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Abstract

The phase behavior of AB diblock copolymers mixed with C homopolymers (AB/C),

in which A and C are capable of forming hydrogen-bonds, is examined using self-

consistent field theory. The study focuses on the modeling of hydrogen-bonding in

polymers. Specifically, we examine two models for the formation of hydrogen-bonds

between polymer chains. The first commonly used model assumes a large attractive

interaction parameter between the A/C monomers. This model reproduces correct

phase transition sequences as compared with experiments, but it fails to correctly de-

scribe the change of lamellar spacing induced by the addition of the C homopolymers.

The second model is based on the fact that hydrogen-bonding leads to A/C complex-

ation. We show that the interpolymer complexation model predicts correctly the

order-order phase transition sequences and the decrease of lamellar spacing for strong

hydrogen-bonding. Our analysis demonstrates that hydrogen-bonding of polymers

should be modeled by interpolymer complexation.
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Chapter 1

Introduction

The complex and elegant nature of diblock block copolymer/ homopolymer blends

has attracted much attention both theoretically and experimentally over the recent

years.1–6 One of the most important properties of such blends is their ability to self-

assemble into ordered structures. The size and shape of these structures can be

controlled by adjusting the chemical and physical properties of the polymer chains.

Some potential applications of these nano-structures include nano-lithography, pho-

tonics, data storage and drug delivery.1,7 Scientists and engineers often search for

methods to diversify and enhance the properties of polymeric materials. One method

for enriching the functionality of polymeric materials is by blending polymers of differ-

ent chemical structures and architecture. Although polymer blending is a promising

route, most polymer chains are immiscible due to their high degree of polymeriza-

tion. The entropic term in this case is vanishingly small and the miscibility depends

solely on the enthalpic term. This fact means that polymer blending often results in
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macrophase separation.8 To induce the formation of a homogenous phase, favorable

intermolecular interactions such as ion-dipole, π-π interactions or hydrogen-bonding

are often utilized.1,8

In this thesis, we focus on the utilization of hydrogen-bonding to enhance mis-

cibility in AB/C blends, where hydrogen-bonds are formed between the A and C

monomers. The effect of hydrogen-bonding on the phase behavior of diblock copoly-

mer/ homopolymer blends has been investigated recently in a number of experiments

9–14. In particular, Chen et al.10 examined the effect of hydrogen-bonding strength

on the phase transitions in AB/C systems. In this study, the authors showed that

the phase behavior of the blend is affected by the strength of hydrogen-bonds formed

between the A and C monomers. They observed that increasing the homopolymer

concentration results in an order-order phase transition for strong hydrogen-bonding

and macroscopic phase separation for weak hydrogen-bonding. In similar studies,

Dobrosielska et al.12,14 reported on the formation of micro and macrophase separated

regions in hydrogen-bonded AB/C blends. They further investigated the effect of

homopolymer molecular weight on the formation of nanophase separated structures.

12 Lee et al.13 studied the effect of homopolymer concentration on the phase behavior

of AB/C blends, where hydrogen-bonding occurs between A/C and B/C monomers.

It was demonstrated that the stronger hydrogen-bonding between the A/C monomers

results in a phase separated state, with the formation of mixed A/C domains in the

B rich matrix.13 These experiments clearly indicate the importance of understanding

the effect of hydrogen-bonding on polymer blending.

2
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Although experiments provide a solid foundation for investigating hydrogen-bonding

in AB/C blends, it is useful and essential to develop theoretical models for exploring

the large parameter space of these complex systems. A commonly used model mim-

icking hydrogen-bonding between polymers assumes a large attractive (negative) in-

teraction parameter (χ < 0) between the monomers.13,15 Here χ is the Flory-Huggins

interaction parameter. The attractive interaction provides a simple way to model

the enhanced miscibility created by hydrogen-bonds. This model has been used

extensively in the literature to investigate the phase behavior of hydrogen-bonded

polymer blends. Han et al.15 studied the qualitative phase behavior of binary blends

of block copolymers using a negative interaction parameter for modeling the for-

mation of hydrogen-bonds between C and B monomers in AB/AC blends. Using

Self-Consistent Mean Field Theory (SCFT), they investigated the phase transition

sequence with respect to the AB molecular weight and volume fraction. They have

reported on a qualitative agreement between the phase behavior calculated using the

negative interaction SCFT model and experiments. A similar approach has been

used to study hydrogen-bonding in diblock copolymer/ homopolymer blends.3,9,16

Lowenhaupt et al.16 studied the phase behavior of AB/A and AB/C blends using

the Random-Phase Approximation (RPA) technique. They modeled the attractive

interaction between the A and C monomers using a negative interaction parameter,

and reported on a micro-to-macro phase transition upon increase in the C homopoly-

mer concentration. On the other hand, it must be emphasized that, although the

attractive interaction model provides a convenient method for investigating the effect

of hydrogen-bonding on the phase behavior of polymer blends, it does not provide an

accurate description of the hydrogen-bonding.

3
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The correct approach for modeling hydrogen-bonding is to use interpolymer com-

plexation, where hydrogen-bonds act as chemical bonds between the polymers, result-

ing in supramolecular structures. This approach has been used recently to investi-

gate hydrogen-bonding in homopolymer/ homopolymer17–19 and diblock copolymer/

homopolymer blends5. Feng et al.19 developed a field-theoretic model for study-

ing diblock copolymer complexes. In their work, they investigated the properties of

supramolecular diblock chains formed via reversible bonding of two chemically distinct

homopolymer chains19. Similar work by Nakamura and Shi examined the formation of

ladder like structures formed by complete and symmetric polymer-polymer complexa-

tion.17 These studies suggest that hydrogen-bonding should be modeled by assuming

a donor-acceptor relationship between monomers with hydrogen-bonding capability.

Although the interpolymer complexation method provides a more accurate model of

hydrogen-bonding, a comprehensive comparison between this model, the attractive

interaction model and experiments has been lacking.

Figure 1.1: Schematic diagram for AB/C system, where the C homopolymer is ca-
pable of hydrogen bonding with block A of the diblock copolymer.

4
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In this thesis, a detailed comparison between the attractive interaction and in-

terpolymer complexation models is carried out for modeling hydrogen bonding in

an AB/C blend. The hydrogen-bonds are assumed to occur between the A and

C monomers, as shown schematically in Figure [1]. The equilibrium phase behav-

ior of the system is calculated using SCFT. In the attractive interaction model,

hydrogen-bonding is represented by assuming a large negative χAC . The strength

of hydrogen-bonds is modeled by the relative magnitude of χAC . In the interpolymer

complexation model, hydrogen-bonding is described as a complete and symmetric

complexation between the A and C segments, where the strength of the hydrogen-

bonding is represented by the number of bonds (ND) and the energy gain per bond

(ε). By investigating the phase behavior and lamellar spacing, it can be shown that

interpolymer complexation model provides a more complete method for modeling the

hydrogen-bonding between polymers.

5



Chapter 2

Self-Consistent Field Theory

2.1 Theoretical Framework

Developing a theoretical framework for understanding the statistical properties of

block copolymers is not a trivial task. A particle-based view of polymeric melts/

solutions, even those with simple chemical structures, requires a large set of variables

specifying the position and velocity of every particle. This atomistic perspective is

often used for small systems (approximately 1000 atoms), where the numerical solu-

tions are computationally less expensive. An alternative method for investigating the

thermodynamics of polymeric systems is the field theoretic construction of the par-

ticle based models.20 In this approach a particle to field transformation is carried out.

In this thesis, the focus is on the complexation of diblock copolymers and ho-

mopolymers, resulting in the formation of complexed supramolecular structures. This

process is denoted as AB+C
A′B′C ′D, and is shown in Figure [2.1]. The prime sym-

bol on each letter is used for bookkeeping purposes to distinguish between the A, B

6
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and C segments in the diblock copolymer, homopolymer and complexed chains. The

D segments are created by the complexation of the A and C monomers. The model

Figure 2.1: Schematic diagram showing the complexation process. The prime symbols
are used for bookkeeping purposes to distinguish between the A, B and C segments
in the diblock copolymer, homopolymer and complexed chains.

developed in this section considers linear complexation, where nonlinear polymer ar-

chitectures are omitted for simplicity. In other words, the formation of star and/or

comb like structures is not considered. To develop a theoretical framework for the

interpolymer complexation model, two ingredients are required:20

1. A coarse-grained model describing the conformation of polymer chains.

2. An interaction model describing the strength and type of interactions.

Conformation of the polymer chains is described by the Gaussian model20, where

polymer chains are considered as a sequence of spherical beads connected by freely-

rotating linear springs. In this model, chains are considered flexible with a stretching

7
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energy given by;20

H0[R
α
i (s)] =

3

2b2α

∫ Nα

0

ds
(dRα

i (s)

ds

)2
(2.1)

where Nα (α = A,B,C,A′, B′, C ′, D) denotes the degrees of polymerization of the

different species. The space curve Rα
i (s) specifies the position of a given segment s,

with i running over the number chains for given species. The Kuhn length bα is used

to measure the rigidity of the polymer chain. The derivative of the space curve Rα
i (s)

measures the local stretching of the chain, and thus Eq.(2.1) describes the harmonic

energy associated with a given chain.

