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ABSTRACT

This thesis represents an attempt to marry two distinct directions
of research in Modern Algebra, On the one hand we have the theory oz
topoi which has been undergoing vigorous development within the last
three years. This area grew out of careful consideration of the tocls
of Modern Algebraic Geometry as promoted by the French School under the
leadershiv of Alexandre Grothendieck, Lawvere and Tierney have shown
how the theory of topoi may bve axiomatized conveniently and have esiablished
that much of Mathematics may be carried out in the environment of a tonos,
in which scheme the topos of definition replaces the category of sets,

The second direction referred to is what is called Universul Alrebra,

By this we mean internal Universal Alpebra, that is to say the study of
equations and their solutions in mathematical structures. In the yresent
work we un-iertake the study of the behaviour of universal alpebras

modelled in a topos,

In fact the toﬁoi we choose to study are those arising as categories
of sheaves of sets on a suitable parametrizing object (Grothendieck site),
In this framework we introduce the notion of equation and solution, now
for sheaves of algebras, Ve establish as major results that a compact
Hausdorff shecaf of algebras is equationally (algebrnically) compact and
that for sheaves of modules, homologmical purity is equivalent to a form
of equational purity., On the path towards the proof of these results we

establish new facts about certain topoi, and some new facts regarding

iii



"external" universal algebra, that is, the purely categorical aspect of
universal algebra, For example we characterize the voints of the category
of double negation sheaves on a topological space, we give a useful
characterization of those continuous maps whose inverse image functor

on the associated sheaf categories is cotripleable, we establish a
Birkhoff-type subdirect representation theorem for sheaves of algebras

and we exhibit sufficient conditions for injectivity to be well-behaved

in the category of sheaves of universal algebras associated with a svecified

theory.

Vhat we have carried out here represents only a beginning in terms
of the possibiliiies inherent in studying universal algebras modelled in
tovoi, The o0ld theorems of universal algebra take on a more dynamic and

geometrical flavour in their new environment, which we hope will lead to

their application in Combinatorics and Algebraic Geometry.
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INTRODUCTION

The purpose of this chapter is to give some historical background

and to sketch the line of development within the thesis, Comments on

possible future directions of this research will be made in chapter VI,

Grothendieck was among the first to recognize the usefulness of
categorical algebra as a tool in modern Algebraic Geometry., He developed
an extensive theory of sheaves which subsumed the older theory of sheaves
on a topological space, The parametrizing objects become small categories
equipped with "topologies'" and sheaves are diagrams (of sets, to begin)
which are coherent in a sense made explicit using the "topology'" on the
site, as it is called, The developement of these concepts and their use

in Algebraic Geometry, especially with regard to (co) homology theories

may be followed in [EGA], [SGA],

The category of sheaves on a site €, denoted i, was recognized
to be the fundamental invariant of the site, Such categories were named
topoi, Recently Lawvere and Tierney have extracted the essence of these
categories and produced an axiomatization whose models are called
elementary topoi, Every category of the form [ is in fact an elementary
topos although the converse is not true, With regard to the converse,
Barr and Freyd have, within the past two years, developed many powerful
theorems which provide for embeddings of (parts of) elementary topi into

topoi of the form 5.



This thesis is motivated by the work of Lawvere and Tierney, for
their approach made it seem possible that a great deal of universal
algebra could, and should, be carricd out in an arbitrary topos, We
have chosen t; work with topoi of the form ‘E for.reasons explained
in chapter I, 4, Certainly ruch of the work, if not all, could be
carried out in an elementary topos under certain completeness and smallness
hypotheses, Another zpproach in this vein would be to establish that
results about universal algebra in-an elementary topos I survive
passage to the internally constructed sheaves Eﬁ associated with a
"Grothendieck modal operator" Jj [QS], Indeed we often use this technigue
implicitly, proving results first for presheaves T and then invoking
exactness properties of the associated sheaf functor to conclude their

~
validity in €,

The tools we use come from the work of the French mathematicians
on the topoi 5, from the work of Lawvere:and Tierney on elementary toroi,
from categorical algebra in general and from classical universal algebra,
Most of what we use with respect to the first area can be found in [SGAl,
Notable among the techniques found helpful is that of localizing a togos
T at G/é for C € I€|. This corresponds to restriction to an open
set for sheaves on a topological space, Xor the theory of elementary
topéi we refer the reader to [§S], [AST], [AT], [SB], [ST), For categorical
algebra the standard reference remains Mitchell [TC], complemented
recently by MacLane [CWM], For concepts of classical universal algebra
the reader is referred to Gratzer [UAJ, In chapter V we find it necessary

to assume a good deal of knowledge about the category of modules over a



sheaf of rings, The relevant information may be found for example in

Artin [GT], MacDonald [AG] or Mumford [IAG].

This research represents an attempt to address the problem of
understanding the internal structure of sheaves of universal algebras,
objects which have been found useful in various branches of mathematics,
notably geometry. We prefer to view a sheaf of algebras as a collection
of algebras coherently parametrized by the site of definition, believing
that this interpretation provides the correct insight into such objects,
leading as it does to the notion of equation in a sheaf of algebras
through which the internal structure of the algebra (which may be thought
of as developing along parameters such as space, time, etc, to pararhrase
Lawvere [QS]) can'be described. The results of this arc theorems such
as those of chapter V establishing satisfying connections between topological
and algebraic compactness on the one hand and between homological and

equational purity on the other,

The theorems of chapter V are deceptively simple to state, They
~constitute a dynamic and geometrical reformulation of facts well known

from classical universal algebra, As such their proofs are substantially

more difficult and much careful preparation in necessary, This is under-
taken in chapter I -~ III, during which several new results concerning

the tools are presented, notably theorems characterizing the points of

the category of double negation sheaves on a topological space (theorem 3,2.1,
chapter II) and those continuous maps of topological spaces whose associated
inverse image functors on the sheaf categories are cotripleable (theorem h,3.4,

chapter II), Proofs are also given for theorems characterizing (a) the



points of the category of sheaves on a topological space, (b) the points
of the category of sheaves associated in a certain way with a compact
measure.space and (¢) the categories of sheaves on a topological space
among the categories € of sheaves ¢n an arbitrary Grothendieck site,
These results were announced without proof in [SGA] and the arguments
presented here may or may not represent improvements upon those envisaged
by the inventors; the author does not know, for he has not seen their

proofs,

Chapter IV provides an answer to the question of how the behaviour
with respect to injectivity of an equationél class is reflected in the
result of passage to sheaves, Here it is established that if the site
of definition "has enourh points' (a fairly common situation including
sheaves on a topological space and full functor categories for example)
then the properties of the base equational class crucial with respect to

injectivity are inherited by the sheaves with values in that class.

The organization of the material is straightforward, although it
should be pointed out that a numbered reference which does not explicitly
name a chapter is understood to refer to that number within the chapter
currently being developed, Bibliographic references use mnemonics
rather than numbers, For example [QS3] refers to Lawvere's paper ''‘Quantifiers
and Sheaves'", Entries in the bibliography which have been included for
completeness, in that they bear upon the present work, but which are not

explicitly referenced within the text, have no associated mnemonic,



Chapter I: Topologies, Sheaves and Topoi

This chapter introduces the environment in which algebra is to
be studied in the sequel, namely those categories called topoi, Also
introduced are seven fairly representative examples of the sort of
topos we will be working with, The material in this chapter is all
well=-known, at least for sheaves on a topological space, We have
chosen to study Grothendieck sites because this notion has greater
generality than that of a topological space insofar as paranetrizing
of mathematical objects is concerned, In fact, the major result of
chapter ITI regards a fact true for algebras mocdelled in any category
of sheaves on a topological space, but apparently false in general for
algebras modelled in categories of sheaves on a Grothendieck site,

For detailed information on Grothendieck sites the reader is referred

to [SGA],

l Grothendieck Sites

1,1 Throughout € will denote a small category, fixed for the
discussion, Its objects, collectively cenoted by [C| s Will be

called A,B,C,,.., and its maps f,g,h,... . The functor category

c* o~
Sets 1is denoted € and the full embedding C——C of the (contravariant)
representable functors will be considered an inclusion, That is, the

object C(-, C) of € will also be called C, and for B—1—>C,



the induced map C(-, f): ¢(-,B)——C(-, C) will be called simply £f.

Of fundamental importance is the Yoneda lemma: the following

correspondence is bijective and natural in C,F, for C ¢ |Cl and

Fe €l

c——>F (in ©)

1——>F(C) (in Sets)

Maps 1——>F(C) in sets are of course in 1-1 correspondence

with elements se®(C), The two maps C

>F and 1——>F(C)

will also be called "o", hopefully with no confusion caused, The
general rule of thumb is that, in studying a particular F e [€

we think of " o ¢ F(C)" as an aid to intuition (i.e., "sections of a
sheaf ¥ over C'"), but we use 5 :C—>F for carrying out algebraic
manipulations, Tne fact that the Yoneda qorrespondence is natural in

C is summed np in the following useful diagram

f - where ! corresponds to F(£)(o) e F(C')

That is, of = F(£)(&), Note that this operation (5, f)—>0f
has been the basis of viewing functors as "generalized" M-sets where
M is a "generalized" monoid, i.e. a category. For whenever the equation
makes sense we must have (& f)f' = 5(ff') expressing the functoriality

of F. Mitchell has exploited this vigourously, in the additive case,
in [RSO].
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Note For a presheaf F, and later for sheaves F, we will
speak of the elements o ¢ F(C) as sections of F over C, This
leads to the idea of '"'sectionwise" behaviour of a presheaf, For
example a morphism Q@:F—>G in C is mono iff it is "sectionwise"
a mono, i,e, ® otF(C)—>G(C) is mono for each C ¢ |l . The
more traditional way of saying this would use the phrase '"'pointwise
mono", but in the theory of topoi "point" has a very special meaning,
The term "section" is borrowed from the theory of sheaves on a topological
space, and its use in this more general setting has been popularized in

recent years by the developers of the elementary theory of topoi.

1.2 Grothendieck topologies For C ¢ |€] a sieve in C (French: "crible")

is a subfuncter of C ¢ [€] , A topology on € is a collection
{Cov(C)l C e !G{} where each Cov(C) is a collection of sieves in
C, subject to:

(T1) Given f:C———>C' and R ¢ Cov(C'), £1(R) € Cov(C)

i.e. R x C Cov(C) where R x C is defined by the
c* ce

following pullback in C

(12) For R a sieve in C, R € Cov(C) if I R' e Cov(C)

such that /' B € |¢] , Y B—>R, R!' x B e Cov(B)

C
R* x B———B
i |
R pullback in T

—



(T3) C € Cov(C),

Let us rephrase these concepts and conditions in a more "element-
wise" fashioh, Sieves are in 1-1 correspondence with ideals in the
monoid~theoretic sense., That is, a sieve in C is a collection of
maps each of whose codomain is C and which is closed under composition
from the left., Such a collection, if it is in Cov(C), will be called
a covering family, or a '"covering of C". Then Tl - T3 above will be

easily seen to be equivalent to the following four conditions

[ 3
(1) if R € Cov(C), B—I—>C then {A—>B e R)
€ Cov(B)
(ii) an ideal which contains a covering family is itself a

covering family.

£. .
(iii) {c ————>03 € Cov(C), {cij—————%l—eci} jeg, © Cov(C,)

el i
all 5 €I { c | je Ji} € Cov(C)
r
(iv) {B—>¢ | Belel , all maps B————>C} ¢ Cov(C)

The topologies on €, ordered by inclusion, form a complete
lattice, for they are closed under intersection, The smallest topology
is that for which Cov(C) = {C} , 811 C € |€C| , The largest is that
for which Cov(C) = {R lR =C in 6} = the set of all sieves in C,
It follows that any collection of sieves generates a smallest.topology
for which these are covering., In case the collection of sieves satisfies
(i), (ii) and (iv) immediately above, one need only add all sieves

larger than the given ones to obtain the generated topology.



1.3 Simplifications induced by the existence of fibre products If there

are sufficient fibre products (pullbacks) available in €, a different
characterization of the structure of topology may be given, This will
allow considérable simplification when we consider sheaves on a category
equipped with a topology. To proceed, a pretovology on € is given by
specifying for each C € |Cl a set PCov(C) of collections of maps
with codomain C satisfying

(PTO) WC e Gl ,\Y/B—>C in €, YA—->C ¢ R ¢ PCuv{C),

the fibre product Bx A——=A exists
c
|
B >C

"all maps in any covering are squarable"
(Pr1) WV {c;—>C} . e PCov(C), ‘V:B—C in €,
the family {c. x B———>B} ) obtained by pulling
ig iel

back along f is in PCov(B),

(PT2) Composition of coverings, as in T3,

(PT3) W C {c—2—>C} is in PCov(C),

Given a pretopology the sieves generated by the elements of the
families PCov(C) are cofinal in the generated topology, so one need
only add the '"super-sieves" to obtain this topology, Clearly, if C

has pullbacks, any topology is already a protopology.

Finally, a site, more often called a Grothendieck site in the
literature, is a category equipped with a topology (not necessarily

generated by a pretopology).
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2 Sheaves on a Site

2.1, Having defined the structure of topology on a category it would
seen incumbent to write down what it means for a functor to preserve

the structure., This leads to the notions of continuous and cocontinuous
functors. However the relevant definitions are difficult to understand
without first studying the notion of sheaf, and therefore we shall defer

them for the time being,

A sheaf cannot be construed in a natural way as a structure-
preserving map between mathematical objects of the same species, although
it is possible to view the category of sets as a site in a canonical
way, and sheaves of sets are in particular functors from the given site
into Sets, The situation may be usefully compared to that of Moore-Smith
limits in point-set topology. Here we have on the one hand the idea of
a directed set and the indispensable accompanying notion of morphism of
directed sets, On the other hand, the raison d'etre of directed sets
insofar as point-set Topology is concerned is their use in parametrizing
elements of a topological space, So it is with sites and sheaves, For
we view a sheaf (of sets, say) as a collection of sets coherently parametrized
by a site, The word '"parametrized" indicates of course that a sheaf is
to bé a functor, The requirement that the parametrization be coherent

is more subtle to express, The precise definitions follow,

Definitions 2,2 A presheaf of sets on a category € is a functor

F: C*—>Sets, The category of presheaves, whose moryphisms are

€.

natural transformations of functors, is denoted
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F is said to be separated if WC ¢ [€] | Y R e Cov(C), the
map €(C,F)——>T(R,F), induced by R<C, is 1-1. F is a sheaf
if these maps are always l-1l and onto, This will be called the patching
condition, for reasons to become evident shortly, Note that the notion
of presheaf is defined for any category C, but the notions of presheaf

and sheaf presuppose a site structure on €.

2.3 To illuminate these definitions somewhat, let us analyze further
the maps in question. First of all, what is a morphism R—>F 1in

T 2 Viewing R as a sieve and indexing the maps in it by
{fi:ci—————%c | ie IS , R is determined by elements o, € F(Ci)

satisfying the compatibility condition:

/8.2 C——> ; =
'\781 C3 Cj in €, F(g)( c'j) o

(Recall F is contravariant)

The Yoneda lemma gives an isomorphism F(C)—22>T(C,F). Then the
map F(C)—=2>C(C,F)—>C(R,F) takes an element c eF(C) to the
family {F(£)(e) | i€ I}, Let us denote F(£)(¢) by o|Cy,
read " ¢ restricted to Ci"‘ The condition that F be separated
now reads: if two elements 6, ¢' € F(C) have the same restrictions
over a cover RS C then they are equal, The condition that F be
a sheaf reads: every compatible (wrt R) family ch-i | oy & F(Ci)’ ieIy

arises as the restrictions (over R) of a uniquely determined element

of F(C),



Proceeding further with the analysis we have

F(C)-=2—>TC(C,F)-~~>T(R,F) -~—>C( 1lim B,F)—X > ...
(B,b)e C/R

1im_ €(B, ) o 1im. F(B)
(B,b) ¢ C/R (B,b) €C/R

Here the category C/R has as objects maps B-—L—>R in €

and as morphisms B—h—>B' rendering the diagram commtative, That

is, the objects are b € R(B) &= €(B,A) and maps are B—P-5B' with
R(h)(b') = b, i.e. b'h =b, It is a well-known fact that any R & |l
(sieve or not) is 2 colimit of generators B € €| over the associated
diagram C/R, For example see [SGA], expose I, 3.4, Using the basic
construction of a projective limit via equalizers and products we are

demanding, for F to be a sheaf, that the following diagram be an



1>

equalizer (the condition that F be a separated presheaf ié that the

first map be mono):

‘ F(c)——g——>j‘r F(ci)—gjﬁ’r \ T71 F(Cj)
ielI €> iel .cj hEci

Diagrammatically the maps are defined by their projections as

follows:
F(C) £ TTree))

F(fi) pry
“‘F(ci)

g
T'TF(ci)—————l—ﬂ'TTT F(Cy)
Pri
TTV
Pry F(Cj)
Prh
\N \
F(c,)
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TTF(ci>——2—->nﬂF(c )

J
Pri pri

‘ N

F

F(C,) TIr(C 5
F(h) Py

\Z
F(C.)
J

R The above characterization in terms of lim's shows that we can

define a sheaf with values in any category. The fact that covariant

hom functors preserve lim's and collectively reflect them shows that
ﬁ‘—F—‘-——ﬂB is a sheaf iff C"~———F—-—->]E—(—-Ei’:—)——>sets is a sheaf of
sets for every E ¢ E , Provided E actually has all of the dim®s
being tested for, it is sufficient that (E,-)F be a sheaf for all

EeY where Y € |E| is a strongly generating family, Recall Y is

a generating family if its associated hocm functors are collectively faith-
ful, and is strongly generating if it is generating and its associated
hom functors collectively reflect isomorphiocms, i.e. V E'———f——>E", (B, £)
iso all EeY" => f iso, If Y is generating, it is sufficient to
quantify over monomorphisms f, and in fact this is the definition of
generator used in [SGA], Grothendieck has popularized the ix;terpretation
of maps E—>E' in an arbitrary category E as "elements of E*

defined over E'", In this language we can say F: ¢*—>%E is a sheaf

iff it is "pointwise'' a sheaf of sets,
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For example if E is a variety of universal algebras, W(1) is
a strong generator where W(1) is the free algebra on a one-element set,
Hence F is a sheaf iff E(W(1), F( )) is a sheaf of sets, But
EW(1),F( ))xy UF where U is the forgetful functor from the variety
to sets (because Y is left adjoint to U), That is, a sheaf of algebras

is a functor whose underlying presheaf of sets is a sheaf of sets,

2.5 One proves (see [ 5GA]) that given a collection {K(C): C e Kﬂ}
where K(C) is a collection of families of maps each of whose codomain
is C, and supposing the collection is stable under ‘'chnnge of base"
(i.e, satisfies T1 of I,1,2):

A functor F:C*———>Sets is a sheaf for the tovology generated
by the K(C) iff it satisfies the patching condition for families in

the K(C),

If the topology is defined by a pretopology (I,1.3), the
patching condition is easier to write down, It is equivalént to the
following being an equalizer for each family {Cif—4?C] ie IS in

PCov(C), and for all C € || :

F(CO)——T [ FC)—=TT F(C, x C.)
jel 1 i,j icg
The maps are defined in the obvious fashion (cf I.2,3). This
condition is the one which is presented in the literature whenever

sheaves on a topological space are defined using the "coverings-restrictions"

technique as opposed to the "espace étalé' technique,
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2.6 Given a collection of presheaves we can always find a finest
topology for which they are sheaves. Recall that "finer topology"
"more patching conditions" "fewer sheaves", This sets up a Galois
correSpondencé between subcollections of lal and sets of patching
conditions on C (collections {K(C)| C e iCi}  where each K(C)
is a family of maps each of whose codomain is C), The closed elements
in the first case are subtopoi of @, that is, reflective subcategories
where the reflection preserves finite AQim's ., This is essentially a
theorem due to J, Giraud ([SG4], expose IV, 1.2)., In the second case
the closed elements are topologies. The proof of this fact is fairly
technical and will be omitted here since it has no real bearing on the

subject of this worlk,

It is sometimes qﬁite useful to know that the representable functors
on €* are sheaves, For this reason the finest topology for which they
are sheaves has been baptized the canonical topology. It can be shown
that the covering families for this topology are the universal strict
epimorphic ones. A strict epimorphic family is a collection of maps

{£,:00—>c |ie I} with the property that for any family

{g;:C,—>B|ie1} :

1,3 : . SA—>C h, = = g.h. = .
(V i,j \'/hi A—>C,, ha \ CJ. (flhl fj:nj——m;lh:L gjha))

== 3! g:C—>B with gf; =g 211 ie I,

A femily {:fi} as above is universal strict epimorphic if

¥B—>C, {C;—>B| ieI, c—>B—>C-= £} 1is strict

epimorphic, If € has pullbacks this is just the family obtained by

pulling back the fi along B—>C,
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3. The Associated Sheaf Functor

3.1 Denote by T the full subcategory of [ determined by the sheaves,
4 s, being a functor category, is relatively straightforward in terms of
its basic categorical properties, It has all <;igjs and }ig;s‘, and
the evaluation functors preserve them ("limits are computed sectionwise'),
The representable functors constitute a generating family. Epimorphisms
are sectionwise onto (and vice versa) and so on, Clearly an investigation
of € must begin by studying its relationship with '@. The fundamental
A

fact here is that € is a reflective subcategory of €, and the reflection

preserves finite left limits,

3.2 The construction of the associated sheaf is straightforward, To
make the best possible sheaf out of a presheaf P we must clearly add
to each P(C) new elements corresponding to compatible families over
coverings of C, Then we must identify any which are bound to lead to
the same "patched element", i,e, which agree on a common subcover. To
be precise define
(aP)(C) =  lim € (®,P)
R €Cov(C)
The action on maps is obvious, as in the reflection map
¢iP——aP (arising from the fact that C € Cov(C)). The verification

that aP is a sheaf and that a 1is left adjoint to the inclusion map
may be seen in [SGA], for example, Now the indexing category of this

1lim is down-directed (Cov(C) is a filter) and therefore the diagram
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itself is up-directed, This has the consequence that a preserves
finite projective limits, or is left exact as one says. The fact is
absolutely crucial to the study of algebra in categories €. For a
proof that in Sets finite 4119‘8 commute with colimits over up-directed
sets see MacLane [CWM], page 211, For a discussion of this fact in the
more general setting of regular categories see Grillet [RC], Ve might
point out that this type of commutation holds in any category E, as

follows from Grillet's work for example,

3¢5 There are other methods of constructing the associated sheaf,

We shall mention three of them, TFirst of all for presheaves on a top-
ological space one may build, using the "stalks'" of a presheaf its
associated etalé space over the space given, This is endowed with a
suitable topology and the associated sheaf is obtained by taking continuous
sections over this "fibred'" object, Another method, used by Van Osdal,
exhibits sheaves on a topological space T as coalgebras over a certain
cotriple in SetsITI , the functor category whose exponent is the
discrete category on the underlying set of the space T, The fact that
sheaves are cotripleable over Sets‘T‘ is a special case of a far more
general result which we discuss briefly in chapter II, 4,3, The third
method of constructing the associated sheaf is the internal one developed
by Lawvere and Tierney. In this setting a topos is defined by elementary
axioms (see section I.4) and a topology on such a topos E is an
endomorphism of a special object in the category, which satisfies certain

properties, Using this "Grothendieck modal operator'" as Lawvere calls

it, a notion of dense subobject is developed, and sheaves are defined by
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the way they behave with respect to dense subobjects, The category of
sheaves is a subcategory of IE, Applying this to our case, we would
start with the topos @', and the notion of a topology on € would
become an internal property of € (in fact an endomorphism of

Qe ). The notion of sheaf and the construction of associated

sheaves would then arise with no further reference to € ,

L The Two Notions of a Tovos

L1 Categories of the form € are called topoi (singular topos).

