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Abstract

In this thesis, we apply the Ordinary Least Squares (OLS) and the Generalized Least Squares (GLS)
methods for the estimation of Autoregressive Conditional Duration (ACD) models, as opposed to the
typical approach of using the Quasi Maximum Likelihood Estimation (QMLE). The advantages of
OLS and GLS as the underlying methods of estimation lie in their theoretical ease and computational
convenience. The latter property is crucial for high frequency trading, where a transaction decision
needs to be made within a minute. We show that both OLS and GLS estimates are asymptotically
consistent and normally distributed. The normal approximation does not seem to be satisfactory
in small samples. We also apply Residual Bootstrap to construct the confidence intervals based on
the OLS and GLS estimates. The properties of the proposed methods are illustrated with intensive

numerical simulations as well as by a case study on the IBM transaction data.
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Chapter 1

Introduction

1.1 Financial Time Series

“A time series is a sequence of observations taken sequentially in time” — Box et al. (2008)

Time series are widely encountered in economics, business, ecology, astronomy and medicine.
One of the major applications of time series analysis is in finance. Financial time series analysis
is an area of research that examines both the theoretical and practical valuation methods of assets
(Tsay, 2005). For example, one can perform analysis on a financial time series to examine how asset
price varies over time and to forecast future values.

Typically, a financial time series is non-stationary, which makes it difficult to study mathemat-
ically. A simple approach is to transform the original series into returns. Given {y1,...,y,}, the

return of an asset is calculated as

Tsay (2005) mentioned that returns are stationary and uncorrelated over a period of time. Also,

returns act as a “scale-free summary of the investment opportunity”; thus, investors often favour



returns in order to examine price changes (Tsay, 2005). Some key stylized facts returns of assets

exhibit are:
1. Returns are uncorrelated;
2. Squared returns are correlated;
3. Volatility clustering;
4. Heavy tail-endedness.

To illustrate the characteristics of returns, let us consider the Yen/US dollar daily exchange rate
data set, with a total of 2175 observations that range from March 28, 1998 until July 28, 2006.

Figure 1.1 is a plot of observations of the Yen/US dollar daily exchange rate.
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Figure 1.1: The Yen/US Dollar Daily Exchange Rate for March 28, 1998 until July 28, 2006.

Because the raw data clearly exhibits a non-stationary pattern, we transform the exchange rate

into returns.
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Figure 1.2: The Yen/US dollar Daily Return for March 28, 1998 until July 28, 2006.

The new series has a mean approximately equal to zero and is now stationary. Moreover, returns
show a clear pattern of clustered volatilities. Also, as indicated below, an ACF plot of returns shows
that they are uncorrelated, with lag 1 being significant, whereas an ACF plot of the squared returns
shows that they are highly correlated. Squared returns usually follow a certain stochastic structure

that is essential for forecasting.
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Figure 1.3: ACF Plot of the Yen/US Dollar Daily Return Process for March 28, 1998 until July 28,
2006.
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Figure 1.4: ACF Plot of the Yen/US Dollar Daily Squared Return Process for March 28, 1998 until
July 28, 2006.

1.2 Volatility

Volatility is defined as a measurement of the variation of price over time that is utilized to give a
description of the standard deviation of returns. It plays a key role in options trading, asset pricing
and portfolio management due to the fact that it quantifies risk and hence is important in financial
time series analysis. We next present an overview of the different perspectives to study volatility

(Taylor, 2005).

1. Realized Volatility, also known as historical volatility, is an estimate of the return variation

of some asset in the past. In other terms, it is the standard deviation of past returns, i.e.,

. . , R
where n is the number of trading periods and 7 = — E r; represents the average of the
n
i=1
returns. Realized volatility is a model-free volatility measure.



2. Conditional Volatility is the standard deviation of future returns which are conditional on

past known information, i.e.,

gt — Varl/Q (Tt | Tt—1,-- .,7"1).

Typically, conditional volatility of financial returns does not remain constant over time, so-
called conditional heteroskedasticity. Stochastic Volatility is used to model such conditional

heteroskedasticity, e.g., the ARCH/GARCH model.

3. Implied Volatility is the market’s evaluation of future volatility when option-pricing is based
on some mathematical model of a financial market, i.e., Black-Scholes formula. Thus, it is
a value implied by the market price that equals the volatility parameter when the equality of

the price of an options market and the theoretical price holds true.

Modeling volatility is crucial in risk management as it provides a simple procedure of calculating
the risk value of a financial position. Our main interest lies in stochastic models for modeling con-
ditional volatility. In particular, there are two categories of stochastic volatility models: parameter-
driven such as SV models, and observation-driven such as ARCH and GARCH models. Henceforth,

we use the term “volatility” which stands for “conditional volatility”.

1.2.1 SV Models

Stochastic volatility (SV) models, used for option pricing, are based on a specification of some
stochastic process for volatility (Taylor, 2005). In other words, an innovation term to the conditional
variance equation of {y;},., is proposed. There has been a fair amount of literature related to
SV models. Clark (1973) investigated whether a relationship between price and volume affects
the prediction errors in a market setting. Engle and Rosenberg (1994) proposed a new method
of testing the structure of volatility based on a stochastic volatility process. Tauchen and Pitts

(1983) examined the mixture of distribution hypothesis in order to model the joint distribution of



asset returns and volumes that are conditional on some variable. In addition to having the ability
of generalizing the results of an SV model to a multivariate case, Harvey and Shephard (1996)
also proposed asymmetric SV models with leverage effect as a form of Euler approximation to the
already used SV model. See Taylor (2005) for a detailed overview of SV models.

Suppose {y; },7, follows a SV process

Yt = Ot&g,

(1—ayB—...—a,B™)log (UtQ) = ag+ v,

where aq is a constant, B is the backshift operator, &, ~ N(0,1) and v; ~ N(0,02). Note that
{et};ez and {v;},, are independent of each other and the roots of 1 — in: o; B" lie outside the
unit circle. SV models come up in the real world when pricing options in af:sclatting where volatility
constantly changes. Jacquier et al. (1994) performed a comparative study of the Quasi Maximum
Likelihood Estimation (QMLE) and Monte Carlo methods of estimation for SV models. However,

the process of estimating SV models is a relatively complicated procedure because there are two

innovations {&;},., and {v;},., for each of the y; shocks.

1.2.2 ARCH and GARCH Models

One of the core techniques to model volatility is the Autoregressive Conditionally Heteroskedas-
tic (ARCH) models which were introduced by Engle (1982). The GARCH (Generalized ARCH)
models were later proposed by Bollerslev (1986), where he added a moving average term in order
to take into account any available information on past volatilities. Engle and Bollerslev (1986) in-
troduced the integrated GARCH (IGARCH) processes, which capture the long memory property of
volatility. Engle and Ng (1993) derived the sign bias test, the negative sign bias test and the posi-
tive sign bias test of ARCH processes in order to test for asymmetry of the volatility of residuals.
Conrad and Karanasos (2006) derived the impulse response function of the long memory GARCH

(LMGARCH) processes, with the characteristic that their autocovariances decay slowly.



The essential idea of ARCH processes relates to the variance being conditional on past returns
(Francq and Zakoian, 2010). The ARCH processes are immensely used in econometric and finance
applications. They are particularly useful when the variance to be forecasted is known to change
conditionally and could be predicted by previously forecasted errors (Engle, 1982). The key point
of ARCH models is that the shock of an asset return, denoted by {y; },., “is serially uncorrelated
but dependent, and the dependence of {y; },., can be described by a simple quadratic function of its
lagged values” (Tsay, 2005). We start our discussion from a general class of GARCH (p,q) models
and then consider ARCH (1) and GARCH (1,1) processes as examples.

Suppose that {y; },., follows a GARCH (p,q) process, with both p and ¢ > 0,

Yt = OtEt, (L.1)

p q
of = o+ i+ > Bk, (1.2)
i=1 j=1

for g, c, B >0, e ~ i.i.d.(0,1) and Ee} < co. Also, {07}, is a stochastic process assumed

to be independent of {e; };c7. Assume that {y; }c7 is weakly stationary, i.e., for m = max (p,q),

S (ai+8) <1 (1.3)

i=1

is satisfied with a; = 0 for ¢ > p and §; = 0 for ¢ > ¢ (Tsay, 2005). When ¢ = 0, {y }ez is
referred to as an ARCH (p) process. From the structure of GARCH models, it is seen that large
past shocks {7 ;}7_, imply a large conditional variance {7 }, _, for the innovation {e;},.. This
consequently means that large shocks tend to be followed by large shocks.

The GARCH parameters are typically estimated by QMLE. In fact, the GARCH (p,q) process

can be represented in a linear ARMA (p,q) form as

m q
vi =00+ > (i + Byt +ve— Y Biviy, (1.4)

i=1 j=1



where v; = y? —o?. Such ARMA representation allows us to apply the OLS and the GLS estimation

for non-linear GARCH processes, which ultimately fasten the estimation procedure.

1.3 Ultra High Frequency (UHF) Data

GARCH processes themselves cannot directly model the intra-daily volatility for transaction data.
Thus, in the context of high frequency trading, one is interested in additionally considering dura-
tions between transactions. Particularly, GARCH processes can be applied to intra-daily data after
adjusting for the durations.

Ultra high frequency (UHF) data is a result of the advancements that technology has experienced
and the development of computerized systems. Observations are recorded upon their arrivals based
on some probability law together with characteristics such as prices, quotes, bid-ask spreads and
volumes. The key characteristic that distinguishes UHF data is the fact that observations are spaced
at irregular time intervals. High frequency indicates that prices are recorded more often than daily.
Furthermore, the frequency of observations increases as more prices are recorded per day. The
traditional research on time series employs regularly sampled data. For example, the most common
frequency is one price every one or five minutes. In relation to finance, econometrics and time
series analysis, UHF data has played a key role in providing a much richer understanding of market
activity, both in the academic field and in a real trading setting (Glosten and Milgrom, 1985; Easley
and O’Hara, 1992 and Copeland and Galai, 1983).

UHF data can be regarded as marked point processes, which exhibit the property of strong de-
pendence. Engle and Russell (1998) based their research on introducing an autoregressive structure
for such marked point processes. It is of importance to note that analyzing UHF data could po-
tentially be the only method of observing temporal dependence between markets that have some
“arbitrage inter-relationships” in common (Goodhart and O’Hara, 1997). In this thesis, we focus
on one of the most widely used duration models, the standard Autoregressive Conditional Duration

model (Engle and Russell, 1998), for modeling UHF data. Henceforth, we refer to standard ACD



models as ACD models.

1.4 Autoregressive Conditional Duration (ACD) Models

Transactions data are often described by the time of a transaction and observed values, also known
as marks of when transactions occur. When considering an IBM stock data set for example, the
point of time can be referred to as the time of agreement for which a contract to trade some number
of shares takes place. The times that elapse between events such as trades or price changes can
be used to predict the times of future events and to explore the microstructure of markets. Trade
duration is known to be the waiting time between two consecutive trades.