The type and strength of the interactions between segments is controlled by the

Flory-Huggins parameters. The interaction between segments of two different species

is represented by χαβ, where α, β = A,B,C,A′, B′, C ′, D. Using this notation, the

interaction energy of the system is given by,

W [φ̂(r)] =
ρo
2

∑
α 6=β

∫
drφ̂α(r)φ̂β(r)χαβ (2.2)

where φ̂α(r) is the volume fraction of the α segment and ρo is the monomer density

defined as the number monomers per unit volume. The hat (ˆ) symbol on the volume

fraction indicates that φ̂(r) is a function of the chain configuration. In other words,

to determine the volume fraction, one needs the information on the configuration of

every chain in the system. The volume fraction (φ̂α(r)) can be written in terms of

the segment density n̂α(r) at position r, which is defined as,

n̂α(r) =

np∑
i=1

∫ Nα

0

dsδ(r−Rα
i (s)) (2.3)

8
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where np, with p = 1, 2, 3, correspond to the total number of diblock copolymer, ho-

mopolymer and complexed chains respectively. The summation in the above equation

is over the total number polymers. The reference segment density ρo in Eq.(2.2) is

1/vo, with vo being the volume occupied by a monomer. The volume fraction φ̂α(r)

in terms of n̂α(r) and vo is written as,

φ̂α(r) =
ξα
ρo
n̂α(r) =

ξα
ρo

np∑
i=1

∫ Nα

0

dsδ(r−Rα
i (s)) (2.4)

where ξα is the ratio between the volume of α segments and that of the reference.

Using the volume fraction given by Eq.(2.4), the interaction energy for the system

can be written as,

W [φ̂(r)] =
1

2

∑
α 6=β

ρoχαβ
ξαξβ

∫
drφ̂α(r)φ̂β(r) (2.5)

The combination of Eqs.(2.1) and (2.5) defines the total energy of the system.

The statistical mechanics of our model is developed in the grand canonical en-

semble with a fixed activity, volume and temperature. In this model, the activity is

defined as, z ≡ exp[µp/kT ], with µp is the chemical potential of the p type chain. The

number of complexed polymer chains (n3) is dependent on the complexation between

the A and C segments and therefore the maximum value which n3 can take is equal

to the minimum value of the set {n1, n2}. Using the notation described above, the

9
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grand canonical partition function of the system can be written as,

Ξ =
∞∑

n1=0

∞∑
n2=0

Min[n1,n2]∑
n3=0

λn1
1

(n1 − n3)!

λn2
2

(n2 − n3)!

λn3
3

n3!

∫
D[R(s)]P0[R(s)]

×
∏
r

δ
(∑

α

φ̂α(r)− 1
)

exp
[
−W [φ̂(r)]

]
(2.6)

where λ1, λ2 and λ3 are the fugacity of the diblock copolymer, homopolymer and

complexed polymer chains, respectively. The incompresibility of the segments is im-

posed by the delta function in Eq.(2.6). This condition ensures that at every point in

space, the volume fraction of all species must add up to one. The stretching energy

of the chains defined by Eq.(2.1), is captured by P0[R(s)], which can be written as,

P0[R(s)] =
[ ∏
α=A,B

n1−n3∏
i=1

P0(R
α
i (s))δ[RA

i (NA)−RB
i (NB)]

][ n2−n3∏
j=1

P0(R
C
j (s))

]
[ ∏
β=A′,B′,C′,D

n3∏
l=1

P0(R
β
l (s))δ[RA′

l (NA′)−RB′

l (NB′)]δ[R
A′

l (0)−RD
l (ND)]

δ[RC′

l (NC′)−RD
l (0)]

]
(2.7)

where the delta functions ensure the connectivity of the chains. For example the

end segments NA and NB are connected to create the diblock copolymer AB. The

probabilities P0(R
α
i (s)) in Eq.(2.7) are known as the Wiener measure and have the

form,

P0(R
α
i (s)) = Ã exp

[
−3

2b2α

∫ Nα

0

ds

(
dRα

i (s)

ds

)2
]

(2.8)

where Ã is a normalization constant. The expression inside the exponential in the

above equation is the chain stretching Hamiltonian defined in Eq.(2.1). Equation

10
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(2.8) describes the chain configuration probability.

Analytical evaluation of the partition function (2.6) is not possible, because it

depends on the chain conformation through the volume fraction elements. A com-

mon mathematical trick for solving the partition function is by introducing a dummy

function φ(r), which couples to the volume fraction φ̂(r). This can be written math-

ematically as,

1 =

∫
D[φα]

∏
α

∏
r

ρo
ξα
δ
(
φα(r)− φ̂α(r)

)
(2.9)

By inserting this identity into Eq.(2.6), the conformation dependence of the partition

function (2.6) can be separated from the interaction term.

Ξ =
∞∑

n1=0

∞∑
n2=0

Min[n1,n2]∑
n3=0

λn1
1

(n1 − n3)!

λn2
2

(n2 − n3)!

λn3
3

n3!

∫
D[R(s)]P0[R(s)]D[φα]

×
∏
α

∏
r

δ
(∑

α

φα(r)− 1
) ρo
ξα
δ
(
φα(r)− φ̂α(r)

)
exp
[
−W [φ(r)]

]
(2.10)

Using the Fourier transform representation of the identity (2.9), the partition function

(2.10) is further modified. This transformation introduces auxiliary fields ωα(r), which

couple to the volume fractions φα(r).

Ξ =
∞∑

n1=0

∞∑
n2=0

Min[n1,n2]∑
n3=0

λn1
1

(n1 − n3)!

λn2
2

(n2 − n3)!

λn3
3

n3!

∫
D[φ(r)]D[ω(r)]

∏
r

δ
(∑

α

φα(r)− 1
)

× exp
[∑

α

∫
dr
ρoωα(r)φα(r)

ξα
−W [φ(r)]

] ∫
D[R(s)]P0[R(s)]

× exp
[
−
∑
α

∫
dr
ρo ωα(r)φ̂α(r)

ξα

]
(2.11)

The above mathematical treatment has transformed the many body interaction into

11
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the interaction of a single chain with fields φα(r) and ωα(r). The conformation depen-

dence of the partition function is now captured by the single chain partition function.

Using Eqs.(2.7), (2.8) and (2.11), the single chain partition functions for the diblock

copolymer, homopolymer and complexed chains can be written as,

Q1 =
1

V

∫
D[RA(s)]D[RB(s)]P0[R

A(s)]P0[R
B(s)]exp

[
−
∑
α=A,B

∫ Nα

0

ds ωα[Rα(s)]
]

×δ(RA(NA)−RB(NB)) (2.12)

Q2 =
1

V

∫
D[RC(s)]P0[R

C(s)]exp
[
−
∫ NC

0

ds ωC [RC(s)]
]

(2.13)

Q3 =
1

V

∫
D[RA′(s)]D[RB′(s)]D[RC′(s)]D[RD(s)]P0[R

A′(s)]P0[R
B′(s)]P0[R

C′(s)]

× P0[R
D(s)] exp

[
−

∑
α=A′,B′,C′,D

∫ Nα

0

ds ωα[Rα(s)]
]
δ[RA′(NA′)−RB′(NB′)]

× δ[RA′(0)−RD(ND)]δ[RD(0)−RC′(NC′)] (2.14)

where V is the total volume of the system. Using the above definition, the grand

canonical partition function is written as,

Ξ =
∞∑

n1=0

∞∑
n2=0

Min[n1,n2]∑
n3=0

λn1
1

(n1 − n3)!

λn2
2

(n2 − n3)!

λn3
3

n3!

[
Q1V

]n1−n3
[
Q2V

]n2−n3
[
Q3V

]n3

×∫
D[φ(r)]D[ω(r)]

∏
r

δ
(∑

α

φα(r)− 1
)

exp
[∑

α

∫
dr
ρoωα(r)φα(r)

ξα
−W [φ(r)]

]
(2.15)

12
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By applying the following transformation,

∞∑
n1=0

∞∑
n2=0

Min[n1,n2]∑
n3=0

−→
∞∑

σ1=0

∞∑
σ2=0

∞∑
σ3=0

(λ1)
n1

(n1 − n3)!

(λ2)
n2

(n2 − n3)!

(λ3)
n3

nD!
−→ (λ1)

(σ1+σ3)

σ1!

(λ2)
(σ2+σ3)

σ2!

(λ3)
σ3

σ3!
(2.16)

the partition function can be written as,

Ξ =

∫
D[φ(r)]D[ω(r)]

∏
r

δ
(∑

α

φα(r)− 1
)

exp
[∑

α

∫
dr
ρoωα(r)φα(r)

ξα

−W [φ(r)] + λ1Q1V + λ2Q2V + λ1λ2λ3Q3V
]

(2.17)

The Fourier representation of the incompressibility condition is used to further sim-

plify the partition function. This modification, introduces an extra field (η(r)) to

ensure the incompressibility in the system. This extra field is a Lagrangian multiplier

21, and the grand canonical partition function in terms of φ(r), ω(r) and η(r) fields

becomes

Ξ =

∫
D[φ(r)]D[ω(r)]D[η(r)] exp

[
−
∫
dr η(r)

(∑
α

φα(r)− 1
)

+

∑
α

∫
dr
ρoωα(r)φα(r)

ξα
−W [φ(r)] + λ1Q1V + λ2Q2V + λ1λ2λ3Q3V

]
(2.18)

The above grand canonical partition function is written in terms of a free energy func-

tional G(φ, ω, η), Ξ =
∫
D[φ]D[ω]exp[−G(φ, ω, η)], where the free energy G(φ, ω, η)

13
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is given by,

G(φ, ω, η) =

∫
dr η(r)

(∑
α

φα(r)− 1
)
−
∑
α

∫
dr
ρoωα(r)φα(r)

ξα

+W [φ(r)]− λ1Q1V − λ2Q2V − λ1λ2λ3Q3V (2.19)

Although the above form of the partition function seems simple, it is not possible to

evaluate its solutions in closed form.

