
SHEDDING LIGHT ON THE FORMATION OF STARS AND
PLANETS





SHEDDING LIGHT ON THE FORMATION OF
STARS AND PLANETS: NUMERICAL

SIMULATIONS WITH RADIATIVE TRANSFER

By

PATRICK D. ROGERS, B.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University
©Copyright by Patrick D. Rogers, 2012.



DOCTOR OF PHILOSOPHY (2012) McMaster University
(Physics & Astronomy) Hamilton, Ontario

TITLE: Shedding Light on the Formation of Stars and Planets: Numerical Simula-
tions With Radiative Transfer

AUTHOR: Patrick D. Rogers, B.Sc.(Saint Mary’s University)

SUPERVISOR: Dr. James Wadsley

NUMBER OF PAGES: xii, 186

ii



Abstract

We use numerical simulations to examine the fragmentation of protostellar discs

via gravitational instability (GI), a proposed formation mechanism for gas-giant plan-

ets and brown dwarfs. To accurately model heating and cooling, we have implemented

radiative transfer (RT) in the TreeSPH code Gasoline, using the flux-limited diffusion

approximation coupled to photosphere boundary cooling. We present 3D radiation

hydrodynamics simulations of discs that are gravitationally unstable in the inner 40

AU; these discs do not fragment because the cooling times are too long. In prior

work, one of these discs was found to fragment; however, we demonstrate that this

resulted from an over-estimate of the photosphere cooling rate. Fragmentation via

GI does not appear to be a viable formation mechanism in the inner 40 AU.

We also present simulations of GI in the outer regions of discs, near 100 AU,

where we find GI to be a viable formation mechanism. We give a detailed framework

that explains the link between cooling and fragmentation: spiral arms grow on a

scale determined by the linear gravitational instability, have a characteristic width

determined by the balance of heating and cooling, and fragment if this width is less

than twice their Hill radius. This framework is consistent with the fragmentation

and initial fragment masses observed in our simulations. We apply the framework

to discs modelled with the commonly-used β-prescription cooling and calculate the

critical cooling rate for the first time, with results that are consistent with previous

estimates measured from numerical experiments.

RT is fundamentally important in the star formation process. Non-ionizing radi-

ation heats the gas and prevents small-scale fragmentation. Ionizing radiation from

massive stars is an important feedback mechanism and may disrupt giant molecular

clouds. We present methods and tests for our implementation of ionizing radiation,

using the Optically-Thin Variable Eddington Tensor method.
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Chapter 1
Introduction

Radiative transfer (RT), the transport of electromagnetic radiation (including for

example, visible light), is one of the fundamental physical processes in astronomy. For

many of us, one of the first, and most basic, ways by which we experience astronomy

is deeply rooted in this process: when we look up at the sky on a clear night, we see

photons emitted from the surfaces of stars and transported to our retinae across the

vast distances that separate these stars from the Earth.

RT is the primary means by which we learn about the universe. Telescopes collect

light from astronomical sources, and the analysis of this light, the location of its

source, its intensity, and its dependence on wavelength, informs us about the structure

and physical state of the regions observed, including their densities, temperatures,

chemistry, and motions.

Theoretical models are constructed to address the questions that arise from as-

tronomical observations. These include fundamental questions of formation, such as

how galaxies, stars, and planets are created. A detailed comparison between the pre-

dictions of theoretical models and observations allows us to determine which models

best describe the cosmos. Because of the complexity of astrophysical systems, numer-

ical simulations have become an indispensable tool in our construction of theoretical

models.

In this thesis, we consider three-dimensional, dynamic (time-evolving) simulations

of systems whose evolution depends on radiative transfer. The absorption of radiation

1
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leads to heating, while its emission leads to cooling. Thermal pressure stabilizes gas

against gravitational collapse; consequently, radiative transfer is a key process in

determining the growth of structure, such as the formation of stars and planets.

It is an exciting era in the study of planet formation. The first planet around a

solar type star was discovered only in 1995. In the fewer than two decades that have

passed, over 3000 confirmed and candidate extrasolar planets have been detected.

These observations have shown a great variety in the architecture of planetary sys-

tems, and offer valuable data against which we can compare theoretical models of

planet formation.

The two prominent theories of gas-giant (ie. Jupiter-like) formation are the frag-

mentation via gravitational instability (GI) model, and the core accretion model. In

both models, gas-giants (in which we include both planets and brown dwarfs, sub-

stellar companions with masses greater than 13 MJupiter) form in the protostellar discs

of gas and dust that surround young stars. Fragmentation via GI is a top-down

process, in which a region of a massive protostellar disc is unstable, and collapses

to form a gas-giant relatively quickly, in thousands of years. In constrast, the core-

accretion model is a bottom-up process, in which a protoplanet grows through the

conglomeration of the solids in the protostellar disc. When the protoplanet reaches

sufficient mass, runaway accretion of the gaseous component occurs. This process is

slow, taking millions of years. In Chapter 2, we review our current understanding of

protostellar discs and gas-giant formation, from both observational and theoretical

perspectives.

In this thesis, we present original research on the formation of gas-giants via

GI. The conditions for a disc to be gravitationally unstable have previously been

determined analytically. However, study of the transition from instability to frag-

mentation requires the use of numerical simulations. Previous work has shown that

gravitationally unstable discs fragment only if they cool quickly. Realistic heating and

cooling, and thus RT, must therefore be included in numerical simulations studying

fragmentation via GI. In Chapter 3 we present our implementation of RT in the

gravito-hydrodynamics code Gasoline, using the flux-limited diffusion approximation

coupled to radiative cooling from a photosphere boundary condition. It is important
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to carefully test simulation codes in order to be confident in their output. We present

results for a number of standard test problems.

In Chapter 3, we also present 3D radiation hydrodynamics simulations of GI in

the inner regions of protostellar discs, inside of 40 AU. Prior numerical simulations

including RT have disagreed on the viablity of fragmentation via GI in this region.

We show that fragmentation occurs in one of these simulations because of an over-

estimate of the radiative cooling rate in the disc. We find that fragmentation via GI

is not a viable gas-giant formation mechanism inside of 40 AU.

In Chapter 4, we present a suite of 3D radiation hydrodynamics simulations of

GI in the outer regions of protostellar discs, near 100 AU. These simulations show

that fragmentation via GI is a viable gas-giant formation mechanism in this region.

In addition, we use our suite of simulations to develop an improved understanding

of the link between cooling and fragmentation. We present a framework in which

spiral arms develop on a scale determined by the linear gravitational instability, have

a characteristic width determined by the balance of heating and cooling, and frag-

ment if this width is less than twice their Hill radius. This model is consistent with

the fragmentation and initial fragment masses observed in our simulations. We use

the model to calculate the critical cooling rate required for fragmentation, for the

first time. The results are consistent with previous estimates based on numerical

simulations.

RT is also fundamentally important in star formation. Heating from non-ionizing

radiation affects the initial mass function of stars by preventing small-scale fragmen-

tation and the over-production of brown dwarfs. Feedback from ionizing radiation

produced by massive stars may disrupt the parent giant molecular cloud, and limit

the overall star formation efficiency. In Chapter 5, we give a brief overview of some re-

cent research that demonstrates the importance of RT in star formation. Non-ionizing

radiation is well-modelled by our implementation of RT presented in Chapter 3. In

Chapter 6, we present methods and tests for our implementation of ionizing radiation,

using the OTVET method, in Gasoline.

In Chapter 7, we summarize the main results of this thesis. Our implementation

of RT in Gasoline has expanded our numerical toolkit, making it possible to more
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accurately simulate systems in which RT plays an important role. We conclude with

a brief overview of some future research projects that make use of this expanded nu-

merical toolkit to address interesting questions in galaxy, star, and planet formation.



Chapter 2
Protostellar discs and the formation of

gas-giants

2.1 Introduction

The two most prominent theories of planet formation are the core accretion model and

the fragmentation via gravitational instability (GI) model. The core accretion model

explains the formation of all planets, including terrestrial, ice-giant, and gas-giant,

within the same framework. In this framework, km-size planetesimals are built up

through the agglomeration of dust grains within a disc of gas and dust that surrounds

a central star. Two-body collisions, enhanced by gravitational attraction, then lead

to the growth of some planetesimals to 1000-km protoplanetary sizes.

Further accretion of planetesimals, and possibly gas, leads to the continued growth

of protoplanets. If a protoplanet grows large enough, to a crossover mass of roughly

10-15 M⊕, while there remains significant gas in the disc, runaway gas accretion

occurs, and a gas-giant is formed. Protoplanets that are not able to reach the crossover

mass before the dissipation of the gas disc result in the terrestrial or ice-giant planets.

Fragmentation via GI explains the formation of the gas-giant planets, though re-

cent work has also suggested evolution subsequent to fragmentation may also explain

the formation of solid planets. In this model, a massive disc of gas and dust surround-

ing a central star can be prone to gravitational instability, in which local regions of

5
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the disc have self-gravity that is comparable to the stabilizing effects of the coriolis

and pressure forces. Unstable discs form spiral overdensities that may then fragment

to form gas-giant planets, depending on the thermodynamics of the disc. In contrast

to the core accretion model, formation via GI happens very quickly, taking only a few

orbital times. This can lead to the formation of gas-giants in hundreds, or thousands

of years, rather than millions of years necessary in the core accretion model.

The direct formation of a gas-giant through fragmentation of a gas and dust disc

via GI is the most prominent manner in which planet formation may be influenced by

instabilities, but it is not the only one. A number of instabilities may play important

roles in the formation of planetesimals. These processes include the gravitational

fragmentation of a thin dust layer (Goldreich & Ward 1973; Youdin & Shu 2002),

and the concentration of dust grains in the spiral arms of gravitationally unstable

discs (Rice et al. 2004), in vortices (Klahr & Bodenheimer 2003; Mamatsashvili &

Rice 2009), and in turbulent overdensities (Johansen et al. 2006) enhanced by the

streaming instability (Youdin & Goodman 2005).

In both the core accretion and gravitational fragmentation models, planets are

formed within the protostellar (or alternatively, protoplanetary) discs that surround

young stars, including brown dwarf primaries. The properties of these discs— their

sizes, temperatures, mass distributions, and lifetimes— are fundamental inputs, and

constraints, to models of the planet formation process. We therefore begin, in Section

2.2, by reviewing the current research, both observational and theoretical, on the

properties of protostellar discs, as well as their formation, evolution, and the relevant

physical processes involved.

In Sections 2.3 and 2.4, we give overviews of the formation of gas-giants through

core accretion and through GI. From this point on, we specifically use the term gas-

giant companion, rather than gas-giant planet, as we are interested in the formation

of gas-giants both below and above the mass limit for deuterium fusion (13 MJup),

which separates planets from brown dwarfs. We are interested in the formation of

gas-giants in protostellar discs (as opposed to formation in the prestellar core or

molecular cloud), and not in a specific mass range.

Recent years have shown a dramatic increase in the number of observed gas-
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giant companions. These observations are invaluable, as they provide much-needed

constraints on theories of planet formation. In Section 2.5, we overview some of

the observations of gas-giants and discuss some of the successes and limitations in

explaining these observations through the current models of gas-giant formation.

2.2 Protostellar discs

Protostellar discs are intimately linked to both the formation of stars, as well as the

formation of planets. Observations of the velocity gradients across prestellar cores

suggest that cores have rotational motion (Goodman et al. 1993); this motion may

reflect internal turbulence (Burkert & Bodenheimer 2000). During the gravitational

collapse of a rotating prestellar core, the initial angular momentum of the core pre-

vents a radial collapse of material forming the central star directly. Instead, a disc is

built up over time from the inside out, as material from farther away in the core, with

ever-higher initial angular momentum, collapses to the disc-plane at ever-larger radii.

Extended protostellar discs have been directly imaged in Orion (O’Dell et al. 1993) us-

ing the Hubble Space Telescope (HST), and have been inferred through observations

of mid-infrared excess around young stars (Strom et al. 1989).

Because of the angular momentum initially present in the prestellar core, much of

the star’s final mass must be accreted through the disc. As evidence of this, theoreti-

cal models of stellar accretion along magnetic field lines that thread a protostellar disc

agree well with observed line profiles (Muzerolle et al. 2001). The evolution of pro-

tostellar discs, and the transport of material through them (see review by Armitage

2011) thus control the formation of the star itself.

In addition to controlling accretion onto the central star, protostellar discs are

also the birthplaces of planetary systems. In this context, discs are often referred to

as “protoplanetary”. The terms “protostellar disc” and “protoplanetary disc” refer

to the same structure, but at different times. The disc is protostellar during the early

phases, when the disc mass may be comparable to the nascent protostar, and it is

protoplanetary in the later stages, when the disc mass may only be a few percent of

that of the star. These early phases (class 0 and I) last roughly 0.7 Myr (see Sections
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2.2.1 and 2.2.4). In the context of this thesis, in which the focus will predominately

be on massive discs, we will exclusively use the term protostellar, even in reference

to low mass discs.

The fact that the planets in the solar system orbit around the Sun in the same

sense, and that they orbit with small inclinations to a unique plane are good indica-

tions that the solar system formed out of a protostellar disc that initially surrounded

the sun. The concept of a minimum-mass solar nebular (MMSN: Weidenschilling

1977; Hayashi 1981), computed by taking the planetary compositions at each radius

and extrapolating to solar abundances, is a useful baseline for considering protostellar

discs. For reference, the MMSN has a mass of 0.01-0.07 M⊙ and a surface density

profile Σ ∝ R−3/2, where R is the radius from the sun.

2.2.1 Classification

The significant amount of study of protostellar discs that has taken place has resulted

in a corresponding body of terminology. In order to clarify this terminology, Evans

et al. (2009a) have compiled the nomenclature into a useful “diskionary.” In order to

frame some of the discussion in the rest of this section, we begin by describing the

classification scheme for protostellar discs from both an observational and theoretical

point of view.

During the early-stages of the collapse of a prestellar core, the still-forming pro-

tostar and protostellar disc are obscured by the large column of material in the en-

velope that has yet to collapse. The large column of material, combined with the

large opacity from micron-sized dust grains, leads to very large visual extinctions.

Consequently, investigations of this embedded phase require observations at longer

wavelengths (infrared, sub-millimetre, and millimetre), at which the opacity from

dust grains is smaller.

Lada & Wilking (1984), using near-IR observations of the nearby star forming

region ρ-Ophiucus, found that young stellar objects (YSOs) could be placed within

three categories based on the slope of the spectral energy distribution (SED) at wave-

lengths in the near-IR. A classification scheme based on this result was put forward
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by Lada (1987): class I sources show an SED that is broader than blackbody and

increasing longward of 2 microns; class II sources show an SED that is broader than

blackbody and constant or decreasing longward of 2 microns; while class III sources

show an SED that is well-modelled by a reddened blackbody, with perhaps a small

excess in the mid-IR.

This classification scheme has been explained in terms of an evolutionary sequence.

Class I YSOs represent the early phase of collapse, in which the emission is dominated

by the material in the envelope; class II YSOs have emission that is dominated by the

star and the protostellar disc; and class III YSOs have emission that is characteristic

of the star, with no strong evidence for a protostellar disc, although a debris disc may

exist. This correspondence between observational classification and evolutionary state

agrees with models of the collapse of rotating cores (Adams et al. 1987). A further

extension of the classification scheme was introduced by Andre et al. (1993): class

0 YSOs represent the earliest phases of core collapse, during which the envelope

emission (and mass) exceeds that of the star. Figure 2.1 depicts the classification

scheme for YSOs.

Discs in the class 0-I phases are deeply embedded, with significant emission from

the envelope. As a consequence, disentangling emission arising from the envelope,

which may also include material in an outflow, from emission arising from the disc,

is non-trivial. Separating the disc from the envelope requires molecular-line obser-

vations that can clearly show the rotation of the disc material, or detailed radiative

transfer (RT) modelling. Due to these observational difficulties, we begin by dis-

cussing the later phases of protostellar discs, which are less obscured by the envelope,

and therefore more amenable to study. We focus on observations of class II discs, in

which the disc and star dominate the emission, in Section 2.2.2. These observations

give us important information on the masses, and radial structure and size, and ver-

tical structure of these discs. We focus on the lifetimes of these discs, as well as their

evolution and dispersal, in Section 2.2.3. Finally, we address the earliest phases of

protostellar discs, with recent observations of class 0-I discs in §2.2.4, and a discussion

of the recent progress in modelling the formation of class 0-I discs in Section 2.2.5.
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Figure 2.1: A depiction of the classification scheme for YSOs (and protostellar discs,
Lada 1987; Andre et al. 1993) and the typical lifetime of each phase. The figure is
based on one from Dauphas & Chaussidon (2011).
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2.2.2 General characteristics of class II discs

The masses of class II discs can be determined from observations of dust emission

in YSOs at mm and sub-mm wavelengths. At these wavelengths, much of the disc

emission (roughly that originating from greater than 10 AU in the MMSN; Williams

& Cieza 2011) is expected to be optically-thin. There is a relatively simple relation

between the observed flux due to optically-thin emission and the total disc-mass

(Beckwith et al. 1990), which has been used in a number of works (e.g. Andrews &

Williams 2005, 2007b) to study the statistics of disc-masses for YSOs in nearby star

forming regions. The result of these studies is that the median disc-to-star mass in

the class II phase is relatively small, about 0.9 per cent (Williams & Cieza 2011).

