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Abstract

There is an increasing interest in automated mobile equipment in the construction,
agriculture and mining industries to improve productivity, efficiency and operator safety.
In general, these machines belong to a class of mobile vehicles with a tool for
manipulating its environment to accomplish a repetitive task. Forces and motions are
inherently coupled between the tool (e.g. bucket or blade) and the means of vehicle
propulsion (e.g. wheels or tracks). Furthermore, they are often operated within uncertain
and unstructured environments. A particularly challenging case involves the use of a
bulldozer for the removal of excavated material. Modeling and control of mobile robots
that interact forcibly with their environment, such as robotic excavation machinery, is a
challenging problem that has not been adequately addressed in prior research. This thesis
investigates the low-level modeling and control of a 3-DOF robotic bulldozing operation.

Motivated by a bulldozing process in an underground mining application, a
theoretical nonlinear hybrid dynamic model was developed. The model includes discrete
operation modes contained within a hybrid dynamic model framework. The dynamics of
the individual modes are represented by a set of linear and nonlinear differential
equations. An instrumented scaled-down bulldozer and environment were developed to
emulate the full scale operation. Model parameter estimation and validation was
completed using experimental data from this system. The model was refined based on a
global sensitivity analysis. The refined model was found to be suitable for simulation and

design of robotic bulldozing control laws.
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Optimal blade position control laws were designed based on the hybrid dynamic
model to maximize the predicted material removal rate of the bulldozing process. A
stability analysis of the underlying deterministic closed-loop process dynamics was
performed using Lyapunov’s second method. Monte Carlo simulation was used for
further performance and stability analysis of the closed-loop process dynamics including
stochastic state disturbances and input constraints. Results of the Monte Carlo simulation
were also used for tuning the blade position control laws. Experiments were conducted
with the scaled-down robotic bulldozing system. The control laws were implemented with
various tuning values. As a comparison, a rule-based blade control algorithm was also
designed and implemented. The experimental results with the optimal control laws
demonstrated a 33% increase in the average material removal rate compared to the rule-

based controller.
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Chapter 1

Introduction

1.1 Introduction to Research Topic

A major unaddressed challenge with mobile robots is the control of vehicles
interacting forcibly with their environment, such as robotic tractors, bulldozers, loaders
and snow plows. Forces and motions are inherently coupled between the tool (e.g. bucket
or blade) and the means of vehicle propulsion (e.g. wheels or tracks). Furthermore, they
are often operated within uncertain and unstructured environments. There is a growing
industrial interest in the development of robotic mobile machinery to improve
productivity, efficiency and safety. With reduced dependence on operator skill and a
lower operator work load, full or partial automation (e.g. teleoperation) will contribute to

more consistent, higher quality results and improved machine utilization.

Fig. 1.1 Teleoperated bulldozer used in underground mining.
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A particularly challenging case involves the use of a bulldozer for the removal of
fragmented rock in an underground mining application, such as the operation shown in
Fig. 1.1. The resistance faced by the machine from the environment may vary
significantly depending on the physical properties of the media (e.g. density and

hardness) and the distribution of particle sizes and shapes.

1.2 General Description of a Bulldozing Process

A bulldozer consists of a main body driven by two motorized tracks. A blade for
pushing material is joined to the machine by two arms. The blade is raised/lowered by a
position controlled actuator. During the bulldozing process, the torque generated by each
track drive motor is translated into a shear force between the track and the surface it is in
contact with. A complex combination of the geometry and physical properties of the
material below the tracks, and of the tracks themselves, determines the maximum torque
that can be transferred before traction loss, or track slip, occurs, which was studied in
Wong (2001). The amount of slip depends on the profile and area of the tracks; bulldozer
weight and its distribution; static and dynamic friction functions; and the strength of the
underlying material. The effective environment force on the blade is a combination of
friction forces on the blade and the resistance of the material being pushed. The force is
transmitted from the blade, through the blade arms and the main body, into the tracks.
Lowering the blade tends to increase the environment force and vice-versa. For constant
track motor hydraulic pressure (or voltage if the motor is electric) the forward velocity of
the blade will decrease when the blade is lowered due to the increased force and resulting

increased traction loss. In additional to increased resistance due to friction, lowering the
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Fig. 1.2 Simplified machine and interaction forces.

blade tends to lift the front end of the chassis upward, thus reducing the contact pressure
between the tracks and the ground, leading to reduced traction force. The decrease is
nonlinear since the rate of material accumulation is proportional to the velocity, and the
friction functions are nonlinear. The relevant simplified machine and interaction forces
are illustrated in Fig. 1.2, where Vqozing 1S the forward velocity of the bulldozer, Tgrive is the
torque generated by the track drive motors, Fyaciion IS the traction force between the tracks
and the ground, Fen is the combined interaction forces between the blade and the
environment, Far, is the force transmitted through the blade arm and Facuwator 1S the force
transmitted through the blade positioning actuator.

Machine operators tend to develop an intuitive understanding of how to most
effectively accomplish their task. Operators do not explicitly consider the complex
interaction forces between the vehicle and its environment to successfully maneuver the
machine throughout the execution of the task. For instance, a general excavation material

removal clearance task, other than grading, requires the operator to maneuver the vehicle
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forward while maintaining the bulldozer blade in a desired fixed position to accumulate
as much material on the blade as possible. Upon observing the occurrence of significant
traction loss or forward motion ceasing entirely, the blade will be raised by the operator

until the machine regains traction and sufficient forward velocity is achieved.

1.3 Bulldozing Process in Underground Mining

A specific underground mining ore extraction operation involving a low-profile
bulldozer was studied as part of a preliminary investigation toward further modeling and
control development. The task of the bulldozer is to push excavation material from an
operation space into a separate removal space where a different machine carries the
material away. The first step in the overall ore extraction process is blasting of the face
with explosives. The blast is designed to throw as much material as possible into a
removal space known as the gully area. The resulting blasted material that fills the panel
is a very coarse mix of ore and waste rock with an uneven distribution of sizes and
shapes. A bulldozer then removes the excavation material from the very restricted space
of the panel to the gully. The gully is a larger, more open space where an LHD (load-
haul-dump) vehicle collects the material for transport to a conveyor hopper. This process
is illustrated in Figure 1.3. The panel dimensions typically measure 4 meters wide, 21
meters along the face and as little as 1 meter high from the floor to the roof, the details of
which were provided by Murphy (2005). This underground mining operation, including
the bulldozing process, was observed directly onsite at the Lonmin Karee 1B mine in

South Africa.
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Fig. 1.3 Underground mining ore extraction operation.

An extra low profile (XLP) bulldozer was recently developed by Sandvik Mining
and Construction specifically for the underground mining panel clearance operation. The
initial concept design commenced in 2004 and a fully operational prototype, shown in
Figure 1.4, entered service at the Lonmin Karee 1B mine in 2005. Following completion
of extensive design improvements, full production of the XLP bulldozer began in 2006.

The machine was designed for remote radio control operation with a hand held
controller. Each track is driven by a variable hydraulic motor. The blade is driven by

two hydraulic cylinders. The hydraulic actuators are controlled via electro-mechanical
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servo-valves. The base machine dimensions are 850mm (h) x 1600 mm (w) x 2750 mm
(1) and the weight is 5700 kg. The maximum speed is 4 km/hr. Further technical details
on the design of the machine and mining application may be found in Olsen et al. (2006)

and Olsen et al. (2008a).

e . Track Drive Motor
Blade ‘
Actuators : ' :

Fig. 1.4 Sandvik prototype extra low profile bulldozer.

1.4 Preliminary Investigations

Preliminary analysis of the bulldozing process and some experimental work was
completed with the first pre-production prototype version of the Sandvik XLP bulldozer.
The machine was developed into an experimental testbed with an onboard data
acquisition and control computer and various sensors. For protection, the computer
hardware and regulated variable DC source (used to power some sensors) were housed in
a foam-lined hard plastic box that was mounted to the rear of the machine. The computer
and DC source were powered by a portable AC power supply. To allow interaction with

the computer, a flat screen monitor, key board and mouse were set up on the right side of
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the machine. A picture of the externally mounted computer hardware and power supply
is shown in Fig. 1.5a. Encoders were used to measure rotational velocity of each track
drive motor. Each encoder was mounted externally to the frame of the machine such that
a rubber follower wheel, fixed to the shaft of the encoder, made contact and rotates with
the outer casing of the track drive motor, as shown in Fig. 1.5b. A compliant spring
mechanism ensured that there is sufficient pressure between the wheel and motor to
eliminate slipping between the two. For protection, an outer steel casing is mounted over
each encoder (not shown in the picture). Pressure transducers were used to measure the
pressure across each motor, across the blade cylinders and across the hydraulic drive
pump. A cable-extension position transducer was used to measure the extension of the

blade cylinders.
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Fig. 1.5 Instrumentation on the Sandvik prototype XLP bulldozer.

Proportional integral (P1) feedback control of the actuators was implemented for
each track motor and proportional (P) control was implemented for the blade arm

cylinders to maintain desired set points (e.g. track speed and blade arm position).
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Experimental results involving the instrumentation and control of the full-scale machine
actuators may be found in Olsen et al. (2008b).

Preliminary experimental testing was conducted within a special purpose test area
onsite at the plant in Burlington, Ontario. Operating the machine under a range of
operating conditions provided valuable experience in understanding the bulldozing
process. A preliminary comprehensive task analysis of the bulldozing process revealed
that it can be decomposed into distinct operation modes. Furthermore, different control
requirements are necessary for different modes of operation, as discussed in Olsen et al.
(2008b).

This machine was intended to serve as the experimental system on which the work
in this thesis was to be developed. However, experiments were difficult to set up,
expensive and weather dependent. For these reasons, plus hardware failures and high
cost of repairs, experimental work with this machine proved prohibitive and had to be
discontinued. Thus, an alternative reduced-scale experimental system was designed and

built.

1.5 Research Objectives

The overall goal of this thesis was to develop a novel approach to autonomous
bulldozing operations. Specific research objectives are summarized as follows:
e Design and build a reduced-scale robotic bulldozer and experimental environment

for further investigation and validation of models and control algorithms.
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e Development of a comprehensive dynamic model of a robotic bulldozing process
with respect to the machine and its working environment.

e Experimental validation of the theoretical model framework and system
identification of the robotic bulldozing process model.

e Formulate an optimal control approach to optimize the execution of the robotic
bulldozing operation by maximizing the material removal rate.

e Experimental validation of the robotic bulldozing control design.

1.6 Thesis Organization

Proceeding from this introductory chapter, the remainder of this thesis is
organized as follows: The literature on automation and control of bulldozing and related
excavation operations is reviewed in Chapter 2. A novel hybrid dynamic model of the
robotic bulldozing operation is proposed in Chapter 3. The experimental reduced-scale
robotic bulldozing system is described in Chapter 4. Experimental methodology and
results of system identification including model parameter estimation, model validation
and a sensitivity analysis are presented in Chapter 5. Design of an extended Kalman filter
and modeling of the state disturbances are presented in Chapter 6. The development of a
model-based control approach is described in Chapter 7. In Chapter 8 an analysis of
stability and performance of the deterministic open loop and closed loop dynamics is
presented, followed by an analysis of stability and performance of the stochastic closed

loop dynamics in Chapter 9. The experimental methodology and results of control
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implementation are presented in Chapter 10. Conclusions and recommendations for

future work are discussed in Chapter 11.

10
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Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of the literature on automation and control of
bulldozers and related work involving similar excavation and service machinery. The
greatest challenge facing autonomous bulldozing and excavation is the nature of the
machine-environment interactions that occur during the operation. The resistance faced
by the machine as it attempts to penetrate and displace the excavation material may vary
significantly depending on the physical properties of the media (e.g. density and
hardness) and the distribution of particle sizes and shapes. Therefore, it is very difficult,
if not impossible, to predetermine the exact nature of the machine-environment
interactions prior to execution of the operation. This can cause significant difficulties
with respect to control. Since simple motion or trajectory control is insufficient, most
methods developed to control machines for earthmoving tasks involve both force and
position feedback.

The literature on bulldozer automation is very sparse. The main area of focus has
been on blade position control for grading soil. Typical assumptions include uniform soil
conditions and constant vehicle speed. These control system implementations tend to be
ad-hoc schemes for operator assist applications that lack a systematic approach with

respect to optimality and robustness in task execution.

11
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Other related work includes the control of excavation machines used for digging
tasks. Unlike bulldozing, which involves pushing material forwards, digging involves
scooping, lifting and carrying material. The machine is typically modeled as a multiple-
link robotic manipulator mounted on a static base with control design involving position
and/or force feedback. Several significant investigations involve modeling and control of
excavation tasks using a small tool carried by a robotic manipulator and a scaled-down
experimental environment.

A few papers have presented high-level artificial intelligence approaches for
coordinating multiple autonomous robots for complex excavation operations. This work
involves using artificial intelligence methods for higher-level coordination of multiple
robotic excavation machines, including bulldozers, for remote site preparation tasks.
Strategic objectives are achieved through emergent multi-robot coordination.

Finally, there is some significant related work involving modeling and control of

other service machinery that is characterized by machine-environment interactions.

2.2 Bulldozer Automation and Control

An operator assist feature was proposed for a remotely operated underwater
bulldozer in Ohtsubo and Ward (1975). A nonlinear control system for the blade
cylinders based on a simplified mass-spring-damper system model was developed to
maintain blade position control during a soil cutting task. Although it was not actually
implemented, a simulation is presented to show the feasibility of the system.

A simple control system to control the blade position based solely on the pressure

in the hydraulic cylinders is demonstrated in Ito (1991). The controller is designed to

12
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maintain a constant blade position while remaining below a certain pressure setpoint.
When the pressure in the cylinders reaches a desired setpoint the blade is moved upward
until the pressure drops below it, then position control is resumed. Although results are
presented to show successful implementation, there is no description of how to choose
suitable pressure setpoints.

A fuzzy logic operator assist control system was developed in Terano et al. (1992)
where the fuzzy rules are based on expert operator control actions. Two different types of
operations were considered: ‘flattening’ the earth horizontally or with a constant slope
and maintaining constant load on the blade to avoid track slip.

An experimental investigation is described in Qinsen and Shuren (1994) to
estimate bulldozer blade forces as a function of known soil parameters during a soil
cutting process. Experiments involved moving a scaled-down blade at a fixed position on
rails at a fixed constant velocity. The soil used for experiments was carefully prepared
and compacted with known uniform properties.

Various patents exist that deal with similar bulldozer blade position control
schemes for operator assist soil grading applications. Yamamoto (2001) describes a
method for maintaining a desired blade position by correcting actual position based on an
estimation of the amount of material loaded on the cutting edge. Nakagami et al. (1998)
describes a cutting edge position detector to be used to maintain a preset target cutting
edge position. An integrated automatic blade lift and tilt control system is described in

Koch (2005) for soil grading to maintain blade position with respect to a three-

13
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dimensional computerized site plan. Machine position and orientation are determined
with either a laser system or global positioning system.

Other patents involve methods to detect track slip and control the tractive effort.
For example, a ‘running slip” detector is described in Nakagami (1997) to detect track slip
based on vehicle acceleration. The track slip can then be reduced by lifting the blade.
The patent described in Matsushita (1996) is concerned with detecting “actual tractive

force’ so that tractive effort can be controlled ‘gradually’ to reach a target setting.

2.3 Excavator Automation and Control

2.3.1 Full-Scale Excavator Automation and Control Investigations

A technique proposed by Bullock and Oppenheim (1992) involves using strain
gauges to measure the resistive forces encountered by the excavator bucket. Force
feedback measurements are processed at a higher level to alter the low level trajectory
changes in a supervisory control scheme.

An impedance control approach was proposed in Bernold (1993) that utilizes
force and position feedback. In the case of robotic excavation, the robot was considered
an impedance that translates motion into force, and the soil as an admittance, reacting
with a change in position or motion. A similar impedance control approach was proposed
in Ha et al. (2000). Having developed kinematic and dynamic models for the excavator, a
sliding mode impedance controller was implemented on a retrofitted mini-excavator.

In Vaha and Skibniewski (1993) a dynamic model was developed for the
excavator and used in conjunction with a model for the soil. Further details of the

backhoe excavator dynamic model were derived in Koivo et al. (1996). The model

14
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includes the relationship between the forces generated by the hydraulic cylinders to the
pose of the bucket. The forces acting on the bucket due to interaction with the soil while
digging are also taken into account.

A position-based impedance controller was developed in Salcudean et al. (1997)
for an excavator backhoe. This approach models the bucket as a position source with the
contact force measured through cylinder pressure sensors used to modify the trajectory.

A rules-based control approach was developed in Bradley and Seward (1998) to
automate an excavator specifically for trench digging. The digging task is decomposed
into three separate phases consisting of penetrate, drag and empty. In addition to the
ability to follow a predetermined path, there are rules to enable the robot to cope with a
variety of conditions that emerge while digging.

A full-scale robotic excavation and autonomous truck loading system is described
in Stentz et al. (1999). The system utilizes two scanning laser range-finders to recognize
and localize the truck, measure the soil face and detect obstacles. Onboard software was
used to make decisions regarding digging and dumping operations. The digging
operation is described as being executed by a force based closed loop control scheme.

Marshall et al. (2008) describes experiments and analysis of an excavation process
for fragmented rock in a mining environment involving a wheeled load-haul-dump (LHD)
machine. The experimental analysis focused on characterizing the forces experienced by
the bucket through measurements of the hydraulic actuator cylinder pressures. The
design of an actuator force-feedback admittance controller is discussed but not

implemented.
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2.3.2 Reduced-Scale Excavator Automation and Control Investigations

In Shi et al. (1996) the bucket motion of a front loading excavator machine was
simulated using a PUMA 560 robot arm. A fuzzy-logic based control strategy was
developed by emulating the actions of skilled human operators. Experiments were
performed within a simulated rock excavation environment.

A theoretical model was developed in Takahashi et al. (1999) to predict the
resistive forces on the bucket of an excavator known as a load-haul-dump machine during
the scooping phase of operation. The predicted forces agreed well with those obtained
using a scaled rock pile environment.

A method is presented in Althoefer et al. (2009) for identifying the unknown
parameters required for real-time prediction of interaction forces between an excavator
tool and the soil using a hybrid dynamic soil model. A Mitsubishi RV-ML1 robotic
manipulator was used to push a flat metal tool through the soil. Force measurements
were obtained using a six-axis ATl Mini40 force/torque sensor. Their experimental

results demonstrated good correlation between the estimated and measured forces.

2.4 Coordination of Multiple Excavation Robots

An algorithm is developed in Parker and Zhang (2006) for site preparation based
on the concept of “blind bulldozing” which models the collective nest building behaviour
of ants. The goal of clearing a specified circular area is achieved as the result of the
interactions between individual robots exhibiting simple reactive behaviours. The
performance of the algorithm is verified with experiments involving small instrumented

“toy” bulldozers.
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In Thangavelautham (2009) an “artificial neural tissue” (ANT) control
architecture is used to coordinate multiple robots for autonomous excavation and clearing
tasks. Simple behaviours are defined for multiple robots with different tool implements
(e.g. bulldozer blade, front loader scoop or bucket wheel). The higher-level control
architecture determines the best implements and behaviours to achieve a specified global
excavation goal. Simulation and experiments with small specially designed robots show

the effectiveness of the control architecture.

2.5 Other Service Machinery Modeling and Control

An analytical model was developed in Bevly (2002) for the yaw dynamics of a
farm tractor for the purposes of improved automatic steering control. A system
identification approach was presented to estimate the model parameters of a large farm
tractor. Experimental results showed that the lateral control was improved with the new
model and controller.  This work was extended in Gartley (2008) with online
identification of the yaw dynamics for adaptive steering control. Their experimental
results demonstrated that the adaptive controller achieved good performance regardless of
the load on the implement. Since their focus was on steering control, they did not
explicitly model the machine-environment interaction dynamics.

Le et al. (1997) develop a method for real-time estimation of soil parameters from
trajectory data of a tracked vehicle using an extended Kalman filter. Results are given for
simulated motion of an experimental tracked vehicle maneuvering over different types of

soil.

17



Ph.D. thesis — Scott Olsen McMaster University — Mechanical Engineering

2.6 Conclusions

The low-level modeling and control of the bulldozing process, i.e. the interaction
between the bulldozer and its environment, has not been addressed in the existing
literature. The remainder of this thesis addresses these deficiencies with the development
of a novel hybrid dynamic model of a robotic bulldozing process and system
identification methodology which provides the framework for the development of a novel

approach to autonomous control of the robotic bulldozing operation.

18
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Chapter 3
Hybrid Dynamic Model Development

3.1 Introduction

This chapter focuses on the development of a novel hybrid dynamic modeling
framework of a constrained robotic bulldozing operation for the purposes of system
identification, simulation and control design.

The complete bulldozing process involves the position and orientation of the
machine (i.e. 6 degrees-of-freedom (DOF)), the position of the blade, the material
accumulation on the blade, the 3-dimensional environment (i.e. a volume of material
distributed on a hard floor), and their interaction dynamics. In this thesis, the process is
kinematically constrained such that the machine motions are reduced to the three DOF
that characterize the primary low-level dynamic behavior of a typical bulldozing process,
specifically the X, Z and pitch DOF. Similarly, the variation in the environment is
reduced to mainly the X and Z dimensions. The material to be pushed consists of
fragmented rock or stones.