One of the most popular techniques for evaluating the above partition function

is the mean-field approximation, or the SCFT20. The basic idea of SCFT is that

the functional integral (2.18) in equilibrium is dominated by a set of specific field

configurations φ̃(r), ω̃(r) and η̃(r), where these configurations are the stationary

points of the free energy functional G(φ, ω, η). This requires evaluating

δG(φ, ω, η)

δφ
=
δG(φ, ω, η)

δω
=
δG(φ, ω, η)

δη
= 0 (2.20)

which results in the Self-Consistent Field Equations (SCFE). Taking the degree of

polymerization of the diblock chain (N1) as the reference, the relative size of the

homopymer and the complex chains can be written as

κ =
N2

N1

κ′ =
N3

N1

(2.21)

Using κ and κ′ and the condition fA+fB = 1, the segment fractions of the complexed

14
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chain become,

fA′ =
f

κ′
− 1 + κ

κ′
+ 1

fB′ =
(1− f)

κ′

fC′ = 1− 1

κ′

fD =
1 + κ

κ′
− 1 (2.22)

where fA′ +fB′ +fC′ +fD = 1. Using the above notation, carrying out the functional

derivatives of Eq.(2.19) results in,

φα(r)

ξα
= λ1λ01

∫ fα

0

ds qα(r, s)q†α(r, fα − s)

φC(r)

ξC
=

λ2λ02
κ

∫ κ

0

ds qC(r, s)qC(r, κ− s)

φβ(r)

ξβ
=

λ1λ2λ3λ03
κ′

∫ κ′fβ

0

ds qβ(r, s)q†β(r, κ′fβ − s)

ωγ(r)

ξγ
=

1

2

∑
γ 6=γ′

φγ′(r)χγγ′

ξγξγ′
+ η(r)∑

γ

φγ(r) = 1 (2.23)

where (α = A,B), (β = A′, B′, C ′, D) and (γ, γ′ = A,B,C,A′, B′, C ′, D). In the

above set of equations, q and q† are the forward and complementary end-integrated

propagators. The chain propagators are defined as,

Qα(r, s|r′, 0) =

∫ R(s)=r

R(0)=r′
D[R(s)]exp

[
−
∫ Nα

0

ds
( 3

2b2α
(
dR(s)

ds
)2 + ωα(R(s))

)]
(2.24)

where Qα(r, s|r′, 0) corresponds to the conditional probability of segment s being

15
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found at position r, given that segment 0 was at position r′. The propagator given in

Eq.(2.24) is closely related to the quantum propagator constructed using the Feynman

path integrals22. The end-integrated propagators are calculated as,

qα(r, s) =

∫
dr′Qα(r, s|r′, 0)

q†α(r, s) =

∫
dr′dr′′Qα(r, s|r′, 0)Qβ(r′, Nβ|r′′, 0) (2.25)

Figure[2.2] is a diagram showing the end-integrated propagators for a given segment

s. The q(r, s) function describes the conditional probability of going from one end of

the chain to the segment s. Similarly, q†(r, f − s) defines the conditional probability

of going from the other end of the chain to the joining segment and then to segment

s. By discretizing the chain and using Taylor expansion,20 it can be shown that the

Figure 2.2: Schematic diagram showing the end integrated propagators for a diblock
chain.

propagators satisfy a Fokker-Planck like equation known as the modified diffusion

equation20,21. These equations for the forward and complementary end-integrated

16
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propagators are

∂qα(r, s)

∂s
=

N1b
2
α

6
52 qα(r, s)−N1ωα(r)qα(r, s)

−∂q
†
α(r, s)

∂s
=

N1b
2
α

6
52 q†α(r, s)−N1ωα(r)q†α(r, s) (2.26)

where s runs from 0 to Nα. Equations (2.26) describe the diffusion of a particle

through fields ωα, with the time variable being replaced by the segment number.

The length scale in the system can be scaled by R2
g, where R2

g defines the average

size of a polymer chain. This quantity is the root-mean-squared distance between

the segments and the center of the mass. Given the appropriate initial and bound-

ary conditions, the above modified diffusion equations can be solved. The numerical

treatment of the modified diffusion equation is described extensively in chapter four.

Solving equations (2.26) requires the initial configuration of the ωα(r) fields. This

initial configuration often depends on the numerical technique and the specifics of

the model. Assuming that the initial ωα(r) fields are given, q(r, s) and q†(r, s) can be

calculated. With this information, the SCFE and the free energy of the system can

be evaluated. If the initial ω(r) and the calculated φ(r) and η(r) fields are the saddle

point solutions to the mean field approximation, then the iteration process is done.

Otherwise, new ω(r) fields can be constructed by a small perturbation about the

original fields. This process is iterated until the self-consistent solutions are achieved.

17
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2.2 The Homogenous Phase

The self-consistent field equations (2.23) are the saddle-point solutions of the

free energy functional G(φ, ω, η). The simplest solution of the SCFE is that of the

homogenous phase, where the φ, ω and η fields are uniform. The single chain partition

functions given by Eqs.(2.12), (2.13) and (2.14) in the homogenous phase can be

written as

Q1 = exp
[
− ωAfA − ωBfB

]
Q2 = exp

[
− κ ωC

]
Q3 = exp

[
κ′ (−ωA′fA′ − ωB′fB′ − ωC′fC′ − ωDfD)

]
(2.27)

where the stretching energy is set to zero. Similarly, the self-consistent field equations

can be written as

φ̄1 = λ1λ01Q1

φ̄2 = λ2λ02Q2

φ̄3 = λ1λ2λ3λ03ΨQ3

ω̄α
ξα

=
∑
β 6=α

φ̄βχαβ
ξαξβ

+ η∑
α

φ̄α = 1 (2.28)

where Ψ = fA′ + fB′ + fC′ + ξDfD. In the above set of equations, the monomer size

of the single-stranded chains is used as the reference. This means that ξα = 1 for

α = A,B,C,A′, B′ and C ′. The free energy functional G(φ, ω, η) for the homogenous

18
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phase becomes,

GH(φ, ω, η) =
∑
α

ω̄αφ̄α
ξα
− 1

2

∑
α 6=β

χαβφ̄αφ̄β
ξαξβ

+

λ1Q1 +
λ2Q2

κ
+
λ1λ2λ3Q3

κ′
(2.29)

where the bar symbol corresponds to the average value of the parameters. Using the

homogenous mean field equations (2.28), the free energy (2.29) can be rewritten as,

GH(φ, ω, η) = σφ̄s −
θφ̄s
κ
− 1− φ̄s

Ψκ′
+W (φ̄s) + σφ̄sln(σφ̄s) +

θφ̄s
κ

ln(θφ̄s) +
1− φ̄s
κ′Ψ

ln(
1− φ̄s

Ψ
)− φ̄s[ln(Λ) + ln(z)] (2.30)

where φ̄s is the volume fraction of the single-strand chains in the homogenous phase.

This parameter can be written in terms of the volume fraction of the diblock copoly-

mer and homopolymer chains such that φ̄s = σφ̄1 + θφ̄2, where φ̄1 = φ̄A + φ̄B and

φ̄2 = φ̄C . Because the incompressibility condition requires that φ̄1 + φ̄2 + φ̄3 = 1, it

is possible to write φ̄3 as 1− φ̄s. The parameters z and Λ in the last part of equation

(2.30) contain the chemical potential contribution to the free energy. They can be

defined as,

z = exp
[
µ1(σ −

1

Ψκ′
) + µ2(

θ

κ
− 1

Ψκ′
)− εfDN1

Ψ
− µ3

κ′Ψ

]
Λ = N

σ+ θ
κ
− 1
κ′Ψ

1 κ
θ
κκ′

−1
κ′Ψ (2.31)

where µ1 , µ2 and µ3 are chemical potentials of diblock copolymer, homopolymer

and complexed polymer chains respectively. The strength of a single hydrogen-bond
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is described by the parameter ε. By fixing these parameters, the homogenous free

energy can be calculated. This energy is the reference with respect to which the free

energy of heterogeneous phases are calculated.

At the equilibrium state, the fraction of the complexed chains can be determined

by applying the mass action law. The mass action law is determined by chemical

equilibrium. For the specific case of AB/C system, the mass action law can be

written as,

1− φ̄s
σφ̄sρφ̄s

= Keq (2.32)

where Keq is the equilibrium constant. Using the self-consistnt field equations (2.28),

the above mass action law can be written as,

1− φ̄s
σθφ̄2

s

=
κ′

κN1ρo

Q3

Q1Q2

(2.33)

where the analysis of the solutions to this equation would allow for determining the

fraction of the complexed chains at the equilibrium state. The solutions to equa-

tion (2.33) for various degree of polymerization and hydrogen-bonding strengths are

investigated in chapter five.
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Chapter 3

The Random Phase Approximation

The Self-Consistent Field Theory developed in the previous section for the com-

plexation model is specified by a large number of parameters, resulting in a large

parameter space. Investigating the phase behavior of the AB/C blend requires ex-

ploring this parameter space. This task could be computationally expensive and

thus an approximate description of the phase behavior, prior to solving the SCFT,

is desirable. The Random Phase Approximation technique (RPA) allows for the de-

termination of the stability of the homogenous (or disordered) phase, thus providing

an overall picture of the phase behavior of a polymeric system.21 Leibler23,24 was

the first to use random phase approximation to analyze the microphase separation of

diblock copolymers, particularly the order-disorder phase transition. The calculation

done by Leibler can be extended to the complexation model developed in chapter two.

