I/IJ(R)_ is a se&ﬁsiﬁp]e R-module since R is sgmi]oca]. By
(a), €= E(/1I(R)) - h;%annE_J(R)n. Let f+1+E be the composite
of the canonical maps I -~ I/IJ(R) = E. Then thére exists an element

e e E such that f(x) =.ex for all x ¢ I. Since eJ(R)" = 0 for some n,

it follows that I N J(R)"c: ker f = IJ(R). This proves (1). I

Condition (3) in the above proposition appears in [17]: Condition
(3) completes the converse implication.of Lemma 3.14, -and Condition (2)

is the one to be used in the proof of the following theorem.

Theorem 3.17. Let A be a commutative semilocal ring. Then J(A)

has the AR;property %f and only if for every ring R wﬁich is module-finite

3

>
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over A, J(R) has the AR-property.

Proof. Suppose J(A) has the AR-property. Let R be a ring which
is module-finite over A. Observe that ‘J(A)R c J(R} and R/J(A)R is an

artinian ring with Jacobson radical J(B)/J(A)R. Thus there exists an

k

integer k > 0 such that J(R) < J(A)R. Take any right ideal I of R.

Clearly I is an A-submodule of R. By Proposition 3.16, If\RJ(A)n < [J(A)

for some integer n. _.This, together with the above observation, yields

k

I NnJ(R) Ne IJ(R), hence demonstrating the right AR-propérty. The left

AR-property is similarly verified.
. The converse implication is trivial. ||

Our second main result now becomes a corollary of the preceding

Q

theorem.

Coroliary 3.18. -.Lét A be a.commutative ring and Q ¢ Spec(A).

Then -Q is strong]y‘classjcal in A if and only if ?;;\éVeny rjﬁg R which

is module-finite over A, the Q-set is strongly classical. in R.

Proof. A direct application of Theorem 3.17 to RQ which is module-

finite over the local ring AQ yields, the desired result. ||

§4 EXAMPLES .
¢

The fol]oying éthples are rings in which every Q-set is a strong

clan.

bl ®
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(A) Let R be a ring which is module-finite over, its centre C,
~ and suppose C is a von Neuménn regular ring. Take any Q e Spec(C).
Then RQ is a finite dimensional vector space over the field CQ and hence
is itself an artinian ring. Therefore’botﬁ CQ and RQ coincide with EQ
and &Q respectively. " Lenma 3.2 shows that CQ is the centre of RQ . On

account of Theorem 1.12, the Q-set is a strong clan.
;‘/

Such ring R in general need not be von Neumann regular. For

instance, take any commutative von Neumanc regular ring C and let

I B . {0 ¢ .
R = { 0 ¢ ] . Then J(R) = [ a0 ] sh?ws that R is not von

Neumann regular.

(B) There ig a commutative ring C (due to M. Nagata [25]) which
has infinitely many maximal ideals, and the localization CM at every
maximal ideal M is noetherian. This ring differs from the commutative
ring described in-above example at least for the reason Fhat it.is not
coherent whereas the precedipg one is. Now let R be a ring having C as

its centre and being module~finite over it.

For evé}y maximal ideal M of C, Ry is module-finite over Cy and
hence is nogtherian‘by'[sl. Moregver, CM is the céntre of RM . The_M—set,
upon passing to Ry » becomes the J(CM)-set which'is a strong clan 1'n'RM
on aécqunt of Theorem 7 of {24): Then Proposition }.5 shows that the

M-set is actbalﬁy a strohg cﬁan in R...

. We now consider a non-maximal prime ideal’Q of C. Then Q is

contained in some maximal ideal M of C!. In order to see that, the Q-set -

€
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is-a strong clan in R by means of Theorem 7 of [24], it suffices to show
RQ is a noetherian ring. Since RM is noetherian as indfcated above, the

proof will be completed by showing RQ ~ (RM)

QCy’
“r. b b ical 1 - B, 0
Let R » RM > (RM)QCM e canonical maps, and let v = Ba. ur
aim is to prove that.y is indeed the localization map for X = C — Q.

