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Abstract

The main part of this thesis is concerned with detailed explanation of a newly pro-

posed Markov random field-based de-interlacing algorithm. Previous works, assume

a first or higher-order Markovian spatial inter-dependency between the pixel intensity

values. In accord with the specific interpolation problem in hand, they try to approx-

imate the Markov random field parameters using available original pixels. Then using

the approximate model, they define an objective function such as energy function of

the MRF to be optimized. The efficiency and accuracy of the optimization step is as

important as the effectiveness of definition of the cost (objective function) as well as

the MRF model.

The major concept that distinguishes the newly proposed algorithm with the

aforementioned MRF-based models is the definition of the MRF not over the inten-

sity domain but over interpolator (interpolation method) domain. Unlike previous

MRF-based models which try to estimate a two-dimensional array of pixel values, this

new method estimates an MRF of interpolation function (interpolators) associated

with the 2-D array of pixel intensity values.

With some modifications, one can utilize the proposed model in different related

fields such as image and video up-conversion, view interpolation and frame-rate up-

conversion. To prove this potential of the proposed MRF-based model, we extend
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it to an image up-scaling algorithm. This algorithm uses a simplified version of the

proposed MRF-based model for the purpose of image up-scaling by a factor of two

in each spatial direction. Simulation results prove that the proposed model obtains

competing performance results when applied in the two interpolation problems of

video de-interlacing and image up-scaling.
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Chapter 1

Introduction

Image/Video interpolation is one of the classical but still active subfields of im-

age/video processing. In general, 2-D/3-D signal interpolation (reconstruction) has

divers applications such as image up-scaling (resolution up-conversion), video up-

conversion and frame-rate up-conversion. During the last decade, major contributions

have been made in each of these fields, some of them applying rigorous mathemat-

ical frameworks to model and exploit the natural characteristics existing in natural

images and videos.

Video de-interlacing is one specific application of 3-D signal reconstruction (in-

terpolation). Although originally developed for analog television industry, it is still

widely used by high definition (HD) broadcasters. The major part of this thesis,

indeed, will focus on a newly proposed de-interlacing algorithm with roots in Markov

random fields (MRF) modeling (appendix B), Markov chain models and sequence es-

timation techniques. MRF and Markov chains have been extensively augmented for

different applications of signal processing. They are widely used for image processing

applications such as image segmentation, decision making, robot vision etc.
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In the field of image/video interpolation, MRF and Markov chains can play a key

role in modeling the characteristics found in natural images. They can be greatly

utilized to model the spatial and/or temporal inter-dependencies between the im-

age/video samples.

In video de-interlacing in particular, some recent pioneering works have been pro-

posed recently that aim to use MRF-based models to characterize the spatial smooth-

ness present in natural images. For this, each image (or a frame in a sequence of

frames) can be considered as an MRF or sets of Markov chains of intensity values.

Then using reasonable approximations for the MRF parameters, we are left with an

optimization problem to get the best solution. Note that MRF modeling and after-

ward the optimization method chosen, are tightly bound together. In other words, an

MRF model may be followed by an optimization tool which is not necessarily feasible

and efficient for some other MRF model.

Consider a digital image as an MRF. By insight we have from natural images,

neighboring pixel values in an image are highly correlated. This correlation is much

less around the object boundaries. Basically, different methods try to define a rea-

sonable potential function for the cliques and then a feasible optimization method

to optimize an objective function such as the probability of the MRF. In case of

interpolation problems such as image up-scaling and video de-interlacing, the poten-

tial functions used in the literature in general use an `2-norm-based function that

takes into account the intensity difference of a pixel with its neighbors. Then the

optimization problem is in general to find the MRF, z, that maximizes the Pr(z) or

equivalently the summation of the potentials over the cliques. The results obtained

by such algorithms have been proven to be promising.

2



M.A.Sc. Thesis - Farhang Vedadi McMaster - Electrical Engineering

Zxy

Zx-1y

Zx+1y

Zxy+1Zxy-1

123

57

59

62

62

101

62

102

(a) Intensity-domain MRF

Ixy

Ix-1y

Ix+1y

Ixy+1Ixy-1

I3

I3

I3

I1

I2

I3

I4

I4

(b) Interpolator-domain MRF

Figure 1.1: The proposed strategy is to switch from pixel-intensity domain to interpolator domain and do the
estimation in the latter domain (a) Intensity domain MRF (b) Interpolator-domain MRF.

The aforementioned MRF-based model for the interpolation problem shows a great

performance, however still suffers from a few limitations. When the MRF is defined

over the gray-level intensity domain, basically the size of the multi-dimensional search

space of the optimization problem is very large. For instance, each site of the MRF

can have 256 (for 8-bit precision) discrete values which can be a larger number for

higher precisions. The larger the search space for the optimization procedure, the less

robust is the algorithm to find a good solution. Here is where our newly proposed

algorithm comes in. Let us explain the algorithm intuitively. A more detailed math-

ematical representation of the algorithm will be left for the following chapters.

As explained before, an MRF in intensity domain, greatly captures the inter-

dependencies between pixels i.e., the smoothness in gray-level values. Now a logical
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question is that are we able to switch from this domain (gray value) to some other

domain which can greatly reduce the size of the search space on one hand and maintain

(and even improve) the performance of the algorithm on the other hand? We will try

to explain the answer to this question which will clarify the scope of this thesis.

In traditional models if z is an MRF then the site (x, y) takes a gray-scaled value.

In fact, the z is a 2-D arrangement of gray-valued random variables zxy such as

depicted in figure 1.1(a). Consider a function Ixy corresponding to the site (x, y). The

input of the Ixy is the MRF z and the output is a gray-value for the site (x, y). In other

words, the Ixy is the interpolation function assigned to the site (x, y). Now consider

the 2-D arrangement of these interpolator functions assigned to their corresponding

sites within the intensity-domain MRF as depicted in figure 1.1(b). In simple words,

in our proposed algorithm (which will be well treated in the following chapters), we

try to find this 2-D arrangement of interpolator functions or simply interpolators.

Assuming an MRF over the pixel intensity values as discussed before, implies that

the value of a pixel at site (x, y) i.e., zxy is highly correlated with its neighbors. In

other words, having its neighbors in hand is like having the entire MRF (in accord

with the order of the MRF). Therefore we define a reasonable potential function that

considers the differences between the zxy and a few of its neighbors.

Equivalently, we propose that the probability of the Ixy given all the other Ixy

where (x, y) 6= (x′, y′) is highly dependent to its neighboring interpolators given.

This implies that if Ixy is well suited for interpolating the pixel at (x, y), there is a

high chance that it works well for some of its neighbors as well. In other words, we

assume an MRF over the 2-D interpolator array with the following property:

4
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Pr
(
Ixy|Ix′y′ , (xy) 6= (x′y′)

)
= Pr

(
Ixy|Ix′y′ , Ixy ∈ Nxy

)
. (1.1)

This way the MRF of gray-level intensity values, z, have been associated with an

MRF of interpolation functions or interpolators, I. Consider the set of real-values for

a pixel intensity. This set is an infinite set of values for zxy. For a gray-scaled zxy,

this number is decreased to 256 which is still a large number. Now consider the set

of candidate interpolators in the new interpolator-domain MRF, Γ. Clearly this set

is also infinite. Therefore one immediate question is that what is the advantage to

the new MRF model explained? Note that, theoretically there are infinite number

of interpolators that could be defined for a pixel, however, as we will validate in the

next chapter, a small set of directional interpolators can greatly be utilized to capture

the local characteristics of a neighborhood around a pixel. Assuming that the size

of Γ can be maintained sufficiently small using simple directional interpolators, there

would be a huge advantage to this interpolator-domain-defined MRF. Moreover in

the next chapter, we will introduce a powerful choice for the potential function of the

MRF as well. We will show through experiments that this potential function (which

we will refer to as the cost function or simply local cost) plays a key role in accurately

measuring the correctness of using each of the interpolators in a local pixel position.

In brief, what we do is that we switch from pixel domain to interpolator domain.

In the interpolator domain, we solve for the optimum interpolator MRF then having

MRF of interpolators, I, we just use Ixy at (x, y) to get the estimated gray value. The

parameters of the interpolators MRF are approximated using the gray-level intensity

field in hand. In case of interpolation applications such as video de-interlacing or

5
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image up-scaling, to due lost data in intensity-domain MRF, this stage is more vul-

nerable to errors.

The final step is to estimate the MRF of interpolators. In the literature, they

have used a number of optimization techniques to find the optimum MRF in ac-

cord with the objective function designed for specific applications. However, these

techniques such as simulated annealing (SA), genetic algorithms (GA) and other evo-

lutionary approaches have two major drawbacks. They are usually heavy in terms

of time-complexity as they usually involve too many iterations. They also contain

parameters (temperature in SA or mutation and crossover rates in GA etc.) that can

hardly be adjusted to be consistent for different sequences and still images. In fact

two-dimensional property of an MRF makes the global optimization usually infeasible

with reasonable complexities. The structure of the total energy or cost of the MRF (as

will be discussed in the next chapter) is recursive in terms of pixel positions, however

the two-dimensional and casual nature of the MRF makes it practically impossible to

solve the MRF estimation problem directly using recursion.

We proposed that the interpolators MRF be partitioned to neighboring one-on-

top-of-the-other one-dimensional row-aligned MRFs. There are a few points about

this approach to MRF estimation as follows:

1. The solution for the entire frame (interpolator MRF) is obtained via estimating

the 1-D MRF of interpolators for each row.

2. 1-D MRF is also called Markov-chain.

3. Clearly the combination of optimal Markov chains is not necessarily the optimal

MRF. However, as will be validated through experiments we get great objective

and subjective results.

6
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4. For estimation of the 1-D MRFs or Markov chains we propose a MAP-based

formulation which then will be solved efficiently using the Viterbi algorithm

(dynamic programming).

5. The fact mentioned in item (1) makes a lot of sense. This is because we use

interpolators that are imposed in a neighborhood (2-D/3-D) so there will not

be much advantage in two-dimensional regularization.

6. Note that (5) would not be much reasonable if we had not proposed to use the

interpolator-domain MRF instead of intensity-domain MRF.

7. The Viterbi algorithm is a linear time algorithm that globally optimizes the

solution.

8. One another advantage to using one-dimensional MRFs is that the entire scheme

is highly potent of being implemented using parallel-implementation-supported

devices such as graphical processing units (GPU) or field programmable gate

arrays (FPGA).

9. The last but one of the most important contributions of our algorithm is that we

further improve it by modifying our strategy toward sequence estimation prob-

lem. The general idea of this improvement and the details of the mathematical

derivations will be discussed in the next chapter.

Most of the material of this thesis with some modifications and improvements, are

adopted from our papers [34], [32] and [33]. In short we consider the following as our

contributions:

7
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• We have used 1-D MRF model (Markov chain) so that the algorithm can po-

tentially exploit parallel processing.

• We have used a set of interpolators to define an interpolator-domain MRF

instead of intensity-domain MRF. Consequently, both the states and energy

function (or equivalently the probability) of the MRF can be defined more

efficiently.

• One major contribution is that for the first time a detailed MAP-based formu-

lation is proposed in aforementioned interpolator-domain MRF. Then Viterbi

algorithm is utilized for estimating the MRF.

• Moreover we use a novel adaptive cost function to estimate the MRF parameters

and probabilities. This adaptive cost (non-local cost) plays a key role in our

algorithm and is a major contribution of the proposed algorithm.

• One of the most important contributions is that we propose a superior MAP-

based formulation which obtains better results than the early version, at the

cost of more computational complexity.

• We solve the latter formulation using Forward-Backward algorithm and prove

the superiority of both the latter and early version of the algorithm to many

state-of-the-art competing algorithms.

• We finally propose a method for integrating motion compensation (optical flow

computation) into the algorithm. The proposed motion compensated versions

of the algorithm have better objective and subjective results at the cost of more

computational complexity.

8



Chapter 2

Video De-interlacing

2.1 Introduction and Background

Interlacing is an efficient way of reducing the required bandwidth for the transmis-

sion of the video signal. This method of subsampling the video data was originally

designed and developed for analogue TV and is still widely used in modern television

systems. Nowadays, as progressive-scan devices are widely used, one has to apply

techniques to convert the interlaced signal into progressive format in order to display

it on an all-progressive-scan device. These techniques, known as de-interlacing, have

been extensively developed over the last decade. Fig. 2.2 better illustrates typical

interlaced and progressive formats.

Generally de-interlacing techniques use intra and/or inter field data to estimate

the missing pixels within a field. Edge-directional algorithms such as those proposed

in [9], [26], [17], [14], [15], [27], [36], [28], try to find the direction with the high-

est correlation to interpolate along that direction. In [26] authors add estimation

of the edge patterns to simple directional intensity differences used in conventional

9
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edge-directional averaging methods to finally get more accurate results. In [17], au-

thors improve the conventional edge-dependent interpolation methods by utilizing

block-based motion detection. They use direction field and sum of absolute values to

estimate an interpolation direction. Motion adaptive algorithms like those developed

in [18, 22, 30, 37], examine different parts of a frame to determine whether or not

the amount of motion is considerable. The appropriate method of spatial and/or

temporal interpolation is then applied to get the best result.

(a)

(b)

Figure 2.2: De-interlacing is the process of converting an interlaced format video to progressive. This requires
interpolating the missing lines in an interlaced format. (a) An interlaced format. (b) A progressive format.

Motion-compensated (MC) de-interlacing algorithms such as [20] ,[4], [11], [25],

[19], [7], [5], [10], [8], [13], [6], are another popular group of techniques widely used

for the purpose of de-interlacing. [4] and [13] make use of motion estimation and

10
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compensation. They generally use motion reliability measures to examine the valid-

ity of estimated motion and switch to spatial intra-field interpolation wherever the

estimated motion information is considered unreliable. [6] proposed a de-interlacing

method based on modular neural networks. Their algorithm uses the field absolute

difference as a measure for amount of motion. Then different neural networks are used

selectively. Again, an intra/inter-mode switching is used to overcome the problem of

inaccurate estimated motion. Generally, the reliability of motion-compensated algo-

rithms is highly dependent on the correctness of the estimated motion information.

In case of de-interlacing problem, motion information has to be extracted from the

fields and not the complete frames. Thus, the reliability of the motion information

and consequently the performance consistency for these algorithms are decreased to

some extent. That is why many MC algorithms proposed, examine the correctness

of the estimated motion information before making any decision on whether to apply

motion compensation interpolation or switch to some other spatial and/or tempo-

ral methods of interpolation. [8] proposed an MRF-based de-interlacing method in

which a set of four different interpolation methods were defined as well as a cost for

applying an interpolator at a missing pixel. They assumed that a penalty term or

a regularization term applies to the total cost of interpolators applied to different

missing positions within the interlaced frame. Considering this regularization terms,

then they minimize the total cost by dynamic programming.

2.2 A New Approach to Video De-interlacing

We define a set of candidate interpolators and then select an appropriate sequence

of interpolators to associate them to the corresponding sequence of missing pixels
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in the spirit of [8], however we make some major contributions. We define for the

first time a novel non-local cost function that utilizes the structural similarity and

intensity differences together. Then we assume a Markov chain model over the inter-

polator sequence and translate the interpolator sequence estimation to a trellis-based

optimization problem in which we find the optimum sequence of interpolators corre-

sponding to the sequence of missing pixels. We propose a new MAP-based formulation

that can be solved using reasonable assumptions and with the help of trellis diagrams

and Viterbi algorithm. We further propose that the de-interlacing problem, instead

of being interpreted as the problem of finding the optimum sequence of interpolators

as [8], can be revisited as successive estimations of best interpolator for each position

for the entire missing pixels of a row. This approach as we will see, improves the

early version of our formulation solved using Viterbi algorithm. Unlike [8] in which

the authors set the parameters of their model empirically, we incorporate a novel

learning process along with a new cost function that we define for our algorithm so

that the parameters of our Markov chain model are extracted in a novel way from the

given data i.e., the original pixels. Therefore, our algorithm does not suffer from the

inconsistency of the empirically-tuned parameters and benefits from a parameter-free

implementation. We obtain better results than many well-known algorithms proposed

in this field.

