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Abstract

This thesis concerns with the localization, tracking, and sensor manage-

ment in the Multiple-Input Multiple-Output (MIMO) radar systems. The col-

located and widely-separated MIMO radars are separately discussed and the

signal models are derived for both structures. The first chapter of the thesis is

dedicated to the tracking and localization in collocated MIMO radars. A novel

signal model is first formulated and the localization algorithm is developed for

the derived signal model to estimate the location of multiple targets falling in

the same resolution cell. Furthermore, a novel tracking algorithm is proposed

in which the maximum bound on the number of uniquely detectable targets

in the same cell is relaxed. The performance of the tracking and localization

algorithms is finally evaluated using the tracking Posterior Cramer-Rao Lower

Bound (PCRLB). After showing the impact of the antennas position on the

localization CRLB, a novel sensor management technique is developed for the

collocated MIMO radars in Chapter 4. A convex optimization technique is

proposed for the antenna allocation in a single-target scenario. When multi-

ple targets fall inside the same cell, a sampling-based technique is formulated

to tackle the non-convexity of the optimization problem.

The third chapter of this thesis also proposes new approaches for detection,

localization, and tracking using a widely-separated MIMO radar. A scenario

with multiple-scatterer targets is considered and the detection performance of
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both MIMO and multistatic radars will be evaluated in the designed scenario.

To estimate the location of the multiple-scatterer target, a Multiple-Hypothesis

(MH) based approach is proposed where the number and the location of multi-

ple targets are both estimated. A particle filter based approach is also formu-

lated for the dynamic tracking by a widely-separated MIMO radar. Finally,

the performance of the MIMO radar and the miultistatic radar in detecting

and localizing multiple-scatterer targets is studied.
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Chapter 1

Introduction

This chapter is dedicated to review the basic concepts of the MIMO sys-

tems and their equivalence in the radar community. The MIMO concept is first

discussed in Section 1.1. The benefits of the new emerging MIMO communica-

tion systems to the traditional SISO models are presented in this section. The

MIMO radar systems are described in Section 1.2. Two different structures of

the recently-proposed MIMO radars are first introduced and their advantages

to the traditional phased-array and multistatic radars are summarized. The

main contributions of this thesis are also demonstrated in Section 1.3.

1.1 MIMO Concept

MIMO is designated to the use of multiple antennas in both the trans-

mitter and receiver stations [9]. The new MIMO concept has been originally

proposed to improve the communication performance in wireless systems. The

critical performances in the wireless community particularly include the power,

bandwidth, complexity, and the rate of data transmission. The new emerging

1
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MIMO technology has therefore attracted much attention due to the huge im-

pact on the improvement of the communication performance. Compared to the

traditional SISO structures, the MIMO antennas provide increased coverage,

higher capacity and data rate, improved spectral efficiency, reduced power

consumption, and reduced cost of wireless network [31]. These remarkable

benefits ignited much interest among researchers to explore different aspects

of MIMO communication systems such as channel capacity [41] [77], power

and resource allocation [73] [86], and beam-forming [23].

A multiple antenna system might be represented in different configurations.

As Figure 1.1 shows, the MIMO system is designed by placing multiple trans-

mitters and receivers while other structures can be also created by creating

single or multiple antennas in the transmitter or receiver sections. Now, con-

sider the MIMO structure with M transmitters and N receivers. The received

signal vector for a single-user MIMO system can be written as follows [41]:

y = Hs+w (1.1)

where w denotes the white circularly symmetric complex Gaussian noise vec-

tor, normalized so that its covariance matrix is the identity matrix, and H

is the N × M stochastic channel matrix. The amount of knowledge about

the channel matrix depends on the availability of channel information in the

transmitters and receivers. With the perfect channel state information at the

transmitter (CSIT) and the perfect channel state information at the receiver

(CSIR), the channel state information (CSI) or the system matrix H is fully

known [41]. However, when the partial information is present at each or the

transmitter or receiver sections, it is assumed that the channel distribution

to the transmitter (CDIT) or to the receiver (CDIR) is available. It was

shown by [27] [77] that under the perfect CSIR and CDIT where the channel

2
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is assumed to be zero-mean spatially white (ZMSW) [41], the capacity grows

linearly with the rate min(M,N) if the channel fading changes slowly by time.

Alternatively, when the perfect CSIR and CSIT are available, the growth rate

is reduced at higher SNRs while still increased at low SNRs [19]. In other

words, the assumption of the perfect CSIR plays an important role in the ca-

pacity improvement of the MIMO communication system [41]. In this case,

a set of training symbols is sent to the receiver section to estimate the chan-

nel state. With the perfect CSIR, the MIMO communication system shows a

significant improvement in the capacity to the traditional SISO model whose

information theoretic and communication aspects were explored in [8].

Besides the higher capacity, MIMO systems enjoy the spatial diversity

in the signal paths by using multiple independent channel fading hij. The

diversity gain is defined as the amount of a diversity scheme that reduces the

required transmitted power without any performance loss. Ideally, a MIMO

system with M transmitters and N receivers achieves MN as the maximum

possible diversity gain. For the classical MIMO model given by (1.1), a space-

time coding that achieves the maximum diversity gain meets the following

condition [88]:

Pe(SNR) ∼ SNR−MN (1.2)

with Pe being the probability of error and SNR as the receiver signal-to-noise

ratio. An analysis of the diversity gain for the block coded Ricean MIMO

channels was also conducted in [64]. It was shown that there is a minimum

rate (Rcrit) under which if the data are transmitted the Ricean channel behaves

like a Rayleigh one. Then, the relation of the diversity order to the slope of the

average probability of error versus SNR curve and the diversity order to the

slope of the outage probability versus SNR curve was derived. The diversity

gain of the MIMO system was also calculated for double-scattering channels

3
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in [70]. For the orthogonal spacetime block codes, it was shown in [70] that

the diversity gain is of order MNNs

max(M,N,Ns)
with Ne being the number of effective

scatterers. It was also mentioned in [91] that the lack of the knowledge about

the channel state affects the diversity gain of a MIMO channel. With the joint

power and rate control, analysis in [91] shows a significant improvement in

the diversity gain of the MIMO fading channel. While there are many other

works being done on the analysis of the diversity gain in MIMO communication

systems, they finally show that under suitable conditions the MIMO system

achieves a higher diversity gain compared to the SISO systems.

It is now inferred that channel estimation and equalization are two main

concerns in MIMO systems. The main philosophy behind the invention of

the MIMO system is to enjoy the diversity gain leading to a higher capacity

and probability of error in the receiver. The research on different aspects of

MIMO communication systems still carries on with several open problems in

calculating the capacity of the MIMO channel [41] and the effect of different

system parameters on the diversity gain and outage probability. In the next

section, the MIMO idea is extended to the radar systems. It will be shown

how the ideas like the diversity gain can be exploited in radar community. A

potential comparison between the MIMO communication and radar systems

will be finally provided.

1.2 MIMO in Radar Community

Recently, the idea of MIMO communication systems was exploited in the

radar community to mitigate some drawbacks in the traditional phase-array

and multistatic radar systems [72]. The idea is to design a multiple antenna

radar system withM transmitters and N receivers that provides the benefits of

4
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Figure 1.1: The schematic of different multiple antenna configurations. Here,
the M × 1 vector s(t) and the N × 1 vector y(t) refer to the transmitted and
received signals, respectively, with M and N being the number of antennas at
each array.

MIMO communication systems such as the diversity gain. The MIMO radar

systems are classified into two different configurations based on the mutual

distances between each antenna and the target as:

• Collocated MIMO radars:

When the distance between each two antennas in the array of transmit-

ters and receivers is much less than the distance of the antennas to the

targets, the underlying structure is called the collocated MIMO system.

The collocated MIMO radars are introduced as an alternative to the

traditional phased-array radars in which all antennas transmit the same

signal with only a phase-shift.

• Widely-separated MIMO radars:

Unlike the collocated structure, in widely separated MIMO radars, the

antennas are separated in a way that the mutual distances between each

5
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two antennas is larger that the distance between the target and the an-

tenna. In this case, the MIMO radar is compared to the common mul-

tistatic radar model in which antennas might be also widely separated.

In the following subsections, each of the above structures is introduced and

recent attempts in the signal processing and target estimation using each of

the proposed structures are summarized.

1.2.1 MIMO Radars With Collocated Antennas

Collocated MIMO radars were offered [58] as a new structure of multiple

antenna radars to achieve some benefits to the traditional phased-array sys-

tems [54]. In a typical phased-array system, the transmitted waveform at each

antenna is written as

s[k] = b′s[k] (1.3)

where b denotes the transmitter steering vector. In other words, the signal

transmitted by the m1-th antenna is the phase shifted version of the signal

sent by the m2-th antenna, which leads to a fully-coherent cross-correlation

matrix for the array of transmitters. Conversely, MIMO radars enjoy multi-

ple independent signal paths by sending orthogonal signals with the full-rank

cross-correlation matrix R defined as follows:

R =
1

K

K
∑

k=1

s[k]sH [k] (1.4)

with K denoting the total number of snapshots. Recently, it has been therefore

a great interest in exploring potential benefits exploited in MIMO radars by

transmitting orthogonal signals.

The MIMO radar with orthogonal transmitted waveform achieves virtual

aperture and spatial coverage extension, beampattern improvement, and in-

crease on the number of uniquely detectable targets when they are compared

6
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to a phased-array system [7]. As discussed in [7], a MIMO radar with M

transmitters and N receivers can be equivalently considered as a distributed

radar system withM×N virtual sensors, which are the combinations of trans-

mitters and receivers locations. The virtual array consequently increases the

array aperture. On the other hand, the orthogonality of transmitter waveform

makes the MIMO antennas omnidirectional. This also leads to the increase of

the spatial coverage of each antenna. In this case, the TOT of each transmit-

ted beam is equal to the time required to scan the region of interest, which is

smaller than that of the fully-coherent phased-array radar [7].

It is known that the beam-pattern of a multiple antennas system is a func-

tion of the cross-correlation matrix R [28]. In a phased-array system with a

rank one matrix R, the beam-pattern achieves the maximum power around

the transmitted DOA with several side-lopes in other DOAs. However, an or-

thogonal cross-correlation matrix provides a flat beam-pattern with the same

power allocated to different potential DOAs. Figures 1.2 and 1.3 present the

transmitted power and the transmit/receive pattern for cases with the fully-

coherent and orthogonal transmitted signals, respectively. It can be observed

that the MIMO radar achieves a flat transmit beam-pattern. In addition, the

transmit/receive beam-pattern of the MIMO shows narrower beam width as

well as lower side-lobes [7]. Although the results show an improvement in the

beam-pattern when the orthogonal signals are transmitted, the MIMO system

suffers from the loss in the transmit antenna gain [22]. It is mentioned in [22]

that unlike the phased-array radar providing M3 as the transmit gain, the

MIMO’s gain is only M2 where M denotes the number of antennas. There-

fore, a new structure was recently proposed in [48] in which the benefits of

both MIMO and phased-array structures are incorporated in a new structure

called the phased-MIMO radar. The main idea in [48] is to divide the array of

7
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transmitter to some subarrays where each subarray coherently processes the

signals. However, the overall structure works as a MIMO radar where the

transmitted signals by different subarrays are still orthogonal. The proposed

structure finally shows significant improvement over the individual phased-

array of MIMO structure.

It can be shown that there will be an increase in the number of uniquely

detectable targets when the transmitted signals are orthogonal [7] [59]. The

identifiability analysis in [59] shows that the maximum number of targets that

can be uniquely detected in one resolution cell of a collocated MIMO radar

belongs to the interval [M+N−1,M×N ] where the geometrical placement of

antennas in the transmitter and receiver arrays determines the exact maximum

bound. For example, it was shown in [83] that the maximum bound for the

bistatic MIMO radar in which the transmitter and receiver arrays are separated

is M × N . The above discussions confirm that compared to the monopulse

phased-array radar systems [89], the MIMO radars provide more degrees of

freedom in the identification and acquisition of multiple targets fallen in the

same resolution cell.

There has been recently a great interest among researchers in using the

collocated MIMO radars for target detection and localization. The target de-

tection and DOA estimation problems were tackled in [81] [82]. A a number

of different iterative techniques were proposed for the target DOA estimation

where a collocated MIMO radar is used as the measurement tool. When the

number of data snapshots is limited, another approach was proposed in [76] via

an iterative approach for the sparse learning. The DOA estimation problem

for multiple targets was also dealt with in [83]. By a number of simulations, it

was shown that the ML estimator can identify targets more accurately when

8
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the number of antennas increases. The detection and DOA estimation perfor-

mance of the collocated MIMO radar was substantially evaluated in [7]. The

probability of detection was found for the MIMO system using a Neyman-

Pearson Test (NPT). Then, the MIMO detection probability was compared to

the that of the phased-array radar when fully-coherent signals were transmit-

ted. The DOA CRLB was also derived in [7] [60] for the MIMO radars with

collocated antennas. It was shown in [7] that the estimation bound increases

when more targets fall inside the same cell and, finally, becomes unbounded

when the number of unresolved targets goes beyond a specific value, which is

the maximum number of uniquely detectable targets.

Besides the DOA estimation and CRLB calculation, the optimization tech-

niques were applied to different aspects of MIMO systems such as waveform

design. The algorithms in [28] [60] find an optimal cross-correlation matrix of

the transmitted signals that minimizes the DOAMSE. In [60], the DOA CRLB

is suggested as the performance measure and a convex optimization algorithm

is proposed for the waveform design. The proposed approach in [74] finds an

expression for the transmitted signals once the optimal cross-correlation ma-

trix is found through the related optimization techniques. The concept of the

MIMO ambiguity function [68] was used in [15] to achieve an optimal waveform

design for the collocated MIMO radar. While the proposed algorithm in [15]

is not adaptive to the change in the location of the target, an adaptive design

for orthogonal frequency-hoping signals was also formulated in [90] where the

ambiguity function of a collocated MIMO radar with separate transmitter and

receiver arrays is used as the cost function. Besides the above works, there are

several other research on the design of optimal waveform for the unconstrained

problems [2] and MIMO-Phased radars [29].

9
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Although different issues in collocated MIMO radars were substantially ex-

plored in the literature, there are still some important topics that need more

discussions. While radar systems are widely used in tracking problems, the

lack of the same development for the collocated MIMO radar is felt. It was

shown in [89] that bringing target motion information into the estimation al-

gorithm can enhance the performance and mitigate the difficulty in localizing

multiple unresolved targets. Although the algorithm proposed in [89] is devel-

oped for a monopulse phased-array radar, the collocated MIMO radar can be

also considered as the measurement tool instead and the tracking algorithm

is applied to the the MIMO structure. In addition, the antenna allocation

in multiple antenna systems plays a critical rule. The question is now how

the distribution of antennas affects the localization and tracking performance

in collocated MIMO radars. Furthermore, there is a great interest in find-

ing whether there is a distribution of antennas that optimizes a well-defined

cost function. Therefore, developing a suitable performance metric and, then,

postulating a suitable optimization algorithm for the optimal distribution of

antennas in the collocated MIMO radars are the next important trends of this

thesis.

1.2.2 Widely Separated MIMO Radars

While sending orthogonal waveforms provides diversity in the signal paths

in collocated MIMO radars, a number of benefits can be also exploited by plac-

ing antennas widely-separated in the surveillance region [47]. A solid analysis

of the widely-separated MIMO radars was first conducted in [25]. The signal

model for the MIMO radar was derived in [25] where the received complex
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Figure 1.2: The transmit beam-pattern for a MIMO radar with M = 5 anten-
nas and half-wavelength antennas.
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Figure 1.3: The transmit/receiv beam-pattern for a MIMO radar with M = 5
antennas and half-wavelength antennas.
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signal in the receivers could be written as follows:

y(t) =

√

E

M
Hs(t− τ) + n(t) (1.5)

with E being the total transmitted energy, H as the target scatterer matrix,

τ as the reference time delay of the signal travel, and n being a white Gaus-

sian complex noise term with zero mean and known variance σ2
n. [25] also

shows that under suitable conditions over the mutual distance between anten-

nas compared to the distance of the antennas to the target, the random vector

h =
[

H11 H21 · · · H(N−1)M HNM

]′
is Gaussian distributed with zero mean

and unitary variance, h ∼ CN (0, INM). Although the signal model in (1.5)

looks like the one proposed for the MIMO communication systems in (1.1),

there are some intrinsic differences between the two structures. First, unlike

a MIMO communication system in which the transmitted signals s(t) are un-

known to the receiver, MIMO radars known the transmitted waveforms [46].

Furthermore, the channel coefficients Hnm stand for the unknown reflections of

the target in real scenario while the channel coefficients are known/estimated

in communication systems. These evident differences make the estimation

and detection problem in MIMO radars different from what offered in MIMO

communication communities.

There has been a significant interest in evaluating the detection perfor-

mance of widely-separated MIMO radars. It was shown in [25] that the out-

put of the matched-filter is the sufficient statistics for detection and estima-

tion purposes. Then, the detection probability was derived by checking the

second norm of the vector of the matched-filter output. It was then demon-

strated that the MIMO radar achieves higher probability of detection and lower

miss-detection probability compared to the traditional phased-array, and SISO

radars. It was actually indicated that the wide separation of antennas in the

12
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MIMO radar provides diversity in the signal paths that also makes the RCS

mitigation possible. In the presence of the clutter, the MIMO radar’s capabil-

ity in target detection was also evaluated in [1] [18] [20] [50] [87]. The gains of

the MIMO radar to the phased-array one were specially quantified in [50] for

a moving target in the additive colored noise with the clutter. The GRLT was

extended to the MIMO radars with widely-separated antennas in [18]. The

performance of the new detector was then compared to the optimum Gaussian

detector and the benefits of the new approach in dealing with the non-Gaussian

clutter were also quantified. In the presence of the non-homogenous clutter,

the GRLT was also used to design an optimal detector for the MIMO radar

in [87]. Other techniques to tackle the detection problem in the heavy clutter

with different statistics are also proposed in [1] [20].

When the antennas are widely-separated, estimating the location and ve-

locity of the target becomes essential in a widely-separated MIMO radar sys-

tem. The localization problem was extensively formulated in [33] [35]. The

location of a single scatterer target was estimated using the BLUE technique

in [33]. Then, the location CRLB was derived in [35] and was shown that the

CRLB is affected by the distribution of antennas in the surveillance region.

The velocity estimation in widely-separated MIMO radars was also discussed

in [49]. The results in [49] are provided for an extended target with with reflec-

tivity varying with angle look. A ML estimator is then proposed for velocity

estimation and the CRLB was also derived for optimal antenna placement. Be-

sides the localization, the dynamic tracking problem using a widely-separated

MIMO radar was also addressed in [34] [36] [40]. In [36], a novel tracking al-

gorithm was represented in order to estimate the trajectory of a single target.

Also, the PCRLB for the MIMO radar was derived in [34] and the performance

of centralized and decentralized tracking configurations was compared in terms

13
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of the MSE and the PCRLB. Another tracking approach was presented in [40]

for monopulse MIMO radars to estimate parameters of each target locally at

each receiver and then combine the estimates at the fusion center. Indeed, the

estimated angle-of-arrival at each pair is fused with one another and a unique

estimate of the target trajectory is finally obtained. A TBD algorithm was

also used in [45] [85] for multitarget tracking using widely-separated MIMO

radars. A simple KF based algorithm was also presented in [65] for target

tracking using non-coherent MIMO radar systems. The main idea is to esti-

mate the location of the target at each time step and then apply the Kalman

filter on the noisy estimates.

Even though MIMO radars are known as a new generation of radar sys-

tems with many potential benefits, there is always a question about the differ-

ence between the MIMO radar and the traditional multistatic radar systems.

In [47], joint processing was mentioned as the main benefit exploited by using

the MIMO rather than the multistatic structure. Consider Figures 1.4 and 1.5

as the basic configurations of the MIMO and multistatic radars, respectively.

Unlike the local processing done at each receiver of the multistatic radar, the

MIMO radar enjoys the joint processing in a central unit. The detection per-

formance of the multistatic radar was first derived in [63]. A good survey on

the detection theory in multistatic radars can be also found in [21]. Although

there are some efforts on the comparison between the centralized and decen-

tralized multistatic radars in [14] [42], the difference between multistatic and

MIMO structures in target detection is not still clear. Moreover, while multi-

static localization and tracking were dealt with in the literature [26] [62] [71],

there is no discussion on the advantages or possible disadvantages of MIMO

radar to the multistatic one in localization and tracking. Therefore, a compre-

hensive comparison between the performance of the aforementioned structures
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Figure 1.4: A widely-separated MIMO radar with the joint processing in the
reception center.

constitutes an important trend of this thesis.

1.3 Thesis Organization And Contributions

The last two sections dealt with a review of previous works on the MIMO

systems. It was shown most recent research was focused on the signal pro-

cessing issued in both collocated and widely-separated MIMO radars. The

main motivation for defining this thesis was to apply the tracking and sensor

management concepts to the recently-proposed MIMO structures. Chapter

2 proposes a novel tracking algorithm for the collocated MIMO radars. The

detection and estimation problem in widely-separated MIMO radars are dis-

cussed in Chapter 3. A new antenna allocation procedure is also formulated
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Figure 1.5: A multistatic radar configuration with the local processing being
done at each receiver.

16



Ph.D. Thesis - A. Gorji McMaster - Electrical & Computer Engineering

for the collocated MIMO radar in Chapter 4. Conclusions of this thesis are

also provided in Chapter 5. Appendices including the proofs of theorems are

attached to the end of the thesis. The main contributions of this thesis are

now highlighted in the following:

1.3.1 Multiple Unresolved Target Tracking Using Col-

located MIMO Radars

When multiple targets fall inside the same resolution cell of a collocated

MIMO radar, it was indicated that a bounded number of targets can be

uniquely detected. If more targets occupy the same cell, the localization al-

gorithm cannot find an accurate estimate of the targets’ states. This problem

is dealt with by bringing the prior information on the location of targets into

the estimation algorithm. The dynamic tracking is then formulated for the

collocated MIMO radars in this thesis. It is observed that the conventional

MIMO signal model [58] does not include any range information of targets.

In this case, the signal model does not hold the observability condition and,

therefore, cannot be used for tracking purposes. Based on the discussed draw-

backs, the following novel contributions are made in Chapter 2 of this thesis

on the collocated MIMO radar tracing and localization:

1. A novel signal model:

We propose a novel signal model based on the received output of the

matched filter for the collocated MIMO radar. The new model includes

both DOA and range information of the target.

2. A new localization algorithm:

Based on the new proposed signal model, the localization algorithm is

formulated to estimate the states of targets fallen in the same cell. For
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the multiple target case, the MDL criterion is utilized to estimate the

number of target occupying the same cell. Then, an ML estimator is

applied to the received signals to find the location of each detected target.

3. A signal-level tracking algorithm:

Given the output of matched-filter as the received unthresholded mea-

surements, the tracking algorithm is formulated for the collocated MIMO

radar. A MH-based algorithm [12] is chosen for the tracking purposes

where a new cell-to-target association matrix is defined to handle the

uncertainty in the association of targets to received measurement in dif-

ferent cells. Due to the nonlinearity of the signal model, the well-known

UKF [55] is merged to the MH-based method to form a solid framework

for tracking multiple unresolved targets using collocated MIMO radars.