Careful observations of the full scale bulldozing process have revealed that it
consists of discrete operation modes. It is characterized by the behavior within each
mode, defined by continuous dynamics, and mode transitions that are discrete events, and
therefore belongs to the class of hybrid dynamic systems. Several hybrid dynamic system
modeling frameworks have been developed. The framework used here is similar to the

“controlled general hybrid dynamical system” presented in Branicky et al. (1998).
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3.2 Dynamic Equations

A novel set of hybrid nonlinear dynamic system equations have been developed
that model the low-level bulldozing process. Ten discrete operation modes have been
defined. The model structure is the same for all modes, only the parameters change. Fig.
3.1 illustrates the state variables and the auxiliary variables. The set of system equations

are as follows:

da = Vb '(Cdal,l“ ) da +Cda2,l‘ ) ha +Cda3,l‘ ’ hb +Cda4,l‘ ’ h&r +Cda5,r 4/) (31)
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Z, = Czcl : hc +Czcz : da (36)
2,=Cy,-2,+Cy, 'Sin(¢)+czb3 -d,+Cp, - ¢ (3.7)
1 if{<0
f()= and 3.8
(©) { 0 otherwise (38)
h?Sr = hr _ho (39)

subject to the conditions:

Mywin <1 ST (3.10)

b,min — ,max

h, z, 2z,]20 (3.11)
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d,>¢ and (3.12)

V, 20V 9 (3.13)
where T" is the operation mode number. The system inputs are: ry, the blade position
reference input; andu,, the track control input. The minimum and maximum constraints
on ry are rpmin and rpmax, respectively. The system states are: d,, the depth of material
accumulation on the blade; x,, the environment X coordinate of the blade; vy, the blade
velocity in the X-direction; ¢, the blade position; 7z, and 74, the time constant and delay
time for the blade position control, respectively; ¢, the robot pitch angle; z., the elevation

of the robot centre (see point P in Fig. 3.1); and zy, the elevation of the robot blade (see

point Py, in Fig. 3.1).

Height
profile
prior to

pass

Fig. 3.1 lllustration of the state variables da, Xo, zs, Z;, ¢ and ¢; and
auxiliary variables h,, h, and h, (note that P,=[x, z,]" and Pc=[x. z.]").

The auxiliary variables are: hy,, the height of the material profile prior to the

current pass at location x,, averaged over the robot width; h,, and h;, the heights of the
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material ridge profiles on the left and right sides of the robot, respectively, prior to the
current pass at location x, and are used to calculate the average ridge profile height h, =
Y(hey + hry); ha the averaged height of the material profile prior to the current pass at
location X, = Xp + da, Where d, is the maximum effective length of material accumulated
by the blade (i.e. the wave front of the accumulated material whereby the underlying
material profile remains undisturbed past X,); and hs,, defined as the difference between
the average height of the material ridges that form along the left and right sides of the
blade minus the average profile height along the blade.

Note that the parameters Cu1ar, Caarar and Cy.ar are dependent on the mode;
whereas C;1.4 and Cyp16 are elevation equation parameters that are independent of the
mode. The estimation of these parameters will be discussed in Chapter 5.

Some of the terms in the dynamic equations warrant further explanation. As Eq.
(3.13) states, for all modes except I'=9, the robot will be stationary or driving forwards,
therefore v,>0. Equations (3.1) and (3.5) assume that the rates of change of the
accumulation and pitch angle are proportional to v,. This agrees with the geometry and
kinematics of the process, based on the assumption that the friction of the material is
sufficient to prevent robot or material motion when v,=0. Multiplying by v, in Eq. (3.1)
and Eq. (3.5) captures this dynamic behavior such that the rates of change of d, and ¢
diminish to zero as v, decreases to zero. With Eq. (3.1), from the process physics Cgar r
<0, so the term v, Cga1r-da Will be nonpositive, and will tend to limit the growth of d..
The terms vy Cgazr-hp, Vo Caa2,r-ha and vip-Cyas hsr represent the influences of the material

directly below the blade, J, ahead of the blade, and along the sides of the blade,
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respectively. In Eq. (3.3), the parameters C,p1 and Cp, represent the robot velocity time
constant and steady state gain, respectively. Note that the effects of track slip on the robot
velocity are implicitly included in Eq. (3.3). The terms Cyp3r-da and Cyps - represent the
influences of the resistances due to the material accumulated on the blade, and due to the
blade position, respectively. In Eq. (3.5), the combined term Cg-he + Cy-hy represents
the effect of the gradient of the material profile beneath the robot on the pitch. In Eq. (6),
the term Cps-sin(¢@) represents the change in elevation due to the robot pivoting about
point P.. In Egns. (3.5) - (3.7), the terms Cy1-da, Cyco-da and Cins-da, respectively, model

the changes in the underlying material profile due to material accumulation on the blade.

3.3 Operation Modes and Transitions

The set of discrete operation modes is defined as follows (note that mode
transitions do not necessarily occur sequentially throughout the bulldozing process even
though the enumeration of the mode numbers may suggest this):

o At Start, I'=0, [Vp da {9 2c 2] =0 AU =0 AT, =0 A p=0: The robot is at rest in front
of the leading edge of the material pile. The blade is positioned at a height of 0 mm (i.e.
just touching the floor surface). All state variables are zero and control inputs are set to
zero. This mode is shown in Fig. 3.2a.

e Approach, I'=1, vy > 0 A Xp < Xedge A Ut = Ugnom: The track control input is activated and
the robot drives forward. This mode is shown in Fig. 3.2b.

e Engage, I'=2, da > 0 A Zy < Nnrest A Xo < Xedge: The robot blade makes contact with the

leading edge of the material pile and the robot continues to drive forward into the
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material pile. Material accumulates on the blade as it is being pushed. The robot tracks
remain in contact with the floor surface (i.e. there is no increase in robot elevation).
This mode is shown in Fig. 3.2c. If, due to material flowing around the left and right
sides of the blade as it travels through the material, the robot tracks begin to drive up
onto the material pile (i.e. robot elevation increases) the robot will transition to another
mode.

e Leveling, I'=3, Zy> Nihres2 A Xb < (Xedge - a) A I'v = e 32 1T the pile of underlying material
is sufficiently supportive and high (i.e. several layers of stones), the robot climbs up
onto the top of the pile. The material underneath the tracks is relatively loose,
decreasing traction, and the blade can penetrate down into the pile of material as it
pushes, increasing the amount of material being pushed. This mode is shown in Fig.
3.2d.

e Pushing, I'=4, 25> hinrest A Zb < Nihres2 A Na > Ninres2 A Xb < (Xedge - da) A b = fera: The
pile of material in the environment is at a negligible height (i.e. only a sparse layer of
stones) at the blade location, but a significant height of material is located ahead of the
blade, increasing the rate of material accumulation of the blade and the resistance felt by
the robot. The blade cannot penetrate down into the stones so further blade downward
movement has no effect on accumulation. However, it will increase the resistance
against the robot due to friction. This mode is shown in Fig. 3.2e.

e Scraping, I'=5, zp < hires2 A Na < Nires2 A Xo < (Xedge - Ja) A b = fers: This mode is
similar to mode 4, except that no significant height of material is located ahead of the

blade. This mode is shown in Fig. 3.2f.
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e Disengage, I'=6, da < 0 A Xy < (Xedge - da): This mode may occur if the blade is raised
above its zero position (i.e. {> 0) while an amount of material is being pushed forward.
If the material flows beneath the blade to form a small mound in front of the robot
tracks then the robot will drive up onto this local mound and its blade will become
disengaged with the underlying material. This mode is shown in Fig. 3.2g.

e Near Edge, I'=7, Xp > (Xbedge - 0a) A Xb < Xedge A ' = ferrr,7: When the blade is within the
previously defined distance J, from the forward edge of the environment, material
accumulation on the blade will drop off rapidly into the removal space that is
significantly below grade. The environment force due to material resistance will
decrease. This mode is shown in Fig. 3.2h.

e Blade At Edge, I'=8, Xb = Xpedge A Ut = 0 A p = p + 1: When the robot blade has reached
the edge of the environment, the track input is deactivated and the robot decelerates to a
stop.

e Reverse, I'=9, Ut = -Utnom A I'b = Momax: The track input is set to drive the robot in reverse
to return to the start location. The blade position is set to its maximum height in order
to avoid dragging material backwards.

Where: p is the number of passes completed, hies: IS the average height of a
single layer of stones; hures2 IS the height of several layers of stones; and Xedge IS the

forward boundary of the environment where the removal space begins.
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Note that a blade control algorithm is initiated in modes 2 - 7 (denoted as feyr ) to
accomplish the desired bulldozing process objective (e.g. minimizing the time required to
complete the bulldozing process). For the other modes, the blade is servoed to the

specified fixed position. The mode transition diagram is given in Fig. 3.3.

Fig. 3.2 lllustration of the discrete operating modes.
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Mode 0
At Start

Mode 3
Levelling

Mode 4
Pushing

Mode S
Scraping

Mode 8
Blade At
Edge

Mode 9
Reverse

Fig. 3.3 Mode transition diagram.
The set of mode transition conditions, X, is defined as follows:

20 : Xb < Xb,start

%10, > 0AX, < (Xegge = 5,

22 - Z, 2 hthresl Ah > hthresz AXy < (Xedge _Sa)
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Ty 2y 2 My AN, <My A%, <(Xgge =3,

%412y <Mooy AN 2Ry A, Z0AX, <(Xgq =3, )
%52, <oy AN, <Py A, 2 0AX, < (X =3,
T4 22, < Nyreey AN, <Pyeip AX, < (Xegqe =3, )

%, 2Ry A% <(Xegge =8,

Ty 2y 2 Nypesy A%y < (Xooge =3,

%,:d, <0

T8y 20AZ, > Ryey AX, < (X =5, )

Ty 10, 2042, <My AN 2Ry AX, <(X =, )
T 10, 20N Z, <Ryep AN <Ry A%, < (Xeige =5, )
s 10, 20 A X, > (X =3,

s Xy 2 Xegge

25 % =0Ap<N

passes

3.4 Discrete-time Dynamic Prediction Model

For model parameter estimation and control design, the one-step-ahead prediction
discrete-time formulations of the da, vy, and ¢ differential equations were used. The
discrete-time model also allows da, v, and ¢ stochastic disturbances to be included in a

straightforward manner. The dynamic Eqgns. (3.1), (3.3) and (3.5) were discretized using
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Euler’s method. The discrete-time equations predicting one-step ahead from the k"

sample are then as follows:

Oeq =0+, '(Cdalr Oy +Cor My +Car "M +Caar i +Cesr Ck) Vo +W, (3.14)

. T, C, .
Vb,k+1 = [1_ J'Vb,k +Ts '[C = ’ut,nom _vas,r 'da,k + va4,r 'gk j + Wv,k and (3-15)
vb1,I" vbl

N

G =T, '(C¢1,r Oy +ChorC +Char-hy  +Cyyp -y )‘Vb,k + Wq),k (3.16)

where T; is the sampling period. dax is the measured material accumulation, vy is the

measured blade velocity in the X-direction, ¢ is measured robot pitch, &, is the blade
position, W, , is the expected value of the material accumulation disturbance, W, , is the

expected value of the robot velocity disturbance, w, , is the expected value of the robot

pitch disturbance.

Regarding the remaining dynamic equations, Eqg. (3.2) simply represents an
intermediate state variable which was not used explicitly, thus it was not included in the
set of discrete-time equations. With subsequent system identification in Chapter 5 and

control design in Chapter 7, discretization of Eq. (3.4) will be addressed

3.5 Conclusions

The development of a nonlinear hybrid dynamic model of robotic bulldozing was
presented. The model consists of a set of nine equations (three of which are nonlinear
differential equations), 10 discrete operation modes and 16 mode transition conditions.

The next chapter describes the experimental reduced-scale robotic bulldozing system that
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was used for system identification involving model parameter estimation, validation and

sensitivity analysis.
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Chapter 4

Experimental System

4.1 Introduction

This chapter describes a novel reduced-scale integrated experimental system
developed for experimental validation of the theoretical hybrid dynamics, system
identification and control implementation.

Due to the many impracticalities involved in full scale experiments (e.g. machine
cost, setup time, safety, etc.), an integrated experimental system has been developed
including an instrumented scaled-down robot bulldozer, a 0.5 m wide by 2 m long
environment containing loose material for the robot to push, a vision-based robot
localization system, and a vision-based laser scanning system for measuring the height
profile of the loose material before and after each dozing pass. The bulldozer and its
environment have been designed empirically to emulate the behavior of the full scale
process.

The emulated bulldozing task objective was to maximize the material removal rate
(MRR) with dynamic blade position control. This entails design of the bulldozer and
environment such that the optimal MRR cannot be obtained by simply fixing the blade
position at any point. Furthermore, the emulated bulldozer and environment were
designed to constrain the process to the three DOF that characterize the primary low-level
dynamic behavior. An aspect of the reduced-scale system which was very difficult to

emulate is the effect of the robot weight with respect to the properties of the underlying
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material. The weight of the full scale machine influences traction properties and may
cause significant compression of the underlying material. The weight of the reduced-
scale bulldozer has less influence on traction and is insufficient to compress the
underlying material.

A diagram of the overall experimental environment is shown in Fig. 4.1 and
photographs are given in Fig. 4.2 and Fig. 4.3. All of the hardware is interfaced to a PC-
based data acquisition and control system. The dozing material is composed of loose
stones with an average size of 5 mm within a range of 4 mm to 10 mm.

The experimental setup included two computers, denoted PC1 and PC2, that were
linked via serial communication with a 115200 Baud rate. PC1 executed the real-time
robot control loop, reading sensor measurements and sending actuator control signals.
PC1 also executed the laser mounted stepper motor control loop to synchronize the laser
scanning camera with the movement of the laser stripe. The code executed on PC1 was
implemented in C language with National Instruments LabWindows. PC2 interfaced with
the two cameras and executed the image processing. For robot localization, PC2
calculated the robot heading and X-Y coordinates in units of mm. For material profile
scanning, PC2 calculated the material profile height in units of mm. The code executed

on PC2 was implemented in C language with Microsoft Visual Studio.
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Fig. 4.1 Diagram of the experimental robot and environment.
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Fig. 4.2 Photograph of the robot and experimental environment.
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Fig. 4.3 Top view photograph of the experimental environment.

4.2 Reduced-Scale Instrumented Robot Bulldozer

The instrumented robot is shown in Fig. 4.4. Each robot track is driven by a DC
gearmotor. The blade actuator mechanism is composed of a leadscrew driven by a DC
motor with an integrated encoder providing feedback for closed-loop position control at a
1 kHz sampling rate. A simple sliding-mode algorithm is used for the position control.
The blade motor encoder measurement is calibrated to measure the blade position, ¢, in

units of mm. A line of five range sensors (Baumer FADK 1414470/S14) is located above
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and slightly ahead of the blade edge to measure the height of material accumulated on the
blade as material is being pushed. The range sensor measurements are calibrated to
measure the height of material beneath them with respect to the plane of the tracks. The
calibrated outputs are averaged to measure d, in units of mm. For this robotic bulldozer
the maximum height of material accumulation on the blade is damax = 55 mm. A tilt
sensor (Crossbow CXTAO02) measures the pitch angle, ¢, in units of degrees. A
differential steering proportional-integral (PI) heading controller is used to maintain
forward motion along a straight path with a constant heading. In response to heading
error, the controller decreases the input to one track and increases the input to the other
track by the same amount until the heading error diminishes to zero. The maximum

velocity of this robotic bulldozer is Vo max = 92 mm/s.

LI g b
&&W Blade actuator
BN with leadscrew [

0 L7 w— =
N . —~3n
- = T
- e

23
g\

Fig. 4.4 Instrumented reduced-scale robot bulldozer.
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4.3 Robot Localization System

The vision-based robot localization system tracks two target circles, of different
sizes, fixed to the top of the robot. A large circle is positioned above the centre of the
robot chassis and a small circle is positioned above the blade edge. The circles are
detected in an image of the environment taken by the 1% overhead camera (see Fig. 4.2).
The position coordinates of the circle centers are used to calculate the position and
heading angle of the robot. The measured positions are used to calculate Xa, X, and X..
The robot velocity, vy, is estimated by backwards differencing the position data in units of

mm/s. The sampling rate is 16 Hz.

4.4 Material Profile Laser Scanning System

The laser scanning system consists of a line laser, stepper motor and 2" overhead
camera. The system estimates the height of the profile of material from the reflected laser
light using the triangulation method to give h,, hy, he, hry and he, in units of mm. The
beam is advanced along the X-direction of the environment by a stepper motor that is
synchronized with the camera. An example of material profile data from a scan is shown

in Fig. 4.5
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Fig. 4.5 Example result of a material profile scan.

4.5 Conclusions

An instrumented reduced-scale robotic bulldozer system and environment were
developed for experimental investigation of process modeling and autonomous control.
Further details of the experimental robotic bulldozing system may be found in Appendix
A. The next chapter describes the experimental methodology and results of system

identification involving model parameter estimation, validation and sensitivity analysis.
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Chapter 5

System lIdentification

5.1 Introduction

This chapter presents an experimental system identification methodology which
includes an iterative procedure of model parameter estimation based on a sensitivity
analysis to refine and validate the model proposed in Chapter 3. The robotic bulldozing

system described in Chapter 4 was used to gather the data.

5.2 Experiments

A series of multiple pass experiments were performed to obtain the data needed
for model fitting and validation. Recall from Chapter 3 that a completed pass is defined
as the robot beginning in mode 0, transitioning through a series of modes and ending in
mode 8. Since open-loop control was unable to reliably maintain blade contact with the
material without the robot becoming stuck during a pass (i.e. the robot velocity decreases
to zero and stays indefinitely), a closed-loop control algorithm had to be created. This
algorithm attempts to simultaneously maintain forward motion of the robot while keeping
material on its blade. It employs a form of switching control whereby the blade position
is increased incrementally by an amount Ar, when the robot speed falls below a specified
threshold, vy mres, and the blade position is decreased incrementally by an amount Ary,
when the material accumulation on the blade falls below a specified threshold, datres. A
time delay is introduced after blade control is initiated. Delay-off timers T1 and T2 with
different delay periods are used depending on the direction of blade motion. These time
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delays are introduced after blade control is initiated to provide the hysteresis needed to
avoid excessive aggressive blade motion due to measurement noise. The rule-based blade

control algorithm is defined in Table 5.1.

Table 5.1 Rule-based blade control algorithm.

1. WHILE X, < X4
2 IF(da < da,thresh)/\(vb va,thres)/\(ﬁTl)
3 I, =1, — Al

4 ENABLET1
5 ENDIF

6. IF (Vy < Vo ores ) A(—T2)
7 r, =", +Ar

8 ENABLE T2
9

1

. ENDIF
0. ENDWHILE

Delay-off periods of 0.1 s and 0.5 s were found experimentally to be suitable for
T1 and T2, respectively. The manually tuned rule-based controller parameters were:
dathres = 35 MM, Vpires = 50 mm/s and Ar, = 1 mm. All of the experiments were
performed using this control algorithm with a control sampling rate of 16 Hz. The d, , vy
and ¢ signal measurements were digitally filtered online with a 2™ order Butterworth
low-pass filter with a 1 Hz cutoff.

The initial material coverage conditions were intended to make modes 1 - 5 and 7
active over multiple bulldozing passes. This was done since models of modes 2 - 5 and 7
are necessary for development of model-based control. The importance of modeling
mode 1 is explained in Section 5.3. Note that multiple passes are realistic for full scale

bulldozing, and produce greater process variation than possible with a single pass, as will
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be shown later in this section. Another factor in the design of the initial coverage was to
inhibit any tendency of the robot to roll and to limit pitch to less than +10°. Thus the
initial distribution was flat and level laterally (i.e. constant height along the Y-direction),
and restricted in height so that relatively steep slopes did not develop. Indeed, if the pitch
is large enough the bulldozer could possibly slide backwards which would violate Eq.
(3.13).

Each set of multiple passes will be termed a trial. The trials consisted of initially
setting up the material in a structured pile. Simple pile structures were used so that the
initial conditions of each trial could be made consistent. The robot blade location, x,, was
located 0.2 m away from the leading edge of the pile, x,, at the start of each pass. Two
versions of initial material pile structure were used: (a) uniform nominal height of 20 mm
and length of 1.1 m, covering to the edge of the environment; and (b) uniform nominal
height of 20 mm and length of 0.7 m, with no material covering the remaining 0.4 m of
the environment. The second version was used to introduce greater variation in the
overall process to induce a wider range of dynamic behavior. For each initial pile
structure, the robot performed multiple passes through the material to complete each trial.
Before and after each pass the material height profile was measured with the laser
scanning system. Even if the initial height profile was relatively flat, each bulldozing
pass produces significant height variations due to the nondeterministic nature of the
process. An example of the average material profile height along the robot path prior to
the first bulldozing pass, after two passes and after four passes is shown in Fig. 5.1. The

graphs show that while the initial height profile stays close to 20 mm, after two passes it
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varies from 3 to 26 mm. After four passes the lack of material remaining on the floor
caused a reduction in the height variation.

The experimental data sets include eight trials of four passes with the initial full
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Fig. 5.1 Example of the average material profile height along
the robot path after zero, two and four passes.

coverage condition (material pile structure (a)) and eight trials of four passes with the
initial partial coverage condition (material pile structure (b)). Different modes and
sequences of modes became active in each pass due to the natural variation of the process.
Each trial was stopped after four passes since the remaining material was insufficient to
excite the dynamics of the chosen modes.

