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Abstract

There is an increasing interest in automated mobile equipment in the construction,

agriculture and mining industries to improve productivity, efficiency and operator safety.

In general, these machines belong to a class of mobile vehicles with a tool for

manipulating its environment to accomplish a repetitive task.  Forces and motions are

inherently coupled between the tool (e.g. bucket or blade) and the means of vehicle

propulsion (e.g. wheels or tracks).  Furthermore, they are often operated within uncertain

and unstructured environments.  A particularly challenging case involves the use of a

bulldozer for the removal of excavated material.  Modeling and control of mobile robots

that interact forcibly with their environment, such as robotic excavation machinery, is a

challenging problem that has not been adequately addressed in prior research.  This thesis

investigates the low-level modeling and control of a 3-DOF robotic bulldozing operation.

Motivated by a bulldozing process in an underground mining application, a

theoretical nonlinear hybrid dynamic model was developed.  The model includes discrete

operation modes contained within a hybrid dynamic model framework. The dynamics of

the individual modes are represented by a set of linear and nonlinear differential

equations.  An instrumented scaled-down bulldozer and environment were developed to

emulate the full scale operation.  Model parameter estimation and validation was

completed using experimental data from this system.  The model was refined based on a

global sensitivity analysis.  The refined model was found to be suitable for simulation and

design of robotic bulldozing control laws.
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Optimal blade position control laws were designed based on the hybrid dynamic

model to maximize the predicted material removal rate of the bulldozing process. A

stability analysis of the underlying deterministic closed-loop process dynamics was

performed using Lyapunov’s second method. Monte Carlo simulation was used for

further performance and stability analysis of the closed-loop process dynamics including

stochastic state disturbances and input constraints.  Results of the Monte Carlo simulation

were also used for tuning the blade position control laws.  Experiments were conducted

with the scaled-down robotic bulldozing system. The control laws were implemented with

various tuning values. As a comparison, a rule-based blade control algorithm was also

designed and implemented.  The experimental results with the optimal control laws

demonstrated a 33% increase in the average material removal rate compared to the rule-

based controller.
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xmeas, xpred Measured and predicted states

,meas segx Mean state measurement within a mode segment of the validation

data

EKF
measx State measurement filtered with the extended Kalman filter

EKF
predx State prediction from the extended Kalman filtered measurements

unfilt
measx Unfiltered state measurement

unfilt
predx State prediction from unfiltered measurement

EKF
ky Innovation residual of the extended Kalman filter

 zc, zb Elevations of the robot centre and the robot blade

 zest Estimated elevation variable

kz Discrete-time output vector



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

xxix

,V Lyapunov function parameter for mode

Operation mode number

a Maximum effective length of material accumulated by the blade

m Stochastic Lyapunov worst case stability bound in the mth mean

rb Blade position change increment of the rule-based control

algorithm

6t Duration of mode 6 activation

m Stochastic Lyapunov stability bound in the mth mean

k Discrete-time measured blade position

Blade position

,wx Residual state disturbance Gaussian distribution

z, x Parameter vector for the estimation optimization problem of the

elevation equations and state equations

1 2, Lagrange multipliers

Set of mode transition conditions

2
, ,v xy State measurement noise covariance

2
, ,w x State process disturbance variance

, ,wx Residual state disturbance variance

b, d Time constant and delay time for the blade position control
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Robot pitch angle

k Discrete-time measured robot pitch

meas
k Unfiltered robot pitch measurement

,% x segfit  Relative model fit calculated per mode segment

,% xfit Relative model fit calculated per mode
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Chapter 1

Introduction
1.1 Introduction to Research Topic

A major unaddressed challenge with mobile robots is the control of vehicles

interacting forcibly with their environment, such as robotic tractors, bulldozers, loaders

and snow plows.  Forces and motions are inherently coupled between the tool (e.g. bucket

or blade) and the means of vehicle propulsion (e.g. wheels or tracks).  Furthermore, they

are often operated within uncertain and unstructured environments.  There is a growing

industrial interest in the development of robotic mobile machinery to improve

productivity, efficiency and safety.  With reduced dependence on operator skill and a

lower operator work load, full or partial automation (e.g. teleoperation) will contribute to

more consistent, higher quality results and improved machine utilization.

Fig. 1.1 Teleoperated bulldozer used in underground mining.
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A particularly challenging case involves the use of a bulldozer for the removal of

fragmented rock in an underground mining application, such as the operation shown in

Fig. 1.1.  The resistance faced by the machine from the environment may vary

significantly depending on the physical properties of the media (e.g. density and

hardness) and the distribution of particle sizes and shapes.

1.2 General Description of a Bulldozing Process

A bulldozer consists of a main body driven by two motorized tracks.  A blade for

pushing material is joined to the machine by two arms.  The blade is raised/lowered by a

position controlled actuator. During the bulldozing process, the torque generated by each

track drive motor is translated into a shear force between the track and the surface it is in

contact  with.   A  complex  combination  of  the  geometry  and  physical  properties  of  the

material below the tracks, and of the tracks themselves, determines the maximum torque

that can be transferred before traction loss, or track slip, occurs, which was studied in

Wong (2001).  The amount of slip depends on the profile and area of the tracks; bulldozer

weight and its distribution; static and dynamic friction functions; and the strength of the

underlying material.  The effective environment force on the blade is a combination of

friction forces on the blade and the resistance of the material being pushed.  The force is

transmitted from the blade, through the blade arms and the main body, into the tracks.

Lowering the blade tends to increase the environment force and vice-versa.  For constant

track motor hydraulic pressure (or voltage if the motor is electric) the forward velocity of

the blade will decrease when the blade is lowered due to the increased force and resulting

increased traction loss.  In additional to increased resistance due to friction, lowering the
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blade tends to lift the front end of the chassis upward, thus reducing the contact pressure

between the tracks and the ground, leading to reduced traction force.  The decrease is

nonlinear since the rate of material accumulation is proportional to the velocity, and the

friction functions are nonlinear.  The relevant simplified machine and interaction forces

are illustrated in Fig. 1.2, where vdozing is the forward velocity of the bulldozer, Tdrive is the

torque generated by the track drive motors, Ftraction is the traction force between the tracks

and the ground, Fenv is the combined interaction forces between the blade and the

environment, Farm is the force transmitted through the blade arm and Factuator is the force

transmitted through the blade positioning actuator.

Machine operators tend to develop an intuitive understanding of how to most

effectively accomplish their task.  Operators do not explicitly consider the complex

interaction forces between the vehicle and its environment to successfully maneuver the

machine throughout the execution of the task.  For instance, a general excavation material

removal clearance task, other than grading, requires the operator to maneuver the vehicle

Fig. 1.2 Simplified machine and interaction forces.
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forward while maintaining the bulldozer blade in a desired fixed position to accumulate

as much material on the blade as possible.  Upon observing the occurrence of significant

traction loss or forward motion ceasing entirely, the blade will be raised by the operator

until the machine regains traction and sufficient forward velocity is achieved.

1.3 Bulldozing Process in Underground Mining

A specific underground mining ore extraction operation involving a low-profile

bulldozer was studied as part of a preliminary investigation toward further modeling and

control  development.   The  task  of  the  bulldozer  is  to  push  excavation  material  from an

operation space into a separate removal space where a different machine carries the

material away. The first step in the overall ore extraction process is blasting of the face

with explosives.  The blast is designed to throw as much material as possible into a

removal space known as the gully area.  The resulting blasted material that fills the panel

is a very coarse mix of ore and waste rock with an uneven distribution of sizes and

shapes.  A bulldozer then removes the excavation material from the very restricted space

of the panel to the gully.   The gully is  a larger,  more open space where an LHD (load-

haul-dump) vehicle collects the material for transport to a conveyor hopper.  This process

is illustrated in Figure 1.3.  The panel dimensions typically measure 4 meters wide, 21

meters along the face and as little as 1 meter high from the floor to the roof, the details of

which were provided by Murphy (2005).  This underground mining operation, including

the bulldozing process, was observed directly onsite at the Lonmin Karee 1B mine in

South Africa.



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

5

An extra low profile (XLP) bulldozer was recently developed by Sandvik Mining

and Construction specifically for the underground mining panel clearance operation.  The

initial concept design commenced in 2004 and a fully operational prototype, shown in

Figure 1.4, entered service at the Lonmin Karee 1B mine in 2005.  Following completion

of extensive design improvements, full production of the XLP bulldozer began in 2006.

The machine was designed for remote radio control operation with a hand held

controller.  Each track is driven by a variable hydraulic motor.  The blade is driven by

two hydraulic cylinders. The hydraulic actuators are controlled via electro-mechanical

Fig. 1.3 Underground mining ore extraction operation.
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servo-valves.  The base machine dimensions are 850mm (h) x 1600 mm (w) x 2750 mm

(l) and the weight is 5700 kg.  The maximum speed is 4 km/hr.  Further technical details

on the design of the machine and mining application may be found in Olsen et al. (2006)

and Olsen et al. (2008a).

1.4 Preliminary Investigations

Preliminary analysis of the bulldozing process and some experimental work was

completed with the first pre-production prototype version of the Sandvik XLP bulldozer.

The machine was developed into an experimental testbed with an onboard data

acquisition and control computer and various sensors.  For protection, the computer

hardware and regulated variable DC source (used to power some sensors) were housed in

a foam-lined hard plastic box that was mounted to the rear of the machine.  The computer

and DC source were powered by a portable AC power supply.  To allow interaction with

the computer, a flat screen monitor, key board and mouse were set up on the right side of

Fig. 1.4 Sandvik prototype extra low profile bulldozer.

Track Drive Motor
Blade

Actuators
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the machine.  A picture of the externally mounted computer hardware and power supply

is shown in Fig. 1.5a.  Encoders were used to measure rotational velocity of each track

drive motor.  Each encoder was mounted externally to the frame of the machine such that

a rubber follower wheel, fixed to the shaft of the encoder, made contact and rotates with

the  outer  casing  of  the  track  drive  motor,  as  shown  in  Fig.  1.5b.   A  compliant  spring

mechanism ensured that there is sufficient pressure between the wheel and motor to

eliminate slipping between the two.  For protection, an outer steel casing is mounted over

each encoder (not shown in the picture).  Pressure transducers were used to measure the

pressure across each motor, across the blade cylinders and across the hydraulic drive

pump.   A cable-extension  position  transducer  was  used  to  measure  the  extension  of  the

blade cylinders.

Proportional integral (PI) feedback control of the actuators was implemented for

each track motor and proportional (P) control was implemented for the blade arm

cylinders to maintain desired set points (e.g. track speed and blade arm position).

Fig. 1.5 Instrumentation on the Sandvik prototype XLP bulldozer.
a) b)

Follower Wheel

Motor CasingEncoder

Computer Case

AC Power Supply
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Experimental results involving the instrumentation and control of the full-scale machine

actuators may be found in Olsen et al. (2008b).

Preliminary experimental testing was conducted within a special purpose test area

onsite at the plant in Burlington, Ontario.  Operating the machine under a range of

operating conditions provided valuable experience in understanding the bulldozing

process.  A preliminary comprehensive task analysis of the bulldozing process revealed

that it can be decomposed into distinct operation modes.  Furthermore, different control

requirements are necessary for different modes of operation, as discussed in Olsen et al.

(2008b).

This machine was intended to serve as the experimental system on which the work

in  this  thesis  was  to  be  developed.   However,  experiments  were  difficult  to  set  up,

expensive and weather dependent.  For these reasons, plus hardware failures and high

cost of repairs, experimental work with this machine proved prohibitive and had to be

discontinued.  Thus, an alternative reduced-scale experimental system was designed and

built.

1.5 Research Objectives

The  overall  goal  of  this  thesis  was  to  develop  a  novel  approach  to  autonomous

bulldozing operations.  Specific research objectives are summarized as follows:

Design and build a reduced-scale robotic bulldozer and experimental environment

for further investigation and validation of models and control algorithms.
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Development of a comprehensive dynamic model of a robotic bulldozing process

with respect to the machine and its working environment.

Experimental validation of the theoretical model framework and system

identification of the robotic bulldozing process model.

Formulate  an  optimal  control  approach  to  optimize  the  execution  of  the  robotic

bulldozing operation by maximizing the material removal rate.

Experimental validation of the robotic bulldozing control design.

1.6 Thesis Organization

Proceeding from this introductory chapter, the remainder of this thesis is

organized as follows: The literature on automation and control of bulldozing and related

excavation operations is reviewed in Chapter 2.  A novel hybrid dynamic model of the

robotic bulldozing operation is proposed in Chapter 3.  The experimental reduced-scale

robotic bulldozing system is described in Chapter 4.  Experimental methodology and

results of system identification including model parameter estimation, model validation

and a sensitivity analysis are presented in Chapter 5.  Design of an extended Kalman filter

and modeling of the state disturbances are presented in Chapter 6.  The development of a

model-based control approach is described in Chapter 7.  In Chapter 8 an analysis of

stability and performance of the deterministic open loop and closed loop dynamics is

presented, followed by an analysis of stability and performance of the stochastic closed

loop dynamics in Chapter 9.  The experimental methodology and results of control
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implementation are presented in Chapter 10.  Conclusions and recommendations for

future work are discussed in Chapter 11.
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Chapter 2

Literature Review
2.1 Introduction

This chapter presents a review of the literature on automation and control of

bulldozers and related work involving similar excavation and service machinery.  The

greatest challenge facing autonomous bulldozing and excavation is the nature of the

machine-environment interactions that occur during the operation.  The resistance faced

by the machine as it attempts to penetrate and displace the excavation material may vary

significantly depending on the physical properties of the media (e.g. density and

hardness) and the distribution of particle sizes and shapes.  Therefore, it is very difficult,

if not impossible, to predetermine the exact nature of the machine-environment

interactions prior to execution of the operation.  This can cause significant difficulties

with respect to control.  Since simple motion or trajectory control is insufficient, most

methods developed to control machines for earthmoving tasks involve both force and

position feedback.

The literature on bulldozer automation is very sparse. The main area of focus has

been on blade position control for grading soil.  Typical assumptions include uniform soil

conditions and constant vehicle speed.  These control system implementations tend to be

ad-hoc schemes for operator assist applications that lack a systematic approach with

respect to optimality and robustness in task execution.
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Other related work includes the control of excavation machines used for digging

tasks.  Unlike bulldozing, which involves pushing material forwards, digging involves

scooping, lifting and carrying material. The machine is typically modeled as a multiple-

link robotic manipulator mounted on a static base with control design involving position

and/or force feedback.  Several significant investigations involve modeling and control of

excavation tasks using a small tool carried by a robotic manipulator and a scaled-down

experimental environment.

A few papers have presented high-level artificial intelligence approaches for

coordinating multiple autonomous robots for complex excavation operations.  This work

involves using artificial intelligence methods for higher-level coordination of multiple

robotic excavation machines, including bulldozers, for remote site preparation tasks.

Strategic objectives are achieved through emergent multi-robot coordination.

Finally, there is some significant related work involving modeling and control of

other service machinery that is characterized by machine-environment interactions.

2.2 Bulldozer Automation and Control

An operator assist feature was proposed for a remotely operated underwater

bulldozer in Ohtsubo and Ward (1975).  A nonlinear control system for the blade

cylinders based on a simplified mass-spring-damper system model was developed to

maintain blade position control during a soil cutting task.  Although it was not actually

implemented, a simulation is presented to show the feasibility of the system.

A simple control system to control the blade position based solely on the pressure

in the hydraulic cylinders is demonstrated in Ito (1991).  The controller is designed to
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maintain a constant blade position while remaining below a certain pressure setpoint.

When the pressure in the cylinders reaches a desired setpoint the blade is moved upward

until the pressure drops below it, then position control is resumed.  Although results are

presented to show successful implementation, there is no description of how to choose

suitable pressure setpoints.

A fuzzy logic operator assist control system was developed in Terano et al. (1992)

where the fuzzy rules are based on expert operator control actions.  Two different types of

operations were considered: ‘flattening’ the earth horizontally or with a constant slope

and maintaining constant load on the blade to avoid track slip.

An experimental investigation is described in Qinsen and Shuren (1994) to

estimate bulldozer blade forces as a function of known soil parameters during a soil

cutting process.  Experiments involved moving a scaled-down blade at a fixed position on

rails at a fixed constant velocity.   The soil used for experiments was carefully prepared

and compacted with known uniform properties.

Various patents exist that deal with similar bulldozer blade position control

schemes for operator assist soil grading applications.  Yamamoto (2001) describes a

method for maintaining a desired blade position by correcting actual position based on an

estimation of the amount of material loaded on the cutting edge.  Nakagami et al. (1998)

describes a cutting edge position detector to be used to maintain a preset target cutting

edge position.  An integrated automatic blade lift and tilt control system is described in

Koch (2005) for soil grading to maintain blade position with respect to a three-
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dimensional computerized site plan.  Machine position and orientation are determined

with either a laser system or global positioning system.

Other patents involve methods to detect track slip and control the tractive effort.

For example, a ‘running slip’ detector is described in Nakagami (1997) to detect track slip

based on vehicle acceleration.  The track slip can then be reduced by lifting the blade.

The patent described in Matsushita (1996) is concerned with detecting ‘actual tractive

force’ so that tractive effort can be controlled ‘gradually’ to reach a target setting.

2.3 Excavator Automation and Control

2.3.1 Full-Scale Excavator Automation and Control Investigations

A technique proposed by Bullock and Oppenheim (1992) involves using strain

gauges to measure the resistive forces encountered by the excavator bucket.  Force

feedback measurements are processed at a higher level to alter the low level trajectory

changes in a supervisory control scheme.

An impedance control approach was proposed in Bernold (1993) that utilizes

force and position feedback.  In the case of robotic excavation, the robot was considered

an impedance that translates motion into force, and the soil as an admittance, reacting

with a change in position or motion.  A similar impedance control approach was proposed

in Ha et al. (2000).  Having developed kinematic and dynamic models for the excavator, a

sliding mode impedance controller was implemented on a retrofitted mini-excavator.

In Vaha and Skibniewski (1993) a dynamic model was developed for the

excavator and used in conjunction with a model for the soil.  Further details of the

backhoe excavator dynamic model were derived in Koivo et al. (1996).  The model
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includes the relationship between the forces generated by the hydraulic cylinders to the

pose of the bucket.  The forces acting on the bucket due to interaction with the soil while

digging are also taken into account.

A position-based impedance controller was developed in Salcudean et al. (1997)

for an excavator backhoe.  This approach models the bucket as a position source with the

contact force measured through cylinder pressure sensors used to modify the trajectory.

A rules-based control approach was developed in Bradley and Seward (1998) to

automate an excavator specifically for trench digging.  The digging task is decomposed

into three separate phases consisting of penetrate, drag and empty.  In addition to the

ability to follow a predetermined path, there are rules to enable the robot to cope with a

variety of conditions that emerge while digging.

A full-scale robotic excavation and autonomous truck loading system is described

in Stentz et al. (1999).  The system utilizes two scanning laser range-finders to recognize

and localize the truck, measure the soil face and detect obstacles.  Onboard software was

used to make decisions regarding digging and dumping operations.  The digging

operation is described as being executed by a force based closed loop control scheme.

Marshall et al. (2008) describes experiments and analysis of an excavation process

for fragmented rock in a mining environment involving a wheeled load-haul-dump (LHD)

machine.  The experimental analysis focused on characterizing the forces experienced by

the bucket through measurements of the hydraulic actuator cylinder pressures.  The

design of an actuator force-feedback admittance controller is discussed but not

implemented.
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2.3.2 Reduced-Scale Excavator Automation and Control Investigations

In Shi et al. (1996) the bucket motion of a front loading excavator machine was

simulated using a PUMA 560 robot arm.  A fuzzy-logic based control strategy was

developed by emulating the actions of skilled human operators.  Experiments were

performed within a simulated rock excavation environment.

A theoretical model was developed in Takahashi et al. (1999) to predict the

resistive forces on the bucket of an excavator known as a load-haul-dump machine during

the scooping phase of operation.  The predicted forces agreed well with those obtained

using a scaled rock pile environment.

A method is presented in Althoefer et al. (2009) for identifying the unknown

parameters required for real-time prediction of interaction forces between an excavator

tool and the soil using a hybrid dynamic soil model.  A Mitsubishi RV-M1 robotic

manipulator was used to push a flat metal tool through the soil.  Force measurements

were obtained using a six-axis ATI Mini40 force/torque sensor.  Their experimental

results demonstrated good correlation between the estimated and measured forces.

2.4 Coordination of Multiple Excavation Robots

An algorithm is developed in Parker and Zhang (2006) for site preparation based

on the concept of “blind bulldozing” which models the collective nest building behaviour

of ants.  The goal of clearing a specified circular area is achieved as the result of the

interactions between individual robots exhibiting simple reactive behaviours.  The

performance of the algorithm is verified with experiments involving small instrumented

“toy” bulldozers.
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In Thangavelautham (2009) an “artificial neural tissue” (ANT) control

architecture is used to coordinate multiple robots for autonomous excavation and clearing

tasks.  Simple behaviours are defined for multiple robots with different tool implements

(e.g. bulldozer blade, front loader scoop or bucket wheel).  The higher-level control

architecture determines the best implements and behaviours to achieve a specified global

excavation goal.  Simulation and experiments with small specially designed robots show

the effectiveness of the control architecture.

2.5 Other Service Machinery Modeling and Control

An analytical model was developed in Bevly (2002) for the yaw dynamics of a

farm tractor for the purposes of improved automatic steering control.  A system

identification approach was presented to estimate the model parameters of a large farm

tractor.  Experimental results showed that the lateral control was improved with the new

model and controller.  This work was extended in Gartley (2008) with online

identification of the yaw dynamics for adaptive steering control.  Their experimental

results demonstrated that the adaptive controller achieved good performance regardless of

the load on the implement.  Since their focus was on steering control, they did not

explicitly model the machine-environment interaction dynamics.

