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ABSTRACT
N

This dissertation 1s mainly cqncerned with the study
of the continuity of positive functionals on ‘topological
*—élgebras and of the representations of topological *-algebras
by operators on a Hilbert space. 1In each case, both the locally
convex anduthe non;locally eonvex topological *-algebras are
considered. First we examine the general situation; then we
discuss the results for the various known classes of topologi-
cal *-algebras as special cases of our general considerations.

These algebras’ include bounded algebras, MQ*-algebras, uniformly

" A-convex algebras and Banach algebras for the locally convex cas

.andﬂ;:gfﬁﬁbras and p-normed algebras for the non-locally convex

case. Meanwhile we relax the condition for the requirement of
an identity elément and the condibion on the continuity of the
involution méﬁ in the algebra. In this way we partially‘gener—
alize some p?evious results, and the known results in some cases

follow ‘from ours. Those that are not particular cases of our

results.will also be discussed.
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INTRODUCTION .

In this dissertation we are mainly concerned with the
study of the continuity of positive funcgionals on topological
*—algébras and of the reéresentations.of topological *-algebras
by operators on a Hilbert space. 1In each case we shall first
look at the generél situation, from which the corresponding

results for known classes of topological *-algebras will be
derived as special cases.

An important aspect of the study of positive functionals
is iés'use in the study of representation théory. A remarkable
fact is that all positive functionals on a B*—algebra with iden-
tipy are continuous. Other classes of *-algebras more general
than B*-algebras were subsequently studied and the above known
result generalized. The wide range of study.includes MQ*-alge-
bras by Husain and Rigelhof [14], BP*—aléebras by -Husain and '
Warsi (17}, GB*-algebras by Dixon [1l1l], F-algebras by Zelazké

(31] and p-normed algebras by Xia Dao-Xing [29].

A common feature in the study of the various kinds of

*~al§ebras mentioned in the last paragraph is that they all -

require the identity elemené and the continuity of the invol-—
ution map. The first.condition was relaxed anq the second

relinquished for Banach *-algebras by Murphy ([20] who recently
proved that everf positive functional on a commutative Banach
*~algebra A such that A2 = A.ié céntinuous. Our azm, here, is

to carry on the study of the subject in this direction. But
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instead of re;tricting our attention.to a particular class

of *-algebras, we shall give a systematic study for both the
locally conv;x and the non—localiy convex topological *-alge-
bras 'in the most general situation possible. After that, we
come back to some known classes of *-algebras as'special cases
of our general considerations. In this way we partially gen-

eralize some previous results, and the known results in some
&

cases follow from ours. Those that are not barticular cases of -

- our results will also be discussed.

We prove the continuity of positive functionals on gen-
eral topological *-algebrds with the condition f%r the require-
ment of an identity being rélaxed. While the condition on the
continuity of the involution map cannot be dropped entirely
beyond the Banach *-algebra case, we are able to relax it
somewhat. A similar approach is adopted for ;he study of
representation theory .for more general Y-algebras to the samé
degree of success as in the case of positive functionals,
since a positive functional determines a *-representation of
the given *-algebra and vice versa. Here again we generalize

sgme well-known results.

Chapter 1 containg th efinitions and known results
from topological vector spaces and topological algebras which
will be used in the sequel. Proofs are in general not inclu-

ded; however, proper references are given.
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. In Chapter 2 we investigate the continuity of positave
functionals on both locally convex and non-locally convex topo-
logical *-algebras. In the former case the results on certain
special classes like bounded algebras (introduced by Allan [1]),
MQ*-algébras (Husain and Rigelhof ([14]), unifdrmly A-convex
algebrgf (introduced by Cochran ({8]) and Banach algebras are
discussed. In the latter case we compare our results Wlth‘
those of Zelazko (31] on F-algebras and Xia Dao-Xing [29) on
p-normed algebras; After a short digression on C-symmetric
algebras, we give a brief account of tke continuity of multi-

)=

plicative linear functionals as well.

Thé subject of Chapter 3 is on representation theory.
Throughout the chapter both the locally convex and non-locally
convex topological *-algebras are discussed. First we establish
the *-representation of topological *-algebras by operatdbrs on
a Hilbert space. Then we concern ourselves with the problem of
studying those topological *-algebras so that every *-repre-
sentation of which on a Hilbert space 1s necessarily continuous.
It is well-known that eacﬁ *-representation of a B*-algebra
on a Hilbert space is continuous (e.g. see °[32])). We show that
this 1s true for a large class of *-algebras more general than
B*-algebras, including certain non-locally convex *-algebras.
The last section of this chapter deals with the conditions
under which a positive functional on a topological *-algebra

1s representable.
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Finally, the last chapter deals briefly with the

algebras that look like Segal algebras. We shall apply the

-

results established in Chapter 2 and 3 to such algebras. We P

’
M

study the continuity of Fositive functionals and representa-

B 7

. tion theory on" these algebras. ! o\
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CHAPTER 1

Preliminaries

- N 3
THe purpose of the preliminaries 1is to present’ the
basic definitions and theorems which will be recalled in sub-
sequent chapters. To avoid tedium, proofs are in general

omitted as they can be found in the given references.
- ~

§1 Basic concepts

i

We shall assume throughout that all the vector spaces

and algebras considered here are over the complex field C.

Definition 1.1 A topological vector space 1s a vector

space endowed with a Hausdorff linear topology with respect
to, which addition and scalar multiplication, are continuous
maps in both variables.

Since we are mainly\EOncerned with algebfas{‘the

elementary properties and relevant definitions in a topolo-

gical vector .space are assumed. For reference, see [25].

Definition 1.2 A topologicai algebra is a topological vector

space which is alsp an algebra such that multiplication is

¢

separately continuous.

a

Definition 1.3 An F-algebra is a complete metrizable topo-

logical algebfa. v

Since a locally convex topological algebra A has its



topology generated by/a non-empty family of seminorms

{pa}aeF' for brevity we shall denote a locally convex topo-

logical algebra by [a, {pa} ]. Otherwise we do not assume

acT

local convexity. For example, (A, d) merely means a metriz-

able topologiQal algebra with metric d.

Definition 1.4 (A, {pa}asf] is a locaf%y m-convex algebra
E

¢

if each Py satisfies the following submultiplicative condition:

T—
-~
~

P, (xy) < p (x) p,(y) (x,yed) -

1)

Equivalently, A has a basic neighbourhood system {Ua}aer of
0 such that UaUa c Ua (aeff\and each Ua is convex and circled.
If A is an algebra, we define A = A®C = {(x,a): xecA,

ae@} with pointwise additionhgnd scalar multiplication, and

V/

(Xl,al)(xz,az) = (xlx2 + 0,X, * 0,X Then A has the

Xyt op¥pr %)
element (0,1) as an identity, and is called the algebra with

an identity adjoined to A. If (A, {pa}uefl is a topological

algebra, by defining Ea((x,a)) = p,(x) + lal, (A&, {Ea}aefl is

also a topological algebra whose topology is compatible with

the product topology on A®C.

Definition 1.5 (a, {pa}aefj has a left (resp. right) approx-

0 ] . Y 1 . \
imate identity {eA: AeA} 'if {eA: AeA} is a net in A such thaf

for each xeA, lim e,x = x (resp. lim x €, = x). {e :
\ A \ A A
an approximate identity when it is both a left and right approx-

Aeh} 1s

imate, identity.
»

-
phoE Ak

Ly
P A

o
%

:’?}—E sy



The left approximaté identity {eA: AeA} is said to
be bounded if for each ael there exists Ka > 0 such that
pa(ex) s K, (AeA). It is uniformly bounded if it is bounded

and sup K, < =
a

Definition 1.6 Let A be an algebra. The circle operation

° on A 1s defined by xoy = x + y - xy (x,yeA).

This operation is clearly associrative and has the
zero element of A as an identity. If A has an identity e,
then the relationship between the circle operation and multi-

plication is given by
(e - x)(e —y) = e - (xoy). . (1)

Definition 1.7 An element x of an algebra A 1s said to be

left (resp. right) quasi-regqular if there is an element yeA
ssuch that yox = 0 (resp. xoy = 0). Tn this case, y is called
.the left (resp. right) quasi-inverse of x. x is quasi-regular

if it is both left and right quasi-regular. It is (left,

right) gquasi-singular if it is not (left, right) quasi-regular.

We note that if A has an identity e, then by (1) it 1s
A
~clear that an element xeA is (left, right) quasi-regular iff

e - X is (left, right) regular.

Definition 1.8 Let A be an algebra and xeA.

MO ISP R G B e 0y v
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(a) The spectrum of x in A is the set SpA(x) = {Xex: X 4 0,

k]

A lx is quasi-singular in A}, plus 0 if x is singular, where .

all elements are considered as singular if A has no identity.
(b) The spectral radius of x in A is the extended real number

0, (x) = sup {Ix]: Aesp, (x) 1. “

Definition 1.9 A topological algebra A is a Q-algebra if

the set of all quasi~regular elements of A is open in A.

Lemma 1.10 Let A be a topological algebra. The following
are equivalent:

(1) A is a Q-algebra.

(i1i) There is a neighbourhood of 0 consisting of quasi-
regular elements.

(iii)The set of quasi-regular elements has an interior.

Proof (1) =3 (i1), (ii)==> (iii) are obvious.
(iii)=h(d) (19] pp. 80.

Proposition 1l.11 Let A be a locally convex topological‘

algebra. ‘The following are equivalent:

(1) A is a Q-algebra.
(ii) The set § = {xeA: o, (x) < 1} is a neighbourhood of 0.

(iii) S has an interior.

Proof (19) pp. 58. .



Proposition 1.12 Let [A, {pa} ] be a locally m-convex

ael

algebra which is either complete or a Q-algebra. Then

1l/n

o, (x)=sup lim [pa(xn)] (xeA) .

A
a now
Proof [19] pp. 22 and pp. Z24.
The following proposition is found in [19], pp. 80.

Proposition 1.13 Every element of a Q—aigebra has a compact

spectrum.

since in a Banach algebra (A, [-]), o,(x) < x| (xed),

Proposition 1.11 says that a Banach algebra is a Q-algebra.

Definition 1.14 (a) A locally convex space is called a bar-

relled space if every closed, convex, balanced and absorbing
subset is a neighbourhood of 0.

(b) A topological space X is a Bailre space
if X cannot be written as a countable union of nowhere dense

subsets.

.

Theorem 1.15 (a)'Every locally convex space which is a

Baire space is barrelled.
(b) Every complete metrizable space is a

Baire space. '
N,

Qv

Proof (a) See (26) pp. 60.

(b) See [18] pp. 28.
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Definition 1.16 A topological vector space is said to be

locally bounded if there is a bounded neighbourhood of O.

s
k]

Definition.1.17 Let A be an algebra. A mapping\x + x* of A

onto itself is called an involution if the following conditions

are satisfied:

(i) (x%)* = x
(L1) (x+y)* = x* '+ y*
(1ii) (xy)* = y* x*

(iv) (ax)* = ax*, acC.
. 7

An algebra with an involution is called a *~algebra.

A subalgebra ¢ of a *-algebra A is called a *-subalgebra of A

provided C* = (,

K~

‘We shall call a topological algebra with an involution
a topological *-algebra. We shall not assume the continuity

of the involution map unless otherwise stated.

Definition 1.18 Let A be d& *-algebra.

(a) An element heA such that h* = h is called hermitian. - The
set of all hermitian elements in A is denoted by jZA'

(b) An element xeA such that x x* = x* x is called normal.

(c) A subset 5 of.A is called normal if the set & U_@ * is

commutative, where € * = {x*: xec &1}.

If 8 is normal,' then by Zorn's lemma, it is easy to

see t%at there exists a maximal normal subset of A which con-

tains 8 .
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If A is a *~-algebra, let A be the algebra with an
identity adjoined. By defining (x, a)* = (x*, a), the map

~

(x,a) + (x,a)* is then an involution in A.

Proposition 1.19 Let-A be a *-algebra and c a quasi—regglgp/f\

element with its quasi-inverse denoted by c¢’. 'Then the fol-

lowing are true:

(a) (c*)° = (c°)*,

{b) If xeA satisfies cx = xc, then c’x = xc’.

. . Q
(c) If ¢ is normal, so. is ¢ .

Proof (a) c* o(c’)* = c* + (c)* — c*(c )* = (ctc’ - c’c)* = 0.
—_— 7

(o] 6‘
Similarly (¢ )* o'c* = 0.

