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ABSTRACT 

 There is a prevalent belief in exercise-science that acute hormone responses to 

resistance exercise mediate adaptations in strength and hypertrophy; however, there is 

little direct supporting evidence. Therefore, for this thesis, we conducted three studies 

to examine the relationship between acute hormonal increases after resistance 

exercises and subsequent changes in skeletal muscle anabolism.  

 In our first two studies, we tested the hypothesis that exercise-induced 

responses of anabolic hormones—growth hormone (GH), insulin-like growth factor 1 

(IGF-1) and testosterone—would elevate rates of myofibrillar protein synthesis (MPS) 

after an acute bout of resistance exercise, and would augment muscle hypertrophy after 

training. We concluded, however, that resistance exercise-induced increases in putative 

anabolic hormones do not enhance MPS or strength and hypertrophy adaptations.  

 Compared with men, women have low endogenous testosterone and do not 

experience acute post-exercise testosteronemia after resistance exercise. In the third 

study, we aimed to determine whether rates of MPS would be attenuated in women 

(compared with men) after resistance exercise and protein ingestion. We reported 

similar increases in MPS in men and women; post-exercise testosterone responses in 

women, which were 45-fold lower than men, did not attenuate elevations in MPS.  

The sum of the works presented here lead to the conclusion that the acute rise in 

hormones such as testosterone, GH, and IGF-1, has very little bearing on post-exercise 

anabolic responses of MPS and hypertrophy. Instead, the rise in these hormones 
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appears to be a non-specific response to exercise stress rather than a response that is 

specific to resistance exercise or important for subsequent skeletal muscle anabolism. 

Contrary to principles that are currently widely used to create exercise programs, our 

data suggests that exercise programs should not be designed based on nuances in the 

acute post-exercise hormonal milieu. Alternatively, understanding local 

mechanotransduction, which is directly linked to muscle fibre loading, will reveal the 

processes that drive human exercise-mediated muscle hypertrophy.      
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CHAPTER 1: INTRODUCTION 

1.1 THESIS OUTLINE 

 This thesis begins with a general introduction, Chapter 1, which outlines the 

rationale and purpose of the studies reported herein. Next, the experimental models 

that we (the authors of Chapters 2-4) used are explained, with a brief mention of muscle 

protein synthesis which was the primary outcome variable in Chapters 2 and 4. [Note: 

technically, we measured the rate of myofibrillar protein synthesis, denoted herein as 

MPS; the myofibrillar fraction is comprised of contractile proteins and represents the 

majority fraction of mixed muscle]. The remainder of the introduction discusses four 

hormones—testosterone, growth hormone (GH), insulin-like growth factor 1 (IGF-1) and 

cortisol—that were measured in Chapters 2-4, and how they can affect protein 

metabolism. The middle of the thesis, Chapters 2-4, is comprised of the published 

manuscripts of the three studies that we conducted. Chapter 5 is a general discussion of 

topics and questions remaining in light of the work presented in Chapters 2-4, and 

includes a brief discussion of sex-based comparisons in muscle protein synthesis, and an 

examination of the time course and concentration of testosterone and how these two 

factors may affect protein metabolism. Chapter 5 concludes with a discussion of 

potential biological roles of the exercise-induced hormone response, areas of future 

research and an overall conclusion.    
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1.2 THESIS RATIONALE     

 Resistance exercise is an anabolic stimulus that promotes gains in skeletal muscle 

strength and hypertrophy over time. A prevalent viewpoint exists in exercise-science 

literature that acute exercise-induced changes in the concentrations of anabolic 

hormones such as testosterone and growth hormone regulate these adaptations. Direct 

quotations from a variety of publications are presented in Appendix 1 as evidence of this 

belief, and to give a sampling of the nature, variety and veracity of this viewpoint. These 

quotes convey a perspective that it is a foregone conclusion that acute hormone 

responses to resistance exercise mediate adaptation; however, upon closer 

examination, direct evidence to support this perspective is lacking.  

1.3 STUDY OBJECTIVES  

 We conducted three studies to examine the effect of acute hormone responses 

after resistance exercises on subsequent changes in skeletal muscle anabolism. In the 

first study (Chapter 2), we manipulated the exercising muscle mass to create low and 

high systemic hormone concentrations to which the elbow flexor muscles, which 

performed identical resistance exercise in both conditions, were exposed post-exercise. 

We subsequently measured MPS using stable isotope methodology after the acute 

bouts of resistance exercise. Thus, the first study was designed to test the hypothesis 

that the exercise-induced response of anabolic hormones would enhance MPS and 
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protein signalling involved in translation initiation after an acute bout of resistance 

exercise.  

 In the next study (Chapter 3), we used the same experimental design as the 

previous study, but investigated whether there were differences in strength and 

hypertrophy between the low and high hormone conditions after fifteen weeks of 

training. Specifically, we aimed to determine whether repeated elevations in acute post-

exercise concentrations of GH, IGF-1 and testosterone during resistance training would 

enhance muscle hypertrophy and strength gains. This training study allowed us to verify 

that our acute results were consistent with the training-induced phenotype. 

Additionally, measuring hypertrophy provided insight into potential hormonal effects on 

net protein balance (cf. in the first study we measured MPS, but not muscle protein 

breakdown).  

 The last study (Chapter 4) was designed to examine the effect of exercise-

induced testosterone in a different manner than the first two studies: using divergent 

exercise-induced testosterone responses of men and women as a model. The purpose of 

this study was two-fold: i) to determine the impact of resistance exercise and protein 

feeding on rates of MPS and the molecular anabolic response during early (1–5 h) and 

late (24–28 h) recovery periods in men and women; and ii) to test the hypothesis that 

low post-exercise systemic testosterone in women would attenuate MPS after 

resistance exercise compared with men. Together with investiagting this fundamental 

comparison between men and women after resistance exercise with feeding, by 
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profiling the testosterone responses to resistance exercise, we were able to examine 

whether there was any association between the post-exercise testosterone response 

and subsequent rates of MPS.     

1.4 EXPERIMENTAL MODELS OF EXERCISE-INDUCED HORMONE RESPONSES  

 It is clear that resistance exercise can elicit an increase in the systemic 

concentrations of testosterone, growth hormone and cortisol. This is especially true 

when the exercise bout has the following characteristics: moderate-high intensity (e.g., a 

load approximating 10 repetition maximum) (21, 48, 50), high volume (35, 37), short rest 

intervals (16, 50, 51), and engages a large muscle mass (40, 72). In the first two studies 

of this thesis, we employed a within-subject design in which we manipulated the 

quantity of exercising muscle mass in order to create a low and high post-exercise 

hormonal milieu to which the elbow flexors, a much smaller muscle mass, were 

exposed. In one condition, participants performed unilateral elbow flexion (i.e., a small 

exercising muscle mass alone) to induce little-to-no systemic post-exercise hormonal 

response such that hormone concentrations were similar to basal levels. In the opposite 

condition, elbow flexion exercise was performed using the contralateral arm, followed 

by a bout of lower-body exercise, in which we manipulated the variables noted above, 

to induce a high post-exercise hormone state.  

 Part of the reason that effects of exercise-induced hormones are not established, 

but instead largely surmised, is that it is difficult to find a suitable model that 
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manipulates or isolates potential effects. After using a model whereby we manipulated 

exercising muscle mass in Chapters 2 and 3, we were interested in studying physiological 

hormones in another model. We decided to study the effect of resistance exercise and 

dietary protein on MPS in men and women for two main reasons. First, it had never 

been done before and would provide fundamental information. Second, knowing that 

women do not exhibit hypertestosteronemia after exercise, this model allowed us to 

compare rates of MPS in a group that produced a robust exercise-induced testosterone 

response (men) with a group that did not have the ‘benefit’ of a post-exercise 

testosterone increase. Indeed our model was successful, as the increase in testosterone 

availability above baseline was 45-fold greater in men compared with women. 

