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ABSTRACT 
 

Alzheimer’s disease (AD) is a degenerative disease with progressive deterioration 

of neural networks in the brain.  Fractal dimension analysis (FD) of resting state blood 

oxygen level dependent (BOLD) signals acquired using functional magnetic resonance 

imaging (fMRI) allows us to quantify complex signalling in the brain and may offer a 

window into the network erosion.  This novel approach can provide a sensitive tool to 

examine early stages of AD.  As AD progresses, we expect to see a reduction in brain 

connectivity and signal complexity concurrent with biochemical changes (e.g. altered 

levels of N-acetyl aspartate (NAA), myoinositol (mI) and glutamate as measured using 

magnetic resonance spectroscopy, MRS), volumetric changes and abnormally high levels 

of brain iron. 

Over a series of 4 studies we examined the relationship of BOLD signal 

complexity and functional connectivity with documented MRI markers of pathology in 

AD (n=38) as compared to normal controls (NC) (n=16). AD subjects were in early stage 

of illness (mild to moderate impairment on the mini mental state exam, MMSE).  We 

validated the temporal (short term (within minutes) and longer term (over a number of 

months)) consistency of FD measurement and choice of BOLD acquisition method (spiral 

vs. EPI), provided MRI sequence repeat time (TR) was kept constant.  FD reduction 

(decrease in signal complexity) correlated with worsening pathological values on MRS 

(↓NAA and ↑mI) and with a decrease in functional connectivity.  This demonstrates that 

FD (signal complexity) reduces in proportion to AD severity.  FD reduction is connected 
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to functional connectivity measured through resting state network (RSN) analysis 

suggesting the reduction in FD relates to neuronal loss rather than altered vascularity.  

The narrow range of cognitive impairment (such as scores on the MMSE or the clinical 

dementia rating scale, CDR) likely precluded correlation between these measures and FD 

or RSN. Functional connectivity (RSN) was also reduced when brain iron levels were 

increased within certain network nodes (posterior cingulate cortex and lateral parietal 

cortex).  Therefore iron deposition may play a role in network disruption of AD brains.  

The overall conclusion of this thesis is that signal complexity of BOLD fMRI 

signals, as measured with FD, may detect early pathology in the progression of AD. FD 

can detect neuronal changes in deep brain structures before volume loss in these 

structures and before significant changes in MRS markers were detectable between the 

AD and NC groups.  An FD change mirrors disruptions in functional connectivity but 

detection is not limited to RSN nodes in the brain.  This novel approach could further our 

understanding of AD and may be applied to other pathologies of the brain. 
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"Beyond the horizon of the place we lived when we were young 
In a world of magnets and miracles 

Our thoughts strayed constantly and without boundary …" 
 

Roger Waters, Pink Floyd, High Hopes 
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"We must ask ourselves crucial questions.  
Where are we? How did we get here? Why did we come? Where do we want to go? How 

do we want to get to where we want to go? How far do we have to go before we get to 
where we want to be? How would we know where we were when we got there? Why did 
we leave places to get to where we are? Where were we before we had to leave to get to 

where we were before we knew we're going to go to where we want to be?  
But surely you can see my point." 

 
Sir Marcus Browning MP, Rowan Atkinson 
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BRAIN FUNCTION AND MRI 
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1.1 BRAIN FUNCTION AT REST 

 

The knowledge that cognitive tasks can produce regional brain changes dates as 

far back as 1881 when Angelo Mosso studied pulsations of the human cortex (Mosso 

1881).  In recent decades, imaging has been used to examine the resting brain.  Positron 

Emission Tomography (PET) provided some of the earlier examinations of brain function 

and revealed that the brain is quite metabolically demanding, even at rest (Wintermark 

2005).  Although earlier PET studies focused on regional blood flow, glucose utilization 

soon became the benchmark for brain function (Raichle 1998).  While accounting for 5% 

of body weight, the brain utilizes 20% of the body’s energy (as measured by oxygen 

metabolism) (Clark 1999).  Most of this energy is spent on neuronal signaling, while a 

smaller proportion is spent on maintaining resting potentials for neurons and glia (Attwell 

2001).  Brain activation produces a very small increase in energy use (Raichle 2002) 

although more recent work suggests brain activity is primarily affected by changes in 

excitation–inhibition balance (Logothetis 2008).  This suggests that brain task related 

activations are merely a shift in brain metabolic functions that are already occurring at 

rest.  Thus, much of the brain’s complex signaling occurs at rest, and therefore lends itself 

to signal characterization. 

There are various states of rest, each with it’s own signal characteristics. 

Electroencephalography (EEG) reveals differences between stages of sleep, when eyes 

are open or closed, and between being attentive to an object or not.  Despite the 
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differences between these states, the characteristics of EEG signals are quite predictable 

within any given state.  For example, the ranges of frequencies for each stage of sleep are 

consistent between subjects without pathology and EEG power can be used to identify 

stages of sleep (De Weerd 1999).  This marks the importance of differentiation state vs. 

trait findings when studying the brain at rest.  Some features are consistent despite 

changes in the internal or external environment (e.g. brain volume) while other’s change 

with changes in condition (e.g. EEG coherence during eyes open vs. closed).  Trait 

features are generally more helpful when comparing features across subjects. 

 

1.2 RESTING BRAIN MRI 

 

Initially, clinical MRI scanning focused on structure, providing an alternative to 

CT scans but with superior soft tissue contrast.  Not long after, the versatility of MRI was 

used for functional assessment of the brain.  Although traditional “fMRI” or functional 

MRI refers to BOLD (blood oxygen level dependant) MRI, various other MRI techniques 

can also assess function.  For example, repeated magnetic resonance spectroscopy (MRS) 

MRI scans have been used to assess changes in brain biochemistry (such as lactate levels) 

as a measure of brain function (Frahm 1996; Richards 1997).  Arterial spin labeling 

(ASL) or dynamic contrast enhanced (DCE) MRI can be used to look at functional blood 

flow.  Even repeated structural imaging can provide functional information by observing 

the brain pulsations and CSF flow (using phase contrast) (Wagshul 2011).  
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1.3 BOLD FMRI 

 

By far, BOLD fMRI is the most common MRI method of measuring brain 

function.  This is because BOLD fMRI can provide a good balance between spatial and 

temporal resolution.  Thus function can be assessed at the millimeter and decisecond 

scales.  BOLD fMRI is usually task based where the subjects perform a task (such as 

observing light or reacting to sad images) and the resultant brain areas activated are 

deduced from regional blood oxygenation changes.  The variety of tasks presented is 

unlimited and can be fashioned to specific pathologies (such as memory tasks to study 

mild cognitive impairment).  Because the MR signal within activation regions are only a 

few percent over noise, the task has to be repeated multiple times to increase the contrast 

to noise ratio (CNR).  

A newer method of measuring brain function is to observe the brain using BOLD 

MRI at rest.  In the early 1990’s, it was discovered that brain “noise”, what was 

minimized in task based BOLD studies, actually has important information about brain 

function.  Although there are many ways of analyzing this signal, two major methods 

have dominated the literature.  The first is based on resting state functional connectivity 

and the other is based on resting state signal complexity. These methods and the detailed 

mechanism by which BOLD MRI provides a signal are discussed in more detail in 

chapter 2.  Unlike task-driven methods, resting state does not require a paradigm, which 

reduces some a priori assumptions about how the paradigm models the illness.  For 

example, seeing sad faces during a depression paradigm may or may not activate the 
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same areas of the brain that are activated due to intrinsic sadness from a depressive state.  

Task based fMRI studies often have low inter-subject reliability as well as intra-subject 

variability (Fleisher 2009).  Results can vary based on task performance, and exposure to 

the same stimulus can frequently provide different activation patterns (Ances 2008).  This 

often results in the need for a large number of subjects and many task repetitions resulting 

in long scan times.  A head-to-head comparison of tasked based fMRI and resting state 

network fMRI (RSN) showed that resting state analysis can provide a greater effect size 

for identifying subjects at risk of Alzheimer’s disease (AD) (Fleisher 2009). 

 

1.4 RESTING STATE NETWORK FMRI 

 

Resting state network fMRI (RSN) is a widely used functional imaging method 

for analyzing brain connectivity at rest.  When analyzing fMRI at rest, it was noted that 

spatially separated areas of the brain have synchronous BOLD signal, suggesting 

functional connectivity (Biswal 1995).  Multiple such networks have been discovered, 

and the number increases as analysis methods become more sensitive and MRIs provide 

better signal to noise ratio (SNR).  One of the strongest (and earliest discovered) networks 

is the default mode network (DMN) (Raichle 2001).  The DMN is a network connecting 

the posterior cingulate cortex (PCC) to the medial prefrontal cortex (MPC), left and right 

lateral parietal cortex (l-LPC and r-LPC) and the left and right hippocampal formation (l-

HF and r-HF) (Van Dijk 2010).  This network exhibits intra and inter-subject consistency 
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and is also altered in certain pathologies such as schizophrenia, Alzheimer’s disease and 

multiple sclerosis (Rosazza 2011). 

There are two methods of detecting RSNs.  One involves seed placement in a 

predetermined area (such as the PCC) and all other BOLD voxel time courses are 

compared to that seed.  A correlation map then reveals areas showing functional 

connectivity to the seed region.  This approach requires an a priori determination for seed 

placement, and is therefore useful for studying already well established networks such as 

the DMN, where the nodes are predictably located within the brain.  Seed based analysis 

can also be done using a ‘brute force’ approach by placing seeds one voxel at a time, each 

obtaining a correlation map.  This method can identify novel networks and does not make 

a priori assumptions regarding seed placement.  However, it is very data intense and 

requires large computing power to amalgamate the information for multiple correlation 

maps. 

The second method of identifying networks in the brain uses independent 

component analysis (ICA).  ICA is a technique that assumes recorded signals are a 

mixture of a pre-specified number of independent signals.  ICA then uses an iterative 

method to locate a linear transformation that maximally demonstrates independence.  ICA 

can identify a variable number of networks depending on how many components are 

assumed.  But generally 8 major networks can be reliably identified (Cole 2010).  One 

difficulty with ICA is the identified networks sometimes overlap introducing the need to 

subjectively identify specific networks such as the DMN.  Initially, it was difficult to do 

group analysis with ICA but newer mathematical techniques (and software packages) 
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allow for group analysis (Calhoun 2001).  Comparing strength of functional connectivity 

with other measures (such as brain volume) is harder to standardize relative to seed based 

methods (Van Dijk 2010).  

 

1.5 BRAIN SIGNAL COMPLEXITY ANALYSIS 

 

The resting state analysis described above is all based on linear models.  However, 

it is well known from the EEG literature that the brain is best assessed using non-linear 

dynamic models (Kannathal 2004).  In essence, the brain is best modeled as a complex 

system.  Resting BOLD fMRI can also be assessed for brain signal complexity.  Rather 

than correlating connectivity between brain areas, the signal within any given voxel can 

reveal complexity of the resting state.  Fractal analysis is the most common method of 

analyzing complexity of physiological signals, since these signals often demonstrate 

scalar self similarity (exhibit similar patterns at different scales of measurement).  Scalar 

self similar patterns can be quantified into a fractal dimension (FD) or other similar units 

such as the Hurst exponent (H).  Each voxel can be assessed for it’s FD or H value to 

determine how complex the signal is. In the brain, BOLD signal complexity can be 

influenced by the microvascular environment (Wardlaw 2008) or neuronal 

interconnectivity (Warsi 2012).  Thus, FD analysis of resting state BOLD fMRI can 

reveal information about brain function.  FD of fMRI has already been applied to the 

study of AD (Maxim 2005; Warsi 2012) and more recently autism (Lai 2010), but is still 

in its infancy with regards to it application to brain pathology. 
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BOLD FMRI AND FRACTAL ANALYSIS 
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2.1 BOLD FMRI 

2.1.1 Physiological Basis of Blood Oxygen Level Dependent (BOLD) Signal 
 

The coupling of cerebral blood flow (CBF) to neuronal activity was shown as 

early as 1890 in dogs (Roy 1890).  In the 1970’s, optical imaging was developed for 

measuring blood oxygenation (Jobsis 1977) and has become a significant adjunct (in 

some cases a replacement) for modern blood oxygen measurement techniques (Hillman 

2007).  Based on the principle that hemoglobin changes magnetic properties between the 

deoxygenated and oxygenated forms (Pauling 1936), Thulborn discovered a nuclear 

magnetic resonance (NMR) method of measuring ex vivo blood oxygenation using the 

transverse relaxation of water (T2 effect) (Thulborn 1982).  This pioneering work 

correlated the fraction of deoxyhemoglobin with T2 relaxation times and showed that this 

change was a direct result of changes in magnetic susceptibilities (Thulborn 1982).  It 

wasn’t until 1990 that MRI field strength was sufficient such that blood oxygen level 

dependent (BOLD) signal was described in vivo (Ogawa 1990).  BOLD fMRI is a 

technique of indirect detection of neuronal activation.  An increase in blood flow during 

neuronal activation changes the relative concentration ratio of oxygenated hemoglobin 

(oHb) to deoxygenated hemoglobin (dHb).  The oHb molecule is diamagnetic (has 

negative magnetic susceptibility) and dHb is paramagnetic (positive magnetic 

susceptibility) (Pauling 1936).  Different susceptibilities cause distortions in the magnetic 

field which can be detected by MRI. The changes in susceptibility from changes in Hb 
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creates the contrast for BOLD fMR imaging (Ogawa 1990). When neurons in a region are 

activated, there is an initial reduction in the oHb/dHb ratio.  Afterwards, there is a 

relatively large increase in this ratio as vasodilatation brings in fresh oxygenated blood  

(Figure 2.1). 

 

The initial reduction in oHb/dHb is not reliably detectable, but is more evident at 

higher field strengths (Nair 2005).  It’s origin remains under debate but is most likely due 

to an initial utilization of oxygen before oxygenated blood perfuses the tissue (Ernst 

1994; Yacoub 1999).  Most fMRI studies use the subsequent increase in the oHb/dHb 

ratio (the hemodynamic response) to measure BOLD contrast.  The exact mechanism of 

how neuronal activity causes the BOLD response is still being studied, but the general 

steps are agreed upon (Nair 2005).  Specifically, neuronal signaling uses glutamate in the 

synapse as a neurotransmitter.  Glutamate is taken up by astrocytes.  This causes a 

calcium signal cascade leading to release of various vasodilators including nitric oxide 

(NO) (Nair 2005; Raichle 2006; Jakovcevic 2007).  Vasodilatation results in an increase 

in oxygenated blood, with a concurrent reduction in local magnetic susceptibility, χ. 
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2.1.2 BOLD fMRI acquisition 
 

The hemodynamic response induces susceptibility changes by altering the 

oHb/dHb ratio thus altering the ratio of diamagnetic and paramagnetic substrate. BOLD 

fMRI uses parameters sensitive to changes in T2*.  Echo-Planer Imaging (EPI) 

(Mansfield 1977) and spiral acquisitions (Glover 2012) are the most common type of 

functional MRI imaging strategies.  Each can acquire a single slice of data in roughly 

70ms, depending on required resolution, readout bandwidth, and gradient performance.  

The difference between EPI and spiral is the approach to k-space (i.e. raw data) 

navigation and filling: EPI rasterizes k-space while spiral follows one of a number of 

different possible trajectories (Euclidian, Archimedean, etc.) from the centre to the 

periphery of k-space, or vice-versa.  EPI raw data can be 2D Fourier transformed to 

images following some phase corrections accounting for left-right sampling directions.  

The spiral data, however, requires regridding to a Cartesian framework prior to 2D 

Fourier transformation.  The high temporal resolution of either approach comes at the 

Figure 2.1: Signal vs. Time plot of BOLD signal showing initial reduction in 
oHb/dHb ratio followed by a large increase 

Initial Undershoot Post-response Undershoot 

BOLD Response 
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expense of spatial resolution.  fMRI data are typically lower resolution also due to SNR 

requirements: the BOLD signal is only a few percent of the signal, necessitating larger 

voxels to improve SNR. If higher resolution BOLD data were to be acquired imaging 

would take much longer (due to the longer readout time) and the increased gradient slew 

rates required would result in more geometric distortion due to eddy currents and 

concomitant field effects. 

 

2.1.3 Task-based fMRI 
 

Typical task-based fMRI experiments involve collection of MRI volumes while 

inducing various (often 2) neurocognitive states from sensory or cognitive stimuli (Glover 

2011).  Two states often represent a task “on” state and a task “off” or baseline state.  

These two states are induced in blocks of about 10-30 seconds, usually alternating 

between the two states.  This induces a BOLD response in areas activated by the task 

(Figure 2.2). This task type is called a “block design” as paradigms are presented in 

blocks.  Other more complex designs are event related and may have many stimuli within 

one run. 
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Acquired images are processed to correct for slice timing, B0 imperfections, eddy 

currents, motion, spatial smoothing (to boost SNR) and sometimes low/high pass filtering 

to eliminate physiological noise such as cardio-respiratory signals (Glover 2011).  The 

BOLD response (or voxel-by-voxel signal intensity) is statistically compared to the 

stimulus model usually using a general linear model (GLM) (Worsley 2002) to produce a 

statistical correlation map between each voxel and the stimulus model.  This map can 

them be overlaid onto an anatomical map to identify areas of high correlation (thus 

activation) (Figure 2.3).  

 

fMRI 
Acquisition 

Stimulus 

BOLD 
Response 

Figure 2.2: Schematic of a task-based fMRI acquisition and resultant BOLD signal 
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Figure 2.3: Activation map superimposed on an anatomical scan for a task-based fMRI 
paradigm, alternating hand (left and right) finger tapping.  Areas in orange represent 
positive correlation while areas in blue represent negative correlation with the stimulus 
model. 

 

2.2 FRACTAL ANALYSIS 

 

2.2.1 Fractal Dimension 
 

Many physiological signals appear random.  However, it is now well understood 

that these are better described as complex systems (Bassingthwaighte 1994).  Elements of 

chaos theory have been able to unravel complex systems leading to the discovery of 

patterns never before apparent.  Fractals have been used to describe some elements of 

these complex systems.  These are curious geometric structures that are self-similar at 
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multiple measurement scales and are seen extensively in the structural and temporal 

complexity of nature.  Self-similarity is seen in the geography of coastlines, branching 

patterns of trees and in many physiological signals.  It was in 1975 that Benoit 

Mandelbrot coined the term “fractal” (Mandelbrot 1977) and in 1982 published “The 

Fractal Geometry of Nature” (Mandelbrot 1982) which brought fractals into ‘mainstream 

consciousness’.  Synthesized fractal patterns such as Koch’s Snowflake and Sierpinski’s 

triangle demonstrate the concept of scalar self similarity (Figure 2.4) 

 

 

Figure 2.4: Schematics of the Koch’s Snowflake and Sierpinski’s triangle depicting 
recursive pattern repetition or a spatial fractal.  

 

Biological systems that exhibit fractal patterns include the Romanesco broccoli 

(Figure 2.5) which has a general conical shape made of subunits (and sub-subunits) which 

themselves are conical.  Spatial fractals are also exhibited by the branching pattern of 

guinea pig Purkinje cells (Tank 1988) (Figure 2.5). 
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Figure 2.5: Romanesco broccoli and guinea pig Purkinje cells (Tank 1988). 