(b) cx = xc implies that cex = xeoc. By associativity

'?’«.\ o o o o o
of the operatich. ¢, Wwe have C oX = C oXoCoC = C oCeX°C = X°C ,

L
o

]
and sO ¢ X = XC

(c) cc* = c*c implies that cac* = c*ec. Thus (¢’ )*oc =
(c”) *¥ocockoe (o) = (co)*oé*oCo(q*)° : (c*) “ec*oco(c’)* = co(c’)*,
where the second last equality’ follows from (a). This %n turn
implies that (c’)*c = c(c’)*. From (b), we have (co)*c° =

co(co)*.

Definition 1.20 A *-algebra is symmetric if every element of

the form -x*x is guasi-regular.
The proof of thé following proposition is straight-

forward and therefore pmitted.

oy
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Proposition 1.21 Let A be a *—algebr?ﬂ Then, for each xeA,

(1) . Sp,(x*) = 5p, (x) = {x: AeSp, (x) }.

(1i) OA(x*) = oA(x).

Proposition 1.22. Let A be an algebra. If A has no identity

and A is the algebra obtained by adjunction of an identity
to A, then SpA(x) = SpX(x) (xeA) .

/N

A proof of the above proposition may be found in [22]< \

o , 'H | 7\

§2 Linear maps,

Proposition 1.23 Let £ be a linear functional on a topo-

logical vector space. Then the following are equivalent:

(a) f is continuous.

by £ is bounded in some neighbourhood of 0. ‘
A proof may be found in (25}, pp. 1l4.

Theorem 1.24 Let X, Y be locally convex spaces such that X

e .

is barrelled, or let X, Y be topdlogical vector spaces such

that X is a Baire space. Suppose A is a collection of contin-

uous linear maps from X into Y such that{ﬁqi\each xeX, the set
S 4 ’

A(x) = {£(x): -feA} is bounded in Y. Then A is equicontinuous.

A proof may be found in [26], pp. 83.

Definition 1.25 A linear fun&tional £ on an algebra A is

multiplicative‘if f(xy) = £(x)£f(y) (x, yeA).



Definition 1.26 Let A be a *~algebra and f a linear

functional on A.
(a) f is hermitian if f(x*) = E(x) (xeA).

(b) f is positive if f(x*x) 2 0 for each xeA.

Proposition 1.27 Let A be a *-algebra.

(a) If f is a linear functional on A such that f(x*x) is real
for each xeA, then f has the hermitian property: £(y*x) =

f(x*y) (x,yeA). Thus, if A has idéntity, then f(x*) = F(x).
1

(b) (Cauchy-Schwarz ineqdality) If f is a positive functional
on A, then |f(y*>§)|2 < f(y*y) £(x*x) (x,yeA). Thus, if A has

identity e, then |f£(x)|? < f(e) f(x*x). v
Proof  (22] pp. 212.

83 Representations

Definition 1.28 Let A be an algebra and Xa vector space.

A representation T of A on X is a homomorphism x =+ Tx of A

into the algebra of all linear operators.on,I. That 1s, for

.

each xeA, T, is an operator on ¥ , and Txy = TxTy' ’I‘x+y =

T, + Ty, Tox = Ty (ff vedA, aeC).

Definition 1.29 Let A be a *-algebra and H a Hilbert space.

A *-representation T of A on H is a representation of A by
bounded linear operators on H such that Tx*,= (Tx)* (xed),

where (Tx)* is the adjoint operator of%Tx.

1
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Definition 1l.30 Let A be a t logical algebra, H a

Hilbert space and 9J(H) the &ollection of all bounded linear
operators on H . A continuous representation of A on H 1is a
representation of A in 58( H) which is continuous with }espect
to the topology on A and the norm topology on 5B(H ).

A\

Definition 1.31 A.gepresentation T of an algebra A by oper-

ators on a vector space X is said to be strictly cyclic if
there is a vector teX such that {T ¢ : xeA} =X . In this

case, £ is called a strictly cyclic vector.

2

Definition 1.32 A representation T of an algebra A by oper-

ators on a topological vector space X is said to be topologi-

[

cally cyclic if there is a vector £cX such that the subsbace
{Txgz xeA} is dense in X. £ is then called a topologically

cyclic vector.

—

\

Definition 1.33 Eet f be a linear functional on the *-alge-

bra. A and let x - 'I‘x be a *-representation of A on a Hilbert
space H. Then f is said to be representable by x‘+ Tx pro-
vided there exists a topologically cyclic vector &eH such

that f(x) = <Tx£, £> (xeA) where <, 2 denotes the inner pro-

duct on H.



CHAPTER 2

Continuity of Positive and Multiplicative

- Linear Functionals

Ever since it was proved that everprositive func-
tional on a B*-algebra with identity is continuous, the attempt
to generalize this result to more general topological *-alge-
bras has béen extensive. Among 6thers, Husain and Rigelhof
(14) studied for MQ*-algebras, and Zelazko [31] F-algebras.

We shall present a systematic study of this subject for general
locally convex and non-locally convex topological *:Zlgebras‘

which need not possess an identity. The results for certain-

known classes evolve later as special cases.
"

§1 Continuity of positive functionals on locally convex

. <*-algebras

We first prove a fundamental theorem (Theorem 2.3)
which asserts the continuity of* positive functionals on a
topological *-algebra which is either locally convex or other-

wise. We then concentrate on the locally convex cast.

Definition 2.1 Given positive functionals £ and g on a

*~algebra, we say that f dominates g if f-g is positive.

s

Definition 2.2  An dfigebra A satisfies the relation A? = A

if for eacdh xeA, there are elements a;. bi (i=1l,...,n; neX¥) in

I
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A such that x =
1

aib..
1 i

Il t~133

Theorem 2.3 Let A be a topological *-algebra such that A

1s elther a Baire space or a barrelled space. Suppose a? =2
and every non-zero positive functional on A dominates a non-
zero continuous positive functional. Then every positive

functional on A is continuous. \

Proof Clearly a zero positive functional is, continuous. Let

f be a non-zero positive functional on A. Since A% = A, every
m n
xeA is expressible as § a.b. and therefore as | o, x*x,
' =1 i=)p *t

where aism by the identity:

4ab = (bta*)* (b+a*) - (b-a*)* (b-a*)

+ i(b+ia*)* (b+ia*) - i(b-ia*)* (b-ia*).

Hence, linear functionals that agree on all elements x*x are

1dentical.

Let 57 = {g # 0: g a continuous positive functional
on A dominated by f}. By hypothesis 57:+ g. Define a relation
"> on.gz'by "g>h" iff g dominates h. ">" is then a partial

order on 57.

. ' cE .
If gfo is a totally ordered subiet of #, then J’O\ls
directed by >. For each xeA with x = ) aixi*xi, we have
i=1

n n
g ="[gC [ ayx;*x ) [ £ ] Ja; | gl *x) =

la, | £(x,*x,)
i=1 i=1 i=1 * o

fi 3

1
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(ge ;E)).' Since by hypothesis A is either Balre or barrelled,

by The?;em 1.24 gZO 1s equicontinuous.

ﬁ‘/ 0/
1 X
For each yeA, 1%?’ g (y*y) (gEJﬁO) ex1sts, as

0
gl{y*y) S f(y*y) V‘gej?h. Since each xeA can be expressed
n 0
‘as x = izl aixi*xi (aiem, xieA), we can define, ¢(x) =
lim g({x) (xeA).

>
9t Fy
¢ is clearly a non-zero bositlve functional on A
dominated by f. Further, for each ¢€>0, Since 5;0 1s equi-

continuous, there is a neighbourhood V of 0 in A such that

< e (xeV) ana 80 ¢ 1is

lg(x) ] < ¢ (xev, gegfo). Thus- | ¢ (x)
-~ ' d for 9F . B
continuous. Hence ¢e%and ¢ is an upper boun or JWO Yy

zorn's lemma, f?ghas a maximal element, say, 95

If £ - 90 * d, by hypothesis there is a nan-zero
continuous positive functional 9, such that f - 99 -~ 91 is
positive. But clearly 99 T 9, € gz:and 90 ¥ 93 > 9g- This
contradicts the maximality of 99 Therefore f - 9y = 0 or

f = 90 and so f 1s continuous.

o

Remark If A has an identity, then trivially A? = A. But
there are non-trivial cases. Rudin [23] showed that every
function in L'(R) 1s the convolution of two other functioné
in .L'(R); a fact which he later generalized to L' (G) where G
is either the additive group of Euc%idean n~spéce, or the

n-dimensional torus [(24]. Cohen (9] proved further that in
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.
.

any Banach algebra with a bounded left approximate identity

.~ eacgh element can be factorised (written as the product of

two elements). Recently Craw [10] proved this factorization
theorem for a locally m-convex F-algebra with aﬂuniformly

\

bounded left Sﬁpfoximate identity.

‘w

Next we prove a few lemmas which will lead to the

main theorem.

Lemma 2.4 Every maximal normal subset O of a topological

*~algebra A 1s a closed maximal commutative *-subalgebra of

'y

A such that SpA(c) = SpC(c) (ceC). If A hqi\iiéntity e,
\ﬁxpeé’.

t

>

Proof If 8 is any normal subset of A then it is obvious
from the definition that §y€* is normal. Since C is maximal
normal, . = (UC* or C = C*. flence in order to prove that an

element x¢A belongs to C, we have only to show that

(1) X 1S normal;

(11) x commutes with every element of .

i

"For. 1n this case, cU{x} 1s normal so that XEC by maximality

of .'. By commutativity of ¢ = CUC¥, it is easy to verify

-

éhat if x,yel, aelC, thén x+y, ax, Xy satisfy (i) and (ii).
L
\ *

Thus © is a subalgebra and hence a maximal commutative

*-sub-algebra. That ¢ contains the identity element, if it

+

exists, is trivial.
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Let {cu} be a net in ¢ which converges to xeA. Since

c,C = cc, for every ce¢, we have xg = l&m (cac) = l&m (cca) =
cx (cel). Since ¢ is a *-algebra, x* also commutes with
every element of (. In particular cax* = x*cd Y a. Thus

X X* = x*x so that xeC. Therefore o is closed. Finally, it
is obvious that SpA(c) CZSpC(c). Now let ce( which is guasi-
regular in A. Since ¢ is normal, so is its gquasi-inverse c°,
and ¢ commutes with C because c 'does so (Proposition 1.19).
Consequently, coeC. Thus E-\~Spk(c)(: T \~SpC(c) or

Spp (¢) C 8p, (©) - . .

2#

Definition 2.5 A topological *-algebra A is said to have

.

locally separately continuous (resp. locally pseudo-continuous)
involution if in every maximal commutative *-subalgebra C of
A, the map x » x*y is continuous for each fixed ye(C (resp. the
map x -+ x*x is continuous). The word 'locally' will be
omitted if we mean that the map x + x*y for fixed yeA (resp.

X + X*x) is continuous on A.

The above definition is a generalised notion of the
so 'called 'locally continuous involution', namely, x =+ x* is
continuous on each maximal commuta£ive *-gukalgebra. It is
clear that in a topological *-algebra A, 'locally continuous
involution' implies 'locally separately continuous involution'
and the two are equivalent if A has identity. If, moreover,

A has jointly continuous multiplication, then 'locally con-

tinuous involution' implies 'locally pseudocontinuous involution®.

¢
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Lemma 2.6 Let [A, {pa}ae

1/n

F] be sequentially complete. Let

heA with lim [pa(hn)] < 1 for each oael'. Then there exists

n -~
an element keA such that 2k - k? = h. If, in addition,
(A, {pa}aeF] 1s a topological *-algebra with locally separately

continuous involutlon, and heng, then kleA.

L
2
j

\
P, [hj is absolutely

21 V3 and

n 1 :
Proof Let k= - ] {5]{-h}3. Since
=1 13

— 1/ © (1
lim [pa(hn)] ' ¢ 1 the series ]2

N-oo ‘ j=1 J

convergent for each ael and so {kn} is Cauchy. Thus there
exists keA such that k, - k. Since the series f(g) =

o 1

7l (-p”
n

is absolutely convergent for |z| < 1 and

- (f(r))? = ¢, it follows that 2k - k? = h.

If A is a topological *-algebra and he f,, let C be a
maximal commutative *-subalgebra of A which contains h. This
is possible by Zorn's lemma since the set {h} is normai. By
Lem&a 2.4, ¢ is a closed maximal commutative *-~-subalgebra and
therefore contains k. Now kn + k implies knk + k? and
knk = kn*k + k*K since involution is locally separately contin- -
uous. Thus k* = k*k and so 2k - k*k = 2k - k? = h. But then

2k* - k*k = (2k - k*k)* = h* = h and so k = k*.