Let {to, t1,..., tn} be a sequence of arrival times with 0 < tg < t; < ... < ¢,. In order to
study financial point processes, one can model the process of trade duration between two continuous
points. Mathematically, trade duration, which is usually measured in seconds, can be represented
by

X =1t; —ti1, (1.5)

and is also referred to as the interval between two arrival times between events ¢ — 1 and ¢ that
occur at times ¢;_1 and ¢;. Engle and Russell (1998) proposed a type of dependent Poisson process,
known as the Autoregressive Conditional Duration (ACD) model with the objective of modeling
time between events for heavily traded stocks. The ACD model provides a bridge between GARCH
models and the UHF. The ACD (p,q) model uses a linear parameterization of ¢;, also known as the

expectation of the t*"* duration

E(X | Xioq,..0, X)) =0(Xoo1, .., X130) = Yy, (1.6)

where 1/, is dependent on p previous durations and ¢ previous expected durations.



Suppose {X;},y, follows an ACD (p,q) model

Xy = gy, (L.7)

p q
o= a0t > aiXii+ Y Bihi, (1.8)
i=1 i=1

where g, «;, B; > 0, and ¢; are i.i.d. random variables with Fe; = 1. A special case of ACD

(p,q) processes is the ACD (p) process

Xt = ey, (1.9)

p
(DS a0+zaiXt—i- (1.10)
i—1

As Engle and Russell (1998) and Engle (2000) indicate, the structure of ACD models is similar
to that of GARCH processes, but rather than specifying a dynamic model on the conditional variance
of the returns, a dynamic structure on the durations is introduced. In particular, the ACD (p) model
is a counterpart of the ARCH (p) model in the duration model framework. Similar to GARCH
models, letting 77, = X; — 9, the ACD (1,1) model can be represented as a linear ARMA (1,1)

model

Xe =0+ (o1 + B1)Xe—1 — Bime—1 + e, (1.11)

where ¢ € Z. Forecasts of waiting times can be computed directly from this representation using the
conventional ARMA analytics. An inherited characteristic of ACD models from GARCH models
is the capturing of duration clustering.

QMLE is a common method of parameter estimation for ACD (p,q) processes. However, QMLE
is computationally expensive and may not be applicable in real time trading. In this thesis, we pro-
pose two alternative methods: OLS and GLS to estimate ACD processes. Ordinary Least Squares
(OLS) is a method used to estimate the parameters of the ACD model and has the advantage of be-
ing numerically simple and computationally less expensive than QMLE. The proposed OLS method

is of interest in practice because it provides initial estimators for the optimization procedure that is

10



used on the QMLE method. However, OLS is not, in particular, an efficient estimator for ACD
processes. We further propose to estimate the parameters of ACD models using Generalized Least
Squares (GLS) to suppress this drawback. Our numerical experiments show that GLS outperforms
OLS in finite samples, and performs equally well as QMLE while being significantly faster. Our
theoretical studies show that both OLS and GLS estimates are asymptotically consistent and nor-
mally distributed. In addition, we apply the Residual Bootstrap method to construct confidence
intervals based on the OLS and GLS estimates.

The remaining chapters of this thesis are organized as follows. The proposed OLS and GLS
estimation methods of ACD models are investigated in Chapter 2. Chapter 3 introduces a Residual
Bootstrap algorithm for the construction of the confidence intervals based on the OLS and GLS
estimates. Chapter 4 presents a case study on IBM transaction data. Finally, we conclude the thesis

with a summary and an outlook of future research in Chapter 5.

11



Chapter 2

Parameter Estimation of ACD Models

In this chapter, we propose to apply the Ordinary Least Squares (OLS) and the Generalized Least
Squares (GLS) methods to estimate the parameters of ACD processes. We derive the theoretical
results with the objective of proving that both OLS and GLS estimates are asymptotically consistent
and normally distributed. In addition, the properties of the OLS and GLS estimates are further
demonstrated by intensive Monte Carlo (MC) simulations.

The ACD model is a form of parameterization, which is defined on the basis of waiting times

between two transactions. As introduced in Chapter 1, the ACD (p,q) model is defined as

Xy = ey, 2.1)

p q
(en oo + Z o Xy + Z Bitbt—i, (2.2)
=1 i=1

where ag, «;, 5; > 0 and e; are i.i.d. random variables with Fe; = 1. Let us define the probability
density function of £, as p (e, ¢) with a strictly positive domain and for parameters 6 and ¢ as both

being variation free. The baseline hazard can be defined as

_ po(60)

Ao = So (¢)

(2.3)

12



[o.¢]
for Sy (€;¢) = / po (u; @) du as the survivor function. The resulting intensity function of the
€

ACD model is

t—1t _
AE|N(t),tim1,ti—2, ... t1,t0) = Ao ( all 1) L (2.4)
U@ YN

Notice that time change is dependent on v;. Due to the various parameterizations of the conditional
mean and distributions of €;, ACD models are known to be very flexible. Two common forms used
for specifying (e, ¢) include the Exponential distribution and the Weibull distribution; the results are
EACD (Exponential ACD) and WACD (Weibull ACD) models (Engle and Russell, 1998). Zhang
et al. (2001) proposed ¢; to have a Gamma distribution; Grammig and Maurer (2000) based their
analysis on the Burr distribution. For the case when the underlying distribution is Exponential, the
baseline hazard is monotonic. When Weibull is the underlying distribution being considered, the

baseline hazard follows an “inverted-U shape” (Engle and Russell, 1998).

2.1 Quasi Maximum Likelihood Estimation (QMLE)

The parameters of the ACD (p,q) model are often estimated by QMLE. Given a sample { X, ..., X, },

in the case where ¢; follows an Exponential distribution, the log QML function is defined as

[(0) = — Zn: @(Z + logq/)t>

t=1

As noticed earlier, ACD processes have a form similar to that as GARCH processes. Results on
QMLE for GARCH (1,1) processes can be immediately extended to EACD (1,1) ( Lee and Hansen,
1994; Lumsdaine, 1996). According to Engle and Russell (1998), maximizing [ (6) of an ACD
(p,q) process will result in both asymptotically consistent and normal estimates of 6 along with a
covariance matrix specified based on “robust standard errors” (Engle and Russell, 1998).

An important requirement for estimating ACD (p,q) processes using QMLE is for the validity of

the conditional mean restrictions to hold true, i.e., the correct specification of the conditional mean

13



function 1); needs to be satisfied. The Maximum Likelihood Estimation (MLE) procedure might
be chosen over QMLE when the correct density function is specified, thus yielding a more efficient
ML estimator. For a more general specification of the distribution of the error terms, the Weibull
distribution can be chosen over the Exponential distribution. The resulting hazard function is either
an increasing or a decreasing conditional intensity function. For instance, it is increasing when the
shape parameter is greater than zero and is decreasing when the shape parameter is less than zero.
In summary, the distribution of an ACD model is specified directly conditional on past dura-
tions. However, for the case when the chosen model is misspecified, the estimator might be biased
and inefficient. A disadvantage of QMLE relates to it being computationally expensive. In auto-
mated trading and market making settings where a decision is usually made within a minute or even

seconds, a faster method of estimation is needed to account for such a limitation.

2.2 Ordinary Least Squares (OLS) Estimation

Based on the linear representation of ACD (p,q) processes, we propose to employ OLS to efficiently

estimate the ACD parameters. First, let us consider a special case, an ACD (p) process

Xt = ey, (2.5)

p
Yt = ag+ Z a; Xy, (2.6)
i—1

Let 0y = (v, a1, g, . . ., ozp)/ denote the vector of parameters of ACD (p). Let X; = 0and ¢y =0

for all £ < 0 and let
Zy = (1, Xeo1, Xomoy ooy Xiop). 2.7)
Then, X; satisfies

Xy = Zy_100 + u, (2.8)

14



where u; = Xy — 1y = (¢ — 1) ;. Then, we obtain

Y =X60pg+ U, (2.9)
where
1 Xo ... X1 Z|,
1 X1 ... Xoy A
X = . = . (2.10)
1 X1 o0 Xoop zZl

Here, note that X is ann X (p + 1) matrix. Moreover, both Y and U are n x 1 vectors such that

X4

Xo
Y = 2.11)

and

U1

uz

U = ' (2.12)
Un,

Assume that the inverse of the matrix X X exists, the OLS estimator of 6y would satisfy:

~ / -1 /
0, = argmin | Y — X0 = <X X) X'y, (2.13)

15



Next, we establish the asymptotic consistency and normality of the OLS estimator. We follow the
framework of the proofs of Theorems 6.1 and 6.2 in Francq and Zakoian (2010). In order to establish

asymptotic consistency of the parameter estimates, we assume

e OLS assumption 1: {X;},_, is the non-anticipative strictly stationary solution of the ACD

(p) model with g > 0.
e OLS assumption 2: EX? < co.

e OLS assumption 3: P(¢; = 1) # 1. This enables the identification of the estimated param-
eters and to guarantee that the inverse of X’X exists for sufficiently large n values and for

ut;é()

Lemma 1. (Consistency of the OLS Estimator of an ACD Model) Under the above presented as-

sumptions, and for 6, being the sequence of estimators satisfying
. , N1,
0, = (X X) X'y, (2.14)

then as n — 00,

~

0,, — 0, n — o, a.s. (2.15)

The proof of Lemma 1 follows directly from Theorem 6.1 of Francq and Zakoian (2010).
In order to prove the asymptotic normality of the OLS estimator, we need to further make the

following assumption
e OLS assumption 4: EX}' < oo,

and let A and B be (p + 1) x (p + 1) matrices defined as

A = B(Zazl)

B = B(Zi1Ziy).

16



Theorem 2. (Asymptotic Normality of the OLS Estimator) Under the above stated OLS assumptions

1-4,
V(b —0y) = N0, (k, —1) AT'BA™Y),

where k, = Ee?.

Proof: Following the proof of Theorem 6.2 in Francq and Zakoian (2010), we consider the
system of equations: X; = Z£,190 + uy.

Then the OLS estimator is

R 1 /
0, = (n Z Zy 17,

As a result,

17



and

n -1 n
A 1 / 1
\/ﬁ(en — 90) = ( E Ztth_1> < E Ztlut> .
"3 Vin t=1
The variance of )\/Zt_lut for A € RPt! and \ # 0 is:

Var(NZyw) = NE (Zt_lz;,lui) A
— VE (ZHZ;,1 (0 — 1)21/;3) Y
= NZi1Z, (WPE (67 —2¢,+1) A

= (kn—1)NBA
Therefore, it follows from the Central Limit Theorem that:

J G
%ZA Zi qup — N (0, (ky, — 1) NBX). (2.16)
t=1

The final result is then achieved by applying the Cramer-Wold device, which then implies:

1 n
\/ﬁ; Zi_1uy — N (0, (kn — 1) B). (2.17)
As a result,
Vi, —0y) = N0, (k, —1) A"'BA™!). 1 (2.18)

In practice, we may check OLS assumptions 1-4 by using Proposition 16 of Carrasco and Chen

(2002) as re-stated below.

Proposition 3. (Carrasco and Chen, 2002) For s > 1, let us assume that {£;}cz with domain

18



[0, 00) satisfies
Elas+8°<1. (2.19)

Result: {Vt},c, is Markov ergodic. If the assumption that {1}, , is stationary is made, then
{4t} ieq and { X1}, oy are strictly stationary. Also, E | ¢y |°< oo and E | Xy |*< co. When s = 2,
|2

we have {1}, as geometrically ergodic and E | 1)y |*< oo,

Next, we present the OLS algorithm for the general ACD (p,q) process. A similar approach is

proposed by Kavalieris et al. (2001) in an ARMA context.

Step 1: Fit an autoregression of order Lnl/ 2J to the data. We then estimate the autoregressive (AR)
parameters oy, {a;}7_; and {3;}7_; using OLS. Consequently, using the residuals obtained

from the model, the estimate of ¢ is €.