  

In addition to the spatial domain, fractal patterns can also be exhibited in the 

temporal domain. Figure 2.6 demonstrates a simulated time course where temporal 

patterns are repeated at smaller and smaller time scales.  The resultant pattern seems 

random but has intrinsic order to it (i.e. is chaotic). 
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Any time course can be examined for a deterministic pattern (one where the value 

of variables depends on the previous value) and subsequently reconstructed with 

nonlinear-dynamic mathematics to reveal potential fractal nature (Bassingthwaighte 

1994).  

 

Time 

Figure 2.6: Simulated time course where a random seeming time course (top) can be 
generated by recursive repetition of a simple time course pattern. 
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2.2.2  Measuring Fractals 
 

There are a variety of methods to calculate the fractal dimension (FD) of a 

complex system.  Fractals by their nature exhibit a power law scaling relationship i.e. 

follow a 

€ 

1/ f β  relationship (equation 2.1):   

 

€ 

q = psβ     (eqn. 2.1) 

 

where q is the measured parameter (such as MRI signal intensity), dependant on scale 

parameter s. Here, p is a proportionality factor and β  the scaling exponent (a negative 

number by some definitions of fractals) (Eke 2002).  Fractals not only show self-

similarity, they also exhibit scale invariance.  For this reason, any method of calculating 

fractals incorporates equation 2.1 to data pairs (log feature versus log scale) and uses the 

regression slope for finding the scaling exponent, β  (Eke 2002).  Sometimes, FD is 

represented by a similar scaled equivalent, the Hurst coefficient.  Hurst’s observational 

studies of storage capacities for reservoirs along the Nile identified a pattern of 

autocorrelation and long-range dependence in 1951 (Hurst 1951).  The relation between 

FD and Hurst is simply; 

 

€ 

FD = 2 −H     (eqn. 2.2) 

 

Two main categories of fractal analysis employ time-domain analysis (analyses 

done on signals without any prior transformation) and frequency-domain analysis 
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(Weitkunat 1991).  Relative dispersion analysis (RD) is a basic method for time-domain 

analysis while power spectral density (PS) is applied to the frequency domain 

(Bassingthwaighte 1994; Wardlaw 2008).  Signal RD is a measure of variance derived 

from the standard deviation (SD) and the mean of the signal (µ) (equation 2.3): 

 

€ 

RD =
SD
µ

    (eqn. 2.3) 

 

Bassingthwaighte observed a linear relationship between the log of the relative 

dispersion (RD) and log of measurement scale (Bassingthwaighte 1988; 

Bassingthwaighte 1989).  This reproducible observation has been observed for many 

fractal patterns and mathematically can be described as: 

 

€ 

FD =1− log[RD(m) /RD(m0)]
log(m /m0)

 (eqn. 2.4) 

 

where FD is the fractal dimension, m is the scale of measurement used to calculated RD, 

and m0 is an assigned reference value.  For mathematical simplicity, m0 is often assigned 

to a value of 1.  This equation is bounded by limits such that an FD can range from 1 to 2.  

A FD of 1.5 describes random uncorrelated noise (white noise) and FD of 1.0 represents 

completely ordered signal (or uniformity over measurement scale).  FD between 1.5 and 

2.0 are rarely found in physiological signals and represents negative autocorrelation (i.e. a 

change in one direction predicts future change in the other direction).  Practically, FD can 
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be calculated from RD using the slope of a log-log plot of RD versus measurement scale.  

This plot is produced by calculating the RD of the whole signal, then averaging adjacent 

values (to effectively half the number of observations) and finding the RD of this new 

series.  This can be done for multiple iterations to produce a set of data pairs (RD and 

series size) (Bassingthwaighte 1994).  

FD calculated from power spectral density (PS) uses a fast Fourier transformation 

(FFT) for analysis in the frequency domain.  The log of frequency plotted against log of 

signal power produces a linear relationship (equation 2.5): 

  

€ 

A 2
=
1
f β

    (eqn. 2.5) 

 

where A is amplitude of the signal Fourier transform, f is frequency and β  is a constant 

used to calculate FD (equation 2.6):  

 

€ 

FD = 2 − (β+1)
2

   (eqn. 2.6) 

 

Most physiological signals exhibit a noise pattern called fractional Gaussian noise 

(they are stationary signals) (Bassingthwaighte 1994; Maxim 2005; Wardlaw 2008).  
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2.2.3 Fractal Characterization 
 

Fractal signals can exhibit patterns described either as fractional Gaussian noise 

(fGn) or fractional Brownian motion (fBm).  fBm signals are described as non-stationary 

and can have a slow drift within the time course.  There are more low frequency 

components and therefore β  equation 2.5 represents a steep negative slope in the log-log 

plot for PS.  fBm can occur from either non-physiological noise (e.g. MRI system noise) 

or represent some physiological signals such as MRI signal from brain CSF (Maxim 

2005).  fGn is the corollary of fBm and represents stable signals.  Although most 

physiological signals have characteristics of fractional Gaussian noise (fGn), it is 

important to distinguish fGn from fBm since the FD calculations for each is different 

(Eke 2000; Eke 2002).  The RD method is more accurate for fGn signals while PS can be 

biased for high FD values (Eke 2000).  

With simple signal characterization into fGn or fBm, β  > 1 represents fBm while 

β  <1 represents fGn.  However, empirical evidence suggests that classification of β  

around 1.0 is inaccurate with about 40% uncertainty, specifically in the range of 

0.38<β<1.04 (Eke 2000).  Therefore Eke et al. proposed a careful approach for FD signal 

classification.  Signal with β  close to 1 can be converted, through signal summation 

conversion (SSC), so that both fGn and fBm signals become fBm signals.  β  is then 

calculated via scaled windowed variance (SWV) analyses to reclassify the signal as either 

fGn or fBm.  SWV is similar to RD but where RD is applicable only to fGn, SWV is for 
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fBm.  SWV divides the series into non-overlapping windows of size τ , for which SD can 

be calculated.  FD can be derived from the following equation; 

 

€ 

SD(τ) = SD(τ0)
τ
τ0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(2−FD )

  (eqn 2.7) 

 

where τ0 is a reference value for window size (similar to m0 for RD in equation 2.4) (Eke 

2000).  This method can provide a better estimate of FD when there is a possibility of 

fBm contamination of a physiological signal.  Once identified, fBm signal can either be 

filtered out or calculated separate from fGn.  

 

2.2.4 Fractals and Physiology 
 

When physiological systems were examined for chaotic patterns, many were 

found to contain fractal patterns (Bassingthwaighte 1994) exhibiting self-similar, 

€ 

1/ f β  

relationship.  Although this relationship exists both in the spatial and temporal domain, 

this discussion exclusively describes temporal fractals (no spatial fractal evaluation was 

done in this work).  The 1/f relationship has been observed in brain 

electroencephalography (EEG) (Xu 1988), cardiac ECG (Bär 2007), respiratory volumes 

(Hoop 1993), voltage across cell membranes (Churilla 1996) and in perfusion of tumors 

(Craciunescu 1999).  It is not clear why nature exhibits fractal patterning although one 

possible reason is fractals offer an efficient way for systems to store information and thus 
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exhibit “memory”.  This allows for adaptability and learning from previous experiences 

(Sharma 2009).  Fractals in nature can occur due to interactions at small scale such as 

from closest neighbors (seen in many cellular interactions) or may be the result of large-

scale processes (Bassingthwaighte 1994). 

Fractal or chaotic behavior has been linked to health in physiological systems.  

One belief is that chaotic behavior represents enhanced ability for adaptability.  

Stationary, non-complex signals represent non-adaptive signals.  For example, lack of 

fractal beat-to-beat variability has been related to mortality in myocardial infarction 

(Tapanainen 2002).  This has also been seen in populations at high risk for heart disease 

such as patients with schizophrenia (Bär 2007) and those with stroke (D'Addio 2009).  A 

recent review highlighted the importance of fractal scaling on health, including aging and 

mortality, sleep, growth, circulatory systems, and drug doses (West 2012).  

In the brain, fractal analysis has long been used to understand brain 

electrophysiology.  As early as 1988, fractal patterns within EEG traces was documented 

(Xu 1988).  In 1992, researchers described details of 1/f scaling in EEG acquired in 

resting states with eyes-closed and eyes-open EEG (Pritchard 1992; Schepers 1992).  

Fractal patterns in EEG have been studied in normal subjects (Song 2005; Kiviniemi 

2008) and in pathology, such as during epileptic seizures (Bullmore 1994; Kannathal 

2004) (Song 2005).  EEG fractal analysis can even identify seizures pre-ictally (Li 2005), 

an important factor in the behavioral and pharmacological treatment of epilepsy.  

Generally, seizure activity reduces EEG FD (Kannathal 2004), which is in keeping with 

neuronal synchrony decreasing signal complexity.  Beyond EEG, there have been various 
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other brain electrophysiological signals that show a fractal pattern.  This has included 

laser Doppler flowmetry from the brain cortex, laser speckle imaging (allowing for 2D 

perfusion analysis) and near infrared spectroscopy (Herman 2009).  Early SPECT studies 

showed a fractal pattern to cerebral blood flow in vascular dementia (Yoshikawa 2003) 

and magnetoencephalography (MEG) demonstrated fractal patterns in normal subjects 

(Kitzbichler 2009) as well as in patients with AD (Gómez 2009).  

 

 

2.2.5 Fractal fMRI of the Brain 
 

Once MRI technology allowed for fMRI at high temporal frequency, it became a 

valuable tool for non-invasive investigation of fractal-type patterns of the brain at rest 

(Bullmore 1996; Zarahn 1997; Bullmore 2001).  Notably, this occurred not long after 

invention of fMRI (Ogawa 1990).  Similar to EEG, 1/f properties of BOLD time series 

were discovered, opening up a new window into the brain at rest.  One major advantage 

of MRI over EEG, however, is the superior spatial resolution for fractal analysis.  Earlier 

studies focused on identification and characterization of fractals in fMRI (Zarahn 1997) 

(Fadili 2002) then clinical applications began to emerge (Maxim 2005; Wink 2006; Lai 

2010).  Consistent with pre-fMRI findings, there is a correlation between the power 

spectrum of fMRI and EEG (Kiviniemi 2008) as well as MEG (Kitzbichler 2009).  

Like resting state fMRI, fractal analysis of resting state BOLD bypasses the 

complexity and biases associated with task-based fMRI studies.  The scans are relatively 
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simple to perform.  Post imaging data processing can be time intensive, but commercially 

available software may reduce this bottleneck (e.g. fraclab, http://fraclab.saclay.inria.fr/).  

Despite the early identification of fractals in fMRI, there have been very few reports of 

it’s clinical utility.  The few clinical applications that do exist mostly revolve around 

aging and dementia (Maxim 2005; Wink 2006; Warsi 2012).  This is likely due to 

difficulty finding overlapping expertise in clinical science and mathematics and may 

require more multidisciplinary and trans-disciplinary approaches (West 2012).  The work 

herein bridges this gap. 
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CHAPTER 3 
 

 

AD AS A MODEL OF BRAIN CONNECTIVITY 
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3.1 AD PATHOLOGY 

 

Dementia is a prevalent and serious illness that affects an increasing proportion of 

our population.  In addition to the debilitating morbidity and mortality to the individual, 

dementia causes significant burden on family, caregivers and health care systems. 

Estimates predict that in less than 30 years, prevalence rates of dementias will double in 

Canada and healthcare costs will increase 10 fold in this time period (MedicalNews 

2010). 

AD accounts for the vast majority of dementia in Canada (Prince 2009). 

Symptoms usually start in the 6th decade of life and involve a progressive degeneration of 

cognitive function.  Histopathology through autopsy or biopsy is the only definitive way 

of diagnosing AD.  The core histological features of AD are neurofibrillary tangles (NFT) 

and senile plaques (SP). 

Abnormal NFT are found in the cell body of neurons and are a consequence of 

phosphorylation of the protein Tau rendering it insoluble.  Formation of NFT disrupts 

cellular transportation, which can eventually lead to cell death.  In this case, NFT 

skeletons are left behind.  Plaques are formed from extracellular amyloid surrounded by 

dystrophic axons as well as inflammatory cell precursors (astrocytes and microglia). 

Furthermore, their formation is related to abnormalities in expression of the amyloid 
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precursor gene.  This is worsened (but not caused) by a homozygous expression of 

ApoE4 (a genetic marker for elevated risk of AD) (Kandel 2000).  

As neuronal cells progressively die, there is a slow reduction in brain volume and 

function (Dubois 2007).  Volumetric changes have been studied in vivo since the advent 

of CT scanning and later with MRI.  Due to the long history of structural imaging in AD 

(de Leon 1989), volumetric changes have been a significant part of the evaluation of AD 

(Dubois 2007).  

 

3.2 STRUCTURAL CHANGES IN AD 

 

CT is used extensively in the clinical assessment of dementia (Patterson 1999).  

The ability to rapidly acquire high resolution images, wide spread access to CT scanners 

and relatively low cost has contributed to its popularity.  The primary purpose of CT 

scanning is to eliminate secondary causes of dementia (such as stroke, hydrocephalus, 

atrophy, or space-occupying lesions).  A few characteristics of CT images can help 

differentiate and stage the severity of dementias such as volume changes in the medial 

temporal lobe (MTL) (Keyserling 2005).  Unfortunately, the changes shown with CT 

occur quite late in dementia; only after considerable brain changes have already 

happened.  Another important problem with use of CT not to be overlooked, is that 

volumetric assays have been less reliable, predominantly because of the poorer grey/white 

matter discrimination and scan angle (since scanning in any non-axial plane is not 

possible) (de Leon 1989).  The value of CT is its wide spread availability and as an 
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alternative for people contraindicated for MRI (due for example, to metallic implants, 

pacemakers, etc.) (Keyserling 2005).  One other consideration of CT is radiation dose, 

which is approximately 1-3mSv (head scan), prompting specific guidelines for its use in 

dementia screening (Small 2008).  Use of a 3D T1-weighted MRI scan is the traditional 

method of producing high-resolution brain images similar to CT.  Although the resolution 

in the past has been inferior to CT, the grey/white matter differentiation, multi-planar 

acquisition and lack of ionizing radiation have made MRI superior to CT for studying 

structures in dementia (de Leon 1989). 

MRI volumetry involves the automatic or manual tracing of brain structures in 

multiple slices allowing for volume measurements.  Since most dementia is associated 

with progressive brain tissue loss, volume measurements can provide useful information 

about disease progression.  Region specific volume changes may be associated with 

different dementias.  AD is associated with atrophy of the parietal lobes and the medial 

temporal lobe (including the hippocampus) as seen by MRI (Vitali 2008).  There is also 

overall brain volume loss and increase in ventricular size (Brewer 2009).  Hippocampus 

volume is a consistent and predictable marker of AD and can sometimes be used to 

detected risk of conversion from mild cognitive impairment (MCI) to AD (Hampel 2008).  

A change in hippocampus volume over time is an accurate measure of disease 

progression and is used as an outcome measure in many AD treatment studies (Bradley 

2002; Hampel 2008).  Whole brain volume and whole brain to ventricle volume ratios are 

sensitive but not specific markers of AD severity.  More specific findings are changes in 

cortical thickness or a multivariate principal component analysis (PCA) of brain 
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deformation (Teipel 2007; Lerch 2008).  These methods use automated approaches to 

brain volumetry and the neuroanatomic correlations of these methods have not been 

established with pathology (Raz 2007).  There is, however, good correlation between 

automated approaches and manual segmentation (Hsu 2002; Brewer 2009).  Since 

volumetric changes in AD are a central feature of illness progression, volumetric 

measurements were included in all of the studies presented in this thesis.  

 

3.3 METABOLIC CHANGES IN AD AS MEASURED BY 1H MAGNETIC RESONANCE 

SPECTROSCOPY (MRS) 

 

Magnetic resonance spectroscopy (MRS) is a MR technique that allows 

acquisition of spatially prescribed in vivo nuclear magnetic resonance (NMR) spectra.  

Most often, MRS is performed with hydrogen (i.e. proton, 1H) due to the high natural 

abundance, high gyromagnetic ratio (γ = 42.576MHz/T) and relative simplicity (i.e. the 

MRI scanner is already tuned to 1H for imaging).  Other forms of MRS are called 

broadband or multinuclear (e.g. 13C, 31P) and have advantages and disadvantages 

associated with them that are not a part of this thesis.  During 1H-MRS acquisition 

metabolic NMR signatures for a plethora of overlapping metabolites are encoded (de 

Graaf 2007).  This technique allows the probing of various metabolites and xenobiotics 

present within a voxel of interest.  Common 1H-MRS identifiable chemicals of interest 

include N-acetylaspartate (NAA), choline (Cho), creatine (Cr), alanine (Ala), lactate 
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(Lac), myoinositol (mI), glutamate (Glu), glutamine (Gln), glucose (Gc) (Soares 2009) 

and sometimes gamma-Aminobutyric acid (GABA).   

AD is associated with a decrease in NAA (a marker of neuronal cell viability) and 

an increase in mI (a marker of inflammation) (Schuff 2002).  There is also a correlation 

between choline and cognitive improvement with AD treatment (Schmidt 2009).  These 

findings are in keeping with the pathology of AD.  Degenerative diseases like AD can 

also have increased Glu due to impaired reuptake at the synapse (Hu 2007).  

Another method of MRS called chemical shift imaging (CSI) allows evaluation of 

metabolites over a 2 or 3 dimensional volume of the whole brain rather than focusing on 

one voxel.  This technique is also called multivoxel MRS as data acquisition involves 

spatially encoding multiple voxels over the prescribed volume.  Results are often 

qualitative rather than quantitative.  This method can be technically quite difficult due to 

the sensitivity to motion (Schmidt 2008) and the difficulty in getting a large homogenous 

B0 over the entire acquisition volume (i.e. difficult to achieve a perfectly homogenous 

shim over such a large volume).  Since some of the documented changes observed in AD 

patients using MRS are quite subtle, CSI measures have not found consistent results in 

assessing dementias (Valenzuela 2001).  Overall, however, single voxel 1H-MRS 

provides some robust markers of AD (lower NAA and higher mI) and as such was 

included in our study as a comparator to functional methods.  

Analysis of MR spectra is challenging due to the overlapping resonances, 

especially in the narrow banded 1H-MR spectra, which only covers roughly 5-7ppm.  

Analysis used to be done through individual peak assignment (by hand) and subsequence 
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deconvolution.  More recently a number of algorithms have been developed that use a 

linear combination of NMR basis sets for each metabolite.  The most noted of these is 

LCmodel (Provencher 1993).  There are a few others, however, such as Java Magnetic 

Resonance User Interface (jMRUI) (Mandal 2012) or Totally Automatic Robust 

Quantitation in NMR (TARQUIN) (Wilson 2011). 

 

3.4 IRON CHANGES IN AD AS MEASURED BY SUSCEPTIBILITY WEIGHTED IMAGING 

(SWI) 

 

Susceptibility weighted imaging (SWI) is a high-resolution 3D gradient echo MRI 

method, with flow compensation in all three orthogonal planes, that enhances contrast 

from local tissue susceptibility variations.  This allows assessment of regional brain iron 

deposition and the detection of iron rich microbleeds.  Development of brain microbleeds 

is associated with risk of progressive cognitive impairment (Werring 2010).  Microbleeds 

may be secondary to cerebral amyloid angiopathy and are detectable by SWI.  Since SWI 

is sensitive to a very small amount of iron, some deposits may actually represent iron in 

senile plaques associated with AD (Ayaz 2010).  Histopathology has shown that SWI 

hypointensities correlated with microbleeds that are associated with cerebral amyloid 

angiopathy, seen in up to 95% of patients with AD (Schrag 2009).  