Significant uncertainties in the opacities used in the determination of these masses,

largely due to the possible presence of dust grains larger than mm-size (Williams

& Cieza 2011) make these mass estimates somewhat uncertain. Furthermore, mass-

estimates based on observed accretion rates (Hartmann et al. 1998) tend to be an

order of magnitude larger than optically-thin estimates (Andrews & Williams 2007b).

This, along with the high occurence of observed exoplanets (Cassan et al. 2012), and

the difficulty of forming planets in such low-mass discs, suggests that optically-thin

observations may underestimate the total disc-mass, or that planet formation has

already made significant progress by the class II phase (Greaves & Rice 2010).

Resolving the scale of protostellar discs in nearby star-forming regions at sub-mm

wavelengths requires the use of interferometry. A combination of resolved interfer-

ometric continuum observations and SEDs have been used to determine the radial

structure (in addition to mass) of a number of protostellar discs. Initial studies (e.g.

Kitamura et al. 2002; Andrews &Williams 2007a) modelled the discs using power-laws

in the surface density, Σ ∝ R−p, and the temperature, T ∝ R−q. These studies have

generally found p in the range 0-1 (Williams & Cieza 2011) and q in the range 0.5-0.7.

More recent work (Isella et al. 2009; Andrews et al. 2009) has instead modelled the

surface density profiles with the self-similar solution for a viscous disc (Lynden-Bell

& Pringle 1974; Hartmann et al. 1998),

Σ ∝ (R/Rc)
−γ exp [−(R/Rc)

(2−γ)], (2.1)
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where Rc is a scaling radius, interior to which lies roughly two-thirds of the disc mass.

Andrews et al. (2009) found γ to be in the range (0.4, 1), while Isella et al. (2009)

found a larger range of (-0.8, 0.8), where the values of γ < 0 represent inner regions

of the disc that have increasing surface density as a function of radius. These are

examples of “transitional discs.”

The above interferometric studies also give constraints on the sizes of protostellar

discs. Andrews et al. (2009) found Rc in the range 14-198 AU, while Isella et al.

(2009) found Rc in the range 30-230 AU. This range of protostellar disc sizes is in

agreement with HST observations of discs in Orion (Vicente & Alves 2005). From

these observations, it is clear that protostellar discs can be very extended.

The vertical structure of protostellar discs is determined by the hydrostatic balance

between the vertical component of gravity (from the central star and the self-gravity

of the disc) and the vertical pressure gradient (from the density and temperature

profiles, and possibly turbulence). The vertical temperature structure of the disc is

set by a balance of heating and cooling, which are dominated by dust, due to its large

opacity (line cooling is only a minor coolant, Dullemond et al. 2007). Dust is heated

by the absorption of irradiation from the central star, absorption of reprocessed IR

emission from nearby dust, and through viscous dissipation; it cools via IR emission.

Kenyon & Hartmann (1987) first determined that protostellar discs are flared,

based on observations of the far-infrared excess in YSOs. A flaring geometry allows

more of the star’s light to be reprocessed by dust grains at large radii in the disc,

where the temperature is low, thus contributing to the emission in the far-infrared.

The flaring geometry of discs was later confirmed directly through HST images of

protostellar discs, such as the “butterfly star” in Taurus (Wolf et al. 2003).

One expects an optically-thin layer of superheated dust on the surface of proto-

stellar discs. This layer of dust is directly exposed to the radiation from the central

star, and reprocesses this stellar light into the IR, heating the interior of the disc.

Using a flared disc composed of two layers, a superheated surface layer, and a cooler

interior layer, Chiang & Goldreich (1997) derived a solution for the vertical struc-

ture of a non-accreting protostellar disc assuming hydrostatic balance. Their model

successfully matched observed SEDs, including the far-IR excess. More complex,
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“one + one-dimensional” computational models employ vertical radiative transport

in an azimuthally symmetric disc, in order to determine the vertical structure self-

consistently and have also been used to model observed SEDs. D’Alessio et al. (1998)

employed a 1+1D model including diffusive vertical radiative transport, as well as

viscous dissipation to study the vertical structure of discs. From their work, three

zones in the disc emerge: an outer zone dominated by irradiation, an intermediate

zone where the surface temperature is determined by irradiation, but the midplane

temperatue is determined by viscous dissipation, and an inner zone dominated by

viscous dissipation.

We also note that fully two-dimensional (azimuthally symmetric) RT models have

been developed for disc studies (e.g. Dullemond & Dominik 2004). These generally

iterate between solving radiative transfer and pressure balance. Their advantage is

that they can take into account radial diffusion of radiation, as well as self-shadowing

effects. A number of models also include processes such as line-cooling, chemical

networks, and/or distinct dust and gas temperatures in order to study the upper

layers of protostellar discs (see the review by Dullemond et al. 2007).

2.2.3 Lifetimes and evolution of discs

The lifetimes of protostellar discs provide a fundamental constraint on any model of

gas-giant formation: the gas-giant must be able to form within the lifetime of the

disc.

Observations of a number of nearby clusters show that discs, the inner regions

detected through their near-IR excess, have lifetimes of typically 3 Myr (Haisch et al.

2001). Furthermore, sub-mm observations (Andrews & Williams 2005, 2007b) have

demonstrated that the outer-regions must be dispersed at roughly the same time

as the inner regions, since the fraction of discs detected at sub-mm wavelengths

(characteristic of the outer disc) is nearly identical to the fraction of discs detected

in the near-IR. In some instances, disc lifetimes can be quite short. The Spitzer

c2d survey (“From Cores to Discs” Cieza et al. 2007) examined 230 weak-lined T-

Tauri stars (WTTSs, corresponding to Class III YSOs), stars that show no signs
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of accretion (and thus have no evidence for an inner disc), in an effort to detect if

any discs existed around these stars. The authors found that 50% of the youngest

WTTSs had no evidence of having discs, indicating that many discs are dissipated

on timescales of 1 Myr. In addition, the authors determined a transition timescale

between optically thick discs and an absence of disc of 0.4 Myr. The fact that the disc

lifetime is observed to be much longer than the time to clear the entire disc once the

inner disc is gone is described as the “two-time-scale” problem (see further references

in Williams & Cieza 2011).

The observations described above focused on the dust content of protostellar discs,

since it is the easiest component to observe. Observations of accretion rates in young

stars indicate that the timescale for accretion to end is roughly 2.3 Myr, with 60% of

stars still accreting at an age of 2 Myr, and 2% accreting at an age of 10 Myr (Fedele

et al. 2010). Although accretion only describes the innermost regions of the disc, this

timescale for the lifetime of the gas disc is consistent with the inferred lifetimes based

on observations of dust.

The limited lifetimes (a few Myr), and short dispersal time (a fraction of a Myr)

show that protostellar discs evolve. In addition, observations of emission lines from

young stars are consistent with accretion onto the star from the disc (Muzerolle

et al. 2001), indicating mass transport. Here, we describe some of the mechanisms

responsible for evolution of the disc.

Mass transport through the disc requires the transport of angular momentum.

Shakura & Sunyaev (1973) argued that turbulence, whatever its source, results in a

viscosity that scales as

ν = αcsHNSG, (2.2)

where HNSG = cs/Ω is the non-self-gravitating scale height (cs is the sound speed and

Ω is the rotation rate). This parameterization is known as an “α-viscosity.” The

time evolution of the surface density of a viscous accretion disc (see Frank et al. 2002;

Armitage 2011) is
∂Σ

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r

(

νΣr1/2
)

]

; (2.3)

in addition to mass transport, there is also a viscous heating per surface area of
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9/8νΣΩ2. In general, this viscosity drives accretion of material onto the star, while

simultaneously spreading the disc to large radii. Changes to the disc structure take

place on roughly the viscous timescale, tvisc = r2/ν. If steady-state is assumed,

one can balance the viscous heating (and irradiation) from the central star and the

disc emission to compute the steady-state temperature structure of the disc. The

numerical models of D’Alessio et al. (1998), which use an α-viscosity model, are one

example of such a model.

It is not necessary to know the physical mechanism for viscosity in order to ap-

ply the α-viscosity model. Values for α can be determined by comparing α-viscosity

models with observed accretion rates, yielding values of α ∼ 10−2 (Hartmann et al.

1998). However, it is worthwhile to understand the source of viscosity in order to

understand the applicability of an α-viscosity, as well as confirm the observed values.

The magneto-rotational instability (MRI, Balbus & Hawley 1991) is one likely source

of viscosity in protostellar discs. In the ideal-MHD limit, one expects the MHD tur-

bulence that results from the MRI to be well-characterized as an α-viscosity, because

flux-freezing makes the process inherently local in nature (Balbus & Papaloizou 1999).

The importance of non-ideal effects, such as weak coupling between the magnetic field

lines and the gas complicate the study of the MRI, but can also lead to interesting

features, such as “dead-zones” (Gammie 1996). These are regions of low ionization

fraction that are stable to the MRI (see the review by Armitage 2011 for a detailed

discussion). For massive discs, in which self-gravity is important, GI is expected to

significantly contribute to the angular momentum transport within the disc. GI is

discussed in Section 2.4.

The solid component of the protostellar disc, initially composed of micron-sized

dust grains that are well coupled to the gas component, evolves differently than the

gas-component. The vertical component of gravity results in the settling of dust grains

towards the midplane, with the larger dust grains expected to settle to a smaller scale

height. In addition, the grain size-distribution evolves, with collisions and coagulation

producing larger grains.

Theoretical models for these processes, coupled to 1+1D RT models, have found

that the timescale for dust settling is short, roughly 105 years. Turbulent mixing,
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however, prevents complete settling of the dust, with a steady-state achievable in less

than 1 Myr (Dullemond & Dominik 2004). Similar calculations, have shown that the

timescale to remove all small grains (up to 100 µm) occurs too fast (104 years) to be

consistent with observed SEDs, and fragmentation of grains is necessary (Dullemond

& Dominik 2005). More complex models, including fragmentation of grains, radial

drift and the viscous evolution of the disc have been developed (Birnstiel et al. 2010).

These demonstrate the well-known “metre-size barrier”: grains larger than a few cm

undergo destructive collisions, as well as rapid radial drift inward to the star.

The gas-component of a protostellar disc is eventually dissipated through photo-

evaporation due to radiation from the central star, or nearby stars. The radiation

responsible for photoevaporation can be divided into three types: 1) FUV, with

6 eV < hν < 13.6 eV, 2) EUV, with 13.6 eV < hν < 0.1 keV and 3) X-ray, with

0.1 keV < hν, where h is Plank’s constant, and ν is the frequency of the light. The

basic mechanisms are well-described in the review by Dullemond et al. (2007).

To summarize, EUV photons heat only the outer layers of the disc (due to the

large opacity to ionizing radiation), but heat the gas to 104 K independent of the

radius. FUV (and X-ray) photons by contrast, are able to penetrate more deeply

into the disc, with a heating rate that depends on the radiation flux, the gas density,

and the chemistry. Thus, the calculation of photoevaporation via FUV and X-ray is

sensitive to the ability to calculate the disc’s vertical structure accurately. Whether

an evaporative flow is created depends on the gas’s sound speed in comparison to the

local escape speed.

Hollenbach et al. (1994) first considered EUV photoevaporation from a central

star and derived mass-loss rates, which are based on the Strömgren condition, that

ionizations balance recombinations. In essence, a thin-layer of ionized gas is created

on the surface of the disc, similar to an HII region. The large sound-speed of this

layer leads to an evaporative flow outside a critical radius, outside of which gravity

is weak enough that the gas becomes unbound.

Alexander et al. (2006a,b) used the mass-loss rates of Hollenbach et al. (1994), with

some improvements based on hydrodynamics simulations, combined with a viscous

disc-model to consider the photoevaporation of the disc. In their “UV-switch” model,
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mass is transported inwards through the disc via viscous accretion, while mass is

lost at each radius via an EUV wind. At early times, viscous accretion dominates;

however, after a few Myr, viscous accretion no longer balances the wind loss-rate

in the interior of the disc and an inner hole develops. Direct EUV irradiation on

the inner edge of the disc enhances mass loss and the entire disc is photoevaporated

after roughly 105 years. This model is able to overcome the “two-time-scale problem”

described above and explain both the observed lifetimes of protostellar discs, as well as

the observed rapid disc dispersal timescale. Gorti et al. (2009) and Gorti & Hollenbach

(2009), stating that EUV fluxes should be lower than those used by Alexander et al.

(2006a,b), examined the role that FUV and X-rays (in addition to EUV) plays in

driving photoevaportative flows. They found that FUV and X-ray were effective at

driving mass loss at earlier times, and at larger radii than the EUV flux.

2.2.4 Observations of class 0-I discs

Now that we have considered the later phases of protostellar discs, as well as many of

the important physical processes in determining disc structure and evolution, we turn

to the earliest phases of the disc. As described previously, class 0-I YSOs have discs

that are deeply embedded in envelope material, making the study of class 0-I discs

significantly more difficult than for class II discs. However, even without resolving

the disc emission, large surveys of YSOs have provided information regarding the

timescales for disc formation, and some details of disc evolution.

Discs do not spend long in the class 0-I phases. Evans et al. (2009b) surveyed five

nearby star forming regions (within 300 pc) using the Spitzer IR telescope as part of

the c2d survey. The authors classified each YSO according to the slope of its SED.

Based on the numbers of YSOs in each class, and a typical age for the class II phase

of 2 Myr, they determined that class 0 and class I phases have lifetimes of only 0.16

and 0.54 Myr respectively.

Kenyon et al. (1990) found that a sample of YSOs in Taurus-Auriga had lu-

minosities that were significantly less than was expected for the estimated rates of

accretion. In fact, class I sources were not found to be more luminous than class II
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sources. One proposed solution to this “luminosity problem” is that accretion rates

are not constant, but are instead bursty. In this picture, the majority of YSOs are in

a long-lived low-accretion state during which their accretion (and luminosity) is low.

These low-accretion periods are punctuated by short-lived events of high-accretion

(and luminosity) during which the star gains most of its mass. Bursty accretion may

also explain the phenomenon of FU Orionis outbursts, in which the brightness of a

star is observed to increase by up to 6 magnitude on short timescales (less than 100

years, see review by Hartmann & Kenyon 1996). In agreement with this picture of

bursty accretion, Evans et al. (2009b) found that the luminosity of their sources could

be reconciled with the expected accretion rates if roughly 50 % of the stellar mass

was accreted in only 7 % of the class I lifetime.

To resolve the disc-scale (a few 100 AU) in nearby star forming regions requires

an angular resolution of roughly 1”, while the ability to penetrate the significant

envelope requires long wavelengths. Sub-mm interferometry is thus a valuable tool in

the study of these deeply embedded discs. In addition, long baselines can be used to

filter out emission from the envelope, which is expected to occur on larger scales and

thus dominate on short baselines. Interferometric observations are generally combined

with RT codes and SED modelling, in order to disentangle the emission from the star,

disc, and envelope.

Eisner et al. (2005) combined continuum 1.3 mm interferometry from the Owen

Valley Radio Observatory (OVRO) and SED observations with a radiative transfer

code. The authors examined five class I objects in Taurus and found disc masses

in the range of 0.1-1 M⊙. In addition, the envelope infall rates determined were an

order of magnitude larger than observed accretion rates onto the stars, pointing to

bursty accretion. Jørgensen et al. (2007, 2009) used the Submillimetre Array (SMA)

to survey 10 class 0 and 10 class I discs. With combined SMA and SED observations,

and an RT code, they determined that the mean disc mass was 0.05 M⊙. Perhaps

surprisingly, they found no trend in disc mass between class 0 and class I objects,

despite a clear reduction in the amount of material in the envelope (from 1 to 0.1

M⊙), which suggests efficient transport of material through the disc. Enoch et al.

(2011) combined continuum observations from the Combined Array for Research in
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Millimeter-wave Astronomy (CARMA) with SEDs and RT modelling, determined a

typical disc mass of 0.2 M⊙. The authors also found that 6 of nine class 0 YSOs

have detectable discs, pointing to the rapid formation of discs (within the 0.2 Myr of

the class 0 phase). These observations indicate that the masses of discs in the class

0-I phases are significantly greater than those in the class II phase, and that bursty

accretion likely occurs.

The above work uses a combination of observations in addition to RT modelling

to disentangle emission arising from the disc from that of the envelope. Some recent

work (Brinch et al. 2007; Jørgensen et al. 2007, 2009) has used molecular line emission

in CHO+ J=3-2 in order to detect the disc directly by looking for Keplerian rotation.

In the most highly embedded sources, however, the emission is optically thick. The

Atacama Large Millimeter/sub-millimeter Array (ALMA) telescope will be able to

detect less dense isotopologues, making the direct detection of disc emission easier in

class 0-I YSOs.

