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Abstract

This thesis gives a partial answer to the question: “Can type systems detect modeling
errors in scientific computing, particularly for inverse problems derived from physical
models?” by considering, in detail, the major aspects of inverse problems in Magnetic
Resonance Imaging (MRI). We define a type-system that can capture all correctness
properties for MRI inverse problems, including many properties that are not captured
with current type-systems, e.g., frames of reference. We implemented a type-system
in the Haskell language that can capture the errors arising in translating a mathe-
matical model into a linear or nonlinear system, or alternatively into an objective
function. Most models are (or can be approximated by) linear transformations, and
we demonstrate the feasibility of capturing their correctness at the type level using
what is arguably the most difficult case, the (discrete) Fourier transformation (DFT).
By this, we mean that we are able to catch, at compile time, all known errors in ap-
plying the DFT. The first part of this thesis describes the Haskell implementation of
vector size, physical units, frame of reference, and so on required in the mathemat-
ical modelling of inverse problems without regularization. To practically solve most
inverse problems, especially those including noisy data or ill-conditioned systems,
one must use regularization. The second part of this thesis addresses the question
of defining new regularizers and identifying existing regularizers the correctness of
which (in our estimation) can be formally verified at the type level. We describe such
Bayesian regularization schemes based on probability theory, and describe a novel
simple regularizer of this type. We leave as future work the formalization of such
regularizers.
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Notation and abbreviations

AMPL A Mathematical Programming Language, page 48
CS Compressive (Compressed) Sensing, page 3
DFT Discrete Fourier Trasform, page 9
FT Fourier Transform, page 16
GHC Glasgow Haskell Compiler, page 8
HMM Hidden Markov Model, page 42
MAP Maximum a posteriori Probability, page 35
ML Maximum Likelihood, page 36
MRI Magnetic Resonance Imaging, page 2
MRF Markov Random Field, page 36
SNR Signal to Noise Ratio, page 49
TSVD Truncated Singular Value Decomposition, page 3
TV Total Variation, page 3

δ(x) delta distribution, meaning the limit of functions which are 0 except at 0,
but whole integral over any interval containing 0 is 1, page 10

R real numbers, page 9
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Chapter 1

Introduction

The first intent of this thesis is to present a type-system capable of verifying the
correctness of scientific software used in applications like medical imaging, where
correctness is especially important.

1.1 Motivation

One basic aspect of type safety in scientific computation is physical units, which
can prevent us from performing nonsense computations like adding 2m to 20s. To
motivate its necessity, we introduce one of NASA’s Mars Surveyor program, which
failed because of a mismatch between physical units.

The Mars Climate Orbiter (MCO) was the second robotic space probe in NASA’s
Mars Surveyor program, which was launched in 1988. MCO was designed to manage
simultaneous inspections of Mars’s atmosphere, climate, and surface. It also served
as a communications relay for another surveyor called the Mars Polar Lander. After
entering Mars’s orbit, no signals were received from the space craft and communi-
cation was lost. The MCO team’s investigation found that the main cause of the
failure was the improper use of physical units in the coding of ground software to
calculate the trajectory of the space craft. The output from the ground software
was to be in metric units of Newton-seconds, but the data was reported in Imperial
units of pound-seconds instead. Therefore, an incorrect trajectory was computed for
the MCO related to that output data with the wrong unit. As a result, the space
craft went to an improperly low altitude above Mars and disintegrated because of the
atmospheric stresses.

Now consider a hypothetical situation where a surgeon receives a medical image
with left and right reversed which can lead to an operation on the wrong leg. This
illustrates the importance of accounting for the frame of reference, which is an origin,
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a vector space basis together with physical units to measure some characteristics of
objects in it, before doing such computation.

1.2 Contribution of this Work

This thesis is about establishing a type-system that can capture these particular
problems and many other related problems. Our primary target is verifying the
correctness of medical imaging computation. In experimental MRI, tissue density
information is not directly measurable. Instead, MRI experiments collect samples of
the continuous Fourier Transform of the tissue density (and other interesting tissue
properties). Therefore, we have two types of quantities in such experiments including
the quantity of interest (e.g. tissue density) and the measurable quantity which is
related to the quantity of interest via a mathematical model called a forward model.
The process of extracting the quantity of interest from the observable measurement
(data) in such experiments is called an inverse problem. Hence, to get the interesting
tissue properties we have to deal with inverse problems in medical imaging. To solve
an inverse problem, we need to use regularization, which is explained in chapter 3.
Hence, we have to verify the correctness of both the model and the regularizer to
have a complete verification of the resulting software. We implement a type-system
that can capture the errors arising from model encoding. Most models are (or can
be approximated by) linear transformations like the Fourier transformation, which
was encoded into our type system, and they can be encoded into our type-system
analogously. Hence, the first focus of this thesis is to implement a type-system coded
in Haskell to verify the correctness of scientific computation including size, physical
units, frame of reference, and so on.

To complete this task we need to formalize the regularization term using type
theory. The problem is that we could not do this for most regularizers. We believe
this is because they were motivated by numerical considerations rather than physical
considerations so physical units can not be added in a consistent way. Therefore, the
second focus of this thesis is to introduce and review inverse problems and regular-
izations such that we can propose a reasonable Bayesian regularization method with
properties that we believe will make formalization possible.

1.3 Organization of this Thesis

In chapter 2, we present our type-system to verify the correctness of scientific compu-
tation, focusing initially on medical imaging. First of all, it summarizes two general
aspects of scientific computation which can be captured in the existing type systems

2
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encompassing both size-matching, which was previously implemented using type-level
numbers, and physical units which were implemented in the existing Dimensional pack-
age 1. Then we explain that, to have a satisfactory type-system for verifying scien-
tific/medical computation, we needed additional features in our type-system. One is
combining both sizes and units to produce types to capture properties of a frame of
reference related to physical measurements. Another important feature is the assign-
ment of physical units to symbolic expressions rather than just numerical values. To
introduce our type-system, we present the implementation details including type-level
numbers encoded into our type-system for both size and dimension, implementation
of the arithmetics on such typed numbers, defining a class for formalizing the frame
of reference, formalizing the discretization concept by defining a new data type, and
formalizing the Fourier transform using a class definition.

In chapter 3, we introduce the concept of inverse problems. We explain that,
in most cases, the inverse problems are ill-posed or ill-conditioned in the sense of
Hadamard’s conditions, meaning that they may not have a solution, solutions may
not be unique or may not depend continuously on the data. Then we introduce
the concept of regularization which is the most common technique to solve ill-posed
inverse problems. The main idea of the regularization methods is to employ the addi-
tional a priori information to make a family of approximate solutions. Regularization
methods are divided into two categories, classical (deterministic) and statistical. We
introduce two classical methods: TSVD and Tikhonov methods. Then, we discuss
both `2-norm and Total Variation regularizations, common in imaging, which stem
from Tikhonov methods. We also introduce compressive sensing (CS) , which is one
of the most recent methods introduced for under-sampling problems. Finally, we ex-
plain statistical and Bayesian methods and discuss hidden Markov random fields as
one of the most common Bayesian methods in signal and image restoration. At the
end, we compare these two classes of methods.

Since the leading regularizers were developed in an abstract mathematical con-
text, they do not contain physical units or other type attributes which can be used
to infer correctness properties. Some models are derived entirely using probabilistic
arguments, which seem to be the most promising method of either automatically de-
riving regularizers or being able to check for validity in some sense. As should be clear
from the discussion in chapter 3, most regularization methods contain some dimen-
sionless parameters, the interpretation of which depends on computational heuristics,
and not model properties. This is in conflict with the general understanding that
regularization is a way of incorporating a priori information about the model. There-
fore, to have a completely formalized inverse problem, we develop a new Bayesian
regularization method without such magic numbers.

1http://hackage.haskell.org/package/dimensional-0.10.2
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In chapter 4, we present a new Bayesian regularizer based on observed tissue
segmentation in medical images, together with an informal version of the type of
argument we hope to have automatically applied in our future type system. We will
also give an example of common regularizers whose statistical derivation is likely to
be very difficult, or to result in “a priori” knowledge which would not be acceptable
to end users (e.g., the radiologist) if presented in a form understandable to them.

In chapter 5, we present the numerical results of our novel regularization method
with respect to the image de-noising problem. To identify the effect of our regu-
larization method to remove the noise from the measurement data, we used the `2

difference which is an objective numerical measurement, but the `2 difference cannot
really capture one of the most interesting properties in imaging which is whether
features of a certain size will be visible after de-noising. Therefore, we considered a
test where there is a repeating pattern of features of the certain size.

To sum up, we implement a strong type-system which is able to capture errors
in mathematical modelling like the Fourier transformation errors. We also propose a
Bayesian regularization method which has a stronger theoretical foundation that we
hope will lead to formalization and encoding in the type system.(see chapter 6)

4



Chapter 2

Our Type-Level System

Our main goal was to implement a type-system capable of verifying the correctness
of scientific software used in applications like medical imaging, where correctness is
especially important.

The most widely used method for verifying properties of programs automatically
is type checking. The most common form, static type checking, occurs at compile
time rather than run time. Static type checking is always preferred because for
example, MRI image reconstruction software needs to execute while the patient is in
the machine. Therefore, It is the best to capture errors before the code runs to avoid
wasting expensive scanner time and minimize the discomfort to sick patients.

The power of static typing depends on the language used and varies greatly, from
simple checking of storage-type compatibility in C to elaborate proofs of correctness
embedded into types in Agda [BDN09]. We chose Haskell [HHPJW07] as our imple-
mentation platform because Haskell is a mature language well supported by libraries
that allows the encoding of properties such as list length which very few languages
can reason about at compile time.

Haskell has three interfaces for advanced type-level programming. The first is
multi-parameter type classes together with functional dependencies, introduced to
Haskell by Mark Jones [Jon00], while a newer approach uses type families [KPcS10].
Another one is the Generalized Algebraic Datatypes (GADT). We used the first two
interfaces to implement our type-system.

2.1 Existing Static and Dynamic Type Checking

One basic aspect of type safety in scientific computation is size-matching in linear
algebra like vector space and matrix computation. For example, if we have two
vectors with different sizes, our type-system should be able to capture the error when

5
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we add those two vectors. This has been demonstrated for lists (see [Kis05] for a
complete implementation based on ideas introduced in [McB02] [Oka99]), but is not
yet used by standard packages like Hmatrix and Vector to do linear algebra and vector
computation. In fact, these packages produce results in cases we would expect at least
run-time errors, e.g., when adding two vectors with different lengths. In Haskell, we
can augment vector and array types with run-time size information, so we will be
able to verify such computational errors at run time (dynamic type checking). For
example we can define a vector by:

data Vector a = Vector Int [ a ] deriving (Show,Eq)

Then, we can make this vector type an instance of the Num class, to make it possible
to add two vectors.

instance (Num a ) => Num ( Vector a ) where
( Vector nx x ) + ( Vector ny y ) =

i f nx == ny then Vector nx $ zipWith (+) x y
else error $ ” adding mismatched ve c t o r s o f s i z e s ”
++ show nx ++ ” and ” ++ show ny

v1 = Vector 3 [ 1 , 2 , 3 ]
v2 = Vector 4 [ 1 , 2 , 3 , 4 ]

This implementation will cause a run time error when we add those two vectors:

∗∗∗ Exception : adding mismatched v ec to r s of s i z e s 3 and 4

As we mentioned, we are interested in catching all errors involving vector computation
at compile time (static type checking) which will be discussed later, following the
approach of [Kis05].

2.1.1 Physical Units

Another aspect of type safety is physical units. As represented by the Dimensional

package, it is possible to check the physical units in arithmetic computation at compile
time. Physical (dimensional) information is encoded in types which wrap numerical
quantities, allowing the type checker to verify the correctness of operations on those
physical quantities at compile time. Therefore, using this library can prevent us from
doing nonsense computation like adding 2m to 20s. We will give an example using
this package, after explaining its physical unit encoding.

