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Abstract

Prediction, tracking, and retrodiction for targets whose motion is constrained by ex-

ternal conditions (e.g., shipping lanes, roads) present many challenges to tracking

systems. The targets are moving along a path, defined by way-points and segments.

Measurements are obtained by sensors at low revisit rates (e.g., spaceborne). Existing

tracking algorithms assume that the targets follow the same motion model between

successive measurements, but in a low revisit rate scenario targets may change the

motion model between successive measurements. A prediction algorithm is proposed

here, which addresses this issue by considering possible motion model whenever tar-

gets move to a different segment. Further, when a target approaches a junction, it has

the possibility to travel into one of the multiple segments connected to that junction.

To predict the probable locations, multiple hypotheses for segments are introduced

and a probability is calculated for each segment hypothesis. When measurements

become available, segment hypothesis probability is updated based on a combined

mode likelihood and a sequential probability ratio test is carried out to reject the

hypotheses with low probability. Retrodiction for path constrained targets is also

considered, because in some scenarios it is desirable to find out the target’s exact

location at some previous time (e.g., at the time of an oil leakage). A retrodiction

algorithm is developed for path constrained targets so as to facilitate motion forensic
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analysis. Simulation results are presented to validate the proposed algorithms.

KEYWORDS: prediction, target tracking, retrodiction, path-constrained targets,

segment hypothesis
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Notation and abbreviations

Abbreviations

AIS Automatic Identification System

FIM Fisher Information Matrix

GMTI Ground Moving Target Indicator

IMM Interacting Multiple Model

PCRLB Posterior Cramer Rao lower bound

RMSE Root Mean Square Error

VS-MM Variable Structure Multiple Model

VS-IMM Variable Structure Interacting Multiple Model
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Notations

E Expectation

W (.) Filter gain

J Fisher information matrix

h(.) Hypothesis

Ψ(.) Hypotheses set

A(.) IMM mode set

v(.) Innovation

S(.) Innovation covariance

MV Maximum velocity

Σ(.) Measurement noise covariance

H(.) Observation matrix

k Present time step

σa Process noise along the path

Σ(.) Process noise covariance

σo Process noise orthogonal to the path

R(.) Rotation matrix

A Retrodiction gain

Sk Segment in present time

F (.) State transition matrix

M. Target motion mode

[.]T Transpose of a matrix

r Velocity ratio

Γ(.) Vector gain

w(k) White Gaussian measurement noise

υ(.) White Gaussian process noise ix



Contents

Abstract iv

Acknowledgements vi

Notation and abbreviations viii

1 Introduction and Problem Statement 1

1.0.1 Prediction and Tracking . . . . . . . . . . . . . . . . . . . . . 1

1.0.2 Retrodiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Estimator for Target Tracking . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Interacting Multiple Model Estimator . . . . . . . . . . . . . . 7

1.2 Motivation and Contribution of the Thesis . . . . . . . . . . . . . . . 10

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Path Constrained Estimator 13

2.1 Path Constrained Estimator Algorithm . . . . . . . . . . . . . . . . . 13

2.1.1 Validation Test for Mode Set Adaptation . . . . . . . . . . . . 20

x



2.1.2 Directional Process Noise . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Velocity Prediction During Segment Changes . . . . . . . . . . 22

2.1.4 Hypothesis Generation Based on Segments . . . . . . . . . . . 23

3 Retrodiction for Path Constrained Targets 25

3.1 General Retrodiction Algorithm . . . . . . . . . . . . . . . . . . . . . 26

3.2 Path Constrained Retrodiction Algorithm . . . . . . . . . . . . . . . 28

3.3 Posterior Cramer Rao Lower Bound for Path Constrained Targets . . 31

4 Simulation Studies and Results 34

4.1 Simulation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Real Data Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusions and Future Work 54

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Algorithm Derivations 56

A.0.1 Filtering Algorithm Derivation . . . . . . . . . . . . . . . . . . 56

A.0.2 Retrodiction Algorithm Derivation . . . . . . . . . . . . . . . 58

A.0.3 Retrodiction Algorithm Derivation for Path Constrained Targets 62

xi



List of Figures

1.1 IMM estimator (one cycle). . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Mode changes at time k − τ due to segment change . . . . . . . . . . 14

2.2 Path constrained filtering (one cycle) . . . . . . . . . . . . . . . . . . 19

2.3 Directional process noise for path constrained targets . . . . . . . . . 21

2.4 Segment hypothesis tree . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Mode changes at time t+ δ due to segment change . . . . . . . . . . 29

4.1 Path map for simulation . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Target dynamics variation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 RMS position errors for estimators . . . . . . . . . . . . . . . . . . . 39

4.4 RMS velocity errors for estimators . . . . . . . . . . . . . . . . . . . . 40

4.5 RMS position errors for retrodiction . . . . . . . . . . . . . . . . . . . 41

4.6 RMS velocity errors for retrodiction . . . . . . . . . . . . . . . . . . . 42

4.7 RMS position errors comparison for proposed algorithms . . . . . . . 43

4.8 RMS velocity errors comparison for proposed algorithms . . . . . . . 44

4.9 PCRLB position comparison . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Location (Google maps) . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 Whole measurements plot . . . . . . . . . . . . . . . . . . . . . . . . 48

4.12 Path map with segments and way points . . . . . . . . . . . . . . . . 49

xii



4.13 Tracks from 25 targets . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.14 Tracks from prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.15 Tracks from retrodiction . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.16 RMS position errors comparison . . . . . . . . . . . . . . . . . . . . . 53

xiii



Chapter 1

Introduction and Problem

Statement

The targets are moving along a constrained path with varying terrain conditions.

The terrain conditions can affect the movement of targets in direction, velocity and

maneuvering. The path is defined by way-points and segments (Kirubarajan et al.,

2000). Further, a path can branch, merge or cross. Because of the varying terrain

and path constraints, target trajectory can evolve according to one of the multiple

motion modes available. It is evident that a multiple model approach is required to

handle all possible motion modes and path constraints.

1.0.1 Prediction and Tracking

Fixed structure Interacting Multiple Model (IMM) estimator (Blom and Bar-Shalom,

1988) consists of models to handle all possible motion modes and path constraints

can be a solution to handle all possible motion modes. But due to the “competition”
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among the models (Li and Bar-Shalom, 1996), fixed structure IMM results in a de-

graded estimates. This issue is overcome by Variable Structure Interacting Multiple

Model (VS-IMM) filter, which adaptively modifies the filter modules based on terrain

topography. It is a modified version of IMM where models in a mode set can vary

based on constraints. Since the mode set is adjusted based on the path map informa-

tion available, VS-IMM estimator outperforms typical IMM estimator (Kirubarajan

et al., 2000) and the effectiveness of VS-IMM for path constrained targets has been

shown in (Kirubarajan et al., 2000), (Pannetier et al., 2005) and (Shea et al., 2000).

In (Streller, 2008), Variable Structure Multiple Model (VS-MM) estimator, another

version of multiple model approach, which does not use interaction like VS-IMM, is

used to track ground targets effectively. By avoiding interaction between the multiple

models, VS-MM avoids the bad estimations given by VS-IMM at junctions (Streller,

2008). Particle filter approach is also widely used for ground targets with path maps

and has shown better performances in (Arulampalam et al., 2002), (Kyriakides et al.,

2008) and (Ulmke and Koch, 2006). But due to the large computation time associ-

ated with the particle filter, Kalman filter approaches (IMM, VS-MM, VS-IMM) are

widely used for the path constrained targets (Streller, 2008).

Since the targets are constrained to path, prediction should be along the path with

the available prior information (e.g., path map, target class, destination). Existing

algorithms, except (Pannetier et al., 2005), do not consider path map information

in prediction stage, which results in predicted target state in an off-path position.

In (Pannetier et al., 2005), a projection mechanism is used to constrain the target

state to be on path. In this thesis, a different approach is used to keep the predicted

state along the path rather than the estimate. Further when a target moves towards a

2
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junction, the path on which the target may travel is unknown. In (Kirubarajan et al.,

2000) and (Shea et al., 2000), uncertainty at junctions is handled by temporarily

augmenting the mode set to accommodate all possible modes, which represent the

target motion along the possible segments. In this approach, the segment followed

by the target is not considered. In this thesis junctions are handled by multiple

hypotheses for segments (Pannetier et al., 2005). Segment hypotheses keep all the

possible path sequences a target can travel and when the measurements are received,

a sequential probability ratio test is carried out to select the best hypothesis and reject

all other hypotheses. In addition, magnitude of target velocity may vary based on the

path segment. Existing algorithms do not have the mechanism to incorporate this

prior information. A prediction algorithm is proposed in this thesis which follows

a multi-step prediction technique and incorporates the magnitude and direction of

target velocity constrained to path segment.