2.2.5 Models of disc formation

Due to the difficulties in studying the very first stages of disc formation observation-

ally, including the short timescale for disc formation (less than 0.2 Myr, Evans et al.

2009b) and the degree of obscuration from the infalling envelope, much of the progress

in understanding the formation of discs has come from numerical simulations. Com-

putational models generally begin with a gravitationally unstable prestellar core, and

follow its collapse and the subsequent formation and evolution of the protostar and

its protostellar disc. Because of the range in scales (over six orders of magnitude sep-

arate the scales of prestellar core and stellar radius), and the necessary integration

times (105−106 years), this is a difficult process to model in 3D while including all of

the relevant physics. Only recently, and for relatively few cases, has this been done.

We begin with a historical overview of the progress made, and discuss some of recent

results, and their correspondence with observation.

Larson (1969) performed some of the first simulations of prestellar collapse. He

used 1D radiation hydrodynamics to follow the collapse of a 1 M⊙ protostellar core,
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and found three phases for the collapse. The material remained nearly isothermal until

it reached a density of ρ = 10−13 g cm−3, at which point it became optically thick.

This material at high density then formed a first core, which was near hydrostatic

equilibrium, and about 4 AU in size. As matter continued to accrete on the core,

the internal temperature increased until molecular hydrogen dissociated at the center,

prompting the collapse to a stellar core of roughly 5 MJup. The remaining material fell

onto the stellar core during a main accretion phase. Although these early calculations

are important in understanding the formation of the protostar, the initial conditions

lacked rotation, and made the formation of a disc impossible.

If one assumes that angular momentum is conserved as material from a rotating

prestellar core collapses onto a protostellar disc, then one can map the initial angular

momentum of the material to the radius at which it impacts the disc. Lin & Pringle

(1990) used this principle to calculate accretion rates for the evolution of their 1D disc

formation model, which included radiative cooling and angular momentum transport

via parameterizations for both the turbulent viscosity and self-gravity. They con-

cluded that protostellar discs should be several hundred AU in extent, and have mass

comparable to the central star. Yorke et al. (1993) reached similar conclusions using

2D radiation hydrodynamic simulations of a collapsing 1 M⊙ prestellar core: they

formed discs 200-500 AU in extent, with masses similar to the protostar.

In recent years, with increased computing power, it has become possible to per-

form 3D numerical simulations of prestellar core collapse, with an ever increasing

amount of realistic physics (RT, magnetic fields) included. 3D hydrodynamic sim-

ulations of prestellar core collapse using barotropic equations of state to mimic the

thermodynamic effects of radiative transfer have examined the collapse of both uni-

formly rotating (Machida et al. 2010) and turbulent (Hayfield et al. 2011) prestellar

cores. These works demonstrate that massive discs (in the range of 0.1 − 1.0 M⊙)

on the scale of hundreds of AU form within 104 years. At early times, the discs were

observed to be even more massive than the protostar. Consequently, these massive

discs were prone to gravitational instability, demonstrated strong spiral modes, and in

some cases fragmented. 3D radiation-hydrodynamics (RHD) simulations performed

by Bate (2011) lead to similar conclusions: massive (0.22 M⊙), extended (100 AU)
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discs, susceptible to fragmentation are formed quickly (these calculations only follow

to shortly after the formation of the stellar core, ∼ 6 × 104 years). We save a de-

tailed discuss of GI and the conditions for fragmentation for Section 2.4; however, we

do wish to emphasize here that discs that are susceptible to GI and fragmentation

naturally arise in a number of simulations of protostellar disc formation.

The role of magnetic fields in disc formation is currently somewhat uncertain.

Magnetic braking has been found to be extremely effective at removing angular mo-

mentum during the collapse of a prestellar core. In fact, in the ideal MHD case, it

has been found to suppress the formation of any rotationally supported disc (Mellon

& Li 2008; Seifried et al. 2011). This conflict between simulation and observation

has been termed the “magnetic braking catastrophe.” Non-ideal MHD effects, such

as ambipolar diffusion (Duffin & Pudritz 2009) and ohmic dissipation (Machida &

Matsumoto 2011) allow only for the formation of an inner-disc of less than 10 AU.

This is much smaller than the hundred-AU scale common to observed discs.

One recently proposed resolution of this catastrophe finds fault in the idealized

initial conditions, having uniform rotation, that are often used in prestellar core

collapse simulations. Seifried et al. (2012) have performed magnetohydrodynamic

simulations of the collapse (and fragmentation) of a turbulent 100 M⊙ prestellar

core. They found that individual protostars were able to form discs on the scale

of 100 AU, with typical masses of 0.1 M⊙, within roughly 104 years. The use of

turbulent initial conditions, rather than those with uniform rotation, resulted in a

lack of coherent rotation on scales greater than a few hundred AU. In this case, strong

toroidal fields, which act to efficiently extract angular momentum, were not built up.

This explanation is consistent with the turbulent radiation magnetohydrodynamic

simulations of (Commerçon et al. 2011), in which large discs are formed for realistic

magnetic field strengths.

Because of the computational expense of 3D simulations, only a relatively small

number of simulations have been performed, and often only for a limited integra-

tion time. Simplified simulations of varying complexity, which are computationally

cheaper, are useful in exploring some of the available parameter space. These have

included one-zone models (Kratter et al. 2008), 1D radial model (Hueso & Guillot
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2005; Rice et al. 2010), and 2D models.

Vorobyov & Basu (2010b) and Vorobyov (2010, 2011) used thin-disc (2D) hydro-

dynamic simulations, including irradiation and radiative cooling, to study the collapse

of prestellar cores based on the axisymmetric, magnetically supercritical core of Basu

(1997). Over a range of rotation rates for the prestellar core, the authors found me-

dian disc masses 0.09 and 0.14 M⊙ during the class 0 and class I phase respectively,

with a nearly constant (with significant scatter) disc-to-star mass ratio of 0.72 and

0.64 respectively. The median disc radii are 190 and 280 AU for each phase respec-

tively. Much of the inner region of the disc is initially optically thick, which may

skew observational estimates of disc mass, which assume optically thin emission. The

authors also note that most of their discs are gravitationally unstable and fragment.

However, most fragments do not survive, but instead migrate inwards into the cen-

tral star and are accreted. This bursty accretion may offer a possible solution to the

luminosity problem, as well as the FU Orionis phenomenon.

2.2.6 Summary

Our discussion of protostellar discs has been detailed because these discs are funda-

mental to the formation of gas-giants. Before considering the mechanisms for gas-

giant formation, we summarize a few of the key points of this section. Observations

of protostellar discs show that they are a common around young stars. Observations

and models of formation both suggest discs are massive and extended in their class

0-I phases, which roughly lasts a combined 0.7 Myr. At these early times, discs are

massive enough to be susceptible to GI and fragmentation, which may explain the

bursty accretion that may lead to the luminosity problem and FU Orionis outburts.

Discs evolve through mass transport, the rapid growth of dust grains to larger bodies,

and are eventually dispersed by photoevaporation. Lifetimes of discs are roughly 3

Myr, although a significant number are dispersed on shorter, 1 Myr timescales.
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2.3 Gas-giant formation via core accretion

In the core accretion model, gas-giant planets form in a disc through a bottom-up

process, in which there is growth from dust grains to protoplanets that can then

capture gaseous envelopes. Models indicate that this process generally takes a few

Myr, which is comparable to the lifetime of the disc. Here, we give an overview of

the formation of a gas-giant in the core accretion model (Lissauer & Stevenson 2007;

Mordasini et al. 2010).

This scenario begins with the buildup from micron-size dust grains to km-size

planetesimals. The process of dust growth via agglomeration is outlined by Dominik

et al. (2007). One uncertainty in this process is how metre-size planetesimals grow to

km-size. At the expected relative velocities, m-size objects are expected to destroy

each other upon collision, rather than to stick together. In addition, planetesimals

large enough to decouple from the gas experience a “headwind” as they orbit, as

the gas travels with a sub-Keplerian velocity because of radial pressure gradients.

The timescale for inward radial drift, and destruction, is shortest for m-size objects

(less than 100 years, Mordasini et al. 2010). One possible solution to the “metre-

size barrier” is the rapid concentration of m-size bodies that results from turbulence

coupled to the streaming instability (Johansen et al. 2007).

Once km-sized planetesimals have formed, there is continued growth through two-

body collisions. This growth is initially a runaway process, in which the larger plan-

etesimals double their mass faster than smaller planetesimals (Wetherill & Stewart

1989). This results in a small number of protoplanetary embryos that are much larger

than the remaining disc of planetesimals. At this stage, the embryos continue to ac-

crete planetesimals in what is known as “oligarchic growth.” Each embryo, however,

only has a limited reservoir of plantesimals from which it can accrete, and there is a

maximum mass, or “isolation mass” (Lissauer 1993) that includes the material within

a few Hill radii, where the Hill radius is

RHill =

[

Membryo

3M⋆

]1/3

a, (2.4)
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where a is the semi-major axis, Membryo is the mass of the embro, and M⋆ is the mass

of the central star.

The above steps, along with subsequent collisions between embryos, describe the

formation of solid planets. To produce a gas-giant, we must also consider the accretion

of gas onto the embryo. A number of authors (Pollack et al. 1996; Alibert et al. 2005;

Lissauer et al. 2009) have performed calculations of the growth of a single protoplanet

embryo accreting both planetesimals and gas in a protostellar disc. These calculations

model the embryo in 1D, assuming hydrostatic equilibrium. We describe their general

results.

The embryo’s accretion of planetesimals in the runaway phase, and growth to the

isolation mass, is rapid (taking 105 years); however, the initial phase of gas accretion

is relatively slow, as it is governed by the thermodynamics of the embryo’s envelope.

In this phase, the envelope extends to the Hill radius and must radiate away the

energy that is input through gravitational contraction and plantesimal accretion in

order to contract. This contraction allows more gas to become bound to the embryo

and accrete onto the envelope. In addition, the embryo’s Hill radius increases as its

mass increases, allowing for accretion of gas and planetesimals over a larger zone of

the disc.

When the core accretes enough gas so that its envelope and core are of roughly

equal mass, then the self-gravity of the envelope becomes important, and the envelope

contracts with the addition of more gas. At this crossover mass, roughly 10-15 M⊕,

there is runaway gas accretion. Further accretion is no longer dependent upon the

thermodynamics of the disc, but rather the availability of gas. The embryo rapidly

grows in mass until accretion is limited, by the formation of a gap (Bryden et al.

1999), or the dissipation of the gas disc. Lissauer et al. (2009) showed that a Jupiter-

mass gas-giant can be formed at 5 AU, within the roughly 3 Myr lifetime of the disc,

given a surface density that is roughly three times that of the MMSN.

A further consideration, absent in the work of Lissauer et al. (2009), is the radial

migration of the protoplanet during its formation in the gas disc. Radial migration of

a protoplanet can be caused by two types of disc-planet interactions within a gas disc.

In Type I migration (Goldreich & Tremaine 1980), an embedded protoplanet migrates



2.4. GAS-GIANT FORMATION VIA GRAVITATIONAL
INSTABILITY 25

inwards (in a Keplerian disc) due to an imbalance of torques between material inside

the orbit of the protoplanet and material outside of the orbit. However, estimates of

the type I migration rate (e.g. Tanaka et al. 2002) are very short (roughly 1 Myr at

5 AU for an earth-mass core), and therefore pose a problem for gas-giant formation

via core accretion (the linear rate must be reduced by an order of magnitude to agree

with exoplanet observations, Ida & Lin 2008). The solution to the Type I migration

problem will include non-isothermal effects (Paardekooper & Mellema 2006), as well

as dead-zones, opacity transitions, and other migration traps (Hasegawa & Pudritz

2011 and references therein). Detailed models of gas-giant formation such as those of

Lissauer et al. (2009) have not yet been carried out for realistic Type I migration.

Migration is not limited to the protoplanet embryo. In Type II migration (Lin &

Papaloizou 1986; Bryden et al. 1999), the protoplanet is massive enough to open a

gap in the disc, and migrates inwards on the viscous time of the disc, or more slowly

for more massive planets (Papaloizou et al. 2007). As will be discussed below, the

issue of migration is not limited to formation via core accretion. It is an important

process in planet formation theory that requires further research.

2.4 Gas-giant formation via gravitational instabil-

ity

2.4.1 Conditions for fragmentation

In the fragmentation via gravitational instability model (Cameron 1978; Boss 1997),

gas-giants form through the rapid collapse of local regions in massive, unstable pro-

tostellar discs. Models of GI show that the process is rapid, taking hundreds to

thousands of years, in contrast to the millions of years that are required in the core

accretion model. The exact conditions in which GI is expected to form gas-giants is

a topic of current research, and is the focus of the work presented in Chapters 3 and

4. Here, we outline recent research studying the role of GI in protostellar discs, and

the criteria under which fragmentation, and the formation of gas-giants is expected.

Whether a thin disc is gravitationally unstable is determined by the Toomre Q
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parameter (Toomre 1964; Binney & Tremaine 2008),

Q =
csκ

πGΣ
, (2.5)

in which G is the gravitational constant, Σ is the local surface density, and

κ =

√

R
dΩ2

dR
+ 4Ω2. (2.6)

is the epicyclic frequency. In the above, Ω is the local rotation rate; for a Keplerian

disc, κ = Ω. The Toomre Q is derived from a linear stability analysis for a local

patch of a thin-disc. This analysis leads to the dispersion relation for an axisymmetric

disturbance:

ω2 = κ2 − 2πGΣ|k|+ k2c2
s
, (2.7)

where k is the wavenumber of the perturbation, and ω is the frequency (or growth-rate,

if ω2 < 0) of the perturbation. In this patch, the destabilizing effects of self gravity

are countered by the stabilizing effects of shear (for long-wavelength perturbations)

and pressure (for short-wavelength perturbations). When Q < 1, the disc is unstable

to perturbations with wavelengths that satisfy

λToomre

(

1−
√

1−Q2
)

≤ λunstable ≤ λToomre

(

1 +
√

1−Q2
)

, (2.8)

where

λToomre = 2π2GΣ/κ2 (2.9)

is the most unstable wavelength in the linear analysis. Massive, cold protostellar discs

are expected to have regions with Q < 1, and will therefore be unstable. The finite-

thickness of realistic discs has a stabilizing effect (Goldreich & Lynden-Bell 1965),

and reduces the critical value to Q ≈ 0.75 (Kim et al. 2002).

The Toomre analysis is a local linear analysis: it considers the stability of one

patch in the disc. In addition, it is strictly only applicable for tightly-wound dis-

turbances. Numerical simulations of GI have been very useful in studying the global

stability of discs to GI, including the non-linear regime. These simulations have shown
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that discs with regions of Q . 1.5 are unstable to the growth of non-axisymmetric

perturbations; the disc develops multi-armed, trailing spiral overdensities, usually

with multiple modes present (Durisen et al. 2007).

A variety of treatments for the thermodynamics of the gas have been used in

numerical studies of GI. Locally isothermal simulations (Laughlin & Bodenheimer

1994; Boss 1997; Mayer et al. 2004), in which the temperature of the gas is a function

of its initial (usually radial) position, assume that cooling is rapid; any excess thermal

energy is radiated away instantaneously. At the other extreme, adiabatic simulations

(Mayer et al. 2004) assume that cooling is inefficient; the gas is unable to radiate

away the excess thermal energy from compressional or shock heating.

Other simulations have included cooling parameterized using the local cooling

time, which is defined (for Lagrangian methods such as smoothed particle hydrody-

namics, SPH) through the evolution of the specific internal gas energy, u:

Du

Dt
= − u

tcool
, (2.10)

where D
Dt

= ∂
∂t
+v ·∇ is the co-moving derivative (there is an analogous definition for

Eulerian, grid-based methods). These prescriptions enforce a constant cooling rate

per dynamical time,

tcoolΩ = β (2.11)

(β-prescription, Gammie 2001; Rice et al. 2003; Meru & Bate 2011; Cossins et al.

2009), or a constant cooling rate, tcool = constant (Mej́ıa et al. 2005).

Parameterized cooling treatments such as these are useful in studying the role of

thermodynamics in disc simulations, since the cooling rate is specified and is constant.

However, they are not meant to represent realistic cooling, since discs do not have

fixed valued of tcool or β (as can be observed in our simulations, see Figures 3.11

and 3.14). The global nature of β-prescription cooling means that simulations that

employ it are limited in what they can tell us about realistic discs. For example,

since there is no spatial variation of the cooling rate, we can not learn about where

in the disc fragmentation is expected; in addition, the character of the fragmentation

is likely not realistic, since the whole disc is susceptible to fragmentation.
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Realistic cooling results from radiative (and possibly convective) transport of en-

ergy within the disc, which depends on the optical depth, temperature, and density

of disc material. A number of studies have used various local radiative cooling ap-

proximations based on vertical diffusive transport with a smooth transition to the

free-streaming limit (Johnson & Gammie 2003; Stamatellos & Whitworth 2008; Bo-

ley 2009). The accurate determination of the thermodynamics of the disc requires the

inclusion of radiative transfer in simulations, and a number of authors have examined

GI using radiation hydrodynamics (Boss 2001; Mayer et al. 2007; Cai et al. 2006;

Boley et al. 2007; Meru & Bate 2010a; Stamatellos et al. 2011; and Chapters 3 and

4).