Presumably, this divergence would be revealing in that it should stimulate differential 

rates of MPS if the post-exercise increment in testosterone was truly integral to 

elevating MPS after resistance exercise.  

 In summary, the present thesis contains studies that stemmed from both 

practical and basic sciences questions such as: Are exercise-induced hormones 

important regulators of skeletal muscle mass? Do exercise-induced hormones enhance 

muscle size and strength with training? Should small muscle groups be paired with large 

muscle groups in order for the small muscle groups to benefit from the hormonal milieu 

that is produced by exercising a large, but not a small, muscle mass? Is the anabolic 

response to feeding and resistance exercise in women attenuated by the lack of an 

exercise-induced testosterone response?    
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1.5 A BRIEF INTRODUCTION TO MUSCLE PROTEIN SYNTHESIS 

 In Chapters 2 and 4, we used a continuous infusion of an isotopically-labelled 

amino acid to make direct measures of the incorporation of amino acids into muscle 

proteins in order to determine changes in the rate of protein synthesis (70). In our 

method, isotopically-labelled phenylalanine is infused at a rate that has been 

determined to result in a steady-state enrichment of the plasma- and intracellular free- 

amino acid precursor pools (94). With the precursor pool enrichment now steady, the 

magnitude of the difference in the incorporated enrichment between two protein-

bound biopsy samples will be directly proportional to the rate of muscle protein 

synthesis. The incorporation time, multiplied by the precursor pool enrichment, is the 

denominator to the difference in protein-bound enrichment, producing the final 

calculated fractional synthesis rate, often expressed in units of percent per hour.  

 A full discussion of effects of feeding on muscle protein synthesis is beyond the 

scope of this thesis (see references (67, 71) for a review). Briefly, muscle protein 

synthesis and breakdown are elevated after resistance exercise in the fasted state (19, 

68, 99). Feeding protein post-exercise increases muscle protein synthesis (14, 63) and a 

feeding-induced insulin secretion (or aminoacidemia per se) attenuates muscle protein 

breakdown (33, 82), resulting in a net positive protein balance (14). Changes in the rate 

of muscle protein synthesis account for the majority (>70% (33)) of the increase in net 

protein balance that occurs after resistance exercise combined with feeding (14, 82). In 
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Chapters 2, 3 and 4, a whey protein supplement was given post-exercise to support net 

protein balance (42, 86, 87) and to represent a ‘real-life’ training scenario. 

 Processing a muscle biopsy sample for analysis of MPS generates a cytosolic 

homogenate that is suitable for Western blotting. Quantifying signalling events has the 

potential to provide mechanistic insight that is complementary to dynamic measures 

(e.g., muscle protein synthesis) and corroborate (or not) the regulation of translation 

initiation. A general caveat that should be noted is that there can be a dissociation 

between muscle protein synthesis and ‘expected’ (at least based on cell culture and/or 

animal experiments) signalling measures (36). In addition to assuming that 

phosphorylation of a given amino acid residue indicates activation (3, 66), other caveats 

of signalling analysis are mentioned in the discussion portion of Chapter 4. In Chapter 2, 

we quantified Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) 

signalling which is thought to transduce growth hormone signalling (64). Additionally, in 

Chapters 2 and 4 we quantified changes in phosphorylation of the mTOR signalling 

pathway since this pathway has been shown to be a primary regulator of translation 

initiation (44), and is required for resistance exercise (25) and amino acids (23) to 

stimulate MPS. Notably, increases in phosphorylation of p70S6KThr389 are thought to 

reflect increased p70S6K activation, which is a hallmark of mTOR activation (76, 81). 

 The primary hormones measured in our studies were testosterone, GH, IGF-1 

and cortisol. The characteristics and impacts of these hormones on skeletal muscle 

protein metabolism form a foundation that we investigated in the context of resistance 
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exercise.  An introduction of each these hormones and the role they have in relation to 

protein metabolism and exercise is given below. 

1.6 TESTOSTERONE IN PROTEIN METABOLISM AND EXERCISE 

 Testosterone is an anabolic androgenic hormone that is released primarily from 

the testes in men and, in much smaller quantities, from the ovaries in women. 

Testosterone precursor hormones are also produced by the adrenal gland which is 

converted to testosterone in peripheral target tissues (53). Testosterone production in 

men leads to serum concentrations that are approximately 10-20 times the 

concentrations of women. Testosterone release is stimulated by luteinizing hormone 

which is secreted by the anterior pituitary gland in response to gonadotropin releasing 

hormone from the hypothalamus. The interest in testosterone in the present thesis is in 

its effects on processes that regulate skeletal muscle protein synthesis and accretion.  

 Testosterone acts through both classical genomic as well as non-genomic 

pathways. Much of what is known about the genomic pathway and androgen receptor 

signalling comes from work done in cell culture and prostate tissue. Accordingly, 

elucidation of signalling events in human skeletal muscle is necessary to have an 

accurate understanding of the effects of androgens on skeletal muscle biology.  

 In the genomic pathway, testosterone crosses the plasma membrane and binds 

to a cytosolic androgen receptor, inducing dimerization (17) and translocation to the 

nucleus (65). In the nucleus, the receptor complex binds to androgen-response 
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elements, enhancing or repressing target gene expression. Gene targets of testosterone 

in skeletal muscle are not fully elucidated but include genes whose proteins regulate 

DNA replication, transcription activation, nerve growth, differentiation and hypertrophy 

(18, 59). Exactly how steroids such as testosterone enter the cell is not clear. There 

appear to be two main mechanisms for how a given steroid hormone could exert 

intracellular biological action. First, the free (unbound) fraction of the circulating steroid 

crosses the plasma membrane by diffusion, exerting a cellular response that is 

dependent/proportional to the amount of this free fraction (61). Second, the carrier 

protein of the hormone—e.g., sex hormone binding globulin—is recognized by a cell-

surface receptor which internalizes, by endocyctosis, the hormone-carrier protein 

complex, at which point the carrier protein is degraded (39), allowing the hormone to 

bind to an intracellular androgen receptor.  

 Testosterone has also been proposed to have rapid non-genomic action which 

can occur through a variety of mechanisms; some of these include: G-protein coupled 

receptor/androgen receptor binding at the membrane leading to mitogen activated 

protein kinase pathway activation, membrane intercalation and altered membrane 

fluidity, increased calcium permeability and secondary messenger activation (62). Non-

genomic effects in skeletal muscle are currently poorly understood (62) and therefore 

the discussion here is minimal.  

 Briefly, any potential acute performance-enhancing effects (e.g., increased force 

production) that testosterone could have would presumably occur by activating the 
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aforementioned rapid non-genomic pathways in skeletal muscle or nervous tissue. 

However, the primary aim of our studies was to examine the impact of exercise-induced 

testosterone on adaptations to resistance exercise/training; our studies were not 

designed to investigate potential effects of testosterone on acute force/power output. 

Likewise, the studies presented herein were not designed to examine associations of 

chronic testosterone concentrations (or other hormone) with muscle protein synthesis 

(8), or with physical performance (38) that may be related to coincident associations 

with muscle mass (6) or as a result of aging (73). 

 Most of our knowledge of the effects testosterone in human skeletal muscle 

comes from studies that have supplemented exogenous testosterone or synthetic 

testosterone analogues. Testosterone can increase basal rates of muscle protein 

synthesis in the fasted (30, 77, 89) and fed (78) states and decrease muscle protein 

breakdown (27). Chronically, testosterone increases lean body mass and muscle size 

(and strength), both with (10) and without (10, 11, 77) resistance exercise. Testosterone-

induced muscle hypertrophy is associated with type I and type II fibre hypertrophy (79), 

as well as an increased number of satellite cells (80) and centrally-located nuclei (26, 41), 

a hallmark of muscle fibre (re)generation. 