For any t ¢ X, y(t) 1is obviously an invertible element of (RM)Qc .
: M

Now let ab™! ¢ R, and cd~?! ¢ Cy —QCy . Then ab”! = a(a)a(b)"! and

- M
so B(ab™') = B(a(a)a(b)~!) = Bafa)Ba(b)~? = y(a)y(b)~'. Similarly,
B(ed™!) = v(c)y(d)™Y, which implies B{cd™!)™! = v(d)y(c)“!. Thus

(ab™')(cd™')™! = y(ad)y(cb)"!. Moreover, if vy(a) = 0 for a € R, then

a(a)a(c) = 0 for some c e X. - This further implies acd = 0 for some

d e C—McX. Hence y is the.localization map for X as required.

§ 5 GROUP RINGS

Gro&p rings of finite groups over commutaf%vé rings are examples
of the kind of rinés under discussion in this chapter. Given a group
ring R = AG where A is a commutative ring and G is a finite groub, the
centre C of R ig given by { ;agg | ag = a, if g and h are conjugatel.. '

One interesting aspect of the group ring R in terms of localization is

that all the H:Eéts with ne Spec(C) are minimal localizable sets in R

. without having=td 1mpose)the flatness condition (I11) as seen earlier in

52. Hence, if all the pri@e ideals of A are maximal, it is then natural

to expect that the Ni-sets will completely characterize the minimal

~ localizable sets in R in the same manner as assePted in Theorem 3.9 whose

-
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proof nevertheless requires condition (II1).

Before delving in any further, we record below some elehentary
information concerning centrally indecomposable central idempotents.
Their proofs are rather straightforward and are thus omitted. Henceforth,

these facts will be used without mention.

(a) Any two distinct centra11y indeédmposable central idempotents
of a ring R are mutually orthogonal.

(b) Let 1 = ep ... te where all the e; are centrally
indecomposable central idempotents of R. Then for every maximal ideal M
of R, there exists uniquely. one such e, such that e £ M.

(c) Let e bé a centrally indecomposable central idempotent of
R. Then for éﬁy maximal ideal M of R with e ¢ M, eM is a maximé] ideal
of eR. Conversely, given a maximal ideal N of eR, e™'N = {r ¢ R | er e N}
is a maximal idea1.of R with e'# e !N. This defineé a one-to-one
correspbﬁggﬁzélbetween maximal ideals of R not containing e and maximal
ideals of eR. '

Definition. A non-zero ideal B-of a ring R is called a block

ideal (or block, in short) if there exists a qenf%Q)ly indecomposable

central idempotent e ‘such that B = eR. Such e is uniquely determined
by B. The block B, per se, is a ring with identity e. The reader may

consult [19] for more details of block ideals.

:‘ The fdl?dwinﬁ 1enma generalizes a result in [24j.

'Q"‘
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Lemma 3.19. Llet Q = ;:HQi be an irredundant intersection of
prime ideals of a commutative ring A, and let K = AQ/QAQ . Denote by
C the centre of the group ring R = AG where G is a leIte group. Then
there is a one-to-one correspondece between all the pr1qf ideals 1 of C
over all the Q and the blocks of KG. Moreover, the pr1fé~qdeals of R

over such Ii correspond bijectively to the maximal ideals of the block.

Proof. (1) Since RQ/dﬁg\\is artinian, the set of all maximal
ideals of RQ consists of exactly all PRQ where P ¢ Spec(R) such that
PN A= Qi for ; = 1,...,n. Hence the prime jideals of R over Qi for
i=1,...,n correspond bijectively to the maximal ideals of RQ/QRQ.

, ~ I~ G = . f
Moreover, we have RQ/QRQ AQG/QAQG (AQ/QAQ) KG. Therefore the

prime ideals of R over Qi for 1 = 1,...,n correspond bijectively to

the maximal ideals of KG.