Remark If ‘[A {pa}aerl is a séquentially complete topologicai
*-algebra with jointly continuous multiplication and locally

pseudocontinuous involution, let hej?A such that
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Iim [pa(hn

n-+o

such that 2k - k? = h. For, as in the proof of Lemma 2.6,

< 1 for each ael'. Then there exists kejf

)] A

in this case k_ + k impliés k_? > k? and k_2% = k_*k_ - k*k.
n n n n n

Lemma 2.7 Let [A, {pa}a

logical *-algebra with locally separately continuous involu-

tion. Let f be a positive functional on A. If hej‘(A satis-
1 .
)14/m

n

fies sup lim [pa(h < «, then

e} n-oe

£ (u*hu) | S M £{u*u) (ueh)

for some Mh > 0.

Proof If lim [pa(hn)]l/n < 1 for each ael', by Lemma 2.6

n-—>o

there exist elements r, SEJ(A such that 2r - r? = h and

2s - s? = -h. If ueA, set v=u - ru, w = u - su then
v*v = (u* - u*r)(u - ru) = u*u - u*ru - u*ru + u*r?u =
u*u - u* (2r - r?)u = 0*u - u*hu and w*w = u*u + u*hu.
Since f is positive, f(u*u - u*hu) = f(v*v) 2 0,
f (u*u + u*hu) = f(w*w) 2 0 and so |f(u*hu)| = f£(u*u).
) _ — n,.l/n -
Finally let §_ = syp lim [p (h™)] . If §_ =0, we
h i P h
obtain (l). Therefore assume Gh > 0. Let €>0 be given.
Then fér each ael', 1lim p E{Jl_}r“]l/n =
ol 18, +€
n n-roo h 1
p, 0™ 1 1/n TR p_ ")t/
Tim | 2—— - A¥e *o < 1
o <6h+€) 6h+€

and so

eF] be a sequentially complete topo-

(1)
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S f(u*u) (ueld)

h
lf{u* 5h+€ uJ

i.e. |f(u*hu)| S (6, +€) £ (u*u) (ueA) .

Since ¢ 1s arbitrary, we have
2

|£(u*hu) | S 6, £ (u*u) (ueh) -

h

Definition 2.8 Let f be a linear functional on the *-alge-

bra A and for a fixed element ucA, we define

? fu(X) = Q}u*xu) (xeA) -

Then fu is a linear functional and is positive i1f £ is posi-

+
v

tive.

Following Tiller (28], we give the definition below:

Defanition 2.9 Let A be a *—algebra. If f is a positive

functional on A, let If = {xeA: f(x*x) = 0}. Set P =.) If
where the intersection is taken over all positive functionals
f on A. Then A 1s called P-commutative if xy - yxeP for all

X, YEA.

Clearly every commutative *-algebra is P-commutative.
The following example shows a P-commutative *-algebra which

is noncommutative.

Example 2.10 (W. Tiller [28]) Let A' be a noncommutative

algebra with involution x +» x'. Let A = {(x,y): x,yeA'}

with pointwise algebraic operations and involution
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(x,y)* =¢',x"'). Then A is noncommutative. Let f be a
positive functional on A, let x be an arbitrary element in

A', and set a = (x,0). Then a*a = 0 which implies f(a*a) = 0;
hence aeIf and since f is arbitrary, aeP. Similarly, every
element of A of the form (0,y) is in P. Thus, by an appli-
cation of the Cauchy-Schwarz inequality, it can be ‘shown

that (x,y) = (x,0) + (0,y)eP for every x,yeA'; i.e. A = P,

Therefore, A is P-commutative. If, moreover, A' has its

linear topology generated by a family of seminorms {P&}aer’

then the family of seminorms {pa}acr’ where pa((x,y)) =

] [] . ,
pq(x) + pa(y), defines a linear topology on A. (A’{pa}aer)

is (sequentially)

is (sequentially) complete if (A', {p&}aef)

- %

complete.
/ \

Tiller also proved that a Banach *-algebra with an

approximate identity is P-commutative if oA(x*x) s oA(x)2

(xeA) .

Theorem 2.11 Let (A, {p }

o aeF] be a sequentially complete,

barrelled, topological *-algebra with locally separately
continuous involution. Suppose A is P-commutative and A% = A,
If there is a neighbourhood V of 0 in A and an M>0 such that
for every xeV, sup ggg [pa{(x*x)n}]l/n £ M, then eVery posi-

tive functional con A is continuous.

Proof The theorem is obvious for a zero positive functional.
So let f be a non-zero positive functional on A. For a fiked

ueA, by the Cauchy-Schwarz inequality, we have
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(fu(x)l2 = |f(u*xu) [? S £(u*u) flu*x*xu) (xeA) .
If xeV, then, as x*xej{A, by Lemma 2.7, f(u*x*xu) < le(u*u)
where M, = max(1,M) and so Ifu(x)l2 s le(u*u)z. Thus £ is
bounded on V, hence continuous by Proposition 1l.23.

If fu = 0 for every uceA, then again by Cauchy-Schwarz
inequality, [f(u*x*y)|? S f(u*x*xu) f(y*y) = £,(x*x) £(y*y) =
(u,x,yeA). Hepce £(A®) = {0}, which ié false, since A% = a
énd f ¥ 0. Therefore choose uel ‘such that £, + 0. We may
suppose gi@ [pu{(u*u)n}]l/n < 1 for each ael'. For otherwise,

choose A>0 so that viueV. Then sup lim [pa{(Xu*u)n}]l/n M

. —— A ' n l/n
by hypothesis and so %i& [pa{(ﬁ?f u*u) }] < 1 for each asTT
Since fau = |a]? fu (ae€) , the linearity, positivdty and con-

' °
tinuity of fu is not affected if we replace u by a scalar

multiple of u. We -then replace A by u to obtain

, M+1
1/n 1 for each qel'.- Since u*ustA, as seen

m o rn™n™

in the proof of Lemma 2.7, there is vxeA such that

vx*vx = x*x -~ x*u*ux for each xeA.

= Next we show that fu(x*x) = fx(u*u) for every xeA.
First we observe that If is a (proper) left ideal in A. Also

the linear space A/If, with the inner product defined by

# :
<x + 1o y + I,> = £(y*x), is an inner product space. Since

A is P~-commutative, we have ux + If = xXu + If (x£A). Hence
fu(x*x) = f(u*x*xu) = <xu + If, Xu + If> = <ux + If, ux + If>
= f(x*u*ux) = fx(u*u). But then (f -~ fu) (x*x) = f(x*x) =~

£ (x*x) = £(x*x) = £ (u*u)-= f(x*x - x*u*ux) = f(v* v ) 2 0
X X X °

R
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Therefofe f dominates a non-zero continuous positive func-
tional fu on A. Noy Theorem 2.3 applies and so every positive

functional on A 1s continuous.

-

Henceforth, we shall say that a topological *-algebra

(A, {p._}

o acF] has property @ if the following condition @ is

satisfied: @: /%héx$ is a neighbourhood V of 0 in A and an

= sy l/n <
M>0 such that sup g;m [pa{(x x)} '} M (xeV).

-~

§2 Some classes of locally convex topological *-algebras

ARfter establishing Theorem 2.11 for a genéral locally
convex topological *-algebra, we now provide concrete examples

that satisfy condition 2.

Example 2.12 A locally m-convex Q-algebra (A, {paiaeP] such

that the involution is pseudocontinuous at the origin has
property €. For, in this case, by a theorem of Michael ([19]},

’pp. 24), o, (x) = sgp ;1@ [pm(xn)]l/rl (xeA). Since A is a

A
Q-algebra, by Proposition 1.1l the'set

n)]l/n < 1} <

={xeA: oA(k) 21} is a

neighbourhood of 0. By continuity of x -+ x*x at 0, there is

s = {xeA: sup gi@ [p, (x

a neighbourhood V of 0 such that xeV implies. that x*xeS.

Thus sup ;iﬁ [pOL{(x*x)n}.]l/n 1. (xeV).

AN

Remark In view of the remark after Lemma 2.6, it is clear
that the conclusions of Lemma 2.6 and Lemma 2.7 hold if
(A, {pa}aef] is a sequentially complete topological *-algebra

with jointly contihuous multiplication and locally pseudo-

~
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continuous involution. Therefore the conclusion of Theorem

2.11 holds if A is, in addition, P-commutative, A? = A,
barrelled and has property @. Since every *-subalgebra contains
0, locally pseudocontinuous involutipon implies pseudocontin-
uous involution at 0. We thus arrive at the following

corollaries:

Corollary 2.13 Let [a, {pa} ] be a sequentially complete,

ael

barrelled, locally m-convex: Q-algebra with locally pseudo-
continuous involution. Suppose A is P-commutative and A? = A.

Then every positive functional on A is continuous.

Corollary 2.14 Let (A, {pa}aer] be a complete metrizable
~ locally m-convex Q-algebra with locally pseudocontinuous
involution. Suppose A is P-commutative and A? = A. Then

every positive functional on A is continuous.

As seen in the first part of the proof of Theorem
2.11, we established the continuity of fu withouﬁ‘requlring
A to be P-commutative and barrelled since we did not make
use of Theorem 2.3. Now if A has an identity e, since fe(x) =

f(x) (xeA), we get a sharpened form of Theorem 2.11.

Theorem 2.15 ‘Let (A, {pa}aef] be a sequentially complete

topological *-algebra with identity and has property 2. Sup--
pose A has either (i) locally (separately) continuous invol-
ution or (ii) jointly continuous multiplicatiorn and locally

pseudocontinuous involution. Then every positive functional

-
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on A is continuous.

As a particular case of Theorem 2.15, we deduce the
following corollary, which is a slight generalization of

Theorem 2 of Husain and Rigelhof [14].

be a sequentially complete

cdrollary 2.16 rLet (A, {p } ]

logally m-convex Q *-algebra with identity and locall& pseudo-
conjtinuous involution. Then every positive functional on A

is gontinuous.

% Following Allan [1] we say that an element x in a

localy convex topological algebra (A, {pa} ] is bounded

ael
if forysome non-zero AeC, the set {(xx)®: n=1,2,...) is a

[

bounded\ subset of A. The set of all bounded elements of A

is denotkd by A We say that A is bounded if A = A,.

0"
Clearly every normed algebra is bounded. Also

Ry
bounded. For, since &;g Hf”p = || €], ((2) pp. 932), we have,

L”(o,1}, { i.e. L” with the induced L“-topology is

L]
for each.p,

—_— 0z 1 o e2my 1 : '
Bm (EDRYN = T g )Y = T A, = 7], S

S

(12| )% and so sgp IIm (I O )™ < g )2 < @ Thus

by Propositions 2.14 and 2.18 [1]), A is bounded. We shall

further encounter other known classes in the ensuing discussion.

]

Proposition 2.17 Let [A, {p }__

complete ([l] Definition 2.5), bounded Q*-algebra. Then A has

F] be a commutative,’pseudo~
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property @.

Proof Suppose'first A possesses an identity. By Proposi-

tion 2.14, Corollary 2.16 and Theorem 2.18 [1}],

(xn)]l/n

a is a submultiplicative seminorm

B(x) = syp lim [p
on A. By Definition 3.} and Theorem 3.12 (1), we see that
R D A ¥

B(x) = 0,(x} (xeA) and so syp giﬁ [pa{(x* X*x)

A
S B(x¥)B(x) = 0, (x*) o, (x) = (oA(xH2 (xeA) .

Now suppose [A, {pa}aer] possesses no identity. Then .

-~ ~ N
{a, {pa}acr] fulfils all the conditions in the last paragraph.

The fact that A is bounded and pseudocompiete,is proved
respectively in Proposition 4.3 [17) and Proposition 2.8 [l].
TN FroxeyDy /N < - 2 X

Hence we have SUp %i& [pa{(x X) %] (oA(x)) (xeA). If
xeA, then by Proposition 1.22

m——— n l/n__ — e~ n l/n< 2
sup gim [p {(x*x)7}] = sgp lip [P, {(x*x)"}) = (ogx(x))* =

2 .

(OA(X)) .

- Since A is a Q-algebra, the set {xeA: OA(X) £ 1} is

then a neighbourhood of 0. Thus we conclude that (A,{pa} )

ael

has property 8.
Remark In particular a BP* Q-algebra([17}) has property Q.