The experimental data was divided into two sets. One was used for model fitting
and the other for model validation. The model fitting data was composed of six trials

with the initial full coverage condition and six trials with the initial partial coverage
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condition. The model validation data was composed of two trials with the initial full

coverage condition and two trials with the initial partial coverage condition.

5.3 Model Fitting and Validation

5.3.1 Mode Transition Parameter Determination

The set of mode transitions, X, requires knowledge of hires1, hinresz @and da. The
value of hires: Should be determined by measuring the average height of a single layer of
stones (or other fragmented material). A value of hgpress = 5 mm was found for the
experimental environment using the laser scanning system. Due to friction between the
stones and the floor and the irregular contact interfaces between the stones, the robot
blade cannot penetrate a single uniform layer of stones. The value of hies2 Should be
determined by measuring the average minimum height of several layers of stones, layered
such that the robot blade can penetrate downward into at least two layers of stones above
the single base layer of stones in contact with the floor. A value of hies; = 10 mm was
measured for the experimental environment. The value of d, should be determined using
the following procedure. The robot is driven forwards on top of a flat pile of stones of
approximate height equal to hires2 With the robot blade at a nominal downward position of
'y = — hires1 SO that it can penetrate the stones and accumulate material on the blade.
Once it is observed that the material accumulation on the blade, d,, has reached its steady
state maximum height the robot should be stopped. The value of J, is then found by

measuring the distance from the edge of the robot blade to the furthest edge of the mound
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of material pushed ahead. A value of d; = 150 mm was found for our experimental

environment.

5.3.2 Elevation Model Parameter Estimation

Before fitting a complete dynamic model of the bulldozing process, it is necessary
to estimate the elevations of the robot [z, z:] throughout each pass since they are not
directly measured. The estimated elevations will be used to identify the mode transitions
in Section 5.3.3. The elevation estimation equations can also be used as an on-line
observer to determine the mode transitions required for implementation of model-based
control.

The robot elevations were estimated from the measurements of da, Xy, ¢, ¢, hy and
hc. Assuming negligible disturbance of the underlying material profile after the blade has
passed, the elevations z, and z; are approximately equal to the profile heights measured in
the post-pass laser scan at locations x, and x. (i.e. the material profile along the path of the
robot after a pass is an approximate measure of the robot elevation at each location during
the pass).

The parameters for each elevation estimation equation are determined by
minimizing the sum of the squared errors between the measured profile height and the
predicted elevation value over the entire experimental data set. A global sampling-based
search algorithm is used to solve the least squared error optimization problem. Details of
the search algorithm are described in Perttunen et al. (1993). The Matlab code used to
implement this search algorithm can be found at Finkel (2004). The parameter estimation
optimization problem for each of Egs. (3.6) and (3.7) is:
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eZ = arg mineSLIm,Z (GZ) (51)
sth 5
subject to e, , =D (Zy (i)~ (1)) (5.2)
i=1
where 0, is the parameter vector, ze is the elevation variable, hpmeas IS the corresponding

post-pass measured height, and NSfit is the number of points in the fitting data set. For

EQ. (3.6): 6, = [Cyca Cye2] and zest = z¢. For Eq. (3.7): 0, = [Czv1 Cuvz Capa Cops] and zet = zp,.
Assuming the robot pivots about its centre point, the parameter C,, represents the
distance from the robot centre to the edge of the blade when the blade is in the zero
position (i.e. from P to Py, in Fig. 3.1) so it was fixed to the measured value of 177 mm.
The root-mean-square errors (RMSE) of the estimated elevations are 2.0 mm and 5.3 mm
for z;, and zy, respectively. An example of the estimated z, is shown in Fig. 5.2. The

elevation estimation equation parameters are tabulated in Table 5.2.
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Height [mm)]
>

(6]

50 1000 1500

Fig. 5.2 Example of robot elevation estimation.
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Table 5.2 Elevation estimation equation parameters.

Parameter
Czcl Cch Czbl Czb2 Czb3 Czb4
[mm/mm] [mm/mm] [mm/mm] [mm] [mm/mm] [mm/mm]
0.96 -0.11 0.32 177 0.062 -0.37

5.3.3 Hybrid Dynamic Model Parameter Estimation

The experimental fitting data was categorized into segments based on the mode
transition criteria (i.e. £ from Chapter 3) so the mode-dependent parameters of the
dynamic equations could be estimated. Using this segmented set of experimental fitting
data, the parameters of the remaining discretized state equations (i.e. Egs. (3.14), (3.15)
and (3.16)) were determined for each mode by minimizing the sum of the squared error
between the measured state value and the predicted state value. A one-step-ahead
prediction was used with each equation. The same global search algorithm and Matlab
code as the previous section was used to solve the least squared error optimization
problem.

The parameter estimation optimization problem for each mode segment of the

data set is:
Ox :arg minesum,xﬁt,l" (Ox) (53)
N gl _ ,
subject 10 €, = > (X (i+1) =Xk (i+1)) (5.4)
i=1
X;irted (I +1) = fxfit (Xn:i;as (I)’ Xr?l?:g (I)) (55)
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where 0y is the parameter vector (e.g. to fit Eq. (3.14) to mode 5 data, 6x=[Cga15 Cyazs
Cuass Cuass Caass]), i is the sample number, x™ is the state variable to be fit with function
fie(-), X°™" are the other state variables in the equation, and N.L o 1S the number of
points in the segmented fitting data set per mode I'. Measurement values are denoted
Xmeas @and predicted values are denoted Xpres. The parameters of modes 1 - 5 and 7 were

estimated. The total number of samples per mode within the model fitting data set and

the model validation data set are given in Table 5.3.

Table 5.3 Total number of samples per mode within the experimental data set.

Mode Number, T’

1 2 3 4 5 7

Samples, model fitting set 3150 1533 2774 1255 2075 @ 1465

Samples, model validation set 1625 712 1097 645 1244 693

Note that some of the parameters required special treatment. In mode 1, the robot
is simply driving forward on the flat clean floor surface so the only significant parameters
of all the dynamic equations are Cyp11 and Cyp21 Which represent the robot velocity time
constant and steady state gain. All other parameters were set to zero in mode 1. For the
remaining modes the parameters C,p1 and C,p, were fixed to equal C \p11 and Cypz1. In
modes 2, 4 and 5 the robot blade position is constrained by the hard floor surface, thus for
any ¢ <0 material will accumulate on the blade. Therefore, for these modes parameter
Cadas Was set to zero. In mode 7, the height of material ahead, h,, is undefined since the

removal space is significantly below grade so parameter Cqa27 Was Set to zero.
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A total of 52 parameters were estimated. The total elapsed time to estimate the

model parameters was 403 seconds running on an Intel T7100 1.80 GHz processor with 2
GB RAM. Note that since zq and 7 are much smaller than the sampling period of s

they were not included.

5.3.4 Dynamic Model Validation
The model was validated with the data from the four trials of the validation data
(i.e. 16 passes). The mode transitions were determined as in model fitting. The relative

model fit was calculated for each state and mode as follows:

NvaJ

val
s,I",seg 7Np

\/ _ (xpmd(i+N,V;"")—xmeas(ijtN[Vj"))2
Vi, gy =100-| 1-F—— and (5.6)
\/ Svr‘i p (Xmeas (I + N\;;al ) _Xmeas,l“,seg )2

i=l

val
N seg,I”

D UNG %t
% fit, . = =

N (5.7)

s,I",total

where X, is the N *-steps-ahead predicted state, X, is the state

pre meas

measurement, N is the total number of mode-segmented samples in the validation

s,I,total

data, N

s,I",seg

is the total number of samples within a particular mode segment of the

validation data, X is the mean of the state measurements within a particular mode

meas,I",seg

segment of the validation data, and N **

seg,I’

is the number of mode segments within the

validation data.
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The relative fit was calculated with the validation set for each of the mode
dynamics. The relative fit averaged over modes 2 - 5 and 7 is listed in Table 5.4. After
the system identification procedure generated a set of estimated parameters a global
sensitivity analysis was used to refine the model. In addition to the parameters known to
be zero, the sensitivity analysis showed that other parameters contributed negligibly to the
dynamics. These parameters were removed and the system identification procedure was
repeated. The validation and sensitivity analysis was also repeated to confirm that these
parameters could be removed without significantly affecting the model fit. The

sensitivity analysis is described in the next section.
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Table 5.4 Model validation relative fit over different prediction horizons for modes 2-5

and 7.
Relative Fit (%)
Mode, T’ State Npvai =1 Npval = 2 Npval = 3

da 85.1 70.3 56.1

2 Vb 73.0 49.9 31.0

¢ 86.5 75.1 66.0

da 90.3 81.2 72.7

3 Vb 76.6 57.5 42.9

¢ 80.3 63.8 51.2

da 92.4 85.5 79.4

4 Vb 76.2 56.1 40.3

¢ 65.3 36.3 15.0

da 88.9 78.6 69.3

5 Vb 74.6 53.5 37.2

¢ 71.1 46.8 28.5

da 77.0 58.5 433

7 Vb 73.0 50.5 33.3

¢ 63.2 32.7 10.5

da 86.8 74.8 64.2

Average Vi 74.7 53.5 37.0
¢ 73.3 50.9 34.2

5.4 Sensitivity Analysis

In general, global sensitivity analysis (GSA) methods evaluate the effect of a

parameter while all other parameters are varied simultaneously. A sensitivity index is a
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number that gives quantitative information about the relative sensitivity of the model to
the selected parameters. The Sobol GSA method is a variance-based sensitivity analysis

approach presented in Sobol (2001). This method is based on the decomposition of the

variance of the model output function f ()= f (61,62, Oy ) with parameter vector

0
into summands of variances in combinations of input parameters in increasing

dimensionality as follows:

N() N() N()
F(0)=fo+> f(0)+2. > (0,0, )+ +f, \ (6,0,....0y ) (5.8)
i=1 i=1 j=i+l
Where 0 is the parameter set and N, is the number of parameters.

For any subset of parameters 0,,6, ,...,0, with indices 1<, <...<i; <N, the total

variance, D, is defined as:

N 0 N()

D:Z Z Dil...is (5.9)

s=1 iy <...<ig

Where the partial variances, D;; , , are:

Dy, 1 =, f2 . (6,.6,.....6, )6, d6, ..., 6, (5.10)

The Sobol sensitivity indices, S are calculated by:

S Diliz.“is (5.11)
Wl T .

Where S;; ; gives the fraction of the total variance which is apportioned to the individual

model parameters or combination of them. For example, S, =D,/D quantifies the
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contribution of the parameter 6, to the output variance. It can be shown that all S;;

I

are nonnegative and add up to one as follows:

No
Zsilvin-~-vis :ZSj +Z Z Sij +Sl,2,.A.,N0 =1 (512)
i=1

I<i<j<Ng
An extension of the Sobol sensitivity indices proposed by Homma and Saltelli
(1996) is the total effect sensitivity index to measure the mutual interactions of

parameters. The total effect index with respect to parameter 0, is defined as:

SjT :1_Zsil,i2,“.,is (5.13)

i#]
Where the summation is taken over all the different groups of indices that do not include
J.  The total effect sensitivity index quantifies the overall effects of a parameter, in

combination with other parameters on the model output.

An extension for a time-varying function f(x,t), involves computing the

sensitivity indices at each measurement or sample time point, then calculating the average

of all of the S (t) over the simulated trajectory for each parameter as follows:

S :_Zsij (tk) (5.14)

Where N, is the number of samples in the simulated trajectory.

The Sobol GSA method was used to confirm the significance of the parameters in
the dynamic model. The Matlab toolbox used to calculate the Sobol sensitivity indices is

described in Rodriguez (2010).
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The sensitivity analysis was completed for the d,, vp and ¢ state dynamic

equations. For each state equation a set of mean total effect sensitivity indices, S, Tir , were

calculated for parameter 0, . and mode I'" over a simulated trajectory of the dynamics

with sample time increments equal to the experimental sample period Ts = 0.0625s. The
parameter C,p, Was not included in the sensitivity analysis because it is a fundamental
property of the robot velocity dynamics (i.e. the steady state gain) with negligible
uncertainty. Each mode was simulated with its corresponding set of equation parameters
independent of the other modes (i.e. no switching between modes throughout a simulated
trajectory). Each simulated trajectory terminated at 14 seconds. Piece-wise constant
values for the blade position input and auxiliary variables, ry, hy, hy and h,, were changed
at times tr, thy, tha and tyy, respectively. The simulated trajectory blade position inputs and
auxiliary variables for each mode are tabulated in Table 5.5. The same initial conditions
da = 0 mm, vy = 92 mm/s and ¢ = 0 degrees were used for the simulation of all mode

trajectories.

Table 5.5a Simulated trajectory blade position inputs and auxiliary variables for mode 2.

tro Iy tha ha tho hp thr hy
Mode, I'
(s) (mm) (s) (mm) (s)  (mm) (s) (mm)
0 0 0 10 0 0 0 5
2 -5 3 5 1 5 1 6
4 5 4 15 3 15 2 30
2 6 -10 5 5 5 10 4 11
8 0 9 15 7 5 5 15
10 -15 10 5 9 15 7 20
12 10 12 10 11 10 10 11
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Table 5.5b Continuation of the simulated trajectory blade position inputs and auxiliary

variables for mode 3.

tro Iy tha ha thy hp thr hy
Mode, I'

(s) (mm) (s) (mm) (s)  (mm) (s) (mm)

0 0 0 15 0 10 0 15

2 -5 3 10 1 15 1 16

4 5 4 20 3 10 2 25

3 6 -10 5 10 5 15 4 16

8 0 9 20 7 20 5 30

10 -15 10 15 9 10 7 15

12 10 12 10 11 15 10 11

Table 5.5¢ Continuation of the simulated trajectory blade position inputs and auxiliary

variables for mode 4.

tro Iy tha ha thy hp thr hy
Mode, I'
(s) (mm) (s) (mm) (s)  (mm) (s) (mm)
0 0 0 20 0 5 0 15
2 -5 3 15 1 7 1 8
4 5 4 25 3 5 2 30
4 6 -10 5 10 5 10 4 25
8 0 9 25 7 25 5 10
10 -15 10 15 9 15 7 6
12 10 12 10 11 10 10 25
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Table 5.5d Continuation of the simulated trajectory blade position inputs and auxiliary

variables for mode 5.

tro Iy tha ha thy hp thr hy
Mode, I'
(s) (mm) (s) (mm) (s)  (mm) (s) (mm)
0 0 0 5 0 55 0 15
2 -5 3 10 1 7 1 22
4 5 4 7 3 10 2 35
5 6 -10 5 10 5 7 4 17
8 0 9 5 7 10 5 15
10 -15 10 5 9 5 7 5
12 10 12 10 11 7 10 12

Table 5.5e Continuation of the simulated trajectory blade position inputs and auxiliary

variables for mode 7.

tro Iy tha ha tho hp thr hr
Mode, I'
(s) (mm) (s) (mm) (s)  (mm) (s) (mm)
0 0 0 0 0 10 0 15
2 -5 3 0 1 5 1 6
4 5 4 0 3 10 2 25
7 6 -10 5 0 5 15 4 16
8 0 9 0 7 20 5 30
10 -15 10 0 9 5 7 10
12 10 12 0 11 15 10 16

After the first iteration of system identification, if the sensitivity of a parameter
was less than 0.01 and the estimated value of that parameter was small relative to those of
the other modes, that parameter was set to zero in the second iteration of system

identification.
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The parameters found after the second iteration of system identification are
tabulated in Table 5.6. The results of the sensitivity analysis after the second iteration of

system identification are tabulated in Table 5.7.

Table 5.6a Hybrid dynamic model estimated parameters of the d, and v, dynamic

equations for modes 2-5 and 7.

Parameter

Cdal Cda2 Cda3 Cda4
Mode, ' (mm™*) (mm?%) (mm™) (mm?)
x10®  x10®  x10®  x10°®

Cdas  Cunt Cub2 Cws Cipa
(mm*)  (s) (mms?) (s?) (s

2 -4.2 8.9 5.7 -6.8 *  1092| 23 |-14] 56
3 ok 5.1 7.5 *x -0.013 |0.92| 23 |-11| 1.7
4 -5.4 ok 1.6 12 * 1092| 23 |-18]| 26
S -1.9 5.1 3.1 2.1 * 1092| 23 |-10]| 3.6
7 ok * -17.6 3.2 ** 1092 23 |-09]| 4.0

* Removed based on known system conditions
** Removed based on sensitivity analysis
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Table 5.6b Continuation of the hybrid dynamic model estimated parameters of the

¢ dynamic equation for modes 2-5 and 7.

Parameter

Ca Cp Cy o
Mode, T (°/mm) (°/mm) (°/mm) (°/mm)
x10™ x10™ x10™ x10™

2 o -41 18 i

3 3.1 18 -9.0 2.7

4 4.5 -7.6 5.3 14

5 2.4 -6.1 -9.4 -2.0

7 1.4 2.3 3.4 4.4

* Removed based on known system conditions

** Removed based on sensitivity analysis

Table 5.7a Sensitivity analysis results for the estimated parameters of the d, and v,

dynamic equations for modes 2-5 and 7.

Sensitivity Index

Mode, I Scdat Scdaz Scdas Scdas Scdas Scwbr  Scwbs  Scuba
2 0.14 0.49 0.17 0.2 N/A | 047 [015| 0.38
3 <0.01 | 032 054 | <001 | 013 | 041 |022| 0.37
4 052 | <001 | 012 0.36 N/A | 054 | 03 | 0.16
5 0.38 0.3 0.12 0.2 N/A | 052 [034]| 0.14
7 <0.01 | N/A 0.93 0.07 |<001| 023 [057| 0.2
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Table 5.7b Continuation of the Sensitivity analysis results for the estimated parameters of

the ¢ dynamic equation for modes 2-5 and 7.

Sensitivity Index

Mode, T Sca Scee Scys Sc
2 <0.01 0.07 0.93 <0.01
3 0.03 0.17 0.7 0.1
4 0.51 0.03 0.06 0.4
5 0.11 0.12 0.29 0.48
7 0.5 0.01 0.2 0.29

From the first iteration of system identification and subsequent sensitivity
analysis, the parameters Cga13, Cgaz4, Cdasa 3, Cuas,7 Were determined to provide negligible
contribution to the material accumulation dynamics. Also, the parameters Cg 2, Cu o
were shown to provide negligible contribution to the robot pitch dynamics. The model
validation relative fit calculated for the second iteration refined model was nearly
identical to the fit of the first iteration model (less than 1% change in the relative fit
values), confirming the validity of removing the selected parameters.

A simulation of the deterministic da, v, and ¢ dynamics with the refined set of
parameters and the full set of parameters is shown in Fig. 5.3 for different modes,
different values of r, and material profile heights, where h,; = h,; = h,. These simulation
results confirm the expected dynamic behavior discussed in Chapter 3. The simulation

results also further reinforce the validity of the refined model.
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Fig. 5.3 Simulation of state dynamics with refined and full sets of estimated
parameters.
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Some observations of the more interesting aspects of the state dynamics will now
be presented, beginning with mode 4. This mode is characterized by a significant amount
of material located 6, ahead of the robot (i.e. hy > hires2). The material ahead acts to
support the material accumulated on the blade causing a more rapid increase in d,. This is
reflected by |Cga14| being greater than both |Cya1 2| and |Cga1s|. However, the material
ahead does not directly influence the accumulation dynamics, as indicated by the
insignificance of Cga24. This suggests that the rate of accumulation is not affected when
the depth of material ahead exceeds hures2. In modes 3 and 7, the positive values of
parameters Cyp 3 and Cg 7 implies that within these modes, the robot effectively follows
the blade as it penetrates down into the depth of the material below. For the other modes,
since the blade is constrained by the hard floor surface, making { negative will tend to lift

the front end of the robot, increasing its pitch and resulting in negative Cg, - values.

The measured and N ,Vf' = 3 predicted values of dg, vy, ¢ and z, from one of the 16

validation passes are shown in Fig. 5.4. This example was selected to show a range of
active modes throughout a pass, and also demonstrates the quality of the predictions when
a longer prediction horizon is used. Note that the one-step-ahead and two-step-ahead
predictions (i.e. N;*= 1 and N*= 2) are not shown since they are not visually
discernible from the measured values. The plots in Fig. 5.4 also confirm the general
trends of the process dynamics discussed in Chapter 3. For example, a decrease in ry
causes a decrease in v, and an increase in d,, and vice-versa. It is also apparent that vy

responds more rapidly than d, to a change in rp.
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for one pass of

for a 3-step ahead prediction horizon, r, and "
the validation data set.
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5.5 Conclusions

A series of system identification experiments were performed with a rule-based
blade control algorithm implemented. The parameters of the dynamic equations were
estimated using one-step-ahead predictions for operation modes 1-5 and 7. A global
sensitivity analysis was performed to determine the relative contribution of each
parameter and refine the model. The refined model was validated using a separate data
set. The next chapter will present the design of an extended Kalman filter based on the

identified state dynamic equations; and the statistics of the state process disturbances.
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Chapter 6

Extended Kalman Filter Design

6.1 Introduction

This chapter presents the design of an extended Kalman filter (EKF) using the d, ,
vp and ¢ dynamic equations to reduce the errors in the state estimates relative to the
system states due to the combination of process noise or disturbance and measurement
noise. The one-step prediction error variance was used in the EKF measurement noise
covariance matrix. The values of the EKF process noise covariance matrix were tuned
manually. The smoothing behaviour of the Kalman filter was then compared to the

performance of the 2" order 1 Hz Butterworth lowpass filter used in Chapter 5.