Step 2: This stage is referred to as Innovations Substitution (IS) in Pukkila et al. (1990). Here, we

regress Xy —&ron Xy q,..., X4 p, E4—1,...,E6¢—¢, 1.€.,

Xi—&=agtanXp1+...+op Xy + Bréi—1+ ...+ 5qe’~ft_1 (2.20)

A4
The parameter estimates {¢; }*_; and {Bl} _ are thus obtained using OLS.

1=
Note: The theoretical justifications of the asymptotic consistency and normality of the OLS estimates

for the parameters of the ACD (p,q) model are challenging and will be left for future research.

2.3 Generalized Least Squares (GLS) Estimation

The numerical procedure of estimating ACD (p,q) processes using OLS is simple, but the es-
timators are not efficient and the condition of EX; < co has to hold. When considering a linear

regression model, the GLS estimator is often more efficient than the OLS estimator. This occurs

19



when the errors, which are conditional on the exogenous variables, are heteroskedastic. For the
case of GLS, the moment condition required for the asymptotic normality of the latter estimator is
EX}? < co. Similar to the OLS setting, we start our discussion from ACD (p) processes.

First, define 1 (0) and ) as

Y (0) = ao+ zp: a; Xi—, (2.21)
i=1
O = diag @;2 (én) 02 (én)) . (2.22)

Let k,, = Ec?. The GLS estimator is

g, — (X’QX)_1 X'Qy. (2.23)
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Theorem 4. (Asymptotic Properties of the GLS Estimator) For o; > 0 when it = 1, ..., p and under

OLS assumptions 1-3,

0, — 0Oy, as, (2.24)

Vil —00) — N0, (kn — DI (2.25)

ford =F (@bt_ 2Zt_1Z;_1) being positive definite (follows Lemma 1.1 from Francq and Zakoian,

2010).

Proof: We follow the proof of Theorem 6.3 in Francq and Zakoian (2010).
1 n -1 1 n
0, = <n Zw;2 (én) Zt1Z£_1> (n Zw;Q (én> Ztht>
t=1 t=1
n -1 n
1 A 1 .
_ <n e <9n) ZHZ{_1> (n Sy <9n) Zi 1 (Z)_100 + ut)>
t=1 t=1
n -1 n
1 - 1 A
b0+ <n > ui?(0n) ZHZ;_1> (n > v (0n) Ztlut> .
t=1 t=1

For ¢, = 1, (0) and 6* between én and 6y, the Taylor series expansion around 6, gives

v (0a) = v = 207 09 500 %) (9 — 00)

In addition, since % (0) = Z;_1 holds true for all §, we have

RS -2 () / 1 ¢ -2 / 2 ¢ —3 (p* / / )

n Zl/}t <9n> Zt-1Zy1 = n Zwt Zt-1Zp — n Zwt (0%) Zi-12; 1 X 24y (‘9n - 90) :
t=1 t=1 t=1

Notice that due to the ergodicity theorem,

1 n
LStz

t=1

21



convergestoJ = F (wt_QZt_lZ;_J a.s.

Also, when n is large enough,

*Z% ) Ze1Ziy % Zi-y (00— 00)

converges to zero a.s. This is due to the OLS estimator being both consistent and bounded, i.e.,

Z@/Jt (07) Zi— IZtllegl(é 90>H < (:LZ Ve (07) Zi— )H 9 _90>H
t=1
< K|, — 6o]|-

Note that constant K is the result of én — 0; hence it follows that

1

)Xo < o

fori =1,...,pand finally || ¢, (§*) Z;_1|| is bounded. Thus, we have shown that
-1
(LS (i) zin) o

almost surely. Using the above arguments, the term Z wt ( ) Z—1uy, which is equal to
i

iz wt 2Zt 1Ut — *Z wt Zt 1Ut X Zt 1 (é — 00>

converges to zero almost surely. Notice that the expectation of v, ( ) Zi—1uy 18 zero and

Zwt ) Zy—1te (Bo) (g0 — 1) X Zi_ 1(9 _90)

K(ii|gt—1|>

t=1

H Zz/;t ) Zuvue % 7y (B — 00)

0, — 0o

IN
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Therefore, for R,, — 0 a.s,

Vi(0-6) = (37 +R) {;ﬁ anwﬂztlut}

—% (37N Ra) D> 2 (07) Ziauy x Z{_ v/ (é - 90)

t=1

holds true. For 8** between 6* and 6, and using Taylor expansion around 6y would then imply that:
07 = o =30 (0°) 21y (9 — 00) -

As aresult,

Jn (én _ 00>

1 n
= (J_l + Rn) {\/ﬁ ;wt_2Zt_1 (Et — 1)}
2 = R
~ S (T R YU e (e = ) x 2y Vn (en - 90)
t=1

n

+ % (3714 Ba) S 0°%) Zirus < {24/ (B~ 00) ) < {20 v (07— )}

t=1

=A+B+C

By applying the Central Limit Theorem to the ergodic and square integrable stationary martingale
difference v, 'Z (ex — 1), it is seen that term A converges in distribution to a Gaussian vector

with mean zero and a variance of:

J'E {¢;2 (e — 1)2 Zt_lz;_l} I = (k, —1)J7L.
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As for term B, it converges to zero in probability by:
1< .
- ;M?ZH (e0 = 1) % Z{_/n (6 — 00)

= {;Zw{%_l (€t—1)}\/ﬁ("vn_w0)+2{

j=1

n

Z¢f2Zt—1 (et —1) Xt2—j} Vn (Gj — apj) -

t=1

S|

Due to the ergodicity theorem, terms

{ % > i Zia (e - 1) } (2.26)
t=1

and

1 n
{n 2@0[22#1 (et — 1) Xf_]} (2.27)
=1

both converge to zero. Note that all three terms: /1 (W, — wp), /7 (Gnj — ) and (J71 + R,,)
are bounded in probability. As a result, term B converges to zero in probability.

To take into account for the last term C, we can observe that:

n

21

S e —-1]=0 (2.28)
n

t=1

i

—1
|+ R

|1 <

Vi, -a)

So, the convergence in probability of term C holds true. Thus, v/n (én — 90> is convergent. l
Next, we discuss the GLS estimation procedure for the ACD (p,q) model. Steps 1 and 2 are identical
to the method of estimation using OLS for ACD (p,q) processes presented previously. For the GLS

estimates, we conduct an extra step in addition to the OLS procedure.

1. Step 3: From step 2 of estimating ACD (p,q) models using OLS, we perform a linear re-
gression to re-estimate the parameters {/3; };_, using GLS in order to achieve efficiency with
the assumption that the errors are a result of the moving average (MA) of order ¢q. Note that

e¢ — & are independent random variables.
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Due to the restrictions of the parameters of ACD processes, i.e.. ag > 0, {ai}le > 0, and

{819, > 0.if {&;}?_, < 0and {5}

2.4 Numerical Results

q

1=

A4
) < 0, then we set {di}le = 0 and {51} ) =0.
1=

In this section, we investigate the performance of our proposed OLS and GLS methods of esti-

mation and we then compare them to QMLE for ACD (1), ACD (2) and ACD (1,1) processes using

Monte Carlo (MC) simulations.

In particular, we examine the following 3 models:

Model 1: ACD (1)

Model 2: ACD (2)

Y1

Model 3: ACD (1,1)

Xi

Py

for e; ~ i.i.d. Exponential and Weibull. In all numerical examples, we use MC = 2000.

Recalling the probability density function of the Exponential distribution as:

Xy

(o

= ”¢t€t;

= o+ o X

¢t€ta

ap + a1 Xy 1 + e Xi 9.

rlzz)teta

ag + o1 Xi—1 + B1—1,

25
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(2.32)
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Xe ™ forxz >0
fx (x50) =
0, otherwise.

In this study, the rate of the distribution that we used is A = 1.

Probability Density Function of the Exponential Distribution

probability

0.0 02 04 06 08 1.0

Figure 2.1: Probability Density Function of the Exponential Distribution with A = 1.
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Also, the probability density function of the Weibull distribution is:

>l
—~
8
N—
il
—
|
—
>|8
N~—
ol

forxz >0
fxs M k) =

otherwise

o

where k£ > 0 is called the shape parameter of the distribution and A > 0 is the scale parameter of

the distribution.

PDF of the Weibull Distribution with Shape=1.5

probability
04

0.2
l

0.0

PDF of the Weibull Distribution with Shape=0.8

probability

Figure 2.2: Probability Density Function of the Weibull Distribution with A = 1, k£ = 1.5 and 0.8
respectively.
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In the MC simulation study that we performed, we studied the estimates of the parameters of
ACD processes; in particular, ACD (1), ACD (2) and ACD (1,1), based on the two proposed methods
OLS and GLS and the already existing method of estimation QMLE. In particular, we examined the
Exponential distribution and the Weibull distribution for sample size 500 and 5000 and 2000 MC
replicates. Also, note that the nominal value of coverage is 95%. The analytics were performed
using Matlab on a MacBook with a 2.4 GHz Intel Core 2 Duo Processor and a MacBook Pro with a
2.4 GHz Intel Core i7.

The following is a list of the parameters, distributions and related criteria used in this MC

simulation study:
1. ACD (1), Exponential Distribution, A = 1, N = 500 and 5000, ag = 1, a1 = 0.4 and 0.1.
2. ACD (2), Exponential Distribution, A = 1, N= 500 and 5000, g = 1, (a1, a2) = (0.30, 0.15).

3. ACD (1), Exponential Distribution with Truncated Estimates, A = 1, N = 500 and 5000,
ag=1,a1 =04 and0.1.

4. ACD (2), Exponential Distribution with Truncated Estimates, A = 1, N = 500 and 5000,
o = 1, (Oél, 012) = (030, 015)

5. ACD (1), Weibull Distribution with Truncated Estimates, A =1, £ =0.8 and 1.5, N = 500 and
5000, ag =1, 1= 0.3.

6. ACD (1,1), Exponential Distribution, A = 1, N = 500 and 5000 and o = 0.2, a; = 0.4 and
0.1, 81 =0.3.

7. ACD (1,1), Exponential Distribution with Truncted Estimates, A = 1, N = 500 and 5000 and

a0=0.2,a0;=04and 0.1, 31 =0.3.
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The Graphical Representations and Key Summary Statistics for the Estimates generated from

the Monte Carlo Simulation

200
150
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2 2 100}
& &
3100 2
o o
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100}
2 100 2 80y
& &
el 2 60
o 0
[T 18
50 40t
20t
0 0
0 0.2 0.4 06 0.8
0y

Figure 2.3: OLS and GLS Estimates of the Exponential Distribution for ACD (1) when A = 1, N =
500 and for aig = 1, 1 = 0.4.
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Figure 2.4: OLS and GLS Estimates of the Exponential Distribution for ACD (1) when A = 1, N =
5000 and for ag =1, a1 = 0.4.

Figures 2.3 and 2.4 show the histograms of the estimates for the ACD (1) process for N = 500
and 5000 respectively and true values o = 1 and oy = 0.4. It is apparent from the graphical
representations that the estimates are consistent using both OLS and GLS because the mean is
centered at the true value in both cases. However, it is noticable that the GLS estimates have a more
apparent normal fit than the OLS estimates. Also, the spreads of the GLS estimates are significantly

smaller than those of those OLS estimates.
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We next show the parameter estimates based on QMLE method for the ACD (1) model with N =

500 and ovg =1, a1 = 0.4.