The following is now an immediate corollary of

Theorem 2.11 and Theorem 2.15.

Theorem 2.18 (a) Let (A, {p}

a aeF] be a commutative, seguen-

tially complete, barrelled, bounded Q-algebra with locally

. . N 2
separately continuous involution and A" = A, Then every

AR
3

s
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positive functional on A 1s continuous.

(b) Let [A, {pa}aeF] be a commutative, sequentially
complete, bounded Q-algebra with identity and locally sépar-
ately continuous involution. Then every positive functional

on A 1s continuous.

Remark The corresponding results of Theorem 2.18 for
BP*-algebras may be found in Theorep 5.7'and Theorem 5.14 ([17].
Although a BP*-algebra requires a weaker condition than sequen-
tial completeness, namely pseudo—compieteness, its definition
(3.1 tL?]) requires a lot more than a commutative bounded
algebra. Moreover, the condition on continuous involution

and identity is indispensable.

Now let [A, {p.} _.] be a locally m-convex Q-algebra.
a ael

]l/n

——— n _ - © -
Then we have syp %&Q [pa(x ) = g (x) < (xeé) (Propo

A

sitions 1.12 qu 1.13). Thus,'as argued before, A = AO,
i.e., A is bounded. If, in addition, A is & cpmmutative
pseudo-complete *-algebra, then by Proposition 2.17

(A, {pa}aeF] has property f. .Therefore, from Theorem 2.18

we deduce the following as a complement to Corollary 2.13

and Corollary 2.16:

Corollary 2.19 Let I[A, {pa}aefl be a commutative, sequen=

tially cémplete, locally m-convex Q-algebra with locally
separately continuous involution such that either
(i) A is barrelled and A? = A or

4 A

(ii) A has identity.
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\

Then every positive functional on A 1s continuous.

Example 2.20. Let Cw(I) be the algebra of all complex-valued

functions on the closed interval I = [0,1] which have der-
1vatives of all orders, where one-sided derivatives are taken
at the end-points of [C,1]. Endow Cm(I) with the topology

which has a neighbourhood system of 0 consisting of the sets

(k)

v = {fecT (M £ ()] < 2" for ksn and te(0,1])

(n =0,1,2,....).

Then Cm(I) is a commutati%e, complete, "metrizable, locally
m-convex algebra (see Ll9], pp. 11 and 15) with identity.
If f = u + iv, where u,v afe real functions, then £

has derivatives of all orders iff both u and v have derivatives

K) LK)

of all orders, and f' + iv® (x = 1,2,....). Thus

f + £ 1s a continuous involution .

Since U, = {feC (I): |f(t)] < 1 for te(0,1]} is a

0
neighbourhood of 0 such that each erO
—T§f, by Lemma 1.10, c(I) 1s a Q-algebra.

has a guasi-inverse

Thus C (I) satisfies the hypotheses of Corollary 2.14,
in particular, those of Corollary 2.13 and Corollary 2.19, so

that every pésitive functional on C” (I) is'continuogs.

-
B
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[e o]

. {

)
p p=1
furnishes an example of a bounded algebra which 1s not a

We note that the algebra [L [0,1], {

Q-algebra ((17) pp. 13).

The following definiticn i1s due to Cochran (8].

Definition 2.21 [a, {pa}aeF] is uniformly A~convex if for

each xtA, there are positive constants Mx’ Nx such that

<

pQ’(XY) Mxpa(}’) ’

Py (¥yx) N N%EG(Y)

for each ael’ and each yeA.

P

From the definition, it is clear that a uniformly
“ N

A-convex algebra is’ a topological algebra.

It is easy to verify that [A, {pa} ] is uniformly

ael
A-convex iff A has a basic neighbourhood systém {Ua} of 0
such that for each xeA, deC: Man and Uax CZMan, for each

ael.

We give an example of a complete uniformly A-convex

algebra which is not locally m-convex.

A

Example 2.22 Let Cb(R) denote the algebra of bounded contin-

uous complex-valued functionson R and C :GR) the set of

positive continuous functions on R which vanish at infinity.



\h
' + .
The family of seminorms {P¢: @cCO(R)} determines

a locally convex linear topology B8 on Cb(R), where

= Sup
P () = % IE(x)¢(x)| (feCp (R)).
The space (Cb(R), B) is commutative uniformly A-convex,

since for each feCy (R), P, (fg) = M(f) P_(g) (¢eCT (R), geC, (R))

¢
where M(f) = izg |£(x)]|. The fact that it is not locally :
m-convex is given in [7). Completeness follows from Theorem
3.6 [27].

] be a commutative, pseudo-

Proposition 2.23 Let (A, {pa}aef

complete, uniformly A-convex Q*-algebra. Then (A, {pa}aeF] has

property f.

n-1

Proof  For each xcA, oael, pa(xn) s M, p&(x) (neN). Thus

n-~1

T n l/n < FI= n — l/n <

Lim [pa<x )] Lim M oo lim [pa(x)] M and so

sup lim [p (xn)]l/n M < o éxeA) i.e A. = A The result
aP 738 o ple A o )

now follows from Proposition 2.17.

If (A, {pa}aEF] is a barrelled uniformly A-convex

algebra, then by’Proposition 1 [15], A is locally m-convex.

Thus the study of positive functionals on such algebras is

. L]

contained in Corollary 2.13 and Corollary 2.19. If A is also
_ — n l/n ©

complete, then we have g, (x) = syp lim [p (x7)] < (xeA) .

Thus by Theorem l'[lSJ, A is & Q-algebra.

,° @
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As a corollary to Theorem 2.18 (b), we have:

Corollary 2.24 Let [A, {pa} ] be a commutative, sequen-

ael

tially complete, uniformly A-convex Q-algebra with identity

and locally separately continuous involution. Then every

positive functional on A is continuous.

- The following example shows that when certain con-
ditions are dropped, not evéry positive functional is contin-

uous.

Example 2.25 Consider Lm[O,l] with the induced Lw-topology.

The positive function F on L [0,1] defined by

1

‘ _ £(t) dt
Ff) = I t(log t - 17
0

is not continuous ([1l], pp. 714).

By Theorem 1 [21, [L7[0,1], {H-Hp}p:l] is not complete;
and, as we mentioned before, though it is bounded, it is not
a Q-algebra. Thus not all the conditions in Theorem 2.18 (b) -

are satisfied.

We note that in the following lemma, no topological

property of the involution map is invoked.

Lemma 2.28 Let (A,

|

) be a Banach *-algebra and, f a posi-
tive functional on A. Then for each hej{A,

| £ (u*hu) | S M, f(u*u) (ueh) for some M > 0.
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Proof Let X be the algebra with an identity adjoined to A.

Then (X, ”'“1) is a Banach *-algebra where H(x,a)Hl = ||xl| + |af.

First suppose that neng satisfies o,(h) < 1. But

then 1 > o, (h) = iim [IYIY™ = 14p file - (e-m17y, M7

= g e - (erm 172"
i.e., ozle - (e-h)) = oz(e = (e+h)) <1 As e - h, e+ he A5 .
by Lemma ([12]), there exist r, seg?i with r? = e - h,
s? = e + h. Now if ueA, set v = rﬁ, w = isu so that v* = u*r,
w* =-iu*s. Then v*v = u*r?u = u*(e-h)u = u*u - u*hu,w*w =
u*s?2u = u*(e+h)u = u*u + u*hu. But as A is an ideal of 35
ueA implies that v, weA. Hence f(u*u) - f£(u*hu) = f(u*u - u*hu)
£(v*v) 2 0, and f(u*u) + f£(u*hu) = f(u*u + u*hu) = f(w*w) 2 O.
Therefore | £ (u*hu) | < £(u*u).

"If o.(h) 2 1, then for e€>0, since o, (x) <® (xeA)

A A
because A is a Banach algebra,
v = h satisfies o, (v) < 1
9a h)+e o A :
Hence |f(u*hu)| S (0, (h)+e) f(u*u). Letting e¢+0, we get
| £ (u*bu) | = 0, (h) f(u*u).
Remark If A is a Banach *-algebra, we may then replace

Lemma 2.7 by Lemma 2.26 whenever the former was used in the
proof of Theorem 2.11. Thus we can remove the condition on the

topological property of the involution map. As a Banach algebra
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is a barrelled, locally m~convex Q-algebra, it has property
@. Thus, the following theorem, which may be found in Tiller

(28]}, falls as a corollary to Theorem 2.11.

Corollary 2.27 Every positive functional on a P-commutatiye

Banach *-algebra A satisfying A? = A is continuous.

§3 Continuity of positive functionals on non-locally convex

*—algebras

After a study of the continuity of positive functionals
on locally convex *-algebras, we choose to give a brief survey of
the same topic for non-locally convex case because there are inter-
esting examples of,non-locally convex space, e.g., éhe Lebesgue
spaces Lp[O,l] (0<p<l) are already well known. It is also part
of our aim to have a parallel result of Corollary 2.14 for non-
locally convex, or at least non-locally m-convéx, F-algebras, as
Arens (2] has given an example of a’locally convex F-algebha

which is not locally m-convex.

In the discussion below we assume throughout that A
‘is a complete topological algebra (not necessarily locally
convex) which-has jbintly continuous multiplication and on
which is defined a non-negative function Hx” satisfying the

A"

following conditions:

(1) Jo] = 0
() I sty 15 dx} + Dyl
(I1I) | ax |= |x]| if |of S 1

(1IV) for each xeh, [x"] S 8 |x|" (neN) for some g = g(x) > 0.
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(V) the sets {xeA: |x|] < €} for positive ¢ are basic

neighbourhoods of 0. -

Lemma 2.28 Suppose A has locally pseudocontinuous involution.

If he f{, satisfies |h| < 1, then there exists an element ke?{A

A
such that 2k - k2 = h.

Proof Let kn = -

I e~333

1 )
Z1(-h)?. It suffices to show that {kn}
]

j=1
is Cauchy as the rest follows exactly as in the proof of Lemma
o 1 R o0 . oo .
2.6. Given ¢>0, since | || - 3](—h)3H S Tnds e TN < -,
i=1 3 J=1 j=1
00 r]_ R
choose a positive integer N such that J§ | =|Z|(~h)7|| < ¢ for
j=n .
n 1 .
n>N. Now if n>m>N, then [k - k || £ ¥ || -|Z](-n)7| < e.
n m . :
. j=m+1 j

|

Lemma 2.29 Suppose A has locally pseudocontinuqus involution.
Let f be a positive functional on A. If he:ﬂ%.satisfies Inj < 1,

then |f(u*hu)| * f(u*u) (ugh) .

v

Proof This follows exactly as in the first part of the proof

of Lemma 2.7.

Theorem 2.30 Let A be Baire with locally pseudocontinuous

involution. Suppose A is P-commutative and A? = A. Then every

positive functional f£f on A is continuous.

Proof This follows almost exactly as in the proof of Theorem

'2.11. We shall only indicate the slight modification.
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Choose a neighbourhood V of 0 in A such that
{x*x] < 1 (xeV). Then for each fixed ueA, Ifu(x)!2‘=
| £(u*xu) |2 £ f(u*u) f(u*x*xu) S f(u*u))? (xeV) by Lemma 2.29.

Thus fu is continuous.

Chpose ueA such that f + 0. We may assume [u*ul| < 1.
For otherwise, choose A>0 so that AueV. Then | (Au)*(Au)ff < 1

and we may replace Au by u.

Corollary 2.3l Suppose.A has identity and locally pseudo-

continuous involution. Then every positive functional on A

is continuous.

Let (A, d) be anF-algebra. Then multiplication is
jointly continuous in A (Arens (3] pp. 629). Moreover, there
is defined on A an F-norm [x| = d(x,0) with the following

properties (Kothe [18], pp. 163): -

(FI) “Ix] 20
(FII) x = 0 if x|} = 0
(FIII)  faxf s [x|| 1f [A] S 1

IA

(FIv) " fx+y] < Ix] + Iyl
(FV) HAxnI >0 if Exnu + 0

(FVI) Hxnxﬂ >0 if A 70

If we require the metric d to satisfy the condition:
for each xeA, d(xn,O) < B(d(x,O))n (neN) for some B = B(x) > 0,
we call such anF-algebra (A,d) pseudomultiplicative. Then the

F-norm satisfies properties (1) to (V).

-
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Remark Obviousgly a submultiplicative metric 4, i.e.,

d(xy,0) S d(x,0) d(y,0), is pseudomultiplicative.

The following are now immediate.