6.2 Extended Kalman Filter Design

The purpose of the EKF is to obtain estimates of system states defined by
nonlinear dynamics based on measurements Simon (2006). For a discrete nonlinear

system of the form:
X =f(X U )+W,, and (6.1)
z, =h(X)+V, (6.2)
Where, X, is the state vector, u, is the input vector, w,is the zero mean multivariate

Gaussian process noise or disturbance vector, z, is the output vector, v, is the zero mean

multivariate Gaussian measurement noise vector, f is the function predicting the one step-

ahead system state dynamics and h is the system output function.
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The recursive EKF equations at the k™ sample take the form:

Reery = F (R U o) (6.3)
Rica = Figca PkEj]j{ffl(FklEk'ﬁ )T +QF (6.4)
JE€ =2, —h(RE) (6.5)
SEKF = HEREKT (HE )| 4 RE (6.6)
KET = RS (HET) (s5) (6.7)
RET = R+ KEF e (6.8)
R =(1 - K&THS )RS (6.9)
o = S_I(Rfﬁf“,u“ and (6.10)

o= 2—: i (6.11)

o EKF

where, X, is the predicted state vector estimate from the extended Kalman filter, B,

is the predicted estimate covariance, Q™ is the process noise or disturbance covariance

R EKF

matrix, is the measurement disturbance covariance matrix, K " is the Kalman filter

ain, y5Fis the innovation residual, S is the innovation covariance, X:<Fis the
Yi K Klk

updated state estimate, Ry is the updated estimate covariance, F7;"is the state

transition matrix, H ™ is the observation matrix. ~The EKF is implemented by

performing the following procedure at each sample k

64



Ph.D. thesis — Scott Olsen McMaster University — Mechanical Engineering

[

. Compute the state partial derivative matrix F" using Eq. (6.10)

N

. Perform the time update of the state estimate, X£<,, using Eq. (6.3) and

estimation-error covariance R using Eq. (6.4).

w

. Compute the observation partial derivative matrix, H ", using Eq. (6.11).
4. Compute the Kalman filter gain, K=", using Eq. (6.7)
5. Perform the measurement update of the state estimate, Xg<", using Eqgs. (6.5)

and (6.8) and estimation-error covariance, B3, using Eq. (6.9).

For the robotic bulldozing process, using the discrete-time ds, vp and ¢ system

equations, Egs. (3.14)-(3.16), the predicted EKF state estimation vector takes the form:

Okes
L R
TEKF
RS
I 1 - 1 (6.12
dzaE,L(fuk-l +Ts ‘(Cdal,r ’ d::((fuk—l + Cdaz,r ’ ha,k—l + Cda3,F ’ h),k—l + Cda4,F ’ hﬁr,k—l _Cdas,r 'Ck—l) ’ V:Efuk—l ( )
T |~ C -
= 1-—— ‘thillfuk-l +1g- — U1 _vas,r : d':L(f]Jk—l +va4,r G
val,l" val,l"
L Eﬁl':—l +Ts ‘(C¢1,r : d::fuk-l +C¢2,r Ut C¢3,r : h:,k-l +C¢4,r : ha,k-l) : Vt?lffﬂk—l |
The resulting updated EKF state estimate takes the form:
Oaicks
Rie = Vor [+ KET YT (6.13)
s
with the innovation residual taking the form:
Voo =20 Ko (6.14
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and the EKF output vector is:

meas
da,k

7, =| e (6.15)

where dJ7®, v and 4™ are the unfiltered state measurements.

Taking the partial derivatives of the state prediction equations, the corresponding EKF

state transition matrix is:

1+Ts 'Cdalr 'OIJE,EZJk—l Ts '(Cdalr : daE,r:kal +Cda2,F : ha,k—l + Cdaa,r : h:,k—l +Cda4,F : h6r,k—1 _Cdas,r ’ Ck—l) 0
T, 6.16
FEF = TCoar [—C ] o| (618)
b1,T
| T 'C¢ll"'\7t|3<<fﬂk—l T '(Cqﬁll"'daE,:Eﬂk—l_l_Cqﬁz,F'Ck—l +C¢3,F'}'I:,k—l+c¢4,1"'n,k—1) 1_

and the EKF observation matrix is:

=
o
o

(6.17)

o

HEF =10 1

o
o
[N

Assuming independent process noise or disturbance characteristics between states, the

mode-dependent process noise or disturbance covariance matrix is defined as:

c55v,da,l‘ 0 0
FEKF = 0 Gsvvvb'r 0 (6.18)
0 0 vav oI

The mode-dependent measurement noise covariance matrix is defined as:

2 2 2
cSv,da,l" cSv,davb,l" cSv,daq),l"
EKF _| 2 2 2
RF - cSv,vbda,l" cFv,vb,l" cSv,vb(i),l" (619)

2 2 2
cSv,d)da,l" Gv,¢vb,l" cSv,(i),l"
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The measurement noise covariances of the state dynamics for each mode were

determined using the one-step prediction errors of the unfiltered mode-segmented set of

experimental fitting data. The measurement noise covariances -, . were calculated for

v,xy,I"
the states x and y and mode I as follows:
1 st,ilh,mtajfl
Gy =—( N T le (6, (i+1) -5, )(e, (1+1)-%,,) (6.20)
s,[total I=.
et (i+1) =xe (i+1)—xme (i+1) and (6.2)
. 1 st,ill"majfl
G Y i+ (6.22)

where, i is the sample number; Nt ., is the number of points in the segmented fitting
data set per mode I'; e, is the prediction error of state x between the unfiltered

measurement values, denoted x"™ and the values predicted from the unfiltered

meas !

measurements, denotedx;i'; and &' is the mean prediction error of state x from

unfiltered measurements. It was assumed that these prediction errors were predominantly
due to the measurement noise. The measurement disturbance covariances of the da, vy

and ¢ state dynamics are tabulated in Table 6.1.
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Table 6.1 Measurement disturbance covariances of the d, , v, and ¢ state dynamics for

each mode.
Measurement disturbance covariance

Mode,
T G5,da,r G\Z/,davb,r Gs,daq),r G\%,vbda,r G\Z/,vb,r Gs,qu,,r 63,¢da,r Gs,wb,r 63,¢,r
1 1.3 0.43 0.019 0.44 71 1.9 0.019 1.91 0.92
2 3.1 14 -1.1 14 378 12 -1.1 12 12
3 1.7 -0.91 -0.48 -0.91 241 4.9 -0.47 4.9 4.1
4 0.91 -0.50 -0.71 -0.50 354 6.1 -0.71 6.1 6.7
5 2.2 -0.67 -1.1 -0.67 509 9.3 -1.1 9.3 11
7 2.4 -2.0 -0.59 -2.0 444 5.8 -0.59 5.8 10

2 2

The values of the mode-dependent process noise or disturbance variances, o, .. r» Oy r

and o, , - were selected manually and are tabulated in Table 6.2.

Table 6.2 Process noise or disturbance variances of the d, , v, and ¢ state dynamics for

each mode.
Process noise or disturbance variance

MOde’ r G\?v,da,l" Gsv,vb,l" G\?v,(b,l"
1 0.2 10 0.05
2 0.2 50 0.3
3 0.1 50 0.5
4 0.1 50 0.5
5 0.1 50 0.5
7 0.2 60 0.2

An example of the da , vy and ¢ state measurements filtered with the EKF and a 2™ order
1 Hz Butterworth low-pass filter is shown in Fig. 6.1. In terms of smoothing behaviour,

the performance of the EKF is similar to the performance of the low-pass filter. The main
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advantages of the EKF are that less delay is introduced in the filtered signal, and the
design is based on parameters that are more physically quantifiable (i.e. variance of the

prediction error).
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Fig. 6.1 Example of the d, v, and ¢ state measurements filtered with the EKF and a
2" order 1 Hz Butterworth low-pass filter.
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6.3 Residual Disturbance Model

The residual disturbances of the EKF filtered state measurements were modeled as
zero mean Gaussian stochastic processes. The disturbances were determined using the
one-step ahead prediction error from the EKF filtered mode-segmented data sets, similar

to the previous section. The residual disturbance model for each state x and mode I" takes

the form
WX,F (I) = ef,ll("': (I) = nwx,l" (623)
where ef" (i) = X5 (1) — Xpew (1), for samples i = 2, 3, ... N/} . Ny IS @ Gaussian

distribution with standard deviations o, Nt o 1S the number of points in the

Jwx, M7

EKF
x,I

segmented fitting data set per mode I"; e is the prediction error of state x between the

EKF
meas !

EKF filtered measurement values, denoted x and the values predicted from the EKF

EKF

orea -1 D€ residual disturbance standard deviations of the

filtered measurements, denoted x

EKEF filtered da , vy and ¢ state dynamics are tabulated in Table 6.3.

71



Ph.D. thesis — Scott Olsen McMaster University — Mechanical Engineering

Table 6.3 Residual disturbance standard deviations of the EKF filtered da, v, and ¢ state

dynamics for each mode.

Mode, I' State O,
da 042

1 Vp 2.82
@ 0.36

da 0.37

2 Vp 3.1
@ 0.36

da 0.39

3 Vb 3.6
@ 0.36

da 0.35

4 Vp 3.9
@ 0.37

da 0.37

5 Vp 3.5
@ 0.34

da 0.38

7 Vp 3.6
@ 0.33

6.4 Conclusions

An extended Kalman filter (EKF) was designed using the d, , v, and ¢ dynamic
equations. The smoothing behaviour of the EKF is similar to the performance of the 2"
order 1 Hz Butterworth lowpass filter used in Chapter 5. The main advantage of the
Kalman filter is that less delay is introduced in the signal and tuning is more flexible with
more meaningful parameters. The EKF was implemented within the experimental data

acquisition and control system for subsequent experimental investigations. The residual
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disturbances were modeled as zero mean Gaussian distributions. The residual disturbance
models are used in Chapter 9 for a simulation analysis of the stochastic dynamics.
The next chapter presents the development of a control method for the robotic

bulldozing operation based on the hybrid dynamic model presented in Chapters 3 and 5.
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Chapter 7

Control Design

7.1 Introduction

This chapter describes the development of a control method for the robotic
bulldozing operation based on the hybrid dynamic model presented in Chapter 3. To
address the overall bulldozing task objective of maximizing the material removal rate,
different control laws were designed for the unique dynamics of each mode. Thus as the
mode transitions are identified throughout task execution, the mode-specific blade control
law is activated. Since the material removal rate primarily depends on d, and vy, only
those states are controlled. The EKF estimates of d, and v, given by Eq. (6.13) are

employed by the controller.

7.2 Optimal Blade Control Design for Modes I' = 2-5 and 7

Optimal blade position control laws were designed for modes I' = 2-5 and 7 that
perform the majority of the material removal. The control objective is focused on

enhancing productivity by maximizing the material removal rate.

7.2.1 Condensed Discrete-time Prediction Model

The discrete-time one-step ahead prediction formulations of the d, and v,
equations from Chapter 3 were used. The equations Eqg. (3.14) and Eq. (3.15) are
reformulated here in a condensed form. For brevity, the underlying material profile

auxiliary variables were combined into the measured disturbance term:
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Hr,k =T '(Cdaz,r ‘ha,k +Cda3,r ‘hb,k + Cda4,r ’ hsr,k) (7.1)

S

where T; is the sampling period. The discrete-time equations predicting one-step ahead

from the k™ sample are then as follows:

da,k+l = da,k +C11,r Yok 'da,k +C12,r Vo “Tox TVou - Hrx Wy and (7.2)

~ ~

Vb,k+l = Ctr + Czl,r 'da,k + sz,r 'Vb,k + Czs,r 'rb,k + Wv,r,k (7-3)

where dax is material accumulation EKF filtered measurement, vy is the EKF filtered

robot blade velocity in the X-direction, r, is the calculated blade reference position,
W, , is the expected value of the material accumulation EKF filtered residual process
noise or disturbance, W, is the expected value of the EKF filtered robot velocity residual

— Ts 'vaZ .

s 'Cdal,r’ C12,F =T 'Cdas,ra Cy = C U,
Vbl

process noise or disturbance, C,.=T

T .
Cpr=-T,-Cpars Cpr=1-—"— and C, =T,-C,,.. Note that since 0 T, and
vbl,I”

w0 Ty, it was assumed that £, [l r, in order to simplify the equations. In Chapter 6, it
was determined experimentally that the EKF filtered material accumulation and robot
velocity residual disturbances can be effectively modeled as zero mean Gaussian noise so

their expected values in Eq. (7.2) and (7.3) equal zero, i.e. W, =W,, =0.

7.2.2 Optimal Blade Control Laws
Optimal control refers to the solution of an optimization problem for the control

input that drives the system along a trajectory that minimizes or maximizes a performance
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index. When the optimal control solution includes model-based predictions of the system
dynamics and control inputs into the future it is known as model predictive control
(MPC), with an overview provided in Qin and Bagwell (2000). MPC was chosen for this
research since it is a systematic optimal control approach that exploits a process model.
While significant progress has been made with MPC, when applied to nonlinear processes
like bulldozing the solutions typically employ numerical optimization that is too
computationally demanding for real-time control of mechanical systems, as discussed in
Grune and Pannek (2001). A further problem with applying both conventional MPC and
feedback control to optimize bulldozing is that optimal desired values of the process

states cannot be computed since they depend on future values of H., that are

unpredictable. These values are unpredictable because the coefficients in Eqg. (7.1)
depend on unpredictable future I" values; plus h,, hy and hgs depend on the future values
of xa, Xp and I". The unpredictability is due to the stochastic nature of the interaction
between the machine and the material.

An important aspect of MPC design is the length of the prediction horizon. While
in general a long prediction horizon will produce a result that is closer to the global
optimum, a short prediction horizon is preferable in this application for three reasons.
First, it has been determined experimentally that predictions of d, and v, farther than one-
step-ahead are highly inaccurate due to the stochastic disturbances. Second, the longer
the prediction horizon the greater the amount of computation that must be performed in

real-time. Third, the difficulty of stability analysis grows as the horizon is increased.
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For the reasons provided above, a one-step-ahead analytical MPC approach was
developed for designing optimal control laws for the bulldozing process. This approach
solves for a blade position control law that minimizes a one-step-ahead cost function
formulated from the prediction equations Eqg. (7.2) and Eq. (7.3). An obvious choice for
the cost function is the negative of the one-step-ahead predicted approximate material

removal rate given by:

~

ék+l = _aa,k+l Va1 - Wy (7.4)
where w, is the blade width. However, this choice is undesirable since it does not include
the blade position reference so it will tend to produce an overly aggressive control law;
plus w, is constant and therefore redundant. More suitable cost functions will now be
introduced.

Due to inherent differences in the dynamics of certain operation modes, two
different cost functions are proposed, one for mode 3 and one for modes 2, 4, 5 and 7.
The fundamental difference in dynamics is reflected in the dynamic equations by the
parameter Cgas, as determined in Chapter 4. This parameter is present in the mode 3
dynamics signifying that the rate of material accumulation is partially dependent on blade
position. This parameter is not present in the other controlled modes due to the constraint
of the hard floor surface, thus the material accumulation in these modes is independent of

blade position. The cost function proposed for mode 3 is:

~

Ja = _da,k+l 'Vb,k+l + Ra' rbz,k (7.5)

where R; is a positive controller tuning parameter. The purpose of the first term in this

equation is to maximize the predicted material removal rate, while the second term is
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included to allow the aggressiveness of the control to be tuned. The optimal control law

that minimizes J; is found by substituting Eq. (7.2) and Eqg. (7.3) into Eq. (7.5) for aaykﬂ

and \7b,k+l’ respectively, taking its derivative with respect to r,, , setting it equal to zero

and solving as follows:

dJ,

=2-a,-1,, +b,=0 and (7.6)
dr,
« -b
I’b'kvs = ﬁ (77)

with

a,=-Cp,;-Cps-vy, +R,  and

by =—Cips Vo (G +Cons Gy +Conz Vos ) ~Coaa (G +Cias o Vo +Hay Vo)
where rbfkyg is the optimal blade position reference input for mode 3.

The material accumulation model of modes 2, 4, 5 and 7 is characterized as being

independent of blade position (i.e. model parameterC, . =0). Therefore, a more

appropriate objective for modes 2, 4, 5 and 7 is to maintain contact between the blade and

the floor (i.e. minimizing r,) while the robot travels forward as fast as possible (i.e.
maximizing vp). The cost function that accomplishes this objective is:

Jr= Ab,k+l Tt R rbz,k (7.8)
where Rr is a positive controller tuning parameter. Following the same procedure as

above, optimal blade control law for "' =2, 4,5 and 7 is:
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* _b
A & 7.9
g (7.9)
with
ar=Cy, +R; and

br = Ctr + C21,r 'da,k + sz,r Vo

where rbfkyr is the optimal blade position reference input for mode I'.

7.2.3 Optimality Conditions

These optimal control laws must satisfy certain optimality conditions, as in Boyd
and Vandenberghe (2004). These include the first-order optimality conditions (or
Karush-Kuhn-Tucker (KKT) conditions) with respect to the constraints,

<r. <r

b,k — "b,max

I and the second-order optimality condition. The KKT conditions are

b,min —
formulated with respect to the Lagrangian of the cost function and the blade position

constraints as follows:

L (rb,kvk) =Jr () +2 (rb,max —lhk ) +1, (_rb,min + rb,k) (7.10)
where A,,A, are Lagrange multipliers. The two different cost functions, Eg. (7.5) and
Eq. (7.8), take the same general formJ.(r, ) =a. -} +b. -1, +¢.. From the Lagrangian

in Eq. (7.10), the following conditions must be satisfied to ensure optimality:

Vo Lo (hor)=2-a 1, +b % +2, =0 (7.11)
rb,k < rb,max (712)
1 <=1 in (7.13)
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}\'1 ( r-b,max - r-b,k ) =0 (714)
A, (—rb,min 1 ) -0 and (7.15)
Ak, 20 (7.16)

If a constraint is not active, its associated Lagrange multiplier is zero. Thus, the solution

to determining the optimal value of ry is reduced to checking the follow cases:

if ., =0AX, =0, 1, =1 _ b
1 Ah, bk = Tbkr 2.a

if 7‘1 =0/\7M3 =0, ok = Yomin
|f }\;2 :O/\)\f:; :O, rb,k = rb,max

The second order optimality condition stipulates that, if a constraint is not active,

a local minimum exists if the cost function is convex. This condition is satisfied when the

second derivative of Jr with respect to 1, is positive as follows:

d 2‘]l" (rb,k) —

2-a.>0 7.17
dr2, r (717)

Since the parameter a. is a positive constant for all modes I' = 2-5 and 7, a local

minimum always exists.

7.3 Avoidance and Recovery Control for Mode I' = 6

The d, and v, dynamics of mode I' = 6 are fundamentally different from the other
modes. Consequently, they could not be modeled within the same analytical structure of

the system equations. Therefore, the mode 6 dynamics and blade control approach were
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investigated experimentally. This mode is undesirable since it indicates that the robot has
lost contact with the underlying material, resulting in no bulldozing work being
accomplished. The conditions that cause the robot to transition into mode 6 were
investigated experimentally with the objective of developing an approach to reducing the
possibility of this transition (i.e. mode 6 avoidance). It was found that mode 6 avoidance
can be accomplished with an appropriate state dependent blade position constraint
imposed in modes I = 2-5 and 7. The results of this investigation formed the basis for the
development of a blade control law for mode 6 to expedite a transition into a desirable

mode (i.e. mode 6 recovery).

7.3.1 State Dependent Blade Constraint for Mode /" = 6 Avoidance

Recall from Chapter 3, mode I' = 6 is defined by the condition d, < O, i.e. a
‘negative’ accumulation of material on the blade. A transition to mode 6 tends to result
when the blade is raised above its zero position, i.e. > 0, while a significant amount of
accumulated material, i.e. d, > 0, is being pushed. When the blade is raised above its zero
position a small local mound of material is created in the underlying material profile.
Once the robot tracks reach the location of the small local mound, after traveling a
distance approximately equal to the length of the blade arm, the robot will begin to ascend
the local mound. If the relative height of the local mound, hjeca, is sufficiently large the
elevation of the robot will cause the blade to lose contact with the underlying material
profile, and the d, measurement will become negative. The conditions of {and d, prior to
transitioning to mode 6 are illustrated in Fig. 7.1. The relationship between hisca and da

during mode 6 is illustrated in Fig. 7.2.
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Fig. 7.1 Conditions of {'and d, prior to transition to mode 6.

Fig. 7.2 Relationship between hjoca and d, during mode 6.

A very conservative approach to avoid a transition to mode 6 is to constrain the
blade to remain below its zero position, i.e. r, < 0. However, this will result in a
significant reduction in overall bulldozing performance. Since the height of hjgca IS
determined by the blade position another approach is to constrain the blade position
reference input proportionately relative to the height of material accumulation as follows:

nL<K,-d, (7.18)
where K, is a positive constant. This blade position constraint will not necessarily avoid

a transition to mode 6, however, it will be much less likely to occur. Furthermore, if a
transition to mode 6 does occur this blade constraint will allow faster recovery from it.