Le et al. (1997) develop a method for real-time estimation of soil parameters from

trajectory data of a tracked vehicle using an extended Kalman filter.  Results are given for

simulated motion of an experimental tracked vehicle maneuvering over different types of

soil.
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2.6 Conclusions

The low-level modeling and control of the bulldozing process, i.e. the interaction

between the bulldozer and its environment, has not been addressed in the existing

literature.  The remainder of this thesis addresses these deficiencies with the development

of a novel hybrid dynamic model of a robotic bulldozing process and system

identification methodology which provides the framework for the development of a novel

approach to autonomous control of the robotic bulldozing operation.
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Chapter 3

Hybrid Dynamic Model Development
3.1 Introduction

This chapter focuses on the development of a novel hybrid dynamic modeling

framework of a constrained robotic bulldozing operation for the purposes of system

identification, simulation and control design.

The complete bulldozing process involves the position and orientation of the

machine (i.e. 6 degrees-of-freedom (DOF)), the position of the blade, the material

accumulation on the blade, the 3-dimensional environment (i.e. a volume of material

distributed on a hard floor), and their interaction dynamics.  In this thesis, the process is

kinematically constrained such that the machine motions are reduced to the three DOF

that characterize the primary low-level dynamic behavior of a typical bulldozing process,

specifically  the  X,  Z  and  pitch  DOF.   Similarly,  the  variation  in  the  environment  is

reduced  to  mainly  the  X  and  Z  dimensions.   The  material  to  be  pushed  consists  of

fragmented rock or stones.

Careful observations of the full scale bulldozing process have revealed that it

consists of discrete operation modes.  It is characterized by the behavior within each

mode, defined by continuous dynamics, and mode transitions that are discrete events, and

therefore belongs to the class of hybrid dynamic systems.  Several hybrid dynamic system

modeling frameworks have been developed. The framework used here is similar to the

“controlled general hybrid dynamical system” presented in Branicky et al. (1998).
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3.2 Dynamic Equations

A novel set of hybrid nonlinear dynamic system equations have been developed

that model the low-level bulldozing process.  Ten discrete operation modes have been

defined. The model structure is the same for all modes, only the parameters change. Fig.

3.1 illustrates the state variables and the auxiliary variables.  The set of system equations

are as follows:

1, 2, 3, 4, 5,a b da a da a da b da r dad v C d C h C h C h C     (3.1)

b bx v     (3.2)

2, 3, 4,
1,

1
b vb t b vb a vb

vb

v C u v C d f C
C

    (3.3)

1
b d

b

r t     (3.4)

1, 2, 3, 4,b a c bv C d C C h C h     (3.5)

1 2c zc c zc az C h C d     (3.6)

1 2 3 4sinb zb c zb zb a zbz C z C C d C     (3.7)

1 if  0
0 otherwise

f  and     (3.8)

r r bh h h     (3.9)

subject to the conditions:

, ,b min b b maxr r r (3.10)

a b c r,l r,r b ch h h h h z z 0 (3.11)
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ad  and   (3.12)

0 9bv   (3.13)

where  is the operation mode number.  The system inputs are: rb, the blade position

reference input; and tu , the track control input.  The minimum and maximum constraints

on rb are rb,min and rb,max, respectively.  The system states are: da, the depth of material

accumulation on the blade; xb, the environment X coordinate of the blade; vb, the blade

velocity in the X-direction; , the blade position; b and d, the time constant and delay

time for the blade position control, respectively;  , the robot pitch angle; zc, the elevation

of the robot centre (see point Pc in Fig. 3.1); and zb, the elevation of the robot blade (see

point Pb in Fig. 3.1).

The auxiliary variables are: hb,  the  height  of  the  material  profile  prior  to  the

current pass at location xb, averaged over the robot width; hr,l and hr,r, the heights of the

Fig. 3.1 Illustration of the state variables da, xb, zb, zc, and ; and
auxiliary variables ha, hb and hc (note that Pb=[xb zb]T and Pc=[xc zc]T).
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material  ridge  profiles  on  the  left  and  right  sides  of  the  robot,  respectively,  prior  to  the

current pass at location xb and are used to calculate the average ridge profile height hr =

½(hr,l + hr,r); ha the averaged height of the material profile prior to the current pass at

location xa = xb + a, where a is the maximum effective length of material accumulated

by the blade (i.e. the wave front of the accumulated material whereby the underlying

material profile remains undisturbed past xa); and h r, defined as the difference between

the average  height of the material  ridges that  form along the left  and right sides of the

blade minus the average profile height along the blade.

Note that the parameters Cvb1:4, , Cda1:4,  and C 1:3,  are dependent on the mode;

whereas Czc1:4 and Czb1:6 are elevation equation parameters that are independent of the

mode.  The estimation of these parameters will be discussed in Chapter 5.

Some of the terms in the dynamic equations warrant further explanation.  As Eq.

(3.13) states, for all modes except 9, the robot will be stationary or driving forwards,

therefore vb 0.   Equations  (3.1)  and  (3.5)  assume  that  the  rates  of  change  of  the

accumulation and pitch angle are proportional to vb.  This agrees with the geometry and

kinematics of the process, based on the assumption that the friction of the material is

sufficient to prevent robot or material motion when vb=0.  Multiplying by vb in Eq. (3.1)

and Eq. (3.5) captures this dynamic behavior such that the rates of change of da and

diminish to zero as vb decreases to zero.  With Eq. (3.1), from the process physics Cda1,

<0, so the term vb Cda1, da will  be  nonpositive,  and  will  tend  to  limit  the  growth  of da.

The terms vb Cda3, hb, vb Cda2, ha and vb Cda4  h r  represent the influences of the material

directly below the blade, a  ahead  of  the  blade,  and  along  the  sides  of  the  blade,
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respectively.  In Eq. (3.3), the parameters Cvb1 and Cvb2 represent the robot velocity time

constant and steady state gain, respectively. Note that the effects of track slip on the robot

velocity are implicitly included in Eq. (3.3).  The terms Cvb3, da and Cvb4,  represent the

influences of the resistances due to the material accumulated on the blade, and due to the

blade position, respectively.  In Eq. (3.5), the combined term C 3 hc + C 4 hb represents

the effect of the gradient of the material profile beneath the robot on the pitch.  In Eq. (6),

the term Czb3 sin( ) represents the change in elevation due to the robot pivoting about

point Pc.  In Eqns. (3.5) - (3.7), the terms C 1 da, Czc2 da and Czb3 da, respectively, model

the changes in the underlying material profile due to material accumulation on the blade.

3.3 Operation Modes and Transitions

The set of discrete operation modes is defined as follows (note that mode

transitions do not necessarily occur sequentially throughout the bulldozing process even

though the enumeration of the mode numbers may suggest this):

At Start 0, [vb da zc zb] = 0 ut = 0 rb = 0 p = 0: The robot is at rest in front

of the leading edge of the material pile.  The blade is positioned at a height of 0 mm (i.e.

just touching the floor surface).  All state variables are zero and control inputs are set to

zero.  This mode is shown in Fig. 3.2a.

Approach 1, vb  0 xb < xedge ut = ut,nom: The track control input is activated and

the robot drives forward.  This mode is shown in Fig. 3.2b.

Engage, 2, da > 0 zb < hthres1 xb < xedge: The robot blade makes contact with the

leading edge of the material pile and the robot continues to drive forward into the
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material pile.  Material accumulates on the blade as it is being pushed.  The robot tracks

remain in contact with the floor surface (i.e. there is no increase in robot elevation).

This mode is shown in Fig. 3.2c.  If, due to material flowing around the left and right

sides of the blade as it travels through the material, the robot tracks begin to drive up

onto the material pile (i.e. robot elevation increases) the robot will transition to another

mode.

Leveling, , zb hthres2 xb < (xedge - a) rb = fctrl,3: If the pile of underlying material

is sufficiently supportive and high (i.e. several  layers  of  stones),  the  robot  climbs  up

onto the top of the pile.  The material underneath the tracks is relatively loose,

decreasing traction, and the blade can penetrate down into the pile of material as it

pushes, increasing the amount of material being pushed.  This mode is shown in Fig.

3.2d.

Pushing , zb hthres1  zb < hthres2 ha hthres2 xb < (xedge a) rb = fctrl,4:  The

pile of material in the environment is at a negligible height (i.e. only a sparse layer of

stones) at the blade location, but a significant height of material is located ahead of the

blade, increasing the rate of material accumulation of the blade and the resistance felt by

the robot.  The blade cannot penetrate down into the stones so further blade downward

movement has no effect on accumulation. However, it will increase the resistance

against the robot due to friction.  This mode is shown in Fig. 3.2e.

Scraping, , zb < hthres2 ha < hthres2 xb < (xedge a) rb = fctrl,5: This mode is

similar to mode 4, except that no significant height of material is located ahead of the

blade.  This mode is shown in Fig. 3.2f.
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Disengage 6, da <  0 xb < (xedge a): This mode may occur if the blade is raised

above its zero position (i.e.  > 0) while an amount of material is being pushed forward.

If the material flows beneath the blade to form a small mound in front of the robot

tracks then the robot will drive up onto this local mound and its blade will become

disengaged with the underlying material.  This mode is shown in Fig. 3.2g.

Near Edge, 7, xb  (xb,edge - a) xb < xedge rb = fctrl,7: When the blade is within the

previously defined distance a from the forward edge of the environment, material

accumulation on the blade will drop off rapidly into the removal space that  is

significantly below grade.  The environment force due to material resistance will

decrease. This mode is shown in Fig. 3.2h.

Blade At Edge 8, xb = xb,edge ut = 0 p = p + 1: When the robot blade has reached

the edge of the environment, the track input is deactivated and the robot decelerates to a

stop.

Reverse 9, ut = -ut,nom  rb = rb,max: The track input is set to drive the robot in reverse

to return to the start location.  The blade position is set to its maximum height in order

to avoid dragging material backwards.

Where: p is the number of passes completed, hthres1 is  the  average  height  of  a

single layer of stones; hthres2 is the height of several layers of stones; and xedge is the

forward boundary of the environment where the removal space begins.
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Note that a blade control algorithm is initiated in modes 2 - 7 (denoted as fctrl,  ) to

accomplish the desired bulldozing process objective (e.g. minimizing the time required to

complete the bulldozing process).  For the other modes, the blade is servoed to the

specified fixed position.  The mode transition diagram is given in Fig. 3.3.

Fig. 3.2 Illustration of the discrete operating modes.



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

27

The set of mode transition conditions, , is defined as follows:

0 ,: b b startx x

1 : 0a b edge ad x x

2 1 2: b thres a thres b edge az h h h x x

Fig. 3.3 Mode transition diagram.
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3 1 2: b thres a thres b edge az h h h x x

4 2 2: 0b thres a thres a b edge az h h h d x x

5 2 2: 0b thres a thres a b edge az h h h d x x

6 2 2: b thres a thres b edge az h h h x x

7 2: a thres b edge ah h x x

8 2: b thres b edge az h x x

9 : 0ad

10 2: 0a b thres b edge ad z h x x

11 2 2: 0a b thres a thres b edge ad z h h h x x

12 2 2: 0a b thres a thres b edge ad z h h h x x

13 : 0a b edge ad x x

14 : b edgex x

15 :   0b passesx p N

3.4 Discrete-time Dynamic Prediction Model

For model parameter estimation and control design, the one-step-ahead prediction

discrete-time formulations of the da, vb and  differential equations were used.  The

discrete-time model also allows da, vb and  stochastic disturbances to be included in a

straightforward manner.  The dynamic Eqns. (3.1), (3.3) and (3.5) were discretized using
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Euler’s method.  The discrete-time equations predicting one-step ahead from the kth

sample are then as follows:

, 1 , 1, , 2, , 3, , 4, , 5, , ,
ˆ ˆa k a k s da a k da a k da b k da r k da k b k d kd d T C d C h C h C h C v w   (3.14)

2
, 1 , , 3, , 4, ,

1, 1

ˆ ˆ1 s vb
b k b k s t nom vb a k vb k v k

vb vb

T Cv v T u C d C w
C C

 and  (3.15)

1 1, , 2, 3, , 4, , , ,
ˆ ˆk s a k k c k b k b k kT C d C C h C h v w    (3.16)

 where Ts is the sampling period. da,k is the measured material accumulation, vb,k is  the

measured blade velocity in the X-direction, k is measured robot pitch, k  is the blade

position, ,ˆd kw is the expected value of the material accumulation disturbance, ,ˆ v kw  is the

expected value of the robot velocity disturbance, ,ˆ kw  is the expected value of the robot

pitch disturbance.

Regarding the remaining dynamic equations, Eq. (3.2) simply represents an

intermediate state variable which was not used explicitly, thus it was not included in the

set of discrete-time equations.  With subsequent system identification in Chapter 5 and

control design in Chapter 7, discretization of Eq. (3.4) will be addressed

3.5 Conclusions

The development of a nonlinear hybrid dynamic model of robotic bulldozing was

presented.  The model consists of a set of nine equations (three of which are nonlinear

differential equations), 10 discrete operation modes and 16 mode transition conditions.

The next chapter describes the experimental reduced-scale robotic bulldozing system that
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was used for system identification involving model parameter estimation, validation and

sensitivity analysis.
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Chapter 4

Experimental System
4.1 Introduction

This chapter describes a novel reduced-scale integrated experimental system

developed for experimental validation of the theoretical hybrid dynamics, system

identification and control implementation.

Due to the many impracticalities involved in full scale experiments (e.g. machine

cost, setup time, safety, etc.), an integrated experimental system has been developed

including an instrumented scaled-down robot bulldozer, a 0.5 m wide by 2 m long

environment containing loose material for the robot to push, a vision-based robot

localization system, and a vision-based laser scanning system for measuring the height

profile of the loose material before and after each dozing pass. The bulldozer and its

environment have been designed empirically to emulate the behavior of the full scale

process.

The emulated bulldozing task objective was to maximize the material removal rate

(MRR)  with  dynamic  blade  position  control.   This  entails  design  of  the  bulldozer  and

environment such that the optimal MRR cannot be obtained by simply fixing the blade

position at any point.  Furthermore, the emulated bulldozer and environment were

designed to constrain the process to the three DOF that characterize the primary low-level

dynamic  behavior.   An  aspect  of  the  reduced-scale  system  which  was  very  difficult  to

emulate is the effect of the robot weight with respect to the properties of the underlying
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material.  The weight of the full scale machine influences traction properties and may

cause significant compression of the underlying material.  The weight of the reduced-

scale bulldozer has less influence on traction and is insufficient to compress the

underlying material.

A  diagram  of  the  overall  experimental  environment  is  shown  in  Fig.  4.1  and

photographs are given in Fig. 4.2 and Fig. 4.3.  All of the hardware is interfaced to a PC-

based data acquisition and control system.  The dozing material is composed of loose

stones with an average size of 5 mm within a range of 4 mm to 10 mm.

The experimental setup included two computers, denoted PC1 and PC2, that were

linked via serial communication with a 115200 Baud rate.  PC1 executed the real-time

robot control loop, reading sensor measurements and sending actuator control signals.

PC1 also executed the laser mounted stepper motor control loop to synchronize the laser

scanning camera with the movement of the laser stripe.  The code executed on PC1 was

implemented in C language with National Instruments LabWindows.  PC2 interfaced with

the two cameras and executed the image processing.  For robot localization, PC2

calculated the robot heading and X-Y coordinates in units of mm.  For material profile

scanning, PC2 calculated the material profile height in units of mm.  The code executed

on PC2 was implemented in C language with Microsoft Visual Studio.
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Fig. 4.1 Diagram of the experimental robot and environment.
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Fig. 4.2 Photograph of the robot and experimental environment.
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4.2 Reduced-Scale Instrumented Robot Bulldozer

The instrumented robot is shown in Fig. 4.4. Each robot track is driven by a DC

gearmotor.  The blade actuator mechanism is composed of a leadscrew driven by a DC

motor with an integrated encoder providing feedback for closed-loop position control at a

1 kHz sampling rate.  A simple sliding-mode algorithm is used for the position control.

The blade motor encoder measurement is calibrated to measure the blade position, , in

units of mm.  A line of five range sensors (Baumer FADK 14I4470/S14) is located above

Fig. 4.3 Top view photograph of the experimental environment.

Material removal
area 150 mm below

grade

600 mm

Laser stripe zero
height reference

1500 mm
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and slightly ahead of the blade edge to measure the height of material accumulated on the

blade as material is being pushed.  The range sensor measurements are calibrated to

measure the height of material beneath them with respect to the plane of the tracks.  The

calibrated outputs are averaged to measure da in units of mm.  For this robotic bulldozer

the maximum height of material accumulation on the blade is da,max =  55  mm.    A  tilt

sensor (Crossbow CXTA02) measures the pitch angle,  in  units  of  degrees.   A

differential steering proportional-integral (PI) heading controller is used to maintain

forward  motion  along  a  straight  path  with  a  constant  heading.   In  response  to  heading

error, the controller decreases the input to one track and increases the input to the other

track by the same amount until the heading error diminishes to zero.  The maximum

velocity of this robotic bulldozer is vb,max = 92 mm/s.

Fig. 4.4 Instrumented reduced-scale robot bulldozer.

45 mm220 mm
150 mm

Range sensors

Blade actuator
with leadscrew
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4.3 Robot Localization System

The vision-based robot localization system tracks two target circles, of different

sizes,  fixed  to  the  top  of  the  robot.  A large  circle  is  positioned  above  the  centre  of  the

robot chassis and a small circle is positioned above the blade edge.  The circles are

detected in an image of the environment taken by the 1st overhead camera (see Fig. 4.2).

The position coordinates of the circle centers are used to calculate the position and

heading angle of the robot. The measured positions are used to calculate xa, xb and xc.

The robot velocity, vb, is estimated by backwards differencing the position data in units of

mm/s.  The sampling rate is 16 Hz.

4.4 Material Profile Laser Scanning System

The laser scanning system consists of a line laser, stepper motor and 2nd overhead

camera.  The system estimates the height of the profile of material from the reflected laser

light using the triangulation method to give ha, hb, hc, hr,l and hr,r in  units  of  mm.   The

beam  is  advanced  along  the  X-direction  of  the  environment  by  a  stepper  motor  that  is

synchronized with the camera.  An example of material profile data from a scan is shown

in Fig. 4.5
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4.5 Conclusions

An instrumented reduced-scale robotic bulldozer system and environment were

developed for experimental investigation of process modeling and autonomous control.

Further details of the experimental robotic bulldozing system may be found in Appendix

A.  The next chapter describes the experimental methodology and results of system

identification involving model parameter estimation, validation and sensitivity analysis.

Fig. 4.5 Example result of a material profile scan.
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Chapter 5

System Identification
5.1 Introduction

This chapter presents an experimental system identification methodology which

includes an iterative procedure of model parameter estimation based on a sensitivity

analysis to refine and validate the model proposed in Chapter 3.  The robotic bulldozing

system described in Chapter 4 was used to gather the data.

5.2 Experiments

A series of multiple pass experiments were performed to obtain the data needed

for model fitting and validation.  Recall from Chapter 3 that a completed pass is defined

as the robot beginning in mode 0, transitioning through a series of modes and ending in

mode 8.  Since open-loop control was unable to reliably maintain blade contact with the

material without the robot becoming stuck during a pass (i.e. the robot velocity decreases

to  zero  and  stays  indefinitely),  a  closed-loop  control  algorithm had  to  be  created.   This

algorithm attempts to simultaneously maintain forward motion of the robot while keeping

material on its blade.  It employs a form of switching control whereby the blade position

is increased incrementally by an amount rb when the robot speed falls below a specified

threshold, vb,thres, and the blade position is decreased incrementally by an amount rb

when the material accumulation on the blade falls below a specified threshold, da,thres.  A

time delay is introduced after blade control is initiated.  Delay-off timers T1 and T2 with

different delay periods are used depending on the direction of blade motion.  These time
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delays are introduced after blade control is initiated to provide the hysteresis needed to

avoid excessive aggressive blade motion due to measurement noise.  The rule-based blade

control algorithm is defined in Table 5.1.

Table 5.1 Rule-based blade control algorithm.

1. WHILE b edgex x

2. IF , , T1a a thresh b b thresd d v v
3. b b br r r
4. ENABLE T1
5. ENDIF
6. IF , T2b b thresv v
7. b b br r r
8. ENABLE T2
9. ENDIF
10. ENDWHILE

Delay-off periods of 0.1 s and 0.5 s were found experimentally to be suitable for

T1 and T2, respectively. The manually tuned rule-based controller parameters were:

da,thres =  35  mm, vb,thres =  50  mm/s  and  rb =  1  mm.   All  of  the  experiments  were

performed using this control algorithm with a control sampling rate of 16 Hz.  The da , vb

and  signal measurements were digitally filtered online with a 2nd order Butterworth

low-pass filter with a 1 Hz cutoff.

The initial material coverage conditions were intended to make modes 1 - 5 and 7

active over multiple bulldozing passes.  This was done since models of modes 2 - 5 and 7

are necessary for development of model-based control.  The importance of modeling

mode 1 is explained in Section 5.3.  Note that multiple passes are realistic for full scale

bulldozing, and produce greater process variation than possible with a single pass, as will
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be shown later in this section.  Another factor in the design of the initial coverage was to

inhibit  any  tendency  of  the  robot  to  roll  and  to  limit  pitch  to  less  than  ±10o.   Thus  the

initial distribution was flat and level laterally (i.e. constant height along the Y-direction),

and restricted in height so that relatively steep slopes did not develop.  Indeed, if the pitch

is large enough the bulldozer could possibly slide backwards which would violate Eq.

(3.13).

Each set of multiple passes will be termed a trial. The trials consisted of initially

setting up the material in a structured pile.  Simple pile structures were used so that the

initial conditions of each trial could be made consistent.  The robot blade location, xb, was

located 0.2 m away from the leading edge of the pile, xp, at the start of each pass. Two

versions of initial material pile structure were used: (a) uniform nominal height of 20 mm

and length of 1.1 m, covering to the edge of the environment; and (b) uniform nominal

height of 20 mm and length of 0.7 m, with no material covering the remaining 0.4 m of

the environment.  The second version was used to introduce greater variation in the

overall  process  to  induce  a  wider  range  of  dynamic  behavior.   For  each  initial  pile

structure, the robot performed multiple passes through the material to complete each trial.

Before and after each pass the material height profile was measured with the laser

scanning system.  Even if the initial height profile was relatively flat, each bulldozing

pass produces significant height variations due to the nondeterministic nature of the

process.  An example of the average material profile height along the robot path prior to

the first bulldozing pass, after two passes and after four passes is shown in Fig. 5.1.  The

graphs show that while the initial height profile stays close to 20 mm, after two passes it
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varies from 3 to 26 mm.  After four passes the lack of material remaining on the floor

caused a reduction in the height variation.