1.0.2 Retrodiction

Smoothing or retrodiction is the estimation of the state at a time within the data

time interval (Bar-Shalom et al., 2001). With a certain time delay and some addi-

tional computational load, the estimate at a given time can be improved significantly.

Retrodiction can be used for performance evaluation for real time filters and mo-

tion forensic analysis where small time delay is permitted. Various methods have

been proposed for retrodiction in literature. Fixed interval smoothing, delaying cer-

tain amount of time to get a better estimate, for Markovian switching systems is

developed in (Helmick et al., 1995). Two multiple model filters, where one of the

filters propagates in the forward-time direction and the other one propagates in the

3
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backward-time direction is used in the above smoothing algorithm. This is similar

to the Fraser−Potter (Fraser and Potter, 1969) adopted for single model smoothing

algorithm. In (Koch, 2000), a fixed interval smoothing to IMM-MHT applications

is given based on standard Rauch−Tung−Striebel (RTS) smoothing (Rauch et al.,

1965). Fixed lag smoothing uses the past and present data to compute the state

estimate certain time step behind the present time. In (Helmick et al., 1994), two

different approaches for one step fixed lag smoothing algorithms are given where

the methods differ by the sampling period upon which the state of the system is

conditioned. An augmented approach, applying the basic IMM approach to a state

augmented system, for fixed lag IMM smoothing is given in (Tugnait, 2000). But no

algorithms have been specifically developed for path constrained problems in litera-

ture. In this thesis a retrodiction algorithm is presented for variable structure IMM

based on (Koch, 2000) and then it is extended to path constrained targets.

1.1 Estimator for Target Tracking

Due to the large computation time associated with the particle filter method, Kalman

filter approaches are widely used for path constrained target tracking applications

(Streller, 2008). Subsection 1.1.1 contains the equations for a Kalman filter and

subsection 1.1.2 presents the equations for IMM filter, which are important for a

better understanding of this thesis.

4
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1.1.1 Kalman Filter

The target evolution state x(k), which was defined in (Bar-Shalom et al., 2001), can

be written as

x(k) = F (k, k − 1)x(k − 1) + Γ(k, k − 1)υ(k − 1) (1.1)

where F (k, k−1) is the state transition matrix and Γ(k, k−1) is the vector gain. υ(k−

1) is the white Gaussian process noise sequence with covariance given by Q(k, k− 1).

Target originated measurement can be written as

z(k) = H(k)x(k) + w(k) (1.2)

where H(k) is the observation matrix. The white Gaussian measurement noise se-

quence w(k) is independent of υ(k) and its covariance is Σ(k).

The predicted state x̂(k|k − 1) at time k is

x̂(k|k − 1) = F (k, k − 1)x̂(k − 1|k − 1) (1.3)

and the associated predicted state covariance P (k|k − 1) is

P (k|k−1) = F (k, k−1)P (k−1|k−1)F (k, k−1)′+Γ(k, k−1)Q(k, k−1)Γ(k, k−1)T

(1.4)

where x̂(k−1|k−1) is the state estimate and P (k−1|k−1) is the associated covariance
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at time (k − 1). The predicted measurement ẑ(k|k − 1) at time k is

ẑ(k|k − 1) = H(k)x̂(k|k − 1) (1.5)

and the associated innovation covariance is

S(k) = H(k)P (k|k − 1)H(k)′ +R(k) (1.6)

The state estimate update at time k is

x̂(k − 1|k − 1) = x̂(k|k − 1) +W (k)v(k) (1.7)

where W (k) is the filter gain given as

W (k) = P (k|k − 1)H(k)′S(k)−1 (1.8)

and innovation is given by

v(k) = z(k)− ẑ(k|k − 1) (1.9)

The covariance matrix associated with x̂(k − 1|k − 1) is given by

P (k) = P (k|k − 1)−W (k)S(k)W (k)′ (1.10)

The above equations are provided here for completeness and to introduce the

notions for later use.

6
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1.1.2 Interacting Multiple Model Estimator

In IMM estimator, state estimate is computed under each possible current model

using available fixed filters with each filter using a different ‘mixed initial condition’.

For each filter, ‘mixed initial condition’ is calculated using the previous mode condi-

tioned estimates. The detailed derivation for IMM estimator is given in (Blom and

Bar-Shalom, 1988) and steps required to calculate the state estimate is given here.

Let A(k− 1) = (M1(k − 1), ...,Mi(k − 1), ...) be the mode set of the IMM estima-

tor in the time interval (k − 2, k − 1] and A(k) = (M1(k), ...,Mj(k), ...) be the mode

set in the time interval (k − 1, k] .

Step 1 - Calculation of the mixing probabilities

The probability that mode Mi was in effect at (k−1) given that mode Mj is in effect

at k conditioned on Zk−1
1 is

µi|j(k − 1|k − 1) = P{Mi|Mj, Z
k−1
1 }

=
1

Cj

P{Mj|Mi, Z
k−1
1 } P{Mi|Z

k−1
1 } (1.11)

The above mixing probabilities can be written as

µi|j(k − 1|k − 1) =
1

Cj

[pij(Sk−1)] µi(k − 1) ∀i, ∀j (1.12)

7
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where the normalizing constants are given by

Cj =
∑

Mi∈A(k−1)

[pij(Sk−1)] µi(k − 1) ∀j (1.13)

Step 2 - IMM Mixing

Mixed initial condition for the filter matched to Mj(k − τ) is computed as

x̂0j(k − 1|k − 1) =
∑

Mi∈A(k−1)

x̂i(k − 1|k − 1) µi|j(k − 1|k − 1) ∀j (1.14)

The corresponding covariance is given by

P 0j(k − 1|k − 1) =
∑

Mi∈A(k−1)

µi|j(k − 1|k − 1) {x̂i(k − 1|k − 1)

+ [x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)]

[x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)]T} ∀j (1.15)

Step 3 - Mode Matched Filtering

The estimate x̂0j(k− 1|k− 1) and covariance P j(k− 1|k− 1) are used as input to the

filter matched to Mj , which uses z(k) to yield x̂j(k|k) and P̂ j(k|k). The likelihood

function corresponding to the above filtering processes are calculated by

Λj(k) = P [z(k)|Mj , Z
k−1
1 ] ∀j (1.16)

Step 4 - Mode probability updating

The probability of model (Mj) being in effect during the time interval (k, k−1] given

8
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measurement data up to k can be calculated as

µj(k|k) = P{Mj|Z
k
1}

=
1

C
P [z(k)|Mj, Z

k−1
1 ] P [Mj |Z

k−1
1 ]

=
1

C
Λj(k) µj(k|k − 1) (1.17)

where µj(k|k − 1) can be written as

µj(k|k − 1) =
∑

Mi∈A(k−1)

[pij(Sk−1)] µi(k − 1) (1.18)

Step 5 - State estimate and covariance combination

The final state estimate and covariance are

x̂(k|k) =
∑

Mj∈A(k)

x̂j(k|k) µj(k|k) (1.19)

P (k|k) =
∑

Mj∈A(k)

µj(k|k)
{

P j(k|k) + [x̂j(k|k)− x̂(k|k)] [x̂j(k|k)− x̂(k|k)]T
}

(1.20)

Figure 1.1 describes the IMM algorithm that consists of two interacting filters.

9
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Figure 1.1: IMM estimator (one cycle).

1.2 Motivation and Contribution of the Thesis

This thesis addresses the problem of prediction, tracking and retrodiction of path con-

strained targets where measurements are obtained by sensors with low revisit rates.

For example, a spaceborne sensor, with varying measurement intervals may take up

to 12 hours to update a measurement related to a target. The high measurement

interval time between successive measurements will cause potentially degraded per-

formance during prediction in already existing algorithms (Kirubarajan et al., 2000),

(Pannetier et al., 2005). Updating the mode set upon a receival of a measurement is

the process carried out in the above algorithms. But in a scenario where measure-

ments are obtained by sensors at low revisit rates, mode set may need to be updated

10
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during the measurement interval due to a change in the segment in which the target

is moving. The proposed algorithm addresses this issue in prediction by considering

the time at which the target moves to a different segment instead of waiting for the

measurement to be received. In addition, segment hypotheses are used to handle the

motion uncertainty of the path constrained targets in the intersections. Retrodiction

for path constrained targets is not available in the literature and a novel retrodiction

algorithm is presented in this thesis. The retrodiction algorithm considers path map

information and retrodiction gain is derived considering the path constraints imposed.