There are seven basic physical dimensions including length, mass, time, electric
current, thermodynamic temperature, amount of substance and luminous intensity.
They can be combined to produce compound dimensions. In the Dimensional package,
physical dimensions are represented by the powers of the seven basic dimensions.
It implements this using type level numbers to represent the powers of the basic
dimensions. This package uses a type level encoding called NumTypes which is defined

6
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in the Numeric.NumType module of the Dimensional package. Data type Dim represents the
seven basic dimensions.

data Dim l m t i th n j

where, each type variable represents the power of its corresponding basic unit. Type
variables l, m, t, i, th , n and j represent the powers of length, mass, time, electric
current, temperature, luminous intensity and amount of substance respectively. They
defined some type synonyms for the basic dimensions. For example the length is
represented by:

type DLength = Dim Pos1 Zero Zero Zero Zero Zero Zero

where Pos1 is a type level positive number representing number 1, meaning that the
length has power equal to 1 and the power of the other basic units are 0, which is
specified using Zero. Therefore, to represent the volume we should set the type as:

type DVolume = Dim Pos3 Zero Zero Zero Zero Zero Zero

where, Pos3 represents that length has power equal to 3 in the DVolume type. Other
built-in type synonyms are:

type DOne = Dim Zero Zero Zero Zero Zero Zero Zero
type DMass = Dim Zero Pos1 Zero Zero Zero Zero Zero
type DTime = Dim Zero Zero Pos1 Zero Zero Zero Zero...

Then, type synonyms for quantities of particular physical dimensions were defined:

type Dimens ion les s = Quantity DOne
type Length = Quantity DLength
type Mass = Quantity DMass
type Time = Quantity DTime...

We cannot present all of the implementation details of this package, but it is
instructive to look at one function, the implementation of addition:

(+) : : Num a => Quantity d a −> Quantity d a −> Quantity d a

The data type Dimensional encodes both units and quantities in one data type.

newtype Dimensional v d a = Dimensional a deriving (Eq, Ord , Enum)

where v and d are phantom type variables. The phantom type variable d represents the
physical dimension of the Dimensional, and v distinguishes between units and quantities
using one of the two following phantom types:

data DUnit
data DQuantity

There are type synonyms for units and quantities:

type Unit = Dimensional DUnit
type Quantity = Dimensional DQuantity

7
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In general, a Quantity is a number (value) which has a physical unit, and it is represented
by the product of a number and a Unit. The ‘(∗ ∼)’ operator is a convenient way to
declare quantities as such a product.

(∗˜) : : Num a => a −> Unit d a −> Quantity d a

Therefore, we can define two physical quantities representing length and mass with
the following definition:

h = 2 ∗˜ meter
m = 3 ∗˜ gram

To show the power of static type checking for such a computation, we can try to add
those two variables, h and m, resulting in a compiler error:

Couldn ’ t match expected type ‘Numeric .NumType . Pos
Numeric .NumType . Zero ’

with ac tua l type ‘Numeric .NumType . Zero ’
Expected type : Quantity DLength Prelude . Integer

Actual type : Quantity DMass Prelude .Double
In the second argument of ‘ (+) ’ , namely ‘m’
In the exp r e s s i on : h + m

As you can see, interpretation of the error message requires knowledge of the Haskell
type system and the implementation of the Dimensional package. In particular, it is
not intuitive to a domain expert (e.g. an applied mathematician), and this is a
relatively simple error. One of our goals is to make the error messages easier for non-
programmer users to understand. This will guide the encoding of our type-system in
the type system for Haskell as implemented by GHC (with extensions).

We will not use the Dimensional package in the reminder of this thesis.

2.2 Enhanced Typing for Scientific Computation

We have summarized two general aspects of type safety (container size and physical
units), including existing implementations in Haskell. Some aspects of previous imple-
mentations are not compatible with our goals, e.g., separation of numbers and units
in the Dimensional package which allows unsafe computations with no physical inter-
pretation to be wrapped in types after the computation, thereby bypassing the type
checker. Therefore, we implemented our own type wrappers including two implemen-
tations of type level numbers, incorporating previous ideas in a coherent implementa-
tion. To have a satisfactory type-system for verifying scientific/medical computation,
we needed additional features in our type-system. One of those features is combining
both sizes and units to produce types to capture properties involving the interaction
of size and units to produce a new class, called a Frame which captures the properties
of a discretization sufficient to guarantee the correct use of such discretizations in
mathematical models. The combination of these features is much greater than the

8
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sum of the parts. In our system, all measurements need to take place in a frame of
reference with an origin so that only comparable quantities are combined.Unlike the
Dimensional package, there is no way of separating units from quantities and performing
unsafe computation.

2.2.1 Motivating Example: The Fourier Transform

To motivate the power of our enhanced types, consider the Discrete Fourier Transform
(DFT) which is the basis of MRI imaging. With type-level sizes, we can capture in-
correct applications producing 256-sized arrays from 128-sized inputs. With physical
units, we can capture errors in which tissue density and velocity data are erroneously
added together before or after the DFT, but neither is capable of detecting the most
common and hard to detect errors. This includes scaling problems related to the
Nyquist Theorem and erroneously combining data in time- and frequency-space. We
can capture all of these errors, and even use type inferencing (built into Haskell com-
pilers) to infer missing type information (including sample resolution). To appreciate
the value of this correctness checking, we first review the properties of the DFT,
beginning with sampling theory.

Sampling is the process of converting a signal into a numeric sequence. The Fourier
transform of a signal x(t), x : R→ R is defined by:

X(f) =

∫ ∞

−∞
x(t) · e−2·π·i·f ·tdt (2.2.1)

Where t, f ∈ R. For restoring and processing the information by computer, we must
work with the discrete version of a signal which is obtained by sampling from a
continuous one. It transforms a finite sequence of inputs into another finite sequence
of the same length. The definition is:

Xk =
N−1∑

0

xn · e−i·2·π·k·n/N (2.2.2)

In the following, we show how to use the DFT to approximate the FT of a continuous
signal x(t), and how aliasing errors can arise.

In Fig. 2.1, part (a) represents a band-limited signal x(t), part (b) represents the
Fourier transform of that signal X(f) which is zero outside the interval (−fm < f <
fm) because it is band-limited, part (c) represents the periodic unit impulse train,
part (d) illustrates the FT of the impulse train illustrated in (c), part (e) represents
the sampled version of x(t) and part (f) represents the FT of the sampled version
of x(t). The samples xs(t) can be viewed as the product of the function x(t) with a

9
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periodic impulse train (Fig. 2.1.(c)). The train is represented as [Skl88]:

xδ(t) =
∞∑

−∞

δ(t− nts) , (2.2.3)

where δ(t) : R → R is the unit impulse function and ts is the sampling period. The
sifting property of the impulse function states:

x(t)δ(t− t0) = x(t0)δ(t− t0) (2.2.4)

The sampled version of x(t) can be represented by:

xs(t) = x(t)xδ(t) =
∞∑

n=−∞

x(t)δ(t− nts) =
∞∑

n=−∞

x(nts)δ(t− nts) (2.2.5)

Using the Convolution theorem, the time domain equation (2.2.5) can be transformed
to the convolution in frequency domain X(f) ∗ Xδ(f), where Xδ(f), is the impulse
train with step fs = 1/ts, which is the Fourier transform of xδ. Therefore:

Xδ(f) =
1

ts

∞∑

n=−∞

δ(f − nfs) (2.2.6)

Another property of convolution is that convolution with an impulse function shifts
the original function:

X(f) ∗ δ(f − nfs) = X(f − nfs) (2.2.7)

Hence, the Fourier transform of the sampled version of x(t), Xs(f), is represented by:

Xs(f) = X(f)∗Xδ(f) = X(f)∗
[

1

ts

∞∑

n=−∞

δ(f − nfs)
]

=
1

ts

∞∑

n=−∞

X(f−nfs) (2.2.8)

In conclusion, the Fourier transform of the sampled signal is multiple spectra of the
original signal (within a constant factor), which centred at the sampling frequency,
and its harmonics. As it is illustrated in Fig. 2.1.(f), if fs = 2fm then there is
no overlapping between the multiple spectra. The Nyquist theorem states that, any
band limited signal x(t) that has no frequency component for f > fs can be uniquely
reconstructed from its samples X(nT ) if the sampling frequency satisfies fs > 2fm
which is called the Nyquist criterion. This criterion is one of the important FT prop-
erties which should be encoded in our the type-system, because when the sampling
resolutions exactly satisfy the Nyquist criterion, the sampled spaces are connected by

10
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Figure 2.1: Fourier Transform [Skl88]

the Fast Fourier Transform.

In experimental MRI, tissue density information is not directly measurable. In-
stead, MRI experiments collect samples of the continuous Fourier Transform of the
tissue density (and other interesting tissue properties). The dual-space to physical
space is called k-space, as are the measurements of the Fourier Transform. Note
that, unlike applications of the Fourier Transform to sound production, MRI requires
multi-dimensional transforms (3D for normal space, 2D for planar imaging, and even
higher dimensions for some types of velocity and diffusion imaging). Correctness
in MRI reconstructions depends on precisely encoding the meaning of data at the
type level to prevent errors in processing, from the obvious error of mixing k-space
and image-space data, to subtle errors involving incompatible resolutions in k- and
image-space.

First of all, the number of samples (resolution) should be equal in both k- and
image-space which is represented by N . The second one is to encode the Nyquist
criteria into our type-system resulted in the relation between sampling rates in k- and
image-space. According to Fig. 2.1, the Fourier transform of a non-periodic discrete
function xs(t) is a periodic continuous function. The Xs(f) is a continuos signal in the
frequency domain which should be discretized to be processed numerically. Likewise,
the sampling in the time domain, the sampled version of XS(f), can be obtained by

11
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Figure 2.2: K-space and Image-space Data

multiplying by another impulse train. Such multiplication in the frequency domain
affects the original signal in the time domain by making it periodic. Hence we can
represent the sampled data in k- and image-space by Fig. 2.2.

In the image-space:

N : number of samples

tm : the sampling step size in the image-space

2fm : the bandwidth collected in k-space,

where image-width = N × tm.
And, in the k-space:

N : number of samples

ts : the sampling step size in the k-space

ts = 1/fs

According to Nyquist criteria 2fm = fs, therefore:

N × tm × tk = 1 (2.2.9)
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Which enforces constraints on k- and image-space step sizes. To encode this constraint
in our type-system, we need to introduce the concept of Discretization to define an FT

class.
As an example, we consider a discretized function (meas1) and infer the type of its

Fourier transform, then we observe that their step-sizes satisfy the equation (2.2.9).
The discretized function meas1 has type defined by:

meas1 : : D i s c r e t i z a t i on1D LabFrame
(NumSamples ( SIZE3 D0 D0 D4) )
( StepSizeNum ( SIZE3 D0 D0 D1) )
( StepSizeDenom ( SIZE3 D5 D0 D0) )
(U. Meter ( ) )
[Complex Double ]

We have not yet introduced our type-level numbers, but, for example, SIZE3 D0 D0 D4

is a three-digit type level number which represents the number 004. We can get the
type of its Fourier transform from the ghci interpreter:

> : type ( f t meas1 )
( f t meas1 )

: : D i s c r e t i z a t i on1D
LabFrameT
(NumSamples ( SIZE3 D0 D0 D4) )
( StepSizeNum ( SIZE3 D5 D0 D0) )
( StepSizeDenom ( SIZE3 D0 D0 D4) )
(U. Meter ( ) )
[Complex Double ]

The number of samples in both cases is 4. Step-size is represented as the ratio of
StepSizeNum and StepSizeDenom. Therefore, the step-size of meas1 is 0.002 and the step-size
of ft mean1 is 125 which satisfy (2.2.9) (4× 0.002× 125 = 1).

2.2.2 Frames

A frame of reference is a coordinate system or a vector space basis together with
physical units and an origin to measure some characteristics of objects in it. In the
existing type systems, there is no way of recording the frame of reference. To formalize
it in our type-system, we considered a class for all frames:

class Frame frame where
type Base frame
name : : frame −> String

Note that the units are explicitly encoded on the Base, but the basis and origin are
implicitly encoded. As a reminder, vector space is a set of vectors on which two
operations are defined, vector addition and scalar multiplication and it should satisfy
several axioms w.r.t these two operations. Moreover, given any vector space V over
a field F , the dual space V ∗ is defined as the set of all linear maps φ : V → F (linear
functionals).