In addition to microbleeds, phase shift measurements using SWI are sensitive to 

iron concentrations and thus SWI can be used to quantify iron in the brain.  Using SWI, 

iron concentration in the brain was found to correlate with cognition and risk of dementia 
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(Kirsch 2009).  Increased iron may be a result of overloaded axonal and neuronal iron 

transport mechanisms (Kirsch 2009).  Improved mesencephalon imaging with SWI may 

help visualization pathology in this region (Manova 2009).  The same is true of iron 

content in the basal ganglion (Bartzokis 2000; Sehgal 2005).  SWI is a robust MRI 

technique to measure iron in the brain.  Since iron is central to the pathogenesis of AD, 

we compared SWI to our measures of functional connectivity. 

 

3.5 FUNCTIONAL CONNECTIVITY IN AD 

 

Traditional fMRI involves task-based brain activations.  Memory encoding tasks 

during fMRI have shown decreased activation of the hippocampus in patients with AD 

when compared to controls.  There is increased activation in the medial parietal and 

posterior cingulate regions and this may represent a dedifferentiation of memory tasks or 

compensatory activation (Sperling 2003).  Patients with AD also exhibit decreased 

lateralization during cognitive tasks, more prominently than with normal aging.  Tasks 

that preferentially activate one side of the brain are seen to have activations bilaterally, 

further suggesting dedifferentiation (Minati 2007) or compensatory mechanisms (Han 

2009). 

As described in Chapter 2, resting state BOLD (rsBOLD) can also be used to study brain 

function in health and disease.  Although analysis of rsBOLD varies, general patterns of 

functional connectivity remain constant and there is specific disruption of these patterns 

in dementia (Liu 2008).  AD is associated with a decrease in functional synchrony in the 
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hippocampus (Li 2002).  ICA and seed-based methods of rsBOLD analysis have revealed 

decreased connectivity in the posterior cingulate and hippocampus (Greicius 2004; Sorg 

2007) and well as prefrontal-parietal networks (Wang 2007).  These changes can 

distinguish AD from controls (with a sensitivity of 85% and specificity of 77%) and may 

predict conversion from MCI to AD (Greicius 2004).  Brain network disruptions correlate 

with disease severity in AD (Broyd 2009; Fleisher 2009).  Resting state BOLD has also 

been shown to correlate with fluorodeoxyglucose positron emission tomography (FDG-

PET), a marker of brain activity (Perrin 2009) and these findings are not accounted for by 

brain atrophy (He 2007).  Resting state network (RSN) analysis thus provides a 

reproducible measure of functional connectivity in AD.  

 

3.6 FRACTAL DIMENSION IN AD 

 

Since neuronal loss and disconnectivity are likely related to changes in signal 

complexity, one of the earlier clinical applications of fractal analysis of BOLD data 

observed AD (Maxim 2005) and normal aging (Wink 2006).  Aging is associated with a 

decrease in FD (increase in Hurst exponent).  This effect was exaggerated by cholinergic 

blockade (effectively mimicking AD) (Wink 2006).  The comparison of AD to healthy 

age matched controls showed AD causes a significant global reduction in FD as measured 

using magnetoencephalography (MEG) (Gómez 2009).  These preliminary studies opened 

the door to FD analysis in AD and this thesis takes the next steps to explore this further.  
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Using AD as a clinical population to study RSN and FD has two main uses. First, 

comparing rsBOLD changes to already established measures of AD pathology such as 

volumetry, MRS and SWI gives us a ‘yard stick’ with which to measure the accuracy, 

utility and limitation(s) of these novel techniques.  If favorable, FD can be further applied 

to other brain pathologies, including mental illness.  Secondly, FD analysis can offer 

details about fMRI signal not available to other established methods.  Because of this, FD 

may unveil novel information about AD pathology in early stages of illness. 
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CHAPTER 4 
 

 

PROJECT HYPOTHESIS, OBJECTIVES AND METHODS 
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4.1 HYPOTHESIS 

 

 The brain is inherently complex.  In fact it is best described as a “complex 

system” (Bullmore 2009).  Complex systems are incredibly non-linear and are not easily 

characterized.  The brain is described as a complex system because it is continually 

adapting to multitudes of internal and external stimuli, all at differing intensities and 

frequencies, which are then rapidly processed to generate an appropriate output (scaled in 

time, space, amplitude, phase and frequency).  A complex system is a healthy system as 

complexity drives the ability for adaptation.  A linear system can not, and does not 

dynamically adapt as a complex system does (Bassingthwaighte 1994).  Therefore the 

work proposed in this project revolved around the hypothesis that rsBOLD signal 

complexity, as measured through temporal fractal dimension (FD), relates to severity of 

AD and functional connectivity.  In essence, a sick brain loses the ability to adapt and 

hence becomes less complex.  The measure of FD was chosen as the BOLD signal is 

already a complex mixture of blood flow, metabolism, oxygenated 

hemoglobin:deoxygenated hemoglobin (oHb:dHb) concentration and blood volume, all at 

unknown and rapidly varying values.   Additional hypotheses included the following: 1) 

Reduced BOLD signal complexity correlates with reduced regional brain volume (i.e. if 

neurons were dying, this is reflected in brain volume loss and hence reduced network 

complexity);  2)  Regional brain iron content is increased when brain rsBOLD signal is 

less complex (i.e. it is already well understood that elevated brain iron is linked with 
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many brain diseases such as AD); and 3) Metabolic indices of AD (i.e. decreased NAA 

and increased mI) scale with loss of BOLD signal complexity. 

 

4.2 METHODS 

 

AD subjects for this study were recruited by Dr. William Molloy from St. Peter's 

Centre for Studies in Aging, Hamilton Ontario.  These subjects were part of a larger drug 

trial of AD (DARAD Trial) (Yavuz 2009), but subjects approached for the MRI study 

were not taking any drug from the study that would bias MRI results (they were 

effectively on placebo).  Age matched healthy controls (NC) were recruited from the 

spouses of study subjects, allowing for relatively close matching in age, accessibility to 

the study centre and day-to-day environmental exposures.  Although most AD agreed to 

return for rescanning 9-12 months later, the DARAD trial was terminated early and only a 

small proposition of subjects had been in the study for >9 months.  Therefore, only about 

a quarter of AD subjects had repeat scans in our study.  

For the FD validation scans (chapter 5) where some the scans were quite long, we 

chose healthy volunteers.  Despite subject and scanner accessibility, we could not scan 

subjects for hours at a time.  Therefore, some the validation data was extrapolated from 

longer single subject scans.  The details of this are explained in chapter 5.  Since the work 

overlapped with another graduate student working on FD in the same lab (Wardlaw 

2008), it was this student’s FD method we originally focussed on (chapters 5 and 6).  
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After this, our lab started to refine the FD method (Elzibak 2011), leading us to use the 

FD algorithm described by Eke et al (Eke 2002) (chapter 7). 

When choosing a region of interest (ROI) for our MRS study (chapter 6), we 

proposed a grey matter structure that was i) relatively homogeneous, ii) not bounding air, 

fluid or bone interfaces that could cause artefacts in the MRS and FD measurements, and 

iii) was involved in the pathology of AD.  Our initial choice was the hippocampus.  

However, the results from an optimized MRS stimulated echo acquisition mode 

(STEAM) sequence and FD in our first subject showed too much susceptibility artefact to 

justify continuing.  Our second choice was the putamen, which was our successful ROI 

for future scans. 

We used a STEAM sequence that was optimized to concurrently measure 

glutamate, glutamine and GABA in addition to NAA and mI.  This method originally 

proposed by Hu et al. (Hu 2007) and was implemented by a graduate student in our lab 

(Sheffield 2010).  Our approach used a cubic MRS voxel, and to obtain sufficient SNR, 

the voxel was larger than the width of the putamen (8cm3).  This introduced the potential 

of partial voluming which could not be avoided, unless we had a transmit SENSE MR 

platform with spatially programmed volume selective RF.  FD analysis was also 

prescribed to the same cubic voxel to ensure an accurate comparison of FD and MRS.  

When not constrained by an MRS voxel, measurement of FD in the putamen used a 

precisely outlined ROI for each subject (chapter 7). 

Measuring resting state networks (RSN) in the brain complimented studying 

network complexity with FD analysis.  We designed the study (chapter 7) to compare 
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connectivity in the DMN to FD within the DMN (in the posterior cingulate cortex, PCC) 

and outside of it (in the putamen).  The putamen was chosen to allow for consistency with 

our previous study (chapter 6), and the PCC is the central DMN and also involved in AD 

pathology.  Both the PCC and the putamen fall within the same axial acquisition plane, so 

FD could easily be measured from both ROIs from our high frequency (TR=250ms), low 

special coverage (3 slices) BOLD scan.  

The final study (chapter 8) describes the evaluation of how iron deposition may 

alter brain network connectivity.  Iron content was calculated from susceptibility 

weighted images (SWI).  SWI post-processing was done using a GE  Functool plug-in 

(General Electric Healthcare, Milwaukee WI) written in-house.  The results from this 

plug-in were compared to results from the SPIN software developed by Dr. Mark Haacke 

(Haacke 2010) and was found to be equivalent.  The methods for SWI analysis are 

described in chapter 8. 

The last chapter of the thesis (chapter 9) distils the experimental results into one 

story and provides suggested future directions. 
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CHAPTER 5 
 

 

TEMPORAL FRACTAL DIMENSION (FD)  

STABILITY OF BOLD FMRI 
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Brain Fractal Blood-Oxygen Level Dependent (BOLD) Signals: The Effect of MRI 

Acquisition Parameters on Temporal Fractal Dimension (FD) Stability 

 

Mohammed A. Warsi, B.Sc., M.Sc., M.D., FRCP(C), Alexander M. Weber, B.Sc., M.Sc., 

Michael D. Noseworthy, M.Sc., Ph.D., P.Eng. 

 

5.1 CONTEXT OF THE PAPER 

 

FD is a relatively new measure of rsBOLD and for this reason stability as a brain 

metric requires exploration.  It is understandable that signal complexity can vary with 

signal parameters.  Therefore brain FD was measured when key imaging acquisition 

parameters were altered.  This included how rsBOLD signals were acquired (spiral vs. 

EPI), length of data collected and data temporal resolution.  In the third paper (chapter 7) 

intra-subject scan-to-scan reproducibility was evaluated.  Additionally, all acquisition 

factors were explored for both methods used in this thesis for measuring FD (i.e. FDRD 

and FDPS) highlighting each method’s strengths and weaknesses.  

 

5.2 DECLARATION STATEMENT 

 

Mohammed Ali Warsi and Alex Weber, as principle co-authors, wrote the article, 

performed analysis and created figures and tables as appropriate. Contributions by 
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Mohammed Ali Warsi warranted his name as first author.  Michael D. Noseworthy, as 

corresponding author, described the need for and initiated the study on FD stability, wrote 

the first versions of the FD analysis program using Matlab (Mathworks, Natick, MA), 

provided guidance, funding and advice.  Furthermore he was instrumental in 

proofreading/editing and submitting the manuscript for publication. 

 

This paper has been submitted for publication to the journal Visualization, Image 

Processing and Computation in Biomedicine. 
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ABSTRACT 

Fractal analysis of the temporal patterns in functional magnetic resonance imaging 

(fMRI) brain data has recently gained momentum in assessing diseased and 

pharmacokinetically altered brain.  However, there is no agreed upon standard method of 

acquisition and analysis. Therefore, we examined the fractal dimension (FD) of the 

brain's blood oxygen level dependent (BOLD) signal over time, with varying time-points, 

MRI k-space filling techniques, repetition times (TR), and scan lengths.  Furthermore, 

fractal dimension was determined with two different approaches: relative dispersion 

(FDRD), and power spectrum (FDPS) techniques.  At a reduced number of time points, 

FDRD is resistant to differing TR.  FDPS is time-point invariant at a low TR (250ms).  

With constant scan times, FDPS is the least variable.  Our results show there are some 

constraints to FD measurement in the brain that require a certain amount of consistency in 

technique when comparing multiple scans.  But within these constraints, FD can provide 

a reliable method to examine brain resting state BOLD signal. 

 

 

KEY WORDS 

functional magnetic resonance imaging, blood oxygen level dependent (BOLD), MRI, 

brain, fractal, resting state
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INTRODUCTION 

Fractals are non-differentiable functions that exist where Euclidean systems fail 

and their dimension exceeds that of topological dimensions (i.e. is non-Euclidean).  

Fractals exhibit self-similarity at multiple scales.  They are found in biological and 

physiological systems, some examples being: the surface area of the Romanesque 

broccoli1, pulmonary blood flow2, EEG patterns3, and DNA base-pair sequences4.   

As opposed to Euclidean geometry, whose structures have topological dimensions 

that are integers, fractal structures have fractional dimensions.  For example, one of the 

earliest fractals described was the Koch curve, the dimension of which is 1.2613. The 

definition of a fractal dimension (FD), given by Mandelbrot5 is: 

 

€ 

FD =
log N( )
log r( )    eqn. 1 

 

where N is the number of unit lengths in a basic recurring pattern, and r is a scale ratio, or 

number of unit lengths over the pattern’s base (Fig. 1).  However, this equation is 

impractical in biological systems where N and r are hard to define.  Alternatively, FD can 

be calculated using an indirect method that estimates the value from the slope of a 

relationship between two parameters (detailed below). 
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Figure 1.  Part of Koch’s curve. On the left, the first iteration of Koch’s curve is shown, where N 

is equal to the unit lengths (4), and r is equal to the number of unit lengths that will cover the base 

(3).  The center and right graphs show the second and third iteration (with N=16, r=9 and N=64, 

r=27, respectively).  All of the graphs have an FD value of 1.2619 (logN/logr). 

Figure 5.1: Part of Koch’s curve. 

 
Since the 1990s, it has been known that time-signals from functional magnetic 

resonance imaging (fMRI) blood oxygen level dependent (BOLD) signals can be 

modeled using fractal mathematics6.  These patterns have long memory, or are positively 

auto-correlated, in time.  This auto-correlation is denoted using FD or the Hurst exponent 

(H), a scaled variant to FD.  Values of FD between (but not including) 1 and 1.5 are said 

to be negatively auto-correlated; between 1 and 1.5, positively auto-correlated; and a 

value of FD=1.5 indicates a time-series made up of white noise (i.e. truly random). 

There are many methods of determining FD from a time series, only two of which 

will be discussed in detail here (for a full review see Bassingthwaighte7).  The first 

method8 determines data relative dispersion (RD) and is best suited for consistently 

sampled data.  Signal FDRD can be calculated from RD (standard deviation divided by 

mean of the signal) using:  

 

€ 

FD =1− log[RD(m) /RD(m0)]
log(m /m0)

  eqn. 2 
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where FD is the fractal dimension, m is the scale of measurement used to calculated RD, 

and m0 is an assigned reference value.  For mathematical simplicity m0 is assigned a value 

of 1.0.  This approach is done by pooling and taking the mean of adjacent values from the 

original set, progressively reducing the size of the new data set.  FDRD is then estimated 

by finding α: the negative slope of log(RD) plotted against log(group size); where 

.  The FD can also be obtained using signal frequency or power, 

accomplished by first applying a Fourier transform to the data.  Next, the absolute power 

spectrum (PS) of the signal is obtained, by squaring the absolute value of the complex 

waveform, which in turn is inversely related to the frequency raised to the power of β:  

€ 

PS 2
= f −β      eqn. 3 

FDPS is then calculated from:  

    eqn. 4 

 

This holds true for most physiological signals where β  <1 and the signal is classified as 

having a fractional Gaussian pattern (fGn)9.  When β  is negative for fractal signals they 

are often referred to as 1/f processes. 

Schepers et al. compared four different techniques to calculate FD on simulated 

data with known H values10.  The four FD techniques included: RD; PS; Hurst’s original 

method for determining the H exponent, referred to as the rescaled range analysis (R/S); 

and correlation analysis (C).  Their analysis showed the RD method often under-estimates 
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the H value, such that FD is biased toward a 1.5 value as it takes into account correlations 

over large temporal distances.  They further showed that RD is well suited for long 

signals.  They concluded the PS method gave least biased results, with lowest variance, 

for both short and long signals (defined as 512 and 32768 time-points respectively). 

Fractal analysis of brain BOLD signals has been successfully applied to the study 

of Alzheimer’s disease11, 12, acute pharmacological challenge13, attention deficit-

hyperactivity disorder14, cognitive tasks15, and autism16.  Thus, in recent years, the 

application of fractal analysis in brain applications has become a useful and potentially 

powerful method.  These studies, however, each used a frequency domain fractal analysis 

method, with similar TR times (~1100ms) and analyzed the same number of time-points 

(512) (Table 1). 

 
Table 1: Table comparing approaches for fractal BOLD changes in the brain. These 5 are the 
only ones, to the best of our knowledge, and have all used almost identical methods.  
 

Published Study Time-points FD Analysis Method Repetition Time 
Maxim, 2005 512 Frequency domain 1,100 
Wink, 2006 512 Frequency domain 1,100 
Anderson, 2006 512 Frequency domain 1,000 
Wink, 2008 512 Frequency domain 1,100 
Lai, 2010 512 Frequency domain 1,302 

Table 5.1: Comparing approaches for fractal BOLD changes in the brain. 

 
 

No study has yet been published that evaluates brain BOLD fractal signal 

properties over various acquisition schemes.  Even though researchers use similar 

analysis techniques and MRI parameters, there has yet to be an investigation showing 

fractal signal dependencies (if any) on these parameters.  Therefore, we performed the 
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following variations in BOLD scanning to determine effects on fractal signal 

characteristics: MRI k-space filling method (spiral vs. EPI), length of repeat time (TR) or 

sampling frequency (TR-1), number of temporal points (TP) and total length of scan (LS).  

A lower TR is sensitive to signal higher frequency components but at the expense of 

spatial coverage.  Finally, we also evaluated the fractal stability of the signal over time.  

 

MATERIALS AND METHODS 

The study was approved by our local research ethics committee, in accordance 

with the declaration of Helsinki.  Healthy young-adult subjects (five male and two 

female; all between the ages of 25 to 35) were scanned using a GE 3T Signa HD MRI 

system and 8-channel phased array head RF coil (GE Healthcare, Milwaukee WI).  

Subjects were assigned to various BOLD scan parameters as described in Table 2. 

 
Table 2: Number of subjects of each type of scan. Some subjects participated in more than one 
scan. 
 

Scan Type Repetition Time Slices Time-points Subjects Section 
6666 2 6 3 2048 5 4, 5 250 

1 8192 1 1, 2, 3 EPI 

2000 24 256 5 4 

Spiral 250 3 2048 4 5 
Table 5.2: Number of subjects of each type of FD scan. 