Theorem 2,32 Let (A, d) be a P~commutative pseudomultipli-
cative F-algebra with locally pseudo-continuous involution

and A* = A. Then every positive functional on A is continu-

ous.

Corollary 2.33 Let (A, d) be a pseudomultiplicative F-alge-~-
bra with identity and locally pseudocontinuous involution.

)
Then every positive functional on A is continuous.

Zelazko, [31] reported that every positive functional
on an F-algebra with identity and continuous involution is contin-
uous. Theorem 2.32, while imposing an extra condition, namely

pseudomultiplicativity, extends Zelazko's result to an F-alge-!

bra without identity. In Corollary 2.33 this extra condition
- 0 - .

is compensated by relaxing the continuity of involution.: | ‘.

\J - \\
‘
‘

Definition 2.34 Fix pe(0,1]. An algebra A is called a

p-normed algebra if there is defined on A a function Hx“p ,

called a p-norm,satisfying

+
1

]
o

(PI) |x|p 2 0; |x|p =0 iff x
(PII1) "ax“p = Ia lp‘ lxlp {(ae() “

(PIII) lx+ylp 5~l><|p‘+ lYlp

+
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A is then metrizable with the metric 4 given by
d(x,y) = Hx-y”p. Thus a complete p-normed algebra is an
F-algebra. We call a p-normed algebra A pseudomultipli-
cative if for each xeA, Hanp s 8("x||p)n (neM) for some

B = B(x) > 0.

r

Theorxem 2,35 Let A be a complete, P-commutative, pseudo-

multiplicative p~-normed algebra with locally pseudocontinu-
ous involution and A? = A, Then every positive functional

on A is continuous.

@

Proof  This follows directly from Theorem 2.32.

- Corollary 2.36 Let A be a complete p-normed algebra with

identity and locally pseudocontinuous involution. Then every

positive functional on A is continuous.

Proof It is easy to see that a p-normed algebra is locally
bounded. Since A has identity, by Theorem 1 (30}, there is
an equivalent submultiplicative p-norm on A. The result then

follows ffom Corollary 2.33.

In Théogem 6 [29]}, Xia proved that every positive
/!
functional on a complete p-normed algebra with identity and

continuous involution is continuous. Thus Theorem 2.35

extends this result to the case without identity, whereas

Corollary 2.36 is a slight extension.

Let A be a locally bounded algebra. Then, as shown

- -’\__/
r’dliﬂr <,
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in [(18) pp. 161, A is p-normable for a suitable pe(0,1].

If, in addition, A has identity and is complete, .

< aeelis o 3y it
5T 2O SR Phrdusend 2o SedNERH

then the P-norm may be chosen to satisfy “xywp S Hxﬂp ﬂylp

(zelazko [30), Theorem 1). Thus we have

Corollary 2.37 Let A be a complete locally bounded algebra

TN,
e i ST RN

with identity and locally pseudocontinuous involution. Then

every positive functional on A is continuous.

Example 2.38 Let Wp, O<psgl, be the collection of all holo-

'
AN e v
1 A R

morphic functions on the unit disc, ¢(z) = | anzn, for which
n=0
lell, = T “lay

n=0

IP < », with the pointwise mulpiplicatioz;/“ : g
Wp has the constant function 1 as i%gntity. It is

easy to check that n¢“p is a complete p-norm on wp with

H¢W"p < "¢”p "Wﬂp. Moreover, the map ¢ + ¢*.defined by

CoTes, e

[e o]
n . . . .
d*(z) = X an 2 1s a continuous involution.

Example 2.39 Let A = (C x Lp[0,l], where 0 < p £ 1.

AT

With pointwise addition and scalar multiplication and
multiplication defined by (a,f) (B,g) = (aB,ag + Bf), A 1s an
algebra with identity (1,0). The function | "p defined on A by

1
”(a,f)ﬂp = |o|P + f [£|P is a complete submultiplicative p-norm.
: 0

Further the map (a,f) + (a,f)* given by (aﬂf)* = (a,f) 1s a

continuous involution.

9

W wvgs FAN T Lo
© Fets, et BEER Bhaanape i oL L
- . .
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§4 C-symmetric algebras and the continuity of multiplicative

linear functionals.

We give a short account of C-symmetric algebras which

/

are slight generalization of symmetric algebras. Then we
proceed to consider the continuity of multiplicative linear

functionals on C-symmetric topological algebras.

’

Definition 2.40 A *-algebra,A i1s said to be C-symmetric if

~x*x is quasi-regular for every normal x.

The above definition is thus a generalized notion of
. . S
symmetric algebras. The following proposition justifies the

name of C-symmetric algebras.

Proposition 2.4l A *-algebra A is C-symmetric iff every

maximal commutative *-subalgebra of A is symmetric.

Proof  Suppose A is C-symmetric. Let ¢ be a maximal com-
mutative *-subalgebra of A. Then for each ceC, cc* = c*c.

By hypothesis, -c*c has a qﬁasi-inverse yeA. Since -c*c is
normal (in fact hermitian), so is y (Proposition 1.19 (c)).

‘By commutativity of C, (-c*c)x = x(-c*c) (xec). Hence yx - Xy
(xeC) by Proposition 1.19 (b). ¢ being a commutative *-sub-
algebra is a normal subset of A. It is maximal normal. Fof,
if ¢ Cg' where £ is a normal subset of A, then gc;}m for
some maximal normal subset 3n. By Lemma 2.4, ﬂﬂ;is a com-
mutative *-subalgebra. Hence (¢ = SUt = &. Since y is normal

and commutes with ¢, it follows that yec as shown in the proof
\
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of Lemma 2.4. So -c*c is quasi-regular in ¢ for each ceC.
Ve

Conversely, let x€A be normal. Then x is contained
in a maximal normal subset ¢ of A. (¢ is a maximal commuta-
‘~tive *~subalgebrg of A such that SpC(c) = SPA(C) (ceC) by
Lemma 2.4. By hypothesis,\as -x*xel, =-x*x has a quasi-inverse
in (. Hence 1 ¢ SpC(-x*x) = SpA(qx*x), which implies thgt

. . . -
-X*x 1s quasi-regular in A.

It is well known ([19]), pp. 26) that if A is a sym-
metric algebra, then the following holds: if x = x*, then
SpA(x) is real; if x = —x:§ then SpA(x) is imaginary. We

shall prove that the same conclusion holds for C-symmetric

algebras.

Proposition 2.42 Let A be a C-symmetric algebra. If x = x¥*,

then SpA(x) is real; if x = -x*, then SpA(x) is imaginary.
Proof Either x = x* or x = -x* implies that X is normal.

Now any normal element x is contained in a maximal commutative
*-subalgebra ¢-%such that Spp (x) = Sp,(x). By hypothesis,
¢ is symmetric. Therefore SpA(x) = Spc(x) is real if x = x¥*

and SpA(x) = Spc(x? is imaginary if x = -x¥*.

Proposition 2.43 Let £ be a multiplicative linear functional
: ;

on an algebra A. Then f(x) # 1 if x is quasi-regular.

Proof Suppose x+y - xy = 0 for some y. Then f(x) + f(y) -

f(x) £(y) = 0. Hence f(x) # 1.
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Proposition 2.44 Let £ be a non-zero multiplicative linear

functional on an algebra A. Then i(x)eSpA(x) (xeA) .

Proof Fix xeA and let A = f(x). If A = 0, then certainly
x cannot have an inverse and so AeSpA(x). (We recall Defin-
ition 1.8,where every element is considered as singular if

A has no identity). If X %+ 0, then A-lx cannot be quasi-
'rqgular; for if it were so, then by Proposition 2.43,

£(A7x) # 1. But £(27Ix) = ATlE(x) = 1.

Proposition 2.45 A multiplicative linear functional f on

a C-gymmetric algebra A is hermitian, i.e. f(k*) = £(x) (xeA).

Proof We need only to consider f $ 0. Using Proposition 2. 42

and Proposition 2.44, since x+x* = (x+x*)* and x-x* = -(x-x*)*,
we have f(x) + f(x*) = f(x+x*)eSpA(x+x*) is real and f(x) -
f(x*) = f(x—x*)eSpA(x-x*) is imaginary. Thus f£(x*) = £(x).

‘The following are now immediate since a hermitian multi-

plicative linear functional is positive.

] be a sequentially complete

IS

Theorem 2.46 Let (A, {Pa}

ael
barrelled topological *-algebra with locally separately con-

tinuous involution. Suppose A is P-commutative, A? = A,
C-symmetric and has property ®. Then .every multiplicative

linear functional on A is continuous.

S

Proof = By Theorem 2.11 and Proposition 2.45s.

r.{i.:.;s:-é.s‘:ﬂ;.l i



44

] be a sequentially complete

Corollary 2.47 Let [A, {pa}aer
topological *-algebra with locally separately continucus invol-
ution. Suppose A has identity and property & and is C-symmetric.

Then every multiplicative linear functional on A is continuous.
Proof By Theorem 2.15 and Proposition 2.45.

Remarks

(1) Theorem 2.46 holds for a sequentially complete C-symmetric
barrelled Q-algebra with A® = A which is'either (a) com-
mutative, bounded (in particular, locally m-convex) and
has locally separately continuous involution or (b)
P-commutative locally m-convex with locally pseudocon-
tinuous involution. .

(1ii) Corollary 2.47 holds for ; sequentially complete C-sym-
metric Q-algebra with identity which is either (a) com-
mutative, bounded (in particular, locaily m~convex and
uniformly A-convex) and has locally separately continu-
ous involution or (b) P-commutative locally m-convex “J

with locally pseudocontinuous involution.

Theorem 2.48 Let A be a C-symmetric pseudomultiplicative

'F-algebra with locally .pseudocontinuous involution. Sup-
pose A is either (i) P-commutative and A? = A or (ii) possesses
an identity. Then every multiplicative linear functional on

A is continuous.

'
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Proof By Theorem 2.32, Corollary 2.33, and Proposition 2.45.s

?heorem 2.49 Let A be a complete C+symmetric p-normed

algebra with locally pseudocontinuous involution. Suppose
ok
A is either (i) P=commutative, pseudomultiplicative and A? = A

W e TR e T

or (ii) possesses an identity. Then every multiplicative '

linear functional on A is continuous.

~ . .

T

Proof By Theorem 2.35, Corollary 2.36, and Proposition 2.45.

LR AT YN,

Corollary 2.50 Let A be a complete C-symmetric locally \

bougded algebra with identity and locally pseudocontinuous
involution.” Then every multiplicative linear functional on

A 1s continuous.

B P Aatrtr s~ o S

—

et dis e e i 2 Falr i e TR S




CHAPTER 3

Representations

In this chapter, we make use of positive functionals

for the study of representations of topological *-algebras.

o

The results established in Chapter 2 will be frequently
applied here. Again both the locally convex and non-locally
convex algebras will be discussed. Conditions on represent-

ability of positive functionals will also be investigated.

. 81 Representations of *-algebras

Let A be a *-algebra and f a positive functional on A.

Set If = {xeA: £(x*x) = 0}. Then Xf :'Z\A/If is an inner product

space with inner product defined by <x+Ip, y+Igc> = fly*x). We

w31 et e -

denote by Hf the completion of Xf, éf(xf) the vector space of R ;
*-all linear operators on Xf and by ﬁB(Hf) the vector space of

all bounded linear operators on Hf.

' 7 *
We are interested in the *-representation of a topolog-

ical *-algebra A in ﬁB(Hf). Of interest also is when this i

*-representation can be made continuous.

N

Theorem 3.% Let [A"{pd}aefl be a sequentially complete topo-

A Db ] 4 < L

logical *-algebra with either (i) locally separately continuous

involution, or (ii) jointly continuous hultiplication and locally

pseudocontinuous involutidén. Let f be a positive functional on

PICRNL SR RN %

“A. Then f induces a representation x - Tx of A in J?(Xf) such

O

~

"46f
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that
. . . — : n l/n s
(a) if x satisfies syp %k@ {pa[(x*x) 1} < ® then Tx is

continuous on X hence extendable to an operator (again denoted

fl
X . » . * =

by Tx) in 3B(Hf),1n this case (TX) Tx*'

(b) if there exists a neighbourhood V of 0 in A and an M>0 such

‘that syp %;g {pa[(x*x)n]}l/n < M (xeV), then the conclusion in

(a) holds for all xeA, i.e., f induces a *—represenpation of A

in 5B(Hf). Moreover, the representation x - TX is continuous.