To evaluate the performance of the proposed algorithms, Posterior Cramer Rao lower

bound (PCRLB) for path constrained targets is given.

1.3 Organization of the Thesis

Subsequent chapters will explain the algorithms derived for prediction, tracking and

retrodiction in detail. In Chapter 2 derived estimator for path constrained targets is

given. It also consists of the techniques used to improve the prediction and tracking

algorithm. Chapter 3 poses the retrodiction algorithm derived for path constrained

targets where initially a retrodiction algorithm is derived and then later it is extended

to path constrained targets. PCRLB for path constrained targets is given in 3.3.

Simulation tests and results are given in Chapter 4 where one test is carried out

in a simulated scenario and another test is carried out on real data gathered from

exactEarth Inc. The author’s conclusions are presented in Chapter 5 along with a

discussion on possible future research directions.

11
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Chapter 2

Path Constrained Estimator

Variable Structure Interacting Multiple Model (VS-IMM) estimator is developed

based on IMM algorithm. But models in the mode set are fixed in IMM but it

can vary based on constraints in VS-IMM. The proposed path constrained estimator

developed in this research is extended on VS-IMM algorithm with path map infor-

mation.

2.1 Path Constrained Estimator Algorithm

Let Sk−1 be the segment in effect, A(k−1) = (M1(k − 1),M2(k − 1), ...,Mi(k − 1), ...)

be the mode set of the IMM estimator in the time interval (k − 2, k − 1]. Further

Sk is the segment in effect during the time interval (k − 1, k] and the mode set of

the IMM estimator is A(k), which may or may not include the models from A(k −

1). Measurements are obtained by sensors with low revisit rates. In this scenario,

the target may change from one to another segment within successively received

measurements. Figure 2.1 shows that during the time interval (k − 1, k], target is

13
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in two different segments. Proposed algorithm considers this issue and predicts the

target state more precisely. Let (k − τ) be the time at which the target changes the

segment where 0 < τ < 1.

θ

Sk

x̂(k|k − 1)

Sk−1

x̂(k − 1|k − 1)

Figure 2.1: Mode changes at time k − τ due to segment change

The steps of the tracking algorithm are:

Step 1 - Calculation of the mixing probabilities

The probability that mode Mi was in effect at (k−1) given that mode Mi′ is in effect

at (k − τ) conditioned on Zk−1
1 is

µi|i′(k − 1|k − 1) = P{Mi|Mi′ , Z
k−1
1 }

=
1

Ci′
P{Mi′|Mi, Z

k−1
1 } P{Mi|Z

k−1
1 } (2.1)

14
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The above mixing probabilities can be written as

µi|i′(k − 1|k − 1) =
1

Ci′
[pii′(Sk−1)] µi(k − 1) ∀i, ∀i′ (2.2)

where the normalizing constants are given by

Ci′ =
∑

Mi∈A(k−1)

[pii′(Sk−1)] µi(k − 1) ∀i′ (2.3)

Step 2 - IMM Mixing

Mixed initial condition for the filter matched to Mi′(k − τ) is computed as

x̂0i
′

(k − 1|k − 1) =
∑

Mi∈A(k−1)

x̂i(k − 1|k − 1) µi|i′(k − 1|k − 1) ∀i′ (2.4)

The corresponding covariance is given by

P 0i′(k − 1|k − 1) =
∑

Mi∈A(k−1)

µi|i′(k − 1|k − 1)
{

x̂i(k − 1|k − 1)

+ [x̂i(k − 1|k − 1)− x̂0i
′

(k − 1|k − 1)]

[x̂i(k − 1|k − 1)− x̂0i
′

(k − 1|k − 1)]T
}

∀i′ (2.5)

Step 3 - Mode Matched Filtering

The estimate x̂0i
′

(k − 1|k − 1) and covariance P 0i′(k − 1|k − 1) are used as input to

the filter matched to Mi′ to derive predicted state x̂i
′

(k − τ |k − 1) and covariance
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P i′(k − τ |k − 1).

p{x(k − τ)|Mi′ , Z
k−1
1 } = N

[

x(k − τ);E[x(k − τ)|Mi′ , x̂
0i′(k − 1|k − 1)], cov[.]

]

(2.6)

This gives

x̂i
′

(k − τ |k − 1) = F i′(k − τ, k − 1) x̂0i
′

(k − 1|k − 1) (2.7)

P̂ i′(k − τ |k − 1) = F i′(k − τ, k − 1) P̂ 0i′(k − 1|k − 1) F i′(k − τ, k − 1)T

+Qi′(k − τ, k − 1) (2.8)

The predicted state x̂i
′

(k− τ |k− 1) is fed to the filter matched to Mj′ to compute

the predicted state x̂i
′j′(k|k − 1) and covariance P i′j′(k|k − 1).

p[x(k)|Mj′,Mi′ , Z
k−1
1 ] = P [x(k)|x(k − τ),Mj′,Mi′ , Z

k−1
1 ] P [x(k − τ)|Mj′ ,Mi′, Z

k−1
1 ]

= P [x(k)|x(k − τ),Mj′, Z
k−1
1 ] P [x(k − τ)|Mi′ , Z

k−1
1 ] (2.9)

Since there is a change in the direction of velocity at time (k− τ) due to segment

change, it has to be considered during the above derivation as well. A rotation

matrix is used for this purpose. For e.g., in a two dimensional tracking scenario with

target state x(k) defined by the 4-dimensional vector x(k) = [ x(k) ẋ(k) y(k) ẏ(k) ]′
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rotation matrix is given by

R =



















1 0 0 0

0 cos θ 0 − sin θ

0 0 1 0

0 sin θ 0 cos θ



















(2.10)

where θ is the angle between the two segments in counter clockwise direction as shown

in Figure 2.1.

Applying Gaussian distribution computation rules to (2.9) and incorporating the

rotation matrix (R) gives the following equations for x̂i
′j′(k|k − 1) and P̂ i′j′(k|k − 1)

x̂i
′j′(k|k − 1) = F j′(k, k − τ) R F i′(k − τ, k − 1)x̂0i

′

(k − 1|k − 1) (2.11)

P̂ i′j′(k|k − 1) = F j′(k, k − τ) R
{

F i′(k − τ, k − 1)P̂ 0i′(k − 1|k − 1) F i′(k − τ, k − 1)T

+Qi′(k − τ, k − 1)
}

RT F j′(k, k − τ)T +Qj′(k, k − τ) (2.12)

When measurements become available, updated state x̂i
′j′(k|k) and covariance

P i′j′(k|k) are computed in a standard IMM method and the likelihood function cor-

responding to the above filtering processes are calculated by

Λi′j′(k) = P [z(k)|Mj′,Mi′ , Z
k−1
1 ] ∀i′, ∀j′ (2.13)

Step 4 - Mode probability updating

The probability of model (Mi′ ,Mj′) being in effect during the time interval (k, k− 1]

17
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given measurement data up to k can be calculated as

µi′j′(k|k) = P{Mj′,Mi′ |Z
k
1}

= P{Mj′,Mi′ |z(k), Z
k−1
1 }

=
1

Ci′j′
P [z(k)|Mj′,Mi′, Z

k−1
1 ] P [Mj′|M

′
i , Z

k−1
1 ] P [M ′

i |Z
k−1
1 ]

=
1

Ci′j′
Λi′j′(k) [pi′j′(Sk−1, Sk)] µi′(k − τ) (2.14)

where µi′(k − τ) are

µi′(k − τ) = P{Mi′|Z
k−1
1 }

=
∑

Mi∈A(k−1)

P{Mi′|Mi(k − 1), Zk−1
1 } P{Mi|Z

k−1
1 }

=
∑

Mi∈A(k−1)

[pii′(Sk−1)] µi(k − 1) (2.15)

Step 5 - State estimate and covariance combination

The final state estimate and covariance are

x̂(k|k) =
∑

Mj′ ,Mi′∈A(k)

x̂i
′j′(k|k) µi′j′(k|k) (2.16)

P (k|k) =
∑

Mj′ ,Mi′∈A(k)

µi′j′(k|k)
{

P i′j′(k|k) + [x̂i
′j′(k|k)− x̂(k|k)] [x̂i

′j′(k|k)− x̂(k|k)]T
}

(2.17)
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Figure 2.2: Path constrained filtering (one cycle)
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2.1.1 Validation Test for Mode Set Adaptation

At each scan k, it is required to find out the possible segments and corresponding

models to be added to the mode set for a target. A validation region test (Kirubara-

jan et al., 2000) has to be carried out for this purpose. Since there are more than one

mode in the mode set A(k−1), there are more than one predicted state estimate and

covariance, i.e., no common predicted state estimate or covariance. To solve this, pre-

dicted state estimate and predicted covariance correspond to the largest determinant

among the modules in A(k − 1) is selected (Bar-Shalom and Li, 1995).