They arose originally in the work of French algebraic geometers. Recently
Lawvere and Tierney have developed an axiomatic theory of topoi. Their
notion-of topos, which is called an "elemeantary topos" is more general
than that of categories T « 1In fact the role played by the topoi T
among the elementary topoi is analogous to that played by categories of

modules among abelian categories,

4,2 An elementary topos ([QS], [AST], [AT], etc.) is a category E
with the following properties:
(i) ¥ has all finite limits and colimits including an initial
object O and a terminal object 1,
(ii) E is cartesian closed,
(ii) E has a subobject classifier ., that is to say
represents the functor IE*——>Sets which takes F & |E|
to the set of subobjects of F and acts on maps by pulling

back,
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The resulting theory is powerful and breathtakingly elegant., Indeed
Freyd has called this axiomatization and theory ''the most important

event in the history of categorical algebra since its creation' [AT],

4.3 We have chosen to study algebra in categories € rather than in
arbitrary elementary topoi. The main reason is that our applications
require a certain measure of cocompleteness. so that free algebras are
available, and a set of generators, so that equations may be more easily
discussed, But the existence of arbitrary colinits and a generating

set is already enough to characterize the & among the elementary torpoi,
This is an easy consequence of theorem I,2, exposé IV of [SGAl, together
with the basic exactness preoperties of elementary topoi., In spite of
the fact that we do not work in the setting of elementary topoi in their
full generality, we will freely use many of the basic facts about elementary
topoi in our proofs, Although direct proofs of these facts could be
given for the topoi E, the most elegant arguments use the tools of

the Lawvere-Tierney theory., The reader is referred to the literature

for details, for example, [QS], [AST], [AT], [SB], [ET],

5. Examples of Sites and Sheaves

5.1 Relatively Pseudo-comnlemented Lattices Recall a lattice I is

relatively pseudo-complemented iff it is cartesian closed qua category.
That is, V a,b ¢ 1L {xe L} aanxs b} has a largest element,

denoted a==>b, For the existence of a—>b means V xe¢ I, we

have a bijection of hom sets IL(a A x, b) = L(x, a=>b) showing that
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A

aA () is left adjoint to a=—=( ), It is a well-known result of
elementary lattice theory that a complete lattice is relatively pseudo-

complemented iff ¥ family {bi’y ier i L, VaeL, anVb, =
i

V ana bi . This property makes the canonical topology on such an L

i

easy to describe, For we can take as the covering families {ai————>a}

those collections {aiﬁ ieI with \{ ai = a, The above distributivity

condition shows this is a pretopoclogy., Any family {ai§ with ai La
all i is epimorphic when considered as representing a family of maps
with codomain a, It is easy to check that such a family is strict
epimorphic iff a = \/ a; . Finally, the distributivity condition

i

mentioned above shows that every strict epimcrphic family is universally

strict epimorphic. Thus the pretopology defined above, in the way

natural for a complete lattice, is in fact the canonical topology (cf. 2.5)

~S
A sheaf FeélL\l is a presheaf I* >Sets satisfying the

pretopoclogy patching condition, That is, for any situation a = \/ a.

i
i
the following is an egualizer:
Fla)—>T | F(ai)“—:; TV Fla.~a,)
iel i,jel i 73
5.2 Sheaves on a Topological Space Historically there were the

first sites to be studied, FIrom the point of view of site structure,
this example is a subcase of 5,1 above, where we take for I the
lattice of open sets of a topological space T, We denote this lattice
by Open (T), Ve will briefly point out two characteristic features of
~

the category of sheaves of sets on a topological space T, denoted T

~J
rather than Open (T),
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First of all the representable functors U: Open (T)* ——>Sets

[
defined by U(V) = { é 3‘; g are sheaves, for the topology on

Open (T) is the canonical one, Moreover these U generate T, In

fact for any site € the collection of sheaves a(C) where C e i€\
generate € (lert adjoints take generating families to generating
families). But in this case, in fact in the general situation of 5.1,

the representable functors are clearly eubobjects of the sheaf represented
by T € Open (T) ., The latter is the sheaf constant at 1 and is the
terminal object of T , also denoted by 1. To sum up:

In % the subobjects of 1 generate,

The second feature we wish to point out is the existence of stzllks,
For each x € T we have a functor T—>Sets denoted by Fl———an,

f F——%fx and computed by

F_= U];:'._% F(V)

These stalk functors have the property that they are left exact
and have right adjoints (equivalently by the special adjoint functor
theorem and the presence of a generating family for 'ﬁ, they are left
exact and preseve all colimits). Such a functor on a sheaf category [
is called a stalk of € and its right adjoint is called a point of C,
In general T has more points than those represented by the above
formula for x € T, Later we will describe completely the points of '§.
However these stalk functors collectively reflect isomorphisms, %hen a
sheaf category € has enough stalk functors to reflect isomorphisms, we

say that € has enough points,



23

It is a fact ([SGA], exposé IV, 7.1,9) that a topos € is
equivalent to one of the form T ire

(a) the subobjects of 1 generate and

(b) it has enough points,

In section 4,2 of chapter II we will indicate how one proves this,

5.3 The tovos € Every small category €, has a smallest topology
v

on it, for which Cov(C) consists of one sieve, C itself, or in the
language of ideals, the ideal of all maps with codomain C, For this
topology it is clear that every presheaf is a sheaf, i.e, Tet is ap
isomorphism of categories, At the other end of the lattice of topologies
is the discrete topology for which every sieve, including the empty one,
is covering, Because O0>—>C is covering V C e €| we must have

for any sheaf F, that 6(C,F)——-—9E(O,Eﬁ'§ 1 is an isomorphism,

This means F(C) = 1, Thus € reduces to the zero *opos where 1 = O

and there is, up to iscmorphism, only one object,

5.4 Fan Sites The simplest sort of non-trivial site one can imagine

is clearly a "fan” €, 1looking as follows:

/ \

Ci Cj

where Cov(Ci) = {1043 , Cov(C) = {fil ie I'glJ {lcs .
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A little reflection shows that the sheaves on such a fan are not particularly
interesting. For obviously a sheaf on € consists of a family of maps
F(C)————?F(Ci) constituting a product diagram (this is the patching
condition), The fact that maps of sheaves are natural transformations

means T is equivalent to the category whose objects are I-indexed

families of sets and whose maps are I-indexed families of maps with the

obvious connections between domains and codomains of the data involved,

11l

~~ ~e "~ ~ ~o g
i,e. C = SetsxSetsx,.,. = T 1 Sets 2 Sets ==% 2 P(I)
\‘-'_—\,——-——.—-"'

- ijeT
“I times "

vhere 1I| denotes the discrete category whose objects are the elements
of I and whose only morphisms are identities, T denotes the discrete

topological space on the set I, P(I) is the Boolean algebra of &2ll

subsets of I, equipped with its canonical topology (see 5.1).

et us point out that although such sites are simpleminded from
a sheaf-theoretic point of view, they are indispensible for the study

of injectivity.

5.5 Regular Epimcrvhism Topologv on a Regular Category Iet & be

a regular category. That is, every map may be factored as a regular epi

= coequalizer) followed by a mono, and regular epimorphisms sre universal
which is to say the pullback of any regular epimorphism along any map is
again a regular epi, Clearly for a regular category € the regular
epimorphisms are covering families (one element coverings) for a pretopology.

A sheaf then is a contra#ariant set wvalued functor which inverts the
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regular epimorphisms (i,e. carries them to bijective maps)., This
example has been exploited extensively by Michael Barr in proving

non~abelian embedding theorems {EC].

5.6 A Measure-theoretical Example Let K be a compact topological

space equipped with a complete regular Borel measure i, From this data
we shall construct (in three ways) a topos reminiscent of ‘ﬁ, the sheaves
on the space K, 1In fact in the topos we construct the subobjects of 1
generate but we shall see later that in general there will be very few

"points" (in the case of Lebesgue measure on [0,1], no points !)

This example is due to P, Déligne and the construction is

jndicated briefly in [SGA] ("démonstration au lecteur"),

Define a category A , for "almost measurable', as follows:
The objects of A are subsets A € K which are almost measurable,
A is said to be almost measurable if there is a set A'<c K of measure
O with A u A' measurable, ZEquivalently there exists a measurable set
E with u(E A A) =0, Here A is symmetric difference. The morphisms
of A are inclusions, that is, we view A as a poset ordered by inclusion,
Elementary measure-theoretic arguments show that A is a 6 -algebra
containing the ¢ -algebra of measurable subsets of K, A family
{8 A e I} will te a covering of A iff I is countable and
pa =U Ai) = 0. Observe that this topology (in fact pretopology) is
not coiparable with the canonical topology on A , for each topology has

covers which are not covers in the other, In particular the representable

functors on & will not in general be sheaves,
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Let MM be the site defined as /A above but taking only mezsurable
subsets of K as objects, Define M/= as follows. For measurable
ABe K put A=B iff p(AA B) = 0, This is an equivalence relation
on M , Define [Al_ < [Bl_ iff wu(B-A) = 0. This is a well defined
partial order, It turns out that [A]E < [B]__E iff 3 A'= A, B'= B
with A'< B, M/= is & 6 -algebra and the canonical 34——:1——%§%é5
is & morphism of ¢ -algebras., Define a pretopology on M/= by
taking countable suprema as coverings, Clearly if we define a relation
~ on A by A~B iff u(AA B) = 0 we obtain a quotient A/, = IV/=

and a commutative diagram

M—— A
/
\ ﬁ 6 is the canonical injection
N_ K
T

These three functors induce functors on the sheaf categories

~ O'S ~
M gx
\ gs
AP
IV[/___

This will follow from a later section on morphisms of topoi
(Chapter II, 1.2)., The important thing here is that o ‘g s = Vs
and all three functors are equivalences of categories, One can

easily convince oneself, without the general theory of morphisms of sites,
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that A oM and ML serve to define the same sheaves by observing
that if B,A are (almost) measurable sets with B< A and n(A-B) =0
then B cecvers A and any sheaf must have the property that restriction
F(A)——>F(B) is an isomorphism, Similarly a sheaf cannot distinguish

between parameters whose symmetric difference is .O.

I have included A because this is the way [SGA] introduces the
example, I have included ¥ Dbecause it seems to me less cumbersore
to work with than A or M= (A/. ). I have included Ii/= since
it exhibits the sheaves as sheaves on a site whose topology is coarser
than the canonical one (not the case in the representation as sheaves
on /A or M), At any rate any one of these parametrizations is as

gcod as the others in terms of the resulting topos,

Let us illustrate the techniques used in studying M by briefly

discussing the situation with generators,

First of all the representable functors on M will rarely be
sheaves, For take A € || and suppose we have B 2 4, B # A,
p(B-A) = O, Then A(B) =0, A(A) =1 but if A were a sheaf it would

follow that A(A) = A(B) since B 2 A is a covering., However we can

easily describe the sheaf associated to A. a(A)(B) = { ;’, zi}}tizti:eo

If B A then B-A=¢@ so u(B-A) = 0, This shows that
A(B) = 1==>a(A)(B) = 1 so we have a natural map A——>a(4), a(A)

is evidently a contravariant functor, Let us show that it is a sheaf,
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Let {Bis B: ie I} be a covering., We must show the following is

an equalizer:

a(A)(B)——T Ta(a) (B)——=T | a(a)(B; ~ B,)
i i,3 . J
If a(A)(Bi) = @ some i then necessarily a(a)(B) =g ,
I 1 a(A)(Bi) = @ and the last two arrows are equal and the first is an
i

isomorphism, Hence the diagram is trivially an equalizer,
If a(A)(Bi) =1 all i €& I then a(A)(Bir\ BJ.) =1 all 1i,j
simply by functoriality of =a(A), Thus the last two arrows are the

identity on 1 and we are finished if we know a(A)(B) = 1, But

w(B; ~A) =0 all ieI and UBi-A= U (B, - &) s0o w(UB, -4 =0
‘ i i

(recall I is countable). But since the B, cover B w(B - U Bi) = 0,
i

Moreover B-A

(B-4) ~ (( U Bi>° v UB)
i i

(B~ A A (UB.)c)u (B A Acn U B.)
1 A i d

(B-(AuUBi))u(UBi-A)
i i

< (B ~ UBi)u(UBi-A)
i i

Since these last two sets have measure O so0 does B - A, Finally,

a(A) is the reflection of A in the category of sheaves,
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Given gLA

*F, which corresponds to a section © € F(4)
we construct o as follows:

If a(A)(B) = # there is no choice for &

B.
If a(A)(B) =1, u(B-A) =0 and B- A S B is a covering. Thus

F(B)—>F(B-A) is an isomorphism. Then Gy maps the unique element

of 1 to the element of F(B) obtained by restricting ceF(A) to

F(B-A) ' and applying the inverse of F(B) >F(B-4),

This evidently gives a factorization of o through A——a(A)

and the reader may esily show the factorization is unique,

As mentioned above we will return to this example when we study

.points of a topos,

5.7 Double Negation Topology on Open(T) Take a topology space T

and call a family Ui € U of open sets covering if US Int I ( (U u.).
iel

Here "Int" and "I " stand for interior and closure respectively, This
defines a pretopology, for take such a covering and any V< U, Then

V=VAU=VAIntr( UUi) SIntlT (VA IntM(\Y 0,) = mtM(VvalJu,)
3 i i 5 i
=Intl (U VnUi). i.e, {Vr\Ui :ie I} is a covering of V., Note
i ,

that "Int T " commutes with intersections when the arguments are
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open sets ([BAl, page 15J.

The topology generated by this pretopology is called the double
negation tcpology on Open{(T), The theory of elementary topoi allows one
to associate with any topos a subiopos consisting of its double regation
sheaves, ¥hat we have described above is the category of double negation
sheaves associated with T (or @ - they have the same double negation

sheaves, technically because the double negation topology on Open(T) is

i1
finer thzn the canonical topology). By Open(T) ve denote the catesory
P . . P e
of open sets of T with the double negatior topology anc oty 1 the
associated category of sheaves, The notation " .o " is borrowed from

[BA] where it is used to represent IntT ., One may easily see that the

. EREN . 1L
sheaf associated to U e |0Open{(T)™ | is the sheaf represented by U .
Thus the representable functors on Open(T) are sheaves iff the opsn set
representing them is regular, Indeed T**  can be described equally well
as the sheaves on the site whose category is the poset of regular open

sets of T and whose topology is the canonical one,

Later we will show that T+t is a topos which may be very poor
in points., In fact for T a T, space T**  often has no points at
all., This in spite of the fact that T** is a Boolean topos in which
the subobjects of 1 generate, We recall that in the theory of elementary
topoi a topos E is said to be Boolean if the canonical Heyting algebra
structure on L is Boolean, Equivalently, for every F e \E| and
F'>—F, 3 F'>—>F with F'u F'=>F, In an arbitrary topos one has

pseudocomplements available, but in general not complements,



Chapter II Morphisms of Topoi.

1. Morphisms of Towoi and Sites
1,1 Definition The experience of the associated sheaf functor and

of the direct and inverse image under continuous maps of sheaves on a
topological space leads to the following definition. A (geometric)
morphism of topoi is a functor f: E—>E®' equipped with an exact
left adjoint f*, ‘'exact" means f* preserves finite limits and finite
colimits (the latter will be preserved by virtue of the fact that f*
is a lgft adjoint), The inclusion 6'5 ¢ of sheaves into presheaves
is a geometric morphism of topoi, Given a continuous map f:X—>Y
of topological spaces a geometric morphism f,:i?———>?’ is induced via
the formula £, (F)(V) = F(f-l(V)), the "direct image" functor [TF],

We shall study this example in more detail later,

There is another notion of morphism of topoi, that of logical
morphism, This is a functor which preserves the structure of the topos
as an elementary topos, i.e. a functor which preserves finite _lim's

and lim;s, exponentiation and .., A geometric morphism whose left
adjoint part is a logical morphism is called a local homeomorphism, As
is to ve expacted a geometric morphism induced by a local homeomorphism

of topological spaces is logical and thus a local homeomorphism in the

topos-theoretical sense,

31
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1.2 Morphisms of Sites, Continuous Functors As is to be expected,

the proper notion of a morphism u:C——>C' of sites will induce a

morphism of the associated topoi,

First of all any functor u:C——>€*' induces a functor c —¢
which has left and right adjoints ('Kan extension", cf [CWM], page 229),
These three functors are denoted by u®, Uys Ys o Here and in what
follows we follow the complex notation of [SGA] for want of a better.-
system, Thus .« is a geometric morphism of tcpoi ~ u® preserves all
limits and colimits since it is both a left and right adjoint, u* will
be a geometric morphism whenever u: is left exact, for example when

€ has finite left limits and u preserves them (SGA 4, I.5.4),

We say u is continuous if u* carries sheaves to sheaves, The
restriction to sheaves is denoted by u_. Bquivalent conditions are
that u! takes bidense morphisms to bidense morphisms, or that for any
covering sieve RE€ C in C , u:(R)————>u:(C) is bidense. Recall
that a morphism is bidense if application of the associated sheaf functor
turns it into an isomorphism., A monomorphism is called dense if it is
transformed Yy the associated sheaf into an cpimorphism (and automatically
an isomorphism), Hence by exactness properties of '"a'" a morphism is
bidense iff

(1) The diagonal is dense in its kernel relation

(2) The image (at the presheaf level) is dense in the codomain,

Note that for any C ¢ €'} , u,(C) = u(C) ¢ €|, That is, the

following diagram commutes
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€< 2 ¢
h' Th h, h' are the Yoneda embeddings,
Cl< c
u
~ A u' N a ~
The composite €= C * (R €' provides a left adjoint,

denoted u° to L It u, is left exact, 80 is v® and thus ug
is a geometric morphism of tépoi. This will be the case, as pointed
out above, if € has finite left limits and u preserves them, Of
course 1if Uy is left exact it is clearly necessary that u preserve

whatever finite left limits exist in € ;| because of the equation

u,h = h'u in the diagram above,

Any continuous functor must carry covering families to covering
familiés. In case the topology of € is defined by a pretopology and
u commutes with fibre products, this condition is also sufficient for
u to be continuous, In fact it is sufficient that u carry coverings

of the pretopology to coverings in C' ,

It follows that a continuous mapping f:X—>Y of topological
spaces induces a continuous functor gL Open(¥)——>Open(X), Thus
we obtain a pair of functors

S
~ s ~J
X<<& Y
s

f-l preserves finite left limits since they amount to intersections
hence (f-l)s is left exact and (f.l)s is a geometric morphism of
topoi, as promised sometime previously, To add to the notational confusion,

it is traditional to denote (f‘l)e by £, and (£1)% by £+,
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£.(E) is called the direct image of the sheaf F and £*{(G) is called

the inverse image of G,

1.3 Cocontinuous Functors Between Sites The notion of continuity

of a functor u:l——>C* has lead us to an adjoint pair

u
~J s ~
(o —

u
8

s . . cs
u ————{us. The additional assumption of cocontinuity

provides a right adjoint to v . Ve say u is cocontinuous if it
satisfies one of the two following equivalent conditions:

(1) u, carries sheaves to sheaves

(2) WCelel, ¥ RecCov(u(C)) 3 S eCov(C) with u(sS)e R,
This last inequality is to be understood in the language of ideals:

u(s) = {u(f)) a—Lsaest .,

In this case the restriction of u, to sheaves is also denoted
u, . When there is possibility of confusion we write G,_ for the functor

at the level of presheaves,

If u is cocontinuous (not necessarily continuous) the composite

Tt g2

~
€ provides a left adjoint to u,, and in fact
a left exact left adjoint, so that u, is a geometric morphism of topoi.

If w is also continuous this composite is just u, so we have

The important example of a functor which is continuous and
cocontinuous is the inclusion Open(U)———> Open(T) where U< T

is open, Note that this is not a functer induced by a continuous map
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right adjoint to the functor v.
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induced by i:Us T is in fact

There is a theorem about such situations,

u
s . —3me . . . . .
viz: for C&L——7C°* with v— v, u is continuous iff v is cocon-

v

tinuous, In this case v, & u_, v = u’,
1.4 Summary Let us attempt to clear away at least some confusion

by summing all this up in a few diagrams,

Presheaves

Presheaves in the presence of an acjoint pair

u,— u*— u,
L4

u* (F)(C) = F(u(C))

it

u,(G)(C") 1im_ G(C)

u(C)—cC:*

G(c)

u,(G)(cT) lim

c-ulc)

u
o m— L

ut
~ u* = v,
v—l u c?
v* = u,
V1
Sheaves-continuity
P A u* ~
definition Cl——>¢C
i'T /[i
Crem - >T
Ju

A
€ vi—i (v* =

v

u,)— (v, = u ) — u,

~ Y S s
CP\_/S u——’us
8
u 5]
u =amu, i

u, a geometric morphism if C

lim's

has and w preserves finite



36

Sheaves-cocontinuity

A
. u# ut
e s ~ ~ Mg e~ .
definition C'e——(C ¢3¢ au®*i— u,

T 0 au*i

~ ~ 2tri i

Crem ———__ ¢ u, a geomairic morphism
Ju,

Sheaves=-Continuity and Cocontinuity

Uy
7 a N
Vv 5 N\, &
—>C 0 — u-—q u,
‘\_/ 8

5
u

cs

Sheaves in the presence of an adjoint pair

u
Cc ¢! u—yv u continuous <> v cosountinuous
v
15 —
. ~ .___L__:_L“ s . . .
If u coantinuous C'¢ Z¢ u 1s a geometric morphism
u_ = v*
s

Sheaves: Continucus mapping X—L%Y of Topological Spaceq

f
~ * ~
X&__Z Y f*— £, f. &a geometric morphism

£* 1
fao (F)(V) = F(£7(V))

Sheaves = Inclusion of an Open Subspace U € T

v: Open(U)——> Open(T)

it U—>T yields i : Open(T)——> Open(U)

=1 g .
v— i is continuous and cocontinuous

v
-1

i, = (4

) = v,

v, (F)(W) = F(UaW)
8 F(W) WeU
v (F)(W) = py e

G(v) Vveu

vs(G)(V)
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2. Points of a Tovos

2,1 Preliminaries Tue category of sets, which we have denoted by

Sets, is a topos, For example it may be represented as the functor
category Sets:ﬂ where 1 is the terminal object in the category of
categories, Now suppose we have an elementary topos E and a geometric
morphism EF——i;—>Sets. Then f* is left exact and preserves right

limits., By left exactness f*(1) = 1, the terminal object in Ii, By

the preservation of left limits it follows that £*(n) = %%1 for any

n ¢ |Sets| . Thus there can be at most one such geometric morphism and
if it exists its right adjoint part is represented by 1l € |El . The
topoil € are always complete so IE(1,-) is a geometric morphism, for
£* defined by the above forwmula is leli exaci,a fact which follows from
the exactness properties of an elementary topos. To sum up, Sets is

the terminal object in the category cf topoi of the form T (as opposed

to the more general elementary topoi).

Now whenever we stumble upon a terminal object in a category,
it is natural to attempt to assess how close it come to being a generator,
In our case we wish to study geometric morphisms p: Sets———»ﬁ. These
are, for now obvious reasons, called points of T (or of €), The category
of topoi inherits a 2-structure from the category of categories., In
particular the class of points of a topos € is a category which we
denote Point (C), The left exact left adjoint D* of a point p is
called a stalk or fibre of € and the category of these is denoted

Fib (C), A natural transformation p—>p' induces a natural transformation
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(p')*—>p* by a well known proposition about adjoint functors. This
mediates an isomorphism Fib{(€C)*—2—-Point(¢), If F € {€\ and »p

is a point we often write p*(F) = Fp .

2.2 How Points Arise as Direct Limits Observe that every F e [Tl

is the colimit of a diagram of generators and since p* is colimit
preserving, p* is determined by its values on any generating set and
in particular by its values on the sheaves associated tc the representables

F = C

1im
/7

Hence F = aF = a(lim C) = lim 2(C) =—=p*(F) = lim  p*(alC))

c/F C/F c/F

C/F is the comma category whose objects are maps C——F,

~ L
Since p* is determined by the composite C € P Sets

we ask what the properties of this composite are. One knows ([sGA 4],
IV.6.3) that the composite, which we from time to time also denote
by p*,

(1) is left exact

(2) carries covering families to covering families (i,e, epimorrphic
ones)

Moreover, provided € has finite left limits, these properties

characterize the stalks on C.

We can pin down the stalks a 1ittle further. Following [sGa]

define a neighbourhood of a point p to be an object F € Ic| together

o~

with an element u € Fp = p*(F), In Setsm this is a morphism F——>p*,



identifying F with the representable functor &(F,~), Defining a

morphism of neighbourhoods in the obvious way we have fhe category

~

N(p) = (€,p*) = C/p*

and p* = lim, F

FéN(p)"'

Since this limit is computed pointwise in SetsC we have

p*(€) = lim, F(G) = lim  €(F,G)
FeN(p)* FeN(p)*

viewing N{p) as a comma category it is clear that it has finite limits

(in fact it's complete and cocomplete), Therefore N(p)* is filtered.