2.3 Theory and Algorithm

In this article, we will use x , y and t to designate the vertical, horizontal and tem-

poral positions respectively. Any pixel position within a frame is denoted by the

vector ~r = (x, y). Also we use ft(~r) or ft(x, y) to show the video signal intensity at

12
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pixel position ~r at time t. We designate the height and width of a typical complete

(progressive) frame by h and w respectively.

Consider for each missing pixel position at a frame, we have an ensemble of candi-

date interpolation methods or simply interpolators. The ultimate goal is to find the

fittest sequence of interpolaters from this set for the purpose of interpolating the cor-

responding sequence of missing pixels. Candidate interpolators are considered states

of a Markov chain. Therefore three remaining steps are formulating the interpolator

sequence estimation problem, deriving approximate transition matrix (TM) and fi-

nally suggesting an efficient method of solving the estimation problem formulated in

the first step. Regarding the formulation step, we propose two different approaches

toward sequence estimation which results in two different formulations of the same

problem. We will discuss that one of these methods is computationally less intensive

with roughly the same objective and subjective results.

Let us denote the set of states for the Markov chain by S = {Ii}|S|i=1 where Ii is

the ith interpolator and |S| is the cardinality of the set S. For each missing pixel we

can define a set of neighboring pixels or simply a neighborhood consisting of some of

neighboring original pixels of that missing pixel. We refer to this neighborhood as

N(~r) = { ~nj}|N |j=1.

2.3.1 Candidate Interpolators : Markov Chain States

To further elaborate on the Markov chain model, here we define the states or interpo-

lators. Clearly one can define any desirable set of interpolators. The limiting factor

on the cardinality of S is the time budget which depends primarily on the application.

Despite our freedom to choose any set of interpolators, a choice that can handle any

13



M.A.Sc. Thesis - Farhang Vedadi McMaster - Electrical Engineering

characteristics of a typical pixel in an image is preferred. One choice for the set S

can be the ensemble of some simple temporal and spatial interpolators. In this thesis

we make use of the following temporal interpolators:

I1(~r) =
1

2
·
(
ft−1(~r) + ft+1(~r)

)
(2.2)

I2(~r) =
1

2
·
(
ft−1(~r + ~uy) + ft+1(~r − ~uy)

)
I3(~r) =

1

2
·
(
ft−1(~r − ~uy) + ft+1(~r + ~uy)

)
I4(~r) =

1

2
·
(
ft(~r − ~ux) + ft(~r + ~ux)

)
I5(~r) =

1

2
·
(
ft(~r − ~uy + ~ux) + ft(~r + ~uy − ~ux)

)
I6(~r) =

1

2
·
(
ft(~r − ~uy − ~ux) + ft(~r + ~uy + ~ux)

)
.

~ux and ~uy are unit vectors in vertical and horizontal directions, respectively. As we

will see in the following sections, it is important in our algorithm to measure the

fitness of an interpolator in a missing pixel position. Many conventional edge-guided

algorithms seek to find the fitness of a directional interpolator by simply computing

the pixel intensity differences along that direction. Despite that there are many

different ways to find the direction along which the correlation is maximum, most

of these technics finally choose one of the directional interpolators and impose it

immediately at that position. Then they move on to the next missing pixel position

to repeat this procedure. However as mentioned earlier, consider a Markov chain

over the sequence of interpolators corresponding to the sequence of missing pixels of

a row. Consequently, we do not make a hard decision at each missing pixel. Instead

we estimate the entire sequence of interpolators which is best suitable to be used for
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a entire missing row, given the neighboring original pixels. For this, we try to find a

reasonable way to approximate the cost of an interpolator (state) in the set S at a

missing pixel position. If we have the value of a pixel, then it makes a lot of sense

to claim that the difference between the original pixel value and the interpolated

value is a measure of how well an interpolator is in that position. Consider the

missing pixels in an interlaced frame. For this missing positions we do not have the

original pixels, therefore, we can not directly compute the cost of a member of the

set S at that missing pixel. To overcome this, we define the low resolution version

of it SLR(~r) = {ILRi
}|S|i=1. SLR(~r). In section 2.3.3 we will discuss why defining low-

resolution version of the aforementioned interpolators can help us to define a measure

how well an interpolator performs given a neighborhood of original pixels around a

missing of interest. SLR(~r) contains the dilated versions of the states (interpolators)

in the set S by a factor of two in each direction:

ILR1(~r) =
1

2
·
(
ft−2(~r) + ft+2(~r)

)
(2.3)

ILR2(~r) =
1

2
·
(
ft−2(~r + 2~uy) + ft+2(~r − 2~uy)

)
ILR3(~r) =

1

2
·
(
ft−2(~r − 2~uy) + ft+2(~r + 2~uy)

)
ILR4(~r) =

1

2
·
(
ft(~r − 2~ux) + ft(~r + 2~ux)

)
ILR5(~r) =

1

2
·
(
ft(~r − 2~uy + 2~ux) + ft(~r + 2~uy − 2~ux)

)
ILR6(~r) =

1

2
·
(
ft(~r − 2~uy − 2~ux) + ft(~r + 2~uy + 2~ux)

)
.

To better illustrate the aforementioned interpolators and their low-resolution ver-

sions, Fig. 2.3 shows the pixel used by (a) I1, I2 and I3 (b) ILR1 , ILR2 and ILR3 .
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ft-2

ft-1

ft

ft+2

ft+2

(a)

ft-2

ft-1

ft

ft+2

ft+2

(b)

Figure 2.3: We use three different temporal interpolators. (a) Pixels used by I1, I2 and I3 and (b) their
dilated/low-resolution versions : ILR1

, ILR2
and ILR3

to interpolate a typical pixel.

Also Fig. 2.4 illustrates the pixel used by (a) I1, I2 and I3 (b) ILR1 , ILR2 and

ILR3 to interpolate a typical pixel of interest. In the following sections we will explain

the importance of the set SLR as this set plays a key role when we define the cost of

applying a sequence of interpolators to the corresponding sequence of missing pixel

positions.

(a) (b)

Figure 2.4: We use three different spatial interpolators. (a) Pixels used by I4, I5 and I6 and (b) their dilated/low-
resolution versions : ILR4

, ILR5
and ILR6

to interpolate a typical pixel.
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2.3.2 Formulation

Consider that any interpolator at each missing pixel position is a state for the Markov

chain model discussed before. Then the de-interlacing problem is translated to the

problem of estimating the best sequence of states given the original pixels of the frame.

To better elaborate on estimation of the sequence of the interpolators corresponding

to a sequence of missing pixels, we first consider how to scan the missing pixels of a

frame. We process missing rows once at a time to estimate its corresponding sequence

of interpolators. The result is a sequence of interpolators I of length w corresponding

to a missing row. In our algorithm we scan missing pixels of a row from left to right,

estimate the sequence of interpolators and finally interpolate the missing pixels in

accord with the estimated sequence of interpolators. This procedure is repeated for

all missing rows within a frame. Clearly, these sequence estimations can be done

in parallel, Therefore, here we will concentrate on the formulation for one of these

sequence estimation.

We previously defined for each missing pixel a so-called neighborhood consisting of

some original pixels around a missing pixel of interest. We denote by N the sequence

of these neighborhoods corresponding to the sequence of missing pixels of a missing

row. We make use of subscripts and superscripts to show the beginning and end of

the sequences. For instance N
y2
y1

is the sequence of neighborhoods from yth1 to yth2

position in a row i.e., {N(y1), N(y1 + 1), ..., N(y2)}. Also a single subscript shows the

value of a sequence at a specific position, hence, Ny1 is the yth1 value of the sequence

N. Now let us focus on the estimation of the sequence for one typical missing row.

Consider N which is the sequence of neighborhoods of the pixels in the missing row

as the given data. Also consider that the to-be-estimated sequence of interpolators
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corresponding to the positions in this row i.e., I. In our algorithm we consider that the

best estimation of the sequence of interpolators for the missing pixels of a row, Iopt, is

the sequence of interpolators I which maximizes the probability Pr
(
I|N
)

consequently

Pr
(
N|I
)
· Pr
(
I
)

or:

Iopt = argmax
I∈Sw

{
Pr
(
I|N
)}

= argmax
I∈Sw

{
Pr
(
N|I
)
· Pr
(
I
)}

(2.4)

The next step is to rearrange the above equation to a proper form for solving the

optimization problem with the help of some reasonable assumptions. Assuming first

order Markov model for the interpolators and using Bay’s rule we can show that:

Pr
(
I
)

= Pr
(
I0

)
·
w∏
y=1

Pr(Iy|Iy−1). (2.5)

Here we assume that successive observations of the neighborhoods are independent.

Therefore, the conditional probabilities are independent as well and we can simplify

the formulation to the following form:

Pr
(
N|I
)

=
w∏
y=1

Pr
(
Ny|Iy

)
. (2.6)

We substitute (2.5) and (2.6) in (2.4). Then for Pr
(
N|I
)
· Pr
(
I
)

we have:

Pr
(
N|I
)
· Pr
(
I
)

=
w∏
y=1

Pr
(
Iy|Iy−1

)
·
w∏
y=1

Pr
(
Ny|Iy

)
. (2.7)

We have to choose the I0 arbitrarily since it does not have any corresponding actual

pixel. We arbitrarily set I0 = I1. Taking the logarithm on both sides of (2.7) we have:
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log

(
Pr
(
N|I
)
· Pr
(
I
))

=
w∑
y=1

log

(
Pr
(
Iy|Iy−1

))
+

w∑
y=1

log

(
Pr
(
Ny|Iy

))
. (2.8)

We Multiply both sides of (2.8) by −1 and rearrange (2.8) to the following:

− log

(
Pr
(
N|I
)
· Pr
(
I
))

=
w∑
y=1

log

(
1

Pr
(
Iy|Iy−1

))+
w∑
y=1

log

(
1

Pr
(
Ny|Iy

)). (2.9)

Clearly instead of maximizing (2.4) we can equivalently minimize (2.9):

Iopt = argmin
I∈Sw

{
w∑
y=1

log

(
1

Pr
(
Iy|Iy−1

))+
w∑
y=1

log

(
1

Pr
(
Ny|Iy

))}. (2.10)

The total number of possible sequences is |S|w. This number for the case of

w = 352 and |S| = 6 (if the format of the video is CIF and we use the aforemen-

tioned interpolators as Markov chain states) is approximately 8×10273! Therefore we

need utilize an efficient optimization method to find the most probable sequence of

interpolators which ensures both a reasonable timing complexity and global optimum

solution. The structure of the summation in (2.10) over horizontal pixel positions

could be properly utilized to perform the optimization much more efficiently. Con-

sider change of interpolator between two adjacent missing pixels (state transition in

aforementioned Markov-chain model) as a transition between two consecutive layers

of a trellis having members of the set S on each of its layers as shown in Fig. 2.5. This

trellis is expanded over an entire missing row. Consider the interpolator transition
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between two adjacent missing pixels in Fig. 2.5. We choose the branch and state

metrics to be first and second logarithmic terms in (2.10) respectively. According

to (2.10), minimum-weight path through the trellis corresponds to the best estima-

tion of the sequence of the interpolators associated with the corresponding missing

row. The problem of finding the minimum-weight path can be solved using Viterbi

algorithm (Viterbi path). Among edges (interpolator transitions) converging to a

same state (interpolator) at each layer of the trellis (pixel position), the one with less

accumulated weight will survive and new accumulated weight is saved only for that

survival path. Thus for each layer of the trellis we have to save only |S| accumulated

weights as we have only |S| survival paths. When reached last layer of the trellis

(in our implementation last layer corresponds to the last horizontal position within a

missing row of a frame) simply we backtrack from the least-accumulated-weight state

at the last layer through the trellis to the first layer via survival path for each state at

each layer. Since for each state (interpolator) there exists one and only one survival

path that we can move backward within the trellis toward the first layer, this path is

unique and corresponds to the optimal sequence of interpolators. Once the optimal

sequence of interpolators is estimated, we simply apply it to the entire corresponding

missing row. This trellis-represented algorithm proposed shows a great performance

with a variety of test sequences.

At this point, we are left to approximate the probabilities in (2.10) i.e., Pr
(
Iy|Iy−1

)
and Pr

(
Ny|Iy

)
. The first term is the probability of transition from one state of the

Markov model we discussed earlier to another one. Approximating these probabilities

is exactly equivalent to finding an approximation for the transition matrix (TM) of

the Markov model we assumed on the sequence of interpolator. The next probability
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I1

y=0 y=1 y=2 y=w-2 y=w-1 y=w

I2

I3

I4

N1 N2 Nw-1 Nw

Figure 2.5: A typical trellis expanded over horizontal direction of a missing row with sample states of I1 , I2 ,I3
and I4. The estimated sequences is I2I1...I1I2I1 from y = 1 to y = w.

is the probability of the neighborhood around the missing pixel position given that

we impose an specific member of the set S at the missing position. Our strategy for

this part of the problem is discussed extensively in the following section.

2.3.3 Approximating the Markov Model Parameters

The remaining task is finding approximations for probabilities in (2.10) i.e., Pr
(
Iy|Iy−1

)
and Pr

(
Ny|Iy

)
. For notation simplicity let us assume here that Iy = Ii, Iy−1 = Ij and

Ny = N . So we focus on deriving approximations for Pr
(
Ii|Ij

)
and Pr

(
Ii|N

)
.

Let us briefly discuss our strategy for approximating these probabilities. We start

by focusing on approximating the cost of applying of a single interpolator at a miss-

ing pixel position. For simplicity consider one of the members of the set S like I5.

When we like to define a cost for an edge-guided interpolator such as I5, one can

immediately think of taking the difference between the original pixel value and the

interpolation result with I5 as a reasonable cost defined for I5 at that position. In

case of de-interlacing, the original value of the missing pixel is not known clearly.
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Therefore, the aforementioned difference can not be used. As this difference can not

be computed directly, one may think of finding a close approximation by computing

this difference for an original neighboring pixel (which we have the actual value) in-

stead of the to-be-interpolated pixel itself. Approximating the cost of, let us say I5,

for a neighboring pixel instead of the missing pixel of interest itself is based on the

assumption that if I5 works well at the to-be-interpolated pixel, it makes a lot of sense

that it works well at a neighboring pixel of the missing pixel as well. However, still

we can not compute directly the suggested cost at the neighboring pixel. The reason

is that we have original value of the neighboring pixel, the members of the set S can

not be applied at neighboring pixels as the interpolation value can not be computed.

This is where the set SLR comes in. We propose the low resolution version of the set

S, SLR as in 2.3. The superiority of the set SLR is that it uses dilated version of the

members of the S.

The next step is to define the exact expression for the cost of an interpolator say

I5. Consider the low resolution version of it, ILR5 . As explained in previous para-

graph, we can apply the ILR5 at a neighboring pixel of the missing pixel. If the missing

pixel position is ~r then this neighbor is clearly a member of N(~r). As suggested the

difference between the this member of N(~r) and the interpolation value which results

from applying ILR5 at this neighboring position is then considered. Now our strategy

is to find the similar differences (costs) for other members of the N(~r) and take the

average difference as the cost of applying I5 at ~r. Mathematically we define this cost

for Ii of the set S as:

Ct(~r, ILRi
) =

|N(~r)|∑
j=1

wj ‖f(~nj)− ILRi
(~nj)‖`2 (2.11)
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Figure 2.6: ILR5
is applied to each of the six members of N(~r). The resulted differences will be used in (2.11)

with different weights to determine the cost of I5.

where `2 means `2-norm, ~nj ∈ N(~r) and wj is the weight of the cost of interpolator

ILRi
at the position of the neighboring original pixel ~nj which belongs to N(~r). Fig.