 
 

Following a 3-plane localizer scan, a 3D T1-weighted sequence (fSPGR IR 

prepped α=12°, TE/TR/TI = 2.1/7.5/450ms, FOV=24cm, 320x192 matrix, 2mm thick, 90 

slices, interpolated to 180 i.e. 1mm thick) was used to prescribe BOLD image acquisition 
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through the largest cross sectional area of the basal ganglia, parallel to the AC-PC line 

(i.e. anterior-posterior commissure).  During all BOLD scans, subjects were asked to 

remain still, keep their eyes open, not sleep, and not think of anything in particular (i.e. be 

‘at rest’ as best as possible).  fMRI  scans were done using either EPI or spiral-based k-

space acquisitions.  However, both were single readout trajectory (single shot EPI, or 

single interleaf spiral) and both used the following same acquisition parameters: TE=35, 

FOV=24cm, 64 ×64matrix, 5mm thick slices.  Differences between k-space filling 

strategies are detailed below.   

To test variations in scan TR, TP and LS, EPI scanning was performed.  This was 

done with either short TR (α=70°, TR=250ms) with a range of 1-3 slices and 2048 to 

8192 time points, or a long TR (α=90°, TR=2000ms) with 24 slices and 256 time points 

(see table 2 for details).  For all scans the first 10 seconds (40 acquisitions for 

TR=250ms, and 20 for TR=2000ms) were discarded to allow for signal/T1 relaxation 

equilibration.   

It was not feasible to scan single subjects enough times to get FD data 

representing multiple different repetition times (TR), scan lengths (LS) and number of 

temporal data points (TP).  These variations were therefore calculated from single scans 

lasting 34.13 minutes (1 slice, 8192 time points, TE/TR=35/250ms, α=70°, FOV=24cm, 

64×64matrix, 5mm thick slices) and varying TR, LS and TP was done artificially taking 

into consideration the following relationship, LS=TR×TP.  This approach removed any 

potential scan-to-scan variation effect.  Thus either TR, TP or LS were able to be constant 

while varying the others. 
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1)  Constant Repeat Time (TR) 

 We extracted BOLD data with the following number of time-points: 32, 64, 128, 

256, 512, 1024, 2048, 4096, and 8192.  The time-points were taken by truncating our 

single slice EPI brain BOLD scan, keeping TR constant (TR=250ms).   

2)  Constant Number of Time Points (TP) 

Using the same large EPI data set, TR time was varied by extracting every nth 

time point, such that if a TR of 500 was desired, every second time-point was used (i.e. 

the TR was 250ms).  A comparison was made with TR values of 250 (every point), 500 

(every 2nd point), 1000 (every 4th point) and 2000ms (every 8th point).  Data was truncated 

to 1024 time points (the constant or maximum size of the data set, i.e. 8192) and this 

analysis was redone with 256 time points.  

3)  Constant Scan Length (LS) 

We compared the effect on FD of varying TR and the number of temporal points 

to keep scan time constant at 34m 8s. Varied TRs (TR = 250, 500, 1000 and 2000ms) 

were extracted as before, by taking every nth time point, but the data was not truncated 

for length of scan. Subsequently as TR increased, TP decreased (TP = 8192, 4096, 2048, 

1024).  This analysis was redone with a shorter scan length (8min. 32s) (TP = 2048, 1024, 

512, 256). 

4)  Constant Scan Length (LS) in Multiple Subjects 

The extrapolated result from the short scan (8min. 32s) was compared with short 

scans in 5 health subjects (three male, two female; all between the ages of 25 and 35 

years).  For these 5 subjects, 2 scans, each of 8min. 32s were performed at 2 different TRs 
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(TR=250 / TP=2048 and TR=2000 / TP= 256).  Co-registered single slice FD maps were 

calculated for 5 subjects scans for both TR values.  FDRD and FDPS values were obtained 

for an ROI covering a large portion of white and grey matter (Fig. 2). 

 
Figure 2.  Right Hemisphere ROI.  The ROI chosen for analysis had a total of 321 voxels. 
Figure 5.2: Right Hemisphere ROI. 

 
 
5)  k-Space Filling Strategies 

Two k-space filling strategies were used: EPI and spiral.  EPI scans were done 

using the standard GE Healthcare EPI product scan.  Spiral acquisition was performed 

using a single interleaf spiral scan (spiral-out, 4858 points, reconstructed to 64x64 using a 

Kaisser-Bessel convolution kernel, beta=11.525, window width=2.5mm)17.   

6)  Temporal Stability 

The last avenue explored was how resting brain BOLD signal changes over time.  

Two subjects were scanned using our standard EPI BOLD sequence (TR=250ms).  A 

total of 6666 temporally contiguous BOLD images were acquired over 28 minutes at a 
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sampling rate of 4Hz (1/TR).  A sliding window of 2048 data points was evaluated over 

the 6666 data points.  The sliding window (i.e. 512s, or 8.5minutes) was shifted by an 

intervals of 46 points (i.e. 11.5sec) to obtain 100 temporally shifted FD maps.  PS and RD 

were analyzed over an entire slice as well as within a single region of interest drawn 

around the putamen.   

 

Analysis 

Fractal analysis was performed using in-house programs written in Matlab 

(v.7.10, The Mathworks, Natick MA).  Motion (translational and rotational) during the 

scan was assessed and corrected using AFNI18. Motion was not corrected for scans testing 

stability of signal over time.  Self-similarity of the time and frequency domain was 

evaluated pixel-wise19, resulting in fractal maps of FD using relative dispersion (FDRD) 

and power spectrum analysis (FDPS).  Accuracy of the line of best fit for the slope of the 

log-log plots were considered significant at P<0.05.  The proportion of voxels with 

significant fitting, within a given ROI, was expressed as a percentage.  A high percentage 

was interpreted as most voxels having fractal time signal. 

The FDPS and FDRD maps were skull stripped (removing background), warped 

into Talairach coordinates and spiral and EPI scans were compared with a one-way 

ANOVA using AFNI18.  
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RESULTS 

Varying Temporal Acquisition Characteristics  

Constant Repeat Time (TR) 

With TR constant and scan length increased by increasing the number of time 

points (TP), both FDPS and FDRD approached unity, more so FDRD than for FDPS (Fig. 3).  

FDPS appeared more stable for midrange values of TP while having the greatest deviation 

with the very low TP range. 

 
Figure 3.  Fractal behaviour over varying time-points (TR=250ms). All x-axes represent the 
number of time points. The y-axes for the top four figures represent the FD. The y-axes for the 
bottom two figures represent percentage of voxels with significant log-log fits.  
Figure 5.3: Fractal behaviour over varying time-points (TR=250ms). 
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Constant Number of Time Points (TP) 

With TP constant at 1024, and TR ranging from 250 to 2000ms, the length of time 

was between 4min. 16s and 34min. 8s.  Varying the TR resulted in increased mean (from 

1.05 to 1.14) and median (1.03 and 1.13) FDRD, while the percent significant fits 

remained similar to before (~100%) (Fig. 4).  Both mean and median FDPS similarly 

decreased (from 1.3 to ~1.13), while the percent significant fits increased slightly from 94 

to 100%.   

 
Figure 4.  Fractal behaviour over varying repetition times (1024 time-points). All x-axes 
represent the TR(ms). The y-axes for the top four figures represent the FD. The y-axes for the 
bottom two figures represent percentage of voxels with significant log-log fits. 
Figure 5.4: Fractal behaviour over varying repetition times (1024 time-points). 
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With TP constant at 256 and TR ranging from 250 to 2000ms, the total scan 

length was between 1min. 4s and 8min. 32s.  Here TR did not appreciably alter FDRD in 

relation to its mean (~1.22), median (~1.19) or even the percent of significant fits 

(~100%) (Fig. 5).  As for FDPS, the FD for both the mean and median decreased from 1.3 

to ~1.13, while the percent of significant fits increased from 63 to 91%. 

 
Figure 5.  Fractal behaviour over varying repepition times (256 time-points). All x-axes represent 
the TR(ms). The y-axes for the top four figures represent the FD. The y-axes for the bottom two 
figures represent percentage of voxels with significant log-log fits.  
Figure 5.5: Fractal behaviour over varying repepition times (256 time-points). 
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Constant Scan Length (LS) 

With constant LS (34min. 8s) FDRD is almost equal to 1 (Fig. 6).  FDPS, on the 

other hand, still maintains a mean value around 1.17 (range: 1.12 to 1.21), which appears 

to decrease as TR is increased (and the number of time-points decreases).  The percentage 

of significant line fits remained constant around 99%.  With LS reduced to 8min. 32s, 

FDRD value increased from 1.09 to 1.22 as the TR was increased and time-points were 

reduced from 8192 to 1024 (Fig. 7). The percentage of voxels with significant fits stayed 

constant at approximately 100%.  FDPS decreased from 1.28 to 1.13, while the percentage 

of significant fits also decreased, from 97 to 91%. 
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Figure 6.  Fractal behaviour over varying time-points and repetition times (34min. scan length). 
All x-axes represent the TR(ms). The y-axes for the top four figures represent the FD. The y-axes 
for the bottom two figures represent percentage of voxels with significant log-log fits. 
Figure 5.6: Fractal behaviour over varying time-points and repetition times (34min. scan length). 
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Figure 7.  Fractal behaviour over varying time-points and repetition times (8min. 32s scan 
length). All x-axes represent the TR(ms). The y-axes for the top four figures represent the FD. 
The y-axes for the bottom two figures represent percentage of voxels with significant log-log fits. 
Figure 5.7: Fractal behaviour over varying time-points and repetition times (8min. 32s scan length). 

 
 
Constant Scan Length in Multiple Subjects 

Unlike the extracted TR variants described above, in the data acquired in 5 

different subjects,  FDRD were very similar at both TR values (i.e. close to 1.16), with 

most of the voxels having significant fits (> 99%) (Fig. 8). Values of FDPS differed from 

the extracted TR comparison, with a higher FD value at the higher repetition time (1.12 at 

TR=250 and 1.17 at TR=2000).  Also unlike the extracted TR comparison, the percent of 
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voxels with a significant fit decreased from 97 to 84% (TR=250 to TR=2000ms). There 

was no statistical difference between FDRD or FDPS values for the two different TRs in the 

5 subjects. 

 
Figure 8.  Fractal behaviour (mean and median ±SD) from 5 subjects. All x-axes represent the 
TR(ms). The y-axes for the top four figures represent the FD. The y-axes for the bottom two 
figures represent percentage of voxels with significant log-log fits. 
Figure 5.8: Fractal behaviour (mean and median ±SD) from 5 subjects. 
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k-Space Filling Strategies 

EPI and spiral FD maps showed minor differences within individual subjects on 

visual inspection (Fig. 9).  While spiral scans were less susceptible to Nyquist ghosting 

artifacts (i.e. these artifacts are more benign in spiral), these scans were more susceptible 

to field inhomogeneities.  The fact that Nyquist ghosting is easy to see in EPI and 

dispersed in the background of spiral is shown clearly on the RD maps (Fig. 9): the noise 

from spiral is more structured (i.e. the ghosting is blurred over the whole background) 

than EPI, likely leading to reduced FDRD.  A comparison of EPI and spiral in four 

subjects using a one-way ANOVA demonstrated no statistically significant difference 

between FD values for both PS and RD methods (Fig. 10).  The RD map shows a very 

slight (not significant) increase in F values along one edge of the head, possibly the result 

of subtle subject motion.   



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

63 

 
Figure 9.  FD maps from single subject showing Nyquist ghosting from EPI scans (a and b) and 
inhomogeneity artifact from frontal sinuses in spiral (c and d). 
Figure 5.9: FD maps from single subject showing Nyquist ghosting from EPI scans and inhomogeneity artifact from frontal sinuses in spiral. 

 

 
Figure 10.  One-way ANOVA comparing FD maps from EPI vs spiral for PS analysis (a) and RD 
analysis (b).  Threshold for F statistic set at 0.015 (p = 0.9) demonstrated no voxels with 
statistically significant difference between EPI and spiral. 
Figure 5.10: Two-way ANOVA comparing FD maps from EPI vs spiral for PS analysis and RD analysis. 
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Temporal Stability 

Although whole slice FDPS and FDRD did not show Gaussian distributions, their 

distributions did stay consistent over time (Fig. 11).  FDPS values were heavily weighted 

towards 1.5 (random), likely due to the inclusion of air (noise) in the axial slice.  FDRD 

peaked in the middle of the FD range. This difference in background noise values was 

also noted in individual scans (Fig. 9).  The chosen ROI (putamen), however, was 

Gaussian distributed, both for FDRD and FDPS (Fig. 12).  Scans from subject 2 showed a 

wider range in FDRD as well as more motion during the scan (Fig. 13). 

 

 

 
Figure 11.  Histogram plots through entire axial slice for two subjects (subject 1:a-b, subject 2:c-
d). x axis = FD value, y axis = number of pixels within given FD range, z axis = time (minutes). 
Figure 5.11: FD histogram plots through entire axial slice for two subjects. 

 



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

65 

 
Figure 12.  Histogram plots through prescribed ROI (putamen) for two subjects (subject 1:a-b, 
subject 2:c-d).with the x axis = FD value, y axis = number of pixels within given FD range, z axis 
= time (minutes). 
Figure 5.12: FD histogram plots through prescribed ROI (putamen) for two subjects. 

 

 
Figure 13.  Motion in anterior-posterior (solid line) and left-right (dotted line) direction through 
the course of the scan for 2 subjects (a=subject 1, b=subject 2).  Subject 1 showed less movement 
than subject 2. 
Figure 5.13: Motion in anterior-posterior and left-right direction through the course of the scan for 2 subjects 
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DISCUSSION 

To our knowledge, this is the first paper to evaluate the fractal properties of brain 

BOLD signals over various scanning parameters using both power spectrum and relative 

dispersion analysis methods.  The stability of FD values seems to differ from parameter to 

parameter.  We have attempted to characterize these changes so that future FD acquisition 

can maximize the reliability of FDRD and FDPS measurement.  

When the TR was kept constant and scan length was increased, the FD value 

progressively moved closer to unity, especially for FDRD and to a much lower extent for 

FDPS.  It is likely that, had more time-points been acquired, the FDRD value would have 

settled on a value of 1.  Were this to happen, BOLD signal would be assumed ordered, as 

opposed to complex or random.  Although at first this may seem to contradict the thesis 

that brain BOLD signal is fractal in nature, this may only be true when observing scales 

lower than the 30 minute level (0.25s x 8192 time-points = ~30m).  This is the case for 

many natural fractal phenomena.  For instance, in spatial analysis of fjordian coast lines 

fractal properties break down once the spatial scale goes beyond a certain zoom level: 

either when we get to the soil level, or the continental level. 

The FD value determined using the PS method does not appreciably change 

whether scales of 64, 128, 256, 512, 1024, or 2048 time-points were used, having only 

changed from 1.31 to 1.27.  Thus, from 16 seconds to 8.5 minutes the brain BOLD signal 

remains consistently self-similar (i.e. fractal), based on the power spectrum.  For FDPS it 

may not be necessary to obtain a large number of time-points when fewer may do the job 
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(with a TR of 250 ms).  For FDRD, it seems very important to keep the number of time 

points constant between scans, since changes in TP can have a large effect on FDRD. 

When TP was kept constant, changes in TR do not have a large effect on FDRD.  

This supports the idea that FD is constant at different scales of measurements.  FDPS also 

seems independent of TR except for higher values of FD when the TR is very low 

(250ms).  This is likely due to the frequency of cardiac pulsatility, one of the contributing 

sources to BOLD signal variation, which becomes aliased throughout BOLD power 

spectrum when sampled at low frequency (high TR).  In our method, we did not filter out 

this frequency component.  However, this is one solution that has previously been 

employed9, 20.  Thus, the RD method, although dependent on how many time-points are 

acquired, appears independent of TR; while the PS method gives the opposite result: 

independent of the time-points, but dependent on the TR. 

At longer scan lengths (constant LS), FDRD remains low but stable with changes 

in TR, despite changes in TP.  There was a slight drift upwards in FDRD as TP decreased 

(TR increased) for the shorter scan length (8m 32s).  This drift was not as dramatic as 

observed when scan length was varied (with TR constant), suggesting changes in scan 

length has strong influence on FDRD, rather than TR or TP.  FDPS also remained relatively 

stable through variations in TP and TR, while LS was kept constant.  Furthermore FDPS 

was similarly influenced by low TR when TP was kept constant.  The percent significant 

voxel-wise fits remained constant around 99%. These results suggest FDPS is relatively 

stable despite changes in TP, TR or LS but is influenced at the extremes of these 

measurements (especially low TR or very low TP).  
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From the extracted data, it can be concluded that at a reduced number of time 

points (e.g. 256), FDRD is very resistant to changing TRs. FDPS is time-point invariant at a 

low TR (250ms).  With constant scan times, FDPS is the least variable. 

A comparison between repeated scans with different acquisition parameters gave 

similar results to that extracted from a single long high frequency scan.  Both FDRD and 

FDPS were relatively stable with changes in TR and TP while LS was kept constant over 

8min 32s.  The values for FDRD and FDPS were similar (between 1.1 and 1.2) but the 

values of FDPS had a wider Gaussian distribution in our 5 subjects compared to FDRD.  

Unlike our extracted data, lower TR did not increase FDPS.  These findings are very 

promising for allowing full-brain (20-30 slice) BOLD scans, which require long TRs 

(2000ms) over [clinically more feasible] shorter scan times (~10mins). 

The distribution of FD remains relatively stable through the course of a long scan.  

FDRD has less stability than FDPS, and maybe more greatly influenced by subject motion.  

Subject non-respiratory motion is aperiodic .  This would not be reflected as self-

similarity at any scale of frequency and would therefore have less influence on FDPS.  

Relative dispersion is very sensitive to outliers and therefore motion would influence 

FDRD.  The effect of motion on fMRI FD is also highlighted in the changes in FD after 

motion correction11. 

The filling of functional MRI k-space was done using either Cartesian echo planar 

imaging (EPI) or spiral based readouts.  There have documented differences between the 

two, for example, off resonance spins may cause blurring and ringing in spiral versus a 

shift in the phase encode direction with EPI causing ghosting in that direction21.  Also, 
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oversampling, or early sampling the center of k-space with spirals can result in better 

signal to noise ratio (SNR).  In  comparing these two different acquisition methods of 

BOLD fMRI with respect to FD mapping, we found no significant difference. Thus FD 

analysis may be immune to some of the artifact and SNR differences between EPI and 

spiral. 

 

CONCLUSION 

There are various subtle differences in the methods by which FD analysis can be 

performed in the brain.  We have shown that, while some of the differences are benign, 

other differences can have a significant effect of the precision and reliability of FD 

values.  This highlights the fact that FD values are methodologically dependent (i.e. RD 

versus PS), and are dependent upon number of temporal points (TP) used, scan length 

(LS), motion and repetition time (TR).  These factors highlight the limitations of brain FD 

mapping including the need to avoid too little (RD and PS) or too many (RD) time-points, 

too long scan lengths (RD) and high repetition-time (TR 2000 for PS of measured data).  

These parameters should be kept consistent when comparing different scans or subjects.  

On the other hand, FD measurements have been shown to be robust over time, and not 

sensitive to scan type (spiral vs EPI). 

Fractal dimension mapping of BOLD fMRI signals provide a new method to 

observe the functioning brain at rest.  Presence of a temporal fractal pattern in resting 

blood flow illuminates the underlying order in the perceived ‘noise’ when the brain is at 
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‘rest’, whereas traditional BOLD fMRI has sought to either eliminate resting BOLD 

signal or attempt to ‘regress out’ some of it’s components in generalized linear models.  
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CHAPTER 6 
 

 

BOLD FD VS. MRS IN AD 
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Correlating Brain Blood Oxygenation Level Dependent (BOLD) Fractal Dimension 

Mapping with Magnetic Resonance Spectroscopy (MRS) in Alzheimer’s Disease 

 

Mohammed A. Warsi, B.Sc., M.Sc., M.D., FRCP(C), William Molloy, MB BCh, 

MRCP(I), FRCP(C), Michael D. Noseworthy, Ph.D., P.Eng. 