Kt K!
[Recall a category X is filtered if V K/ 3 S g making
\ //'
K" K"

the square commute, and ¥V K——3K' 1 K'—>K" such thst the composites
are equal,] Moreover if we consider the full subcategory of N(p) whose
objects are those F——p* where F runs through a generating family
closed under finite left limits, we obtain a cofinal (c.f. [FE]) subcategory
of N(p)*. Suppose then that € has finite Jdim's, Then the subcategory

of N(p) determined by a(C)——>p*, C e €| constitutes a filtered,

cofinal subcategory. Denote it by N'(p).

" Then p*(G) lim_ C(F,G)

231N
N(p)*

= lim_ €(a(C),q)
N'(p)*

= lim_ T(c,6)
Nl(p)t

= lim_ G(C)

N'(p)‘



The point of this discussion is that every stalk functor is
obtained from a filtered diagram in € by taking direct limits, It
is not however the case that every filtered diagram in € gives rise
to = stalk by the above formula, Conditions (1) and (2) for stalks
(see above) must always be checked, Neither one follows from the nature

of the formula suggested,

2.3 A topos T has enough voints if \/tF:F—~—>G in ‘5, 4)p iso

all points p___;>¢ iso, i,e, the stalks collectively reflect isomorphisns,
It follows that the stalks collectively reflect whatever limits and
colimits they happen to preserve, namely finite left limits and all right
linits, This is well-known in the case of sheaves on a topological space,
i.e, a diagram of sheaves is a pullback, coequalizer etc, iff it is

"stalkwise'",

If & topos has enough points it admits a set of points whose

stalks collectively reflect isomorphisms ([SGA 43, I.7.7, 1v,6,5),

Finally, if a set of fibres collectively reflects isomorphisms,
its members are collectively faithful, For suppose F::%;:gG are
maps in T with 4>p = q/p all p of the set envisaged, Let E—P SF
be the equalizer of and « Then is the equalizer of

q q) \I-' up Q ¢p, \}/p

all p-::é>pp is an isomorphism, all p —>pu is an isomorphism P ¢:=+

A
Example 2,3,1 C has enough points for any €, since the
A
evaluations eC:C-———>Sets via F+——>F(C) are left exact left adjoints

which collectively reflect isomorphisms, Hence the oft-repeated
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"everything works pointwise in a functor category". Note that for €
evaluations are almost never left adjoints since they norrally fail to

preserve right limits,

Example 2,3.2 For a topclogical space T, the stalks of T
associated with the set-theoretical points of the space (c¢f. I.5.2)
collectively reflect isomorphisms,

Note 2.3.3 Categories z need not have enough points, as

we shall see shortly,

2.4 Open Sieves We note in passing the interplay between subobjects

of 1 in 5, which we call open sieves, and the points of C. Appiying
the fibre p* to R S 1 we obtain RpEE lp =1, Thus Rp =1 or O
and the full subcategery of N(p) whose objects are open sieves is
isomorphic to the category whose objects are R < 1 with Rp = 1 and
whose maps are inclusions R € R', The set of points of € may be
endowed with a topology by taking as open sets R® = {p: Rp = l}' o

It follows that (UR,)® =UR;®, Rn8)¥=8nAs’ 0°=0 ana 1°-=

set of all points,

We will later have occasion to refer to this topology on the

points of €, when ve characterize the topoi of the form Eﬂ )

3 Examples of Points and Morphisms

3.1 Points of T for a Topological Space T
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3.1.1 Theorem Let T be a topological space. The category of points

of T is isomorphic to the voset of non-empty irreducible closed subsets

of T, ordered by inclusion, |
Recall that a closed Z € T is irreducible iff ¥V F,F? € T

closed, Z=Fuv F'=F=¢g or F'=4dg, Equivalently V¥ U,U' ¢ T

openy, (Un 2 A FAVAZABDUAVAZL #. It is clear from the

statement of the theorem that irreducible closed subsets play an important

role in classical sheaf theory, In a later section we will use them o

""balance" topological spaces in the course of studying the functor which

associates to a space its category of sheaves,

Cnd
3.1.,2 Proof Recall from 2,2 that ihe category of points of T is

~r
dual to the category of stalks on T which in turn is isonorphic to the

category of set-valued functors on Open(T)_which are left exact and which

=1

take covering families to covering families, Let p be a voint of and
p*:Open(T)——>Sets the corresponding stalk restricted to Open(T), Since
p* is left exact and T € | Open(T)| is terminal, p*{T) = Tp =1,

Every map U-—V in Open(T) is mono and left exact functors preserve

monos, hence Up >Tp = 1 is mono, Thus Up =@ or 1, all

R/

U € {Open(T), Hence we can consider p* as taking values in the
2 element Boolean algebra, The condition that p* be left exact means

(UAV) =U_AV  and the covering condition means ( \UJ U.) =
p p" p s o1 i'p
\V/ (Ui)p where U,V,U, are open sets and the join in the right hand
ieX



side is taken in the Boolean algebra 2. Note that this implies ¢p = O,
We have so far shown that the stalks of T are no more or less than
join-complete lattice homomorrhisms from the Heyting algebra of open

sets of T into the two-eclement Beolean algebra.

Let us consider the category N'(p) of neighbourhoods of p (cf. 2.2,
Its objects are maps U—>p*, i.e. elements of p*(U), Now p*(U)
has at most one element so it is clear that N'(p) is isomorphic to
the subcategory of Open(T) determined by those U for which Up = 1,
Hence, V F e ITl , F = iim F(U),

P ou=1
b

Define 2 = {_x ¢ T: ¥ open US T, x ¢ U::>Up = 11‘( . That
is, x'€ 2 iff each of ifts topological neighbourhoods is a topos-
theoretical neighbourhood of p. 2Z is closed, for take x ¢ T with
the property that every nbhd of x meets Z. Take any open V 3 X,
VA Z # QS:.}VP = 1, Since V was an arbitrary nbhd of x, x¢& Z
and 2 is closed., 2 is irreducible, for suppose U,V € T are oper,
Unz#g, Va2 #g, If UAnVAZ=@, then ¥ xe¢UnV,

c . = = o
3 open W_€ UV with xe W_ and (wx)p 0. ECJ W =TV, hence
0= M) ={Jw) =@@aAV)_=1 vV =1 &

xU p = Uiy “pT "

Now since Up =1<=Un 2 =@ we have shown that every point p

~J)
of T arises from an irreducible closed 2% & T via the formula (for p*)

Fp = lim. F(U)

UnZ2 # ¢
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Coanversely such a formula defines a point, for a non-empty irreducible
closed Z, For clearly such a formula implies that Up =1 if Un 2 # g,
O otherwise, It is easy to check that this defines a join-complete
lattice homomorphism from Open(T) to 2, Left exactness comes from the

irreducibility and the fact that 2 # ¢,

To this point we have exhibited a mapping from the irreducible
closed subsets of T onto the stalks of ﬁe To establish the 1-1 nature
of the mapping, suppose Z, Z' are different irreducible closed subsets,
say x€ Z -2, Then J open US T with xe U, U~ 2' =@, But
this means UZ = 1, UZ' = O vhere UZ means p*(U) for the point p
associated with Z, Thus 2 # Z'==—>( )Z # ( )Z" Finally we must
show that for points p, p' induced by 2, 2'

1 zez
n.t.(p, p') ¥ Hom(2,2') =
{o z ¢ 2
But since 2%, Z' are closed, 2 & Z2'&==>(Vopen U, U 2' = ¥

=>Un 2 =¢@). The latter condition is precisely what is needed for

there to exist a natural transformation p'* sp*  (considered as
2-valued join-complete lattice homomorphisms on Open(T)), There can be
at most one such natural transformation since p'*, p* take values in

?

a poset,

3,1.,3 Remarks Every element of the set underlying the space T
yields a point of T since V¥V x e T, r'{)cg is an irreducible
closed set and the corresponding stalk is computed at a sheaf F by

F = Jim>FTU) since the couditions x € U and r'{xs nU#£g
Usx
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are equivalent, It is well-known that these particular points are
sufficient to reflect isomorphisms, which fact is the basis of the

ngtale space" approach to classical sheaf theory.

3.2 Points of the Double Negation Sheaves for a Space T Here we

analyze further example 5.7 of chapter I, Using the terminology

established previously, we have a morphism of sites (i,e, continuous

functor) Open(T) >Open(TfJ' given by the identity functor. For

this functor is left exact and takes coverings to coverings., This vialds

a morphism of topoi %*f—————>ﬁ whose exact left adjoint carries genarators
Ue 10pen(T)! to Imt [ (U), This latter functor induces by composition

a map of the points of Open(T)ll' into those of Open(T), If we look at

the associated stalks, more precisely their restrictions to the generators,
the mapping of the stalks of Open(T)‘L to those of Open(T) is given by
composition with the above mentioned identity functor Open('l‘)--———->Open(T)'L'L

~J

1
Hence every stalk of T is defined by a formula

F = lim F(U) some non-empty irreducible closed set %
A ]
. « s Nir " _ .
For if p* is a stalk on T p*(F) = p‘(%;mj Xy F(U), and

p*(U) = 1&=>q*(U) = 1 where q 1is the point on Open(T) induced by P.

Thus p*(F) = lim, F(U) = 1lim  F(U)
@) 21 UnZ Z 8

~

It is clear now that the category of points of T+t is isomorphic
to some subcategory of the category of non-empty irreducible closed sub-

sets of T, This subcategory is identified by the following theoren,
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3.2.1 Theorem A non-empty irreducible closed 2 € T defines a

point of T'' iff it is regular i.e. % = I Int(Z).

Note that for non-empty irreducible closed subsets, regularity
is the same as having non-empty interior., For if Int(Z) # @ take
any x€ Z, V nbhd Us3x, UnAnZ #ZP and by irreducibility
U~ Int Z # #. Hence every nbhd of x € 2 meets Int 2, or Z < [CInt Z,
On the other hand if Int Z2 = @, 2 cannot be regular and non-empty at

the same time,

3.2.2., Proof of Thecoren Let p be a point of T and Z its associated
irreducible closed subset, i.e, p*(F) = 1lim, F(U), Consider the open
UnZ # ¢

set T-2, Since Zn~ (T-2) =g, p*(T-Z) = 0, The inclusion
T-Z € Int T (T-2) is a cover in Open(T)*J' so p*"(Intl (T-2)) = p*(T-2) = O,
This in turn implies 2 A Int[ (T-2) = &, i,e, T=2 2 Int[ (T-2). The
other inclusion being trivial, we have T-Z = Int [ (T-Z), equivalently
Z = [ Int(Z), Hence Z is regular. Conversely if Z is a non-empty
regular irreducible closed set it must induce a point of T . The

formula F_ = lim , F(U) certainly provides a left exact functor

UnZ £ ¢
on Open(T)*™ | as in 3.1.2, for this follows simply from the fact
that 2z is irreducible and non-empty. We need only check the covering
condition, Suppose IB_S U, i € I is a covering of U, This means
L= Intr(uUi). We must show p‘(Intr(u Ui)) =1=—=>3iel

i i
with p*(Ui) =1, Since p* is a fibre for the canonical topology we
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know p“(Ui) =1 some i€ I@p*(u Ui) = 1, Rephrasing, we must
i

show p*(Intr_(LJI%)) = 1=—2p*(J Ui) = 1, Put LJ'Ui = V, Suppose
i i i
p*(IntT(V)) =1 i,e. 2~ Int[ (V) £ g, By irreducibility of 2,
Int 2 IntT (V) £ @ (by regularity, it is impossible that Int 2 = o}
since 2 # g, Now Int Z~ Intl (V) =IntT Int 2 A Int (V) = Int[ (Int ZA V)
("Int™" commutes with intersections, for open sets cf 5.7 chapter I).
Hence Intl (Int ZaV) ¥ @, a fortiori Int Z A V # B, so Z2nVHG,

Hence p*(V) = 1,

3.2.3 Note that if T is, say, Hausdorff and has no isolated points,
the only non-empty irreducible closed sets are the singletons, and

these have empty interior, For such T then, 3.2.1 shows ‘Tll' has

no points, Thus a very fundamental construction on the category of
sheaves on a topological space (fundomental within the theory of
elementary topoi, that is) may produce topoi which cannot be realized

as sheaves on any topolegical space, As pointed out in 5;? of chapter I,
T+ 5 a Boolean topos. In fact the double negation sheaves associated

with any elementary topos always form a Boolean topos, For example see

3.3 Points of M Associated With a Feasure Space (K.,u) As in 5.6,

Chapter I, let (K,p) be a compact topological space equipped with a
complete regular Borel measure, The following result, announced in
[SGA], answers the guestion of what the points of the associated Topos 1

are,
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3.3.1 Theorem The category of points of I is isomorphic to the

discrete category whose objects arec those x € K with n( {xf&) #Z O,

3¢3.2 Proof Let p be a point of T, For convenience we will denote
the restriction of p* to i = M by & . Recall ¢ is left exact

and takes covering families to covering families, The following facts
are immediate and may be obtained in a manner quite similar to the proof

of the analogous facts for T (see 3,1.2).
(F1)  ¢) =1, &) =0, ¢$A) =0 or1 Vae lu|

(F2)  ¢(anB) = &) A $(B) and $ (&) = 1< di-a) = 0,

For the latter, ohbserve that A; K-A cover K so since

$(K) =1 (F1), either $(A) =1 or ¢(K-A) = 1, But

not both, for $(4) A ¢(k-8) = ¢LAn(K-4)) = () = o,

]

(F3) The covering condition says that for any countable family
A€ A with w(a-Ua) =0, ¢€A) = 1=>3i with
$(a) =1,
(F4) VAacK, u(A) = 0==¢(A) =0 for n(A) = 0=—=gc 4

is a covering family,

For x ¢ K we shall write u(x) instead of u({.x}'). Suppose

now we have x e K with u(x) # 0. Define ¢ : M—> Sets by

¢ 1 x € A
(4) =
0 x,fA

Such & ¢ is in fact a point of MM, Clearly ¢ is left exact.

To establish the covering condition (F3) let A 2 L)Ai, w(A - L)Ai) =0
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and ¢(A) =1, i.e. x €A, If x ¢UAi then A - UAi 2 {x}§

and nu(A —UAi) >ulx) >0 @ . Hence x ¢ UAi and x € A,

some i, Thus ¢ (A) = 1=>3i with é}(Ai) = 1, VWriting 4)(}:)
instead of (1)( {x}) we have that Ci:‘(x) = 1, Quite in general, for

a stalk q) , if for some x ¢'(x) = 1 then (i)(x') =0 all x* # x.
For Ci)(x)
50 (ib(x')

1==¢(K -~ {x}) =0 (F2) and x'#x==>x'}s K~ {x]

i

0.

Thus we have established a 1-1 map from ix e Ki n(x) # Oz
to the set of stalks of Ii, Its image is {<D : ¢ a stalk of Ii,
IxekK (ib(x) = l} . For suprose Cl) is a stalk of ¥ and &(x) = 1,
some x € K, "'h22the neighbourhoods of the point associated with 4)
(cf. 2.2) are exactly those A & |I1] with x e A, Clearly
xeA:::>¢(A)=l since {xje A, x & A=—ACE K - {x} 50

$(K - xj) = 0===>¢(A) = 0. Therefore

1 X € A
_ . N : -
1>(A) = lim, A(B) = lim A(B) = o . .
Be&N'(p) B>x x

This establishes the bijection {x:u(x) # O}L“—>i¢: $ a stalk,
$(x) = 1, some x}. Injectivity is clear for if cb, cb ' correspond

to x,x' then x # x'—-_—:;‘*(b(x‘) = 0, q)'(x') =1ie. & #J.

Claim: this exhausts all of the stalks, That is, there &are no
stalks which vanish on every singleton., The proof involves fairly
complicated but elementary considerations of a measure-~theoretic and
topological nature, We argue by reductio ad absurdum and work now

with a fixed stalk q) which we supnose to vanish on every singleton,
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The first lemma will allow us to reduce to the case in which all
singletons have measure zero, (By F4 this is formally stronger than

the condition on ¢ ),
3.3,5 Lemma B = {x ¢ K: u(x) # Opi has an open neighbourhood
U (in the topological sense, of course) with d(u) = o,

Proof Let x € B, By regularity of 1 we can find a

decreasing sequence of oven neighbourhoods of x, say Vn with

lim u(Vn) = u(x). Then u(N v, - 1xy )
n—o

MV_ end since $(x) =0, $(O\V ) =o0. It follows that

0. Thus {}’1 covers

¢k -MNV) =1ie. $CUK-V) =1, Hence I ny with

$(K-V )=1i.e, b(v_) = 0. This shows cvery x € B has a
n n
v . (6} 0
neighbourhood V_  with @(Vx) = 0, Since u(K) < ® and p,(Vx) >0
all x € B, B nust be countable, Thus the V_  cover J v,

x€B

in the topology on M so ¢(U V) =0 and (W, V, is the sought-
xeB

for neighbourhood of B,

Now we can make the announced reduction, If K'< K is a compact
set equipped with the restriction of u and associated category of

measurable subsets IM' then the composite

Mrc > ™ (b >Sets

satisfies the covering condition and preserves non-empty intersections,
All that is needed to be a stalk on M' is that the composite preserve

the terminal object, and hence all finite left limits. In conclusion,



51

q; restricts to a stalk on M' iff #(K') = 1, In our case put

K!' = K-U, Since @(U) = 0, qD(K') = 1. More importantly all singletons
of K' have measure O, If we can show that there are no stalks 4>

on M' with 4) (x) =0 all x €K', we will have shown the same for

M, K. Thus we may now assume without loss of generality that all
singletons of K have measure 0, With two more lemmas we will be

ready to prove the result,

3.3.4 Lemma Suppose A € K  is measurable with 4)(&‘.) = 1, Then

there is a closed F S A with CP(F) =1,

Proof CIJ(A) = l===u(4) >0 (F4), By regularity construct

an ascending sequence of closed sets F & A with 1lin p.(Fn) = u(a),
n—m

Then u(A—UFn) O so the Fn cover A, Since P(a) =1 we

must have ¢(F) 1, some n,
n

3.3.5 Lemma Suppose F € K is closed with &(F) = 1, Then there is

a measurable A € F with ?(A) =1 and u(A) <-2]-'-p.(F),

Proof In fact we can choose A relatively open in F but
this is of no consequence, For each x € F choose an open UXE K,
X e U}'c with p.(Ux) < % w(F). This is possible since p(F) >0, p(x) =0
and regularity, Finitely many of the Ux will cover F, by compactness,

say F = (FalU_)u ... u(FAU ). This is a cover in the sense of
nx, o x

our topology on M so ¢ (F) = 1==>3 i with ¢(FnUx ) =1, Put
i
A = FﬂU Y
X,
i
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3.3.6 Conclusion of the Proof of 3.3.2, Define sequences {An% ,
{Fhﬂ with (1) F ~are closed subsets of K.
¢=)) A~ are measurable subsets of K,
[ =
(3) Fn+1 = Amle Fn <A all n
() $(F) = &&)

1
(5) w(F ) <= k)

1 all n

2

Set Fb = K and select Ao by 3.3.5 above, Having constructed Fn
< , )

and A construct An+l'" En by 3.3.5 and Fn+l€= An+1’ by 3.3.4,

The conditions (1)-(5) are clearly satisfied, Put F = f’\Fh. w(F) =
lim u(Fn) = 0. By compactness F # @, Since u(F) = 0, 4>(F) = 0,
n—o

K-F = L}(K&Fh) so the K-Fn cover K-F, ¢(Fﬁ = 0 =—=¢(K-F) = 1=
n

for some nj, ¢>(K-Fn ) = l===$4>(Fn ) = 0, contradicting the choice
(o) (0]
of the F .,
n
This completes the proof that no stalk of M may vanish on all

singletons and thus completes the proof of theorem 3,3.1.

3¢3.7. Remark It follows that for Lebesgue measure on [0,1] for
example, 4 has no points, For this is a regular complete measure on

a compact T2 space for which all singletons have measure O, As pointed
out in 5,6, chapter I, this example of a topos with no points is due to

P, Déligne.

L Further Study of Sheaves on a Topolosical Space
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4,1 On the Faithfulness of Top——>Tovoi Given a continuous mapping

f: X——>Y of topological spaces we have shown in section 1.2 of this
chapter how to associate a geometric morphism of topoi f,:‘i————§§,

This in fact is easily seen to be functorial, We are interested here

in the faithfulness of f}——>f, , i.e., when is it the case that

f: X——Y and g: X——Y induce the same geometric morphism? The
ansver is given by theorem 4,1,6 of this section. The results here

are announced without proof in [SGA], The machinery built up in this
section will be used in the next section to prove a theorem characterizing

the topoi T among the more gencral E',

We have previously noted (in section 3.1,1) that closed irreducible
subsets of a space X play an important role in the study of i. We
will now make this more precise, Call a topological space balanced
(French: "sobre") if every non-empty closed irreducible subset has exactly
one generic point, Recall x € Z is said to be generic if [ ( 1}:} ) = 2,
For example for an indiscretespace, the whole space is closed and irreducible
but every point is generic, On the other hand the space whose elements
are the natural numbers and whose open sets are the final segments (ny,—)
has the property that the whole space is closed and irreducible but there
are no generic points., These two examples are far from balanced. Any
Hausdérff space is balanced for the only non-empty irreducible closed

subsets are the singletons,

We construct now a best approximation of an arbitrary space X
by a balanced one, This space, called the "balancing" of X, is denoted

b(X), The points of b(X) are the non-empty closed irreducible Z € X,
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The open sets of b(X) are of the form
v® = {Z € b(X): ZnU;éﬁ} » U e X open,

Clearly (UU;S) = (U Ui)s and Ui " U; = (Uln Ua)s, the latter by
irreducibility of the elements of (X)), & = g ebX) and X°® = b(x),
Thus we have a topology on b(X). lcreover we have a continuous

B: X——p(X) by B(x) = [ ( {:c} ). Continuity comes from the fact
that B-l(Us)z{xeX:r({x})nU#Q ={'x&X:er}=U.
Incidently it is clear that B~ % is an isomorphism of the mites

Open(b(X)) and Open(X). From this the following simple but important

proposition follows,
~ ~
4,1.1 Proposition Be: X—>b(X) is an isomorphiem of categories,

4,1,2 Proposition For U< X open, b(X) - U° is irreducible iff
X-U is irreducible. In this event, X-U € b(X) is the unique generic

point of b(X) - U®, In particular b(X) is a balanced space.

Proof First of all observe that for any open U,V < X,
VA (X0) £ 8= V¥ A (b(X) - U) # #. TFor the members of V°n (b(X) - u®)
are the non-empty irreducible closed subsets of X-U which meet v, If
there is one such, a fortiori X-U meets V, On the other hand if
VA (X-0) £ 4, say xe Va (X-U), then T ({x}) is an irreducible
"~ closed subset of X-U which meets V.
Now suppose b(X) - U° isg irreducible, We shall show X-U is irreducible,

Say VN (X-U) #g, Wn (X-U) £ g, By the above remarks, V° A (b(X) - U5) # 2,
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We A (b(X) - U5) # @ hence by irreducibility of b(X) - Us,
VA WA (b(X) -U%) £8 , ice. (VaWSA (b(X) =U%) £4 i.e.
(VA W)~ (X-U) # g, again by the above remark, Hence the irreducibility

of XU,

Now we show that if X-U is irreducible, [ y(1Z-01) = b(x) - v°
which shows that the latter is irreducible and has at least one generic
point. Clearly X-U € b(X) - US, Take 2 € b(X) - US and V® a&
neighbourhood of 2 i,e, ZAaU=g, ZAV g, It follows that

VA (X0 #4d, ie. Vo {(Xx-1)} # 4.

All that remains to be shown is that X-U is the only generic point
of b(X) - U°, This boils down to showing that X-U # X-V ==b(X) - V° £
b(Xx) - U° i.e. ' # Us. But, as has already been pointed out the

-1)

corresypondence U — U° is an isomorphism of sites (with inverse B

This completes the proof of the proposition.