A series of two-pass experimental trials were performed to investigate the
conditions that tend to result in a transition to mode 6. Similar to the experiments
discussed in Chapter 5, material was initially set up in a structured pile with a uniform
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nominal height of 20 mm and length of 1.1 m, covering to the edge of the environment.
The robot blade location, x,, was located 150 mm away from the leading edge of the pile
at the start of each pass (i.e. mode 0). The robot was driven forward with the blade at its
zero position (i.e. mode 1). After the robot blade reached the leading edge of the material
pile (i.e. mode 2) and transitioned to mode 3 or mode 4 the blade position reference was
set to a constant downward position equal to the average height of one layer of stones, ry
= -hinress = -5 mm. When the material accumulated on the blade reached a threshold value
of 80% of its maximum, i.e. d, =0.8-d, .., =0.8-55 mm, the blade control r, =K -d,
was initiated until a transition to mode 6 occurred. When a transition to mode 6 occurred,
the blade position was set to zero. When a transition out of mode 6 occurred, the blade
position was again set to r, = -huyres1 t0 cause another transition to mode 6. Different
values of K, were selected for each set of experimental trials. This cycle was repeated
until the robot reached near the far edge of the task space (i.e. mode 7) and stopped (i.e.
mode 8).  After a bulldozing pass with the initial material coverage was completed, an
additional pass was attempted with the subsequent material profile. This constituted one
experimental trial. Five sets of two-pass experimental trials were completed for K,

values of 1, 0.5 and 0.25. The mode 6 activation algorithm is summarized in Table 7.1,

where the intermediate variable Sy, is used to latch the blade position control.
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Table 7.1 Mode 6 activation algorithm.

1. INITIALIZET =0

2. ACTIVATET =1

3. §,=0

4. WHILET >2AT 27

5 IFT =6

6. IF S, =0

1. = —Nyprest
8 ELSEIF S, =0Ad, >0.8-d, .,
0. S, =1

10. ELSEIF S, =0
11. r,=K,d,
12, ENDIF

13. ELSEIFT =6

14, r,=0

15. S, =0

16. ENDIF

17. ENDWHILE

The effect of the mode 6 activation algorithm is to instantly create a significantly
large local mound of material which the robot will subsequently climb. As the robot
ascends the local mound the blade is elevated above the underlying material to such an
extent that it can no longer remain in contact, thus no work can be accomplished.

Measures used to quantify the experimental results of the mode 6 activation

investigation include: h the maximum height of the underlying material profile peak

peak

at the local mound that caused the transition into mode 6; |d,| _, the maximum ‘negative

accumulation’ during mode 6; and At,, the duration of mode 6 activation.

An example of the experimental results of two passes with the mode 6 activation
algorithm using K, = 1 are shown in Fig. 7.3 and Fig. 7.4. This example shows very
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large and very steep peaks created which result in long durations of mode 6 active with
very deep ‘negative accumulation’ (i.e. large magnitude d, < 0) indicating large relative
elevation of the robot blade with respect to the underlying material profile. In addition to
causing poor performance during a bulldozing pass, the steep local mounds cause severe
problems during subsequent passes. The robot is likely to become stuck in the underlying
material profile trough between local mounds, as indicated in Fig. 7.4 and illustrated in

Fig. 7.5. Altogether, this is highly undesirable for bulldozing performance.
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Fig. 7.3 Example of mode 6 activation experimental results using Ky, = 1, pass 1.
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Fig. 7.4 Another example of mode 6 activation experimental results using Ky, = 1,
pass 2 showing the robot becoming stuck (v, = 0).
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Fig. 7.5 Illustration of the robot becoming stuck between material
profile peaks due to activation of mode 6.

As K, decreases, the height of the local mound decreases and the likelihood of mode 6

becoming active decreases. For example, Fig. 7.6 shows experimental results using Ky, =

0.25 where h_, and |da|max are significantly smaller. Another example of experimental

results using Ky, = 0.25 in Fig. 7.7 shows that mode 6 is not activated at all.

The mean values h,,, |d,| _ and At, of the experimental results are tabulated in

peak ?
Table 7.3, along with the number of passes that the robot became stuck during the second

pass, N, .« » and the number of passes where mode 6 was did not become active, ng, . -

The mean values do not include the passes where the robot became stuck, nor when mode

6 was avoided. The results in Table 7.3 show that as Ky, decreases, h.,,, |d,| and At

peak ?

decrease. The results with Ky, = 0.25 compared with Ky, = 1 show improvements of 30%,

55% and 13% in h,,,, [d,|  and At,, respectively. Furthermore, with Ky, = 0.25, mode

peak ?

6 activation was avoided in 40% of the passes and did not become stuck in any passes.
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Fig. 7.6 Example 1 of mode 6 activation experimental results using K., = 0.25,

pass 1.
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Fig. 7.7 Example 2 of mode 6 activation experimental results using K., = 0.25,
pass 1 showing no mode 6 activation.
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7.3.2 Blade Control for Mode /"= 6 Recovery

The experimental investigation of mode 6 activation and avoidance was extended
to include the development of a method for selecting the blade constraint parameter Ky, in
conjunction with a mode 6 recovery blade control algorithm. Recovery from mode 6 can
be achieved more quickly by positioning the blade downward to penetrate down into the

underlying material surface with the following blade position control law:

h =0, — Ny (7.19)
This allows material to resume accumulating on the blade during mode 6 until the point
when d, > 0 which transitions the system out of mode 6. The amount of ‘negative
accumulation’ is a function of the height of the local mound and hence a function of the
raised blade position when the local mound is formed. Therefore, the allowable
maximum blade position, rpmax, Should be a function of the minimum blade position,
I'n.min, SO that the mode 6 recovery control downward blade position penetrates sufficiently
into the underlying material. The principle of the mode 6 recovery control law is

illustrated in Fig. 7.8.

Fig. 7.8 Illustration of mode 6 recovery blade control law.
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With the blade constrained by r, <K, -d, to avoid mode 6 activation, the value of

K limits rp max With respect to the maximum material accumulation, damax, Which limits
the maximum height of a potential local mound hjocaimax. Thus it is desirable to minimize
Niocal 10 Minimize the effects of mode 6, should it become active. For the mode 6
recovery blade control law to be effective the blade must be able to be lowered to a
position below the grade of the underlying surface (i.e. penetrate and dig into the
material). The minimum physically constrained blade position, rpmin, can limit the
effectiveness of the mode 6 recovery control law. For example, if hj,cai becomes too large

and the magnitude of the ‘negative accumulation’ is greater than rymin (i.e. d, <r,) then

the blade cannot penetrate downward into the material. Therefore, the value of K, should
be chosen such that if a transition to mode 6 occurs, the recovery control law is capable of
positioning the blade below the grade of the underlying material at least to the depth of a
single layer of stones (i.e. rp + hypress < da). Thus the value of Ky, can be used to
determine an allowable ‘negative accumulation” and an allowable hjocamax SO that the
recovery control law can be effective.

A method for determining an appropriate value of K, with respect to the
minimum constrained blade position, r,min, and the maximum material accumulation,
damax, proceeds as follows. Assume for small distances and elevations, the following
approximation holds:

Niocal = Iy, for r, >0 (7.20)
Thus, an approximate allowable ‘negative accumulation’, da ¢ min during mode 6 is:

—0a6,min = Niocalmax = Ibmax (7.21)
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For effective recovery control during mode 6, the blade position must satisfy:

b < da — Ninrest (7.22)
Using the minimum allowable material accumulation, da g min in (7.22) gives:

I'b < da6min — Nihrest (7.23)
Substituting the minimum blade constraint ry = rpmin into (7.23) gives:

Fo,min < da,6,min — Nihrest (7.24)
which can be re-written as:

— da6,min < — Momin — Nthrest (7.25)
Substituting the approximation — dg g min = r'b,max INto (7.25) gives:

Fomax < — Fo,min — Nihrest (7.26)

Substituting 1, ... = Ky, -d, 1. into (7.26) gives:

Krb ) da,max < _rb,min - hthresl (727)

Solving (7.27) for Ky, gives:

-. . —
Krbg b,rr(l:lin h[hresl (728)

a,max
Using (7.28) with the values damax = 55 mm, rpmin = =15 mm and hiress = 5 mm, the
maximum blade constraint proportionality coefficient is calculated to be Krpmax = 0.18.

A set of five two-pass experimental trials were performed similar to those
presented in Section 7.3.1, except that K, was made equal to K, max and the mode 6
recovery blade control law, Eq. (7.19), was initiated when a transition to mode 6

occurred. The mode 6 activation combined with the recovery control law algorithm is
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summarized in Table 7.2. Note that only Eq. (7.18) with Ky, = Kip max, and lines 13 and 14

of this algorithm, are applied during normal operation of the bulldozer.

Table 7.2 Mode 6 activation combined with recovery control law algorithm.

1. INITIALIZET =0

2. ACTIVATET =1

3. §,=0

4, WHILE T >2AT #7

5 IFT #6

6. IFS,=0nd,<0.8-d, .,
1. = —Nypest

8 ELSEIF S, =0Ad, >0.8-d, .,
9. S, =1

10. ELSE

11. I = K maxda

12. ENDIF

13. ELSEIFT =6

14, n=d, =Ny

15. S, =0

16. ENDIF

17. ENDWHILE

The mean value h.,,, [d,| and At; of the experimental results are tabulated in

peak ?
Table 7.3, along with the number of passes that the robot became stuck during the second

pass, N, .« » and the number of passes where mode 6 was did not become active, ng, . -

The mean values do not include the passes where the robot became stuck, nor when mode

6 was avoided.
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Table 7.3 Average performance measures of experimental results for mode 6 activation

and recovery control investigations.

Experimental Pea ld,]. At, \ -
Algorlthm (mm) (mm) (S) 6,stuck 6,avoid
Mode 6 Aitlvatlon, 39 29 24 5 0
Krb - 1
Mode 6 Activation,
Ko = 0.5 33 -23 2.9 0 2
Mode 6 Activation,
K. = 0.25 27 -13 2.1 0 4
Mode 6 Activation and
Recovery Control, 27 -10 1.6 0 3

An example of experimental results with the combined mode 6 activation and

recovery control law algorithm is shown in Fig. 7.9. This example shows that with

< Kipmax *ay Do Was small with a smaller slope, which caused a more gradual climb

by the robot, leading to a smaller ‘negative accumulation’ during mode 6. Subsequently,
the recovery period to transitioning out of mode 6 was much smaller. The distance
covered during the recovery period was approximately 100 mm which corresponds to the
length of the blade arm, which is the distance that the robot must travel for the front of the
tracks to reach the blade location.

From Table 7.3, the results with K, = 0.18 and recovery control compared with

Kb = 1 without recovery control show improvements of 30%, 65% and 33% in ﬁpeak,

|d,|  and At,, respectively. Furthermore, with Ky, = 0.18 and recovery control, mode 6

activation was avoided in 30% of the passes and did not become stuck in any passes.
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Fig. 7.9 Example of mode 6 activation and recovery blade control experimental
results using Ky, = 0.18.
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7.4 Conclusions

Optimal blade position control laws were designed for modes I = 2-5 and 7 with
the objective of maximizing the material removal rate. The discrete-time one-step ahead
prediction formulations of the d, and vy, equations from Chapter 3 were used. The control
objective was focused on enhancing productivity by maximizing the material removal
rate.

The conditions that cause the robot to transition into mode 6 were investigated
experimentally. It was found that avoidance of mode 6 can be accomplished with an
appropriate state dependent blade constraint imposed in modes I' = 2-5 and 7. The results
of this investigation formed the basis for the development of a blade control law to a
transition out of mode 6 if it occurs.

The next chapter presents an analysis of the stability and performance of the

deterministic closed loop dynamics.
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Chapter 8

Deterministic Performance and Stability Analysis

8.1 Introduction

This chapter presents a theoretical analysis of the performance and stability of the
deterministic open-loop and closed-loop dynamics. To allow investigation of the
underlying deterministic dynamics, the effects of the d, and v, process disturbances,
defined in Eq. (6.1), were neglected. Also, the blade position constraints r, . <r <

were neglected. For convenience, the condensed discrete-time deterministic open-loop d,

and vy, are reproduced as follows:
aa,k+l = +Cour Vo Gy +Ciar Vo Ty + Vo - Hry and (8.1)
\7b,k+l =C, + Czl,r 'da,k + sz,r Vo C23,r Ty x (8.2)
The deterministic optimal control law equations are reproduced as follows:

* C12,3 Vox (Ctr +C21,3 ’ da,k +C22,3 Vo ) +C23,3 '(da,k +C1],3 'da,k Vox Tt H3,k 'Vb,k)

oo (8.3)
bk3 2'(C12,3 'C23,3 “Vox _Rz)

and
oo Ctr +C21,r 'da,k +C22,r Vo k forT=2 4 5and 7 (8,4)
b,k,I 2'(C23,r + Rr) ’ o

Performance analysis of the open-loop dynamics includes identifying the
conditions whereby the robot could stall (e.g. forward velocity is reduced to zero)
according to the dynamic equations. Similarly, closed-loop stall conditions were also

determined in addition to a more general analysis of the deterministic closed-loop
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performance with respect to control law tuning. Furthermore, stability analysis in the
context of the robotic bulldozing operation involved showing that the closed-loop

trajectories of d, and vy, converge to their steady state optimal values.

8.2 Open-Loop Stall Conditions

Open-loop stall conditions can exist whereby the steady state robot speed
diminishes to zero, i.e. vp = 0. A set of open-loop steady state stall conditions were found
using Eq. (8.2) and setting V, ., =V, , =0 resulting in:

C,+Cyr-d, +Cy-r, =0 (8.5)
Solving Eq. (8.5) for d,, =d, ., gives the open-loop stall material accumulation:

d - _M (8.6)

a,l,stall CZLI—
Alternatively, solving Eq. (8.6) for r,, =r, .., gives the open-loop stall blade position

reference:

Ctr + CZl,F : da,k

orostant =~ C
23,7

(8.7)

The stall condition equations Eq. (8.6) and Eq. (8.7) show that while there is coupling
between the d, and vy state trajectories, either d, or r, can cause stall independently with
sufficiently large magnitudes.

The open-loop system d, and v, trajectories are important when considering stall

conditions. The conditions where vy is decreasing, i.e. v,,.,—V,, <0, are found using

Eq. (8.2) as follows:
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Ctr + Cz1,r 'da,k + (sz,r _l) Vox T C23,r ok < 0 (8.8)
Solving Eq. (8.8) for 1, =1, -,_ gives:

<— Ctr +C21,r 'da,k +(sz,r _1)'Vb,k

b,I",v—
CZS,F

(8.9)

The conditions where d, is increasing, i.e. d,,,,—d,, >0, are found using Eq. (8.1) as
follows:

Cor Vou Aoy +Clor VL +Vy  -Hp >0 (8.10)
Solving Eq. (8.10) for r,, =T, 4, (Note: C12 < 0) gives:

d,, +H
<_C11,F da,k + I,k (811)

b,[,d+
ClZ,F

Eq. (8.11) shows that the direction of change in the d, dynamics is strongly influenced by

the sign of H.,, which is an uncontrollable external input. For a constant r,, the

dynamics of d, either increase uncontrollably toward the stall condition da st Or decrease
toward zero. In any case, the natural system constraint d, max is @ limiting factor regarding
whether stall will occur on not. Conversely, according to Eq. (8.9) if stall occurs,

recovery of robot velocity can be achieved with any blade position r,, > 1, . .

A worst case blade position stall condition, r, can be calculated for which

,I",stall,min ?

any r, >, will allow vy to increase when d, = damax and vy, = 0. Using eq. (8.7)

I, stall ,min
and substituting da k = da max gives:

r __ CZl,F : da,max + Ctr (812)

b,I",stall,min

23,
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If the magnitude of the worst case blade position stall condition is greater than the

minimum blade constraint, i.e. ‘rb >r , then open-loop stall cannot occur.

,I,stall ,min b,min

The values of minimum open-loop blade position to avoid stall, r, were

,I",stall,min ?
calculated for each mode using the estimated dynamic equation parameters in Table 5.6

and damax = 55 mm. These r values are tabulated in Table 8.1. Since

b,min,stall

f

b,I",stall ,min

> I, o fOr I'=2 and 4, open loop stall can occur for these modes.

Table 8.1 Calculated . values for modes 2-5 and 7.

b,I",stall,min

Mode, I'
2 3 4 5 7
rb,l",stall,min (mm) -5 -29 -5 '16 '16

8.3 Closed-Loop Dynamic Equations

Setting r,, = rbfkvr and substituting the optimal blade control equations Eq. (8.3)

and Eq. (8.4) into the open-loop prediction equations Eq. (8.1) and Eq. (8.2) , gives the

cl

closed-loop dynamic equations for d,, ~and v;jfk+er for each mode. The resulting mode
3 closed-loop dynamic equations are:

ks = Fpe - He
(Qz,s 'Caa'dak “Vox +q22,3 'Cst 'da,k 'Vék +q22,3 G 'Vék +Q3,3 'sz,s 'Vs,k +Qz,3 'Czs,a 'Vék ) Hak) (8.13)
2'(R3_QZ,3'C233'Vb,k)

and
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\gms :Cas'dak +st'vn,k+q o
(%3'dak+czas'vt;k'F&k*’(%?@m"'czxs'%s'cas)'dak'\é,k+ca3'qZ3'q'\ﬁk"'cas'qu'szs'Vék) (8.14)
2’(%_(:123'(;33'\/nk)

The resulting closed-loop dynamic equations for modes 2, 4, 5 and 7 are:

C
m . Ctr 'Vb,k +C21,r . da,k . Vb,k + C22,F . Vlik (815)

cl
da,k+1,r = da,k +C1Lr ) da,k Vo Vo Hr,k -
and

Czs,r '(Ctr +C21,r 'da,k +sz,r 'Vb,k)
2-(Cpp +R;)

cl

Voksir = C21,r 'da,k +sz,r Vo +Ctr -

(8.16)

The closed-loop steady-state equations for each mode may be found using Egs.

(8.13)-(8.16) by setting dgk,r = d:k+1,r =d, rand Vl‘):!k,l" :V;!k+l,l" =Vp s, then solving for

d,rand Vp . The resulting mode 3 steady-state d, and vy equations are:

V2
v - (4'(;2,3'C2L3'C23,3'C1r+C223,3'(C222,3_2'C22,3+1)) Cgs,s 5 2 H R
v 4-Coy Gy Cos Cas 3 23 o (8.17)
+ C23,3 '(sz,s _1)

2'Q2,3'C2L3
and

~Cy3:Chs VW s=CyCha Vs +Coss Cryg-HyVy s —2-Hy R
da,ss,sz( 223 123 Vhss 3 T Y Y123 Vhss s T L0233 Laag  H3 Vg3 3 3) (8.18)

(C12,3 'C23,3 +2: C11,r Ry + (C122,3 'Cz1,3 _C12,3 'Cll,s 'Czs,s)'vb,ss,s)

The resulting steady-state d, and v, equations for modes 2, 4 and 5 are:
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(_Cu,r 'Czs,r 'Ctr +Cz3,r 'C21,r “H; _2'C11,r 'Ctr R+ 2'021,1" H- Rr)

Vor = (8.19)
(C12,l' 'Cz1,r _C11,r 'Czs,r '(2 +sz,r ) +2- Cll,l“ '(sz,r _1)' Rr)
and
d _ (ClZ,F -Gy _Z'CZS,F ‘Hr—2-H;-R;. +C12,r 'C22,F 'vassvr) (8.20)
et 2: (Cll,r ’Czs,r _Clz,r 'C21,r + C11,r ' Rr)

The steady-state d, and v, equations for mode 7 are a special case. Recall from
Chapter 3 that mode 7 is defined by the robot near the edge of the task space and pushing
material into the removal space. Thus, in mode 7, d, tends to decrease until the robot
reaches the edge where d, must become zero (or negative due to the removal space being
below the grade of the floor). The mode 7 parameters estimated in Chapter 5 support this
tendency. The mode 7 parameters of the d, dynamic equation Eq. (3.14) are Cgaz7 = -17.6
mm™ and Cyas7 = 3.2 mm™. These parameters form terms with h, and hs, respectively,
which tend to have values of similar magnitude. Since Cga37 IS Nnegative and its magnitude
is much larger than Cgas7, the d, dynamics will almost always be negative. The steady
state d, and v, equations for the mode 7 were derived by setting

di\, =d ., =0d,,=0and Vi, =V\,.; =Vu s, thensolving forVy « 7, resulting in:

Ctr '(C23,7 +2- R7)

o (8.21)
"1 2. Cpyy ~Canr-Coar +2-(1-Cpyy ) R,

An example of the simulated deterministic closed-loop dynamics switching
between multiple modes is shown in Fig. 8.1. These plots show that d, and v, converge to
their optimum steady-state equilibrium values, and that the steady-state optima depend on

both Hrand T'.
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Fig. 8.1 Simulation of deterministic bulldozing dynamics with mode transitions.
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Values of d and v, . - were calculated over a range of H,. values and a range

a,ss,I”
of R, values for modes I" = 2-5 and 7 using Egs. (8.17)-(8.20). The values of H. were

determined experimentally. They were calculated using Eq. (7.1) with the measured
values of h,, hy, hry and h,, from the mode-segmented system identification data sets

described in Chapter 5. The range of H_. values used for the calculations of d and

a,ss,I”

Voo r includes the minimum, Hr nin s the mean I-_|F and the maximum, L PR The

H, .., He and H. . values from the experimental data sets for modes I' = 2-5 and 7 are

tabulated in Table 8.2.