The experimental  data sets include eight trials of four passes with the initial full

coverage condition (material  pile  structure  (a))  and  eight  trials  of  four  passes  with  the

initial partial coverage condition (material pile structure (b)).   Different modes and

sequences of modes became active in each pass due to the natural variation of the process.

Each trial was stopped after four passes since the remaining material was insufficient to

excite the dynamics of the chosen modes.

The experimental data was divided into two sets. One was used for model fitting

and  the  other  for  model  validation.   The  model  fitting  data  was  composed  of  six  trials

with the initial full coverage condition and six trials with the initial partial coverage

Fig. 5.1 Example of the average material profile height along
the robot path after zero, two and four passes.
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condition.  The model validation data was composed of two trials with the initial full

coverage condition and two trials with the initial partial coverage condition.

5.3 Model Fitting and Validation

5.3.1 Mode Transition Parameter Determination

The set of mode transitions, , requires knowledge of hthres1, hthres2 and a.  The

value of hthres1 should be determined by measuring the average height of a single layer of

stones (or other fragmented material).  A value of hthres1 = 5 mm was found for the

experimental environment using the laser scanning system.  Due to friction between the

stones and the floor and the irregular contact interfaces between the stones, the robot

blade cannot penetrate a single uniform layer of stones.  The value of hthres2 should be

determined by measuring the average minimum height of several layers of stones, layered

such that the robot blade can penetrate downward into at least two layers of stones above

the single base layer of stones in contact with the floor.  A value of hthres2 = 10 mm was

measured for the experimental environment.  The value of a should be determined using

the  following  procedure.  The  robot  is  driven  forwards  on  top  of  a  flat  pile  of  stones  of

approximate height equal to hthres2 with the robot blade at a nominal downward position of

rb =  – hthres1 so that it can penetrate the stones and accumulate material on the blade.

Once it is observed that the material accumulation on the blade, da, has reached its steady

state maximum height the robot should be stopped.  The value of a is then found by

measuring the distance from the edge of the robot blade to the furthest edge of the mound
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of material pushed ahead.  A value of a = 150 mm was found for our experimental

environment.

5.3.2 Elevation Model Parameter Estimation

Before fitting a complete dynamic model of the bulldozing process, it is necessary

to estimate the elevations of the robot [zb zc] throughout each pass since they are not

directly measured.  The estimated elevations will be used to identify the mode transitions

in  Section  5.3.3.   The  elevation  estimation  equations  can  also  be  used  as  an  on-line

observer to determine the mode transitions required for implementation of model-based

control.

The robot elevations were estimated from the measurements of da, xb, , , hb and

hc.  Assuming negligible disturbance of the underlying material profile after the blade has

passed, the elevations zb and zc are approximately equal to the profile heights measured in

the post-pass laser scan at locations xb and xc (i.e. the material profile along the path of the

robot after a pass is an approximate measure of the robot elevation at each location during

the pass).

The parameters for each elevation estimation equation are determined by

minimizing the sum of the squared errors between the measured profile height and the

predicted elevation value over the entire experimental data set.  A global sampling-based

search algorithm is used to solve the least squared error optimization problem. Details of

the search algorithm are described in Perttunen et al. (1993). The Matlab code used to

implement this search algorithm can be found at Finkel (2004).  The parameter estimation

optimization problem for each of Eqs. (3.6) and (3.7) is:
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,argminz sum z ze     (5.1)

subject to 2
,

1

fit
sN

sum z est meas
i

e z i h i     (5.2)

where z is the parameter vector, zest is the elevation variable, hmeas is the corresponding

post-pass measured height, and fit
sN  is the number of points in the fitting data set.  For

Eq. (3.6): z = [Czc1 Czc2] and zest = zc.  For Eq. (3.7): z = [Czb1 Czb3 Czb4 Czb5] and zest = zb.

Assuming the robot pivots about its centre point, the parameter Czb2 represents the

distance from the robot centre to the edge of the blade when the blade is in the zero

position (i.e. from Pc to Pb in Fig. 3.1) so it was fixed to the measured value of 177 mm.

The root-mean-square errors (RMSE) of the estimated elevations are 2.0 mm and 5.3 mm

for zc, and zb, respectively.  An example of the estimated zb is shown in Fig. 5.2.  The

elevation estimation equation parameters are tabulated in Table 5.2.

Fig. 5.2 Example of robot elevation estimation.
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Table 5.2 Elevation estimation equation parameters.

5.3.3 Hybrid Dynamic Model Parameter Estimation

The experimental fitting data was categorized into segments based on the mode

transition criteria (i.e.  from Chapter 3) so the mode-dependent parameters of the

dynamic equations could be estimated.  Using this segmented set of experimental fitting

data, the parameters of the remaining discretized state equations (i.e. Eqs. (3.14), (3.15)

and (3.16)) were determined for each mode by minimizing the sum of the squared error

between the measured state value and the predicted state value.  A one-step-ahead

prediction was used with each equation.   The same global search algorithm and Matlab

code as the previous section was used to solve the least squared error optimization

problem.

The parameter estimation optimization problem for each mode segment of the

data set is:

, ,arg minx sum xfit xe     (5.3)

subject to
, , 1

2

, ,
1

1 1
fit
s totalN

fit fit
sum xfit pred meas

i
e x i x i     (5.4)

1 ,fit fit other
pred xfit meas measx i f x i x i     (5.5)

Parameter
Czc1

[mm/mm]
Czc2

[mm/mm]
Czb1

[mm/mm]
Czb2

[mm]
Czb3

[mm/mm]
Czb4

[mm/mm]
0.96 -0.11 0.32 177 0.062 -0.37
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where x is the parameter vector (e.g. to fit Eq. (3.14) to mode 5 data, x=[Cda1,5 Cda2,5

Cda3,5 Cda4,5 Cda5,5]), i is the sample number, xfit is the state variable to be fit with function

fxfit(·), xother are the other state variables in the equation, and , ,
fit

s totalN  is  the  number  of

points in the segmented fitting data set per mode .  Measurement values are denoted

xmeas and predicted values are denoted xpred.   The parameters of modes 1 -  5 and 7 were

estimated.  The total number of samples per mode within the model fitting data set and

the model validation data set are given in Table 5.3.

Table 5.3 Total number of samples per mode within the experimental data set.

Mode Number, 
1 2 3 4 5 7

Samples, model fitting set 3150 1533 2774 1255 2075 1465

Samples, model validation set 1625 712 1097 645 1244 693

Note that some of the parameters required special treatment.  In mode 1, the robot

is simply driving forward on the flat clean floor surface so the only significant parameters

of all the dynamic equations are Cvb1,1 and Cvb2,1 which represent the robot velocity time

constant and steady state gain.  All other parameters were set to zero in mode 1.  For the

remaining modes the parameters Cvb1 and Cvb2 were fixed to equal C vb1,1 and Cvb2,1.   In

modes 2, 4 and 5 the robot blade position is constrained by the hard floor surface, thus for

any 0 material will accumulate on the blade.  Therefore, for these modes parameter

Cda5 was set to zero. In mode 7, the height of material ahead, ha, is undefined since the

removal space is significantly below grade so parameter Cda2,7 was set to zero.
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A total of 52 parameters were estimated.  The total elapsed time to estimate the

model parameters was 403 seconds running on an Intel T7100 1.80 GHz processor with 2

GB RAM.  Note that since d and r are  much smaller  than  the  sampling  period  of 1
16 s

they were not included.

5.3.4 Dynamic Model Validation

The model was validated with the data from the four trials of the validation data

(i.e. 16 passes). The mode transitions were determined as in model fitting.  The relative

model fit was calculated for each state and mode as follows:

,

,

2

1
,

2

,
1

% 100 1

val val
s seg p

val val
s seg p

N N
val val

pred p meas p
i

x seg
N N

val
meas p meas seg

i

x i N x i N
fit

x i N x

and (5.6)

,

, ,
1

,
,

%
%

val
segN

val
s j x j

j
x val

s total

N fit
fit

N
(5.7)

where predx is the val
pN -steps-ahead predicted state, measx is the state

measurement, ,
val
s totalN  is the total number of mode-segmented samples in the validation

data, ,
val
s segN  is  the  total  number  of  samples  within  a  particular  mode  segment  of  the

validation data, ,meas segx is the mean of the state measurements within a particular mode

segment of the validation data, and ,
val
segN  is  the  number  of  mode  segments  within  the

validation data.
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The relative fit was calculated with the validation set for each of the mode

dynamics.  The relative fit averaged over modes 2 - 5 and 7 is listed in Table 5.4.  After

the system identification procedure generated a set of estimated parameters a global

sensitivity analysis was used to refine the model.  In addition to the parameters known to

be zero, the sensitivity analysis showed that other parameters contributed negligibly to the

dynamics.  These parameters were removed and the system identification procedure was

repeated.  The validation and sensitivity analysis was also repeated to confirm that these

parameters could be removed without significantly affecting the model fit.  The

sensitivity analysis is described in the next section.
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Table 5.4 Model validation relative fit over different prediction horizons for modes 2-5

and 7.

Relative Fit (%)

Mode, State Np,val = 1 Np,val = 2 Np,val = 3

2

da 85.1 70.3 56.1
vb 73.0 49.9 31.0

86.5 75.1 66.0

3

da 90.3 81.2 72.7
vb 76.6 57.5 42.9

80.3 63.8 51.2

4

da 92.4 85.5 79.4
vb 76.2 56.1 40.3

65.3 36.3 15.0

5

da 88.9 78.6 69.3
vb 74.6 53.5 37.2

71.1 46.8 28.5

7

da 77.0 58.5 43.3
vb 73.0 50.5 33.3

63.2 32.7 10.5

Average

da 86.8 74.8 64.2
vb 74.7 53.5 37.0

73.3 50.9 34.2

5.4 Sensitivity Analysis

In  general,  global  sensitivity  analysis  (GSA)  methods  evaluate  the  effect  of  a

parameter while all other parameters are varied simultaneously.  A sensitivity index is a
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number that gives quantitative information about the relative sensitivity of the model to

the selected parameters.  The Sobol GSA method is a variance-based sensitivity analysis

approach presented in Sobol (2001).  This method is based on the decomposition of the

variance of the model output function 1 2, , , Nf f  with parameter vector

into summands of variances in combinations of input parameters in increasing

dimensionality as follows:

0 12 1 2
1 1 1

, , , ,
N N N

i i ij j k N N
i i j i

f f f f f    (5.8)

Where  is the parameter set and N  is the number of parameters.

For any subset of parameters
1 2
, , ,

si i i  with indices 11 si i N , the total

variance, D , is defined as:

1

11
s

s

N N

i i
s i i

D D   (5.9)

Where the partial variances,
1 2 si i iD , are:

1 2 1 2 1 2 1 2

1 2

0
, , , d ,d , ,d

s s s si i i i i i i i i i i iD f   (5.10)

The Sobol sensitivity indices,
1 2 si i iS , are calculated by:

1 2

1 2

s

s

i i i
i i i

D
S

D
  (5.11)

Where
1 2 si i iS gives the fraction of the total variance which is apportioned to the individual

model parameters or combination of them.  For example, i iS D D quantifies the
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contribution of the parameter i  to the output variance.  It can be shown that all
1 2 si i iS

are nonnegative and add up to one as follows:

1 2, , , 1,2, ,
1 1

1
s

N

i i i j ij N
i i j N

S S S S   (5.12)

An  extension  of  the  Sobol  sensitivity  indices  proposed  by  Homma  and  Saltelli

(1996) is the total effect sensitivity index to measure the mutual interactions of

parameters.  The total effect index with respect to parameter j  is defined as:

1 2, , ,1
s

k

T
j i i i

i j
S S   (5.13)

Where the summation is taken over all the different groups of indices that do not include

j.   The  total  effect  sensitivity  index  quantifies  the  overall  effects  of  a  parameter,  in

combination with other parameters on the model output.

An extension for a time-varying function ,f tx , involves computing the

sensitivity indices at each measurement or sample time point, then calculating the average

of all of the T
iS t  over the simulated trajectory for each parameter as follows:

1

1 tN
T
i ij k

kt

S S t
N

  (5.14)

Where tN  is the number of samples in the simulated trajectory.

The Sobol GSA method was used to confirm the significance of the parameters in

the dynamic model.  The Matlab toolbox used to calculate the Sobol sensitivity indices is

described in Rodriguez (2010).
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The sensitivity analysis was completed for the da, vb and  state dynamic

equations.  For each state equation a set of mean total effect sensitivity indices,
,i

TS , were

calculated for parameter ,i  and mode  over a simulated trajectory of the dynamics

with sample time increments equal to the experimental sample period Ts = 0.0625 s.  The

parameter Cvb2 was not included in the sensitivity analysis because it is a fundamental

property  of  the  robot  velocity  dynamics  (i.e. the steady state gain) with negligible

uncertainty.  Each mode was simulated with its corresponding set of equation parameters

independent of the other modes (i.e. no switching between modes throughout a simulated

trajectory).  Each simulated trajectory terminated at 14 seconds.  Piece-wise constant

values for the blade position input and auxiliary variables, rb, hb, ha and hr, were changed

at times trb, thb, tha and thr, respectively.  The simulated trajectory blade position inputs and

auxiliary variables for each mode are tabulated in Table 5.5.  The same initial conditions

da =  0  mm, vb =  92  mm/s  and  =  0  degrees  were  used  for  the  simulation  of  all  mode

trajectories.

Table 5.5a Simulated trajectory blade position inputs and auxiliary variables for mode 2.

Mode, 
trb

(s)
rb

(mm)
tha

(s)
ha

(mm)
thb

(s)
hb

(mm)
thr

(s)
hr

(mm)

2

0 0 0 10 0 0 0 5
2 -5 3 5 1 5 1 6
4 5 4 15 3 15 2 30
6 -10 5 5 5 10 4 11
8 0 9 15 7 5 5 15
10 -15 10 5 9 15 7 20
12 10 12 10 11 10 10 11
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Table 5.5b Continuation of the simulated trajectory blade position inputs and auxiliary

variables for mode 3.

Mode, 
trb

(s)

rb

(mm)

tha

(s)

ha

(mm)

thb

(s)

hb

(mm)

thr

(s)

hr

(mm)

3

0 0 0 15 0 10 0 15
2 -5 3 10 1 15 1 16
4 5 4 20 3 10 2 25
6 -10 5 10 5 15 4 16
8 0 9 20 7 20 5 30
10 -15 10 15 9 10 7 15
12 10 12 10 11 15 10 11

Table 5.5c Continuation of the simulated trajectory blade position inputs and auxiliary

variables for mode 4.

Mode, 
trb

(s)

rb

(mm)

tha

(s)

ha

(mm)

thb

(s)

hb

(mm)

thr

(s)

hr

(mm)

4

0 0 0 20 0 5 0 15
2 -5 3 15 1 7 1 8
4 5 4 25 3 5 2 30
6 -10 5 10 5 10 4 25
8 0 9 25 7 25 5 10
10 -15 10 15 9 15 7 6
12 10 12 10 11 10 10 25
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Table 5.5d Continuation of the simulated trajectory blade position inputs and auxiliary

variables for mode 5.

Mode, 
trb

(s)

rb

(mm)

tha

(s)

ha

(mm)

thb

(s)

hb

(mm)

thr

(s)

hr

(mm)

5

0 0 0 5 0 55 0 15
2 -5 3 10 1 7 1 22
4 5 4 7 3 10 2 35
6 -10 5 10 5 7 4 17
8 0 9 5 7 10 5 15
10 -15 10 5 9 5 7 5
12 10 12 10 11 7 10 12

Table 5.5e Continuation of the simulated trajectory blade position inputs and auxiliary

variables for mode 7.

Mode, 
trb

(s)

rb

(mm)

tha

(s)

ha

(mm)

thb

(s)

hb

(mm)

thr

(s)

hr

(mm)

7

0 0 0 0 0 10 0 15
2 -5 3 0 1 5 1 6
4 5 4 0 3 10 2 25
6 -10 5 0 5 15 4 16
8 0 9 0 7 20 5 30
10 -15 10 0 9 5 7 10
12 10 12 0 11 15 10 16

After the first iteration of system identification, if the sensitivity of a parameter

was less than 0.01 and the estimated value of that parameter was small relative to those of

the other modes, that parameter was set to zero in the second iteration of system

identification.
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The parameters found after the second iteration of system identification are

tabulated in Table 5.6.  The results of the sensitivity analysis after the second iteration of

system identification are tabulated in Table 5.7.

Table 5.6a Hybrid dynamic model estimated parameters of the da and vb dynamic

equations for modes 2-5 and 7.

Parameter

Mode, 
Cda1

(mm-1)

x10-3

Cda2

(mm-1)

x10-3

Cda3

(mm-1)

x10-3

Cda4

(mm-1)

x10-3

Cda5

(mm-1)

Cvb1

(s)

Cvb2

(mm s-1)

Cvb3

(s-2)

Cvb4

(s-2)

2 -4.2 8.9 5.7 -6.8 * 0.92 2.3 -1.4 5.6
3 ** 5.1 -7.5 ** -0.013 0.92 2.3 -1.1 1.7
4 -5.4 ** 1.6 12 * 0.92 2.3 -1.8 2.6
5 -1.9 5.1 3.1 2.1 * 0.92 2.3 -1.0 3.6
7 ** * -17.6 3.2 ** 0.92 2.3 -0.9 4.0

* Removed based on known system conditions
** Removed based on sensitivity analysis
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Table 5.6b Continuation of the hybrid dynamic model estimated parameters of the

dynamic equation for modes 2-5 and 7.

Parameter

Mode, 
C 1

(o/mm)
x10-4

C 2

(o/mm)
x10-4

C 3

(o/mm)
x10-4

C 4

(o/mm)
x10-4

2 ** -41 18 **
3 3.1 18 -9.0 2.7
4 4.5 -7.6 5.3 14
5 2.4 -6.1 -9.4 -2.0
7 1.4 2.3 3.4 4.4

* Removed based on known system conditions

** Removed based on sensitivity analysis

Table 5.7a Sensitivity  analysis  results  for  the  estimated  parameters  of  the da and vb

dynamic equations for modes 2-5 and 7.

Sensitivity Index

Mode, SCda1 SCda2 SCda3 SCda4 SCda5 SCvb1 SCvb3 SCvb4

2 0.14 0.49 0.17 0.2 N/A 0.47 0.15 0.38
3 < 0.01 0.32 0.54 < 0.01 0.13 0.41 0.22 0.37
4 0.52 < 0.01 0.12 0.36 N/A 0.54 0.3 0.16
5 0.38 0.3 0.12 0.2 N/A 0.52 0.34 0.14
7 < 0.01 N/A 0.93 0.07 < 0.01 0.23 0.57 0.2
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Table 5.7b Continuation of the Sensitivity analysis results for the estimated parameters of

the dynamic equation for modes 2-5 and 7.

Sensitivity Index

Mode, SC 1 SC 2 SC 3 SC 4

2 < 0.01 0.07 0.93 < 0.01
3 0.03 0.17 0.7 0.1
4 0.51 0.03 0.06 0.4
5 0.11 0.12 0.29 0.48
7 0.5 0.01 0.2 0.29

From the first iteration of system identification and subsequent sensitivity

analysis, the parameters Cda1,3, Cda2,4, Cda4,3, Cda5,7 were determined to provide negligible

contribution to the material accumulation dynamics.  Also, the parameters C 1,2, C 4,2

were shown to provide negligible contribution to the robot pitch dynamics.  The model

validation relative fit calculated for the second iteration refined model was nearly

identical to the fit of the first iteration model (less than 1% change in the relative fit

values), confirming the validity of removing the selected parameters.

A simulation of the deterministic da, vb and  dynamics  with  the  refined  set  of

parameters and the full set of parameters is shown in Fig. 5.3 for different modes,

different values of rb and material profile heights, where hr,l = hr,r = hr.  These simulation

results confirm the expected dynamic behavior discussed in Chapter 3.  The simulation

results also further reinforce the validity of the refined model.
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Fig. 5.3 Simulation of state dynamics with refined and full sets of estimated
parameters.
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Some observations of the more interesting aspects of the state dynamics will now

be presented, beginning with mode 4.  This mode is characterized by a significant amount

of material located a ahead  of  the  robot  (i.e. ha > hthres2). The material ahead acts to

support the material accumulated on the blade causing a more rapid increase in da. This is

reflected by |Cda1,4| being greater than both |Cda1,2|  and  |Cda1,5|.  However, the material

ahead does not directly influence the accumulation dynamics, as indicated by the

insignificance of Cda2,4.  This suggests that the rate of accumulation is not affected when

the depth of material ahead exceeds hthres2.   In  modes  3  and  7,  the  positive  values  of

parameters C 2,3 and C 2,7 implies that within these modes, the robot  effectively follows

the blade as it penetrates down into the depth of the material below.  For the other modes,

since the blade is constrained by the hard floor surface, making  negative will tend to lift

the front end of the robot, increasing its pitch and resulting in negative C 2,  values.

The measured and val
pN = 3 predicted values of da, vb, and zb from one of the 16

validation passes are shown in Fig. 5.4.  This example was selected to show a range of

active modes throughout a pass, and also demonstrates the quality of the predictions when

a longer prediction horizon is used.  Note that the one-step-ahead and two-step-ahead

predictions (i.e. val
pN =  1  and val

pN =  2)  are  not  shown  since  they  are  not  visually

discernible from the measured values.  The plots in Fig. 5.4 also confirm the general

trends of the process dynamics discussed in Chapter 3.  For example, a decrease in rb

causes a decrease in vb and an increase in da, and vice-versa.  It is also apparent that vb

responds more rapidly than da to a change in rb.
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Fig. 5.4 Measured and predicted states for a 3-step ahead prediction horizon, rb and
for one pass of the validation data set.
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5.5 Conclusions

A series of system identification experiments were performed with a rule-based

blade control algorithm implemented.  The parameters of the dynamic equations were

estimated using one-step-ahead predictions for operation modes 1-5 and 7.  A global

sensitivity analysis was performed to determine the relative contribution of each

parameter and refine the model.  The refined model was validated using a separate data

set.  The next chapter will present the design of an extended Kalman filter based on the

identified state dynamic equations; and the statistics of the state process disturbances.
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Chapter 6

Extended Kalman Filter Design
6.1 Introduction

This chapter presents the design of an extended Kalman filter (EKF) using the da ,

vb  and  dynamic equations to reduce the errors in the state estimates relative to the

system states due to the combination of process noise or disturbance and measurement

noise.  The one-step prediction error variance was used in the EKF measurement noise

covariance matrix.  The values of the EKF process noise covariance matrix were tuned

manually. The smoothing behaviour of the Kalman filter was then compared to the

performance of the 2nd order 1 Hz Butterworth lowpass filter used in Chapter 5.