2.6 better illustrates how we apply the low resolution version of an interpolator to

the members of N for I5 and an example neighborhood of size six around a missing

pixel of interest.

Another question about the cost defined in (2.11) is the weights included for dif-

ferent neighbors. Note that our previous assumptions imply that if say ILR5 performs

well at missing pixel, it probably performs well on a neighboring pixel as well. The

question is that if we consider two different neighbors in N(~r), does ILR5 perform at

one of them as great as it perform at the location of the other one. The answer is

clearly negative, however if ILR5 performs not the same in two different neighbors,

we have to consider a mechanism to distinguish between these two neighbors in cost

defined in (2.11). Here is where the weights wj come in to overcome this problem.

Consequently we propose to determine the weights for each neighbor according to

the similarity of a patch around it to the same size patch around the missing pixel.
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The higher this similarity, the larger is the corresponding weight for that neighbor in

(2.11).

To clarify on how we define the weights in (2.11), let us consider a single original

neighbor of the current missing pixel located at ~r i.e., ~nj. We consider a patch around

it as P (~nj). So P (~nj) is neighborhood around ~nj where ~nj ∈ N(~r). Also, consider the

patch of the same size around the missing pixel position ~r i.e, P (~r). The structural

dissimilarity between P (~r) and P (~nj) or dissim {P (~r), P (~nj)} is defined as:

dissim {P (~r), P (~nj)} = ‖P (~r)− P (~nj)‖`2 . (2.12)

Then we define wj for ~nj as:

wj =
1

K
· exp

{
1

2σ2
(−dissim {P (~r), P (~nj}))

}
(2.13)

where K is the normalizing factor i.e.,
∑|N |

j=1wj. Also note that to calculate wj we

need to temporarily fill each of the patches for the missing pixels which we do this by

a simple edge-directional line averaging. Now we assume that the cost of applying Ii

at a missing pixel position is approximated by the average cost resulted from (2.11).

Thus for Ct(~r, Ii) we have:

Ct(~r, Ii) ≈ Ct(~r, ILRi
) (2.14)

Equation (2.11) and (2.14) suggest that the cost of applying an interpolator Ii is the

average cost of applying ILRi
on a neighborhood around the missing pixel. Ct(~r, Ii)

measures the cost of applying interpolator Ii at ~r given the neighborhood N(~r). So we

propose that the inverse of this cost is a measure of how probable the neighborhood
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N(~r) is when Ii is applied at position ~r. In other words we define:

Pr(N(~r)|Ii) = min

{
1

Ct(~r, Ii)
, 1

}
. (2.15)

So far we have derived approximations for the probability of the neighborhoods

given we impose a specific interpolator in the corresponding missing pixel position.

Next step, we calculate transition probabilities Pr(Ii|Ij). For this aim, consider that

we down-sample the current, next and previous interlaced frames of size h
2
× w in

horizontal direction by a factor of two to obtain the low resolution progressive frame

of size h
2
× w

2
. Then for all pixels in this set we calculate the Ct(~r, Ii) and choose the

best interpolation I∗ as the one with the minimum cost or:

I∗ = argmin
1≤i≤|S|

{Ct(~r, Ii)} (2.16)

The result is a/an state/interpolator matrix of size half of the frame size in each

direction (h
2
× w

2
) with elements from the set S. Based on this state matrix we

form the so-called transition matrix or TM and compute the transition probabilities

Pr(Ii|Ij) as:

Pr(Ii|Ij) = TM(i, j) =
num(Ij → Ii)

num(Ij)
(2.17)

where num(X) is the number of occurrence of a state (interpolator) X and num(X →

Y ) is the number of transitions from interpolator X to interpolator Y respectively

in the state/interpolator matrix. Note that by Pr(Ii|Ij) we mean the probability of

interpolator Ii occurring left to the interpolator Ij in the state matrix mentioned above

when scanning left to right. Clearly one may define a scanning scheme other than
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suggested above. However, note that the definition of the transition matrix should

be modified then to correspond to the scanning scheme defined. Below illustrates the

state matrix for a generic sequence of size w × h = 14 × 10 and the corresponding

transition matrix resulted from (2.17):

A =



I1 I1 I4 I6 I3 I5 I1

I3 I3 I1 I5 I5 I1 I6

I2 I1 I1 I3 I4 I4 I3

I6 I6 I5 I1 I5 I2 I5

I6 I6 I3 I6 I2 I8 I1


TM =



0.22 0.33 0.17 0.25 0.50 0.00

0.00 0.00 0.00 0.00 0.17 0.14

0.11 0.00 0.17 0.25 0.00 0.29

0.11 0.33 0.17 0.00 0.00 0.00

0.22 0.33 0.17 0.00 0.17 0.14

0.11 0.00 0.17 0.25 0.00 0.29


.

Now that we have approximations of the probabilities in (2.10) as suggested by (2.15)

and (2.17), we rearrange (2.10) in the form of the following:

Iopt =

argmin
I∈SW

W∑
y=1

log

(
1

TM(l, k)

)
+

W∑
y=1

log

 1

min
{

1
Ct(~r,Iy)

, 1
}
 . (2.18)

where l = π(Iy−1) and k = π(Iy) and π is a simple index assignment over the members

of the set S as:
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π : S → {1, 2, ..., |S|}, π(Ii) = i (2.19)

.

Note that (2.18) is the final arrangement of the proposed formulation. In the

following section we will study some of both visual and objective experimental results

from this trellis-represented algorithm.

So far we revisited the de-interlacing as the problem of assigning the best sequence

of interpolators to the corresponding sequence of missing pixels given the sequence of

neighborhoods. Based on these sequences we formulated our solution to estimate the

entire sequence of interpolators at once. An alternative formulation is to approach

the problem as the problem of maximizing the probability of the interpolators at

each position (layer of the trellis) given the sequence of the neighborhoods. Other

words, with the same observations of the neighborhoods as previous formulation, we

consecutively estimate the best interpolator at each layer which finally leads to the

sequence of best estimations. In other words we are interested this time to look at the

problem of reconstructing a missing line by obtaining a sequence of best estimations

instead of estimation of the best sequence of interpolators. This will be the main

topic of discussion in the following section.

2.3.4 Reformulation of MAP-Based Estimation Problem

In the previous section we provided a maximum a posteriori sequence estimation that

was based on the estimation of the best sequence at once given the original pixels

(sequence of neighborhood). Now consider this different approach toward estimating
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the entire sequence. Instead of estimating the total sequence at once, we estimate

the best state (interpolator) at a specific layer given the original pixels and then we

consecutively repeat this for all other positions of the row from left to right to obtain

a sequence of estimated interpolators. Other words, we would like to change our

approach from estimation of the best sequence of states to obtaining the sequence of

best-state-estimations.

We associate with each interpolator or state on each layer of the trellis the prob-

ability λm(y) = Pr
(
π(Iy) = m,N

w

1

)
which means the probability of interpolator at

yth position of the row being the mth member of set of interpolators S, given the

sequence of neighborhoods of that row i.e., N
w

1 . Our goal is to compute these a pos-

teriori probabilities i.e., the sequence λ. Then clearly the best estimation of Iy is

the one which maximizes the above λm(y). We then redo this process for all other

layers of the trellis i.e., ys to compute the best interpolator at each missing position

and consequently the entire missing row. Therefore, the optimal estimation of the

sequence of interpolators for a missing row is:

Iopt =

{
π−1

{
argmax
1≤m≤|s|

{λm(y)}

}}w

y=1

(2.20)

where π−1 is inverse of the index assignment in (2.19). Now we formulate the problem

in a way to adopt the Forward-Backward algorithm for processing the trellis and

computing the λm(y) for all values of y andm. We define αm(y) (forward probability),

βm(y) (backward probability) and γmn(y) (transition probability) as:
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αm(y) = Pr
(
π(Iy) = m,N

y

1

)
(2.21)

βm(y) = Pr
(
N
w

y+1|π(Iy) = m
)

γmn(y) = Pr
(
π(Iy) = m,Ny|π(Iy−1) = n

)
where Ny is the neighborhood of the missing pixel at position y of the missing row.

It can be shown that for λm(y) we have:

λm(y) = Pr
(
π(Iy) = m,N

w

1

)
(2.22)

= Pr
(
π(Iy) = m,N

y

1

)
· Pr
(
N
w

y+1|π(Iy) = m,N
y

1

)
= αm(y) · Pr

(
N
w

y+1|π(Iy) = m
)

= αm(y) · βm(y)

where the third equality follows from the Markov property that if the state (inter-

polator) at position y, π(Iy), is known, observations after position y do not depend

on N
y

1. So we only have to find expressions for αm(y), βm(y) and γmn(y). First for

αm(y) in terms of γmn(y) we can show that:
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αm(y) = Pr
(
π(Iy) = m,N

y

1

)
(2.23)

=

|S|∑
n=1

Pr
(
π(Iy−1) = n, π(Iy) = m,N

y

1

)
=

|S|∑
n=1

Pr
(
π(Iy−1) = n,N

y−1

1

)
· Pr
(
π(Iy) = m,Ny|π(Iy−1) = n,N

y−1

1

)
=

|S|∑
n=1

Pr
(
π(Iy−1) = n,N

y−1

1

)
· Pr
(
π(Iy) = m,Ny|π(Iy−1) = n

)
=

|S|∑
n=1

αn(y − 1) · γnm(y).

Similarly for βm(y) we can show that in can be recursively computed in terms of

γmn(y) as the following:

βm(y) = Pr
(
N
w

y+1, π(Iy) = m
)

(2.24)

=

|S|∑
n=1

Pr
(
π(Iy+1) = n,N

w

y+1|π(Iy) = m
)

=

|S|∑
n=1

Pr
(
π(Iy+1) = n,Ny+1|π(Iy) = m

)
· Pr
(
N
w

y+2, π(Iy+1) = n, π(Iy) = m,Ny+1

)
=

|S|∑
n=1

Pr
(
π(Iy+1) = n,Ny+1|π(Iy) = m

)
· Pr
(
N
w

y+2, π(Iy+1) = n
)

=

|S|∑
n=1

βn(y + 1) · γmn(y + 1).

We need to impose initial conditions for the above recursive expressions for αm(y)

and βm(y). We choose the following initial conditions arbitrarily as they do not have
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any actual pixel correspondence:

αm(0) = βm(w) =

 1 if m = 0

0 if m 6= 0.
(2.25)

Note that y = 0 does not correspond to any actual position and here we have chosen

the αm(0) arbitrarily. For γmn(y) we can show that:

γmn(y) = Pr
(
π(Iy) = m,Ny|π(Iy−1) = n

)
(2.26)

= Pr
(
π(Iy) = m|π(Iy−1) = n

)
· Pr
(
Ny|π(Iy) = m,π(Iy−1) = n

)
= Pr

(
π(Iy) = m|π(Iy−1) = n

)
· Pr
(
Ny|π(Iy) = m

)
where in the last equality we made use of the assumption we made in (2.6) for in-

dependent observation of neighborhoods. Now based on (2.15) and (2.17) we can

rewrite γmn(y) as:

γmn(y) = TM(m,n) ·min

{
1

C(~r, Iy)
, 1

}
. (2.27)

Note that according to (2.23) and (2.24) the probabilities αm(y) and βm(y) get

smaller as y increases. This may result in underflow when frame size gets larger as in

case of CIF, SD and HD video formats. To overcome this problem we define scaled

probabilities αsca
m (y), βscam (y) and λscam (y) as:
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∀y : αsca
m (y) =

αm(y)

max
1≤m≤|s|

{αm(y)}
(2.28)

∀y : βscam (y) =
βm(y)

max
1≤m≤|s|

{βm(y)}
.

Then for λscam (y) we have:

∀y,m : λscam (y) = αsca
m (y) · βscam (y). (2.29)

The λscam (y) will then be used in (2.20). Therefore, we compute λm(y)s at each missing

pixel position (i.e., level of the trellis) then find the interpolator or m that maximizes

λm(y)s and choose it as the best interpolator in that position. We do this for missing

positions of the row as suggested by (2.20).

So far we have proposed de-interlacing methods based on maximum a posteri-

ori sequence estimation using Forward-Backward algorithm and Viterbi algorithm.

Henceforth, they will be referred to as Proposed FBA and Proposed VA respectively.

Proposed VA considers transitions between each two states at each layer of the trellis.

This leads to a total of |S|2 transitions for each layer of the trellis. Repeating for

all W layers of a row sums up to |S|2W state transitions. This number for the case

of Proposed FBA increases to 2|S|2W as we move through the trellis from left to

right and vice versa. Ignoring multiplicative constants and lower power terms and

assuming the input size of the algorithms, n, to be equal to the size of the row W , the

asymptotic complexities of the Proposed FBA and Proposed VA are linear with re-

spect to n i.e., θ (n). This means that although the Proposed VA and Proposed FBA
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have the same asymptotic time complexities, Proposed FBA happens to have a bigger

running-time. Therefore by Proposed FBA we obtain better performance while we

give up in terms of complexity compared to Proposed VA.

2.4 Experimental Results

(a) Foreman (b) Silent (c) Stefan (d) Container (e) Hall

(f) Flower (g) Coastguard (h) Mother (i) Akiyo (j) Mobile

Figure 2.7: First frame of test sequences

This section includes some objective and subjective results of applying the pro-

posed algorithms on a set of test videos with divers characteristics. The test set

contains sequences with 90 to 300 frames. Fig. 2.7 shows the first frame of the test

sequences. In subsection 2.4.2, we compare the proposed algorithms Proposed FBA

and Proposed VA. In subsection 2.4.3, we compare the proposed algorithms with

some other well-known and/or recently published algorithms.

33



M.A.Sc. Thesis - Farhang Vedadi McMaster - Electrical Engineering

2.4.1 Adaptive Cost Using NLC

As discussed in section 2.3.3, we proposed to determine the weights in (2.11) adap-

tively. The adaptive weights in (2.11) are determined by the similarity of the patches

around the members of the neighborhood of a missing pixel and the patch around

the missing pixel itself. Now to show how important this adaptability could be, in

Fig.2.8 we have illustrated the results of interpolation for part the frame 6 of the Fore-

man sequence with and without this adaptive weights. As can be seen, the adaptive

weights result in sharper edges and more accurate reproduction around the object

boundaries.

(a) Non-Adaptive Weights (b) Adaptive Weights

Figure 2.8: Comparison of the results for a part of the frame 6 of the sequence Foreman (a) without adaptive
weights (simple averaging) and (b) with adaptive weights (using non-local costs).

Also Fig. 2.10 and Fig. 2.9 illustrate the same results for zoom-in parts of the

sequence Stefan (frame 41) and Mobile (frame 30) respectively. Both examples show

how the adaptive cost in (2.11) can appropriately control the contribution of each

of the neighbors of a missing pixel and reduce (exclude) the effect of uncorrelated

neighbors in the final cost. Both demonstrations show a sharper and more accurate
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(a) Non-Adaptive Weights (b) Adaptive Weights

Figure 2.9: Comparison of the results for a part of the frame 30 of the sequence Mobile (a) without adaptive
weights (simple averaging) and (b) with adaptive weights (using non-local costs).

results for the adaptive cost especially around the edges. The mean of squared errors

(MSE) or peak signal to noise ratio (PSNR) are very common in image and video

processing applications to evaluate the performance of an algorithm objectively. Mean

structural similarity (MSSIM) as introduced in [35], is a visual quality measure that we

have used in this article to evaluate the qualitative performance of Proposed FBA and

Proposed VA. Beside better visual performance when using adaptive averaging the

PSNR and SSIM obtained are noticeably higher as well. To get a better performance

evaluation of the adaptive weights for the complete videos and not only specific frames,

in Table 2.1 we have summarized the PSNR and MSSIM obtained for different videos

(first 50 frames) with and without adaptive weights. According to the table using non-

local cost as introduced in section 2.3.3 enhances the performance of the algorithm

on average for the test video sequences shown in Fig. 2.7 in terms of both PSNR and

MSSIM.