(2) Obviously, CQ/QCQ is an artinian ring as RQ/QRQ is module-
finite over.it. Since C is integral over A, it follows as in (1) above
_ that the prime ideals of C over Qj for { = 13...,n. correspond bijectively
to the‘maximal ideals of QQ/QCQ . But the restriction of the natural map
RQ > KG to CQ induces an isomorphism between CQ/QCQ and the centre Z(KG)
of KG. Thus the prime ideals of C over Q for i =1,...,n correspond
leect1ve1y to the maximal ideals of Z(KG) via this 1somorphvsm, hence to
the 1ndecomposab]e idempotents of Z(KG), and then accordlng]y to the
blocks of K. V |

(3) Let 1=, +...+e be the' decomposition of 1 into

centrally in&ecdmposab]e central ideppotents e; in KG, Denote the blocks. 3
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by Bi = eiKG for i = 1,...,m. Suppose Il is a prime ideal o™ T lying
over some Qj . Then by (2), I corresponds to a uniqué block B, - Our
task now is to establish a one-to-one correspondence between the prime
jdeals of R over Il and the maximal ideals of &i° Let P] and P2 be prime
ideals of R over II. Then'they are also prime ideals lying over Qj'

Hence by (1), each Pk corresponds to a maximal ideal Mk of KG uniquely.

‘Therefore eiM] and e].M2 are distinct -maximal ideals of Bi because

ey £ M UM, by (2).

Conversely, if N is a maximal ideal of Bi’ then
M=8,0.. .08 ,0808,0...08, i\}ﬁ»maxma] ideal of KG and
e; £ M. By (1),‘M corresponds to a unique prime ideal P of R over same
Qh‘ However, PN C =1 since (PN C)Q/QCQ = MO Z(KG). Hence h = j
by (2). || |

Spetializing Lemma 3.19 to the case where Q = Q] » we have
1 B

Proposition 3.20. For a group ring R = AG with centre C, the .

f-set is a minimal localizable set in R for every Il e Spec(C).

“

Proof. Let {P],.J.,Pn} be_a NI-set in R, Q =N NA~and K, the
~quotient fje]d of -A/Q which is also the residue field AQ/QAQ . We know

~_by Propositioﬁ 3.1 that the H-set.is lTocalizable. - Let M],...,Mh pe L :
the maximal ideé]s‘pf KG which correspohd to PyseessPy respectivé}y
via the canonicalnmap R~ Ry~ RQ/QRng KG. Thgn' {M],...?Mn} ist

localiﬁgple, hence strongly classical in KG. .

Q

If 1 is the only. prime ideal of C.lying dver Q, then by Lemma 3.19, - ’
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T is centrally 1ndecompqsable in KG, and then Spec(KG) is a strong clan
on account of Theorem 1.12. Thus {M1""’Mn} = Spec(KG) which im turn

implies thé U;§et\conta1né no proper localizable subset and hence is

minimal.

On'the other hand, if there are more than one prime ideal of C
lying over Q, then again Lemma 3.19 assures the existence of a centrally
indecomposable cegtral idempotent. e ,of KG such that e ¢ ;;éMi , since
all Mf Iie gVer the same maximal ideal of Z(KG) and that maxiﬁa] ideal

is isomorphic to NC,/QC,. In this case, eM,,...,eM_ are distinct
Q' ~Q &M n ‘

maximal ideals of B = eKG. We claim nbw the set {eM ..,éM } s

-Yocalizable in B. To this end, it suffices to show ec e _f\C (eM.) if
. 1 -

¢
and only if ¢ ¢ {:}CKG( i)’
. n n .
Let ¢ € iC\cKG(Mi) and suppose: (ec)(er) e {j\eM. . That is,

n n n
cer ¢ MeM. ¢ NM, which implies er e MM., and so er e ('\eM
. i=1 v T =11 ~ j=1 1 i=]