4. PCRLB Derivation:

The tracking PCRLB is also derived for the new measurement model.

The PCRLB is also formulated as a function of the number of targets

occupying the same cell. It is then observed how increasing the number of

targets affects the performance of localization and tracking. In addition,

the impact of the antenna distribution on the estimation performance

will be analyzed via the tracking PCRLB.

5. Signal-level vs. Measurement-level Tracking:

The main goal of the new tracking formulation is to show the capability

of the new approach in estimating multiple targets where the number of

target in one cell goes beyond a specific bound, which is indicated in [59].

Therefore, besides the signal-level tracking, a measurement-level frame-

work is also constructed by considering the localization results as the

received measurements and, then, applying a KF algorithm to the noisy
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location estimations. Furthermore, a solid comparison is made between

both tracking approaches. It will be demonstrated that the performance

of the measurement-level tracking approach is affected when more targets

enter the same resolution cell while the signal-level method shows much

more robustness to the aforementioned case. Finally, the agreement of

the tracking results with the derived PCRLB will be justified.

1.3.2 MIMO vs. Multistatic Radars For Target Local-

ization And tracking

Chapter 3 deals with the detection, localization, and tracking in widely-

separated MIMO radars. To the best of our knowledge, detection and lo-

calization techniques were developed for a single-scatterer target where the

target scatterer is assumed to be the same in all pairs of transmitters and

receivers. In addition, although the tracking algorithm was formulated for

the widely-separated MIMO radars by considering the localization results as

the measurements and, then, applying a related filtering method to the noisy

measurements, there is no separate work on developing a signal-level tracking

method for widely-separated MIMO radars. The above issues motivated us to

offer the following contributions on the widely-separated MIMO radars:

1. A MH-based localization algorithm:

A novel method is proposed in this paper to identify and localize multiple

scatterer targets using a widely-separated MIMO radar. It is assumed

that the target scatterer is different at different transmitter and receiver

pairs. In this case, the target might become unobservable in certain pairs,

which makes the recent localization techniques useless. When multiple

targets are also present, the detected signals at each pair may have been
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originated from an unknown permutation of multiple targets. We tackle

the above problem by applying the MH-based method to the received

output of matched filter. The new MH-based localization algorithm then

finds the number and states of multiple targets.

2. A signal-level tracking algorithm:

The dynamic tracking is then extended to the widely-separated MIMO

radars. Unlike the old works, we use the unthresholded received signals

for the association and tracking purposed. Due to the specific form of

the measurement model, it is shown that the Kalman-based methods

cannot be used for the state update. Therefore, a particle filter-based

technique [3] is incorporated to the proposed algorithm to update the

target states.

3. PCRLB Derivation:

For the tracking performance evaluation, the PCRB is also derived for

the widely-separated MIMO radars. The agreement of the tracking re-

sults to the derived PCRLB will be also justified via intensive simula-

tions.

4. Multistatic vs. MIMO Comparison:

The detection performance of both widely-separated MIMO radar and

the multistatic structure is analyzed separately. To do this, two ana-

lytical detection probability forms are derived for each structure. The

MIMO and multistatic ROCs are then calculated at different target SNRs

and the benefits of the MIMO to the multistatic configuration are justi-

fied. In addition, the performance of the MIMO and multistatic radars

in estimating the location of multiple scattere targets is analyzed. It will

be shown that the estimation improvement of the MIMO radar rather
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than multistatic radar becomes more significant when the target SNR

decreases.

1.3.3 Antenna Allocation For Collocated MIMORadars

The estimation performance of a MIMO radar systems is affected by the

distribution of antennas in the surveillance region. Although the antenna

allocation in widely-separated MIMO radars was substantially covered in the

literature [17] [35] [37] [51], no comprehensive research has been done on the

same problem for the collocated MIMO systems. Chapter 4 this thesis tackles

the antenna allocation problem in collocated MIMO radars. The location

CRLB of the collocated MIMO radar is first derived as a function of the target

states and the location of antennas. It is then shown that the distribution

of antennas affects the location CRLB, which leads to poor results for the

ULA structure. To find the best optimum distribution of antennas, a suitable

cost function is first defined to evaluate the localization performance of the

collocated MIMO radar. Then, after representing related constraints on the

location of antennas, a novel optimization algorithm is formulated for the

antenna allocation problem. In the presence of a single target, the optimization

problem is formulated as the well-known SDP [13], which can be efficiently

solved. For multiple-target case, due to the non-convexity of the cost function,

a sampling-based method is suggested to capture the global optimal point.

Finally, the improvement in the localization performance of the collocated

MIMO radar using the new optimal structure is justified.
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Chapter 2

Multiple Unresolved Target

Localization and Tracking Using

Collocated MIMO Radars

2.1 Introduction

In this chapter, a new model is proposed for the output measurements of

a collocated MIMO radar. The contribution of each target is observed in two

neighboring cells. That is, the received output is a portion of the actual signal

reflected by the target. Therefore, outputs of matched filter involve informa-

tion about the range of targets in each cell as well. Nevertheless, the sampled

output is the superposition of signals from multiple targets falling within the

cell. To find the number of targets and the corresponding estimates in each

resolution cell, the likelihood function is derived for multiple targets falling

inside the same cluster. The number of targets in each cell and an estimate

of states can be estimated by optimizing the derived likelihood function. The
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major benefit of the localization algorithm applied to the new model is to pro-

vide an estimate of range and angle together. Also, the new model guarantees

the observability of the measurements. Indeed, when targets move in time,

various combinations of targets locations in one resolution cell generate di-

verse signals in the output of matched filter. Consequently, two configurations

of targets generate different signals that may guarantee the observability of

the measurement model for tracking purposes.

The other contribution of this chapter is to develop a tracking algorithm

for the new developed measurement model. Two different options for the dy-

namic tracking of target states are considered. In the first method, tracking

using localization results is done while in the second it is done using the re-

ceived signals. The first method uses the estimated locations of targets as new

measurements for a separate tracker that uses prior information on targets.

When the number of targets exceeds the maximum bound, localization be-

comes inaccurate or even impossible. In addition, the localization results may

become unsatisfactory even with the number of targets being below the bound.

In both cases, the trackers performance is affected by the inaccuracy of local-

ization estimates. A multiple-hypothesis based tracking method is proposed

in this chapter to handle signal-level tracking for multiple unresolved targets.

A cell-to-target association matrix is defined to find possible assignments be-

tween targets and cells. Due to the uncertainty in the targets state estimates,

multiple associations are found according to the variance of estimation. The

nonlinearity in the signal model is also dealt with by using a UKF [55]. The

benefit of the proposed signal-level tracking method is to obviate the need for

a separate localization step to generate measurements for tracking. This issue

does not only relax the bound on the number of uniquely detectable targets,
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but also reduces the computational load of the tracker. The PCRLB is de-

rived in the final part of this chapter as a theoretical bound for performance

evaluation. The derived PCRLB is, then, represented as a suitable tool for

potential waveform design or sensor management for MIMO radar systems.

The rest of the chapter is organized as follows. Section 2.2 describes the

collocated MIMO radar, signal model, and different structures. Target local-

ization and maximum bound on the number of targets are discussed in section

2.3. Tracking algorithm as well as the PCRLB are also presented in section 2.4.

Simulation results comparing tracking and localization techniques are given in

Section 2.5.

2.2 Collocated MIMO Radars

The general structure of a collocated MIMO radar is shown in Figure 2.1,

where the array of transmitters and receivers are collocated. That is, the

distance between each two antennas is much shorter than the distance between

antennas and targets [7]. In addition, arrays may be also collocated such

that the distance between the centroid of two arrays is much shorter than

the distance towards the targets. Now, assume that M and N represent the

number of antennas in the array of transmitters and receivers, respectively.

The following assumptions are first made for the structure used in this chapter:

• Without loss of generality, the centroid of antennas is assumed to be at

the origin ([0 0]′).

• The number of targets initially present at each cell is less than the max-

imum bound. This is because at the initial step, existing techniques are
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Figure 2.1: The structure of a collocated MIMO radar with M transmitters
and N receivers [58]. Lines of different styles show diversity in the transmitted
signals.

used for localization and they are limited by the above bound. How-

ever, in the subsequent steps when the number of target in the same cell

exceeds the bound, our proposed technique works well.

• The total number of targets in the scenario is fixed. An algorithm is

being developed in order to tackle time varying number of targets.

• Objects are point sources modeled as Swerling type I [75] targets. That

is, target scatterers change every scan but remain constant during each

scan. Explanations to include target birth and death are presented else-

where [43].

Given signals in L snapshots, input signals are orthogonal meaning that

the covariance matrix of inputs is diagonal. The covariance matrix R is defined

as

R =
L
∑

l=1

s[l]sH [l] (2.1)
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where s is the M ×1 transmitted signal vector, and sH represents the complex

transpose of vector s. Assuming T targets in an arbitrary cell, the reflected

signal of the t-th target can be written in the following form [7]:

z[l] = αtAts[l] (2.2)

Here, z[l] is the reflected signal in the l-th snapshot, At is the system matrix,

and αt is the random scatterer of the t-th target. The random scatterer is a

complex number whose real and imaginary parts are both Gaussian-distributed

with mean and variance {α̂R
t , α̂

I
t}, σ2

α, respectively. The system matrix can be

found based on the collocated antennas and far enough targets as [7]

At = arta
t
t

(att)i = exp

(

−j 2π
λ

(sin(θt)xti + cos(θt)yti)

)

, i = 1, ...,M

(art )l = exp

(

−j 2π
λ

(sin(θt)xrl + cos(θt)yrl)

)

, l = 1, ..., N (2.3)

where λ is the wavelength, M and N are the number of transmitters and re-

ceivers, respectively, att and art are transmitter and receiver steering vectors,

respectively, θt is target DOA, and [xti, yti] and [xrl, yrl] denote the location of

the i-th transmitter and l-th receiver, respectively. Now, define rt as the t-th

target range with respect to the origin. In practice, the output of matched

filters is usually used instead of original signals because matched filter out-

puts are found based on the maximization of SNR in the output. Therefore,

the output of matched filter is more suitable for detection and localization

purposes. The output of matched filter is written as

Ec =
1√
L

L
∑

l=1

zc[l]sH [l] (2.4)

where zc is the received signal in the c-th cell written as

zc[l] =

T1
∑

t=1

zt[l] +w[l] (2.5)
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with T1 as the number of targets in the c-th cell and w as a complex additive

noise that is Gaussian-distributed with zero mean and variance σ2
w. Now, sup-

pose there are T2 targets in the (c+1)th cell. It is shown that the contribution

of each target can be observed in the sampled output of matched filter in the

c-th and (c− 1)th cell [89]. Defining ηc = VEC(Ec), it can be shown that the

output of matched filter is a summation of the contribution of each target to

the corresponding cell as [89]

ηc =

T1
∑

t=1

βtηt +

T2
∑

t′=1

(1− βt′)ηt′ +w′ (2.6)

where βt denotes the ratio of original targets reflection observed in the c-th

cell defined as

βt =
rt + rbin − rc

rbin
(2.7)

with rc as the radius of the c-th cell, and rt as the range of the t-th target.

Also, ηt are the matched filter outputs when only the t-th target is available

(e.g. based on the signal reflected by the t-th target only), and w′ is the addi-

tive noise that is Gaussian with zero mean and variance σ2
w′ . The variance of

additive noise is proportional to the transmitted power. Here, for simplicity,

the transmitted power is assumed to be one. However, the more the transmit-

ted power, the larger the variance of noise in the output of matched filter.

Remark 2.2.1 Different configurations of targets in a resolution cell provide

diverse received signals indicating that both range and angle information can

be implicitly observed in signal model. It has been shown in [6] that a dynamic

tracking problem including a motion model that describes the dynamic of tar-

gets, and range and bearing measurements satisfies the observability conditions

of a general discrete nonlinear state space model. For the model presented in
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this chapter, it was shown that the localization algorithm can find an estimate

of the number of targets and the target states (i.e., DOA, range and scat-

terer). Also, it will be shown in the next section that a unique estimate of

target states can be found as long as the number of targets in each cell does

not exceed the bound. In other words, the signal model can be imagined as a

discrete state space tracking model that indirectly provides range and angle in-

formation. Therefore, the observability of the model can be justified using the

same proof given for a general dynamic tracking problem [6]. Nonetheless, the

commonly-used signal models are non-observable in the sense that the received

signal is the same for different trajectories of targets that move in the same

direction (i.e., the same DOAs but different ranges). While these models are

suitable for detection or localization purposes, they cannot be used for target

tracking problems due to the lack of observability.

2.3 Target Localization and Parameter Iden-

tifiability

The following nonlinear model can be written for ηt described in the last

part [7]

ηt = αtdt (2.8)

with the following definition for the new system matrix

dt =
√
LVEC

(

AtUΓ
1
2

)

(2.9)

with Γ
1
2 being the square root of matrix Γ. The set of detected cells is defined

as Φ =
[

η1 · · · ηC
]

where C is the number of detected cells. A ML estimator

is used to estimate parameters of targets where the parameter vector of each
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target is defined as

Θt = [θt, βt, α̂
R
t , α̂

I
t ] (2.10)

Here, it is assumed that all variances are known, however, it does not affect

the generality of the proposed algorithm. Detected cells are classified to dif-

ferent clusters based on the distribution of targets in the surveillance region.

Each cluster may be composed of several cells occupied by a group of tar-

gets. As an example, consider a scenario with 3 targets. Figure 2.2 shows

some possible distribution of targets in 5 neighbor cells. The top-right sce-

nario provides all three targets in C2 leading to the formation of a cluster

involving {C1, C2}. However, in the bottom-right graph, there are two clus-

ters involving {C1, C2, C3} and {C4, C5}. Consequently, the distribution of

targets determines the number of clusters as well as the number of cells in

each cluster. Without loss of generality, it is assumed that there is only one

cluster including C + 1 resolution cells. The likelihood function is written as

p (Φ|Θ1, ...,ΘT ) = N (µ,Σ) where N denotes a normal distribution with mean

µ and covariance Σ being defined as

µ = [µ1, ..., µC ]

Σ =























Σ11 Σ12 0 0 0 0

Σ21 Σ22 0 0 0 0

0 0 . . . .

. . . . Σ(C−1)(C−1) Σ(C−1)C

0 0 0 0 ΣC(C−1) ΣCC























(2.11)

Individual means are found as

µi =



















∑T1

t=1(1− βt)η̂2t If c = 1
∑TC

t=1 βtη̂
C
t If c = C

∑Tc

t=1 βtη̂
c
t +

∑Tc+1

t′=1 (1− βt′)η̂c+1
t′ Otherwise

(2.12)
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Figure 2.2: Different clusters of cells based on the distribution of targets.

with η̂ct = α̂tdt and dt as the system matrix of the t-th target in the c-th

cell. The same expressions can be found for the covariance knowing that

E{(αt − α̂t)(αt − α̂t)
′} = 2σ2

α. Because targets affect two neighboring cells,

there is also a cross-correlation between adjacent cells. The diagonal terms in
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the above equation can be written as

Σcc =



















2
∑T2

t=1 σ
2
αD(dtd′t)(1− βt)2 + σ2

w If c = 1

2
∑Tc+1

t=1 σ2
αD(dtd′t)(1− βt)2 + 2

∑Tc

t′=1 σ
2
αD(d′td′t′)(βt′)2 + σ2

w If 1 < c < C

2
∑TC

t=1 σ
2
αD(dtd′t)(βt)2 If c = C

(2.13)

The cross-correlation terms can be similarly found as

Σc(c+1) = 2

Tc+1
∑

t=1

σ2
α⌈〉⊣}(dtd′t)(1− βt)(βt) (2.14)

where 1 ≤ c ≤ C − 1. Note that the scatterers of different pairs are statisti-

cally independent. Therefore, the covariance matrix is written as the diagonal

elements of dtd
′
t in order to consider the independence of different pairs. From

(2.11–2.14), it can be seen that the covariance matrix does not have any in-

formation about target scatterers. In addition, the i-th diagonal element can

be written as |dit|2, which is independent of DOAs and, consequently, the co-

variance matrix is independent of target DOAs. The covariance matrix and

the mean vector provide sufficient information for range, DOA, and scatterer

extraction from the output of matched filter. The negative log-likelihood func-

tion can be now defined as

Γ =
1

2
log |Σ|+ 1

2
(Φ− µ)Σ−1(Φ− µ)′ (2.15)

The goal is to find the set of parameters Θt and the number of targets at

each cell, Ti, in order to minimize the above cost function. To do so, a MDL

criterion [4] is used to find the correct number of targets in each cell. Different

steps for target localization, where the number of targets in each cell is also

estimated are summarized as follows:

1. Divide detected cells into separate clusters. Assume that the c-th cluster

includes C cells out of which only C − 1 cells contain a target.
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2. Given Tmax as the maximum number of targets in each cell, create a

(C − 1) × nT matrix I whose j-th column is an arbitrary permutation

of numbers between 0 and Tmax. The j-th column is defined as follows:

[I]j = [Ij1 I
j
2 . . . I

j
C−1]

′ (2.16)

where 0 ≤ Ijk ≤ Tmax

3. For n = 1 to nT do the following steps:

• Construct the cost function based on the number of targets given

by [I]n.

• Find an estimate of targets in different cells using common opti-

mization approaches such as Gradient based methods [13].

• Compute the cost of the n-th hypothesis using MDL criterion as

MDLn = −L(Θn) +
1

2
mΘn

logmy (2.17)

where L(.) is the likelihood of the n-th hypothesis, mΘn
is the num-

ber of independently adjusted parameters, and my is the dimen-

sion of observations. Here, it can be shown that my = MNC and

mΘn
= 4

∑C−1
c′=1 I

n
c′. The likelihood can be also found from (3.30).

4. Select the best hypothesis as

H∗ = min
n

MDLn (2.18)

Note that in above algorithm the H∗-th column of I represents the optimal

number of targets in each cell. The corresponding parameters can be also

found from the optimization step.
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2.3.1 Parameter Identifiability

Parameter identifiability has been discussed for MIMO radars in [59]. It

is shown that the maximum number of targets that can be uniquely local-

ized belongs to the set [M + N − 1,M × N − 1]. The main idea behind the

given bound is to count the maximum unique elements of system matrix At.

Depending on the distribution of antennas, the maximum number of uniquely

detectable targets changes in above given interval. However, the derived bound

is based on the previous model in which the contribution of a target is only

considered in its own cell. The question is whether the bound changes when

the model in this chapter is taken into consideration. It can be inferred from

(3.30) that Γ is a function of elements of Σ and η. In other words, the cost

function can be written as Γ = Γ1

(

Σ11, ...,Σ(MNC)(MNC)

)

+Γ2 (µ1, ..., µMNC)+

Γ3

(

Σ11, ...,Σ(MNC)(MNC), µ1, ..., µMNC

)

where Γis can be found after expand-

ing the original cost function and writing the function in terms of Σ and µ,

separately. Without the loss of generality, assume that C = 1 indicating that

all targets are located in one cell. The necessary condition for the uniqueness

of optimal parameter is the full rankness of Jacobian matrix [89]. Jacobian is

found with regard to covariance and mean because they are direct functions

of parameters. Defining g1 = [Σ11, ....,Σ(MN)(MN)] as the vectorized form of

covariance, the following equations are derived for Jacobian

G1 =























∂g1
∂Θi

1
. . . ∂g1

∂Θi
T

. . . . .

. . . . .

. . . . .
∂g(MN)2

∂Θi
1

. . .
∂g(MN)2

∂Θi
T























, G2 =























∂µ1

∂Θi
1

. . . ∂µ1

∂Θi
T

. . . . .

. . . . .

. . . . .

∂µMN

∂Θi
1

. . . ∂µMN

∂Θi
T























(2.19)
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where Θi
t denotes the i-th parameter of the t-th target. If the necessary con-

dition is not satisfied for none of the above matrices, there will be at least

two parameters Θ1 and Θ2 for which GiΘ1 = GiΘ2. In this case, the linear

approximation of cost function gives the same optimal value for two sets of

parameters, which indicated the lack of uniqueness. As discussed in the previ-

ous part, the covariance matrix does not include any information about target

scatterers because it is a function of σ2
α. Therefore, the columns of G1 become

zero when the parameter of interest is the target scatterer. In addition, the

covariance matrix does not give any information about DOAs. This indicates

that G1 cannot provide any unique solution alone because it is not full-rank.

Therefore, the uniqueness of solutions should be justified by exploring G2 that

is a function of all parameters. It can be shown that G2 is a function of system

matrix d because the mean vector is a factor of d or it is the summation of

different targets’ system matrices. Referring to (2.10) the maximum number

of unique elements in the system matrix is its lengthM×N . This leads to the

conclusion that the maximum number of unique columns in G2 cannot exceed

the given bound. Consequently, the number of parameters T should be less

than or equal to MN . The same analysis can be done for other parameters of

every target. It is also possible to make the same conclusion for targets lying

in multiple cells C > 1. In this case, the necessary condition is found for each

cell separately.

One important point should be noted here about the bounds found above.

The above bounds are the only necessary conditions for the uniqueness of

solutions. The geometry of antennas and targets in the surveillance region is

very important in the number of of targets that can be accurately estimated.

For example, although the maximum number of unique elements in d isM×N ,

the bound becomes tighter if antennas are distributed along with the x-axis.

36



Ph.D. Thesis - A. Gorji McMaster - Electrical & Computer Engineering

In this case, in [59], it was found that the range [M +N − 1,MN − 1] as the

maximum bound when the distance of antennas determines the actual bound.

2.4 Tracking Algorithm

The maximum bound in target localization may be an issue in real tracking

problems with MIMO radars. For example, targets may enter one resolution

cell in some time steps and, therefore, get unresolved for the radar system

when the total number of targets in a resolution cell exceeds the limit. Also,

even when the number is less than the bound, localization algorithm may not

provide good results due to the geometry of targets. To handle the limitation

on the number of targets prior information of targets’ movement can be used.

Assume the following common near constant velocity model for the t-th target:

xt(k + 1) = Ftxt(k) +Gtvt(k)

α̂t(k + 1) = α̂t(k) + δα (2.20)

where k is time step, vt(k) is the additive noise that is Gaussian-distributed

with zero mean and covariance matrix Qt, Ft and Gt are motion matrices, and

δα is the Gaussian additive noise with variance σ2
α modeling the uncertainty

in target scatterers. Motion matrices can be defined as [5] [6]

Ft =

















1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

















, Gt =

















T 2
s

2
0

Ts 0

0 T 2
s

2

0 Ts

















(2.21)

with Ts as the sampling time. In this chapter, the number of targets in the

surveillance region is assumed to be time-invariant. Dealing with time variant

number of targets happening due to new targets’ birth or available targets’
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death is difficult when MIMO radars are used as measurement models. This

topic is discussed in [43]. Given T targets and their estimates xt(k|k) at the k-
th time step, a Bayesian estimator finds the posterior probability distribution

of targets given measurements. Measurements are outputs of matched filters

defined as Φ(k) in the previous part. The key issues in multitarget tracking

using the underlying MIMO radar are:

• Grouping

• Data association

• Hypothesis generation

• Likelihood computation

• Estimates update

The first step of grouping is the classification of different targets based on their

location. Group target tracking has been extensively discussed in the literature

[69]. Here, targets are classified into different groups based on the associated

cell. Figure 2.2 shows how different groups of targets may be constructed. The

same grouping technique is done here at each time step. For simplicity, it is

assumed that there is one group (cluster) at the k-th time step. In scenarios

with more than one group, the superscript g is used for all parameters to

clarify the category of targets and measurements.