 As alluded to above, muscle fibre hypertrophy that results from combined 

resistance exercise and testosterone, or from testosterone alone, is presumably the 

chronic result of elevated muscle protein synthesis (30, 77, 78, 89) and satellite cell 

proliferation (26, 41, 80). Testosterone-stimulated increases in muscle protein synthesis 
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are primarily attributed to enhanced translational efficiency (30, 78) and intracellular 

amino acid reutilization (30); exactly how these changes occur requires further research. 

Decreases in muscle protein breakdown can also occur with testosterone 

administration, but this effect appears more pronounced after an extended period of 

supplementation (e.g., 6 months) (28). The mechanisms behind this delayed effect on 

muscle protein breakdown, and behind the effects of testosterone on protein 

breakdown in general, are not yet clear. In cell culture, testosterone suppresses atrogin-

1 gene expression, a ubiquitin ligase that is associated with muscle wasting, but does not 

affect phosphorylation of its upstream regulator, Forkhead box O 3A (100). Taken 

together, pharmacological testosterone can: increase satellite cell number, increase 

muscle protein synthesis, decrease muscle protein breakdown, and result in a dose-

response relationship of testosterone with change in muscle volume and fat free mass 

(11).  

 A dose-response relationship between exogenous testosterone administration 

with changes in muscle cross-sectional area, combined with articles entitled “Proof of 

the effect of testosterone on skeletal muscle” by foremost testosterone experts (12) 

convey a sense of imperativeness that all changes in testosterone concentration should 

be examined with the utmost scrutiny. In this thesis, we propose that this is a superficial 

view and one that tends to generate assumptions that lack evidence at the present time. 

The exercise-responsive nature of testosterone draws analysis and interpretation of 
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testosterone concentrations into the spotlight of a field based on hormone-induced 

adaptations, and is a primary focus of the present thesis.   

1.7 GROWTH HORMONE AND INSULIN-LIKE GROWTH FACTOR 1 IN PROTEIN 

METABOLISM AND EXERCISE 

 Growth hormone (GH) and IGF-1 (insulin-like growth factor 1) are peptide 

hormones that are intrinsically tied to one another since GH directly regulates IGF-1, 

which negatively regulates GH secretion. Growth hormone releasing hormone from the 

hypothalamus stimulates the anterior pituitary gland to release growth hormone into 

systemic circulation where it is bound to growth hormone binding protein. In general, it 

is thought that a large proportion of the biological action of GH is exerted via IGF-1 (31). 

For this reason, GH and IGF-1 will be discussed jointly. IGF-1 is secreted by the liver and 

by extrahepatic tissues including skeletal muscle. Several splice variants of IGF-1 are 

produced in humans, with the variant IGF-1Ea being secreted primarily from the liver in 

response to GH (5) whereas IGF-1Ec (also known as mechano growth factor) is produced 

by skeletal muscle in response to mechanical stretch (22, 96), and independent of GH (5, 

20, 22). While other tissues throughout the body produce IGF-1, systemic IGF-1 

concentrations appear to be primarily reflective of changes in liver secretion where IGF-

1 is highly expressed, produced and secreted, as opposed to other tissues including 

muscle, which hosts a local production/secretion system (83). The muscle IGF-1 system 

appears to be local, or bidirectionally contained, in the sense that systemic growth 
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hormone administration does not alter IGF-1 expression or GH or IGF-1 receptor 

expression (84), and overexpression of muscle IGF-1 does not alter systemic IGF-1 

concentrations (9).  Systemic IGF-1, but not local muscular IGF-1 was measured in the 

present thesis. Thus,  it is important to note, since it will not be discussed further, that it 

is possible that mechanically regulated and locally synthesized IGF-1 contributed, via 

autocrine/paracrine action (1, 2), to some of the muscle-specific effects following 

resistance exercise (58) that we observed in our studies. 

 GH remains heavily studied in exercise science literature, and is proposed to 

mediate a variety of adaptations to resistance exercise, including effects on hypertrophy 

(46, 52). Indeed, the fact that GH concentrations increase dramatically in response to 

exercise (34, 49) makes it an enticing prospect that GH could be influencing training-

induced gains after resistance exercise. However, the relevance and mechanics of GH 

(46, 69) (and IGF-1 (32, 83)) to skeletal muscle mass regulation is currently a matter of 

debate. With respect to GH, the argument against an anabolic effect on contractile 

protein stems primarily from two lines of evidence: i) acute GH administration does not 

stimulate muscle protein synthesis (97, 98) or myofibrillar protein synthesis (24), and ii) 

long-term GH supplementation does not enhance muscle strength (85) or hypertrophy 

(84).  
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1.8 CORTISOL IN PROTEIN METABOLISM AND EXERCISE 

Cortisol is released from the adrenal cortex in response to stress or trauma (e.g., 

sepsis, head injury) (95), as well as exercise (47). Cortisol release is stimulated by 

adrenocorticotropic hormone which is secreted by the anterior pituitary gland in 

response to corticotropin releasing hormone from the hypothalamus. Cortisol, which 

was measured in the studies in the present thesis, belongs to the glucocorticoid family 

of steroid hormones.  The term ‘glucocorticoid’ is a term that is often used in the 

literature, and is used in this thesis, to collectively refer to hormones such as cortisol, 

and synthetic derivatives of cortisol such as dexamethasone and prednisone, that bind 

to the glucorticorticoid receptor and which are thought to have similar effects in target 

tissues (60). Glucocorticoids: regulate blood osmolarity, blood pressure and immune 

function, can have diabetogenic and anti-inflammatory effects (4), and are elevated in 

various pathological conditions (88). While these effects of cortisol are beyond the scope 

of this thesis, cortisol will be discussed with respect to its potential effects on muscle 

protein balance, as well as other potential effects associated with an exercise-induced 

cortisol response (Chapter 5). 

 Glucocorticoids act through multiple pathways in skeletal muscle, exerting both 

genomic (92) and non-genomic (57, 75) effects on muscle protein synthesis (75) and 

breakdown (43, 55). The classically described genomic mechanism of action of cortisol is 

similar to the one described previously for testosterone: cortisol binds intracellular 

glucocorticoid receptors, which translocate to the nucleus and alter gene expression. In 
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the nucleus, gene expression of ubiquitin ligases muscle RING-finger protein-1 (MuRF-1) 

and atrogin-1 are upregulated stimulating myofibrillar proteolysis via the ubiquitin-

proteosome pathway (15, 93). Recent evidence from human primary myotubes suggests 

that 11-beta-hydroxysteroid dehydrogenase, which converts inactive cortisone into the 

active cortisol, controls glucocorticoid-induced upregulation of MuRF-1, atrogin-1 and 

proteolysis (13). Additionally, upregulaton of MuRF-1 by the glucocorticoid receptor is 

synergistically enhanced by Forkhead box protein O1 (91). More recently, it was 

demonstrated using a muscle-specific glucocorticoid receptor knock-out mouse model 

that the glucocorticoid receptor is necessary to mediate atrophy from prolonged 

glucocorticoid administration (92).  

 Acutely, glucocorticoid treatment can downregulate translation initiation and 

muscle protein synthesis. Four hours after glucocorticoid injection in rats, decreases are 

observed in the phosphorylation of eukaryotic initiation factor 4E-BP1 and p70S6K, and in 

the assembly of the eukaryotic initiation factor 4F translation initiation complex, 

decreases in all of which are concomitant with a 60% decrease in muscle protein 

synthesis (75). Glucocorticoids also suppress increases in mRNA translation that are 

stimulated by branched chain amino acids in human skeletal muscle (54).  