While carrying out the above test, another test is carried out for junctions. When

a junction falls within the validation region, segment hypotheses (Section 2.1.4) are

generated for each segment that falls within the validation region. A mode set is kept

for each segment hypothesis and models corresponding to the segment is added to the

respective mode set. But the problem with the above validation region is that there

are instances where none of the junction falls within the validation region although

the target is predicted to pass a junction. To overcome this problem, when none of

the junction falls within the validation region, a test is carried out to check whether

the predicted state falls outside the present segment or not. If it is still in the present

segment, mode set will be kept as it is. But if it is not in the present segment, a new

segment hypothesis is created for each segment connected with the present segment

and updated with corresponding models.
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2.1.2 Directional Process Noise

Since the targets are constrained to move along the path, uncertainty along the path

is higher compared to the uncertainty orthogonal to the path. The concept of “di-

rectional process noise” (Bar-Shalom and Li, 1995) is used to handle the above men-

tioned issue. Figure 2.3 shows the directional process noise concept corresponding to

the path constrained targets. The estimation is carried out in X-Y coordinate system,

so the directional process noise along and orthogonal to the path has to be converted

into a covariance matrix Q in X-Y frame. Let standard deviation of process noise

along the path be σa and standard deviation in the orthogonal direction be σo. The

conversion is done via (Yeddanapudi et al., 1997)

Q =







− cosψ sinψ

sinψ cosψ













σ2
o 0

0 σ2
a













− cosψ sinψ

sinψ cosψ






(2.18)

Y

X

υa ∼ N (0, σ2

a)

υo ∼ N (0, σ2

o
)

ψ

Figure 2.3: Directional process noise for path constrained targets
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2.1.3 Velocity Prediction During Segment Changes

Different segments may have different maximum velocities allowed based on terrain

conditions. For example, maximum speed allowed in an urban area and rural area is

not the same. Incorporating this maximum velocity constraint as a prior information

in the prediction process can lead to a better estimate. Let target in a segment be

Sk−1 where maximum velocity is MVk−1 in time (k − 1) and the target is predicted

to be in different segment Sk with maximum velocity MVk in time k. If the resul-

tant velocity of the target is V (k − 1|k − 1) in time (k − 1), the velocity in time k

is predicted to be V (k|k − 1) =
(

MVk

MVk−1

V (k − 1|k − 1)
)

in the Sk segment direc-

tion. Here the assumption is target velocity change is proportional to the maximum

velocity ratio and V (k − 1|k − 1) =
√

ẋ(k − 1|k − 1)2 + ẏ(k − 1|k − 1)2. Instead of

this assumption, any other ratio that depends on the scenario can be integrated into

proposed prediction/tracking algorithm as follows:

Let the ratio be r, then (2.10) is modified as

R =



















1 0 0 0

0 r cos θ 0 −r sin θ

0 0 1 0

0 r sin θ 0 r cos θ



















(2.19)

Since the proposed algorithm explicitly considers the segment change at time (k−τ),

velocity prediction is incorporated into the proposed algorithm in step 3 of Section

2. It can be noted here that it is not possible to include the above velocity ratio

information in the existing algorithms (Kirubarajan et al., 2000), (Pannetier et al.,

2005).
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2.1.4 Hypothesis Generation Based on Segments

A concept of hypotheses for segments (Pannetier et al., 2005) is used to handle

the uncertainty in a junction. Assume a target moves in a segment Sk−1 at time

(k − 1) and predicted state falls in more than one segment at time k, then for each

segment a new segment hypothesis is generated. Now, the process of updating mode

set and tracking are carried out for each segment hypothesis separately using a path

constrained estimator. Consider a scenario where during the time interval (k−3, k−2]

target moves in segment S1 and during the time interval (k− 2, k− 1] target has the

possibility of moving in either segment S2 or S3. Figure 2.4 shows segment hypothesis

tree for the above scenario, where during time interval (k − 2, k − 1] one segment

hypothesis is available and during the next time interval two segment hypotheses are

available.

Denote the hypotheses available during the time interval (k−2, k−1] as Ψ(k−1) =

(h′1(k − 1), h′2(k − 1)..., h′i(k − 1)). Similarly it can be written for the hypotheses

available in time (k − 1, k] as Ψ(k). The segment hypothesis probability is given by

µh(k) = P{x(k) ∈ h|Zk
1}

=
1

c
P [z(k)|Z(k−1)

1 , x(k) ∈ h] P [x(k) ∈ h|Zk−1
1 ]

=
1

c
∆h(k)

∑

h′∈Ψ(k−1)

P [x(k) ∈ h|x(k) ∈ h′, Zk−1
1 ] P [x(k) ∈ h′|Zk−1

1 ]

=
1

c
∆h(k)

∑

h′∈Ψ(k−1)

ph′,h µh′(k − 1) (2.20)

where c is the normalization factor and Ψ(k − 1) is segment hypothesis transition

probability. The probability of ∆h(k) is shown in (Yeddanapudi et al., 1997) as
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follows:

∆h(k) = P{Zk
1 |Z

k−1
1 , x(k) ∈ h} ∀h ∈ Ψ(k)

=
∑

M∈h

ΛM(k) µM(k|k − 1) (2.21)

where M are the models belonging to the segments in segment hypothesis h and

µM(k|k − 1) is the predicted mode probability.

S1

S3

S4

S4

S2

S6

S2

S2

S5

k − 3 k − 2 k − 1 k k + 1

Figure 2.4: Segment hypothesis tree

Since more than one hypotheses are available at a time, there should be a mech-

anism to select the best hypotheses at a given time. A sequential probability ratio

test as in (Pannetier et al., 2005) is carried out for this purpose.
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Chapter 3

Retrodiction for Path Constrained

Targets

Retrodiction is the estimation of the state at a time within the data time interval

(Bar-Shalom et al., 2001). Since path information determines the smoothness of the

track, no retrodiction algorithms have been specifically developed for path constrained

problems in literature. A retrodiction algorithm for path constrained targets is de-

veloped in this research considering available path map information. An approach of

a backward iteration scheme to calculate the states of the targets at a previous time

given all measurement information is followed. The iteration process is initialized

by the present target state and follows the standard RTS fixed interval smoothing

(Rauch et al., 1965). In (Koch, 2000), fixed interval retrodiction to Multiple Hypoth-

esis Tracking (MHT) applications employing IMM is given. The proposed algorithm

here is an extended work of (Koch, 2000) with variable structure IMM for path con-

strained targets. While carrying out the tracking process, the mode set is updated

at each segment change rather than at measurement receive time. This is considered
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in the following derivation during mode matched smoothing step. During a segment

change in the prediction process, velocity is changed and predicted according to the

segment constraint (Section 2.1.3). The velocity prediction is handled with the help

of a rotation matrix (2.19) in prediction. Derived retrodiction algorithm considers the

above modifications in retrodiction process, which results in better retrodicted states

during the segment changes. A general approach is given for Gaussian smoothing in

(Deisenroth and Ohlsson, 2011) and the derivation of the retrodiction algorithm here

complies with this general approach.

Subsection 3.1 gives the steps for variable structure IMM retrodiction algorithm

without segment constraint. This is similar to the algorithm proposed in (Nandaku-

maran et al., 2009) but differs in Step 3, mode matched retrodiction. Path constrained

retrodiction algorithm is followed in subsection 3.2.