4,1,3 Proposition Any continuous map f:X——>Y, with Y balanced,
factors uniquely through p:X—>b(X) i,e., b(X) is the reflection of

X in the category of balanced topological spaces,

~ Proof First of all observe that for any continuous f:X—->Y
where X,Y are arbitrary topological spaces, and for any closed irreducible
2 €X, T[yf(Z) is irreducible in Y, For Un rYf(Z) £ 8,
Va \"Yf(z) AP =0 f(2) £, Va £(2) # 9 =" U) A 2 £ 9,
VA 248 =W A WA ZFF=> V)~ 2 £ g —>
UnVa £(2) #F =UaV A~ [yi(2) £ g,



Now let us return to the situation envisaged in the proposition,

x—B—>u0x0

t

Define f as follows: f£(Z) is the unique generic point of rYf(Z).
Then fB(x) is the unique generic point of I"Yf rx{x} = rY {f(x).} .
And the unique generic point of the latter is of course f{x), Hence

B = f,

Next let us show f is continuous,

F i)

i

{2 € b(0):F(2) e v}

{2 € b(X): the unique generic point of Myf(2) is in U
{2e b)) AU £ G

{2z e b(X):2 A £ (V) # 23

(£~

Finally we show uniqueness of the extension f, First of all,
for any F € b(X), r—b(X)B(F) = b(X) - U° where U = X-F, To show this
take x € F, Then rx{x} c X-U, i,e, rX{x} € b(X) - U%, Then
B(F) & b(x) - U°® so M) P(F) € b0 - U®, ‘tow take any Z € b(X) - US,
Then ZAU=@ so ZEF and if V° is a neighbourhood of 2,
ZaVEG so FAVEAF—VPA B(F) £F i.e. 2 er;(x) B(F). To show
uniqueness of f , let g:b(X)——Y be any continuous map with Y

balanced. Then [yg(b(X) - T%) = [yg [, 1)B(F) = [ gb(F). But
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alse  [yg®() - 09= Fyg T\ IF} = Ty e®] . e, Mg =

rY{g(F)} s so g(F) is the unique generic point of rYgB(F) and

hence g is determined by its values on the image of B,

4,1.4 Remark Proposition 4,1,3 show that b is a functor left
adjoint to the inclusion of balanced spaces into all torological spaces,
It is straightforward to show that if f:X—Y is a contiruous map
then b(f):b(X)—— b{Y) maps a closed irreducible F < X to \"Yf(F)

wnich, as pointed out before, is closed ard irreducible,

4,1.5 Provosition If f:X—>Y and g:X—>Y are continuous raps

with Y balanced, f, = g,=—>f = g,

Proof Suppose f # g and say f(x) # g(x). By the uwniqueness
of generic points in Y, TY{f(x)S £ Ty {g(x)} . Assume without loss
of generality that I'Y{g(x)} ¢ I_Y{f(x)l . Put U=X- rx{x} s

V=Y~ ry{f(x)} and consider the representable sheaf U € |¥]

Claim £,(U) # g,(U) and that in particular f£,(U)(V) # g.(U)(V), Now

-1
_ -1 _ 1 f(nevu
£, (W) = V(W) = { O otherwise

gl eu

Similarly g«(U)(V) = {o otherwvise

Since £ Myixl e Ty {rt} , v=Y- I {fx0} & t-r My 1.
Hence £ (V) € £7(Y-f M {x}) = X-r"1r Ncixle X - T ix} = U, Thus
£*(U)(V) = 1, By assumption Myis(t ¢ My}, hence
g Tyixl ¢ Myir)}  (since Tyiexf = Tye Myx} ). Equivalentiy,
Ml e My{e) , se. g2r - M{rGOl ) ¢ x - rdx} .
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ice. € HV)EU, so g (UNV) =0, This establishes that

f#g=>f, # 8. » as required,

L, 1,6 Theorenm Suppose f:X—>Y and g:X—=>Y are continuous

mappings of topological spaces, Then f, =g, iff b(f) = blg),

Proof We have the following diagrams
f - ~ f, ~
X Y X_,__m____j;Y
g £«
B B B, ¢ S B,
b(f) ~ B, .,
_—— , (7 S——
|16/ m—— ('S b{xX) < b(Y)
b(g) b(g)t

By naturality of B, and by the fact that Bs« 1is an isomorphism
of categories, f, = g, <= b(f), = b(g),. But since b(Y) is balanced,

b(f), = blg), <= () = blg) (&,1.5).

4,2 On_the Characterization of Topoi T

4,2.1 Theorem A topos & is equivalent to T for a topolorical
space T iff (1) the subobjects of 1 generate

(2) there are enough points,

Proc? (1) and (2) are necessary by 5,1 of chapter I. To show
sufficiency we utilize the topology induced on the points by the open

sieves (ef 2,4), Let T be a set of points whose associated stalks
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collectively reflect isomorphisms, The open sets of T are of the
~

form U° = {p € T:Up =1 } for U< 1 in €, Let us define a new

site & whose underlying category is (a skeleton of) the poset of

subobjects of 1 in E, and whose covering families are exactly the

families Ui,E U which are epimorphic in E,

>Open(T) which takes U to U®, It is

Consider the functor 3
clearly onto on objects (and maps for that matter), It is automatically
faithful since $ and Open(T) are posets. Finally it is an isomorphism
of categories since it is 1-1 on objects, To show this suprose v° = ve,
Then Up = Vp all p e T, Consider the inclusion i:U A V—U,
(UnV) =U A~V =T all peT, i,e, i_ is iso all p e T=—=i

P p D p p

is iso, i,e, U A V =1U, Symmetrically UA V=V and hence U =V,

Next we show that U'P——§Us is not only an isomorphism of cafegories,

~
ﬂ~

it is in fact an isomorphism of sites, showing $ £ T, To establish

this we must show {U,€ U:i € I} is epimorphic in € iff U° = U,
i P T i
i

Now stalks preserve and reflect epimorphic families, so we have

~

{Uie Utie I} is epimorphic in €
> {(Ui)p<5 Up:i € I} is epimorphic in Sets, all p e T

<= VoperT, Up-—:l:>3:ie.I with (Ui)p=l

— v°c U 5
i

i

P 1

5
2

Having now the isomorphism T2T we are finished if we know that §
is equivalent to E, For this we will merely quote a result due to

Giraud, For details of the proof see [SGA], exposé IV, 4,1.2.1,
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L,2.2 Theorem Let C be a site and 3 €T a full subcategory.

t3

efine a functor €—>8% by F —>(S >€(S,F)). This functor is
an equivalence of categories iff 5 is a generating family for C,
$ is assumed to carry the topology whose covering families are exactly

the epimorphic ones,

4.3 On the Cotripleability of f*

4.,%,1 As pointed out in chapter I, 3.3, Van Osdol has shown in [SRC]
o i

that the functor S:T-~~~—>SetsT1 , which sends a sheaf to its family of

stalks, is cotripleable, Denoting the discrete space on (TI by ITI

as well, we have that Tl = Sets‘T? The functor S, considered as a

~ ~)
functor from T to [Tl is just f* where f£:|TI——>T is the
identity map, which is continuous, With this approach a more general
problem is suggested by Van Osdol's result, namely, for which continuous

maps f:X—>Y of topological spaces ig f* cotripleable? The answer

is given in theorem 4,34 below, First a definition and some preliminaries,

L,3,2 Definition A subspace A of a topological space ¥ is said to
be super-dense iff V openU,VEY, UnA=VnA ==>U = V, The
following are some immediate consequences of the definition,
(1) For A€ A' & Y, A superdense == A' superdense,
(2) Superdense =3 dense, For if A€ Y is not dense,
3 USCY-A UFP, Then UnA=@F~A but UF£F=>A
not superdense,

(3) A superdense ==>Y¥~-A contains no non-empty closed set.
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For if 2% < Y-A is non-empty, closed then Y n A = (¥Y-Z) n A
but Y-Z2 £ ¥, In particular a Tl space has no proper
superdense sets,

(4) If A <€ Y is superdense then V U,V € Y open,
UrnAcVAA=>UcV, For UTAaAces VAA=—2UnAnA=0UnVnA
=>U=0nV=—UcV,

(5) Every point of an indiscrete space is superdense, Any
topological space is superdense in its Alexandrov compactifi-
cation, in fact in any extension by a single point,

(6) (Banaschewski) A €Y superdense, A,Y I, ==A <Y isan

bl

essential extension in the category of Tb spaces (cf [E2TS]),

4,3,3 Lemma Suppose A is a subspace of a topological space Y, with
inclusion mapping i:A———Y, Then the following are equivalent:
(1) The set of stalks on Y corresponding to those y e A4 is
sufficient to reflect isomorphisms, i.e, A already provides
"enough points'" for ?.
(2) i* reflects isomorphisms.

(3) A is superdense in Y,

. Proof (1) and (2) are equivalent simply because V F € T,
e A i* ' = F, =F,
and any Y s 170 ¥ i(y) 5

>Y

(2) => (3) One car :us5ily show that in general for a continuous f:X
and sheaf F € l?l, £*(F) may be computed by taking the sheaf associated

to the presheaf f9(F) defined by f2(F)(U) = lim, F(V) .
f(u)ev
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In the case at hand this formula shows that i*(U) = U~ A,

that is, i* takes generators to generators in the obvious way,

Now if A is not superdense in Y we have open sets U,Ve Y
with Umn A=V AA but U # V, Also UAnVAaA=UAnA=VAA,
Since U # V we cannot have both Umn V = U and UmA V=V, Say
UAnV#£TU, i,e. Un V¥ U, This is a mapping in Y which is not an

isomorphism, but whose image under i* is an isomorphism, Thus A

not superdense => i* does not reflect isomorphisms, showing (2) == (3),

(3) = (2) Hypothesis (3) implies that i* restricted to the generators
U e IYI, Ue Y open, is an isomorphism onto its image, First of all
note that this means i* is faithful on hom sets of the form ":"(U,F .
For suppose @ ,T are two maps U——F and i*(6) = i*(T). The
equalizer of ¢ ,T is a subobject of U, i.,e, an open set Ve U,
Since i* preserves equalizers we have i*(V)——i*(U)==3i*(F) is
an equalizer, Since the two maps i*(6), i*(T) are supposed to be
equal, i*(V)——i*(U) is an isomorvhism and hence V = U, implying
6 =T, Next, take a map f:F—>G in Y and suppose i*(f) is an
isomorphism. First of all f must be mono, for if not 3 6,T :U—>F
with O#T but fo = fT ., Then i*(f) i*(6) = i*(f) i*(<T) which
implies i*(¢) = i*(T), which in turn by the above means ¢ =T &
To show f is epi it is sufficient to show every ¢ :U——>G factors

through f, Now i*(6 ) factors through i*(f),

i*(f)

i*(F) >i®*(G)
: 0

E i*(6 )
i*(U)
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Since i*(U) = Ua A, § represents a section of i*(F) over Un A,

Such a section must come from a section over U n A of the presheaf

0@, 2@ (Uar) = Llim FV) .
i(UanlA)eV

An element of this last set may be represented by .g e F(V)
for some V with Un A eV, But then Un AE VA A 80 Ue V and
%€ may be restricted to U to obtain ' e F(U), i.e. §":U—F.
It is then routine to check that i*( §') = § and thus i*(6) =
1*%(£) i*( g‘) = i*(f E‘)‘=i> 6=:f‘§'. Thus we have shown an arbitrary
¢ :U—>G factors through £, Thus f is epi, and since every topos

is balanced, f is iso.

4, 3,4 Theorem For f:X—Y a continuous mapping of topological
spaces, the following are equivalent:

(1) £* is cotripleable.

(2) f* reflects isomorphisms,

(3) The set-theoretical image of f in Y is superdense.

Proof (1) => (2) Beck's "Crude Tripleability Theorem" [TAC]
applies here, Dualized it reads that the conjunction of the following
conditions is sufficient for a left adjoint to be cotripleable: the
domain has equalizers, the functor preserves them, the functor reflects
isomorphisms, In our case Y always has equalizers and the functors
£*, being left exact, always preserve them, Since any cotripleable

functor must necessarily reflect isomorphisms, the equivalence of (1)

and (2) is clear.
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(2) <> (3) Denote by A the image f(X) in Y. Denoting the

inclusion A——Y by i and the natural map X—>A by T we

have
X————g———?¥ ’ commutes
T i
A
~ f. ~
hence X——>Y commutes
f. i,
~
~A
~ f* ~
hence %ﬁ————-—~—¥ commutes
i’w l*
.
A

Now f* reflects isomorphisms because T is onto, For suppose
T+ () is an isomorphism, some o a morphism in 2. Then f*(a)x = Gx(y)
js iso, all x ¢ X, But as x runms through X, T(x) runs through A,
80 “y is iso all y € A which implies o is iso in 'X. Since f*
reflgcts isomorphisms and since any functor preserves them, clearly f*

reflects isomorphisms iff i* reflects them, By lemma 4,3.3 we are

finished,



Chapter IIT: Sheaves of Algebras

1 Introduction

1.1 For the rest of this work we shall concern ourselves with the
interplay between topoi and classical universal algebra, There are two
points of view available, One is to study algebras of a given svecies
modelled in a topos, for example "group objects" in the category of
sheaves on the unit interval qua topological space. The second is to
study sheaves whose values are algebras of a given species, that is,
algebras coherently parametrized by a site, In flavour these directions
are obviously algebraic in the first case and geometric in the second,
One of the main reasons for the richness of the subject is that they are
iﬁ fact the same, We will make extensive use of both points of view,
choosing whichever is more convenient for the task at hand, In general
we adopt the "algebras in topoi" point of view for intuition but we

are often forced to the "sheaf of algebras" approach in arguments,

Let us briefly recall why we have the two alternatives, The
ultimate reason is that phenomenon which one author has dubbed "the
grandaddy of all adjointness relations', namely that which expresses

the cartesian closed structure of the category of all categories,

(A, ') ¥ (Axc, B

65
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By symmetry of the cartesian product it follows that iteration of

functor categories may be carried out in any order i.e,

(¥ B
APy 2 (a®)

( (7 2iY /s
Suppose we select a set of cones in /A and B and denote by square
brackets around the exponent the full subcategory of the full functor
category determined by those functors transforming the specified-cones

into limits, Then the isomorphism still holds i.e.

[e] [ B]

@atBh T v (altl

Essentially this is because limits in functor categories are computed

pointwise, In our case we have

C x]

[C*J) = (Sets

(Sets

where € is a site, H an algebraic theory, and the relevant diagrams
to be turned into limits are the obvious ones, Symbolically M(Iﬁa) e
Sh(¢,M( H, Sets)). In words (and defining once and for all "M", "Sh")
we have that the models of H in € are the same as the sheaves on

€ with values in the equational class (variety) determined by H,

i,e, the models of H in Sets,

Observe that an object of Sh(€, E) must satisfy the patching
condition inE (chapter I, 2,4), In the case of E an equational
class this is obscured by the fact that a patching condition holds in

an equational class iff it holds at the level of sets, technically
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_ because the underlying set functor ih such instances preserves and
reflects limits, If for example one finds it necessary to discuss
sheaves with values in Top, the category of topological spaces and
continuous maps, as we shall do, one must be very careful with regard

to patching conditions,

1.2 From this point on X will denote a fixed but otherwise arbitrary
finitary theory, The examples we have in mind are abelian groups,
modules over an arbitrary ring, rings, lattices and so on, V¥e will try
to adhere to the following conventions:

(1) VUpper case roman letters for sheaves of sets

(2) Script capitals for sheaves of algebras Q. , B, € etc,

(3) The underlying sheaf of sets of an algebra will be denoted

by the corresponding roman letter, i,e. A for Q , B

for B etc,

1,3 Sectionwise Behaviour Let Q. be a sheaf of algebras with

carrier A, and F an arbitrary sheaf of sets, Ve are interested

here in a(F,A), the "points of A defined over F', or as we prefer

to say, the sections of A over F, Now E(F,-) is a product-preserving
functof, hence carries algebra objects in E to algebras in Sets, and
homomorphisms of algebra objects to homomorphisms of set-valued algebras,
Furthermore for a fixed algebra QL , the mappings on the hom sets

induced by varying F along homomorphisms are also homomorphisms of

set-valued algebras, The converse of these observations is true

(cf, [CF], chapter 4, for example), Namely, A has an algebra structure
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on it iff the hom functor E(-—,A) :€*— >Sets factors through the forgetful
functor M( H,Sets)——Sets, In fact, bringing in the homomorphisms,

M( H,T) is equivalent to the following pullback in Cat

*
> M( H,SetS)E

~
*

>Sets

alé————1ig

The right~hand map is induced by the forgetful functor on the base

equational class. The bottom map is the Yoneda embedding.

These remarks imply in particular that for an algebra & and
C € Icl , the two sets E(C,A) and A(C) are equivped with algebra
structures. In fact the Yoneda isomorphism %(C,A) Z A(C) is an
isomorphism of algebras. Note that a sheaf of sets A carries an
algebra structure as soon as each €(C,A) does, for all C e l¢l ,
This is an instance of the more general fact that the factorization

discussed above need only be known for a generating subcategory, then

it automatically extends to the whole category,

These observations are useful in manipulating "internal nowers"
or "exponentials" of algebras, For X € &J, the functor F%-v~->FX
preserves products (it is a right adjoint), hence takes algebra objects
" to algebra objects, If @A is an algebra, so is ax and at the levejd
of sections over F € E, E(F, O_x) ¥ T(Fx X,@&) is an isomorphism of

algebras, As an example of the sectionwise technique of studying algebras
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in 5, let f:X——>Y be a morphism of sheaves of sets. I claim the
induced map O}L———aClx is a homomorphism of algebras. By the above
it is sufficient to show E(F,AY)————aﬁ(F,AX) is a homomorphism of

set-valued algebras, Consider the following:

T(FxY,A) a SE(F,aY)
~ v ~ N X
C(F x X,A) s >T(F,A

The left-hand arrow is induced by Fx f:F x X >FxY and is a
homomorphism of set-valued algebras, by the general considerations
above, The two horizontal arrows are the exponential adjointness
isomorvhisms and are actﬁally isomorphisms of algebras, as pointed out
previously, The diagram commutes by naturality of the adjointness

transformations, hence the right-hand arrow is a homomorphism of algebras,

and we are finished,

2 Free Algebras

2.1 We can do no universal algebra without free algebras, Let us
convince ourselves that they are available. There are several theorems
around wnich give the existence of left adjoints in our case, but we
will construct them directly since it is a simple matter and the

description thus obtained is vital for what follows,
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Constructing free algebras means, of course, exhibiting a left
adjoint for U:M(ZH,E)-———éﬁ. What we do, simply, is to assign to a
sheaf G of sets the presheaf built by forming the free IH-algebra on

G "sectionwise'", then taking the associated sheaf of the latter.

€ = Sh(C,Sets)—>Psh(€,Sets)—> Psh(C,M( H,Sets))—s> Sh(€,M( H,Sets))

Denote this composite by W, The second arrow above is induced
by composition with the free algebra fuctor IWl: Sets——=>M( H,Sets)
familiar from universal algebra, The third arrow is the associated
sheaf at the level of algebras, Why is it there? Simply because the
basic associated sheaf functor '@———~>$ preserves finite left limits

and therefore survives the passage to finitary algebra objects, i.e.

[_M( H,T) ——n( Ii,&:')] = [Psh(c,m( H,Sets) —> Sh(€,¥( H,Sets) )]

At this point we should attempt to describe explicitly what the
sections of such a free sheaf of algebras look like, Let us denote
the "forgetful' and '"'free'" functors for the basic equational class
M( H,Sets) by Ul and [W] respectively. Then for G e \€| and

C € |€] we have

- - n
w(@)(C) = 1lim C(R,W(G))
R e Cov(C)
W(G) is the presheaf defined by we)(c) = [wl(G(C)), i.e. the

free algebra on the sections over C of G, Thus an element
of W(G)(C) is represented, up to the refinement equivalence relation,

by a covering {(ﬁf__>C:i € I} of C together with elements
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o, € lwi (G(Ci)) which are compatible with respect to the covering,

To sum up: the sections of W(G) over C are equivalence classes,
modulo refinement, of compatible families of polynomials parametrized
by coverings of C, To repeat: a word of W(G) over C is ultimately
a family of "real" polynomials associated with the theory ¥ , and

the variables from which the volynomials are built are determined by

coverings of C with respect to the site structure,

Functors considered to this point:

¥

— ———— e wm . w——am e = ——

N

r}:= sections over C € |C| (sheaves)

€,-)

sections over Ce I€| (presheaves)

-
i}

i = inclusion of sheaves in presheaves

a = associated sheaf

Notes:
(1) A1l solid arrows are right adjoints in the pairs in which

they occur,
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(2) A1l square diagrams of right adjoints (there are 3) commute.

Hence the corresponding diagrams of left adjoints commute,
~AA A

(3) Y= \wli F‘C

(4) W= adi

(5) Since aW = Wa (from (2)), if we wisﬁ to build a free
algebra in T on a presheaf it makes no difference whether
or not we ''sheafify" it first,

(6) The vertical adjoint pairs are all tripleable, Of special
interest is the fact that T is regular and the triple
induced on it by the pair W— U is regular (cf [TH])
hence one knows from general principles that U creates
regular coinage factorizations and in particular preserves
and reflects the property of being a coequalizer,

2,2 Geometric Mornhisms Although this chapter is discussing free

algebras, this is a convenient place to discuss geometric morphisms of

topoi and algebras, The fundamental fact is that geometric morphisms

survive the passage to finitary algebra objects, Thus if we have

a pair of functors f£:C—>D, f*: D—>C with f£*— £, £* left

exact, we obtain a similar situation for the algebras, and a commutative

diagram

S 50, H ~
M( H,C) >M(H, D)

f.E
i) U
f‘
¢

S13

&
~
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Usually we write fH = £, (£%) . £* where no confusion can arise,
The previously mentioned phenomenon of the associated sheaf
construction being available for sheaves of algebras is merely a special
case of this more general fact about geometric morphisms. An important
consequence of the lifting of geometric morphisms to sheaves of algebras

is that any points which C may have will 1ift to '"points" of the
sheaves of algebras, over the base equational class, That is to say,
the stalks of a sheaf of algebras will be algebras (in Sets). ZPecause
the underlying set functor for equational classes preserves and reflects
1imits and isomorphisms, if € has enough points, M( H,¥) has enough
algebra-valued points and all of the exactness properties mentioned in

chapter II, 2.5 will hold for sheaves of algebras,

2.3 Properties of the Free Algebra Functor Besides the fundamental

colimit preservation property which belongs to any left adjoint, the
functor W constructed in 2.1 has additional features reminiscent of

the word algebras encountered in classical universal algebra.

2.3,1 Proposition The sheaves W(C), C € I€l form a generating
family in u( H,€), I the topology on € is not coarser than the
canonical one, i.e, if the C € (€] are not necessarily sheaves, then

A
by W(C) we mean W(a(C)), or what is the same thing, aW(C),

Proof Any left adjoint carries generating families to generating

families,
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The reason we single out this elementary fact ac a proposition
is that the W(C) are the most important example of finitely generated
sheaves of algebras (scon to be defined), Observe that sheaves of
algebras differ from classical equational classes in that in general

no single algebra will generate the category.,

2,3.2 Proposition W is faithful and preserves mnonomorphisms,
- Al
Proof That W preserves monomorphisms is clear since W = ali
A N
and a,¥,i preserve monos, W preserves monos since |[W| does, and
ral

AR

W is s2cticonwise just W,

To establish that W is faithful requires a bit more work. It
will suffice to show that the front adjunction Wl:I——ﬁ>UW is point-
wise a monomorphism, Now YlF:F—~—>UN(F) is mono iff it is 1-1 at

each Celel , We must show the following map is mono

F(C) > U (F)(C) = W(F)(C)

This map takes @€ F(C) to the element of W(F)(C) defined by the
identity cover of C, which consists of the single map 1:C—>C s
together with the "compatible" family consisting of o itself,
considered now as a generator of Q(F)(C) = |W|(F(C)). Suppose

¢, T e F(C) get mapped to the same thing, That means the families
o1, I} agree on a common refinement of their defining covers, which
happen to be the same., To be more precise, this means that the section
o, Te WFC) agree on a cover of C, say {C:.L*)C} . Symbolically

N\
G'ICi = T—'Ci with respect to restriction in the presheaf WF,
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But c’\Ci and < |Ci are generators of the free H-algebra (QF)(Ci),
s0 UlCi = TlCi in the sheaf F, Here we have used the fact that

'] is faithful, i.e, that F———é%QF is mono, This follows from a
pointwise application of the analogous result for universal algebras,
Finally a',ci = Tl C, in F=>06=T

, Since F is a sheaf,

3 Finiteness Conditions

3.1 Previously we have emphasized the connection between the finritary
nature of ¥ and the exactness properties of geometric morpvhisms, in
particular the associated sheaf functor., We shall now attempt tc exploit
this interplay further by introducing and studying the concept of a
finiteiy generated object of H(ZH,@). Of course it is clear that once
ve have defined the notion of a finite sheaf of sets, we will inevitably
be forced to declare as finitely generated precisely those algebras
which are quotients of algebras free on a finite sheaf of sets, In

this connection recall that a morphism of algebras is a ccequalizer

- (quotient map) in M( H,C) iff it is one in T (2.1 Note (6)). To
define the notion of a finite sheaf we find it convenient to begin with
a brief study within the framework of elementary topoi of a concept

introduced by Mitchell for abelian categories,

3,2 Definition Let E be a category and & a collection of objects

of E, Then X € E is said to be finitely generated with respect to &
n

if 3 Sl,...,Sn e & and an epimorphism 1L Si———PX. The collection
i=1

of objects finitely generated with respect to G isdenoted E;.
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3.2,1 Proposition Using the notation of definition 3.2, and if E

is an elementary topos, the following facts obtain:

(1) & is closed under finite coproducts and epimorphic images,

(2) If & is closed under finite non-empty products, so is & .
Hence if 1 € &  then F:-; is closed under all finite products.