6.2 Extended Kalman Filter Design

The purpose of the EKF is to obtain estimates of system states defined by

nonlinear dynamics based on measurements Simon (2006).  For a discrete nonlinear

system of the form:

1 1 1,k k k kfx x u w  and     (6.1)

k k khz x v     (6.2)

Where, kx is the state vector, ku is the input vector, kw is the zero mean multivariate

Gaussian process noise or disturbance vector, kz is the output vector, kv is the zero mean

multivariate Gaussian measurement noise vector, f is the function predicting the one step-

ahead system state dynamics and h is the system output function.
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The recursive EKF equations at the kth sample take the form:

| 1 1| 1 1ˆ ˆ ,EKF EKF
k k k k kfx x u    (6.3)

| 1 | 1 1| 1 | 1

TEKF EKF EKF EKF EKF
k k k k k k k kP F P F Q     (6.4)

| 1ˆEKF EKF
k k k khy z x     (6.5)

|

TEKF EKF EKF EKF EKF
k k k k kS H P H R     (6.6)

1

| 1

TEKF EKF EKF EKF
k k k k kK P H S     (6.7)

| | 1ˆ ˆEKF EKF EKF EKF
k k k k k kKx x y     (6.8)

| | 1
EKF EKF EKF EKF

k k k k k kP I K H P     (6.9)

1| 1 1

1
ˆ ,EKF

k k k

EKF
kF f

x ux
 and   (6.10)

| 1ˆ EKF
k k

EKF
kH h

xx
  (6.11)

where, | 1ˆ EKF
k kx  is the predicted state vector estimate from the extended Kalman filter, | 1

EKF
k kP

is the predicted estimate covariance, EKFQ is the process noise or disturbance covariance

matrix, EKFR is the measurement disturbance covariance matrix, EKF
kK is the Kalman filter

gain, EKF
ky is the innovation residual, EKF

kS is the innovation covariance, |ˆ EKF
k kx is the

updated state estimate, |
EKF

k kP is the updated estimate covariance, 1
EKF

kF is the state

transition matrix, EKF
kH is the observation matrix.  The EKF is implemented by

performing the following procedure at each sample k
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1.  Compute the state partial derivative matrix 1
EKF

kF  using Eq. (6.10)

2.  Perform the time update of the state estimate, | 1ˆ EKF
k kx , using Eq. (6.3)  and

estimation-error covariance | 1
EKF

k kP  using Eq. (6.4).

3.  Compute the observation partial derivative matrix, EKF
kH , using Eq. (6.11).

4.  Compute the Kalman filter gain, EKF
kK , using Eq. (6.7)

5.  Perform the measurement update of the state estimate, |ˆ EKF
k kx , using Eqs. (6.5)

and (6.8) and estimation-error covariance, |
EKF

k kP , using Eq. (6.9).

For the robotic bulldozing process, using the discrete-time da, vb and  system

equations, Eqs. (3.14)-(3.16), the predicted EKF state estimation vector takes the form:

, | 1

| 1 , | 1

| 1

, 1| 1 1, , 1| 1 2, , 1 3, , 1 4, , 1 5, 1 , 1| 1

, 1| 1
1,

ˆ

ˆ ˆ
ˆ

ˆ ˆ ˆ

ˆ1

a

EKF
a k k

EKF EKF
k k b k k

EKF
k k

EKF EKF EKF
a k k s da a k k da a k da b k da r k d k b k k

EKFs
b k k

vb

d
v

d T C d C h C h C h C v

T v
C

x

2,
, 1 3, , 1| 1 4, 1

1,

1| 1 1, , 1| 1 2, , 1 3, , 1 4, , 1 , 1| 1

ˆ

ˆˆ ˆ

vb EKF
s t k vb a k k vb k

vb

EKF EKF EKF
k k s a k k b k c k b k b k k

C
T u C d C

C

T C d C u C h C h v

  (6.12)

The resulting updated EKF state estimate takes the form:

, | 1

| , | 1

| 1

ˆ

ˆ ˆ
ˆ

EKF
a k k

EKF EKF EKF EKF
k k b k k k k

EKF
k k

d
v Kx y   (6.13)

with the innovation residual taking the form:

| 1ˆEKF EKF
k k k ky z x   (6.14
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and the EKF output vector is:

,

,

meas
a k
meas

k b k
meas

k

d
vz  (6.15)

where ,
meas
a kd , ,

meas
b kv  and meas

k  are the unfiltered state measurements.

Taking the partial derivatives of the state prediction equations, the corresponding EKF

state transition matrix is:

1, , 1| 1 1, , 1| 1 2, , 1 3, , 1 4, , 1 5, 1

1 3,
1,

1, , 1| 1 1, , 1| 1 2, 1

ˆˆ1 0

1 0

ˆˆ

EKF EKF
s da b k k s da a k k da a k da b k da r k da k

EKF s
k s vb

vb

EKF EKF
s b k k s a k k k

T C v T C d C h C h C h C

TF T C
C

T C v T C d C 3, , 1 4, , 1 1c k b kC h C h

  (6.16)

and the EKF observation matrix is:

1 0 0
0 1 0
0 0 1

EKF
kH   (6.17)

Assuming independent process noise or disturbance characteristics between states, the

mode-dependent process noise or disturbance covariance matrix is defined as:

2
, ,

2
, ,

2
, ,

0 0
0 0
0 0

w da
EKF

w vb

w

Q   (6.18)

The mode-dependent measurement noise covariance matrix is defined as:

2 2 2
, , , , , ,

2 2 2
, , , , , ,

2 2 2
, , , , , ,

v da v davb v da
EKF

v vbda v vb v vb

v da v vb v

R   (6.19)
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The measurement noise covariances of the state dynamics for each mode were

determined using the one-step prediction errors of the unfiltered mode-segmented set of

experimental fitting data.  The measurement noise covariances 2
, ,v xy  were calculated for

the states x and y and mode  as follows:

, , 1
2
, , , , , ,

1, ,

1 1 1
1 1

fit
s totalN

v xy x x y yfit
is total

e i e e i e
N

  (6.20)

, 1 1 1unfilt unfilt unfilt
x pred mease i x i x i  and   (6.2`)

, , 1

, ,
1, ,

1 1
1

fit
s totalN

unfilt
x xfit

is total

e e i
N

  (6.22)

where, i is  the  sample  number; , ,
fit

s totalN  is  the  number  of  points  in  the  segmented  fitting

data  set  per  mode  ; ,
unfilt
xe is the prediction error of state x between the unfiltered

measurement values, denoted unfilt
measx , and the values predicted from the unfiltered

measurements, denoted unfilt
predx ; and ,

unfilt
xe is the mean prediction error of state x from

unfiltered measurements.  It was assumed that these prediction errors were predominantly

due to the measurement noise.  The measurement disturbance covariances of the da, vb

and  state dynamics are tabulated in Table 6.1.
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Table 6.1 Measurement disturbance covariances of the da , vb  and   state dynamics for

each mode.

Measurement disturbance covariance

Mode, 2
, ,v da

2
, ,v davb

2
, ,v da

2
, ,v vbda

2
, ,v vb

2
, ,v vb

2
, ,v da

2
, ,v vb

2
, ,v

1 1.3 0.43 0.019 0.44 71 1.9 0.019 1.91 0.92
2 3.1 1.4 -1.1 1.4 378 12 -1.1 12 12
3 1.7 -0.91 -0.48 -0.91 241 4.9 -0.47 4.9 4.1
4 0.91 -0.50 -0.71 -0.50 354 6.1 -0.71 6.1 6.7
5 2.2 -0.67 -1.1 -0.67 509 9.3 -1.1 9.3 11
7 2.4 -2.0 -0.59 -2.0 444 5.8 -0.59 5.8 10

The values of the mode-dependent process noise or disturbance variances, 2
, ,w da , 2

, ,w vb

and 2
, ,w were selected manually and are tabulated in Table 6.2.

Table 6.2 Process noise or disturbance variances of the da , vb  and  state dynamics for

each mode.

Process noise or disturbance variance

Mode, 2
, ,w da

2
, ,w vb

2
, ,w

1 0.2 10 0.05
2 0.2 50 0.3
3 0.1 50 0.5
4 0.1 50 0.5
5 0.1 50 0.5
7 0.2 60 0.2

An example of the da , vb  and  state measurements filtered with the EKF and a 2nd order

1 Hz Butterworth low-pass filter is shown in Fig. 6.1.  In terms of smoothing behaviour,

the performance of the EKF is similar to the performance of the low-pass filter. The main
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advantages  of  the  EKF  are  that  less  delay  is  introduced  in  the  filtered  signal,  and  the

design is based on parameters that are more physically quantifiable (i.e. variance of the

prediction error).
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Fig. 6.1 Example of the da, vb  and  state measurements filtered with the EKF and a
2nd order 1 Hz Butterworth low-pass filter.
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6.3 Residual Disturbance Model

The residual disturbances of the EKF filtered state measurements were modeled as

zero mean Gaussian stochastic processes.  The disturbances were determined using the

one-step ahead prediction error from the EKF filtered mode-segmented data sets, similar

to the previous section.  The residual disturbance model for each state x and mode  takes

the form

, , ,ˆ EKF
x x wxw i e i   (6.23)

where ,
EKF EKF EKF
x pred mease i x i x i , for samples i = 2, 3, … , , ,

fit
s totalN ; ,wx is a Gaussian

distribution with standard deviations , ,wx ; , ,
fit

s totalN  is the number of points in the

segmented fitting data set per mode ; ,
EKF
xe is the prediction error of state x between the

EKF filtered measurement values, denoted EKF
measx , and the values predicted from the EKF

filtered measurements, denoted EKF
predx .  The residual disturbance standard deviations of the

EKF filtered da , vb  and  state dynamics are tabulated in Table 6.3.
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Table 6.3 Residual disturbance standard deviations of the EKF filtered da, vb  and  state

dynamics for each mode.

Mode, State , ,wx

1
da 0.42
vb 2.82

0.36

2
da 0.37
vb 3.1

0.36

3
da 0.39
vb 3.6

0.36

4
da 0.35
vb 3.9

0.37

5
da 0.37
vb 3.5

0.34

7
da 0.38
vb 3.6

0.33

6.4 Conclusions

An extended Kalman filter (EKF) was designed using the da , vb  and  dynamic

equations.  The smoothing behaviour of the EKF is similar to the performance of the 2nd

order 1 Hz Butterworth lowpass filter used in Chapter 5. The main advantage of the

Kalman filter is that less delay is introduced in the signal and tuning is more flexible with

more meaningful parameters.  The EKF was implemented within the experimental data

acquisition and control system for subsequent experimental investigations.  The residual
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disturbances were modeled as zero mean Gaussian distributions.  The residual disturbance

models are used in Chapter 9 for a simulation analysis of the stochastic dynamics.

The next chapter presents the development of a control method for the robotic

bulldozing operation based on the hybrid dynamic model presented in Chapters 3 and 5.
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Chapter 7

Control Design
7.1 Introduction

This  chapter  describes  the  development  of  a  control  method  for  the  robotic

bulldozing operation based on the hybrid dynamic model presented in Chapter 3.  To

address the overall bulldozing task objective of maximizing the material removal rate,

different control laws were designed for the unique dynamics of each mode.  Thus as the

mode transitions are identified throughout task execution, the mode-specific blade control

law is activated.  Since the material removal rate primarily depends on da and vb, only

those states are controlled.  The EKF estimates of da and vb given by Eq. (6.13) are

employed by the controller.

7.2 Optimal Blade Control Design for Modes  = 2-5 and 7

Optimal blade position control laws were designed for modes  = 2-5 and 7 that

perform the majority of the material removal.  The control objective is focused on

enhancing productivity by maximizing the material removal rate.

7.2.1 Condensed Discrete-time Prediction Model

The discrete-time one-step ahead prediction formulations of the da and vb

equations from Chapter 3 were used.  The equations Eq. (3.14) and Eq. (3.15) are

reformulated here in a condensed form.  For brevity, the underlying material profile

auxiliary variables were combined into the measured disturbance term:
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2, , 3, , 4, ,k s da a k da b k da r kH T C h C h C h     (7.1)

where Ts is the sampling period.  The discrete-time equations predicting one-step ahead

from the kth sample are then as follows:

, 1 , 11, , , 12, , , , , , ,
ˆ ˆa k a k b k a k b k b k b k k d kd d C v d C v r v H w and     (7.2)

, 1 21, , 22 , , 23, , , ,ˆ ˆb k tr a k b k b k v kv C C d C v C r w     (7.3)

where da,k is material accumulation EKF filtered measurement, vb,k is the EKF filtered

robot blade velocity in the X-direction, ,b kr is the calculated blade reference position,

,ˆd kw is the expected value of the material accumulation EKF filtered  residual process

noise or disturbance, ,ˆ v kw  is the expected value of the EKF filtered robot velocity residual

process noise or disturbance, 11, 1,s daC T C , 12, 5,s daC T C , 2

1

s vb
tr t

vb

T CC u
C

,

21, 3,s vbC T C , 22,
1,

1 s

vb

TC
C

  and 23, 4,s vbC T C .  Note that since d sT  and

r sT , it was assumed that ,k b kr in  order  to  simplify  the  equations.   In  Chapter  6,  it

was determined experimentally that the EKF filtered material accumulation and robot

velocity residual disturbances can be effectively modeled as zero mean Gaussian noise so

their expected values in Eq. (7.2) and (7.3) equal zero, i.e. , ,ˆ ˆ 0d k v kw w .

7.2.2 Optimal Blade Control Laws

Optimal control refers to the solution of an optimization problem for the control

input that drives the system along a trajectory that minimizes or maximizes a performance
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index.  When the optimal control solution includes model-based predictions of the system

dynamics and control inputs into the future it is known as model predictive control

(MPC), with an overview provided in Qin and Bagwell (2000). MPC was chosen for this

research since it is a systematic optimal control approach that exploits a process model.

While significant progress has been made with MPC, when applied to nonlinear processes

like  bulldozing  the  solutions  typically  employ  numerical  optimization  that  is  too

computationally demanding for real-time control of mechanical systems, as discussed in

Grune and Pannek (2001).  A further problem with applying both conventional MPC and

feedback control to optimize bulldozing is that optimal desired values of the process

states cannot be computed since they depend on future values of kH  that are

unpredictable.  These values are unpredictable because the coefficients in Eq. (7.1)

depend on unpredictable future  values; plus ha, hb and h r depend on the future values

of xa, xb and .  The unpredictability is due to the stochastic nature of the interaction

between the machine and the material.

An important aspect of MPC design is the length of the prediction horizon. While

in  general  a  long  prediction  horizon  will  produce  a  result  that  is  closer  to  the  global

optimum, a short prediction horizon is preferable in this application for three reasons.

First, it has been determined experimentally that predictions of da and vb farther than one-

step-ahead are highly inaccurate due to the stochastic disturbances.  Second, the longer

the prediction horizon the greater the amount of computation that must be performed in

real-time.  Third, the difficulty of stability analysis grows as the horizon is increased.
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For the reasons provided above, a one-step-ahead analytical MPC approach was

developed for designing optimal control laws for the bulldozing process.  This approach

solves for a blade position control law that minimizes a one-step-ahead cost function

formulated from the prediction equations Eq. (7.2) and Eq. (7.3).  An obvious choice for

the cost function is the negative of the one-step-ahead predicted approximate material

removal rate given by:

1 , 1 , 1
ˆˆ ˆk a k b k bQ d v w     (7.4)

where wb is the blade width.  However, this choice is undesirable since it does not include

the blade position reference so it will tend to produce an overly aggressive control law;

plus wb is  constant  and  therefore  redundant.   More  suitable  cost  functions  will  now  be

introduced.

Due to inherent differences in the dynamics of certain operation modes, two

different  cost  functions  are  proposed,  one  for  mode  3  and  one  for  modes  2,  4,  5  and  7.

The fundamental difference in dynamics is reflected in the dynamic equations by the

parameter Cda5, as determined in Chapter 4.  This parameter is present in the mode 3

dynamics signifying that the rate of material accumulation is partially dependent on blade

position.  This parameter is not present in the other controlled modes due to the constraint

of the hard floor surface, thus the material accumulation in these modes is independent of

blade position.  The cost function proposed for mode 3 is:

2
3 , 1 , 1 3 ,

ˆ ˆJ Ra k b k b kd v r     (7.5)

where R3 is a positive controller tuning parameter.  The purpose of the first term in this

equation is to maximize the predicted material removal rate, while the second term is
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included to allow the aggressiveness of the control to be tuned.  The optimal control law

that minimizes J3 is found by substituting Eq. (7.2) and Eq. (7.3) into Eq. (7.5) for , 1
ˆ

a kd

and , 1b̂ kv , respectively, taking its derivative with respect to ,b kr , setting it equal to zero

and solving as follows:

*3
3 , 3

,

J 2 0b k
b k

d a r b
dr

and     (7.6)

* 3
, ,3

32b k
br
a

    (7.7)

with

3 12,3 23,3 , 3Rb ka C C v  and

3 12,3 , 21,3 , 22,3 , 23,3 , 11,3 , , 3, ,b k tr a k b k a k a k b k k b kb C v C C d C v C d C d v H v

where *
, ,3b kr  is the optimal blade position reference input for mode 3.

The material accumulation model of modes 2, 4, 5 and 7 is characterized as being

independent of blade position (i.e. model parameter 12, 0C ). Therefore, a more

appropriate objective for modes 2, 4, 5 and 7 is to maintain contact between the blade and

the floor (i.e. minimizing br ) while the robot travels forward as fast as possible (i.e.

maximizing vb).  The cost function that accomplishes this objective is:

2
, 1 , ,ˆJ Rb k b k b kv r r     (7.8)

where R is a positive controller tuning parameter.  Following the same procedure as

above, optimal blade control law for  = 2, 4, 5 and 7 is:
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*
, , 2b k

br
a

    (7.9)

with

23, Ra C and

21, , 22, ,tr a k b kb C C d C v

where *
, ,b kr  is the optimal blade position reference input for mode .

7.2.3 Optimality Conditions

These optimal control laws must satisfy certain optimality conditions, as in Boyd

and Vandenberghe (2004).  These include the first-order optimality conditions (or

Karush-Kuhn-Tucker (KKT) conditions) with respect to the constraints,

, , ,b min b k b maxr r r  and the second-order optimality condition.  The KKT conditions are

formulated with respect to the Lagrangian of the cost function and the blade position

constraints as follows:

, , 1 ,max , 2 ,min ,, J ( )b k b k b b k b b kL r r r r r r   (7.10)

where 1 2,  are Lagrange multipliers.   The two different cost  functions,   Eq. (7.5) and

Eq. (7.8), take the same general form 2
, , ,J ( )b k b k b kr a r b r c .  From the Lagrangian

in Eq. (7.10), the following conditions must be satisfied to ensure optimality:

, , , 1 2, 2 0
b kr b k b kL r a r b   (7.11)

, ,b k b maxr r   (7.12)

, ,b k b minr r   (7.13)
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1 , , 0b max b kr r   (7.14)

2 , , 0b min b kr r  and   (7.15)

1 2, 0   (7.16)

If a constraint is not active, its associated Lagrange multiplier is zero.  Thus, the solution

to determining the optimal value of rb,k is reduced to checking the follow cases:

if 1 20 0 , *
, , , 2b k b k

br r
a

if 1 30 0 , , ,b k b minr r

if 2 30 0 , , ,b k b maxr r

The second order optimality condition stipulates that, if a constraint is not active,

a local minimum exists if the cost function is convex.  This condition is satisfied when the

second derivative of J  with respect to ,b kr  is positive as follows:

2
,

2
,

J ( )
2 0b k

b k

d r
a

dr
  (7.17)

Since the parameter a  is  a  positive  constant  for  all  modes   =  2-5  and  7,  a  local

minimum always exists.

7.3 Avoidance and Recovery Control for Mode  = 6

The da and vb dynamics of mode  = 6 are fundamentally different from the other

modes.  Consequently, they could not be modeled within the same analytical structure of

the system equations.  Therefore, the mode 6 dynamics and blade control approach were
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investigated experimentally.  This mode is undesirable since it indicates that the robot has

lost contact with the underlying material, resulting in no bulldozing work being

accomplished.  The conditions that cause the robot to transition into mode 6 were

investigated experimentally with the objective of developing an approach to reducing the

possibility of this transition (i.e. mode 6 avoidance).  It was found that mode 6 avoidance

can be accomplished with an appropriate state dependent blade position constraint

imposed in modes  = 2-5 and 7.  The results of this investigation formed the basis for the

development of a blade control law for mode 6 to expedite a transition into a desirable

mode (i.e. mode 6 recovery).

7.3.1 State Dependent Blade Constraint for Mode  = 6 Avoidance

Recall  from  Chapter  3,  mode   =  6  is  defined  by  the  condition da <  0, i.e. a

‘negative’ accumulation of material on the blade.  A transition to mode 6 tends to result

when the blade is raised above its zero position, i.e.  > 0, while a significant amount of

accumulated material, i.e. da > 0, is being pushed.  When the blade is raised above its zero

position a small local mound of material is created in the underlying material profile.