3.1 General Retrodiction Algorithm

Let A(t) = (M1(t), ...,Mu(t), ...) and A(t + 1) = (M1(t+ 1), ...,Mv(t+ 1), ...). The

models in A(t) and A(t + 1) can be different and we are interested in x̂(t|k), where

t < k. The steps for the retrodiction algorithm are

Step 1 - Backward transition probability

bvu = P (Mu|Mv, Z
k
1 )

=
1

dv
puv µu(t|t) (3.1)

where dv =
∑

Mu∈A(t) puv µu(t|t)
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Step 2 - Backward mixing probability

µv|u(t+ 1|k) = P (Mv|Mu, Z
k
1 )

=
1

du
bvu µv(t+ 1|k) (3.2)

where du =
∑

Mv∈A(t+1) bvu µv(t + 1|k)

Step 3 - Mode matched retrodiction

x̂uv(t|k) = x̂u(t|t) + A [x̂v(t+ 1|k)− x̂uv(t + 1|t)] (3.3)

P uv(t|k) = P u(t|t) + A [P v(t+ 1|k)− P uv(t + 1|t)] AT (3.4)

where retrodiction gain A is given by

A = P u(t|t) [F v(t+ 1)]T
[

F v(t + 1, t) P u(t|t) F v(t + 1, t)T +Qv(t+ 1, t)
]−1

(3.5)

Further the terms x̂uv(t + 1|t) and P̂ uv(t+ 1|t) are written as

x̂uv(t+ 1|t) = F v(t + 1, t) x̂u(t|t) (3.6)

P uv(t|k) = F v(t + 1, t) P u(t|t) F v(t + 1, t)T +Qv(t+ 1, t) (3.7)

During the retrodiction process, this iteration step will be initiated with present target

state x̂v(t + 1|k) = x̂v(k|k)
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Step 4 - Mixing

x̂u(t|k) =
∑

Mv∈A(t+1)

x̂uv(t|k) µv|u(t+ 1|k) (3.8)

P̂ u(t|k) =
∑

Mv∈A(t+1)

µv|u(t + 1|k)
(

P uv(t|k) + [x̂uv(t|k)− x̂u(t|k)] [x̂uv(t|k)− x̂u(t|k)]T
)

(3.9)

Step 5 - Smoothed mode Probability

µu(t|k) =
1

f
Λu(t|k) µu(t|t) (3.10)

where f is a normalizing constant and

Λu(t|k) =
∑

Mv∈A(t+1)

puv N (x̂v(t+ 1|k); x̂uv(t + 1|t), P uv(t + 1|t)) (3.11)

Step 6 - Smoothed Estimate

x̂(t|k) =
∑

Mu∈A(k)

µu(t|k) x̂
u(t|k) (3.12)

P̂ (t|k) =
∑

Mu∈A(k)

µu(t|k)
(

P̂ u(t|k) + [x̂u(t|k)− x̂(t|k)] [x̂u(t|k)− x̂(t|k)]T
)

(3.13)

3.2 Path Constrained Retrodiction Algorithm

When there is a segment change between successively received measurement time,

above retrodiction algorithm is modified to accommodate the segment changes and

the corresponding motion model changes. The steps of the modified algorithm are:
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Let mode in effect during the time interval (t, t + δ] as Mu′ and during (t + δ, t + 1]

as Mv′ as shown in Figure 3.1, where Mu′ ,Mv′ ∈ A(t+ 1)

Mu

Mv′

x̂(t + 1|k)

x̂(t|k) Mu′

Figure 3.1: Mode changes at time t + δ due to segment change

Step 1 - Backward transition probability

b(v′u′)u = P (Mu|M(v′u′), Z
k
1 )

=
1

d(v′u′)

pu′v puu′ µu(t|t) (3.14)

where d(v′u′) =
∑

Mu∈A(t) pu′v puu′ µu(t|t)

Step 2 - Backward mixing probability

µ(v′u′)|u(t+ 1|k) = P (Mv′ ,Mu′|Mu, Z
k
1 )

=
1

du
b(v′u′)u µ(v′u′)(t+ 1|k) (3.15)

where du =
∑

Mv′ ,Mu′∈A(t) b(v′u′)u µ(v′u′)(t+ 1|k)
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Step 3 - Mode matched retrodiction

x̂u(u
′v′)(t|k) = x̂u(t|t) + A [x̂u

′v′(t+ 1|k)− x̂u(u
′v′)(t + 1|t)] (3.16)

P u(u′v′)(t|k) = P u(t|t) + A [P u′v(t+ 1|k)− P u(u′v′)(t+ 1|t)] AT (3.17)

where retrodiction gain A is given by

A = P u(t|t) [F v′(t+ 1, t+ δ) R F u′

(t+ δ, t)]T [P u(u′v′)(t+ 1|t)]−1 (3.18)

Further the terms x̂uv(t + 1|t) and P uv(t+ 1|t) can be derived as

x̂u(u
′v′)(t+ 1|t) = F v′(t+ 1, t+ δ) R F u′

(t + δ, t) x̂u(t|t) (3.19)

P u(u′v′)(t+ 1|t) = F v′(t+ 1, t+ δ) R
{

F u′

(t + δ, t) P u(t|t) F u′

(t + δ, t)T

+Qu′

(t+ δ, t)
}

RT F v′(t+ 1, t+ δ)T +Qv′(t + 1, t+ δ) (3.20)

Here all terms except x̂u
′v′(t + 1|k) and P u′v(t + 1|k) can be calculated and stored

during the prediction process to be used for retrodiction.

Step 4 - Mixing

x̂u(t|k) =
∑

Mv′ ,Mu′∈A(t+1)

x̂u(u
′v′)(t|k) µ(v′u′)|u(t + 1|k) (3.21)

P̂ u(t|k) =
∑

Mv′ ,Mu′∈A(t+1)

µ(v′u′)|u(t + 1|k)
(

P u(u′v′)(t|k)

+[x̂u(u
′v′)(t|k)− x̂u(t|k)] [x̂u(u

′v′)(t|k)− x̂u(t|k)]T
)

(3.22)
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Step 5 - Smoothed mode Probability

µu(t|k) =
1

f
Λu(t|k) µu(t|t) (3.23)

where f is a normalizing constant and

Λu(t|k) =
∑

Mv′ ,Mu′∈A(t+1)

pu′v′ puu′ N
(

x̂u
′v′(t + 1|k); x̂u(u

′v′)(t+ 1|t), P u(u′v′)(t+ 1|t)
)

(3.24)

Step 6 - Smoothed Estimate

x̂(t|k) =
∑

Mu∈A(k)

µu(t|k) x̂
u(t|k) (3.25)

P̂ (t|k) =
∑

Mu∈A(k)

µu(t|k)
(

P̂ u(t|k) + [x̂u(t|k)− x̂(t|k)] [x̂u(t|k)− x̂(t|k)]T
)

(3.26)

3.3 Posterior Cramer Rao Lower Bound for Path

Constrained Targets

Posterior Cramer Rao Lower Bound (PCRLB) gives a lower bound on the error

covariance and it is defined by inverse, J(k)−1 of the Fisher information matrix (FIM)

E
[

[x̂(k)− x(k)] [x̂(k)− x(k)]T
]

≥ J(k)−1 (3.27)

where E denotes expectation over
(

x(k), Zk
1

)

.

For a linear system without measurement origin uncertainty, J(k + 1) can be
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written as sum of (Hernandez et al., 2004)

J(k + 1) = [Q(k) + F (k) J(k)−1 F (k)T ]−1 +
n

∑

i=1

E(H i(k)Σi(k)
−1
H i(k)T ) (3.28)

where n is the number of sensors.

However, it has been observed that the PCRLB can be overly optimistic in certain

cases (Horridge and Hernandez, 2003), (Hernandez, 2003) and (Hernandez et al.,

2008). In (Hernandez, 2003) it is shown that PCRLB for tracking road-based vehicles

using ground moving target indicator (GMTI) sensors were over-optimistic, due to

the potential multi-modality of the target distribution at each junction. It is shown

in (Hernandez et al., 2008) that PCRLB bound for tracking manoeuvering target

with Markovian switching dynamics produce an overly optimistic lower bound due

to the assumption of implicitly assumed known manoeuvres. As a result instead of

PCRLB, a performance measure is given for Markovian switching dynamic systems in

(Hernandez et al., 2008). So to evaluate the proposed path constrained algorithm with

PCRLB, a single model is considered for developing the bound for path constrained

targets instead of multi−model Markovian switching dynamics.

The challenging part in path constrained tracking PCRLB is to consider the struc-

ture of the road network and the constraints imposed on the target motion. In (Her-

nandez, 2003), when a target reaches a junction all possible path available at the

junction are incorporated for the PCRLB calculation, which resulted in over opti-

mistic PCRLB. But the path prediction algorithm developed in this paper considers

sequence of path as different segment hypotheses as described in subsection 2.1.4.