There are two possible outcomes of the non-linear growth of GI in a disc: the

amplitude of the overdensities can saturate, or the disc can fragment. Whether frag-

mentation occurs depends on the thermodynamics of the disc: unstable discs that

cool quickly can fragment, while those that do not cool fast enough are stable to

fragmentation, and maintain Q ∼ 1 . Before examining this cooling criterion for

fragmentation in detail, we first note the influence of GI in discs that are stable to

fragmentation. As discussed in Section 2.2.3, observed accretion onto YSOs (and

the growth of the star itself) requires the transport of material, and angular momen-

tum, through the disc. One mechanism for such transport is the sum of gravitational

torques exerted by the spiral structure in gravitationally unstable discs (Larson 1984).

Laughlin & Bodenheimer (1994) examined the transport of mass and angular mo-

mentum in a gravitationally unstable (Qmin = 1.3) disc, which did not fragment, using

3D SPH with a locally-isothermal equation of state. The authors found significant

transport resulted from the gravitational torques. In addition, they found that the

evolution of the surface density of the disc agreed well with an α-viscosity model,

with α = 0.03.

It is not immediately clear that GI should be well-characterized by an α-viscosity,

since this model assumes that angular momentum transport and energy dissipation

act locally, and gravity is an inherently non-local force. However, in the case that the

GI results in the disc being near corotation (the pattern speed of the spiral structure

matches the local rotation rate, ΩP = Ω), Balbus & Papaloizou (1999) demonstrated
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that an α-viscosity treatment is applicable to gravitational torques.

A number of numerical simulations have since been carried out to test in what

circumstances this condition is met. The locality of GI-induced transport shows a

dependence on the thermodynamic treatment. Lodato & Rice (2004) and Lodato &

Rice (2005), using β-prescription cooling, found that there was no significant global

transport for both low (less than 0.1) and high (up to 1.0) disc-to-star mass ratios.

In contrast, Mej́ıa et al. (2005), using constant tcool cooling, found that there was

global transport, and that an α-viscosity underestimated the observed mass-transport

rate by an order of magnitude. Boley et al. (2006), using radiative hydrodynamics,

found that there was a limited range, near corotation, in which mass transport was

well-characterized by an α-viscosity, in agreement with Balbus & Papaloizou (1999).

Lodato & Rice (2004) argued that discs with aspect ratios (H/R, where H is the scale

height) of H/R < 0.1 should be well characterized by an α-viscosity. For Q ≈ 1 discs,

H/R ∝ Mdisc/M⋆. One would consequently expect more massive discs (larger disc-to-

star mass ratio) to have more global transport and to be less well characterized by

an α-viscosity. Cossins et al. (2009), using β-prescription cooling, and Forgan & Rice

(2011), using radiative transfer, computed a non-local transport fraction, and found

that it increased with the disc-to-star mass ratio. Forgan & Rice (2011) found that

only light discs (Mdisc/M⋆ < 0.5) with small aspect-ratios (H/R < 0.1) were well-

characterized by an α-viscosity. From these results, it appears reasonable to model

GI-driven transport using α-viscosity in the case of low-mass discs. High-mass discs

can be treated using α-viscosity only in regions near corotation.

Gravitationally unstable discs often exhibit multiple spiral modes. Laughlin et al.

(1997, 1998) examined the global stability of a polytropic disc to non-axisymmetric

modes using analytic calculations and 3D hydrodynamics simulations. From both

approaches, the authors found that the disc was initially unstable to the growth of

a two-armed spiral mode. However, in the non-linear phase of growth, they found

that there was significant coupling between spiral modes. This coupling naturally led

to the growth of other spiral modes, m = 0 and 4, from the initial m = 2 mode.

Non-linear coupling results in the growth of multiple modes.

Gravitational torques are important in driving the evolution of unstable discs
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through mass-transport. However, our primary interest in this thesis is the formation

of gas-giants, so we now turn to the question of when protostellar discs fragment.

Numerical simulations have shown that discs with regions of Q . 1.5 develop spi-

ral structure; in addition, simulations have shown that whether such gravitationally

unstable discs fragment depends on the thermodynamics of the disc.

Simulations employing locally-isothermal equations of state (Boss 1997; Mayer

et al. 2002, 2004) have shown that massive discs, with Q < 1.4, fragment into mas-

sive gravitationally bound clumps, potential precursors to gas-giant planets, with

masses in the range of Saturn to super-Jupiter. These clumps have been found to be

long-lived, even when a switch to an adiabatic equation of state is employed once a

critical density is reached. If cooling is efficient, as it is in the locally-isothermal ap-

proximation, then GI is an effective mechanism for forming gas-giants quickly, within

a few hundred years inside of 20 AU. However, if cooling is inefficient, then fragmen-

tation is unlikely to occur. Simulations employing an adiabatic equation of state, in

which there is shock heating but no cooling, show that such discs do not fragment,

even when they are initially very unstable, with regions of Q ≈ 0.8 (Pickett et al.

2000; Mayer et al. 2004).

Gammie (2001) investigated the thermodynamic conditions required for fragmen-

tation using 2D shearing-box simulations of a patch of a gravitationally unstable

disc. Rather than attempting to include realistic radiative cooling, he simplified the

problem by including cooling via the β-prescription, equation (2.11). He then car-

ried out a series of numerical experiments in which he varied the cooling rate, β,

and established a cooling criterion for fragmentation: for local cooling faster than a

critical cooling rate, β = βcrit < 3, fragmentation was observed. In the cases where

the cooling rate was too long for fragmentation, the disc settled into a self-regulated

state, termed “gravitoturblence”, in which heating from GI balanced the prescribed

cooling and maintained Q ≈ 1. We note that the specific value of the critical cooling

rate determined by Gammie (2001) is applicable only to the case of the 2D power-law

equation of state used in that work.

The idea of a critical cooling rate for fragmentation was confirmed using global

3D SPH simulations (Rice et al. 2005), as well as global 3D grid-based simulations
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(Mej́ıa et al. 2005). The physical explanation put forth for the existence of a critical

cooling time has relied on the use of an α-viscosity model to describe GI in the disc

(Gammie 2001; Rice et al. 2003). In this model, there is an equilibrium state in which

the viscous heating is balanced by the prescribed cooling, For a given cooling rate,

the necessary viscosity is determined by

α =
1

9/4γ2D (γ2D − 1)β
. (2.12)

where γ2D is the two-dimensional adiabatic index, which can be mapped to the 3-D

adiabatic index, γ. If there is a maximum viscous stress, αcrit, that GI can develop

(Rice et al. 2005), then there is a corresponding maximum heating rate. If that

heating rate is not sufficient to balance the prescribed cooling, then no equilibrium is

attainable, and the disc fragments.

Rice et al. (2005) found that the critical cooling rate is a function of the adiabatic

index of the gas, but that this is consistent with a maximum stress of αcrit ≈ 0.06.

However, recent work has suggested that a single value of βcrit may not exist, and

that it may depend on the properties of the disc (Meru & Bate 2011), or the thermal

history of the gas (Clarke et al. 2007). This picture is also complicated by the fact

that 3D simulations used to determine βcrit appear not to have converged numerically

(Meru & Bate 2010b). Finally, recent 2D shearing box simulations (Paardekooper

2012) suggest that fragmentation is possible for longer cooling times, but that it is a

stochastic process. Fragmentation is possible for β > βcrit, but may just be less likely,

requiring long-integration times for the necessary local conditions to be satisfied.

In Chapter 4, we discuss the issues regarding the use of a critical cooling time in

more detail. In addition, we present a more detailed physical framework in which to

understand the role that cooling plays in fragmentation; in fact, this framework allows

for the direct calculation of the critical cooling time. In the current discussion, we note

that cooling plays a fundamental role in determining whether gravitationally unstable

discs fragment: discs must cool quickly for fragmentation to occur. The critical

cooling time is useful in examining the physical conditions necessary for realistic

protostellar discs to fragment. One should, however, keep in mind that the cooling
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rate required for fragmentation is likely not as simple as a single value for βcrit, and

that there is uncertainty regarding the particular numerical value of the cooling rate

required for fragmentation.

Figure 2.2: The disc properties required for fragmentation: the minimum temperature
and surface density required to satisfy the Toomre Q and cooling criteria, and the
associated optical depth. The requirements are given for the radiative cooling time of
Rafikov (2005) (black line), the optically thick perturbative radiative cooling time of
Nero & Bjorkman (2009) (blue, dot-dashed line), and the optically thick perturbative
radiative cooling time of Kratter et al. (2010) (red, dashed line). The lower-limit,
when the midplane temperature is equal to the photosphere temperature is given by
the black, dashed line. The horizontal line in the temperature (opacity) plot denotes
T = 10 K (τ = 1). The conversion from rotation rate to radius is made for a central
star of 1 M⊙.

There are then two criteria that must be satisfied for disc fragmentation to occur:

the disc must be gravitationally unstable (Q < Qmin, the Toomre criterion) and cool

quickly (tcoolΩ < βcrit, the cooling criterion). These two criteria have been combined
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to analytically determine the necessary physical conditions in a disc that are required

for fragmentation (Rafikov 2005, 2007; Nero & Bjorkman 2009; Kratter et al. 2010).

Discs cool primarily through radiative cooling, for which the cooling time is

(Rafikov 2005)

tcool ≈
Σc2

s

γ − 1

τ + 1/τ

2σT 4
, (2.13)

where the optical depth is τ ≈ κΣ/2, the opacity is κ, and the midplane temperature is

T (see Rafikov 2007 for a consideration of convection). A short cooling time requires a

high temperature; however, if fragmentation is to occur, this high temperature must

be combined with a correspondingly large surface density in order to keep Q near

unity. Rafikov (2005), using the above radiative cooling, combined the requirements

of the Q and the cooling criteria to determine the minimum temperature and surface

density, as a function of rotation rate, that a disc must possess in order to fragment.

Figure 2.2 shows the results of the Rafikov (2005) analysis for opacities from

D’Alessio et al. (1997). A central star of 1 M⊙ is used to convert between rotation

rate and radius. In addition to the cooling time from equation (2.13), we also plot the

analysis for the optically thick perturbative cooling time of Nero & Bjorkman (2009),

tcool ≈
Σc2

s

γ − 1

3τ

64σT 4
, (2.14)

and the optically thick perturbative cooling time, for an irradiated disc, of Kratter

et al. (2010),

tcool ≈
γΣc2

s

γ − 1

3τ

32σT 4
. (2.15)

As pointed out by Rafikov (2005), the minimum temperatures and surface densities

required for fragmentation are unlikely to be achieved in the inner regions of realistic

protostellar discs, when observations of discs are considered. Inside of roughly 20 AU,

the necessary temperatures are even above the sublimation temperature of dust (1200

K), and the necessary surface density is greater than 103 g cm−2. At larger radii,

the requirements for fragmentation are less stringent, and are more likely satisfied

in realistic discs. At 100 AU, the necessary temperature is roughly 20 K, and the

necessary surface density is roughly 50 g cm−2.
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The conditions necessary for fragmentation have also been considered through the

use of 3D radiation hydrodynamics (RHD) simulations. Gravitationally unstable discs

are generally massive enough to be optically thick, when Rosseland mean opacities

from dust grains are considered. Consequently, the diffusion approximation is an ac-

curate and, given the constraints of computing power, computationally viable method

of incorporating radiative transport into 3D dynamic simulations of protostellar discs.

In addition to diffusive transport, simulations must also incorporate radiative bound-

ary conditions to model the cooling of the disc from its photosphere (and heating

from irradiation). Because the cooling rate ultimately determines whether fragmen-

tation takes place, an accurate boundary condition is fundamentally important in

determining fragmentation.

Initial 3D RHD simulations of GI in the inner regions (within 40 AU) of proto-

stellar discs gave conflicting results regarding the viability of fragmentation. Some

results (Boss 2001; Mayer et al. 2007) found fragmentation in their simulations, while

others (Mej́ıa et al. 2005; Boley et al. 2007) found that the cooling times in this region

were too long to satisfy the cooling criterion and allow fragmentation, in agreement

with the above analytic treatment. Meru & Bate (2010a) found fragmentation in the

inner disc only under extreme conditions, such as an initial Q = 0.5, or reduction in

the opacity by a factor of 100.

Efforts have been made to determine the cause of the conflicting results from simu-

lation, and it appears that the cause is the differing photosphere boundary treatments

used. Cai et al. (2010) carried out a simulation in an attempt to replicate the results

of Boss (2001), who found fragmentation. Cai et al. (2010) used the same initial

conditions, and attempted to replicate the input physics; however, they did not find

fragmentation, as Boss (2001) had. Since the only noticeable difference between the

simulations was the choice of boundary conditions, Cai et al. (2010) concluded that

this was the cause of the disagreement.

In Chapter 3 we present results from two 3D RHD simulations that indicate that

fragmentation is unlikely in the inner regions of protostellar discs because the cooling

times are too long to satisfy the cooling criterion. One simulation is of a disc similar to

that used by Mej́ıa et al. (2005) and Boley et al. (2007); we agree with their result that
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fragmentation does not occur. In addition, we simulate one of the discs that Mayer

et al. (2007) found to fragment; in this case, we disagree with the author’s result:

we find that fragmentation does not occur. Importantly, we demonstrate that their

choice of photosphere boundary condition was flawed, as it overpredicts the amount

of cooling in the disc. In fact, it overcools by the necessary amount to satisfy the

cooling criterion and permit fragmentation. We demonstrate that our photosphere

boundary condition yields robust cooling rates. Given the large mass of the disc (0.34

M⊙ within 30 AU), this is a strong indication that the conditions in the inner disc

are not suitable for fragmentation.

However, the analytic work presented in Figure 2.2 (Rafikov 2005, 2007; Nero

& Bjorkman 2009; Kratter et al. 2010) does indicate that fragmentation via GI is

viable in the outer regions of protostellar discs, near 100 AU. At these large radii, the

cooling criterion is satisfied at fairly low temperatures and surface densities. At these

large radii, heating through irradiation from the central star dominates over viscous

accretion, and maintains high enough temperatures to satisfy the cooling criterion

(Kratter et al. 2010). If a disc is massive enough to have Q ≈ 1, then fragmentation

is likely. This expectation has been confirmed by a number of RHD simulations

(Boley 2009; Vorobyov & Basu 2010b; Stamatellos et al. 2011; Boss 2011; as well as

the simulations presented in Chapter 4.).

2.4.2 The products of fragmentation at large radii

From both an analytical and a numerical simulation standpoint, the conditions for

fragmentation can be satisfied in the outer regions of realistic protostellar discs (out-

side of roughly 100 AU). However, the end-result of the fragmentation process is less

clear, and is a topic of current research. Current questions include the survival of the

fragments, their masses, and their final orbital radii.

A number of mechanisms can disrupt a newly formed gas-giant, including tidal

disruption from the central star, collisions with other fragments, and collisions with

spiral arms. These disruption mechanisms were considered by Kratter & Murray-Clay

(2011). If a fragment is to survive tidal disruption, it must collapse to a radius equal
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to or smaller than a pressure-modified Hill radius (the standard Hill radius, equation

(2.4), only considers shear). The contraction time of a clump depends on its cooling

rate: faster cooling results in a quicker collapse and a higher likelihood for survival.

If the gas is described as being γ = 7/5, however, even an adiabatic collapse leads

to contraction within pressure-modified Hill radius. The survival of fragments during

collisions with other fragments, or with spiral arms also depends on the ability of

fragments to cool quickly, contract, and become more gravitationally bound.

In addition to efficient cooling, the internal temperature of the fragment also plays

a key role in the rate of contraction. Once the temperature of the fragment becomes

larger than the dissociation temperature of molecular hydrogen, then thermal energy

is diverted into breaking molecular bonds, rather than providing pressure support,

and a rapid collapse from AU-scales to a few RJup ensues. This is analagous to the

collapse from first core to stellar core during star formation. For initial fragment

masses, the timescale can be 104−105 years (Boley et al. 2010). However, when grain

growth and sedimentation in the fragment are considered, the timescale could be as

short as 103 years (Helled & Bodenheimer 2011). However, no simulation including

all relevant effects, including accretion of gas and planetesimals, rotation, radiative

cooling, and grain evolution, has yet been performed, so the timescale for fragment

contraction remains uncertain.

From simulations, the initial masses of fragments are expected to be in the gas-

giant planet regime (a few MJup, Boley et al. 2010; and Chapter 4). Estimates of the

fragment mass that use the Toomre length, the most unstable wavelength from the

Toomre analysis, equation (2.9), grossly overestimate the observed masses of initial

fragments in simulations. However, the subsequent growth of fragments may push

the mass well into the brown dwarf regime, since the expected isolation, and gap-

forming masses are much greater than the brown dwarf limit (Kratter et al. 2010).

Mechanisms for limiting the mass-growth of fragments, such as the gap overlap of

multiple fragments, or the dispersal of the disc require further study.