 

6.1 CONTEXT OF THE PAPER 

 

The FD method was used to study signal complexity in the brains of patients with 

Alzheimer’s Dementia (AD).  Although hippocampus is a well-known area for study of 

AD, the putamen was chosen as the region of interest (ROI), due to reduced susceptibility 

artefacts, while still exhibiting AD pathology (de Jong 2008).  The same ROI was used 

for MRS measurement of AD markers including N-acetyl aspartate (NAA), myoinositol 

(mI) and glutamate (glu) using an optimized stimulated echo acquisition mode (STEAM) 

sequence (Hu 2007).  Volumetry of major brain regions was done using NeuroQuant, an 

automated segmentation tool (Brewer 2009).  This study allowed us to compare FD to 

reliable measures of AD disease progression. 
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Abstract
Objectives To correlate temporal fractal structure of

resting state blood oxygen level dependent (rsBOLD)

functional magnetic resonance imaging (fMRI) with in
vivo proton magnetic resonance spectroscopy (1H-MRS),

in Alzheimer’s disease (AD) and healthy age-matched

normal controls (NC).
Materials and methods High temporal resolution (4 Hz)

rsBOLD signal and single voxel (left putamen) magnetic

resonance spectroscopy data was acquired in 33 AD
patients and 13 NC. The rsBOLD data was analyzed using

two types of fractal dimension (FD) analysis based on

relative dispersion and frequency power spectrum. Com-
parisons in FD were performed between AD and NC, and

FD measures were correlated with 1H-MRS findings.

Results Temporal fractal analysis of rsBOLD, was able to
differentiate AD from NC subjects (P = 0.03). Low FD

correlated with markers of AD severity including decreased
concentrations of N-acetyl aspartate (R = 0.44, P = 0.015)

and increased myoinositol (mI) (R = -0.45, P = 0.012).

Conclusion Based on these results we suggest fractal
analysis of rsBOLD could provide an early marker of AD.

Keywords Fractals ! Magnetic resonance imaging !
Magnetic resonance spectroscopy

Introduction

At rest, many physiological processes seem to exhibit

random, low amplitude fluctuations. Physiological ‘‘noise’’

has long been thought to be hiding important information.
However, any underlying pattern has been difficult to

characterize due to the seeming randomness of noise.
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Chaos theory has been able to unravel complex systems

leading to patterning that was never before apparent. These
patterns have been compared to other patterns in nature

such as the branching of trees, the architecture of snow-

flakes or the shape of coastlines. The patterns are described
as fractal, where gross patterns are repeated for recursively

smaller scales. Specifically, in many physiological systems

the power (p) of a noise signal is related to its frequency
(f) with a 1/f a relationship [1]. This ‘‘pink noise’’ has been

observed, for example in brain electroencephalography
(EEG) signals [2], and recently, resting state blood oxygen

level dependent (rsBOLD) signal from magnetic resonance

imaging (MRI) [3].
Power and frequency of physiologic noise are related by

the variable a. This parameter can be scaled to represent

standard variables such as the Hurst exponent (H), as
measured by power spectral analysis (HPS), or the fractal

dimension (FDPS). In the brain, noise follows a fractional

Gaussian model and a is related to HPS and FDPS as fol-
lows [4]:

a ¼ 2HPS " 1 ð1Þ

a ¼ "2FDPS þ 3: ð2Þ

Another measure of signal complexity that uses fractal

analysis is relative dispersion (RD), which changes with

measurement scale (MS). Similar to the power-frequency
relationship in FDPS, the signal spread or RD follows a 1/
MSb relationship. b can also be scaled to represent the

Hurst exponent (HRD) and fractal dimension (FDRD) [5, 6]:

b ¼ 1" FDRD ð3Þ

b ¼ HRD " 1: ð4Þ

In our study, we used both power spectral analysis
(FDPS) and relative dispersion (FDRD) as scaled measures

of a and b. The fractal dimension of a temporally varying

signal represents a degree of complexity of the signal. FD
of 1.5 represents complex noise while an FD of 1.0

represents a ‘‘simple’’ pattern such as a sine wave.

Simple signals (low FD) often represent ‘‘ill health’’.
Low signal complexity represents a lack of adaptability and

this is true for signals in the heart, brain and other organs

[7, 8]. In the brain, signal complexity is thought to repre-
sent a degree of global connectivity [8]. Areas with mul-

tiple inputs from other brain regions are likely to have a

more complex signal and therefore a higher FD. Therefore
degenerative brain illness should be associated with a

decrease in signal complexity (low FD). This has been

validated with EEG measurements of brain activity and
also been shown true for complexity of rsBOLD signals

[3]. Maxim et al. demonstrated that patients with probable

early Alzheimer’s disease (AD) have significantly higher
values of H (i.e. lower FD) in the medial and lateral

temporal cortex, dorsal cingulate cortex, premotor cortex,

left precentral gyrus and postcentral gyrus. In a study by
Wink et al. [9], healthy ageing and cholinergic receptor

blockade (mimicking AD) were both associated with sig-

nificant increase in H or lower FD. Lower biosignal com-
plexity can also be detected by measuring the Higuchi’s

fractal dimension of magnetoencephalogram (MEG) in

AD [10].
In our study, we correlated FD analysis with in vivo

magnetic resonance spectroscopic (MRS) measures in the
AD brain. Our measures of metabolite concentrations

focused on N-acetyl aspartate (NAA) and myoinositol (mI)

which have been validated in AD as measures of disease
severity [11]. NAA, a marker of neuronal viability and

density, decreases as AD progresses. mI is a marker of

gliosis or inflammation. We optimized our MRS acquisi-
tion to include secondary measures of glutamate (glu),

glutamine (gln) and GABA since change in these neuro-

transmitters have been linked to AD [12].
Since astrocytes and microglia are involved in AD senile

plaque formation, mI is seen to increase in AD. These

changes occur in the grey matter and are most evident in the
medial temporal lobe [11], hippocampus and deep grey

matter structures such as the putamen [13]. Recent Positron

Emission Tomography (PET) [14] and quantitative R2 iron
quantification [15, 16] studies have also shown changes in

the putamen associated with AD. Inhomogeneity of B0 at the

base of the brain can decrease accuracy of MRS measure-
ments, especially in the hippocampus. Also, the putamen is

less likely to show volumetric changes in early AD when

compared to the hippocampus or amygdala which would
contribute to partial voluming effects [17]. Therefore the

putamen was chosen as our region of interest (ROI). We

hypothesized changes in spectroscopic measures of NAA
and mI would be reflected in regional FD scores, in both

Alzheimer’s and aged-matched normal controls (NC).

Materials and methods

Thirty-three subjects with mild to moderate AD (mean ±

SD mini mental state exam (MMSE) = 22 ± 3) and 13

age-matched normal controls (NC) were scanned at rest
with eyes open. Diagnosis and severity of illness was also

confirmed by clinical exam, Alzheimer’s Disease Assess-

ment Scale (ADAS) and Clinical Dementia Rating Scale
(CDR). Subjects were recruited from a local geriatric clinic

after obtaining informed consent. Aged-matched controls

were spouses of AD subjects who did not have AD based
on clinical exam by a geriatrician and a screening cognitive

exam (Table 1).

A 3T GE Signa HD MRI system and eight-channel
phased array head RF coil (General Electric Healthcare,

Magn Reson Mater Phy
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Table 6.1: Subject Details (mean ± SD) 

Figure 6.1: Placement of ROI for MRS acquisition (putamen). 

Milwaukee WI) was used for all imaging and spectroscopy.

Head motion was minimized using soft foam pads placed
between the subject and head coil. Standard T1 and T2-

weighted images were used to prescribe a rsBOLD (gra-

dient echo EPI, a = 70o, TE/TR = 35/250 ms, FOV = 24
cm, 64 9 64 matrix, three contiguous 5 mm thick slices)

image acquisition through the basal ganglia. 2,400 tem-

porally contiguous BOLD images were acquired over
10 min at a sampling rate of 4 Hz (1/250 ms). Spatial

coverage was sacrificed for temporal resolution to allow
resolution of higher frequencies not typically evaluated

using resting state methods (e.g. cardiac frequency).

Motion was assessed by measuring rigid translations and
rotations (six degrees of freedom) for each volume in the

time course. Motion correction was performed using an

iterated linearized weighted least squares algorithm in
AFNI [18]. Magnetic resonance spectroscopy data was

obtained using a STEAM sequence (TE/TM/TR = 72/6/

3,000 ms, NEX = 512, 5,000 Hz spectral bandwidth,
4,096 spectral points, 2 9 2 9 2 cm) optimized for glu-

tamate, glutamine and GABA acquisition [12].
The region of interest (ROI) voxel for MRS was posi-

tioned over the center of the left putamen based on the T1

and T2 anatomical images. The scanner coordinates were
used to prescribe the MRS ROI to encompass the center of

the BOLD slices (Fig. 1).

BOLD data was assessed for nonlinear signal charac-
teristics using in-house programs written in Matlab version

7.9.0.529 (The Mathworks, Natick MA). FDRD analysis

was done using nine scales of measurements with corre-
sponding relative dispersions over the middle 2,048 images

from the acquired 2,400 volumes, discarding volumes

where subjects may be anticipating the beginning or end of
the scan. FDPS was measured from the Fourier transform of

the temporal data for each voxel. Robust fit of a log–log

plot for each pixel generated values for a and b and were
rescaled to produce maps of FDPS and FDRD , respectively.

FD values for each voxel within the ROI were averaged

and compared to MRS metabolite concentrations. MRS

Table 1 Subject details (mean ± SD)

AD NC P value

N 33 13 –

Females 15 8 0.34

Age (y) 76.4 ± 7.8 73.7 ± 6.0 0.22

MMSEa 22.3 ± 3.4 28.4 ± 1.1 \0.001

Illness onset (y) 3.5 ± 2.3 – –

Education (y) 13.1 ± 3.4 – –

SADASb 18.1 ± 6.9 – –

CDRc 0.98 ± 0.53 – –

a Mini mental status exam
b Standardized Alzheimer’s disease assessment scale—cognitive
subscale
c Clinical dementia rating—global score

Fig. 1 Placement of ROI for MRS acquisition (putamen). Data from this cubic volume was also extracted for FD post-processing analysis

Magn Reson Mater Phy

123



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

79 

 

 

data was analyzed with LCModel [19] using basis sets

developed in-house for this combination of TE/TM [20]
which provides absolute metabolite concentrations (repre-

sented as a value relative to unsuppressed water, and pre-

sented in institutional units, IU). Metabolite concentrations
were considered accurate if SD of fit with basis sets was

less than 30 %. All acquisition and analysis was done

blinded to subject status (AD vs. NC).
Volumetric analysis of whole brain and individual brain

structures was performed using NeuroQuant (NQ), a
commercial automated segmentation software. NQ vol-

umes have been validated against manually drawn volumes

in AD [21]. Volumes of the putamen, caudate and thalamus
were compared for AD versus NC using a two-tailed

unpaired Student’s t test. Grey matter (GM), amygdala and

hippocampal volumes were also compared.
In addition, structural data was analysed with FSL-

VBM, a voxel-based morphometry analysis [22, 23] carried

out with FSL tools [24]. FSL-VBM was carried out on
SHARCNET (Shared Hierarchical Academic Research

Computing Network), a network cluster of high perfor-

mance computers from a consortium of Canadian academic
institutions with over 8,000 CPUs available for computa-

tion [25]. Brain-extraction was performed using the FSL

brain extraction tool [26] followed by tissue-type seg-
mentation [27]. MNI152 standard space was used to align

grey-matter partial volume images using the affine regis-

tration tool FLIRT followed by nonlinear registration using
FNIRT which uses a b-spline representation of the regis-

tration warp field [28–30]. Native grey matter images were

then non-linearly re-registered to the resultant study-spe-
cific template. Partial volume images were then modulated

by dividing by the Jacobian of the warp field. An isotropic

Gaussian kernel with a sigma of 3 mm was used to smooth
the modulated segmented images. Permutation-based non-

parametric testing, correcting for multiple comparisons

across space, was used to apply voxelwise GLM.
Anatomical scans were realigned to a standard template

(Talairach) using AFNI [18]. Transformation parameters

were used to warp the FDmaps into standard space allowing
for intra subject comparison of FD maps and group analysis.

Voxel by voxel two-tailed unpaired Student’s t test (cor-
rected for multiple comparisons) was used to compare FD
maps of AD versus NC aligned in standard space.

Statistical analysis was done using the statistics toolbox

of Matlab and SPSS (version 17, SPSS Inc., Chicago, IL,
USA). Two-tailed un-paired Student’s t test, with unequal

sampling, was used for comparing FD values between

subject groups. Pearson’s correlation coefficient was used
for comparing FD with MRS metabolite concentrations

(specifically NAA and mI). Level of significance was set

at P\ 0.05, although specific P values are reported.
A Jarque–Bera test, which takes into consideration both

skewness and kurtosis, was used to confirm normality of

FD and MRS data. Motion in AD versus NC was evaluated
by comparing variance of translation and rotation using a

general linear model multivariate analysis.

Results

All participants were able to complete the FD BOLD study

(AD: n = 33, NC: n = 13) but two AD subjects were
unable to complete the MRS study (scan series was ter-

minated early due to claustrophobia) (MRS AD n = 31).

Voxel-wise parametric maps of FDRD and FDPS showed
significant fits to BOLD data within the selected ROI for all

subjects (P\ 0.01) confirming a linear multiscale rela-

tionship (i.e. fractal). Significant fitting of NAA, using
LCModel [19] was observed in 30 AD (11 for NC) sub-

jects, while mI was significantly fit in 29 AD subjects (12

for NC). Fewer MRS scans had reliable measures of glu
(26 AD, 12 NC), gln (11 AD, 2 NC) and GABA (3 AD, 1

NC). Gln and GABA were therefore exclude from analysis.

SHARCNET performed VBM analysis on multiple pro-
cessors totaling 1.3 years of CPU time (95 % of allocated)

while utilizing 0.57 TB of memory.

FD comparisons of AD versus NC

Statistical maps of FD comparing AD to NC are shown
(Fig. 2). FD maps though the mid section showed some

significant differences in FD in the putamen, caudate and

thalamus. Statistical analysis showed AD subjects had a
significantly lower mean FDPS in the region of interest

(ROI) voxel placed over the left putamen, when compared

to NC (P = 0.03). The mean ± SD FDPS for AD was
1.08 ± 0.12 compared to 1.15 ± 0.11 for normal controls.

Low FDPS (or FDRD) signifies a simpler (i.e. less complex)

signal. Mean FDRD was also reduced in AD compared to
NC, although this was not statistically significant. A

comparison of FD in the specific voxel over the putamen

showed that AD subjects had lower FDRD in this region
(Fig. 3). Motion did not significantly differ in AD versus

NC (P = 0.192).

When comparing the concentrations of NAA, mI and glu
between groups, no significant differences were detected

(mean ± SD NAA: AD = 7.7 ± 1.7 IU, NC = 8.3 ±

2.2 IU; mean ± SD mI: AD = 6.3 ± 1.7 IU, NC = 5.9 ±
1.1 IU; mean ± SD glu: AD = 3.1 ± 2.3 IU, NC =

2.8 ± 1.5 IU).

A comparison of volumes obtained from NQ in AD
versus NC showed no significant difference in the volumes

of the putamen, caudate or thalamus (P[ 0.10). There was

a significant difference in GM, amygdala and hippocampal
volumes (P\ 0.001) (AD\NC). GM differences were
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Figure 6.2: Statistical maps (voxel-wise t test) comparing FD maps pf AD versus NC. 

seen between AD and NC in the temporal-parietal region

but did not reach statistical significance (Fig. 4).

Comparing FD to MRS in AD

For AD subjects, significant correlation between FDPS and
NAA (R = 0.44, P = 0.015), and FDRD and NAA

(R = 0.38, P = 0.041) were found (Fig. 5). Furthermore a
significant negative correlation between FDRD and mI

values was noted (R = -0.45, P = 0.012) but not FDPS

(R = 0.03, P[ 0.05) (Fig. 5). The correlations were not
seen (P[ 0.05) in NC for FDRD (NAA R = 0.14, mI

R = -0.22) nor FDPS (NAA R = 0.07, mI R = -0.25)

(Fig. 6). There was also no correlation between FDRD or
FDPS and glu (P[ 0.05).

Metabolite values were measured using LCModel that

reports concentration values based on standardization to

the signal from water. Alternatively, NAA and mI can be

measured as a ratio to creatine (Cr) that assumes the Cr

level is constant and independent of disease state. This
assumption has been recently challenged [31] and Cr

concentration correlates with FD values [32].

MMSE scores did not correlate significantly with FDRD,
FDPS nor MRS changes.

Discussion

Fractals are a curious design seen extensively in nature.

Self-similarity at different scales of measurement is seen in

the geography of coastlines, branching patterns of trees and
in many physiological signals. In the brain, discovery of a

fractal pattern in resting blood flow illuminates the

underlying order in the perceived ‘noise’ when the brain is

Fig. 2 Statistical maps (voxel-
wise t test) comparing FD maps
of AD versus NC. Differences
are seen in the putamen, caudate
and thalamus in both FDRD

(a, b) and in FDPS (c, d)
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Figure 6.3: Comparison of BOLD FDRD and FDPS maps values 

Figure 6.4: VBM analysis showing regional structural differences between AD and NC  

at ‘rest’, whereas traditional BOLD fMRI has always

sought to eliminate the resting BOLD signal for analysis.

This has captured the imagination of many scientists and
the scientific community as a whole. A recent cover article

in Scientific American on ‘‘The Brain’s Dark Energy’’ [33]

discussed complex processes in the brain at rest. Similarly
the cover article in Science Illustrated explored the same

topic [34]. The idea that the brain is busy at work, even

when we are not consciously processing information or

involved in any task, opens the door to the exploration of

the subconscious mind. Resting BOLD analysis also allows
us to explore BOLD signal without the confounding

complications of functional paradigms, and their associated

assumptions, in traditional fMRI.
FD in resting BOLD represents temporal brain order or

disorder. Areas of the brain that are healthy are associated

Fig. 3 Comparison of BOLD
FDRD (a, b) and FDPS

(c, d) map values, from only the
MRS region of interest (ROI).
The resultant images are
average FD maps for all
subjects in the AD (a, c) and NC
(b, d) groups. Overall, the AD
group had clearly lower FD
values in this region of interest

Fig. 4 VBM analysis showing regional structural differences
between AD and NC. The values were not statistically significant at
the 95 % level of confidence. However, the images reflect regions

leading to significance. These results were not surprising given the
AD group was diagnosed as early onset
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Figure 6.5: Fractal Dimension (FD) in AD correlated with NAA and mI from MRS  

with more complex signals, likely due to the interconnec-

tivity with other brain areas. In this study, we found that the
BOLD signal in the brain is less complex in AD compared

to NC as evident from lower FD values. We suggest that

this brain area (the deep grey matter) may have fewer
connections with other parts of the brain compared to NC.