 As discussed above, glucocorticoids increase proteolysis in a process that 

involves the upregulating of MuRF-1. Interestingly, it was recently shown that knocking 

out MuRF-1 attenuates the glucocorticoid-induced decrease in muscle protein synthesis 

(7). This finding adds to the expanding roles of MuRF-1 as a regulator of muscle protein 
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breakdown (15), amino acid availability (45) and muscle protein synthesis (7, 45) during 

glucocorticoid administration. Glucorticorticoids may also counter the anti-proteolytic 

effects of insulin. Insulin infusion resulted in a 40% reduction in skeletal muscle 

proteolysis and positive net protein balance, but these effects were negated by 

glucocorticoid treatment, which resulted in a negative protein balance (56). Conversely, 

insulin and IGF-1 prevent dexamethasone-induced upregulation of MuRF-1, atrogin-1 

and proteolysis in mouse myotubes (74). Taken together, glucorticoid exposure can 

upregulate muscle protein breakdown and/or inhibit protein synthesis through multiple 

mechanisms, promoting a negative net protein balance.  

Much of the mechanistic information on cortisol’s action in skeletal muscle 

comes from cell culture experiments, animal and animal knockout models, and has used 

indices (e.g., 3-methylhistidine release) for muscle protein breakdown. In normal adult 

humans, pharmacological doses of glucocorticoids decrease skeletal muscle net protein 

balance (29, 55). Three days of prednisolone administration doubled the rate of 

phenylalanine efflux from the leg, inducing a net negative phenylalanine balance while 

increasing intracellular free phenylalanine and essential amino acid concentrations (55). 

Prednisolone treatment did not affect the rate of phenylalanine disposal, indicating that 

the primary effects of glucocorticorticoids on muscle net protein balance may be to 

increase protein breakdown, with minor effects on protein synthesis (55). Further 

studies that use stable isotope-labeled amino acid tracer dilution/incorporation 

techniques will help establish the influence of cortisol muscle net protein balance.   
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Interestingly, and of particular relevance to the present thesis, are the findings of 

two studies (29, 55) that cortisol may play a permissive role to muscle proteolysis under 

already-catabolic conditions, but have minor effects alone in normal adults. Ferrando 

and colleagues (29) reported no effect of cortisol infusion on muscle net protein balance 

compared to an overnight fast; the study concluded that cortisol did reduce net protein 

balance, but only after 14 d bed rest, not after an overnight fast. These observations, 

which are drawn from studies inducing prolonged high glucocorticoid concentrations, 

raise questions regarding the catabolic effects of physiological fluctuations in cortisol, 

toward skeletal muscle under normal physiological conditions.  

Nevertheless, cortisol concentrations are frequently examined (and in 

conjunction with testosterone in order to calculate a testosterone/cortisol ratio) with 

great interest based on the premise that they influence training adaptations. This 

sentiment is captured in the following statement from Viru and colleagues (90): 

“During the past 15-20 years several researchers in exercise physiology and 
sports medicine have had the opinion that the decreased ratio of 
testosterone/cortisol indicates a predominance of catabolism that is undesirable 
for adaptation and improvement of performance in athletes. In their opinion, an 
increased cortisol concentration is “guilty” of association with maladaptation.” 

 
A relevant question to ask, then, is whether exercise-induced cortisol is catabolic, or 

whether it is merely guilty by association. Cortisol was measured in each study in this 

thesis and is examined further in the concluding discussion.  
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

5.1 INTRODUCTION  

 This chapter begins by briefly outlining the rationale for studying testosterone as 

a primary hormone of interest in this thesis. Next is a discussion of our experimental 

models. First, the unilateral model that was used in the studies of Chapters 2 and 3 to 

create divergent hormone availability will be discussed. While these studies have been 

discussed to some extent elsewhere (7, 61, 64), special attention is now given to the 

recent supposition that the order of exercise is important for the efficacy of hormone 

hypothesis (small muscle groups trained before large muscle groups will be deprived of 

hormone-rich blood). Second, the sex-based comparisons model used in the study in 

Chapter 4 is discussed, along with studies by others that have made sex-based 

comparisons in muscle protein synthesis. The next part of the present chapter draws 

attention to the distinction between physiological versus non-physiological testosterone 

concentrations and how they relate to skeletal muscle protein metabolism. Finally, the 

biological functions of the exercise-induced hormone response are explored along with 

areas for future research.     

 The physiological/in vivo nature of the present thesis meant that the endogenous 

hormones generally thought to be most related to muscle anabolism (testosterone, 

growth hormone, IGF-1 and cortisol) were examined concurrently. During the time 

studies for this thesis were conducted, evidence has accumulated (13, 18, 39), that adds 
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to previous evidence (36, 40, 55, 65), to suggest that growth hormone and systemic IGF-

1 do not play a significant role in stimulating the accretion of contractile muscle protein. 

Recognition of this evidence has been discussed elsewhere (64) and is becoming more 

accepted, although not by all (25). In contrast, due to the obvious potency of exogenous 

testosterone for muscular hypertrophy (3, 4), exercise-induced changes in testosterone 

remain highly scrutinized (9, 57). In our sex-based comparisons study (Chapter 4), 

outcomes (MPS, signalling, gene expression) can only truly be attributed to the sum of 

the variables measured (e.g., hormones) (or other variables not measured). However, 

we contend that the 45-fold divergence in exercise-induced testosterone, which was 

targeted a priori based on literature values, distinguishes it from other exercise-induced 

hormones (discussed further below). For these reasons, more attention will be paid to 

testosterone in the present chapter.     

5.2 ‘MAXIMIZING’ THE EXERCISE-INDUCED TESTOSTERONE RESPONSE: THE INFLUENCE 

OF EXERCISE ORDER  

 Studies (48, 49) show that when an exercise is performed last in a training 

session, its performance is negatively affected (e.g., decreased number of repetitions at 

the training load); this is true for large and small muscle groups. Therefore, since the 

primary outcome measures in Chapter 3 were the strength and hypertrophy of the 

elbow flexors, we exercised these muscles first to eliminate any possibility of central 

fatigue associated with prior exercise that may hinder training volume and, theoretically, 
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gains in strength and hypertrophy. The purpose of Chapter 3 was to compare the 

outcomes mentioned above in the context of either a low (~basal) or a high hormone 

systemic hormone environment. We observed no enhancement of strength or 

hypertrophy in the high hormone group and thus concluded that the post-exercise 

increase in testosterone and growth hormone were not important factors in 

determining the responses to training. Since this publication, another study (43) has 

been published using a similar design, but reached an opposing conclusion to ours that 

post-exercise hormonal increases underpinned greater adaptations in certain indices of 

strength and hypertrophy. The authors suggest that this disparity in findings was due to 

between-study differences in exercise order (i.e., they trained ‘legs first, then arm’ 

whereas we trained ‘arm first, then legs’).   

 As mentioned, we elected the ‘arm first, legs second’ design so that the arms, 

which were being compared for gains in strength and hypertrophy, were able to do 

identical amounts of work since in both conditions, the arm was being trained first in an 

unfatigued state. Indeed, the authors in the study by Ronnestad et al. (43) report that 

their subjects reported perceptions of greater fatigue after legs-then-arm exercise and 

attribute central fatigue to equal training loads between conditions throughout the 

training program, before greater adaptations in the hormone-enhanced arm were 

apparently revealed post-training. Other methodological concerns about this study have 

been raised also (38); nevertheless, the assertion (30, 43, 57) remains that an arm-then-

legs exercise order could have deprived the arm of testosterone-rich blood. Therefore 
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we tested this theory by determining the testosterone potential/availability to elbow 

flexor muscles performing exercise before or after an intense leg workout. We 

hypothesized that a calculated testosterone delivery (blood flow to the muscle × 

testosterone concentration) would serve as a best estimate of the delivery of 

testosterone-rich blood.  