Once the robot tracks reach the location of the small local mound, after traveling a

distance approximately equal to the length of the blade arm, the robot will begin to ascend

the local mound.  If the relative height of the local mound, hlocal, is sufficiently large the

elevation of the robot will cause the blade to lose contact with the underlying material

profile, and the da measurement will become negative.  The conditions of  and da prior to

transitioning to mode 6 are illustrated in Fig. 7.1.  The relationship between hlocal and da

during mode 6 is illustrated in Fig. 7.2.
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A very conservative approach to avoid a transition to mode 6 is to constrain the

blade to remain below its zero position, i.e. rb <  0.   However,  this  will  result  in  a

significant reduction in overall bulldozing performance.  Since the height of hlocal is

determined by the blade position another approach is to constrain the blade position

reference input proportionately relative to the height of material accumulation as follows:

b rb ar K d   (7.18)

where rbK  is a positive constant.  This blade position constraint will not necessarily avoid

a transition to mode 6, however, it will be much less likely to occur.  Furthermore, if a

transition to mode 6 does occur this blade constraint will allow faster recovery from it.

A  series  of  two-pass  experimental  trials  were  performed  to  investigate  the

conditions  that  tend  to  result  in  a  transition  to  mode  6.   Similar  to  the  experiments

discussed in Chapter 5, material was initially set up in a structured pile with a uniform

Fig. 7.2 Relationship between hlocal and da during mode 6.

Fig. 7.1 Conditions of  and da prior to transition to mode 6.
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nominal height of 20 mm and length of 1.1 m, covering to the edge of the environment.

The robot blade location, xb, was located 150 mm away from the leading edge of the pile

at the start of each pass (i.e. mode 0).  The robot was driven forward with the blade at its

zero position (i.e. mode 1).  After the robot blade reached the leading edge of the material

pile (i.e. mode 2) and transitioned to mode 3 or mode 4 the blade position reference was

set to a constant downward position equal to the average height of one layer of stones, rb

= -hthres1 = -5 mm.  When the material accumulated on the blade reached a threshold value

of 80% of its maximum, i.e. ,max0.8 0.8 55a ad d  mm, the blade control b rb ar K d

was initiated until a transition to mode 6 occurred.  When a transition to mode 6 occurred,

the blade position was set to zero.  When a transition out of mode 6 occurred, the blade

position was again set to rb =  -hthres1 to cause another transition to mode 6. Different

values of rbK  were selected for each set of experimental trials.  This cycle was repeated

until the robot reached near the far edge of the task space (i.e. mode 7) and stopped (i.e.

mode 8).    After a bulldozing pass with the initial material coverage was completed, an

additional pass was attempted with the subsequent material profile.  This constituted one

experimental trial.  Five sets of two-pass experimental trials were completed for rbK

values of  1, 0.5 and 0.25.  The mode 6 activation algorithm is summarized in Table 7.1,

where the intermediate variable Srb is used to latch the blade position control.
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Table 7.1 Mode 6 activation algorithm.

1.  INITIALIZE  = 0
2.  ACTIVATE  = 1
3. 0rbS
4. WHILE 2 7
5. IF 6
6. IF 0rbS
7. 1b thresr h
8. ELSEIF ,0 0.8rb a a maxS d d
9. 1rbS
10. ELSEIF 0rbS
11. b rb ar K d
12. ENDIF
13. ELSEIF 6
14. 0br
15. 0rbS
16. ENDIF
17. ENDWHILE

The effect of the mode 6 activation algorithm is to instantly create a significantly

large local mound of material which the robot will subsequently climb.  As the robot

ascends the local mound the blade is elevated above the underlying material to such an

extent that it can no longer remain in contact, thus no work can be accomplished.

Measures used to quantify the experimental results of the mode 6 activation

investigation include: peakh , the maximum height of the underlying material profile peak

at the local mound that caused the transition into mode 6;
maxad , the maximum ‘negative

accumulation’ during mode 6; and 6t , the duration of mode 6 activation.

An example of the experimental results of two passes with the mode 6 activation

algorithm using rbK  =  1  are  shown in  Fig.  7.3  and  Fig.  7.4.   This  example  shows very
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large and very steep peaks created which result in long durations of mode 6 active with

very deep ‘negative accumulation’ (i.e. large magnitude da < 0) indicating large relative

elevation of the robot blade with respect to the underlying material profile.  In addition to

causing poor performance during a bulldozing pass, the steep local mounds cause severe

problems during subsequent passes.  The robot is likely to become stuck in the underlying

material profile trough between local mounds, as indicated in Fig. 7.4 and illustrated in

Fig. 7.5.  Altogether, this is highly undesirable for bulldozing performance.
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Fig. 7.3 Example of mode 6 activation experimental results using Krb = 1, pass 1.
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Fig. 7.4 Another example of mode 6 activation experimental results using Krb = 1,
pass 2 showing the robot becoming stuck (vb = 0).

Robot becomes
stuck
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As Krb decreases, the height of the local mound decreases and the likelihood of mode 6

becoming active decreases.  For example, Fig. 7.6 shows experimental results using Krb =

0.25 where peakh  and
maxad  are significantly smaller.  Another example of experimental

results using Krb = 0.25 in Fig. 7.7 shows that mode 6 is not activated at all.

The mean values peakh , a max
d  and 6t  of the experimental results are tabulated in

Table 7.3, along with the number of passes that the robot became stuck during the second

pass, 6,stuckn , and the number of passes where mode 6 was did not become active, 6,avoidn .

The mean values do not include the passes where the robot became stuck, nor when mode

6 was avoided.  The results in Table 7.3 show that as Krb decreases, peakh , a max
d  and 6t

decrease.  The results with Krb = 0.25 compared with Krb = 1 show improvements of 30%,

55% and 13% in peakh , a max
d  and 6t , respectively.  Furthermore, with Krb = 0.25, mode

6 activation was avoided in 40% of the passes and did not become stuck in any passes.

Fig. 7.5 Illustration of the robot becoming stuck between material
profile peaks due to activation of mode 6.
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Fig. 7.6 Example 1 of mode 6 activation experimental results using Krb = 0.25,
pass 1.
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Fig. 7.7 Example 2 of mode 6 activation experimental results using Krb = 0.25,
pass 1 showing no mode 6 activation.
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7.3.2 Blade Control for Mode  = 6 Recovery

The experimental investigation of mode 6 activation and avoidance was extended

to include the development of a method for selecting the blade constraint parameter Krb in

conjunction with a mode 6 recovery blade control algorithm.  Recovery from mode 6 can

be achieved more quickly by positioning the blade downward to penetrate down into the

underlying material surface with the following blade position control law:

1b a thresr d h   (7.19)

This allows material to resume accumulating on the blade during mode 6 until the point

when da >  0  which  transitions  the  system  out  of  mode  6.   The  amount  of  ‘negative

accumulation’ is a function of the height of the local mound and hence a function of the

raised blade position when the local mound is formed.  Therefore, the allowable

maximum blade position, rb,max, should be a function of the minimum blade position,

rb,min, so that the mode 6 recovery control downward blade position penetrates sufficiently

into the underlying material.  The principle of the mode 6 recovery control law is

illustrated in Fig. 7.8.

Fig. 7.8 Illustration of mode 6 recovery blade control law.
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With the blade constrained by b rb ar K d  to avoid mode 6 activation, the value of

Krb limits rb,max with respect to the maximum material accumulation, da,max, which limits

the maximum height of a potential local mound hlocal,max.  Thus it is desirable to minimize

hlocal to minimize the effects of mode 6, should it become active.  For the mode 6

recovery blade control law to be effective the blade must be able to be lowered to a

position below the grade of the underlying surface (i.e. penetrate and dig into the

material).  The minimum physically constrained blade position, rb,min, can limit the

effectiveness of the mode 6 recovery control law.  For example, if hlocal becomes too large

and the magnitude of the ‘negative accumulation’ is greater than rb,min (i.e. a bd r ) then

the blade cannot penetrate downward into the material.  Therefore, the value of Krb should

be chosen such that if a transition to mode 6 occurs, the recovery control law is capable of

positioning the blade below the grade of the underlying material at least to the depth of a

single  layer  of  stones  (i.e. rb + hthres1 < da).   Thus  the  value  of Krb can be used to

determine an allowable ‘negative accumulation’ and an allowable hlocal,max so that the

recovery control law can be effective.

A method for determining an appropriate value of Krb with respect to the

minimum constrained blade position, rb,min, and the maximum material accumulation,

da,max, proceeds as follows.  Assume for small distances and elevations, the following

approximation holds:

hlocal rb, for rb > 0   (7.20)

Thus, an approximate allowable ‘negative accumulation’, da,6,min during mode 6 is:

–da,6,min hlocal,max rb,max   (7.21)
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For effective recovery control during mode 6, the blade position must satisfy:

rb da – hthres1   (7.22)

Using the minimum allowable material accumulation, da,6,min in (7.22) gives:

rb da,6,min – hthres1   (7.23)

Substituting the minimum blade constraint rb = rb,min into (7.23) gives:

rb,min da,6,min – hthres1   (7.24)

which can be re-written as:

– da,6,min  – rb,min – hthres1   (7.25)

Substituting the approximation – da,6,min rb,max into (7.25) gives:

rb,max   – rb,min – hthres1   (7.26)

Substituting , ,b max rb a maxr K d  into (7.26) gives:

, , 1rb a max b min thresK d r h   (7.27)

Solving (7.27) for Krb gives:

, 1

,

b min thres
rb

a max

r h
K

d
  (7.28)

Using (7.28) with the values da,max =  55  mm, rb,min =  –15  mm  and hthres1 =  5  mm,  the

maximum blade constraint proportionality coefficient is calculated to be Krb,max = 0.18.

A set of five two-pass experimental trials were performed similar to those

presented in Section 7.3.1, except that Krb was  made  equal  to Krb,max and  the  mode  6

recovery blade control law, Eq. (7.19), was initiated when a transition to mode 6

occurred.  The mode 6 activation combined with the recovery control law algorithm is
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summarized in Table 7.2.  Note that only Eq. (7.18) with Krb = Krb,max, and lines 13 and 14

of this algorithm, are applied during normal operation of the bulldozer.

Table 7.2 Mode 6 activation combined with recovery control law algorithm.

1.  INITIALIZE  = 0
2.  ACTIVATE  = 1
3. 0rbS
4. WHILE 2 7
5. IF 6
6. IF ,0 0.8rb a a maxS d d
7. 1b thresr h
8. ELSEIF ,0 0.8rb a a maxS d d
9. 1rbS
10. ELSE
11. ,b rb max ar K d
12. ENDIF
13. ELSEIF 6
14. 1b a thresr d h
15. 0rbS
16. ENDIF
17. ENDWHILE

The mean value peakh , a max
d  and 6t  of the experimental results are tabulated in

Table 7.3, along with the number of passes that the robot became stuck during the second

pass, 6,stuckn , and the number of passes where mode 6 was did not become active, 6,avoidn .

The mean values do not include the passes where the robot became stuck, nor when mode

6 was avoided.
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Table 7.3 Average performance measures of experimental results for mode 6 activation

and recovery control investigations.

Experimental
Algorithm

peakh
(mm)

a max
d
(mm)

6t
(s)

6,stuckn 6,avoidn

Mode 6 Activation,
Krb = 1 39 -29 2.4 5 0

Mode 6 Activation,
Krb = 0.5 33 -23 2.9 0 2

Mode 6 Activation,
Krb = 0.25 27 -13 2.1 0 4

Mode 6 Activation and
Recovery Control,

Krb = 0.18
27 -10 1.6 0 3

An  example  of  experimental  results  with  the  combined  mode  6  activation  and

recovery  control  law  algorithm  is  shown  in  Fig.  7.9.   This  example  shows  that  with

,maxb rb ar K d , peakh  was small with a smaller slope, which caused a more gradual climb

by the robot, leading to a smaller ‘negative accumulation’ during mode 6.  Subsequently,

the recovery period to transitioning out of mode 6 was much smaller.  The distance

covered during the recovery period was approximately 100 mm which corresponds to the

length of the blade arm, which is the distance that the robot must travel for the front of the

tracks to reach the blade location.

From Table 7.3,  the results  with Krb = 0.18 and recovery control compared with

Krb = 1 without recovery control show improvements of 30%, 65% and 33% in peakh ,

a max
d  and 6t , respectively.  Furthermore, with Krb = 0.18 and recovery control, mode 6

activation was avoided in 30% of the passes and did not become stuck in any passes.



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

96

Fig. 7.9 Example of mode 6 activation and recovery blade control experimental
results using Krb = 0.18.
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7.4 Conclusions

Optimal blade position control laws were designed for modes  = 2-5 and 7 with

the objective of maximizing the material removal rate.  The discrete-time one-step ahead

prediction formulations of the da and vb equations from Chapter 3 were used.  The control

objective was focused on enhancing productivity by maximizing the material removal

rate.

The conditions that cause the robot to transition into mode 6 were investigated

experimentally.  It was found that avoidance of mode 6 can be accomplished with an

appropriate state dependent blade constraint imposed in modes  = 2-5 and 7.  The results

of this investigation formed the basis for the development of a blade control law to a

transition out of mode 6 if it occurs.

The next chapter presents an analysis of the stability and performance of the

deterministic closed loop dynamics.
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Chapter 8

Deterministic Performance and Stability Analysis
8.1 Introduction

This chapter presents a theoretical analysis of the performance and stability of the

deterministic open-loop and closed-loop dynamics.  To allow investigation of the

underlying deterministic dynamics, the effects of the da and vb process disturbances,

defined in Eq. (6.1), were neglected.  Also, the blade position constraints , ,b min b b maxr r r

were neglected.  For convenience, the condensed discrete-time deterministic open-loop da

and vb are reproduced as follows:

, 1 , 11, , , 12, , , , ,
ˆ

a k a k b k a k b k b k b k kd d C v d C v r v H and     (8.1)

, 1 21, , 22 , , 23, ,ˆb k tr a k b k b kv C C d C v C r     (8.2)

The deterministic optimal control law equations are reproduced as follows:

12,3 , 21,3 , 22,3 , 23,3 , 11,3 , , 3, ,*
, ,3

12,3 23,3 , 32 R
b k tr a k b k a k a k b k k b k

b k
b k

C v C C d C v C d C d v H v
r

C C v
  (8.3)

and

21, , 22, ,*
, ,

23,2 R
tr a k b k

b k

C C d C v
r

C
, for  = 2, 4, 5 and 7     (8.4)

Performance analysis of the open-loop dynamics includes identifying the

conditions  whereby  the  robot  could  stall  (e.g. forward velocity is reduced to zero)

according to the dynamic equations.  Similarly, closed-loop stall conditions were also

determined in addition to a more general analysis of the deterministic closed-loop
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performance with respect to control law tuning.  Furthermore, stability analysis in the

context of the robotic bulldozing operation involved showing that the closed-loop

trajectories of da and vb converge to their steady state optimal values.

8.2 Open-Loop Stall Conditions

Open-loop stall conditions can exist whereby the steady state robot speed

diminishes to zero, i.e. vb = 0.  A set of open-loop steady state stall conditions were found

using Eq. (8.2) and setting , 1 ,ˆ 0b k b kv v  resulting in:

21, , 23, , 0tr a k b kC C d C r     (8.5)

Solving Eq. (8.5) for , , ,a k a stalld d  gives the open-loop stall material accumulation:

23, ,
, ,

21,

b k tr
a stall

C r C
d

C
    (8.6)

Alternatively, solving Eq. (8.6) for , , ,b k b stallr r  gives the open-loop stall blade position

reference:

21, ,
, ,

23,

tr a k
b stall

C C d
r

C
    (8.7)

The stall condition equations Eq. (8.6) and Eq. (8.7) show that while there is coupling

between the da and vb state trajectories, either da or rb can cause stall independently with

sufficiently large magnitudes.

The open-loop system da and vb trajectories are important when considering stall

conditions.  The conditions where vb is decreasing, i.e. , 1 , 0b k b kv v , are found using

Eq. (8.2) as follows:
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21, , 22, , 23, ,1 0tr a k b k b kC C d C v C r     (8.8)

 Solving Eq. (8.8) for , , ,b k b vr r  gives:

21, , 22, ,
, ,

23,

1tr a k b k
b v

C C d C v
r

C
    (8.9)

The conditions where da is increasing, i.e. , 1 , 0a k a kd d ,  are  found using  Eq.  (8.1)  as

follows:

11, , , 12, , , , , 0b k a k b k b k b k kC v d C v r v H   (8.10)

Solving Eq. (8.10) for , ,b k b dr r (Note: C12 < 0) gives:

11, , ,
, ,

12,

a k k
b d

C d H
r

C
  (8.11)

Eq. (8.11) shows that the direction of change in the da dynamics is strongly influenced by

the  sign  of ,kH , which is an uncontrollable external input.  For a constant rb, the

dynamics of da either increase uncontrollably toward the stall condition da,stall or decrease

toward zero.  In any case, the natural system constraint da,max is a limiting factor regarding

whether  stall  will  occur  on  not.   Conversely,  according  to  Eq.  (8.9)  if  stall  occurs,

recovery of robot velocity can be achieved with any blade position , , ,b k b vr r .

A worst case blade position stall condition, , ,b stall ,minr , can be calculated for which

any , ,b b stall ,minr r  will allow vb to increase when da = da,max and vb = 0.  Using eq. (8.7)

and substituting da,k = da,max gives:

21, ,
, ,

23,

a max tr
b stall ,min

C d C
r

C
  (8.12)
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If the magnitude of the worst case blade position stall condition is greater than the

minimum blade constraint, i.e. , , ,b stall ,min b minr r , then open-loop stall cannot occur.

The values of minimum open-loop blade position to avoid stall, , ,b stall ,minr , were

calculated for each mode using the estimated dynamic equation parameters in Table 5.6

and da,max =  55  mm.   These , ,b min stallr  values  are  tabulated  in  Table  8.1.   Since

, , ,b stall ,min b minr r  for  = 2 and 4, open loop stall can occur for these modes.

Table 8.1 Calculated , ,b stall ,minr  values for modes 2-5 and 7.

Mode, 

2 3 4 5 7

, ,b stall ,minr  (mm) -5 -29 -5 -16 -16

8.3 Closed-Loop Dynamic Equations

Setting *
, , ,b k b kr r and substituting the optimal blade control equations Eq. (8.3)

and Eq. (8.4) into the open-loop prediction equations Eq. (8.1) and Eq. (8.2) , gives the

closed-loop dynamic equations for , 1,
cl
a kd and , 1,

cl
b kv  for each mode.  The resulting mode

3 closed-loop dynamic equations are:

, 1,3 , , ,

2 2 2 2 2 3 2
12,3 23,3 , , 12,3 21,3 , , 12,3 , 12,3 22,3 , 12,3 23,3 , 3,

3 12,3 23,3 ,2 R

cl
a k a k b k k

a k b k a k b k tr b k b k b k k

b k

d d v H

C C d v C C d v C C v C C v C C v H

C C v

  (8.13)

and
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, 1,3 21,3 , 22,3 ,

2 2 2 2
23,3 , 23,3 , 3, 23,3 11,3 23,3 12,3 21,3 , , 23,3 12,3 , 23,3 12,3 22,3 ,

3 12,3 23,3 ,2

cl
bk ak bk tr

ak bk k ak bk tr bk bk

bk

v C d C v C

C d C v H C C C C C d v C C C v C C C v

R C C v

   (8.14)

The resulting closed-loop dynamic equations for modes 2, 4, 5 and 7 are:

12, 2
, 1, , 11, , , , , , 21, , , 22, ,

23,2 R
cl
a k a k a k b k b k k tr b k a k b k b k

C
d d C d v v H C v C d v C v

C
   (8.15)

and

23, 21, , 22, ,
, 1, 21, , 22, ,

23,2 R
tr a k b kcl

b k a k b k tr

C C C d C v
v C d C v C

C
  (8.16)

The closed-loop steady-state equations for each mode may be found using Eqs.

(8.13)-(8.16) by setting , , , 1, , ,
cl cl
a k a k a ssd d d and , , , 1, , ,

cl cl
b k b k b ssv v v  then solving for

, ,a ssd and , ,b ssv .  The resulting mode 3 steady-state da and vb equations are:

1/2
2 2 2

12,3 21,3 23,3 23,3 22,3 22,3 23,3
, ,3 3 3 32 2 2 2

12,3 21,3 12,3 21,3 12,3

23,3 22,3

12,3 21,3

4 2 1 2 R
4

1
2

tr
b ss

C C C C C C C C
v H H

C C C C C

C C
C C

  (8.17)

and

2 2 2
22,3 12,3 , ,3 12,3 , ,3 23,3 12,3 3 , ,3 3 3

, ,3 2
12,3 23,3 11, 3 12,3 21,3 12,3 11,3 23,3 , ,3

2 R

2 R
b ss tr b ss b ss

a ss
b ss

C C v C C v C C H v H
d

C C C C C C C C v
   (8.18)

The resulting steady-state da and vb equations for modes 2, 4 and 5 are:
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11, 23, 23, 21, 11, 21,
, ,

12, 21, 11, 23, 22, 11, 22,

2 R 2 R

2 2 1 R
tr tr

b ss

C C C C C H C C C H
v

C C C C C C C
  (8.19)

and

12, 23, 12, 22, , ,
, ,

11, 23, 12, 21, 11,

2 2 R
2 R

tr b ss
a ss

C C C H H C C v
d

C C C C C
  (8.20)

The steady-state da and vb equations for mode 7 are a special case.  Recall from

Chapter 3 that mode 7 is defined by the robot near the edge of the task space and pushing

material into the removal space.  Thus, in mode 7, da tends to decrease until the robot

reaches the edge where da must become zero (or negative due to the removal space being

below the grade of the floor).  The mode 7 parameters estimated in Chapter 5 support this

tendency.  The mode 7 parameters of the da dynamic equation Eq. (3.14) are Cda3,7 = -17.6

mm-1 and Cda4,7 = 3.2 mm-1.  These parameters form terms with hb and h r, respectively,

which tend to have values of similar magnitude. Since Cda3,7 is negative and its magnitude

is much larger than Cda4,7, the da dynamics will almost always be negative.  The steady

state da and vb equations for the mode 7 were derived by setting

, ,7 , 1,7 , ,7 0cl cl
a k a k a ssd d d and , ,7 , 1,7 , ,7

cl cl
b k b k b ssv v v  then solving for , ,7b ssv , resulting in:

23,7 7
, ,7

23,7 22,7 23,7 22,7 7

2 R
2 2 1 R

tr
b ss

C C
v

C C C C
  (8.21)

An  example  of  the  simulated  deterministic  closed-loop  dynamics  switching

between multiple modes is shown in Fig. 8.1.  These plots show that da and vb converge to

their optimum steady-state equilibrium values, and that the steady-state optima depend on

both H  and .