2.4.2 Comparison of Proposed FBA and Proposed VA

We have summarized in Table 2.2, the resulting peak signal-to-noise ratio (PSNR) for

Proposed FBA and Proposed VA. As can be seen from the Table, Proposed FBA and
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Table 2.1: PSNR and (MSSIM) results with and without adaptive weights. σ=10, patches are of size 7×7 and
neighborhoods are cubicles of size 3×3×3. The results are for the first 50 frames of each sequence.

Non-Adaptive (Proposed VA) adaptive

PSNR MSSIM PSNR MSSIM

Coastguard 34.32 0.9036 35.05 0.9651

Container 48.04 0.9943 48.04 0.9943

Foreman 38.03 0.9650 38.81 0.9674

Akiyo 48.47 0.9970 48.48 0.9970

Flower 26.05 0.8960 27.87 0.9591

Stefan 27.23 0.8663 28.43 0.9516

Mobile 31.97 0.9653 32.61 0.9812

Silent 42.75 0.9893 43.39 0.9888

Mother 47.23 0.9895 47.17 0.9893

Hall 41.20 0.9799 41.29 0.9800

Average 38.53 0.9546 39.11 0.9774

(a) Non-Adaptive Weights (b) Adaptive Weights

Figure 2.10: Comparison of the results for a part of the frame 41 of the sequence Stefan (a) without adaptive
weights (simple averaging) and (b) with adaptive weights (using non-local costs).

Proposed VA have relatively close objective results. The set of test videos are in com-

mon interchange format (CIF). A quick look at this Table shows that Proposed FBA

has a better performance than Proposed VA. Overall, they have close objective re-

sults. We applied Proposed FBA and Proposed VA to a number of test sequences in

quarter common interchange formats (QCIF). Table 2.2 shows the results for these

sequences. Not surprisingly, the results for Proposed FBA and Proposed VA are close

again.
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Table 2.2: PSNR and Mean Structural Similarity (MSSIM) results for Proposed FBA and Proposed VA. σ=10,
patches are of size 7×7 and neighborhoods are cubicles of size 3×3×3.

PSNR MSSIM

Proposed FBA Proposed VA Proposed FBA Proposed VA

CIF

Coastguard 35.02 34.70 0.9484 0.9532

Container 47.15 47.13 0.9940 0.9940

Foreman 38.19 38.17 0.9652 0.9659

Akiyo 48.92 48.44 0.9968 0.9968

Flower 28.99 28.65 0.9579 0.9560

Stefan 29.85 29.48 0.9465 0.9387

Mobile 32.96 32.58 0.9814 0.9824

Silent 41.22 41.04 0.9847 0.9874

Mother 46.93 46.58 0.9894 0.9893

Hall 41.51 41.42 0.9804 0.9807

QCIF

Coastguard 42.48 42.09 0.9584 0.9432

Container 52.15 52.11 0.9940 0.9940

Foreman 41.68 41.54 0.9659 0.9652

Akiyo 52.70 52.63 0.9968 0.9968

Silent 41.02 40.09 0.9579 0.9560

The mean of squared errors or peak signal to noise ratio are very common in

image and video processing applications to evaluate the performance of an algorithm

objectively. Mean structural similarity (MSSIM) as introduced in [35], is a visual

quality measure that we have used in this article to evaluate the qualitative perfor-

mance of Proposed FBA and Proposed VA. This measure of subjective quality for

Proposed FBA and Proposed VA is computed on the aforementioned test set and in-

cluded in Table 2.2. In accordance with the Table, Proposed FBA and Proposed VA

compete closely to each other on the test sequences in terms of resulting MSSIM.

Fig. 2.11 shows the zoom-in comparison of Proposed FBA and Proposed VA.

The frames selected are 22, 28, 120 and 178 of the Foreman sequence. At different
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(a) Ground Truth (b) Ground Truth (c) Ground Truth (d) Ground Truth

(e) Proposed VA (f) Proposed VA (g) Proposed VA (h) Proposed VA

(i) Proposed FBA (j) Proposed FBA (k) Proposed FBA (l) Proposed FBA

Figure 2.11: Zoom-in comparison of Proposed FBA and Proposed VA for frames 22, 28, 120, 178 of the Foreman
sequence.

frames different areas of the interpolated frame are compared to the original frame as

a ground truth. Comparing the results reveals that Proposed FBA is slightly more

successful to recover the area around the mouth specifically the teeth and lips. Fig.

2.11 parts (j), (k) and (l) shows the results for a part of the frame with intense

and shallow-angle edges. There is not significant difference between Proposed FBA

and Proposed VA in this parts and both suffer from artifacts due to near horizontal

edges.

Generally high frequency elements in vertical direction are challenging for ev-

ery algorithm. Better results can be achieved by adding more directional candidate
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(a) Ground Truth (b) Ground Truth (c) Ground Truth (d) Ground Truth

(e) Proposed VA (f) Proposed VA (g) Proposed VA (h) Proposed VA

(i) Proposed FBA (j) Proposed FBA (k) Proposed FBA (l) Proposed FBA

Figure 2.12: Zoom-in comparison of Proposed FBA and Proposed VA for frame 156 of the Silent sequence.

interpolators to the set of eligible interpolators. Adding more near horizontal in-

terpolators can improve the performance of the algorithm visually at the cost of

more computational complexity. According to Table 2.2, Proposed FBA often out-

performs Proposed VA. As an example, the average PSNR achieved for the Silent

sequences by Proposed FBA is higher than Proposed VA. This is also true about the

mean structural similarity as suggested by Table 2.2. Fig. 2.12 shows the results for

the frame 156 of this sequence. The critical parts of the frame are those shown in

Fig. 2.12. Parts (b) and (c) of Fig. 2.12, compare the results around the fingers
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Table 2.3: PSNR comparison of six algorithms with Proposed FBA and Proposed VA

Method1 Method2 Method3 Method4 Method5 VXP R© Proposed FBA

Coastguard 27.82 28.78 30.87 32.62 34.33 33.57 35.02

Container 27.82 28.60 41.22 44.96 43.06 44.73 47.15

Foreman 33.07 34.01 33.92 34.65 35.81 36.37 38.19

Akiyo 37.84 39.61 45.17 46.95 47.76 47.58 48.92

Flower 21.93 22.23 26.04 27.83 31.70 23.57 28.99

Stefan 26.53 27.56 26.53 27.18 27.24 30.06 29.85

Mobile 23.15 23.76 25.06 28.21 29.36 29.62 32.96

Silent 33.04 34.43 38.76 38.82 41.98 41.27 41.22

Mother 37.95 38.59 41.69 42.37 45.18 46.88 46.93

Hall 37.54 38.42 38.09 38.13 40.34 41.02 41.51

for Proposed FBA and Proposed VA. This part of the frame contains fast and com-

plex motion in different directions. As can be seen, Proposed FBA reconstructs the

boundaries of the fingers with less artifacts when compared to Proposed VA. Parts (e)

and (f) are another example of superiority of Proposed FBA over Proposed VA for

this frame. Clearly Proposed VA can not recover horizontal edges around the elbow

properly, however, Proposed FBA works interestingly well in this part with almost

negligible artifacts. This is also the case in parts (h) and (i) which compares the

area on the body of the woman where the shadow of the moving hand can be seen.

Although the Proposed FBA restores the boundaries of the shadow almost artifact

free, there can be seen some feathering in the results from Proposed VA. In this part

Proposed VA is not as successful as Proposed FBA to utilize spatial interpolators and

using temporal interpolators instead of spatial ones results in feathering around the

shadow of the fingers. Parts (k) and (l) address the same problem on the boundaries

of the hand and other portions of the shadow on the woman’s body.

In this section, we compare the performance of Proposed FBA and Proposed VA
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(a) Ground Truth (b) [17] (c) [4]

(d) VXP R© (e) Proposed FBA (f) Proposed VA

Figure 2.13: Zoom-in Comparison of six different algorithms for Frame 130 of the Foreman.

with some state-of-the-art de-interlacing algorithms proposed in this field. Table 2.3

shows PSNR achieved by Proposed FBA and Proposed VA and six other algorithms

proposed in [26], [17], [4], [13], [6] (named Method1 to Method5 from left to right

in the table) and state-of-the-art commercial de-interlacing algorithm embedded in

VXP R© video processor from Sigma Designs.

2.4.3 Comparison with Other Algorithms

According to Table 2.3, Proposed FBA and Proposed VA achieve higher PSNR than

the other six algorithms. The amount of improvement over the other six algorithms is

considerable for sequences Container, Foreman and Flower. Also note that the PSNR

values reported in Table 2.3 for Proposed FBA and Proposed VA are achieved without
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motion estimation/compensation, however they are comparable to or better than

motion-compensated algorithms which are among the best reported in the literature

or market in recent years.

(a) Ground Truth (b) [17] (c) [4]

(d) VXP R© (e) Proposed FBA (f) Proposed VA

Figure 2.14: Zoom-in Comparison of six different algorithms for Frame 94 of the Flower.

Fig. 2.13 compares the visual results of these algorithms with the Proposed FBA

and Proposed VA for the frame 130 of the Foreman sequence. VXP R© restores the

edges around the shoulder better than [4]. Proposed FBA and Proposed VA restore

the edges even better than VXP R© and almost artifact-free. The superiority of Pro-

posed FBA and Proposed VA in recovering edges is significant at the boundaries of

the lips, nose and mouth specifically teeth. This is also visible at rucks on the cloth.

Fig. 2.14 is another demonstration of the proposed algorithms in comparison

with the competitors. In this example, the great performance of Proposed FBA and

42



M.A.Sc. Thesis - Farhang Vedadi McMaster - Electrical Engineering

Proposed VA in estimating the edges and fine details is clear. The results of Pro-

posed FBA and Proposed VA are almost artifact-free even in highly detailed portions

of the frame. Note that we have included only three spatial directional interpolators in

the set S, however, the algorithm based on estimating the best sequence of directional

interpolations, well recovers the shallow angles in the frame. Note that the candidate

interpolators or the states on the trellis are not confined to the interpolators that we

defined. In fact, one may find it useful to add other interpolation methods to the set

of candidate interpolators, S.
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Chapter 3

Optical Flow Computation

3.1 Introduction

Optical flow or optic flow is the pattern of motion in a visual scene which is caused

by the relative motion between an observer and the scene. Estimation of the motion

finds diverse applications in image/video processing and computer vision fields such

as video compression, segmentation, vehicle tracking and traffic analysis, robot navi-

gation and visual odometry. Different motion estimation or optical flow computation

techniques have been proposed in the literature. Differential methods are one of the

most popular categories among motion compensation methods. Following subsec-

tions, we will briefly review these techniques and particularly the most well-known

algorithms among each category. Then we will discuss integrating these algorithms

into the previously proposed algorithms.
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3.2 Differential Methods

Please note that optical flow as explained earlier is, in general, different from 2-D

displacement /velocity field due to (1) lack of sufficient spatial image gradient and

(2) changes in external illumination. In other words, optic flow is the observable

change of luminance between the corresponding positions in successive frames which

is in general not exactly equivalent to 2-D motion.

There must be sufficient gray-level (color) variation within the moving region for

the actual motion to be observable. An example of an unobservable motion is shown

in figure 3.1, where a circle with uniform intensity rotates about its center. This

motion produces no optical flow and is unobservable.

(a) frame k (b) frame k+1

Figure 3.1: (A solid cylinder rotating around its central axis. Although the actual motion is present, no optical
flow can be detected due to insufficient change of luminance.

On the other hand an observable optical flow may not always correspond to an

actual motion. An example is when an external illumination varies from frame to

frame as shown in figure 3.2. An optical flow will be observed even though there is

no motion. 2-D motion estimation suffers from existence, uniqueness and continuity
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problems.

(a) frame k (b) frame k+1

Figure 3.2: Change of illumination due to an external source can produce observable optical flow even when no
actual motion is present.

Existence of a solution: For example, no correspondence can be established for

covered/uncovered background points. This is known as occlusion problem. The

covered and uncovered background concept has been depicted in figure 3.3. In this

figure, the object translates horizontally between the two frames. The dotted region

in the left frame is going to be covered in the next (right) frame. Therefore, it is not

possible to find a correspondence for these pixels in the right frame. Also the dotted

region in the right frame is the uncovered background by the motion of the object.

There is no correspondence for these pixels in the previous (left) frame as well.

Uniqueness of the solution: Consider the components of the displacement at each

pixel as independent variables. Thus, the number of unknowns is twice the number of

observations (elements of the frame difference). This leads to the so-called aperture

problem. The aperture problem is illustrated in figure 3.4. Consider corner of an

object moving upward. If we estimate the motion based on a local window indicated

by aperture A, then it is not possible to determine whether the object is moving
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(a) frame k (b) frame k+1

Figure 3.3: (a) Dotted region will be covered in the next frame. No correspondence will be found in the next
frame. (b) Dotted region is uncovered background and no motion vector will point to this region.

upward or perpendicular to the edge. Unlike aperture A, aperture B does not suffer

from this problem. The motion in the direction perpendicular to the edge is called

normal flow. It can be shown that we can only determine motion that is orthogonal

to the spatial image gradient at any pixel. To verify this theoretically, consider

the continuous 3-D signal. Let Ic(x, y, t) denote this continuous space-time intensity

distribution. If the intensity remains constant (shows minimum variation) along a

motion trajectory, we have:

d
(
Ic(x, y, t)

)
dt

= 0 (3.1)

where x and y vary by t according to the motion trajectory. Using the chain rule of

differentiation, (3.1) can be expressed as:

∂
(
Ic(x, y, t)

)
∂x

· vx(x, y, t) +
∂
(
Ic(x, y, t)

)
∂y

· vy(x, y, t) +
∂
(
Ic(x, y, t)

)
∂t

= 0 (3.2)
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A

B

(a) frame k

Figure 3.4: (a) Dotted region will be covered in the next frame. No correspondence will be found in the next
frame. (b) Dotted region is uncovered background and no motion vector will point to this region.

where vx and vy denote the vertical and horizontal velocity fields in terms of contin-

uous spatial and temporal coordinates, respectively. The above equation is known as

optical flow equation (OFE) or the optical flow constraint. It sometimes is expressed

as following in the literature:

〈∇Ic(x, y, t),v(x, y, t)〉+
∂
(
Ic(x, y, t)

)
∂t

= 0. (3.3)

If we decompose v into perpendicular and parallel components to the direction of the

local edge, denoted by v⊥ and v|| respectively, we can rewrite 3.3 as:

〈∇Ic(x, y, t),v||(x, y, t)〉︸ ︷︷ ︸
=0

+〈∇Ic(x, y, t),v⊥(x, y, t)〉+
∂
(
Ic(x, y, t)

)
∂t

= 0. (3.4)
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The first term is clearly zero and consequently we will have:

‖v⊥(x, y, t)‖ =
−∂
(
Ic(x,y,t)

)
∂t

‖∇Ic(x, y, t)‖
. (3.5)

This proves what was claimed a few lines ago that we can estimate the flow that is

orthogonal to the edge at the corresponding position (parallel to the direction with

maximum spatial gradient).

Continuity of the optical flow field: Motion estimation is highly sensitive to the

presence of observation noise in video images. A small amount of noise may result in

a large deviation in the motion estimates.