This notion is supported by some of the EEG work by

Maxim et al. [3].
We specifically chose the basal ganglion because the

deep grey matter has been implicated in AD, and this

region is away from the skull, making MRS measurements
more precise. MRS is sensitive to inhomogeneity of the

MRI magnetic field, which is more pronounced at the

interface between brain tissue and bone. For this reason,
other deep brain structures such as the hippocampus are

also problematic.

This is the first study to compare FD to MRS in AD.
MRS has previously shown utility in providing validated

markers of AD disease severity. As expected, lower FD
correlated with AD severity. Patients with ‘unhealthy’
ordered brain BOLD signal patterns had higher mI and

lower NAA. One reason why reduced BOLD signal com-

plexity correlates with disease severity may be related to
neuronal loss. AD is associated with a progressive loss of

neurons, especially in the grey matter [35]. When an area

of interest loses neurons, there is less connectivity to other
areas of the brain. This is also supported by observations of

resting BOLD default networks in AD [36]. With fewer

neuronal connections, a region of interest will have fewer
inputs modifying local basal activity and therefore would

be associated with a less complex BOLD signal (i.e. lower

FD). Similarity of BOLD FD to previously reported EEG
findings suggests neuronal networks are the primary con-

tributor. This is supported by the decrease in FD observed

after cholinergic receptor blockade which causes a
decrease in neuronal signaling without changing vascular

density [8]. Thus, lower FD values highlight a reduction in

neuronal connectivity consistent with neuronal loss in AD.
Although FD may be related to neuronal connectivity it

could also be influenced by vascularity. There is evidence

for this from FD mapping of tumours. Low frequency
components of T2* signals are related to vasomodulation

in the microvascular environment in tumours [37, 38].

Hypervascular tumours are associated with lower FD val-
ues [39]. This is a result of the BOLD fluctuations being

dominated by low frequency components (microvascula-

ture) rather than high frequency components (perfusion and
large vessel flow) [39]. AD is associated with a moderate

Fig. 5 Previous investigators have shown reduced N-acetyl aspartate
(NAA) and increased myoinositol (mI) in Alzheimer’s disease, as
measured using magnetic resonance spectroscopy (MRS). Low fractal

dimension (FD), measured in the MRS ROI, correlated with these
biochemical markers of AD severity (a, b, c) except for FDPS and mI
(d)
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Figure 6.6: Fractal Dimension (FD) in NC did not correlate with NAA and mI from MRS 

increase in grey matter vascularity [40] thus it is possible

that lower FD values may be related to changes in vascu-
larity rather than neuronal networks. As FD is applied to

more pathology, it will become clearer exactly what is

being measured. Postmortem pathology correlation with
FD could help clarify the vascularity contributions.

The subjects had early AD and, thus, MMSE scores

were in the mild to moderate range. There were differences
in GM, amygdala and hippocampal volumes, but not yet in

the putamen, caudate or thalamus. MRS findings were not
significantly different between AD and NC, although NAA

was lower and mI was higher in AD as expected. Lack of

statistical significance may reflect the lower number of NC
subjects and more likely the mild disease severity. The

significant correlation of FD to NAA and mI and the sig-

nificant difference between FD in AD versus NC may
suggest that FD is more sensitive to early changes in AD

when compared to MMSE or MRS but likely not more

sensitive than volumetric based discrimination (such as
hippocampal volumetrics [41]). This would have to be

validated with a comparison of FD with more complete

neurocognitive tests for AD.

A comparison of FD to MRS necessitated a cubic ROI

due to the limitations of MRS acquisitions. Bias from
volumetric changes were minimized by using a large deep

gray matter structure such as the putamen, where much of

the MRS voxel is homogeneous. Future studies should
focus on FD measurements in ROIs that include particular

brain structures. The optimized STEAM sequence for MRS

was unable to provide useful information about glu, gln or
GABA in this study and a standard PRESS sequence would

likely have been sufficient to provide accurate measures of
NAA and mI. Also, not every comparison of MRS to FD

gave significantly correlated results (FDPS did not correlate

with mI) which may be a result of some inconsistency in
FD measurement. This is also highlighted in the range of

FD values found in normal controls, suggesting that FD is

influenced by measures other than severity of AD or clin-
ical status.

Spatial range of the imaging data was sacrificed for high

temporal resolution; a TR of 250 ms allowed collection of
only three brain slices. This limits the discussion of whole

brain connectivity but allows for a more robust analysis of

higher frequency BOLD components including cardiac

Fig. 6 NAA and mI did not correlate with FDRD nor FDPS in normal controls (NC)
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(*1 Hz) components as the TR satisfies the Nyquist cri-

terion for this physiological frequency. Future studies may
examine how FD relates to whole brain connectivity with a

comparison to resting state networks.

Conclusion

We suggest that spatial FD maps may provide a sensitive

measure of regional neuronal loss in AD. Our FD changes
were seen in mild to moderate AD. Therefore, FD mapping

may detect early signs of AD pathogenesis.
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BOLD FD VS. RSN IN AD 

 
 



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

87 

 

Fractal Dimension Compared to Resting State Network Analysis of BOLD MRI in 

Alzheimer's Disease. 

 

Mohammed A. Warsi, B.Sc., M.Sc., M.D., FRCP(C), William Molloy, MB BCh, 

MRCP(I), FRCP(C), Michael D. Noseworthy, M.Sc., Ph.D., P.Eng. 

 

7.1 CONTEXT OF THE PAPER 

 

In the following manuscript (chapter 7) a further refined method for fractal 

dimension (FD) analysis was implemented.   In chapters 5 and 6 the FD calculation was 

based on a publication of this technique (Wardlaw 2008) that assumes the signal exhibits 

fractional Gaussian noise (fGn).  Previous reports of FD analysis methods had proposed 

an algorithm to challenge the assumption of complete fGn signal (Eke 2002) and allowed 

us to filter out non-fGn (i.e. fractional Brownian noise, fBm) signals that represented 

approximately 22% of the rsBOLD signal in ROIs.  This method was presumed to 

increase the accuracy of FD analysis.   

This new approach for measuring FD was compared to functional connectivity in 

the default mode network (DMN), a known network affected by AD (Greicius 2004).  

Having established FD reduction in AD (chapter 6), we tested the hypothesis that this 

reduction was related to brain functional connectivity.  DMN connectivity was compared 

to FD in areas within the DMN (posterior cingulate cortex) and outside of the network 
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(putamen).  We expected the reduction in network connectivity would correlate with 

reduced FD. 
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Abstract: 

Background:  We investigated temporal fractal structure of BOLD-fMRI in Alzheimer’s 

disease (AD) and age-matched controls (NC). Relative dispersion fractal dimension 

(FDRD), a measure of signal complexity, was compared to default mode network (DMN) 

connectivity using resting-state network (RSN) analysis.  

Methods:  38 mild/moderate AD subjects (MMSE=22±3) and 16 NC were scanned at 

rest.  Nine AD returned 10.31±1.96 months later. BOLD-fMRI acquisitions focused on 

high temporal sampling (TR=250ms, 3 slices, 2400 time-points) for FD analysis and 

expanded spatial coverage (TR=2000ms, 24 slices, 300 time-points) for RSN analysis. 

DMN nodes included posterior cingulate cortex (PCC), medial prefrontal cortex (MPC), 

lateral parietal cortex (LPC) and hippocampal formation (HF) and were used to calculate 

normalized correlation (Z-values). 

Results:  FDRD in putamen correlated with that in PCC (r=0.83, p<0.001) and FDRD was 

consistent between baseline and follow-up (putamen: r=0.81/p=0.015, PCC: 

r=0.69/p=0.058).  NC had higher FDRD than AD and FDRD was lower at follow-up but not 

statistically significant.  DMN Z values were significantly lower in AD than in NC 

(p=0.004).  DMN mean Z-values correlated with FDRD in PCC (r=0.33, p=0.043) and 

RSN Z values correlated with the HF for both putamen (r=0.31, p=0.049) and PCC 

(r=0.32, p=0.046). 

Limitations:  FDRD was only measured in a small brain area.  Also, patients were in early 

stages of illness so differences in FDRD and RSN compared to NC was likely subtle. 
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Conclusions:   FDRD relates to functional connectivity and is a reliable and reproducible 

measure of complexity.  FDRD decreases as AD progresses and unlike RSN, FDRD is not 

limited to functional networks.
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Introduction: 

Resting state blood oxygen level dependent (BOLD) MRI has revealed that 

spatially separated areas of the brain are activating in synchrony thus displaying 

functional connectivity1. Through RSN analysis, the default mode network (DMN) 

consistently appears to be one of the strongest functional networks in the brain2.  The 

DMN is a network connecting the posterior cingulate cortex (PCC) to the medial 

prefrontal cortex (MPC), left and right lateral parietal cortex (l-LPC and r-LPC) and the 

left and right hippocampal formation (l-HF and r-HF)3. Certain pathologies seem to have 

characteristic DMN changes and can be seen in schizophrenia, Alzheimer’s disease (AD) 

and multiple sclerosis4.  In AD, there is a decrease in connectivity between the nodes of 

the DMN, most significantly between the PCC and HF5. This may relate to the 

involvement of DMN in episodic memory processing6. 

Another method of characterizing BOLD fMRI signal at rest is to study the 

complexity of the signal in the time domain using fractal dimension mapping (FD)7.  FD 

analysis of resting state BOLD signal characterizes the complexity on a scale from 1 

(ordered signal) to 1.5 (disordered or random).  Although FD can also characterize 

negative autocorrelation (1.5 < FD < 2.0), this is not normally seen in physiological 

systems8.  

In many physiological systems the power (p) of a noise signal is related to its 

frequency (f) with a 1/fβ relationship9 and can be scaled to a value of FD of the BOLD 

power spectrum (FDPS).  In systems exhibiting fractional Gaussian noise (fGn) such as 

the brain, relative dispersion (FDRD) provides a more accurate measure of FD due to 
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marked bias of FDPS in the lower range of β values10.  Similar to the power-frequency 

relationship in FDPS, the signal spread or relative dispersion (RD) follows a 1/MSα 

relationship where MS is the measurement scale11,12.  Therefore RD was our main 

measure of FD in this study.  The limited spatial coverage of high frequency (low TR) 

allowed us to measure FD in areas both within the DMN (PCC) and external to it 

(putamen) but not the hippocampus. 

 

Objectives 

We sought to characterize the FD signal in the brain and compare it to functional 

connectivity measures with RSN.  We chose to study subjects with Alzheimer’s disease 

(AD) since this population has well characterized changes in the DMN.  We hypothesized 

that signal complexity as measured by FDRD would be different in normal controls (NC) 

compared to AD and that this change in complexity would be related to changes in 

functional connectivity as measured by RSN. 

 

Methods: 

In a study approved by our research ethics board, 38 subjects with mild to 

moderate AD (MMSE=22±3) and 16 age and gender matched NC were recruited.  A 

small number (9 subjects) with AD agreed to return for a repeat scan 10.31±1.96 months 

later.  Diagnosis and severity of illness was also confirmed by clinical exam, Alzheimer’s 

Disease Assessment Scale (ADAS) and Clinical Dementia Rating Scale (CDR).  Subjects 

were recruited from a local geriatric clinic after obtaining informed consent.  Aged 
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matched controls were spouses of AD subjects who did not have AD based on clinical 

exam by a geriatrician and a screening cognitive exam (Table 1). 

 
 

Table 1: Subject Details (Mean±SD)  
Table 7.1: Subject Details (mean ± SD) 

 AD NC P Value 

N 38 16 - 

Females 18 10 0.32 

Age (y) 76.8±7.6 74.1±5.7 0.16 

MMSE1 22.1±3.2 28.6±1.2 <0.001 

Illness onset (y) 3.5±2.2 - - 

Education (y) 13.0±3.4 - - 

SADAS2 18.0±6.8 - - 

CDR3 0.96±0.53 - - 

1 Mini Mental Status Exam 

2 Standardized Alzheimer's Disease Assessment Scale – Cognitive Subscale 

3 Clinical Dementia Rating – Global Score  

 

 

Standard T1 and T2-weighted images, acquired using a GE Signa HD 3.0Tesla 

MRI (General Electric Healthcare, Milwaukee WI) and 8 channel phased array head coil, 

were used to prescribe BOLD image acquisitions (echo planar imaging (EPI) TE = 35ms, 

FOV=24cm, 64x64 matrix, 5mm thick slices).  FD scans had high temporal frequency (α 
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=70°, TR=250ms, 3 slices, 2400 time points) while RSN scans had large spatial coverage 

(α =90°, TR=2000ms, 24 slices, 300 time points).  Motion correction was performed 

using an iterated linearized weighted least squares algorithm in AFNI13, which considered 

the head as a rigid body (6 degrees of freedom).  FD regions of interest (ROI) were 

prescribed in the putamen and posterior cingulate cortex (PCC) using template masking in 

AFNI and confirmed visually (Figure 1). 

 

 

Figure 1: Masks of the PCC and putamen produced by ANFI13 and used to prescribe ROIs 
for FD analysis in one subject. 
Figure 7.1: Masks of the PCC and putamen produced by ANFI and used to prescribe ROIs for FD analysis in one subject. 
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FD Calculations 

High temporal resolution BOLD data was assessed for nonlinear signal 

characteristics with in-house programs written in Matlab (v.7.9, The Mathworks, Natick 

MA).  The analysis followed two pipelines: FD analysis of the power spectrum (FDPS) 

and through relative dispersion (FDRD).  FD analysis was done using the method of Eke et 

al.10.  Using this approach the BOLD signal is first characterized as either fractional 

Gaussian noise (fGn) or fractional Brownian motion (fBm) using the power spectral 

density (PS).  Signals that can not clearly be classified as either required signal 

summation conversion (SSC) for further characterization.  fGn signals were quantified 

using relative dispersion fractal analyses (FDRD).  Although fBm signals could be 

characterized using scaled windowed variance (SWV) analyses, fBm in brain BOLD 

signal is not meaningful and may represent non-physiological noise8 and these voxels 

were therefore not included in the analysis.  

FDRD analysis was done using 9 scales of measurement over the middle 2048 

images from the acquired 2400 volumes, discarding volumes where subjects may be 

anticipating the beginning or end of the scan.  Signal FDRD, at each voxel, was calculated 

from RD (standard deviation divided by mean of the signal) using:  

 

€ 

FD =1− log[RD(m) /RD(m0)]
log(m /m0)

  (eqn. 1) 
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where FD is the fractal dimension, m is the scale of measurement used to calculated RD, 

and m0 is an assigned reference value. For mathematical simplicity, m0 is assigned to a 

value of 1. 

We have found the FDRD approach to be temporally stable over this time period 

using a sliding window approach14.  The Matlab iteratively reweighted least squares 

linear regression algorithm ‘robustfit’ was used, with a bisquare weighting function, to 

calculate the slope, α, through log(RD) vs. log(scale) and FDRD was determined using 

FDRD = 1 - α.  This was performed voxel-wise to produce maps of FDRD. FDPS was 

measured from the Fourier transform of the temporal data for each voxel.  As with FDRD , 

FDPS was calculated from the negative slope of the log-log plot (β) for each voxel (eqn. 

2). FDRD values for each voxel within the ROI were averaged. 

 

β = −2FDPS+3   (eqn. 2) 

 

RSN method 

Whole brain BOLD data was analyzed for resting state functional networks (RSN) 

using methods described by Van Dijk et al.3.  Data was converted to standardized space 

(Talairach) and resampled to 2mm isotropic voxels.  A Gaussian kernel with full-with-

half-max (FWHM) of 6mm was used for spatial smoothing.  Temporal filtering of 

components greater than 0.08Hz  and less than 0.001Hz was performed to eliminate high 

frequency noise and low frequency drift, respectfully.  Time series were extracted from 
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the 6 nodes of the DMN.  These nodes were defined in standard space as described by 

Van Dijk et al. (2010).  All processing steps were done using AFNI 13.  

The extracted time series from the PCC was correlated with other nodes of the 

DMN using Pearson’s correlation.  These correlations were normalized to produce 

standard scores (Z values) for each node (eqn. 3) using Fisher’s r-to-z transformation15, 

which could then be compared between subjects and correlated with other measures such 

as FDRD.  

   (eqn. 3) 

Overall functional connectivity in the DMN was also represented by the mean Z 

values from all nodes in for given subject.  

Volumetric analysis of whole brain and individual brain structures was performed 

using NeuroQuant (NQ)16, a commercial automated segmentation software.  NQ volumes 

have been validated against manually drawn volumes in AD16.  Volumes of the putamen, 

caudate and thalamus were compared between AD and NC using a 2 tailed unpaired 

Student’s t-test.  Grey matter (GM), amygdala and hippocampal volumes were similarly 

compared. 

Anatomical scans were realigned to a standard template (Talairach) using AFNI13. 

Transformation parameters were used to warp all FD maps into standard space allowing 

for intra subject comparison of FD maps and group analysis. 

Statistical analysis was done using the statistics toolbox of Matlab and SPSS 

(version 17, SPSS Inc., Chicago, IL, USA).  Two-tailed unpaired Student’s t-test, with 

unequal sampling, was used for comparing FDRD values and RSN Z values between 
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subject groups.  Pearson’s correlation coefficient was used for comparing FDRD with RSN 

Z values, with the significance threshold set at p<0.05.  A Jarque–Bera test, which takes 

into consideration both skewness and kurtosis, was used to confirm normality of FD and 

RSN data.  Motion in AD compared to NC was evaluated by comparing variance of 

translation and rotation using a general linear model multivariate analysis. All acquisition 

and analysis was done blinded to subject status (AD vs. NC). 

 

Results: 

All subjects were able to complete the full brain RSN scans (AD: n=38, NC: 

n=16) but two AD subjects were unable to complete the FD scans because of early scan 

termination due to claustrophobia (AD: n=36, NC=16).  All 9 AD subjects that returned 

for follow-up completed RSN and FD scans.  A comparison of volumes obtained from 

NQ in AD compared to NC showed no significant difference in the volumes of the 

putamen, caudate or thalamus.  However, there was a significant difference in GM, 

amygdala and hippocampal volumes (p<0.001) (AD < NC). 
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Figure 2: Map of fBm voxels in one subject.  Voxels exhibiting fBm characteristics appeared 
randomly throughout the imaged slice with no apparent anatomical relevance.  The 
percentage of fGn voxels in the ROIs was maximal at 100% and minimal at 58.6%.  The 
number of fBm voxels did not correlate with any outcome measures and was consistent 
between AD and NC. 
Figure 7.2: Map of fBm voxels in one subject.  Voxels exhibiting fBm characteristics appeared randomly throughout the imaged slice with no apparent anatomical relevance. 

FD analysis 

Voxel-wise parametric FD maps showed significant fits to BOLD data within the 

selected ROI for all subjects (p<0.01) confirming a linear multiscale relationship (i.e. 

fractal).  PS analysis from all voxels within the ROIs for all subjects revealed most voxels 

exhibited fGn patterns (78.0±13.0% in putamen, 72.1±13.3% in PCC). There was no 

specific pattern or clustering of fBm signal although many of the voxels aligned with the 

CSF or margins (Figure 2). This confirmed FDRD as the appropriate method of FD 



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

101 

quantification. The percentage of fGn signal did not correlate with any of the outcome 

measures.  FDRD was compared between the two ROIs (putamen and PCC) and were 

found to correlate with each other (r=0.83, p<0.001) (Figure 3).  FD appeared consistent 

between baseline and follow-up and had significant correlation of FDRD for the Putamen 

(r=0.81, p=0.015) and trended towards significance in the PCC (r=0.69, p=0.058) (Figure 

4).  There was a mean lowering for FDRD in AD over time (putamen and PCC change in 

FD=0.01) and compared to NC, FDRD was lower in AD (putamen and PCC change in 

FD=0.02) but these comparisons were not statically significant.  There was no correlation 

between FDRD values and volumes of putamen, PCC or hippocampus. 