—

(3) If S is closed under subobjects, so is & ,

Proof (1) is immediate., (2) and (3) follow from the exactness
properties of topoi, specifically that pulling back preserves colimits,
and the formal consequences that (a) the product of epimorphisms is

an epimorphism and (b) products dictribute over sums as in arithmetic,
n,
J
Suppose then that 1 | Si——BXj J=1...,m are epimorphisms
i=1 15

representing the Xj as finitely generated, We obtain an epimorphism

Tl‘ ._L_I]_ s~——4>TFx But TY .L_L s, = J_L'IETS._

j- i=1 J -l i=] j j::l 13 :J

wvhere the coproduct is taken over all sequences (11,... i ) e, Ny X..oxn .,

The products involved here are by hypothesis in GJJ so | i X,
j=1

is in©S., To establish (3) suppose | l S;—>X 1is an epimorphism
i=1

and A>—>X a monomorphism, Pulling back we obtain

(LLls,) x A—m—— 52
i f l
_LLs —_— X

Again from the exactness properties of topoi the top arrow is an epi-

morphism and ('U'Si) x A= _L.I.(Si x A), These sumrands are subobjects
X X



77

of Si and hence are in G .
3.2,3 Definition A sheaf Fe \€| is finite iff it is finitely
generated with respect to the set © = ‘{a(C)I C e ICI}, i,e., the

sheaves associated to the representable ones,

This definition is chosen for several reasons, The defining set
G  of "basic" finite objects constitutes a generating family, which is
useful, Although the mermbers of & are not in general projective,
they are as close to being projective as we can expect of a non-trivial
(i.e. non-0) sheaf, Considered as presheaves, they are of course
projective, If € has finite left limits the conditions of 3.2.,1 are
satisfied, yielding a géod calculus of finite objects in @z Finally,
and most important, the definition seems to be the right notion to

describe the phenomena of chapter V of this work,

~
3.3 Small Objects of € There is a concept of "small" object in

a category which was introduced by Mitchell [TC] and shown to have
an intimate relationship with "finitely generated" in the case of
abelian categories, In this section we shall prove two results of a
simiiar type, for topoi, Recall that in any category an object is
called small if any map from it to a coproduct necessarily factors

throui-h a finite sub-coproduct,

3.3.1 Proposition In T (in fact, in any elementary topos) the

induced mapping of a sub-coproduct into a coproduct is a monomorphism,
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land

Proof If we have a family {Fi:i e I}- of objects of ¢

and a subset J € I then the map L1l F——>11 Fi is one injection
ied iel
of the coproduct diagram

LL

ied Fi\
1L F.

jeI-Jg?t

But it is well-known that in any elementary topos the injections of a

coproduct are monomorphisms (eg. see [SBI).

3.3.,2 Proposition For C € 1€l , the sheaf a(C) is small if every

sieve R € Cov(C) is small in € (considered now as a subfunctor R € C
rather than as an ideal of maps in €), If no C' e |€| is covered by
the empty sieve, which from the @‘ point of view is the initial object
and from the "ideal' point of view is the empty ideal, this condition is

also necessary,

Proof To show the condition is sufficient, take a family
{Fizi € I} in |IT| and a mapping a(C)—L—>.L|.Fi. Now .I_LFi is
I I

~
Just a(J_LFi) where the circumflex indicates that the coproduct is
I

L)
formed in €, The mapping ¢ may be looked upon as a section of .LLFi
I

A
over C and as such is locally a section of l_LFE that is, over a
I

cover R € C, This is expressed by the diagram
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By hypothesis R is small in T so we have a factorization of ¢ into

N A
R———?LlF}‘E 1_lF£ with J a finite subset of I, Applying the
J I

associated sheaf functor, the reflection maps § collapse, as does i
lad ~

and the coproducts 1Ll are transformed into coproducts in €, leaving

us with the factorization

a(C)-——E—>.L.LFi
T

.u./
J s

Hence a(C) is small in C,

To show that the condition is necessary, under the additional

- hypothesis, suppose some R € Cov(C) is not small., That is, we have

a map R—Jz—>ilfa which does not factor through a finite sub-coproduct,
Exactness properties of topoi imply that a subobject of a coproduct is

a coproduct of subobjects, hence we may as well assume that the image of
¢ is .EIFE, i,e, ¢ is an epimorphism, Ve may also assume Fi Z0
all i, for O summands contribute nothing to a coproduct., Applying
the associated sheaf we obtain an epimorphism a(C)'——9.Lla(Fi). Now
each Fi is non-zero hence has a section Ci———aF& over Ci. Then

we have a map a(C{)————éa(Fi) and since each a(Ci) # 0, a(Fi) Z0
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(in an elementary topos any map with codomain O must be an isomorphism).
This shows that the coproduct iJ.a(Fi) is properly infinite and since
a(6 ) is epi, it cannot factor through‘any proper subobject of the
coproduct, lét alone a finite subcoproduct. Ve have used the easily
established fact that ¥ C € I€1 , the empty sieve covers C iff

a(C) = 0,

3,3,3 Provposition Tn the settinz of proposition 3.2.1, if <]

consists of small objects, so does &

Proof Clearly the initial object is small, for the usual
pathological reasons, Let us show that the cop:oduct of o gnnll objects
is smazll, thereby ensuring that any finite coproduct of small objects

is small, Say F,G € |E|l are small and we have a map PG—>1L
I

Here we use "+" for binary coproduct., Then the induced mavs on the

.

summands F and G factor through finite sub-coproducts lJ.Hi and
J

JJ.Hi. Clearly by putting the factored maps together in the obvious

K

way we obtain a factorization of the given map through )1 Hi .
JuK

To show epimorphic images of small objects are small, let

F—2 G be an epimorphism with F small and suppose G L ZhLlHi
I

is any map, Then T¢o factors throush a finite sub-coproduct, by the

smallness of F,
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Now O is the coequalizer of its kernel pair and © clearly composes
equally with the two maps of the kernel pair of ¢ , hence T factors
through o , say O = $& , Then we have pdo =p & =To , so

p,¢ =T siﬁce & is epi, Thus we have, as required, factorized <T

through a finite sub~covroduct,

3.3.4 Corollary If € is a Noetherian site (cf. 4,2,3), all finite
sheaves are small, The most typical exampnle of a Noetherian site is
Open(T) with its canonical topology, where T 1is the spectrum of a

commutative Noetherian ring,

5.3.5 Before leaving this introduction to finite sheaves let us point
out that even for 'nice'- categories €, for example finitely complete
ones, the full subcategory of finite sheaves rarely constitutes a topos
in its own right., The problem is that exponentials and the subobject
classifier are often forced to be infinite, However, if € is a finite
category, (i.e, the set of morphisms of ¢ is finite), the finite
objects of T do constitute a topos and in fact the finite sheaves on
€ in this case are just the sheaves with values in the category of
finite sets (which is, by the way, a topos), But observe that for
non-finite categories €, being a finite sheaf is much stronger than
merely being a sheaf with values in finite sets, And even if € has
enough points, a sheaf all of whose fibres are finite need nof be

finite in our sense, although the converse is true,



~
4 Subalgebra Lattices in M ( H,C)

k1 Basic Proverties of Subalgebra Lattices
L4,1,1 Remarks Recall the situation in classical universal algebra,

We start with the category of sets, where subobject lattices are complete
atomic Boolean algebras., In equational classes M( H,Sets), subalgebra
lattices are complete and meet-continuous (i,e, meets distribute over
up~-directed joins), Furthermore the inaccessible elements are Join

dense in the lattice., The relatiorship between subalgebra lattices and
the subobject lattices of the carriers of the algebras is fundamental
and is usually summed up with the phrase 'the union of a directed

family of subalgebras is-an algebra', For our purposes this is better
expressed by: the forgetful functor U:M( H,Sets)——> Sets preserves
joins of up-directed families of subobjects. The following sequence

of propositions establishes that these facts survive fairly well the
passage to sheaves,

4,1,2 Proposition Subobject lattices in € are complete Heyting

algebras,

Proof This is a basic fact about elementary topoi, Joins
of subobjects are computed first in T by taking the pointwise unions,
and then "sheafified'", Intersections are computed pointwise, as for
rresheaves, The Heyting algebra structure may be looked upon as a

consequence of the fact that in an elementary topos pulling back preserves

82
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colimits, for this implies that in a subalgebra lattice meets distribute
over arbitrary joins., For a complete lattice this last-mentioned fact
is equivalent to the existence of pseudo-complements, which is the basis

of the structure of a Heyting algebra,

~ ~
4,1.2 Proposition The underlying object functor U:M(H,C)—>¢C

preserves joins of up~directed families of subalgebras,

Proof This relies heavily on the fact that the corresronding
functor U (for presheaves) has the property., This of course in turn
follows from the fact that the property is true for algebras in Sets,
i.e. for 11Ul , and that everything in a functor category works

"pointwise',

Recall the following diagram from section 2.3 of this chapter,

~ e-—_a_%, ~
M( H,E) > M(H,T)
i
U U
~ a A
C cC

e

A
As we have seen before, Ua = al, iU = ﬁi. We are concerned
with diagrams D:Z—>M( H,€) where Y. is an up~-directed poset and

D(a) is mono for each morphism o« in ¥ . Then we have

U lim D

U lim_aiD (since ai = identity)

U im iD i im!
a lim i (since a preserves 1im's)
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L,1,4 Proposition Subalgebra lattices in M(IH,E) are complete

and meet-continuous,

Proof It is well-known that for any category IE and theory
H , finitary or not, all left limits which exist in E exist in
M( H, E), and the underlying object preserves and reflects them (in fact,
even stronger it creates them, {T™]). Thus given a family of subalgebras
of an algebra in M(ZH,%), its intersection exists and is computed in
6. That is to say, the carrier of the intersections is the intersection
of the carriers, Meets distribute over joins of chains since both
constructions are made at the T 1evel (4.1.3), and the distributivity

holds there as pointed out in the proof of 4,1,2,

L,2 On the Algebraizity of Subalgebra Lattices in M{ IIﬂE).

4,2,1 In classical universal algebra one calls a lattice algebraic if
it is complete and every element is the join of the compact elements it
exceeds [UA]. An element of a lattice is compact if, whenever it is

exceeded by the join of a family of elements, it is already exceeded by
the join of finitely many of those elements., One proves that a lattice

is algebraic iff it is isomorphic to the lattice of subalgebrasz of scme
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universal algebra, By passing to sheaves of algebras it might be
expected that a wider variety of subalgebra lattices might appear,

This is in fact true, as example 4,2.2 shows, Following this example

we show that a certain finiteness condition on a site, introduced by
Artin [GT] in écnnection with algebraic geometry, is sufficient to
ensure that subalgebra lattices in M(IH,%) are algebraic, To prove
this result we will find it convenient to use another characterization
of algebraic lattices. A lattice is algebraic if and oanly if it

is complete, meet continuous, and the intranscessiblcelements are join
dense (every element is the join of the intranscessable ones it exceeds).
An element is intranscessable iff whenever it is exceeded by the join of
a directed family of elements., it is already exceeded by one of them,

For complete lattices it is sufficient that the condition hold for
chains (it follows that it will hold for directed sets in general).

4,2,2 Example The subalgebra lattice of 1 € T where T is the open
unit interval (0,1) has only one compact element, namely @ , and hence

is not algebraic, Note that here we are taking H to be the trivial

theory for which U:M(IH,%)————%% is an isomorphism,

Proof Tﬁe subalgebrz under discussion is of course nothing
more or less than the Heyting algebra of open subsets of (0,1). For an
open set to be a compact element of this lattice is equivalent to being
topologically compact, But in a Hausdorff space any compact subspace
is closed, In (Oil), in fact in any connected topological space, the
only open~closed subspaces are @ and the whole space, In this example

even the whole space fails to be compact,
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L,2.3 Definitions Recall that a topological space is said to be
Noetherian if every open set is quasicompact. The spectrum of a commutative
Noetherian ring is such a space. We also sometimes encounter in nature
topological spaces which have at least a basis of quasicompact open sets,
The spectrum of any ccmmutative ring is such a space. We must extend
these concepts. to sites. Given a site €, an object C € Il will be
called quasicompict if every {c{f——acl ieIje Cov(C) contains a
finite subfamily which is in Cov(C). 1In the language of ideals this
says every ideal which covers C is finitely generated. The site ¢

is called Noetherian (Artin, [GT]) if every object is quasicompact, and
is called locelly Noetherian if every object can at least be covered by

quasicompact objects,

4,2,4 Remarks Let € be a locally Noetheriansite and denote by X
the full subcategory determined by the compact objects, Then K in a
certain vague sense guonerates €, In fact if i: K——>C is the
jnclusion functor, i, is a good candidate for an isomorphism., However
. certain exactness conditions must be imposed before this is necessarily
true, For example if € is finitely left complete and K is closed
under the formation of finite left limits in €, i, will in fact be

an isomorvhism [GT],

4,2,5 Definition In keeping with the definition of finitely generated

algebras, we define en algebra Qe 1M( H,‘&I‘)\ to be compactly generated
if there is a quasicompact C € €] and a quotient map (= regular epi =

coequalizer = epi in T) wa(c)—> Q. ,
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4,2.6 Proposition Let € be any site, Then the compactly generated

subalgebras of an algebra 0. are intranscessable elements of the sub-

algebra lattice of QA .

Proof Let ® < O bve a compactly generated subalgebra and

{O.il ie I} a chain of subalgebras of (. with BeVa,; . 4
i

usual we write U(Q@) = A, U(B) = B and so on for the carriers of
»~
the algebras, Say Wa(C)—Pp®B is a quotient map in M( H,C) with C

~
quasicompact. Then the associated map a(C)—V Ai in € corresponds
i

to a section 0O € ( \/Ai) (C), that is, a cover {CJ.————}C:j € J} of
i
C together with compatible sections O’J. € UAi(Cj)' Recall that
i

this is because VAi is the sheaf associated to UAi (sectionwise
union in 6). Further, since € is quasicompact we may suppose J to
be finite. Now for each j€ J we have a(j) e I with G‘j € Aa(j)(cj)'
The finite set {Aa(j): je€ J} is linearly ordered since we started
with a chain, Say Aor.(j') is the largest, Then for each j € J

cs€ Aa(j)(cj) = Aa.(j')(cj) so the o, are all sections of Aa.(j')

" over the various Cj‘ They are clearly compatible with respect to

Aa.(j') (they were given as compatible with respect to VAi) and hence
determine a section of Aa.(j')(c) which of course must be ¢ ., Hence

we have a factorization

a(C) >VA

ST
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Note that the inclusion of summands into a join is a monomorphism in a
topos, Lifting the above diagram by the adjointness of W and U we

obtain

Wa(C) DB >— >V0.i

Qa( i*)

The top two arrows constitute a regular image factorization in M( .'H,'&'!)
and hence we have an induced morphism of algebras B-—)(la(j,)
making the two triangles commute. In particular, this shows l5>—>vai

factors through (la(j') i.e. B c O'a(j')’ Thus 8B is intranscessable,

L,2,7 Proposition Let X € C bYe a full subcategory, ¢ a site,

Suppose every C € I€l has a cover {‘Kiﬂ C:ie I} with all Ki € |X]|
Then in any subalgebra lattice the subalgebras generated by the Ke |X |

are join dense,

Proof Evidently it suffices to show that any algebra is the
join of the X-generated subalgebras it contains, To this end let Q
be an algebra and {(li:i € I} the set of its X-generated subalgebras,
i.e. for each i e I there isa Ke |X| ang a quotient map

Wa(K)—> O’i’ Then Vai S (. and we must establish equality, Let
i

0 :C——>A be any section of the carrier of Q. over an arbitrary
C elCl , Let {Kj—>C:j € J} be a covering of C by objects

of K, and Bj the images in M( H,T) of the composite
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Wa(Kj)—é'\Ja(C)———)a where the latter map is the free extension of ¢ .

Then the Bj are X-generated, Claim G ¢ (\/Bj)(C). But the restriction
J

of ¢ to K j clearly factors through Bj:

K - c-Z<>a
J\ /
B
b

Thus o | K;j € (UBj)(Kj) where the union is taken in €. This implies
J

that 6 e (\/B.)(C) where VB, is the sheaf associated to |UJ B, .
¥ g 7 3
But \VB. e U( \/Bj), pcssibly proverly of course, since
Jg 9 J )
h‘ E VB‘ @U(B-)EU(VE-) iceo B.E U(VZS.) 8.11 j eJ. The
J J J J J J g Y

upshot of all this is that in ¢ we have the factorizations

c—ZL sVa>—->u(\Va.)
I l 1

VB >—U(VR.)
J 9 J 9

In particular O is a section over C of the carrier of AV, B;j which
J
is a subalgebra of VO.i . This shows that every section of Q is
I

already a section of \/O.:l s i.€. \/Qi =Q , as required.
-I X

4,2,8 Theorem If € is a locally Noetherian, subalgebra lattices in

M( H,T) are algebraic.
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Proof By 4,2,7 the compactly generated elements of the subalgebra
lattice are join dense. Thus by 4.,2.6 the intranscessable elements of
the lattice are join dense., These lattices are complete and meet-
continuous b& 4,1.4, whether € is locally Noetherian or not. As pointed

out in 4,2,1, this ensures that the subalgebra lattices are algebraic.

5 Conpruences and Subdirectly Irreducible Algebras
5.1. Congruences in 7° TQ}
5.1.1 Definitions Recall that an equivalence relation on an object

F of a category E is a subobject RS F x F such that

(1) (symmetry) there is a factorization of the diagonal A

through R, F—2  SrxrF
Y

N

Sp

(2) (reflexivity) the twisting map T = (pra, prl) preserves R,

FxPF FxF
R-=-—mm o >R
(3) (transitivity) consider the pullback
f
———————-——9

\[
-—————————>F
pry

K
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Then there is a map P—Y—R ("composition') with

pr1Y = prafl, proy = pr1f2 '

Equivalent to the above is that the hom functor E(-,F): E*——Sets
factors through the forgetful functor Rel-——>Sets where Rel is the
category of sets equipved with relations, and relation-preserving niaps,
~In fact it is sufficient that the factorization hold for E(-,F)
restricted a full subcategory whose objects generate I, Ve define a
congruence on an object Qe |[M(CE,E)] to be an equivalence relation

on Q. in this categoricsl sense,

5.1.2 Facts We list here without proof some basic facts about
congruences, They are all either standard results frcm the theory of
triples (theories) or else are easily obtained using technigues already
employed in this chapter,

(v R—>A x A defines a congruence on (. iff it is a subalgebra
of OxQ and is an equivalence relation in Ef,

(2) R——>Ax A defines a congruence on O iff R(C)>—A(C) x a(C) is
a congruence on (L(C) for each Ce |€l, and restriction preserves
the relational structure,

(3) For any point p of the site € and any congruence R—QAxQ,
‘Rp>—>(1p % Qp is a congruence on O‘p in M( H,Sets),

(&) The coequalizer W=XQ——>Q/; of the projections may be
computed in '6. Thét is, if we apply U to the diagram we
obtain R==A——A/R, the coequalizer in €. Note that this

relies heavily on the fact that H is finitary,
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Meets of congruences in the subalgebra lattice of a sheaf of
algebras Q x@Q , which may of course be computed in the
subobject lattice of A xA, are again congruences, Joins of
directed families of congruences on Q. are congruences, Hence
the lattice of congruences on Q. is complete and meet-continuous,
Congruences generated, as congruences, by sections of axo
over quasicompact objects of € are intranscessable and, if c
is locally Npetherian, join dense, Hence for locally Noetherian
sites €, congruence lattices in M( I{ﬁi) are algebraic,

The standard isomorphism theorems of universal algebra hold:

(1) Every epimorphic image of an algebra Q. , where the
epimorphism is an epimorphism in E, is obtained by
factoring out the kermel relation ('kernel pair'"), which
is a congruence, More precisely, given any map A-—>&
in M( H,C), with kernel relation R (in ), R is a
congruence and QO——> Q/RHB is a regular image
factorization (i,e, coequalizer followed by a mono with
the standard factorization property of categorical images

{TC]). The kernel relation of Q—> Q/R is R.

(ii) B>>0. a subalgebra, R a congruence on (L . Then R
restricts to a congruence R|®B on #B and we obtain

a commutative diagram

B —a

]
B e 63
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(iii) W a congruence on (L . Then the lattice of congruences
on (L containing R is isomorphic to the lattice of
congruences on CL/#L . The isomorphisms associates to
Q 2 R a congruence Q/R. on a—/n with

a, = Qs
a Q
/R
A morphism in M(ZH,E) is a coequalizer iff it is a quotient

map (i.e. of the form CL———%>OV%L) iff its underlying map in

~ ~

5.2

¢ is epi in C,

Subdirectly Irreducible Algebras

5.2.1

The basic result of this section is that if € is a locally

Noetherian site, the Birkhoff subdirect representation theorem of

universal algebra holds in M( H,C). Once one knows the facts of 5.1.2

the proof of this assertion can almost be copied from any treatise on

classical universal algebra, We shall go into a little detail, however,

in order to give an indication of how one manipulates congruences in

M( H,T).

5.2.2

Definition 0. ¢ IM(H,€)| is subdirectly irreducible iff

whenever we have a monomorphism wl—— . into a product of
i P

iel

algebras, then for some projection prys Pri¥ is mono,

5.2.3

suppose

Proposition Let E be any category with kernel pairs and

we have a product T{ B. and a map f:A——>TT1T B..
ier jel
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Denoting prif = fi and Rit; AxA, R<= Ax A -,the kernel relations of

f;4 £ respectively, then R= M\ R.. .
iel
Proof We must show that with respect to the natural ordering

on subobjects of AxA, if S ¢ Ris. AxA all ieI, them S <R,

Py £
But S & Ri<.=> S>>Ax A.____; .-’l—l—>Bi compose equally, by the
pr,

universality property which Ri has as the kernel pair of fi (i.e.

pullback of fi with itself), Thus S & Ri all i ——>
pry £ ry
S—sAx A————= A ‘TfBi B, compose equally, all i =
pr,

S—>A AT/ A——B compose equally (projections of a product

are jointly monomorphic) == S >>A %A factors through R>— AxA

by the universality property of R as the kernel relation of 7,

5.2.4 Proposition Q. e IM(H,T)|  is subdirectly irreducible iff
N\ {75{ : ® congruence on O. , R # A} # /A where /\ is the
diagonal relation, i,e. (prl,pr2)= A —axa

Proof To show the condition is necessary, suppose that the

set of congruences in the proposition statement is denoted by I and NIz A

Consider Q.——>T1 Q/R where the R th projection is the canonical
I

quotient map, By 5.2.3 the kernel relation of this map is

N ker( O.—> a/R )= NI=A |, applying 5.2.1 fact (i). Hence
I

O.——-)TTa/R is mono but no QO ——> a/R is mono (R #A, al1 R e 1),
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showing & 1is not subdirectly irreducible, To show the condition is

sufficient suppose (fj): O——TT 8

. is a mono, where ker(f.) = R _,

Then if f. .is not mono for all j, M R.2 NI 54, i.e.,
3 ceg d #
J
ker((fj)) # /\ vwhich is a contradiction. Note that throughout this
proof we have made considerable use of the fact, true in any category,
and completely elementary to establish, that a map f:X——>Y is mono

iff it has a kernel relation, and that kernel relation is A :X—>X xX,

Equivalently, the following is a pullback diagram

5.2.5 Proposition Qe |M( H,ﬁ){, R a éongruence on O , Then

O./R is subdirectly irreducible iff W is completely meet-irreducible

in the lattice of congruences on Q. ,

Proof 5.2.4 and 5.,2,1 fact 6 (iii) (the "second isomorphism

theorem" of universal algebra).