 The unpublished data set from this experiment is presented as Appendix 2. The 

experiment was conducted by DWD West, LM Cotie, CJ Mitchell, TA Churchward-Venne, 

MJ MacDonald and SM Phillips. Only basic details are outlined herein in order to provide 

a general orientation to the experiment and its findings. Seven men with previous 

weight-training experience performed two acute trials in a randomized cross-over 

fashion whereby unilateral arm resistance exercise was performed before or after 

bilateral leg exercise (Appendix 2, Figure 1). Blood samples for testosterone analysis as 

well as brachial artery blood flow measures (Doppler ultrasound) were obtained 

immediately after arm exercise and leg exercise, and at intervals in post-exercise 

recovery.  

 Figure 2 in Appendix 2 shows the total and free testosterone concentrations in 

each condition. Figure 3 in Appendix 2 shows the effect of the exercise conditions on 

brachial artery diameter and blood flow. Elbow flexor resistance exercise increased 

brachial artery blood flow 4-fold and brachial blood flow remained at the elevated level 

in the face of subsequent intense leg exercise. Intense leg exercise increased brachial 

blood flow 3-fold, which was further elevated after subsequent arm exercise. Figure 4 in 
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Appendix 2 shows the estimated delivery of total and free testosterone to muscles 

supplied by the brachial artery. The data suggests that arm muscles supplied by the 

brachial artery were delivered similar quantities of testosterone-rich blood when 

exercised before or after intense leg exercise. Therefore, we conclude that claims (30, 

43, 57) that exercise order and subsequent effects on testosterone delivery account for 

the lack of hormonal enhancement of hypertrophy (Chapter 4) appear unfounded. We 

also propose that measuring blood flow in conjunction with hormone concentration may 

provide a more physiologically relevant measure of hormonal exposure to a given tissue 

than traditional measures of hormone concentration alone.  

5.3 SEXUAL DIMORPHISMS IN EXERCISE-INDUCED TESTOSTERONE: EFFECTS ON MUSCLE 

PROTEIN SYNTHESIS 

 There were two main aims of our sex-based comparisons study: i) to compare 

men and women after resistance exercise and protein ingestion in both early and late 

post-exercise recovery, and ii) to use sex-based dimorphism as a model of divergent 

exercise-induced testosteronemia. As mentioned, we contend that the sheer differences 

in exercise-induced testosterone, which was targeted a priori based on previous 

testosterone literature, distinguishes it from other exercise-induced hormones, and 

sheds light as to whether or not exercise-induced testosterone is crucial to the anabolic 

response to resistance exercise. Notably, testosterone is distinguished from other 

exercise-induced hormones for two reasons discussed below.   
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 First, the aforementioned clear divergence in exercise-induced responses 

between men and women is far above differences of other exercise-induced hormones, 

which appeared to be reasonably similar between men and women. Specifically, of the 

exercise-induced hormone responses measured, GH was 1.4-fold greater in women, IGF-

1 was 1.4-fold greater in women, cortisol was 1.5-fold greater in women, estradiol was 

7-fold greater in men, and testosterone was 45-fold greater in men. Thus, while we 

cannot make cause and effect statements because we have not isolated or 

pharmacologically manipulated testosterone independently, we contend that there 

should be obvious between-sex differences in our measures of MPS if the testosterone 

response is truly integral to the anabolic response to resistance exercise.  

 Second, there is clear evidence that testosterone is anabolic toward skeletal 

muscle in pharmacological doses (17), a conclusion that is supported through a 

mechanistic characterization of its action, thus giving it a plausible anabolic role in an 

exercise scenario. In contrast to testosterone, the same cannot be said about growth 

hormone or IGF-1 which, even when administered to supraphysiological doses, do not 

stimulate myofibrillar protein synthesis (13).    

 Previous studies that have made sex-based comparisons in muscle protein 

synthesis generally do not report any major differences after resistance exercise (14), 

feeding (50) or, as we have shown (60), feeding plus resistance exercise, a scenario in 

which rates of muscle protein synthesis are presumably near a physiological maximum. 

Despite one report of greater rates of muscle protein synthesis in women than men (23), 
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the majority of studies examining sex-differences in fasting basal rates of muscle protein 

synthesis have reported no differences (14, 19, 24, 37, 50, 60), at least in young and 

middle-aged adults. Nevertheless, mandates for sex-based research by National funding 

agencies continue to prompt men versus women comparisons in muscle physiology; 

notably, a recent editorial (52) on our work (60) urges researchers to examine how sex-

differences influence skeletal muscle in aging, obesity and other conditions of muscle 

atrophy. Indeed, research to date on sexual dimorphism in muscle protein synthesis 

suggests that elderly women have, compared with elderly men, greater rates in the 

basal postabsorptive state (51, 53), and a blunted response to feeding (51) as well as 

exercise (53). The reasons for age-dependent sex-based differences in muscle protein 

synthesis are unclear, but differences only seem to appear after middle age once muscle 

mass is in decline (e.g., the elderly), and may be associated with obesity (53). Theories 

have been proposed to partially account for age-related sex-based differences. Greater 

basal postabsorptive rates of muscle protein synthesis in elderly women could be 

related to a reduction in the apparently suppressive effect of estrogens on muscle 

protein synthesis (51); however, caution is warranted here since the suppressive effects 

of estrogens on muscle protein synthesis are characterized from animal models and 

appears to be in conflict with human data (see paragraph below). The blunted response 

to feeding in elderly women appears to be related to a failure to activate certain 

signalling proteins that regulate translation initiation (51), but the upstream regulatory 

factors remain unclear. Similarly, reasons why elderly women are also resistant to an 
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exercise stimulus, insofar as their ability to elevate muscle protein synthesis (53), are 

unclear. Clearly more research is needed in to understand sexual dimorphisms in protein 

metabolism in skeletal muscle. 

 In Chapter 4, concentrations of estradiol, which were higher in women as 

expected, were not responsive to exercise in either sex (Figure 2E in Chapter 4). While 

beyond the scope of this thesis, the chronic effect of estrogens to muscle anabolism 

warrants further research since hormone replacement therapy generally (albeit not 

definitively (56)) appears to enhance muscle strength in postmenopausal women (21, 

42). Apparently, however, estrogen replacement therapy depresses resting MPS and yet 

is necessary for an exercise-induced elevation in protein synthesis in postmenopausal 

women (22). In general, as with sex-based comparisons of muscle protein synthesis, 

more research is required to understand how estrogen regulates human skeletal muscle 

and how age may affect this regulation. 

 In summary, we examined rates of myofibrillar protein synthesis in men and 

women that were presumably near a physiological ceiling after resistance exercise and 

whey protein ingestion. Our finding of similar rates between sexes is consistent with 

other comparisons of submaximal rates of muscle protein synthesis in young men and 

women. Notably, the 45-fold difference in the exercise-induced testosterone response 

did not prevent an elevation of MPS from occurring in women to similar extent as men. 

However, despite similar rates of MPS between sexes in younger persons, future 

research is required to understand why differences seem to appear with aging (51, 53). 
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Furthermore, further examination of how estrogens and testosterone precursors can 

regulate skeletal muscle in young and old is warranted. 