13
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Because a frame is mathematically similar to a vector space, we can define the
dual frame concept analogous to the dual vector space. Hence, for any given Frame a,
set of linear maps from Base a, to Unitless is the dual frame of Frame a. To formalize the
definition of dual frame, first we need to formalize the duality betwean units as a
class:

class DualUnits a b where
instance (Frame a , Frame b , U. Mult ( Base a ) ( Base b) (U. U n i t l e s s ( ) ) )

=> DualUnits a b where

Using this definition, we can assert the duality between frames by:

class ( DualUnits a b) => AssertDualFrames a b | a −> b , b −> a where

where in our type-system, the user has to specify the frame of reference, and assert
duality between frames such that if one frame changes alone, it will cause a compile-
time error. The functional dependency, a −> b, b −> a, denotes that knowing the type
of a frame, it is possible to infer the type if its dual frame and vice versa.

To justify the necessity of formalizing the frame into an enhanced type-system,
consider the orientation in medical imaging. Image orientation identifies the spatial
orientation of the imaging plane with respect to the patient. The orientation is
important to have a correct diagnosis. Because, when a physician examines a medical
image related to a patient’s leg, he or she needs to know whether it is the left leg or
right one; otherwise an operation may be done on the wrong leg. Currently, this level
of correctness cannot be guaranteed by the existing type systems. This property of
imaging is formalized using the Frame in our type-system.

To show an application of the Frame as a class, consider a discretized measurement
called meas1 which is related to the LabFrame.

meas1 : : D i s c r e t i z a t i on1D LabFrame
(NumSamples ( SIZE3 D0 D0 D4) )
( StepSizeNum ( SIZE3 D0 D0 D1) )
( StepSizeDenom ( SIZE3 D5 D0 D0) )
(U. Meter ( ) )
[Complex Double ]

meas1 = Di s c r e t i z a t i on1D [ 0 , 1 , 2 , 3 ]

The Fourier transform of meas1 should relate to the dual frame of LabFrame meaning
that adding meas1 with its Fourier transform is not a valid operation because they are
not measured in the same frame. So, whereas a conventional language which does
size checking would allow this operation, we flag a type error:

> : type ( f t meas1 ) U.+ meas1
> Couldn ’ t match type ‘LabFrameT ’ with ‘LabFrame ’

When us ing f u n c t i o n a l dependenc ies to combine
AssertDualFrames LabFrame LabFrameT ,

a r i s i n g from the dependency ‘ a −> b ’
in the instance d e c l a r a t i o n at Prac t i c e . l h s : 9 6 : 1 0

AssertDualFrames LabFrame LabFrame ,
a r i s i n g from a use of ‘ f t ’ at < i n t e r a c t i v e >:1:1−2

14
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Figure 2.3: Sampling of height of water in a canal

In the f i r s t argument of ‘ (U.+) ’ , namely ‘ f t meas1 ’
In the exp r e s s i on : f t meas1 U.+ meas1

(ghc also flags errors associated with sampling sizes, but the important error above
appears first.)

2.2.3 Discretizations and FTs

The Discretization data type is defined as:

data (Frame frame , U. Unit ( Base frame ) , U. Unit rangeU ,
NumSamplesC numSamples , StepSizeNumC stepSizeNum ,
StepSizeDenomC stepSizeDenom )

=> Disc r e t i z a t i on1D frame
numSamples
stepSizeNum
stepSizeDenom
rangeU
va l

= Di s c r e t i z a t i on1D va l

Where frame is a dimensional vector space; numSamples refers to the number of samples;
stepSizeNum and stepSizeDenom specify the step-size; rangeU clarifies the physical unit of the
discretized values; val represents discretized values. The class Unit, which is responsible
for physical units encoded in our type-system, will also be described later.

We start with an application of this enhanced data type.
To increase the signal to noise ratio, one solution is to take the average of multiple

samplings of the signal of interest. There are some constraints on the sampling to
have a meaningful average. For example if two samplings have the same number of
samples but different sampling steps, then adding those two samplings does not make
sense. Suppose we have two samplings of the height of water in a canal illustrated in
Fig. 2.3. In the blue sampling, there are 12 samples and the sampling step is 0.01. In
the red sampling, there are 12 samples, but the sampling step is 0.005. Those two
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samplings can be defined in our type system using the Discretization data type:

canalSample1 : : D i s c r e t i z a t i on1D CanalFrame
(NumSamples ( SIZE3 D0 D1 D2) )
( StepSizeNum ( SIZE3 D0 D0 D1) )
( StepSizeDenom ( SIZE3 D1 D0 D0) )
(U. Meter ( ) )
[Double ]

canalSample1 =
Di s c r e t i z a t i on1D [ 1 , 1 . 2 , 1 . 3 , 1 . 1 2 , 1 . 2 3 , 1 . 1 2 , 1 . 1 5 , 1 . 2 5 , 1 . 1 8 , 1 . 2 0 , 1 . 2 4 , 1 . 2 8 ]

canalSample2 : : D i s c r e t i z a t i on1D CanalFrame
(NumSamples ( SIZE3 D0 D1 D2) )
( StepSizeNum ( SIZE3 D0 D0 D1) )
( StepSizeDenom ( SIZE3 D2 D0 D0) )
(U. Meter ( ) )
[Double ]

canalSample2 =
Di s c r e t i z a t i on1D [ 1 , 1 . 2 1 , 1 . 2 , 1 . 4 2 , 1 . 3 , 1 . 3 2 , 1 . 1 2 , 1 . 2 5 , 1 . 2 3 , 1 . 2 0 , 1 . 1 2 , 1 . 2 8 ]

Trying to add those two samplings to each other will cause a compile time error.
Therefore, writing

> canalSample1 U.+ canalSample2

creates an error of the form:

Couldn ’ t match expected type ‘D1 ’ with ac tua l type ‘D2 ’
Expected type : D i s c r e t i z a t i on1D

CanalFrame
(NumSamples ( SIZE3 D0 D1 D2) )
( StepSizeNum ( SIZE3 D0 D0 D1) )
( StepSizeDenom ( SIZE3 D1 D0 D0) )
(U. Meter ( ) )
[Double ]

Actual type : D i s c r e t i z a t i on1D
CanalFrame
(NumSamples ( SIZE3 D0 D1 D2) )
( StepSizeNum ( SIZE3 D0 D0 D1) )
( StepSizeDenom ( SIZE3 D2 D0 D0) )
(U. Meter ( ) )
[Double ]

In the second argument of ‘ (U.+) ’ , namely ‘ canalSample2 ’
In the exp r e s s i on : canalSample1 U.+ canalSample2

The error message denotes that the stepSizeDenoms are different in those two samplings,
and adding them is not a valid operation.

As we mentioned, another powerful feature in our type system is the FT (Fourier
Transform) class which is defined by:

class FT a b | a −> b , b −> a where
f t : : a −> b
invFt : : b −> a

instance ( S i z e numSamp, U. Unit rangeU , AssertDualFrames frame1 frame2
, MultDNonZero ( stepSizeNum1 , stepSizeDenom1 )
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(numSamp, SIZE3 D0 D0 D1)
( stepSizeDenom2 , stepSizeNum2 ) )

=> FT ( Di s c r e t i z a t i on1D frame1
(NumSamples numSamp)
( StepSizeNum stepSizeNum1 )
( StepSizeDenom stepSizeDenom1 )
rangeU [Complex Double ] )

( D i s c r e t i z a t i on1D frame2
(NumSamples numSamp)
( StepSizeNum stepSizeNum2 )
( StepSizeDenom stepSizeDenom2 )
rangeU [Complex Double ] ) where

f t ( D i s c r e t i z a t i on1D x ) = ( Di s c r e t i z a t i on1D $ f f t x )
invFt ( D i s c r e t i z a t i on1D x ) = ( Di s c r e t i z a t i on1D $ i f f t x )

Where fft and ifft come from pure−fft package. Two parameters of that type class
represent a discretized function and its Fourier transform. Using the multi-parameter
type classes together with functional dependency, it is possible to infer the type of
the FT of a discretized function if it knows the type of the discretized function itself
and vice versa. In the instance definition, there are some important constraints on
two parameters of FT class which are related to FT properties. First, the number of
samples in those two parameters should be the same, which is encoded by clarifying
the same numSamp for those discretized parameters. Second, the discretized functions
(class parameters) are related to two dual frames, and this duality should be asserted
by user. The most subtle constraint is mentioned by the MultDNonZero class. This
constraint specifies that the product of the first two parameters should be equal to
the third parameter, meaning that:

stepSizeNum1

stepSizeDenom1
× numSamp

SIZE3 D0 D0 D1
=

stepSizeDenom2

stepSizeNum2

Which is the same as:
stepSize1 × stepSize2 × numSamp = 1

This is exactly what we got in equation (2.2.9).

2.2.4 Detailed Type-Level Implementation

Now, we explain the interesting implementation details of our type-system. First
of all, we present the type-level numbers encoded into our type-system. There are
several encodings of the type-level number including Peano numbers, binary encoding,
and so on. We used a phantom type representation of a sequence of decimal digits
because decimal encoding makes error messages more comprehensible. Since we are
using the decimal notation, we need the types for all ten digits:

data D0
data D1
data D2
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. . .
data D9

There is a class called Digit of which all 10 type level digits are instances. It has a
method to convert a type level single digit to its corresponding data level number.

class Dig i t a where
d i g i t : : a −> Int

We defined a phantom data type called SIZE to implement a 10-digit length (fixed
precision) type level number. We also implemented a smaller version named SIZE3,
which is a 3-digit length type level number to make the examples shorter. We made
our 10-digit and 3-digits numbers an instance of class Size, which has a method toInt to
convert a type level number into the corresponding data level (i.e. run-time) number.

data SIZE d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

data SIZE3 d2 d1 d0

class S i z e a where
toInt : : a −> Int

For 10-digit numbers we did the same method as 3-digits to make it an instance of
the class Size.

instance f o r a l l d2 d1 d0 . ( D ig i t d2 , D ig i t d1 , D ig i t d0 )
=> S i z e ( SIZE3 d2 d1 d0 ) where

toInt = d i g i t d0 + 10 ∗( d i g i t d1 ) + 100 ∗( d i g i t d2 )
where

d0 = undefined : : d0
d1 = undefined : : d1
d2 = undefined : : d2

In the instance definition, d0, d1, and d3 are all types, but we need terms with these
types in the definition of toInt function. This is why we defined several terms with an
undefined value and these types in the where expression. Then we implemented the
required arithmetic operations on our type level number. There is a class called Times

for multiplying two single digits with each other.

class Times da db high low | da db −> high , da db −> low where

Then we specified all of its instances w.r.t different combinations of any two digits.
For example:

instance Times D0 D0 D0 D0 where

...

instance Times D1 D0 D0 D0 where
instance Times D1 D1 D0 D1 where

...

instance Times D9 D1 D0 D9 where
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...

instance Times D9 D9 D8 D1 where

For multiplying two type level numbers, e.g two number of type Size, we needed to
implement the type level addition of 3 to 20 digits. Here, we present such additional
classes for adding 3 and 4 digits. Other classes for adding more number of digits have
the same implementation. For adding 3 digits, Add3 is implemented as:

class Add3 a1 a2 a3 sh s l | a1 a2 a3 −> sh , a1 a2 a3 −> s l where

instance (Add2 a1 a2 a1a2h a1a2l , Add2 a1a2 l a3 a1a2la3h a1a2a3l ,
Add2 a1a2h a1a2la3h D0 a1a2a3h ) => Add3 a1 a2 a3 a1a2a3h a1a2a3l where

For adding 4 digits, Add4 is implemented as:

class Add4 a1 a2 a3 a4 sh s l | a1 a2 a3 a4 −> sh , a1 a2 a3 a4 −> s l where
instance (Add3 a1 a2 a3 a1a2a3h a1a2a3l , Add2 a1a2a3l a4 a1a2a3la4h a1a2a3a4l ,

Add2 a1a2a3h a1a2a3la4h D0 a1a2a3a4h ) =>
Add4 a1 a2 a3 a4 a1a2a3a4h a1a2a3a4l where

We used Multi-parameter type classes together with functional dependencies in the
implementation of those type-level addition meaning that by knowing all input digits
(a1 a2 a3 a4) it can infer the type of both low and high digits of the result.