200

150

100

Frequency

50

150

100

Frequency

(9]
o

0 0.1 0.2 0.3 0.4 05 0.6 0.7

A1y

Figure 2.5: QMLE Estimates of the Exponential Distribution for ACD (1) when A = 1, N = 500
and for a7 = 0.4.

Figures 2.3 and 2.5 show the histograms of the estimates of the ACD (1) process for N = 500 and
true values aip = 1 and a3 = 0.4. Comparing the OLS, GLS and QMLE estimates, it is apparent that
the GLS estimates are similar to the OLS and QMLE estimates. However, in finite sample, QMLE
outperforms GLS. The estimates of our proposed OLS method are still reliable and are considered
to be consistent because it is the simplest of all three procedure.

Next, we show a few cases for comparing the estimates for ACD (2) and ACD (1,1) using OLS and

GLS as the proposed methods of estimation.
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Figure 2.6: OLS and GLS Estimates of the Exponential Distribution for ACD (2) when A = 1, N =
500 and ap = 1, (a1, a2) = (0.30, 0.15).
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Figure 2.7: OLS and GLS Estimates of the Exponential Distribution for ACD (2) when A = 1, N =
5000 and ap = 1, (a1, a2) =(0.30, 0.15).

Figures 2.6 and 2.7 show the OLS and GLS estimates of the Exponential Distribution for the
ACD (2) model and N = 500 and 5000. The true values of the parameters are ag = 1, (a1, ag) =
(0.30, 0.15). It is noticed that GLS outperforms OLS for both sample sizes. Also, the distribution
of the GLS estimates seems to be more closer to normal than the distribution of the OLS estimates.
All 12 histograms display the estimates &, &1 and & using OLS and GLS as being close to the

true parameter values.
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We next show the OLS and GLS estimates for ACD (1,1) when N = 5000 and g = 0.2, o = 0.1

and 1 = 0.3. The parameter estimates appear to be consistent and are normally distributed.
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Figure 2.8: GLS Estimates of the Exponential Distribution with Truncated Estimates for ACD (1,1)
when A = 1, N = 5000 and for oy = 0.2, a7 = 0.1 & 51 = 0.3.
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Figure 2.9: OLS Estimates of the Exponential Distribution with Truncated Estimates for ACD (1,1)
when A = 1, N = 5000 and for ap = 0.2, a7 = 0.1 & 51 = 0.3.
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Table 2.6: Comparison of CPU Time for Various Monte Carlo Simulations for ACD Processes
Using OLS, GLS and QMLE.

Simulation - using OLS CPU time (in seconds)
Exponential Distribution, ACD (1), N =500, a; =0.4 0.0591
Exponential Distribution, ACD (1), N =500, oy = 0.1 0.0582
Exponential Distribution, ACD (1), N = 5000, a; = 0.4 0.4994
Exponential Distribution, ACD (1), N = 5000, a; = 0.1 0.5052
Exponential Distribution*, ACD (1), N =500, a; =0.4 0.0608
Exponential Distribution*, ACD (1), N =500, a; = 0.1 0.0721
Exponential Distribution*, ACD (1), N = 5000, a;; = 0.4 0.5157
Exponential Distribution*, ACD (1), N = 5000, a1 = 0.1 0.5025
Weibull Distribution* [1,0.8], ACD(1), N =500, oy =0.3 0.0762
Weibull Distribution* [1,0.8], ACD(1), N = 5000, a; = 0.3 0.5905
Weibull Distribution* [1,1.5], ACD(1), N =500, a; =0.3 0.0677
Weibull Distribution* [1,1.5], ACD(1), N = 5000, a; = 0.3 0.9760
Simulation - using GLS CPU time (in seconds)
Exponential Distribution, ACD (1), N =500, a; = 0.4 0.0901
Exponential Distribution, ACD (1), N = 500, a; = 0.1 0.0809
Exponential Distribution, ACD (1), N = 5000, a; = 0.4 0.8354
Exponential Distribution, ACD (1), N = 5000, a; = 0.1 0.8480
Exponential Distribution*, ACD (1), N =500, a; =0.4 0.0642
Exponential Distribution*, ACD (1), N =500, a; =0.1 0.0646
Exponential Distribution*, ACD (1), N = 5000, o,y = 0.4 0.8277
Exponential Distribution*, ACD (1), N = 5000, a; = 0.1 0.8673
Weibull Distribution* [1,0.8], ACD (1), N =500, a1 = 0.3 0.0785
Weibull Distribution* [1,0.8], ACD (1), N = 5000, a1 =0.3 0.9140
Weibull Distribution* [1,1.5], ACD (1), N =500, a1 =0.3 0.0884
Weibull Distribution* [1,1.5], ACD (1), N = 5000, a; = 0.3 1.0761
Simulation - using QMLE CPU time (in seconds)
Exponential Distribution, ACD (1), N =500, a; = 0.4 0.1399
Exponential Distribution, ACD (1), N = 5000, a; = 0.4 0.7981
Exponential Distribution, ACD (1), N =500, a; = 0.1 0.1536
Exponential Distribution, ACD (1), N = 5000, a; = 0.1 1.0562
Weibull Distribution [1, 0.8], ACD (1), N =500, oy = 0.1 0.2784
Weibull Distribution [1, 0.8], ACD (1), N = 5000, a; = 0.1 2.1074
Weibull Distribution [1, 1.5], ACD (1), N =500, a; = 0.1 0.3492
Weibull Distribution [1, 1.5], ACD (1), N = 5000, oy =0.1 2.3829

Note: * referes to the estimates being truncated. In all cases, ag = 1.
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2.4.1 Key Remarks

Our numerical findings and the comparative study of the CPU time for various MC simulations
suggest that the estimation of ACD processes using both of our proposed methods OLS and GLS are
satisfactory. In particular, we considered summary statistics including mean, variance, interquartile
range (IQR) and coverage.

For example, from Table 2.1, for the case of an Exponential distribution for ACD (1) with
parameters cvg = 1, a; = 0.1 and N = 5000, the mean of &g by OLS is 1.0011 whereas the mean of
&o by GLS is 1.0012. The mean of &; by OLS is 0.0989 whereas the mean of & by GLS is 0.0988.
The variances of the OLS estimates &g and &7 are 4.9060e-04 and 2.9003e-04 respectively. The
variances of the GLS estimates & and & are 4.5374e-04 and 2.6137e-04 respectively. Both means
of the OLS and GLS estimates &g and &; are close to the true values of 1 and 0.1 respectively.
Thus, both estimates are asymptotically consistent. However, the GLS estimates are less biased for
finite samples because the mean of the GLS estimates is closer to the true value. The coverage of
the OLS estimates for oy and o are 0.9465 and 0.9515 and the coverage of the GLS estimates for
ap and oy are 0.9535 and 0.9515. This suggests that GLS estimates are slightly more normally
fit when compared to the OLS estimates at the 95% nominal level. Comparing the CPU time, we
see that it takes 0.5052 seconds to run 1 MC replicate using OLS and 0.8480 seconds to run 1 MC
replicate using GLS. Even though the OLS and GLS estimates are both asypmtotically consistent
and normal, it is clear that OLS is much more efficient in terms of timing.

We consider another case from Table 2.2: Exponential distribution with truncated estimates for
ACD (2) with parameters oy = 1 and (o, a) = (0.30, 0.15) and N = 500. The mean of &g by
OLS is 1.0544 whereas the mean of &g by GLS is 1.0213. The mean of &; by OLS is 0.2806
whereas the mean of &1 by GLS is 0.2894. The mean of &y by OLS is 0.1321 whereas the mean
of &o by GLS is 0.1421. The variances of the OLS estimates &g, &1 and &2 are 0.0196, 0.0066
and 0.0045 respectively. The variances of the GLS estimates &g, & and é&» are 0.0112, 0.0038 and

0.0027 respectively. Evidently, the GLS and OLS estimates are asymptotically consistent. Also,
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as for the above case, the GLS estimates are less biased for finite samples because the mean of the
GLS estimates is closer to the true value. The coverage of the OLS estimates for ag, o1 and ao
are 0.9270, 0.9545 and 0.9355. The coverage of the GLS estimates for ag, a1 and ao are 0.9420,
0.9520 and 0.9395. So, the GLS estimates are significantly more normal than the OLS estimates
at the 95% nominal level. Therefore, in this case, both OLS and GLS estimates are consistent and

normally distributed.
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Chapter 3

The Bootstrap Method

3.1 Introduction

Our goal is to construct confidence intervals based on the OLS and GLS estimates of ACD (p,q) pro-
cesses. One possible approach is to utilize the asymptotic properties of the estimates, i.e., asymp-
totic normality. However, a drawback of this method is when sample size is small, the error due to
the asymptotic distribution approximation is fairly large. Thus, an alternative approach should be
applied to account for the limitation of not being able to analyze the accuracy of the estimators.

One of the core techniques which would serve as such a tool is the Bootstrap method. In prin-
ciple, the idea is to find the empirical distribution of the estimator. Bootstrap is a non-parametric
alternative to assess the reliability of the estimators. The Bootstrap method re-samples from an
original sample made of i.i.d. observations with unknown probability distribution functions. The
resulting samples generated, or the re-samples, are referred to as the bootstrap estimates. When
the underlying data is strictly stationary, two bootstrap procedures could be used to perform the
re-sampling.

The original boostrap procedure proposed by Efron (1979), Residual Bootstrap, regards the
residuals of a regression model as the main focus. Efron’s Residual Bootstrap procedure re-samples

the residuals instead of the original observations of the data set. Because of the heteroskedasticity of
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the observations, there is some uncertainty about the performance of such a procedure. As a result,
the fitted residuals will not behave as i.i.d. observations anymore; this in turn makes such a proce-
dure not applicable to time series analysis. Instead, there will be some form of heteroskedasticity
associated with the observations. Further research performed by Freedman (1981), Liu (1988) and
Liu and Singh (1992) suggests that Efron’s procedure is valid even if it was the case for data which
are not independently distributed but just identically distributed.

The second procedure, called Block Bootstrap, is targeted for when less restrictions are present.
The idea behind such a method is to divide the data into various blocks. The resulting blocks,
which are also adjacent, are then re-sampled. This is particularly useful when there is an interest in
capturing the dependence in “consecutive observations” (Koster, 1999). Carlstein (1986) suggested
the concept of non-overlapping blocks. Later, Liu and Singh (1992) proposed the moving blocks
procedure, which in turn uses overlapping blocks with the final objective of minimizing variability.
For this study, due to the heavy tail characteristic of the time series data that we have, it is difficult to
choose a block length in order to perform block bootstrapping. As a result, the Residual Bootstrap

procedure will be used instead to perform the analysis.

3.2 Residual Bootstrap Confidence Intervals for ACD (p,q) Models

We will now use the insight gained from the given information in the previous section as a tool
to help understand the Residual Bootstrap algorithm employed in this chapter. In the last chapter,
we use OLS and GLS in order to estimate the parameters of three models: ACD (1), ACD (2) and
ACD (1,1). However, one’s interest might lie in constructing confidence intervals based on such
parameter estimates. Thus, in this chapter, we construct confidence intervals based on the Residual
Bootstrap method. The next section provides a description of the Residual Bootstrap method used
to find the confidence intervals of &g, {&;}!_; and { BZ}? . for the ACD (p,q) model by using

OLS/GLS.
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3.2.1 Residual Bootstrap Procedure for ACD (p,q) Models Using OLS/GLS

In this section, we present the procedure for finding the confidence intervals of the estimates of the

ACD (p,q) model using Residual Bootstrap.