(c) if A has identity, then the ;:B}esentation is strictly

cyclic with a cyclic vector acxf such that

’ f(x) = <Txa, a> (xea).

-
Proof The map x -+ Tx of A into éf(xf) defined by

Tx(y + i ) = xy + I, (yed)

f f

is a representation. It is well defined because If is a left

ideal of A.

/n

(a) If x satisfies syp %;Q {pa[(x*x)n]}l o, then by Lemma

2.7,
f(y*x*xy) < fo(y*y)/ (yeA)

for some Mx > 0. Thus



48

2 2
HTx(y + I llxy + I

£

<xy + I Xy + I.>

£' f

f(y*x*xy)

A

*
M f(y*y)

2
M, iy + IfH SyeA)

from which it follows that Tx is continuous on X hence exten-

f'
dable to an operator in 55(Hf) which we again denote by T, -
Since T e f(Hg), (T )* exists as an operator in %) (Hg),

, it suffices to show that (Tx)*(y+If) =

and to show that (T )* = T_
‘ x X

TX*(y+I ) for all yeA., But this follows from the following:

f

A )

Yy + I (T)* (2 + I)>= <T (y + I.), z + I.>
= f(z*xy) = f£((x*z)*y)
= <y + If' x*z + ;fv
= <y + If' TX*(Z + If)> (y,zeA).

(b) If there is a neighbourhood V of 0 in A and an M>0 such that

T n ln .,
sup lim {pa[(x*x).]} / < M (xeV), then as seen in the proof of
Lemma 3.7,

X E(y*x*xy) < M} £(y*y) (xeV, yeA), (2)

where M1 = max(l, M). Now if xeA, choose éx > 0 such that

{ i
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éx xeV (éx exists because V is absorbing). Thus

My

f(y*x*xy)< £ (y*y)

[ S

$
X

and so from (1), Tx is continuous on Xf. Therefore the conclu-
sion in (a) holds for each xeA, i.e., there is a *-representation

of A in PB(H,).

-

Moreover, given €>0, by (2) f(y*x*xy) < 82 f(y*y)

(xe—— V, yeA). Hence from (1), ||T_(y + If)H2 < EZHY + If||2
(xe—— V, yeA), i.e., ||T || & ¢ if Xe—— V. Theféfore the map
x
/ﬁl /ﬁf

X -+ Tx is continuous.

(c) If A has identity e, let a = e + If. Since the set
{Txa: xeA} is exactly Xe, a is strictly cyclic.. Further,

e + I_> = f(e*x) = f(x) (xed).

< a, a> = <x +
_Tx p X If, Ie

Corollary 3.2 Let (A, {pa}asrl be a sequentially complete

topological *-algebra with either (i) locally separately
continuous involution, or (ii) jointly continuous multipli-
" cation and locally pseudocontinuous involution. Let f be a

positive functional on A. Then we have the following:

(a) if each xeA satisfies sup Tim {p [(x*x)n]}l/n < =, then
ar n¥e ta
f induces a *-representation x -+ TX of A on a H%lbert space H.
. Y
Further, if A has identity, then the representation is topo-
logically cyclic with a topologically cyclic vector aeH such

that f(x) = <Tx a, a> (xed).
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(b) If A has property ®, then the *-representation in (a) is

continuous.
Proof If follows immediately from Theorem 3.1.

Corollary 3.3 Let [A, {p_ } ] be a sequentially complete lo-
a’ ael

cally m;convex Q-algebra with locally pseudocontinuous involution.
Then each positive functional f on A induces a éontinuous
*-representation x - Tx of A on a Hilbert space H. Further, if
A has identity, then the representation is topologically cyclic
with a topologically cyclic vector aeH such -that

-

f(x) = <'I‘x a, a> (xeA) .

Proof This follows directly from Corollary 3.2 since the

hypothesis implies that A has property, Q.

Remark. Brooks ([4] Theorem 6.1) proved the conclusions in
Corollary 3.3 for a complete locally m-convex algebra with
identity and continuous involution such that f is a continuous
positive functional on A. While we impose an extra condition
that A be a Q-algebra, we rglax other conditions considerably;

particularly that f need not be continuous.

Theorem 3.4 Let [A, {pa}aeF] be a sequeptially complete

bounded algebra with locally separately continuous involution.
Then each positive functional f on A induces a *-representation

X -+ Tx of A on a Hilbert space H. If A has identity, then the
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4

representation is topologically cyclic with a topologically
cyclic vector aeH such that £(x) = <Tx a, a> (xeA). If a~
is a commutative Q-algebra, then the *-representation is

continuous.

Proof The first and second parts follow from Corollary 3.2 (a)
and (1] Proposition 2.14 and Proposition 2.18. The last part

-follows from Corollary 3.2 (b).
Remark The corresponding results of Theorem 3.4 for
BP*-algebras may be found in [16] Theoreﬁ 4.2,

As a corollary to Theorem 3.4 and a supplement to

Corollary 3.3, we have

Corollary 3.5 Let [A, {pa}aeri be a gommutative sequentially
complete locally m-convex Q-algebra with locally separately .
continuous involution.' Then each positive functional £ on A
induce; a continupus *—representafion X + Tx of A on a Hilbert
space H. If A has identity, then fhe representation is topo-
logicélly cyclic with a topologically cyclic.vector a€H such

that
f(x) = <Tx a, a> (xeA).

Proof As seen before, a locally m~-convex Q-algebra is

bounded, and so it follows from Theorm 3.4.

L
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Y

Corollary 3.6 Let (A, {p_} ] be a sequentially complete
X o oael

uniformly A-convex algebra with locally separately continuous
involution and f a positive functional on A. Then £ induces
§ *-representation x -+ Tx of A on a Hilbert space H. If A
has identity, then the representgtion is topologically cyclic
with a topologically cyclic vector acH such that f(x) =

<Tx a, a> (xeA). If A is a commutative Q-algebra, then the

*~-representation is continuous.

Proof This fodlows immediately from Theorem 3.4 since a

uniformly A-convex algebra is bounded, and has prg;érty @ if,
in addition, it is.a commutative sequentially complete

Q*-algebra.

o

Pl p=1

bounded, but neither complete nor a Q-algebra. We show that

Example 3.7 As seen in Example %.24 (L”10,11 {

] is

the positive functional

. : 1 '
P (£) J f(t) dt
0

t (log t - 1)2

does not induce a continuous *-representation. Thus Theorem

3.4 could fail when certain conditions are dropped.

I1f F( f) = 0, then f = 0 a.e. in (0,1], so that

of Lm[O,l] into

Ip =~(9}iéhdixr = 1.[0,1]. ‘The map £ -+ T,
éf(XF)' = éf(Lw[O,l]) defined by ng = fg (geLm[O,l]) is a

representation. We show that each Te is continuous on L7[0,1]

with respect to the inner product top¢logy, where
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i, S e

. 1 Nk
h (t) g(t) at.
t (logt - 1)2 ‘ .

L T

<g, h> = F(hg) = J
0

B .

Let {gn}i=l be a sequence in Lm[O,ll such that g 9, 7 0 as -

I

n - ©, Then ‘ ;
;
1 ' :
2 2 .
_ _ l£(e) [© |g_(t) ] - -
§ngn, ngn> = <fgn, fgn> = J n ) dt. :
0 ‘t(log t - 1) :
2 ;
s diely? [ —2 ;at = (ell2 <, 5> » 0 g
0 t (logt - 1) ) :
as n + © where ||| denotes the L”-norm.

Therefore each Tf 1s extendable to an operator in jB(HF), :
which we again denote by T.. That Tz = (T,)* follows from the ;
following: ‘ . v %

L £e) 30 n)

<h, ng> = I g - dt §

o t (logt - 1) %

k.

= <T_h, ¢g> = <h ) *g> §

= Tf r 9 - r (-Tf g E‘i

(g, heL”[0,1]). R

-

The representation f -+ Te is therefore a #-representation of g
@ N —, @ ’?r
L [0,1]) in jB(HF). Since L [0,1] has identity 1, we have %
P

F(f) = <T.1, 1> (feL [0,1]). ;f
43

15

We claim that the *-representation f - Tf is not contin-

uous. For, otherwise f =~ f in (L [0,11, {ﬂ-]p};=l] implies that

s



T, 1+ Tl in Hy and so F(£ ) = <T_ 1,.1> <T.l, 1> = F(f).

f £ F f
n B
This implies that F is comtinuous on [L”[0,1), (] ‘| p}p=i]' a

contradiction to Example 2.25,.

4
Remark The algebra Cw(I) given in Example 2.20 satisfies the

hypotheses of Corollary 3.3 and Corollary 3.5. Therefore,

every positive functional F on Cm(I) induces a continuous
*-representation f -+ Te of Cw(I; on a Hilbert space H. Moreover,
the representation is topologically cyclic with a topologically

cyclic vector acH so that F(f) = <Tfa, a> (fsCm(I)).

- Theorem 3.8 Let (A,d) be a pseudomultiplicative F-algebra

with locally pseudocontinuous involution, Then every positive
functional f on A induces a conﬁinpous *-representation x -+ Tx
of A on a Hilbert space H. If A has identity, then.the repre-
sentation is ﬁopologically cyclic with a topologically cyélic

‘vector aeH such that f(x) = <T,a, a> (xeAn) .

Proof As in the pfoof of Theorem 3.1, we define x -+ Tx of A
into éf(Xf) by Tx(y + If) = xy + If (yed).

Choose é neighbourhood V of 0 in A such that d(x*x, 0)<1
(xeV). Then by Lemma 2.29, f(y*x*xy) < f(y*y) (xeV, yeA). That
x > T is a continuous *—reéresentation follows now exactly as
in the proof of Theorem 3.1 (b).

If A has identity e, since each T € ,%(Hf) and
{Tx(e+If): xeA} =X, is dense in He, the *-representation is
topologically cyclic with a=e+I. as the topologically cyclic

vector. ;

P NP



Corollary 3.9 Let A be a complete p-normed algebra with

identity and locally pseudocontinuous involution. Then every
positive functional f on A induces a continuous *-representation
X - Tx of A on a Hilbert space H. The representation is topo-
iogically cyclic with a topologicali& cyclic vector aeH such
that

f(x) = <Txa, a> (st).'

%

Proof  This follows from Theorem 3.8 since the p-norm may be
< { I

«

assumed to be submultiplicative when A has identity.

Remark (i) Since a locally bounded algebra A is p-normable
for some pe(0,1], the same conclusion in Corollary 3.9 holds
if A is complete and has identity and locally pseudocontinuous
involution.

(ii) The algebra Wp given in Example 2.38 satisfies the

hypotheses of Corollary 3.9. \\

§2 Continuity of *-representations

Our aim now is to investigate those topological
*-algebras A which have the property that every *-representa-

tion of A offi a Hilbert space is necessarily continuous.

Definition 3.10 A positive functional f on a *-algebra A

is said to be extendable if f is hermitian and if there exists

—__— Ve
u>0 such that

STl APttt i iy« 4 L N
d —
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If(x)l2 S uf(x*x) (xeA) . © (1)

Lat f be a positive functional on a *-algebra A. Then
a necessary and sufficient condition for the existence of a
positive functional'f on A such that £|, = £ is that f be
extendable. Moreover, if (1) holds, f(e) may be taken to be
equal to ¥ (Hewitt and Ross [13], pp. 317). Further, it can be
seen from the construction of ¥ that if A is a topological

*-algebra, then f is continuous on A iff £ is continﬁous on A.

Lemma 3.11 If A is a{topoloéical *~-algebra with locally contin-

uous involution, then A has locally continuous involution.

proof Let It be a maximal commutative *-gubalgebra of A. Sup-
pose {(xv, tv)} is a net in R converging to (x,Lle . Let
Mo = {z: (z,W)eW}. Then mo is a maximal commutative
**subalgebra of A as is easy to see. Since X, * X in‘ﬂnb and

Z, * ¢ in €, we have xs + x* and so » ’

(x,r TO* = (x*, T ) + (x*, T) = (x,0)*.

i

Theorem 3.12 Let [A, Ipa}aerl be a sequentially complete topo-

logical *-algebra which has property @ and locally continuous

involution. Let T be a *-representation of A on a Hilbert space

H. Then T is con;inuoua.

‘ ]
. L
Proof Let { be a nonzerxo element of H and put f£(x) =<T,L,5>(xeh).

el VR TS TR e ST e

h—-‘ "’
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Then for any xeA,. 0 s HTxcH2 = f(x*x) so that f is a positive

functional on A. Since f(x*) = <Tx*c,c> = <z, Txc> = £(x) and

2
1260 1% = Terzie>]? < el 2l = el xs0 (2)

Since \\

(A, {p }aeP] satisfies the hypothesis of Lemma 2.7 and

a
sup giﬁ [Ea{(x*x)n}]l/n = Byp g;ﬁ [pa{(x*x)n}]l/n

%

f is extendable. Let f be the extension of f to A.