2.4.1 Data Association

Define Tt(k) as the t-th track at the k-th time step. Each track is rep-

resented by its sufficient statistics summarizing the information content of
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Elliptical Uncertainty

Target

Two Adjacent Cells

Figure 2.3: Elliptical uncertainty around the target makes it probable to be
associated with each of adjacent resolution cells.

measurements [56]. As an example, the t-th track can be represented for an

EKF estimator as

Tt(k) = {xt(k|k), Pt(k)} (2.22)

where xt(k|k), Pt(k) are estimated mean and covariance for the t-th track,

respectively. The set of all tracks at the k-th time step is written as

T (k) =
{

T1(k), ..., TN(k)(k)
}

(2.23)

where N(k) is the number of confirmed tracks at the k-th time step. Due to the

uncertainty in the estimated location of targets, a target may be assigned to

different cells. Figure 2.3 shows a target with its elliptical uncertainty region.

It can be observed that the target may be associated with any cell fallen in its

uncertainty region. A cell-to-track association matrix is now defined as
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γtc =







1 If the t-th track is associated with the c-th cell

0 Otherwise
(2.24)

A similar matrix is defined for track-to-cell association ξct. Unlike in common

tracking context in which each measurement is only associated with one track,

there is no such condition here over the rows of the association matrix. In other

words, an individual cell may be associated with multiple targets. Figure 2.4

shows a multi-target scenario where targets are located in one resolution cell.

The uncertainty ellipses of several targets may intersect an individual cell.

Consequently, this cell may be associated with multiple targets. However, the

point targets are inside the cell and, therefore, the following condition is still

valid:

0 ≤
C
∑

c=1

γtf ≤ 1, t = 1, ..., N(k) (2.25)

The t-th target is assigned to the c-th cell if the following inequality is satisfied:

(rt(k + 1|k)− rc)2
σ2
r,t

≤ ζ (2.26)

where rt(k + 1|k) is the predicted range of the t-th target, rc is the range of

the c-th cell, and ζ is the threshold. The threshold is found such that the cell

falls within the 95-percent confidence region [6]. A target may be assigned to

two cells if the uncertainty region around it straddles two adjacent cells. In the

above equation, σ2
r,t represents the variance of range estimation that can be

found by linearizing the range model and, then, using the predicted covariance

of estimation Pt(k + 1|k). The following equation is derived for σ2
r,t

σ2
r,t =

(xt(k + 1|k))2
(xt(k + 1|k))2 + (yt(k + 1|k))2σ

2
x,t +

(yt(k + 1|k))2
(xt(k + 1|k))2 + (yt(k + 1|k))2σ

2
y,t +

+
xt(k + 1|k)yt(k + 1|k)

(xt(k + 1|k))2 + (yt(k + 1|k))2σ
2
xy,t (2.27)
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Figure 2.4: A scenario with 9 targets where targets are in the border of two
cells and entering the other cell.
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where Pt(k + 1|k) =





σ2
x,t σ2

xy,t

σ2
yx,t σ2

y,t



, and xt(k + 1|k), yt(k + 1|k) denote the

predicted estimates.

2.4.2 Hypothesis Generation/Evaluation

The h-th hypothesis (Hh) is indeed a target-to-cell association for a group

of targets located in the underlying cluster. As targets may be assigned to more

than one cell, different hypotheses are formed for a multi-target scenario. To

evaluate each hypothesis, its likelihood is found and the one with the most

value is taken as the winner. The Likelihood function for the h-th hypothesis

can be written as

p(Φ|Hh) = p(Φ|γh, T h(k)) (2.28)

where T h(k) are those targets in the same cluster based on the h-th hypothesis.

Note that each association involves information about the location of targets.

According to Figure 2.2, targets may be grouped into different clusters because,

in the new model, the effect of targets in the neighbor cell is also taken.

Therefore, a target belonging to one cluster at the k-th time step may be

assigned to a separate cluster in the next step. The above likelihood can be

found using the expressions given in (2.13) and (3.30). The hypothesis with

the lowest negative likelihood is chosen as the winner and its estimates are

considered as new tracks.

2.4.3 Estimates Update

The states of targets are updated for each hypothesis separately. The

update step is to find a new set of tracks T h(k + 1) from the previous step

tracks T h(k), the h-th association and measurements at the k+1-th time step.
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The prediction step for each target can be implemented using motion models

given in the previous part. Define Tt(k+1|k) as the predicted state for the t-th

target. The same equation can be found for target scatterers using the motion

model given for scatterers. The predicted DOA and range for each target can

be computed as

θt(k + 1|k) = tan−1

(

yt(k + 1|k)
xt(k + 1|k)

)

(2.29)

and

rt(k + 1|k) =
√

(xt(k + 1|k))2 + (yt(k + 1|k))2 (2.30)

respectively. The predicted range coefficients βt(k + 1|k) can be easily found

with the above predicted range and (3.2). Therefore, the predicted parameter

vector can be written as Θt(k+1|k) = [θt(k+1|k), βt(k+1|k), α̂r
t (k+1|k), α̂I

t (k+

1|k)] and the parameter vector for all targets is indicated by Θ(k+1|k). Define

Θh(k + 1|k) ⊂ Θ(k + 1|k) as those targets falling in the same cluster based

on the h-th hypothesis. The posterior probability distribution of states given

measurements for the h-th hypothesis can be written as

p
(

T h
t (k + 1), αh

t (k + 1)|Y (1 : k + 1)
)

∝ p
(

T h
t (k + 1), αh

t (k + 1)|Y (1 : k)
)

×

× p
(

Y (k + 1)|T h
t (k + 1), αh

t (k + 1), Y (1 : k)
)

(2.31)

The first term in the right hand side characterizes prediction stage that can

be written as

p
(

T h
t (k + 1), αh

t (k + 1)|Y (1 : k)
)

=

∫

p
(

T h
t (k + 1), αh

t (k + 1)|Tt(k), αt(k)
)

×

× p
(

T h
t (k + 1), αh

t (k + 1)|Tt(k), αt(k)
)

dTt(k)dαt(k)

(2.32)

In (2.31–2.32), T h
t (k + 1) and αh

t (k + 1) denote new estimates according to

the h-th association. Also, Tt(k + 1) and αt(k) represent the elements of the
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best hypothesis in the previous time step. The above steps are usually called

tracking recursion in the literature (or the Chapman-Kolmogorov equations)

[80]. The tracking recursion rarely yields a closed-form solution [80] when

the measurement model is nonlinear. Due to nonlinearity in the measurement

model, traditional KF or EKF [6] provide poor results. In this chapter, a

UKF is used for states update. Due to the dimension of states that may

be considerably large when multiple targets fall in different cells, UKF is a

computationally feasible choice because other nonlinear filtering methods such

as particle filtering [3] suffer from the curse of dimensionality.

The measurement is the output of the matched filter from all cells. To

reduce the computational cost those cells that are far from the cluster of targets

can be discarded. The various steps of the UKF can be summarized as follows

where, for simplicity, superscript h has been removed:

• Sampling

Sampling in the UKF is deterministic and the number of samples is

fixed to 2× (nx) + 1 where nx is the dimension of states. Those targets

falling in the same cluster are updated together. Because the targets are

moving, the number of clusters is also changing over time. If there are Tc

targets in the c-th cluster, the number of samples will be 6Tc + 1 where

each target has 6 states consisting of its motion states, and the real and

imaginary parts of scatterer. For simplicity, assume that all targets are

now in the the same cell c. Each sample is generated using the following

procedure:

Xi
c(k + 1|k) =



















Xc(k|k) if i = 0

Xc(k|k) + ξ
√

Pc(k|k)i if 1 ≤ i ≤ nx

Xc(k|k)− ξ
√

Pc(k|k)i−nx
if nx + 1 ≤ i ≤ 2nx

(2.33)
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where Xc(k|k) and Pc(k|k) are state vector and covariance matrix of

estimated targets, respectively, falling inside the c-th cluster. Note that

above new states can be created by stacking states and covariances of

individual targets in the c-th cluster. Also, ξ =
√
nx + λ 1, and

√
Pci

denotes the i-th column of the square-root of matrix
√
P c.

• Time Prediction

Time prediction of states and corresponding covariances can be found

using the drawn samples as

Xc(k + 1|k) =

2nx
∑

i=0

wm
i X

i
c(k + 1|k)

Pc(k + 1|k) =

2nx
∑

i=0

wc
i

(

Xi
c(k + 1|k)−Xc(k + 1|k)

)

×
(

Xi
c(k + 1|k)−Xc(k + 1|k)

)′

(2.34)

with wm, wc as sampling weights defined as

wc
0 = wm

0 + (1− κ2 + ω), wm
0 =

λ

λ+ nx

wc
i = wm

i =
1

2(nx + λ)
(2.35)

Here, 0 < κ ≤ 1 is the primary scaling factor determining the extent of

the spread of the sigma-points around the mean [55]. Also, it is shown

that for Gaussian priors of states, ω = 2 is a good design.

• Measurement Update

It is probable that the generated sigma points fall inside the resolution

cells beyond of the current cluster of targets. This happens when there

is no prior information about the velocity of targets and, therefore, the

1
λ is a parameter adjusting the spread of samples drawn around the mean. More details

about different possibilities for the aforementioned parameter can be found in [55].
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initial velocity is set to zero. In this case, the predicted covariance Pc(k+

1|k) is so large that some sigma points are located in other cells. This

is the reason that the output of all cells are used as the measurement.

The sampled output of matched filter can be found as

µi
c(k + 1|k) = h

(

Xi
c(k + 1|k)

)

(2.36)

Here, h (.) is the nonlinear function of the matched filter output. Ac-

cording to (2.8) and (2.10), h is a function of the target DOA, scatterer,

and range coefficients. Therefore, the predicted output of the matched

filter is computed based on the predicted DOA, scatterer and range co-

efficients given by (2.34). Now, define Ŷ (k+1|k) as the predicted output

of matched filter. This vector holds the outputs for all resolution cells

in the surveillance region2. Each generated sigma point may provide the

outputs for different cells in the region. The range of each sigma-point

can be found using (2.30). Define Y i(k + 1|k) as the ith predicted mea-

surement and assume µi
c(k + 1|k) falls in Ci cells belonging to the set

Ci = {ci1, ..., cini
}. Then, the ith predicted measurement for different cells

can be defined as follows:

Y i
c′(k + 1|k) =







0MN If c′ does not belong to Ci

{µi
c(k + 1|k)}c′ Otherwise

(2.37)

Where 0MN is anM×N vector, and {µi
c(k+1|k)}c′ denotes the generated

sigma-point in the c′th resolution cell of the c-th cluster.3 The predicted

output can be now found as

Ŷ (k + 1|k) =
2nx
∑

i=0

wm
i Y

i(k + 1|k) (2.38)

2It is more efficient to discard those cells that are very far from the cluster of targets.
3Note that every cluster may be comprised of several resolution cells.
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The same can be also computed for the cross-correlation and covariance

matrices as

PY Y (k + 1|k) =

2nx
∑

i=0

wc
i

(

Y i(k + 1|k)− Ŷ (k + 1|k)
)(

Y i(k + 1|k)− Ŷ (k + 1|k)
)′

PXY =

2nx
∑

i=0

wc
i

(

Xi
c(k + 1|k)−Xc(k + 1|k)

)

(

Y i(k + 1|k)− Ŷ (k + 1|k)
)′

(2.39)

The Kalman gain can be also computed using covariance matrices found

above

K(k + 1) = PXY PY (2.40)

Finally, the updated estimates of mean and covariances are given as

Xc(k+1|k+1) = Xc(k+1|k)+K(k+1)
(

Y (k + 1)− Ŷ (k + 1|k)
)

(2.41)

Pc(k + 1) = Pc(k + 1|k)−K(k + 1)PY YK(k + 1)′ (2.42)

Note that Y (k + 1) is more general than Φ defined in the localization part

and involves outputs of detected cells. Here, outputs of other cells should be

also taken into consideration because the sigma points may fall in undetected

cells. The above steps can be done for each hypothesis separately. For differ-

ent hypotheses, different clusters may be constructed and, therefore, different

resolution cells may be assigned to targets. In this case, the likelihood of the

h-th hypothesis can be found by (2.31) where T h is the set of estimated states

based on the h-th hypothesis. Final estimates can be found based on the

following model-selection strategy:

T (k + 1) = max
h

p
(

Y (k + 1)|γh, T h(k + 1)
)

(2.43)
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2.4.4 PCRLB Derivation

The PCRLB defines the best MMSE for any unbiased estimator when the

estimator is the state of a moving target [?]. The PCRLB for a multitarget

tracking problem was suggested in [79] in terms of Riccati-like recursions as

J(k) = D22(k− 1)−D21(k− 1)
(

J(k − 1) +D11(k − 1)
)−1

D12(k− 1) (2.44)

with the following definitions for the unknown terms

D11(k − 1) = E
[

−∇X(k−1)
X(k−1) log p(X(k)|X(k − 1))

]

(2.45)

D12(k − 1) = E
[

−∇X(k−1)
X(k) log p(X(k)|X(k − 1))

]

= [D21(k − 1)]′

D22(k − 1) = D33(k − 1) + Jy(k) (2.46)

D33(k − 1) = E
[

−∇X(k)
X(k) log p(X(k)|X(k − 1))

]

(2.47)

where Jy(k) is measurement information defined as

Jy(k) = E

[

∂ log p(Y(k)|X(k))

∂X(k)

(

∂ log p(Y(k)|X(k))

∂X(k)

)′]

(2.48)

Here, Y(k) are the output of the matched filter and the expectation is also

taken with respect to outputs and target states. For simplicity, assume that

all T targets in the surveillance region are in the same cluster at the kth time

step. Therefore, X(k) is the stacked vector of all individual targets’ states as

X(k) = [(X1(k))
′ . . . (XT (k))

′]
′

(2.49)

With the following definition for individual target’s states

Xi(k) = [(xi(k))
′ α̂R

i (k) α̂
I
i (k)]

′ (2.50)

The distribution p(Y(k)|X(k)) is Gaussian with mean µ and covariance Σ

given by (2.11). It is also clear that both mean and covariance are functions
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of parameters of targets Θt defined by (2.10). It can be shown that the [a, b]th

element of the FIM is calculated as [89]

Jp
y = E

[

∂ log p(Y(k)|X(k))

∂Θa

(

∂ log p(Y(k)|X(k))

∂Θb

)′]

=

=

(

∂µ

∂Θa

)′

Σ−1 ∂µ

∂Θb
+

1

2
T
(

Σ−1 ∂Σ

∂Θa
Σ−1 ∂Σ

∂Θb

)

(2.51)

where Θ = [(Θ1)
′ . . . (ΘT )

′]′ is the stacked parameter vector, and Θa is the

a-th element of the vector. Derivatives of the mean and covariance matrix

with respect to parameters of the target can be found in the Appendix I. Now,

define the following matrix:

Ω =





























ω1 0 . . . 0

0 ω2 0 . . 0

. . . . . .

. . . . . .

. . . . . .

0 . . . 0 ωT





























(2.52)

Here, ωt is the Jacobian matrix of nonlinear function F : {θt, rt, α̂r
t , α̂

I
t} →

{xt, yt, α̂r
t , α̂

I
t} defined as

ωt =

















∂θt
∂xt

∂rt
∂xt

0 0

∂θt
∂yt

∂rt
∂yt

0 0

0 0 1 0

0 0 0 1

















(2.53)

where the derivatives are as defined in the Appendix 6.1. Based on above

matrices, a measurement’s contribution to the FIM is found as

Jy = ΩJp
yΩ

′ (2.54)
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The following simplified recursive equation is usually used in the literature to

update overall FIM [79]:

J(k) =
(

Γ∗ + F∗(J(k − 1))−1F ′
∗

)−1
+ Jy (2.55)

where F∗ and Γ∗ are augmented motion matrix and noise covariance, re-

spectively. Each matrix can be created as F∗ = diag({F 1
∗ , ..., F

′
∗}),Γ∗ =

diag({Γ1
∗, ...,Γ

′
∗}) where diag({.}) is the diagonalized form of all matrices in

the set. Each individual matrix is also written as

F t
∗ =











Ft 0 0

0 1 0

0 0 1











,Γt
∗ =











GtQtG
′
t 0 0

0 σ2
α 0

0 0 σ2
α











(2.56)

The Fisher matrix J(k) can be initialized using the FIM of localization (Jy) at

k = 0. Having J(k) at each time step, the PCRLB can be immediately found

by taking an inverse of FIM as PC(k) = (J(k))−1.

2.5 Simulation Results

A MIMO radar system with 2 transmitters and 2 receivers is designed for

simulations. The distribution of antennas is shown in Figure 2.5. The param-

eters of the surveillance region and the radar system are listed in Table 2.1.

In the following, the performance of localization and tracking are evaluated

based on the given structure.

2.5.1 Localization

The maximum number of uniquely detectable targets is 3 for the given

structure because the system matrix d has 3 unique elements. First, the
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performance of localization is evaluated for a single target case with parameters

being {820, π
4
, 3, 3}. The target SNR can be also found by

SNR =
MN |α|2
σ2
w

(2.57)

The optimization algorithm is implemented on the given scenario. Figure

2.6 shows the RMSE of estimation and the CRLB for different target SNRs.

Results show that the RMSE values match CRLB, especially when the target

SNR is high enough.

The algorithm is now tested for different numbers of targets in the same

cell. The target SNR is fixed to be 15dB for each target. Three targets are

added to the scenario with parameters presented in Table 2.2. In addition,

target scatterers are assumed to be the same for all targets (i.e., 15dB for

other three targets). Table 2.3 presents the RMSE of each target estimation

in different scenarios where each scenario involves different numbers of targets

with parameters of targets summarized in Table 2.2. For the 2-target scenario,

the RMSE is less than the range bin size (30m). However, the RMSE of target 1

has increased about 50% compared to the single target case. When the 3-target

scenario is considered, the RMSE is still lower than the range bin size but the

RMSE values for the first two targets show about 80% increase compared to

the 2-target case. The results in the 4-target scenario are not acceptable at

all because the RMSE exceeds the range bin size for all targets. For the first

target, a 600% increase is observed in the RMSE in comparison with the single

target case. The same behavior can be observed for other targets when the

number of targets in the cell varies. In other words, simulation results show

that the RMSE of localization increases when the number of targets in one

cell approaches the limit.

For multiple targets in the same cell, the geometry of targets also affects
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Table 2.1: Parameters of the radar system and surveillance region
Rmax σ2

w σ2
α rbin pfa L δα

Value 2000m 3 10−4 30m 10−4 128 10−4

the accuracy of estimation. Assume that for the 2-target case the first target

is fixed with the DOA shown in Table 2.3 but the DOA of the second target

varies. The RMSE of localization for every situation is presented in Table 2.4.

It can be observed that for DOAs around π
3
the localization error is higher

than the localization error for other DOAs. However, when targets become

well-separated in θ2 = 0, the localization RMSE gets about 50% smaller than

the previous case with θ2 =
π
3
.

The target RMSE may be more affected for scenarios with targets being

closely-spaced in the state space. In general, it can be concluded that even

with the number of targets in one cell below the maximum bound, the RMSE

may be affected by the poor geometry of targets in the cell. The number of

antennas plays an important role in the accuracy of target localization. Con-

sider the 3-target scenario where the MIMO radar discussed before leads to

poor results according to Table 2.3. The average RMSE of all targets is shown

in Figure 2.7 for the different numbers of transmitters varying between 2 and

10. It is clear from the graph that by increasing the number of antennas, lo-

calization RMSE can be improved significantly. That is, changing the number

of antennas has improved the maximum bound discussed before that indicates

that there is a relationship between the maximum bound and the accuracy of

target localization. The same improvement can be observed by distributing

antennas differently. In this case, the maximum number of unique elements in

the system matrix is increased that leads to an improvement in the maximum

bound.
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Figure 2.5: Distribution of transmitters and receivers in the surveillance region.
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Figure 2.6: CRLB and RMSE of localization for a single target case.

Table 2.2: Parameters of 3 extra targets added to the multiple-target scenario
DOA Range

Target 2 −π
6

830
Target 3 0 825
Target 4 π

5
820
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Table 2.3: RMSE results in meters for different numbers of targets in the same
cell

Single target 2-target 3-target 4-target
Target 1 6.6 10.32 27.1 42.83
Target 2 - 7.08 19.65 67.61
Target 3 - - 24 98.2
Target 4 - - - 98.1

Table 2.4: RMSE results for different geometry of targets (θ1 =
π
4
)

Target 1 Target2
θ2 = −π

4
8.48 7.68

θ2 = −π
6

10.32 7.08
θ2 = 0 7.83 5.63
θ2 =

2π
9

16.84 16.07
θ2 =

π
3

14.38 24.35

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Number of transmitters

R
M

S
E

 (
m

)

Figure 2.7: Average CRLB of localization for different number of transmitters.
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2.5.2 Tracking

The same structure used in the last part is taken for the MIMO radar

and surveillance region. Two different methods are used here for tracking.

First, localization algorithm is done at each time step in order to estimate the

location of available targets and corresponding scatterers. Localization results

are used as measurements for the tracking algorithm that is a simple KF. This

approach is called localization-level tracking. The second method is what was

discussed in this chapter where the outputs of the matched filter are directly

used for tracking purposes. This approach is called signal-level tracking.

A 2-target scenario is first considered. Simulation is done in 100 scans

where targets are first in different cells but enter the same cell after some

time. Figure 2.8 shows the generated trajectory for the 2-target scenario.

Signal and localization level tracking algorithms are applied to the generated

measurements. The RMSE and the PCRLB for both targets are shown in

Figure 2.9 after 100 Monte Carlo runs. It can be seen that there is a jump in

the localization-level tracking results around the time in which both targets

are in the same cell. It was discussed in the last part that the geometry of

targets plays an important role in the accuracy of the estimated RMSE of

target localization. In this scenario, when targets enter the same cell, RMSE

of localization is so large that a jump occurs in the tracking results. However,

this phenomenon is not observed in signal-level tracking because localization

results are not used in this approach.

Now, consider another scenario with three targets when all targets enter

the same cell after some time steps. Also, two targets are closely-spaced in

the state space making it harder to have good estimates of targets’ location.