The stability of the disordered phase is determined by analyzing the free energy

difference (∆F ) between that of the homogenous phase and the phase created by

adding small fluctuations to the homogenous phase. The order parameter δφ(r) in
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this model is defined as,

δφα(r) = φα(r)− φ̄α (3.1)

Using this order parameter we can re-express the free energy functional in terms of

δφα(r). It is important to note that only small fluctuations about the average, created

by some external fields Wα, are considered. The interaction between the segments are

not considered at this point, but will be introduced later. The free energy difference

∆F can be written as

F [δφ(r)]− F [0] = −ln
[∑

n=1,2,3Qn[W (r)]

Q[0]

]
−
∑
α

∫
drWα(r)δφα(r) (3.2)

where F [0] is the free energy of the system with no density fluctuations (the free en-

ergy of the disordered phase). As before, α = A,B,C,A′, B′, C ′, D and Q[W (r)] and

Q[0] are the single chain partition functions of diblock, homopolymer and complexed

chains in the perturbed and homogenous phase, respectively. Because there are no

density fluctuations in the homogenous (disordered) phase, the external fields Wα(r)

are set to zero.

Since only small fluctuations about the disordered phase are considered, the right

hand side of the Eq.(3.2) can be expanded in a functional Taylor series around Wα(r).

21 Taking the Fourier transform of this expansion and keeping only the first non-zero

term results in,

F [δφα(q)]− F [0] =
1

2

∑
αβ

∑
q

δφα(q)δφβ(q)

S?αβ(q)
+ ... (3.3)
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In the above equation, S?αβ(q) is the Fourier transform of the two point correlation

function in the phase created by the small fluctuations. Stability of the homogenous

phase is determined by analyzing the eigenvalues λi(q) of the correlation matrix. The

entries of this matrix are the two point correlation functions S?αβ(q).

By considering the condition that small density fluctuations δφα(r) are coupled

to weak artificial external fields Wα(r), the following linear relation can be written,

δφα(q)

ξα
= −

∑
β

S0
αβ(q)Wβ(q) (3.4)

In the above equation, S0
αβ(q) are the two-point correlation functions in the homoge-

nous phase. The Wβ(q) fields can be divided into two parts; ωEXβ (q), which are the

artificial external fields and ωRPAβ (q), which contain the contribution from the inter-

actions between the segments. The ωRPAβ (q) fields for an incompressible system can

be written as,

ωRPAβ (q)

ξβ
=
∑
α

χβαδφα(q)

ξαξβ
+ η (3.5)

where η is the Lagrange multiplier. Introducing Eq.(3.5) into (3.4) results in,

δφα(q)

ξα
= −

∑
β

S0
αβ(q)

[
ωEXβ (q) +

∑
γ 6=β

χβγδφγ(q)

ξγξβ
+ η
]

(3.6)

where the incompressibility condition (neglecting short length fluctuations) ensures

that
∑

α δφα = 0. Enforcing this condition, one could solve for η and insert it back

23



M.Sc. Thesis - Ashkan Dehghan McMaster - Physics And Astronomy

into equation (3.6) to get the response of the density function to the external fields

ωEXα (q). The spatial structure of the heterogenous phase, formed by the small density

fluctuations, is characterized by S?αβ(q).

Solving for η in the above expression is most simply done by writing Eq.(3.6) in

the matrix form;



δφ1(q)/ξ1

δφ2(q)/ξ2

.

.

.

δφm(q)/ξm


= −



S0
11(q) S0

12(q) ... S0
1m(q)

S0
21(q) S0

22(q) ... S0
2m(q)

. . ... .

. . ... .

. . ... .

S0
m1(q) S0

m2(q) ... S0
mm(q)


×





ωEX1 (q)

ωEX2 (q)

.

.

.

ωEXm (q)


+



ωRPA1 (q)

ωRPA2 (q)

.

.

.

ωRPAm (q)




where S0

ij(q) is the two-point correlation function between the ith and jth component.

The above matrix notation in a compact form is written as,

δ~φ = −S0[~ωEX + ~ωRPA]− S0[~ωEX + X δ~φ+ ~η] (3.7)

where S0 and X are the correlation function and interaction parameter matrices, and

δ~φ, ~ωEX and ~η are density, external field and Lagrange multiplier arrays respectively.

Using the condition
∑

α δ
~φα = 0, (3.7) is solved to give an explicit expression for η.

η = −
~iTA−1S0 ~ωEX

~iTA−1 S0~i
~i (3.8)
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Here η is a constant and not a vector, and i and iT are defined as,

~i =



1

1

.

.

.

1


~iT =

[
1 1 . . . 1

]

In equation (3.8), A−1 is an inverse of the A matrix, where A is defined as,

A = [I + S0 X] (3.9)

where I is an m×m identity matrix. Using the expression for η in equation (3.7) and

with the help of little algebra, one could write

δ~φ = A−1
[
− S0~ωEX − S0~η

]
= A−1

[
− S0~ωEX +

S0 Ĩ A−1 S0 ~ωEX

~iTA−1 S0 ~i

]
= −

[
A−1 S0 − A−1 S0 Ĩ A−1 S0

~iTA−1 S0 ~i

]
~ωEX

= −S? ~ωEX (3.10)

where S? is an m×m matrix and Ĩ = ~i . ~iT . The elements of the S? matrix are the

two-point correlation functions of the phase created by the small density fluctuations.

The stability of the homogenous phase is determined by analyzing the eigenvalues of

the S? matrix. Throughout this calculation, the structure of the polymer chains has
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not been discussed. This means that the method developed here can be applied to

any chain architecture. To apply the above formalism to the complexation model,

one needs to specify the elements of the S0 matrix. These elements are the scattering

intensities known as Debye functions.21 They describe the two-point correlation of an

ideal chain in the absence of any external fields. These conditions describe the state

of the homogenous phase.

As an example, the S0 matrix for the AB/DB′ system, which results from com-

plete complexation, is shown and discussed. The scattering intensity matrix, S0, for

the above system is a 4×4 matrix,

S0 =



SAA(q) SAB(q) 0 0

SAB(q) SBB(q) 0 0

0 0 SB′B′(q) SB′D(q)

0 0 SB′D(q) SDD(q)


The elements of this matrix are given by,

SAA(q) =
2φ

q2

[
e−fAq + fAq− 1

]
SAB(q) =

φ

q2

[
(1− e−fAq)(1− e−fBq)

]
SBB(q) =

2φ

q2

[
e−fBq + fBq− 1

]
SB′B′(q) =

2(1− φ)

κq2

[
e−κfB′q + κfB′q− 1

]
SB′D(q) =

1− φ
2ξDκq2

[
(1− e−κfB′q)(1− e−κfDq)

]
SDD(q) =

2(1− φ)

ξDκq2

[
e−κfDq + κfDq− 1

]
(3.11)
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where ξD is the relative size of the complexed segments, and κ is defined as N3/N1.

Derivation of the above Debye functions is omitted, and the reader is encouraged to

refer to references23–25 for more details.

Using the S0 and X matrices, which contains the interaction contributions χαβ, one

could calculate the eigenvalues of the S? matrix. The nature of the phase transition

is captured by the sign of the smallest eigenvalue of S?, here denoted as λo(q).21

If λo(q) is greater than 0 for all q, then any small fluctuation increases the free

energy. This indicates that the disordered phase is stable. On the other hand if λo(q)

is negative for a certain qo, then the disordered phase is unstable. The size of qo

determines whether the stable phase is due to microscopic or macroscopic fluctuations.

Since q is inversely proportional to length scales in real space, qo = 0 corresponds

to macrophase separation, and finite non-zero qo 6= 0 corresponds to microphase

separation. By analyzing the eigenvalues of S? matrix for a set of parameters, the

RPA phase diagram can be constructed.
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Chapter 4

Numerical Methods

In chapter two a field theoretic model describing complexation in the AB/C sys-

tem was developed. The solution of that model relied on a self consistent calculation

of the propagators, which were used to determine the self-consistent field equations.

Setting aside the specifics of the self-consistency algorithm, a numerical technique is

required for solving the modified diffusion equations (2.26). There are several nu-

merical techniques for solving differential equations20 (such as the modified diffusion

equation considered here), but only two methods are used in this study. Specifically,

a method of mean weighted residuals (MWR), known as the Spectral method26 and

a finite difference method known as the Alternating Direction Implicit27,28 (ADI) are

used.
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4.1 Reciprocal-Space Method

The reciprocal method is one of several techniques used for minimizing the mean

weighted residuals.26 The idea behind this method is to describe the unknown func-

tion, the end-integrated propagators in this case, using a set of basis functions which

satisfy specific criteria. In general, any unknown function u(x) can be written as

u(x) ≈ uN(x) =
N∑
n=0

anφn(x) (4.12)

where φn(x) are the basis functions with coefficients an. Given an equation Lu(x) =

f(x), with L being an operator, the residual function is defined as the difference

between the approximated and the exact solution.