5.2,6 Theorem If € is a locally Noetherian site then the Birkhoff
subdirect representation theorem holds in M( ]H,ﬁl‘). That is, every
algebra may be mapped monomorphically into a product of subdirectly

irreducible algebras,
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Proof By 5.1.2 (6) the congruence lattice on . € [M( H,T)]
is algebraic, so the McCoy-Fuchs theorem may be applied, which says that
in algebraic lattices every element is the meet of completely meet-
irreducible ones, Hence for such an o, A = H{R l R a completely
meet-irreducible congruence } . This gives a monomorphism 0.,—>TT a/R
where the product is taken over all completely meet-irreducible R .

But for such R , (1/R is subdirectly irreducible by 5,2.5.



Chapter IV Injectivity in M( 3,0)

l Existence of Injectives

1.1 When I is Trivial

1,1.1 Here we treat the case for wvhich X is trivial in the sense of
having '"no operations or equations', Technically, as a category, H is
just the category of finite ordinals and U M( I{,"i‘?)%ﬁl’ is an equivalence
of categories, Categories T always have enough injectives, In fact

any elementary topos has enough injectives., Tor it is the case that

the subobject classifier L of an elementary topes IE 1is injective,

In fact we have canonical extensions of maps into Q.. Say F'>—F is
mono and ¢ :F'—> (L. is any map., Then 4: is the "characteristic
function" of F'>—>F', By corrosing F"'>>F'>>F, F" is exhibited
as a subobject of F and thus has a characteristic function ViF—— 0L
It is then & simple matter to show that  extends ¢ , One then can
show all "power sets" _Q_F, Fel|E|, are injective. But every Fe |E|
may be mapped monomorphically into its associated "power set' as follows
("embedding of singletons'): the characteristic function of the diagonal
A:F—>FxF is a map FxF—>Q ., By exponential adjointness one
obtains the desired F-——%,_Q_F which, with a little work,can be shown

to be a monomorphism (note that it is not necessarily a retraction
however), This embedds every F into an injective, .D.F. In fact this

construction may be refined somewhat, There is a factorization
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F
Fo— > O
A

\/

F

where F is the object which classifies partiasl maps with domain F,
~r

F is injective, Indeed in scnme topoi every injective is of the form

F  for some F, e.g. G-sets for a group G,

1.2 H the Theor:r of Modules Cver a Rine

1.2.1 Theorers (Grothendieck [Tokokul])., If A is an abelian category
satisfying ABS and possessing a generator, then every A€elA\ may be

embedded in an injective,

Proof The proof is transfinite in nature and will not be

reproduced here, The interested reader may consult [Tokoku] for details,

1.2.2 Remarks For H the theory of modules over a ring R, M( H,{)
is a category of the type envisioned in 1.2.1 and thus Grothendieck's
theorem yields enough injectives in N(IH,&) for these particular theories
H, Fore generally his theoren applies to sheaves of modules over a
sheaf of rings, To handle such categories with the techniques we have
been discussing, we would have to expand our frame of reference to encompass
"many-sorted theories" H [SADC], 1In fact most of the results of this
work which apply to M(IH,C) apply also "mutatis mutandis" to n-sorted
theories H with n < >fo. Although the details will not be reproduced

in this thesis, the extension is straightforward, and the techniques of
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extension will be implicit in a discussion in chapter V of how some of
the results appear in the case of sheaves of modules over a sheaf of
rings,

Before leaving this theorem of Grothendieck's,it should be pointed out
that Mitchell [TC] gives a constructive proof for a special case, namely
sheaves of abelian groups over a torological space, His construction

appears as a special case of the general existence theorem which follcws,

1,3 H Arbitrory
1.3.,1 Theorem If € is a site with enough points and H is a

finitary theory such that M( I,Sets) has enough injectives, then

M( X,8) has enough injectives.

Proof Let P be a set of points p whose stalks collectively

reflect isomorphisms. Consider the functor

S:M( H,T) —>M( H,Sets)lp|

which sends a sheaf of algebras (. to the family {Cgp:p e P‘} . Here
( )IP! indicates the functor category whose exponent is the discrete
categery whose class of objects is the set P, S clearly preserves all
right limits, and since M(Iﬂ,%) has a set of generators, the special
adjoint functor theorem provides for the existence of a right adjoint Q,
which will in fact be a geometric morphism of topoi., From exactress

properties of the stalks it follows that S preserves (and reflects)

monomorphisms, and is faithful, Since M( H,Sets) has enough injectives,



100

so does M(IH,Sets)IPI, for "everything works pointwise', in particular
any P-indexed family of injective algebras is injective in the functor
category, Thus by well~known results about adjoint functors with the
above exactness properties, every algebra in M(ZH,%) may be embedded
in an injective, Given an algebra O., embedd each stalk CLI’ into

an injective algebra (in Sets) Ip and apply Q , The resulting map
0 ———> Q( {Ip.% pE.P) is an embedding of (L into an injective.

1.3.1 Constructions The above theorem does not give us a very clear

victure of any particular injective into which we can embedd Cl,

although the adjoint functor theorem is constructive and thus Q may

be theoretically computed., We now exhibit a functor QO:H(:H,Sets)'Pl :»H(IH,E)

which is a very simple construction and which in two important cases is

equal to Q , It appears that in general the values of QO need not
be sheaves, although they are always separated presheaves, Furthermore,
supposing that € is such that QO does have sheaves of values, there
seem§ to be no general technigue for constructing a back adjunction
5Q g1 although a front adjunction 1——9%38 is available,
The formula for Qb is
c
LAY pep© = TTQ?

peP

Cp is of course the stalk at p of the representable functor C € \El

(assume for this discussion that the topology on € is coarser than the
canonical, although this is no real restriction - in general just replace
C by a(C) where necessary)., If C——C' is any map in € we obtain,

upon application of the stalk at D, Cﬁ-—~>C£, inducing for any algebra
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ct C
® in Sets a homomorphism B P—bon P, Thus g1ven a family of algebras

{O. tpe P} in sets, we obtain a map T 4 p____->| I O. p which
P peEP peP

is the restriction map from C to C' for QO( {_Qp} ). This is
clearly functerial, hence Qo( {ap’x ) is a presheaf, In fact it is a
separated presheaf, for let ifi:C{——>Cli € I} be a covering in €
and take any section a = «P) e QO({QP} )(C), i,e. ap:Cp—-—-—)a

in Sets. The restriction of o« to Ci is the family (ap(fi)p). If
B is another such section, whose restrictions to the Ci are the same
as those of a, we have a,p(fi)P = Bp(fi)p . DBut since the stalk at

p must carry covering families to epimorphic families, it follows that
for each p, l(fi)p] ie I} is epimorphic and therefore of = gP,
Hence o = B, showing the presheaf is separated, Now if Q. is a sheaf

and O.p are its stalks we always have a morphism of presheaves
ME 0G—Q OS( Q)

In particular cases this is the best candidate for a front adjunction

At each C e |Cl we must exhibit a map of algebras AC)—T 1 O_pp
peP

Given a section @ € OA(C), we can represent it as a morphism

of sheaves of sets §:C—>Q, Applying the stalk at p we obtain

&

o‘p:Cp———)Q The morphism 1 takes O € Q.(C) to the family

(O’ Ye TT QA p‘ The fact that 1 is a morphism of presheaves then
peP

comes down to showing that ¥ f£:C'——C and any o0& Q.(C), (f(o')p) =

(o’p. fp). But f£(6°) considered a a morphism C'—> O. is just

o f (cf, Chapter I,1.1) fle)_ = (of) = f . To show that
c apter i, 80 P ' P o—pp ow ~\
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is natural in A , let P be any sheaf of algebras and 43 :A——R
a morphism in M( H,&'), For each C € €l we must establish commutativity

of

c
CL(C)———-—%'-'""O-I)p

¢ QS($)

c
B(C) ———-—%TTbapP

Up to this point we have not defined the action of QO on
mcrphisms, but it is fairly obvious, in fact in somes senses dual to the
action of restriction on a particular QO( {ap} ). Precisely, if

{,Qp.ﬁ and ib’&p} are now arbitrary families of algebras, and
\pp: aﬁ_—_§6p is an arbitrary family of algebra homomorphisms,
) ' . D P o
QO( {\yp'§ ) at C takes a family (a”) to (\Ppo «”), Returning to
the naturality of ) in QL , we must show that V o € QL(C),
(Q)p.,o"p) = (C?C(O’)p). But again by the Yoneda lemma, q>C(c‘) considered
as a morphism C——® is just ¢oF (0 here considered as a morphism

C——>Q ), Hence (‘)c(ﬁ')p = (q>°' )p = (i)p o*p .

This is about as far as we are able to carry the general case,
at the time of this writing, We briefly mention two large classes of

examples to which it applies,

First of all if € is the site Open(T) for a topological
space T and P 1is the set of points associated with the singletons

x € T, the formula becomes

U
PRI >® = TTA*= TTA_

xeT xeU
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The simplification in the formula arises from the fact that Ux =1
U
if xeU and U =0 if x¢ U, Sofor x¢7U, a*=a’

=1
x x '

which makes no contribution to the product, 1In this case Q always

o
has sheaves as values, and in fact is right adjoint to S with front

adjunction 4] . This construction may be seen for abelian groups in

frcl.

The second example is for sites € carrying the coarsest
topology. Here Cov(C) consists of only one sieve, viz, C itself,
for each C e €, T is isomorphic to (4 (in fact equal - every presheaf
is a sheaf), For P we take the points whose stalks are the evaluations
iec\ C e \G\} (¢f. 2.3.1, chapter II), Note that these evaluations

are just the covariant hom functors (C,=):&——> Sets, Then

o.da.tyct) = TTalEen
0{ 3 ceict ©

Now in this example the functor S may be viewed as the exponentiation
of i:lC]l——>¢C .with base M( H,Sets). i is the canonical functor from
the discrete category on the underlying set of objects of € to €., Then
the formula for QO is easily recognized as that for the right Kan
extension of i (for example see [CWM}), Thus in this case also, QO

gives the right adjoint to S,

It is to be hoped that in other cases of interest §20 will be
right adjoint to S, or at least provide enough injective sheaves of
algebras (note in this regard that 1 is always a monomorphism)., Clearly

further investigation along these lines is necessary,
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2 The Behaviour of Injectivity in M( H,E)

2.1 Introduction

2.1.1 VWe shall now obtain results on the behaviour of injectivity in
sheaves of algebras, ap»lying the general framework established by

B, Banaschewski and exposed in a recent series of papers by him, The

most concise reference is [IEBCAJ and the reader is referred to this
paper for any undefined concepts in what follows, We confine ourselves
here to studying injectivity with respect to monomorphisms (the work of
Banaschewski is more general in its applicability)., Our main result is
that if injectivity is well-behaved in the base variety M( ¥H,Sets) then
it is well-behaved in M(IH,E) for any site €, First of all we reproduce

the basic results of [IEBCA],

2,1.2 Injectivity (with respect to monomorrhisms) in a category E

is said to be well-behaved if the following three propositions are true,

2.1.2,1 Proposition For any F e |E\ TFAE
(1) F' is injective.
(ii) F is an absolute retract.

(iii) Any essential extension of F is an isomorphism,

2.1.2.2 Proposition Every F € |E) has an injective hull, unique up

to isomorphism,
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2.,1.2,3 Proposition For any monomorvhism F>—>G TFAE

(H1) G is an injective huil of F,

(H2) F>—G is a maximal essential extension.

(H3) F>—G is a minimal injective extension,
Note (H2) and (H3) are stated with respect to the usual order on sub-
objects in a category., The next proposition gives a set of conditions
sufficient to ensure that injectivity is well-behaved in E, The same
numbering as that in [IEBCA] has been retained, but the first two con-
ditions there are aluays satisfied for injectivity with respect to

monomorphisms and have not been listed,

2,1,3 Proposition The following four conditions on a category I
ensure. that injectivity is well-behaved in I,
(E3) For any monomorphism F >»>—G there exists a morphism
G—>H such that the composite F>>G—>H is essential,
(B4) Given a monomorphism F >->G and any morphism f:F—H
then f may be extended at least to some '"super-object" of H,
that is the diagram may be completed as follows, with the bottom

line a monomorphism:

F>———>§
5
v
H>--»K

(ES)  Any well-ordered diagram in I, whose transition maps
are monomorphisms, has an upper bound whose injections are
nmonomorphisms,

(E6) Each Fe \IIl has, up to isomorphism, only a set of

essential extensions.,
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2.1.4 Proposition For an equational class M( H,Sets) TFAE

(i) Injectivity is well-behaved.

(ii) There are enough injectives,

(iii) (E4) and (ES) hold.

(iv) Every subdirectly irreducible algebra has injective
extensions,

Note: Equational classes M( H,Sets) always satisfy (E3), (E5),

2,2 Results for Sheaves of Algebras
~
2,2,1 Theorem For a categery of sheaves of algebras M( H,E)

conditions (i) - (iii) of the tollowing are equivalent, with no assumptions
on the nature of the site €, If € havpens to be a locally Noetherian
site, conditions (i) - (iv) are all equivalent.

(i) Injectivity is well-behaved.

(ii) There are enough injectives,

(iii) (B4) and (E6) hold,

(iv)  Every subdirectly irreducible sheaf of algebras has

injective extensions,

Proof
(i) = (ii) Definition of "well-behaved injectivity".
(ii) > (iii) (E4) is always satisfied for any category E having

enough injectives, One need only embedd H into an injective K and

lift the composite F—>H>—K to G, (E6) is always satisfied for

a well-powered IE having enough injectives, for any essential extension

of Fe IEl must be a subcbject of any arbitrarily selected injective

extension of F,
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(iii) = (1) We must show (E3) and (E5) hold in M(H,T), It
is well-known that they hold in M( H,Sets) for any finitary theory X,
To establish (E3) let Q>— 8B be any monomorphism in M(H,T), Let
X be the set of congruences R on ® such that RK|A =4, iiote

that Ria = ReQxO . Take a chain {Ra:ae I} in L , Then
VROL‘O.= AxAX A V&, V=G f\&a)= VA = A (vy meet
a 3 « o

continuity of the lattice of congruences), Hence L is inductive and
any maximal ¥ in T will have the property that a—éﬁ———éﬁ/ﬁ
is essential, This follows from the fact that the standard '"isomorphism
theorems'" of universal algebra hold in M( 1H,33'), as pointed out in
chapter III, 5,1.2, To establish (E5) note that since colimits are
available, this condition is equivalent to "injections of Ms of well-
ordered systems of monomorphisms are monomorphisms', This is well-known
to be true in M( H,Sets), hence it is true in M( ]H,??) since lim!s
and monos are computed pointwise there, Given a well-ordered systen
of monomorphisms in M( Ii,ﬁf) we compute its lim by first computing it
in M( ZH,@), where the injections are monomorvhisms, and then applying
the associated sheaf functor which preserves moncmorphisms,

(ii) = (iv) Always.

(iv) = (ii) (for € 1locally Noetherian), Given an algebra
o ’ ‘ embedd it in a product of subdirectly irreducibles (by chapter III,
5.2.6). This product may be embedded in a product of injectives, each
of which is an injective extension of one of the subdirectly irreducibles,

But any product of injectives is injective (any category E, any sort

of injectivity).
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2,2,2 Theorem If injectivity is well-behaved in M( H,Sets), then

it is well-behaved in M( ]H,'&l'), provided € has enough points,

Proof The hypothesis implies M( ]H,Sgts) has enough injectives,
~
By 1.3.1 of this chapter, M( H,E) has enough injectives., By 2,2.,1

above, injectivity is well-behaved,

2ele? Remarks By arguments similar to those used in 2.2.1 ebove,

showing that (B35) holds, one can show that if (E4) holds in M( H,Sets)

it must hold in M( E,T) for any €. However it is not clear to the

author that the validity of (E6) in M( H,Sets) necessarily implies by

itself that (E6) holds in the sheaves of algebras, even when € has

enough points., The problem is the following: it is true that if a map

p: O>—>8B is essential at each C € |C\ , that is to say pC:Q(C)HB(C)
is essential in M( H,Sets), then 3 is essential, Similarly if € has
enough points and pp is essential for eaf:h point p, then p is
essential, However the converses of these statements are ‘in general
false, even when H is trivial, For examnle consider % where 2 is

the ordinal number 2 considered as a poset and hence as a category,

A
Then for any sets F‘;{ G, the morphism in 2

()63

given by inclusions at each point (O and 1), is essential, but it fails
to be essential either at its "sections" or its points (which, because

we are in a full functor category, we can take to be the same)., Note,
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by the way, that the above represents an injective hull for (FeG)e Ei
The general problem of what conditions on ipC:C €iCl} are imposed

by assuming p to be essential seems difficult and would be worthwhile
pursuing, Hopefully one might be able to decide whether or not (E6) for

M(H C) follows from (E§) for M(H sSets),

2.2.4 We close off this section with a result which is useful in the

search for injectives in particular categories M( H,E),

Proposition The forgetful functor M( B}&)-——€>a carries

injectives to injectives,

Proof Proposition 2,3,2 of chapter III stated that the functor
in question has a left adjoint which is faithful and which preserves

moaomorphisms,



Chapter V Equations Parametrized By a Site

¢

1 Equations_in a Sheaf of Algebras

In this section we introduce the notion of a sheaf of equations
with coefficients in a sheaf of algebras, and whose "unknowns' are
rerresented by a sheaf of variables, Working with the definition
used requires extensive manipulation of exmnonentiation in E. To
facilitate this we use the technique of localization as presented in
[8GA], With this tool we can usually deduce results about behaviour of
algebras at the level of sections over C € \E\ from analorous results
about global sections, This approach has the advantage that global
sections of exponentials are much easier to deal with, both conceptually
and technically, A summary of the theory of localization, together with
some extensions to algebras, is presented in 1.2, This might logically
have been a part of Chapter I, but it has been deferred to this chapter

since it is not required in Chapter I-IV,

1.1 Definition of Eguations and Solutions

1.1.1 Recall that in universal algebra a set of equations in variables
x € X (X a set) is a subset of the square of the free algebra on X,
which we have been denoting %! (X). tMore generally, if Q. is an

algebra we have the algebra of polynomials with coefficients in O,

110
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denoted OL[X] and defined to be the coproduct Ol + | W[(X) in
M( H,Sets), A set of equations 2. in variables X with coefficients
in QL is a subset L & O-[X]Z. Ve can translate thus to the situation

at hand, for the relevant free algebras are available,

1,1,2 Definition Let Q. be ‘a sheaf of algebras and X a sheaf of
sets, Define the algebra of polynomials with coefficients in a , and
variables in X, to be the coproduct AX] =00 + WX) in M( II,E),

A sheaf of equations . with coefficients in (L and variables in X

is a subsheaf T = U(Q[X])2. Ve will abuse our notation somewhat

by writing U(Q(X]) = A[X]., Since A is just a sheaf of sets

(the carrier of @ ), A[X] might be interpreted also as the corresponding
construction in € where A is considered as a H'-zalgebra for X' the
trivial theory, However no confusion should arise in this regard. Note
that for Q. = W(0), the free algebra on the initial object of "E, we
have Q[X] = O+ W(X) = W(O) + W(X) = W(O+X) = W(X) so that anything
general we say about O.tX] will apply to the sheaf of polynomials (terms)

in the variables X,

1.1,3 Interpretation This definition can be meaningfully interpreted

in terms of classical universal algebra, For any sheaf is defined by its

sections over the generators C € |€l, Thus a sheaf of ecuations consists

of collections 2.(C) of sections CL>A[X]2, i.e. pairs of elements
(6., 0‘2) € A[X1(C)2, Now observe that Q. [X] = a(Q. + ?J(X)),

the coproduct being taken in presheaves, But (O + W)(e) =

Q.(C) + 1wl (x(C)) = Q.(C)[X(C)]. From the representation of O.[X]



as an associated sheaf, and the standard way of computing associated
sheaves, we see that a section T e (L[XI(C) is, over some covering
{pi———>0:i € I] a collection of "real" polynomials in the X(Ci)
with coeffici;nts in the Cl(Ci). Thus for our typical egquation

(0’1, 0"2) defined over C we can find coverings {Ci%C:i € I} and

{cj—ec:;, e J} such that ol ¢ e AleHxE)] ana

o, le € Cl(Cj)[I(Cj)]. Taking a common refinement of the two covers

we see that locz2lly O is just a pair of polynomials with coefficients

in "real" algebras (i,e. algebras in sets)., Summing up, an "eguation'
defined over a generator C is a map C———>A[X]2 which is ncthing more
or less than a family of equations in variables which are certain sections
of X, in coefficients which are certain sections of QL s this family
being coherently parametrized by a cover of € with respect to the
topology on €, Besides speaking of equations defined over generators,

we may of course discuss equations defined over any object of ‘5. In

particular we shall at times speak of globally defined equations, which

are merely equations defined over 1, the terminal object of ﬁ.

1l.1.4 Remarks The morphisms AA——>Q[X] and WX)—>Q[X],
arising from the definition of (AL{X] as a coproduct, are monomorphisms.
For the analogous result is true for equational classes in Sets. Hence
it is true for algebras modelled in presheaves. The coproduct .in M(Zﬂ,ﬁ)
is obtained by applying the associated sheaf functor to the analogous

- A - -
coproduct in M( H,T), and since the associated sheaf functor preserves

monomorpvhisms, we are finished,
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1.1.5 Proposition If p is a point of C, (Q[X])p= ap[Xp].

Proof First of all we need to know that the taking of stalks
commutes in a sense with the formation of free algebras, Recalling the
discussion of Chapter II, 2,2 observe that if p is a point of € with
associated fibre p* omn [ then ip is a point of T with associated
fibre p*a (i,a are the inclusion of sheaves in presheaves and the
associated sheaf functor, respectively). Moreover N'(p) = N'(ip).

Ca (@O0

~
W(xX) .,
ip

]

Hence we have w(x)p

”~

1im_ W(X)(C)
Ce N'(ip)

1im W(X)(C)
Ce N'(p)

1im_ (W1 (X(C))

CeN'(p)
=fwl ( 1im_X(C)) since |V| preserves 1lim's
CeN'(p)
=\wl ()
1%

Now then o.[xJp = (A + w(x))p = O.p + w(x)p = O.p + |wl (xp) = ap[xpl.

1.1.6 The Sheaf of Solutions of n Sheaf of Fouations A concept of

equation must be accompanied by a notion of solution if it is to be
useful, Let 2 & A[X]2 be a sheaf of equations and ¥ a sheaf of
algebras with Q.€ ¥ . Borrowing on experience from universal algebra

. 3 - 3 - 3 N
and logic, a solution to Z. , in ¥, should be a valuation (morphism in C)

v:X——>B with a certain property., If ¥ is the extension to a map
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ALX]—>B (extend freely on the component W(X) and on the component

Q. just map via the inclusion A € B ), that property is simply

that 2. < ker(¥). Otherwise put, Vq, = Vq, where 4y, 9, are the
projections of Z. ., But this is just a first approximation, for a topos
we have available the object Bx which, besides containing the valuations
X—>B, is rather more rich in structure, The valuations referred to
are only its global sections, Its structure at Ce JC| will be
discussed at sotie length in 1,2, Right now we need only its uiiiversality

properties, We look for an "object of solutions' for Z. , which is to

be a subsheaf of BX and is defined as follows:

f):' Bx A, BAEX] 7B

q
1?5: s the object of solutions, is the equalizer of the maps B l?\

q
and B ZA. o A is the "lifting map" which acts in such a way as to

X
carry global sections of B, maps v:X——>B to their extensions

a[XJ——>33.' A is defined as follows:

BX

By exponential adjointness X corresponds to a map A[X]—>B

BX A ; BA

Bxx ALX] ——K——% B

A[X] x BX——>B

BX
A[X]——>B
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X
B
This last map is induced by the double dual map X——>B and
B ‘ x P4
the map A——>B which corresponds to the composite A xB A >B,
X X

B
Cf course to deduce the map A[(X]——>B we must know that A———aBB

is a homomorphism of algebras, We are using the algebra structure

X
inherited by BB from B by virtue of the fact that it is an internal

power, To establish that we do indeed have a homomorphism of algebras,

take any F € 1T)

T(F,A) T(F,n)

X

T(r,B° ) — 2 R (Fa

,B)

The map on the right is induced by prl:F:&BX————aF on the first argument
and A>—B on the second, henrce is a homomorphism of set-valued algebras.