S M (xeV), we
have f(x*x) = f(x*x) g le(e) = Mlﬂcﬂz (xeV) where M, = max (1,M)
and the last equality follows from (2). Let ¢>0 be given. Then

2 -
"TXCH = f(x*x) < ezucuz if xe— V, or It gl s elg] (xe—= v).
/ﬁl * /ﬁl
Since ¢ is an arbitrary non-zero element of H, we have HTXH S €

(xe— V).
/ﬁl ,

As an immediate corollary to Theorem 3.12, the following
corollary also slightly generalises Theorem 3 [14] with contin-

uous involution there replaced by locally continuous'involution.

.Corollary 3.13 Let [A, {pa}aerl be a sequentially complete

locally m-convex Q-algebra with locally continuous involution.

Then every *-representation of A on a Hilbert space is continuops.

Theorem 3.14 Let [A, {p_ } _.] be a commutative sequentially
Pa’oer .

complete bounded Q~algebra with locally continuous involution.

Then every *-representation of A on a Hilbert‘space is continuous.

f

Proof Immediate from Theorem 3.12 as the hypothesis implies

B R Y e L e

that A has property Q.

]
¥
%
Y
P
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Corollary 3.15 Let [A, {pa}aeF] be a commutative séquentially
complete uniformly A-convex Q-algebra with locally continuous
involution. Then every *-representation ¢f A on a Hilbert space

1s continuous.

Proof Immediate from Theorem 3.14.

Remark (i) Example ij;\shows that when certain conditiohs are
- \
dropped from Theorem 3.14, there exists a discontinuous .
*-representation of A on a Hilbert space.

(ii) The algebra Cm(I) of Example 2.20 satisfies the
hypotheseslof Corollary 3.13, sé that every *-representation
of C (I) on a Hilbert space is continudus.
Theorem 3.16 Let (A, d) be a pseudogultiplicative F-algébfa

. 4 .
with identity and locally pseudocontinuous involution. Then

every *—répresentation T of A on a Hilbert space H is contin-

uous.

Proof  The proof follows closely that of Theorem 3.12. Let
f(x)A= <TXC7 5> (xean), whgre £ is a nonzero element of H. Then
f is a positive functional on A. Chog;e a neighbourhood V of 0
in A such that d(x*x, 0) < 1 (xeV). By Lemma 2.29, f(x*x) < f(e)

(xeV). Let €>0 be given. Then

2 \ 2 -
”TXCH = f(x*x) < ¢“f(e) = 52<Teg, > = €2<C, > = CZHQHZ

(xeeV). Hence [|T ]| < e  (xeev).
’
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The result in Theorem 3.16 can be improved in the case

of a p~normed algebra as we see below.

Theorem 3.17 Let (A, |

‘|

with locally continuous involution. Then every *-represen-

p) be a complete p-normed algebra

‘tation T of A on a Hilbert space H is continuous.

Proof Let f(x) = <Txg, > where 0 # geH. As seen in the
proof of Theorem 3.12, f is an extendable positive functional
on A. Let f be the extension of f to A. We note that A

is also a complete p-normed algebra with locally continuous
involution if we define || (x, a)Hé = Hpr + |la|P. since A
has\identity, we may assume without loss of generality that

{-]' is submultiplicative ({30], Theorem 1l).

Since A has jointly continuous multiplication and

locally continuous involution, it has locally pseudocontinu-

f
ous involution. Thus choose a neighbourhood V of 0 such that

Hx*x“p < 1 (xeV). Since (A, I‘Hé) satisfies the hypothesis

' = [x*x]_ < 1 (xeV), we have
p U TP : 5
£(x*x) = f(x*x) < f(e) = |g]“ (xev). The rest follows exactly

of Lemma 2.29 and'ﬂx*xﬂ

'as in the proof of Theorem 3.12.

Remark (1) Theorem 3.17 holds for a complete locally bounded
algebra with locally continuous involution.
{ii) The,algebra Wp of Example 2.38 satisfies the’

hypotheses of Theorem 3.17.

-
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§3 Representability of positive functionals

{ In this section we shall discuss conditions for a

H

positive functional to be representable.

7

Lemma 3.18 Let x -+ Tx be any *-representation of a *-algebra

A on a Hilbert space H. Let a be a nonzero vector in H %Fd
% L

define
f(x) = <Txa, a> (XeA).

&
Then there*xists a closed invariant subspace HO of H such

that £ is representable by the restriéﬁ}6n of x - Tx to HO.

\

Proof j22] pp. 216, Lemma 4.5.6.

Theorem 3.19 Let [A, {pa}aeP] be a sequentially complete

topological *-algebra with locally continuous involution such

n]}l/n

that syp %;g {pa[(x*x) < » for each xeA. Let f be a

hermitian functional on A. Then f is representable iff
I2

]f(x) < uf(i*x) (xeA) where y is a positive constant inde-

E

pendent of x. ¢

Proof Suppose X -+ Tx is a *-representation of A on a Hilbert
space H such that f(x) = <Txa, a> (xeA) for some topologically

cyclic veftor aeH. Then

|f(x)|2 = |<Txa,a>|2 < ﬁTxaHZHaﬂz = Ha"2 f(x*x) (xeA).

.
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Conversely, let [A, {Ea}aerl be the *-algebra with an

identity adjoined. Extend f to a linear functional f on A by

defining -
f((x,a)) = f{x) + ua, for (x,x)eA. Since n
F((x,a)*(x,a)T = F(x*x + ax + ax*, [alz)
= f(x*x) + of (x) + af(x*) + u|a|2
= f(x*x) + af(x) + of (x) + u|a|2
> f(x*x) - 2|a| [£(x)]| + p|a|2
> foerx) - 2]alut’? (£ Y2+ ulal?
= t£(x*x) - |a]u% 2 2 0,
E is a positiée functional on A. '
We may assume f # 0 so.that f 4 0. By Theorem 3.1,
f induces a representation T: x - 'I‘x of A in éfFK/IE) such
that f(x) = <Txa,a> (xei) for some nongero vé:tor aeﬂ/If C:H% =

completion of X/IE.
»

]}l/n ]}l/n <

Since s&b gzﬁ {Sa[(x*x)n = syp giﬁ {pa[(x*x)n

’

.(x€A), by Theogrem 3.1Ma), the restriction of T on Agés a
*-representation of A in 5B(HE). As £(x) = £(x) = <T a,a> (xeA),

phe'result follows from Lemma 3.18.

~&

It_is cleaF from the proof of Theorem 3.19 that a
» ~

representabléﬂpositive functional is extendable. As an immed-

iate consequence of Theorem 3.19, we have

/ Q

*

" R

| <. AR T



Corollary 3.20 Let [A, {pa}aeF] be a sequentially complete

topological *-algebra with locally continuous involution and
- * n l/n ool

such that sup lin {pa[(x g) 11} < (xeA). Let f be a

positive functional on A. Then f is representable iff f is

extendable.

The following corollaries are now immediate from,
Corollary 3.20. The first is a slight generalization of

Theorem 1 [14].

} . B
Corollary 3.21° Let [A, {pa}aerl'be a locally m-convex *-algebra

with locally continuous involution such that A is either
(i) complete and GA(X*X) < o (xeA) or (i1i) a sequentially
complete Q-algebra. Then a positive functional on A is repre-

sentable iff it is extendabte, !

Corollary 3.22 Let (A, {p } ] be a sequentially complete
b a ael

bounded algebra with locallyamontinuous involution. Then a

positive functional on A is representable iff it is extendable.

Corollary 3.23 Let [A, {pa}aer] be a sequentially complete

i . ‘
uniformly A-convex *-algebra with locally continuous involutioﬂ7
and £ a positive functional on A. Then f is representable iff

f is extendable.

S0 far in our discussibn in this section, we have not
assumed the existence of an identity in the algebra. The
following corollary gives sufficient conditions for the repre-
senﬁability of a positive functional when the algebra possesses

o

an identity.

174
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‘Corollary 3.24 Let (A, {pa}aer] be a sequentially complete.

>
topological *-algebra with identity such that
n] }l/n

-t * o .
sup %i@ {pa[(x x) < (xeA). Suppose A has either |
(1) locally separately continuous involution, or (ii) jointly
continuous multiplication and locally pseudocontinuous invol-

ution. Then every positive functional on A is representablé.

Proof This follows diréctly from Corollary 3.2 (a).

Thus the conclysion of Corollary 3.24 holds for a
sequentially comple%e *-~algebra A with identity which has
either (i) locally separately éonﬁinupus involution, or (ii)

jointly continuous multiplication and locally pseudocontinuous

involution; and which is either (a) bounded, in particular a

locally m-convex Q-algebra and a uniformly A-convex algebra

or (b) complete locally m-convex such that OA(X*X) < o (XeA).

. Theorem 3.25 Let (A, {pa]aerl be a sequentially complete

topological *-algebra with continuous involution such that
ey * n l/n o ! .

syp lim {Pa[(x x)71} < (xeA) . Suppose A has a right 4

approximate identity {el} such' that the set {ex*ex} i1s bounded.

Then every continuous positive functional on A is representable.

Proof Since the involution map is continuous,
lim eA*x = lim (x*e,)* = x** = x,
A X A

The positivity of £ impiies that f(x*ek) = f(ex*x) for

each A. Since f is continuous, we have f(x*) = f(x), so that
)

f is hermitian.
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By continuity of £, there exists a neighbourhood U of
0 such that |f(x)| £ 1 (xeU). Choose k > 0 such that

* *
{ex eA} C x U. Then f(ex el) < k for all 2.

By the Cauchy-Schwarz inequality, we have

| £ (x*e 2 £ f(x*x) f(eA*ek) < k f£(x*x) (xeA), where k>0 is

N
independent of X and x. Passing to the limit, we have

|f(x)|2 = |f(x*)|2 PSS f(f*X) (xeA). By Theorem 3.19, f is
representable.

Remarks (1) If a topological *-algebra [A, {pa}aerl satisfies
pa(x*x) = [pa(>ﬁ)]2 (xeA, ael), then boiundedness of {ek} is

equivalent to goundedness of {el*ell.

(ii) As seen in the proof of Theorem 3.25, if {ek} is
an approximate identity consisting of hermitian elements, then
the conditioﬁ on "continuous involution" is not required.

(iii) 1f {el} is bounded and involution is. pseudocontin-
uous at 0, then the set {el*ex} is bounded. For, given any
neighﬁourhood,U of O, chooée a neighbourhood V of 0 such that _
X*xeU (xeV). Choose o>0 so that {e#} Ca V. Then‘{ex*ek} C:a?U.

(iv) A topological *-algebra [A, {pa}deF] satisfying

pa(k*x) < Ka[pa(x)]z for some k, > 0 (xeA, ael') has the pro-

perty that involution is pseudocontinuous at the origin.

T ‘ .
Corollary 3.26 Let [A, {pa}aeF] be a locally m-convex

*-algebra with continuous involution and a bounded right ap-
proximate idgntity. Suppose A is either (i) complete and

oA(x*x) < o (xeA) or (ii) a sequentially complete Q-algebra.
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Then every continuous positive functional on A is representable.

Proof This follows from Theorem 3.25, the fact that jointly
continuous multiplication and continuous involution implies

pseudocontinuous involution, and Remark (iii) after Theorem 3.25.

orollary 3. Let [A, {p e a sequentially complete
C 11 3.27 [ { a}aEF] b iall let

topological *-algebra with identity such that
1/n

&

~

sup Iiﬁ {pa[(x*x)n]} < o (xeA). Then every contihuous

positive functional on A is representable.

Proof Follows easily from Theorem 3.25 and Remark (ii)
/

after the theorem. '

It suffices to say that the conclusion of Corollary
3.27 holds for a sequentially complete *-algebra A with iden-
tity which is either (i) bounded, in particular a locally

m-convex Q-algebra and a uniformly A-convex algebra or (ii)

completL'locally m~-convex such that gA(x*x) < (xel).

We now turn to a brief discussion of the representability

of positive functionals on non-locally convex *-algebras.