Figure 2.10 shows the generated trajectories for the 3-target scenario. Results

of localization and signal level tracking as well as the PCRLB can be observed
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Figure 2.8: The generated 2-target scenario. Targets enter the same cell as
shown in the graph.

in Figure 2.11. It can be observed that at the beginning and the end of

simulation, results are the same because targets are located in the different

cells. However, localization-level tracking results are much worse during the

intervals with the targets being unresolved or closely-spaced in the state space.

The reason is the inaccuracy of localization results used as the measurements

for the tracking algorithm.

The simulation can be done for scenarios with more number of targets

in one resolution cell where localization cannot provide any reasonable results

due to exceeding the bound. Consider a scenario with 4 targets with generated

trajectories shown in Figure 2.12. The number of targets in three consecutive

cells is also given in Figure 2.13. It can be observed that there are four targets

available in cell c2, which indicates that the maximum bound is violated. The

PCRLB as well as the CRLB for the designed scenario are plotted in Figures

2.14 and 2.15, respectively. Figure 2.15 shows that CRLB suddenly increases

after t = 20 when all targets become unresolved. For the next time steps,
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Figure 2.9: RMSE and the PCRLB for the 2-target scenario.

CRLB goes to infinity as long as targets occupy the same cell. Nevertheless,

Figure 2.14 shows that the PCRLB still remains bounded in the period of time

that the number of targets exceeds the bound.

To see the performance of tracking using the method proposed in this

chapter, the signal-level tracking algorithm is applied to the generated data.

The RMSE results are presented in Figure 2.16 for all targets. Compared to

Figure 2.14, it can be observed that the RMSE follows the PCRLB. Also, it can

be inferred that the signal-level tracking has been able to provide an estimate

of target states in the time interval that all targets become unresolved.

From the simulations, the superiority of the proposed signal-level tracking

over the localization-level tracking can be observed. It is also possible to com-

pare the computational cost of both algorithms. Although the computational

complexity of the algorithm needs to be carefully analyzed in a separate work,

the goal here is to show how the signal-level approach can be operated faster

than the localization-level algorithm. Simulations have been done on a 3GHz

Intel-Core2 Duo processor with 2GB memory. The average simulation time for
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Figure 2.10: The generated 3-target scenario. Targets enter the same cell
where two of them are also closely spaced.

two tracking algorithms applied to the 3-target scenario is found separately.

The average simulation time for the signal-level tracking approach is 85.7 sec-

onds while the value for the localization-level approach becomes around 3773

seconds. In other words, the signal-level tracking method is about 45 times

faster than the localization-level method. The bottleneck in the simulation is

the localization step due to the time needed for nonlinear optimization. The

optimization procedure is done for the localization-level method at each time

step while it is only done once in the signal-level tracking in order to initialize

possible targets. Therefore, besides the better performance, the signal-level

tracking is much more computationally efficient than localization-level track-

ing is. This issue can be critical in scenarios with a large number of targets in

the same cluster.
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Figure 2.11: RMSE and the PCRLB for the 3-target scenario.

2.5.3 Impact of MIMO Parameters

It was shown in the last part that when the number of transmitters in-

creases, localization results are improved. With the fixed number of anten-

nas, the geometry of transmitters and receivers is also very influential on the

PCRLB. For example, the target structure may not be observable for some

geometries.

Consider the antenna distribution discussed in this chapter. Assume there
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Figure 2.12: The 4-target scenario where all targets enter the same cell for a
period of time.
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Figure 2.13: The number of targets in three consecutive cells for the 4-target
scenario.
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Figure 2.14: The PCRLB for the 4-target scenario.
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Figure 2.15: Localization CRLB for the 4-target scenario. CRLB begins to
diverge when targets become unresolved.
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Figure 2.16: RMSE of signal-level tracking for the 4-target scenario after 100
Monte Carlo runs.

are 2 targets in the surveillance region located at π
6
and 2π

3
, respectively. Other

parameters of targets such as range and scatterer are the same as in Table

2.2. Since sin(π
6
) = sin(2π

3
), the same matrix is found for each target. Now,

if only one of these two parameters are available, the localization algorithm

cannot distinguish above DOAs from one another and, hence, the targets are

not observable. The same can be found for other structures when the system

matrix is periodic. The system matrix is periodic with period θd if d(θ+θd) has

the same elements as d(θ). For the structure used in the last part, the period

is π
2
because elements of the system matrix are the same for θ1 = θ, θ2 = θ+ π

2
.

A similar thing may happen for other structures if for every 1 ≤ i ≤ MN ,

there is one 1 ≤ j ≤MN, j 6= i for which di(θ+ θd) = dj(θ). In this case, the

elements of the new system matrix are the same as the last one.

Besides the above problem, the distribution of antennas influences the

tracking performance. Define another geometry for antennas as shown in Fig-

ure 2.17. The average PCRLB for the 3-target case is shown in Figure 2.18
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Figure 2.17: The distribution of antennas in the new structure.

for the new MIMO structure and the one used for simulations. It can be seen

that the new structure has yield a lower PCRLB than the old one.
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Figure 2.18: The PCRLB for the new and old structure of MIMO radar.
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Chapter 3

Widely-Separated MIMO vs.

Multistatic Radars for Target

Localization and Tracking

3.1 Introduction

In this chapter, detection, localization, and tracking performance of widely-

separated MIMO radars is addressed. In particular, the contributions of this

chapter can be characterized as follows:

• A comparative study of detection performance:

The first contribution of this chapter is to present a comparison between

the detection performance of MIMO and multistatic radars. To do this,

the probability of detection is derived separately for each structure in

the presence of multiple-scatterer targets. It is observed that, for the

same target SNR, MIMO radars enjoy a higher probability of detection

in comparison with multistatic radars.
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• A new MH-based localization algorithm:

A new localization algorithm is developed specifically for multiple-scatterer

targets. While previous methods were proposed for the case where the

target amplitude is the same in all directions [33] [35] [34] [65], it is

shown that the performance of target localization is adversely affected if

targets become unobservable in certain transmitter-receiver pairs. This

chapter presents a MH-based algorithm to associate signals in different

transmitter-receiver pairs. The MH-based algorithm provides an esti-

mate of the number and the states of corresponding targets. Unlike

the previous works, the new MH-based algorithm can be also applied to

multitarget scenarios where targets become unobservable in an arbitrary

number or permutation of transmitter-receiver pairs. The MH-based

algorithm is also applied to the multistatic radar and its localization

performance is compared to MIMO radar results.

• A signal-level tracking algorithm:

A novel signal-level tracking algorithm is also proposed in this chapter. It

is shown that, although the received signals are Gaussian-distributed, the

states of the target appear in the covariance of the Gaussian function,

which makes the estimation problem nonlinear and non-convex. As a

result, standard filtering techniques such as EKF and UKF cannot be

used. A particle filter algorithm is then proposed as an alternative to deal

with the dynamic target tracking. Finally, the PCRLB is derived for the

MIMO radar system to justify the accuracy of tracking and localization.

The rest of this chapter is organized as follows: Section 3.1 presents the gen-

eral structure of a well-separated MIMO radar. The signal model is described

66



Ph.D. Thesis - A. Gorji McMaster - Electrical & Computer Engineering

in this section along with matched filtering and measurement generation. Tar-

get detection for MIMO and multistatic radars is discussed in this section

as well. An MH-based algorithm for multitarget localization is proposed in

Section 3.2. In addition, a particle filter-based method is presented for multi-

target tracking problems. After the PCRLB derivation in Section 3.3, Section

3.4 presents simulation results for the MIMO and multistatic configurations.

Using several simulations, the performances of both structures in terms of

detecting, localizing, and tracking multiple-scatterer targets are evaluated.

MIMO Radars with Widely-separated Anten-

nas

Consider a MIMO radar system comprisingM transmitters andN receivers

where the positions of the i-th transmitter and the j-th receiver are denoted

by xti and xrj , respectively, with x = [x y]′. The l-th target follows the

classical Swerling type I model [75] extended for the multiple sensor case in [25].

Each target is modeled by an infinite number of random scatterers with the

reflectivity factor being denoted by ζ lp [25]. It is assumed that the target and

reflectivity factors remain constant during each scan time while they could

change from one scan to another. The narrowband waveforms transmitted by

the i-th antenna, si(t), is assumed to be a complex signal with 1
T

∫

T
|si(t)|2dt =

1 , where T denotes the duration of the emitted pulse. Note that each pulse

may consist of several sub-pulses in order to capture the statistical properties

of the target properly. Given Ns as the number of snapshots (sub-pulses), T

can be written as T = Ns × Ts where Ts denotes the duration of every sub-

pulse. Defining τ as the pulse-width, Ts can be defined as Ts = C×τ . Here, C
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corresponds to the number of resolution cells. It is assumed that transmitters

send orthogonal signals with the following condition:

∫

T

si(t)s
∗
j (t)dt = δ(i− j); ∀i, j (3.1)

where ()∗ is the complex conjugate operator and δ(.) is the Dirac delta function.

The received signal in the n-th antenna can be written as the superposition

of the reflected signals from all scatterers. The effect of the infinite number

of scatterers was explored in [25] by integrating over all reflectivity factors.

The non-coherent baseband equivalent received signal in the n-th antenna for

a single target can be written as

yn(t) =

M
∑

m=1

hnmsm(t− τnm) + wn(t) (3.2)

where τnm denotes the time delay of the signal emitted by the m-th trans-

mitter, reflected by the target, and received by the n-th antenna. Also, wn(t)

corresponds to a complex white Gaussian additive noise with zero mean and

variance σ2
w. The time delay in the above equation can be written as

τnm =
1

c
(
√

(x(t)− xtm)2 + (y(t)− ytm)2 +
√

(x(t)− xrn)2 + (y(t)− yrn)2)(3.3)

with [x(t); y(t)]′ being the location of the target. The unknown term hnm

in (3.2) corresponds to the target scatterer for the (n,m)-th pair of trans-

mitters and receivers. It is shown in [25] that the output signal in (3.2) is

Gaussian-distributed with zero mean and unity variance. It also assumes that

the variance is the same in all pairs. This assumption might be violated if

different pairs of transmitters and receivers capture different aspects of the

target. In general, it is assumed that hnm ∼ CN (0, α2
nm) where α2

nm de-

notes the reflection power in the direction of the (n,m)-th pair. Now, define

H̄ = [h11 . . . hN1 . . . hNM ]. It is also shown in [25] that if transmitters and
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receivers are widely separated in the surveillance region, H̄ ∼ CN (0, ᾱ) with

ᾱ = diag ([α2
11 α

2
21 ... α

2
NM ]′). In other words, distributing antennas widely

enough in the surveillance region provides M ×N independent paths.

3.1.1 Matched-Filtering and Measurement Model

It is shown in [25] that the output of the matched filter is the sufficient

statistics for target detection provided that the additive noise level is known.

The output of the matched filter can be obtained for each snapshot in the

(n,m)-th pair as

ηsnm(t) =
1

τ

∫

Ts

yn(λ)s
∗
m(t + λ)dλ (3.4)

Assuming that each transmitted signal is a unit-power pulse with width τ and

substituting yn from (3.2) in (3.4), the following equation can be obtained for

the output of the matched filter [89]:

ηsnm(t) = hsnmΛτnm
(τ) + ŵnm(t) (3.5)

where hsnm is a realization of the target scatterer at the s-th snapshot, and

Λτnm
(τ) denotes a triangular function defined by [89]

Λτnm
(τ) =



















t−τnm+τ
τ

τnm − τ ≤ t ≤ τnm

− t−τnm−τ
τ

τnm ≤ t ≤ τnm + τ

0 otherwise

Also, ŵnm(t) is a complex white Gaussian noise with zero mean and variance

σ2
w. Sampling the output of the matched filter every τ seconds, the sampled

output is now defined as ηnm(c) by taking an average over all received signals

in different snapshots as

ηnm(c) =
1

Ns

S
∑

s=1

[ηsnm(cτ)] (3.6)
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Here, ηsnm(cτ) is obtained as

ηsnm(cτ) =



















βnmh
s
nm c = cnm

(1− βnm)hsnm c = cnm − 1

0 otherwise

+ ŵnm (3.7)

where cnm denotes the index of the resolution cell within which the target

falls. In addition, βnm is the ratio of the target complex amplitude that can

be found using the triangular similarity as

βl
nm =

τnm + τ − τcnm

τ
(3.8)

with τcnm
= cnm × τ . Signals are normally received and processed in several

snapshots in order to smoothen the output of the matched filter, which reflects

the statistics of the target more accurately. Defining η∗ = [ηnm(cmn); ηnm(cnm−
1)], it can be shown that η∗ is a complex Gaussian random variable with

η∗ ∼ CN (0, σ2
wI2×2+Σnm) where I2×2 is an identity matrix, and Σnm is defined

as

Σnm =





β2
nmα

2
nm βnm(1− βnm)α2

nm

βnm(1− βnm)α2
nm (1− βnm)2α2

nm



 (3.9)

For other cells that are not occupied by any target, ηnm(c) ∼ CN (0, σ2
w). In

the multitarget case, the distribution of η becomes more complicated. For a

scenario with L targets occupying C∗
nm consecutive resolution cells, those cells

belonging to the set {c1, ..., cC∗

nm
} with Nci being the number of targets in the

(ci)-th cell. The stacked vector η∗ is now defined as

η∗ = [ηnm(c1 − 1) . . . ηnm(cC∗

nm
)]

Again, η∗ is Gaussian-distributed with zero mean and covariance matrix σ2
wIC∗

nm+1+

Σnm. The covariance matrix Σnm can now be written as

Σnm = [O1 O2 . . . OC∗

nm+1]
′ (3.10)
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where each Oi term is defined as

Oi =







[

0 . Σii Σi(i+1) 0 . 0
]′

i 6= C∗
nm + 1

[

0 0 . . . Σ(C∗

nm+1)(C∗

nm+1)

]′

otherwise
(3.11)

with Σii and Σi(i+1) being given by

Σii =



















∑Nc1
l=1 (1− βl

nm)
2α2

nm(l) i = 1
∑

Nc
C∗
nm

l=1 (βl
nm)

2α2
nm(l) i = C∗

nm + 1
∑Nci

l=1(β
l
nm)

2α2
nm(l) +

∑Nci−1

l′=1 (1− βl′

nm)
2α2

nm(l
′) otherwise

(3.12)

Σi(i+1) =

Nci+1
∑

l=1

(1− βl
nm)β

l
nmα

2
nm(l) (3.13)

Several clusters of consecutive cells that are occupied by multitargets may be

found. In this case, η∗c′ is defined for each (c′)-th cluster separately and the

covariance matrix is similarly defined according to the presence of targets in

resolution cells.

3.1.2 Target Detection

Define the signal vector as y = [y1 y2 . . . yN ]
H with H being the Hermition

transpose. Hypotheses H0 and H1 are also defined as events corresponding to

the absence and presence of the target, respectively. The optimal likelihood

ratio test is provided for target detection as [25]

γ =
log p(y|H1)

log p(y|H0)
≷H1

H0
δ (3.14)

where δ denotes the threshold and γ is the Neyman-Pearson likelihood ratio.

It can be shown that the above likelihood ratio test is equivalent to

γ = ||η||2 ≷H1
H0
δ (3.15)
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where η = [η11 η21 . . . ηNM ]H . Here, δ is set to ensure a certain probability of

false alarm (Pfa). The complex output of matched filter can be described by

the following distribution:

ηnm ∼







ŵnm H = H0

hnm + ŵnm H = H1

(3.16)

Therefore, for H = H1, ηnm ∼ CN (0, σ2
w + α2

nm). It can be shown that the

distribution of |ηnm|2 is χ2
2 (Chi-square) with two degrees of freedom [66]. The

distribution of the test statistics γ was found in [25] with the variance of target

scatterers being the same in all directions. In this case, γ ∼ (σ2
w + α2)χ2

2MN

with α2 being the assumed variance. However, for the multiple scatterer case,

the distribution cannot be calculated using the procedure in [25]. Here we

derive the expressions for the distributions of the test statistics for the multiple

scatterer case. Assume the set of variances is classified into G groups where

Ng corresponds to the number of repeated variances in the g-th group. Also,

assume that α2
g is the variance assigned to the g-th group. The test statistics

can be now written as

γ =

G
∑

g=1

||ηg||2

with ηg being the test statistics corresponding to the g-th group. According

to the derived distribution for the equal-variance case, each ||ηg||2 ∼ (σ2
w +

α2
g)χ

2
2NG

and, therefore, the distribution of the test statistics under the above

assumptions is obtained as

Q(γ) =
G
∑

g=1

(σ2
w + α2

g)χ
2
2Ng

(3.17)
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The analytical form of Q was found in [11] for MIMO communication systems.

It has been shown that Q can be written as

Q(γ;G,α2
1, ..., α

2
G) =

G
∏

g=1

1

α
2Ng
g

G
∑

g=1

Ng
∑

l=1

Γl,g,G

(Ng − l)!
(−γ)Ng−le

− γ

α2
g (3.18)

with the following definition for Γl,g,G

Γl,g,G = (−1)Ng−1
∑

v∈Ξl,g

∏

j 6=g





vj +Ng − 1

vj





(

1

α2
j

− 1

α2
g

)−(Ng+vj)

(3.19)

Here, v = [v1 v2 . . . vG]
′ and the new Ξl,g can be defined as the set of all

partitions of (l − 1) members as

Ξl,g =

{

[v1 v2 . . . vG] ∈ ZG|
G
∑

j=1

vj = l − 1, vg = 0, vj ≥ 0∀j
}

Given the above set, Γ can be found for every combination of l, g based on

the vector G = [N1 N2 . . . NG]
′. The general distribution of (3.18) can be

simplified into

Q(γ;G,α2
1, ..., α

2
G) =

G
∏

g=1

1

α
2Ng
g

G
∑

g=1

Ng
∑

l=1

(−1)Ng−lΓl,g,Gα
2(Ng−l+1)E(γ;Ng−l+1,

1

α2
g

)

(3.20)

where E(γ;Ng− l+1, 1
α2
g
) denotes the well-known Erlang distribution [24] with

parameters k = Ng − l + 1 and λ = 1
α2
g
. Now, back to the original detection

problem, the probability of detection can be defined as

PMIMO
d = prob (γ ≥ ζ |H1) (3.21)

where the threshold ζ can be found with respect to the assigned probability

of false alarm as

PMIMO
fa = prob (γ ≥ ζ |H0) (3.22)
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Simplifying (3.21), the following expression for the threshold is derived [25]:

ζ = σ2
wF

−1
2MN (1− Pfa) (3.23)

where F−1
2MN denotes the inverse cumulative χ2 distribution with 2MN degrees

of freedom. The probability of detection can be now written as

PMIMO
d = 1− prob (γ ≤ ζ |H1) =

= 1−
G
∏

g=1

1

α
2Ng
g

G
∑

g=1

Ng
∑

l=1

(−1)Ng−lΓl,g,Gα
2(Ng−l+1)CE(ζ ;Ng − l + 1,

1

α2
g

)

(3.24)

Here, CE(ζ ;Ng − l + 1, 1
α2
g
) is the cumulative function of Erlang distribution

that can be simply written as [24]

CE(ζ ;Ng − l + 1,
1

α2
g

) = 1−
Ng−l
∑

n=0

e
− ζ

α2
g

( ζ

α2
g
)n

n!
(3.25)

Note that the expression given by (3.25) is a generalization of the detection

probability derived in [25]. Our new derived detection probability can be used

for a multiple scatterer target scenario.

3.1.3 Probability of Detection for Multistatic Radars

The local probability of false alarm and the probability of detection for

every pair can be computed using the Swerling equations as [75]

P p
fa = exp

(

−ζ
2

2

)

P p
d = exp

(

− ζ2

2(1 + dp)

)

(3.26)

with dp being the target SNR in the p-th pair of transmitters and receivers.

Now, a probability vector Pd =
[

P 1
d P

2
d . . . P

MN
d

]′
is defined to characterize
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the local detection information for each pair. The m/n logic can be used to

calculate the total probability of detection. The following m/n logic can be

applied to the detection problem [32]:

P tot
d =

MN
∑

n=n∗











n−n∗

∑

p=0

(−1)p




p

n













∑

v∈Θn,MN,0

[

∏

v

P v
d

]











(3.27)

Here, Θn,MN,0 denotes all possible v permutations of the set [1 2 . . . MN ]′.

A recursive algorithm was proposed in [30] to facilitate the computing of the

above permutations. The recursive algorithm can be summarized as

∑

v∈Θn,MN,0

[

∏

v

P v
d

]

=

MN−v+1
∑

a1=0

P a1
d

(

MN−v+2
∑

a2=a1

P a2
d

(

....

MN
∑

av=av−1

P av
d

))

(3.28)

3.2 Target Localization and Tracking

For a multitarget scenario, the state of the l-th target at the k-th time step

is defined by xl(k) = [xl(k) ẋl(k) yl(k) ẏl(k)]′ with positions and velocities in

the x and y direction, respectively. The parameter vector of the l-th target

can be also defined as

θl = [βl
11 . . . β

l
MN (αl

11)
∗ . . . (αl

MN )
∗]H (3.29)

where βl
ij denotes the signal ratio of the l-th target (according to (3.8)) in

the (i, j)-th transmitter-receiver pair. The main problem in target localization

using MIMO radars is that targets might become unobservable in certain pairs

of transmitters and receivers. Also, there is no information available about the

index of observable pairs or variance of scattering a priori. To handle the above

problems, a multiple hypothesis algorithm is proposed here to take all possible

cell combinations in different pairs into consideration. The main feature of the

new MH-based algorithm is its capability to deal with multitarget scenarios
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with multiple-scatterers where there might be no signal from targets in certain

transmitter-receiver pairs.

3.2.1 An MH-based Algorithm for Target Localization

In a multiple hypothesis-based algorithm [12], a hypothesis can be defined

as an event showing the potential presence of a target in the f -th resolution

cell. The implementation of the MH-based algorithm can be fundamentally

divided into four steps as described below:

• Hypothesis Initialization:

Without loss of generality, the first two pairs are used for hypothesis

initialization.1 Define ηp(f) as the matched filter signal received in the

p-th pair and f -th resolution cell. There are two possible approaches to

extract the necessary measurements for localization. The first approach

is to use the received signals directly. Note that the received signal is

Gaussian-distributed with zero mean and covariance matrix given by

(3.10). However, targets’ information is embedded in the covariance

matrix, which is also nonlinear with respect to the target parameters.

Therefore, the traditional EKF or UKF algorithms [55] cannot be applied

here. Although nonlinear filtering methods such as particle filtering can

be applied to the localization problem, the huge computational load of

the particle filter algorithm combined with the MH-based method can be

prohibitive. Therefore, an alternative approach where scatterer and ratio

measurements are first extracted from the received signals is proposed.

Now, define β̃p(f) and α̃p(f) as the estimates of a potential target’s

signal ratio and scatter standard deviation in the f -th cell, respectively.