This allows PCRLB to be derived for each segment hypothesis separately and based
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on the technique described in (Hernandez, 2003), PCRLB for path constrained tar-

gets is developed with single model tracking.

Consider Figure 2.1, and let the time duration between successive scan k and (k+1)

be T , and time taken to reach the intersection point is T1. Then the equivalent state

transition matrix, Feq, required for the PCRLB calculation when there is a segment

change in target motion is given by

Feq = F (T − T1) R F (T1) (3.29)

where F (T1) is the state transition matrix correspond to a motion model for

time duration T1 in segment Sk−1, F (T −T1) correspond to a motion model for time

duration (T−T1) in segment Sk and R is the rotation matrix given in (2.10). Process

noise covariance Q(k) is replaced with directional process noise covariance in (3.28)

and when there is a segment change in the target motion it can be shown that the

equivalent process noise covariance, Qeq, is given by

Qeq = F (T − T1) R Q(T1) RT F (T − T1)T +Q(T − T1) (3.30)

where Q(T1) is the directional process noise for time duration T1 and Q(T − T1) is

the directional process noise for time duration (T − T1).

Further PCRLB for retrodiction without measurement origin uncertainty is same

as RTS equation (Simandl et al., 2001). Retrodiction algorithm developed in this

paper for path constrained targets follows the concept of RTS equation and it can be

shown that for a single model retrodiction PCRLB for path constrained targets can

be derived from single model version of (3.16) and (3.17).
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Chapter 4

Simulation Studies and Results

To validate the proposed algorithms, simulations are carried out and analyzed. The

simulated scenario based test is given in section 4.1 and a test on the real data

gathered from exactEarth Inc is given in section 4.2.

4.1 Simulation Test

The path map network used to demonstrate the simulation is shown in Figure 4.1.

There are five segments and six way-points with two junctions. For simulation pur-

poses it is assumed that probability of a target moving to segment S2 from S1 is 0.2

and probability of a target moving to segment S3 from S1 is 0.8. Similarly probabil-

ity for S3 to S4 is 0.2 and S3 to S5 is 0.8. With this segment transition probabilities

target trajectories are generated for 100 Monto carlo runs. Target’s dynamic varia-

tion is given for segment sequence (S1, S3, S5) in Figure 4.2 where target reaches the

intersection points at approximately 510s and 1650s. Target state x(k) is defined

by the 4-dimensional vector x(k) = [x(k) ẋ(k) y(k) ẏ(k)]T where x(k) and ẋ(k) are
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position and velocity of a target in X direction. The sensor measurement consists of

target’s position in X and Y direction resulting in observation matrix

H(k) =







1 0 0 0

0 0 1 0






(4.1)

Second order white noise acceleration models are used for modeling the motion of

target, where second order piecewise white noise acceleration model state transition

matrix F (k, k − 1) is given by

F (k, k − 1) =



















1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1



















(4.2)

and vector gain Γ(k, k − 1) is given by

Γ(k, k − 1) =



















T 2/2 0

T 0

0 T 2/2

0 T



















(4.3)

here T is the time duration between scan (k − 1) and k. The fixed mode IMM

estimator, which is used for comparing simulation results with proposed algorithm,

consists of two second order white noise acceleration models with equal process noise

levels in both the X and Y directions. For these filters, σx = σy were 0.05 and 0.5

m/s2, which corresponds to constant velocity and maneuver modes, respectively.
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The proposed path constrained filter used two models for the path constrained mo-

tion. Constrained constant velocity model defined by σa = 0.05 m/s2 and σo = 0.002

m/s2, and a manoeuvre model defined by σa = 0.5 m/s2 and σo = 0.002 m/s2. Sen-

sor revisit interval is 60 seconds with error covariance of 400m2 in both X and Y

position. A single target with zero process noise is considered with the detection

probability equals to unity and false alarm probability equals to zero. The sojourn

time (Bar-Shalom et al., 2001) for the above models are 100s. The benefits of using

the proposed algorithm are quantified using the results from 100 Monte Carlo runs.
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Figure 4.1: Path map for simulation
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Figure 4.2: Target dynamics variation

There are three segment hypotheses possible for this scenario. The segment se-

quences of these segment hypotheses are (S1, S2), (S1, S3, S4) and (S1, S3, S5). But

when the measurements become available, hypotheses will be pruned based on the

sequential probability ratio test. The simulation results given here are based on the

best hypothesis selected from each Monte Carlo run. Figure 4.3 shows the Root

Mean Square Error (RMSE) in position for tracking. Proposed algorithm is com-

pared against fixed mode IMM, variable structure IMM and measurements. Variable

structure IMM used the same motion models as proposed path constrained estimator.

Proposed path constrained algorithm performs better than the other algorithms due

to the better prediction mechanism, where additional prior information of path map
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and imposed constraints are used. For instance, predicted state position was close

to the segment S3 in segment sequence (S1, S3, S4) when the target was approaching

the intersection between segment S1 and S3 where IMM prediction mechanism will

predict it in an off-path position. Since same motion models are used for path con-

strained algorithm and VS-IMM, position RMSE is same except the region near the

junctions. When a target is within the validation gate (Kirubarajan et al., 2000) of a

junction, all the motion models corresponding to all possible segments associated to

the junction are added to the mode set in VS-IMM. For e.g., when a target is within

the validation gate of the first junction, all motion models corresponding to segments

S1, S2 and S3 are added. The problem with this method is if the target is following

segment sequence (S1, S3, S4), adding the motion models corresponding to segment

S2 is increasing the position error and position uncertainty. Because of the models

which are actually not relevant to the target motion also added, the position error

becomes larger near the junctions for VS-IMM. But the proposed algorithm generates

segment hypotheses (2.1.4) and modes are added based on the segments involved in

a segment hypothesis. For e.g., when the target is closer to the first junction two

hypotheses with segment sequences (S1, S2) and (S1, S3) will be generated and mode

set will be updated for each segment hypothesis. This segment hypothesis approach

with prior information of maximum velocity for a segment, results in better perfor-

mance in position RMSE (Figure 4.3) for path constrained algorithm over VS-IMM

near the junctions. Further it can be seen (Figure 4.3) that fixed mode IMM performs

slightly better than the measurements for the above scenario with given fixed mode

models. But when the process noise of the fixed mode IMM models are increased the

performance of fixed mode IMM degrades as expected.
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Figure 4.4 shows the Root Mean Square Error (RMSE) in velocity for tracking.

The improvement in velocity RMSE is due to the velocity rotation, maximum velocity

ratio and segment hypothesis approach, which are considered during the prediction.

For example, when a target moves from S1 to S3, direction of the velocity changes by

30 degrees and velocity is increased by 1.5 times. These changes are captured by the

algorithm in the introduced rotation matrix but not in the standard IMM structure

or VS-IMM, which results in more visible difference between algorithms. The better

performance of the path constrained algorithm and VS-IMM over fixed mode IMM

during the other time intervals is due to the directional process noise models used in

VS-IMM and proposed algorithm.
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Figure 4.3: RMS position errors for estimators
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Figure 4.4: RMS velocity errors for estimators

Figure 4.5 and 4.6 shows root mean square error (RMSE) in position and velocity

respectively for retrodiction compared with fixed interval IMM retrodiction algorithm

(Koch, 2000). It is clearly seen that the IMM retrodiction algorithm shows a degraded

performance in the junction compared to the proposed retrodiction algorithm. It is

due to the predicted state (3.19) and retrodiction gain (3.18) in path constrained

retrodiction algorithm are calculated considering the segment change and motion

model change in the junctions where IMM retrodiction algorithm does not. As a

result, a spike is observed during the intersection points. It has to be noted that

the predicted state (3.19) and retrodiction gain (3.18) can be calculated and stored

during the prediction stage to reduce the computational load during retrodiction

process though it increases the memory load. During the other time intervals, due
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to the advantage of directional process noise concept better performance of proposed

retrodiction algorithm is observed over the fixed interval IMM retrodiction algorithm,

which used the estimates from fixed mode IMM.
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Figure 4.5: RMS position errors for retrodiction
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Figure 4.6: RMS velocity errors for retrodiction

Figure 4.7 and Figure 4.8 shows the comparison between the proposed tracking

and proposed retrodiction algorithms where it can be clearly seen the improvement

of retrodiction algorithm compared to the tracking algorithm over the whole time

period.
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Figure 4.7: RMS position errors comparison for proposed algorithms
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Figure 4.8: RMS velocity errors comparison for proposed algorithms
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Figure 4.9 shows the PCRLB bound for the tracking algorithm compared to the

proposed path constrained algorithm’s RMSE. PCRLB is calculated here with a sin-

gle constant velocity motion model and the proposed tracking algorithm RMSE lies

within the bound of PCRLB. Table 4.1 shows the average performance metrics in

summary for the above simulations carried out. Based on these observations, one can

rank the algorithms as follows(in order of increasing performance):

1. Fixed mode IMM

2. Path constrained filter

3. Retrodiction algorithm IMM-MHT

4. Retrodiction algorithm path constrained filter
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Figure 4.9: PCRLB position comparison

Further, the computational load of the proposed path constrained algorithm is 2%
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Table 4.1: Average performance metrics
Filter RMS pos. error(m) RMS vel. error(m/s)
Fixed mode IMM 27.85 1.56
Path constrained filter 24.78 1.02
Retrodiction IMM-MHT 23.46 0.93
Retrodiction path constrained filter 18.98 0.60

higher than the VS-IMM algorithm and proposed retrodiction algorithm is 5% higher

than the fixed mode retrodiction IMM algorithm.