Many algorithms based on basic optical flow equation have been proposed during

the last decades of research on this topic and all of them try to introduce heuristics

to overcome the aforementioned problems we explained, to acquire more accurate

and/or robust estimated flow. The main body of the literature in this important

subfield (differential methods) can be easily classified into two main categories. The

first group of algorithms are those rooted in the original work of [23]. The second

category of works are mainly rooted in inspirational work of [12]. In this part we take

a brief look on each of these categories then we review the best published works in

each of these fields. The goal of this part is to finally study the effect of the state-

of-the-art optical flow methods when incorporated into our proposed algorithms in

previous chapters.

3.2.1 Lucas-Kanade-Based Methods

In this chapter we will explain one of the most popular methods based on original

work of [23]. One of the most well-known methods based on the work of [23] is the one
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reported in [2]. This Lucas-Kanade (LK)-based method (also the method that will

be discussed next) uses a pyramidal implementation for compensating large motions.

In other words as will be discussed following, modern optical flow algorithms use a

coarse to fine optical flow computation that enables estimating large motions.

LK-Based Objective Function

To simplify the notation, suppose that f1 and f2 are two frames from which the optical

flow should be estimated. Therefore f1 and f2 are discrete functions of gray-level

values. Consider the upper left and bottom right positions of the frame as (1, 1) and

(nx, ny) respectively. Let p denote a position in the frame. If p1 points a position

in the first frame then the goal of optical flow computation is to find the location

p2 = p1 + v = (px + vx, py + vy) on the second image, f2 such that f1(p1) = f2(p1)

where d = (dx, dy) is the corresponding motion vector that should be estimated. We

previously discussed the aperture problem. To minimize this problem it is useful to

define the notion of similarity in a 2-D neighborhood. Consequently the objective

function is defined as following:

ε(v) = ε(vx, vy) =

px+wx∑
x=px−wx

py+wy∑
y=py−wy

(
f1(x, y)− f2(x+ vx, y + vy)

)2

(3.6)

where wx and wy determine the size of the rectangular neighborhood window. In other

words, the similarity is measured on an image neighborhood which is sometimes called

integration window in some LK-based algorithms. Accuracy and robustness are two

important components in LK-based algorithms. Small window sizes are preferable

especially in detailed areas in order to preserve the fine details. This is especially
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critical at occluding areas where there are potentially patches with different veloci-

ties. So for higher accuracies, small window sizes are preferred. On the other hand,

to handle large motions, intuitively it is preferable to pick a larger integration win-

dow. Therefore naturally there is a tradeoff between local accuracy and robustness

when choosing the integration window size. Pyramidal implementation and iterative

Lucas-Kanade flow computation are to guarantee the robustness and local accuracy

respectively.

Image Pyramidal Representation

Suppose f is an image of size nx×ny. We use f 0 to denote the level zero image which

is basically the highest resolution image (the initial raw image). We use n0
x and n0

y to

show the height and width of the image at this level. Clearly n0
x = nx and n0

y = ny. We

generalize this to other levels of the pyramid with L =1,2,3,... as the index of the level.

If fL−1 is the image at the level L − 1 then the fL is obtained recursively by down-

sampling fL−1. More precisely we are using the low-pass filter of (1/4, 1/2, 1/4) ×

(1/4, 1/2, 1/4)T as anti-aliasing filter before down-sampling. Some LK-based algo-

rithms have also used (1/16, 1/4, 3/8, 1/4, 1/16) × (1/16, 1/4, 3/8, 1/4, 1/16)T . The

above equation is used to generate the image pyramid of two images f1 and f2 i.e.,

fL1 L=0,...,Lm
and fL2 L=0,...,Lm

. The height of the pyramid is taken heuristically. As

explained before, the main motivation behind pyramidal representation is to be able

to handle large motions.
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Multi-resolution Optical Flow Computation

Note that the final goal at point p1 in image f1 is to find corresponding location

p2 = p1 + v in image f2 or equivalently the vector v. The correspondence of point p

at resolution L is:

pL = (pLx , p
L
y ) =

p

2L
. (3.7)

First the optical flow is computed at the lowest resolution (Lm). Then the result

is propagated to the one-higher resolution level (considering down-sampling factor

between the levels) as an initialization of the next level optical flow. Let us assume

that uL = (uLx , u
L
y ) is available from the computations done in level L+ 1 to level L.

Then we have to find the the residual displacement vector field vL = (vLx , v
L
y ) that

minimizes the new image matching error function :

εL(vL) = εL(vLx , v
L
y ) =

pLx +wx∑
x=pLx−wx

pLy +wy∑
y=pLy−wy

(
fL1 (x, y)− fL2 (x+ uLx + vLx , y + uLy + vLy )

)2

.

(3.8)

In other words, the initial guess flow vector uL pre-translates the image patch in the

second image f2. This way the residual vector vL = (dLx , d
L
y ) remains a small and easy-

to-compute vector which can be estimated by a standard LK step. Consequently, we

can handle large pixel motions using multi-resolution optical flow computation. We

will discuss the iterative LK method next section. Before, let assume that through

an standard iterative LK method (explained in the next section) we have computed

the residual optical flow, vL at level L where uL was the initial guess motion vector.
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As explained earlier, we propagate the results to the next higher-resolution level and

then we use it as an initial guess flow for that level as:

uL−1 = 2
(
uL + vL

)
. (3.9)

Through the same procedure the residual vector for this new level, vL−1, is then

computed. This latter vector is the one that minimizes εL−1
(
vL−1

)
. This process

goes until we get to the highest resolution level and obtain v0 by minimizing ε0
(
v0
)
.

Then we get the final value of the estimated flow as:

v =
(
u0 + v0

)
. (3.10)

The clear advantage of this pyramidal motion estimation is that if, vmax is the pixel

displacement that can be handled by the elementary step then the total amount of

displacement that is handled, vmaxfinal
, will be:

vmaxfinal
=
(
2Lm+1 − 1

)
vmax. (3.11)

This will keep the size of the integration window small while enabling estimation of

large motions.

Iterative Lucas Kanade Flow Computation

In this part we describe the core iterative LK-Based method for optic flow computa-

tion. At every level L we seek to find the vL. As the iterative method will remain

the same, we will simplify the notation here and suppress the level index L. For this,

consider A and B defined as:
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A(x, y)
.
= fL1 (x, y) ∀(x, y) ∈ [sx − wx − 1, sx + wx + 1]× [sy − wy − 1, sy + wy + 1]

B(x, y)
.
= fL2 (x+ uLx , y + uLy ) ∀(x, y) ∈ [sx − wx, sx + wx]× [sy − wy, sy + wy]

where we have used s = (sx, sy) = pL. Also for the same reason we will use ν =

(νx, νy) instead of vL. Consequently we have to find the vector ν that minimizes the

matching function:

ε(ν) =
sx+wx∑

x=sx−wx

sy+wy∑
y=sy−wy

(
A(x, y)−B(x+ νx, y + νy)

)2
. (3.12)

At the minimum of the objective function, the first derivative of ε with respect to ν

is zero:

∂ε(ν)

∂ν

∣∣∣∣
ν=νopt

= (0, 0). (3.13)

After expansion of the derivative we obtain:

∂ε(ν)

∂ν
= −2

sx+wx∑
x=sx−wx

sy+wy∑
y=sy−wy

(
A(x, y)−B(x+ νx, y + νy)

)
·
(
∂B

∂x
,
∂B

∂y

)
. (3.14)

Consider replacing the B(x + νx, y + νy) by its first order Taylor expansion around

ν = (0, 0). There is a good chance that this is a good approximation due to the fact

that we expect small residual vectors (thanks to pyramidal implementation):
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∂ε(ν)

∂ν
≈ −2

sx+wx∑
x=sx−wx

sy+wy∑
y=sy−wy

(
A(x, y)−B(x, y)−

(
∂B

∂x
,
∂B

∂y

)
ν
)
·
(
∂B

∂x
,
∂B

∂y

)
. (3.15)

In the above equation, A(x, y)−B(x, y) is the temporal image derivative at the point

(x, y):

δf(x, y)
.
= A(x, y)−B(x, y) ∀(x, y) ∈ [sx−wx, sx +wx]× [sy−wy, sy +wy]. (3.16)

For simplicity we show the image gradient vector as:

∇f =

ḟx
ḟy

 .
=

(
∂B

∂x
,
∂B

∂y

)T
. (3.17)

The image derivatives ḟx and ḟy can be computed directly from the first image A(x, y),

therefore ∀(x, y) ∈ [sx − wx, sx + wx]× [sy − wy, sy + wy]:

ḟx(x, y) =
∂A(x, y)

∂x
=
A(x+ 1, y)− A(x− 1, y)

2
(3.18)

ḟy(x, y) =
∂A(x, y)

∂y
=
A(x, y + 1)− A(x, y − 1)

2
. (3.19)

Following latter equations, equation (3.15) can be written:
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1

2

(
∂ε(ν)

∂ν

)T
≈

sx+wx∑
x=sx−wx

sy+wy∑
y=sy−wy


 ḟ 2

x ḟxḟy

ḟxḟy ḟ 2
y

ν −

δf ḟx
δf ḟy


 . (3.20)

To simplify the notations, we use the following matrix notations:

G
.
=

sx+wx∑
x=sx−wx

sy+wy∑
y=sy−wy

 ḟ 2
x ḟxḟy

ḟxḟy ḟ 2
y

 and b
.
=

sx+wx∑
x=sx−wx

sy+wy∑
y=sy−wy

δf ḟx
δf ḟy

 . (3.21)

Consequently equation (3.20) can be written as:

1

2

(
∂ε(ν)

∂ν

)T
≈ Gν − b. (3.22)

Therefore the optimum optical flow vector i.e., νopt can be obtained as :

νopt = G−1b. (3.23)

So far we have explained the basic LK method which is valid only when our basic

assumption (small pixel displacement) is true. However, to get an accurate solution,

we iterate multiple times on this scheme. Suppose k is the iteration index. At iteration

k ≥ 1, suppose that νk−1 =
(
νk−1
x , νk−1

y

)T
is computed from previous iterations. Let

Bk be the new translated image according to νk−1 or:

Bk(x, y) = B(x+νk−1
x , y+νk−1

y ) ∀(x, y) ∈ [sx−wx, sx+wx]×[sy−wy, sy+wy]. (3.24)
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The goal is to compute the residual motion vector ξk = (ξkx, ξ
k
y ) that minimizes the

following objective function:

εk(ξk) = ε(ξkx, ξ
k
y ) =

sx+wx∑
x=sx−wx

sy+wy∑
y=sy−wy

(
A(x, y)−Bk(x+ ξkx, y + ξky )

)2
. (3.25)

As explained before the solution is:

ξk = G−1bk (3.26)

where the bk is defined as follows:

b
.
=

sx+wx∑
x=sx−wx

sy+wy∑
y=sy−wy

δfk(x, y)ḟx(x, y)

δfk(x, y)ḟy(x, y)

 (3.27)

where the kth image difference δfk is defined as follows:

ḟk(x, y) = A(x, y)−Bk(x, y). (3.28)

Note that matrix G is constant at each iteration. At each iteration only bk is updated

(In some works called the image mismatch vector). Then after computation of ξk

using equation (3.26), a new displacement guess νk is computed for the next iteration

step as:

νk = νk−1 + ξk. (3.29)

The iteration continues until the residual is smaller than a threshold value or for a

57



M.A.Sc. Thesis - Farhang Vedadi McMaster - Electrical Engineering

fixed number of iterations. At the very first iteration we use ν0 = (0, 0)T . If kmax

iterations is required to reach convergence then:

vL = νkmax =
kmax∑
k=1

ξk. (3.30)

This ends the iterative LK method at a generic level. Then vL is fed to the next level

as explained before and the algorithm proceeds until the highest resolution level.

3.2.2 Horn-Schunck-Based Methods

Although applying different conditions to solve the optical flow equation, all classical

methods of optical flow computation more or less use an objective function similar to

the following general form:

E(vx,vy) =
∑
x,y

{
φD(f1(x, y)− f2(x+ vx(x, y), y + vy(x, y))) (3.31)

+ λ

(
φS
(
vx(x, y)− vx(x+ 1, y)

)
+ φS

(
vx(x, y)− vx(x, y + 1)

)
+ φS

(
vy(x, y)− vy(x+ 1, y)

)
+ φS

(
vy(x, y)− vy(x+ 1, y)

))}

where vx and vy are horizontal and vertical component matrices of optical flow field.

f1 and f2 are images from which optical flow is calculated and λ is a regularization

parameter. φ is a penalty function that is used for data terms (D) and smoothness

terms (S) of the objective function. Two elements of choice are (a) the penalty

function and (b) intermediate filtering (which is equivalent to adding more constraint

terms in the objective function). These two choices are the main differences between
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optical flow computation algorithms proposed during the past years. For instance,

quadratic penalty term of φ(x) = x2 is the one that is used in original Horn-Schunck

(HS) method ([12]). Using φ(x) =
√
x2 + ε2 leads to Charbonnier objective function

([3]) or Lorentzian algorithm ([1]) uses φ(x) = log
(

1 + x2

2σ2

)
. As said above other

contributions include adding more constraint terms, using additional filtering and/or

making use of different models such as higher order Markov Random Fields (here in

above objective function we assumed a pairwise MRF based on 4-neighborhood).

One of the major contributions in this domain is the work of [31]. The authors

make use of a modified version of the (3.31) as following:

E(vx,vy) =
∑
x,y

{
φD(f1(x, y)− f2(x+ vx(x, y), y + vy(x, y))) (3.32)

+ λ1

(
φS
(
vx(x, y)− vx(x+ 1, y)

)
+ φS

(
vx(x, y)− vx(x, y + 1)

)
+ φS

(
vy(x, y)− vy(x+ 1, y)

)
+ φS

(
vy(x, y)− vy(x+ 1, y)

))}

+
∑
x,y

∑
x′,y′∈Nx,y

λ3

(
|v̂x(x, y)− v̂x(x

′, y′)|+ |v̂y(x, y)− v̂y(x
′, y′)|

)
+ λ2

(
‖vx − v̂x‖2 + ‖vy − v̂y‖2

)

where v̂x and v̂y are auxiliary flow fields, Nx,y is the neighborhood (set of neighbors)

of pixel at (x, y) in a possibly large area and λ2 and λ3 are scalar weights which are

set empirically. The newly added terms impose a particular smoothness assumption

within a specified region of the auxiliary field v̂x and v̂y. In practice [31] optimizes this

new objective function by alternately minimizing two parts of the objective function.
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The strategy is to hold v̂x and v̂y fixed and minimize the following with respect to

vx and vy:

E1(vx,vy) =
∑
x,y

{
φD(f1(x, y)− f2(x+ vx(x, y), y + vy(x, y))) (3.33)

+ λ1

(
φS
(
vx(x, y)− vx(x+ 1, y)

)
+ φS

(
vx(x, y)− vx(x, y + 1)

)
+ φS

(
vy(x, y)− vy(x+ 1, y)

)
+ φS

(
vy(x, y)− vy(x+ 1, y)

))}

+ λ2

(
‖vx − v̂x‖2 + ‖vy − v̂y‖2

)
.

Then with vx and vy fixed, the following is minimized with respect to v̂x and v̂y:

E2(vx,vy) = λ2

(
‖vx − v̂x‖2 + ‖vy − v̂y‖2

)
(3.34)

+
∑
x,y

∑
x′,y′∈Nx,y

λ3

(
|v̂x(x, y)− v̂x(x

′, y′)|+ |v̂y(x, y)− v̂y(x
′, y′)|

)

This latter version of optical flow computation with its details and implementation

with different penalty functions and parameters, is the first-ranked optical flow com-

putation algorithm in Middlebury ranking of the best published optical flow estima-

tion techniques. Next we will discuss how we can use these state-of-the-art motion

compensation techniques to improve the Proposed VA and Proposed FBA.
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(a) City (b) Jets

(c) Calendar (d) Sailormen

Figure 3.5: A set of four 720×1280 test sequences that are used to compare the results of our algorithm and state-
of-the-art de-interlacing algorithm in the VXP R© video processor. The sequences are (a) City (b) Jets (c) Calendar
(d) Sailormen.