1It is possible to use more initial pairs for hypothesis generation. However, there is a
trade-off between the number of initial pairs and the computational cost.
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The above estimates can be found by optimizing the likelihood function

given by

Lp(f) = − log
S
∏

s

(

p(φs
p(f)|H1)

p(φs
p(f)|H0)

)

(3.30)

where S is the number of snapshots, φs
p(f) =

[

(ηsp(f − 1))∗ (ηsp(f))
∗
]H

,

and two unknown probability density functions are defined as

p(φs
p(f)|H1) = CN (φs

p(f); 0,Σp(βp(f), αp(f))) (3.31)

p(φs
p(f)|H0) = CN (φs

p(f); 0, σ
2
wI2) (3.32)

Here, Σp(βp(f), αp(f)) denotes the covariance matrix of the received sig-

nal given in (3.9) where the ratio and standard deviation of the target

scatterer are provided as input parameters for the covariance matrix.

The log-likelihood given by (3.31) is a function of target parameters.

Therefore, a nonlinear optimization problem can be defined in order to

find an estimate of defined parameters as follows:

(β̃p(f), α̃p(f)) = argmin
β,α
Lp(f), 0 ≤ β ≤ 1, 0 ≤ α ≤ αmax (3.33)

A suitable gradient-based nonlinear optimization technique [13] may

be used to solve the above problem. The estimated results can be

represented by two vectors Φp = [β̃p(1) β̃p(2) . . . β̃p(F )]
′ and Ψp =

[α̃p(1) α̃p(2) . . . α̃p(F )]
′, respectively. Now, to initialize the hypotheses,

define Cf1f2 as a potential combination of cells in the first two pairs where

f1 and f2 correspond to the f1-th and f2-th resolution cells in the first

and second pair, respectively. The range measurement for each of the

above represented cells can be written as

ri(fi) = R(fi − 1) + β̃i(fi)rbin + ni(fi), i = 1, 2 (3.34)
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where R(fi−1) = (fi−1)rbin and ni(fi) denotes the range measurement

additive noise that is Gaussian-distributed with zero mean and variance

σ2
r . The range measurement variance can be found as

σ2
r = (rbin)

2σ2
β

Here, the variance σ2
β of the ratio estimate can be assumed to be equal

to the CRLB of estimation errors. The CRLB of localization will be

derived in the next section. We assume that the CRLB is now available

and, therefore, the range variance can be obtained analytically. Given

r1(f1) and r2(f2) as the range measurements, the (f1, f2) combination

is accepted as a potential target estimate if the ellipsoids constructed

by the geometrical placement of r1(f1) and r2(f2) intersect. Referring

to Figure 3.1, it can be observed that there is no intersection for the

combination on the right side while ellipsoids on the left intersect. The

h-th hypothesis is now created if a combination of cells is validated using

the above intersection-finding procedure. The h-th hypothesis can be

defined as

H0(h) = {rp1(fp1), rp2(fp2), C0(f1, f2)} (3.35)

where C0(f1, f2) denotes the cost of the hypothesis. Here, the cost of

each hypothesis is equal to the likelihood given by (3.30). Note that

indices p1 and p2 in (3.35) indicate that any arbitrary pairs might be

chosen for the initialization stage.

• Estimate Initialization:

Without loss of generality, three pairs of transmitters and receivers are

chosen to initialize target estimates although any other number of initial

pairs can be also considered with more computation. The h-th hypoth-

esis is created by assigning the h′-th initial hypothesis to the fh-th cell
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Figure 3.1: Geometrical placement of target location constructed from the
range measurements of the first two pairs of transmitter-receiver.

of the current pair provided that the fh-th cell intersects the ellipsoids

created by the cells belonging to the h′-th hypothesis. In this case, the

new hypothesis can be written as

Hp(h) =
{

xh
p ,Σ

h
p , rp(fh), Cp(fh),H0(h

′)
}

(3.36)

where xh
p and Σh

p are the estimated state and the corresponding covari-

ance of the hypothesized target, respectively. The new cost can be also

found as

Ch
p (fh) = p∗ (φp(fh))× Ch′

0 (fh′

1
, fh′

2
) (3.37)

where

p∗ (φp(fh)) =
p (φp(fh)|H1)

p (φp(fh)|H0)
(3.38)

with likelihoods being found using (3.31). In order to estimate the state

of the target, the range measurement vector of the new hypothesis is first
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written as rhp = [rp(fh) rp2(fh′

2
) rp1(fh′

1
)]′. The Least Square (LS) method

[6] can be used to find an estimate of the target state xh
p = [xh yh]′ and

the associated covariance. The new h-th hypothesis, hence, includes

the information of a potential initialized target. The set of initialized

estimates are updated in the subsequent pairs in order to provide the

final estimates of available targets.

• Update Step:

Given Hp(h
′) as the h′-th initialized hypothesis, the first step is to find

those measurements in the (p + 1)-th pair that can be associated with

the h′-th hypothesis. The fh-th cell is assigned to the h′-th hypothesis

if the following inequality holds:

(rp+1(fh)− r̃h′

p+1)
2

σ2
r (h

′)
≤ λ (3.39)

Here, r̃h
′

p+1 denotes the predicted range of the h′-th hypothesis that can be

found by the range equation of (3.3) with xh
p being used as the estimated

state. The range variance σ2
r(h

′) can be also found by linearizing the

range equation around the estimate of the target as

σ2
r(h

′) = ζ1Σ
h′

p (xx) + ζ2Σ
h′

p (yy) + ζ3Σ
h′

p (xy) +
r2bin
12

(3.40)

with

ζ1 =
(xh

′

p )
2

(xh′

p )
2 + (yh′

p )
2

(3.41)

ζ2 =
(yh

′

p )
2

(xh′

p )
2 + (yh′

p )
2

(3.42)

ζ3 =
xh

′

p y
h′

p

(xh′

p )
2 + (yh′

p )
2

(3.43)

Assuming that the fh-th cell falls inside the gate of the h′-th hypothesis,
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the new hypothesis is created as

Hp+1(h) =
{

xh
p+1,Σ

h
p+1, rp+1(fh), Cp+1(fh),Hp(h

′)
}

(3.44)

The new state xh
p+1 and the associated covariance Σh

p+1 can be obtained

using an Extended Kalman Filter (EKF) with rp+1(fh) and r̃h
′

p+1 being

the received and predicted measurements, respectively, and α2
p+1(fh) as

the scatterer measurement. Defining x̄h′

p = [(xh′

p )
′ αh′

p ]
′ as the new ex-

tended state and Σ̄h
p+1 =





Σh
p+1 0

0 σαh
p+1



 as the associated covariance

(with σα being the variance of scatterer estimate), the updated state and

covariance can be obtained using the standard Extended Kalman equa-

tions [6] with the range equation of (3.3) as the nonlinear measurement

model. Finally, the cost of the new hypothesis can be found as

Ch′

p+1(fh) = Ch
p (fh′)p∗ (φp+1(fh)) (3.45)

where p∗ (φp+1(fh)) is found from (3.38).

• Pruning:

Once all hypotheses are initialized for the p-th pair, a pruning step can

be followed in order to remove those hypotheses that are less probable

to have originated from a potential target. Hypotheses may be pruned

based on the quality (cost) or the m/n association logic [5] [12]. The

first approach is based on the normalized cost of each hypothesis. This

method is not robust, especially for multiple-scatterer targets when the

target is not observable in certain transmitter-receiver pairs. In this case,

the normalized cost declines significantly and the associated hypothesis

is removed. To avoid the removal of valid hypotheses, an (m/n) logic is

combined with the quality based method. Defining a binary variable H
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to determine the status of the h-th hypothesis, the following logic can

be presented:






Hh = 1 Ch
p (fh) ≥ ω

∧ nh
p

p
≥ ζ

Hh = 0 otherwise
(3.46)

where nh
p denotes the number of pairs in which the h-th hypothesis is

assigned to a measurement, and ω and ζ are the quality and the logic

thresholds, respectively. Note that the selection of ζ depends on the

chosen m/n logic.

• Global Hypothesis Selection:

All hypotheses must be compatible in a general MH-based algorithm [12].

For our application, the compatibility of hypotheses is checked when

the data from all pairs are processed. Assuming HMN as the set of

all survived hypotheses, compatible hypotheses that do not have any

common associated measurement are drawn. Defining ChMN as the set of

all cells assigned to the h-th hypothesis, two hypotheses h1 and h2 are

compatible if

Ch1
MN ∩ Ch2

MN = {∅} (3.47)

If there are some common cells shared by two hypotheses, the one with

the highest likelihood is selected. Finally, the remaining hypotheses

H∗
MN are considered as the set of global hypotheses with no common

associated cell. The number of global hypotheses represents the number

of detected targets in the surveillance region.

Given G as the number of global hypothesis, the g-th hypothesis representing

the presence of a real target is defined by

Hg(h) =
{

xh
g ,Σ

h
g , Chg

}

(3.48)

with Ch
g as the final cost assigned to the g-th hypothesis.
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3.2.2 Tracking Algorithm

The state of the l-th target is defined as xl(k) = [xl(k) ẋl(k) yl(k) ẏl(k) αl
11(k) . . . α

l
MN(k)]

′

. The dynamical model to characterize the motion of the l-th target can be

represented as

xl(k) = F̄xl(k − 1) +





Γw(k)

wα(k)



 (3.49)

with F̄ =





F 0

0 IMN



, w and wα being Gaussian noises with zero mean

and covariance matrices





σ2
1 0

0 σ2
2



 and σ2
αIMN , respectively. The standard

parameters of the motion model (i.e., F,Γ) can be also determined according to

the type of the motion assumed for each target (e.g., nearly constant velocity,

nearly constant acceleration, or constant turn models [6]). The measurements

are the outputs of matched filter that can be re-written as

ηnm(k) ∼ CN (0, σ2
wIC∗

nm
+ Σnm) (3.50)

with Σnm being defined by (3.10). Also, C∗
nm denotes the number of adjacent

resolution cells occupied by targets. Although it is possible to extract ratio

and scatterer measurements for the tracking step again using the optimization

technique given by (3.33), the direct approach with the output of matched

filter being used as the output signals is preferred. Potential advantages of

direct method compared to the measurement-level (indirect) method were also

discussed in Chapter 2.

Nonlinear filtering using Particle Filter (PF) [3] has been recently applied to

several tracking and estimation problems [80]. Assume that an initial estimate

of targets can be obtained using the localization algorithm. Initial estimates

are represented by xl(0) with the associated covariance Σl(0). Initial particles
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and associated weights can be generated using

xl
i(0) ∼ N (xl(0),Σl(0)), w̃l

i(0) =
1

Np

(3.51)

with Np being the number of particles and w̃ the normalized particle weight.

It has to be also noted that, in multitarget cases, two targets may be sepa-

rated in the state space while they fall in the same or adjacent cells for certain

transmitter-receiver pairs. In this case, the covariance matrix in (3.10) has

to be found by considering the effect of multiple targets that fall in the same

cluster of cells. Therefore, states of those targets in the same cluster have to

be augmented into one state vector for particle generation. Defining xl
i(k) and

w̃l
i as the i-th generated particle and the associated weight of the l-th target in

the k-th time step, respectively, different steps of the proposed PF algorithm

for widely-separated MIMO radar systems are discussed in Algorithm I.

Remark: Each class of cells is constructed according to the number of ad-

jacent cells potentially occupied by a number of targets. For example, given

three generated particles occupying resolution cells c1 = 20, c2 = 30, and

c3 = 29, respectively, there are two classes with targets {1} and {2, 3} located
in each class, respectively. Referring to (3.52), the number of classes can be

found based on the given states
{

x1
i1
, ...,xl

i, ...,x
L
iL

}

.

3.3 Posterior Cramer-Rao Lower Bound

The PCRLB on the state estimation accuracy can be written in terms of

Ricatti-like recursions [79] as

J(k) = D22(k− 1)−D21(k− 1)
(

J(k − 1) +D11(k − 1)
)−1

D12(k− 1) (3.56)
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Algorithm 1 The Tracking Algorithm for MIMO Radars

Initial States:
{

xl
i(k), w̃

l
i(k)

}

Measurements: η1:NM(k + 1)
for p = 1 to MN do

Particle Generation: xl
i(k + 1|k) ∼ N (F̄xl

i(k), Γ̄) with Γ̄ =

[

ΓQΓ′

σ2
α

]

.

for l = 1 to L do
for i = 1 to Np do
Find the likelihood as

p
(

ηp(k + 1)|xl
i(k + 1|k)

)

=

Np
∑

i1=1

...

Np
∑

il−1=1

Np
∑

il+1

...

Np
∑

iL=1

w̃1
i1
...w̃L

iL
×

× p
(

ηp(k + 1)|x1
i1
(k + 1|k), ...,xl

i, ...,x
L
iL

)

(3.52)

where the likelihood on the right-hand side of the above equation can
be written as

p
(

ηp(k + 1)|x1
i1
(k + 1|k), ...,xl

i, ...,x
L
iL

)

= N (0,Σp(x
j1
ij1
, ...,xl

i, ...,x
jl
ijl
))

(3.53)
Here, jn, n 6= l denotes the index of the n-th member of the set of
targets for which xjn falls in the cell which is occupied by the l-th
target.
Calculate the weight as

wl
i(k + 1) = p

(

ηp(k + 1)|xl
i(k + 1|k)

)

end for
Normalize the particle weights as w̃l

i(k + 1) =
wl

i(k+1)
∑Np

i=1 w
l
i(k+1)

Find the variance of particle weights as

σl
P (k + 1) =

1
∑Np

i=1(w̃
l
i(k + 1))2

(3.54)

if σl
P (k + 1) < ǫ then

Do the resampling to multiply/suppress particles with high/low
wights. The resampling step can be described as

{

w̃l
1:Np

(k + 1),xl
1:Np

(k + 1)
}

←
{

1

Np

,xl
N(1:Np)(k+1|k)

}

(3.55)

with N(1 : Np) being a selection of Np indices from the set
{1, 2, ..., Np}.

end if
Report xl

1:Np
(k + 1) as the estimated states and w̃l

1:Np
(k + 1) as the

associated weight.
end for

end for
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where Dijs are defined as

D11(k − 1) = E
[

−∇X(k−1)
X(k−1) log p (X(k)|X(k − 1))

]

(3.57)

D12(k − 1) = E
[

−∇X(k−1)
X(k) log p (X(k)|X(k − 1))

]

=
(

D12(k − 1)
)′
(3.58)

D22(k − 1) = D33(k − 1) + Jy(k) (3.59)

D33(k − 1) = E
[

−∇X(k)
X(k) log p (X(k)|X(k − 1))

]

(3.60)

Here, the expectation is taken over the target states. The state and parameter

vector of the l-th target can be defined as

X l(k) = [(xl(k))′αl
11 . . . α

l
NM ]′ (3.61)

Θl(k) = [βl
11 . . . β

l
NM αl

11 . . .α
l
NM ]′ (3.62)

The measurement information matrix Jy(k) can be now written as

Jy(k) = E

[

∂ log p (Y (k)|X(k))

∂X(k)

(

∂ log p (Y (k)|X(k))

∂X(k)

)′]

(3.63)

with the expectation being taken over received signals, and Y (k) being the

received signal vector defined as Y (k) = [(η11(k))
∗ . . . (ηMN)

∗]H . Given the

independence of signals generated in different transmitter-receiver pairs, the

FIM [6] due to the measurements can be written as Jy(k) =
∑MN

p=1 J
p
y (k) with

the following form for Jp
y (k):

Jp
y (k) = ΩJp,θ

y Ω′ (3.64)

Here, Ω = diag
(

Ω1, ...,ΩL
)

and Jp,θ
y denotes the FIM with respect to the

parameter vector of targets. The individual terms Ωl can be written as

[Ωl]ij =
∂Θl

i

∂X l
j

(3.65)
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The above term can be found as follows:

Ωl =























∂βl
11

∂xl . . .
∂βl

NM

∂xl 0NM×NM

0 0 . . . 0

∂βl
11

∂yl
. . .

∂βl
NM

∂yl
0NM×NM

0 0 . . . 0

0NM×1 0NM×1 . . . INM























(3.66)

The necessary derivatives can be also found as

∂βl
nm

∂xl
=

1

rbin
(cos(ζm) + cos(ηn)) (3.67)

∂βl
nm

∂yl
=

1

rbin
(sin(ζm) + sin(ηn)) (3.68)

with the following definitions for ζm and ηn:

ζm = tan−1

(

yl − ytm
xl − xtm

)

(3.69)

ηn = tan−1

(

yl − yrn
xl − xrn

)

(3.70)

Substituting the above terms in (4.20), the system matrix can be fully deter-

mined.

Given the location of targets, cpl is defined as the resolution cell assigned to

the l-th target in the p-th pair. Resolution cells can be divided into different

classes according to their distribution. Adjacent cells normally fall in the same

group. Now, assume Np
C as the total number of classes in the p-th pair. Also,

define Ipc = {ip1, .., ipc} as the indices of cells in the c-th class. The FIM can be

now written for the p-th pair as

Jp,θ
y =

N
p
C
∑

c=1

Jp,θ,c
y (k) (3.71)

It was shown in Section II that the received signal is Gaussian-distributed with

the covariance matrix provided by (3.10). The FIM for the [a, b]th element of
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a multivariate Gaussian distribution with zero mean and covariance Σc
p can be

obtained as [89]

[Jp,θ,c
y ]ab(k) =

1

2
T ((Σc

p)
−1

∂Σc
p

∂Θa(k)
(Σc

p)
−1

∂Σc
p

∂Θb(k)
) (3.72)

with Tr(.) being the trace, and Θa(k) being the a-th member of the parameter

vector Θa(k). Substituting (3.72) in (3.71), the following form can be found

for FIM

[Jy]ab(k) =
1

2

MN
∑

p=1

N
p
C
∑

c=1

Ωc
p

(

T
(

(Σc
p)

−1
∂Σc

p

∂Xa(k)
(Σc

p)
−1

∂Σc
p

∂Xb(k)

))

(Ωc
p)

′ (3.73)

where Ωc
p corresponds to the matrix Ω calculated for the c-th cluster in the

p-th pair. To find the derivatives given in (3.72) and (4.19), consider the c-th

cluster with Lc
p targets. Assume that the l-th target is located in the f c

p(l)-th

cell with f c
p(1 : Lc

p) as the set of all cells occupied by the Lc
p targets. The

occupied cells are numbered from 1 to Np
c + 1 with Np

c being the number

of occupied cells. Note that Np
c ≤ Lc

p. Given vcp(l) as the index of the cell

corresponding to the l-th target, the derivative can be written based on (3.10)

as

∂[Σc
p]ij

∂θlp
=







[Dl
θΣ

c
p]kikj (i, j) ∈ {vcp(l), vcp(l)− 1}
0 otherwise

(3.74)

with ki = 1 if i = vcp(1) and ki = 2 otherwise. Also, [Dl
θΣ

c
p] is defined as the

derivative of the covariance matrix due to the l-th target with respect to the

ratio and scatter parameters. The derivative can be calculated as

[Dl
βΣ

c
p] = 2





βpα
2
p (1

2
− βp)α2

p

(1
2
− βp)α2

p (βp − 1)α2
p



 (3.75)

[Dl
αΣ

c
p] = 2





β2
pαp (1− βp)βpαp

(1− βp)βpαp (1− βp)2αp



 (3.76)
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The term
∂[Σc

p]ij
∂θlp

can be now computed for all values of θ. The resulting deriva-

tive is then used to calculate the FIM.

The CRLB of target localization can be now obtained by taking the inverse

of the above FIM as CRLB = J−1
y . It was shown in [79] that the general form

of (3.56) can be simplified to

J(k) =
(

Γ∗ + F∗ (J(k − 1))−1 F ′
∗

)−1
+ Jy(k) (3.77)

where Γ∗ and F∗ are the generalized motion covariance and the state dy-

namic matrix, respectively. In addition, Γ∗ = diag
{

Γ1, ...,ΓL
}

and F∗ =

diag
{

F 1, ..., FL
}

. Here, F i and Γj denote the motion matrices of the j-th

target. The PCRLB for the tracking accuracy can be now found by inverting

the FIM as J−1(k).

3.4 Numerical Results

Consider a MIMO system with three transmitters and three receivers (i.e.,

M = 3, N = 3). Two targets are in the surveillance region. Antennas are

placed in the surveillance region symmetrically such that the location of each

antenna can be calculated as xi = [R cos(θi) R sin(θi)]
′ with R and θi being the

range and bearing of the i-th antenna, respectively. Note that transmitters and

receivers can be placed in any arbitrary configuration. Analytical approaches

for optimal antenna allocation in MIMO radars can be also found in [35] [51].

With R = 500 and θ0 = π
18
, Figure 3.2 shows the geometry of antennas and

targets in the surveillance region. All results are obtained over 50 Monte Carlo

runs.
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Table 3.5: Key Parameters of the Widely-separated MIMO Radar System

Variable Rmax rbin Ns σ2
α fc vmax Pfa

Value 10 km 50 m 128 10−3 4 GHz 15 m/s 10−4

3.4.1 Target Detection and Localization

Figure 3.3 shows ROC curve for two different SNRs for both MIMO and

multistatic radars. For a low SNR (SNR = 5dB), there is a significant gap

between the ROC curves of MIMO and multistatic radars. In addition, the

MIMO radar’s probability of detection converges much faster than that of the

multistatic radar. The performance gap for the MIMO radar is also tighter

than that of the multistatic radar for the scenario with SNR = 10dB. In

this case, both radars achieve a high probability of detection even at low false

alarm probabilities. The probability of detection versus different target SNRs
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Figure 3.2: The distribution of antennas and targets in the surveillance region.

for both MIMO and multistatic radar processing can be also found in Figure

90



Ph.D. Thesis - A. Gorji McMaster - Electrical & Computer Engineering

10
−10

10
−5

10
−2

10
−1

10
0

Probability of False Alarm

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

 

 
Multistatic Radar
MIMO Radar

5dB

10dB

Figure 3.3: ROC of MIMO and multistatic radars at two different SNRs.

3.4. It can be observed that the MIMO radar outperforms the multistatic

radar, especially at low target SNRs.

A single-target scenario, where it is first assumed that the target is observ-

able in all pairs (i.e., target SNR is the same in all pairs), is now considered.

The proposed MH-based algorithm is applied on the data generated by both

MIMO and multistatic structures. The empirical probability of detection is

calculated for each structure by enumerating the number of scans in which an

estimate of the target location is obtained. Figure 3.4 presents the empirical

and optimal probability of detection for each structure. While the MIMO radar

detects the target with a probability close to the optimal one, the multistatic

radar provides poor results, especially at low SNRs. When the SNR increases,

the detection probabilities of both structures converge to the optimal value.

Now, the RMSE of estimation is calculated and presented in Figure 3.5 for

different target SNRs. Although the target is detected by the MIMO radar
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at SNRs less than 10dB, the multistaic radar fails to find an estimate of the

target at low SNRs. At higher SNRs, the RMSE of target estimation using the

MIMO radar is significantly reduced, and then approaches the CRLB bound

at medium SNRs. While MIMO radar shows lower RMSE compared to the

multistatic radar at medium SNRs, both structures achieve desired RMSEs at

higher SNRs. In summary, the performances of both MIMO and multistatic

radars are close to the CRLB at high SNRs. However, it can be observed that

MIMO radar outperforms the multistatic one at low SNR cases.
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Figure 3.4: Probability of detection versus target SNR for MIMO and multi-
static radars (Pfa = 10−4).