The bottom arrow is a homomorphisr. in fact isomorphism, of algebras by

X
the way in which the algebra structure on BB is induced from that

of B, The diagram commutes by elementary manipulations of the exponential

adjointness involved., Hence the left-hand arrow is a homomorphism of

X
set-valued algebras, and since F was arbitrary, A——B is in fact

a homomorphism of sheaves of algebras,

Let us now show that A acts on glotal sections as we have

indicated, Take any }:l———éBx corresponding to 6:X——>B, Then
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X]

A
the composite AT :1—>B : corresponds to a map A[X]——>B

obtained as follows,

Ex( ) X

A[X]—>1 x A[X] BX « A[X1— 2 S B

To show this map is the lifting of & by the universality property of
Q[X] we need only check trat (1) preceeded by X—>A[X] it is equal
to ¢ and (2) preceeded by A—>A[X] it is equal to A>—>B, The

following cermutative diagrams establish this,

(kg ,1) X A
ALX] B" x A[X]—————B
//
/8
X ,Bxx X
(kg ,1)
(k¥ ,1) X 1
A[X] >B" x A[X] B
pr,
A SB % A op
(kg ,1)

v
In tht_zse diagrams kb’- is the "constant map ?——>1-—°'A,»BX; we have

used the same name no matter what the domain, € is the evaluation, the
back adjunction of the exponential adjointness, The diagrams commute

by the very definition of A,

To describe the behaviour of the morphism A at a particular

C € |l , using the usual representation of BX(C) as E(alC)«x X,B)
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is possible, but rather complicated and not particularly enlightening,
Instead we will use the technique of localization (to be developed in 1.2)
to exhibit the sectionwise behaviour of A, at C say, as the global
behaviour of the corresponding map A}C between the algebras localized
at C, As pointed out in the introduction to this paragraph, the
localization technique, although it requires some preparatory work, is
extremely economical and understan:iable as a technique of proof, Before
proceeding to the study of localization, let us make some comments on

the idea of solution that has been introduced,

1.1.7 Remarks General properties of egualizers and exponentiation
can easily be shown to yield that \[’Z = m Y’Zn where F' runs over
any epimorphic family of subobjects of 2. , Now the set of finite
subsheaves of Z_. is an epimorphic family. A direct proof is easy and
of course ultimately depends on the fact that finiteness was defined in
terms of a generating family, In fact the singly-generated subsheaves
of Z_ already constitute an epimorphic family, Furthermore, the collection

{TZ- ] T'e T is finite} is closed under finite intersections, For
if 2:1 and 5:2 are two finite subsheaves of 2., their join in the
subsheaf lattice is finite (it is a quotient of the coproduct 2:1 + 2:2)
and together they constitute an epimorphic family of subobjects of their
join, hence ‘(’Zln TZZ =\rz-1v 2:2 .

As pointed out previously, a solution of 2. over an object

Fe l€l is a map F——>TZ i.e. an element of the set C(F, \rz_).

Z is finitely solvable over such an F iff E(F, Tzn) # @ all finite
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' <2 . Consider the following three facts:
(1) €(F,-) commutes with intersections (since they are lim's),
(2) {‘(‘z. l T'e T, finite} is closed under finite inter-
sections,
(3) C(F, Y}: )>———9E(F,BX) is a monomorphism, and hence E(F,'fz )

) X
may be identified with a subset of E(F,B ).

It follows that 2 is finitely solvable over F iff the collection

n " - . - - . .
{QJ(F, T'Z.) ] ey, f flm.tes has the finite intersection property,
Horeover, since AGJI(F,TZ) =M T(F, ‘("Z. ) where ' runs over all finite
subsheaves of 7. , our goal is now clear: to search for a structure
on the sheaf of algebras ¥® which will induce a compact T2 topology

~ X o~

on C(F,B") such that all C(F, {}E'> are closed subsets, Clearly
such an algebra ¥ will be equationally compact in a very strong sense,
with respect to equations with coefficients in A (which we may take to
be the free algebra on the initial.objectAof E, thus retrieving the
general notion of equational compactness uvsually discussed in universal

algebra), We shall prove in 2 that if B is a topologically compact

sheaf of algebras, it will satisfy these properties,

1.2 Localization

1.2.1 The material in this section comes mainly from LSGA], exvosé III,
The reader is referred there for details of the proofs, which we will not
include here, for reasons of space, We will present a series of
propositions, with comments designed to establish some geometric intuition

into the situation,
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1,2.2 Pronosition Let ¥ be an elementary topos and f:F——G a
morphism in ¥ ., Then the functor f*: B/g—> E/F which acts by
"pulling back" has a left adjoint Z:f and a right adjoint T_T}.

E:f acts on‘ objects of E/y Ly composition with f., f* is a logical

morphism of topoi and hence | if is a local homeémorphism.

f* is called the inverse image functor and W—T} the direct
image functor, Of particular interest is the case in which G =1 and
f = $:F—>1, the uniaue map from F to the terminal object, Then
E/g ¥ T, f* sends an object X to the arrow proiXxF——F € \o/el
Z:f sends an arrow to its domain and T_T} sends an arrow to its "object
of sections". We also denote f* in this case by A : E—>IE/p .
Often one interpreis A (X) as the fibred object over F whose fibres
are constant, with value X, In the present setting however, we prefer

to view A(X) as the object X localized at F, This will become

clearer in what follows,

1.,2.3 We consider now the sheaf categories i, and the effect of
localizing them at C € ICl, First of all, we localize the site of
definition, Denote by jczm/%f_'—4>¢ the functor which acts on objects
by sending an arrow to its domain, Equip €/c with the finest topology

for which jc is continuous,

1.2.4 Provosition In the situation described immediately above,
(1) A family of maps in C/c is covering iff its image under

jc is covering,
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(2 jc, besides being continuous, is also cocontinuous.
(3) The following three functors are defined on the sheaves of

sets

jg:(G/bft———%>E "extension by the empty set"

~ ~S
i'e = do 5 T——>(/) restriction to €/c"
3

Jc 2 (€T ——F "direct image"
*

For (3), see chapter II, 1.4, \e have i — 5 — J~ « o« Note

c C,s C,
that if € = Open(T) for a tovological space T, and C = U, some
open set in T, €/; = Cpen(T)/y is canonically isomorphic, as a site,
to Open(U) and the three functors above are, modulo this isomorphism,

. s s s .
nothing more than v, Vo Vs described in chapter I, 1.4,

1.2.5 Provosition We have the following factorization of jg, with

€c an equivalence of categories:

The functor "restriction to &/p" composed with e is the functor A
[ v i C

described in 1,2,2,

1,2,6 Remarks Provositions 1.2,2 and l.2.5 show together +hat

"restriction to C/c" is a logical morphism of topoi. Otherwise put,
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jC,‘ is a local homeomorphism, Furthermore, j& and jC,*’ because
they are right adjoints, respect algebra structures and so the restriction
and direct image constructions apply equally well to algebras, '"extension
by the empty ‘set' may in certain cases be modified to "extension by the

free algebra on the empty set" to provide a left édjoint to jé at the

level of algebras, This in in fact true for sheaves on a topological space,

Let us discuss exponentiation in sheaf categories using the tool
of localization, We denote by F|C the image of an object F € 1T
under restriction to €/¢ , and similarly f|C for maps. Ve have the

following adjoint correspondences:

C—sF

;jS(l)-———)FX

1—————e>(?x)lc

X{C——>FIC

Note that (Fx)lC = FICX'C reflects the fact that restriction to €/c

is a logical morphism of topoi and hence in particular preserves
exponentiation., The above adjoint correspondences yield an isomorphism

of sets

F(C) = (¢/g) (xic , Flc)
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This formula is familiar from the theory of shéaves on a topological
space (see [TF], for example), The formula gives a very useful
representation of the sections of an exponential, To extend this to
maps, we neeé only observe that the following diagram commutes, for
ctr——>cC

F(c) 2 (¢/5)(xIc, FIC)

N

F(Cr) ¥ (¢/) (xlct, Flct)

n

~ ~
The right hand map is that induced by the functor (€/5) —— (C/q)
vnich is in turn induced by the continuous functor €/gr—>T/¢

given by composition with C'——>C,

1.2.7 The Extension Map A We return briefly to a discussion of the

map A defined in 1,1.6 of this chapter, First note that the following

diagrams commute:

32
M( H,E) ———> M( H, (¢/c))

U U
¥ (é/b)"
i
~ J N
M( H,E) Cis M, @)
T >(¢/c)”
' jC,s
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This is merely a reflection of the fact, mentioned above, that restriction
and direct image are constructions directly applicable to algebras, Now
consider the second diagram, Each of the maps involved has a left
adjoint, and‘it follows that the diagram of left adjoints must commute,

Hence the following:

%

Jc
M( H,T) M(H,(€/c) )
A
W W
T > (C/c )y
i¢

Using our special notation for restriction, this means that for any

Xxe |8, wC)|c = w(X|C), Since restriction commutes with coproducts

(it is a left adjoint) we have for any Xe |@l s, any Qe | MCH,T),
Arxijc = (O + ¥CXNlec = Qlc + wCOlc = Qe + wx|c) = alcrxicl .

Once we have noted this, and taking into account the fact that restriction

is a logical morvhism we can say that for

B X A BA[X]

BlCXIC AlC B,CAIC[XIC] and AlC i

restriction to C gives

s
the extension map for the localized pair Q|C = B|C in M( H,(¢/C)7),

Thus we can describe, using localization, the action of
KC: B X(C)—% B“[X](C). For an element o of BX(C) corresponds to
map XIC—>3BIC, i.e, a global section of BICXlC. Applying AlC we

get a morphism A[X]JIC—>B|C which corresponds exactly to
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AC(O‘) € BA[X](C). The point of all this is that we know how to compute
Al C on global sections (see 1.1.7). It acts according to the universal

extension property of Qlcixlcl,

The technique here is clear. To study sections over an arbitrary
C e It] of a complicated object, it is sometimes useful to localize at
C, where these sections become transformed into global sections, and

results about the latter may te applied in the localized category.

1,2.8 localizines Solutions Recall the equalizer diagram used in

1.1.6 to define the concept of & solution sheaf,

{Z ,BY 3 BACX]_sz

Since localization at C € j¢} preserves all of the structure involved

we obtain

- z
‘é'zlc >B‘Cxlc_ BlCAICLXIC] —>3p|c lc
This diagram is still an equalizer, hence x;k::: Y'Z\c , that is

t& ic is the sheaf of solutions to the equations Zlce AlC[XlC}Z,

It follows that a solution to Z. over C, which is merely a map

C-————éf}z corresponds exactly to a glohal solution of the sheaf of

equations ZIC € AIC[X\C]2.
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2 Topological and Fauational Commactness
2.1 Topolozizing Sheaves of Algebras

In this section we introduce the notion of a compact Hausdorff
(Tz) structure on a sheaf of algebras, In a theorem below several
equivalent ways of specifying such a structure will be formulated,

Two lemmas are required as preliminaries to the proofs,

2.1,1 Lemma, For any F € I€} the following is a coequalizer diagram
in € :
f h
Il 11 acn=—/=3 L1l alc)——>F
(c,cv) (c',/) g (c,m

The indexing sets of the coproducts are the hom sets in T and the three

maps are defined as follows:

11l LL a(c) £ 11 a(c)
1\
ia isa
1l a(CY) 2(C)
/1\
1g ala)
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Lla(c h F
Jo
~

a(C)

|

a\

Note that in the above we have not drawn any notational
distinction between O :C——F and a6 ):a(C)—>F, Recall that this
is a 1-1 correspondence between such ¢ , a( &) and sectiocns of F

over C,

Proof YWe establish directly that h has the universal vroperty

of a coequalizer, Let h': JLlAd a(C)-—>G be any morphism of sheaves
(c,F)

with h'f = h'g., Considering h' preceeded by the injections
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ig, Ce€ a(C,F) we see that for each C and each o € F(C),
h' 'picks out" an element, call it -}—IC( ), of G(C), Thus we have
mappings EC:F(C)“‘»G(C). The fact that h'f = h'g simply says h is
natural in C, i,e, E:F-——->G is a morphism in ﬁ:'. By its definition,

hh=h' and h is unique with this property since h is epi, For

h is the map associated to Ll c——F in T which is clearly an
(c,F)

epi in € (it is "onto'" at the level of sections),

2.,1.2 Lemra For any Xe | and any n-ary operation f in the theory

H, there is a homomorphism of algebras FpiW(X) ——=] | ¥(¥) such that
n
for any algebra Q e | M( =, T) | s+ the composite

' (£f,,=) -
T —— (000, A — (L] v, a) —X ), Q)——=T(x,a)

n

is the n-ary operation, corresponding to f, on the algebra (in Sets)

E(X,A) whose structure is induced by Q. (Chapter III, 1,3),

Proof A discussion of this for algebras in Sets can be found
in a paper by Freyd [AFG], The reader should have no difficulty in
extending this to presheaves of algebras and then sheaves of algebras,
using the techniques developed to this point, Note that the operations
described in the statement of the lemma expose the free algebras W(X)

as H-coalgebras in 7(‘1‘,

2.1,3 Theoren The following types of structure on F e |Tl are

equivalent in the sense that given one we may deduce either of the others,
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and the passages set up corresvondence which are bijective,

(1) F(C) carries a compact T, structure for each C € |C]
and restriction is continuous,

(2) As in (1) with the added condition that the patching
condition holds at the level of compact T2 spaces, i.e, F is a sheaf

with values in the category of comnact T2 spaces,

(3) There is a factorization

C------=cH

“ N/ "

Sets

where CH is the category of compact T2 Spaces and continuous mappings

and U is the forgetful functor to Sets,

Proof Bvidently (2) =>(1), Let us show (1) = (2), The

patching condition is the following equalizer (Chapter I, 2.3)
F——TT F(C)*““____;TTTTF(ci)

The maps involved are all continuous with respect to the product topologies,
The diagram is an equali~er at the level of sets since F is a sheaf
(of séts). Since the underlying set functor for compact T, spaces reflects
equalizer diagrams (basically because any 1l-1 continuous map between
compact T2 spaces is a homeomorvhism onto its image) the above diagram
must be an equalizer at the level of compact Té spaces

(1)==>(3) Take any X € IT| and exhibit X as a coequalizer

as in lemma 2,1,1., Applying the hom functor E(—,F) we obtain the
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following equalizer in sets

T(x,M

STT&(a(c),F) —3 TT TTT(a(C),F)

Making use of the isomorphism T(a(C),F) ¥ F(C) we can write this as

Tx,p) ——T T FCOOTZTITTIFC)
(c,x)

The latter two mans are constructed using only projections and restriction
in the sheaf F, Thus the tovologies on the F(C) induce compact T,

topologies on the product so that the two maps between the vroducts are

by,

continuous. Since the dizcram is an equalizer the image of the irst

map is closed in the vroduct, so the topolory transported from this
subspace to T(X,F) via the first map is compact ..

is the initial topology determined by the first map, and since the product

Note that this

topology is the initial topolory determined by the projections, we deduce
that the topology on T(X,F) 4is the initial topology determined by the

maps C(X,F)—=>F(C) which send P:X—>F to ¢C(G') where C ranges

over |€}] and ¢ ranges over X(C), Thus the topology on T(X,F) has
as a basis sets of the form V where C, € IC| , ©o.€ X(C.),
n i i i
{c., 6.,G.} %
i i*7id i=1

G, is an open subset of F(Ci) and

V = :X F 3 G' i = oo }
{Ci’ ci,Gi} iq) l ¢Ci( 61) € i? i 11 e

Now to complete the prcof that (1)=X3) we must show that as X is

varied, C(X,F) varies continuously. Take any f:X——=Y in €. Then

T(s, ) (Y, P ~F(X,F)



and- &(f,F)-l(V fc., s.,G.3 ) {Q:Y—ﬂ?l @), (cri) € G, i=1,...,n }
i, s 9 i 1

{4:v—F| te (fc (o3 €6, 4= 1,0000n }
)Y
{Ci'fci( ;2,6 3

Since the latter is open in &(Y,F), this shows T(f,F) 1is continucus.

(3) ==>(1) Consider the following diagran

€(a(C),) > F(C)

T(ala),F) F(a)

\

€(alC"),F) ——————s F(C")

where a:C'——>C in €, By assumption (%) the two left hond seﬂs have
compact T2 topologies on them and the man between them is continuous,
Thus if we transport the tovologies on the %(a(C),7) to the F(C) via
the Yoneda isomorphism, we obtain a structure of the type envisioned in

(1), Note that the restrictions F(a) are then continucus.

¥inally we must show that the correspondences are 1-1, If we
start with a structure as in (1) and pass to one of tyve (3), then back
again, we are finished if we know that the topology on €(a(C),F)
defined as in (1) ==>(3) (by the coegualizer technique) is the same
(modulo the Yoneda iscmorphism) as that of TF(C), The topology on
C(a(C),F) was defined via the equalizer

#a(C),F) ——TT ric)y — =TT TT rc)
(c*,C) (€,c") (cr,0)
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The first map followed by the projection corresponding to 1 € (c,c)

the Yoneda isomorphism, It is a bijective continuous map of compact

VR
)]

T2 spaces, therefore a hcomeomorphism, Now if we start with a structure
as in (3), pass to one of type (1) and back again, we return to the same
topologies on the hom sets since &(X,F) must be the equalizer in compact

T2 spaces:

T(X,F) ——> TTr(C) —=3 TI TTF(C)

where the PF(C) carry the tovolosy transported via the Yoneda isomorvhism
-~ - . . o
from €(a(C),F). That is to say, the torologies on the C(X,F) are
"~
comcletely determined by those on the hom sets €(a(C),F) and for such
hom sets the correspondence set up by the equivalence of (1) and (3) is

clearly 1-1 (follows from the arguments at the beginning of this paragraph).

Note Analysis of the fact that the patching cendition holds
at the level of compact T, spaces (see (1)=>(2) in the prcef of 2.1.3)
shows that for F a compact T2 sheaf of sets we have the following
condition:

VY covering {Ci———‘?C |i e}, ¥V open G EF(C)

E| il,...,in and open sets G, € F(Ci ) such that V T € F(C),
r r

‘t:\ci € G, r=1,..,n iff TE G,
r r

Continuity of restriction would imply simply that we could ensure that
restrictions of sections were close at finitely many places by ensuring
that the sections were close, What we have here is stronger - we can
guarantee that two sections are close by ensuring that their restrictions

are close at finitely meny places (continuity of patching').
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2,1,4 Definitions A sheaf F of sets with a structure of the type

envisioned in 2,1.3 is called a compact T2 sheaf of sets, A morphism

§:F—>G between two such is said to be continuous if ®C:F(C)———>G(C)

is continuous for each C € (€} ,

2.1,5 Prorosition Let F,G be compact T2 sheaves of sets and

¢:F—>G a morphism of sheaves, Then ¢ is continuous iff

(X,$): (X, F)

>(X,G) is continuous for every X e |T| ,

Proof Suppose (X,§) is continucus for every X, Putting

X = a(C), Ce |Cl we have the following commutative diagram

(a(C),F) —————— F(C)
(a(C),P) ¢C

(a(€),G) ———————=aG(C)

The top and bottom arrows are homeomorpvhisms, The left hand vertical

~arrow is continuous, hence ¢C is continuous,

Suppose now each is continuous and take any X € 1%l
(0] ]

and open V {c = E(X,G)

i ci'Gi}

GO = T | QW) (6D €6 i=1,...,n]
A

W:x—rF | \pci(ci) € (b—l(Gi) i=1,...,n }

= V 1
ici' o8 (c;) §
1
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Hence (X,¢) is continuous,

Note 2.1.3 and 2,1,5 combine to give an isomorphism between
the categories of objects of T equippned with compact T2 topologies
sectionwise and those equipped with such topologies by the lifting of

hom functors,

2.1,7 Induced Tovolories Projective limits, internal powers, and
localizations (as in section 1.2) of compact T, sheaves of sets are
[
again compact T2 sheaves of sets, The structures are deduced from the
following isomorvhisms:
~ ~ [
. ~oo -
(1) ©(X,lim F.) % lim C(X,F,)

2y Tx, @

) 2 C(XxaG,F)
(3) (e/cf (x,Flc) 2 €35 (D,F)

Note that it follows with respect to (2) and (3) that

T, ¥ 8, ana
&, 2 (e/0) (ale,Fic)

are homeomorphisms,

2,1,8 Theorem The following types of structure on A e | ¥M( H,T) |
are equivalent in the sense that given one we may deduce any of the
others and the passages set up correspondences with are bijective,
(1) 4 e ITl carries a compact T, tovology so that is operations
are continuous,

(2) 4 el carries a compact T2 topology so that for every
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s ~
X € |€| the operations on the induced algebra €(X,A) are continuous,
(3) Ae IT| carries a compact T, topology so that for every

C e It] the operations on A(C) are continuous.

(4) There is a factorization

M(3,E)-——---- >CH
(-,a) U
4
Sets
Troof (1)<=>(3) 1is just the defirition of continuity for

morphisms of sheaves.,

To show (1)5=2>(2) 1let £ be any n-ary opsration of II and
fA:An————aA the ccrresponding operation of QA . Let fx:%(X,A)n——é%E(X,A)
be the corresronding coperation on the algebra %(X,A). By the way in
which the structure of the latter is deduced from that of A, the following

commutes:

Tx,0" o > T(X,8™)

fx

T(x,A)

’ ~
The isomorphism is actually a homeomorphism, by 2.1.7. Thus C(X,fA)
is continuous for all X iff fy is contiruous, all X, But in

1ight of 2,1.5 this establishes the equivalence of (1) ana (2).

~
(4)=>(1) The isomorphism (M(X),CG) = €(X,A) provides the
topology on A and lemma 2.1,2 shows that the operations will be

continuous,
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(1) =>(4) The following is an equalizer for sheaves of

algebras W and

®

~ ~ p n
MOH,C) (B,0) —>T(B,A) — [ ] %4

n=0 J(n,1)

p sends $:3—>A to the sequence whose entry at (n,f) for

f:n—>1 in H is ¢)fB where f, is the n-ary oneration on

B
B corresvondins~ to Y. q sends to the sequence whose entry is
- (=} - A)
n . . .

f . Now a tovwology on A =o that the operations are continuous
A > DV 1

. . ~ . ~on o

induces torologies on %(B3,4) and €(3%,4) so that » and a are

continuous. Thus (W ,Q ), being the equalizer of a pair of maps

between ccompact Spaces, inherits a compact T structure as a

2 2
subspace of %'(B,.&). This is a weak topology determined by the
evaluations (% ,Q )—> (¥(C), @ ) ¥ A(C) which send b to

¢C(0') for Celel , o6 € B(C),

Thus the situation with algebras is analogous to that of
2.1.3 provided we replace C by 4wW(C)., The remaining details of the
proof of 2,1,& proceed accordingly.

™

2,2 Tonolosical Comnactness Imnlies ~guational Commactness

2,2,1 Ve now take up the discussion of 1.1.7., Recall the definition

of solution given in 1.1.6,
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For the purposes of this discussion, we assume @ = W(0), i,e.