4.2 Real Data Test

Satellite-based AIS data is used for this test. This data corresponds to the vessels in

region close to Indonesia and collected during September, 2011. Figure 4.10 shows

the location (from ’Google Maps’) corresponding to the above region. Since it is a

path constrained problem, a path map should be available as a priori information.

Due to the unavailability of shipping lanes in the corresponding region, latitude and

longitude measurements from the given data set file is used to generate the path

map. Figure 4.11 shows the whole measurement set plotted and this figure is used

to generate the path map. But Matlab can not handle thousands of targets with the

required plotting facility for prediction and retrodiction, due to that a specific area

is selected for simulation as shown in the Figure 4.11.

Figure 4.12 shows the path map developed manually with 8 way-points and 7

segments for this test. Initially around 25 targets close to the selected area are taken

to predict and track. Then two targets are selected to run and get the RMS position

errors.
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Figure 4.10: Location (Google maps)
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Figure 4.11: Whole measurements plot
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Figure 4.12: Path map with segments and way points
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The data set selected for the testing purpose has measurements spanning around

33 hours. Figure 4.13 shows the tracks from the 25 targets over the time with pre-

diction algorithm. Here prediction is carried out every 300s which can be changed

according to the requirement. Figure 4.14 shows the tracks from the interested two

targets where the first target was moving in Segment 3 in the direction of way-point

4 and the second target is in segment 2 and moving towards way-point 3. Above two

targets moved over 1000 km and 1200 km in our local X-Y framework and generated

four and three measurements respectively during the above time interval.

Figure 4.13: Tracks from 25 targets
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Figure 4.14: Tracks from prediction

The tracks from the above test (Figure 4.14) is tested with retrodiction algorithm

and Figure 4.15 shows the retrodicted tracks.
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Figure 4.15: Tracks from retrodiction

To get the root mean square error (RMSE) for position estimate of our prediction

and retrodiction algorithm, truth file for the above scenario is required. But in real

scenarios it is not possible to get the truth values. So retrodicted tracks are kept as

truth and RMSE test is carried out. Figure 4.16 shows the RMS position errors for

both targets. It can be seen that, when the measurements are received the position

RMSE is reduced and on average the position RMSE is around 17km. But when

considering the distances these targets traveled and given only seven measurements

received over this 34 hour period time, this value can be expected.
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Figure 4.16: RMS position errors comparison
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, new tracking and retrodiction algorithms for path constrained targets

are presented. As a target moves along a constrained path with different segment

constraints, measurements are updated by sensor with low revisit rate. But target

changes its motion due to segment constraints in between successive measurements.

This results in a poor performance of existing algorithms due to not incorporating

the path map information. The proposed tracking algorithm uses a prediction tech-

nique considering the segment change and the time taken to reach a junction. During

prediction near the junctions, possible velocity change also considered for each seg-

ment to give a better estimate. A retrodiction algorithm considering the path map

also developed in this paper based on (Rauch et al., 1965) and (Koch, 2000). The

retrodiction algorithm developed here supports the segment change and associated

motion model changes in a junction.
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The results shows that the proposed algorithm in tracking and retrodiction per-

forms better compared to the other algorithms in literature. The better performance

of tracking algorithm is due to the prediction algorithm, which considers the path

map information. Further already existing retrodiction algorithms does not consider

the segment change explicitly as in the proposed retrodiction algorithm, resulting in a

lower RMS error in position and velocity during retrodiction compared to the existing

algorithms.

5.2 Future Work

The proposed algorithms could be extended to data association problems where the

assumptions of zero false alarms and unity probability of detection can be relaxed.

Further uncertainty in way-points and segments can also be included in path map

information. Incorporating the above uncertainty information will increase the use-

fulness of the proposed algorithms in real data applications. Finally building the path

map information automatically from the real data would be a great area to explore.

It will take the applications of proposed prediction and retrodiction algorithms to the

next level.
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Appendix A

Algorithm Derivations

A.0.1 Filtering Algorithm Derivation

Derivation for path constrained target estimator is given here.

P [x(k)|Zk
1 ] =

∑

Mj′ ,Mi′∈A(k)

P [x(k)|Mj′,Mi′, Z
k
1 )]P [Mj′,Mi′ |Z

k
1 ] (A.1)

consider

P [x(k)|Mj′,Mi′ , Z
k
1 )] =

P [Z(k)|x(k),Mj′,Mi′ ]P [x(k)|Mj′,Mi′ , Z
k−1
1 ]

P [z(k)|Mj′,Mi′ , Z
k−1
1 ]

(A.2)

where P [z(k)|Mj′ ,Mi′, Z
k−1
1 ] is the likelihood and P [x(k)|Mj′,Mi′ , Z

k−1
1 ] is the prior.

The prior can be extended as follows

P [x(k)|Mj′,Mi′ , Z
k−1
1 ] = P [x(k)|x(k − τ),Mj′ ,Mi′, Z

k−1
1 ] P [x(k − τ)|Mj′ ,Mi′, Z

k−1
1 ]

(A.3)
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Consider the second term in the prior

P [x(k − τ)|Mj′ ,Mi′, Z
k−1
1 ] = P [x(k − τ)|Mi′ , Z

k−1
1 ] (A.4)

which can be written according to (Bar-Shalom et al., 2001) as

P [x(k − τ)|Mi′ , Z
k−1
1 ] = N ((x(k − τ);E[x(k − τ)|Mi′ ,

∑

Mi∈A(k−1)

x̂i(k − 1|k − 1) µi|i′(k − 1|k − 1)], Cov[.]



 (A.5)

where

µi|i′(k − 1|k − 1) = P{Mi|Mi′ , Z
k−1
1 } (A.6)

Now consider the first term in the prior

P [x(k)|x(k − τ),Mj′ ,Mi′, Z
k−1
1 ] = P [x(k)|x(k − τ),Mj′] (A.7)

Now consider the following

P [Mi′ ,Mj′|Z
k
1 )] = P [Mi′ ,Mj′|z(k), Z

k−1
1 )]

=
1

Ci′j′
P [z(k)|Mj′ ,Mi′, Z

k−1
1 ] P [Mj′|M

′
i , Z

k−1
1 ]P [M ′

i |Z
k−1
1 ]

=
1

Ci′j′
Λi′j′(k) [pi′j′(Sk−1, Sk)] µi′(k − τ) (A.8)
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where

µi′(k − τ) = P{Mi′|Z
k−1
1 }

=
∑

Mi∈A(k−1)

P{Mi′|Mi, Z
k−1
1 } P{Mi|Z

k−1
1 }

=
∑

Mi∈A(k−1)

[pii′(Sk−1)] µi(k − 1) (A.9)

A.0.2 Retrodiction Algorithm Derivation

This part presents algorithm derivation of retrodiction for variable structure IMM

without any constraints. This is similar to the algorithm proposed in (Nandaku-

maran et al., 2009) but differs in mode matched retrodiction.

Let A(t) = (M1(t), ...,Mu(t), ...) and A(t + 1) = (M1(t + 1), ...,Mv(t + 1), ...)