5.4 TESTOSTERONE AND SKELETAL MUSCLE: CONCENTRATION AND TIME COURSE 

MATTER 

 As discussed in the introduction, studies of testosterone administration have 

revealed mechanisms of action and often pronounced effects of exogenous testosterone 

on skeletal muscle. The collective mechanisms and effects of exogenous testosterone 

administration on skeletal muscle are frequently cited and serve as a foundation to 

design studies and interpret findings, as well as to prescribe exercise programs with the 

rationale that rises in post-exercise testosterone are likely to have a similar effects to 

exogenously administered testosterone or its analogues. However, a fact that often goes 

unmentioned or unrealized is that there are stark differences between exogenous and 

endogenous testosterone in concentration and pattern of availability. We have 

previously discussed these differences in general terms (64); these points are now 

illustrated using a detailed example. Figure 1 in this chapter illustrates the 

pharmokinetics of a single 200 mg intramuscular injection of testosterone enanthate 

(12), a relatively modest dose. [Note: 200 mg of testosterone enanthate injected bi-

weekly is a standard conservative dose prescribed for testosterone replacement therapy 

(41);  600 mg doses produce testosterone concentrations of at least 100 nM (2) and 

represents a dose that is equivalent to about 7-10 times normal weekly production of 42 
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mg wk-1 (1)]. As illustrated, after the injection, testosterone increases ~200% to ~45 nM 

and remains chronically elevated 7 d post injection. By contrast, endogenous 

testosterone concentrations follow a circadian rhythm, oscillating from ~22 nM (0600 h) 

to 13 nM (1800 h) (11). The exercise-induced increase on day 4 represents an 18 – 100 % 

increase (depending on initial concentrations) that lasts for ~20-30 min. Therefore, by 

comparison, the testosterone availability, on an area under the curve basis and using the 

nadir of 13 nM as the baseline, and assuming that the exercise bout does not alter 24 h 

secretion (27), the exercise-induced increase in testosterone on day 4 represents a 3.6% 

increase above normal resting conditions. By contrast the testosterone that is available 

in circulation to the muscle on day 4 from the moderately-dosed injection of 

testosterone enanthate is 458% greater than normal resting conditions.  

 The purpose of this discussion is not to say that transient periods of 

testosteronemia are altogether irrelevant ; however, because the purported effects of 

exercise-induced testosterone are frequently based on effects from exogenous 

administration studies, then comparisons of the shared variables, testosterone 

concentration and time course, are warranted. Essentially, if testosterone is being 

treated as the common independent variable between studies, then we question why it 

is reasonable to contend that there are similar effects on a dependent variable (e.g., 

hypertrophy) when such a disparity in the independent variable (testosterone 

concentration and time course) exists.  
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 Rather than assuming that the effects of testosterone are consistent across a 

range of concentrations, we propose that the testosterone-protein accretion curve is 

better described by distinguishing whether the testosterone condition is in a 

hypophysiological, physiological or supraphysiological. Figure 2 in this chapter is a crude 

theoretical schematic that illustrates this possibility and summarizes the implications of 

the differences between changes in testosterone that are in the normal physiological 

range and those that are considerably higher or lower. Specifically, the physiological 

changes such as those that occur after exercise probably do not represent a substantial 

stimulus to protein synthesis for two main reasons. Firstly, the testosterone responses 

are of similar magnitude to the changes of the normal diurnal range (as shown in Figure 

1 of this chapter). And secondly, that the changes are very transient which is in contrast 

to pharmacological interventions which induce long-lasting changes in testosterone and 

which represent a persistent perturbation to homeostasis. The supraphysiological arm in 

Figure 2 of this chapter showing increased protein accretion  after testosterone 

administration is well-supported by work by Bhasin and colleagues (3) who have shown 

a dose response between testosterone and change in muscle size and lean body mass. 

The hypophysiological arm requires further research but stems from data showing that 

suppression of endogenous testosterone reduces muscle and lean body mass in patients 

undergoing androgen deprivation therapy (54) and attenuates training adaptations to 

strength training in healthy young men (29). The work in the present thesis proposes the 
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flat physiological range, illustrating a null effect of physiological changes in testosterone 

concentration on muscle protein accretion. 

 While our data in Chapter 3 showed no enhancement of exercise-induced 

testosterone on strength and hypertrophy, research on the therapeutic effects of 

pharmacological testosterone will continue to be an area of intense research. For 

example, more research is needed to explain the recent finding (46) that rates of muscle 

protein synthesis can remain persistently elevated even when exogenous testosterone is 

cycled off for a month and returns to basal concentrations. Furthermore, ongoing clinical 

trials for new modes of testosterone delivery (e.g., nasal sprays) and selective androgen 

receptor modulators promise to keep the anabolic effects of testosterone at the 

forefront of skeletal muscle therapies. 
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Figure 1. Exogenous and endogenous exercise-induced testosterone concentrations 

over the course of a week. Dark line at top of figure: exogenous testosterone after a 

single 200 mg intramuscular injection of testosterone enanthate (from Dobs et al., 1999, 

J.Clin.Endocrinol.Metab.). Note: 200 mg is a relatively mild dose; a dose of 600 mg 

induces peak testosterone of at least 100 nM (Bhasin et al., 1996, N.Engl.J.Med). Light 

line at bottom of figure: endogenous testosterone showing the circadian rhythm (peak = 
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0600 h, trough = 1800 h) (Diver et al., 2003, Clin.Endocrinol(Oxf). and testosterone after 

a bout of heavy resistance exercise at noon on Day 4 (minor ticks on X-axis indicate 6 h 

intervals).   

 

Figure 2. A simplified schematic drawn to illustrate, in very general terms, the 

hypothesized relationship between testosterone concentration and muscle protein 

accretion. The flat physiological section of the curve implies that physiological 

fluctuations in testosterone, including exercise-induced increases observed in studies 

within the present thesis, do not have a significant impact on muscle protein accretion. 

5.5 BIOLOGICAL ROLES OF EXERCISE-INDUCED HORMONES AND FUTURE RESEARCH 

The primary purpose of our studies was to investigate a potential contribution of 

exercise-induced hormones to skeletal muscle protein synthesis and hypertrophy. The 

fact that our data does not support a significant role for hormones in enhancing these 
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variables naturally raises the following question: What is the biological ‘reason’ or 

‘purpose’ for the exercise-induced hormone response? Our studies were not designed to 

investigate other possible biological roles of the exercise-induced hormone response, 

which remain poorly understood. Nevertheless, the question is pertinent and often 

raised, motivating the following discussion.  

 While the biological reasons/purposes for exercise-induced hormonal elevations 

are largely unknown, possibilities include one or more of the following: i) substrate 

mobilization (59), ii) supporting remodelling or growth of connective tissue (6, 13), 

and/or iii) a biologically/evolutionarily-conserved ‘fight or flight’ stress hormone 

response to a stressor or challenge. There is at least some support for each of these 

possibilities; however, only the first possibility will be briefly discussed here. Readers can 

refer to other sources on psychoendocrinology as it may relate to the testosterone 

response (8). The effects, if any, of acute changes in GH/IGF-1 on connective tissue 

remodelling should also be examined. Undertaking cell culture experiments in which 

multiple cell types (e.g., fibroblasts, myoblasts and adipocytes) are treated with 

exercise-induced hormone-rich serum might serve as a starting point in determining 

how various tissues may be affected by an exercise-induced hormone response.      

 As mentioned, a potential reason/purpose/function of the collective acute 

exercise hormone response is that it is the product of a sympathetic nervous system 

response to acute exercise and helps mobilize energy stores. Early support for this 

notion comes from the observation (32) that adrenalectomized rats and rats with 
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sympathetic blockade have a poor exercise tolerance, and this poor tolerance is 

associated with impaired mobilization of glucose from glycogen and free fatty acids from 

triglyceride stores. There is evidence of hormonal interplay to produce available energy 

substrates. For example, physiologic epinephrine transiently increases hepatic glucose 

output and decreases disposal, and cortisol extends the duration of epinephrine’s 

hyperglycaemic effect (47).    