R(x; a1, a2, ..., aN) = LuN(x)− f(x) (4.13)

The challenge is to minimize the residual function, where the spectral method is one

of several methods used for minimizing R(x; a1, a2, ..., aN).26

Matsen and Schick were the first to use the spectral method to investigate the

phase behavior of block copolymers.29 The spectral method developed here takes

advantage of the symmetry and the periodicity of the fields φ(r) and ω(r). This

means that density and the auxiliary fields can be expanded in the form

φα(r) =
∑
G

φα(G)eiG.r

ωα(r) =
∑
G

ωα(G)eiG.r (4.14)

29



M.Sc. Thesis - Ashkan Dehghan McMaster - Physics And Astronomy

where {G} are the reciprocal vectors determined by the symmetry of the phase and

φα(G) and ωα(G) are the Fourier components. The self-consistent field equations can

be written in terms of the Fourier basis functions as,1

φα(G)

ξα
= λ1λ01

∑
G′

∫ fα

0

ds qα(G′, s)q†α(G−G′, fα − s)

φC(G)

ξC
=

λ2λ02
κ

∑
G′

∫ κ

0

ds qC(G, s)qC(G−G′, κ− s)

φβ(G)

ξβ
=

λ1λ2λ3λ03
κ′

∑
G′

∫ κ′fβ

0

ds qβ(G, s)q†β(G−G′, κ′fβ − s)

ωγ(G)

ξγ
=

1

2

∑
γ 6=γ′

φγ′(G)χγγ′

ξγξγ′
+ η(G)∑

γ

φγ(G) = δG,0 (4.15)

The basis functions chosen here are plane waves, which are the appropriate choice

given the periodicity of the system. One of the advantages of using the Fourier

representation is that the modified diffusion equations which were previously second

order differential equation are now first order.

∂qα(G, s)

∂s
= −

∑
G′

Hα(G,G′)qα(G′, s)

∂q†α(G, s)

∂s
= −

∑
G′

Hα(G,G′)q†α(G′, s) (4.16)

The Hamiltonian Hα(G,G′) in the above equation is defined as,1

Hα(G,G′) ≡ G2δG,G′ + ωα(G−G′) (4.17)

To solve the modified diffusion equations (4.16), one could expand the propagators
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using a set of basis functions. As it turns out, the eigenfunctions of the Hamiltonian

(4.17) are the proper choice for the basis functions. These eigenfunctions can be

determined by solving the eigenvalue problem

∑
G′

Hα(G,G′)ψαn(G′) = εαnψ
α
n(G′) (4.18)

with εαn being the eigenvalues of Hα(G,G′) Hamiltonian. The eigenfunctions ψαn(G′)

form a complete set, with the property

∑
G′

ψαn(G′)ψαm(G′) = δn,m∑
n

ψαn(G)ψαm(G′) = δG,G′ (4.19)

This is due to the Hermitian nature of the Hamiltonian matrix. Solving the eigen-

value equations results in a set of basis functions, which can be used to determine the

propagators. This in turn allows one to calculate the SCFE.

The above method can be used for any system with internal symmetry. One could

further simplify the calculation by exploring the relationship between vectors in the

reciprocal space using the properties of the point group operations. An example

would be the set of vectors v′, determined by applying the point group operations on

a general vector v in the reciprocal space. The vectors v′ form a set known as the star

of v. This means that the vectors within one star are related to one another. Using

this idea, the plane wave expansion introduced earlier can be modified to utilize the

relationship between the vectors in a star.1 A new set of basis functions, each being
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a linear combination of vectors within one star, can be constructed.

fn(r) =
1√
Nn

∑
i∈n

Sni e
iGn

i .r (4.20)

In the above equation, the summation is over all the vectors within a star, denoted by

n, with Nn being the number of the vectors. The factors Sni take on values of +1 or

−1 according to the space group.1 These basis functions are the linear combination

of the plane waves. They form an orthogonal set, satisfying the eigenvalue equation,

52fn(r) = −λnfn(r) (4.21)

with 52 being the Laplacian operator. In terms of the new basis functions the

Hamiltonian (4.17) can be written as,1

Hα
n,m ≡ λnδn,m +

∑
l

Γn.m.lω
α
l (4.22)

where,

Γn.m.l =
1

V

∫
drfn(r)fm(r)fl(r)

=
1√

NnNmNl

∑
i∈n

∑
j∈m

∑
k∈l

Sni S
m
j S

l
kδGn

i +Gm
j +Gl

k,0
(4.23)

The eigenvalue equation (4.18) still holds, but now with the Hamiltonian defined by

equation (4.22). The self consistent-field equations can also be written in terms of

the new basis functions. Solving the eigenvalue problem (4.21) allows one to calculate

the self-consistent field equations and the free energy. In terms of the eigenfunctions,
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the end-integrated propagators can be written as

qαn(s) =
∑
i

e−ε
α
i sψα1,iψ

α
n,i

qα†n (s) =
∑
i,j

e−ε
α
i sψαn,i

[∑
m

ψαm,iψ
β
m,j

]
e−ε

β
j ψβ1,j (4.24)

where the self-consistent field equations are then expressed in the following form

φnα
ξα

= λ1λ01
∑
m,l

∫ fα

0

dsΓn.m.lq
α
m(s)qα†l (fα − s)

φnC
ξC

=
λ2λ02
κ

∑
m,l

∫ κ

0

dsΓn.m.lq
C
m(s)qCl (κ− s)

φnβ
ξβ

=
λ1λ2λ3λ03

κ′

∑
m,l

∫ κ′fβ

0

dsΓn.m.lq
β
m(s)qβ†l κ

′fβ − s)

ωnγ
ξγ

=
1

2

∑
γ 6=γ′

φnγ′χγγ′

ξγξγ′
+ ηn∑

γ

φnγ = δn,0 (4.25)

The above equations are solved self-consistently until a given numerical convergence

criteria is reached.

4.2 Alternating Direction Implicit Method

In this section, the Alternating Direction Implicit (ADI) technique is described.

This method is specially powerful when considering parabolic equations on rectan-

gular domains.30 ADI is a finite difference technique, which relies on the splitting

of the spatial marching into two steps. The first step is implicit along one axis and

explicit along the other, and vice versa for the second step. The alternate marching
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is carried out for each temporal1 step.28 Although the ADI method is mostly used for

two dimensional systems, it has been extended to three dimensions. The 3-D ADI

is much more tedious, and thus its application to two dimensional systems has been

considered here.

The ADI technique is used to solve the modified diffusion equation,

∂

∂s
q(r, s) = R2

g 52 q(r, s)− ω(r)q(r, s) (4.26)

where the Laplacian operator 52 assumes different forms, depending on the type of

the coordinate system chosen. The parameters α and † used in equation (2.26) are

dropped for simplicity. Since the ADI method considered here captures the physics

of a two dimensional system, with self-consistent equations being homogenous in the

third dimension, it is important to consider the symmetry of the structures formed.

For example, the equations describing the lamellar structure are homogenous in two

dimension and vary along the dimension perpendicular to the lamellar interface. For

the sake of generality, the ADI technique is described in the cylindrical coordinate

system. This formalism can then be easily modified to capture the physics in planar

geometry. The end-integrated propagators are assumed to be invariant along the θ

axis and vary in the r and z directions.

1It is important to recognize that for the modified diffusion equation, time is replaced by the
segment number along the chain.
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Within this framework, the modified diffusion equation becomes,

∂

∂s
q(r, z, s) = R2

g

[ ∂2
∂r2

+
∂

r∂r
+

∂2

∂z2

]
q(r, z, s)− ω(r, z)q(r, z, s) (4.27)

where the length scales are normalized with respect to R2
g, by setting R2

g = 1. A

simulation box of size N ×N , with unit grid of size 4r×4z is considered. Indices i

and j are introduced to represent the r and z axis. Using the modified ADI method,

the modified diffusion equation in two half time steps becomes,31

[
− 4s

24 r2
+

4s
(i4 r + ro)44 r

]
qs+1
i−1,j +

[
1 +
4s
4r2

+
4sωi,j

2

]
qs+1
i,j +

[
− 4s

24 r2
−

4s
(i4 r + ro)44 r

]
qs+1
i+1,j

= [ 4s
24 z2

]
qsi,j−1 +

[
1− 4s
4z2

]
qsi,j +

[ 4s
24 z2

]
qsi,j+1 (4.28)

solved implicitly in the r direction and explicitly in the z and,

[
− 4s

24 z2

]
qs+1
i,j−1 +

[
1 +

4s
4z2

]
qs+1
i,j +

[
− 4s

24 z2

]
qs+1
i,j+1

= [ 4s
24 r2

− 4s
(i4 r + ro)44 r

]
qsi−1,j +

[
1− 4s
4r2

− 4sωi,j
2

]
qsi,j +

[ 4s
24 r2

+
4s

(i4 r + ro)44 r

]
qsi+1,j (4.29)

solved implicitly in the z direction and explicitly in the r. The above set of equations

will be solved using an iterative algorithm for all i and j, with the convergence

condition 4s ≤ (4r4 z)/4.
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A more friendly way of writing the above set of equations is by using matrices. For

the forward step in the i direction, Eq.(4.28) becomes;



β1,j (α∗ + α) 0 ... 0

α β2,j α∗ ... 0

0 . ... . .