A : n
Thus ec ¢ {j%CB(eMi)' Conversely, let ec ¢ {2HCB(EMi) and suppose
n - n . n
‘er € MM, . This implies NeM, , or equivalently, er M. .
=17 ¢ e ’ d = %
Since e 1is central and does not belong to any Mi , it follows that

re {:xMi . This proves the claim. However, B has on]y‘one strong clan

and -this forces the M-set to be minimal.. ||

We now*relnstate assumption (IV) from.§2. With this condition

I3

added e proceed to prove -our second assertion (PropoS1tlon 3.21). In

S

* this cg§e,‘§11'tﬁe p[1@e ideals of\A and of R.are.maximal. -([9])
' {7 _ , .

-}
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Proposition 3.21. Assume the group ring R = AG with centre C

satisfies (IV). Then thg lI-sets account for all the minimal localizable

sets in R where Il ranges over all the prime ideals of C.

Proof. Let {P,,...,P 1 be a minimal localizable set in R. Put
Hi = Pifﬂ C and Qi = ﬂi N A. MWithout loss of generality, we may assume
that H],...,Ht,'hitﬁ t < n, are all-the distinct ones among the I, , and
Q],..:,Qr, with r < t, are all the distinct ones among the Qi . Evidently,
fhey are all pairwise incomparable by maximality. Let Q = {E\Qi s
X = {E\(A —-Qi) and K = AQ/QAq. If t =1, then {P1,..F,Pn} = I,-set
by Proposition 3.20. So we assume t > 1.

Each Pi corresponds to a unique max{mal ideal Mi of KG via the
Eanonica] map R = KG. Then {M],...,Mn}' is a localizable, hence
sfrongly classical set in KG. By the same token, each Hi-set, upon passing
to KG, becomes a strongly classical set in KG. Since t > 1, Lemma 3.19
assures the existence of a centrally indecomposable central idempotént efp
of KG such(ﬁhat e, £ LJNi " where Ni denotes the set of images in KG of
the Hi—se; under the-canOnical map. A repetition of the last part of the
proof of Proposition 3.20 will confirm that eéch Ni is a strong E]an in
KG. Hence (M],...,Mn} .musF contain all these strong clans. In othér

words, .(Pq,...,P } must contain all the Nl;-sets. By minimality,

‘{P],...?Pn} = I;-set for sode i. 1

The following cpnsidenqt%on requ%res some group fepresenpatibn
. theory. .Let KG be the group algébramof a finite group G over a' field K.

Associated with any group representation ¥ of G jﬁ_@ K-vector space V -

.
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which carries a KG-module structure simultaneously. Such V is called the

representation module of G belonging to ¥. If V is a simple KG-module,

then ¥ is said to be irreducible.
L 4

A simple KG-module W is said to belong to a block B of KG if

= B/M for some maximal right ideal M of B. Hence an irreducible

_ representation is said to belong to a biock B if its'representation

module belongs to B. A princ%pa] bTock is the one to which the trivial

representation belongs.

Let g Be a prime number. A finite group G is called g-nilpotent
if there is a normal subgroup N whose order [N| is not divisible by q

but such that G/N is a q-group. In connection with this definition we

record the following results..

Proposition 3.22. Let K be a field of characteristic q > 0 and

G a finite .group. Then we have:

.(1) If G is g-nilpotent, then each block of KG has a unique

simple module.

(2) The intersection of the kernels. of the 1rreducibfe representa-

tions belonging to any block of KG is.a g-nilpotent subgrodp of G.

These two assertions can.be found in [20] and [21] respectively.