Table 8.2 Experimental values of H. .., H. and H_ . for modes 2-5 and 7.
Mode, I'
2 3 4 5 7
Hr in (5) 0.006 -0.0026 0.012 0.0044 -0.0077
H. (5) -0.005 -0.0096 0.0083 0 -0.029
H e (5) 0.0177 0.0029 0.017 0.0076 0

The steady state blade position, r, . was calculated over the ranges of H. and

ss,I”

R for modes I = 2-5 and 7 using Eq. (8.3) and Eq. (8.4), and substituting the values of

d and v, for d,, and v, respectively. The deterministic steady state material

a,ss,I”

removal rate was calculated using Qg . =d, ; -V, .- W,, With the experimental robot

a,ss,I’

blade width w, = 200 mm.
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Plots of deterministic d values for modes I' = 2-5 are shown in Fig. 8.2.

a,ss,I”

Since d =0, mode 7 was not included in Fig. 8.2. Recall from Chapter 3 and Chapter

a,ss,7

5 that the d, dynamics of modes 2, 4 and 5 are independent of blade position, which is

indicated by parameter C,.. = 0 in Eq. (3.14) and parameter C,,. = 0 in Eq. (8.1).

Therefore, for these modes 2, 4 and 5, d is a function of H. only.

a,ss,I”

Plots of deterministic v, . . values for modes I" = 2-5 and 7 are shown in Fig. 8.3.
For modes 2, 4 and 5 v, . becomes larger as H,. decreases and becomes larger as R.
increases. For mode 3, v, ., tends to become larger as H, decreases but the relationship
with R, depends on H,. For mode 7, v, , is independent of H, and is a function of
R,.

Plots of deterministic r.

L« values modes I' = 2-5 and 7 are shown in Fig. 8.4.
For mode 3, the results indicate that the equilibrium steady state blade position balances

is a function of H, only. For modes 2, 4, 5 and 7 the steady state blade position increases

as R increases and H increases. The effect of a larger magnitude of downward blade

position resulting in a smaller v, . . for modes 2, 4, 5 and 7 is apparent in Fig. 8.3. As

discussed in Chapter 3, as the blade pushes down further, the increased resistance due to
friction causes the velocity to decrease.

Plots of deterministic Q. . for modes I" = 2-5 are shown in Fig. 8.5. Since Q. , =

ss,I’ ss,7

0, mode 7 was not included in Fig. 8.5. For modes 2, 4 and 5, Q. . clearly increases as

ss,I’
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R, increases. Conversely, for mode 3, Q, clearly decreases as R, increases. From

ss,3
these results, the best choice for blade control law tuning to maximize the material
removal rate is to select Rz = 0 for mode 3 and R >10 for modes I = 2, 4, 5 and 7.
However, this analysis neglects state disturbances and blade position constraints. It also
assumes constant H,., neglecting the dynamic response to H. as it changes with respect
to the material profile conditions. Therefore, when implemented experimentally, these
extreme tuning values may not be appropriate. The next chapter addresses the inclusion

of state disturbances, blade position constraints and a stochastic model of H,..
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Fig. 8.2 Calculated deterministic d values for I' = 2-5 and 7.
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Fig. 8.3 Calculated deterministic v, . values for I" = 2-5 and 7.
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Fig. 8.4 Calculated deterministic r, . values for I' = 2-5 and 7.
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8.4 Closed-Loop Stall Conditions

Similar to the open-loop stall conditions discussed previously, closed-loop stall
conditions can exist whereby the robot speed diminishes to zero. A set of closed-loop

stall conditions were found using the steady state robot velocity equations and setting

Vb,ss,r = 0 '
For mode I" = 3, using Eq. (8.17), setting v, ., =0 and solving for H, =H,, ..,

results in the closed-loop stall H condition:

Cy3:Cps C
H3,c|,stal| = 2 =2 =2 = (822)
(C23,3 + 2'C21,3 ) RS)

and alternatively, solving for R, =R, ., results in the closed-loop stall control law tuning

condition:

Ry = C23,3 'C12,3 'Ctr _ C223,3 (8.23)
' 2'C21,3 -H, 2 C21,3

For modes I = 2, 4 and 5, using Eq. (8.19), setting v, -=0 and solving for

HF = HF,cI,staII reSUItS in:
C,.-C
HF,cI,staII =—tf T (824)
CZl,F
and alternatively, solving for R. =R ., results in:
C
Rl",cl,stall == 223,F (825)
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For mode I' = 7, using Eq. (8.21), setting v, , =0 and solving for R, =R, .,

results in two solutions:

C
R7,stal|,1 = _% (826)
and
R? stall,2 — _2 : C23'7 i CZZJ ‘ C23'7 (827)
el 2-(1-Cy)

Note Eq. (8.21) is independent of H,.
A set of closed-loop d, ., Stall conditions were found using the steady state

material accumulation equations and setting v, . =0. The condition d >, 08

a,ss,I,stal
an indication that stall will not occur as a result of d.
For mode I' = 3, using Eq. (8.18), setting v,,,=0 and solving for

d d results in:

a,ss,3 = a,ss,3,stall

da ss,3,stall — _2 : H3 . R3 (828)
o C12,3 'C23,3 +2- C11,r : Rs

Substituting eq. (8.22) into (8.28) for H, =H, ., gives:

_2'C23,3 'C12,3 Cy Ry
(C12,3 'C23,3 + 2'C11,r ’ R3)'(C223,3 + 2'C21,3 ) Ra)

d (8.29)

a,ss,3,stall =

For modes I' = 2, 4 and 5 using Eq. (8.20), setting v, =0 and solving for

d d results in:

a,ss,I” = a,ss,,stall
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Clz,r 'Ctr _2'(C23,r + Rr)' Hr

da,ss, stall — (830)
e 2'(C11,r “Coar =Cror"Copp +Cyy RF)
Substituting eq. (8.24) into (8.30) for H. = H,, . ., gives:
_CIZ,F -Ctr + 2 'Cll,l" 'Ctr .(CZS,F + RF) (8 31)

da,ss, Jstall =
e 2'szl,r 'Clz,r - 2'C11,r 'C21,r '(Czs,r + Rr)

Another closed loop stall condition to consider is the worst case closed-loop blade

pOSition, k. - mn» Which is the minimum blade position reference that the control law

will provide for the worst stall case of dy = damax and vy, = 0. If the worst case closed-loop
blade position is greater than the worst case open-loop blade position stall condition, i.e.

Lt sttt min > To 1 sttt min » thEN closed-loop stall will not occur.

For mode 3, using eq. (8.3), substituting d,, =d, ., and v, = 0 then solving for

r* _ rcI
b,k,3 = "b,3,stall,min

gives:

C23,3 ’ da max

rb(il?),stall,min = T (832)
3

Since R, >0 and C,, >0, then 5 . . > 0. Considering the open-loop stall blade
position in Eg. (8.12), C, ;> 0 and C, >0, then r . ... < 0. Therefore, since

cl

I, > 1, 5 s min » ClOS€d l0OPp stall cannot occur for any value of R,.

b,3,stall,min
For modes I' = 2, 4, 5 and 7, using eq. (8.4), substituting d,, =d, . and v, =0
then solving for 1, . =Ly min OiVES:
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cl _ _(Ctr +C21,I‘ ) da,max)
2-(Cpy +Ry)

(8.33)

I’b,I‘,staII,min -

The largest magnitude of r)

,I",stall,min

forT'=2,4,5and 7 is for R = 0, thus this represents
the worst case of blade control law tuning.

For all modes, I' = 2-5 and 7, the values of R. ., d, . qmand k.

,stall,I",min

were

calculated using the estimated dynamic equation parameters in Table 5.6, damax = 55 mm
and a worst case value of Rr =0 forI' = 2, 4, 5 and 7, and a worst case value of Rz = 1.

These calculated values are tabulated in Table 8.3. For all modes, I = 2-5 and 7, the

conditions hold for R.., <0, d,rgm <d,.and e therefore,

b,stall,I",min

>

b,stall,I",min ?

closed loop stall will not occur for any control law tuning value R >0.

T,stall

Table 8.3 Calculated values of R ., , d, .y and L. for ' =2-5and 7.

,stall,I",min

Mode, I'
2 3 4 5 7
Rr st -0.18 N/A -0.082 -0.11 -0.13, -2
Gass,r st (MM) 79 108 62 110 N/A
P (111) 3 N/A 2 8 8

8.5 Lyapunov Stability Analysis

Simulation results, such as those shown in Fig. 8.1, support the conclusion that the

closed-loop system is stable. Lyapunov’s second method was used to more rigorously
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analyze the stability of the deterministic elements of the nonlinear discrete-time closed-
T .
loop system. The vector of controlled states is X, =[d§fk'r vgfk‘r] . The deterministic

system is globally asymptotically stable, if there exists a Lyapunov function V (x) with

the following properties:
1V (X, )=0where X, =|d, 1 Vyor ]T,
2. V(x,)>0 Vx#X, ,
3V (0] > Y[ e
4. AV (X )=V (X1) =V (%) <0 VX, # X, and
5. AV(x,)=0.
The following quadratic function was studied for each mode:

v )= x| % T xa]

2 2
_ cl cl
- (X‘V,l' '(da,k,l' _da,ss,r) +(Vb,k,r _Vb,ss,F)

(8.15)

This Lyapunov function candidate satisfies the first three stability conditions for

any a, - >0. Conditions 4 and 5 will only be satisfied if a suitable value of the a,, -can

be found. Unfortunately, proving the fourth stability condition analytically was found to

be intractable. For instance, using the Matlab Symbolic Toolbox, it was found that the
resulting AV, (xeq) analytical equation for I' = 3 has 57814 irreducible terms. Therefore,
a numerical solution was employed. For each dynamic mode, a minimum value of
o, -was found numerically such that AV, (x, ) <0 for all values of x, #X,, using a four
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dimensional exhaustive grid search over the operation ranges: da = [0, damax] IN
increments of 1 mm, where damax = 55 mm; v, = [0, Vpmax] In increments of 1 mm/s,
where Vpmax = 92 mm/s; Hr = [Hrmin Hrmax] in increments of 0.0001 s; Rr = [0 12] in
increments of 1 for ' =2, 4, 5and 7; and R; = [0 1] in increments of 0.1 for ' = 3. The

searches terminated successfully, producing the o, . values tabulated in Table 8.4 for I =

2-5and 7. Examples of AV,-(X,) calculated over the ranges of da and vy, H. =H_, Rz =

Rs=Rs=Rg=4and R3= 0.4 for I' = 2-5and 7, are shown in Figs. 8.6-8.10.

Subject to the limitations of this numerical approach, these results support the
conclusion that the optimal control laws provide locally asymptotic closed-loop stability
for each mode. By extension, cycling between modes may occur. When a mode switch
occurs, the exit conditions from the prior mode become the initial conditions of the next
mode and the state trajectories will tend toward their equilibrium values for the next

mode.

Table 8.4 Deterministic numerical Lyapunov stability a., .- values for I' = 2-5 and 7.

Mode, T’
2 3 4 5 7
Oy r 49 6.8 88.5 3.1 102.1
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Fig. 8.7 Example of AV, calculated with H, =H

v

; and R3 = 0.4.
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Fig. 8.9 Example of AV, calculated with H, =H. and Rs
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Fig. 8.10 Example of AV, calculated with H, = H, and R; = 4.

8.6 Conclusions

Performance and stability were analyzed for the deterministic open-loop and
closed-loop robot bulldozing process dynamics neglecting blade position constraints for
modes I' = 2, 4, 5 and 7. Open-loop and closed-loop stall conditions were identified
whereby the robot velocity could diminish to zero. It was shown that for the experimental
robot bulldozing system closed-loop stall cannot occur for any control law tuning value.
A general analysis of the deterministic closed-loop performance was completed with
respect to the experimental ranges of Hr and ranges of control law tuning Rr . From this
analysis, it was shown that control law tuning maximizes the deterministic steady state

material removal rate Q. with R = 0 and Rr > 10 for modes I' = 2, 4, 5and 7. A

numerical Lyapunov stability analysis showed that the deterministic closed-loop

trajectories of d, and vy, converge to their steady state optimal equilibrium values.
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The next chapter addresses closed-loop performance and stability analysis of the

stochastic robot bulldozing process dynamics incorporating the stochastic model of H_.,

state disturbances and blade position constraints.
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Chapter 9

Stochastic Performance and Stability Analysis

9.1 Introduction

This chapter presents a numerical analysis of the performance and stability of the
stochastic closed-loop dynamics of modes I' = 2-5 and 7. The effects of the zero mean

stochastic residual process disturbances, W, . and W, ., on the d, and v, dynamics were

v, [
included. The EKF was not used in the stochastic closed-loop simulation analysis in this
chapter'. The discrete-time one-step ahead prediction equations Eq. (7.2) and Eq. (7.3)

were used to simulate the state dynamics with the residual process disturbances w, . and

W, - included as in Eq.(6.23). The residual process disturbance standard deviations used

for the stochastic simulation were from Table 6.3. The optimal control laws in Eq. (7.7)
and Eqg. (7.9) were used for simulation of closed-loop control. Also, the blade position

constraints r. were included for all modes T" = 2-5 and 7, where the state-

b,min

<r <,

,max

dependent constraint r, =K -d, with Ky, = 0.18 was determined in Chapter 7.

max
Monte Carlo simulation was used for performance and stability analysis of the

stochastic, constrained, closed-loop, process dynamics. In addition to the inclusion of the

! Recall that the model parameters were obtained in Chapter 5 using low-pass filtered
measurements. As shown in Chapter 6, the EKF provides similar smoothing behavior with less time delay
than the low-pass filter. In the controller implementation, the EKF will be used rather than the low-pass

filter. So a simulation without the EKF should provide a conservative estimate of the closed-loop dynamics.
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state stochastic disturbances, a stochastic model of the H,. dynamics was included. The

sets of stochastic simulation results included statistical distributions of process

performance measures.

9.2 Stochastic Closed-loop Performance Analysis

9.2.1 Stochastic Model of the H. Dynamics

The combined measured disturbances, H,., were modeled as a random walk with

a third-order autogressive (AR) model. A third-order model was found to be the lowest
order for which the correlation function of the residuals was less than +0.15 for lags up to
25. Higher-order models showed no improvement in the correlation function of the

residuals. The AR models of the H,. dynamics for modes I" = 2-5 and 7 take the form:
H. . =H. . +W,, and (9.1)
Wyt =nr T Chnr Wi T Crar Wi o +Char - Wiy i 9.2)

WhereC,, ., C,, and C,,. are the model coefficients, w, . is the stochastic

disturbance and n,, - is Gaussian zero mean random noise with standard deviation o, .
The AR model coefficients and noise standard deviation o, , . were estimated

using least squares regression on the differences between consecutive values of H. for

each sample within the mode-segmented set of experimental fitting data discussed in

Chapter 5. The H,. values were calculated using Eq. (7.1) with the measured values of
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ha, hy, hry and hy,. For instance, the AR model fitting data set of the differenced H.

values, AH_, for modes I" = 2-5 and 7 included:

AH_ (i)=H(i)-H.(i-1), forsamplesi=2,3, ... ,N{ ., (9.3)

where, N/t . isthe number of points in the segmented fitting data set per mode I'. The

least squares regression was implemented with the Matlab System Identification toolbox

‘ar’ function. The resulting AR model parameters and noise standard deviation o, ,, . for

modes I' = 2-5 and 7 are tabulated in Table 9.1.

Table 9.1 Model parameters of the random walk H . dynamics.

Mode, T CHl,F CHz,r CHS,F GnHI
(ms) (ms) (ms) (ms)

2 29 -93 -170 0.47

3 20 -180 -120 0.36

4 16 64 36 0.38

5 2.5 -83 -89 0.19

7 0.28 -32 -52 0.63

9.2.2 Monte Carlo Simulation

The Monte Carlo simulation was composed of two stages. In the first stage, a set
of deterministic closed-loop simulations (i.e. disturbances set to zero) was completed for
different values of Ry for each mode to determine the durations of the initial transients.
Each set of deterministic closed-loop simulations included initial conditions exhaustively
covering the full range of values [0, damax], [0, Vbmax] @nd [Hrmin, Hrmax] With 28, 23 and

20 equal increments, respectively. The value of daymax = 55 mm, the value of vy max = 92
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mm/s and the values of Hrmin, Hrmax are from Table 8.2. Each simulation run was
terminated when the changes in the d, and vy, dynamics remained small over a period of
time, i.e. Ady < 0.001 mm and Av, < 0.001 mm/s for a 10-Ts period. The settling times,
tset,da aNd teervn, Were determined as the time when the d, and vy trajectories remained
within 1% of their final steady state values. Plots of the deterministic settling times as a
function of control law tuning Ry for each mode are shown in Fig. 9.1. These results
show that the closed-loop response time increases exponentially as Ry decreases for I' =
2,4,5and 7. Conversely, the closed-loop response time increases more proportionately

as Rz increases.
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Fig. 9.1 Deterministic settling times for I' = 2-5 and 7.
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In the second stage of the Monte Carlo simulation, a set of single-mode stochastic
closed-loop simulation runs were completed for the same Ry ranges as the first stage. The

disturbances w, . and w,. were included as zero-mean white noise sequences, with
variances determined in Chapter 6. The disturbances w, . were included as the third-

order AR models discussed in the previous section. For each run the mean values of d,,

denoted Ja,,un, of v, denoted v, ., of Q, denoted Q,,, and the absolute value of the

blade position reference |r,|, denoted, ‘rb'mn were recorded. Each run was begun with

initial conditions for d, v, and Hr randomly chosen from uniform distributions with the
ranges [0, damax], [0, Vbomax] @nd [Hrmin Hrmax]. Hr was simulated as a random walk
process. To allow the decay of the transient due to the initial conditions to complete, the
duration of each run, Ny, was five times the maximum settling time for the Ry value, i.e.
Nr = 5-maX(tset,da (Rr), setvv (Rr)). Examples of a single stochastic closed-loop simulation
of modes I' = 2-5 and 7 are shown in Figs. 9.2 - 9.6, respectively. These examples show
that the closed-loop stochastic the d, and v, trajectories follow steady state optimal values

dass and vy s as they change over time as a function of Hr.
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Fig. 9.2 Example of simulated stochastic closed-loop dynamics of mode I" = 2.
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Fig. 9.3 Example of simulated stochastic closed-loop dynamics of mode I" = 3.
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Fig. 9.4 Example of simulated stochastic closed-loop dynamics of mode I" = 4.
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Fig. 9.5 Example of simulated stochastic closed-loop dynamics of mode I" = 5.
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Fig. 9.6 Example of simulated stochastic closed-loop dynamics of mode I' = 7.
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The number of simulation runs was found using the sequential approach from

Asmussen and Glynn (2007). Specifically, for each of the modes, a minimum set of 1000

simulation runs were performed per Rr. The mean values of d, ., ¥, .., Q,, and

over the set of simulations were denoted d, ., ¥, .., Q. and |r| . respectively.

‘rb,run

The minimum values of Ja',un, Vo rn» Qua and ‘rb‘ over the set of simulations were

run

denoted d, i min+ Vosetmins Queemin aNd |1y| ., respectively. The maximum values of

set,min

Ja,mn, Vo run» Qrun @Nd ‘rb'mn over the set of simulations were denoted d

a,set,max ! Vb,set,max !

Quimes @nd [1,[, ., respectively. Each set of simulation runs was terminated when the

99% confidence intervals about Ja,set and V., were less than 1mm and 1 mm/s,

respectively.

Plots of d d, and d, . . for I' = 2-5 and 7 are shown in Fig. 9.7.

a,set,min ?
These results confirm that d, is independent of r, for modes I" = 2, 4, 5and 7, which was

shown with the deterministic d_ . - values in Fig. 8.2.

a,ss,I”

Plots 0f V, ¢ min» Vb.set @Nd Vy o e fOr I' =2-5 and 7 are shown in Fig. 9.8. Plots

of|n|.. . . mset and || for I' = 2-5 and 7 are shown in Fig. 9.10. The results

set,min set,max

shown in Fig 9.8 and 9.10 confirm the effect of a larger magnitude of downward blade

position resulting in a smaller v, for modes 2, 4, 5 and 7, which was shown with the

deterministic v, . - results in Chapter 8. Furthermore, that for all modes I' = 2-5 and 7
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the average magnitude of the blade position increases as R decreases, indicating more

aggressive tuning of the blade position control law.