To see the effect of multiple-scatterer targets in the localization perfor-

mance, we define the observability rate as No

MN
with No being the number of

observable pairs. The p-th pair is observable if P p
d ≥ ǫ. For this part, ǫ = .01

is chosen. The RMSE of estimation is now found at two different SNRs (7dB
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Figure 3.5: RMSE of localization for different target SNRs.

and 10dB). Figure 3.6 shows the RMSE results for different percentages of ob-

servability. It can be seen that the MIMO radar outperforms the multistatic

radar at low percentages with, at least, 20% lower RMSE for SNR = 10dB.

With an increase in the percentage of observability, the RMSE values of both

structures become closer. Also, CRLB and RMSEs match when the target

becomes observable in more transmitter-receiver pairs. The other important

note on Figure 3.6 is that the gap in the localization RMSE becomes more sig-

nificant at lower SNRs. Indeed, for SNR = 7dB, MIMO achieves a 40% lower

RMSE than the multistatic radar at low observability percentages. Although

the gap is reduced at higher observability percentages, the rate of improve-

ment is still much slower than at SNR = 10dB. This experiment shows that

the effect of the number of observable pairs becomes more significant at lower

SNRs. In other words, MIMO radar provides superior RMSE results than the
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multistatic radar at low SNR and low percentages of observability.
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Figure 3.6: RMSE of target localization versus the percentage of observability
for two different SNRs.

In order to analyze the performance of the proposed algorithm in mul-

titarget localization, a two-target scenario is considered with the locations

being shown in Figure 3.2. Although the targets are well-separated in the

state space, they become closely-spaced in certain pairs of transmitters and

receivers. RMSE of target estimation using the MH-based algorithm is pro-

vided in Figure 3.7. At low SNRs (SNR = 6dB), the multistatic radar misses

both targets. Although the targets are successfully detected by both struc-

tures at medium SNRs, the MIMO radar yields 100% lower RMSE of position

estimation than the multistatic radar for the first target. The RMSE results

approach to each other when the SNR of targets is 10dB. In this case, RMSE

also reaches the CRLB. The other important note on the two-target scenario
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is that the RMSE does not reach the CRLB at the low SNRs. However, when

the SNR goes up, not only does the RMSE of targets approach the CRLB,

but also RMSE of both targets become closer. In other words, for the two-

target scenario, a significant improvement is observed in the performance of

the MH-based algorithm once the SNR is high enough.
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Figure 3.7: RMSE of target localization for the two-target scenario.

3.4.2 Target Tracking

Consider the two-target scenario with the initial locations being shown in

Figure 3.2. It is also assumed that the rate of observability is equal to 60%

for both targets. In order to evaluate the performance of the tracking algo-

rithm, the targets are assumed to become closely-spaced at subsequent time

steps. Trajectories of targets are generated in 50 scans. While targets are

well-separated initially, they approach each other in the subsequent scans. In

95



Ph.D. Thesis - A. Gorji McMaster - Electrical & Computer Engineering

this case, targets also fall in the same cells of all pairs in the period that they

become closely-spaced. Figure 3.8 presents the number of common cells occu-

pied by two targets in different scans. It can be observed that, initially, targets

are well-separated in most cells. However, in the subsequent scans, the number

of common cells increases. The tracking algorithm is now applied to the gen-

erated data in order to estimate the states of targets. The parameters of the

tracking algorithm and targets are presented in Table 3.5. Figure 3.9 presents

the actual and estimated trajectories of targets as well as the ellipsoidal un-

certainty regions. The graph confirms the capability of the tracking approach

in estimating the states of targets, even when targets become closely-spaced in

the sate space. The RMSE of target tracking is also depicted in Figure 3.10.

For performance evaluation, the PCRLB of tracking is also included in Figure

3.10. It can be seen that there is a jump in the RMSE of tracking during the

period when targets become closely-spaced. This jump is also observed in the

PCRLB of tracking.

Finally, the tracking scenario is re-constructed with only the trajectory of

the first target being shown in Figure 3.9. The particle-based algorithm is now

applied to the generated data with the same parameters given in Table 3.6.

Figure 3.11 shows the RMSE and PCRLB results for the single target case. It

can be observed that there is no jump in the RMSE of localization due to the

absence of the other target, which is also confirmed by the PCRLB.

Even though the above analysis was done for a MIMO radar, the same

simulations can be also obtained for a multistatic radar. Because the localiza-

tion performance of MIMO and multistatic radars has been already compared,

the same performance is also expected for the tracking. In addition, while the

tracking algorithm was applied to a simple two-target scenario, it can be also
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used for scenarios with any number of observable pairs and targets. Time-

varying number of targets and observable pairs can be handled within the

same work. This will require the handling of target birth/death an online

calculation of the variance of scatterers.

3.4.3 Computational Complexity vs. Performance

Given F as the number of resolution cells, the computational complexity of

the initialization step of the MH-based algorithm applied to the MIMO radar

is of order O(F 3). Once the hypotheses are initialized, the data association

step is of order O(F 2). Therefore, the MIMO processing suffers from high

computational load when a large number of cells are considered. Unlike the

MIMO radar, the multistatic radar provides a more computationally efficient

solution, where the number of initial hypotheses determines the computational

complexity. The higher the threshold over the received signals, the more com-

putationally efficient the estimation algorithm. However, the accuracy of the

results is significantly affected when the threshold is increased. In other words,

there is a trade-off between the computational complexity and the accuracy of

estimation using a multistatic radar. It can be observed that a MIMO radar

provides higher probability of detection with more accurate estimation than

multistatic radars. In high SNR scenarios, it was shown that both multistatic

and MIMO radars provide satisfactory results. However, in low SNR scenarios,

multistatic radar achieves the same performance as the MIMO accomplishes

provided that a sufficiently-low threshold is applied on the received signals. In

this case, the computational complexity of multistatic radars will be the same

as that of MIMO radars because detections are declared in most resolution

cells. In high SNRs, the multistatic radar is preferred over the MIMO radar

due to computational considerations.
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Figure 3.8: The number of common (shared) cells in different scans for the
two-target scenario.

Table 3.6: Widely-separated MIMO Tracking Parameters

Variable Value Description
Np 1000 # of particles
m/n 3/4 m/n logic
Ts 1 Sampling time

NMCMC 50 # of Monte Carlo runs
SNR 7dB Target SNR
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Figure 3.9: Estimated trajectories and the ellipsoidal uncertainty regions for
the two-target scenario.
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Figure 3.10: RMSE and PCRLB recursion of position estimations for the two-
target scenario.
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Chapter 4

Antenna Allocation For

Collocated MIMO Radars

4.1 Introduction

In this chapter, the antenna allocation problem is developed for collocated

MIMO radar systems. To the best of our knowledge, there is no comprehensive

work on the design and analysis of an optimal antenna placement framework

for collocated MIMO radars. The main contributions of this chapter are as

follows:

• A novel CRLB derivation for MIMO radars with collocated antennas:

Although the CRLB was derived in the literature for the collocated

MIMO radars, the effect of the range information was not considered

in the CRLB derivation. In addition, there is no compact CRLB deriva-

tion in terms of the location of antennas. In this chapter, the CRLB is

first derived for a collocated MIMO radar where both DOA and range

information are embedded in the signal model, and the impact of the
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situation in which multiple targets fall inside the same resolution cell is

also taken into consideration. Then, it will be shown how the location

of antennas affects the CRLB and the localization performance.

• A convex optimization approach for the single-target case:

It is shown that the antenna allocation problem can be dealt with by

optimizing the location CRLB. To do this, the cost function is defined

by applying suitable operators (e.g. determinant, trace, or maximum

eigenvalue) to the CRLB. When a single target is located inside the

resolution cell, the optimization algorithm is simplified to the well-known

SDP using the related convex relaxation techniques.

• An optimization algorithm for cases with multiple unresolved targets:

When multiple targets fall inside the same resolution cell, it is observed

that the cost function is not convex anymore. In this case, due to the

presence of sinusoid terms in each entry of the FIM, the cost function

cannot be also simplified into a convex form. Therefore, a sampling-

based approach is proposed where initial conditions of the optimization

algorithm are generated in a way that the algorithm moves towards the

global minimum. Simulation results also confirm the efficacy of the pro-

posed method in finding the optimum antenna allocation when multiple

targets lie in the same or consecutive resolution cells.

The rest of this chapter is organized as follows. Section 4.2 presents a

brief overview of MIMO radars with collocated antennas. CRLB is derived for

the MIMO system in Section . Section 4.4 deals with the antenna allocation

problem where the convex optimization framework for the single-target case

is also described. Simulation results that are the main part of this chapter are

given in section 4.5.
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4.2 MIMO Radars with collocated Antennas

Consider an array of antennas with M transmitters and N receivers.

Definition 4.2.1 Define sti = [xti yti]
′ and srj = [xrj yrj]

′ as the location

of the i-th transmitter and the j-th receiver in a 2-dimensional surveillance

region, respectively.

Assumption 4.2.1 There are T targets available in the region where xt =

[xt yt]
′ denotes the location of the t-th target. Also, the reflection of each

target is modeled by a complex random variable αt = ξt + jζt with ξ and ζ

being the real and imaginary parts of α, respectively.

Assumption 4.2.2 It is assumed that the target’s reflection obeys a Swerling

type I model [75] where {ξt ∼ N (ξ̄t, σ
2
α)} and {ζt ∼ N (ζ̄t, σ

2
α)}.

Assumption 4.2.3 It is assumed that the distance between each two antennas

is much smaller than the distance of the array to each target. It is also assumed

that the arrays of transmitters and receivers are both collocated with the origin

as the center of the mass of the array.

Definition 4.2.2 Define h[k] = [h1[k] · · · hM [k]]H as the transmitted wave-

form in the k-th snapshot with K being the number of total snapshots.

4.2.1 Signal Model

Considering a collocated structure, resolution cells can be defined as a set

of cocentric circles where the radios of the c-th circle equals crbin with rbin

denoting the resolution width. Figure 4.1 shows a simple configuration of

resolution cells as well as the antennas that are distributed uniformly. It is

observed that the target is located inside the c-th cell.
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Figure 4.1: A simple collocated MIMO radar with three transmitters and three
receivers. The target is located inside the c-th cell. The resolution cells are
shown as cocentric circles with crbin being the radius of the c-th cell.

Assumption 4.2.4 It is assumed that all T targets are distributed in C con-

secutive cells (e.g. (c∗+1) to (c∗+C))where nc denotes the number of targets

available inside the c-th cell. Without loss of generality, it is assumed that

c∗ = 0.

Assumption 4.2.5 Transmitters send orthogonal signals with a diagonal cross-

correlation matrix being defined as

R =
1

K

K
∑

k=1

h[k]hH [k] = D ([P1 · · · PM ]′) (4.1)

where Pm denotes the total transmitted power by the m-th antenna.

Definition 4.2.3 Defining rct = ||xc
t ||2 as the Euclidean distance of the t-th

target in the c-th cell to the origin, the ratio parameter βc
t is defined as follows:

βc
t =

rct + (1− c)rbin
rbin

(4.2)
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Now, given all assumptions, the received output of the matched filter in the

c-th resolution cell can be written as follows [43]:

ηc =



















∑nc+1

t=1 (1− βc+1
t )φc+1

t c = 0
∑nc

t=1 β
c
tφ

c
t c = C

∑nc

t1=1 β
c
t1
φc
t1
+
∑nc+1

t2=1(1− βc+1
t2

)φc+1
t2

otherwise

+ w (4.3)

where w denotes a complex Gaussian noise with independent real and imagi-

nary parts being distributed as {ℜ(w),ℑ(w)} ∼ N (0, σ2
w), and φ

c
t is the contri-

bution of the t-th target in the signal received in the c-th cell, which is written

as φc
t = αc

tψ
c
t with the following form for the unknown term in the right-hand

side of the equality [43]:

ψc
t =
√
KVEC(Ac

tR
1
2 ) (4.4)

Here, VEC(A) stands for the matrix vectorization operator, and Ac
t denotes

the well-known steering matrix of the t-th target defined as follows [60]:

Ac
t = bc

t(a
c
t)

H (4.5)

ac
t = exp

(

−j 2π
λ
[sin(θct ) cos(θct )]St

)

(4.6)

bc
t = exp

(

−j 2π
λ
[sin(θct ) cos(θct )]Sr

)

(4.7)

where λ is the wavelength, θct denotes the DOA of the t-th target with respect

to the origin, and the matrices St and Sr are defined as

St = [st1 · · · stM ] (4.8)

Sr = [sr1 · · · srN ] (4.9)

Definition 4.2.4 Given the vector of the output of the matched-filter as η =

[η∗1 · · · η∗C ]H , define ρ = [ℜ(η1) ℑ(η1) · · · ℜ(ηC) ℑ(ηC)]′.
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Now, the mean received output of the matched filter is defined as ρ̄ = [ℜ(η̄1) ℑ(η̄2) · · · ℜ(η̄C) ℑ(η̄C)]′.
The unknown terms ℜ(η̄c) and ℑ(η̄c) can be found by calculating ℜ(φ̄c

t) and

ℑ(φ̄c
t) as follows and then replacing in (4.3), respectively:

ℜ(φ̄c
t) = ξ̄ctℜ(ψc

t )− ζ̄ctℑ(ψc
t )

ℑ(φ̄c
t) = ξ̄ctℜ(ψc

t ) + ζ̄ctℑ(ψc
t ) (4.10)

where the unknown terms in the right-hand side of the above equation can be

written as follows:

ℜ(ψc
t ) =

√
K cos

(

2π

λ
[sin(θct ) cos(θct )]Ω(St, Sr, R)

)

ℑ(ψc
t ) =

√
K sin

(

2π

λ
[sin(θct ) cos(θct )]Ω(St, Sr, R)

)

(4.11)

with Ω being defined as

Ω(St, Sr, R) = (11×M ⊙ Sr − St ⊙ 11×N)
(

R
1
2 ⊙ 11×N

)

(4.12)

where ⊙ is the Kronicker product, and 1a×b stands for a a× b matrix with all

entries equal to one.

Given the signal model in (4.3) and the mean output of the matched-filter

in (4.10), the following proposition provides the distribution of the output of

the matched-filter [43]:

Proposition 4.2.1 In a scenario with T targets located in C neighboring cells,

the output of the matched-filter received by a collocated MIMO radar with M

transmitters and N receivers (e.g. ρ) is Gaussian distributed with mean ρ̄ and
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covariance Σ defined as follows:

Σ =























Σ11 Σ12 0 · · · 0

Σ21 Σ22 0 · · · 0

0 0
. . . · · · 0

0 0 · · · Σ(C−1)(C−1) Σ(C−1)C

0 0 · · · ΣC(C−1) ΣCC























(4.13)

with the following definitions for Σcc and Σc(c−1) terms:

Σcc =































Kσ2
α (
∑n1

t=1(1− β1
t )

2 + σ2
w) I2MN c = 0

Kσ2
α

(
∑nC

t=1(β
C
t )

2 + σ2
w

)

I2MN c = C

Kσ2
α(
∑nc

t1=1(β
c
t1
)2+ otherwize

∑nc+1

t2=1(1− βc
t2
)2 + σ2

w)I2MN

Σc(c−1) = Kσ2
α

nc
∑

t=1

(1− βc
t )β

c
t I2MN (4.14)

4.3 Cramer-Rao Lower Bound

CRLB provides the best Minimum Mean Squared Error (MMSE) bound

for any unbiased estimator [6]. The CRLB provides a good offline metric to

evaluate the performance of every unbiased estimator. In this section, the

CRLB is derived for a collocated MIMO radar. It is shown that the CRLB is

a function of the mutual distances between any two antennas. Also, a scenario

is considered with T targets distributed in C consecutive cells where different

number of targets might be located inside each cell.

Definition 4.3.1 For the t-th target located in the c-th resolution cell, define

the state and parameter vector Xc
t and Θc

t , respectively, as follows:

Xc
t = [xct y

c
t ξ̄

c
t ζ̄

c
t ]

′ (4.15)

Θc
t = [θct β

c
t ξ̄

c
t ζ̄

c
t ]

′ (4.16)
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The CRLB is the inverse of the well-known FIM defined as follows [6]:

Definition 4.3.2 Assuming y as the received noisy measurements and θ as

the parameters of the measurement model, define the following matrix operator:

Jθθ′ = Ey

[

∂ log p(y|θ)
∂θ

(

∂ log p(y|θ)
∂θ

)′]

(4.17)

Refer to the definition of ρ and its distribution provided by Proposition 4.2.1

and define the stacked state and parameter vector of all targets as X =
[

(X1
1 )

′ · · · (X1
n1
)′ (X2

1 )
′ · · · (XC

nC
)′
]′
and Θ =

[

(Θ1
1)

′ · · · (Θ1
n1
)′ (Θ2

1)
′ · · · (ΘC

nC
)′
]′
,

respectively. In this case, the FIM can be shown by JXX′ . The defined FIM

can be now written in the following form:

JXX′ = Eρ

[

∂ log p(ρ|X)

∂X

(

∂ log p(ρ|X)

∂X

)′]

(4.18)

Using the chain-rule for partial derivatives, the above FIM can be more sim-

plified to the following form [43]:

JXX′ = ΓJΘΘ′Γ′ (4.19)

Here, Γ is called the system matrix and is written as

Γ =

















γ11 04×4 · · · 04×4

04×4 γ12 · · · 04×4

...
...

. . .
...

04×4 · · · 04×4 γCnC

















(4.20)

with 04×4 as a 4× 4 zero-matrix, and individual γct terms being defined as

γct =

















∂θct
∂xc

t

∂βc
t

∂xc
t

0 0

∂θct
∂yct

∂βc
t

∂yct
0 0

0 0 1 0

0 0 0 1

















(4.21)
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where the unknown partial derivatives can be derived by using the definition

of the ratio in (4.2) and the following equation for the target DOA:

θct = tan−1

(

yct
xct

)

(4.22)

Now, the FIM derivation comes to finding the unknown term JΘΘ′ in (4.19).

The new JΘΘ′ can be broken into the following sub-matrices:

JΘΘ′ =





























J(Θ1)(Θ1)′ J(Θ1)(Θ2)′ 0 0 · · · 0

J(Θ2)(Θ1)′ J(Θ2)(Θ2)′ J(Θ2)(Θ3)′ 0 · · · 0

0 J(Θ3)(Θ2)′ J(Θ3)(Θ3)′ J(Θ3)(Θ4)′ · · · 0
...

...
...

. . .
. . .

...

0 0 · · · J(ΘC−1)(ΘC−2)′ J(ΘC−1)(ΘC−1)′ J(ΘC−1)(ΘC )′

0 0 · · · 0 J(ΘC)(ΘC−1)′ J(ΘC)(ΘC )′





























(4.23)

Here, Θc denotes a 4 × nc vector formed by stacking the parameters of those

targets falling inside the c-th cell. The following equation can be written for

Θc:

Θc = [(Θc
1)

′ · · · (Θc
nc
)′]′ (4.24)

Each individual entry in (4.23) can be also written as follows:

J(Θc1 )(Θc2 )′ =











J(Θc1
1 )(Θ

c2
1 )′ · · · J(Θc1

1 )(Θ
c2
nc2

)′

...
. . .

...

J(Θc1
nc1

)(Θ
c2
nc2

)′ · · · J(Θc1
nc1

)(Θ
c2
nc2

)′











,

c1 ∈ {c2, c2 + 1} (4.25)
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Finally, each entry of the FIM in (4.25) can be simplified into the following

form:

J(Θc1
n )(Θ

c2
m )′ =

















Jθc1n θ
c2
m

Jθc1n β
c2
m

Jθc1n ξ̄
c2
m

Jθc1n ζ̄
c2
m

Jβc1
n θ

c2
m

Jβc1
n β

c2
m

Jβc1
n ξ̄

c2
m

Jβc1
n ζ̄

c2
m

Jξ̄c1n θ
c2
m

Jξ̄c1n β
c2
m

Jξ̄c1n ξ̄
c2
m

Jξ̄c1n ζ̄
c2
m

Jζ̄c1n θ
c2
m

Jζ̄c1n β
c2
m

Jζ̄c1n ξ̄
c2
m

Jζ̄c1n ξ̄
c2
m

















(4.26)

Note that the matrix given by (4.26) is a 4× 4 FIM sub-matrix that includes

the information correlation between the parameters of the n-th target in the

c1-th cell and the m-th target in the c2-th cell. Before presenting the alge-

braic expressions for each entry of the FIM given in (4.26), the following new

notations are defined:

Definition 4.3.3 Assuming the n-th target located in the c1-th cell, define the

following new notations:

ωc1
n (l) =

2π

λ
[sin(θc1n ) cos(θc1n )] Ω(:, l) (4.27)

pc1
n = [cos(θc1n ) − sin(θc1n )]′ (4.28)

β̆c1
n = [(1− βc1

n ) βc1
n ]′ (4.29)

where Ω(:, l) denotes the l-th column of matrix Ω with Ω(St, Sr, R) being written

as Ω for the sake of brevity.