3.2.3 Adding MC to the Proposed Algorithm

In this section, we discuss incorporating the aforementioned motion estimation (opti-

cal flow computation) into the proposed algorithms in the previous chapter. Note that

we generally discussed the concept of the motion in 3-D signals and explained two

of the state-of-the-art algorithms that are widely used in this field. However, these

techniques are mostly used in video compression and computer vision applications.

The most important point to consider when using MC techniques in image/video

interpolation is that the accuracy and robustness of these methods is considerably

reduced. The reason behind this is the huge amount of lost data. For example, for

the special case of the de-interlacing problem as explained in the first chapter, for

each frame half of data is removed. This ratio increases to three forth of the data in
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Table 3.1: PSNR and SSIM results of five different algorithms: method used in VXP R©, Proposed FBA and
Proposed FBA MC with three different algorithms of Horn-Schunck, Black et al and Lucas-Kanade.

Proposed FBA MC

VXP R© Proposed FBA Horn-Schunck Black et al Lucas-Kanade

PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

City 33.64 0.9858 34.15 0.9872 37.26 0.9863 38.39 0.9865 37.23 0.9923

Jets 41.01 0.9956 43.21 0.9971 43.11 0.9949 44.07 0.9947 43.83 0.9974

Calendar 30.74 0.9754 32.03 0.9790 35.94 0.9787 36.87 0.9788 34.91 0.9869

Sailormen 31.75 0.9765 34.63 0.9863 36.13 0.9821 37.20 0.9817 36.57 0.9903

Average 34.29 0.9833 36.00 0.9874 38.11 0.9855 39.13 0.9854 38.14 0.9917

case of image interpolation by a factor of two. Consequently, these methods lose their

accuracy and robustness considerably. Moreover, interpolation is very sensitive to the

accuracy of these methods. As an example the result of a weak motion compensation

in a video compression application could be redundant bandwidth required for trans-

mission of the data. However an inaccurate motion estimation in case of interpolation

problem produces annoying artifacts perceived by the viewer. This means that some

sort of reliability measure should be designed when using motion compensated meth-

ods in order to be able to switch to alternative interpolation methods whenever the

estimated motion is considered unreliable.

Following we explain our strategy to incorporate motion estimation into our algo-

rithm. First step, we use the proposed algorithm in chapter two (Proposed FBA) to

fill the missing pixels of every two consecutive frames. Then we use these pre-filled

values to do the motion estimation procedure. Then having the MC results, we add

one more candidate interpolator to the set S as the MC interpolator. Then we redo

the trellis processing this time with MC interpolator added to the set S as a new

candidate interpolator at each missing pixel. Clearly, the transition matrix should

62



M.A.Sc. Thesis - Farhang Vedadi McMaster - Electrical Engineering

(a) Ground Truth (b) VXP R© (c) Proposed FBA

(d) Proposed FBA MC(HS) (e) Proposed FBA MC(Bl) (f) Proposed FBA MC(LK)

Figure 3.6: Zoom in comparison of five different algorithms : VXP R©, our proposed method Proposed FBA,
Proposed FBA MC(HS), Proposed FBA MC(Bl) and Proposed FBA MC(LK) for part of the frame 29 of the sequence
City.

be updated with this new member of the set S for the second-pass trellis processing

(interpolator sequence estimation).

As explained above, different de-interlacing algorithms use a reliability measure to

switch between MC interpolation and some other form of spatio-temporal interpola-

tion method. However, in our algorithm the sequence estimation procedure proposed

in chapter two, itself, serves as a way to measure the reliability of the MC interpo-

lator. In other words, our algorithm will try to choose the MC method when it is

highly probable and switch to other interpolators when it is needed.

Fig. 3.5 shows a test set of four videos used at this stage. The sequences are in

720×1280 and contain highly detailed scenes with large motions between the frames
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(a) Ground Truth (b) VXP R©

(c) Proposed FBA (d) Proposed FBA MC(HS)

(e) Proposed FBA MC(Bl) (f) Proposed FBA MC(LK)

Figure 3.7: Zoom in comparison of different algorithms : VXP R©, our proposed method Proposed FBA, Pro-
posed FBA MC(HS), Proposed FBA MC(Bl) and Proposed FBA MC(LK) for part of the frame 22 of the sequence
Calendar.

in different forms. For the purpose of aforementioned MC interpolation, we have

used three methods of [12], [31] and [2]. [31] is the state-of-the-art optical flow com-

putation ranked first in Middlebury evaluation and [2] is the most cited and accu-

rate pyramidal implementation among all Lucas-Kanade-based optical flow compu-

tation methods. For simplicity, we will refer to MC versions of our algorithm as Pro-

posed FBA MC(HS) (based on Horn-Schunck method [12]), Proposed FBA MC(LK)

(based on Lucas-Kanade method [2]) and Proposed FBA MC(Bl) (based on Black et
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(a) Crowd (b) Town

(c) Tree (d) Joy

Figure 3.8: Set of four 720×1280 test sequences used for evaluation of Proposed FBA, Proposed FBA MC and
the other algorithms.

al method [31]). Table 3.1 summarizes the PSNR and MSSIM results for the pro-

posed algorithms and VXP R© for the aforementioned test videos. The highest objec-

tive results are obtained by Proposed FBA MC(Bl). Also note that all the proposed

algorithms perform great compared to the MC algorithm used by VXP R©.

Fig. 3.6 illustrates the visual zoom-in results of five different algorithms for the

frame 29 of the sequence City. As can be seen from the figure, the results of the

Proposed FBA is better than VXP R© and also comparable to other MC versions of

our proposed algorithm. It can be seen clearly that MC interpolation integrated in

the second-pass trellis processing greatly improves the visual performance of the algo-

rithm to reproduce the frame with less artifacts. Except for Proposed FBA MC(HS),

the results of all proposed algorithms (MC and non-MC) are better than results of

VXP R©.
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Table 3.2: PSNR and SSIM results of three different algorithms: method used in VXP R©, Proposed FBA and
Proposed FBA MC.

VXP R© Proposed FBA Proposed FBA MC(Bl)

PSNR MSSIM PSNR MSSIM PSNR MSSIM

Tree 40.37 0.9970 41.02 0.9980 41.28 0.9951

Crowd 33.49 0.9974 33.64 0.9976 33.71 0.9954

Town 38.18 0.9967 38.86 0.9980 40.28 0.9966

Joy 31.76 0.9960 31.91 0.9961 31.69 0.9912

Average 35.95 0.9968 36.37 0.9974 36.74 0.9946

Fig. 3.7 is another demonstration of the visual performance of the algorithm.

The zoom-in part is one tough challenge for any de-interlacing algorithm. The reason

is that the selected part from the frame 22 of the Calendar sequence contains fine

details and large amount of motion which is in the form of zooming, rotation and

translation simultaneously. These characteristics together makes it difficult for every

algorithm to reproduce these parts artifact-free. For this comparison, VXP R© per-

forms better than the non-MC version of the proposed algorithm i.e, Proposed FBA

and results in less visual artifacts. On the other hand adding MC to the second

pass trellis processing improves Proposed FBA such that Proposed FBA MC(LK)

and Proposed FBA MC(Bl) perform clearly better than VXP R©.

Fig. 3.8 shows the first frame of 1080×1920 test videos. They include faster mo-

tion than previous test set and are highly detailed in some parts. Fig. 3.9 is a zoom-

in comparison selected from frame 23 of the sequence Town. Both Proposed FBA

and Proposed FBA MC(Bl) reproduce the shallow-angled edges more accurately than

VXP R©. Fig. 3.10 is a part of the frame 57 of Joy sequence. For this sequence, all the
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(a) Ground Truth (b) VXP R©

(c) Proposed FBA (d) Proposed FBA MC(Bl)

Figure 3.9: Zoom in comparison of different algorithms : VXP R©, our proposed method Proposed FBA and
Proposed FBA MC(Bl) for part of the frame 23 of the sequence Town.

competitors perform closely and it seems that no major difference can be found be-

tween the frames recovered by Proposed FBA and Proposed FBA MC(Bl). To sum-

marize the results for this latter test set, Table 3.2 shows the PSNR and MSSIM ob-

tained by three different algorithms. As can be seen, Proposed FBA MC(Bl) achieves

the highest overall objective results.
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(a) Ground Truth (b) VXP R©

(c) Proposed FBA (d) Proposed FBA MC(Bl)

Figure 3.10: Zoom in comparison of different algorithms : VXP R©, our proposed method Proposed FBA and
Proposed FBA MC(Bl) for part of the frame 57 of the sequence Joy.
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Chapter 4

Image Up-scaling

4.1 Introduction

In many display applications, native resolution of the captured image is not suffi-

cient. Consequently, one has to apply a reliable method to faithfully reconstruct the

image signal according to the required size and resolution. The image resolution up-

conversion or simply image up-scaling methods have been developed over the past

decades to meet this demand for higher resolutions. Up-scaling methods (Fig. 4.1)

use the low resolution (LR) image to recover the high-frequency components and fine

details of a high resolution (HR) image. Unreliability of the estimation of edges and

details from LR images causes annoying artifacts in the reconstructed images. Dif-

ferent methods ([16], [21], [38], [29], [24]) have been proposed in this classical but

still active field of image processing i.e., image up-scaling. The method in [21] uses a

switching method between bilinear interpolation and covariance-based interpolation.

[38] uses observation sets in two orthogonal directions as two noisy measurements

of the missing pixel to be interpolated. These measurements are then fused by the
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(a) (b) (c)

Figure 4.1: Up-scaling an image is the process of converting a low resolution image to a higher resolution image.
This requires interpolating the missing pixels of the higher resolution grid. (a) A low resolution image (b) A higher
resolution image by a factor of two (c) by a factor of three.

means of LMMSE technique into a final reliable estimation of the missing pixel. The

method in [29], exploits the fact that the image is highly compressible in the wavelet

domain and uses the compressive sensing theory to built a relatively accurate estimate

of the high resolution image. In [24], the authors use adaptive directional image in-

terpolations which are computed over a wavelet frame with an O(NlogN) algorithm.

In previous chapters we explained how we can exploit sequence estimation tech-

niques along with a predefined set of candidate interpolators to recover the missing

lines of an interlaced frame using the original pixels of the current frame as well as

the past and future frames. In fact, de-interlacing is a special problem within interpo-

lation problems. Consequently one may think of applying the general idea developed

in the previous chapters to some other classical interpolation problems. This, in fact,

is the main topic of interest in this chapter.
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(a) first pass estimation (b) second pass estimation (c) first/second pass neighbors

Figure 4.2: (a) First pass interpolation and the original pixels (dark gray) used to interpolate the first pass pixels
(light gray). (b) Second pass interpolation and the pixels reconstructed in this pass (light red) (c) Three different
neighborhoods used in the proposed algorithm. Two types are used at first pass and the third type for a typical
to-be-interpolated pixel (light red) in the second pass.

4.2 Theory and Algorithm Description

For simplicity let us assume the following conventions for the notations used. Vertical

and horizontal directions will be denoted by x and y respectively as previous chapters.

Therefore, a typical pixel position in a digital image is denoted by (x, y) or simply

the vector ~r = (x, y). At a typical pixel within an image, f(~r) or f(x, y) refers to

the gray-level value or gray-level intensity of the 2-D image signal at that position. If

needed, h and w will be used to denote the hight and width of an image respectively.

Also we may use the boldface letters with subscript and superscript to denote the

sequences and their start and end points respectively. For instance X
j

i denotes the

sequence X from the ith to jth position in the sequence. As another example, Xi

shows the value of the sequence X at the ith position. The rest of the notations will

be introduced whenever they are used.
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4.2.1 Overall Approach to The Problem

Our final goal in image resolution up-conversion is to recover the high-resolution (HR)

image from the low-resolution (LR) image given. Now consider that we are given the

LR image. In the proposed algorithm, we will interpolate the entire missing pixels in

two consecutive passes. Each group of missing pixels recovered in each of the passes

are shown in Fig. 4.2. In our algorithm we scan through the missing pixels of a row

from left to right and estimate the corresponding sequence of interpolators that best

fits the sequence of missing pixels and we finally interpolate these missing pixels in

accord with the corresponding estimated sequence of interpolators. Clearly, sequence

estimation of the rows are independent from each other and can be done in parallel.

We define for each missing pixel in HR image a neighborhood consisting of a few

nearest neighboring LR (original) pixels. Fig. 4.2 shows the different neighborhoods

used in the proposed algorithm around a missing pixel. We denote the sequence of

these neighborhoods associated with a sequence of missing pixels as N.

As mentioned before, we use a set of candidate interpolators at every position. We

denote this set by S. These interpolators are states of the Markov process we discussed

earlier. Although one can come up with different interpolators as the members of this

set, we suggest a set of directional interpolators. Further improvements may be

obtained by adding more interpolators to the set S with at the cost of more time-

complexity of the algorithm. We will discuss in section 4.3 that the complexity of

our algorithm grows quadratically with the number of the states of the Markovian

process i.e., cardinality of the set S or the number of candidate interpolators. We

have chosen the following set of eight interpolators as the members of the set S:
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I1(~r) =
1

2
·
(
f(~r − ~ux) + f(~r + ~ux)

)
(4.1)

I2(~r) =
1

2
·
(
f(~r − ~uy) + f(~r + ~uy)

)
I3(~r) =

1

2
·
(
f(~r − ~ux + ~uy) + f(~r + ~ux − ~uy)

)
I4(~r) =

1

2
·
(
f(~r − ~ux − ~uy) + f(~r + ~ux + ~uy)

)
I5(~r) =

1

2
·
(
f(~r − ~ux + 2~uy) + f(~r + ~ux − 2~uy)

)
I6(~r) =

1

2
·
(
f(~r − ~ux − 2~uy) + f(~r + ~ux + 2~uy)

)
I7(~r) =

1

2
·
(
f(~r − 2~ux + ~uy) + f(~r + 2~ux − ~uy)

)
I8(~r) =

1

2
·
(
f(~r − 2~ux − ~uy) + f(~r + 2~ux + ~uy)

)
where ~ux and ~uy are unit vectors in vertical and horizontal directions in the HR

image, respectively. Also Fig. 4.3 illustrates the members of the set S on three

different typical positions which are at even horizontal coordinates (first pass), odd

horizontal coordinates (first pass) and finally at a typical position of the second pass

respectively. As depicted in Fig. 4.3, the estimated interpolator may point to a

missing position. The number of interpolators which point to a missing position

depends on where the pixel is located within the image as illustrated in parts (a)-(c)

of Fig. 4.3. If at any point within the estimated sequence the estimated interpolator

points to missing pixels of the frame, we simply use the cubic spline interpolation to

pre-fill the missing positions.

Let us assume that the best estimation of the sequence of interpolators of a se-

quence of missing pixels, Iopt, is the sequence of interpolators I which maximizes the
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(a) (b) (c)

Figure 4.3: (a) Interpolators at even horizontal coordinates (first pass). (b) Interpolators at odd horizontal
coordinates (first pass) (c) Interpolators (second pass). The estimated interpolator may finally point to missing
positions. The number of interpolators which may point to missing positions depends on whether the pixel is at the
first pass or second, has odd or even horizontal coordinates.

probability Pr(I|N). In other words, the best estimation of the sequence of interpo-

lators I, is the most probable one given the sequence of neighborhoods of LR pixels.