To present the implementation of a class for multiplying two type level numbers (of
type SIZE), we present the smaller version that is responsible for multiplying two
SIZE3 numbers, which captures all of the important ideas. We start by sketching
the multiplication of 3 digits by 3 digits to show the required constraints for their
multiplication class.

f2 f1 f0

e2 e1 e0

– – – – [e0 ∗ f0]h [e0 ∗ f0]l
– – – [e0 ∗ f1]h [e0 ∗ f1]l –
– – [e0 ∗ f2]h [e0 ∗ f2]l –
– – – [e1 ∗ f0]h [e1 ∗ f0]l –
– – [e1 ∗ f1]h [e1 ∗ f1]l – –
– [e1 ∗ f2]h [e1 ∗ f2]l – – –
– – [e2 ∗ f0]h [e2 ∗ f0]l – –
– [e2 ∗ f1]h [e2 ∗ f1]l – – –

[e2 ∗ f2]h [e2 ∗ f2]l – – – –
g2 g1 g0

For the first digit of result ‘g0’, there is just one term to be counted, which is the
low digit of ‘e0 × f0’, and this can be implemented using the Times class. The second
digit of result ‘g1’ is obtained by adding the high digit of ‘e0 × f0’, the low digit of
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‘e0 × f1’, and the low digit of ‘e1 × f0’ which can be implemented using the ’Add3’
class. The third digit is the result of adding 5 different known terms which can be
implemented using Add5 class. We wanted to have a class for multiplying 2 type level
numbers and represent the result as another type level number with the same size
because our decimal type level numbers have fixed precision and the resulting typed
number should have the same number of digits as the arguments have. It means that
for multiplying 3 digits by 3 digits, all higher order digits (higher than 3) should be
zero. It turns out that any term in the forth, fifth, and sixth columns should be zero,
and can also be implemented as a constraint using the Times class. Therefore, the
MultD3 class is defined as:

class MultD3 f2 f1 f0 e2 e1 e0 g2 g1 g0 |
f 2 f 1 f 0 e2 e1 e0 −> g2 ,
f 2 f 1 f 0 e2 e1 e0 −> g1 ,
f 2 f 1 f 0 e2 e1 e0 −> g0 where

instance ( Times f0 e0 p00h p00l , Times f1 e0 p10h p10l , Times f2 e0 D0 p20l ,
Times f0 e1 p01h p01l , Times f1 e1 D0 p11l , Times f2 e1 D0 D0 ,
Times f0 e2 D0 p02l , Times f1 e2 D0 D0 , Times f2 e2 D0 D0 ,
Add3 p00h p10l p01l c1h c1 l , Add5 p20l p01h p11l p02l c1h D0 c 2 l )

=> MultD3 f2 f1 f 0 e2 e1 e0 c 2 l c 1 l p00l where

Implementing MultD10 for multiplying 10 digits by 10 digits have the same procedure.
In order to unify all different size numbers, we defined a MultD class such that MultD3

and MultD10 are the instances of this one:

class MultD f e g | f e −> g where

instance ( MultD10 f9 f8 f 7 f 6 f 5 f 4 f 3 f 2 f 1 f 0
e9 e8 e7 e6 e5 e4 e3 e2 e1 e0
g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 )

=> MultD ( SIZE f9 f8 f7 f 6 f 5 f 4 f 3 f 2 f 1 f 0 )
( SIZE e9 e8 e7 e6 e5 e4 e3 e2 e1 e0 )
( SIZE g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 ) where

instance (MultD3 f2 f1 f0 e2 e1 e0 g2 g1 g0 ) =>
MultD ( SIZE3 f2 f1 f 0 ) ( SIZE3 e2 e1 e0 ) ( SIZE3 g2 g1 g0 ) where

In addition, we defined an extra multiplying class called MultDNonZero with extra con-
straints such that functional dependency works in all directions, meaning that know-
ing the type of any two elements of the triple (f, e, g) gives the type of third one.
This property helped us in the FT definition to implement the equation we got from
the sampling theorem as a constraint. Type inference would not work if some sizes
were allowed to be zero, since any x satisfies x · 0 = 0.

class MultDNonZero f e g | f e −> g , f g −> e , e g −> f where
instance ( NonZero f , NonZero e , NonZero g , MultD e f g ) =>

MultDNonZero e f g where

Type level numbers are needed for both sizes and dimensions, but dimensions
are never big numbers, so it makes sense to create small numbers using phantom
data types to represent different powers for each basic unit. For each required basic
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unit w.r.t the different powers (we do not need all basic units for medical imaging
purpose), we created a data type. For example:

data M0 −− means the dimension l eng t h to the power o f 0 ( d imens ion les s )
data M1 −− means the dimension l eng t h to the power o f 1
data M2
. . .
data M 1 −− means the dimension l eng t h to the power o f −1
data M 2

For every basic unit, we needed a class with a method to convert type level dimensional
numbers (from -5 to 5 is enough for our application) into its corresponding data level
number. For example for length, we have a class called UnitM:
class UnitM a where

toIntM : : a −> Int
instance UnitM M0 where
toIntM = 0

instance UnitM M1 where
toIntM = 1

. . .
instance UnitM M 5 where

toIntM = −5

There is also another class for multiplying two powers of the same basic dimensions,
which is responsible for simplifying the resulting dimensions by adding their powers.
class AddDim a b c | a b −> c , a c −> b , b c −> a where

We added all of its reasonable instances to our type-system. For example:
. . .
instance AddDim M 4 M3 M 1 where
. . .

The above instance means that m−4 ×m3 is equal to m−1.

For composite units, we defined a data type constructor called SIUnit which has 5
type arguments to represent the basic units, and another type variable to represent
the value which has this unit, for example a double or even an expression.
data SIUnit u1 u2 u3 u4 u5 va l = SIUnit va l

Type synonyms were used for more general composite units:
type U n i t l e s s va l = SIUnit M0 Kg0 S0 A0 Mol0 va l
type Meter va l = SIUnit M1 Kg0 S0 A0 Mol0 va l
type PerM val = SIUnit M 1 Kg0 S0 A0 Mol0 va l
type MPerS va l = SIUnit M1 Kg0 S 1 A0 Mol0 va l
. . .

We implemented a class, Unit for all possible units which accepts only composite units
which have the basic units in the specific order.
class Unit a where

instance (UnitM m, Show m, UnitKg kg , Show kg , UnitS s , Show s ,
UnitA a , Show a , UnitMol mol , Show mol , Show va l )
=> Unit ( SIUnit m kg s a mol va l ) where
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We also needed to implement the required arithmetic operation with respect to the
physical quantities. Such operations are more restricted than their default implemen-
tation in the Prelude. For example, adding or subtracting two physical quantities only
makes sense when both have the same dimension. We implemented the Mult class with
the ‘(∗)’ method and the Add class with the ‘(+)’, negate and ‘(−)’ methods:

class Mult a b c | a b −> c , a c −> b , b c −> a where
(∗ ) : : a −> b −> c

class Add a where
(+) : : a −> a −> a
negate : : a −> a
(−) : : a −> a −> a

Then we made the SIUnit data an instance of those classes:

instance (UnitM u1 , UnitKg u2 , UnitS u3 , UnitA u4 , UnitMol u5 , Add va l )
=> Add ( SIUnit u1 u2 u3 u4 u5 va l ) where

( SIUnit x ) + ( SIUnit y ) = SIUnit ( x + y )
negate ( SIUnit x ) = SIUnit (negate x )
( SIUnit x ) − ( SIUnit y ) = SIUnit ( x − y )

Which states that addition and subtraction are only valid when both quantities have
the same dimension.

instance (AddDim u1 v1 w1 , AddDim u2 v2 w2 , AddDim u3 v3 w3 ,
AddDim u4 v4 w4 , AddDim u5 v5 w5 , Mult va l va l va l )

=> Mult ( SIUnit u1 u2 u3 u4 u5 va l )
( SIUnit v1 v2 v3 v4 v5 va l )
( SIUnit w1 w2 w3 w4 w5 va l ) where

( SIUnit a ) ∗ ( SIUnit b) = SIUnit ( a ∗ b)

Where the power of each basic unit in the first arguments is added to the power of the
same basic unit in the second argument to make the physical dimension of the result.
The functional dependency in all directions makes it possible to infer the physical
unit of any argument by knowing the two others.
At this state, we can show an example using the physical dimensions in our type-
system. Suppose we have three physical quantities representing distance, time and
velocity defined as:

d i s t ance = SIUnit 2 : : Meter Double
time = SIUnit 10 : : Second Double
v e l o c i t y = SIUnit 0 .2 : : MPerS Double

If we multiply velocity and time, the resulting quantity has the distance dimension which
makes sense.

> v e l o c i t y ∗ time
2 .0 m

But if we try to add time with distance it will cause a compile time error:

> time + d i s t anc e
Couldn ’ t match expected type ‘M0’ with ac tua l type ‘M1’

Expected type : Second Double
Actual type : Meter Double

22



M.Sc. Thesis - Maryam Moghadas McMaster - Computer Science

In the second argument of ‘ (+) ’ , namely ‘ d i s tance ’
In the exp r e s s i on : time + d i s t ance

In the error message, it explicitly mentions that the expected type is Second Double and
the actual type is Meter Double which is easy enough for user to understand.

Our main intention to implement a type-system for scientific computation was to
verify the correctness of medical imaging computations specially for MRI. In such
cases, we have to deal with inverse problems, which are explained in detail in the
next chapter. We discussed earlier that the tissue density is not directly measurable,
and in most physical/medical experiments, there is the same situation meaning that
we rarely can measure the quantity of interest directly. The process of extracting the
quantity of interest from the observable data in such experiments is called inverse
problem. To solve an inverse problem, we need to use regularization which is dis-
cussed in the following chapter. Hence, we have to verify the correctness of both the
model and the regularizer to have a complete verification for that resulting software.
Most models are (or can be approximated by) linear transformations like the Fourier
transformation, and they can be encoded into our type-system analogously. The im-
portant part is to formalize the regularization term. The problem is that we could
not do this for the leading regularizers. For example, we could not fit `1− norm and
Total Variation regularizations into our type system. We believe this is because they
were not developed from physics but from abstract mathematical arguments. There-
fore, the second focus of this thesis is to introduce and review inverse problems and
regularizations so that we can propose a reasonable Bayesian regularization method
with sufficient properties that we believe can be encoded in our type-system.
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Chapter 3

Inverse Problems And
Regularization

3.1 Inverse Problem

An inverse problem means converting observed data (measurements) into information
about an unknown quantity that we want to determine. This unknown quantity
depends on the measured data via a system or model.

Inverse problems appear in many fields of science, including medical imaging (such
as MRI), computer vision, machine learning, statistical inference, geophysics, ocean
acoustic tomography, astronomy, physics, and many other branches. In most of these
fields, the quantity that we are interested in determining is different from the ob-
servable quantity. When the measured data depends on the unknown quantities of
interest in terms of an explicit model, then reconstructing the unknown quantities of
interest is called an inverse problem. For example in MRI, the observable quantity is
the electromagnetic field related to protons in the tissue. But, the quantity of interest
is the tissue density.