Smoothed density P [x(t)|Zk
1 ] is required where t < k. It can be written as

P [x(t)|Zk
1 ] =

∑

Mu∈A(t)

P [x(t)|Mu, Z
k
1 ] P [Mu|Z

k
1 ] (A.10)

The first term in (A.10) can be written as

P [x(t)|Mu, Z
k
1 ] =

∑

Mv∈A(t+1)

P [x(t)|Mu,Mv, Z
k
1 ] P [Mv|Mu, Z

k
1 ] (A.11)

Using the total probability theorem and the Bayes’ rule the density P [x(t)|Mu, Z
k
1 ]

can be simplified as follows
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P [x(t)|Mu,Mv, Z
k
1 ] =

∫

P [x(t), x(t + 1)|Mu,Mv, Z
k
1 ] dxt+1 (A.12)

=

∫

P [x(t)|x(t + 1),Mu,Mv, Z
k
1 ] P [x(t+ 1)|Mu,Mv, Z

k
1 ] dxt+1

(A.13)

=

∫

P [x(t)|x(t + 1),Mu,Mv, Z
t
1] P [x(t+ 1)|Mv, Z

k
1 ] dxt+1

(A.14)

=

∫

P [x(t + 1)|x(t),Mu,Mv, Z
t
1] P [x(t)|Mu, Z

t
1]

P [x(t+ 1)|Mu,Mv, Zt
1]

P [x(t+ 1)|Mv, Z
k
1 ] dxt+1 (A.15)

In the above derivation, P [x(t)|x(t+1),Mu,Mv, Z
k
1 ] is replaced with P [x(t)|x(t+

1),Mu,Mv, Z
t
1] and P [x(t)|Mu, Z

t
1] is the filtered mode conditioned density. The term

P [x(t+1)|Mv, Z
k
1 ] is the smoothed density at time (t+1) given the modeMv and the

term in the denominator is constant. Using the Gaussian distribution computation

rules, we can write P [x(t + 1)|x(t),Mu,Mv, Z
t
1] P [x(t)|Mu, Z

t
1] in (A.15) as follows

P [x(t+ 1)|x(t),Mu,Mv, Z
t
1]P [x(t)|Mu, Z

t
1]

= P [x(t+ 1), x(t)|Mu,Mv, Z
t
1] (A.16)

= N













x(t)

x(t+ 1)







∣

∣

∣

∣

∣

∣

∣







x̂u(t|t)

F v(t + 1, t) x̂u(t|t)






,







P u(t|t) P u(t|t) F v(t + 1, t)T

P u(t|t) F v(t + 1, t) F v(t+ 1, t) P u(t|t) F v(t+ 1, t)T +Qv(t|t)












(A.17)
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In (A.14) now consider the first term

P [x(t)|x(t + 1),Mu,Mv, Z
t
1] = N (x(t)|m,P ) (A.18)

where

m = x̂u(t|t) + A (x(t + 1)− F v(t + 1, t) x̂u(t|t)) (A.19)

P = P u(t|t)−A
[

F v(t + 1, t) P u(t|t) F v(t + 1, t)T +Qv(t|t)
]

AT (A.20)

where

A = P u(t|t) F v(t+ 1, t)T
[

F v(t + 1, t) P u(t|t) F v(t + 1, t)T +Qv(t|t)
]−1

(A.21)

Now from (A.12), the joint distribution of x(t) and x(t+1) given all the measure-

ment is

P [x(t), x(t + 1)|Mu,Mv, Z
k
1 ]

= P [x(t)|x(t + 1),Mu,Mv, Z
k
1 ] P [x(t+ 1)|Mu,Mv, Z

k
1 ] (A.22)

= N (x(t)|m,P )N (x(t+ 1)|x̂v(t + 1|k), P v(t+ 1|k)) (A.23)

= N













x(t + 1)

x(t)







∣

∣

∣

∣

∣

∣

∣







x̂v(t+ 1|k)

x̂u(t|t) + A (x̂v(t+ 1|k)− F v(t+ 1, t) x̂u(t|t))






,







P v(t + 1|k) P v(t + 1|k) AT

A P v(t+ 1|k) A P AT + P












(A.24)

So based on the above derivation, mode matched smoothing mean and covariance
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are given by (Rauch et al., 1965)

x̂uv(t|k) = x̂u(t|t) + A [x̂v(t+ 1|k)− x̂uv(t + 1|t)] (A.25)

P uv(t|k) = P u(t|t) + A [P v(t+ 1|k)− P uv(t + 1|t)] AT (A.26)

where A = P u(t|t) F v(t + 1)T [F v(t + 1) P u(t|t) F v(t + 1)T + Qv(t + 1)]−1. Further

the terms x̂uv(t+ 1|t) and P̂ uv(t+ 1|t) are written as

x̂uv(t+ 1|t) = F v(t+ 1) x̂u(t|t) (A.27)

P uv(t|k) = F v(t+ 1) P u(t|t) F v(t+ 1)T +Qv(t+ 1) (A.28)

All other derivations are same as in (Nandakumaran et al., 2009) except the

derivation for P [Mu|Zk
1 ] which can be written as

P [Mu|Z
k
1 ] ≃ P (Mu|Υt+1|k, Z

t
1) (A.29)

=
1

f
P (Υt+1|k|Mu, Z

t
1) P (Mu|Z

t
1) (A.30)

where Υt+1|k is sufficient statistic for the measurement set Zk
t+1. The normalizing

constant is given by

f =
∑

Mu∈A(t)

P (Υt+1|k|Mu, Z
t
1) P (Mu|Z

t
1) (A.31)

61



M.A.Sc. Thesis - K. Krishanth McMaster - Electrical Engineering

P (Υt+1|k|Mu, Z
t
1) in (A.29) can be written as

P (Υt+1|k|Mu, Z
t
1) =

∑

Mv∈A(t+1)

P [(Υt+1|k|Mv,Mu, Z
t
1] P [Mv|Mu, Z

t
1] (A.32)

=
∑

Mv∈A(t+1)

P [(Υt+1|k|Υt|t,Mv,Mu] [Mv|Mu] (A.33)

=
∑

Mv∈A(t+1)

puv N (Υt+1|k|Υt|t) (A.34)

A.0.3 Retrodiction Algorithm Derivation for Path Constrained

Targets

The above derivation is extended to include the path segment change during retrod-

iction process as follows. Let A(t) = (M1(t),M2(t), ...,Mu(t), ...) is the mode set in

the time interval (t − 1, t]. t + δ is the time at which target changes the segment

where 0 < δ < 1. Further denote the mode in effect during the time interval (t, t+ δ]

as Mu′ and during (t+ δ, t + 1] as Mv′ where Mu′,Mv′ ∈ A(t+ 1)

P [x(t)|Zk
1 ] =

∑

∀Mu

P [x(t)|Mu, Z
k
1 ] P [Mu|Z

k
1 ] (A.35)

The first term in (A.35) can be written as

P [x(t)|Mu, Z
k
1 ] =

∑

Mu′Mv′∈A(t+1)

P [x(t)|Mu,Mu′ ,Mv′ , Z
k
1 ] P [Mu′,Mv′ |Mu, Z

k
1 ] (A.36)
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we can write P [x(t)|Mu,Mu′ ,Mv′ , Z
k
1 ] as follows

P [x(t)|Mu,Mu′ ,Mv′ , Z
k
1 ] =

∫

P [x(t+ 1)|x(t),Mu,Mu′ ,Mv′ , Z
t
1] P [x(t)|Mu, Z

t
1]

P [x(t + 1)|Mu,Mu′ ,Mv′ , Zt
1]

P [x(t+ 1)|Mu′ ,Mv′ , Z
k
1 ] dxt+1 (A.37)

Based on (A.37), mode matched filtering equation can be written as follows

x̂u(u
′v′)(t|k) = x̂u(t|t) + A [x̂u

′v′(t+ 1|k)− x̂u(u
′v′)(t+ 1|t)] (A.38)

P u(u′v′)(t|k) = P u(t|t) + A [P u′v(t+ 1|k)− P u(u′v′)(t+ 1|t)] AT (A.39)

where A = P u(t|t) {F v′(t+1, t+ δ) R F u′

(t+ δ, t)]}T [P u(u′v′)(t+1|t)]−1. Further the

terms x̂uv(t+ 1|t) and P uv(t+ 1|t) can be derived as

x̂u(u
′v′)(t+ 1|t) = F v′(t + 1, t+ δ) R F u′

(t + δ, t) x̂u(t|t) (A.40)

P u(u′v′)(t+ 1|t) = F v′(t + 1, t+ δ) R
[

F u′

(t+ δ, t) P u(t|t) F u′

(t + δ, t)T

+Qu′

(t+ δ, t)
]

RT F v′(t+ 1, t+ δ)T +Qv′(t + δ, t+ 1) (A.41)
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