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

104

Fig. 8.1 Simulation of deterministic bulldozing dynamics with mode transitions.
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Values of , ,a ssd  and , ,b ssv  were calculated over a range of H  values and a range

of R  values for modes  = 2-5 and 7 using Eqs. (8.17)-(8.20).  The values of H  were

determined experimentally.  They were calculated using Eq. (7.1) with the measured

values of ha, hb, hr,l and hr,r from the mode-segmented system identification data sets

described in Chapter 5.  The range of H  values used for the calculations of , ,a ssd  and

, ,b ssv  includes the minimum, ,minH , the mean H  and the maximum, ,maxH .  The

,minH , H  and ,maxH values from the experimental data sets for modes  = 2-5 and 7 are

tabulated in Table 8.2.

Table 8.2 Experimental values of ,minH , H  and ,maxH  for modes 2-5 and 7.

Mode, 

2 3 4 5 7

,minH  (s) 0.006 -0.0026 0.012 0.0044 -0.0077

H (s) -0.005 -0.0096 0.0083 0 -0.029

,maxH (s) 0.0177 0.0029 0.017 0.0076 0

The steady state blade position, , ,b ssr  was calculated over the ranges of H  and

R  for modes  = 2-5 and 7 using Eq. (8.3) and Eq. (8.4), and substituting the values of

, ,a ssd  and , ,b ssv  for ,a kd  and ,b kv  respectively.  The deterministic steady state material

removal rate was calculated using , , , , ,ss a ss b ss bQ d v w , with the experimental robot

blade width wb = 200 mm.
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Plots of deterministic , ,a ssd  values for modes  = 2-5 are shown in Fig. 8.2.

Since , ,7a ssd  = 0, mode 7 was not included in Fig. 8.2.  Recall from Chapter 3 and Chapter

5 that the da dynamics of modes 2, 4 and 5 are independent of blade position, which is

indicated by parameter 5,daC  =  0  in  Eq.  (3.14)  and  parameter 12,C  =  0  in  Eq.  (8.1).

Therefore, for these modes 2, 4 and 5, , ,a ssd  is a function of H  only.

Plots of deterministic , ,b ssv  values for modes  = 2-5 and 7 are shown in Fig. 8.3.

For modes 2, 4 and 5 , ,b ssv  becomes larger as H  decreases and becomes larger as R

increases.  For mode 3, , ,3b ssv  tends to become larger as 3H  decreases but the relationship

with 3R  depends on 3H .   For mode 7, , ,7b ssv  is independent of 7H  and is  a function of

7R .

Plots of deterministic , ,b ssr  values modes  = 2-5 and 7 are shown in Fig. 8.4.

For mode 3, the results indicate that the equilibrium steady state blade position balances

is a function of 3H  only.  For modes 2, 4, 5 and 7 the steady state blade position increases

as R increases and H increases.  The effect of a larger magnitude of downward blade

position resulting in a smaller , ,b ssv  for modes 2, 4, 5 and 7 is apparent in Fig. 8.3.  As

discussed in Chapter 3, as the blade pushes down further, the increased resistance due to

friction causes the velocity to decrease.

Plots of deterministic ,ssQ  for modes  = 2-5 are shown in Fig. 8.5.  Since ,7ssQ  =

0, mode 7 was not included in Fig. 8.5.  For modes 2, 4 and 5, ,ssQ  clearly increases as
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R  increases.  Conversely, for mode 3, ,3ssQ  clearly decreases as 3R  increases.  From

these results, the best choice for blade control law tuning to maximize the material

removal  rate  is  to  select  R3 =  0  for  mode  3  and R 10  for modes  = 2, 4, 5 and 7.

However, this analysis neglects state disturbances and blade position constraints.  It also

assumes constant H , neglecting the dynamic response to H  as it changes with respect

to the material profile conditions.  Therefore, when implemented experimentally, these

extreme tuning values may not be appropriate.  The next chapter addresses the inclusion

of state disturbances, blade position constraints and a stochastic model of H .
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Fig. 8.2 Calculated deterministic , ,a ssd  values for  = 2-5 and 7.
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Fig. 8.3 Calculated deterministic , ,b ssv  values for  = 2-5 and 7.
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Fig. 8.4 Calculated deterministic , ,b ssr  values for  = 2-5 and 7.
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Fig. 8.5 Calculated deterministic ,ssQ  values for  = 2-5 and 7.
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8.4 Closed-Loop Stall Conditions

Similar to the open-loop stall conditions discussed previously, closed-loop stall

conditions  can  exist  whereby  the  robot  speed  diminishes  to  zero.   A  set  of  closed-loop

stall conditions were found using the steady state robot velocity equations and setting

, , 0b ssv .

For mode  = 3, using Eq. (8.17), setting , ,3 0b ssv  and solving for 3 3, ,cl stallH H

results in the closed-loop stall H  condition:

23,3 12,3
3, , 2

23,3 21,3 32
tr

cl stall

C C C
H

C C R
  (8.22)

and alternatively, solving for 3 3,stallR R  results in the closed-loop stall control law tuning

condition:

2
23,3 12,3 23,3

3,
21,3 3 21,32 2

tr
stall

C C C C
R

C H C
  (8.23)

For  modes   =  2,  4  and  5,  using  Eq.  (8.19),  setting , , 0b ssv  and solving for

, ,cl stallH H  results in:

11,
, ,

21,

tr
cl stall

C C
H

C
  (8.24)

and alternatively, solving for ,stallR R  results in:

23,
, , 2cl stall

C
R   (8.25)



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

113

For  mode   =  7,  using  Eq.  (8.21),  setting , ,7 0b ssv  and solving for 7 7,stallR R

results in two solutions:

23,7
7, ,1R

2stall

C
  (8.26)

and

23,7 22,7 23,7
7, ,2

22,7

2
R

2 1stall

C C C
C

  (8.27)

Note Eq. (8.21) is independent of 7H .

A set of closed-loop , , ,a ss stalld  stall conditions were found using the steady state

material accumulation equations and setting , , 0b ssv .  The condition , , , ,a ss stall a maxd d  is

an indication that stall will not occur as a result of ad .

For mode  = 3, using Eq. (8.18), setting , ,3 0b ssv  and solving for

, ,3 , ,3,a ss a ss stalld d  results in:

3 3
, ,3,

12,3 23,3 11, 3

2
2a ss stall

H Rd
C C C R

  (8.28)

Substituting eq. (8.22) into (8.28) for 3 ,3,ss stallH H gives:

23,3 12,3 3
, ,3, 2

12,3 23,3 11, 3 23,3 21,3 3

2 R
2 R 2 R

tr
a ss stall

C C C
d

C C C C C
  (8.29)

For  modes   =  2,  4  and  5  using  Eq.  (8.20),  setting , , 0b ssv  and solving for

, , , , ,a ss a ss stalld d  results in:
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12, 23,
, , ,

11, 23, 12, 21, 11,

2
2

tr
a ss stall

C C C R H
d

C C C C C R
  (8.30)

Substituting eq. (8.24) into (8.30) for , ,ss stallH H gives:

12, 11, 23,
, , , 2

21, 12, 11, 21, 23,

2
2 2

tr tr
a ss stall

C C C C C R
d

C C C C C R
  (8.31)

Another closed loop stall condition to consider is the worst case closed-loop blade

position, , , ,
cl

b stall minr , which is the minimum blade position reference that the control law

will provide for the worst stall case of da = da,max and vb = 0.  If the worst case closed-loop

blade position is greater than the worst case open-loop blade position stall condition, i.e.

, , , , ,
cl

b stall min b stall ,minr r , then closed-loop stall will not occur.

For mode 3, using eq. (8.3), substituting , ,a k a maxd d  and ,b kv  = 0 then solving for

*
, ,3 ,3, ,

cl
b k b stall minr r  gives:

23,3 ,
,3, ,

32
a maxcl

b stall min

C d
r

R
  (8.32)

Since 3R  >  0  and 23,3C  >  0,  then ,3, ,
cl

b stall minr  > 0.  Considering the open-loop stall blade

position in Eq. (8.12), 21,3C >  0  and trC >0, then , ,b stall ,minr  <  0.   Therefore,  since

,3, , ,3,
cl

b stall min b stall ,minr r , closed loop stall cannot occur for any value of 3R .

For modes  = 2, 4, 5 and 7, using eq. (8.4), substituting , ,a k a maxd d  and ,b kv  = 0

then solving for *
, , , , ,

cl
b k b stall minr r  gives:
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21, ,
, , ,

23,2
tr a maxcl

b stall min

C C d
r

C R
  (8.33)

The largest magnitude of , , ,
cl

b stall minr  for  = 2, 4, 5 and 7 is for R  = 0, thus this represents

the worst case of blade control law tuning.

For  all  modes,   =  2-5  and  7,  the  values  of ,stallR , , , ,a ss stalld and , , ,
cl

b stall minr  were

calculated using the estimated dynamic equation parameters in Table 5.6, da,max = 55 mm

and a worst case value of R  = 0 for  = 2, 4, 5 and 7, and a worst case value of R3 = 1.

These  calculated  values  are  tabulated  in  Table  8.3.   For  all  modes,   =  2-5  and  7,  the

conditions hold for , 0stallR , , , , ,a ss stall a maxd d and , , , , , ,
cl

b stall min b stall minr r , therefore,

closed loop stall will not occur for any control law tuning value , 0stallR .

Table 8.3 Calculated values of ,stallR , , , ,a ss stalld and , , ,
cl

b stall minr  for  = 2-5 and 7.

Mode, 

2 3 4 5 7

,stallR -0.18 N/A -0.082 -0.11 -0.13, -2

, , ,a ss stalld  (mm) 79 108 62 110 N/A

, , ,
cl

b stall minr  (mm) -3 N/A -2 -8 -8

8.5 Lyapunov Stability Analysis

Simulation results, such as those shown in Fig. 8.1, support the conclusion that the

closed-loop system is stable.  Lyapunov’s second method was used to more rigorously
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analyze the stability of the deterministic elements of the nonlinear discrete-time closed-

loop system. The vector of controlled states is
T

, , , ,
cl cl

k a k b kd vx .  The deterministic

system is globally asymptotically stable, if there exists a Lyapunov function V x  with

the following properties:

1. 0eqV x where
T

, , , ,eq a ss b ssd vx ,

2. 0k eqV x x x  ,

3. V x x ,

4. 1 0k k k k eqV V Vx x x x x and

5. 0eqV x .

The following quadratic function was studied for each mode:

T ,

2 2

, , , , , , , , ,

0
0 1
V

k k eq k eq

cl cl
V a k a ss b k b ss

V

d d v v

x x x x x
  (8.15)

This Lyapunov function candidate satisfies the first three stability conditions for

any , 0V .  Conditions 4 and 5 will only be satisfied if a suitable value of the ,V can

be found.  Unfortunately, proving the fourth stability condition analytically was found to

be intractable.  For instance, using the Matlab Symbolic Toolbox, it was found that the

resulting eqV x analytical equation for  = 3 has 57814 irreducible terms.  Therefore,

a numerical solution was employed.  For each dynamic mode, a minimum value of

,V was found numerically such that 0kV x  for all values of k eqx x using a four
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dimensional exhaustive grid search over the operation ranges: da =  [0, da,max] in

increments  of  1  mm,  where da,max = 55 mm; vb = [0, vb,max] in increments of 1 mm/s,

where vb,max = 92 mm/s; H  = [H ,min H ,max] in  increments of 0.0001 s; R  = [0 12] in

increments of 1 for   = 2, 4, 5 and 7; and R3 = [0 1] in increments of 0.1 for  = 3.  The

searches terminated successfully, producing the ,V values tabulated in Table 8.4 for  =

2-5 and 7.  Examples of kV x  calculated over the ranges of da and vb, H H , R2 =

R4 = R5 = R6 = 4 and R3 = 0.4 for  = 2-5 and 7, are shown in Figs. 8.6-8.10.

Subject to the limitations of this numerical approach, these results support the

conclusion that the optimal control laws provide locally asymptotic closed-loop stability

for each mode.  By extension, cycling between modes may occur.  When a mode switch

occurs, the exit conditions from the prior mode become the initial conditions of the next

mode and the state trajectories will tend toward their equilibrium values for the next

mode.

Table 8.4 Deterministic numerical Lyapunov stability ,V  values for  = 2-5 and 7.

Mode, 

2 3 4 5 7

,V 4.9 6.8 88.5 3.1 102.1
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Fig. 8.6 Example of 2V  calculated with 2 2H H  and R2 = 4.

Fig. 8.7 Example of 3V  calculated with 3 3H H  and R3 = 0.4.
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Fig. 8.8 Example of 4V  calculated with 4 4H H  and R4 = 4.

Fig. 8.9 Example of 5V  calculated with 5 5H H  and R5 = 4.
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8.6 Conclusions

Performance and stability were analyzed for the deterministic open-loop and

closed-loop robot bulldozing process dynamics neglecting blade position constraints for

modes   =  2,  4,  5  and  7.   Open-loop  and  closed-loop  stall  conditions  were  identified

whereby the robot velocity could diminish to zero.  It was shown that for the experimental

robot bulldozing system closed-loop stall cannot occur for any control law tuning value.

A general analysis of the deterministic closed-loop performance was completed with

respect to the experimental ranges of H   and ranges of control law tuning R  .  From this

analysis, it was shown that control law tuning maximizes the deterministic steady state

material removal rate ssQ  with  R3 =  0  and  R  >  10  for  modes   =  2,  4,  5  and  7.   A

numerical Lyapunov stability analysis showed that the deterministic closed-loop

trajectories of da and vb converge to their steady state optimal equilibrium values.

Fig. 8.10 Example of 7V  calculated with 7 7H H  and R7 = 4.
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The next chapter addresses closed-loop performance and stability analysis of the

stochastic robot bulldozing process dynamics incorporating the stochastic model of H ,

state disturbances and blade position constraints.
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Chapter 9

Stochastic Performance and Stability Analysis
9.1 Introduction

This chapter presents a numerical analysis of the performance and stability of the

stochastic closed-loop dynamics of modes  = 2-5 and 7.   The effects of the zero mean

stochastic residual process disturbances, ,ˆ dw  and ,ˆ vw , on the da and vb dynamics were

included.  The EKF was not used in the stochastic closed-loop simulation analysis in this

chapter1.  The discrete-time one-step ahead prediction equations Eq. (7.2) and Eq. (7.3)

were used to simulate the state dynamics with the residual process disturbances ,ˆ dw  and

,ˆ vw  included as in Eq.(6.23).  The residual process disturbance standard deviations used

for the stochastic simulation were from Table 6.3.  The optimal control laws in Eq. (7.7)

and Eq. (7.9) were used for simulation of closed-loop control.  Also, the blade position

constraints , ,b min b b maxr r r  were included for all modes  = 2-5 and 7, where the state-

dependent constraint ,b max rb ar K d  with Krb = 0.18 was determined in Chapter 7.

Monte  Carlo  simulation  was  used  for  performance  and  stability  analysis  of  the

stochastic, constrained, closed-loop, process dynamics.  In addition to the inclusion of the

1 Recall that the model parameters were obtained in Chapter 5 using low-pass filtered

measurements. As shown in Chapter 6, the EKF provides similar smoothing behavior with less time delay

than the  low-pass  filter.  In  the  controller  implementation,  the  EKF will  be  used  rather  than  the  low-pass

filter. So a simulation without the EKF should provide a conservative estimate of the closed-loop dynamics.
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state stochastic disturbances, a stochastic model of the H  dynamics was included.  The

sets of stochastic simulation results included statistical distributions of process

performance measures.

9.2 Stochastic Closed-loop Performance Analysis

9.2.1 Stochastic Model of the H  Dynamics

The combined measured disturbances, H , were modeled as a random walk with

a third-order autogressive (AR) model.  A third-order model was found to be the lowest

order for which the correlation function of the residuals was less than ±0.15 for lags up to

25.  Higher-order models showed no improvement in the correlation function of the

residuals.  The AR models of the H  dynamics for modes  = 2-5 and 7 take the form:

, 1 , ,k k H kH H w  and     (9.1)

, , , 1, , 1 2, , 2 3, , 3H k H H H k H H k H H kw C w C w C w     (9.2)

Where 1,HC , 2,HC  and 3,HC  are the model coefficients, , ,H kw  is the stochastic

disturbance and ,H  is Gaussian zero mean random noise with standard deviation , ,H .

The AR model coefficients and noise standard deviation , ,H  were estimated

using least squares regression on the differences between consecutive values of H  for

each sample within the mode-segmented set of experimental fitting data discussed in

Chapter 5.  The H  values were calculated using Eq. (7.1) with the measured values of
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ha, hb, hr,l and hr,r.  For instance, the AR model fitting data set of the differenced H

values, H , for  modes  = 2-5 and 7 included:

1H i H i H i , for samples i = 2, 3, … , , ,
fit

s totalN     (9.3)

where, , ,
fit

s totalN  is the number of points in the segmented fitting data set per mode .  The

least squares regression was implemented with the Matlab System Identification toolbox

‘ar’ function.  The resulting AR model parameters and noise standard deviation , ,H  for

modes  = 2-5 and 7 are tabulated in Table 9.1.

Table 9.1 Model parameters of the random walk H dynamics.

Mode, 1,HC
(ms)

2,HC
(ms)

3,HC
(ms)

, ,H

(ms)
2 29 -93 -170 0.47
3 20 -180 -120 0.36
4 16 64 36 0.38
5 2.5 -83 -89 0.19
7 0.28 -32 -52 0.63

9.2.2 Monte Carlo Simulation

The Monte Carlo simulation was composed of two stages.  In the first stage, a set

of deterministic closed-loop simulations (i.e. disturbances set to zero) was completed for

different values of R  for each mode to determine the durations of the initial transients.

Each set of deterministic closed-loop simulations included initial conditions exhaustively

covering the full range of values [0, da,max], [0, vb,max] and [H ,min, H ,max] with 28, 23 and

20 equal increments, respectively.  The value of da,max = 55 mm, the value of vb,max = 92
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mm/s and the values of H ,min, H ,max are from Table 8.2.  Each simulation run was

terminated when the changes in the da and vb dynamics remained small over a period of

time, i.e. da < 0.001 mm and vb < 0.001 mm/s for a 10 Ts period.  The settling times,

tset,da and tset,vb, were determined as the time when the da and vb trajectories remained

within 1% of their final steady state values.  Plots of the deterministic settling times as a

function of control law tuning R  for each mode are shown in Fig. 9.1.  These results

show that the closed-loop response time increases exponentially as R  decreases for  =

2, 4, 5 and 7.  Conversely, the closed-loop response time increases more proportionately

as R3 increases.
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Fig. 9.1 Deterministic settling times for  = 2-5 and 7.
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In the second stage of the Monte Carlo simulation, a set of single-mode stochastic

closed-loop simulation runs were completed for the same R  ranges as the first stage. The

disturbances ,dw  and ,vw  were included as zero-mean white noise sequences, with

variances determined in Chapter 6.  The disturbances ,Hw  were included as the third-

order AR models discussed in the previous section.  For each run the mean values of da,

denoted ,a rund , of vb, denoted ,b runv , of Q, denoted runQ  and  the  absolute  value  of  the

blade position reference br , denoted, ,b runr were recorded.  Each run was begun with

initial conditions for da, vb and H  randomly chosen from uniform distributions with the

ranges [0, da,max], [0, vb,max]  and  [H ,min H ,max]. H  was  simulated  as  a  random  walk

process.  To allow the decay of the transient due to the initial conditions to complete, the

duration of each run, Nr, was five times the maximum settling time for the R  value, i.e.

Nr = 5 max(tset,da (R ), set,vb (R )).  Examples of a single stochastic closed-loop simulation

of modes  = 2-5 and 7 are shown in Figs. 9.2 - 9.6, respectively.  These examples show

that the closed-loop stochastic the da and vb trajectories follow steady state optimal values

da,ss and vb,ss as they change over time as a function of H .
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Fig. 9.2 Example of simulated stochastic closed-loop dynamics of mode
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Fig. 9.3 Example of simulated stochastic closed-loop dynamics of mode
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Fig. 9.4 Example of simulated stochastic closed-loop dynamics of mode
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Fig. 9.5 Example of simulated stochastic closed-loop dynamics of mode
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Fig. 9.6 Example of simulated stochastic closed-loop dynamics of mode
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The number of simulation runs was found using the sequential approach from

Asmussen and Glynn (2007). Specifically, for each of the modes, a minimum set of 1000

simulation runs were performed per R .   The  mean  values  of ,a rund , ,b runv , runQ  and

,b runr over the set of simulations were denoted ,a setd , ,b setv , setQ  and b set
r , respectively.

The minimum values of ,a rund , ,b runv , runQ  and ,b runr over the set of simulations were

denoted , ,a set mind , , ,b set minv , ,set minQ  and b set ,minr ,  respectively.   The  maximum  values  of

,a rund , ,b runv , runQ  and ,b runr  over the set of simulations were denoted , ,a set maxd , , ,b set maxv ,

,set maxQ  and b set ,maxr , respectively.  Each set of simulation runs was terminated when the

99% confidence intervals about ,a setd  and ,b setv  were less than 1mm and 1 mm/s,

respectively.

Plots of , ,a set mind , ,a setd  and , ,a set maxd  for   =  2-5  and  7  are  shown  in  Fig.  9.7.

These results confirm that ad   is independent of br for modes  = 2, 4, 5 and 7, which was

shown with the deterministic , ,a ssd values in Fig. 8.2.

Plots of , ,b set minv , ,b setv  and , ,b set maxv  for  = 2-5 and 7 are shown in Fig. 9.8.  Plots

of b set ,minr , b set
r  and b set ,maxr  for   =  2-5  and  7  are  shown  in  Fig.  9.10.   The  results

shown in Fig 9.8 and 9.10 confirm the effect of a larger magnitude of downward blade

position resulting in a smaller bv  for modes 2, 4, 5 and 7, which was shown with the

deterministic , ,b ssv  results  in Chapter 8.   Furthermore,  that  for all  modes  = 2-5 and 7



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

134

the average magnitude of the blade position increases as R decreases, indicating more

aggressive tuning of the blade position control law.