In a typical inverse problem, the idea is to determine an estimate for the unknown
quantity f based on a noisy measurement g that is related to f according to a known
model K such that g = K(f). Inverse problems are classified by whether or not they
satisfy Hadamard’s principles of well-posedness. Well-posed problems can be solved
unambiguously. Ill-posed problems may not have a solution, or solutions may not be
unique or depend continuously on the data. Regularization was introduced to deal
with ill-posed problems.
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3.2 Ill-posed and ill-conditioned problems

The basic idea of a well-posed problem was introduced by the French mathemati-
cian Jacques Hadamard. In most cases, forward problems (also called simulations)
are well-posed and easy to compute, whereas the inverse problems are ill-posed or
ill-conditioned in the sense of Hadamard’s conditions. Hadamard, in his lectures
published in [Han98], claims that a mathematical model for a physical problem is
well-posed if it has the following properties:

1. There exists a solution of the problem (existence).

2. There is at most one solution of the problem (uniqueness).

3. The solution depends continuously on the data (stability).

Mathematically, the existence of a solution can be imposed by extending the solution
space. The non-uniqueness problem can be solved by adding a priori information into
the model. The third condition is the most crucial one. The continuity condition
is related to the stability or robustness of the solution. Continuity, however, is a
necessary but not sufficient condition for stability. A well-posed problem can still be
ill-conditioned, meaning that even small changes in the measurement space, e.g. due
to noise, result in large changes in the model space. Ill conditioning can be measured
by the condition number which is the ratio of the the largest to the smallest singular
values of the Jacobian matrix of partial derivatives. A well-posed problem, in order
to have solutions that are robust against noise, must also be well-conditioned. Many
ill-conditioned problems are improved by adding regularization.

Historically, mathematicians were motivated by systems like Fredholm integral
equations, which were often ill-posed:

Example : Fredholm integral equations of the first kind [Idi08].
This is a equation of the form:

y(s) =

∫ b

a

K(s, t)x(t) dt (3.2.1)

In this equation y is a given function which is usually the known data or mea-
surement, K(, ) is the kernel of the equation and x is the solution of interest which is
an unknown function. The existence of solutions is not guaranteed (or obvious) and
depends on the properties of K. Another challenging question is whether the solution
is unique. For example, if K(s, t) = s sin t, the function x(t) = 1/2 is a solution of :

s =

∫ π

0

s sin(t)x(t) dt (3.2.2)
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But the crucial point is that each of the functions xn(t) = 1/2 + sin(nt), for
n = 1, 2, 3, . . . is a solution to that equation too.

According to the Riemann-Lebesgue lemma which states that for any square in-
tegrable kernel, K(., .),

∫ π

0

K(s, t) sin(nt) dt→ 0 as n→ 0 ,

if x is a solution of Eq.(1) and A is an arbitrary value, then

∫ π

0

K(s, t)(x(t) + (A sin(nt)) dt→ y(s) as n→ 0 ,

So x̃(t) = x(t) + A sin(nt) is the solution of

ỹ(s) = y(s) + A

∫ π

0

K(s, t) sin(nt) dt

for large values of n, ỹ(s)→ y(s) but x̃(t) differs noticeably from x(t).
Therefore, for Fredholm equations of the first kind, solutions usually do not depend
continuously on the data.

3.3 Regularization

Regularization methods are the most commonly used techniques when solving ill-
posed inverse problems. The goal of regularization is to find a well-posed estimation
for the original ill-posed problem such that the approximate solution would be as close
as possible to the exact solution. Therefore, regularization is a standard method to
transform an ill-posed problem into a well-posed one. The main idea of the reg-
ularization methods is to employ the additional information explicitly in order to
make a bunch of approximate solutions. Regularization methods are divided into two
categories, classical (deterministic) and statistical.

In the following, we first explain the motivation for adding regularization terms.
Secondly, we introduce two classical methods including TSVD and Tikhonov methods.
Then, we discuss both `2-norm and TV regularizations, popular in imaging, which
stem from Tikhonov methods. We also introduce compressive sensing which is one
of the most recent methods introduced for under sampling problems. Finally, we will
formally explain statistical and Bayesian methods and discuss hidden Markov random
fields as one of the most popular Bayesian methods in signal and image restoration.
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3.4 Classical Approach

Any practical or physical system can be represented by three main parameters: input,
system parameters (forward model of the system), and output. Two possible inverse
problems related to such a physical system are:

• Given the system parameters (forward model) and the output, determine the
input of the system.

• Given the input and the output of the system, determine the system parameters
(forward model of the system).

The first one has more application in experimental situations, especially in imaging
fields. When the second problem arises, it is often called a calibration problem. To
formalize the first situation, the system can be introduced by the mapping h : X 7−→ Y ,
which is the forward model. X is called the model space which contains all possible
values of the unknown quantity of interest, x. Likewise Y is called data space which
includes all possible values of data (measurement), y. Therefore a nonlinear forward
problem can be represented by:

y = h(x) (3.4.1)

If the problem is linear, then, the forward system can be represented as:

y = Hx (3.4.2)

In most practical cases there are measurement errors, so the measured data may not
be a member of the range of h, meaning there is not an exact solution for:

h(x)− y = 0 (3.4.3)

which violates Hadamard’s first condition as explained before. To handle the non-
existent solution problem, a common approach is calculating an approximate solution
using the least squares (LS) method:

xLS = arg minx‖h(x)− y‖2 (3.4.4)

But there is no guarantee about the uniqueness and stability of such estimates. So
in general we have to deal with an ill-posed problem.

The null space of h, N (h) = {x ∈ X : h(x) = 0}, has an important role in the
ill-posedness analyses of (3.4.1). For example, if xN ∈ N (h) and xLS is a solution
of (3.4.1) then, xLS + xN is a solution too. So if the null space of h is a non-zero
set, then the uniqueness will be violated. For linear cases, the null space analysis is
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possible by singular value decomposition (SVD), which will be discussed. Nonlinear
cases are usually handled by linearization.

3.4.1 TSVD

Any linear forward operator H : X 7−→ Y is stated by the matrix H ∈ RD×M . The
least square equation (3.4.4) can be rewritten by:

xLS = arg minx‖Hx− y‖2 (3.4.5)

The singular value decomposition of H has the following form:

H = UΣV T =

q∑

i=1

uiλiv
T
i

Where q = min(M,D), U and V are orthonormal matrixes,

U = (u1, u2, ..., uD) ∈ RD×D, V = (v1, v2, ..., vM) ∈ RM×M ,

and Σ = diag(λ1, λ2, ..., λq) ∈ RD×M is a diagonal matrix with non-negative diagonal
elements λi, which are called singular values of h and are ordered in the following
way:

λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0 (3.4.6)

We represent the rank of H by r. If H is a full rank matrix then the solution of
(3.4.2) is achieved by the normal equation [GVL96].

HTHx = HTy ,

which can be represented by:

xLS = (HTH)−1HTy ,

If r < q, then the last q−r singular values are zero and, respectively, the last q−r
singular vectors vi are in the null space of H. This is one of the reasons which makes
the (3.4.2) ill-posed as we explained before. Therefore if H is rank-deficient then
equation (3.4.5) does not have a unique solution. Another reason which makes (3.4.2)
ill-conditioned is that in the singular spectrum of H, there are some small λi values
which make the unknown quantity very sensitive to the noise in the measurement.

TSVD is a common solution to both of these problems. The idea of TSVD like
other standard regularizers is to specify a well-posed problem subject to the ill-posed
one such that it can reduce properly the sensitivity of the solution to the measurement
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noise. Using TSVD, it substitutes matrix H with one Hk of lower rank k which ignores
components of the right hand side corresponding to the last r−k small singular values.
The matrix Hk is a rank-k matrix is defined by:

Hk = UΣkV
T , Σk = diag(λ1, λ2..., λk, 0, ..., 0) (3.4.7)

Where k < r and Σk is like Σ in which the last (smallest) q − k singular values are
replaced with zero. The benefit of replacing H with Hk is that the condition number
of Hk, λ1/λk, will be appropriately smaller than that of H if the number k is chosen
properly. [Han87] The TSVD solution to (3.4.5) is represented by:

xk = H+
k y (3.4.8)

Where the H+
k is the pseudo-inverse of Hk, which is defined by:

H+
k = V Σ+

k U
T , Σ+

k = diag(λ−1
1 , λ−2

2 , ..., λ−1
k , 0, ..., 0) ∈ RM×D

3.4.2 Tikhonov Method

Tikhonov was the first person who solved ill-posed problems numerically and intro-
duced the idea of regularization [Tik63] [TAJ77]. Tikhonov regularization is used for
solving inverse problems in many fields. TSVD reduces the instability of the recon-
structed quantity by explicitly truncating, while Tikhonov performs it implicitly by
adding a penalty term to the objective function. Tikhonov methods incorporate a
priori information about both size and smoothness of the preferred solution which
has the form of the norm ‖Lx‖2 for discrete inverse problems.

Tikhonov methods revised the least squares equation by adding an additional so-
called penalty term, [Mon05] [Kir96] and regularization parameter λ, which manages
the balance between the data fit and the amount of regularization term that normally
constrains the magnitude/smoothness of the solution. Hence it handles the level of
smoothing. In general it is formulated by:

min{‖A(x)− y‖2
2 + λ2‖L(x)‖2

2} (3.4.9)

For discrete linear ill-posed problems, A and L are matrixes. Therefore it can be
defined as:

min{‖Ax− y‖2
2 + λ2‖Lx‖2

2} (3.4.10)

Where L is often a discrete approximation of a derivative operator. Three common
choices of L are I, L1, L2 where L1, L2 are respectively the first and second order
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derivative operators defined by: [Han10]

L1 =



−1 1

. . . . . .

−1 1


 (3.4.11)

and,

L2 =




1 −2 1
. . . . . . . . .

1 −2 1


 (3.4.12)

Therefore, the discrete norm ‖Lx‖2 with L equal to either I, L1 or L2 represents
the continuous norms ‖f‖2, ‖f ′‖ and ‖f ′′‖ respectively.

`2-norm regularization, which is used in image reconstruction, stemmed from
Tikhonov regularization where L is equal to L1, so the inverse problem can be defined
by:

min{‖Ax− y‖2
2 + λ2‖L1x‖2

2} (3.4.13)

For the nonlinear case, nonlinear optimization methods are used to obtain the
solution, while in linear case, the solution is obtained by:

x̂λ = (ATA+ λ2LLT )
−1
ATy

The limitation of such standard regularization methods like Tikhonov regulariza-
tion and Truncated Singular Value Decomposition (TSVD) is that they suppose the
data set to be smooth and continuous. So they produce results that are smooth.
In contrast the Total Variation (TV) regularization, introduced by Rudin, Osher,
and Fatemi in [ROF92], does not impose smoothess. It can produce a discontinu-
ous solution. Hence Tikhonov regularization produces the smooth solution while TV
regularization makes the solution piecewise smooth. Hence TV regularization can
preserve the edges while Tikhonov one can not.

Total Variation regularization replaces Tikhonov’s `2-norm with the `1-norm of
the first derivative. Hence the optimization problem for discrete inverse problem
using the TV regularization is defined by: [Han10]

min{‖Ax− y‖2
2 + λ2‖L1x‖1} (3.4.14)

Where L1 is defined by (3.4.11).
Therefore the ‖L1x‖1 resembles the total variation ‖f ′‖1. To deal with sharp edges in
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the source of interest, total variation regularization is an adequate method to preserves
the discontinuities. However, it is more expensive because of the non-differentiability
of the regularization term.

3.5 Compressive Sensing

Compressive Sensing (CS) is a method to recover signals from far fewer measurements
than what is usually believed necessary by traditional methods. (Nyquist/Shannon
sampling theory). The basics of the CS theory emerged in the works [CRT06, Don06]

CS introduces the fact that many signals can be represented using only a few non-
zero coefficients in an appropriate basis. Reconstruction of such signals from very few
measurements is possible using nonlinear optimization. Therefore, CS is an effective
protocol for signal acquisition and reconstruction.

Suppose we are interested in measuring signal X which is a N × 1 vector or
similarly we can say X ∈ RN . Any vector in RN can be represented in terms of a
basis Ψ which contains N×1 vectors ψi. An orthonormal basis, such as wavelet basis,
is chosen. The expansion of X in such a basis can be represented by [CW08]:

X =
N∑

i=1

siψi or X = ΨS (3.5.1)

Where Ψ is the N ×N basis matrix whose columns are the vectors {ψi}, and S is an
N × 1 vector. X is K-sparse if only K of the coefficients are nonzero and the other
(N −K) coefficients are zero. For compressive sensing, it is important to find a basis
for the interested signal such that in that basis the signal is sparse and just a small
number of its coefficients are nonzero. In that case the signal is called compressible.