. . ... . .

. . α βN−1,j α∗

0 . . (α∗ + α) βN,j





qs+1
1,j

qs+1
2,j

.

.

.

qs+1
N,j


=



γqs1,j−1 + σqs1,j + γqs1,j+1

γqs2,j−1 + σqs2,j + γqs2,j+1

.

.

.

γqsN,j−1 + σqsN,j + γqsN,j+1


and similarly Eq.(4.29) can be written as,



σ 2γ 0 ... 0

γ σ γ ... 0

0 . ... . .

. . ... . .

. . γ σ γ

0 . . 2γ σ





qs+1
i,1

qs+1
i,2

.

.

.

qs+1
i,N


=



αqsi−1,1 + βi,1q
s
1,j + α∗qsi+1,1

αqsi−1,2 + βi,2q
s
i,2 + α∗qsi+1,2

.

.

.

αqsi−1,N + βi,Nq
s
i,N + α∗qsi+1,N


It is important to adjust the array on the right hand side for the edges of the box,

where zero flux boundary condition must be satisfied. The above matrix equations

must be solved for s = 0 to s = Nα, once for each propagator. The solutions to the

forward propagator q is used as the initial condition for the complementary propa-

gator q†. After calculating the propagators, the self-consistent field equations and

the free energy, can be determined. This process is repeated until some convergence

condition is met.
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Although the ADI technique is computationally slower and less accurate than the

spectral method, it assumes no underlying initial symmetry. The advantage of the

ADI technique is that it provides a real space solution for a given set of parameters

and can be used for studying non-perodic structures. There are other computationally

more efficient and accurate numerical techniques with real space flexibility. One of

such techniques, is the pseudospectral method.26 This method provides an accurate

and efficient way for calculating the properties of complex and simple structures.

The spectral method used in this work is computationally more efficient than the

pseudospectral technique. On similar note, if 2-D solutions to the modified diffusion

equation are required, the ADI technique provides a faster but less accurate way, in

comparison to the pseudospectral method, for calculating the phase behavior of the

system.
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Chapter 5

Results and Discussion

Using the numerical techniques presented in chapter 4, the SCFT model devel-

oped in chapter 2 will be investigated. A system containing n1 diblock copolymers,

n2 homopolymers and n3 complexed polymer chains in volume V is considered. The

relative length of the homopolymer and complexed chains are measured with respect

to the length of the diblock chain, with N2/N1=0.5 and N3/N1=1. The length of the

diblock chain is defined by NA = fAN1 and NB = fBN1 where fA and fB are the

fraction of the A and B segments, respectively. Although the calculations are carried

out with the grand canonical ensemble, the phase diagrams are represented in terms

of the homopolymer volume fraction φH .

The purpose of this thesis is to examine the validity of the interpolymer complex-

ation and the attractive interaction models for studying hydrogen-bonding in (AB)

diblock copolymer/ (C) homopolymer blends. Hydrogen-bonding is assumed to be

between the A and C monomers. In the attractive interaction model, details of which
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can be found in ref [2], hydrogen-bonding is modeled by a negative interaction pa-

rameter (-χ). In this model, one could adjust the strength of hydrogen-bonds by the

relative magnitude of the χ parameter. In contrast, the interpolymer complexation

model treats hydrogen-bonding as a complexation process, in which monomers with

hydrogen-bonding capability are considered as donor/ acceptor sites. Figure [5.1]

shows a schematic representation of this model.

Figure 5.1: Schematic diagram for AB/C complexation, where the C homopolymer
is capable of hydrogen-bonding with A block of the diblock copolymer.

In the first section of this chapter, the phase behavior of the attractive interaction

model is investigated using the RPA and SCFT, followed by analysis of interpolymer

complexation model in section two.

5.1 The Attractive Interaction Model

In this section, the phase behavior of the system in the fA-φH and χAC-φH plane

is obtained. A mixture of AB diblock copolymers and C homopolymers results in a
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large parameter space. These parameters are the interactions χAB, χAC and χBC , the

fraction length of A in diblock (fA), the relative polymerization of the C chain (κ)

and the volume fraction of the homopolymers (φH). Using SCFT to explore these

parameters would be computationally expensive, and thus the first step is to investi-

gate the phase space using the computationally less expensive RPA technique. Using

the method developed in section three, the order-disorder transition (ODT) lines are

calculated.

Figure [5.2] shows the RPA phase diagram for a blend with χAB = 12, χAC = −10,

χBC = 15 and κ = 0.5 in the fA-φH plane. The phase diagram shows both order-

to-disorder (fA & 0.25) and 2-phase-to-disorder (fA . 0.25) phase transitions. The

2-phase region is a macrophase separated state with diblock rich/ homopolymer rich

macroroscopic domains. Using the RPA technique, only the stability of the homoge-

nous phase is captured, and no information about the phase transitions within the

microphase separated and 2-phase regions can be determined. Macrophase separa-

tion of the homopolymer and diblock chains is expected since there is a large positive

(repulsive) interaction between the B and C monomers. This means that for small fA

values, the system is driven into a 2-phase region with increase in φH . The negative

interaction parameter between the A and C monomers (χAC) indicates the miscibility

of C homopolymers in the AB blend. The pure AB diblock copolymer with χAB = 12,

φH = 0 and fA = 0.5 assumes the lamellar morphology29. It is interesting to investi-

gate the effect of the addition of the C homopolymers on this structure. The phase

diagram [5.2] suggests an order-to-disorder phase transition at relatively high values

of φC , in an AB/C blend with fA = 0.5. Although details of the phase transitions

40



M.Sc. Thesis - Ashkan Dehghan McMaster - Physics And Astronomy

 0

 0.25

 0.5

 0.75

 1

 0  0.25  0.5  0.75  1

f A

!H

2-Phase

Dis

Dis

Microphase

Dis-Microphase
Dis-Macrophase

Figure 5.2: RPA phase diagram for blends with parameters χAB = 12,χAC =
−10,χBC = 15 and κ = 0.5. The 2-phase region is a macrophase separated state
with diblock rich/ homopolymer rich macroroscopic domains.

within the microphase domain can not be resolved using the RPA, order-order phase

transitions are expected.

To investigate the effect of hydrogen-bonding strength on the phase behavior of

the AB/C blends, order-disorder transition lines in the χAC-φH plane are calculated.

Figure [5.3] shows the RPA phase diagram for the system with χAB = 12,χBC =

15,fA = 0.5 and κ = 0.5 in the χAC-φH plane. Order-to-disorder (χAC & −2) and

2-phase-to-disorder (χAC . −2) phase transitions are also observed in this case. For

blends with χAC & -2, increasing the diblock copolymer concentration in an otherwise

homogenous homopolymer rich system results in disorder-to-order phase transition.
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Figure 5.3: RPA phase diagram for blends with parameters χAB = 12,χBC = 15,fA =
0.5 and κ = 0.5.

On the other hand, for blends with χAC . -2, transition from disordered into 2-

phase region is observed. Since χAB is greater than 10.5 and fA = 0.5, blends with

φH of approximately zero form lamellar structure. The RPA calculation indicates

that for blends with χAC & -2, there is a possibility of order-order phase transitions.

Determining the details within the microphase separated region is beyond the RPA

calculations, and SCF solutions are required for further investigation.

We now turn to the results from the SCFT calculations. The solutions to the

modified diffusion equations (2.26) were obtained using the spectral method4 for

the classical lamellar (Lam), cylindrical (Hex) and spherical (BCC) structures. The
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phase behavior within the microphase separated regions predicted by the RPA tech-

nique is studied. Figure [5.4] is the SCF phase diagram calculated for the AB/C

system with parameters similar to that in Figure [5.2]. As indicated previously in

the RPA phase diagram, the AB/C blend is driven from the disorder phase into a

2-phase region when φH is increased. For blends with 0.25 . fA . 0.3, increase in

the homopolymer concentration results in disorder→ order → disorder phase tran-

sitions. The microphase separated region shows order-order phase transitions from

 0

 0.25

 0.5

 0.75

 1

 0  0.25  0.5  0.75  1
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Dis

BCC Hex

Dis

Figure 5.4: The phase diagram for the AB/C blend with χAC = −10, χBC = 15,
χAB = 12 and κ = 0.5. Disordered, Microphase separated and two phase regions are
observed. In the microphase region, Lamellar (lam), Cylindrical (Hex) and Spherical
(BCC) phases are shown.