As is the case with planets formed via the core accretion scenario, gas-giants

formed through GI are unlikely to remain at a single radius due to interaction with

the gas disc. RHD simulations of gas-giant formation (Boley et al. 2010; Vorobyov &
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Basu 2010b; and Chapter 4) show that fragments can migrate inwards from 100 AU

on timescales of 104 years. More detailed studies of migration, which insert masses

into gravitationally unstable discs and follow the evolution show a trend of similarly

rapid inward migration, with some stochastic outward migration (Michael et al. 2011;

Baruteau et al. 2011). The overall rate is consistent with Type I migration. The final

outcome of this migration may be the destruction of the fragment via infall into the

central star (Vorobyov & Basu 2010b), or through tidal disruption (Boley et al. 2010;

Nayakshin 2010). Since the Hill radius, equation (2.4), decreases linearly with semi-

major axis, an extended gas-giant migrating inward faster than it is contracting will

be tidally disrupted by the central star. Fragments may also survive: the simulation

of Michael et al. (2011) showed a 1 MJup gas-giant’s migration was halted at 17 AU,

at the inner Lindblad resonance of the dominant spiral mode. In systems with strong

photoevapoation, the masses of surviving fragments may be substantially reduced

by mass-loss from irradiation (Boss et al. 2002; Nayakshin 2010). This may change

the mass of fragments from the regime of brown dwarfs to that of gas-giant planets.

As with migration in the case of planets formed via core accretion, the migration of

gas-giants formed through GI requires more study.

2.5 Observations of gas-giants

2.5.1 Gas-giant companions in the inner regions

Only recently, with the growing number of observations of planets outside of our

own solar system, have we had significant statistical constraints for theories of planet

formation. The first planet around another solar type star, 51 Peg b, was discovered

less than twenty years ago (Mayor & Queloz 1995). The Jupiter-mass planet was

detected using the radial velocity technique, in which the doppler-shift of a stellar

spectra, due to the gravitational pull of an orbiting planet, is observed. Since 1995,

a number of radial velocity surveys, such as CORALIE and HARPS, have begun,

resulting in the detection of over 700 planets.

The other prevailing method of detecting extrasolar planets is the transit method,
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in which the dimming of a star’s brightness, caused by the transit of an orbiting

planet in front of the host star, is observed. This method has been used to observe

over 230 confirmed extrasolar planets. However, this number will grow quickly, as the

Kepler space telescope has detected over 2300 extrasolar planet-candidates in only its

first 16 months (Batalha et al. 2012). These candidates must be confirmed, but the

false-positive fraction is expected to be low (Lissauer et al. 2012).

Figure 2.3: The current observational mass-radius relation for the 568 confirmed gas-
giant companions. Companions discovered via the radial velocity technique are given
by the black triangles, those discovered via the microlensing technique are given by
the magenta triangles, those discovered via the transit technique are given by the blue
crosses, and those discovered via direct imaging are given by the red asterisks. The
vertical dashed line is a reference for r=60 AU, a rough estimate for the innermost
region where GI can be expected to form a gas-giant around a sun-like star, while
the horizontal dashed line is a reference for the deuterium burning limit of 13 MJup,
above which a companion is considered to be a brown dwarf rather than a planet.
The brown dwarf desert can be observed by the lack of objects in the upper left of
the figure. The data is taken from www.exoplanet.hanno-rein.de/.

We focus on the observational constraints placed on the formation of gas-giant
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companions (withM > 0.3 MJup, the mass of Saturn). Of the 763 confirmed extrasolar

planets, 568 are gas-giants under this definition. The observed mass-radius relation

is shown, for all detection techniques, in Figure 2.3. As can be seen, both the radial

velocity method and the transit method are currently suited to detecting planets only

on relatively short orbits, since the maximum orbit of a detectable planet is effectively

limited by the duration of the survey.

There are a number of observational results for gas-giants that must be explained

by a successful theory of the planet formation process, such as the orbital distribution

of gas-giants, or mass-period relation. Hot Jupiters are gas-giants that orbit very

close to their host star (. 0.1 AU), and include the first extrasolar planet, 51 Peg b.

Observations show that such planets are rare: roughly 1% or fewer stars are host to

hot Jupiters (Howard et al. 2010, 2011; Mayor et al. 2011). There also appears to be

a maximum-mass for gas-giants that is a function of radius, such there is a lack of

massive gas-giants (greater than 2 MJup) on short (less than 100d, roughly 0.4 AU)

orbits (Udry & Santos 2007; Mayor et al. 2011), while larger gas-giants exist at larger

radii. In addition, the frequency of gas-giants is also an increasing function of radius

(Mayor et al. 2011).

The overall occurrence of gas-giants with orbits less than 10 years was found

to be roughly 10% from the published exoplanet data (Mayor et al. 2011). More

specifically, the occurrence of gas-giants has been shown to be a decreasing function of

metallicity (the mass-metallicity relation, Fischer & Valenti 2005; Mayor et al. 2011).

Observations also show that the frequency of gas-giants is an increasing function of

stellar-mass (Marcy et al. 2008).

There have been numerous studies pointing to the existence of a “brown dwarf

desert” for companions with orbits less than 10 years (4.6 AU) of solar-type stars

(Halbwachs et al. 2000, 2003; Udry et al. 2007; Sahlmann et al. 2011); that is, there

appears to be a lack of companions that have masses in the range of 13-75 MJup, as

compared to planetary-mass or stellar-mass companions. This has been suggested

as evidence that stellar and planetary mass companions have different formation

mechanisms.



40 P. D. Rogers – Ph.D. Thesis

2.5.2 Accordance with models

Given the strong constraints from the Toomre and cooling criteria, Figure 2.2, and the

growing consensus from 3D RHD simulations, in situ formation of gas-giants in the

inner regions (within roughly 40 AU) via GI is unlikely. In this regards, core accretion

is currently the most probable mechanism for the formation of the observed gas-giant

population. However, since fragmentation via GI is expected at large radii (roughly

100 AU), and rapid inwards migration is observed in simulations, GI may play a role in

the population of planets and gas-giants in the inner regions. The processing of solids

in the inside of gas-giants formed via GI at large radii, followed by inwards migration

and tidal disruption has been suggested as a formation scenario for rocky cores in the

inner regions (Boley et al. 2010; Nayakshin 2010). These may subsequently re-accrete

gas from the disc and once again form gas-giants. The plausibility of this scenario,

and the impact on the inner region by fragmentation of the outer region, requires

further investigation.

The formation of gas-giants via core accretion is able to explain a number of the

observed features in the current exoplanet observations. Population synthesis codes,

which employ simplified models of core accretion and migration to create a large

number of planetary systems over a range of the possible parameter space (forma-

tion location, disc lifetimes, disc mass, metallicity, etc), have been useful in comparing

the core accretion mechanism to the observed mass-period relation, Figure 2.3. These

models (Ida & Lin 2004a,b, 2005, 2008; Mordasini et al. 2009, 2012) have been success-

ful in reproducing a number of the observed trends. The decrease of gas-giant mass

with decreasing semi-major axis has been explained based on the mass-dependence

of Type II migration. The mass-metallicity relation has been explained based on the

increased surface density of solids, and the resulting shorter formation time of cores

that are able undergo runaway gas accretion.

An additional piece of evidence in support of core accretion is the lack of observed

planets in the mass range 15-30 M⊕ (Mayor et al. 2011). Such a gap was predicted

by population synthesis (Mordasini et al. 2009), based on the ability of such planets

to rapidly accrete gas and become more massive.
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There remain, however, some key issues with population synthesis models, such

as the inclusion of Type I migration, which must be reduced from the analytic esti-

mates by orders of magnitude in order to reproduce observations (Ida & Lin 2008).

Improved treatments of Type I migration, based on recent simulations with more

detailed physics are only beginning to be included (Mordasini et al. 2011).

2.5.3 Gas-giant companions at large radii

Radial velocity and transit surveys are only capable of finding gas-giants relatively

close to the host star. Nominally, the duration of a given survey determines the

maximum radius at which a planet can be detected, using the transit or radial velocity

methods. However, the statistical analysis of radial velocity data in multi-planet

systems can lead to the detection of planets at larger radii. Currently, the maximum

radius at which a planet has already been detected using this method is 11.6 AU

(Uma 47: Gregory & Fischer 2010).

The direct detection of the light from a gas-giant companion (direct imaging) is

difficult due to the high contrast between the host star and the much cooler compan-

ion. Direct imaging favours the detection of gas-giant companions at large radii from

the host star. The first detection of such a companion came in 2004, with the detec-

tion of a 4 MJup companion to the 25 MJup brown dwarf 2MASSWJ 1207334-393254

(Chauvin et al. 2004). In addition to favouring the detection of gas-giant companions

on wide orbits, direct detection also favours the detection of relatively young (Myr)

gas-giants, because they are still contracting and are therefore brighter than their

older (Gyr) counterparts. Using photometry, and often including spectroscopy, the

masses of gas-giants detected through direct imaging are determined by comparing

the luminosity of the companion and its age, determined from the host star, to evo-

lution models such as Chabrier et al. (2000). Since there are significant uncertainties

regarding the initial formation of the gas-giants, the masses are somewhat uncertain

(Marois et al. 2008).

There have been a number of subsequent detections of gas-giant companions via

direct imaging, with 27 shown in Figure 2.3. These detections include companions at
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large radii, such as HR8799 b (7 MJup at 68 AU, Marois et al. 2008), GQ Lup b (21.5

MJup at 103 AU, Neuhäuser et al. 2005), as well as companions at extremely large

radii, such as HIP 75830 (23 MJup at 710 AU, Lafrenière et al. 2011), and HN Peg b (16

MJup at 795 AU, Luhman et al. 2007). The direct imaging of the four gas-giants of (9,

10, 10, and 7) MJup in the HR8799 system (Marois et al. 2008, 2010) is particularly

interesting, since the planets cover a large range in radii (14, 27, 43, and 68) AU;

this includes the inner region, which may favour formation via core accretion, as well

as the outer region, which may favour formation via GI. Detection of spectroscopic

signatures of accretion, such as Paβ, can point to the presence of a circumplanetary

disc, such as in observations of GSC 06214-00210 b (Bowler et al. 2011). Such a disc

may point to the lack of previous dynamical interactions with other bodies, thereby

ruling out an origin via scattering from the inner disc.

Direct imaging surveys are beginning to provide data on the statistics of substellar

companions on large orbits. Janson et al. (2011, 2012) surveyed 15 stars in the spectral

class B2-A0, and 85 stars in the spectral class FGKM. No companions were observed

and the authors used a model of formation via GI, along with their observational

sensitivity, to place upper-limits on the number of gas-giants that can be formed

through GI. They found that the limit is less than 30% for B2-A0 host stars, and

less than 8% for FGKM stars. We caution that the uncertainty in the final mass of

companions formed through GI makes the authors’ estimates of a detection threshold

uncertain. In addition, they did not take into account radial migration of the planets.

Therefore, the upper-limits on formation via GI are expected to be too low. However,

such observational surveys do show that gas-giant companions more massive than

roughly 10 MJup are expected to be rare beyond about 50 AU. Lafrenière et al. (2007)

placed an upper limit of 2% on the number of stars with at least one brown dwarf

in the range 50-250 AU, with no assumptions regarding the mass or semi-major axis

distribution. More sensitive surveys, that are able to probe down to the limits of the

gas-giant mass regime, will be able to determine how common gas-giant companions

at large radii are, and place constraints on their formation.

Gravitational microlensing is an additional technique that can detect gas-giants

that are on large orbits. Surveys such as the Microlensing Observations in Astro-
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physics (MOA) and the Optical Gravitational Lensing Experiment (OGLE) observe

millions of stars in order to detect microlensing events, in which the brightness of a

background star briefly increases due to gravitational lensing from a foreground body.

For a large number of events, the timing of the lensing events can be used to deter-

mine the mass function of the gravitational lens population. Using this technique,

Sumi et al. (2011) found that there is a large population of Jupiter-mass objects at

radii larger than 10 AU from any host-star; in fact, there are roughly 2 objects per

main-sequence star in the range 0.08-1 M⊙.

This work suggests that there is a very large population of gas-giant planets that

are either free-floating, or are on large (greater than 10 AU) orbits around their host

star. More sensitive direct imaging surveys will determine the fraction of these planets

that are companions on large orbits, but those already completed (Lafrenière et al.

2007; Janson et al. 2011, 2012) indicate that most of the population is free-floating.

The turnover in the initial mass function (Chabrier 2003) means that free-floating

planets are unlikely to be produced in molecular clouds in the same way as stars. The

most common explanation for free-floating planets has been that they are the result

of planet-planet scattering in multiple planet systems. However, Veras & Raymond

(2012), using n-body simulations to examine ejection frequency as well as obser-

vational data on the frequency and number of gas-giants around stars, found that

scattering is unable to explain the large number of free-floating planets indicated

by the microlensing observations. The authors note that scattering may explain

the free-floating population if the frequency of Sumi et al. (2011) is over-estimated.

Given that the estimate is based on only ten events, this appears plausible. If, how-

ever, the estimate is accurate, and there are nearly two free-floating Jupiter-mass

per main-sequence star, then additional mechanisms will be required. These could

include ejections from multiple-star systems, perturbations from the stellar cluster

environment, and ejections promoted by post-main-sequence mass loss (see Veras &

Raymond 2012 and references therein).
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2.5.4 Accordance with models

Core accretion cannot be responsible for the in situ formation of the observed popu-

lation of gas-giants beyond roughly 40 AU (Ida & Lin 2004a; Dodson-Robinson et al.

2009; Rafikov 2011), since the timescales to build cores massive enough for runaway

gas accretion exceed the observed lifetimes of protostellar discs. In addition, planet-

planet scattering is an unlikely explanation for multiple systems such as HR 8799

(Dodson-Robinson et al. 2009). More sensitive direct imaging surveys will help place

constraints on the fraction of gas-giants at large radii that may have been scattered

from the inner disc through the detection of any trend of frequency with the age of the

system (Dodson-Robinson et al. 2009). Other mechanisms for transferring gas-giants

formed through core accretion in the inner regions to the outer regions, such as the

resonant scattering of Crida et al. (2009), require more attention.

In contrast, analytic considerations and numerical simulations agree that in situ

formation of gas-giants is likely at large radii (roughly 100 AU and larger). Con-

sequently, formation via GI appears the more natural explanation for gas-giants on

large orbits. However, more theoretical work must be done in order to explain the ob-

served masses, and the lack of migration to the inner disc. Vorobyov & Basu (2010a),

for example, found from their simulations that most gas-giants formed in the outer

region migrate inwards and accrete onto the star, but that there is occasionally a

surviving population of gas-giants at large radii. It may be that keeping gas-giants

on large orbits requires special conditions and may be rare. Better direct imaging

observations, with detection limits to the bottom of the gas-giant mass regime will

provide better constraints on formation via GI.

2.6 Conclusions

This chapter has been a review, from both a theoretical and observational standpoint,

of the current understanding of gas-giant formation in protostellar discs. The physical

conditions of the inner regions of discs are favourable to the in situ formation via core

accretion, but not via GI, whereas the reverse is true in the outer regions. This has
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led to the idea that there are two modes of gas-giant formation (Boley 2009) at work

in protostellar discs: core accretion in the inner regions and GI in the outer regions.

More research is necessary to consider the possibility, and consequences, of migration

from one region to another.

In the next two chapters, we present our own research that has added to the

understanding of the conditions necessary for fragmentation via GI in protostellar

discs. This research has used carefully-tested 3D radiation hydrodynamics, with a

robust photosphere boundary condition, to demonstrate that fragmentation does not

occur in the inner regions of protostellar discs because cooling is not fast enough,

whereas fragmentation can take place in the outer regions. In addition, we have

developed a more detailed physical framework to explain the link between cooling

and fragmentation. This physical model agrees well with the outcomes of our 3D

RHD simulations, and can also be used to explain the cooling criterion and calculate

the critical cooling time. This research has helped inform the conclusions put forward

in this review.
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Chapter 3
The importance of photosphere cooling in

simulations of gravitational instability in

the inner regions of protostellar discs

3.1 Introduction

The stability of self-gravitating discs can be characterized by the Toomre Q parameter

(Toomre 1964):

Q =
csκe

πGΣ
, (3.1)

where cs is the sound-speed, κe is the epicyclic frequency (approximately the rotation

rate, Ω for Keplerian discs), G is the gravitational constant, and Σ is the surface

density. Low values of Q ≈ 1, as would be found in a massive, cold disc, lead to

gravitational instability (GI). Numerical work (Boss (1997); Mayer et al. (2004)) has

shown that protostellar discs can be susceptible to GI and as a result can fragment,

producing bound clumps that are potential precursors to Jovian, or larger extrasolar,

planets.

However, these early works relied on simplified equations of state (either isother-

mal or isothermal with a switch to adiabatic during instability). Further numerical

studies have demonstrated that fragmentation of these discs is dependent on the cool-

59
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ing timescale of the gas. In general, unstable discs fragment if the cooling times are

short:

tcoolΩ < η, (3.2)

where η = 3 for γ = 2 gas (Gammie 2001), η = 7 for γ = 5/3, and η = 13 for

γ = 7/5 (Rice, Lodato, & Armitage 2005). (See Meru & Bate (2010b) for recent

work concerning the critical values of cooling times.)