1.

2.

Calculate éo, {;}?_, and {5}q  of the ACD (p.q) model of { X}, using OLS/GLS.
(]

Estimate the residuals {£;},., based on the ACD (p,q) model.

. Re-sample with replacement from {£;},.,. Therefore, the empirical distribution of {£;},.,

n
follows: F ¢ o) = — E 1iz>z,, for {x > &} representing the number of observed residu-
n >
t=1
als less than or equal to z. The resulting bootstrapped residuals are denoted by: {¢} },..

p q
. Construct the bootstrap process { X/}, by: Py = o + Z & X[+ Z Biths_; and

i—1 i=1
X7 = ayef, for {e} },cp are iid.

. Re-estimate the ACD (p,q) coefficients: &y, {&;}?_; and { B@} . using OLS/GLS.

q

1=

With B representing the number of bootstrap replicates, repeat steps 3-5 B times to obtain the

bootstrap estimates: {ag}, {a;}r_, and {8} }7_,.

Now we use the bootstrap distribution of of, {c;}!_; and {#;}7_; produced by steps 3-6,

ie: [ ay r (a1} and | (5} to approximate the unknown distribution of v, {;}?_,
1) i=1 v Ji=1

and {fi}i_, respectively.

The 100 (1 - a)% interval of g is given by: [M; ($), M (1 —$)], where M (1 — a)
is the 100 (1 - @)% quantile of F ;.

The 100 (1 - @)% interval of {o;}?_, is given by: [N} (), N;i(1 — %)], where N (1 — «)
is the 100 (1 - &)% quantile of | {ar)" -

The 100 (1 - @)% interval of {3;}{_, is given by: [R}, (%), R;;(1 — §)], where R};(1 — «)

is the 100 (1 - @)% quantile of [ (5} -
i Ji=1
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3.3 Monte Carlo Simulation Results of the Residual Bootstrapped Con-

fidence Intervals

3.3.1 Results

By applying the Residual Bootstrap procedure for ACD (1), ACD (2) and ACD (1,1) models,
we wish to find the confidence intervals for g and «; for ACD (1), g, 1 and ag for ACD (2) and
ag, a1 and (1 for ACD (1,1).

Recall from Chapter 2:
Model 1: ACD (1)

Xy = ey, 3.1
vy = ag+ a1 Xiq. (3.2)
Model 2: ACD (2)
Xt = ey, (3.3)
Y = ap+ o1 X1+ aXioo. (3.4)
Model 3: ACD (1,1)
Xy = ey, (3.5)
P = o+ o Xi—1+ B, (3.6)

The residual bootstrap confidence intervals for ACD (1), ACD (2) and ACD (1,1) are estimated for
various cases with MC = 1000 and B = 999. In all cases, ag = 1. Exponential distributions with

truncated estimates are considered.
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As well, the coverage probabilities for the estimates of ACD (1), ACD (2) and ACD (1,1) are
presented below. We note that the nominal value considered is 95%.

Table 3.2: Coverage of the OLS and GLS Estimates Using Residual Bootstrap for ACD (1)

ot GLS GLS OLS OLS
Description o af 0 af

ACD (1), ap =04, N=500 09450 0.9220 0.9490 0.9140
ACD (1), a9 =0.4,N=1000 0.9380 0.9310 0.9650 0.9220
ACD (1), a9 =04, N =5000 09570 0.9480 0.9780 0.9240
ACD (1), ap =0.1, N=500 0.9520 0.9370 0.9490 0.9390
ACD (1), ap =0.1, N=1000 0.9420 0.9290 0.9470 0.9300
ACD (1), a9 =0.1, N=5000 0.9530 0.9530 0.9500 0.9440

Table 3.3: Coverage of the OLS and GLS Estimates Using Residual Bootstrap for ACD (2)

Description ozg; LS a?LS onGLS aOOLS a?LS onOLS

ACD (2), (a1, a2) =(0.30, 0.15), N=500 0.9230 0.9220 0.9280 0.9140 0.9310 0.9200
ACD (2), (a1, a2) =(0.30,0.15), N=1000 0.9350 0.9430 0.9390 0.9550 0.9350 0.9330
ACD (2), (a1, 2) =(0.30,0.15), N=5000 0.9480 0.9489 0.9490 0.9670 0.9430 0.9470

Table 3.4: Coverage of the OLS and GLS Estimates Using Residual Bootstrap for ACD (1,1)

Description oszS a?LS ﬁlGLS OéOOLS Oé?LS 5?LS

ACD (1,1), a1 =04, 1 =03, N=500 0.9050 0.9120 0.9490 0.8980 0.9240 0.9390
ACD (1,1), a1 =04, 1 =03, N=500 0.9650 0.9520 0.9590 0.9530 0.9480 0.9530
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3.3.2 Key Remarks

We first consider ACD (1) with true values ag = 1 and a; = 0.4, 1000 MC replicates, B =
999 and N = 500. In this case, the confidence interval generated using GLS estimation for ag
is (0.8683,1.1990) and for « is (0.2474,0.4997). The confidence interval generated using OLS
estimation for o is (0.8346,1.2847) and for « is (0.2044,0.5264). Notice that the expectation of
ap, E(agp), using OLS estimation is 1.0356 and using GLS estimation is 1.0105. The expectation
of a1, E(ay), using OLS estimation is 0.3716 and using GLS estimation is 0.3878. In comparison
to the true values of the parameters, it is concluded that E(«g) of the OLS estimate is closer to
the true value than E(cy) of the GLS estimate. Also, F/(«q) of the GLS estimate is closer to the
true value than E(ay) of the OLS estimate. However, the difference is really negligible. Both
methods of estimation are thus asymptotically consistent and efficient. The coverage probability of
the estimates using the Residual Bootstrap procedure is 0.9450 for g and 0.9220 for o; by using
GLS as the method of estimation. Also, the coverage probability of the estimates using the Residual
Bootstrap procedure is 0.9490 for g and 0.9140 for v by using OLS as the method of estimation.

We consider another case: ACD (1,1) with true values ag = 1, o = 0.4, By = 0.3 and 1000
MC, B =999 and N = 500. In this case, the confidence interval generated using GLS estimation
for g, a1 and 7 are (1.0263,2.5836), (0.1075,0.5589) and (0.0001,0.3055). The confidence inter-
vals generated using OLS estimation for «g, o1 and [ are (1.0540,2.5836), (0.1134,0.5604) and
(0.0001,0.2937). Also, the coverage probability of the estimates using the Residual Bootstrap pro-
cedure is 0.9050 for avg, 0.9120 for oy and 0.9490 for 3; by using GLS estimation. The coverage
probability of the estimates using the Residual Bootstrap procedure is 0.8980 for ag, 0.9240 for oy
and 0.9390 for 51 by using OLS estimation. In this case, the GLS estimates have a coverage closer
to the nominal value of 95% than the OLS estimates. Therefore, the GLS method of estimation
outperforms OLS even though it can be conluded that OLS is still consistent and efficent.

We discuss the results of finding the Residual Bootstrap confidence intervals when the under-

lying distribution is Weibull with truncated estimates. Here, the results are very similar to the case
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of Exponential distribution with truncated estimates but for certain scale parameters only. In other
terms, it is noticed that as sample size increased to 5000, the coverage of the estimates decreased
drastically and the results were not satisfactory at all. In particular, we need to theoretically justify
the consistency of the moment condition of the Weibull distribution before attempting to find the
Residual Bootstrap confidence intervals, and this requires more investigation in the future. At the
moment, we are unable to finalize any conclusions about the efficiency of the estimates when a

Weibull distribution with truncated estimates is considered.
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Chapter 4

Case Study: IBM Stock

4.1 Description of the IBM Transaction Data Set

This section will be an application of the ACD model to IBM transaction data set. The IBM
data set ranges from January 02, 2002 until February 28, 2002, with a total of 127309 observations.
Detailed information such as the date of the transaction at hand, the time after midnight in seconds,
the duration between the trades in seconds, the volume of the transactions, the total value of the
trade (computed as a product of the shares and the price) and the average prices of the transactions
were examined, with a minimum increment of 1 second. Duration was calculated as the difference

in times between two consecutive trades. As mentioned in Chapter 1, trade duration is
Xi=t; —t;i_1. 4.1

Let us take for example the first two trades that occurred on January 02, 2002. The time after
midnight of the first trade (observation) is 35418 and the time after midnight of the second trade
(observation) is 35421. Thus, trade duration between the first and second observation is 3 seconds.

IBM stock is traded on various US exchange markets that open at 9:30 a.m. EST time and close

at 4:00 p.m. EST time.
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Table 4.1: Summary Statistics for Duration Data of IBM Stock Set Between 10:00 a.m. and 4:00
p.m.

Sample Size Mean Median 60% percentile 70% percentile
127309 6.787 5.000 6.000 8.000

Table 4.1 depicts a right skewness pattern as the mean of the IBM duration data set lies in the 60%
percentile - 70% percentile interval and is of a larger value than the median.

It is documented in time series and econometric literature that a daily pattern is present during
a specified trading day (Engle, 2000; Pacurar, 2006; Engle and Russell, 2004). In particular, there

appears to be certain trading periods which are considered to be relatively more or less active than

other trading periods.
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Figure 4.1: Duration Plots of IBM Observations for January 2, 2002 and January 22, 2002
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Figure 4.2: Duration Plots of IBM Observations for February 4, 2002 and February 22, 2002

Figures 4.1 and 4.2 are duration plots of observations for January 2, 2002, January 22, 2002,
February 4, 2002 and February 22, 2002. There is a clear indication that IBM duration process has
a diurnal pattern. In other words, durations are shorter at the opening of the trading day and closing
hour of the trading day. They tend to be longer in the middle of the day (i.e., around noon time).

Typically, there is a transaction every 35 seconds.

4.2 Removal of Diurnal Patterns

Due to the opening auctions of trading days, short durations are seen during the opening event.
The latter auctions are events where the specialist sets a certain price in order to achieve the maxi-
mum number of transactions. The open transactions are all then recorded. Before the non-opening
transactions begin, all open transactions must be complete. Because trading activity at the opening
time might be delayed, the transactions would be recorded 34 seconds after 9:30 a.m. and might
even extend until 9:45 a.m. (Engle and Russell, 1998). In order to account for the deterministic
diurnality effect, transactions occuring between 9:30 a.m. and 9:50 a.m. of the trading day were
deleted. Moreover, each trading day accounts for the 10 minutes prior to 10:00 a.m. by considering

their conditional expected duration and setting it equal to the mean of the duration past those min-
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utes. This also accounts for the effects carried from the closing of the previous trading day to the
next trading day. For ¢ (t;_1; 6) representing the daily seasonality effect which could be calculated

using a cubic spline factor, the diurnally adjusted data can be represented by:

. X;
X; = I 4.2
¢ (ti—1;04) . 42

Also, the expected duration of the diurnally adjusted data can be formulated as:
Ei1(Xi) = ¢ (tim1304) ¢ (Xi, oo ,Xl;%) - (4.3)

As well, we note that nodes were set on each trading hour. The expectation is found by taking the
average of the durations over each one-hour interval for all the trading days along with an extra 30-
minute duration interval at the closing of the trading day. We then apply the cubic spline to smooth
the time of the trading day function for each day as shown below in Figure 4.3. Figure 4.4 is an
average of all cubic splines over January 02, 2002 until February 28, 2002. We also keep in mind
that the constant factor for the cubic spline is recognized by equating the mean of the predicted

diurnal factor and the observed sample mean.
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Daily Factor of Duration Data of IBM Stock by Fitting Cubic Spline
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Figure 4.3: Daily Factor of Duration Data of IBM Stock by Fitting Cubic Spline for January 2, 2002
until February 28, 2002
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Figure 4.4: Average of Daily Factor of Duration Data of IBM Stock by Fitting Cubic Spline for
January 2, 2002 until February 28, 2002
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4.3 ACD (1,1) Model Estimation

As seen from Figure 4.4, it can be concluded that removing the diurnality effect results in a
much smoother data set by excluding almost all the intra-daily pattern. For model estimation, we
explore different model candidates such as: ACD (1), ACD (2), ACD (1,1) along with ; ~ i.i.d.
Exponential and Weibull. After testing various models, we came upon the conclusion that the ACD
(1,1) model with ¢, i.i.d. Exponential appears to fit the IBM duration data set the best due to the
fact that the ACF and PACF plots of ACD (1,1) both show significant lags.