 Much of what is known about hormones is derived from studies that use 

supraphysiological hormone doses as an intervention. The exercise-induced hormone 

response might be better replicated by giving individuals a low dose pharmacological 

‘pulse’ of a single, or a combination of, hormones to match the exercise-induced 

response (magnitude and time course). This approach has been used to some extent to 

study growth hormone, and demonstrated a dose-response relationship between 

physiological growth hormone pulses and circulating free fatty acids and glycerol, as well 

as reductions in glucose uptake (non-dose dependent) (34). The decrease in glucose 

uptake was rapid and persistently depressed shortly after peak GH (34), whereas peak 

lipolysis was delayed, occurring approximately 2 h after peak GH (33). Thus, acute GH 

administration results in increased rates of lipid oxidation that may compensate for 

decreased rates of glucose oxidation from reduced uptake (34). The observation that GH 

is increased to a greater extent after acute cycling exercise at 70% VO2 max (presumably 

a stimulus that does not induce hypertrophy) than after acute resistance exercise 

(presumably a hypertrophy-inducing stimulus) provides indirect but credible evidence 
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that the biological role of GH may be related to substrate use/mobilization rather than 

hypertrophy (20).   

 Alternatively to a pharmacological ‘pulse’, if off-target effects could be avoided, 

the exercise-induced hormone response could be suppressed and the effects examined. 

For example, what would be the effect of suppressing the exercise-induced growth 

hormone response using a selective growth hormone antagonist (45)? In either the 

hormone suppression or supplementation scenario, characteristic markers of potential 

effects of the hormone (e.g., cortisol: protein balance, glucose production, lipolysis, 

hyper-alaninemia/glutaminemia; GH: myofibrillar versus collagen synthesis, IGF-1 gene 

expression, lipolysis) could be investigated to help determine biological effects of the 

exercise-induced hormone response.   

 Another question concerning the biological effects of exercise-induced hormones 

is whether there is a role of the exercise-induced rise in cortisol other than a classical 

proteolytic effect. Whereas we have discussed the effects of GH and testosterone on 

skeletal muscle elsewhere (6, 64), cortisol is briefly highlighted here. It was outlined in 

the introduction of this thesis that cortisolemia is often examined after exercise, and 

that increased concentrations are often interpreted to be driving muscle catabolism. 

Instead, Viru and colleagues (58) contend that cortisol is essential for adaptation and 

perhaps “guilty by association with maladaptation”. But even this latter point seems to 

be at odds with empirical data since cortisol concentrations are often elevated the most 

after resistance exercise schemes shown to elicit robust hypertrophy (26). A study from 
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our lab (63) correlated changes in exercise-induced hormones with changes in strength 

and hypertrophy in a large cohort (n = 56) after resistance training. While the data is 

associative, the cortisol response was significantly correlated (albeit weakly) with gains 

in lean body mass. Conversely, exercise-induced changes in testosterone, GH and IGF-1 

responses were not. Similarly, the strongest correlation between these hormones and 

change in type I fibre area was with cortisol. These observations, combined with the 

report that cortisol infusion has no effect on fasting muscle net protein balance versus 

overnight fast (16), make it unlikely that exercise-induced cortisol is catabolic and 

detrimental to skeletal muscle adaptation.  

 While an impact of exercise-induced cortisol on net protein balance and/or 

hypertrophy has not been demonstrated, perhaps cortisol plays other biological roles in 

the context of exercise. One possibility is to assist in substrate mobilization for energy. 

Glucocorticoid treatment increases arterial amino acid concentrations (including large 

increases in the gluconeogenic amino acid alanine) and blood glucose (~25% increase) 

(31). Cortisol also extends the duration of physiologic epinephrine’s hyperglycaemic 

action (47). In this way, cortisol appears to play a supportive role for the gluconeogenic 

action of epinephrine and glucagon by permitting activation of hepatic gluconeogenesis 

(15). In the physiological context, carbohydrate ingestion blunts the cortisol response to 

resistance exercise (5), suggesting that its secretion is sensitive to energy (and perhaps 

glucose per se) status of the body and not a marked driver of muscle protein catabolism. 

Collectively, these observations suggest that exercise-induced cortisol could contribute 
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to the maintenance of glucose homeostasis during or in the acute post-exercise period, 

and perhaps to a greater extent in unaccustomed exercise as we observed (62). 

 In general, one aspect that seems to have hindered our understanding of how 

exercise-induced hormones interact with skeletal muscle is that a descriptive approach 

has often been favoured. Oftentimes researchers have only measured systemic 

hormone concentrations and simply projected the physiological impact, or rationalized 

an outcome measure in a post-hoc manner using hormonal mechanisms that were 

demonstrated in extreme/pharmacological models. Indeed, assuming that the effects of 

pharmacological testosterone are the same in an exercise-induced context is raised as a 

criticism in this thesis and elsewhere (64). Part of the uncertainty of the role of exercise-

induced hormones is derived from the inherent difficulty in isolating and determining 

the effects of physiological changes in hormone concentration. Measuring hormone 

concentrations concomitant with physiological measures of variables that can be 

affected by hormones will help, especially when an a priori hypothesis is established. 

 Finally, perhaps the mechanistic advantages of extreme models can be combined 

with a physiological approach to advance our understanding of the effects of exercise-

induced hormones. While extreme models can complicate interpretations of normal 

physiology, they might be able to provide insight as to whether a given hormone has the 

same action in normal physiological and exercise circumstances based on whether 

‘telltale’ characteristics are observed. For example, a sign of glucocorticoid activity in 

skeletal muscle is a reduction in glutamine content due to a hallmark efflux of glutamine 
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from the muscle cell (35) such that the large intracellular store is reduced, dramatically 

so in extreme cases (44). Glucocorticoids are also characteristically anti-inflammatory, 

suppressing expression of genes involved in initiating an inflammatory response (10). In 

the physiological scenario, however, the main question is whether exercise-induced 

increases in cortisol generate traces of these signs. Perhaps it is possible through ‘omic’ 

profiling methodologies to identify effects of exercise-induced cortisol, or other 

exercise-induced hormones, through an omic signature.       

5.6 CONCLUSIONS AND IMPLICATIONS        

 This thesis contains data from three independent experiments that have 

demonstrated that the hormonal milieu generated by an acute bout of resistance 

exercise is not an important regulator of myofibrillar protein synthesis or hypertrophy. 

Furthermore, studying rates of MPS, at a physiologic exercise- and feeding- induced 

maximum, in men and women demonstrated no significant sex-based differences 

despite a 45-fold greater post-exercise testosterone response in men. The lack of an 

observable deficit in the ability of young women to elevate MPS after resistance exercise 

with feeding, despite virtually no testosterone response, brings into question the 

relevance of the exercise-induced testosterone response as mediator or indicator of 

post-exercise skeletal muscle anabolism. 

 The collective findings of this thesis have implications for both applied and basic 

sciences standpoints. From an applied standpoint, it means that exercise programs 
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should not be designed based on nuances in the post-exercise hormonal milieu. Further, 

it means that small muscle groups do not need to be paired with large muscle groups to 

benefit from hormonal elevations stimulated by large muscle group exercise. Thus, in 

general, a broad ‘message’ from this thesis is that, for the average person, resistance 

exercise does not need to be complicated, at least not from a program design 

standpoint in attempting to optimize hormonal patterns. This message is based on the 

fact that our data are contrary to principles (assumptions?) that are currently widely 

used to create exercise programs that are based on post-exercise hormone responses 

(28). 