BCCA→HexA→Lam→HexB→BCCB. The subscript A means an A rich core in a B
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rich matrix and vise versa for subscript B. The phase behavior observed here resem-

bles that of a pure AB diblock blend.29 This indicates that the attractive interaction

between the A and C monomers has the same effect as increasing fA in a pure AB

system. The phase transition sequences observed for the AB/C blends with fA of 0.5

is consistent with experiments.10 Starting with a pure lamellar phase separated AB

blend, Chen et al.10 showed that increasing the homopolymer concentration results

in Lam→Hex→BCC→Dis phase transitions for strong hydrogen-bonding. They also

showed a Lam → 2-phase phase transition with increase in φH for weak hydrogen-

bonding. The phase transition sequences observed by Chen et al.10 is consistent with

those shown in Fig[5.5]. The order-order phase transitions shown for χAC < −2 is

consistent with those observed for strong hydrogen-bonding. Similarly, the order-to-2-

phase phase transition for χAC > −2 is consistent with the phase transition observed

experimentally.10

As mentioned, the strength of hydrogen-bonds is assumed to be modeled by the

relative magnitude of the χAC parameter. It is interesting to investigate the results

described by Chen and coworkers10 by exploring the phase behavior in the χAC-φH

plane. Figure [5.5] shows the SCF phase diagram for the AB/C blend with param-

eters similar to that in Fig [5.3]. The phase behavior of the blends with χAC & −4

resembles those seen experimentally for blends with strong hydrogen-bonding. Sim-

ilarly, increasing the homopolymer concentration in blends with χAC . −2 results

in an order-to-2-phase phase transition. This indicates that weak hydrogen-bonding

enhances the miscibility only for small concentrations of the C homopolymer.
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Figure 5.5: Phase diagram for the AB/C blend with χAB = 12, χBC = 15, fA = 0.5
and κ = 0.5.

The observations indicate that the phase behavior predicted by the attractive in-

teraction model is in qualitative agreement with experiments.10 To further validate

the model, the effect of homopolymer concentration on the lamellar domain spacing is

investigated. The lamellar spacing is the period of the lamellar structure. Figure [5.6]

shows the normalized lamellar spacing for two blends, one modeling strong-hydrogen

bonding (the dotted-line) and the other modeling weak hydrogen-bonding (solid line).

It is evident that increase in the homopolymer concentration results in an increase in

the lamellar spacing for both strong and weak hydrogen-bonding. To further under-

stand the cause of this increase, density profiles for both blends are plotted. Figure

[5.7] shows the density profiles for blends with χAB = 12, χBC = 15, fA = 0.5, κ = 0.5
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Figure 5.6: Normalized lamellar spacing for the AB/C system with χAB = 12, χBC =
15, fA = 0.5, κ = 0.5 and χAC=-10 (dotted line) and χAC=-1 (solid line).

and χAC=-10 (dotted line) and χAC=-1 (solid line) for φH of 20%. The attractive in-

teraction between the A and C monomers results in the aggregation of the C segments

in the A rich domains. Since the A and C segments are not chemically bonded, it is

energetically and entropically more favorable for the C monomers to aggregate away

from the B rich domains, resulting in the increase in the lamellar spacing shown in

Fig[5.6]. To better understand the results captured in Fig[5.6] and [5.7], a schematic

diagram showning the increase in the lamellar spacing due the homopolymer concen-

tration is constructed. Figure [5.8 a] shows the lamellar structure with 0% φH . The

initial lamellar domain spacing of this structure is taken as reference. Figure [5.8

b] shows the lamellar structure with a finite amount of homopolymer additive. The
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Figure 5.7: Density profile for the AB/C system, with χAB = 12, χBC = 15, fA = 0.5,
κ = 0.5 and χAC=-10 (dotted line) and χAC=-1 (solid line). φH is 20% for both blends.
The x axis is the axis perpendicular to the lamellar interface, normalized with respect
to the lamellar domain spacing.

homopolymer chains have aggregated at the A rich domain for the reasons mentioned

in the above paragraph. At the first glance, it seems energetically favorable for the

C chains to completely wet the lamellar structure, since there is an attractive inter-

action between the A and C segments. Wetting the lamellar structure reduces the

entropic energy for both diblock and homopolymer chains. This can be understood,

since the wetting process reduces the configurational states available to chains. The

homopolymers are forced to concentrate in the region between the lamellar sheets,

thus increasing the lamellar domain spacing.
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Figure 5.8: Density profile for the AB/C system, with χAB = 12, χBC = 15, fA = 0.5,
κ = 0.5 and χAC=-10 (dotted line) and χAC=-1 (solid line). φH is 20% for both blends.

The lamellar spacing behavior predicted by the attractive interaction model for

strong hydrogen-bonding is not consistent with experiments. In particular, Chen and

coworkers have observed a decrease in the lamellar spacing with an increase of the

homopolymer concentration.10 As illustrated in the density profiles, the nature of

the interactions between the monomers demands an increase in the lamellar spacing.

In other words, the fact that A and C monomers are not chemically bonded leads

to a segregation of the C-homopolymers in the middle of the A-domains, thus al-

ways resulting in an increase in the lamellar spacing. This observation demonstrates

that, although the attractive interaction model provides qualitatively correct phase

transition sequences, this model is not adequate model for hydrogen-bonding systems.
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5.2 The Interpolymer Complexation Model

Although the attractive interaction model captures the qualitative phase behavior

of hydrogen-bonded AB/C blends, it fails to predict the correct changes in the lamel-

lar domain spacing. The results presented in the previous section indicate that an

attractive interaction model does not capture the physics of hydrogen-bonding. As

shown previously in this and earlier chapters, the interpolymer complexation model

assumes physical bonding between monomers with hydrogen-bonding capabilities.

The SCFT model developed in chapter two allows for a complexation of type AB+C

� A′B′C ′D, where only linear complexation is allowed for simplicity. A problem

which arises when considering such model is the complexity of structures formed as

the result of the complexation process. Figure [5.9] shows some of these complex struc-

tures. The architecture and fraction of these supramolecular chains are determined

by considering the chemical equilibrium of the system. The equilibrium occurs when,

µ1 + µ2=µ3, where µ1, µ2 and µ3 are the chemical potential of diblock copolymer,

homopolymer and complexed polymer chains, respectively. Using the mass actions

formalism19, one could determine the equilibrium fraction of the complexed chains.

The mass action formalism for the homogenous phase results in

1− φ̄s
σθφ̄2

s

=
κ′

κN1ρo

Q3

Q1Q2

(5.30)

Solutions to equation (5.30) can be determined graphically by plotting both sides of

the equation with respect to the volume fraction of the single-stranded chains φ̄s.

The solutions to the equation (5.30) are analyzed with respect to the strength and

number of hydrogen-bonds. This is done by changing ε (the strength of individual
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hydrogen-bonds) and κ′ (number of hydrogen-bonds).

Figure 5.9: Schematic diagram showing a few examples of what could result from a
linear complexation. In this model, D segments are the result of the complexation of
the A and C monomers.

Figure [5.11] shows the solutions to the mass action equation for the system with

χAB = 20, χAC = χBC = χAD = χCD = 5, χBD = 25, fA = 0.5, κ = 0.5, κ′ = 1

and ξD = 2 for strong (solid line), intermediate (dotted line) and weak (dashed line)

hydrogen-bonding. The solutions indicate that for a homogenous mixture, strong

hydrogen-bonding results in a complexation of AB+C�B′D. This result is expected,

because it is energetically more favorable for the complexation to result in a B′D

structure. To determine the architecture of the complexed A′B′C ′D chains, the so-

lutions to the mass action equation are analyzed for different κ′ values. Figure [5.10]

shows the solutions for the system with χAB = 20, χAC = χBC = χAD = χCD = 5,

χBD = 25, fA = 0.5, κ = 0.5, and ξD = 2 for a fixed hydrogen-bonding strength (ε).
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Figure 5.10: Graphical representation of solutions to equation (5.30) for the AB/C
blends with χAB = 20, χAC = χBC = χAD = χCD = 5, χBD = 25, fA = 0.5, κ = 0.5,
κ′ = 1 and ξD = 2. Solid, dashed and dotted lines represent strong, intermediate and
weak hydrogen bonding (ε).

Larger values of κ′ correspond to smaller overlaps between the AB and C chains. In

other words, when κ′ = 1, AB+C results in a complete complexation. The solid,

dashed and dotted lines in Fig[5.11] show that for a fixed hydrogen-bonding strength,

complete complexation is energetically most favorable. The results from Fig [5.10] and

[5.11] indicate that when considering complexation in the strong hydrogen-bonding

limit, the reaction AB+C=B′D is most dominant. It is important to point out that

the complexed monomers were assumed to occupy twice the volume of the single

stranded monomers.
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Figure 5.11: Graphical representation of the solutions to equation (5.30) for the AB/C
blends with χAB = 20, χAC = χBC = χAD = χCD = 5, χBD = 25, fA = 0.5, κ = 0.5,
and ξD = 2, where ε is fixed and the number of hydrogen-bonding sites controled by
κ′ is varied.

To investigate the phase behavior of AB/C blend at the strong hydrogen-bonding

limit, the modified diffusion equations (2.26) were solved for the AB/B′D system.

For simplicity it is assumed that the complexation process is complete and symmetric,

meaning A+C=D. It is important to account for physical changes to the structure of

the complexed polymers. In other words, changes to the thickness of the complexed

chains must be considered. To investigate the effect of chain thickness on the phase

behavior of the system, phase diagrams were constructed in the ξD-φH plane using

RPA and SCFT. Figure [5.12] shows the RPA phase diagram for the AB/B′D system

with χAB = 15, χAD = 5, χBD = 17 and fA = fD = 0.5. Here φH corresponds to
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the volume fraction of hydrogen-bonded chains. An order-to-disorder phase transi-
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Figure 5.12: RPA phase diagram for the AB/B′D system with χAB = 15, χAD = 5
and χBD = 17 with fA = fD = 0.5.

tion is observed for blends with ξD & 1.8. This indicates that the phase transition

is caused by the asymmetry in the chain thickness. The AB and B′D blends with

ξD = 1, form lamellar structure. This means that increase in φH (complexed chains)

does not result in a phase transition. On the other hand, for ξD = 2, the pure B′D

blend is disordered, whereas the pure AB blend forms a lamellar structure. In this

scenario, increase in the concentration of the complexed polymers (B′D) results in an

order-to-disorder phase transition. Within the microphase region, order-order phase

transitions are speculated.
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Using SCFT a phase diagram for a system with parameters similar to that in Fig

[5.12] is constructed. Figure [5.13] shows that an increase of φH results in order-order

phase transitions for blends with ξD & 1.5. In blends with ξD = 2, increase in the

φH results in Lam → Hex → BCC → Dis phase transitions. These results indicate

the importance of accounting for thickness asymmetry in the complexation model.