Using OLS, and for &g = 0.2726, &; =0.0551 and Bl =0.9046, the ACD (1,1) model which appears

to model the IBM data set is:

Xi = e

Y = 0.2726 + 0.0551.X;_1 + 0.9046¢);_1.

Using GLS, and for &g =0.2181, &; = 0.0483 and Bl =0.9195, the ACD (1,1) model which appears

to model the IBM data set is:

Xi = g

(o

0.2181 + 0.0483.X; 1 + 0.9195¢; 1.

For both OLS and GLS as the proposed methods of estimation, the summation of &; and 31 in the
two cases is approximately 1. This implies that the model we suggested also captures the clustered
duration feature well. The estimated residual bootstrap confidence intervals are shown below.

Table 4.2: Residual Bootstrap Confidence Intervals for ACD (1,1) for Duration Data of IBM Stock.

Method RBCI o RBCI o RBCI 5,

OLS  (0.2349,0.3049) (0.0508,0.0589) (0.8974,0.9132)
GLS  (0.1931,0.2466) (0.0446,0.0525) (0.9121,0.9257)
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Chapter 5

Concluding Remarks

Estimating the parameters of Autoregressive Conditional Duration (ACD) processes in past lit-
erature has been done by using the QMLE method. In this thesis, we use OLS and GLS in order
to estimate ACD processes. We theoretically justify the asymptotic consistency and normality of
ACD (p) processes. Furthermore, we then show that both OLS and GLS estimates are asymptoti-
cally consistent and normally distributed for ACD (p) processes through different MC simulations
and using Residual Bootstrap procedure in order to construct confidence intervals based on the OLS
and GLS estimates. In most of the cases examined, both the OLS and GLS estimates proved to
be asymptotically consistent and appeared to have a normal fit. However, GLS did show better
performance than OLS. The CPU time to complete 1 MC replicate using OLS requires half of the
time in comparison to that for GLS. Also, in finite samples, it was shown that QMLE outperforms
GLS estimation; however the time it takes for 1 MC replicate based on QMLE is greater than that
based on GLS estimation and is significantly greater than the timing it takes for OLS estimation.
Furthermore, using ACD (1,1), we then apply OLS and GLS estimation on the durations of the IBM
transaction data set.

In summary, we were able to conclude that GLS is as efficient an estimator as QMLE for ACD (p)
processes. Also, for small samples when considering innovation terms to be i.i.d. Exponential and

i.i.d. Weibull, OLS and GLS outperform QMLE. It is of importance to note that both OLS and GLS
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are applicable methods of estimation in a real time trading setting due to their time efficiency.

5.0.1 Future Work

A theoretical justification of OLS and GLS for general ACD (p,q) processes is in our interest
for future research. Also, we need to investigate the consistency of the moment conditions of the
Weibull distribution when finding confidence intervals based on the Residual Bootstrap procedure.
Applications to different distributions other than Exponential and Weibull could be carried out in
order to assess if this incorporation is possible. In addition, our long term goal is to account for
the duration component into GARCH processes, and propose a computationally fast method for
intra-daily volatility modeling. We will further apply re-sampling and sub-sampling methods for
ACD-GARCH models to forecast intra-daily volatility. This current work is a stepping stone in this

direction.
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Chapter 6

Appendices

6.1 Matlab Codes

6.1.1 QMLE - Exponential Distribution for ACD (1)

N=500;

dist="exp’;

Coeff.w=1;

Coeff.q=0.1;

[simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);
[specOut]=ACD_Fit(simulDur , dist ,1,1,1);
MC=2000;

mcw=zeros (MC, 1);

mcq=zeros (MC, 1);

for 1=1:MC

[simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);
[specOut]=ACD_Fit(simulDur , dist ,1,1,1);

mew (i)=specOut.w;
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mcq(i)=specOut.q;

end

6.1.2 QMLE - Weibull Distribution for ACD (1)

N=5000;

dist="weibull ’;

Coeff.w=1;

Coeff.q=0.1;

Coeff.y=0.8;

[simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);
[specOut]=ACD_Fit(simulDur , dist ,1,1,1);
MC=2000;

mcw=zeros (MC, 1);

mcq=zeros (MC, 1);

for i=1:MC

[simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);
[specOut]=ACD_Fit(simulDur , dist ,1,1,1);
mew (i)=specOut.w;

mcq(i)=specOut.q;

end

6.1.3 OLS - Exponential Distribution for ACD (1)

N=500;
dist="exp’;
Coeff.w=1;
Coeff.q=0.4;
Coeff.p=0;
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MC=2000;

for i=1:MC

[simulDur]=ACD_Simul (N, Coeff ,1,1,dist);
al=armax (iddata (simulDur—mean(simulDur)) ,
beta=—al .c(2);

alpha=—al .a(2)—beta;

omega=mean (simulDur)/(1 —alpha—beta);
mbeta(i)=beta;

malpha(i)=alpha;

momega(i)=omega;

end

6.1.4 GLS - Exponential Distribution for ACD (1)

N=500;

dist="exp’;

Coeff.w=1;

Coeff.q=0.4;

Coeff.p=0;

MC=2000;

p=1;

q=1;

alphaO_hat=zeros (MC,1);
alphal _hat=zeros (MC, 1);
alphaO_hat GLS=zeros (MC,1);
alphal_hat_GLS=zeros (MC,1);
for i=1:MC

[simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);
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y2=simulDur ;

al=ar(y2—mean(y2), q, ’'ls’);
alphal_hat(i)=—al.parameterVector (1);
alphaO_hat(i)=(1—alphal_hat(i))*mean(y2);
sigma?2_hat=zeros (N, 1);

sigma?2_hat(1l)= alphaO_hat(i);

for j=2:N

sigma?2_hat(j)= alphaO_hat(i) + alphal_hat(i)* y2(j—1);
end

sigma4_hat= sigma2_hat.”(—2);
V=diag(sigma4 _hat);

X=[ones(N,1), [0,y2(1:(N—=1))"1"1;

alpha= inv (X'« VX)X *«Vxy2;
alphal_hat_GLS (i) = alpha(2);
alphaO_hat_GLS (i)= alpha(1);

end

6.1.5 GLS - Exponential Distribution for ACD (2)

N=5000;

dist="exp’;

Coeff.w=1;

Coeff.q=[0.3 0.157;
Coeff.p=0;

MC=2000;

p=1;

q=size (Coeff.q,2);
alphaO_hat=zeros (MC, 1);
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alphal _hat=zeros (MC,1);

alpha2_hat=zeros (MC,1);

alphaO_hat_GLS=zeros (MC,1);

alphal_hat GLS=zeros (MC,1);

alpha2_hat_GLS=zeros (MC,1);

for 1=1:MC

[simulDur ]=ACD_Simul (N, Coeff ,2,1,dist);

y2=simulDur;

al=ar(y2—mean(y2), q, ’ls’);

alphal _hat(i)=—al.parameterVector (1);
alpha2_hat(i)=—al.parameterVector (2);
alphaO_hat(i)=(1—alphal_hat(i)—alpha2_hat(i))*mean(y2);
sigma2_hat=zeros (N, 1);

sigma?2_hat(1)= alphaO_hat(i);

sigma?2_hat(2)= alphaO_hat(i);

for j=3:T

sigma?2_hat(j)= alphaO_hat(i) + alphal_hat(i)x y2(j—1) +
alpha2 _hat(i)* y2(j—2);

end

sigma4 _hat= sigma2_hat."(—2);

V=diag (sigma4_hat);

X=[ones(N,1), [0,y2(1:(N—=1))"]", [0,0, y2(1:(N=2))"]1"1];
alpha= inv (X'« VX)X’ x«Vxy2;

alphaO_hat_GLS (i)= alpha(1);

alphal _hat_GLS (i)= alpha(2);

alpha2_hat GLS (i)= alpha(3);
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end

subplot(3,2,1)

histfit (alphaO_hat)
subplot(3,2.,2)

histfit (alphal_hat)
subplot(3,2,3)

histfit (alphaO_hat_GLS)
subplot(3,2,4)

histfit (alphal_hat_GLS)
subplot(3,2.,5)
histfit(alpha2_hat)
subplot(3,2.,6)

histfit (alpha2_hat_GLS)

6.1.6 GLS - Exponential Distribution (Truncated Estimates) for ACD (1)

N=5000;

dist="exp’;

Coeff.w=1;

Coeff.q=0.4;

Coeff.p=0;

MC=2000;

p=1;

q=1;

alphaO_hat=zeros (MC,1);
alphal_hat=zeros (MC,1);
alphaO_hat_GLS=zeros (MC,1);
alphal_hat GLS=zeros (MC,1);
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for i=1:MC

[simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);
y2=simulDur;

al=ar(y2—mean(y2), q, ’'ls’);

if —al.parameterVector(1l)<O0
alphal_hat(i)= 0.0001;

else

alphal _hat(i)=—al.parameterVector (1);
end
alphaO_hat(i)=(1—alphal_hat(i))*mean(y2);
sigma?2_hat=zeros (N, 1);

sigma?2_hat(1l)= alphaO_hat(i);

for j=2:N

sigma?2_hat(j)= alphaO_hat(i) + alphal_hat(i)* y2(j—1);
end

sigma4_hat= sigma2_hat.”(—2);
V=diag(sigma4 _hat);

X=[ones(N,1), [0,y2(1:(N—=1))"1"1;
alpha= inv (X'« VX)X x«Vxy2;

if alpha(2) < O

alphal_hat_ GLS (i) =0.0001;

else

alphal_hat GLS (i) = alpha(2);

end

alphaO_hat GLS (i)= alpha(1);

end
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6.1.7 GLS - Exponential Distribution (Truncated Estimates) for ACD (2)

N=5000;

dist="exp’;

Coeff.w=1;

Coeff.q=[0.3 0.15];
Coeff.p=0;

MC=2000;

p=1;

q=size (Coeff.q,2);
alphaO_hat=zeros (MC,1);
alphal_hat=zeros (MC,1);
alpha2_hat=zeros (MC,1);
alphaO_hat_GLS=zeros (MC,1);
alphal_hat_GLS=zeros (MC,1);
alpha2_hat_GLS=zeros (MC,1);
for i=1:MC