Maximizing Pr(I|N) is equivalent to maximizing Pr(N|I) · Pr(I):

Iopt = argmax
I∈Sw

{
Pr
(
N|I) · Pr(I

)}
. (4.2)

So far the up-scaling problem has been translated to the optimization problem

in (4.2). The next step is to rearrange the above equation with the help of some

reasonable assumptions to a proper form for solving the optimization problem. For

simplicity, we consider the formulation for the first pass shown in Fig. 4.2. We assume

a first-order Markov chain model over the sequence of interpolators. Therefore, (4.2)

can be rewritten as:

Pr
(
I
)

= Pr
(
I0

)
· Pr
(
I1|I0

)
·
∏
y

Pr
(
Iy|Iy−1

)
. (4.3)

In our model the first-order Markov process changes its state from one position to the
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next one with observing each neighborhood. Provided that successive neighborhood

observations are independent, the conditional probabilities of the neighborhoods are

independent as well. Therefore:

Pr
(
N|I
)

=
∏
y

Pr
(
Ny|Iy

)
. (4.4)

According to (4.3) and (4.4), the probability in (4.2) can be expressed as:

Pr
(
N|I
)
· Pr
(
I
)
∝ Pr

(
I1|I0) ·

∏
y

Pr
(
Iy|Iy−1

)
·
∏
y

Pr
(
Ny|Iy

)
. (4.5)

We have to choose the I0 arbitrarily since it does not have any actual corresponding

pixel position. Taking the logarithm and then negating on both sides of (4.5) we

have:

− log

(
Pr
(
N|I
)
· Pr
(
I
))
∝
∑
y

log

(
1

Pr
(
Iy|Iy−1

))+
∑
y

log

(
1

Pr
(
Ny|Iy

)). (4.6)

Maximizing (4.2) is equivalent to minimizing (4.6). Therefore to obtain Iopt we have

to equivalently solve the following optimization problem:

Iopt = argmin
I∈Sw

{∑
y

log

(
1

Pr
(
Iy|Iy−1

))+
∑
y

log

(
1

Pr
(
Ny|Iy)

)}
. (4.7)

The number of possible sequence of interpolators which can be examined in equation
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(4.7) depends on the size of the image and cardinality of the S. For example for the

scanning method described earlier, |S| = 8 as in (4.1) and h×w = 512× 512 the size

of the search space is approximately 8512. The structure of the summation in (4.7)

over horizontal positions could be properly utilized to perform the optimization much

more efficiently to obtain the global optimal sequence of interpolators. Now consider

the interpolator transition between two adjacent missing pixels as a transition be-

tween two consecutive layers of a trellis having pre-defined interpolators as its states

on each layer. We expand this trellis through a missing row. We choose the branch

metrics to be logarithmic terms in (4.7). According to (4.7), minimum-weight path

through the trellis corresponds to the best estimation of the sequence of the interpo-

lators associated with the corresponding sequence of missing pixels. The problem of

finding the minimum-weight path can be solved efficiently (globally and fast) using

Viterbi algorithm (Viterbi path). Among the edges (interpolator transitions) con-

verging to a same state (interpolator) at each layer of the trellis, the one with less

accumulated weight will survive and new accumulated weight is saved only for that

survival path. Thus for each layer of the trellis we have to save only |S| accumulated

weights as we have only |S| survival paths. When reached last layer of the trellis

(in our implementation last layer corresponds to the last horizontal position within

a missing row of an image) simply we backtrack from the least-accumulated-weight

state at the last layer through the trellis to the first layer via survival paths for each

state at each layer. This unique path corresponds to the optimal sequence of inter-

polators. This trellis-represented algorithm while having a much lower complexity

than many state-of-the-art algorithms in this field, shows a great performance with a

variety of test images. We will discuss its objective/visual performance as well as its
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time complexity in section 4.3.

4.2.2 Markov Chain Transition Model

For notation simplicity let us assume here that Iy = Ii, Iy−1 = Ij and Ny = N(~r).

So we will focus on deriving approximations for Pr(Ii|Ij) and Pr(N(~r)|Ii) required

in (4.7). For this aim we perform the following stages. First, we define the set SLR

which is the LR dual of the set S. The members of the set SLR are in fact dilated

versions of the members of the set S by a factor of two in each spatial direction.

The members of the set SLR are defined exactly as defined in the second chapter.

Consider at a missing pixel position we are interested to define the probability of the

corresponding neighborhood given that we want to apply a specific member of the

set S i.e., Pr(N(~r)|Ii). Our strategy is to first define an expression for the cost of

applying the interpolator Ii at the position ~r. For now assume that we are able to

define an approximate for this cost namely C(~r, Ii). Then we propose that probabil-

ity Pr(N(~r)|Ii) and the cost C(~r, Ii) are reciprocally proportional. In other words,

the higher the cost of applying an interpolator with a given neighborhood around

a missing pixel position, the smaller the probability of that neighborhood given we

apply that interpolator. Therefore:

Pr(N(~r)|Ii) =

(
V
(
C(~r, Ii)

))−1

(4.8)

where V (u) is an increasing potential function of u. This function can take different

forms such as exponential (V (u) = k exp{u}) or linear (V (u) = ku) with k being

the normalization factor. Now the remaining step is to define the cost C(~r, Ii) and

potential function V (u). Although defining an exponential cost function may be a
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better choice, however for simplicity as well as to avoid introducing parameters into

the algorithm and consequently the difficulty of tuning those parameters, we simply

use the linear function. We base the cost of an interpolator at a missing pixel position

on the difference between the value of the pixel intensity at that position and the value

that results from applying that interpolator in that position. This means that if we

want to measure the aforementioned cost for a member of the set S, say Ii, at missing

position ~r, we apply the Ii at ~r to get the interpolation value. Then we compare

the result of interpolation by Ii with the pixel intensity at ~r i.e., f(~r). The smaller

this difference, the smaller the cost of Ii at ~r. The problem with such definition

is that at position ~r, we have the interpolation value for each of the members of

the set S defined in (4.1) but not the actual value of the pixel since the pixel at

~r is missing. Therefore the aforementioned difference (cost) can not be computed.

Similarly this difference can not be computed at a neighbor of the to-be-interpolated

pixel because the interpolation value for the members of the set S in (4.1) can not be

computed despite that we have the actual pixel value at this position. To overcome

this problem we have to find a reasonable approximation for this cost and this is where

the definition of the LR dual of the set S comes in. At a missing pixel ~r consider

the aforementioned difference using ILRi
instead of Ii and at the original neighboring

pixel of ~r instead of ~r itself. We propose that this cost denoted by C(~r′, ILRi
) when

averaged over the neighborhood (~r′ ∈ N(~r)), is a good approximation of the C(~r, Ii).

In other words:

C(~r, Ii) ≈
1

|N(~r)|
∑

r′∈N(~r)

C(~r′, ILRi
) =

1

|N(~r)|
∑

r′∈N(~r)

∥∥∥∥f(~r′)− ILRi
(~r′)

∥∥∥∥
`2

(4.9)
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where we have used the `2-norm. Now we define probabilities Pr(Ii|Ij) that are used

in (4.7). Consider the LR image. Then for all pixels in this low resolution image,

we calculate the cost defined in (4.9) and choose the best interpolation I∗ as the one

with the minimum cost or:

I∗ = argmin
i
{C(~r, Ii)} . (4.10)

Note that this a hard-decision minimization at each pixel of the LR image. The re-

sult is a/an state/interpolator matrix of the same size as the LR image with entries

from the set S. This is because the LR image is complete and aforementioned discus-

sion about approximating C(~r, Ii) by averaging C(~́r, ILRi
) over N(~r) is not necessary.

Based on this state matrix we form the transition matrix (transition matrix for the

Markov chain discussed earlier) for low resolution LR image (TMLR) and compute

the transition probabilities Pr(Ii|Ij) as:

Pr(Ii|Ij) = TMLR(i, j) =
num(Ij → Ii)

num(Ij)
. (4.11)

where num(X) is the number of occurrence of a state (interpolator) X and num(X →

Y ) is the number of transitions from interpolator X to interpolator Y respectively

in the state/interpolator matrix. Note that by Pr(Ii|Ij) we mean the probability

of interpolator Ii occurs right to the interpolator Ij in the state matrix mentioned

above when scanning left to right. For the reason discussed earlier this matrix can

not be computed directly for the HR image, however, it makes a lot of sense that

the distribution of the introduced state matrix for the LR image be approximately

similar to the state matrix of the HR image if we had the complete HR image. This is
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a reasonable assumption considering that the LR images contain not all but most of

features of the corresponding HR images at a lower scale. As an example, if we have

a 45-degree edge in the HR image, with a high probability we have approximately

the same edge pattern at the corresponding positions in the LR image. With this

assumption transition matrix for the HR image i.e, TM is approximated by transition

matrix obtained by (4.11). According to (4.11) and (4.9), (4.6) can be rewritten as:

Iopt = argmin
I∈Sw

{∑
y

log

(
1

TM(l, k)
· 1

min
{

1
C(~r,Iy)

, 1
})}. (4.12)

where l = π(Iy−1) and k = π(Iy) and π is the simple index assignment which was

also used in previous chapters. Now that we have formulated the first pass shown

in Fig. 4.2, for the second pass we exactly follow the same procedure this time

substituting y with yeven in the previous equations. This is clearly illustrated in Fig.

4.2. As depicted, the step size is twice the first pass. Note that we classified the

to-be-interpolated pixels in first and second pass only for distinguishing between the

neighborhoods we use for each passes. However as discussed before, the sequence

estimations of the first pass and second pass are independent of each other and can

be done in parallel.

4.3 Experimental Results

In this section we present some visual validations of our algorithm and compare it with

some other algorithms which are among the best in this area. Fig. 4.4 shows some of

320×480 images which have been chosen randomly from the Berkeley image database
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(a) Starfish (b) Wall Art (c) Church (d) Samurai (e) Swan

(f) Louver (g) Aviator (h) Flag (i) Car (j) Zebra

Figure 4.4: Some of the 320×480 images in the test set that are used for evaluating the proposed algorithm. This
set is randomly selected from Berkeley image database.

1. The randomly selected images contain diverse challenging image characteristics for

evaluation of the proposed algorithm. The selected images are rich in terms of high

frequency details and especially near vertical and horizontal edges which are among

the hardest features to recover accurately for every interpolation algorithm. Also in

this section we compare our method of interpolation with other algorithms of [16],

[38], [29] and [24] which are well-known in this field especially the last method. For

the objective evaluation we make use of the two most popular measures for image

quality assessment, peak signal-to-noise ratio (PSNR) and mean structural similarity

(MSSIM) as introduced in [35]. Some of these competing methods such as [24] are

implemented by the authors on gray-scale images. Therefore, to be able to compare

all the algorithms with each other we apply the algorithms on each color channel

(red, green and blue) of the input color images and then we compute the PSNR of

the reproduced color image. For the SSIM we separately compute the SSIM for each

of the three channels and then take the average on three channels as the resulting

SSIM of an algorithm. Clearly we use the implementations of the authors with some

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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(a) Ground Truth (b) Bicubic

(c) [21] (d) [38]

(e) [24] (f) Proposed

Figure 4.5: Visual comparison of the proposed algorithms with four different algorithms. The zoom-in comparison
is taken from the image Car.

modifications to make them compatible on color images. Also we make use of exactly

the same images for all algorithms and maintain the same conditions and formulas

when calculating the PSNR and MSSIM. Fig. 4.5 shows a zoom-in comparison of

the different algorithms. The zoom-in results are taken from the image Car. As can

be seen in the figure, the proposed algorithm recovers sharper and more accurate

edge details than the other algorithms. The same results can also be seen in Fig.

4.6 which is another demonstration of the proposed algorithm. The figure shows the
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(a) Ground Truth (b) Bicubic

(c) [21] (d) [38]

(e) [24] (f) Proposed

Figure 4.6: Visual comparison of the proposed algorithms with four different algorithms. The zoom-in comparison
is taken from the image Flag.

result of interpolation by different algorithms for the image Flag. Again we have

taken a part of the image for comparing different algorithms more accurately. The

proposed method and the method of [24] recover the image more precisely than the

other competitors especially around the boundaries. The reason that we emphasize

on edges is that these high-frequency features are among the hardest parts of a typical

image to recover. Distortion in these parts can be easily and annoyingly perceived by

the viewer.
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Table 4.1: PSNR and MSSIM results of different algorithms on the test set of Fig. 4.4.

[16] [29] [38] [24] Proposed

PSNR MSSIM PSNR SSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

Starfish 29.35 0.8812 28.69 0.8616 29.20 0.8680 29.54 0.8835 29.48 0.8851

Wall art 24.15 0.7585 24.64 0.7604 24.70 0.7648 24.83 0.7761 25.61 0.8132

Church 29.88 0.9241 30.84 0.9357 30.91 0.9188 31.17 0.9377 31.56 0.9464

Samurai 25.65 0.8601 26.23 0.8668 26.31 0.8575 26.81 0.8832 27.27 0.8913

Swan 29.75 0.8923 29.81 0.8872 30.42 0.8908 30.29 0.8990 31.09 0.9194

Louver 24.29 0.8310 23.94 0.8165 23.89 0.8063 24.57 0.8405 24.62 0.8479

Aviator 25.13 0.8508 25.90 0.8658 25.84 0.8572 26.33 0.8757 26.69 0.8927

Flag 24.55 0.7890 25.15 0.7965 25.18 0.7926 25.32 0.8055 26.08 0.8297

Car 27.32 0.7616 28.20 0.7860 28.06 0.7763 28.47 0.7915 29.11 0.8230

Zebra 25.54 0.8657 25.73 0.8604 25.84 0.8548 26.33 0.8756 26.34 0.8772

Average 26.56 0.8414 26.87 0.8437 27.04 0.8387 27.37 0.8568 27.78 0.8726

Table. 4.1 summarizes the PSNR and MSSIM results for a few of the aforemen-

tioned algorithms ([16], [29], [38], [24]) compared to the proposed algorithm. As can

be seen from the table, the results are better than/comparable with state-of-the-art

method of [24].

Fig. 4.7 shows another set of test images in 480×320 for further comparing the

aforementioned algorithms. This set has been selected from the same source and con-

tains challenging parts which are difficult to recover for every algorithm. In Fig. 4.8

we have included a zoom-in comparison of the aforementioned algorithms this time

for one of the images (Girl) in the second test set. The figure illustrates the results for

a part of the image. Visual comparison of the results verifies the comparable perfor-

mance of our algorithm with the method [24] specifically around the edges. Also Fig.

4.9 shows the same results for part of the image Wall art. The method of [24] and

our method are superior compared to the other algorithms in interpolating the lost

data. Furthermore, the proposed method of this paper seems to be more successful
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(a) Stairs (b) Man (c) Bird (d) Woman (e) Jump (f) Deer (g) Spear

(h) Hindu (i) House (j) Model (k) Tree (l) Girl (m) Eiffel (n) Beach

Figure 4.7: Some of the 480×320 images in the test set that are used for evaluating the proposed algorithm. This
set is randomly selected from the aforementioned database.

in recovering the part of the image shown in Fig. 4.9 than the method in [24].

Table. 4.2 summarizes results of the algorithms on the latter test set. Table. 4.2

confirms the comparability of the proposed algorithm with the competitors which are

among the well-known methods in the field of image interpolation.

Fig. 4.10 is the final visual comparison of the proposed algorithm versus the com-

petitors. Clearly, the proposed method reproduces the image more accurately than

[24] for this image (Hindu).