The main idea of CS is that it acquires the compressed signal directly and does
not go through the middle step for acquiring and saving N samples. Hence CS is
supposed to recover signal X ∈ RN from M measurements where M << N and N is
the original sample numbers. Assume a set of N linear combinations of the signal X
as the measurement vector y which is represented by:

Y = ΦX (3.5.2)

where Φ is the M × N sensing matrix. If the sparsity basis is known, then by
choosing sufficient values for M and Φ, it is possible to recover X from Y properly.
One important issue is that the coherence between Φ and Ψ should be small.

By definition, the coherence between sensing basis Φ and representation basis Ψ
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is denoted by:
µ(Φ,Ψ) =

√
N · max

1<i,j<N
‖ < φi, ψj > ‖ (3.5.3)

Therefore, in CS, both sparsity and incoherency are important to reconstruct the
signal properly. It was shown in [CW08] that if M fulfills the following criteria then
signal X can be reconstructed from Y properly with probability close to 1:

M ≥ cK log (N/K)

where c is a constant and K is the sparsity grade. It was shown that Φ could be
chosen randomly.

From (0.16) and (0.17):
Y = ΦΨS (3.5.4)

It was mentioned that Φ is an M × N matrix and Ψ is an N × N matrix so, ΦΨ is
an M ×N matrix and equation (3.5.2) is ill-posed. The value of S can be recovered
from measurement vector Y using the `1-norm minimization:

Ŝ = arg minS‖S‖1, subject to Y = ΦΨS (3.5.5)

Finally the original signal X can be recovered from equation (3.5.1).

3.6 Statistical Approach

The statistical approach reformulates inverse problems as problems of statistical infer-
ence using Bayesian statistics in which all quantities are specified as random variables.
There are two groups of quantities: directly observable quantities, and unobservable
quantities. These two quantities are dependent via the models. The purpose of the
statistical approach is to take out information and evaluate the uncertainty about
the variables (second group) based on the measurement information (first group) as
well as information and models of the unknown quantities (second group) that are
available prior to the measurement.

The uncertainty of observation is coded in the probability distributions of the
quantities. In this approach, the solution to an inverse problem is the probabil-
ity distribution of the quantity of interest, which is called the posterior probability
distribution. This makes the statistical approach quite different from the classical
approach discussed before. As we mentioned in the previous section, classical regu-
larizers are used to produce a valid estimate of the quantities of interest according to
the available data, but in the statistical approach the solution to an inverse problem
is a probability distribution rather than a single estimate. Moreover, in the standard
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regularization, a priori information restricts the solution space while in the statistical
method, the a priori information is described in terms of the probability distribution
[Idi08, KS05].

The fundamental rules of the statistical inversion approach are as follows:

• All variables contained in the model are represented by random variables.

• The amount of information relating to these variables is coded into their distri-
butions.

• The solution of the inverse problem is represented by the posterior probability
distribution.

Similar to the classical inversion methods, suppose we are interested in specifying an
unobservable quantity x ∈ Rn which depends on an observable quantity y ∈ Rm in
terms of a model f . We can define such system by:

y = f(x, e) (3.6.1)

Where f : Rn ×Rk → Rm and e ∈ Rk represents noise. According to the first rule of
statistical inversion, all variables should be modelled as random variables. X, Y and
E are the random variable representations of x, y and e respectively. Therefore, the
relation between these random variables can be defined with respect to the equation
(3.6.1) by:

Y = F (X,E) (3.6.2)

The random variable Y is called the measurement, which is directly observable. The
the random variable X, which is of primary interest but non-observable, is called the
unknown. E represents the noise of the measurement and model.

In most practical cases like medical imaging, there is some information available
about the unknown quantity of interest (e.g., we know the approximate location, size
and shape of organs) before making the measurement. In the Bayesian approach this
kind of information is coded into the probability density of the unknown quantity X,
which is called the prior probability density and illustrated by P (x).

From the product rule, the joint probability density and the conditional probability
densities are related by:

p(x, y) = p(y|x)p(x) = p(x|y)p(y) (3.6.3)

The conditional probability p(y|x) is called the likelihood function which states the
likelihood of different measurement resulting from X = x.

Y is the observable random variable so, actually, after performing the measure-
ment we have Y = yobserved. The conditional probability distribution p(x|yobserved) is
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the solution of the inverse problem and is called posterior distribution of X presented
by:

p(x|yobserved) =
p(x, yobserved)

p(yobserved)
(3.6.4)

The Bayes’ theorem of inverse problem expresses that the posterior probability dis-
tribution of X, given the measurement yobserved is:

ppost(x) = p(x|yobserved) =
p(x)p(yobserved|x)

p(yobserved)
(3.6.5)

In the following we substitute yobserved by simply y because yobserved is used to em-
phasize that for evaluating posterior probability density, the observed value of y is
used.

In equation (3.6.3) the marginal density p(y) acts like a normalizing constant.

p(y) =

∫

Rn

p(x, y)dx (3.6.6)

One of the challenges in this approach is to assign the a priori density p(x) and the
conditional density p(y|x) such that they can reflect entirely the a priori information
about the unknown quantity of interest and the interrelation between the unknown
quantity and measurement respectively.

Making the likelihood function is usually more obvious compared to the construc-
tion of a prior function. One of the most frequent cases for likelihood construction is
when the noise in the system can be modelled as additive and independent from the
unknown quantity X. Hence the statistical model is

Y = f(X) + E (3.6.7)

Where X ∈ Rn, Y,E ∈ Rm, and X and E are independent from each other. If we
know the probability distribution of the noise E then, it is possible to calculate the
likelihood function directly. When X and E are independent, the probability density
of E does not change by fixing X = x. Therefore Y conditioned on X = x has the
same distribution as E so the likelihood function is:

p(y|x) = pnoise(y − f(x)) (3.6.8)

When the unknown X and the noise E are dependent, it is a little bit more challenging
because we need to have more information about the conditional densities.

The most challenging part in constructing the statistical model is making the a
priori density. The reason is that generally we have qualitative a priori information
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about the unknown while we need quantitative information to be coded into the a
priori density. Gaussian priors are one of the most frequent probability densities used
in practical situations.

When we are modelling the system, there are some variables which are neither
observable, nor model variables of direct interest, but they usually give additional
information about the model variables or the confidence we should consider in the
estimates. They are conventionally called hyper parameters in most documents and
denoted by θ. For example, if the signal production model includes multiple sources
of noise, then the variance of each source of noise may be needed in the Bayesian
approach, and knowing them tells us something about the predictability of the system,
although not about the model variables we are trying to estimate.

Therefore it is necessary to generalize Bayes’ theorem of inverse problem (3.6.5)
as follows [Idi08]:

p(x|y, θ) =
p(x|θ)p(y|x, θ)

p(y|θ) (3.6.9)

And the normalizing constant is:

p(y|θ) =

∫
p(y|x, θ)p(x|θ)dx

Another challenge in the Bayesian approach is how to determine the hyperparameters.
As mentioned, the solution of the inverse problem is defined by the posterior

distribution. When the posterior distribution is known, it is possible to calculate both
point estimates and interval estimates. The point estimates specify the most probable
value of the unknown X when the observable data y and the prior information are
given. Likewise, The interval estimate states an interval in which the value of the
unknown X has a specific probability (95%) when the observable data Y and the a
priori information are given.

One of the common point estimates is the maximum a posteriori estimate (MAP)
which is defined by:

xMap = arg maxx∈Rnp(x|y) (3.6.10)

A solution to this optimization problem may not exist or, if it exists, it could be
non-unique. So the point estimate approach to inverse problem can be inadequate.

Another common point estimate method is the conditional mean estimate (CM)
which is defined as:

xCM = E{x|y} =

∫

Rn

xp(x|y)dx (3.6.11)

The advantage of CM compared to MAP is that smoothness features of the posterior
distribution are not so critical, especially when gradient-based optimization are used

35



M.Sc. Thesis - Maryam Moghadas McMaster - Computer Science

to solve the optimization problem of MAP. The disadvantage of CM is that integrating
over high dimensional space is more complicated than just applying usual quadrature
methods.[KS05]

Maximum likelihood (ML) is the most popular point estimate method. The ML
method estimates the value of the unknown which most likely produces the measured
data. This is a statistical but non-Bayesian method and defined as:

xML = arg maxx∈Rnp(y|x) (3.6.12)

3.6.1 Hidden Markov Random Model

As our Bayesian regularizer was implemented for imaging problems in general and
MR Imaging in particular, it is worthwhile to review the contribution of the Bayesian
approach to signal and image reconstruction. Therefore, in this part, we want to
introduce the Hidden Markov Random Field, which is the underlying probabilistic
method in the statistical approach to signal and image restoration. It has also been
used in other high-level vision processing such as object matching and recognition.

In MRF theory, it is possible to encode the spatial properties of an image using the
relation between neighbouring pixels. For example in piecewise constant image, the
neighbouring pixels should have the same intensities. This property can be achieved
by mutual impact between neighbouring pixels using conditional distributions.

MRF theory provides a method to model the a priori probability of context-
dependent patterns, such as the relationship between neighbouring pixels. MRF
theory is commonly used together with statistical decision methods in order to express
objective functions. The maximum a posteriori (MAP) probability criterion is often
mixed with MRF. The MAP-MRF framework was recommended first by Geman and
Geman (1984). [GG84]

In the MAP-MRF framework, the objective function is the joint posterior proba-
bility density related to the unknown quantity. There are three fundamental parts in
MAP-MRF modelling which are:

• deriving the posterior probability distribution

• specifying the parameters in the posterior distribution

• designing optimization methods to find the maximum of the posterior distribu-
tion

Suppose S = {1, 2, ..., N} is the set of indices and X, Y are two random fields such
that L and D are their state spaces respectively.

∀i ∈ S ⇒ Xi ∈ L and Yi ∈ D
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Assume x and y specify configurations of X and Y respectively, and X ,Y are the set
of all configurations such that

X = {x = (x1, ..., xN)|xi ∈ L, i ∈ S} and Y = {y = (y1, ..., yN)|yi ∈ D, i ∈ S}

The conditional probability distribution of Yi for a given value of Xi = ` follows:

p(yi|`) = f(yi; θ`), ∀` ∈ L (3.6.13)

θl in the above equation is the set of all parameters. The important principle in MRF
is that the indices in S are associated to each other through a neighbourhood system
N

N = {Ni, i ∈ S}
where, Ni is the collection of all indices located in the neighbourhood of i with the
following property:

i /∈ Ni and, (3.6.14)

i ∈ Nj ⇔ j ∈ Ni (3.6.15)

Let X be a random field. If it satisfies the following criteria then it will be a MRF
on S according to neighbourhood model N [ZBS01]

P (x) > 0, ∀x ∈ X
P (xi|xS−{i}) = P (xi|xNi

)

It is remarkable that a multidimensional neighbouring system can be defined using
the multidimensional indices. This is why in the labelling problems S is defined as a
set of sites.

Hammersley-Clifford theorem states that Markov random fields are equivalent to
Gibbs fields, so they can be modelled by Gibbs distribution. Therefore

P (x) = Z−1 exp(−U(x)) (3.6.16)

where U(x) is called the energy function and Z is a constant for normalizing. The
energy function is defined in terms of clique potentials where a clique C is a subset of
S such that any pair of distinct indices in it are neighbours.

U(x) =
∑

c∈C

Vc(x) (3.6.17)

The values of Vc(x) rely on the arrangement of the cliques.
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The HMRF has two main components: the hidden random field, and the observ-
able random field.

The random field X = {Xi : i ∈ S} with state space L is the hidden random field
which means its state is unobservable and it has a Gibbs distribution of the form
(3.6.16). Y = {Yi : i ∈ S} is the observable random field whose state space is D.