[ simulDur ]=ACD_Simul (N, Coeff ,2,1,dist);
y2=simulDur ;

al=ar (y2—-mean(y2), q, 'ls’);
if —al.parameterVector(1)<O0
alphal_hat(i)= 0.0001;

else
alphal_hat(i)=—al.parameterVector (1);
end

if —al.parameterVector(2)<O0

alpha2_hat(i)= 0.0001;
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else

alpha2_hat(i)=—al.parameterVector (2);

end
alphaO_hat(i)=(1—alphal_hat(i)—alpha2_hat(i))*mean(y2);
sigma?2_hat=zeros (N, 1);

sigma?2_hat(1l)= alphaO_hat(i);

sigma?2_hat(2)= alphaO_hat(i);

for j=3:N

sigma?2_hat(j)= alphaO_hat(i) + alphal_hat(i)x y2(j—1) +
alpha2_hat(i)*x y2(j—2);

end

sigma4_hat= sigma2_hat."(—2);

V=diag(sigma4 _hat);

X=[ones(N,1), [0,y2(1:(N—=1))"]", [0,0, y2(1:(N—=2))"]1"1;
alpha= inv (X'« VX)X *«Vxy2;

alphaO_hat GLS (i)= alpha(1l);

if alpha(2) < 0

alphal_hat_GLS (i)= 0.0001;

else

alphal_hat GLS (i)= alpha(2);

end

if alpha(3) < O

alpha2_hat_GLS (i)= 0.0001;

else

alpha2_hat GLS (i)= alpha(3);

end
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end

6.1.8 GLS - Weibull Distribution for ACD (1)

N=5000;

dist="weibull *;

Coeff.w=1;

Coeff.q=0.4;

Coeff.p=0;

Coeff.y=.8;

MC=2000;

p=1;

q=1;

alphaO_hat=zeros (MC,1);
alphal_hat=zeros (MC,1);
alphaO_hat_GLS=zeros (MC,1);
alphal_hat_GLS=zeros (MC,1);

for i=1:MC

[simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);
y2=simulDur ;

al=ar (y2—-mean(y2), q, 'ls’);
alphal_hat(i)=—al.parameterVector (1);
alphaO_hat(i)=(1—alphal_hat(i))*mean(y2);
sigma2_hat=zeros (N, 1);

sigma?2_hat(1l)= alphaO_hat(i);

for j=2:N

sigma?2_hat(j)= alphaO_hat(i) + alphal_hat(i)x y2(j—1);

end
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sigma4 _hat= sigma2_hat."(—2);
V=diag(sigma4 _hat);
X=[ones(N,1), [0,y2(1:(N=1))"1"1;
alpha= inv (X'« VX))« X xVxy2;
alphal_hat GLS (i) = alpha(2);
alphaO_hat_GLS (i)= alpha(1);

end

6.1.9 GLS - Weibull Distribution for ACD (2)

N=5000;

dist="weibull ’;

Coeff.w=1;

Coeff.q=[0.3 0.157;
Coeff.p=0;

Coeff.y=.8;

MC=2000;

p=1;

q=size (Coeff.q,2);
alphaO_hat=zeros (MC,1);
alphal_hat=zeros (MC,1);
alpha2_hat=zeros (MC,1);
alphaO_hat_GLS=zeros (MC,1);
alphal_hat_GLS=zeros (MC,1);
alpha2_hat GLS=zeros (MC,1);
for i=1:MC

[simulDur ]=ACD_Simul (N, Coeff ,2,1,dist);

y2=simulDur ;
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al=ar(y2—mean(y2), q, ’'ls’);

alphal _hat(i)=—al.parameterVector (1);
alpha2_hat(i)=—al.parameterVector (2);
alphaO_hat(i)=(1—alphal_hat(i)—alpha2_hat(i))*mean(y2);
sigma?2_hat=zeros (N, 1);

sigma?2_hat(1l)= alphaO_hat(i);

sigma?2_hat(2)= alphaO_hat(i);

for j=3:N

sigma?2_hat(j)= alphaO_hat(i) + alphal_hat(i)x y2(j—1) +
alpha2_hat(i)*x y2(j—2);

end

sigma4_hat= sigma2_hat."(—2);

V=diag(sigma4 _hat);

X=[ones(N,1), [0,y2(1:(N—=1))"]", [0,0, y2(1:(N—=2))"]1"1;
alpha= inv (X'« VX)X *«Vxy2;

alphaO_hat GLS (i)= alpha(1l);

alphal_hat GLS (i)= alpha(2);

alpha2_hat_GLS (i)= alpha(3);

end

6.1.10 GLS - Weibull Distribution (Truncated Estimates) for ACD (1)

N=5000;
dist="weibull ’;
Coeff.w=1;
Coeff.q=0.4;
Coeff.p=0;
Coeff.y=.8;
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MC=2000;

p=1;

q=1;

alphaO_hat=zeros (MC,1);

alphal _hat=zeros (MC,1);
alphaO_hat_GLS=zeros (MC,1);

alphal_hat GLS=zeros (MC,1);

for i=1:MC

[ simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);
y2=simulDur;

al=ar (y2—mean(y2), q, ’Is ’);

if —al.parameterVector(1l)<O0
alphal_hat(i)= 0.0001;

else
alphal_hat(i)=—al.parameterVector (1);
end
alphaO_hat(i)=(1—alphal_hat(i))*mean(y2);
sigma?2_hat=zeros (N, 1);

sigma?2_hat(1l)= alphaO_hat(i);

for j=2:N

sigma?2_hat(j)= alphaO_hat(i) + alphal_hat(i)x y2(j—1);
end

sigma4 _hat= sigma2_hat."(—2);
V=diag(sigma4 _hat);

X=[ones(N,1), [0,y2(1:(N—=1))"]"];
alpha= inv (X'« VX)X’ x«Vxy2;
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if alpha(2) < O
alphal_hat_GLS (i) =0.0001;
else

alphal_hat GLS (i) = alpha(2);
end

alphaO_hat_GLS (i)= alpha(1);

end

6.1.11 GLS- Weibull Distribution (Truncated Estimates) for ACD (2)

N=500;

dist="weibull ’;

Coeff.w=1;

Coeff.q=[0.3 0.157;
Coeff.p=0;

Coeff.y=.8;

MC=2000;

p=1;

q=size (Coeff.q,2);
alphaO_hat=zeros (MC,1);
alphal_hat=zeros (MC,1);
alpha2_hat=zeros (MC,1);
alphaO_hat_GLS=zeros (MC,1);
alphal_hat_GLS=zeros (MC,1);
alpha2_hat GLS=zeros (MC,1);
for i=1:MC

[simulDur ]=ACD_Simul (N, Coeff ,2,1,dist);

y2=simulDur;
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al=ar(y2—mean(y2), q, ’'ls’);

if —al.parameterVector(1l)<O0

alphal_hat(i)= 0.0001;

else

alphal_hat(i)=—al.parameterVector (1);

end

if —al.parameterVector(2)<O0

alpha2_hat(i)= 0.0001;

else

alpha2_hat(i)=—al.parameterVector (2);

end
alphaO_hat(i)=(1—alphal_hat(i)—alpha2_hat(i))*mean(y2);
sigma?2_hat=zeros (N, 1);

sigma?2_hat(1)= alphaO_hat(i);

sigma?2_hat(2)= alphaO_hat(i);

for j=3:N

sigma?2_hat(j)= alphaO_hat(i) + alphal_hat(i)x y2(j—1) +
alpha2_hat(i)x y2(j —2);

end

sigma4 _hat= sigma2_hat."(—2);

V=diag (sigma4_hat);

X=[ones(N,1), [0,y2(1:(N—=1))"]", [0,0, y2(1:(N=2))"]1"1];
alpha= inv (X'« VX)X’ x«Vxy2;

alphaO_hat GLS (i)= alpha(1l);

if alpha(2) < O

alphal_hat_GLS (i)= 0.0001;
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else

alphal _hat_GLS (i)= alpha(2);
end

if alpha(3) < O
alpha2_hat _GLS (i)= 0.0001;
else

alpha2_hat GLS (i)= alpha(3);
end

end

6.1.12 GLS - Exponential Distribution (Truncated Estimates) for ACD (1,1)

N=500;

dist="exp ’;

Coeff.w=0.2;

Coeff.q=0.4;

Coeff.p=0.3;

p=1;

q=1;

MC=2000;

for i=1:MC

[simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);
y2=simulDur;

al=armax (iddata(y2—mean(y2)),’na’,1,’nc’,1,’” Maxiter=2",2);

if —al.parameterVector(2) < 0

betal_hat GLS (i) = 0.0001
else
betal _hat GLS (i) = —al.parameterVector (2)
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end

if —al.parameterVector(l) — betal_hat GLS (i) <0
alphal_hat_ GLS (i) = 0.0001

else

alphal_hat GLS (i) =—al.parameterVector(l) — betal_hat_GLS (i)
end

if (1—alphal_hat_ GLS (i)—betal_hat GLS(i))*mean(y2) <0
alpha0_hat_GLS (i)=0.0001

else

alphaO_hat GLS (i)=(1—alphal_hat_ GLS (i)—betal_hat GLS(i))*mean(y2)
end

end

6.1.13 Procedure for Finding CPU time

dist="exp’;

Coeff.w=1;

Coeff.q=0.4;

Coeff.p=0;

MC=1;

p=1;

q=1;

alphaO_hat=zeros (MC,1);
alphal _hat=zeros (MC, 1);
alphaO_hat GLS=zeros (MC,1);
alphal_hat_GLS=zeros (MC,1);
for 1=1:MC

tic
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[simulDur ]=ACD_Simul (N, Coeff ,1,1,dist);

y2=simulDur;

al=ar(y2-—mean(y2), q, ’ls’);

alphal _hat(i)=—al.parameterVector (1);

alphaO_hat(i)=(1—alphal_hat(i))*mean(y2);

sigma?2_hat=zeros (N, 1);

sigma?2_hat(1l)= alphaO_hat(i);

for j=2:N

sigma?2_hat(j)= alphaO_hat(i) + alphal_hat(i)x y2(j—1);

end

sigma4_hat= sigma2_hat.”(—2);

V=diag (sigma4_hat);

X=[ones(N,1), [0,y2(1:(N—=1))"]"1;

alpha= inv (X'« VX)X’ x«Vxy2;

alphal_hat GLS (i) = alpha(2);

alphaO_hat GLS (i)= alpha(1l);

t(i)=toc;

end

t(i)

6.1.14 Procedure for Finding the Residual Bootstrap Confidence Intervals - Expo-
nential Distribution (Truncated Estimates) for ACD (1)

N=1000;
dist="exp’;
Coeff0.w=1;
Coeff0.q=0.4;
Coeff0.p=0;
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MC=2000;

p=1;

q=1;

count_alpha0O_P=0;

count_alphal_P=0;

count_alphaO_OLS_P=0;

count_alphal _OLS_P=0;

for i=1:MC

[simulDur ]=ACD_Simul (N, Coeff0 ,1,1,dist);
y2=simulDur;

al=ar (y2—mean(y2), q, ’Is ’);

if —al.parameterVector(1l)<O0
alphal_hat_ OLS (i)= 0.0001;

else

alphal_hat_ OLS (i)=—al.parameterVector (1);
end

alphaO_hat_OLS (i)=(1—alphal_hat_OLS (i))*xmean(y2);
sigma2_hat_OLS=zeros (N, 1);

sigma2_hat OLS (1)= alphaO_hat_ OLS(i);

for j=2:N

sigma2_hat_OLS (j)= alphaO_hat_ OLS (i) + alphal_hat_ OLS(i)*x y2(j—1);
end

sigma4_hat_ OLS= sigma2_hat OLS."(—2);
V=diag (sigma4_hat_OLS);