Plots 0f Qy ins Qu aNd Qe for I' = 2-5 and 7 are shown in Fig. 9.9. These

results agree with the deterministic Q_ . results presented in Chapter 8. For modes 2, 4

ss,I”
and 5, Q clearly increases as R, increases. Conversely, for mode 3, Q clearly decreases
as R, increases. From these results, the best choice for blade control law tuning to

maximize the material removal rate is to select R; = 0 for mode 3 and R. >10 for modes

'=2and5,and R >8 for modesI" =4 and 7.
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Fig. 9.8 Stochastic simulation v, ., results for I' = 2-5 and 7.
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9.3 Stochastic Stability Analysis

Of the many definitions of stochastic stability that exist, the definition of
Lyapunov stable in the m™ mean from Kozin (1969), reformulated for discrete-time, was

selected as being the most appropriate for this system. Accordingly, the equilibrium

solution xeq is Lyapunov stable in the m™ mean if given enr >0, there exists §, >0

such that [x,] <8, implies:

m
E{ sup ka —Xeq m}< Emr (9.4)
0<k<N,
or equivalently:
cl m cl m
E Oflg?\l da,k,r - da,ss,r + Vb,k,F _Vb,ss,r < 8m,l" (95)

where E{¢} is the expected value, and sup indicates the supremum. An analysis of the
stochastic simulation results using Eq. (9.5) concluded that Xeq is Lyapunov stable in the

mean and mean squared (i.e. for m =1 and m = 2). To consider the worst case, o, was

. . . T
calculated from the maximum values of the state variables, i.e. & :H[da,max Vo |

m

The values of ¢ . were calculated over all of the Monte Carlo simulation runs for each
mode. The ratio ¢, . /37 is a useful dimensionless metric for quantifying the solutions
to Eq. (9.5). The computed ¢, /6: values with m =1 and m = 2 for modes I" = 2-5 and

7 are tabulated in Table 9.1. These results indicate that the expected values of the
stochastic closed-loop d, and v, trajectories remain bounded about their optimal
equilibrium values.
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Table 9.2 Results of stochastic Lyapunov stability analysis.

Sm,l" /62
Mode, T’ m=1 m=2
2 0.78 0.76
3 0.74 0.54
4 0.59 0.47
5 0.64 0.45
7 0.58 0.48

9.4 Conclusions

Monte Carlo simulation was used for performance and stability analysis of the
stochastic, constrained closed-loop process dynamics. The sets of stochastic simulation
results included statistical distributions of process performance measures. These results
were found to be in agreement with the results of the deterministic closed-loop
performance analysis in Chapter 8. The Monte Carlo simulation data also allowed a
stochastic Lyapunov stability analysis to be performed. It was shown that the stochastic
closed-loop trajectories are Lyapunov stable in the mean and mean squared, i.e. their
expected values remain bounded about their optimal equilibrium states in the presence of
system disturbances.

The next chapter describes a series of experiments with the optimal control laws

implemented with the scaled-down robotic bulldozing system.
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Chapter 10

Control Experiments

10.1 Introduction

This chapter presents a series of experiments with the optimal control laws
implemented. Experiments were conducted with the experimental robotic bulldozing
system. The control laws were implemented with various tuning values using the results
from the stochastic closed-loop performance analysis in Chapter 9. As a comparison, the

rule-based blade control algorithm presented in Chapter 5 was also implemented.

10.2 Optimal Control Law Tuning

As discussed in Chapter 9, the tuning parameter Ry of the optimal control laws
strongly influences the magnitude of the blade position. A smaller Ry results in a larger
magnitude of blade position (e.g., the blade will tend to penetrate down more deeply into
the underlying stones). A lower blade position will reduce the robot speed due to
increased d, and/or increased friction acting on the bottom of the blade, therefore a
smaller Rr will produce a smaller v, . In the case of mode 3 a lower blade position will
produce a larger steady-state material accumulation, d, <. (Recall that for the other modes
material accumulation is independent of blade position). Conversely, a larger Rr will
tend to result in a larger vy ss and smaller d,ss. Since the material removal rate depends on

the product d, -v,, Rr should be tuned to balance the opposing trends of d, and vy, with

mode 3. This and other trends were illustrated in the results of the Monte Carlo simulation
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shown in Fig. 9.7-9.10. The Q, results for modes 2, 3, 4 and 5, and the Vv, . results for

set

mode 7 were used to select the Ry values. Note, for mode 7, d, always diminishes to

zero, resulting in Q diminishing to zero, therefore, Vv, was used for tuning. The Rr

values corresponding to the largest Q. or V, ., are the best choices for satisfying the

set
bulldozing task objective of maximizing the material removal rate.

Although controller tuning involves selecting Rr that will result in the best

expected Q_,, overly aggressive and overly conservative values will effectively result in

set !

open-loop control. Overly conservative tuning will tend to result in the blade position
remaining near its zero position regardless of the system state. Conversely, overly

aggressive tuning will tend to result in the blade position remaining near r,

min *

10.3 Experimental Procedure

Four distinct controller tuning schemes were created to demonstrate the
significance of the Rr values on the closed-loop performance. A set of eight experimental
trials were completed with each of the four schemes (subsequently referred to as Ctrll —
Ctrl4) and the rule-based controller from Chapter 5 (subsequently referred to as Ctrl5).
Each trial consisted of four passes. The initial material pile structure had a uniform
nominal height of 20 mm and length of 1100 mm, covering to the edge of the task space.

The controller tuning values for each scheme are tabulated in Table 10.1. Ctrll
combined aggressive tuning of Rs with conservative tuning of the remaining values.
Conservative values were used for all modes in Ctrl2, whereas all aggressive values are

used in Ctrl4. CtrI3 used intermediate values. Note that the state dependent maximum
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blade position constraint r, <0.18-d_, described in Chapter 7, was implemented for all

modes. Also, the mode 6 recovery control law described in Chapter 7, was implemented
for all optimal control schemes Ctrl1-Ctrl4. The manually tuned rule-based controller

parameters were: T1 =0.1's, T2 = 0.5, dathres = 35 MM, Vpres = 50 mm/s and Ar, =1

mm.

Table 10.1 Optimal control tuning schemes.

Control Law Gains

Control Scheme R2 R3 Ra Rs R
Ctri1 10 0.1 8 10 8
Ctrl2 10 0.8 8 10 8
Ctrl3 4 0.4 3 4 4
Ctrl4 1 0.1 1 1 1

An example of a result with Ctrl1 is shown in Fig. 10.1.
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Fig. 10.1 Example of an experimental result with tuning scheme Ctrl1, pass 3.
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10.4 Experimental Results Analysis Methodology

The following metrics were calculated to evaluate the performance of the control

algorithms: d the average material accumulation over one pass; d the average

a, pass ! a,pass,I" ?

material accumulation of mode I" over one pass; V, ... the average robot speed over one

pass; V, ... the average robot speed of mode I" over one pass; Q...., the average material

pass !

removal rate over one pass; Q the average material removal rate of mode I" over one

pass,["

pass; |r,| . the average absolute blade position over one pass; |rb|passr, the average

pass

absolute blade position of mode I" over one pass; d the d, values averaged over

a,trial ! a, pass

the trials; V, ..., the V, . values averaged over the trials; Quia» the Q.. values averaged

pass

over the trials; and |r;| ., the [r,| _ values averaged over the trials.

trial

To account for the variation in the system variable measurements due to
measurement noise, process noise or disturbance, and the inherent uncertainty associated
with the overall task environment (i.e. composition and distribution of material) a
statistical approach was used to analyze the optimal control experimental results. The
standard one-way analysis of variance (ANOVA) of the selected performance metrics
was used to compare the performance of the different controllers. ANOVA is an
appropriate methodology for testing the equality of several means, as in Montgomery
(2001).

In general, ANOVA involves the comparison of a treatments or different levels of

a single factor. In this case of experimental results of robotic bulldozing with different
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tuning schemes, each tuning scheme is considered a different treatment. The observed
response from each of the a treatments is a random variable. There are n; observations
made under the ith treatment. A model to describe the observations from an experiment

can be written as:

i=12,...,a

Yo TH T {j::lz...n. —

Where yj; is the ij™ observation, i 1S the mean of the i factor level or treatment and &ij 1S
a random error component that incorporates all other sources of variability in the
experiment including measurement noise, process noise or disturbance, and any source of
uncontrolled factors. It is assumed that &;; is normally distributed with zero mean and
variance ¢°.

The objective of a one-way ANOVA investigation is to test an appropriate

hypothesis about the treatment means of one factor. The calculations are summarized as

follows:

Yitow = 2 Vi (10.2)
j=1

7 _ yi,total .

Vi == = fori=12,....a (10.3)

ytotal = Z Z yij and (104)
i=1 j=1

Vtotal = ytli;al for N ZZni (105)

i=1
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Where Yiotar is the sum of all observations under treatment i, V; ., is the average of all

observations under treatment i, Yot IS the sum of all observations, V., is the average of

all observations, n; is the number of observations under treatment i, and N is the total
number of observations.

A measure of overall variability in the data is the total sum of squares, calculated
with:

a n

Total Z Z yj ytotal (10 6)

i=1l j=1

The sum of squares due to treatments (or between treatments) is calculated with:

Treatments Z ylrt]Otal ytotal (107)
i=1 i

The sum of squares due to error (or within treatments) is calculated with:

SS. =SS, —SS and (10.8)

Treatments
The mean squares, which is an estimates ¢, is calculated with:

SS,
N-a

MS, = (10.9)

For comparing all pairs of a treatment means with the null hypothesis Ho: 1 = g
for all i # j, Tukey’s test can be used, as in Montgomery (2001). This test states that two
means are significantly different with percent confidence level 100-(1- ) if the absolute
value of their sample differences exceeds a value T, calculated as follows:

_ G (wdf) s (1,1
T, = 7 \/MSE {n%} (10.10)

! J
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Where q.(a,df) is the studentized range statistic which values may be found in studentized
range distribution tables, df = N - a is the number of degrees of freedom associated with
the MSg and the sample sizes of compared treatment means i and j, are n; and nj,
respectively.

Equivalently, a set of 100-(1- ;) percent confidence intervals for all pairs of means

can be constructed as:
Vi,total - yj,total _Tq < i — < Vi,total - Vj,total +T0L for i+ J (1011)
An aggregate comparison interval about the mean of the k™ treatment is calculated from
the confidence intervals for k =1,2,...,a as follows:
(al)-zz\/MSE .[1+1J +Z\/MSE U+nlj
i i i=1 i k

Q. (aa df ) io1, -1 n, n

WC.I.,k = i i=k

V2 (a-1)-(a-2)

(10.12)

This provides a consolidated comparison interval for all pairs such that any two means are

significantly different if their comparison intervals no not overlap.

10.5 Experimental Results
The mean values of the experimental performance metrics with 95% confidence
intervals, wg,,, calculated for the number of treatments a = 5 (i.e. the number of control

schemes to compare) are shown for each mode in Fig. 10.2 and for each pass in Fig. 10.3.
For the per mode ANOVA results in Fig. 10.2, the number of observations for each mode

are not necessarily the same because some modes may not become active during a pass.
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The numbers of per mode observations for each control scheme are tabulated in Table
10.2. For the per pass ANOVA results in Fig. 10.3, the number of observations is the

same for all comparisons, where a =5, nj =n;=nx =8 and ¢, = 2.85.

Table 10.2 Number of per mode observations of the experimental performance metric.

Mode, I' Control Scheme Numb(_er of
observations, n
Ctrl1 32
Ctrl2 32
2 Ctrl3 32
Ctri4 32
Ctrl5 32
Ctria 27
Ctrl2 28
3 Ctrl3 31
Ctri4 32
Ctris5 31
Ctrl1 32
Ctrl2 32
4 Ctrl3 32
Ctri4 32
Ctrl5 32
Ctrl1 23
Ctrl2 25
5 Ctrl3 27
Ctri4 26
Ctris5 16
Ctrl1 32
Ctrl2 32
7 Ctrl3 32
Ctri4 32
Ctrl5 32
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Ctrll and Ctrl2 produced the largest Q,, with minimal statistical difference

between each other. This similarity was unexpected and will be discussed in the next

paragraph.  The intermediate tuning of Ctrl3 produced the expected mid-level

performance. The aggressive tuning of Ctrl4 produced consistently poor Q,,, results.

While d_a,trial remained fairly large, V, ., was consistently small. The performance of the

rule-based controller was also poor, despite best efforts at tuning. The V, ;. and |rb|

trial

results for modes 2, 4, 5 and 7 in Fig. 10.2 confirm the expected trend of large r,

resulting in smaller v,. Similarly, the most aggressive tuning scheme Ctrl4 resulted in the

largest |r,| . and smallest ¥, results, as shown in Fig. 10.3.

The d, ., resultsin Fig 10.3 show that d, remains relatively consistent from pass

a,tria

to pass regardless of control scheme. However, the d, ., results in Fig. 10.2 show

significant differences in d, for mode 3 and mode 5. This is an indication of the coupled
behavior between modes from pass to pass. For example, with Ctrl1 and Ctrl 4, the mode
3 controller is aggressive and will remove a large amount of material in the first two
passes. Consequently, when mode 5 becomes active in subsequent passes, there will be

significantly less material in the task space resulting in smaller d,.
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Fig. 10.2 Comparison of experimental results per mode.
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The similarity of Ctrl1 and Ctrl2 was due to the mode dependent process behavior
that occurred during each pass. In the first and second passes modes 3 and 4 typically
were predominant. In the third and fourth passes modes 5 and 4 were typically
predominant. As per the mode transition conditions, a significant amount of accumulated
material d, must be maintained in mode 4 for a transition to mode 3 to occur. Therefore,
the mode 3 controller was always initiated with a significantly large d,. This large d, was
typically close to the optimal value. Then regardless of the R3 tuning, a balance with v,
was achieved resulting in a large Q when mode 3 was active. This is apparent in Fig.
10.2 whereby for mode 3, if d_a,trial is relatively large, V., tends to be relatively small.
Thus the performance tended to be insensitive to the tuning of Rs. In the I'#3 modes the

most significant influence on Q,,,, Was Vvy. In particular, aggressively tuned mode 4 or 5
controllers greatly reduced v, resulting in much smaller Q,,,, values. The best optimal
control tuning scheme Ctrll resulted in an average 37% larger Q,,, than the worst

optimal control tuning scheme Ctrl4 and an average 33% larger Q.. than the rule-based

controller Ctrl5.

10.6 Conclusions

Experimental results with various optimal controller tuning values and a rule-
based controller were presented to compare the performance of the different controllers.
The results with the optimal control laws significantly increased the average material

removal rate compared to the rule-based controller.
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The next chapter concludes this thesis with a summary of research contributions

and a discussion on recommendations for future work.
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Chapter 11

Conclusions and Recommendations

11.1 Conclusions

The theoretical and experimental investigations presented in this thesis on

modeling and control of a robotic bulldozing operation lead to the following conclusions:

1.

Observations of a full scale bulldozing process formed the basis for the
development of a theoretical nonlinear hybrid dynamic model in Chapter 3. A
set of nine nonlinear dynamic system equations were developed that model the
low-level bulldozing process. Ten discrete operation modes with 16 mode
transition conditions were defined.

A system identification methodology was used in Chapter 4 for estimation of
the dynamic equation parameters for modes 1-5 and 7 and model refinement.
The refined model was validated and simulation results confirmed the
expected model dynamic behaviour.

An extended Kalman filter (EKF) was designed in Chapter 6 and implemented
on the experimental robot bulldozing system using the dynamic equations
from Chapter 3 and the estimated parameters from Chapter 4. The
performance of the Kalman filter is comparable with the performance of a 2"
order 1 Hz Butterworth lowpass filter. The main advantage of the Kalman
filter is that less delay is introduced in the signal and tuning is more flexible

with more meaningful parameters.
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4. Analysis of the deterministic open-loop dynamics in Chapter 8 showed that
steady state open-loop stall conditions exist for this experimental system but
can be avoided with an appropriate minimum blade constraint. Further
analysis of the deterministic closed loop dynamics using the control laws
designed in Chapter 7 showed that closed-loop stall cannot occur for this
experimental system. A numerical Lyapunov stability analysis showed that
the deterministic closed-loop trajectories of d, and v, converge to their steady
state optimal equilibrium values.

5. It was found experimentally in Chapter 7 that avoidance of mode 6 can be
accomplished with an appropriate state dependent maximum blade constraint
imposed in modes I = 2-5 and 7. The results of this investigation formed the
basis for the development of a blade control law to transition out of mode 6 if
it occurs.

6. Analysis of the stochastic closed loop dynamics in Chapter 9 showed
agreement with the results of the deterministic closed-loop performance
analysis in Chapter 8. Furthermore, a stochastic Lyapunov stability analysis
showed that the expected values of the mean stochastic closed-loop
trajectories remain bounded about their optimal equilibrium states.

7. Experimental results with various optimal controller tuning values and a rule-
based controller were presented to compare the performance of the different

controllers. The best optimal control tuning scheme Ctrll resulted in an
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average 37% larger Q. than the worst optimal control tuning scheme Ctrl4

and an average 33% larger Q. than the rule-based controller Ctrl5.

11.2 Summary of Research Contributions

This thesis addressed the challenge of developing a novel approach to autonomous

bulldozing operations. This included the following key research contributions:

1.
2.

Design of a reduced-scale robotic bulldozer and experimental environment.

A hybrid dynamic model of a robotic bulldozing process including a set of
novel nonlinear dynamic equations to model the low-level dynamics.

Design of a rule-based closed-loop blade control algorithm.

A novel system identification and model validation framework for the robotic
bulldozing process.

Design of model-based optimal control laws for the execution of the robotic
bulldozing operation, including a deterministic and stochastic performance
and stability analysis.

Design of an approach for avoidance and recovery control of a special-case
operation mode.

Experimental validation of the robotic bulldozing model and control design.

Three refereed conference papers on work with the prototype full-scale bulldozer

and mining application form the basis for introductory material regarding conceptual task

analysis, control requirements and motivation for the development of the reduced scale

experimental robotic bulldozing system, which are Olsen et al. (2006), Olsen et al.

(2008a) and Olsen et al. (2008b). Another refereed conference paper, Olsen and Bone

(2011), presents preliminary model development and system identification with the

157



Ph.D. thesis — Scott Olsen McMaster University — Mechanical Engineering

reduced-scale robotic bulldozing system. A journal paper, Olsen and Bone (2012a), was
submitted on modeling and system identification. Another journal paper, Olsen and Bone
(2012b), was submitted on the design of model-based optimal control laws and

experimental implementation.

11.3 Recommendations for Future Work

Building on the results presented in this thesis, there are a number of interesting
avenues for extending this research. An overview of some directions for future work
follows.

The overall experimental system scope could be extended to include different
types of material for dozing, e.g. different sizes and densities of stones and/or soil;
different blade shapes and sizes; and different floor surface textures. Furthermore, a more
intensive investigation on track-slip could be conducted including detailed modelling and
design of a control approach for track-slip reduction.

The scope of the bulldozing process could be extended to include additional
degrees of freedom beyond the current constraints with a single direction of motion, e.g.
introducing steep slopes to climb and introducing multi-directional planar navigation
throughout the task space. In addition to low-level control design, higher-level strategies
could be developed involving multiple bulldozing robots.

Different control laws could be formulated with different objectives other than to
maximize the material removal rate. For example, a related bulldozing task involves
blade control to achieve desired terrain profile characteristics for construction site

preparation. This may entail formulation of a blade position control law with respect to
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minimizing the error between the actual underlying material profile height and a desired
material profile height.

Ultimately, full scale realization of the work presented in this thesis could be
investigated. This includes experimental implementation of the system identification
framework and the control laws with a full-scale robotic bulldozing system. The current
vision-based localization system and the vision-based laser scanning system are not
intended for use as part of a full-scale system, although similar technologies may be
applicable. For full-scale above-ground vehicle localization, global positioning system
(GPS) based methods are becoming well-established for real-time vehicle localization, for
examples see Crane et al. (1995), Le et al. (1997) and Redmill et al. (2001). For
underground applications, vehicle localization is a challenging area of active research,
where various approaches have been investigated. These include artificial beacons and
integrated systems combining inertial sensors, magnetometers, range finders and
odometry. For examples see Scheding et al. (1999), Bakambu and Polotski (2007), Xiong
et al. (2009) and Chi et al. (2012). Similarly, material profile measurement for
automation of mining and construction operations continues to be an active area of

investigation, for examples see Stentz et al. (1999) and Brooker et al. (2007).
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Appendix A

Details of the Experimental Robotic Bulldozing
System

A.1 Introduction

This appendix documents the details of the sensors and process variable
measurements of the robot bulldozer experimental system. These include robot location
measurement, material accumulation measurement, blade position measurement, robot
pitch measurement, task space material profile height measurement and calculation of the
material profile process auxiliary variables. It also includes the details of the blade
position controller and heading controller.

The primary fixed components that compose the task space environment include
the line laser mounted on the stepper motor, the robot tracking camera, the laser scan
camera and the elevated platform on which the robotic bulldozer pushed loose stones. A

diagram showing the geometric locations of these components is shown in Fig. A.1.
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Fig. A.1 Locations of the task space components in the world coordinate
frame (X-Y-2).
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A.2 Robot Location Measurement

A.2.1 Robot Localization Camera Calibration

The camera was calibrated with a chessboard pattern to determine camera position
and pose with respect to the task space, and camera intrinsic parameters and distortion
parameters. The estimated calibration parameters are used to compensate for lens
distortion and calculate robot task space world coordinates in the vision localization
system. The calibration pattern is composed of a 5x7 grid of alternating black and white
squares. The size of each square is 209 mm along an edge. The average number of pixels
along the edges of each square was 71 giving a resolution of 3 mm per pixel. The
calibration pattern was positioned level and flat against the task space floor surface. The
OpenCV software library was used for camera calibration. Specific OpenCV functions
were used to find the corners of the calibration pattern, estimate camera parameters,
undistort the image in addition to other image processing. An example image of the

chessboard calibration pattern with detected corner points is shown in Fig. A.2.
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Fig. A.2 Camera calibration chessboard configuration.