As discussed in section 4.2.1, the proposed method is based on estimating the

sequence of interpolators using Viterbi path on a trellis diagram representing the

algorithm. The number of calculations is directly proportional to the length of the

trellis (which is directly proportional to the width of the image w) and the number of

scanned rows (which is directly proportional to the height of the image h). |S| is the

number of the states of the Markov process (number of interpolators) used at each
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Table 4.2: PSNR and MSSIM results for different algorithms on the set 4.7.

[16] [29] [38] [24] Proposed

PSNR MSSIM PSNR SSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

Stairs 27.31 0.8732 27.75 0.8664 27.72 0.8664 28.30 0.8846 28.45 0.8949

Man 33.83 0.8991 34.22 0.9049 34.62 0.8886 34.97 0.9096 34.84 0.9177

Bird 33.44 0.9384 33.98 0.9408 34.05 0.9257 34.34 0.9454 35.43 0.9448

Woman 25.82 0.7438 26.16 0.7405 26.21 0.7428 26.63 0.7667 27.34 0.7916

Jump 26.72 0.8543 27.03 0.8543 27.11 0.8517 27.32 0.8645 27.89 0.8762

Deer 25.64 0.7801 25.92 0.7776 25.79 0.7650 26.13 0.7920 25.23 0.7399

Spear 30.03 0.9073 30.38 0.9055 30.42 0.8990 30.86 0.9162 30.88 0.9211

Hindu 32.83 0.9294 33.27 0.9283 33.23 0.9225 33.68 0.9366 34.10 0.9416

House 22.58 0.7969 22.47 0.7918 22.83 0.7881 22.98 0.8130 24.64 0.8532

Model 27.03 0.8930 27.52 0.8992 27.67 0.8844 27.80 0.9055 28.19 0.9118

Tree 22.37 0.7273 22.44 0.7136 22.61 0.7196 22.72 0.7390 24.03 0.7836

Girl 30.91 0.9108 31.61 0.9148 31.91 0.9116 32.04 0.9205 31.99 0.9263

Eiffel 26.89 0.8620 27.16 0.8651 27.22 0.8571 27.42 0.8712 28.76 0.9018

Beach 26.01 0.8975 26.46 0.8943 26.26 0.8895 27.12 0.9102 27.21 0.9108

Average 28.17 0.8581 28.31 0.8569 28.40 0.8509 28.74 0.8696 29.21 0.8797

layer. At each layer we consider transition between any two states at the previous

layer and the current layer (Fig. 2.5). Consequently, the number of calculations

is proportional to |S|2. Therefore, scanning through the entire trellis requires total

number of |S|2 × w × h calculations. In other words the timing complexity of our

algorithm is θ
(
|S|2wh

)
. The complexity is linear in terms of w but quadratic in terms

of the size of the set S. However, in practice we have implemented our algorithm with

a fixed set of candidate interpolators S as introduced in (4.1) so the |S| is constant.

Also as discussed earlier the sequence estimations for different rows are independent

and the algorithm can be greatly sped up by the use of parallel processing.

To compare the timing efficiency of the aforementioned algorithms especially with

the close competitor in [24], Table. 4.3 and Table. 4.4 show the time (minutes)
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(a) Ground Truth (b) Bicubic (c) [21]

(d) [38] (e) [24] (f) Proposed

Figure 4.8: Visual comparison of the proposed algorithms with five different algorithms. The zoom-in comparison
is taken from the image Girl.

consumed by our method and the method of [24] with different images. We would

like to clarify that to make a fair comparison of timing for different algorithms: (a)

we have used the exact implementations by the authors except for the slight changes

we made to make them executable on color images (b) all the codes are scripted in

MATLAB and without using any parallel processing instructions. Table. 4.3 and

Table. 4.4 summarize the results for the first and second test sets, respectively.

In the proposed algorithm we have used the cost in (4.9) which uses the `2-norm.

However, so far we have not used the color information in the cost formula directly.
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(a) Ground Truth (b) Bicubic

(c) [21] (d) [38]

(e) [24] (f) Proposed

Figure 4.9: Visual comparison of the proposed algorithms with five different algorithms. The zoom-in comparison
is taken from the image Wall Art.

In other words we have implemented the algorithm for each color channel separately.

Here we discuss the benefit of using the color information in the cost in (4.9). We

propose that we can use the values of all the three channels in the cost (4.9) when

estimating the sequence of interpolators and apply the estimated sequence to the all

three channels without giving up the PSNR or MSSIM obtained by previous approach.

Consequently, by making the cost computation a little more time consuming, we avoid

repeating the algorithm for different channels. Therefore, we roughly get a speed up
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(a) Ground Truth (b) Bicubic (c) [21]

(d) [38] (e) [24] (f) Proposed

Figure 4.10: Visual comparison of the proposed algorithms with five different algorithms. The zoom-in comparison
is taken from the image Hindu.

by a factor of three compared to previous version of the algorithm. To verify this,

In Table. 4.5 and Table. 4.6 we have compared the PSNR, MSSIM and timing

results of the previous version of the algorithm with this timing-enhanced version of

the algorithm. The timing-enhanced version achieves approximately the same results

three times faster than the previous version by reducing the number of sequence

estimations and making use of the color information at each position.

As can be seen from the tables, the time-enhanced version of the algorithm obtains

roughly the same results in terms of PSNR and MSSIM compared to the early version
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Table 4.3: Time (minutes) consumed by the proposed algorithm and the method of [24] for the set in Fig. 4.4.

Starfish Wall art Church Samurai Swan Louver Aviator Flag Car

[24] 10.67 12.27 11.82 12.52 12.55 12.22 12.29 11.52 11.02

Proposed 4.67 4.11 4.15 4.03 4.25 4.29 4.14 4.66 4.69

Table 4.4: Time (minutes) consumed by the proposed algorithm and the method of [24] for the set in Fig. 4.7.

Stairs Man Bird Woman Jump Deer Spear Hindu House Model

[24] 11.15 10.67 10.91 10.47 10.26 10.88 10.82 10.83 10.88 11.26

Proposed 4.73 4.98 4.59 4.61 4.94 4.69 4.55 4.70 4.21 4.31

of the proposed method. However, the algorithm on average has running time of

approximately seven times smaller than the running time of the method in [24].

As discussed earlier this comparison is made under similar conditions for all the

algorithms and no parallel processing instruction is used in our implementation.

Another important complexity consideration is the memory-complexity. With the

same approach that we followed to compute the time-complexity of the algorithm,

the amount of memory needed for the purpose of trellis processing is proportional to

the length of the trellis as well as the number of rows. Other words, the memory-

complexity is of order h× w i.e., θ(hw).
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Table 4.5: PSNR and MSSIM results for different algorithms for the test set of Fig. 4.4.

[24] Proposed Proposed (time enhanced)

PSNR MSSIM time PSNR MSSIM time PSNR MSSIM time

Starfish 29.54 0.8835 10.67 29.48 0.8851 4.68 29.49 0.8854 1.72

Wall art 24.83 0.7761 12.27 25.61 0.8132 4.11 25.60 0.8120 1.47

Church 31.17 0.9377 11.82 31.56 0.9464 4.15 31.54 0.9462 1.55

Samurai 26.81 0.8832 12.52 27.27 0.8913 4.03 27.27 0.8914 1.69

Swan 30.29 0.8990 12.55 31.09 0.9194 4.25 31.07 0.8990 1.64

Louver 24.57 0.8405 12.22 24.62 0.8479 4.29 24.62 0.8476 1.73

Aviator 26.33 0.8757 12.29 26.69 0.8927 4.14 26.70 0.8928 1.68

Flag 25.32 0.8055 11.53 26.08 0.8297 4.66 26.09 0.8301 1.49

Car 28.47 0.7915 11.02 29.11 0.8230 4.69 29.09 0.8232 1.57

Zebra 26.33 0.8756 12.14 26.34 0.8772 4.34 26.35 0.8773 1.50

Average 27.37 0.8568 11.90 27.78 0.8726 4.33 27.78 0.8705 1.60

Table 4.6: PSNR and MSSIM results for different algorithms for the test set of Fig. 4.7.

[24] Proposed Proposed (time enhanced)

PSNR MSSIM time PSNR MSSIM time PSNR MSSIM time

Stairs 28.30 0.8846 11.15 28.45 0.8949 4.73 28.46 0.8951 1.61

Man 34.97 0.9096 10.67 34.84 0.9177 4.98 34.84 0.9179 1.65

Bird 34.34 0.9454 10.90 35.43 0.9548 4.60 35.44 0.9550 1.46

Woman 26.63 0.7667 10.46 27.34 0.7916 4.41 27.35 0.7921 1.63

Jump 27.32 0.8645 10.26 27.89 0.8762 4.94 27.89 0.8762 1.70

Deer 26.13 0.7920 10.87 25.23 0.7399 4.69 25.26 0.7410 1.72

Spear 30.86 0.9162 10.82 30.88 0.9211 4.55 30.88 0.9211 1.79

Hindu 33.68 0.9366 10.83 34.10 0.9416 4.46 34.10 0.9417 1.62

House 22.98 0.8130 10.88 24.64 0.8532 4.21 24.64 0.8532 1.62

Model 27.80 0.9055 11.26 28.19 0.9118 4.31 28.19 0.9122 1.66

Tree 22.72 0.7390 11.59 24.03 0.7836 4.42 24.03 0.7838 1.55

Girl 32.04 0.9205 10.84 31.99 0.9263 5.00 31.99 0.9265 1.77

Eiffel 27.42 0.8712 12.51 28.76 0.9018 4.04 28.75 0.9019 1.77

Beach 27.12 0.9102 10.42 27.21 0.9108 5.09 27.23 0.9112 1.73

Average 28.74 0.8696 10.88 29.21 0.8797 4.64 29.22 0.8742 1.66
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Chapter 5

Concluding Remarks

In this thesis, we introduced a new method for video de-interlacing based on the as-

sumption that the available set of interpolators are states of a Markov chain. Then

with the help of reasonable assumptions, we derived approximations for the transi-

tion probabilities of the Markov chain. Next, the problem of choosing the optimal

interpolator for each missing pixel was formulated using a maximum a posteriori se-

quence estimation and was solved efficiently on a trellis diagram spanning the missing

rows. At this stage we utilized the Viterbi algorithm to find the optimum sequence

of interpolators. Next step, reformulation of the algorithm allowed for solving it

using Forward-Backward algorithm. We obtained better performance with the lat-

ter formulation but with more computational complexity. The algorithms proposed

have better results compared to well-known algorithms published on de-interlacing.

Also the proposed algorithms benefit from an almost parameter-free implementation

despite many algorithms that suffer from parameters that need to be adjusted empir-

ically. In terms of timing, our current implementation of the algorithms do not run

in real-time, however, as discussed in the last two chapters, the algorithm is highly
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potent of being implemented using parallel programming. The real-time implemen-

tation of the algorithms remains as a related future work.

Moreover, we have modified the proposed MRF-based model to use it for image

resolution enhancement by a factor of two. The proposed image up-scaling algorithm

shows a great performance objectively and visually with a variety of test images and

is superior to many state-of-the-art up-scaling algorithms published in this field. Ac-

cording to the timing discussions in this thesis for our proposed up-scaling algorithm,

the current version of the algorithm obtains greater results with smaller running time

compared to some well-known competing algorithms. Better visual results and lower

computational complexity are two major advantages to our newly proposed up-scaling

algorithm .

Many related interpolation problems such as frame-rate conversion and view in-

terpolation can adopt our proposed model. Modifying the proposed model to use it in

these specific applications can also be considered as a future work. The last chapter

of the thesis, which was dedicated to using the proposed MRF-based model for image

up-scaling, is a proof that the algorithm is highly potent of being applied in different

image/video interpolation subfields in the future.
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Appendix A

Structural Similarity (SSIM)

One of the widely used measures of similarity between two images is the structural

similarity (SSIM). SSIM has been designed to improve the traditional metrics of

similarity such as the mean of squared errors (MSE) or the peak signal-to-noise ratio

(PSNR). The latter methods have been accepted to be inconsistent with the human

visual perception. In other words, SSIM considers image degradation as the perceived

change in structural information (not just perceived error as in PSNR or MSE). The

underlying idea is the strong inter-dependencies between spatially-close pixels. The

mean structural similarity (MSSIM) is usually calculated on windows of an image.

If w1 and w2 are two windows of size N × N then following is the definition of the

SSIM:

SSIM(w1, w2) =
(2µw1µw2 + c1) (2σw1w2 + c2)(

µ2
w1

+ µ2
w2

+ c1

) (
µw1 + σ2

w2
+ c2

) . (A.1)

where µw1 , µw2 , µw1 , σ
2
w2

and σw1w2 are means of w1 and w2, variances of w1 and

w2 and covariance of w1 and w2, respectively. c1 and c2 are variables that are used
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(a) Original (b) MSE=144, SSIM=0.988

(c) MSE=144, SSIM=0.840 (d) MSE=144, SSIM=0.694

Figure A.1: Three different images with the same MSE but different SSIM. The images are from:[35]

.

for stabilization when division is with weak denominator. Usually c1 = (k1L)2 and

c2 = (k2L)2 when L is the dynamic range of pixel values and k1 and k2 are set

empirically. We exactly use the same settings of [35].

Figure A.1 illustrates the effectiveness of the SSIM versus MSE. Different images

have the same MSE, however the SSIM metric greatly distinguishes the corruption in

these images in accord with what is perceived by human visual system. The images
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are a sample demonstration from the webpage for [35]1.

1https://ece.uwaterloo.ca/ z70wang/research/ssim/
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Appendix B

Markov Random Fields (MRF)

The spatial property can be modeled through different aspects, among which, contex-

tual constraint is a powerful option. Markov random fields (MRF) paves the way to

model context-dependent entities such as correlated features and image/video pixels.

Usually for an MRF, a neighborhood system is defines as N = {Nxy, (x, y) ∈ I} where

I is the set of all sites (e.g. image pixels) and Nxy is the set of neighbors of the site at

position (x, y). For Nxy to be a neighborhood of (x, y) we should have the following:

(x, y) * Nxy, (x, y) ⊆ Nx′y′ ⇔ (x′, y′) ⊆ Nxy. (B.1)

In other words, the neighborhood of (x, y) does not include the (x, y) itself and if

(x, y) is a neighbor of (x′, y′) then (x′, y′) is a neighbor of (x, y) as well and vice versa.

Figure B.1 shows a few sample neighborhoods obeying (B.1). By definition, if z is an

MRF then:
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(a) (b)

(c) (d)

Figure B.1: Three sample neighborhoods consistent with the definition of the neighborhood systems above. (a)
and (c) Two dimensional neighborhoods (b) and (d) Three dimensional samples.

Pr(z) > 0, ∀z ∈ χ (B.2)

Pr(z(x, y)|∀(x′, y′) 6= (x, y)) = Pr(z(x, y)|∀(x′, y′) ∈ Nxy). (B.3)

According to Hammersley-Clifford theorem, an MRF can be characterized by Gibb’s

distribution as:

Pr(z) =
1

Q
exp{−U(z)} (B.4)

where Q is a normalizing factor called the partition function:
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Q =
∑
z∈χ

exp{−U(z)}. (B.5)

and U(x) is an energy function of the form:

U(z) =
∑
c∈C

Vc(z) (B.6)

which is a sum of cliques’ potentials Vc(x) over all possible cliques C. A clique is a

subset of all sites in which each pair of distinct sites are neighbors or the clique has

a single site. Figure B.2 illustrates two sample neighborhood systems and associated

cliques.

(a)

(b)

Figure B.2: Two different sample neighborhoods and their corresponding set of cliques. Note that cliques
illustrated obey the above said definition for cliques.
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According to the application and how MRFs are used in that specific applica-

tion, the potential functions are defined. Then the corresponding MRF is estimated

through an optimization stage. The objective function used for optimization step can

take different shapes and include different terms with accord to the problem.
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