K4

Corollary 3.28 Let A be a pseudomuitiplicative F-algebra

(or a complete p-normed algebra) with identity and locally
pseudocontinuous involution. Then every positive functional

on A is representable. -

Proof By Theorem 3.8 and Corollary 3.9. &
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For a p-normed algebra, not necessarily possessing an

identity, we have parallels of Theorem 3.19 and Corollary 3.20.

Theorem 3.29 Let A be a complete p-normed algebra with lc-ally

continuous involution. Then a hermitian functional f on A is
representable iff [f(x)l2 < uf(x*x) (xeA) for some p>0 inde-
pendent of x. Thus a positive functional is representable iff

ig\ is extendable.

Proof We follow-the proof of Theorem 3.19. The necessity
emerges trivially. For sufficiency, we define f((x,0)) =
£(x) + ua on A. Then f is a positive\functional on A. By
Corollary 3.9, %(x) = <Txa,a>_(xezf'for some topologically
cyclic vector a in a Hilbert sbace H, where x > Tx is a

*-representation of A on H induced by f. The result now follows

from Lemma 3.18.

" Remark Theorem 3.29 holds for a complete locally bounded

algebra with locally continuous involution.
) F

Theorem 3.30 Let A be a complete p—normed‘algebra with con-

tinuous involution. Suppose A has a right approximate identity

{ex} such that the set {ex*ek} is bounded. Then every contin-

‘uous positive functional on A is representable. >

|

Proof This follows from Theorem 3.29 and the proof of Theorem

3.25.
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Remark By Remark (iii) after Theorem 3.25, we note that the
condition that {eA*ek} be bounded in Theorem 3.30 is weaker

than requiring (ex} be bounded.

Corollary 3.31 Let A be a complete p-normed algebra with
identity. Then every continuous positive functional on A is

representable,
Proof By Theorem 3.30 and Remark (ii) after Theorem 3.25.

Comparing respectively Corollary 3.24 and Corollary
3.27, and Corollary 3.28 and Corollary 3.31, we note the
interesting fact that the continuity of involution and the

continuity of positive functional are interchangeable.
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CHAPTER 4

On Algebras of the Segal Type

§1 Introduction

Reiter ([21) pp. 127) introduced the following notibn
'/“o'
of Segal algebras:

-

Let G be a locally compact abelian group. A Segal
algebra S is a subalgebra of Ll(G) satisfying the following i
conditions:

(sl) S is dense in L%(G) and is translation_}nvariant (i.e.,

a r
feSs =}Lafes for all aeG, where (Laf)(xr = £ (hea)).

S so that

(s2) Ss'is a Banach algebra under some norm || -

IILaflls = || f||S for all feS, aeG.
T .
(s3) The-map a + L,f is continuous from G to (S, | -||g).

On the basis of these assumptions the following pro-

perties may be deducad ([21]), pp. 128):
. \

(s4) There exists M>0 such that ||| 1 S MHf”S (fes)
L

3

~
~

(SS) S is qé ideal in Ll(G)'and '

R ETTN ,S\".fllLl lolg- (fert(ar, ges).

' Properties (84) and (S5) prompted Cigler (6] to gen-

era;ize the notion of Segal algebras to normed ideals. Ac-
. . ™. _ "

cordingly, an ideal N in L7(G) is.a normed ideal if the fol-

lowing conditions hold:

[, A

..68 -



(N1) N is dense in Ll(G).

(N2) N is a Banach space under some norm such that

"f"Ll s [£ly (fFem). .

-

®3) lfagly < 1€l 5 loly (fert(@), gem.
. L

The notion of normed ideals was further generalized

by Burnham [5] to that of an abstract Segal algebra. Thus
(B,

-[B) is an abstract Segal algebra with respect to a

A) if the following axioms hold:

(1) B is a dense left ideal in A and B is a Banach algebra

with respect to the norm "'"B
(2) There exists M>0 such that.
Iel, <mlely  (gem).
) (3) There-exists C>0 such that
I£slp < clel, loly (£en, geB). - )

In this chapter we give a brief study of the cont1nu1ty
of pos1t1ve functionals and representations on *-algebras that

have 31m11ar structure as that of abstract Segal algebras.

-

§2 Continuity of positive functionals

We shall apply our study -in Chapter 2 on the continuity

of positive functionals to those algebras considered in this

chapter.
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Progpgation 4.1 Let [A, {pa}aeF] be a locally m~convex

*~algebra hiph céntinuous involution. Let B be a P-commuta-
tive *-subalgebra of A with 8% = B. Suppose {qB}BeA is a
family of seminorms defined on B such that [B, {qB}BeA] is a
sequentially complete, barrelled, topological algebra, and

(i) for each ael', there exist Ma>0’ BeA so that pa(x) < Man(x)

(xeB).
(ii) there exists aoer so that for each BeA, ‘there exist
Ca>0r veld with qB(XY) s Cq P, (x) q,(¥) (x,y€B) .

0
"Then every positive functional on [B"{qB}BeA] is continuous.

Proof The restriction' of the'map X + X* on B is continuous
with respect to the induced {pu}—topology. By (i) this top-
ology is coarser than the {q6}~topology.' Hence [B, {qB}BEA]

has continuous involution.

4

ByA(ii), qB{(x*x)n}'f CBpaO{(x*x)n-¥}qv(x*x)
< Cﬂ{p%(x"‘x)}n—l q,, (x*x) .
*x)n}l/n

Hence gi@ {qs(x s p, (x*x) (Bep) and so

0
sup lim {q (x*x)n}l/n < p.  (x*x) (xeB). (1)
) n38 g T Tag

We show that the condition @ is saﬁisgied by [B, {qB}BeA]'

L 4

Observe that the joint continuity of multiplication
and continuous involution imply that x + x*x is continuous on

(A, {pa}aeri, hence continuous on B with respect to' the

induced {pa}-topology. ‘Hence choose a {pa}-neighbourhood v



of 0, which.is also a {qB}-neighbourhood of 0, in B such that

P, (x*x) < 1 whenever xeV. Thus, by (1),

0
sup glm (g {(x*x)n}]l/n <1 (xeV). The result now follows from
B 8 «

Theorem 2.11.

( &
‘Proposition 4.2 Let {A, {pa}aerl be a locally m-convex
*-algebra, and B a P-commutative *-gubalgebra of A with B2 = B.

Suppose'{qB}BeA is a family of seminorms defined on B such that
(B, {qB}BeA] is a sequentially complete, barrelled, topological

algebra, and (i) for each «ael', there exists Ma>0' BeA so that

pa(x) £ Man(X) (xeB) .

(ii) there exists aoer so that for each BeA there
N N . N
exists CB 0 with qB(x y) £ CBPGO(Y) qB(X) (x,yeB).

Then gvery positive functional on [B, {qé}BeA] is continuous.

Proof (ii) implies that (B, {qe} ] has separately continu-

BeA

ous involution. }or each BEA} qB{(x*x)n} = qB{(x*x}*(x*x)n-l}
' n-1 n-1 :
s CBpao{(x*x) }qB(x*x) s CB{paocx*x)} qB(x*x) so that

1l/n

Sup IR [qs{(x*x)n}] < P, (x*ﬁ) (x€B) . (2)

0

Now (i) and (ii) imply that the map x + x*x in

{qB}BeA .
{pa}-topology in B is coarser than the {qs}—topology, we may

(B, ] is continuous at the origin. Since the induced

chooge a neighbourhood Vv of 0 in [5, {qB}BEA] so that
P, (x*x) <1 (xeV) . Therefore, by (2), (B, {qB}

0 BeA
perty @. The result now follows from Theorem 2.11.
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Proposgition 4.3 Let (A,d), be a metrizable *-algebra and B

a P-commutative *-subalgebra of A with B2 = B, Suppose (B,p)

is an F-algebra with locally pseudocontinuous involution, and

(i) there exists M>0 such that

d(x,0) < M p(x,0) (xeB)

(ii) there exists C>0 such that

p(xy, 0) < C d(x,0) pl(y,0) (x,yeB).
Then évery positive functional on (B,p) is continuous.
Proof (i) and (ii) imply that \

pxy, 0) s CMp(x,0) p(y,0)  (x,yeB).

Replacing p by the equivalent metric p' given by o' (x,y) =
CM p(x,y), wé see that p' satisfies p'(xy,0) < p'(x,0)p'(y,0)

(x,yeB), hence is pseudomultiplicative. The result now follows

from Theorem 2.32.

Proposgition 4.4 Let (A,d) be a metrizable *-algebra and B a
P~-commutative *-éubalgebrahof A with,B2 = B. Suppose,(B,pf

1s a pseudomultiplicative F-~algebra, and

-

{i) there exists M>D suph that
d(x,0) < MD(XIO) zXEB)

(ii) there exists C>0 such that

3
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p(x*y,0) s Cd(x,0) pl(y,0) (x,yeB). &

Then every positive functional on (B,p) is dontinuous.

Proof Fix X,€B and let {xn} be a sequence converging to X

in (B,p).

r

* - *
Then p(xn xn XA¥X 0)

0“0’
- - *
< plx *x =xq5), 0L + p({x ~x,)*x,, 0)

[ 7

Cd(anO)p(xn-xo,O) + Cd(xn-xo,O)p(xo,O)

s CMp(xn,O)p(xn-xolo) + CMo(xn-XO,O)o(xo,O)

since {p(xn,O)}n=1 is bounded.

B,p) has pseudocontinuous involution. The result
) g

.Therefore

now follows from Theorem 2.32.

§3 Representations

Our study in Chapter 3 on representations will now be

applied to those algebras considered in this chapter.

Proposition 4.5 Let (A, {pa}aeF] be a locally m~conVex
*~algebra, and B a *-subalgebra of A. Suppose {qB}BeAis a

family of seminorms defined on B such that [B, {qB} ] is a

BeA
sequentially complete topological algebra satisfying the fol-

lowing condition:

(i) there exists aoer so that for each BeA, there exists CB>0

‘.

with qB(x*y) < CB pao(y) qB(x) (x,yeB).
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{
\‘_ i il —\
Then every positivé\fﬁﬁazzdﬁéi\pn B induces a *-representation

of B on a Hilbert space H. If B\gas identity, then the
*-representation is topologically E{Clic with a topologically

cyclic vector acH such that \

¢

f£(x) = <T a,a> (xeB) . s
If, in addition to (i), we also have
{ii) for each agl', there exists Mq>0, BeA so that

P, (x) 2 M g (%) * (xeB),

then the *-representation is continuous. ¥

Proof Since condition (i) jmplies that the involulrion is
separately continuous, the first part follows from Corollary

3.2 (a) and (2) in the proéof of Proposition 4.2.

As seen in the proof of Proposition 4.2, (i) and (ii)

imply that [B, ] has property @&, so that the second

, taglgen
part follows immediately from Theorem 3.2 (b).

Proposition 4.6 Let [A, {pa}aerl be a locally m-convex

*-algebra with continuous ‘involution, and B a *-subalgebra of
A. Suppose {qB}BeA is a family of seminorms defined on B such
that [B, {qB}BEA] is a sequentially complete topological alge-

bra satisfying the following conditions:

2N
(i) for each ael, there exists Ma>0' Be A so0 that pa(x) < Maqﬁ(x)

(xeB).

(ii) there exists a,.el' so that for each BeA, there exist C, >0,

0 B

veA with

qe(xy) < CBpa (x) qv(y) (x,yeB). - | i

0

—
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]

1

Be A

is continuous. Moreover, a positive functional on B is répre-

Then every *-representation of (B, {qe} ] on a Hilbert space
&

sentable iff it is extendable.
é

Proof From the proof of Proposition 4.1, [B, {qB}BEA] has
property @ and continuous involution.. The results now follow

from Theorem 3.12 and Corollary 3.20.

Proposition'4.7 Let (A,d) be a metrizable *ralgebra and B a

*-subalgebra of A. Suppose (B,p) is an F-algebra with locally

Y
—pseudocontinuous involution and

(1) there exists M>0 so that

d(x,0) < Mp(x,0) (xeB).

(1i) there exists C>0 so that

pixy,0) s C a(x,0) p(y,0) (x,yeB).

Then every positive functional on (B,p) induces a continuous
*-fepreseﬁtation of (B,p) on a Hilbert space H. If B has
identity, then the repreésentation is topologically cyclic with

a topologically cyclic vector acH such that £(x) = <Txa,a> (xeB).

>

Moreover, every *-representation of (B,p) on a Hilbert space is

. continuous.

.

Proof By Theorem 3.8, Theorem 3.16 and the proof of Propo-

sition 4.3.
<
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