The camera model used to calculate world coordinates from image pixel coordinates with

lens distortion compensation is defined by the following equations:

X X

y|=R|Y |+t (A1)

z Z
X'=X/z (A.2)
y'=y/z (A.3)
X" =X (1+K, 1%+ k1 +kr® )+ 2p Xy + p, (1 +2X7) (A.4)
Y' =y (L kor® +kort +kgr® )+ py (7 +2y%) + 2p,xy’ (A.5)

170



Ph.D. thesis — Scott Olsen McMaster University — Mechanical Engineering

r2 — sz + yrZ (A6)
u=f -x"+c, and (A7)
v="~ y"+c, (A.8)

where, (X, Y, Z) are the coordinates of a point in the world coordinate frame; (u, v) are the
coordinates of the point projection in pixels; R is a rotation matrix describing the relative
rotation of the camera with respect to the calibration pattern; t is a translation vector
describing the relative translation of the camera with respect to the calibration pattern
corner point #1 (i.e. corner point #1 defines the origin of the world coordinate frame);
(cx, cy) is a principle point located at the image centre; f and f, are the focal lengths; ki,
ko and k3 are radial distortion coefficients; p; and p, are tangential distortion coefficients.

The values of the intrinsic parameters and distortion coefficients, estimated from

the chessboard calibration pattern in the image, are tabulated in Table A.1.

Table A.1 Robot tracking camera calibration estimated intrinsic parameters and distortion

coefficients.
Cyx Cy fx fy k1 kz k3 P1 P2
320 240 817 817 -0.10 0.67 -0.0047 -0.0020 -0.10

The combined rotation-translation matrix [R|t] takes the form:

Ry R, Rs 1
[R | t] =|Ry Ry Ry 1 (A.9)
R31 R32 R33 t3

The estimated values of the rotation translation matrix elements are tabulated in Table

A2
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Table A.2 Robot tracking camera calibration estimated elements of the rotation

translation matrix.

t t t
Ri1| R R13 Ra1 | Ra2| Ros Rs1 Rs2 | Ras (min) (mzm) (m3m)
1.0 | -0.012 | 0.068 | 0.013 | 1.0 | -0.012 | -0.068 | 0.012 | 1.0|-530 | -318 | 2373

For each of the calibration pattern corner points the error in the estimated world

coordinates was calculated. The mean error in X was 1.6 mm with standard deviation 1.0

mm. The mean error in Y was 0.93 mm with standard deviation 0.75 mm.

A.2.2 Robot Localization Target Tracking

The basic robot target tracking algorithm is summarized as follows:

1. Acquire raw color image

2. Convert image to grey scale

3. Threshold the image to segment the bright pixels belonging to the target

circles from the background.

4. Find all contours in the thresholded image.

5. Perform least squares ellipse fit on each contour that greater than the minimum

expected number of points in the contours of the target circles appearing in the

image.
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To improve the execution time of image processing within the vision tracking
program, a method of adaptive region of interest (ROI) around the robot target has been
implemented. The image processing algorithm executes much faster and with less
variability on the smaller ROIl. For example, the vision tracking program begins by
capturing a raw image of the entire task space, as shown in Fig. A.3. The initial ROI is
set to just encompass the boundaries of the robot task space panel platform, as shown in
Fig. A.4. After the centres of the two robot target circles are found, the size of the ROI is

decreased to just encompass the robot target and the location of the centre ROI is set to

Fig. A.3 Vision tracking raw image of the task space with visible robot target
circles.
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the middle point between the two target circle centres, as shown in Fig. A.5. As the robot
travels around the task space, the location of the image ROI follows the robot by shifting
to the middle of the detected circle centres with each image capture update. The resulting
target tracking within the task space image is shown in Fig. A.6 with the target circles

highlighted and robot heading indicated by the arrow.

Fig. A.4 An example of the vision tracking image initial ROI.
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Fig. A.5 An example of the vision tracking image reduced ROI.

Fig. A.6 An example illustrating the result of the vision tracking.
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The calculation of the world coordinates of the robot targets from the pixel
coordinates required the elevation (i.e. Z coordinate) of the target above the floor surface,
which was measured to be 190 mm when the tracks were on the floor. When the robot
was engaged in task execution, elevation of the targets could change by a maximum of 30
mm. This was found to have a negligible effect on the localization measurements. The
equations used to calculate the world coordinates (X, Y) of the target centres from

undistorted pixel coordinates (u’, v’) are:

G ;Cx) (A.10)
V' —C
yr=( y) (All)
fy
Z:Z+R1,3't’1+Rz,3‘tz’+R3,3't3 (A12)
R1,3'X +Rz,3’y +R3,3
X=X"-2 (A.13)
y=y'-z (A.14)
X =Ry -(x-t)+R,,-(y—t,)+Ry,-(z-t,) and (A.15)
Y =R, (x=t)+R,,-(y—t,)+Ry,-(z-t,) (A.16)

The large target circle is positioned above the centre of the robot chassis and the
small circle is positioned above the blade edge, as illustrated in Fig. 4.1. Thus, the X and
Y coordinates of the robot centre, (X, Yc), are calculated from the centre coordinates of

the large circle, and the X and Y coordinates of the robot blade, (xy, yb), are calculated
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from the centre coordinates of the small circle, using Egs. (A.10)—(A.16). The robot

heading, 6, is calculated from (xc, yc) and (X, Yb) using the equation:
0 =atan2(y, -y, X, — X, ) (A.17)

The robot location in the task space calculated from image pixel coordinates was
verified by comparing physical displacement measurements of (x., yc) across the length
and width of the task space with displacements calculated from the vision localization
system. The robot was located at initial coordinates (Xco, Yco) and relocated to coordinates
(Xc1, Ye1). Then the displacement between (Xco, Yeo) and (Xc1, Ye1) was calculated. The
results are shown in Table A.3. The average percent absolute error in estimated

displacement is 2.3% with a standard deviation of 0.4%.
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Table A.3 Robot vision localization experimental verification.

Position Coordinates Displacement Absolute
(mm) (mm) Error % Error

Xco Yeo Xc1 Ye1 Calculated | Measured (mm)

230 66 786 66 556 544 12 2.2
810 | 261 | 250 273 560 550 10 1.8
244 472 795 479 551 538 13 2.4
815 | 460 | 802 51 409 400 9 2.3
552 53 568 52 399 389 10 2.7
235 444 220 72 372 362 10 2.9
-68 188 | 638 162 706 685 21 3.1
-79 | -110 | 618 396 861 845 16 1.9
1237 | -141 5] 532 1404 1375 29 2.1
-101 | -113 | 1028 661 1369 1342 27 2.0

A.2.3 Summary of Robot Location Measurement Details

The robot location measurement details are summarized as follows:

e Equipment: Point Grey Research Scorpion Camera (640 x 480 pixels?) with a

Pentax zoom lens set to 12 mm focal length.

e Accuracy and precision in position coordinates at zero elevation:

o0 X coordinate mean abs. error 1.6 mm with standard deviation 1.0 mm.

0 Y coordinate mean abs. error 0.93 mm with standard deviation 0.75

mm.
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e Mean error in robot displacement: mean percent error 2.3%.

e Resolution: <3 mm/pixel.

A.3 Robot Blade Material Accumulation Measurement

A.3.1 Material Accumulation Measurement Calibration

Five distance sensors, denoted S;-Ss, were mounted on the front of the robot
pointing downward perpendicular to the floor approximately 10 mm ahead of the blade.
The sensor voltage signals were calibrated by measuring the varying height of a flat level
surface located directly beneath the sensors, as illustrated in Fig. A.7. Plots of the range
sensor calibration data with linear fits are shown in Fig. A.8.

The range sensor calibration functions used to calculate object height beneath

each sensor, hs, from sensor output voltage, V; are:

h,=-89.7-V,, +155 (A.18)
h,, =-88.1-V,, +153 (A.19)
h,, =—89.4-V,, +155 (A.20)
h,, =-89.4-V,, +156 , and (A.21)
h,, =—89.6-V,, +158 (A.22)

The results of the calibration are as follows. The mean height measurement
absolute error of sensor S; is 0.4 mm with standard deviation 0.4 mm. The mean height
measurement absolute error of sensor S, is 0.3 mm with standard deviation 0.3 mm. The

mean height measurement absolute error of sensor Sz is 0.2 mm with standard deviation
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0.2 mm. The mean height measurement absolute error of sensor S, is 0.3 mm with

standard deviation 0.3 mm. The mean height measurement absolute error of sensor Ss is

0.2 mm with standard deviation 0.2 mm.

The material accumulation process variable, d,,is calculated as the average of the

height measurements beneath each range sensor, i.e. dy = (hs1 + hsz + hg3 + hgg + hss)/5.

Range sensors mounted to the robot
S, S, S; S, S

Measured
height of
flat surface

Fig. A.7 lllustration of material accumulation sensor calibration.

A.3.2 Summary of Material Accumulation Measurement Details

The material accumulation measurement details are summarized as follows:

e Equipment: Baumer Distance Sensor FADK 1414470/S14 and National

Instruments PCI-6251 16-bit data acquisition board.

e Mean errors in position coordinates at zero elevation:

(0]

(0]

S1 mean absolute error 0.4 mm with standard deviation 0.4 mm.

S2 mean absolute error 0.3 mm with standard deviation 0.3 mm.

S3 mean absolute error 0.2 mm with standard deviation 0.2 mm.

S4 mean absolute error 0.3 mm with standard deviation 0.3 mm.

S5 mean absolute error 0.2 mm with standard deviation 0.2 mm.
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Fig. A.8 Range sensor calibration.
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A.4 Robot Blade Position Measurement

A.4.1 Blade Position Measurement Calibration

To calibrate the blade position measurement, the blade was raised to various fixed
positions. The height of the bottom edge of the blade was measured with respect to the
floor and plotted against the corresponding blade motor encoder counts, as shown in Fig.
A.9 with the corresponding linear fit calibration function. The theoretical resolution of
the blade position measurement is 0.000772 mm per encoder count. From the calibration
results, the mean blade position measurement absolute error is 1 mm with standard

deviation 0.7 mm.

50 T T T T T T T T T

40 O Data Samples
Linear Fit %6
) o
. e
10
/gf
0 (o]
e

Blade Position [mm]

ST
==

P
o
-30 . : . . . : : . .
-4 -3 -2 -1 0 1 2 3 4 5 6

Encoder Counts [cts] X 104

Fig. A.9 Blade position measurement calibration.

A.4.2 Summary of Blade Position Measurement Details
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The blade position measurement details are summarized as follows:
e Equipment: Faulhaber HES164A quadrature encoder integrated with a
1524E006S123 motor and 15/55141:1K832 gearhead

e Mean error: mean absolute error 1 mm with standard deviation 0.7 mm
A.5 Robot Pitch Measurement

A.5.1 Robot Pitch Measurement

The tilt sensor was mounted directly to the robot chassis aligned with its
longitudinal and lateral axes. Accuracy and resolution values were taken from the data
sheet. The sensitivity and voltage offset values from the data sheet were used to calculate

pitch angle, ¢, from the orientation sensor voltage, Vs,. The pitch angle is calculated

with the equation:

V. —-25
=sin7t| =2~ A.23
? ( 0.0349 j (A.23)

A.5.2 Summary of Robot Pitch Measurement Details

The robot pitch measurement details are summarized as follows:

e Equipment: Crossbow Tilt Sensor CXTAO02 and National Instruments PCI-
6251 16-bit data acquisition board.

e Accuracy: 0.5 degrees.

e Resolution: 0.05 degrees.
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A.6 Task Space Material Profile Height Measurement

A.6.1 Task Space Material Profile Measurement

A diagram of the material profile measurement system is illustrated in Fig. A.10.
The laser position was fixed at height h. above the reference surface. The laser was
mounted perpendicularly to the shaft of the stepper motor allowing it to rotate and scan
along the length of the task space. The laser beam reflects off of the measured surface at
a distance dg and reflects off of the reference surface at a distance dgre. The difference
between the distance of the beam reflected off of the measured surface and the reference
surface in the camera image is ¢’ with magnification M. The height of the measured
surface, a, at position dg is determined as a function of the relationship between these

geometric variables as follows:

¢ =Mc’ (A.24)
coS o
d —d, =Mc' and A.25
B, ref B SinB ( )
a= M S8 N (A.26)
SInB dB,ref
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Fig. A.10 Diagram of the material profile measurement system

A.6.2 Synchronization of the Stepper Motor and Camera
The stepper motor driver was set to microstep at a resolution of 32 microsteps per

step (or 6400 steps per revolution). At this resolution the maximum longitudinal distance
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change of the laser beam projected on the task space is less than 7 mm (occurring at the
farthest edge of the task space). The laser beam distance travelled in the task space is
much smaller at the “start’ of the task space. To reduce the number of images saved while
maintaining an acceptable change in beam travel per frame with a constant frame rate,
images are saved after two motor microsteps for the first 60 frames (approximately 1/3 of
the task space). A total of 275 images are saved over a total distance in the task space of
1200 mm giving an average beam travel resolution of 4.4 mm/frame. The motion of the
stepper motor is synchronized with the camera to advance one microstep after a new
frame is captured and saved. Communication between the stepper motor control
computer and the image capture computer is achieved by sending discrete pulses from the

camera.

A.6.3 Laser Scan Image Processing and Calibration
After the scanning process is complete each image is processed to identify the
contour of the beam and calculate the height profile. The height profile is determined
with respect to the reference segments of the beam (i.e. known region of the level floor
surface). Prior to processing an image of the task space with no laser is saved. The
image processing algorithm is described as follows:
1. Subtract ‘laser off’ image from ‘laser on’ image to produce the ‘beam
only’ image
2. Threshold the *beam only’ image at a level of 15% to produce a binary

image of the beam contour points.
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3. For each row along the X-axis of each ‘beam only’ image the beam
contour width is condensed to one pixel by taking the average of all pixel
Y-values.

4. To handle the possible condition of two apparently distinct contours, if the
difference between the largest and smallest Y-values is greater than 5
pixels (e.g. the maximum expected beam width) then either the largest Y-
value or smallest Y-value is chosen depending which is closer to the mean
value.

5. Fit a least squares line to the ‘tail’ points of the beam contour which are
known to be at the zero elevation floor surface reference.

6. Calculate the difference between all contour points and the reference line,

i.e. the ¢’ term in Eq. (A.24).
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TestLaserOn

Level floor surface, height 0 mm

Small pile of stones, height ~15 mm

Wood two by four, height ~40 mm

Fig. A.11 Example of a raw laser scan image with various objects of different
heights in the task space.

An example of the result of the image processing algorithm is shown in Fig.A.11.
To calibrate the calculation of the height profile from each image using Eq. (A.25)

OS«

. C
the value of dg rer and the ratio —

5 were determined experimentally as functions of the
sin

Y-axis position of the reference line in the image. A plot of laser beam position, dg rer,
measured in the task space with respect to the Y-axis laser beam position in the image is

shown in Fig. A.12.
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Fig. A.12 Calibration of the beam reference task space position with respect to image
position.

0sa as a function of Y-axis beam position, the height of

To determine the ratio C_
sin

an object in the task space was calculated at different positions in the task space with Eq.

(A.26) using the calibrated function for dg res found previously and the ratio (s:ic:; set to

oSa
sin g

unity. The ratio as a function of beam reference position in the image is

determined with the following equations:

hcalc,uncalib = MC’ hL (A27)
dB ref
h —-h . .
measured calc,uncalib — f (d gj:ef ) (A28)

h

measured
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h | lib
— cac,unca_l and A29

measured l— f {d;l:ef ) ( )

cosa 1 (A.30)
sinf 1- f(dBp'ref)

: . ., COSc . :
where N ueain 1S the calculated height with — 5 =1, h ... 1S the measured height
' sin

and f(dg’fjef) is the linear fit function of percent error as a function of reference line

distance in the image. A plot of percent height error as a function of beam reference

position in the image is shown in Fig. A.13.
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Fig. A.13 Calibration of ratlo_—; with respect to beam reference position in the
sin

image.
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A.6.4 Laser Scan Height Measurement Validation

The calibration of the height measurement system was verified with four straight
metal beams of constant height placed in the task space. An example image with the laser
stripe is shown in Fig. A.14. An example of the resulting height measurements of one
‘beam slice’ are shown in the Fig. A.15. The final calculated height contour over the task
space is shown in Fig. A.16. The mean absolute error of the calculated height of each
metal beam over the entire task space is 0.23 mm, 0.34 mm, 0.26 mm and 0.26 mm.
Overall, the height measurement mean absolute error is 0.26 mm with standard deviation

0.24 mm.

Fig. A.14 Laser scan height measurement verification example image with four
straight metal beams with different heights.
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Fig. A.15 Laser scan height measurement verification example height calculation

A.6.5 Summary of Task Space Material Profile Measurement Details

from a single image.

The task space material profile measurement details are summarized as follows:

Equipment: Point Grey Research Dragonfly2 Camera (1024 x 768 pixels?)

with a 8.5 mm focal length lens and a red filter. Lasiris 635 nm, 5mW laser.

Mean error: mean absolute error 0.26 mm with standard deviation 0.24 mm.

Height Resolution: 2 mm to 7 mm.
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Fig. A.16 Laser scan height measurement verification calculated height over the
entire task space.

A.7 Material Profile Process Auxiliary Variables

To calculate the process auxiliary variables hy, hy; and h;,, the locations of the
edges of the blade ((Xb1, Yo1), (Xor, Yor)) and the locations of the outer edges of the
material ridges ((Xn, Yr), (Xrr, Yrr)) Were calculated from the measured location of the

blade centre, x, and the robot heading, 6. This is illustrated in Figure A.17.
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Fig. A.17 Diagram illustrating the robot location and process auxiliary
variable locations coordinates.

The locations of the blade edges and outer ridge locations are calculated as

follows:

X1 = %, —%003(90"—9)
Yoo = Vs +%sin(90°—6)
X, =Xy +%cos(90°—0)
Yor = Yo —%sin (90°-0)

X ) =X —(%+ ercos(90°—9)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)
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Vor =Y +(%+ wrjsin (90°-6) (A.36)
Wb

Xer =%+ W, cos(90°-6) and (A.37)
W, :

Yer =Yo=| % W, sin(90°-6) (A.38)

where w, is the width of the blade (200 mm) and w is the nominal ridge width (50 mm).
The process auxiliary variable hy is calculated as the mean material profile height
within a region along the width of the blade at each location x, in the task space. This is

summarized as follows:

h, (%) =mean(hy,, (x,y)), for x, —e<x< %, +eAY, <Y<y, (A.39)
where, hgan(X,y) is the set of all height measurement points in the task space at
coordinates (x,y) and ¢ is a small distance equal to the nominal resolution of the laser
scanning system (5 mm) to ensure that enough points are included in the calculation.
Similarly, the process auxiliary variables h,; and h,, are calculated as the mean profile

height within regions defined by the edges of the blade and the approximate width of the

ridge. This is summarized as follows:
h,(x,)=mean(h., (x,y)), for x,, —e<x<X, +eAy, <y<y, and (A.40)
h, (%) =mean(h, (X)), for x,, —e<X<X, +eAY, <Y<Yy, (A.41)

An example of a topological material profile scan with the robot path

superimposed is shown in Fig. A.18.
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Fig. A.18 Example of material profile scan height measurements with the
robot path superimposed.

A.8 Blade Position Control

Proportional-integral-derivative (PID) control was implemented for position
control of the robotic bulldozer blade, however, after extensive effort at tuning it was
found to be ineffective. It is believed that this was due to lack of robustness to the
uncertainty in interaction forces between the blade and the environment. This motivated
the use of a simplified sliding mode controller. The sliding mode controller takes the
form:

u, =V, -sign(s) and (A.42)

s=t —( (A43)
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where, U, is the blade actuator control signal, Vs, is the voltage supply to the blade
actuator, s is the sliding surface, r, is the blade position reference, and {is the blade
position. An example of blade position control with the simplified sliding mode
controller is shown in Fig. A.19. This example shows an extreme case of blade
positioning with step changes in large control increments. Typically, blade positioning is

much smoother with smaller increments, and the position overshoots are negligible.
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Time (s)
Fig. A.19 Example of blade position control with the simplified sliding mode
controller.
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A.9 Robot Heading Control

A differential steering proportional-integral (PI) heading controller was
implemented on the robotic bulldozer to maintain straight forward motion along a straight
path with a constant heading. The same constant nominal input is sent to each of the
robot tracks. In response to heading error, the controller decreases the input to one track
and increases the input to the other track by the same amount with respect to the heading

error. The heading control algorithm is defined as follows:

U, =Kp,-€ +K, ,-Ze, (A.44)
U, = U pon +U, and (A.45)
Uy r = U nom — U (A.46)

where, u,is the track control heading correction input; K., is the heading control

proportional gain; K, , is the heading control integral gain; u is the nominal constant

t,nom
track input; u,, is the input voltage to the left track motor; u,  is the input voltage to the
right track motor; e,is the error between the desired constant heading, 6,, and the
measured heading, 6; and Xe, is the sum of the heading error. The manually tuned
heading controller gains were K,, =7 %/deg and K,, = 0.5 %/deg-s. The nominal

constant track input, expressed as the percentage of the maximum supply voltage was

u = 45%, where the maximum track motor supply voltage was 12 V. The heading

t,nom

controller was able to maintain a constant robot heading to within + 1 degree. An
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example of robot heading with the controller maintaining a constant desired heading of

6, =0 degrees is shown in Fig. A.20.

Heading [degrees]
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Fig. A.20 Example of robot heading controller maintaining 6, = 0 degrees.
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