In order to accurately model energy transport and cooling, it is necessary to

include radiative transfer in the detailed study of the stability of protostellar discs.

This has been incorporated in a number of studies investigating the likelihood of

fragmentation in the inner tens of AU of discs. However, there remains open debate

as to the viability of planet formation via GI in this regime, since these studies have

shown different outcomes (Boss (2007) and Mayer et al. (2007) observe fragmentation,

while Cai et al. (2006) and Boley et al. (2007a) do not). Meru & Bate (2010a) observe

fragmentation in the inner regions of protostellar discs; however, their discs begin in

a very unstable state (with Toomre Q < 1 initially).

For studies of giant planet formation via GI, accurate photosphere boundary treat-

ments are of fundamental importance since the photosphere controls the rate at which

the disc is able to cool, which ultimately determines whether or not the disc is able

to fragment if gravitationally unstable. Indeed, Cai et al. (2010) recently carried out

a simulation in an attempt to compare with the results of Boss (2007) (which show

fragmentation). The authors attempted to remove any differences between this simu-

lation and the work of Boss (2007), using the same initial conditions and attempting

to replicate the input physics. However, in contrast to the results of Boss (2007),

the authors did not observe fragmentation, and concluded that “because everything

else is the same, the disagreement must be due to differences in the treatment of the

optically thin regions and the photospheric BC’s.”

We demonstrate that previous photosphere boundary conditions using edge-particles

have over-estimated cooling-rates of discs by a large margin and can suffer systematic

effects due to dynamics. We present a new photosphere treatment using edge-particles

that is able to accurately determine photosphere areas, even for dynamic systems. The
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method is shown to be able to satisfy the relaxation test proposed by Boley et al.

(2007a); this is the first time that this important test case has been performed with

SPH.

We use this new photosphere treatment, coupled to a new implementation of

RT in the flux-limited diffusion (FLD) approximation in the TreeSPH code Gasoline

(Wadsley, Stadel, & Quinn 2004), to study the viability of fragmentation via GI as

a planet formation mechanism in the inner tens of AU of protostellar discs. We find

that discs that are unstable in this regime do not fragment because they cannot cool

fast enough.

Of particular importance, we rerun a simulation of a disc of mean molecular

weight µ = 2.7 that was observed to fragment in previous work (Mayer et al. 2007).

In contrast to that result, we find that this disc does not fragment, despite allowing

the disc-mass to increase to nearly three times the value needed for fragmentation as

determined by Mayer et al. (2007). With our more accurate treatment of photosphere

cooling, we observe that the cooling time is far too long to allow fragmentation. This

result emphasizes the importance of accurate photosphere cooling treatments and the

difficulty of forming giant planets through fragmentation in the inner regions of discs.

The structure of the paper is as follows: in §3.2 we outline our new implementation

of FLD in Gasoline; in §3.3, we present test-cases of this implementation; in §3.4,

we discuss flaws in previous photosphere boundary conditions and describe a new,

more accurate photosphere boundary condition that satisfies the Boley et al. (2007a)

relaxation test; in §3.5, we show the results of simulations of unstable protostellar

discs; and in §3.6, we discuss the implications of this work.

3.2 Methods for FLD

3.2.1 Fundamental equations of radiation hydrodynamics

The equations of radiation hydrodynamics (RHD) to order (v/c) accuracy in a frame

comoving with the fluid, assuming local thermodynamic equilibrium, and integrated

over frequency are given by (see Mihalas & Mihalas (1984) and Turner & Stone



62 P. D. Rogers – Ph.D. Thesis

(2001)):

Dρ

Dt
= −ρ∇ · v, (3.3)

ρ
Dv

Dt
= −∇p +

1

c
χFρF, (3.4)

ρ
D

Dt

(

E

ρ

)

= −∇ · F−∇v : P+ 4πκPρB − cκEρE, (3.5)

ρ
D

Dt

(

e

ρ

)

= −p∇ · v − 4πκPρB + cκEρE, and (3.6)

ρ

c2
D

Dt

(

F

ρ

)

= −∇ ·P− 1

c
χFρF. (3.7)

The above equations describe mass, momentum, internal gas energy, internal radiation

energy, and radiative flux in terms of the comoving derivative, D
Dt

= ∂
∂t

+ v · ∇. In

the above set of equations, ρ is the gas density, v is the fluid velocity, p is the gas

pressure, E is the radiation energy density, e is the gas internal energy density, F

is the radiative flux, and P is the radiation pressure tensor. Furthermore, c is the

speed of light, κE is the energy mean absorption, κP is the Planck mean absorption,

and χF is the flux mean total opacity (absorption plus scattering). We hereafter take

κE = κP = χF = κR, the Rosseland mean opacity. The integrated Planck function is

B = (σSB/π)T
4
g , and one can relate a radiation temperature to the radiation energy

density through the relation E = 4σSBT
4
r /c, where σSB is the Stefan-Boltzmann

constant.

3.2.2 Flux-limited diffusion

The flux-limited diffusion approximation replaces the equation for the radiative flux

with a simplified version:

F =
cλ

κRρ
∇E. (3.8)

This form of the radiative flux contains λ, a flux-limiter, whose functional form tends

to the correct limit for the flux in optically thick regions ( F → (c/3κRρ)∇E, resulting

in a diffusion term in the radiation energy equation) and enforces causality in optically
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thin regions, where the denominator in the above tends to zero (F → cE).

The flux-limiter smoothly transitions between the two limits and also specifies the

angular dependence of the radiation field (Turner & Stone 2001). In optically thick

regions, flux-limited diffusion is equivalent to using the Eddington approximation

(Pii = 1/3E) and assuming steady-state in the radiation energy equation.

In the FLD framework, the radiation pressure tensor is given by

P = fE, (3.9)

where f is the Eddington tensor:

f = 1/2(1− f)I+ 1/2(3f − 1)n̂n̂, (3.10)

with n̂ = ∇E/|∇E|. The Eddington factor is

f = λ+ λ2R2 (3.11)

where R = |∇E|/(κRρE).

There are a number of flux-limiters in the literature; we choose to use that of

Levermore & Pomraning (1981) in order to consistently compare our test-results to

those of Whitehouse et al. (2005):

λ =
2 +R

6 + 3R +R2
. (3.12)

3.2.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH; Lucy (1977), Gingold & Monaghan (1977))

is a Lagrangian Method of solving the fluid equations that is widely used in astro-

physics (see reviews by Monaghan (1992) and Price (2005)).

The method’s foundation is the interpolation of fluid variables using sample-points

of fixed mass (particles) that move with the fluid velocity. Thus, each particle (i)

calculates a given fluid variable (Ai) using an interpolation (with interpolating, or

smoothing, function W ) of the values of that fluid variable (Aj) from nearby particles
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(j):

Ai =
∑

j

mj
Aj

ρj
Wij (rij, h) , (3.13)

where rij = ri−rj and h is the smoothing length. First derivatives in the SPH formal-

ism are rather straightforward, since most of the quantities in the above equation are

constants (they are particle quantities); the only exception is the smoothing function,

W . Thus, the gradient of a fluid variable is:

(∇A)i =
∑

j

mj
Aj

ρj
∇Wij (rij, h) (3.14)

Second derivatives in SPH are noisy due to the disorder usually present in the particle

distribution. Cleary & Monaghan (1999) showed that an integral approximation of

the second derivative in the conduction equation— of the same form as the second

derivative in the radiation energy equation in FLD— of the form

(∇ (k∇A))i =
∑

j

mj

ρiρj

4kikj
ki + kj

(Ai − Aj)
∇Wij (rij , h)

rij
(3.15)

ensures the continuity of flux.

3.2.4 The implicit FLD energy equations in the SPH formal-

ism

One can rewrite the FLD equations for internal radiation and internal gas energy in

the SPH formalism given the above definitions. In addition, one must decide on a

manner in which to time-integrate the equations.

The most straightforward manner in which to do this is using an explicit time

integration scheme, one in which a fluid variable is updated using a rate-of-change

calculated at the current timestep. The simplest such scheme is forwards-Euler:

An+1
i = An

i +∆t

[

DAi

Dt

]n

; (3.16)

here, the superscript denotes the timestep and ∆t is the timestep.



3.2. METHODS FOR FLD 65

Unfortunately, explicit time-integration has the drawback that in order for the

solution to be numerically stable, there are constraints on the size of the timestep

that can be used. The constraining timesteps for explicitly integrating our equations

of FLD (see Whitehouse & Bate 2004 for the criteria, but the most notable is the

diffusion timestep: ∆t = κρ
cλ
h2 ) can be much smaller than the timestep for hydrody-

namics alone. Consequently, we use an implicit time-integration scheme, in which the

rate-of-change in the fluid variable is calculated at the future timestep∗. The simplest

implicit scheme is backwards-Euler:

An+1
i = An

i +∆t

[

DAi

Dt

]n+1

, (3.17)

which is of first-order accuracy.

It is a straightforward exercise to use the information in this section to write

the FLD equations (3.5) & (3.6) for the radiative and the gas energies in the SPH

formalism using a backwards-Euler time-integration. For each particle,the resulting

equations for the specific radiation energy (ξ = E/ρ) and the specific gas energy

(u = e/ρ) are

fξ,i = ξn+1
i − ξni

−∆t

(

∑

j

mj

ρiρj

∇Wij

rij

[

4kikj
ki + kj

]

c (ρiξi − ρjξj)−Riξi − acκi

[

ρiξi
a

− Tg (ui)
4

]

)n+1

= 0,

(3.18)

∗Additional comment for thesis : in the protostellar disc simulations presented in this thesis, the
diffusion timestep is a factor of 102 to 105 times shorter than the hydrodynamic (Courant) timestep.
As such, an explicit time integration of the equations of FLD is expected to make any simulation
very computationally expensive. We therefore use an implicit method so that we can time-integrate
on the much longer hydrodynamic timestep, significantly reducing the computational expense.
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and

fu,i = un+1
i − un

i

−∆t

(

1

2

∑

j

(Fp(ui) + Fp(uj) + Πij)mjvij · ∇Wij + acκi

[

ρiξi
a

− Tg (ui)
4

]

)n+1

= 0.

(3.19)

Note that the quantity Ri is just the inner product ∇v : f (from ∇v : P in the

radiation energy equation, (3.6)), Πij is the standard SPH viscosity used for capturing

shocks (with the Balsara (1995) switch), and there are two functions of the specific gas

energy: the gas temperature, Tg(u), and the pressure function, Fp(u) = P/ρ2. Our

method does not rely on a specific relation between these functions and the specific

gas energy (such as the linear relation Tg = u/cv, where cv is the heat capacity). Boley

et al. (2007b) made the case that such a linear relation for the gas temperature may

have an unrealistic effect on simulations of protostellar disk stability, in which one

should accurately take into account the rotational and vibrational modes of molecular

hydrogen. In this section, we use the general functions Tg(u) and Fp(u); however, it

should be noted that we have specifically implemented an adiabatic equation of state

(used in the simulation of §3.5.1), as well as the equation of state of Boley et al.

(2007a) (used in the simulation of §3.5.2).

3.2.5 Solving the implicit FLD energy equations

For each timestep in a simulation of a system of n particles, we have a system of 2n

non-linear equations to solve, equations (3.18) & (3.19), with the unknowns being the

specific radiation and specific gas energies of each particles at the future timestep,

ξn+1
i and un+1

i . The other quantities in the implicit energy equations that are expected

to be at the future timestep are related to the positions and velocities of the particles.

These are calculated in the standard manner of the kick-drift-kick integration scheme

used in Gasoline using predictor for the velocity.
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The non-linear method: equations and iterative solution

Our method of solving the system of the 2n implicit energy equations is similar to

that of Whitehouse et al. (2005): a non-linear solution using a basic iterative method.

As per Whitehouse et al. (2005), for each particle we can rewrite the implicit

specific gas energy equation, (3.19), in terms of the specific radiation energy and

substitute the result into the implicit specific radiation energy equations, (3.18). This

results in a single non-linear equation that can be solved for the specific gas energy

(if one assumes, as in Whitehouse et al. (2005) that T = u/cv, the resulting equation

is a quartic).

This equation is of the form:

gi(u
n+1
i ) = AT (un+1

i )4 +BFp(u
n+1
i ) + Cun+1

i +D = 0, (3.20)

with the following definitions (keeping close to Whitehouse et al. (2005)):

A = ∆tΓ (χ− 1) (3.21)

B = −∆t (χ− 1− β)Pd,i (3.22)

C = (χ− 1− β) (3.23)

D = β (ξni +∆tDn,i)− (χ− 1− β) (un
i +∆tPn,i) (3.24)

Γ = acκi (3.25)

β = ∆tcκiρi (3.26)

χ = ∆t (Dd,i − Ri) (3.27)

Dd,i =
∑

j

mj

ρj

∇Wij

rij
c

[

4κiκj

κi + κj

]

(3.28)

Dn,i = −
∑

j

mj

ρi

∇Wij

rij
c

[

4κiκj

κi + κj

]

ξn+1
j (3.29)

Pd,i =
∑

j

1

2
mjvij · ∇Wij (3.30)

Pn,i =
∑

j

1

2
mjvij · ∇Wij

(

Fp(u
n+1
j ) + Πij

)

(3.31)
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vij = vi − vj (3.32)

For each iteration (l) of our solution method we first evaluate the coefficients for the

above combined-energy equation, (3.20), (for each particle) using the values of the

energies from the last (l − 1) iteration. Thus, for each particle, we have an equation

of the form

gi,l(u
n+1
i,l ) = Al−1T (u

n+1
i,l )4 +Bl−1Fp(u

n+1
i,l ) + Cl−1u

n+1
i,l +Dl−1 = 0, (3.33)

which is solved using a Newton-Raphson root-finder. We then compute each parti-

cle’s specific radiation energy using a rearrangement of the implicit specific radiation

energy equation, (3.18):

ξn+1
i,l =

ξni +∆t
(

[

Dξi
Dt

]n
+Dn,i,l−1 + Γl−1T (u

n+1
i )4

)

Cl−1

. (3.34)

Since we update each particles’ energies only after we have calculated new energies

for all particles, we are using Jacobi’s method (this maintains the symmetry in the

coefficients of neighbour-particles).

Convergence is achieved if the change in each specific energy over the iteration is

small compared to the corresponding change over the entire timestep, that is, if

[ |un+1
l − un+1

l−1 |
|un+1

l − un|

]

RMS

< ǫ and

[ |ξn+1
l − ξn+1

l−1 |
|ξn+1

l − ξn|

]

RMS

< ǫ, (3.35)

for which we typically use ǫ = 10−4. If convergence is not achieved, we simply continue

the iterative procedure.

A caveat concerning convergence

The Jacobi iterative method is guaranteed to converge for linear systems, but there

is no such guarantee for non-linear systems. Indeed, in simulations of protostellar

discs using implicit non-linear FLD (such as that in §3.5), we have observed non-

convergent behaviour for a subset of the particles located in the outer region of the
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disc. Individual non-convergent particles have been found to oscillate between two

values for an energy, making convergence impossible.

A simple example of an iterative method showing oscillations between multiple

solutions is the logistic map,

xn+1 = axn (1− xn) , (3.36)

for which there is a single solution for small values of a, but multiple solutions for

a larger than a critical value. We make an analogy between the non-linear Jacobi

method and the logistic map and link the growth factor, a to the relaxation parameter,

ω. Each iteration of the Jacobi method gives an estimate of the specific radiation

energy ξn+1 (for example). We can choose to adjust this estimate by choosing instead

a value:

ξ
′,n+1
i = ξni + ω

(

ξn+1
i − ξni

)

. (3.37)

If ω < 1, then this is known as under-relaxation (Press et al. 2007); if ω > 1, over-

relaxation; and by default, ω = 1.

If non-convergence is detected in the non-linear method for a given time-step, we

decrease the relaxation parameter ω in order to converge to one solution, analogous

to decreasing the growth factor a in the logistic map. Presently, our method for

decreasing the relaxation parameter is purely an empirical one. When a simulation

shows non-convergence, we examine the convergence as a function of iteration number.

We then restart the simulation with a relaxation parameter of

ω = ω0 + (1− ω0) e
−(n−n0)/r, for n > n0 (3.38)

where ω0 is a lower-bound to the relaxation parameter (typically 0.3), n0 is the itera-

tion at which the relaxation parameter deviates from unity (the iteration at which we

observe that convergence is stalled), and r is a iteration-scale over which the under-

relaxation occurs (typically n0). Since non-convergence has been rare in our simula-

tions, and the above method has been robust in preventing repeated non-convergence,

we have not developed a more sophisticated method.
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3.3 Testing the FLD

As pointed out by Boley et al. (2007a), the debate regarding GI’s viability as a planet-

formation mechanism necessitates a thorough testing of RT schemes. Although our

method for FLD is not new, we present results for a number of standard tests here in

order reassure the reader of the accurate treatment of RT in Gasoline. Consequently,

one can be confident in the results of the simulations presented in §3.5.