Our further discussion also necessitates the use of Maschke's Theorem [30]

which states that given & division ring K, a grbup algebra KG'{é semi-

s1mple artwn1an if and only 1f‘G is a f1n1te group and chaf K does not
. I 3
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For a prime ideal Q of a commutative ring A, the Q-augmentation
ideal of the group ring AG is defined to be A4y = {Tajg | g e Q)
which is a prime idea1 of AG. Let K be the quotient field of A/Q and C
be the centre of AG. Then accordin§ to Lemma 3.19, AQtw C corresponds

to a block of KG. This block is the principal block of KG.

Given below is a characterization of a g-nilpotent group in terms -

of 1oca1ization.

Proposition 3.23. Let Q be a prime ideal- of a commutative ring A

and q be the characteristic of K, the quotient field of A/Q. Then for the
group ring B = AG of a finite group G, the following conditions are
equivalent:
(1) Every prime ideal P of R with Pn A =Q is localizable.
(2). AQ is localgzab]e: '
(35 G is g-nilpotent. =
Proof. If q does not divide the order [G] of G, then KG is a
semisimple artinian ring by Maschke's Tﬁeorem. Hence'each block of KG is
a ;imp1e artinian ring. . By Lemma 3.19, there lies only one primg.ideé1
of R over any given prime idéa] T of 6 with TN A= Q. The localizability
of.éhe T-set which is a singleton set is assured by Proposition 3,20.
Trivially, G is a qfnilﬁotent gréup.

7

So we now assume IGI to be dvasIbTe by q. Trivia]]f (1) implies

(2). Given' (2), then {AQ} Js ‘the AQ?ﬁ C—set by Proposition 3 . 20. This ’

_}mpJJes the princnnaT b]ock“has exactly one: maxlmaT ideal owwng to Lemma 3:19.°

s
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Hence every irreducible representation belonging to the principal block
has the same kernel as that of the trivial representation. The kernel

of the latter is G. Thus by assertion (2) of Proposition 3.22, G is g-

nilpotent. ' ’ é

Given (3), then it follows from assertion (1) of Proposition 3.22
that each block of KG has only one maximal ideal. Consequently, (1) can

be immediately deduced from Lemma 3.19 and Proposition 3.20. ||

Corollary 3.24. All prime i&ea]s of R = AG are localizable if
and only if G is g-nilpotent for all prime numbers q which are not

invertible in A.

Proof. Suppose G is gq-nilpotent for all brimé numbers q.which

.o e e
ot o

are not invertible in A. Let P be a prime idea] of R and put :Q PnA.

Let q = char K where K is the quot1ent field of A/Q‘ ~¢hen ¢ Q,

s

implying it is not invertible in A. By assumption, G is q-nilpotent and

I~

so P is 1oqa1izab1e by Proposition 3.23.

Conversely, suppose all the prime ideals of R are localizable.

Let q be a prime number wh%ch is not invertible in A. Then qge(Q for

) §ome prime ideal Q of A. A1sb, q = chgr K where K is the quotieﬁt field
'of A/Q. From Proposition 3.23 follgws then the q-nilpotency of 6. ||

@

We conclude th%s gectibn_ﬁith two examples.

. (A) Let.s be a f1n1te n;lpotent grdup, for 1nstance, the quaternion

"graup, and, 1et A be any commutatwve rang. Then all the pr]me ideals of

‘1:,AG are Jncallzable on’ account of Coro%?any 3 24, sznce G is. q- nr]potent



/N

for any prime number q.

(B) Proposition 3.23 enables us to construct minimal tocalizable
sets consisting of more than one prime ideal. For example, take A to be

a comnutative ring of characterisgic’S and G to be the dihedral group Dg

5 2

with defining relations a” = b" =e and ab = ba~! on its generators

a and b. Let Q be any prime ideal of A. Then the characteristic of the

quotient field of A/Q is also 5. However, G is g-nilpotent for any prime
number g-# 5 and is not 5-nilpotent. Hence AQ is not localizable in AG
due to Proposition 3.23. If C denotes the centre of AG, then AQ n C-set

contains other prime ideals besides AQ in view of Proposition 3.20.
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