Plots of ,set minQ , setQ  and ,set maxQ  for   =  2-5  and  7  are  shown in  Fig.  9.9.   These

results agree with the deterministic ,ssQ  results presented in Chapter 8.  For modes 2, 4

and 5, Q  clearly increases as R  increases.  Conversely, for mode 3, Q  clearly decreases

as 3R  increases.  From these results, the best choice for blade control law tuning to

maximize the material removal rate is to select R3 = 0 for mode 3 and R 10  for modes

 = 2 and 5, and R 8 for modes  = 4 and 7.
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Fig. 9.7 Stochastic simulation ,a setd  results for  = 2-5 and 7.
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Fig. 9.8 Stochastic simulation ,b setv  results for  = 2-5 and 7.
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Fig. 9.9 Stochastic simulation setQ  results for  = 2-5 and 7.
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Fig. 9.10 Stochastic simulation b set
r  results for  = 2-5 and 7.
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9.3 Stochastic Stability Analysis

Of  the  many  definitions  of  stochastic  stability  that  exist,  the  definition  of

Lyapunov stable in the mth mean from Kozin (1969), reformulated for discrete-time, was

selected as being the most appropriate for this system. Accordingly, the equilibrium

solution xeq is Lyapunov stable in the mth mean if given , 0m , there exists 0m

such that 0 mm
x  implies:

,
0
sup

r

m

k eq mmk N
E x x     (9.4)

or equivalently:

, , , , , , , , ,
0
sup

r

m mcl cl
a k a ss b k b ss m

k N
E d d v v     (9.5)

where E{•} is the expected value, and sup indicates the supremum.  An analysis of the

stochastic simulation results using Eq. (9.5) concluded that xeq is Lyapunov stable in the

mean and mean squared (i.e. for m = 1 and m = 2).  To consider the worst case, m was

calculated from the maximum values of the state variables, i.e.
T

,max ,maxm a b
m

d v .

The values of ,m were calculated over all of the Monte Carlo simulation runs for each

mode. The ratio ,
m

m m  is a useful dimensionless metric for quantifying the solutions

to Eq. (9.5).  The computed ,
m

m m values with m = 1 and m = 2 for modes  = 2-5 and

7 are tabulated in Table 9.1.  These results indicate that the expected values of the

stochastic closed-loop da and vb trajectories remain bounded about their optimal

equilibrium values.
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Table 9.2 Results of stochastic Lyapunov stability analysis.

,
m

m m

Mode, m = 1 m = 2
2 0.78 0.76
3 0.74 0.54
4 0.59 0.47
5 0.64 0.45
7 0.58 0.48

9.4 Conclusions

Monte  Carlo  simulation  was  used  for  performance  and  stability  analysis  of  the

stochastic, constrained closed-loop process dynamics.  The sets of stochastic simulation

results included statistical distributions of process performance measures.  These results

were found to be in agreement with the results of the deterministic closed-loop

performance analysis in Chapter 8.  The Monte Carlo simulation data also allowed a

stochastic Lyapunov stability analysis to be performed.  It was shown that the stochastic

closed-loop trajectories are Lyapunov stable in the mean and mean squared, i.e. their

expected values remain bounded about their optimal equilibrium states in the presence of

system disturbances.

The next chapter describes a series of experiments with the optimal control laws

implemented with the scaled-down robotic bulldozing system.
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Chapter 10

Control Experiments
10.1 Introduction

This chapter presents a series of experiments with the optimal control laws

implemented.  Experiments were conducted with the experimental robotic bulldozing

system.  The control laws were implemented with various tuning values using the results

from the stochastic closed-loop performance analysis in Chapter 9. As a comparison, the

rule-based blade control algorithm presented in Chapter 5 was also implemented.

10.2 Optimal Control Law Tuning

As discussed in Chapter 9, the tuning parameter R  of the optimal control laws

strongly influences the magnitude of the blade position.  A smaller R  results in a larger

magnitude of blade position (e.g., the blade will tend to penetrate down more deeply into

the underlying stones).  A lower blade position will reduce the robot speed due to

increased da and/or increased friction acting on the bottom of the blade, therefore a

smaller R  will produce a smaller vb,ss.  In the case of mode 3 a lower blade position will

produce a larger steady-state material accumulation, da,ss. (Recall that for the other modes

material accumulation is independent of blade position).  Conversely, a larger R  will

tend to result in a larger vb,ss and smaller da,ss.  Since the material removal rate depends on

the product a bd v , R  should be tuned to balance the opposing trends of da and vb with

mode 3. This and other trends were illustrated in the results of the Monte Carlo simulation
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shown in Fig. 9.7-9.10.  The setQ results for modes 2, 3, 4 and 5, and the ,b setv results for

mode  7  were  used  to  select  the  R  values.  Note, for mode 7, da always  diminishes  to

zero, resulting in Q diminishing to zero, therefore, ,b setv  was used for tuning.  The R

values corresponding to the largest setQ  or ,b setv  are the best choices for satisfying the

bulldozing task objective of maximizing the material removal rate.

Although controller tuning involves selecting R  that will result in the best

expected setQ , overly aggressive and overly conservative values will effectively result in

open-loop control. Overly conservative tuning will tend to result in the blade position

remaining near its zero position regardless of the system state.  Conversely, overly

aggressive tuning will tend to result in the blade position remaining near ,b minr .

10.3 Experimental Procedure

Four distinct controller tuning schemes were created to demonstrate the

significance of the R  values on the closed-loop performance.  A set of eight experimental

trials were completed with each of the four schemes (subsequently referred to as Ctrl1 –

Ctrl4) and the rule-based controller from Chapter 5 (subsequently referred to as Ctrl5).

Each trial consisted of four passes.  The initial material pile structure had a uniform

nominal height of 20 mm and length of 1100 mm, covering to the edge of the task space.

The controller tuning values for each scheme are tabulated in Table 10.1.  Ctrl1

combined aggressive tuning of R3 with conservative tuning of the remaining values.

Conservative values were used for all modes in Ctrl2, whereas all aggressive values are

used in Ctrl4.  Ctrl3 used intermediate values.  Note that the state dependent maximum
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blade position constraint 0.18b ar d , described in Chapter 7, was implemented for all

modes.  Also, the mode 6 recovery control law described in Chapter 7, was implemented

for all optimal control schemes Ctrl1-Ctrl4.  The manually tuned rule-based controller

parameters were: T1 = 0.1 s, T2 = 0.5 s, da,thres = 35 mm, vb,thres = 50 mm/s and br  = 1

mm.

Table 10.1 Optimal control tuning schemes.

Control Law Gains
Control Scheme R2 R3 R4 R5 R7

Ctrl1 10 0.1 8 10 8
Ctrl2 10 0.8 8 10 8
Ctrl3 4 0.4 3 4 4
Ctrl4 1 0.1 1 1 1

An example of a result with Ctrl1 is shown in Fig. 10.1.
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Fig. 10.1 Example of an experimental result with tuning scheme Ctrl1, pass 3.
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10.4 Experimental Results Analysis Methodology

The following metrics were calculated to evaluate the performance of the control

algorithms: ,a passd , the average material accumulation over one pass; , ,a passd , the average

material accumulation of mode  over one pass; ,b passv  the average robot speed over one

pass; , ,b passv  the average robot speed of mode  over one pass; passQ , the average material

removal rate over one pass; ,passQ , the average material removal rate of mode  over one

pass; b pass
r ,  the  average  absolute  blade  position  over  one  pass;

,b pass
r , the average

absolute blade position of mode  over one pass; ,a triald , the ,a passd  values averaged over

the trials; ,b trialv  the ,b passv values averaged over the trials; trialQ , the passQ  values averaged

over the trials; and b trial
r  the b pass

r  values averaged over the trials.

To account for the variation in the system variable measurements due to

measurement noise, process noise or disturbance, and the inherent uncertainty associated

with  the  overall  task  environment  (i.e. composition and distribution of material) a

statistical approach was used to analyze the optimal control experimental results.  The

standard one-way analysis of variance (ANOVA) of the selected performance metrics

was used to compare the performance of the different controllers.  ANOVA is an

appropriate methodology for testing the equality of several means, as in Montgomery

(2001).

In general, ANOVA involves the comparison of a treatments or different levels of

a single factor.   In this case of experimental  results  of robotic bulldozing with different
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tuning schemes, each tuning scheme is considered a different treatment.  The observed

response from each of the a treatments is a random variable.  There are ni observations

made under the ith treatment.  A model to describe the observations from an experiment

can be written as:

1, 2, ,
1, 2, ,ij i ij

i

i a
y

j n
  (10.1)

Where yij is the ijth observation, i is the mean of the ith factor level or treatment and ij is

a random error component that incorporates all other sources of variability in the

experiment including measurement noise, process noise or disturbance, and any source of

uncontrolled factors.  It is assumed that ij is normally distributed with zero mean and

variance 2.

The objective of a one-way ANOVA investigation is to test an appropriate

hypothesis about the treatment means of one factor.  The calculations are summarized as

follows:

,
1

in

i total ij
j

y y   (10.2)

,
,

i total
i total

i

y
y

n
 for 1, 2, ,i a   (10.3)

1 1

ina

total ij
i j

y y and   (10.4)

total
total

yy
N

 for
1

a

i
i

N n   (10.5)
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Where yi,total is the sum of all observations under treatment i, ,i totaly  is the average of all

observations under treatment i, ytotal is the sum of all observations, totaly  is the average of

all observations, ni is the number of observations under treatment i, and N is the total

number of observations.

A measure of overall variability in the data is the total sum of squares, calculated

with:

2
2

1 1

ina
total

Total ij
i j

ySS y
N

  (10.6)

The sum of squares due to treatments (or between treatments) is calculated with:

2 2
,

1

a
i total total

Treatments
i i

y ySS
n N

  (10.7)

The sum of squares due to error (or within treatments) is calculated with:

E Total TreatmentsSS SS SS and   (10.8)

The mean squares, which is an estimates 2, is calculated with:

E
E

SSMS
N a

  (10.9)

For comparing all pairs of a treatment means with the null hypothesis H0: i = j

for all i j, Tukey’s test can be used, as in Montgomery (2001).  This test states that two

means are significantly different with percent confidence level 100 (1- ) if the absolute

value of their sample differences exceeds a value T  calculated as follows:

, 1 1
2 E

i j

q df
T MS

n n
(10.10)
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Where q ( ,df) is the studentized range statistic which values may be found in studentized

range distribution tables, df = N - a is the number of degrees of freedom associated with

the MSE and the sample sizes of compared treatment means i and j, are ni and nj,

respectively.

Equivalently, a set of 100 (1- ) percent confidence intervals for all pairs of means

can be constructed as:

, , , ,i total j total i j i total j totaly y T y y T  for i j (10.11)

An aggregate comparison interval about the mean of the kth treatment is calculated from

the confidence intervals for 1, 2, ,k a  as follows:

1, 1 1,
. .,

1 1 1 11
,
2 1 2

a a a

E E
i j ii j i k
i j i kC I k

a MS MS
n n n nq df

w
a a

 (10.12)

This provides a consolidated comparison interval for all pairs such that any two means are

significantly different if their comparison intervals no not overlap.

10.5 Experimental Results

The mean values of the experimental performance metrics with 95% confidence

intervals, 95%w , calculated for the number of treatments a = 5 (i.e. the number of control

schemes to compare) are shown for each mode in Fig. 10.2 and for each pass in Fig. 10.3.

For the per mode ANOVA results in Fig. 10.2, the number of observations for each mode

are not necessarily the same because some modes may not become active during a pass.
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The numbers of per mode observations for each control scheme are tabulated in Table

10.2.  For the per pass ANOVA results in Fig. 10.3, the number of observations is the

same for all comparisons, where a = 5, ni = nj = nk = 8 and 0.05q = 2.85.

Table 10.2 Number of per mode observations of the experimental performance metric.

Mode, Control Scheme Number of
observations, n

2

Ctrl1 32
Ctrl2 32
Ctrl3 32
Ctrl4 32
Ctrl5 32

3

Ctrl1 27
Ctrl2 28
Ctrl3 31
Ctrl4 32
Ctrl5 31

4

Ctrl1 32
Ctrl2 32
Ctrl3 32
Ctrl4 32
Ctrl5 32

5

Ctrl1 23
Ctrl2 25
Ctrl3 27
Ctrl4 26
Ctrl5 16

7

Ctrl1 32
Ctrl2 32
Ctrl3 32
Ctrl4 32
Ctrl5 32
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Ctrl1 and Ctrl2 produced the largest trialQ  with minimal statistical difference

between each other. This similarity was unexpected and will be discussed in the next

paragraph.  The intermediate tuning of Ctrl3 produced the expected mid-level

performance.  The aggressive tuning of Ctrl4 produced consistently poor trialQ  results.

While ,a triald  remained fairly large, ,b trialv  was consistently small.  The performance of the

rule-based controller was also poor, despite best efforts at tuning.  The ,b trialv  and b trial
r

results for modes 2, 4, 5 and 7 in Fig. 10.2 confirm the expected trend of large br

resulting in smaller vb.  Similarly, the most aggressive tuning scheme Ctrl4 resulted in the

largest b trial
r  and smallest ,b trialv  results, as shown in Fig. 10.3.

The ,a triald  results in Fig 10.3 show that da remains relatively consistent from pass

to  pass  regardless  of  control  scheme.   However,  the ,a triald  results in Fig. 10.2 show

significant differences in da for mode 3 and mode 5.  This is an indication of the coupled

behavior between modes from pass to pass.  For example, with Ctrl1 and Ctrl 4, the mode

3 controller is aggressive and will remove a large amount of material in the first two

passes.  Consequently, when mode 5 becomes active in subsequent passes, there will be

significantly less material in the task space resulting in smaller da.
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Fig. 10.2 Comparison of experimental results per mode.
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Fig. 10.3 Comparison of experimental results per pass.
(The ANOVA parameters for each pass were: a = 5, ni = nj = nk = 8 and 0.05q = 2.85)
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The similarity of Ctrl1 and Ctrl2 was due to the mode dependent process behavior

that occurred during each pass.  In the first and second passes modes 3 and 4 typically

were predominant.  In the third and fourth passes modes 5 and 4 were typically

predominant.  As per the mode transition conditions, a significant amount of accumulated

material da must be maintained in mode 4 for a transition to mode 3 to occur.  Therefore,

the mode 3 controller was always initiated with a significantly large da.  This large da was

typically close to the optimal value.  Then regardless of the R3 tuning, a balance with vb

was achieved resulting in a large Q when mode 3 was active.  This is apparent in Fig.

10.2 whereby for mode 3, if ,a triald  is relatively large, ,b trialv  tends to be relatively small.

Thus the performance tended to be insensitive to the tuning of R3.  In the 3 modes the

most significant influence on trialQ  was vb.  In particular, aggressively tuned mode 4 or 5

controllers greatly reduced vb, resulting in much smaller trialQ  values.  The best optimal

control tuning scheme Ctrl1 resulted in an average 37% larger trialQ  than  the  worst

optimal control tuning scheme Ctrl4 and an average 33% larger trialQ  than the rule-based

controller Ctrl5.

10.6 Conclusions

Experimental  results  with  various  optimal  controller  tuning  values  and  a  rule-

based controller were presented to compare the performance of the different controllers.

The results with the optimal control laws significantly increased the average material

removal rate compared to the rule-based controller.
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The next chapter concludes this thesis with a summary of research contributions

and a discussion on recommendations for future work.
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Chapter 11

Conclusions and Recommendations
11.1 Conclusions

The theoretical and experimental investigations presented in this thesis on

modeling and control of a robotic bulldozing operation lead to the following conclusions:

1.  Observations of a full scale bulldozing process formed the basis for the

development of a theoretical nonlinear hybrid dynamic model in Chapter 3.  A

set of nine nonlinear dynamic system equations were developed that model the

low-level bulldozing process.  Ten discrete operation modes with 16 mode

transition conditions were defined.

2. A system identification methodology was used in Chapter 4 for estimation of

the dynamic equation parameters for modes 1-5 and 7 and model refinement.

The refined model was validated and simulation results confirmed the

expected model dynamic behaviour.

3. An extended Kalman filter (EKF) was designed in Chapter 6 and implemented

on the experimental robot bulldozing system using the dynamic equations

from Chapter 3 and the estimated parameters from Chapter 4.  The

performance of the Kalman filter is comparable with the performance of a 2nd

order 1 Hz Butterworth lowpass filter. The main advantage of the Kalman

filter is that less delay is introduced in the signal and tuning is more flexible

with more meaningful parameters.
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4. Analysis of the deterministic open-loop dynamics in Chapter 8 showed that

steady state open-loop stall conditions exist for this experimental system but

can be avoided with an appropriate minimum blade constraint.  Further

analysis of the deterministic closed loop dynamics using the control laws

designed in Chapter 7 showed that closed-loop stall cannot occur for this

experimental system.  A numerical Lyapunov stability analysis showed that

the deterministic closed-loop trajectories of da and vb converge to their steady

state optimal equilibrium values.

5. It was found experimentally in Chapter 7 that avoidance of mode 6 can be

accomplished with an appropriate state dependent maximum blade constraint

imposed in modes  = 2-5 and 7.  The results of this investigation formed the

basis for the development of a blade control law to transition out of mode 6 if

it occurs.

6. Analysis of the stochastic closed loop dynamics in Chapter 9 showed

agreement with the results of the deterministic closed-loop performance

analysis in Chapter 8.  Furthermore, a stochastic Lyapunov stability analysis

showed that the expected values of the mean stochastic closed-loop

trajectories remain bounded about their optimal equilibrium states.

7. Experimental results with various optimal controller tuning values and a rule-

based controller were presented to compare the performance of the different

controllers.   The  best  optimal  control  tuning  scheme  Ctrl1  resulted  in  an
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average 37% larger trialQ  than the worst optimal control tuning scheme Ctrl4

and an average 33% larger trialQ  than the rule-based controller Ctrl5.

11.2 Summary of Research Contributions

This thesis addressed the challenge of developing a novel approach to autonomous

bulldozing operations.  This included the following key research contributions:

1. Design of a reduced-scale robotic bulldozer and experimental environment.

2. A hybrid dynamic model of a robotic bulldozing process including a set of

novel nonlinear dynamic equations to model the low-level dynamics.

3. Design of a rule-based closed-loop blade control algorithm.

4. A novel system identification and model validation framework for the robotic

bulldozing process.

5. Design of model-based optimal control laws for the execution of the robotic

bulldozing operation, including a deterministic and stochastic performance

and stability analysis.

6. Design of an approach for avoidance and recovery control of a special-case

operation mode.

7. Experimental validation of the robotic bulldozing model and control design.

Three refereed conference papers on work with the prototype full-scale bulldozer

and mining application form the basis for introductory material regarding conceptual task

analysis, control requirements and motivation for the development of the reduced scale

experimental robotic bulldozing system, which are Olsen et al. (2006), Olsen et al.

(2008a) and Olsen et al. (2008b).  Another refereed conference paper, Olsen and Bone

(2011), presents preliminary model development and system identification with the
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reduced-scale robotic bulldozing system.  A journal paper, Olsen and Bone (2012a), was

submitted on modeling and system identification.  Another journal paper, Olsen and Bone

(2012b), was submitted on the design of model-based optimal control laws and

experimental implementation.

11.3 Recommendations for Future Work

Building on the results presented in this thesis, there are a number of interesting

avenues for extending this research.  An overview of some directions for future work

follows.

The overall experimental system scope could be extended to include different

types of material for dozing, e.g. different  sizes  and  densities  of  stones  and/or  soil;

different blade shapes and sizes; and different floor surface textures.  Furthermore, a more

intensive investigation on track-slip could be conducted including detailed modelling and

design of a control approach for track-slip reduction.

The scope of the bulldozing process could be extended to include additional

degrees of freedom beyond the current constraints with a single direction of motion, e.g.

introducing steep slopes to climb and introducing multi-directional planar navigation

throughout the task space.  In addition to low-level control design, higher-level strategies

could be developed involving multiple bulldozing robots.

Different control laws could be formulated with different objectives other than to

maximize the material removal rate.  For example, a related bulldozing task involves

blade control to achieve desired terrain profile characteristics for construction site

preparation.  This may entail formulation of a blade position control law with respect to
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minimizing the error between the actual underlying material profile height and a desired

material profile height.

Ultimately, full scale realization of the work presented in this thesis could be

investigated.  This includes experimental implementation of the system identification

framework and the control laws with a full-scale robotic bulldozing system.  The current

vision-based localization system and the vision-based laser scanning system are not

intended for use as part of a full-scale system, although similar technologies may be

applicable.  For full-scale above-ground vehicle localization, global positioning system

(GPS) based methods are becoming well-established for real-time vehicle localization, for

examples see Crane et al. (1995), Le et al. (1997) and Redmill et al. (2001).  For

underground applications, vehicle localization is a challenging area of active research,

where various approaches have been investigated.  These include artificial beacons and

integrated systems combining inertial sensors, magnetometers, range finders and

odometry.  For examples see Scheding et al. (1999), Bakambu and Polotski (2007), Xiong

et al. (2009) and Chi et al. (2012).  Similarly, material profile measurement for

automation of mining and construction operations continues to be an active area of

investigation, for examples see Stentz et al. (1999) and Brooker et al. (2007).
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Appendix A

Details of the Experimental Robotic Bulldozing
System
A.1 Introduction

This appendix documents the details of the sensors and process variable

measurements of the robot bulldozer experimental system. These include robot location

measurement, material accumulation measurement, blade position measurement, robot

pitch measurement, task space material profile height measurement and calculation of the

material profile process auxiliary variables.  It also includes the details of the blade

position controller and heading controller.