Definition 4.3.4 For each two targets falling inside cells c1 and c2, respec-

tively, the following notations are defined:

κnmc1c2 = ξ̄c1n ξ̄
c2
m + ζ̄c1n ζ̄

c2
m (4.30)

ιnmc1c2 = ξ̄c1n ζ̄
c2
m − ζ̄c1n ξ̄c2m (4.31)

The covariance matrix Σ found in (4.13) can be now rewritten for cells {c1 −
1, c1, c2} with c1 ∈ {c2, c2 − 1}. Using the general form given by (4.13) and
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expressions provided by (4.14), the new covariance matrix can be written as

Σ∗ =











c1 c4 0

c4 c2 c5

0 c5 c3











⊙ I2MN (4.32)

where ci terms are found using (4.14). Similarly, the new notation ρ̄∗ is defined

as

ρ̄∗ = [ℜ(η̄c1−1) ℑ(η̄c1−1) ℜ(η̄c1) ℑ(η̄c1) ℜ(η̄c2) ℑ(η̄c2)]′ (4.33)

Now, it is straightforward to show that the inverse of Σ∗ can be written in the

following form:

Σ−1
∗ =











k1 k4 k5

k4 k2 k6

k5 k6 k3











⊙ I2MN (4.34)

The following proposition provides algebraic expressions for each entry of the

FIM in (4.26):

Proposition 4.3.1 Assume a scenario with T targets falling inside C consec-

utive resolution cells. Each entry of the FIM defined by (4.26) can be calculated
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as follows:

Jθc1n θ
c2
m

= K

(

2π

λ

)2

×

×
[

MN
∑

l=1

(pc1
n )

′Ω(:, l)Ω′(:, l)pc2
m

(

κnmc1c2 cos(ω
c2
m(l)− ωc1

n (l)) + ιnmc1c2 sin(ω
c2
m(l)− ωc1

n (l))
)

]

×

× Cθ
c1
n θ

c2
m

(4.35)

Jβc1
n β

c2
m

=
K

r2bin

[

MN
∑

l=1

κnmc1c2 cos(ω
c2
m(l)− ωc1

n (l)) + ιnmc1c2 sin(ω
c2
m(l)− ωc1

n (l))

]

Cβ
c1
n β

c2
m
+

+ F (βc1
n , β

c2
m ) (4.36)

Jξ̄c1n ξ̄
c2
m

= Jζ̄c1n ζ̄
c2
m

= K

[

MN
∑

l=1

cos (ωc1
n (l)− ωc2

m(l))

]

Cθ
c1
n θ

c2
m

(4.37)

Jθc1n β
c2
m

=
K

rbin

2π

λ

[

MN
∑

l=1

(pc1
n )

′Ω(:, l)
{

κnmc1c2 cos(ω
c2
m(l)− ωc1

n (l)) + ιnmc1c2 sin(ω
c2
m(l)− ωc1

n (l))
}

]

×

× Cθ
c1
n β

c2
m

(4.38)

Jθc1n ξ̄
c2
m

= K
2π

λ

[

MN
∑

l=1

(pc1
n )

′Ω(:, l)
{

−ζ̄c1n cos(ωc2
m(l)− ωc1

n (l)) + ξ̄c1n sin(ωc2
m(l)− ωc1

n (l))
}

]

×

× Cθ
c1
n θ

c2
m

(4.39)

Jθc1n ζ̄
c2
m

= K
2π

λ

[

MN
∑

l=1

(pc1
n )

′Ω(:, l)
{

ξ̄c1n cos(ωc2
m(l)− ωc1

n (l)) + ζ̄c1n sin(ωc2
m(l)− ωc1

n (l))
}

]

×

× Cθ
c1
n θ

c2
m

(4.40)

Jβc1
n ξ̄

c2
m

=
K

rbin

[

MN
∑

l=1

{

ξ̄c1n cos(ωc2
m(l)− ωc1

n (l)) + ζ̄c1n sin(ωc2
m(l)− ωc1

n (l))
}

]

Cβ
c1
n θ

c2
m

(4.41)

Jβc1
n ζ̄

c2
m

=
K

rbin

[

MN
∑

l=1

{

ζ̄c1n cos(ωc2
m(l)− ωc1

n (l))− ξ̄c1n sin(ωc2
m(l)− ωc1

n (l))
}

]

Cβ
c1
n θ

c2
m

(4.42)

Jξ̄c1n ζ̄
c2
m

= K

[

MN
∑

l=1

sin(ωc1
n (l)− ωc2

m(l))

]

Cθ
c1
n θ

c2
m

(4.43)

with F (βc1
n , β

c2
m ) being a known function of ratios, and the following expres-

sion being given for unknown coefficients in the right-hand side of the above
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equations:

Cθ
c1
n θ

c2
m

=







[

(β̆c1
n )′ 0

]

Σ−1
∗

[

0 (β̆c2
m )′
]′

c1 = c2 − 1
[

0 (β̆c1
n )′
]

Σ−1
∗

[

0 (β̆c2
m )′
]′

otherwise
(4.44)

Cβ
c1
n β

c2
m

=







[−1 1 0] Σ−1
∗ [0 − 1 1]′ c1 = c2 − 1

[0 − 1 1] Σ−1
∗ [0 − 1 1]′ otherwise

(4.45)

Cθ
c1
n β

cn
m

=
∂Cθ

c1
n θ

c2
m

∂βc2
m

, Cβ
c1
n θ

c2
m

=
∂Cθ

c1
n θ

c2
m

∂βc1
n

(4.46)

Proof See Appendix 6.2.

Note that the above proposition can be used to find the FIM for every tuple

{Θc1
n ,Θ

c2
m} where 1 ≤ {c1, c2} ≤ C and 1 ≤ n ≤ nc1 and 1 ≤ m ≤ nc2 . The

calculated FIMs in (4.26) are then inserted in (4.25) and (4.23), respectively,

to obtain JΘΘ′. The CRLB is finally found by inverting the FIM as

CXX′ = (Γ−1)′CΘΘ′Γ−1 (4.47)

with CΘΘ′ = (JΘΘ′)−1.

4.4 Optimal Antenna Allocation

It can be shown that the localization performance of the collocated MIMO

radar is affected by the distribution of antennas in the surveillance region. Con-

sider a scenario with two antennas (N = 2,M = 2), where each antenna can

both transmit and receive signals. We take a single target scenario into consid-

eration with parameters [30o .33 1 1]′, which is located in {r, θ} = [825m 30o]′.

The variance of DOA estimates (Cθ2) is now shown in Figure 4.2 in terms of

different inter-antenna distances for the designed scenario. It can be observed

that the geometry of sensors (inter-sensor distances) affects the performance
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Figure 4.2: The variance of the DOA estimation for different inter-sensor dis-
tances. The designed scenario includes a single-emitter and a collocated MIMO
radar with two transmitters and two receivers.

bound of DOA estimation, where the estimation variance at the minimum

point is 33% lower than the maximum variance. Unfortunately, the graphi-

cal tool cannot be developed for cases with more antennas. Therefore, this

section concerns with designing a systematic algorithm for the antenna alloca-

tion problem in collocated MIMO radars. First, the case with a single target

available in the surveillance region is considered. It is shown that considering

suitable geometric constraints, the antenna allocation problem can be formu-

lated as a well-known SDP procedure [13]. Then, the problem is extended

to the case with multiple targets available in the same or consecutive reso-

lution cells. It is shown that the derived cost function is non-convex and a

sampling-based approach is proposed to capture the global minimum of the

cost function.
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4.4.1 Single Target Case

When a single target is placed in an arbitrary resolution cell, all cos(.)

and sin(.) terms in the individual entries of the FIM defined by (4.26) vanish.

Let us assume Θ =
[

θc βc ξ̄c ζ̄c
]′
as the parameter vector of the single target

fallen in the c-th cell. Using the results given in Proposition 4.3.1, it can be

observed that only terms Jθcνc are a function of the antenna locations where

νc ∈ {θc, βc, ξ̄c, ζ̄c}. On the other hand, according to the definition of the

matrix Ω in (4.12), it can be shown that:

MN
∑

l=1

Ω(:, l) = 0 (4.48)

It can be observed that only the term J(θc)2 can be considered as a function of

the antenna locations.

Definition 4.4.1 Define the difference between the m-th transmitter and the

n-th receiver as follows:

∆snm = stm − srn (4.49)

Corollary 4.4.1 In a collocated MIMO radar with M transmitters and N

receivers, where a single target is located in the c-th resolution cell, the FIM is

a function of inter-antenna differences. In addition, all entries of the FIM are

independent of the inter-sensor differences except J(θc)2 , which is also a convex

function of the unknown differences.

Proof It was shown that only J(θc)2 is a function of the sensor locations. Now,

it is demonstrated that it is a convex function of the parameters (difference

vectors). Using the algebraic terms given by Proposition 4.3.1, the entry J(θc)2

can be simplified into the following form:

J(θc)2 = K

(

2π

λ

)2

|αc|2
[

nm
∑

l=1

(pc)′Ω(:, l)Ω′(:, l)pc

]

C(θc)2 (4.50)
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Consider the definition of Ω in (4.12). It can be then observed that Ω(:, l)

is a linear function of the corresponding difference vector ∆snm. It is also

known that J(θc)2 is a convex function of Ω(:, l) terms due to the appearance

of quadratic terms in (4.50) [13]. Therefore, J(θc)2 is also a convex function of

the difference vectors.

The antenna allocation problem can be now dealt with by minimizing the trace

of CRLB, maximizing the determinant of FIM, or minimizing the maximum

eigenvalue of CRLB [60]. The following lemma proposes the convex optimiza-

tion formulation for the antenna allocation problem in a collocated MIMO

radar system where a single-target scenario is considered:

Lemma 4.4.1 Consider a collocated MIMO radar with M transmitters and

N receivers. In addition, assume that there is a single target located in the c-th

resolution cell. Then, a convex optimization algorithm that finds an optimal

placement of antennas is given as follows:

max{∆s11,··· ,∆snm} J(θc)2 (4.51)

Proof The optimization problem can be formulated as minimizing the deter-

minant of the CRLB, which is equivalent to maximizing |JXX′ |. In addition,

the system matrix Γ defined in (4.20) is independent of the location of the

antennas. Therefore, the final goal is to maximize |JΘc(Θc)′ |. Now, the FIM in

(4.26) can be written in the following new form:

JΘc(Θc)′ =





J(θc)2 b′

b B



 (4.52)

where b and B are the blocked vector and matrix formed by remaining entries

of JΘcΘc in (4.26), respectively. The determinant term can be written as

|JΘcΘc| = |B||J(θc)2 − b′Bb| (4.53)
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It is known that both B and b are independent of the antenna placement.

Therefore, the determinant maximization can be achieved by maximizing J(θc)2

with respect to Ω. However, it is also known that Ω is a linear function of ∆snm

terms. The optimization problem can be finally simplified to maximizing J(θc)2

with respect to ∆snm terms, which is the final form given in (4.51).

The final optimization problem can be now constructed by imposing the fol-

lowing constraints on the inter-antenna distances:

The inter-antenna distance:

In practice, antennas need to be well-separated enough to ensure maintenance

and safety considerations. In addition, the inter-antenna distance should be

small enough to have the far-field assumption still valid. Based on the given

targets, the following constraints can be considered:

||∆snm||2 ≥ dnm (4.54)

||∆snm||2 ≤ enm, ∀ m = 1, ...,M, n = 1, ..., N (4.55)

where enm and dnm are design parameters.

The center of the mass constraint:

It was mentioned in Assumption 4.2.3 that the center of the mass of the array

is located in the origin. Therefore, the following new constraints are formed

on the location of antennas:

M
∑

m=1

stm +
N
∑

n=1

srn = 0 (4.56)

Note that the FIM is a function of inter-antenna distances and therefore, a

set of optimal difference vectors might correspond to an infinite number of

sensor locations. The constraint given by (4.56) ensures that the mass center

of the obtained geometry is in the origin. The uniqueness of optimal solution

is further discussed in this section.
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Considering the above defined constraints, the new optimization problem

can be written as follows:

max{∆s11,··· ,∆snm}

∑M

m=1

∑N

n=1(p
c)′∆snm∆s′nmp

c

S.T ||∆snm||2 ≥ dnm

||∆snm||2 ≤ enm
∑M

m=1 stm +
∑N

n=1 srn = 0, ∀ m = {1, · · · ,M}, n = {1, · · · , N}
(4.57)

In writing the above equation, it is assumed that the transmitted powers are all

the same and unitary (P1 = P2 = · · · = PM = 1). The optimization problem

given by (4.57) is not in a convex form and therefore cannot be solved using

the standard approaches. The following theorem reformulates the optimization

problem in (4.57) as a SDP:

Theorem 4.4.1 Consider a single-target scenario with a collocated MIMO

radar being used as the measurement tool. Defining T ∗ = {T11, · · · , Tnm}, S∗ =

{st1, · · · , srN}, and t = [t11 · · · tnm]′, the optimal placement of transmitters

and receivers that maximizes the determinant of FIM is found by solving the

following SDP optimization problem:

maxT ∗,S∗,t

∑M
m=1

∑N
n=1 tnm

S.T.
∑M

m=1 stm +
∑N

n=1 srn = 0

T (TnmP ) ≥ tnm




−I2×2 stm − srn

s′tm − s′rn −e2nm



 � 0,





I2×2 stm − srn

s′tm − s′rn d2nm



 � 0





1 s′tm − s′rn

stm − srn Tnm



 � 0, ∀ m = {1, · · · ,M}, n = {1, · · · , N}

with P = pc(pc)′, and � as the generalized inequality operator.
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Proof See Appendix 6.3.

The above optimization problem can be now efficiently solved using standard

packages [44].

Remark 4.4.1 The optimization problem in (4.57) proves dependency on the

parameters of the target through the matrix P . The following proposition shows

how the optimal structure is affected by changing the DOA of the target:

Proposition 4.4.1 Consider a single-target scenario with a collocated MIMO

radar being used as the measurement tool. Defining θ1 and θ2 as two different

DOAs and {So1
t , S

o1
r }, {So2

t , S
o2
r } as the assigned optimal antenna allocations,

respectively, the following equations are valid:

so2tm = G∆θs
o1
tm (4.58)

so2rn = G∆θs
o1
rn ∀ m = {1, · · · ,M}, n = {1, · · · , N} (4.59)

with ∆θ = θ2 − θ1 and G∆θ as the rotation matrix defined as follows:

G∆θ =





cos(∆θ) − sin(∆θ)

sin(∆θ) cos(∆θ)



 (4.60)

Proof See Appendix 6.4.

Remark 4.4.2 The SDP formulation given by Theorem 1 does not provide

any information regarding the uniqueness of the optimal solutions for the loca-

tion of antennas. The uniqueness of solutions is now discussed in the following

proposition.

Proposition 4.4.2 Consider a single-target scenario with a collocated MIMO

radar being used as the measurement tool. Then, there are at least two solu-

tions for the optimization problem in (4.57) as {So1
t , S

o1
r } and {So2

t , S
o2
r }. In
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addition, each optimal configuration can be obtained from the second one by a

simple rotation as follows:

so2ti = Gπs
o2
ti , i = {1, · · · ,M} (4.61)

so2rj = Gπs
o2
rj , j = {1, · · · , N} (4.62)

where Gπ is a rotation matrix with π as the angle of rotation.

Proof See Appendix 6.5.

4.4.2 Multiple Target Case

When multiple targets fall inside the same resolution cell (or consecutive

cells), the individual entries of the FIM in (4.26) are no longer convex.

Proposition 4.4.3 Consider a collocated MIMO radar system with M trans-

mitters and N receivers with dnm ≤ ||∆snm|| ≤ enm, ∀ m = {1, · · · ,M}, n =

{1, · · · , N}. Also, assume a scenario with two targets fallen in the c-th res-

olution cell with parameters Θc
1 and Θc

2, respectively. Then, the term (ωc
1(:

, l)− ωc
2(:, l)) falls in the following interval:

2π

λ
dnm

√

2 (1− cos(θc2 − θc1)) ≤ ωc
1(:, l)−ωc

2(:, l) ≤
2π

λ
enm
√

2 (1− cos(θc2 − θc1))
(4.63)

with l = {1, · · · ,MN}.

The above proposition states that the more separated the DOA of targets,

the wider the difference (ωc
1(:, l) − ωc

2(:, l)). For example, defining ∆ω as the

difference between the upper and lower bounds of (ωc
1(:, l)−ωc

2(:, l)) in (4.63),

Figure 4.3 shows how ∆ω changes by varying the difference between the DOA

of targets. It is observed that when the targets are well-separated in the DOA

space, the difference between the maximum and minimum bound is significant.
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This also highlights the contribution of the sinusoid terms in each entry of

the FIM, which might result in several local optimum points. On the other

hand, the convex relaxation approach used for the single target case cannot

be applied to the cost function derived for the case with multiple targets in

the same cell. The above problems make the optimization problem nonconvex

when there are more than one target inside each resolution cell (consecutive

cells).

To handle the above problem, the optimization algorithm for different ini-

tial locations of the antennas is run. However, a large number of initial points

are required to capture the nonconvexity of the cost function. The sampling

approach is now proposed in Algorithm 2. In the proposed algorithm, Q de-

notes the covariance of the normal density function that is used to generate

new initial points. While the covariance matrix is chosen experimentally, a

small variance might get the algorithm to be trapped in the local optimum

point. Therefore, an intelligent choice of the covariance matrix can enhance

the efficiency of the algorithm. The main idea behind the proposed approach

is to, first, find an estimate of the optimal antenna location, which might be a

local solution. Then, initial points are generated based on the obtained opti-

mal location. The samples are generated until the algorithm reaches the global

optimum point and therefore, no new location is found with the assigned cost

lower than the previous step. Note that this algorithm does not always guar-

antee that the optimization algorithm captures the global solution. However,

as it is shown in the simulations, it is observed that regardless of the initial

selection of the antenna location, the algorithm always converges to a unique

solution.

Remark 4.4.3 The procedure given in Algorithm 2 is terminated when the
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Figure 4.3: Variation of the sinusoid argument by changing the difference
between the DOA of targets.

cost function is not reduced in more than µ iterations where the parameter

µ is empirically chosen. If the algorithm finds the global solution of the cost

function, randomly-generated initial conditions around the optimal point does

not give a lower cost and, therefore, the algorithm does not advance in the

subsequent iterations. In this case, the procedure is stopped after µ unsuccessful

trials.

4.5 Simulation Results

In this section, it is studied how the optimal allocation of antennas in the

surveillance region affects the localization performance of the MIMO radar

system. To do this, a collocated MIMO radar is first designed with the param-

eters being shown in Table 4.7. In the following subsections, the performance

of the optimization algorithm is first studied for a single target scenario. Then,

the simulations results will be provided for a scenario with multiple targets

occupying the same resolution cell.
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Algorithm 2 The Optimization Algorithm For the Case With Multiple Tar-
gets In the Same Resolution Cell

Initialization: Generate an initial location of antennas as s0tm, s
0
rn with

m = {1, · · · ,M} and n = {1, · · · , N}.
Optimization: Find an optimal distribution of antennas by minimizing the
following cost function:

minst1,··· ,srN T (CXX′)
S.T. ||∆snm|| ≥ dnm

||∆snm|| ≤ enm
∑M

m=1 stm +
∑N

n=1 srn = 0, ∀ m = {1, · · · ,M}, n = {1, · · · , N}
(4.64)

Optimal Cost: Initialize sotm and sorn and calculate the assigned cost as
Co = T (CXX′)sot1,··· ,sorN .
Sampling: While u ≤ U or NA < µ:

• Sample s0tm ∼ N (sotm, Q) and s0rn ∼ N (sorn, Q) with m = {1, · · · ,M}
and n = {1, · · · , N}.

• Run the optimization algorithm and find the new distribution of an-
tennas s⋆tm, s

⋆
rn and associated cost C⋆.

• if C⋆

C0 ≤ 1 then
sotm = s⋆tm, s

o
rn = s⋆rn with m = {1, · · · ,M} and n = {1, · · · , N}.

Co = C⋆.
NA = 0.

• else
NA = NA + 1.

• end if

Report sotm and sorn as the optimal distribution of antennas.
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Table 4.7: Simulation Parameters For the Antenna Allocation in a Collocated
MIMO Radar

Parameter Description Value
rmax Maximum coverage range of transmitters 5(km)
rbin Range width 30(m)
λ Wave-length 30(cm)
K Number of snapshots 128
σ2
α Variance of the scatterers 10−4

σ2
w Variance of the additive noise 1

Pm Transmitted power 1 (w)

4.5.1 A Single-target Scenario

Initially, consider a single target being located at [410 − 710]′(m). The

parameters of the target are also chosen to be as follows:

Θ = [−π
3
.33 3 3] (4.65)

In the first experiment, assume that there areM antennas available where each

antenna can both transmit and receive signals. Two antenna configurations

are considered in this part. First, the Uniform-Linear-Array (ULA) structure

is taken where the distance between each two antennas is λ
2
. The second config-

uration is the optimal geometry found by the optimization algorithm proposed

in this paper. For simulations, it is assumed that dmn = λ, emn = 2λ ∀{m,n}.
The optimization algorithm is now implemented and the optimal configura-

tion of antennas is shown in Figure 4.4 for different number of antennas. In

addition, Figure 4.5 presents the CRLB of localization for the optimal and the

ULA structure separately. It can be observed that the CRLB of the optimal

configuration is much lower than that of the ULA structure. The improve-

ment becomes more significant when the number of antennas is smaller. For

example, for the case with M = 2 antennas, the CRLB of the optimal struc-

ture is around 6 times lower than that of the ULA configuration while the
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Figure 4.4: The obtained optimal configuration of antennas for a single-target
case. The optimal configuration is found for different number of antennas
where each antenna can both transmit and receive signals.

improvement decays to 2 times lower at M = 5 antennas. When the number

of antennas increases, the gap between the optimal and ULA CRLB becomes

tighter because the Signal-to-Noise Ratio (SNR) is large enough to make up

the poor geometry of antennas.

Furthermore, in order to study how the DOA of the target affects the

optimal configuration of antennas, consider the above-designed scenario with

M = 4 antennas. While the target is still assumed to fall in the same cell

defined in the above experiment, its DOA varies in the interval [−π
2
, π
2
]. The

optimization algorithm is now implemented to find the optimal configuration

of antennas. Figure 4.6 shows the results for four different target DOAs. The

results shown in Figure 4.6 imply that the optimal configuration with θ1 as

the DOA can be obtained from the optimal structure with θ2 by rotating the

geometry (θ2 − θ1)(Rad) around the mass center, which confirms proposition
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Figure 4.5: Localization CRLB for the ULA configuration and the optimal
structure. The CRLB is found for a single-target scenario and different number
of antennas.

4.4.1.

It is also beneficial to study the performance of the localization algorithm

with the designed optimal configuration. To do this, assume M = 3 is fixed

as the number of antennas. Besides the optimal and ULA configurations, a

random antenna allocation is also used for the test where the antennas are

randomly distributed in the underlying surveillance region. The localization

Root-Mean-Squared-Error (RMSE) is now calculated at different target SNRs

where all results are obtained after 100 Monte Carlo simulations. Figure 4.7

presents the resulting RMSE for each of the above-represented configurations.

It is observed that the optimal configuration achieves the lowest RMSE while

the ULA provides the worst results. The random allocation also gives an

RMSE between the optimal and ULA configurations although other random

distributions of antennas may provide higher RMSE results.

In the last experiment, simulation results were provided for a scenario in

which each antenna can either transmit or receive signals. Consider a single-

target scenario with θc = −π
3
(Rad) as the DOA. The optimal structure is
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now found for two cases with M = N = 2 and M = N = 6 antennas.

Figure 4.8 presents the obtained optimal structures where, for each case, the

results are given for scenarios with the same and separate transmitters and

receivers, respectively. It can be observed that the optimal structure obtained

for each case (e.g. the same and separate transmitters and receivers) is the

same with transmitters and receivers being clustered in a way that the mutual

distances between the same-type antennas (e.g. transmitter or receiver) is

minimized. To test this hypothesis, assume that 6 antennas are available and

there are two scenarios with M = 4 and M = 3 as the number of transmitters

at each scenario. The optimal structure is now found for each scenario and

the final results are shown in Figure 4.9. It can be observed that the same

optimal structure is obtained for both cases with antennas being clustered

based on the mutual distances between the antennas with the same type.

Note that although the obtained optimal structures in Figure 4.9 are similar,

the optimum cost function might be different based on the number of signal

paths (M × N). For example, for the configurations given in Figure 4.9, the

optimum cost is calculated to be .7545 and .6393 for M = 4 (M × N = 8)

and M = 3 (M ×N = 9) antennas, respectively. The obtained optimum cost

values also confirm the fact that the more the diversity gain, the lower the

achieved optimum cost.