ALX] = UW(X), That is, we do not consider coefficients in our equations,
This assumption is not necessary, but it is the usual framework in which
equational compactness is discussed, Ve write W(X) = UW¥(X) where

no confusion can arise, using the same notation for the free algebra

and its carrier. Rewritins the above equalizer diagram:

q
¥+ Bx A 5 w(x) B 1 Bz‘_
> > —_—
b P

If ¥ carries a compact TP topolory, so do all the powers of B in
a

the diasram, 13.1 and Bq2 are continuous (as can easily be seen
by applying an arbitrary hom functor E(T,—)). If A can be shown to
be continuous, then the apprlication of any hom functor &(T,-) to the
underlying diagram in (4 will yield an equalizer diagram in compact
Hausdorff spaces (not in compact Hausdorff algebras, for we are
certainly not claiming A is an algebra homomorphism ~ it is not),

~ ~ X
In particular ¢€(T, fEE) will always be a closed subspace of €(7,B")

and we shall have proved the following:

2.2.2 Theorem Let %3 be a sheaf of compact Hausdorff algebras,
Then any sheaf of equations Z in variables X which is finitely

solvable over a particular T € |€| is solvable over T. In particular
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if the equations Z (C) are finitely solvable in ¥3(C), they are

solvable there (taking T = C ¢ \€l ),

Proof The idea of the proof has been outlined in 1,1,7 and
2,2,1 above, All that remains is to prove A is continuous, From
2.1.1 it is enough to show A is continuous at each C € I&l , To
establish this we show A is continuous at the level of global sections
and then appeal to localization technigues to obtain the statement for

arbitrary C e A

~
We must show €(1,\) is continuous, We have

(1,85 > T(X,B)

(1,A)

i:'(l,BW(X)) — (W(X),B)

The diagram commutes, The horizontal arrows are homeomorphisms and the
right-hand vertical arrow sends X—=>B to the (underlying map of the)
free extension to W(X)——>¥B . (see 1.1.6), If we show the right-hand
arrow is continuous, we are finished, To this end take ¢:X—>B and

a basic neighbourhood V fc of the extension ¢:%W(X)—>B,

105300 1

2 1 ] =
We have then that ¢, e W(X)(C;) and (pci( ) e i=1,...,n,

Let us '"'take apart' the S ;. For each i =1,..,,n there is a covering
~
. j . i . . =W, . €W L) = W X(C, .
{cij——z'c1 | 5 Jl} with o | Cj = vy € (x)(cla) | v (x(cla)),

i.e, wij is a "real'" polynomial in a ''real' free algebra, This
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comes from the way W(X) is built as the associated sheaf to the presheaf

7
W(X) which in turn is just the ''pointwise free algebra" functor, We

e

J
ij
continuity of patching choose G{je‘ B(Cij) so that VTe B(Ci),

e x(cij). Next, by

=]

et T ij
can suppose wij depends on variables Xy gesoX

t|C,.e G!. all jed., iff TEG., Recall that this can be done
1) iJ i i
so that for a1l je J. - F, where F.& J. is finite, G/.= B(C..).
i 1 i 1 ij ij

The polynomials TR (Wi (X(Cij)) determine mappings

L d

vl .:B(C )_J_%B(C..) by evaluation., Since B(C..) is a topological
i3t id ig? v i poton

algebra all of these mappings are continuous, Moreover
23y 13 .
(4) ().1 "“"#C )) -#C (w )GG:l . The first

equallty comes from he way that cb acts - as the extension of 43 to
the free sheaf of algebras, locally it acts like a free extension in

classical universal algebra, (w..) € G!, since
C. . 3 ij

q> cij(wij) = ¢ Ci( d‘i)l Cij and (§> Ci( o'i) € Gi (recall how the

G:;.j were chosen),

. . o~ ij '
Having established that wij(q’C (x1 ) eee) € Gij use the

ij
continuity of W,. to select open sets GY. & B(C. Dy k= lieaagn;.
iJ ijk a ij
with &, Gid) eay, k=1,...,n, and S (T’T G ) e G
Cij *x ijk L 13k ij *
Claim: V is a neighbourhood of ¢‘ which

{ i ’xk * 1:_|k} k=lyee0qy0n:

ij
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is mapped into V{C by the extension mapving ﬁi(X,B)——)ﬁ\!‘(W(X),B).

10 931033

Certainly ¢ is in V by the way the GV, were

ijk
chosen {Cl‘]’xk ’ 131{} k

Take any Y} in this neighbourhood of ¢ ., -\{’C (C.)ICi, =

= - I - ij ij
‘Pcij(di\cij) \’(Cij(wij) 13(\}10 (x Yyeees \\JC (x 13)) € Gv

because of the fact that \{J e V
{'C k ! 13k’§

From the way in which the G:{j wvere chosen, it follows that

- ij "
since \\;Cij(xk e Gijk

\‘/Ci( c‘i) € G;, hence Ve Vic as was to be shown,

9
300309 Y
We have established now that '5(1,7\) is continuous, We must show
E(C,?\) is continuous for each C € I€|, Consider the commutative

diagran

tc, 55— €/ (1,810

(C,A) (1,A10)

t(c B!(X))-————>(a'/c) (1 Blc"(xm)

The horizontal maps are homeomorphisms, The map A|C is, as pointed
out in. 1.2.7, the extension map for the compact algebra B|C in

M( H,(¢/c)” ). Thus by applying the above global result to the algebra
localized at €/c we see (1,A|C) is continuous and hence (C,A) is

continuous, completing the proof,
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3 Homological and Eguational Purity for Modules

3.1 Sheaves of Modules on a Ringed Space

3.1.1 A ringed space (T,0) is a topological space T together withi

a sheaf of rings & defined on it, For example the spectrum of a
commutative ring with unit has such a sheaf defined on it via (ring-theoretic)
localization, and in fact these sheaves are the basis of modern Algebraic
Geometry., We shall refer to a ringed space (T,0) simply by & with the
space of definition T wunderstood., A (left) module over & is a cheaf
O. of abelian groups together with an action © xO——>0. satisfying
the usual module laws, Bquivalently ©(U)x Q(U)——>0(U) is a module
action-for each U e |Open(T)| and restriction (along the ring and

group simultaneously) respects the module structurce. The resulting
category we denote O-lod, If ©& is the sheaf of rings associated to

the presheaf constant at a fixed ring R, C-Mod can be seen to.be eguivalent
to the category of sheaves of R-modules, or what is the same thing,
 M(H,T) where H is the theory of R-modules treated as universal
algebras (recall that this involves treating the ring action on the group
as a family of unary operations indexed by R), However if © is

more complicated than simply a '"constant sheaf'" the category G-lod need
not be representable as M(ZH,T) for a finitary theory H, The reason
is that because the rings are allowed to vary, the theories corresponding
to the various types of modules vary accordingly., To subsume the
categories O-Mod in the scheme developed to this point we would have to

expand our treatment in one of two ways: (1) treat n-sorted theories
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instead of l-sorted theofies as we have done, or (2) study algebras
defined over a sheaf of theories., It is not our intention to carry
out either of these possible extensions here. Instead we shall merely
point out that for a fixed ringed space (T,8), all of what we have said
to this point in general about categories M(Iﬂ,ﬁ) carries over mutatis

mutandis to G-Mod,

3.1.2 Facts
(1) For Ue T open, the functor "restriction to U" on G-Mod

has a left adjoint, "extension by 0", The formula for this is
. 0  V4u
Jp@I(V) =

A v) veu
We will use the notation CL'U to refer to both the restriction
of (L€ O-lod to an algebra in O|U-Mod, and to the restriction
of Q to U, followed by the extension by O. Thus Q|U refers
to an algebra either in ©-Mod or O|U-Mod. In what follows,
unless otherwise stated we assume that Q|Ue& G=Mod, that is,
Q\U is A "cut down to U and extended by zero",
(2) For each X €|T| there is an G-module W(X) freely generated

by X, For X=1U, Ue T open, we have W(U) = 6|U i,e,

0 V¢ U
w(u) (V) = {
e(V) vVvewu

(3) ©-Mod is an AB5 abelian category.

(4) Every sheaf of modules is the colimit over a directed set
of finitely presented ones. Recall finitely presented means
cokernel of a map between finite sums of modules of the type

o}u,
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(5) A tensor product on 6°P-Mod x G-Mod is defined by forming,
for any two arguments, their pointwise tensor product as presheaves,
then taking the assosiated sheaf, For any right module Q , we
have ‘ A®e|Uu = AU, .

(6) The additivity of ©~Mod results in the fact that we can
reduce equations to polynomials by "moving the variables to one
side", That is, any system of equations T>—>0[x1% is
equivalent to one of the form T >->O.[X]° where the first’
component is O and therefore is completely svecified by a
single map 2:-——>CL[X]. A global solution in an algebra

B2 is a map X-—>B whose free extension to Q[X] is O
on L . A solution over Ue |Open(T)| is a map X|U—=>B|U
which is a solution to the restricted system L|U—QlUlX|U].
(7) It X = Ul+...+Un, the coproduct of generators Uie T ,
U, € Open(T), QALX] = A ® W(X) = 'O.ew(trl) ©...0wWU) =
Qe elv, ®...00lU. '

3.2 Iguivalence of Homological and Eguational Purity

3.2.1 The first order of business here is to prove a proposition which
will lead to the notion of "affine purity'. This concept will then be
shown to be equivalent to homological purity in &Mod, The equations
we consider will have variables in a sheaf X which is restricted to
be a finite coproduct of generators X = Ul +,40t Un Ui < T open,
Since we deal always with finite sheaves of equations the finiteness

of the coproduct is no real restriction. Requiring that X be a
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coproduct of generators does of course represent a very real restriction
over the more general case of X an arbitrary ( though finite, say)

sheaf of sets, We will be interested in finite systems of equations
(polynomials) Z——>Q[X], Since Z. is a quotient Vl tooot Vm—'—9£
we may at times consider the map Vl +.0et VIE-—%Q[X] as representing
the equations, and forget about speaking of its image (Z) explicitly.

We make the requirement that Vl Z hee = Vm = W, say, That is, the
equations in our system will be defined over the same open set W,

Finally, if the equations in a system are defined over W, we lock for

solutions over W, and not over possibly larger open sets,

3.2.,2 Definition Quite in general for W>—>8V 4 subalgebra in
M(H,) anda Z € A[xi® a system of equations in variables X (any
sheaf of sets) with coefficients in O , we say L is locally solvable
over C €& IC| 4if there is a covering {_ci—ecl ie I} of C such
that Zlci is globally solvable for each i € I, Note that the
solutions exhibited need not be in any sense compatible with respect to
the cover, Also note that if Z. is solvable over C, it is automatically
locally solvable over any cover of C (just restrict the solution to

the objects of the cover),

Let us return now to the situation of 3.2.1,

3.2.,3 Proposition Let Q>>8B be a submodule (&, B left G-modules).

Then the following are equivalent:

(1) V¢ sheaf of variables X as in 3.2.1, V open WE T
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V system of equations .L:Ilr W——>Q[X] with image T € A[X],
i=

[ T solvable over W in B => Z is locally solvable over W

in Q ],

(2) Same hypotheses as (1), then [ T locally solvable over W

in B == X locally solvable over W in Q. ],

(3) Hypotheses of (1) and V V € y open, then [ X solvable

over V in ®» =3 T solvable locally over V in Q 3],

(4)  Same hypotheses as (3), then [ T locally solvable over V

in B = X locally solvable over V in Q. 1.

Proof (B) = (3) ana (2) = (1) are obvious weakenings.
(3) = (2) Suppose ¥ has a covering W = U{_wk\k e K} so that 3.
is solvable in QL over each wk. Then applying (3) with V = Wk, we

. . = 1 1
see there exists a covering Wk Ui,kb_l L e Lk} so that 2. is solvable
in Q over W o for each 2 e L« Then Z is solvable in Q over the

composite covering W = U il‘-’kel ke K, 0 ¢ Lk} and (2) is established,

(1) =(4) Given the primary hypothesis of (4), then to say ¥ is
solvable in B over V {is equivalent to saying that the restriction of
Z. to V is solvable in B over V, But this is now the situation of

(1) with W =V and the result follows,

Note The proof that (1) = (4) is somewhat deceptive in that
it looks totally trivial, However, hidden within it is the fact, used
implicitly, that the image of (Ve UW——sa[x1) is T lv which

comes from the fact that restriction to an open set preserves image
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factorizations. The reason for introducing (4), and its companion (3),
is that solutions are guaranteed from hypothetical solutions defined
over open sets V possibly smaller than W (over which the equations

are defined).

3,2,4 Definition If any (and hence all) of the conditions (1) - (&)

of 3.2.3 holds, we say (L is an affine-pure submodule of % .

The reason for the prefix "affine' is the third condition of the

following theoremn,

3.2.5 Theorem Let O>—>¥3 be a monomorphism of left O=modules.
Then the following are eguivalent:

(1) O is an affine-pure submodule of 9B .

(2) For any risht O-module € , €@ A——>Co B is a

monomorphism, i.e. (L is a homologically pure submodule of % .

n
(3) For any module homomorphism ¢ : @ G)U —S e 6lV.
i=1 J=1

where all Ui'vj are open sets in T, in the diagram

n m

® alu, %6 . s al
i=1 j=1 \‘/

n Bl m

(42] U, S 6 B <
i=1 T de® =1 J

we have Image( $® B) N 9 QJV. =3 Image(q>®ar)
. =1
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=W all i,j.

(&) As in (3) except U =V

[

n n n
Note in connection with (3) that ( @ GlUi)@a = @ (e>|Ui Q)= o QjUu

i=1 i=1 i=1 *

s e®

1J
i,e, an element of the ring G(Ui), which element must be O if Ig_i,V&.

[} 'GlUi———>ele and hence is represented by an element of (Gle)(Ui),

With this sort of identification, ¢)G>CL may be described in terms of
matrix multiplication with the matrix (é)ij)' This will become clearer
in the proof of the theorem, Before proceeding with this proof, we need

a lemma about abelian categories,

3.2.6 Lemma Let A bve any abelian category and consider the following

commutative diagram in A :

v
A ¢ >B —> C
Al'— _ 5B el
. ¢ v

e suppose v = coker(15), v'! = coker( ¢') and a and b are monomorphisms,
Then ¢ is a monomorphism iff Image( $*') A B g Image($ ), Note that the
reverse inclusion is always true simply by virtue of the commutativity

of the left-hand square.

Proof Diagram chasing shows easily that the theorem is true in

any category of modules, hence it is true in any abelian category,

3.2.,7 Proof of Theorem 3,2.5 First of all (3) is equivalent to (2)

for € a finitely presented module, For by definition such € are

exactly the cokernels of such ¢ as appear in the statement of (3),
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q; , € and QO >>¥P give rise to the following diagram, by tensoring

the coequalizer diagram defining € with Q. and & .

PO veQ
@O—IVj >C®a_

ea|u;
i

be B ves

@ B|U;
i

Assume for the moment no special properties of Cb or the inclusion A —W
The top and bottom rows are cokernels since ()® ? preserves cokernels
(in fact all right limits)., The left and middle vertical arrows are

mono since QA>—>¥3 mono = O.lUi——}EIUi is mono and in an abelian
category finite sums of monomorphisms are mono (since finite sums are
products as well), Thus the fact that (3) is equivalent to (2) for

finitely presented € is an immediate consequence of lemma 3.,2.6,

At this point it is clear that (2) => (3), On the other hand
(3) = (2) since every G-module € is the colimit over an up-directed
set of finitely presented G-modules, say € = lim, c 5 Since ®

. .y
preserves lim's we have

Ce0—>Co B

(1in € JeQ—>(inf e B

lin( €. —>€;0 83 )

By hypothesis (2) each of the maps Cisa——%CiQB is mono and
since ®-Mod is an AB5 category, limi's over up-directed posets of mono-

morphisms are monomorrhisms, Hence Celd——Cod is mono,
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Now (3) = (4) is a weakening so at this point we have established
(2) <> (3) = (4). We shall complete the chain of implications by showing
(4) = (1) ana 1) = (3).

(4) = (1) Suppose we have a system of equations

¢

m
j=1
with a solution in ¥ over W, say X|V = (llUi)]w—i—elbl'd with

m
1 w—sajw (x)u1—E gy = o,

J=1

We can assume W & Ui all i=1,,..,n for if W ¢ U:i. some i
then CPJ.:W—%QG elUl_e vees O O]Un has, when considered as a section
over W of the codomain sheaf, O for its component at the "O\Ui-place".
Here ¢j is ¢ preceded by the j% injection of the coproduct 1L,
The 4)'3. represent the individual equations of the system 4) . It
follows that W ¢ U, => each 4>j does not depend on the "G\Ui-place",
that is, the assignment of the corresvonding variable does not affect
the polynomial since the variable is maltiplied by O, For the purposes
of finding solutions we can ignore such cases, for given a solution to 47
cut down to the components where not all ¢j are O, we can expand the
solution (by assigning O to the extra variables) to a solution for $ .

n n
WeT, all i=>( 11=_:LL U ) = 11__1. W and the condition that f

be a solution in ¥ may be written
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m —
LUv——>aw o olwe ,,, & olu—I—spw=-o
J=1
- n
f restricted to ® oW corresponds to sections bi e B(W) since
i=1

OIW are free modules on W e |7, ¢j:w-——aa4w'@ olwe ,., e o|v

represents a section over W of the codomain, say (—ocj, ¢ 15700 ¢nj)
. . 1 i = -

with o e A(W) and ¢ ij€ o(W) i =1,...,n., We use o for

convenience in formulas to be produced, The fact that f is a solution

may be expressed by the equations

n
, = .. b, (equations in the module 7))
@, E (‘)13 5 eq o e mo B
i=1
~ n m
Now the dPij define a mav ¢: 1a) Gl\‘/“>e slw and in fact
. i=1 §=1

Pl -~
¢ operates in such a way that (al,...,am) ¢®B (bl,...,bn).
Refer to the diagram of (3) with all U, = v& = W, It follows that

A m
(ai,...,am) is a section over W of Image(dP @B) A @ alw, By
J=1
Ay
(4) we must have that (al,...,a.m) is a section over W of Image( b0 Q).
. That is, there is a covering W = U{Wk]k € K} and of = (al_.f,...,ag)

Cp N
sections over W, of & |V such that alwk =P ®AWX). But

i=1
N k 2 k B k
b AW = ( 2. Py Fireees 2, ¢ . o), which says that the maps
i3 0T AT 2 R Yy
k n
(?‘1 I W——>(Q provide solutions to ¢ in A over the W, as
‘k i=1 ‘
n
required,

(1) = (3) Given the hypothesis of condition (3) we show the

inclusion pointwise, Let W ST bpe any open set and
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m
a = (al,...,am) e (Image( P®@B) A jﬂzlal‘lj)(w)

' m
= Image(Pa BI(W) A~ @ @]V.(W)
j=1 J
Let us first assume that o is in the set-theoretical image
of 4)@\3 . From this case we will later deduce the more general situation
which is of course when « is locally (over W) in the set-theoretic

image of ¢@ ¥3

. . . . Lt —_— ,".. i

The given morphism 4) has components 4)13 GlUl G\\J le
are restricting attention to the open set W, Now (G)Ui)(\'!) = 0 unless
J » o 1
We Ui' q: i represents, by freeness of GlUi, a section of OIVj
over Ui and hence is O wunless UiE. Vj' The point of these observations
is that (¢i;j)w » the component of the morphism q)ij of sheaves of ncdules
at the open set W, is O wunless W< Ui.’-'_-. V.. Without loss of generality

J
we assume the indices of the Ui’vj are ordered so that

We Ul N oo "Unv y Ve Un'+1"“’Un

We Vlf\ cee ’\Vm' ’ w#’ th+ll¢"9vm

Since o« i, 44...,a are elements of (alvm,ﬂ)(w) seoes (ale)(W)
it follows that Cnt4y = eee S @ =0,

Ve are assuping o« is in the set-theoretical image of (@QB)W,
say o = q)eb?)(bl,...,bn) where b, € (BlUi)(W). By the numbering

of U, (B4 Ui)(w) =0 for i=n'+l,,,.,n hence D1y = eee =D =0,

Moreover bj,...,b are all elements of ¥5(W) since (BlUi)(W) = (%)

n'
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for We Ui' In the same way Oyseees® , are all elements of

A(W) € B(W) and the relation « = ¢®)3(bl,...,bn) is equivalent

to @y = Z \‘Pij b, J=1lye.e,m' (equations in ¥B(W)) where
c
(‘Pij)w U & Vg

‘yij € (W) ang \}'ij =
0 UL

. Vhen we say \P ij = Ubij)w

we mean of course that \Pij is the element of (W) corresponding to

the module map

(s OITDIN— (6] V) () = o)

The \Pij yield a system of equations

m'
11 WLQW eolve ... o 06lw
j=1 N ~— 2

n' times

The component \\thw—ﬁalw ®@olve ... ©6lW corresponds to the

section (-aj, +1j seces l‘)n'j)‘ Note that the sheaf of variables in

n'
which the system ¢ is defined is X' = 11 W, The equations
i=1
n'
a, = .. b, say exactly that
3 g Vg P S v

b
1 n'
(5 ) : Ll w——R|v
i=1

is a solution for \P over W, Our hypothesis of affine purity may now
be invoked to yield a local solution in @ to \P sy OvVer some covering

W= inklk € K} . 1i.e, for each k € X we have Otlf,...,a.ﬁ, € a.(Wk)

. , - k s =
with a W = g Pigl¥eas for §=1,...,m,
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'
Claim: ( Z \,P 1‘ oL, ,...,‘Sn-' L‘)lmc‘ .0» 0’0-010)

m-m' times

. k K
= ¢®a(al,...,an',0gootgo)
————’

n-n' times

n n
First of all };{.. q’ij“’k'a}j{_ = 12—1: q> ijlwk’alirt assuming we have extended

the definition of af.f so that ali{ =0 for n' <i<n, Hence the

equality claimed certainly holds in the first m' components, Ve must

show that for j > m'
n
5_‘_‘: 5l ¥heaf = 0
< ijt ki
i=
S |
But if some (’p .]\ k.oc ;-f O for j>m

(1) i<n' since ¥ - for i >n!
i

c .
)] A= Vj since ¢ij # 0

Now (1) = V¥ .c..Ui by our numbering of the U, and with (2) we have

We Ui 1= Vj i,e, WE Vj which means j < m', a contradiction. Thus

we have shown that for j > m', Z ¢1J k.alf = 0, in fact we have
i=1

shown each summand to be O, This completes the proof of the claim,

but the claim together with wiat immediately preceded it combine to give

(all wk,o e ’am||b]k’0’. oo ’O) = ¢®O(a];,o L ’alr:' ,O,. oo ’O)

In vector notation cx.‘wk = ¢® A (o), (Recall @y = 0O for m' < j<m
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Ve have shown that if a is in the set-theoretical image of
$® B, then it is locally in the set-theoretical image of ¢deQ
i.e, it is a section of the sheaf-theoretic image of <‘>®O. . Now let

us consider the general case where o is a section of the sheaf-theoretic

m
image of QQB , i.e. e Image(d@WBIMW) A & (ale)(W).
o1

Then there is a cover W = Ui\v‘k\k € K’} with alwk: Q)Qﬁ(bk)
(¢ is locally in the set-theoretic image of ¢ @ ). By what we have

shown already, there is an open cover wk = U i wm\ L e Lkz with

- kL ke iy , .
alw = (\)@Cl(on ) where o e @ (A\U,)(W _), Combining
ke i=1 i ke
the two levels of covering we obtain a covering of W with the oproperty

that « is, with respect to this covering, locally in the set theoretic

image of ¢ @ Q. , i.e. o€ Image( @ Q).



CHAPTER IV  CONCLUSIONS

It is felt that the results of Chapter IV and V provide strong
evidence that Minternal' universal algebra may be effectively carried
out in a tovos, More precisely, by reformulating concepts such as
"equation' in a more dynamic (i.e. sheaf-theoretic) manner insight may
be obtained into the structure of algebras which are allowed to vary
along certain parameters, Several things must be taken into account in

the further development of these ideas,

With regard to the theorems of chapter IV and V several obvious
questions remain open, For example it would be useful to establish
that the condition that € have enough noints cannot be removed in the
theorem of chapter IV which says that under these circumstances injectivity
in the sheaves of algebras is as well behaved as it is in the base
equational class, In view of theorem 3,2.1 of chapter IT the double
negation sheaves on a suitably connected Hausdorff space would be a good
topos to begin such an investigation, Attempts should also be made to
find the correct relationships between the concepts of injectivity,
equational compactness and purity in M(IH,%). It seems that, primarily
due to the absence of the axiom of choice in the internal logzic of an
arbitary topos, the classical connections (for example equationally
compact = pure injective) will not hold in general, VWork in this direction

must take into account the recent, and as yet unpublished, results of

154
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Banaschewski which provide meaningful notions of purity and equational
compactness in any category., For example in this scheme a pure extension

appears as an up-directed colimit of split extensions,

Evidently much of classical universal algebra (including model
theory) may be interpreted in a topous using the techniques developed in
this research., We have given only a handful of examples of this, and
the power of the extension to algebras varying along parameters awaits
exploitation, It is felt for example that the theorem relating topological
and equational corpactness might prove useful in combinaterics, since
it applies in particular to finite sets (or groups, rings etc.) parametrized

by a graph.
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