 

 

Figure 3: FDRD values between the two ROIs (PCC and putamen) shows strong correlation 
with each other (r=0.83, p<0.001). 
Figure 7.3: FDRD values between the two ROIs (PCC and putamen) shows strong correlation with each other. 
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Figure 4: Correlations between FDRD at baseline and FDRD follow-up in the Putamen 
(r=0.81, p=0.015) and the PCC (r=0.69, p=0.058).  
Figure 7.4: Correlations between FDRD at baseline and FDRD follow-up in the Putamen and the PCC. 
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RSN 

The range of Z value correlations for the DMN in AD (mean±std: 0.37±0.20) was 

in keeping with previously published data17,3.  DMN Z values were significantly lower in 

NC (mean±std: 0.65±0.32) compared to DMN in AD (p=0.004) (Figure 5).  Bilateral 

nodes correlated with each other (HF-left vs HF-right: r=0.53, p<0.001, LPC-left vs LPC-

right: r=0.50, p=0.002) (Figure 6).  Z values in the HF, MPC and LPC did not correlated 

with each other. 

 

 

Figure 5: FDRD in the PCC and putamen, as well as the mean Z values for the DMN were 
lower in NC when compared to AD. This difference was statistically significant for the DMN 
(p=0.004). 
Figure 7.5: FDRD in the PCC and putamen, as well as the mean Z values for the DMN were lower in NC when compared to AD 
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 A

 B 

Figure 6: DMN Z values correlated between the left and right HF (r=0.53, p<0.001) (Fig 6A) 
and left and right LPC (r=0.50, p=0.002) (Fig 6B). 
Figure 7.6: DMN Z values correlated between the left and right HF and left and right LPC. 

FD compared to RSN 

Mean Z values for the DMN significantly correlated with FDRD in the PCC 

(r=0.33, p=0.043) and trended towards significance in the putamen (r=0.27, p=0.081) 

(Figure 7). There was also significant correlation between FDRD and RSN in the 
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PCC vs. RSN in HF: r=0.32, p=0.046) (Figure 7).  FDRD did not significantly correlate 

with other individual nodes of the DMN (FDRD vs. MPC and LPC). 

 

 A

 B 

Figure 7: Correlations of FDRD to the Mean Z values for the DMN in the PCC (r=0.33, 
p=0.043) and the putamen (r=0.27, p=0.081) (Fig 7A) and correlations with RSN (HF) in 
FDRD PCC (r=0.32, p=0.046) and in FDRD putamen (r=0.31, p=0.049) (Fig 7B). 
Figure 7.7: Correlations of FDRD to the Mean Z values for the DMN in the PCC and the putamen. Also correlations of FDRD with RSN (HF) in PCC and in putamen. 

Discussion:  

This study highlights FD analysis as a useful tool to analyze signal complexity in 

physiological systems like the brain and demonstrates that FDRD values can be applied to 

various ROIs with consistent results.  FD relates to functional connectivity in the brain.  
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Since their discovery18, there have been great efforts to characterize the functional 

networks in normal and pathological brains.  RSN analysis involves two major methods.  

The first is the seed based method where a single voxel in a BOLD time series is 

compared to all the other voxels to find significant correlations in time.  This can be done 

to study networks where one point (the seed voxel) is known or predetermined19.  The 

second method of RSN analysis involves comparing each brain voxel to every other voxel 

and identifies networks without any a priori model or seed placement.  This method uses 

independent component analysis (ICA) to identify multiple networks19.  Both methods of 

RSN analysis find the DMN as being a major network that seems to be ubiquitous across 

subjects4 and through time20 and both find deficiencies in the DMN of AD.  Using seed 

based analysis, we were able to correlate RSN to FD, a measure of complexity. 

Fractals are patterns that have self similarity at multiple scales.  For example, the 

branching pattern of trees is similar from the trunk to leaflet level.  Scaled self-similarity 

can also occur in time, for example the variation brain EEG signal over minutes is similar 

in pattern to the changes at the millisecond scale21.  This fractal pattern is also seen in 

resting state fMRI.  Signal complexity such as cardiac ECG signal has been related to 

physiological health22. Power and frequency of physiologic noise are related by the 

variable β.  This parameter can be scaled to represent standard variables such as the Hurst 

exponent (H), as measured by power spectral analysis (HPS), or the fractal dimension 

(FDPS).  

Physiological systems can produce fractal patterns that are either static (fractional 

Gaussian noise – fGn) or non-static (fractional Brownian motion – fBm).  BOLD signals 
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from the brain mostly exhibit fGn23.  fBm is thought to relate to non-physiological noise 

such as motion artifacts8.  Power spectral density (PS) can be used to sort fGn from fBm 

and can also provide and estimate of FD (FDPS).  Most of the brain BOLD signal follows 

a fGn pattern rather than fBm in our study, which is consistent with other studies of brain 

BOLD FD8,9. fBm signals represent high β values with contributions from CSF signal9 or 

patient motion8 and our subjects had fBm mainly in the ventricles and at the brain 

margins. The CSF contribution to fBm may explain the higher proportion of fBm caught 

within the PCC ROI vs. the putamen. 

Brain changes in AD occur in the grey matter and are most evident in the medial 

temporal lobe, hippocampus and deep grey matter structures such as the putamen24.  

Recent positron emission tomography (PET)25 and quantitative R2 iron quantification26,27 

studies have also shown changes in the putamen associated with AD.  FD in the putamen 

also correlates with changes in magnetic resonance spectroscopy (MRS) in AD28.  

Inhomogeneity of main MRI field (B0) at the base of the brain can decreased accuracy of 

BOLD measurements due to susceptibility artifact, especially in the hippocampus, and 

was therefore not chosen for FD analysis.  Also, the putamen is less likely to show 

volumetric changes in early AD when compared to the hippocampus or amygdala which 

would contribute to partial voluming effects29.  Therefore the putamen was chosen as our 

region of interest (ROI). When patients are AC-PC aligned in the scanner, the PCC lies 

within the same axial plane as the putamen, allowing up to have this second ROI within 

the 3 axial slices of FD image acquisition. PCC has been implicated in the pathology of 

AD through MRS30 and PET31 studies. 
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Previous AD changes have been attributed to changes in neuronal connectivity23.  

We studied the relationship of FDRD in AD to functional connectivity using RSN.  The 

direct correlation between the two suggests that a decrease in FDRD is related to a 

decrease in connectivity. This includes FDRD in areas connected to the DMN (PCC) as 

well as areas unrelated to the DMN (putamen) and suggests that FDRD may be an indirect 

measure of functional connectivity.  Since FD is a measure of signal complexity, this 

makes sense.  Areas with less functional connectivity likely have less neuronal input 

modulating the signal pattern.  Therefore, these areas will have lower signal complexity 

and subsequently lower FD.  Other studies have pharmacologically mimicked a decrease 

in neuronal connectivity and shown a reduction in FD32.  The most robust changes in 

DMN for AD are seen it the hippocampus5 and in our study the changes in HF RSN 

correlated with FD.  

FD is not subject to the node constraints of RSN analysis and can therefore be 

applied to any area of the brain.  In this fashion, FD has previously been used to assess 

signal complexity in various brain regions, including a comparison of GM to WM9 and 

compared to MRS findings in AD28.  Resting BOLD analysis also allows us to explore 

BOLD signal without the confounding complications of functional paradigms, and their 

associated assumptions, in traditional fMRI. 

One measure of reliability of FDRD measurements was the reproducibility in 

subjects.  When subjects were rescanned, their FD values were very similar to baseline 

approximately 10 months earlier.  This suggests that FDRD is a consistent trait in AD 

brains.  There was a slight decrease in FDRD over this time period, which is consistent 
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with the idea that FDRD decreased with AD disease severity28.  This is further reinforced 

by FDRD values in NC being lower than AD.  These differences were not significant, 

likely due to early stage of illness in the subjects; MMSE scores were in the mild to 

moderate range.  There were differences in GM, amygdala and hippocampal volumes, but 

not yet in the putamen, caudate or thalamus. 

The utility of FD analysis of resting state BOLD need not be limited to the study 

of AD. Signal complexity is an important component of schizophrenia, depression, 

anxiety and disorders of childhood33.  With the development of more objectives measure 

of personality, brain signal complexity has also been used to characterize personality 

disorders34.  Most of these studies have utilized EEG, an accessible technology with 

excellent temporal resolution but limited spatial information.  Signal patterns from EEG 

are even being used to help predict treatment response to therapeutics 35.  FD of resting 

BOLD could offer a complimentary approach to these methods.  

 

Limitations: 

We were unable to measure FD in areas of the brain such as the hippocampus due 

to imaging parameter constraints.  Spatial range of the imaging data was sacrificed for 

high temporal resolution; a TR of 250ms allowed collection of only three brain slices.  

However, this allows for a more robust analysis without aliasing of higher frequency 

BOLD components including cardiac (~1Hz) components, as the TR satisfies the Nyquist 

criterion for this physiological frequency.  Although FD analysis could be performed on 

whole brain resting BOLD data (TR of 2000ms), the dominant cardiac signal would 
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appeared aliased.  Although patients with mild to moderate AD allowed us to study the 

early changes in AD, some differences from NC were not very robust, not allowing us to 

find statistically significant changes in some parameters for the number of subjects 

studied. 

 

Conclusion: 

We conclude that FDRD is related to functional connectivity and is a reliable and 

reproducible measure of signal complexity.  Unlike RSN, FDRD can be applied to any 

area of the brain and is not limited to functional networks.  There may be some reduction 

in FDRD as AD progresses.  In the future, FDRD could be compare to structural 

connectivity using diffusion tensor imaging or to EEG temporal signal. 
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The Influence of Brain Iron on Resting State Network Connectivity in Alzheimer’s 

Disease. 

 

Mohammed A. Warsi, E Mark Haacke, William Molloy, Michael D. Noseworthy 

 

8.1 CONTEXT OF THE PAPER 

 

Further exploration of the pathogenesis behind network connectivity led us to 

compare RSN to iron content using susceptibility weighted imaging (SWI).  SWI is an in 

vivo MRI technique that can be used to quantify iron.  Since iron has been implicated in 

neuronal degeneration (Pinero 2000), we hypothesized that iron deposition may correlate 

with degree of network disconnectivity.  If a robust correlation was discovered, iron 

deposition could then be compared to brain FD in AD to investigate the role of iron in 

reduction of BOLD signal complexity.  Since data for SWI had been acquired in 2009, 

our methods could not incorporate newer methods of iron quantification such as R2* or 

T2* relaxometry (Haacke 2010; Rodrigue 2012).  

 

8.2 DECLARATION STATEMENT 

 

Mohammed Ali Warsi as principle author wrote the article, performed analysis 

and created figures and tables as appropriate.  Michael D. Noseworthy, as corresponding 



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

117 

author, hypothesized the use of FD in assessing Alzheimer’s, wrote the first versions of 

the FD analysis program using Matlab (Mathworks, Natick, MA), provided guidance, 

funding and advice, and performed proofreading/editing and submission of the 

manuscript for publication.  Dr. E. Mark Haacke provided methodological instruction, 

guidance and commentary.  Dr. William Molloy provided clinical geriatric assessment, 

patient recruitment, guidance and commentary. 

 

This paper has been submitted for publication to the journal Magnetic Resonance 

Imaging. 

 



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

118 

 

8.3 PAPER 

The Influence of Brain Iron on  
Resting State Network Connectivity in 

Alzheimer’s Disease 
 
 

 
 
Mohammed A. Warsi1,2,3, E Mark Haacke1,4,5, William Molloy6, Michael D. 
Noseworthy1,2,3,7,8,9* 

 
 

1School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada. 
2Department of Psychiatry and Behavioural Neuroscience, Hamilton, Ontario, Canada. 
3Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada. 
4Department of Radiology, Wayne State University, Detroit, Michigan, USA 
5Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, 
USA. 
6Department of Gerontology and Rehabilitation, University College Cork, Ireland.  
7Electrical & Computer Engineering, McMaster University, Hamilton, Ontario, Canada.  
8Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, 
Ontario, Canada.  
9Department of Radiology, McMaster University, Hamilton, Ontario, Canada.  
 
 

 
*Corresponding Author Address: 
Dr. Michael D. Noseworthy, Ph.D., P.Eng. 
Director, Imaging Research Centre, 
St. Joseph's Healthcare, 50 Charlton Ave. East 
Hamilton, Ontario, Canada.  L8N 4A6 
Phone: +1 1(905) 522-1155 x35218 
Email: nosewor@mcmaster.ca 



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

119 

ABSTRACT  

The brain default mode network (DMN) is disrupted in Alzheimer’s disease (AD).  

Iron deposition, implicated in AD pathogenesis, can be quantified with susceptibility 

weighted imaging (SWI).  We hypothesized that iron deposition may correlate with 

degree of DMN disconnectivity.  Resting state blood oxygen level dependent (BOLD) 

and SWI MRI scanning was performed on 38 mild/moderate AD and 16 age/gender 

matched normal controls (NC). DMN nodes included posterior cingulate cortex (PCC), 

medial prefrontal cortex (MPC), lateral parietal cortex (LPC) and hippocampal formation 

(HF) and were used to calculate normalized correlation (Z-values).  The DMN 

connectivity was significantly lower in AD compared to NC.  Iron was higher in AD, but 

only significantly in the PCC. There was a direct correlation between iron and DMN 

network disruption in the PCC and LPC (higher iron content was associated with more 

functional network disruption).  We suggest this link between network disruption and 

tissue iron content suggests that iron may be responsible for some of the RSN changes 

seen in early stages of AD. 
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1.  INTRODUCTION 

Measurement of brain resting state activity has become a frequently used 

approach to understand brain functional connectivity in the absence of a defined task [1, 

2].  Using resting state analysis of MRI blood oxygen level dependent (BOLD) signals 

has revealed spatially separated areas activating in synchrony, hypothesized to represent 

functionally connected brain regions.  Some of the functional networks have been linked 

to structural networks based on anatomical [3] or diffusion tensor imaging (DTI) [4] 

studies, while other functional networks cannot be linked structurally [5].  Since their 

discovery in 1995 [1], there have been great efforts to characterize the functional 

networks in normal and diseased brains.  Resting state networks (RSN) seem to be 

ubiquitous across subjects [6] and through time [7] with one of the most prevalent being 

the default mode network (DMN).  

The DMN consistently appears to be one of the strongest functional networks in 

the brain.  It connects posterior cingulate cortex (PCC) to medial prefrontal cortex 

(MPC), left and right lateral parietal cortex (l-LPC and r-LPC) and left and right 

hippocampal formation (l-HF and r-HF).  Brain diseases such as Alzheimer’s disease 

(AD) and multiple sclerosis (MS), have characteristic changes in DMN [6].  In AD, there 

is a decrease in connectivity between the nodes of the DMN, most significantly between 

the PCC and HF [8], which may relate to DMN involvement in episodic memory 

processing [9].   

Mechanisms behind DMN connectivity disruptions are not clear, especially in 

what appear to be unrelated brain disorders.  However, one common thread between AD 
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and MS is the increase in brain iron (Fe) content that is routinely observed [10].  AD 

patients exhibit increased iron in hippocampus, entorhinal cortex, globus pallidus, 

putamen and caudate [11].  In MS there is a significant increase in plaque [12] iron 

content.  However, other brain regions in MS patients also show increased brain iron 

content [13].  Brain iron content, once only probed postmortem, is measureable using 

MRI susceptibility weighted imaging (SWI) [14].  Elevated brain iron levels are 

hypothesized to relate to free radical induced damage to brain cells and myelin, leading to 

loss of normal function [11].  Therefore, the objective of this study was to examine 

whether reduction in DMN functional connectivity relates to brain iron content in 

Alzheimer’s dementia. 

 

2.  MATERIALS AND METHODS 

In a study approved by our research ethics board, 38 subjects with mild to 

moderate AD (Mini Mental Status Exam, MMSE=22±3), and 16 age and gender matched 

normal controls (NC) were recruited.  Diagnosis and severity of illness was also 

confirmed by clinical exam, Standardized Alzheimer’s Disease Assessment Scale 

(SADAS) and Clinical Dementia Rating Scale (CDR).  Subjects were recruited from a 

local geriatric clinic after obtaining informed consent.  To minimize environment effects 

aged matched controls were spouses of AD subjects who did not have AD based on 

clinical exam by a geriatrician and a screening cognitive exam (Table 1). 
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Table 1.  Subject details. 

 AD NC P Value 

N 38 16 - 

Females 18 10 0.32 

Age (y) 76.8±7.6 74.1±5.7 0.16 

MMSE1 22.1±3.2 28.6±1.2 <0.001 

Illness onset (y) 3.5±2.2 - - 

Education (y) 13.0±3.4 - - 

SADAS2 18.0±6.8 - - 

CDR3 0.96±0.53 - - 

1 Mini Mental Status Exam 
2 Standardized Alzheimer's Disease Assessment Scale – Cognitive Subscale 
3 Clinical Dementia Rating – Global Score  
Table 8.1: Subject Details (mean ± SD) 

2.1  MRI acquisition 

Standard T1 and T2-weighted images, acquired using a GE 3T Signa HD MRI and 

8 channel phased array RF coil (General Electric Healthcare, Milwaukee WI) were used 

to prescribe BOLD and SWI image acquisitions.  Resting state BOLD data was acquired 

using echo planar imaging (EPI) with TE=35ms, TR=2000ms, α =90°, FOV=24cm, 

64x64 matrix, 24 slices, 5mm thick, 0mm gap, 300 time points).  Susceptibility weighted 

imaging (SWI) was done using TE=20ms, TR=30ms, α =15°, receiver bandwidth=40kHz, 

512x256 matrix, ASSET factor=2, 64 slices, 2mm thick (no gap), NEX=1, no Fermi filter 

and no grad warp compensation.  
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2.2  Image Analysis 

Whole brain resting state analysis was done using the method described by Van 

Dijk et al. [15].  Motion correction was performed using an iterated linearized weighted 

least squares algorithm in AFNI [16].  Data was converted to standardized space 

(Talairach) and resampled to 2mm isotropic voxels.  A Gaussian kernel with full-with-

half-max (FWHM) of 6mm was used for spatial smoothing.  Temporal filtering (>0.08 Hz  

and <0.001 Hz removed) eliminated high frequency noise and low frequency drift and the 

time series from the 6 nodes of the DMN were extracted.  These nodes were defined in 

standard space as described by Van Dijk et al.  All processing steps were done using 

AFNI [16].  The extracted time series from the PCC was correlated with other nodes of 

the DMN using Pearson’s correlation.  These correlations were normalized to produce 

standard scores (Z values) for each node (eqn. 1) using Fisher’s r-to-z transformation [15, 

17]:  

€ 

Z = 0.5⋅ ln 1+ r
1− r
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
  (eqn.1) 

 
where r is the Pearson’s correlation.  Overall DMN functional connectivity was also 

represented by mean Z values from all nodes in for given subject.  Mean Z scores were 

subsequently correlated with brain iron measures performed using SWI. 