X=[ones(N,1), [0,y2(1:(N—=1))"]"];

alpha= inv (X'« VX)X’ x«Vxy2;
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if alpha(2) < O

alphal_hat GLS (i) = 0.0001;
else
alphal_hat GLS (i) = alpha(2);

end

alphaO_hat_ GLS (i) = alpha(1);
sigma2_hat GLS=zeros (N, 1);
sigma2_hat GLS (1)= alphaO_hat_ GLS(i);
for j=2:N

sigma2_hat GLS (j)= alphaO_hat GLS (i) + alphal_hat GLS(i)*x y2(j—1);
end

Jestimate the residuals
r_.OLS=zeros (1,N);

r_.GLS=zeros (1,N);

for t=1:N

r_ OLS(t)=y2(t)/sigma2_hat OLS(t);
r-GLS(t)=y2(t)/sigma2_hat GLS(t);
end

B=999;

alphaO_hat_OLS_bs=zeros (B, 1);
alphal_hat_OLS_bs=zeros(B, 1);
alphaO_hat_GLS _bs=zeros(B, 1);
alphal_hat_GLS_bs=zeros (B, 1);
for k=1:B

Jbootstrap residuals

r_star _ OLS=r_OLS (unidrnd (length (r_.OLS),1,N));
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r_star GLS=r_ GLS (unidrnd (length (r_GLS),1,N));

Yconstruct the bootstrap process

phi_OLS=zeros (N, 1);

y2_bs_OLS=zeros (N, 1);

phi_OLS (1) = alphaO_hat_ OLS(i);

y2_bs_OLS (1) = phi_OLS(1)*r_star_OLS (1);

phi_GLS=zeros (N, 1);

y2_bs_GLS=zeros (N, 1);

phi_GLS (1) = alphaO_hat_GLS(i);

y2_bs_GLS (1) = phi_GLS(1)xr_star_GLS (1);

for j = 2:N

phi_ OLS(j) = alphaO_hat_ OLS (i) + alphal_hat . OLS(i)*xy2_bs_OLS(j—1);
y2_bs_OLS(j) = phi_OLS(j)*r_star _ OLS (j);

phi_GLS(j) = alphaO_hat_ GLS (i) + alphal_hat GLS (i)*xy2_bs_GLS(j—1);
y2_bs_GLS(j) = phi_GLS(j)*r_star_GLS (j);

end

al_bs_OLS=ar(y2_bs_ OLS—mean(y2_bs_OLS), q, ’l1s ’);
al_bs_GLS=ar (y2_bs_.GLS—mean(y2_bs_.GLS), q, ’Is ’);

if —al_bs_OLS.parameterVector(1l)<O0

alphal_hat_ OLS_bs (k)= 0.0001;

else

alphal_hat_ OLS _bs(k)=—al_bs_OLS.parameterVector (1);

end

alphaO_hat_ OLS _bs(k)=(1—alphal_hat_ OLS _bs(k))*xmean(y2_bs_OLS);
if —al_bs_GLS.parameterVector(1l)<O0

alphal _bs_temp= 0.0001;
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else
alphal_bs_temp=—al_bs_GLS.parameterVector(1);
end
alphaO_bs_temp=(l—alphal_bs_temp)xmean(y2_bs_GLS);
sigma2_hat_bs_temp=zeros(N,1);
sigma2_hat_bs_temp (l)= alphaO_bs_temp;

for j=2:N

sigma2_hat_bs_temp(j)= alphaO_bs_temp +
alphal_bs_tempx y2_bs_GLS(j —1);

end

sigma4 _hat_bs_temp= sigma2_hat_bs_temp."(—2);
V_bs=diag(sigma4_hat_bs_temp);
X_bs=[ones(N,1), [0,y2_bs GLS(1:(N—1))"]"1;
alpha_bs= inv(X_bs’*«V_bsxX_bs)*xX_bs’*«V_bsxy2 _bs_GLS;
if alpha_bs(2) < 0O

alphal _hat_GLS_bs (k) =0.0001;

else

alphal_hat_GLS_bs(k) = alpha_bs(2);

end

alphaO_hat_GLS_bs (k)= alpha_bs(1);

end

s_GLS=sort(alpha0_hat_ GLS_bs);

r_GLS=sort (alphal_hat_GLS_bs);
s_OLS=sort(alpha0_hat_ OLS_bs);
r_.OLS=sort(alphal _hat_OLS_bs);

[s.OLS(25) s_OLS(975)];
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[s-GLS(25) s_.GLS(975)];

[r-OLS(25) r-OLS(975)];

[r-GLS (25) r-GLS(975)1;

if s_OLS(25)<CoeffO0.w & s_OLS(975)>Coeff0O.w
count_alphaO_OLS_P = count_alphaO_OLS_P +1;
end

if 1 OLS(25)<Coeff0.q & r_OLS(975)>Coeff0.q
count_alphal _OLS_P = count_alphal _OLS_P +1;
end

if s_.GLS(25)<Coeff0.w & s_GLS(975)> Coeff0.w
count_alphaO_P = count_alphaO_P +1;

end

if r.GLS(25)<Coeff0.q & r_GLS(975)> Coeff0.q
count_alphal_P = count_alphal_P +1;

end

6.1.15 Analysis of IBM Transaction Data Set

a = importdata(’ibm_trades.txt’,’\t"’);

a.textdata(l) = [];

Time = a.data(:,1);

X = a.data(:,2);

sample_size_ibm = length(a.data(:,8)) —sum(a.data(:,8));
median_ibm = median(X(a.data(:,8)==0));

pt60_ibm = prctile (X(a.data(:,8)==0),60);

mean_ibm = mean(X(a.data(:,8)==0));

pt70_ibm = prctile (X(a.data(:,8)==0),70);

al=armax (iddata (X—mean(X)),’na’,1,’nc’,1,” Maxiter=2",2);
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if —al.parameterVector(2) < 0

betal_hat = 0.0001

else

betal _hat = —al.parameterVector (2)

end

if —al.parameterVector(l) — betal_hat <0
alphal_hat = 0.0001

else

alphal_hat =—al.parameterVector(l) — betal_hat
end

if (1—alphal_hat—betal_hat)s*mean(X) <0
alpha0_hat=0.0001

else
alphaO_hat=(1—alphal_hat—betal_hat)xmean (X)
end

T = length (X);

sigma?2_hat=zeros (T, 1);

sigma?2_hat(1)= alphaO_hat;

for j=2:T

sigma?2_hat(j)= alphaO_hat + alphal_hatx X(j—1) +
betal _hatxsigma2_hat(j —1);

end

r=zeros (1,T);

for t=1:T

r(t)=X(t)/sigma2_hat(t);

end
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B=999;

alpha0O_hat_bs=zeros(B, 1);

alphal_hat_bs=zeros(B, 1);

betal_hat_bs=zeros(B, 1);

for k=1:B

r_star=r(unidrnd (length(r),1,T));

phi=zeros (T, 1);

X_bs=zeros(T,1);

phi(1) = alphaO_hat;

X bs(l) = phi(l)xr_star (1);

for j = 2:T

phi(j) = alphaO_hat + alphal_hat*X_bs(j—1) + betal_hatsphi(j—1);
X bs(j) = phi(j)*r_star(j);

end

al _bs=armax(iddata (X_bs—mean(X_bs)), na’,1,’nc’,1,’  Maxiter=2",2);

if —al_bs.parameterVector(2) < 0

betal_hat_bs (k) 0.0001;
else

betal _hat_bs (k)

—al_bs.parameterVector (2);

end

if —al_bs.parameterVector(l) — betal_hat_bs(k) <0
alphal_hat_bs(k) = 0.0001;

else

alphal_hat_bs(k) =—al_bs.parameterVector(l) — betal _hat_bs(k);
end

if (1—alphal_hat_bs(k)—betal_hat_bs(k))*mean(X_bs) <0
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alpha0_hat_bs (k)=0.0001;

else

alphaO_hat_bs (k)=(1—alphal _hat_bs(k)—betal_hat_bs(k))+*mean(X_bs);
end

end

s=sort(alpha0O_hat_bs);

r=sort(alphal_hat_bs);

v=sort(betal _hat_bs);

Cl_alphaO_hat_GLS

[s(25) s(975)]
Cl_alphal_hat_GLS

[r(25) r(975)]
Cl_betal_hat_.GLS = [v(25) v(975)]
alphaO_hat_GLS

alphaO_hat;
alphal_hat_GLS

alphal _hat;

betal_hat_GLS = betal_hat;

al=armax (iddata (X—mean(X)),’na’,1,’nc’,1,  Maxiter=1",1);
if —al.parameterVector(2) < 0

betal _hat = 0.0001

else

betal _hat = —al.parameterVector (2)

end

if —al.parameterVector(l) — betal_hat <0
alphal_hat = 0.0001

else

alphal_hat =—al.parameterVector(l) — betal_hat
end

if (1—alphal_hat—betal_hat)s*mean(X) <0
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alpha0O_hat=0.0001

else
alphaO_hat=(1—alphal_hat—betal_hat)xmean(X)
end

T = length (X);
sigma?2_hat=zeros (T, 1);
sigma2_hat(1)= alphaO_hat;

for j=2:T

sigma?2_hat(j)= alphaO_hat + alphal_hatx X(j—1) +
betal _hatxsigma?2_hat(j—1);

end

r=zeros (1,T);

for t=1:T
r(t)=X(t)/sigma2_hat(t);

end

B=999;

alphaO_hat_bs=zeros(B, 1);
alphal_hat_bs=zeros(B, 1);
betal_hat_bs=zeros(B, 1);

for k=1:B

r_star=r(unidrnd (length(r),1,T));
phi=zeros (T, 1);

X_bs=zeros(T,1);

phi(1) = alphaO_hat;

X _bs(l) = phi(l)xr_star (1);

for j = 2:T
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phi(j) = alphaO_hat + alphal_hat*X_bs(j—1) + betal_hatxphi(j—1);
X bs(j) = phi(j)*r_star(j);

end

al_bs=armax(iddata (X_bs—mean(X_bs)),’na’,1,’nc’,1,’ Maxiter=1",1);
if —al_bs.parameterVector(2) < 0

betal _hat_bs (k)

0.0001;

else

betal _hat_bs (k) —al_bs.parameterVector (2);

end

if —al_bs.parameterVector(l) — betal_hat_bs(k) <0
alphal_hat_bs(k) = 0.0001;

else

alphal_hat_bs(k) =—al_bs.parameterVector(l) — betal _hat_bs(k);
end

if (1—alphal_hat_bs(k)—betal_hat_bs(k))*mean(X_bs) <0
alphaO_hat_bs(k)=0.0001;

else
alphaO_hat_bs(k)=(1—alphal_hat_bs(k)—betal_hat_bs(k))*xmean(X_bs);
end

end

s=sort(alphaO_hat_bs);

r=sort(alphal_hat_bs);

v=sort(betal_hat_bs);

Cl_alpha0O_hat_OLS

[s(25) s(975)]
Cl_alphal_hat_OLS

[r(25) r(975)]
Cl_betal_hat_OLS = [v(25) v(975)]
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alphaO_hat_OLS
alphal_hat_OLS
betal_hat_OLS

alphaO_hat;
alphal _hat;

betal _hat;
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