 Our data also provide mechanistic information that the anabolic capacity of 

women is not impaired by their lack of an acute testosterone response to an exercise 

bout. Instead, intramuscular processes that are common to men and women are likely 

responsible for eliciting adaptation after resistance exercise. As a result of the collective 

findings of this thesis, we suggest that local processes, intrinsic to the muscle fibres 

themselves and directly linked to their mechanical loading, are primarily responsible for 

contraction-induced muscle protein synthesis and accretion. While a full analysis of 

mechanotranduction in skeletal muscle is beyond the scope of the present discussion, 

several potential targets include the following: stretch-activated calcium signalling, 

growth factors, and structural complexes that transmit tension. Thus, a natural 

progression from this thesis work is to attempt to define how mechanotransduction 

regulates skeletal muscle mass.         
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APPENDIX 1: EVIDENCE OF THE PREVALENT VIEWPOINT (THESIS) THAT EXERCISE-

INDUCED HORMONE RESPONSES MEDIATE ADAPTATIONS TO RESISTANCE TRAINING 

 Below is a sampling of quotations/articles, presented arbitrarily in a reverse 

chronological order, that heed a hormone hypothesis. That is, they assume (i.e., 

supporting data or references are not provided) that the exercise-induced response of a 

given hormone mediates adaptations to resistance training. In general, these articles 

often make statements about an effect of a given hormone in some circumstance, one 

that is often non-physiological, thereby (apparently) justifying the purpose and 

subsequent findings of the given study.   

For example: 

1. Testosterone/growth hormone is a potent stimulator of protein synthesis (references 

optional). 

2. Physiological hormone responses may modulate anabolism in post-exercise recovery 

(this point is optional; one or no original research articles cited). 

3. Therefore, we examined the acute pattern of testosterone/growth hormone after 

resistance exercise.  

Note: Below, numbers in parentheses that precede the abbreviated citation refer the 

reader to the full citation below, whereas numbers in parentheses that are within the 

quotations are citations from the original articles.  
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(5) Giannoulis et al., 2012, Endocrine Reviews 

“GH, IGF-I, and testosterone (T) are directly involved in muscle adaptation to exercise 
because they promote muscle protein synthesis, whereas T and locally expressed IGF-I 
have been reported to activate muscle stem cells.”  
 
 
(4) DeFrietas et al., 2011, EJAP 
 
“…studies have shown that the total amount of muscle mass recruited and/or the total 
work performed affects the systemic anabolic hormone responses that are necessary for 
muscle growth.” 
 
 

(10) Nakamura, 2011, Med.Sci.Sports Exerc. 

 
“The responses of anabolic hormones to acute resistance exercise were different 
depending on the menstrual cycle state, suggesting that menstrual cycle state may 
influence the exercise training–induced skeletal muscular adaptation. Thus, it would be 
possible that training programs for eumenorrheic women might be timed in accordance 
with the menstrual cycle to maximize anabolic effects.” 
 

 
(13) Schoenfeld, 2010, J.Strength.Cond.Res. 

“However, acute *testosterone+ responses are limited in women and the elderly, 
mitigating the hypertrophic potential in these populations (61,90,130).” 

“Resultant to metabolic buildup, moderate repetition range training has been shown to 
maximize the acute anabolic hormonal response of exercise. Both testosterone and GH 
are acutely elevated to a greater degree from routines employing moderate rep sets as 
compared to those using lower repetitions (57,90,92,94,114), thereby increasing the 
potential for downstream cellular interactions that facilitate remodelling of muscle 
tissue.” 

“Moreover, split routines can serve to increase muscular metabolic stress by prolonging 
the training stimulus within a given muscle group, potentially heightening acute anabolic 
hormonal secretions, cell swelling, and muscle ischemia.” 

“Multijoint exercises recruit large amounts of muscle mass to carry out work. This has an 
impact on the anabolic hormonal response to training.” 
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“Multiple sets should be employed in the context of a split training routine to heighten 
the anabolic milieu.” 

 

(14) Vingren et al 2010, Sports Med. 

“Testosterone is important for the desired adaptations to resistance exercise and 
training; in fact, testosterone is considered the major promoter of muscle growth and 
subsequent increase in muscle strength in response to resistance training in men…In 
general, the variables within the acute programme variable domains must be selected 
such that the resistance exercise session contains high volume and metabolic demand in 
order to induce an acute testosterone response.” 
 
 
(9) Migiano et al., 2009, J.Strength.Cond.Res. 
 
“It is important to pay attention to the amount of muscle mass utilized in a resistance 
exercise protocol to optimize endocrine signaling.”  
 
 
(12) Roberts et al., 2009, J.Strength.Cond.Res. 
 
“Additionally, resistance training involving large muscle groups transiently increases the 
postexercise concentrations of free testosterone, total testosterone, and human growth 
hormone (hGH), but this response is blunted in older men (19). These hormonal 
decrements are hypothesized to lower resistance training–induced increases in strength 
and muscle mass (19).” 
 
 
(2) Copeland et al., 2008, Int. J. Sports Med.  
 
“Exercise-induced responses in the IGF-I system likely play a role in stimulating training 
adaptations, which means knowledge of how different exercise protocols influence the 
IGF system is potentially valuable. If we can manipulate training programs to provide 
optimal stimulation of the IGF-I system this may facilitate greater improvements in 
muscle strength, body composition and fitness.” 
 
 
(1) Baker et al., 2006, J.Strength.Cond.Res. 
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“On a practical application level, older men can complete a high-intensity resistance 
exercise program resulting in spikes in T that may attenuate age-related muscle and 
BMD loss.” 
 
(3) Crewther et al., 2006, Sports Med.  

“The design of the resistance exercise programme, or scheme design, underpins the 
adaptive response to resistance training by modifying the acute hormonal responses. 
Consequently, examining the hormonal response to different strength and power 
schemes would provide a better understanding of the hormonal contribution to 
adaptation associated with the repeated application of these lifting methods.” 
 

(8) Kraemer and Ratamess, 2005, Sports Med.  

“In general, the acute response is dependent upon the stimulus (e.g., intensity, volume, 
muscle mass involvement, rest intervals, frequency) and may be the most critical 
element to tissue remodelling.” 

 
(7) Kraemer et al., 2004, Med.Sci.Sports Exerc. 
 
“Deadlifts (25), squat jumps (105), and Olympic lifts (67) have produced greater acute 
22-kDa growth hormone and testosterone responses compared with exercises such as 
the bench press and seated shoulder press. Thus, the amount of muscle mass involved in 
a movement significantly impacts the acute metabolic demands and anabolic hormonal 
response, which have direct implications for resistance training programs targeting 
improvements in local muscle endurance, lean body mass, and reductions in body fat.” 
 

(15) Willoughby et al., 2004, Med.Sci.Sports Exerc.  
 
“Increased serum testosterone (TST) occurs in response to resistance exercise and is 
associated with increased muscle mass.” 
 
 
(11) Nindl, 2000, Growth Horm.IGF.Res. 
 
“It is important to know the impact of exercise on immunofunctional growth hormone 
as exercise mediated increases in growth hormone are thought to modulate the 
anabolic and metabolic outcomes of physical activity.” 
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(6) Kraemer, 2000, Essentials of Strength and Conditioning 

“It is important for strength and conditioning professionals to have a basic 
understanding of the hormonal responses to resistance exercise. Such knowledge 
increases insight into how exercise prescription can enable hormones to mediate 
optimal adaptations to RE (76, 91).” 
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APPENDIX 2: SUPPLEMENTARY DATA RELATING TO THE EXPERIMENTAL DESIGN 

DISCUSSION IN CHAPTER 5 

 

 

 

Figure 3. Schematic of the experimental protocol. The study was a within-subject cross-

over design. Leg exercise was bilateral, consisting of 5 sets×10 reps leg press, 3 ×12 

hamstring curl – knee extension superset. Arm exercise was unilateral, consisting of 4 

sets×8-12 reps elbow flexion. 
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Figure 4.  Total (top) and free (bottom) testosterone concentrations. *Significant 

difference (P < 0.05) between conditions at same time point.  
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Figure 5. Brachial artery diameter (top) and blood flow (bottom). *Significant difference 

(P < 0.05) between conditions at same time point.  
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Figure 6. Estimated delivery of total (top) and free (bottom) testosterone to muscles 

supplied by the brachial artery. *Significant difference (P < 0.05) between conditions at 

same time point. 