For any configuration x ∈ X , the conditional probability for every Yi has the form:

p(yi|xi) = f(yi; θxi) (3.6.18)

which is called the emission probability function.
The HMRF also has the conditional independence property. The conditional

independence property states that for every configuration x:

P (y|x) =
∏

i∈S

P (yi|xi) (3.6.19)

Regarding the conditional independence property, the joint probability of (X, Y ) can
be written as

P (y,x) = P (y|x)P (x) = P (x)
∏

i∈S

P (yi|xi) (3.6.20)

The joint probability for any pair of (Xi, Yi) for given XNi
can be simplified based on

the local characteristics of MRFs:

P (yi, xi|xNi
) = P (yi|xi)P (xi|xNi

) (3.6.21)

The parameter set θ is θ = {θ`, ` ∈ L}. Hence, the conditional probability of Yi on
the parameter set θ and XNi

is

p(yi|xNi
, θ) =

∑

`∈L

p(yi, `|xNi
, θ) =

∑

`∈L

f(yi; θl)p(`|xNi
) (3.6.22)

If we assume the random variables Xi are independent of each other then for every
` ∈ L and i ∈ S, we have

P (`|xNi
) = P (`) = w` (3.6.23)

Which doesn’t depend on the index i ∈ S [ZBS01]. We also define φ as the model
parameter set by:

φ = {wl; θl|` ∈ L} (3.6.24)

One of the most common choice of the emission distribution is the Gaussian dis-
tribution, in which the observable random variables have the following probability
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density:

p(Yi = y|φ) =
∑

`∈L

w` · g(y; θ`) (3.6.25)

where θ` = (µ`, σ`)
T and

g(y, θ`) =
1√

2πσ`2
exp

(
−(y − µ`)2

2σ`2

)
(3.6.26)

Therefore the Gaussian hidden Markov random field (GHMRF) can be clarified as

p(yi|xNi
, θ) =

∑

`∈L

g(yi; θ`)p(`|xNi
) (3.6.27)

The MRF-MAP method can be used for image classification [ZBS01] which means
assigning a label from set L to each pixel (xi) when the pixels are indexed over lattice
S and each pixel is presented by an intensity value yi from the set D. Hence the
solution x̂ is estimated by:

x̂ = arg maxx∈X{P (y|x)P (x)} (3.6.28)

Since x is a realization of a HMRF, the prior probability has the Gibbs distribution.
Also it was assumed that the emission distribution is a Gaussian one with parameter
θi = {µ`, σ`}. For xi = `,

p(yi|xi) = g(yi; θ`) =
1√

2πσ`2
exp

(
−(yi − µ`)2

2σ`2

)
(3.6.29)

Therefore the joint likelihood probability with respect to (3.6.19) can be written as:

P (y|x) =
∏

i∈S

p(yi|xi) =
∏

i∈S

[
1√
2π

exp

(
−(yi − µxi)2

2σxi
2
− log σxi

)]
(3.6.30)

The joint likelihood function can be rewritten as:

P (y|x) =
1

Z ′
exp (−U(y|x)) (3.6.31)

where the likelihood energy is

U(y|x) =
∑

U(yi|xi) =
∑

i∈S

[
(yi − µxi)2

2σxi
2

+ log (σxi)

]
(3.6.32)
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It was shown that the MAP estimation can be written as a minimization of the
posterior energy [ZBS01]

x̂ = arg minx∈X{U(y|x) + U(x)} (3.6.33)

In addition to the unknown class labels x, the parameter set θ = {θ` : ` ∈ L} is
to be determined. The difficulty arises from the fact that these two unknowns are
dependent. The Expectation Maximization (EM) algorithm is usually used to deal
with this problem. The details of EM method is described in [ZBS01].

Finally, the iterative optimization methods ( i.e. Expectation Maximization method)
are used to find the optimal solution of equation (3.6.33).

3.7 Statistical Methods Versus Classical Methods

It was mentioned that in the statistical approach, the a priori information is rep-
resented in terms of a proper probability distribution, while in standard methods,
the a priori information regulates the solution space. The solution of the statistical
method, the posterior distribution, represents the likelihood of an estimated solution
given the measurements (observations). Different estimators like MAP or CM can be
used to solve the reconstruction problem. Therefore, a large class of solutions can be
obtained using the statistical methods. In contrast, the statistical methods have an
expensive computational cost compared to non-statistical methods. One reason for
such complexity is the hyperparameter estimation.
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Chapter 4

The New Regularization Method

As mentioned in the introduction, we have implemented a type system to capture the
correctness of the user-defined forward problem. The forward problems of interest in-
volve reconstructing unobservable object properties based on physical measurements,
e.g., determining tissue density/composition from MRI or x-ray data. Because the
data are physical measurements, there are equations from physics and chemistry de-
scribing the signal generation processes, and these define the forward model, with
physical units attached to all parts of the system. Including the units explicitly in
our modelling tool allows for automatic consistency checking, which can be surpris-
ingly powerful, including the complete elimination of some classes of modelling error.

Adding regularization is necessary for many problems to overcome noisy data or
ill-conditioned systems. Since regularizers were developed in an abstract mathemati-
cal context, they are not formulated with physical units or other type attributes which
ensure correctness properties. Some models are derived entirely using probabilistic
arguments, which seem to be the most promising method of either automatically de-
riving regularizers or being able to check for validity in some sense. As should be clear
from the previous presentation, most regularization methods contain some dimension-
less parameters, the interpretation of which depends on computational heuristics and
not model properties. This is at odds with the general understanding that regular-
ization is a way of incorporating a priori information about the model. We feel there
are two things that need to be done to obtain meaningful correctness guarantees by
type checking:

1. An algebraic encoding of the allowed steps in reasoning about probabilities (in-
cluding approximations, use of the central limit theorem, etc.) and properties;

2. A filtering and modification of existing regularization methods to exclude meth-
ods that cannot be derived using the rules of probability we are able to encode.
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After some thought, we expect that many classical regularizations will be filtered out
by this process, but that most Bayesian (including HMM) models will be consistent
with such a system. As an exercise in the feasibility of this approach, we develop a new
regularizer based on observed tissue segmentation in medical images, together with
an informal version of the type of argument we hope to have automatically applied
in our future type system. We will also give examples of common regularizers whose
statistical derivation is likely to be very difficult, or to result in “a priori” knowledge
that would not be acceptable to end users (e.g., the radiologist) if presented in a form
understandable to them.

4.1 Statistical Derivation

To test our regularization method independently of the forward model, we consider
the identity problem defined by

g = f + e, (4.1.1)

where g is the set of measurements, i.e., {gi} represents the pixel intensities of the
image contaminated by noise; f is the set of model variables {fi} representing the
de-noised pixel intensities; and e represents the noise. In the statistical interpreta-
tion, G, F and E are vectors of random variables the realizations of which are g, f
and e respectively. Every element of those vectors is related to one pixel in the image.

According to the Bayes’ theorem mentioned in the previous section, the posterior
function, P (f |g) is

P (f |g) =
P (f)P (g|f)

P (g)
(4.1.2)

Using the MAP method, the estimated solution can be clarified by:

f̂ = arg maxfP (f |g)

To find the estimated solution f̂ , we first need to calculate both the a priori probability
function P (f) and the likelihood function P (g|f).

The likelihood function is obtained from the fit-to-data term and does not have
anything to do with the regularization method. Assuming that the measurements gi
are conditionally independent, the likelihood function can be written as:

P (g|f) =
∏

i

P (gi|fi) (4.1.3)
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In the MRI experiments, the noise e has the Gaussian distribution. Assuming mu-
tual independence between f and e, we conclude that g conditioned on f is distributed
like e. Hence, the likelihood function can be represented by:

P (g|f) =
∏

i

exp(−(fi − gi)2/2σ2
n) (4.1.4)

Where, fi is the de-noised value for ith pixel, gi is the measurement of ith pixel, and
σn is the standard deviation of the noise.

The a priori distribution function is obtained from the segmentation properties
of the image. We focus on local tissue segmentation for two reasons. First, most
tissues are localized (with the exception of a few tissues that are widespread like
blood) and this justifies the modelling of a few tissues in a smaller neighbourhood.
Second, machine imperfection causes slow intensity variation independent of tissue
type. Hence for every pixel, we consider a neighbourhood represented by S. We
specify all of the partitions of S into k sets {Si}k1. Then, we assign a probability to
each set Si represented by Pi. Using this decomposition of S, we want to simulate
the presence of k different tissues in the S. The decomposition of S into Si’s has the
following properties:

S1 ∪ S2 ∪ · · · ∪ Sk = S

Si ∩ Sj = ∅ for i 6= j

where every Si represents one tissue in the image; k corresponds to the number of
tissues involved in the image. Therefore, it seems that the pixels contained in one
subset Si have the same value in the absence of noise. But there are some variations
corresponding to the pixels in every Si. We assumed that such variations have the
Gaussian distribution. Hence, the probability density function for every pair of pixels
(f ′, f ′′) related to one subset Si is represented by:

1√
2πσ2

exp

(
(f ′ − f ′′)2

2σ2

)
(4.1.5)

Assume the random variables in F are independent. Therefore, the probability Pi
which is assigned to Si can be defined by:

∏

(f ′,f ′′)∈Si

1√
2πσ2

exp

(
(f ′ − f ′′)2

2σ2

)
(4.1.6)

Because we decomposed S into a set of subsets Si, the probability related to S for
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one decomposition represented by:

k∏

i=1

∏

(f ′,f ′′)∈Si

1√
2πσ2

exp

(
(f ′ − f ′′)2

2σ2

)
(4.1.7)

It was mentioned that we consider all of the partitions of S into k subsets. Therefore,
the whole probability related to a segment S can be represented by:

∑

all
decompositions

of S

k∏

i=1

∏

(f ′,f ′′)∈Si

1√
2πσ2

exp

(
(f ′ − f ′′)2

2σ2

)
(4.1.8)

Hence, the a priori information of the whole image can be obtained by:

P (f) =
∏

all
segments

∑

all
decompositions

of S

k∏

i=1

∏

(f ′,f ′′)∈Si

1√
2πσ2

exp

(
(f ′ − f ′′)2

2σ2

)
(4.1.9)

As was mentioned before, P (g) acts like a normalizing constant, so we can ignore
it. Therefore,

f̂ = arg maxfP (f)P (g|f) (4.1.10)

=

(
n2∏

i

exp(−(fi − gi)2/2σ2
n)

)
×




∏

all
segments

∑

all
decompositions

of S

k∏

j=1

∏

f ′,f ′′∈Sj

1√
2πσ2

exp

(
(f ′ − f ′′)2

2σ2

)



There are two parameters in the equation (4.1) in addition to the measurements
and the unknown quantity of interest. σn is the standard deviation of noise in the
measurements and it can be obtained from the K-space data in MRI experiments. σ is
the standard deviation of the tissue variations which is smaller than the measurement
noise. There are different ways to deal with σ including:

• Use hyperparameters to estimate the sigma values for different tissues

• Use average values by collecting images from people of the target group (healthy,
young, children, etc.)
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• Use the standard deviation of noise, because we know this is a very conservative
value

4.2 Complexity of Our Model

It is worthwhile to discuss the complexity of the solution with respect to segmentation
size. In equation (4.1), the first term (fit-to-data term) does not change by different
segmentation styles, so there is no point in calculating its complexity, and we focus
on the complexity of the second term. For the inner-most product we should consider
all possible unordered pairs of one subset Sj. There are m2(m2−1)/2 potential pairs,
which either appear in one of the products associated with a subset, or do not appear
in any product. So the number of total pairs over which we take k products is less
than m2(m2 − 1)/2 unless there is only one subset, in which case we have equality.
The sum is responsible for all possible decompositions of a set of m2 pixels into k
subsets, which multiplies the complexity by km

2
. Finally, the outer product is taken

over all neighbourhood sets. At most, we can consider the set centred at each pixel
sufficiently distant form the boundary. This is at most n × n, the number of pixels
in the image. Therefore, the overall complexity of solving equation (4.1) is at most

n2km
2

(
m2

2

)
(4.2.1)

times the cost of calculating the exponential of the squared difference.
In our implementation, we picked out k = 2 and m = 3 which makes sense because

in a 3× 3 box of pixels, it is less likely to have more than two tissue types involved.
The number of accepted partitions k depends on the segmentation size m. There

are more tissue types involved in the bigger segments. We compare our 3 × 3 seg-
mentation with the case that there is just one segment in the image in which case
m = n. The ratio of complexity of n × n segmentation to the complexity of 3 × 3
segmentation is:

kn
2 × n(n+ 1)

(n− 2)2 × 2m2 ×m(m+ 1)
(4.2.2)

Where, k is the number of tissue types included in the whole image. The complexity
is dominated by the exponential term which is km

2
. Therefore, the numerator is much

larger than the denominator. Hence, our model has the best complexity among all
other segmentation sizes.