4.5.2 Multiple Target Case

In this subsection, the optimization algorithm is applied to a scenario with

more than one target being located in the same resolution cell. Let us assume
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Figure 4.6: The obtained optimal configuration of antennas for a single-target
case, and for four different target DOAs.
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Figure 4.7: Location RMSE for different target SNRs and for the MIMO radar
with M = 3 antennas. The RMSE results are obtained for three different
structures (ULA, optimal, and randomly-distributed configurations).
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Figure 4.8: The obtained optimal configuration of antennas for a single-target
case. The optimal configuration is found for different number of antennas
where each antenna can either transmit or receive signals.

−0.4 −0.2 0 0.2 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

X (m)

Y
 (

m
)

 

 

−0.4 −0.2 0 0.2 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

X (m)

Y
 (

m
)

 

 

Transmitters
ReceiversTransmitters

Receivers

Figure 4.9: The obtained optimal antenna configuration for the single-target
scenario when M + N = 6 antennas are available. The optimal structure
is found for two cases with M = 4 and M = 3 antennas as the number of
transmitters.
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there are two targets falling in the same cell with the following parameters:

Θc
1 =

[

−π
3
.33 3 3

]′

Θc
2 =

[

+
π

3
.66 3 3

]′

(4.66)

Based on the results in Figure 4.3, it is now evident that the effect of sinusoid

terms in the cost function cannot be ignored due to the large value for ∆θ.

First, the optimization framework given by Algorithm 2 is applied to the two-

target scenario with different initial conditions. Figure 4.10 shows the obtained

cost values at different iterations of the algorithm and for different initial

conditions. It is observed that the algorithm captures the global minimum

after a number of iterations. While each initial condition leads to a different

cost value, the sampling approach finally finds the structure corresponding to

the global minimum. Note that without the sampling procedure, each initial

condition leads to a different optimal cost as shown in Figure 4.11. However,

when the sampling approach is used, regardless of the initial condition, the

same optimal cost is finally obtained.

Now, the impact of the angular separation between the targets in the per-

formance of the optimization algorithm is studied. The optimal structure is

found for different values of ∆θ = θc2−θc1. The optimal configurations are now

depicted in Figure 4.12 for four different values of ∆θ. It is observed that when

∆θ → 0, the obtained structure resembles the one given in Figure 4.4 for the

scenario with M = 4 antennas. Nevertheless, for other values of ∆θ, a new

structure is obtained whose geometry depends on the distribution of targets in

the resolution cell. Figure 4.13 also presents the cost function (e.g. the trace

of the location CRLB) for different values of ∆θ where the results are obtained

for both optimal and ULA configurations. The graph states that the closer

the targets, the poorer the performance. For example, the cost at ∆θ = π
100

is
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Figure 4.10: The obtained cost for 10 different initial antenna locations. The
simulations are done for a two-target scenario fallen in the same resolution
cell.
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Figure 4.11: The optimal cost for 10 different initial antenna locations without
using the sampling-based approach.
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100% more than the one at ∆θ = π
50

when the optimal structure is taken. In

addition, Figure 4.13 confirms the superiority of the optimal structure to the

ULA. The rate of the improvement also increases when targets become closer,

with 10 times lower cost at ∆θ = π
100

compared to 5-time lower cost achieved

at ∆θ = 2π
3
. The obtained results in Figures 4.4 and 4.13 imply that although

the optimization algorithm can be implemented more efficiently when the an-

gular separation between two targets becomes tighter, the performance of the

localization is degraded once the target becomes closer. In other words, there

is a trade-off between the quality of the localization and the efficiency of the

optimization algorithm. Smaller values of ∆θ makes the FIM entries in (4.26)

less dependent on the sinusoid terms.

The performance of the optimization algorithm can be also evaluated for a

scenario with more than two targets fallen inside the same resolution cell. It is

known that there is a bound on the maximum number of targets that can be

uniquely detected in the same resolution cell [59]. Assume different number

of targets are placed in the c-th resolution cell with the same SNR being

assigned to each target. Also, consider the MIMO structure with M = N = 4

antennas where each antenna can both transmit and receive signals. We find

the optimal structure for each case with a different number of targets inside

the same resolution cell. For the comparison, the localization algorithm is also

applied to the obtained structures and the location RMSE is calculated by

taking an average of individual estimates in 100 Monte Carlo runs. The RMSE

results as well as the location CRLB are now depicted in Figure 4.14 where the

graphs for the case with the ULA MIMO structure are also included. While

the localization performance degrades by increasing the number of targets,

the optimal structure always shows the lower RMSE compared to the ULA

configuration. In addition, when more targets fall inside the same resolution
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Figure 4.12: The optimal antenna configuration for the two-target scenario.
The optimal structure is found for different values of ∆θ.

cell, the difference between the obtained RMSE of the ULA structure and that

of the optimal configuration becomes higher. For example, for the scenario

with T = 2 unresolved targets, the optimal RMSE is 53% lower than the RMSE

obtained by the ULA structure. Nevertheless, the gap widens to 123% when 5

targets occupy the same resolution cell. Although the distribution of targets

in the cell also affects the localization performance [43], this experiment shows

the superiority of the optimal structure compared to the ULA configuration,

specially, when more targets are placed in the same resolution cell.
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Figure 4.13: The calculated cost for the two-target scenario. The cost was
calculated for different values of ∆θ and scenarios with the optimal and ULA
structure.
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located inside the same resolution cell.
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Chapter 5

Conclusions

This thesis dealt with a number of challenging topics in the new emerg-

ing MIMO radar structures. Two well-known collocated and widely-separated

MIMO radar systems were first presented. Signal models were derived for each

structure and the advantages and disadvantages of each configuration com-

pared to the traditional phased-array and multistatic radars were described.

It was observed that the traditional signal models for collocated MIMO

radars suffer from the lack of observability. Therefore, a new signal model

was proposed to incorporate range information in the received data in order

to maintain the observability of the signal model and providing an estimate

of range for targets of interest. Then, a localization algorithm was developed

for the new model to estimate the number and parameters of targets. To do

this, an MDL criterion was employed to find the correct number of targets

inside each cell. Afterwards, the likelihood function was derived for the new

model and an ML method was applied to estimate the states of targets. The

parameter identifiability problem was also defined as the maximum number

of unique targets that can be detected in one cell. The maximum bound for

localization was derived and it was shown that, even, with the number below
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the bound localization results may not be satisfactory due to the poor geometry

of targets. Therefore, a multiple hypothesis based tracking method using the

UKF algorithm in the filtering stage was formulated to deal with the limitation

on the maximum number of uniquely detectable targets. Simulations showed

that localization RMSE is affected by the geometry and number of targets

located in the same cell. For comparison, simulations were done using the

new signal-level tracking method and the localization-level algorithm using

localization results as the measurements. Results showed the superiority of the

signal-level tracking over the localization-level method even when the number

of targets in the cell is below the maximum bound. Also, the the signal-

level method is much more computationally efficient than the localization-

level tracking method is. Finally, the new method was applied to a scenario in

which the number of targets in one cell exceeds the maximum bound. Results

showed the capability of the signal-level tracking method in estimating the

states of unresolved targets while the localization CRLB becomes unbounded

in the intervals that all targets enter the same cell. From the simulations, the

efficiency of the signal-level tracking approach applied to the new developed

model for co-located MIMO radars can be concluded.

This thesis also studied the impact of the distribution of antennas on the

localization performance of a collocated MIMO radar. A novel derivation of

the CRLB was presented where both range and DOA information were in-

cluded in the CRLB. A well-known SDP was then formulated for the antenna

allocation problem when a single target is available inside the resolution cell.

Then, the antenna allocation was extended to the multiple unresolved tar-

get scenarios, and it was shown that the final cost function is non-convex.

A sampling-based approach was then proposed to capture the global mini-

mum of the proposed cost function. Simulation results were also presented
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for both scenarios with the single-target and multiple targets occupying the

same resolution cell. The obtained results confirmed the superiority of the

optimal configuration compared to the common ULA structure in both single

and multiple target scenarios.

The other main contribution of this thesis was to provide a general frame-

work to analyze the performance of MIMO radars with widely-separated an-

tennas in detecting, localizing, and tracking multiple targets with multiple

scatterers. The detection capability of MIMO radars in handling multiple-

scatterer targets was evaluated and their performance was compared to that

of traditional multistatic radar systems. A new multiple hypothesis-based

algorithm was also proposed in order to estimate the number and states of

targets even when they become closely-spaced (or unresolved) in the measure-

ment space. While the localization results can be used for track initiation, a

tracking algorithm using the particle filter algorithm was presented for mul-

titarget tracking. Using a number of simulations, the superior performance

of MIMO radars over the multistatic systems was demonstrated. It was also

concluded that MIMO radars are more suitable for scenarios with low target

SNRs and low rate of visibility while multistatic radars are preferred at high

SNRs. Finally, the performance of the tracking algorithm was evaluated using

a two-target scenario. Simulations show that the proposed tracking algorithm

is efficient in that it meets the PCRLB.
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Chapter 6

Appendices

6.1 Partial Derivatives in the FIM of Collo-

cated MIMO

Without loss of generality, derivatives are found for the t-th target param-

eters. Assume the target is located in the c-th cell. Derivatives are found

for the case c > 1. When c = 1, the same equations can be used with zero

derivative for (c− 1)-th cell. For the mean vector, the following equations are

immediately obtained

∂µc−1:c

∂θt
= [

(

βtαtḋt

)H (

(1− βt)αtḋt

)H

]H (6.1)

∂µc−1:c

∂rt
=

1

rbin
[(αtdt)

H (−αtdt)
H ]H (6.2)

∂µc−1:c

∂α̂R
t

= [(βtdt)
H ((1− βt)dt)

H ]H (6.3)

∂µc−1:c

∂α̂I
t

= j
∂µc−1:c

∂α̂R
t

(6.4)

where ḋt = ddt

dθt
that can be computed using the equation given for system

matrix dt. For the covariance matrix, derivative is zero for DOA and scatters.
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Therefore, the following equation is given for range

∂Σ(c−1)(c−1)

∂rt
= −4 1

r2bin
(1− βt)σ2

αdiag(dtd
H
t )

∂Σcc

∂rt
= 4

1

r2bin
βtσ

2
αdiag(dtd

H
t )

∂Σc(c−1)

∂rt
= 2

1

r2bin
(1− 2βt)σ

2
αdiag(dtd

H
t ) (6.5)

Finally, derivatives of range and DOA can be also easily found by the following

equations

∂rt
∂xt

=
xt
rt
,
∂rt
∂yt

=
yt
rt
,
∂θt
∂xt

= −yt
r2t
,
∂θt
∂xt

=
xt
r2t

(6.6)

6.2 Proof of Proposition 4.3.1

Consider the n-th target and the m-th target that are located in the c1-

th cell and the c2-th cell, respectively. First, assume that c1 = c2 − 1. The

unknown term Jθc1n θ
c2
m

is first calculated where the proof sketch for other terms

is similar. The entry Jθc1n θ
c2
m

can be found using the following equality:

Jθc1n θ
c2
m

=

(

∂ρ̄∗
∂θc1n

)′

Σ−1
∗

(

∂ρ̄∗
∂θc2m

)

+ T
((

∂Σ∗

∂θc1n

)

Σ−1
∗

(

∂Σ∗

∂θc2m

)

Σ−1
∗

)

(6.7)

Based on the definition of the covariance matrix in (4.13), it is evident that

the second term in the right-hand side of the above equation equals zero.

Now, according to the definition of ρ̄∗ in (4.33), the following equations can

be derived for the partial derivative terms in (6.7):

∂ρ̄∗
∂θc1n

=

[

∂ℜ(η̄c1−1)

∂θc1n

∂ℑ(η̄c1−1)

∂θc1n

∂ℜ(η̄c1)
∂θc1n

∂ℑ(η̄c1)
∂θc1n

0

]

(6.8)

∂ρ̄∗
∂θc2m

=

[

0
∂ℜ(η̄c1)
∂θc2m

∂ℑ(η̄c1)
∂θc2m

∂ℜ(η̄c2)
∂θc2m

∂ℑ(η̄c2)
∂θc2m

]

(6.9)
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After some straightforward algebraic operations, the FIM in (6.7) can be writ-

ten in the following form:

Jθc1n θ
c2
m

= k2

{(

∂ℜ(η̄c1)
∂θc1n

)(

∂ℜ(η̄c1)
∂θc2m

)′

+

(

∂ℑ(η̄c1)
∂θc1n

)(

∂ℑ(η̄c1)
∂θc2m

)′}

+ k4

{(

∂ℜ(η̄c1−1)

∂θc1n

)(

∂ℜ(η̄c1)
∂θc2m

)′

+

(

∂ℑ(η̄c1−1)

∂θc1n

)(

∂ℑ(η̄c1)
∂θc2m

)}

+ k5

{(

∂ℜ(η̄c1−1)

∂θc1n

)(

∂ℜ(η̄c2)
∂θc2m

)′

+

(

∂ℑ(η̄c1−1)

∂θc1n

)(

∂ℑ(η̄c2)
∂θc2m

)′}

+ k6

{(

∂ℜ(η̄c1)
∂θc1n

)(

∂ℜ(η̄c2)
∂θc2m

)′

+

(

∂ℑ(η̄c1)
∂θc1n

)(

∂ℑ(η̄c2)
∂θc2m

)′}

(6.10)

Using (4.10) and (4.11) and the notations given by definitions 4.3.3 and 4.3.4,

the following expressions can be derived for the derivatives in (6.10):

(

∂ℜ(η̄c1)
∂θc1n

)(

∂ℜ(η̄c1)
∂θc2m

)′

= K

(

2π

λ

)2

βc1
n (1− βc2

m )
MN
∑

l=1

(pc1
n )

′Ω(:, l)Ω′(:, l)pc2
m ×

×
(

ξ̄c1n cos(ωc1
n (l))− ζ̄c1n sin(ωc1

n (l))
)

×

×
(

ξ̄c2m cos(ωc2
m(l))− ζ̄c2m sin(ωc2

m(l))
)

(

∂ℑ(η̄c1)
∂θc1n

)(

∂ℑ(η̄c1)
∂θc2m

)′

= K

(

2π

λ

)2

βc1
n (1− βc2

m )
MN
∑

l=1

(pc1
n )

′Ω(:, l)Ω′(:, l)pc2
m ×

×
(

ξ̄c1n sin(ωc1
n (l)) + ζ̄c1n cos(ωc1

n (l))
)

×

×
(

ξ̄c2m sin(ωc2
m(l)) + ζ̄c2m cos(ωc2

m(l))
)

(6.11)

Therefore, the first term in the right hand side of (6.10) can be written as

k2

{(

∂ℜ(η̄c1)
∂θc1n

)(

∂ℜ(η̄c1)
∂θc2m

)′

+

(

∂ℑ(η̄c1)
∂θc1n

)(

∂ℑ(η̄c1)
∂θc2m

)′}

= K

(

2π

λ

)2

βc1
n (1− βc2

m )×

×
{

nm
∑

l=1

(pc1
n )

′Ω(:, l)Ω′(:, l)pc2
m

(

κnmc1c2 cos(ω
c2
m(l)− ωc1

n (l)) + ιnmc1c2 sin(ω
c2
m(l)− ωc1

n (l))
)

}

(6.12)
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Other terms in the right-hand side of (6.10) can be similarly found. The final

form can be now written as follows:

Jθc1n θ
c2
m

= K

(

2π

λ

)2 MN
∑

l=1

(pc1
n )

′Ω(:, l)Ω′(:, l)pc2
m ×

×
(

κnmc1c2 cos(ω
c2
m(l)− ωc1

n (l)) + ιnmc1c2 sin(ω
c2
m(l)− ωc1

n (l))
)

×

× (k2β
c1
n (1− βc2

m ) + k4(1− βc1
n )(1− βc2

m ) + k5β
c1
n β

c2
m + k6β

c1
n (1− βc2

m ))

(6.13)

where the term in the second line of the above equation can be written as

follows:

(k2β
c1
n (1− βc2

m ) + k4(1− βc1
n )(1− βc2

m ) + k5β
c1
n β

c2
m + k6β

c1
n (1− βc2

m )) =

=
[

(β̆c1
n )′ 0

]

Σ−1
∗

[

0 (β̆c2
m )′
]′

(6.14)

which is the coefficient Cθ
c1
n θ

c2
m
. For the case with c1 = c2, the same procedure

can be followed and the expression in the proposition is similarly found.

6.3 Proof of Theorem 4.4.1

We begin with the optimization formulation given by (4.57). Define the new

matrix Tnm and the new variable tnm with {m = 1, · · · ,M}, {n = 1, · · · , N},
and rewrite the optimization problem as follows:

max{∆s11,··· ,∆snm,t,T ∗}

∑M

m=1

∑N

n=1 tnm

S.T ||∆snm||2 ≥ dnm

||∆snm||2 ≤ enm
∑M

m=1 stm +
∑N

n=1 srn = 0

(pc)′Tnmp
c ≥ tnm

(∆snm)(∆snm)
′ � Tnm, ∀ m = {1, · · · ,M}, n = {1, · · · , N}

(6.15)
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where t = [t11 · · · tnm]′, and T ∗ = {T11, · · · , Tnm}. The second-norm terms in

the constraints can be written into the following form:





−I2×2 ∆snm

∆s′nm −e2nm



 � 0,





I2×2 ∆snm

∆s′nm d2nm



 � 0 (6.16)

In addition, using the Schur-complement of a square matrix, the last constraint

in (6.15) is written as




1 ∆s′nm

∆snm Tnm



 � 0 (6.17)

Inserting the new forms provided by (6.16) and (6.17) in (6.15) and using the

fact that (pc)′Tnmp
c = T (TnmP ) with P = pc(pc)′, the following new form is

derived for the optimization problem:

max{T ∗,S∗,t}

∑M
m=1

∑N
n=1 tnm

S.T
∑M

m=1 stm +
∑N

n=1 srn = 0

T (TnmP ) ≥ tnm




−I2×2 ∆snm

∆s′nm −e2nm



 � 0,





I2×2 ∆snm

∆s′nm d2nm



 � 0





1 ∆s′nm

∆snm Tnm



 � 0, ∀ m = {1, · · · ,M}, n = {1, · · · , N}

where S∗ = {st1, · · · , srN}. Now, the difference vector is written as

∆snm = srn − stm (6.18)

Replacing the above equation in (6.18), the form given by the theorem is

obtained.
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6.4 Proof of Lemma 4.4.1

Consider the optimal structure found for the case with θ1. Assuming θ2 as

the new DOA the cost function in (4.57) can be rewritten as follows:

M
∑

m=1

N
∑

n=1

∆s′nmP
∗∆snm (6.19)

with P ∗ = (p∗)′p∗ and p∗ = [cos(θ1 +∆θ) − sin(θ1 +∆θ)]′. The vector p∗

can be expanded as

p∗ =





cos(∆θ) sin(∆θ)

− sin(∆θ) cos(∆θ)









cos(θ1)

− sin(θ1)



 (6.20)

Defining the first term in the right-hand side of the above equation as G∆θ,

the cost function can be rewritten as follows:
M
∑

m=1

N
∑

n=1

∆s′nmG∆θPG
′
∆θ∆snm (6.21)

We know that ∆so1nm = (so1tm − so1rn) maximizes the cost function in (4.57) where

P is the matrix corresponding the target with θ1 as the DOA. Therefore, an

optimal solution of the optimization problem with θ2 as the DOA of the target

can be obtained as

G′
∆θs

o2
tm = so1tm (6.22)

G′
∆θs

o2
rn = so1rn, ∀ m = {1, · · · ,M}, n = {1, · · · , N} (6.23)

Consequently, the new optimal solution is written as follows:

so2tm = G∆θs
o1
tm (6.24)

so2rn = G∆θs
o1
rn, ∀ m = {1, · · · ,M}, n = {1, · · · , N} (6.25)

Now, we have to check whether the new solution holds in the constraints. It

can be easily shown that:

||∆so2nm||2 = ||∆so1nm||2 (6.26)
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In addition, it is known that:

M
∑

m=1

so2tm +

N
∑

n=1

so2rn = G∆θ

(

M
∑

m=1

so1tm +

N
∑

n=1

)

= 0 (6.27)

which implies that the new optimal solution also meets the constraints.

6.5 Proof of Proposition 4.4.2

Consider the optimization problem in (4.57) without including the con-

straint on the mass center. In this case, the cost function is quadratic with

respect to the unknown difference vectors. The unique optimal solution ob-

tained by solving the resulting optimization problem can be written as {∆sonm}
with m = {1, · · · ,M} and n = {1, · · · , N}. It is evident that there are an

infinite number of location solutions for which the above set of difference vec-

tors are obtained. Let us define the i-th and the j-th sets as {Soi
t , S

oi
r } and

{Soj
t , S

oj
r }, respectively. It is known from the geometry that:

soitl = Gθs
oj
tl + btl (6.28)

where Gθ denotes a rotation matrix with θ as the angle of the rotation, and b

refers to an arbitrary translation. Note that the above equation can be written

for every other antenna in the array of receivers as well. Considering the mass

center constraint given by (4.2.3), we show that the translation should be zero

in (6.28). To show this, we first assume that there is a nonzero translation as

btl. Then, it is observed that such an assumption leads to the contradiction.

It is known that the center of the mass of the array is located in the origin.

Therefore, there should be another translation btv where btv = −btl. Under

the new translations, the new difference vector is written as

(soitl − soitv) = (sojtl − sojtv + 2btl) (6.29)
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It is now evident that the new configuration gives a different set of difference

vectors, which is a contradiction to our initial assumption (e.g. the same set of

difference vectors). Therefore, the translation part in (6.28) is zero. Now, con-

sider the rotation part in (6.28). It is known that the rotation transform does

not change the distance between each two points. Rewrite the cost function

in (4.57) into the following form:

N
∑

m=1

N
∑

n=1

(soinm)
′P c∆soinm =

N
∑

m=1

N
∑

n=1

(sojnm)
′G′

θP
cGθ∆sojnm (6.30)

Using formal matrix operations, the new matrix U = G′
θP

cGθ can be written

in the following form:

U =





cos2(θ + θc) − sin(θ + θc) cos(θ + θc)

− sin(θ + θc) cos(θ + θc) sin2(θ + θc)



 (6.31)

The cost produced by each of two sets of optimal solutions is equal if the

following condition is held:

M
∑

m=1

N
∑

n=1

(∆soinm)
′V∆soinm = 0 (6.32)

with V = U−P c. The equality in (6.32) is valid if either V = 0 or V is neither

positive nor negative semi-definite. First, assume V = 0. Based on the given

form in (6.31) for the matrix U , it can be inferred that U = P c when θ = nπ.

In other words, a rotation with nπ as the angle of rotation provides the same

cost function. Now, assume the other case where V 6= 0. It can be shown that

matrix V has two eigenvalues {λ,−λ} where the value of λ depends on the

rotation angle and θc. Therefore, the zero inequality in (6.32) leads to a number

of solutions for the difference vectors. The rotated configuration can be then

another solution of the optimization problem if {Soi
t , S

oi
r } belongs to the set of

solutions of (6.32). The above discussions state that the optimization problem

provides at least two solutions for the optimum configuration of antennas.
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