The primary fixed components that compose the task space environment include

the line laser mounted on the stepper motor, the robot tracking camera, the laser scan

camera and the elevated platform on which the robotic bulldozer pushed loose stones.  A

diagram showing the geometric locations of these components is shown in Fig. A.1.
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Fig. A.1 Locations of the task space components in the world coordinate
frame (X-Y-Z).
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A.2 Robot Location Measurement

A.2.1 Robot Localization Camera Calibration

The camera was calibrated with a chessboard pattern to determine camera position

and pose with respect to the task space, and camera intrinsic parameters and distortion

parameters.  The estimated calibration parameters are used to compensate for lens

distortion and calculate robot task space world coordinates in the vision localization

system.  The calibration pattern is composed of a 5x7 grid of alternating black and white

squares.  The size of each square is 209 mm along an edge. The average number of pixels

along the edges of each square was 71 giving a resolution of 3 mm per pixel.  The

calibration pattern was positioned level and flat against the task space floor surface.  The

OpenCV software library was used for camera calibration.  Specific OpenCV functions

were used to find the corners of the calibration pattern, estimate camera parameters,

undistort the image in addition to other image processing.  An example image of the

chessboard calibration pattern with detected corner points is shown in Fig. A.2.



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

170

The camera model used to calculate world coordinates from image pixel coordinates with

lens distortion compensation is defined by the following equations:

x X
y R Y t
z Z

   (A.1)

x x z    (A.2)

y y z    (A.3)

2 4 6 2 2
1 2 3 1 21 2 2x x k r k r k r p x y p r x    (A.4)

2 4 6 2 2
1 2 3 1 21 2 2y y k r k r k r p r y p x y    (A.5)

Fig. A.2 Camera calibration chessboard configuration.
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2 2 2r x y    (A.6)

x xu f x c  and    (A.7)

y yv f y c    (A.8)

where, (X, Y, Z) are the coordinates of a point in the world coordinate frame; (u, v) are the

coordinates of the point projection in pixels; R is a rotation matrix describing the relative

rotation of the camera with respect to the calibration pattern; t is a translation vector

describing the relative translation of the camera with respect to the calibration pattern

corner  point  #1  (i.e. corner point #1 defines the origin of the world coordinate frame);

(cx, cy) is a principle point located at the image centre; fx and fy are the focal lengths; k1,

k2 and k3 are radial distortion coefficients;  p1 and p2 are tangential distortion coefficients.

The values of the intrinsic parameters and distortion coefficients, estimated from

the chessboard calibration pattern in the image, are tabulated in Table A.1.

Table A.1 Robot tracking camera calibration estimated intrinsic parameters and distortion

coefficients.

cx cy fx fy k1 k2 k3 p1 p2

320 240 817 817 -0.10 0.67 -0.0047 -0.0020 -0.10

The combined rotation-translation matrix [R|t] takes the form:

11 12 13 1

21 22 23 2

31 32 33 3

|
R R R t

R t R R R t
R R R t

   (A.9)

The estimated values of the rotation translation matrix elements are tabulated in Table

A.2.



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

172

Table A.2 Robot tracking camera calibration estimated elements of the rotation

translation matrix.

R11 R12 R13 R21 R22 R23 R31 R32 R33
t1

(mm)
t2

(mm)
t3

(mm)
1.0 -0.012 0.068 0.013 1.0 -0.012 -0.068 0.012 1.0 -530 -318 2373

For each of the calibration pattern corner points the error in the estimated world

coordinates was calculated.  The mean error in X was 1.6 mm with standard deviation 1.0

mm.  The mean error in Y was 0.93 mm with standard deviation 0.75 mm.

A.2.2 Robot Localization Target Tracking

The basic robot target tracking algorithm is summarized as follows:

1. Acquire raw color image

2. Convert image to grey scale

3. Threshold the image to segment the bright pixels belonging to the target

circles from the background.

4. Find all contours in the thresholded image.

5. Perform least squares ellipse fit on each contour that greater than the minimum

expected number of points in the contours of the target circles appearing in the

image.
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To improve the execution time of image processing within the vision tracking

program, a method of adaptive region of interest (ROI) around the robot target has been

implemented.  The image processing algorithm executes much faster and with less

variability  on  the  smaller  ROI.   For  example,  the  vision  tracking  program  begins  by

capturing a raw image of the entire task space, as shown in Fig. A.3.  The initial ROI is

set to just encompass the boundaries of the robot task space panel platform, as shown in

Fig. A.4.  After the centres of the two robot target circles are found, the size of the ROI is

decreased to just encompass the robot target and the location of the centre ROI is set to

Fig. A.3 Vision tracking raw image of the task space with visible robot target
circles.
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the middle point between the two target circle centres, as shown in Fig. A.5.  As the robot

travels around the task space, the location of the image ROI follows the robot by shifting

to the middle of the detected circle centres with each image capture update.  The resulting

target tracking within the task space image is shown in Fig. A.6 with the target circles

highlighted and robot heading indicated by the arrow.

Fig. A.4 An example of the vision tracking image initial ROI.
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Fig. A.5 An example of the vision tracking image reduced ROI.

Fig. A.6 An example illustrating the result of the vision tracking.
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The calculation of the world coordinates of the robot targets from the pixel

coordinates required the elevation (i.e. Z coordinate) of the target above the floor surface,

which was measured to be 190 mm when the tracks were on the floor.   When the robot

was engaged in task execution, elevation of the targets could change by a maximum of 30

mm.  This was found to have a negligible effect on the localization measurements.  The

equations used to calculate the world coordinates (X, Y) of the target centres from

undistorted pixel coordinates (u’, v’) are:

x

x

u c
x

f
 (A.10)

y

y

v c
y

f
 (A.11)

1,3 1 2,3 2 3,3 3

1,3 2,3 3,3

Z R t R t R t
z

R x R y R
 (A.12)

x x z  (A.13)

y y z  (A.14)

1,1 1 2,1 2 3,1 3X R x t R y t R z t  and  (A.15)

1,2 1 2,2 2 3,2 3Y R x t R y t R z t  (A.16)

The large target circle is positioned above the centre of the robot chassis and the

small circle is positioned above the blade edge, as illustrated in Fig. 4.1.  Thus, the X and

Y coordinates of the robot centre, (xc, yc), are calculated from the centre coordinates of

the  large  circle,  and  the  X and  Y coordinates  of  the  robot  blade,  (xb, yb), are calculated
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from the centre coordinates of the small circle, using Eqs. (A.10)–(A.16).  The robot

heading, , is calculated from (xc, yc) and (xb, yb) using the equation:

atan2 ,b c b cy y x x  (A.17)

The robot location in the task space calculated from image pixel coordinates was

verified by comparing physical displacement measurements of (xc, yc) across the length

and width of the task space with displacements calculated from the vision localization

system.  The robot was located at initial coordinates (xco, yco) and relocated to coordinates

(xc1, yc1).   Then  the  displacement  between  (xco, yco)  and  (xc1, yc1) was calculated. The

results are shown in Table A.3.  The average percent absolute error in estimated

displacement is 2.3% with a standard deviation of 0.4%.
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Table A.3 Robot vision localization experimental verification.

Position Coordinates
(mm)

Displacement
(mm)

Absolute
Error
(mm)

% Error
xco yco xc1 yc1 Calculated Measured

230 66 786 66 556 544 12 2.2

810 261 250 273 560 550 10 1.8

244 472 795 479 551 538 13 2.4

815 460 802 51 409 400 9 2.3

552 53 568 52 399 389 10 2.7

235 444 220 72 372 362 10 2.9

-68 188 638 162 706 685 21 3.1

-79 -110 618 396 861 845 16 1.9

1237 -141 5 532 1404 1375 29 2.1

-101 -113 1028 661 1369 1342 27 2.0

A.2.3 Summary of Robot Location Measurement Details

The robot location measurement details are summarized as follows:

Equipment: Point Grey Research Scorpion Camera (640 x 480 pixels2) with a

Pentax zoom lens set to 12 mm focal length.

Accuracy and precision in position coordinates at zero elevation:

o X coordinate mean abs. error 1.6 mm with standard deviation 1.0 mm.

o Y coordinate mean abs. error 0.93 mm with standard deviation 0.75

mm.



 Ph.D. thesis – Scott Olsen       McMaster University – Mechanical Engineering

179

Mean error in robot displacement: mean percent error 2.3%.

Resolution:  < 3 mm/pixel.

A.3 Robot Blade Material Accumulation Measurement

A.3.1 Material Accumulation Measurement Calibration

Five distance sensors, denoted S1-S5, were mounted on the front of the  robot

pointing downward perpendicular to the floor approximately 10 mm ahead of the blade.

The sensor voltage signals were calibrated by measuring the varying height of a flat level

surface located directly beneath the sensors, as illustrated in Fig. A.7.  Plots of the range

sensor calibration data with linear fits are shown in Fig. A.8.

The range sensor calibration functions used to calculate object height beneath

each sensor, hs, from sensor output voltage, Vs are:

1 189.7 155s sh V  (A.18)

2 288.1 153s sh V  (A.19)

3 389.4 155s sh V  (A.20)

4 489.4 156s sh V , and  (A.21)

5 589.6 158s sh V  (A.22)

The results of the calibration are as follows.  The mean height measurement

absolute error of sensor S1 is 0.4 mm with standard deviation 0.4 mm.  The mean height

measurement absolute error of sensor S2 is 0.3 mm with standard deviation 0.3 mm.  The

mean height measurement absolute error of sensor S3 is 0.2 mm with standard deviation
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0.2 mm.  The mean height measurement absolute error of sensor S4 is 0.3 mm with

standard deviation 0.3 mm.  The mean height measurement absolute error of sensor S5 is

0.2 mm with standard deviation 0.2 mm.

The material accumulation process variable, da,is calculated as the average of the

height measurements beneath each range sensor, i.e. da = (hs1 + hs2 + hs3 + hs4 + hs5)/5.

A.3.2 Summary of Material Accumulation Measurement Details

The material accumulation measurement details are summarized as follows:

Equipment: Baumer Distance Sensor FADK 14I4470/S14 and National

Instruments PCI-6251 16-bit data acquisition board.

Mean errors in position coordinates at zero elevation:

o S1 mean absolute error 0.4 mm with standard deviation 0.4 mm.

o S2 mean absolute error 0.3 mm with standard deviation 0.3 mm.

o S3 mean absolute error 0.2 mm with standard deviation 0.2 mm.

o S4 mean absolute error 0.3 mm with standard deviation 0.3 mm.

o S5 mean absolute error 0.2 mm with standard deviation 0.2 mm.

Fig. A.7 Illustration of material accumulation sensor calibration.
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Fig. A.8 Range sensor calibration.
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A.4 Robot Blade Position Measurement

A.4.1 Blade Position Measurement Calibration

To calibrate the blade position measurement, the blade was raised to various fixed

positions.  The height of the bottom edge of the blade was measured with respect to the

floor and plotted against the corresponding blade motor encoder counts, as shown in Fig.

A.9 with the corresponding linear fit calibration function.  The theoretical resolution of

the blade position measurement is 0.000772 mm per encoder count.  From the calibration

results, the mean blade position measurement absolute error is 1 mm with standard

deviation 0.7 mm.

A.4.2 Summary of Blade Position Measurement Details

Fig. A.9 Blade position measurement calibration.
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The blade position measurement details are summarized as follows:

Equipment: Faulhaber HES164A quadrature encoder integrated with a

1524E006S123 motor and 15/5S141:1K832 gearhead

Mean error: mean absolute error 1 mm with standard deviation 0.7 mm

A.5 Robot Pitch Measurement

A.5.1 Robot Pitch Measurement

The tilt sensor was mounted directly to the robot chassis aligned with its

longitudinal and lateral axes.  Accuracy and resolution values were taken from the data

sheet.  The sensitivity and voltage offset values from the data sheet were used to calculate

pitch angle, , from the orientation sensor voltage, Vs, ,.  The pitch angle is calculated

with the equation:

,1 2.5
sin

0.0349
sV

 (A.23)

A.5.2 Summary of Robot Pitch Measurement Details

The robot pitch measurement details are summarized as follows:

Equipment: Crossbow Tilt Sensor CXTA02 and National Instruments PCI-

6251 16-bit data acquisition board.

Accuracy: 0.5 degrees.

Resolution: 0.05 degrees.
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A.6 Task Space Material Profile Height Measurement

A.6.1 Task Space Material Profile Measurement

A diagram of the material profile measurement system is illustrated in Fig. A.10.

The laser position was fixed at height hL above the reference surface.  The laser was

mounted perpendicularly to the shaft of the stepper motor allowing it to rotate and scan

along the length of the task space.  The laser beam reflects off of the measured surface at

a distance dB and reflects off of the reference surface at a distance dB,ref.  The difference

between the distance of the beam reflected off of the measured surface and the reference

surface in the camera image is c’ with magnification M.  The height of the measured

surface, a, at position dB is determined as a function of the relationship between these

geometric variables as follows:

cMc  (A.24)

,
cos
sinB ref Bd d Mc  and  (A.25)

,

cos
sin

L

B ref

ha Mc
d

 (A.26)
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A.6.2 Synchronization of the Stepper Motor and Camera

The stepper motor driver was set to microstep at a resolution of 32 microsteps per

step (or 6400 steps per revolution).  At this resolution the maximum longitudinal distance

Fig. A.10 Diagram of the material profile measurement system.

Side View

Top View
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change of the laser beam projected on the task space is less than 7 mm (occurring at the

farthest edge of the task space).  The laser beam distance travelled in the task space is

much smaller at the ‘start’ of the task space.  To reduce the number of images saved while

maintaining an acceptable change in beam travel per frame with a constant frame rate,

images are saved after two motor microsteps for the first 60 frames (approximately 1/3 of

the task space).  A total of 275 images are saved over a total distance in the task space of

1200 mm giving an average beam travel resolution of 4.4 mm/frame.  The motion of the

stepper motor is synchronized with the camera to advance one microstep after a new

frame is captured and saved.  Communication between the stepper motor control

computer and the image capture computer is achieved by sending discrete pulses from the

camera.

A.6.3 Laser Scan Image Processing and Calibration

After the scanning process is complete each image is processed to identify the

contour of the beam and calculate the height profile.  The height profile is determined

with respect to the reference segments of the beam (i.e. known region of the level floor

surface).   Prior  to  processing  an  image  of  the  task  space  with  no  laser  is  saved.   The

image processing algorithm is described as follows:

1. Subtract ‘laser off’ image from ‘laser on’ image to produce the ‘beam

only’ image

2. Threshold the ‘beam only’ image at a level of 15% to produce a binary

image of the beam contour points.
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3. For each row along the X-axis of each ‘beam only’ image the beam

contour width is condensed to one pixel by taking the average of all pixel

Y-values.

4. To handle the possible condition of two apparently distinct contours, if the

difference between the largest and smallest Y-values is greater than 5

pixels (e.g. the maximum expected beam width) then either the largest Y-

value or smallest Y-value is chosen depending which is closer to the mean

value.

5. Fit  a least  squares line to the ‘tail’  points of the beam contour which are

known to be at the zero elevation floor surface reference.

6. Calculate the difference between all contour points and the reference line,

i.e. the c’ term in Eq. (A.24).
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An example of the result of the image processing algorithm is shown in Fig.A.11.

To calibrate the calculation of the height profile from each image using Eq. (A.25)

the value of dB,ref and the ratio
sin
cos  were determined experimentally as functions of the

Y-axis position of the reference line in the image.  A plot  of laser beam position, dB,ref,

measured in the task space with respect to the Y-axis laser beam position in the image is

shown in Fig. A.12.

Fig. A.11 Example of a raw laser scan image with various objects of different
heights in the task space.

TestLaserOn

Wood two by four, height ~40 mm

Small piece of wood, height ~12 mm

Small pile of stones, height ~15 mm

Level floor surface, height 0 mm
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To determine the ratio
sin
cos  as a function of Y-axis beam position, the height of

an object in the task space was calculated at different positions in the task space with Eq.

(A.26) using the calibrated function for dB,ref found previously and the ratio
sin
cos  set to

unity.  The ratio
sin
cos as a function of beam reference position in the image is

determined with the following equations:

refB

L
uncalibcalc d

hcMh
,

,  (A.27)

pix
refB

measured

uncalibcalcmeasured df
h

hh
,

,  (A.28)

Fig. A.12 Calibration of the beam reference task space position with respect to image
position.
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pix
refB

uncalibcalc
measured df

h
h

,

,

1
 and  (A.29)

pix
refBdf ,1

1
sin
cos  (A.30)

where uncalibcalch ,  is the calculated height with 1
sin
cos

, measuredh is the measured height

and pix
refBdf ,  is the linear fit function of percent error as a function of reference line

distance in the image.  A plot of percent height error as a function of beam reference

position in the image is shown in Fig. A.13.

Fig. A.13 Calibration of ratio
sin
cos  with respect to beam reference position in the

image.
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A.6.4 Laser Scan Height Measurement Validation

The calibration of the height measurement system was verified with four straight

metal beams of constant height placed in the task space.  An example image with the laser

stripe is shown in Fig. A.14.  An example of the resulting height measurements of one

‘beam slice’ are shown in the Fig. A.15.  The final calculated height contour over the task

space is shown in Fig. A.16.  The mean absolute error of the calculated height of each

metal beam over the entire task space is 0.23 mm, 0.34 mm, 0.26 mm and 0.26 mm.

Overall, the height measurement mean absolute error is 0.26 mm with standard deviation

0.24 mm.

LaserOn

Fig. A.14 Laser scan height measurement verification example image with four
straight metal beams with different heights.
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A.6.5 Summary of Task Space Material Profile Measurement Details

The task space material profile measurement details are summarized as follows:

Equipment: Point Grey Research Dragonfly2 Camera (1024 x 768 pixels2)

with a 8.5 mm focal length lens and a red filter.  Lasiris 635 nm, 5mW laser.

Mean error: mean absolute error 0.26 mm with standard deviation 0.24 mm.

Height Resolution: 2 mm to 7 mm.

Fig. A.15 Laser scan height measurement verification example height calculation
from a single image.
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A.7 Material Profile Process Auxiliary Variables

To calculate the process auxiliary variables hb, hr,l and hr,r, the locations of the

edges of the blade ((xb,l, yb,l),  (xb,r, yb,r))  and  the  locations  of  the  outer  edges  of  the

material ridges ((xrl, yrl),  (xr,r, yr,r)) were calculated from the measured location of the

blade centre, xb and the robot heading, .  This is illustrated in Figure A.17.

Fig. A.16 Laser scan height measurement verification calculated height over the
entire task space.
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The locations of the blade edges and outer ridge locations are calculated as

follows:

, cos 90
2

b
b l b

wx x  (A.31)

, sin 90
2

b
b l b

wy y  (A.32)

, cos 90
2

b
b r b

wx x  (A.33)

, sin 90
2

b
b r b

wy y  (A.34)

, cos 90
2

b
r l b r

wx x w  (A.35)

Fig. A.17 Diagram illustrating the robot location and process auxiliary
variable locations coordinates.
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, sin 90
2

b
r l b r

wy y w  (A.36)

, cos 90
2

b
r r b r

wx x w  and  (A.37)

, sin 90
2

b
r r b r

wy y w  (A.38)

where wb is the width of the blade (200 mm) and wr is the nominal ridge width (50 mm).

The process auxiliary variable hb is calculated as the mean material profile height

within a region along the width of the blade at each location xb in the task space.  This is

summarized as follows:

( ) ,b b scanh x mean h x y , for , ,b b b r b lx x x y y y  (A.39)

where, hscan(x,y) is the set of all height measurement points in the task space at

coordinates  (x,y)  and   is  a  small  distance  equal  to  the  nominal  resolution  of  the  laser

scanning system (5 mm) to ensure that enough points are included in the calculation.

Similarly, the process auxiliary variables hr,l and hr,r are calculated as the mean profile

height within regions defined by the edges of the blade and the approximate width of the

ridge.  This is summarized as follows:

, ( ) ,r l b scanh x mean h x y , for , , , ,b l b l b l r lx x x y y y  and  (A.40)

, ( ) ,r r b scanh x mean h x y , for , , , ,b r b r r r b rx x x y y y  (A.41)

An  example  of  a  topological  material  profile  scan  with  the  robot  path

superimposed is shown in Fig. A.18.
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A.8 Blade Position Control

Proportional-integral-derivative (PID) control was implemented for position

control of the robotic bulldozer blade, however, after extensive effort at tuning it was

found  to  be  ineffective.   It  is  believed  that  this  was  due  to  lack  of  robustness  to  the

uncertainty in interaction forces between the blade and the environment.  This motivated

the use of a simplified sliding mode controller.  The sliding mode controller takes the

form:

, ( )b s bu V sign s  and  (A.42)

bs r  (A.43)

Fig. A.18 Example of material profile scan height measurements with the
robot path superimposed.
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where, ub is  the  blade  actuator  control  signal, Vs,b is the voltage supply to the blade

actuator, s is the sliding surface, rb is  the  blade  position  reference,  and is the blade

position.  An example of blade position control with the simplified sliding mode

controller  is  shown  in  Fig.  A.19.   This  example  shows  an  extreme  case  of  blade

positioning with step changes in large control increments.  Typically, blade positioning is

much smoother with smaller increments, and the position overshoots are negligible.

Fig. A.19 Example of blade position control with the simplified sliding mode
controller.
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A.9 Robot Heading Control

A differential steering proportional-integral (PI) heading controller was

implemented on the robotic bulldozer to maintain straight forward motion along a straight

path  with  a  constant  heading.   The  same  constant  nominal  input  is  sent  to  each  of  the

robot tracks.  In response to heading error, the controller decreases the input to one track

and increases the input to the other track by the same amount with respect to the heading

error.  The heading control algorithm is defined as follows:

, ,P Iu K e K e  (A.44)

, ,t l t nomu u u  and  (A.45)

, ,t r t nomu u u  (A.46)

where, u is the track control heading correction input; ,PK  is the heading control

proportional gain; ,IK  is the heading control integral gain; ,t nomu  is the nominal constant

track input; ,t lu  is the input voltage to the left track motor; ,t ru  is the input voltage to the

right track motor; e is the error between the desired constant heading, d , and the

measured heading, ; and e  is  the  sum  of  the  heading  error.   The  manually  tuned

heading controller gains were ,PK  =  7  %/deg  and ,IK  =  0.5  %/deg s.   The  nominal

constant track input, expressed as the percentage of the maximum supply voltage was

,t nomu  = 45%, where the maximum track motor supply voltage was 12 V.  The heading

controller  was  able  to  maintain  a  constant  robot  heading  to  within  ±  1  degree.   An
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example of robot heading with the controller maintaining a constant desired heading of

d  = 0 degrees is shown in Fig. A.20.

Fig. A.20 Example of robot heading controller maintaining d  = 0 degrees.