For example, comparing the complexity of our 3 × 3 segmentation with another
segmentation method in which k = 2 and m = 4 will show that with increasing the
segmentation size by one, the complexity will be increased a lot. For 3× 3 boxes, the
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* 1 *
1 1 1
* 1 *

(a) pattern 1

* 0 0
1 1 1
* 1 *

(b) pattern 2

* 0 0
1 1 0
1 1 *

(c) pattern 3

1 0 1
1 1 1
1 1 1

(d) pattern 4

1 0 1
1 1 1
1 0 1

(e) pattern 5

Figure 4.1: Templates to generate allowed patterns.

total number of image segmentations is (n − 2)2 while, for 4 × 4 box, it is (n − 4)2.
Therefore, the ratio of complexity of equation (4.1) w.r.t 4×4 segmentation and 3×3
segmentation is:

(n− 4)2 × 216 ×
(

16
2

)

(n− 2)2 × 29 ×
(

9
2

) ' 5× 27 (4.2.3)

It can be concluded that although, for bigger segmentation, there are fewer seg-
ments, the overall complexity will be increased.

4.3 Acceptable Patterns

When we decompose the 3 × 3 segments into 2 partitions, there are some partitions
that are unlikely to happen in medical imaging. Therefore, we eliminated some of the
decomposition patterns. The patterns were generated by the templates in Fig. 4.1,
where the two tissues are represented by 0 and 1, ∗’s are replaced by 0 or 1, and non-
symmetric templates are rotated by multiples of pi/2 or multiples of pi depending on
the level of symmetry after replacing ∗’s.

As we mentioned earlier, we want to explain the informal version of the type of
arguments required in the type system such that we can specify the correctness of
the regularization part.

Going back over the reasoning and derivation, we can specify the information that
the type system must carry.

In the derivation of equation (4.1.6), the type system needs to recognize whether
those probabilities are independent, so multiplying those probabilities is a meaningful
operation. In this case, the independence of such basic variables should be asserted
by the user.

In the derivation of (4.1.7), the reasoning rule, which should be encoded in our type
system, is that when we decompose a set of pixels S, the disjoint union subsets {Si}
have independent probabilities, so the probability assigned to the set S is the product
of the subsets’ probabilities. Hence, the type system should derive the independence
if it knows that the subsets {Si} are a disjoint union. Therefore, it needs to capture
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set theory in our type system such that it can derive properties about probabilities
of different events.

With respect to the equation (4.1.8), we can only meaningfully add probabilities
if we know that the related events are mutually exclusive. Therefore, the type sys-
tem should derive the mutual exclusivity property based on the fact that just one
decomposition is possible at the time.
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Chapter 5

Results

We implemented our method with respect to the objective function obtained in equa-
tion (4.1). We used the “AMPL” language [FGK02] to model our problem. We also
wanted to test our method with a known high quality solver and we chose “Snopt”
[GMS05]. The number of variables are limited in AMPL to 300. Therefore, for an
n×n image with n > 17 we cannot solve our problem at one stage. To cope with this
problem, we divided the image into some blocks and solved each block separately. We
tested the performance for different block sizes, and the best performance obtained
with 10× 10 blocks. Hence, we divided the n× n image into 10× 10 blocks and kept
the middle 8× 8 pixels of every block to get smooth results in the edges.

To recognize the effect of our regularization method to remove the noise from
the measurement data, we used the `2 difference which is an objective numerical
measurement. But the `2 difference cannot really capture one of the most interesting
properties in imaging which is whether features of a certain size will be visible after
de-noising. Therefore, we considered a test where there is a repeating pattern of
features of the certain size.

In that test, we considered a 32×32 image which has 9 repeating features of pixels
whose values are the same but different from the image background meaning that we
have two different tissue types. We assigned 0 to the pixels in the background and
1 to the pixels of features. Hence all features represent the same tissue type. We
considered different number of pixels per feature from 1 to 12 pixels. For each of
these 12 models, we changed the values of noise and got the result with respect to
different noise scales. The model corresponding to 32× 32 image with 9 features of 1
and 12 pixels are represented in Fig. 5.1 and ??
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Table 5.1: Comparing the `2-norm of the remaining error in the optimized image with the
`2-norm of the original noise

Noise Scales(ns)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

‖g −m‖22 0.64 2.55 5.73 10.19 15.93 22.93 31.22 40.77 51.60 63.71 77.10 91.74 107.67 124.87

‖f
−

m
‖2 2

1pixel/feature 0.38 2.98 3.146 5.64 6.666 7.33 7.60 7.87 8.20 8.59 8.91 9.24 9.61 9.98
2pixels/feature 0.48 4.97 4.75 7.41 8.55 10 13.06 14.26 14.52 14.76 14.94 15.28 15.64 15.99
3pixels/feature 0.59 3.79 3.79 4.32 4.64 5.02 9.76 11.28 15.88 16.95 18.48 21.00 22.08 22.43
4pixels/feature 0.02 0.08 0.17 0.31 0.48 0.70 0.96 1.30 1.83 6.61 12.75 15.94 19.01 21.85
5pixels/feature 0.38 1.40 1.52 1.68 3.09 3.78 3.91 9.43 13.08 14.30 20.30 21.99 23.65 28.47
6pixels/feature 0.022 0.087 0.19 0.35 0.54 0.78 1.07 1.42 1.86 3.19 11.02 21.35 23.99 26.87
7pixels/feature 0.37 1.31 1.47 1.60 2.14 1.99 3.77 9.33 10.50 13.23 16.39 23.36 29.99 31.46
8pixels/feature 0.02 0.08 0.18 0.32 0.50 0.72 0.99 1.31 1.84 3.19 13.28 19.24 34.18 38.44
9pixels/feature 0.018 0.07 0.16 0.28 0.44 0.64 0.87 1.23 1.61 4.46 11.19 22.97 37.08 39.02
10pixels/feature 0.02 0.08 0.19 0.33 0.52 0.75 1.03 2.13 2.60 5.15 20.52 33.40 45.38 50.53
11pixels/feature 0.34 1.00 1.12 1.42 2.26 1.81 3.60 5.76 8.90 18.20 33.33 44.16 55.05 55.62
12pixels/feature 0.021 0.086 0.19 0.34 0.55 0.79 1.09 2.24 2.84 9.90 26.73 47.56 55.95 59.77

Figure 5.1: model-1pixel/feature-9features Figure 5.2: model-12pixel/feature-9features

We compared the `2-norm of the difference between the optimized result and the
model with the `2-norm of the difference between the noisy measurement and the
model. The model is represented by m, the noisy measurement is represented by g,
and the optimized result is represented by f . In other words, ‖g −m‖2

2 denotes the
`2-norm of the original noise, while ‖f −m‖2

2 denotes the `2-norm of the remaining
error in the optimized image. The results are presented in Table 5.1. The noise scales
are proportional to 1/SNR where SNR is the signal to noise ratio and sn = 1.4
is related to SNR = 2.86. Therefore, Noise Scale ' 4/SNR. The third row in
that table illustrates the ‖g −m‖2

2 which is the same for different models (different
number of pixels per feature) because it just represents the noise added to each image.
Hence, for each model we can compare the corresponding `2-norm of remaining error
in the optimized image, ‖f −m‖2

2, with the `2-norm of the original noise in the image
‖g −m‖2

2.
To have a better understanding of the `2-norm improvement related to the op-

timized images, we plotted the numerical results from Table 5.1 in Fig. 5.3. It is
obvious from the `2-norm plot that most of the `2-norms of the remaining error in the
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Figure 5.3: l2-norm of the remaining error and the original noise

optimized images are below the `2-norm of the original noise in the image. This illus-
trates the efficiency of our regularization method to remove the noise from the image
data. For noise scale 0.2, the `2-norm of the error in several optimized images (e.g.
3pixels/feature) is greater than the original noise. Fig. 5.5 represents the optimized
image for 3pixels/feature when ns = 0.2. According to Fig. 5.5, although we can
distinguish 9 visible and bright spots in that image, the spots have a value less than
1 which increases the `2-norm of the error in the case of very low noise (ns = 0.2).
It can be seen that the centre spot is brighter than those on the edges, which means
centre one has a gray level close to 1 but the others have a smaller gray level. But all
spots seem visible in the image.

As we mentioned earlier, just the `2-norm of error of the optimized image is not
enough to specify the performance of our regularization method. Another standard
factor is the visibility of some repeating features in the image which can be specified
by counting the number of visible spots in our testing models. We plotted the number
of visible spots for different numbers of pixels per feature with respect to different
noise scales in Fig. 5.4. For counting the number of visible spots, we are strict in our
interpretation of visibility meaning that in the case when 9 spots are visible, but some
are considerably greyer than they should be, we do not count them. For example, for
the optimized image with 2 pixels per feature and sn = 0.7 represented in Fig. 5.6,
we just counted 1 visible spot. Although there are 9 detectable spots, 8 of them are
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Figure 5.4: number of visible spots for different pixels/feature w.r.t noise scale

much darker than the remaining spot. We do not consider such spots in our count.
This is a strict criterion, but we believe it is the correct criterion for images used in
medical diagnoses by radiologists with many images to review every day.

In conclusion, we see that the `2-norm is an inadequate measure of regulariza-
tion performance. In one case, it (correctly) reports a worsening of an image which
is perfectly clear visually, and more seriously, it suggests that noise levels up to 1
(corresponding to a SNR of 4) are well-removed whereas the visual inspections show
that a much lower threshold should be considered, with noise above 0.3 leading to
inaccuracies for one or two pixels, noise above 0.6 leading to inaccuracies for three
pixels, and noise above 0.7 leading to inaccuracies even for 7-pixel spots.
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Figure 5.5: optimized image- 3pixels/feature- sn=0.2

Figure 5.6: optimized image- 2pixels/feature- sn=0.7
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Chapter 6

Conclusion

As we presented, we want to establish a type-system to verify the correctness of
scientific software used in applications like medical imaging. We have shown that
such a type system can be developed by encoding the most challenging aspects of
MRI inverse problems in a system of types in the language Haskell, which is used
both commercially and in academic research. Fully developing such a type system
for general scientific applications is still a significant and intellectually challenging
task. While it may be easier in a future more powerful programming language, based
on our experience in this thesis, we would recommend this level of type safety for
safety-critical scientific software with todays tools.

To formalize the frame of reference concept and Fourier Transformation properties,
we extended existing approaches to type-level programming. We were able to develop
a workable type system and capture all known application errors we can find in using
the Discrete Fourier Transformation, which is the key concept in mathematical models
of MRI reconstruction. Based on this, we have a high level of confidence that we
can produce provably correct inverse solvers on the model side. Nonetheless, when
we tried to formalize regularization, which is very important for advanced inverse
problems, we found that the existing approaches do not seem to be compatible with
the strong typing that we defined for the models. Among the existing methods,
the statistical based HMM seemed the most amenable to formalization based on the
probability theory. In analogy with the mathematical model which is derived from
basic physical principles, we wanted to go from a small number of easy-to-justify
assumptions and automatically generate the regularization from those assumptions.
Hence, we have developed a new Bayesian regularization method which we think
would be easier to formalize, but we have not done the formalization yet. We present
a regularizer which is compatible with the theory, and is effective at denoising (the
first test for regularizers in this area), but we think that the formulation can be further
improved to give it competitive performance.
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In the future, we hope this work will be extended to other types of inverse prob-
lems, that a formal theory of regularization be developed and encoded in a type
system, and that competitive regularizers be developed which can be proven to meet
transparent specifications.
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