Most astrophysical problems of interest are inherently 3-D. In addition, known

issues in 1-D SPH, such as wall-heating, are known to be different in 3-D. In shock

problems, it is possible for particles to slip past other particles in 3-D, which is not

the case in 1-D. We therefore perform all of the following, essentially 1-D, tests in 3-D

using periodic boundary conditions∗. We compare to results from a 1-D FLD SPH

code (Whitehouse & Bate (2004), Whitehouse et al. (2005)), a 2-D FLD grid code

(Turner & Stone (2001)), and an adaptive 1-D RT grid code (Sincell et al. (1999)).

3.3.1 Heating and cooling terms

This test, done by Turner & Stone (2001), Whitehouse & Bate (2004), and White-

house et al. (2005), tests (in isolation) the equilibration terms in the gas and radiation

energy equations, (3.18) and (3.19). Two tests are performed, one in which Tg > Tr

initially (the cooling case) and one in which Tg < Tr initially (the heating case). In

both instances, we follow the time-evolution of the gas energy as it moves towards

Tg = Tr. For a stationary gas of constant density in which the radiation energy dom-

inates the gas energy (and hence can be assumed to be constant), the time-evolution

of the gas energy is given by

de

dt
= cκρE − acκ

(

e

ρcv

)4

. (3.39)

The system used is the same as that of Whitehouse & Bate (2004): it is composed

of uniform density, ρ = 10−7 g cm−3, gas with an opacity of κ = 0.4 cm2/g, adiabatic

∗Additional comment for thesis : by performing these tests in 3-D, rather than in 1-D, we avoid the
numerical differences between 1-D and 3-D mentioned above. However, to test the code’s accuracy
in treating the geometric effects of multiple dimensions, it would be ideal to have true 3-D tests.
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index of γ = 5/3, and radiation energy density of E = 1012 erg cm−3. The gas energy

density is initially set to either e = ρu = 102 erg cm−3 (the heating case) or e = 1010

erg cm−3 (the cooling case).

Figure 3.1 shows the results of the implicit non-linear method using a time-step

that is the greater of 10−11 s or 5% of the elapsed time, much larger than the initial

cooling time. The agreement between the analytic result (red, dashed line) and the

results (cooling: cross, heating: diamond) is excellent.

Figure 3.1: Testing the equilibration of the gas temperature with the radiation tem-
perature for the cooling case (Tg > Tr; crosses) and the heating case (Tg < Tr;
diamonds) using the implicit non-linear method with a time-step that is the greater
of 10−11 s or 5% of the elapsed time. The analytic evolution — equation (3.39)— is
given by the red, dashed-line. Only every 10th time-step is plotted.

3.3.2 Propagating radiation fronts in optically-thin media

This test, also done by Turner & Stone (2001), Whitehouse & Bate (2004), and

Whitehouse et al. (2005), tests the effectiveness of the flux-limiter to limit the flux to
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cE in the free-streaming limit. The system is initially at a uniform density ρ = 0.025

g cm−3, and the radiation energy density is E = 10−1 erg cm−3 in the region [0.0,

0.1] cm and E = 10−2 erg cm−3 in the region [0.1, 1.0] cm, with the gas energy in

temperature-equilibrium. In this way, a radiation front is created within the gas.

Using boundary conditions of E = 10−1 erg cm−3 at x = 0.0 and E = 10−2 erg cm−3

at x = 1.0 maintains this front for t > 0.

Figure 3.2 shows the results of this test at t = 10−11 s for the implicit non-linear

method using a variety of time-steps. The initial configuration is given by the solid

line, while the results are given by the symbols. As one can see, the radiation front

is quite diffusive, as seen in Turner & Stone (2001), Whitehouse & Bate (2004), and

Whitehouse et al. (2005); however, its position is consistent with it travelling at the

speed of light— this position is marked by the vertical dashed line.

Using a single timestep of 10−11 s, much larger than the Courant time of ∆t ∼
h/2c ∼ 10−13 s, results in a very diffuse front, as observed by Turner & Stone (2001)

(more diffusive than Whitehouse et al. (2005), potentially due to the lower dimen-

sionality, 1-D, and lower resolution of that work). This illustrates that the method

remains stable for time-steps much larger than the physical time-scale, but can lose

accuracy.

3.3.3 Optically thick (adiabatic) and optically thin (isother-

mal) shocks

This test, done by Whitehouse & Bate (2004) and Whitehouse et al. (2005), demon-

strates the ability of the algorithm to capture the thermodynamic limits of radiative

transport, as well as the transition regime. If a gas is unable to efficiently radiate

away the thermal energy that it receives when it shocks, then it will be well charac-

terized as being adiabatic; in contrast, if the gas is able to completely radiate this

energy away, then it will be well characterized as being isothermal. We can examine

the transition between these regimes simply by varying the opacity of the gas.

The system is set up in the same fashion as Whitehouse & Bate (2004), except

that a slightly larger domain is used: [−2 × 1015, 2 × 1015] cm. The gas is initially
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Figure 3.2: Testing the flux-limiter’s ability to constrain the flux to cE . A radiation
front (initial configuration given by the solid line) moves to the right in an optically-
thin medium, with an expected position after t = 10−11 s denoted by the dashed line.
The results of the implicit non-linear method (particle values averaged over bins) for
various time-steps are given by the symbols (∆t = 10−11 s: diamonds; ∆t = 10−12 s:
triangles; ∆t = 10−13 s: asterisks; ∆t = 10−14 s: crosses).

of uniform density ρ = 10−10 g cm−3, with Tr = Tg = 1500 K, an adiabatic index of

γ = 5/3, and an opacity of one of κ ={4.0× 101, 4.0× 10−1, 4.0× 10−3, 4.0× 10−5}
cm2/g. The region x < 0 has a velocity equal to the sound speed, vx = cs = 3.2× 105

cm/s, in the positive x direction, while the region x > 0 has an equal speed, but

in the negative x direction. This velocity configuration results in two shocks being

created at the origin, one moving in the positive x direction and one moving in the

negative x direction. The boundaries of the problem are implemented using reflective

ghost particles that maintain the initial energies of the gas; these boundaries move

towards the origin at the sound speed.

Figure 3.3 shows the results of this test using the implicit non-linear method.

The left column is of density, while the right is of temperature. The top row has an
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Figure 3.3: Testing the adiabatic and isothermal nature of radiative shocks, as well
as the transition region. The left column is of density, while the right column is of
temperature. The opacity changes with row, with values of (from top to bottom)
κ ={4.0 × 101, 4.0 × 10−1, 4.0 × 10−3, 4.0 × 10−5} cm2/g. The results are given
in black, while the analytic results are given by (for an isothermal shock) the red,
dot-dashed line and (for an adiabatic shock) the blue, dashed line. Only a subset of
the particles is plotted.

opacity of 4.0×101 cm2/g, and moving downwards, the rows are arranged in order of

decreasing opacity. The results are given in black, while the analytic results are given

by (for an isothermal shock) the red, dot-dashed line and (for an adiabatic shock) the

blue, dashed line. As is evident, the shock in the top row (with the largest opacity)

closely follows the result for an adiabatic shock, while that in the bottom row (with

the smallest opacity) closely follows the result for an isothermal shock. As expected,

the shock with κ = 4.0 × 10−3 cm2/g demonstrates the transition region between

these limits. These results are consistent with those of Whitehouse & Bate (2004).

3.3.4 Subcritical and supercritical shocks

A subcritical shock is a radiative-hydrodynamic shock in which photons from the

post-shock gas are unable to appreciably heat the pre-shock gas, resulting in a large

temperature difference between pre- and post- shock gas. In contrast, in a super-

critical shock photons from the post-shock gas are able to efficiently heat the pre-

shock gas so that there is little temperature difference between the pre- and post-
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shock gas.

Analytic approximations have been developed for these cases (Zel’dovich & Raizer

(1967); with a concise overview given in Sincell et al. (1999)), and have been tested

with a 1-D adaptive-grid radiative-hydrodynamics code (Sincell et al. 1999), as well as

with FLD codes (Turner & Stone (2001); Whitehouse & Bate (2004); and Whitehouse

et al. (2005)).

The problem is set up according to Sincell et al. (1999) with a uniform density

ρ = 7.78×1010 g cm−3, mean molecular weight µ = 0.5, adiabatic index γ = 5/3, and

a temperature gradient so that T = 10+75x/(7×1010) K (x is in cm). The radiation

energy is initially in equilibrium with the gas energy. At t = 0 a piston (created

with reflective ghost particles) moves supersonically into the gas at the origin with a

velocity of v = 6× 105 cm/s for the sub-critical shock and v = 1.6× 106 cm/s for the

super-critical shock.

Figure 3.4 shows the results using the implicit non-linear method for the sub-

critical shock at a time t ∼ 10−11 s. The gas temperature is given by the black points,

the radiation temperature by the blue points, and the analytic approximations by

the red, dashed line. The left top panel shows the temperature profile, the right top

panel shows the flux profile, and the bottom panel shows the Eddington factor profile.

The analytic results are scaled to the post-shock temperature, T1, and the peak flux,

F0 = σSBT
4
1 , as in Sincell et al. (1999). The results are in agreement with the analytic

approximations; however, the decline in gas-temperature in the post-shock region is

too steep, and the flux is too large downstream of the shock. This was also observed

by Turner & Stone (2001), who attributed this to an incorrect angular distribution

of the radiation field. The Eddington factor shows a large spike at the shock front,

which is not as visible in Turner & Stone (2001) or Whitehouse et al. (2005). This is

caused by the large gradient in the radiation energy density at this location. As can

be seen from the equation for the Eddington factor (3.11), for large values of ∇E,

the Eddington factor approaches unity.

Figure 3.5 shows the results using the implicit non-linear method for the super-

critical shocks at time t ∼ 10−11 s (see Figure 3.4 for details). As in Sincell et al.

(1999), the analytic approximation uses Tc = 1700 K and τc = −5. Without sufficient
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Figure 3.4: Simulating a subcritical shock using the implicit non-linear method. The
gas temperature is given by the black points, the radiation temperature by the blue
points, and the analytic approximations (Zel’dovich & Raizer 1967) by the red, dashed
line. The top left panel shows the temperature profile, the top right panel shows the
flux profile, and the bottom panel shows the Eddington factor profile. Only a subset
of the particles is plotted.

resolution, we only weakly resolve the optically-thin temperature spike at the shock:

we find a temperature jump of ∼ 130 K (compared to the expected 1600 K), and a

thickness of τ ∼ 0.4 (compared to the expected τ = 0.15). There is a large spike in

the flux profile at the shock, which is likely caused by penetration of SPH particles

(which cannot take place in 1-D tests). This feature can be removed by increasing the

artificial viscosity parameters (we have observed this for values of α = 4 and β = 8);

however, the structure of the shock will be less well resolved if this is done. Conse-

quently, one’s choice of artificial viscosity parameters should be based on balancing
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the errors that will occur in the flux profile and the shock structure.

Figure 3.5: Simulating a supercritical shock using the implicit non-linear method.
See Figure 3.4 for details.

3.4 Boundary cooling

3.4.1 Boundary cooling algorithm

The FLD algorithm described allows for the radiative transport of energy in all

regimes of optical depth; however, in the SPH implementation of FLD, any radia-

tive transport can only take place where there are particles present: no boundary

conditions have as yet been specified.

In simulations of GI in protostellar discs, it is of fundamental importance to

correctly consider the emission of energy from the disc’s photosphere. Ultimately, it
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is this emission that allows the disc to cool, and protostellar disc stability has been

shown to be sensitive to the cooling rate (Gammie 2001).

There are a number of boundary conditions/photosphere treatments that couple to

RT described in the literature. Fixed temperature boundaries are used by Boss (2001,

2007) (for gas below a critical density), as well as Meru & Bate (2010a) (for gas that

is optically thin or above a critical scale height). Cai et al. (2006) allow the optically

thin exterior of a disc to cool as much as is allowed by the gas’s emissivity and couple

this region to the optically thick region using an Eddington-like boundary condition.

Forgan et al. (2009) couple FLD to an escape probability cooling approximation

throughout the disc. Boley et al. (2007a) use vertical-ray transport to model RT

(and cooling) in the z-direction, while using FLD in the other coordinates only in

optically thick regions.

Our new photosphere boundary condition uses the basic idea of the boundary

condition of Mayer et al. (2007): allowing the SPH particles on the “edge” of the

disc to radiate away energy as if they were the edge of a plane-parallel atmosphere.

However, there are a number of important flaws in the photosphere treatment of

Mayer et al. (2007). As we demonstrate in §3.5.1, these flaws can lead to unphysical

fragmentation in studies of GI in the inner regions of protostellar discs. We first review

the boundary condition of Mayer et al. (2007) here and discuss its important flaws.

We then overview our new boundary condition and demonstrate that it overcomes

these flaws and is able to handle a published test-problem, the relaxation test of Boley

et al. (2007a).

In the Mayer et al. (2007) boundary condition, particles are declared to be on

the “edge” of the disc (edge-particles) based on three directions in polar coordinates:

upwards (+z), downwards (−z) and out (r). Each particle searches within a distance

2h, where h is the smoothing length, to determines whether any neighbour-particles

reside within an “edge-detection angle” (EDA) of one of these three directions. In

Mayer et al. (2007), this angle is treated as a free parameter and is varied between

simulations. If no neighbour particles are found to lie within an EDA of one the three

aforementioned directions, then this particle is marked as being an edge-particle.

Each edge-particle has a surface area of Ai = 4πh2
i (the area of the photosphere for
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which the edge-particle is responsible for), and loses specific internal gas energy at a

rate of

u̇i =
fAiσSBT

4

mi
, (3.40)

where f = 1/2 if the particle is an edge-particle in one of the three aforementioned

directions, f = 3/4 if it an edge-particle in two of the three directions and f = 1 if it

is an edge-particle in all three directions.

This method has a number of important flaws. The most important of these

relate to the surface area estimate, which controls the rate at which a system will

radiatively cool. We have tested the method on the relaxation test proposed by Boley

et al. (2007a), which the method does not satisfy. This test will be discussed more

thoroughly below; however, for the purposes of discussing the flawed surface area

estimate of the Mayer et al. (2007) method, it suffices to say that the test consists of

a column of gas, periodic in x and y, whose density structure adjusts in z in order to

come to an (analytically derived) equilibrium in which internal heating is balanced

by the radiative cooling of the column from two surfaces: one above and one below

the midplane. This test has the useful feature that the total radiating area of the

system is known: it is twice the x-extent times the y-extent.

We have found that the Mayer et al. (2007) boundary condition cannot satisfy

the relaxation test because it generally over-estimates the total surface area of the

system by a considerable amount. For this boundary condition, the total surface

area is a decreasing function of the EDA used. For an EDA of 40◦ (consistent with

a comparison of the simulation in §3.5.1 to that of Mayer et al. (2007)), we have

found that the surface area is generally overestimated by a factor of approximately

6. Consequently, the system cools at a rate which is far higher than is expected.

Furthermore, the total surface area of the system as calculated by the method has

been found to vary by over 30% during dynamic evolution of the system. These

variations of the effective emitting area from the expected value can have important

effects on the cooling of gas, and consequently the outcome of simulations studying

GI.

The smoothing length of a SPH particle is a measure of the inter-particle separa-
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tion; however, using this quantity to estimate the local surface area of the photosphere

is problematic for a number of reasons. For a particle on the edge of a system, the

smoothing length will generally be over-estimated, since there will only be neighbours

in the half of the search sphere interior to the edge. For a system of uniform density,

this over-estimate will be a factor of 21/3; however, this is decreased if the system

has a strong density gradient towards the surface (as in a protostellar disc). Beyond

this complication, the smoothing length is a quantity that evolves dynamically as

the density distribution of the system changes. As discussed above with regards to

the Boley et al. (2007a) test, this dynamical dependence has been shown to result in

large changes of the total emitting area, even in a system where the total area is a

well-defined constant.

We present our new photosphere boundary condition, which is based on the edge-

particle idea of Mayer et al. (2007). Our method, however, is able to calculate surface

areas that are consistent with expected values to within a few percent, even in dy-

namical systems. Moreover, our method is geometry independent and has no free

parameters to adjust.

In order to determine which particles reside on the edge, we first determine in-

dividual geometry-independent outwards directions using ∇ρi. Each particle then

searches through its list of neighbour-particles to determine if any of these reside

within an angle θ of this direction— it should be noted that we do not treat θ as a

free-parameter, but use a fixed value of θ ≈ 49◦. If no neighbour-particles are found

within this angle, then the particle is deemed to be an edge-particle (this process

is demonstrated in Figure 3.6 (left)). In order to remove any dependence that this

procedure may have on particular neighbour-lists, we iterate, removing any non-edge

particles from the search tree each iteration. Removing non-edge particles results in

larger search-radii for the remaining edge-particles, which in turn results in a better

measure of which particles are on the edge (this also aids finding edge-particle neigh-

bours, as discussed in the next paragraph). We stop iterating once the number of

edge-particles has converged.