The phase behavior observed here is consistent with experiments10 and the attractive

interaction model in the strong hydrogen-bonding limit.

 1

 1.5

 2

 0  0.25  0.5  0.75

! D

"H

Lam
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BCC

Dis

Figure 5.13: Phase diagram for the AB/B′D system with χAB = 15, χDB = 17 and
χAD = 5. Both chains are symmetrical and of equal length. Here the subscript H in
φH means the hydrogen-bonded chains.

To further study the effectiveness of the interpolymer complexation for modeling

hydrogen-bonding, the effect of φH on the lamellar domain spacing was investigated.
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Figure [5.14] shows the lamellar spacing calculated for the AB/B′D system with

χAB = 15, χDB = 17, χAD = 5 and ξD=2. It shows that increase in the concentra-

tion of hydrogen-bonded chains (φH) results in a decrease in the lamellar spacing.

The shrinking in the lamellar spacing can be related to the thickness asymmetry in

the chains. To prove this, the lamellar spacing in an AB/A′B′ blend is calculated.

The AB and A′B′ chains are chemically identical, thus χAA′ and χBB′ are set to

zero. The A′ monomers are chosen to be 25% larger than other species, to isolate for

the effect of thickness asymmetry on the lamellar spacing. Figure [5.15] shows the
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Figure 5.14: Normalized lamellar spacing for the AB/B′D system with χAB = 15,
χDB = 17, χAD = 5 and ξD=2.

change in lamellar spacing with respect to φH (φA′B′) for an AB/A′B′ system with

χAB = χA′B′ = 13 and ξA′=1.25. It is clear that an increase in φA′B′ results in a
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decrease in the lamellar spacing. This result can be interpreted in the following way.

In a symmetrical AB diblock chain, the volume occupied by the A and B monomers

is the same. After complexation, the volume occupied by the complexed monomers

(A′) is increased. The effect of the asymmetry in the total volume of the chain is

countered by the shrinking of the B chains toward the lamellar interface. This can

be shown explicitly by calculating the A,A′, B and B′ segment lengths individually.

Figure [5.16] shows the result of this analysis, where the segment lengths are nor-

malized with respect to their initial values. These results indicate that the thick A′
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Figure 5.15: Normalized lamellar spacing for the AB/A′B system with χAB = 13 and
ξA′=1.25.

chains are longer than the chemically identical A chains. It is also interesting to point

out that the increase in the A′B′ concentration results in an increase in the A and
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A′ segment lengths. In contrast, B and B′ segment lengths decrease with increase in

the A′B′ concentration. Having analyzed the relative segment changes for all species,

it can be firmly stated that the overall decrease in the lamellar spacing is caused by

shrinking of the B and B′ chains toward the lamellar interface.
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Figure 5.16: Normalized segment length for the AB/A′B′ system, where λ represents
the length of each segment, normalized to its initial value.

This effect can be better understood by analyzing the schematic diagram shown

in Fig[5.17]. Figure [5.17 a] shows a pure AB blend, in which non of the A chains

have complexed. Increasing the homopolymer concentration results in the complex-

ation of the A and C chains. This increases the A′B′ concentration in the system.

As shown previously in Fig[5.16], the length of the A and A′ chains increases, while
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B and B′ chains coil towards the interface. The overall result is a decrease in the

lamellar spacing, as shown in Fig[5.17 c].

Figure 5.17: A schematic diagram showing the increase in the lamellar spacing with
increase in the A′B′ concentration. a) Shows a pure AB blend, b) a blend with mixed
AB/A′B′ and c) a pure A′B′ blend. Increase in the A′B′ concentration results in a
decrease in the overall lamellar spacing.

The shrinking of the B′ chain towards the A′B′ interface can be better understood

by analyzing the schematic diagram shown in Fig[5.18]. In this diagram, the shinking
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of the B′ chain is accounted for by considering the overall volume occupied by the

segments. Since the blend is incompressible, this volume must be conserved. Before

complexation, Fig [5.18 a], the volumes occupied by each segment (A and B) are

equal and can be calculated as,

Vα = Nαvα

= Aintλα (5.31)

where vα is the volume occupied by a monomer of type α. Here, λα and Aint are

the height and interfacial area of the cylinders shown in Fig[5.18]. Nα in equation

(5.31) is the number of α monomers, where α = A,B,A′, B′. The interfacial area

(Aint) is shared between the volumes occupied by each segment. After complexation,

Fig[5.18 b], the volume occupied by the complexed monomers increases, resulting in

an increase in the interfacial area. The increase in Aint means that λB must decrease to

conserve the volume occupied by the B′ monomers. This effect can be seen explicitly

in Fig[5.16].
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Figure 5.18: A schematic diagram showing the shrinking of the B′ chain towards the
interface. a) The volume occupied by each segment is equal before the complexation.
b) The volume occupied by the A′ segment increases, thus increasing the interface
area. To conserve the volume, the B′ segment coils towards the A′B′ interface. The
interface between the volume occupied by the A − B and A′ − B′ is assumed to be
circular for simplicity. The height of each cylinder is represented by λα.
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Chapter 6

Summary and Conclusion

In this thesis, two models were introduced and investigated for describing hydrogen-

bonding in AB diblock copolymer/ C homopolymer blends. In the first approach,

hydrogen-bonding between the A and C monomers was modeled by a negative (attrac-

tive) interaction parameter. Phase diagrams in the fA-φH and χAC-φH planes were

constructed and found to be in qualitative agreement with experiments.10 The phase

behavior in the χAC-φH plane was found to be sensitive to the hydrogen-bonding

strength. Increasing the homopolymer concentration was shown to result in order-

order phase transition of type Lam → Hex → BCC → Dis, for large negative χAC

values. Increasing φH for χAC . −2 resulted in macrophase separation. The effect

of hydrogen-bodning on the lamellar phase was further investigated by examining

the lamellar domain spacing as a function of the homopolymer concentration. The

attractive interaction model predicts an increase in the lamellar spacing for strong

and weak hydrogen-bonding. This was shown to be caused by aggregation of the C

monomers at the A rich domains of the lamellar phase. The increase in the lamel-

lar spacing for weak hydrogen-bonding was found to be consistent with experiments.

61



M.Sc. Thesis - Ashkan Dehghan McMaster - Physics And Astronomy

In contrast, increase in the homopolymer concentration for strong hydrogen-bonding

was observed experimentally to decrease the lamellar spacing.10 This disagreement

between this model and the experiments indicates that hydrogen-bonding can not be

correctly modeled by a negative interaction parameter.

In the second approach, interpolymer complexation was used to model hydrogen-

bonding in the AB/C blend. The complexation model assumes a donor/ acceptor

relationship between monomers with hydrogen-bonding capability. By analyzing the

homogenous equilibrium state in the strong hydrogen-bonding regime, it was shown

that the AB+C � A′B′C ′D complexation can be simplified as an AB+C � B′D for

strong hydrogen-bonding. This indicates that the majority of the reactions, result in

a complete complexation between the A and C segments. The phase behavior of the

AB/B′D blend was found to be sensitive to the chain thickness of the complexed D

monomers. The phase diagram in the ξD-φH plane showed an order-to-disorder phase

transition for ξD & 1.5. Using SCFT it was found that increase in φH for blends with

ξD = 2 results in Lam→ Hex→ BCC→ Dis phase transitions. The phase sequence

captured here is in agreement with experiments.10 The change in the lamellar spacing

with respect to the homopolymer concentration was also investigated, where increase

in φH was shown to result in a decrease in the lamellar spacing. This effect was

further studied by considering an AB/A′B′ blend, with ξA′=1.25. Decrease in the

lamellar spacing was found to be the result of the single-stranded B and B′ chains

coiling in towards the interface.

The analysis of the attractive interaction and interpolymer complexation models
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indicate that hydrogen-bonding between polymer segments should be described by

interpolymer complexation. It was shown that the phase behavior and the decrease

in the lamellar spacing is caused by the increase in the volume occupied by the com-

plexed chains. A more complete interpolymer complexation model can be constructed

by considering changes to the hydrogen-bonding strength. In a such model, the com-

plexation reaction would depend on the enthalpic and entropic contributions to the

free-energy.

Although this thesis provided us with a good foundation for understanding hydrogen-

bonding in polymer blends, more in-depth studies are required. In future work,

we hope to extend the interpolymer complexation model to investigate the effect of

hydrogen-bonding strength on the phase behavior of the AB/C system. In such a

model, the concentration of the complexed chains is adjusted for locally, by calculating

the mass action formalism. We also hope to study the effect of chain architecture on

the phase behavior and develop a more realistic model for hydrogen-bonding systems.
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