SWI images were calculated according to Haacke et al. (2009), with one 

difference.  In previous work by Haacke et al. (2009) a Siemens scanner was used for iron 

quantification, with phase values which scale from 0 to 4096, where 0 is -π and 4096 is 



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

124 

+π (2048 is zero phase).  In their case they calculated that 3 Siemens units (Φ) 

corresponds to 1 µg of Fe/g tissue where: 

 

€ 

Φ = 2048 ϕ
π

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ +1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
  (eqn. 2) 

 

with ϕ being iron concentration.  We used a GE MRI system where phase units scale 

between -3142 and +3142 (i.e. -π and +π, respectfully), with 0 representing zero phase.  

Therefore for the GE system 4.6 phase units corresponds to 1 µg of Fe/g tissue, where the 

following phase conversion was applied: 

 

€ 

Φ = 3142 ϕ
π

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    (eqn. 3) 

 

Phase reduction of GM relative to CSF or WM is indicative of the GM iron content [18] 

and these values were compared to RSN values. 

Since SWI iron quantification requires at least 100 voxels [18], a sphere of about 

150 voxels was placed at the precise DMN coordinates (posterior cingulate cortex, medial 

prefrontal cortex, lateral parietal cortex, hippocampal formation) (fig.1).  These spheres 

were about 2.5mm in diameter and are well within a homogeneous region of these tissues.  

Two extra sphere ROIs were placed, one in the CSF (in the central sulcus to avoiding 

flow artifact of the ventricles) and the other in the WM (corpus callosum).  These ROIs 

were also confirmed visually to confirm RSN coordinates [15] corresponded to 
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appropriate brain regions in our population (fig.1).  ROIs for the MPC were close to the 

skull base where one would expect a large phase distortion artifact (due to the proximity 

of the frontal sinuses).  ROIs were visually inspected for presence of microbleeds, defined 

as homogeneous signal loss <10mm without vessel continuity which would distort the 

iron quantification [19].  

 

 

Figure 1.  Spherical ROIs placed at the RSN coordinates as defined by Van Dijk et al. 

[15]. These include posterior cingulate cortex (PCC) (a), medial prefrontal cortex (MPC) 

(b), lateral parietal cortex (LPC) (c) and hippocampal formation (HF) (d). 

Figure 8.1: Spherical ROIs placed at the RSN coordinates as defined by Van Dijk et al. 

 

2.3  Statistical Analysis 

Statistical analysis was done using the statistics toolbox of Matlab (v.7.9.0.529 

Mathworks, Natick MA) and SPSS (version 17, SPSS Inc., Chicago, IL, USA).  Two-

tailed unpaired Student’s t-test, with unequal sampling, was used for comparing SWI 

values and RSN Z values between subject groups.  Pearson’s correlation coefficient was 

used for comparing SWI with RSN Z values, with the significance threshold set at 
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P<0.05.  A Jarque–Bera test, which takes into consideration both skewness and kurtosis, 

was used to confirm normality of SWI and RSN ROI data.  Motion in AD compared to 

NC was evaluated by comparing variance of translation and rotation using a general 

linear model multivariate analysis, as done previously [20].  All acquisition and analysis 

was done blinded to subject status (AD vs. NC). 

 

3.  RESULTS 

3.1  Resting State Network (RSN) 

The range of Z value correlations for the DMN in AD (mean±std: 0.37±0.20) was 

in keeping with previously published data [15, 21].  DMN Z values were significantly 

higher in NC (mean±std: 0.65±0.32) compared to DMN in AD (p=0.004) (fig. 2).  

Bilateral nodes correlated with each other (HF-left vs HF-right: r=0.53, p<0.001, LPC-left 

vs LPC-right: r=0.50, p=0.002) (fig. 3).  Z values in the HF, MPC and LPC did not 

correlate with each other (p>0.05). 
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Figure 2.  Mean DMN Z values in AD and NC. AD was significantly lower than NC 

(p=0.004).  

Figure 8.2: Mean DMN Z values in AD and NC. AD was significantly lower than NC. 

 

 

Figure 3.  RSN values for bilateral nodes (HF and LPC) have left vs. right correlations 

(r=0.53; p<0.001 and r=0.50; p=0.002 respectively). 

Figure 8.3: RSN values for bilateral nodes (HF and LPC) have left vs. right correlations 

 
3.2  Susceptibility Weighted Imaging (SWI) 

Mean SWI values for iron in the 6 ROIs (4 brain regions) were 10.3 ± 43.1 for AD 

and 3.5 ± 36.5 for NC (fig. 4).  Iron in the MPC was significantly different from other 
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brain regions although, due to artifacts in this region, with a very large SD compared to 

the mean (Table 2).  Iron values were significantly higher in AD subjects compared to 

NC in the PCC (p<0.05), but no difference was found between these groups in the either 

HF, MPC or LPC. 

 

 

Figure 4. AD has higher mean iron content than NC, but this difference was not 

significant. There was a large range (SEM shown) likely due to susceptibility artifacts in 

the MPC. 

Figure 8.4: AD has higher mean iron content than NC, but this difference was not significant. 
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Table 2.  Mean iron content (µg/g ± SD) in individual brain ROIs which include posterior 

cingulate cortex (PCC), medial prefrontal cortex (MPC), lateral parietal cortex (LPC) and 

hippocampal formation (HF). 

Brain Region AD NC P value 

PCC 55.8±32.7 -0.3±18.7 0.013* 

MPC+ 20.4±72.1 -160.9±46.9 0.963 

LPC 23.3±12.4 13.9±14.1 0.281 

HF 15.4±25.0 -9.3±36.6 0.249 

+Iron quantity meaningless in MPC due to phase distortion artefacts 
* P<0.05 
 
Table 8.2: Mean iron content (µg/g ± SD) in individual brain ROIs. 

 

3.3  RSN vs SWI 

Connectivity between the PCC and LPC correlated with brain iron values in both 

the PCC (r=-0.43; p=0.006) and LPC (r=-0.33; p=0.040) (fig. 5).  This correlation was not 

seen on other specific nodes of the DMN (e.g. SWI-HF versus RSN-HF) nor did the mean 

DMN connectivity correlate with iron values in any specific nodes (e.g. SWI-HF versus 

RSN-mean DMN). 
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Figure 5.  Correlations between iron content and RSN values in the PCC (r=-0.43; 

p=0.006) and LPC (r=-0.33; p=0.040). 

Figure 8.5: Correlations between iron content and RSN values in the PCC and LPC. 

 

4.  DISCUSSION 

To our knowledge, this is the first study comparing functional connectivity as 

measured by RSN analysis, to brain regional iron content.  Iron can be found throughout 

the brain in various forms. We found that AD has higher iron content in the nodes of the 

DMN as compared to NC, implicating iron in the pathogenesis of network dis-

connectivity. 

 

Haemoglobin in red blood cells in a rich source of iron, while non-haeme iron has 

a role in the electron transport chain of metabolism [11].  Non-haeme iron is transported 

and stored as transferrin and ferritin respectively.  Haemosidrin is the water insoluble 

form of iron storage, usually formed from ferritin breakdown.  All forms of biologically 

relevant iron can be found in the brain, with deep grey matter structures having the 

-‐20	  

20	  

60	  

100	  

140	  

-‐1	   -‐0.5	   0	   0.5	   1	  

SW
I	  I
ro
n
	  (

µ
g/
g)
	  	  P
CC
	  

Z	  Values	  PCC-LPC	  

-‐20	  

20	  

60	  

100	  

140	  

-‐1	   -‐0.5	   0	   0.5	   1	  

SW
I	  I
ro
n
	  (

µ
g/
g)
	  	  L
P
C	  

Z	  Values	  PCC-LPC	  



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

131 

highest concentration [11].  Iron is an important part of brain biochemistry, functioning in 

oxidative metabolism (an obligate form of neurometabolism) and synthesis of myelin and 

neurotransmitters.  However iron also plays a key roll in some brain pathologies, 

especially neurodegenerative diseases, due most likely to its induction of reactive oxygen 

species through Fenton based chemical reactions [22].  MRI techniques such as SWI 

allow us to measure iron in the brain in vivo.  SWI measurements of brain iron have been 

useful in assessing Parkinson’s disease (PD), multiple sclerosis (MS), Alzheimer’s 

disease (AD), and traumatic brain injury (TBI) [10].  SWI amplifies the magnetic field 

distortions of iron (decrease in T2*), and by doing so, increases the contrast of iron rich 

areas of the brain.  This can he used to highlight vasculature or pathological iron deposits 

[19].  Vasculature is rich in haeme iron while tissue SWI contrast comes mainly from 

ferritin and hemosiderin.  In addition to quantifying absolute tissue concentrations of iron 

[23], SWI is useful in comparing intra and inter subject iron concentrations [19]. 

Our results suggest a link between iron and network disruption.  The RSN 

connectivity and iron values were consistent with values previously obtained in the 

literature [11, 15, 21], although iron values for MPC were not interpretable, due to 

elevated phase aliasing, due to susceptibility artifact, which is problematic for this region.  

The same susceptibility artifact may have also influenced iron values for the HF, but is 

unlikely to have influenced deeper brain structures such as LPC and PCC.  SWI 

measurements of non-cortical GM structures such as the putamen are even more reliable 

[18].  Such structures, however, were not relevant to our hypothesis that iron quantity in 



Ph.D. Thesis – M. A. Warsi McMaster University – Biomedical Engineering 

132 

the RSN nodes influences functional connectivity because those structures are not 

involved in DMN connectivity. 

There was significant difference in PCC iron between AD and NC, consistent with 

previously SWI studies demonstrating higher GM iron content in AD [11].  This 

difference was not demonstrated in the other nodes where we would expect differences in 

iron, such as the HF, possible due to susceptibility artifacts discussed above.  

We were able to demonstrate a correlation between brain iron content in both the 

PCC and LPC with the functional connectivity between these two nodes.  This raises the 

possibility that functional connectivity may be impaired by iron deposition seen in AD.  

This study however does not prove any causation but highlights a proportional 

correlation.  It is also possible that phase distortion measured by SWI caused signals in 

the DMN to desynchronize.  Iron content did not correlate with functional connectivity of 

other nodes. This may be the result of inaccuracy of SWI measurement in the other nodes.  

Perhaps using other techniques for measuring iron that are less sensitive to phase 

distortion could tease out more profound differences between AD and NC, leading to 

further relationship between regional iron content and RSN connectivity.  Newer variants 

of SWI analysis such as susceptibility mapping or T2* relaxation [24] have the potential 

to improve iron quantification.  Future work should be performed to examine correlation 

of regional brain iron content with other functional networks including deep GM 

structures such as the basal ganglia resting state network [25].   

In summary, examining the correlation of RSN and regional brain iron in mild 

cognitive impairment could provide valuable information before more severe AD 
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develops. A prospective study of brain iron and RSN in MCI or early AD may also help 

shed light on any causation of iron deposition and functional connectivity disruption. 
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CHAPTER 9 
 

 

CONCLUSIONS AND FUTURE DIRECTIONS 
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9.1 CONCLUDING REMARKS 

 

Alzheimer’s disease is a prevalent debilitating illness that brings significant 

distress to patients and their loved ones.  With an aging population, we expect to see a 

rise in the incidence of AD, with which come great social and economic burden. Early 

detection and treatment of AD results in better cognitive and functional outcomes (Small 

2007).  Currently, AD is diagnosed at later stages of illness, while the search for early 

biomarkers rages on (Kelley 2009).  

Fractal dimension (FD) analysis of fMRI BOLD signals offers an in vivo method 

to peer into the brains of AD.  FD assessment quantifies the complexity of 100s of 

billions of interconnected neurons using elements of chaos theory.  Our goal was to use 

FD in the measurement of AD severity.  We hoped that changes in BOLD signal 

complexity might detect neuronal degeneration with equal or greater sensitivity of 

established biomarkers.  We therefore studied FD and AD biomarkers (MRS and 

volumetry) in mild to moderate dementia. Additionally, we wanted to know more about 

what FD was measuring.  FD is sensitive to neuronal networks, but also to 

microvasculature.  To characterize the neuronal network contribution to FD change, we 

used resting state network (RSN) analysis of the default mode network (DMN), an 

already established technique quantifying functional connectivity.  We also hypothesized 

that some of the network disruptions may be the result of increased brain iron deposition, 

which is often a hallmark feature in AD. 
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9.2 MAIN FINDINGS AND CONCLUSIONS 

 

The seemingly random “noise” pattern of resting state BOLD signals actually 

follows a complex characterizable pattern: a fractal.  The fractal nature of resting state 

fMRI is independent of type of MRI acquisition (spiral vs. EPI), scanning frequency (TR) 

or length of scan.  Although the fractal nature does not change, the value of FD is 

sensitive to some of these parameters (such as TR and scan length) and this need to be 

kept constant between scans.  Once parameters have been established, the FD value is 

consistent within subjects both in the short term (minutes) and the long term (months).  

Reduced FD (i.e. decreased signal complexity) correlated with both increased N-

acetyl aspartate (NAA) and decreased myoinositol (mI), as measured by MRS in our 

population of early AD.  Both NAA and mI change with disease severity in AD.  It 

therefore could follow that FD also tracks disease severity in early stages of AD.  This 

was further reinforced with the correlation of FD with RSN connectivity, another index of 

AD progression.  In the AD subjects, there was not a significant range of deep structure 

volume changes or MMSE scores.  In fact, volumes of the putamen did not significantly 

differ between AD and NC at this stage of illness (while volumes of the hippocampus and 

cortical grey matter did significantly differ). Nor was there a significant difference 

between NAA or mI between AD and NC. There was, however a significant difference 

between FD values.  This led us to believe that FD changes in AD correlate with disease 
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severity (or amount of neuronal disruption and degeneration) and the range of FD change 

is sufficient to separate AD for NC, at a stage too early for MRS or volumetry to detect. 

The two populations (AD and NC) also differed in their detectable iron in the 

posterior cingulate cortex (PCC).  The difference in iron correlated with functional 

connectivity disruption.  It is therefore possible that iron deposition, through Fenton-

based chemistry and ensuing lipid peroxidation, is responsible for neuronal damage 

resulting in network disruption.  Conversely, iron may be a marker of neuronal death 

rather than a cause.  A third possibility is that the phase distortion measured by SWI 

causes de-correlation of previously synchronous signal.  

 

9.3 CONTRIBUTIONS OF THIS WORK 

 

To our knowledge, these are the first studies to compare FD in the brain with 

MRS and RSN in AD.  Using FD to study signal complexity provides novel information 

about AD signalling, not available using other imaging techniques.  We found that brain 

signal complexity was related to MRS markers of illness severity and to reduced 

functional connectivity.  Although this makes intuitive sense, this has not previously ever 

been described.  Indeed, FD may be more sensitive than some of the established markers 

to differentiate AD from NC, suggesting changes in AD changes occur before MRS or 

volumetric changes in need brain structures.  Changes in iron deposition also seem to 

occur early with involvement in (and possibly causation of) network disruption.  We now 

have two new tools (FD and SWI) with which to further explore the pathogenesis of AD 
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in early stages of illness.  It may be the level of detail and complexity provided by FD 

analysis that is needed to characterize dementia early enough to significantly alter its 

course. 

Despite the long history of FD as a mathematical technique applied to 

physiological signal, there has been a paucity of FD fMRI studies in clinical populations.  

We validated and refined the FD technique to be effectively used in clinical studies.  We 

found that FD is consistent in the brain over a period of months (i.e. is a trait rather than a 

trait feature) and can be applied to different areas of the brain without the constraints and 

biases of RSN or task-based fMRI studies.  We believe this new tool will open up new 

possibilities of studying illnesses of the brain (or those of the mind) with a measure not 

previously applied.  In fact, this refined method is already planned for application towards 

other studies starting in Dr. Noseworthy’s lab.  These include the study of traumatic brain 

injury, obsessive compulsive disorder (OCD) and alcoholism. 

 

9.4 POSSIBLE APPLICATIONS 

 

The studies herein have shown FD as a sensitive trait measure of pathology in AD 

in its early stages.  This opens the possibility to study other mental illnesses where there 

are subtle network changes not detectable by volumetry, spectroscopy or other non-

invasive imaging techniques.  For example, signal changes in depression have led to the 

recent application of various brain stimulation techniques for treatment such as deep brain 

stimulation (DBS) (Kennedy 2011) and transcranial magnetic stimulation (TMS) (Hasey 
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1999).  Stimulation targets remain imprecise (Schlaepfer 2010) and a model free 

characterization of signal complexity could help guide targets.  Likewise, schizophrenia is 

known to be an illness of the brain with only basic network characterization (Lynall 

2010).  Application of FD analysis could significantly further our understanding of this 

complex disease. 

 

9.5 FUTURE STUDIES 

 

In creating answers, studies of novel techniques often generate many new 

questions.  Below are studies that address key issues.  FD could be measured in an AD 

population with a wider range of disease states (mild to severe illness).  This would allow 

us to see if there is a progressive decrease in FD and could allow for better comparison of 

FD to volumetric and cognitive changes.  With significant scan-to-scan reproducibility of 

FD, a prospective study could be designed to follow FD changes through the course of the 

illness.  

In the future, we would also like to further characterize FD with its comparison to 

SWI and diffusion tensor imaging (DTI).  The comparison of FD to SWI is the next 

logical step after establishing a connection between SWI iron estimation and RSN.  DTI 

analysis would allow us to see if structural network integrity changes affect signal 

complexity.  This would further the hypothesis that FD changes relate to a disruption of 

network interconnectivity.  
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As described earlier, EEG is another technique amenable to FD analysis due to the 

high temporal resolution.  Concurrent measurement of FD from BOLD fMRI and EEG 

would provide invaluable information about the distribution of brain signal complexity 

differences.  We would be able to combine the spatial resolution of MRI with the 

temporal resolution of EEG, allowing for spatially precise FD measurements down to 

lower scales of FD measurement. 

Finally, with the availability of PET-MRI systems, a comparison of BOLD fMRI 

FD to PET would be invaluable. This could include [18F]FDG-PET or PET using [11C]-

labelled Pittsburgh compound B (PIB), a radiotracer that binds to amyloid in the brain. 

Both of these methods have bindings that mirror the RSN network activity in the brain 

(Perrin 2009). Measuring FD at PIB binding regions would reveal how network 

complexity changes at specific sites of plaque formation.  Hypometabolism occurs very 

early in the illness, sometimes before any other sign or symptom is detectable (Costantini 

2008). If FD changes can reliably be detected at sites of [18F]FDG hypometabolism, FD 

fMRI could be the non-radiotracer successor of PET. 

 

9.6 CONCLUDING STATEMENT 

 

Studies of Alzheimer’s disease continue to search for the “holy grail” of 

prevention or cure.  Both these goals remain elusive.  Each incremental step towards the 

understanding and identification of AD brings us all a little closer.  We hope that 

providing a novel look at function in the AD brain is one of those steps in the right 
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direction.  By targeting one of the brain’s most basic functions, signalling, we hope to 

have opened the door into research of subtle brain functional changes responsible for the 

early pathology of AD.  We hope this tool can also be used to explore the same in a 

variety of mental illnesses and bring us that much closer to cures. 
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