Once the edge-particles are determined, we compute the surface area of the pho-

tosphere associated with each edge-particle. For each edge-particle, we find a fixed
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Figure 3.6: Determining the edge-particles and their emitting areas. In the left panel,
particle A examines within its search-radius (circle) and finds that no particles reside
within θ (the green region) of the direction ∇ρA (the arrow); therefore, particle A is
an edge-particle. This condition is not satistfied for particle B. In the right panel, the
edge-particle A searches within its search-radius (red circle) for other edge-particles
(circles with points). Only edge-particles that are within the search-cylinder (circles
with stars within the red cylinder) are projected onto the 2-D surface for the 2-D
SPH column density estimate (using smoothing length h′ =

√

2/3h).

number of edge-particle neighbours using a spherical search. We then project these

edge-particles onto a 2-D surface, whose normal is a local average of ∇ρ, and use a

2-D SPH estimate of the local column-density Σi to compute the local emitting area:

Ai =
mi

Σi
. (3.41)

In reality, since the surface area estimate relies on a 2-D SPH sum (for the column

density), we do not actually include all of the edge-particle neighbours that are found

in the search radius, but rather ignore those edge-particle neighbours that lie outside

of a search-cylinder bounded by the search-sphere. This eliminates biased weighting

in the inner region of the 2-D sum that can result from a spherical search in an envi-
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ronment with a strong density gradient. We choose the search-cylinder of maximum

volume that is bounded by the search-sphere. Figure 3.6 (right) demonstrates this

process.

By using this 2-D SPH estimate in the calculation of the local photosphere area,

rather than the smoothing length, we are able to calculate consistent surface areas

even in dynamical situations. While we found that the Mayer et al. (2007) estimate

varied by 30% in the relaxation test, the 2-D SPH estimate gave a total surface

area that was within 2% of the expected value. Figure 3.7 demonstrates that this

algorithm accurately computes the surface area of a disc. The surface area of edge-

particles (binned) for an axisymmetric protostellar disc initial-condition is given by

the diamonds and is compared to the surface area of a cylinder (since the disc is

very flat, with an opening angle of ≈ 3◦, this is a very good approximation). While

the total surface area estimate of the Mayer et al. (2007) boundary treatment is a

function of the EDA, we note that the use of the 2-D SPH estimate results in a total

surface area that is not sensitive to our choice of θ ≈ 49◦; the total area of the disc

in Figure 3.7 was found to vary by only 0.5 % for choices of θ in the range 40-60◦.

Finally, in order to include the boundary cooling from each edge-particle, we

simply include an additional term of

−∆t
Ai

mi
σ

(

T

0.81

)4

= −∆t
Ai

mi
(0.576cρiξi) (3.42)

in the particle’s implicit specific radiation energy equation (3.18) and solve the system

of equations as described previously— the factor of (1/0.81) reflects the fact that the

edge-particles emit from τ = 0 and must be adjusted to have the correct effective tem-

perature, analogous to the solution for a plane-parallel atmosphere (Chandrasekhar

1960).

3.4.2 Relaxation test

We present the first SPH results for the relaxation test proposed by Boley et al.

(2007a), which asseses the combination of FLD and radiative boundary cooling. This

test is a fundamental one for codes that simulate GI in protostellar discs, since it
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Figure 3.7: Testing the surface area estimates of edge-particles for a protostellar disc
initial condition. The sum of the surface area of edge-particles within radial bins is
given by the diamonds, while the surface area of a cylinder is given by the blue, solid
line.

asseses the accuracy of radiative boundary cooling. This test consists of a 1D config-

uration of gas (our test is 3D with periodic boundaries in x and y) of constant opacity

under a constant vertical (z) gravitational acceleration towards the midplane. The

gas is initially in an arbitrary configuration and heated at a constant rate per mass

Γ =
σT 4

e κ

τm
, (3.43)

where Te is the effective temperature and τm is the midplane optical depth. The gas

is then allowed to relax to an equilibrium in which the bulk heating is balanced by

cooling from the photosphere. The resulting temperature profile as a function of the

optical depth is

T 4(τ) =
3

4
T 4
e

[

τ

(

1− τ

2τm

)

+
1√
3

]

. (3.44)

Figure 3.8 shows the results of the implicit non-linear method for Te = 100 K,
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and optical depths of τm = 100 (left panel) and τm = 5 (right panel). The gas

temperature is given by the black points and the analytic result by the red, dashed

line. The agreement is quite good, although there is a deviation of a few degrees for

each case. This is the result of an underestimate of the emitting area by the edge-

particles of a few percent, which causes the temperature to increase in order to emit

the proper flux.

Figure 3.8: Testing the coupling of FLD and the boundary cooling for the implicit
non-linear method using the relaxation test of Boley et al. (2007a). The bulk-heating
of the gas is balanced by radiative cooling from the surface for Te = 100 K and
τm = 100 (left) and τm = 5 (right). The gas temperature is given by the black points,
while the analytic solution, equation (3.44), is given by the red, dashed line. Only a
subset of the particles is plotted.

3.5 Simulations of GI in the inner regions of discs

We use the combined FLD and photosphere boundary condition described above to

investigate the viability of GI as a mechanism for giant planet formation in the inner

tens of AU in protostellar discs. We have performed two sets of simulations for pro-

tostellar discs that evolve towards instability in a slow manner, and are consequently

robust tests of the viability of fragmentation.

Mayer et al. (2007) carried out simulations with radiative transfer of a protostellar

disc brought to instability through mass-gain and found that fragmentation was pos-
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sible, though not certain, for disc masses in excess of 0.12 M⊙ provided that the disc

was of sufficient metallicity (µ ≥ 2.4). Our first case (Simulation A) is a rerun of a

simulation of a particular disc with µ = 2.7 and EDA = 40◦ that Mayer et al. (2007)

found to fragment. We use parameters and initial conditions provided by the authors

and find that, in contrast to their results, fragmentation does not occur in this disc.

The fundamental difference between the simulation presented here, and that of Mayer

et al. (2007) is an improved treatment of the photosphere boundary condition. This

demonstrates the fundamental importance of using accurate photosphere treatments,

such as that presented in §3.4, in simulations investigating GI.

Our second case (Simulation B) is of a 0.1 M⊙ disc surrounding a 0.5 M⊙ star that

slowly transitions to instability through the growth of density perturbations. This

disc is similar to one used by the Indiana University group (Mej́ıa et al. 2005), but

with a different density distribution in the outer regions. It is our goal to see whether

fragmentation is possible in the inner regions of discs, and as discussed below, this

change in initial condition is made to make our simulation even more likely to show

fragmentation than those of the Indiana University group. However, as in the case

of Simulation A, we find that although the disc becomes graviationally unstable, an

accurate treatment of the photosphere results in cooling that is too slow to allow

fragmentation.

Together, these simulations demonstrate that GI may not be a viable mechanism

of planet formation in the inner tens of AU of protostellar discs. Though the simulated

discs are gravitationally unstable, when an accurate photosphere treatment is taken

into account, they are simply not able to cool fast enough for fragmentation to occur.

3.5.1 Simulation A: Mayer et al. (2007) Disc

Mayer et al. (2007) performed simulations with radiative transfer of a protostellar

disc approximately 30 AU in radial extent surrounding a 1 M⊙ star. As described by

the authors, the SPH particles making up the system increased in mass over time.

In this way, the disc transitioned from a state of stability to a state of instability in

a smooth fashion. The authors then carried out a number of simulations beginning
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Figure 3.9: Simulation A: rerunning the Mayer et al. (2007) µ = 2.7 simulation.
Logarithmic surface density maps for four times during the simulation: t = 1112 (top
left), 1217 (top right), 1322 (bottom left), and 1427 (bottom right) years). All surface
density maps of discs in this paper were created using SPLASH (Price 2007).

from the disc as of about 103 years, and varied the opacity and mean molecular weight

searching for conditions that allowed fragmentation. They observed fragmentation in

a particular simulation with a mean molecular weight of µ = 2.7 and EDA = 40◦ (see

Figure 1, bottom-right in Mayer et al. (2007)).

We rerun this simulation using the initial conditions (consisting of 106 SPH parti-

cles) as provided by the authors, beginning at a time of about 103 years. We use the

same equation of state, an ideal gas with γ = 7/5, mean molecular weight, µ = 2.7,

and dust opacities (D’Alessio, Calvet, & Hartmann (1997)). Our implementation of

FLD is different, but should result in the same physical outcome. The fundamental

difference between the simulation presented here, and that of Mayer et al. (2007)

is the improved treatment of the photosphere boundary condition. Radiation from
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the central star is not considered. The Jeans-mass and disc scale height are resolved

everywhere.

Logarithmic density maps for the disc are given for four times (t = 1112, 1217,

1322, and 1427 years) in Figure 3.9, and values for the midplane number density,

midplane temperature, Toomre Q, and dimensionless cooling time (tcoolΩ) for these

times are given in Figures 3.10 and 3.11.

Figure 3.10: Simulation A: azimuthally averaged physical quantities of the disc, for
the four times shown in Figure 3.9. The midplane number density (in units of 1013

cm−3) is given by the solid, black line, the midplane temperature (in units of 40 K)
is given by the red, dashed line, and the Toomre Q is given by the blue, dot-dashed
line. The horizontal dotted line is a reference for Q = 1.

What is immediately apparent from Figure 3.9 is that, in contrast to Mayer et al.

(2007), the disc does not undergo fragmentation (compare to Figure 1 (bottom right)

of Mayer et al. (2007)). The disc exhibits strong spiral density enhancements, and

regions of Q ≈ 1, however, this does not lead to fragmentation.

We can understand why the disc does not fragment despite having regions of

Q ≈ 1 by considering the cooling time. For gas of γ = 7/5, numerical simulations
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Figure 3.11: Simulation A: azimuthally averaged dimensionless cooling time (solid,
black line) and Toomre Q (blue, dot-dashed line) of the disc, for the four times shown
in Figure 3.9. The horizontal dotted line represents tcoolΩ = 12, the critical value for
fragmentation for γ = 7/5 (Rice et al. 2005), while the horizontal line represents a
cooling time six times larger, an estimate of the critical value for the Mayer et al.
(2007) boundary condition.

have shown that the critical value for the dimensionless cooling time is η = 12 (Rice,

Lodato, & Armitage 2005). As shown in Figure 3.11, regions of low Toomre Q

have dimensionless cooling times that are 6-20 times greater than this critical value.

Therefore, although the disc is unstable, it is simply not able to cool fast enough for

the instability to develop into fragmentation.

The inability of the disc to fragment can also be observed in the regulation of the

Toomre Q to values near unity. The mass of the disc is an increasing function of time

(due to the mass growth of the SPH particles) and acts to decrease the Toomre Q

and drive the disc to instability. However, it is clear from Figure 3.11 that as the

mass of the disc increases, the temperature of the disc increases in a corresponding

fashion (due to shock heating) so that the Toomre Q does not significantly change,



3.5. SIMULATIONS OF GI IN THE INNER REGIONS OF DISCS 89

with a minimum value that remains constant near Q ≈ 1.

It is quite understandable that Mayer et al. (2007) observed fragmentation in

their simulation, given the flaws observed in the photosphere boundary condition, as

discussed in §3.4. At a time of 1217 years, our simulation shows short-lived density

enhancements created in the spiral arms near 10 AU (one is visible to the right of

disc-centre in Figure 3.9 (top right)). These enhancements occur at a similar time

and radius as the fragments observed in Mayer et al. (2007). Given the over-estimate

in photosphere surface area measured in their boundary condition, as well as the

likely deviations of this surface area due to dynamical effects, it is quite conceivable

that the local cooling time was less than the critical value needed for these density

enhancements to become gravitationally bound fragments. We estimate a modified

critical value of η = 72 that would take into account the measured over-estimate for

the Mayer et al. (2007) photosphere and plot this value in Figure 3.11.

The results of this comparison reinforce the fundamental importance of the cooling

rate, and accurate photosphere boundary conditions in simulations of GI in protostel-

lar discs. The fact that this massive, centrally concentrated disc (at the end of our

simulation, the disc contains 0.34 M⊙ within 30 AU, significantly more than the 0.15

M⊙ requirement of Mayer et al. (2007) for fragmentation) does not fragment, despite

being unstable, points to the difficulty of forming giant planets in the inner regions

of discs via fragmentation.

3.5.2 Simulation B: Mej́ıa et al. (2005) Disc

We present a second simulation, in which we investigate the viability of fragmentation

due to GI in a 0.11 M⊙ protostellar disc surrounding a 0.5 M⊙ star. The initial disc-

profile is designed to be similar to that used in studies of GI by the Indiana University

group (see Figure 1 of Mej́ıa et al. (2005); Cai et al. (2006), Boley et al. (2006), Boley

et al. (2007a)). The key difference is that our initial disc contains a significant amount

of mass (0.04 M⊙) beyond the region of low Q. We have made this change in order to

avoid the “burst” phase seen in these studies, as we wish to consider a very “quiet”

transition from the initial model to GI via the slow growth of perturbations caused
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by the Poisson noise in the initial density distribution. As can be observed in Figure

3 of Boley et al. (2006), the burst phase radially redistributes a significant amount

of mass, with the final radial extent of the disc nearly double the initial extent of 40

AU. This radial-redistribution moves material away from the radius at which the disc

is initially most unstable, acting to stabilize the disc by increasing the Toomre Q.

Thus, our disc, in which this significant radial-redistribution of mass does not take

place, is a more stringent test of the likelihood of fragmentation.

Figure 3.12: Simulation B: azimuthally averaged physical quantities of the initial disc
model. The midplane number density (in units of 1011 cm−3) is given by the solid,
black line, the midplane temperature (in units of 10 K) is given by the red, dashed
line, and the Toomre Q is given by the blue, dot-dashed line. The horizontal dotted
line is a reference for Q = 1.

The initial, axisymmetric, model of 2.5×105 SPH particles was created in a manner

similar to that of Shen et al. (2010)– see Figure 3.12 for the disc properties. The

surface density profile is of the form Σ ∝ r−1/2 in the region between 3 and 34 AU,

and Σ ∝ r−1/2 ((r/rm)
−12 − 3(r/rm)

−8 + 3(r/rm)
−4) in the region between 34 and 70

AU, with rm = 34 AU. This profile results in a mass of 0.07 M⊙ within 40 AU (the
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same mass within the extent of the Mej́ıa et al. (2005) disc), and an additional 0.04

M⊙ beyond 40 AU. This additional 0.04 M⊙ prevents a significant radial redistribution

of matter during the simulation∗.

The initial temperature profile is a power law: T ∝ r−1/2. Using the specified

radial surface density and temperature profiles, the vertical structure satisfying hy-

drostatic equilibrium was calculated in an iterative manner, with both the gravity

of the star and the self-gravity of the disc taken into account. The initial disc has

a Q profile– using midplane values and κe = Ω– that is a minimum of about 1.5 at

a radius of 39.5 AU. We define one outer rotation period (ORP) as the Keplerian

period at this radius, approximately 250 years.

The central star is modelled as a 0.5 M⊙ star particle with a gravitational softening

of 3 AU; we do not include radiation emitted from the star. We use a mean-molecular

weight of 2.3, realistic Rosseland-mean opacities (D’Alessio, Calvet, & Hartmann

(1997); with a maximum grain size of 1 mm), as well as a consistent treatment of

the internal energy of molecular hydrogen that takes into account translational, ro-

tational, and vibrational modes, assuming an equilibrium ortho/para mixture (Boley

et al. 2007b). The Jeans-mass and the disc scale height are resolved everywhere.

The disc is initially axisymmetric, but photospheric cooling gradually decreases Q

to about 1 by 2 ORPs and the disc develops noticeable spiral density enhancements.

By design, the growth of non-axisymmetric structure in the disc is a slow process. We

observe that after about 9 ORPs, there is little variation in the azimuthally averaged

midplane density, temperature, and Q in the inner 70 AU, demonstrating that the

disc has reached a steady-state in which heating from GI is balanced by cooling from

the photosphere.

We can once again understand why the disc does not fragment despite having

regions of Q ≈ 1 by considering the cooling time. This simulation’s treatment for

the internal energy of molecular hydrogens gives a varying adiabatic exponent in the

∗Additional comment for thesis : the power-law form of the surface density, Σ ∝ r−1/2, matches
the profile used by Mej́ıa et al. (2005). The power-law index of 0.5 is consistent with interferometric
observations and SED fitting (see Chapter 2.2.2 and Williams & Cieza 2011). The profile outside of
34 AU was chosen to give a smooth falloff in mass outside of the region of minimum Q, in order to
avoid the “burst” phase observed by Mej́ıa et al. (2005).
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Figure 3.13: Simulation B: the disc after 10 ORPs. The left panel is of the disc’s
surface density, while the right panel gives azimuthally averaged properties of the disc
(see Figure 3.12 for details).

range 1.36-1.8, which prevents a direct comparison of the cooling time to specific

values of η in the literature. However, the cooling time of the disc in the region of

Q ≈ 1 (35-55 AU) is much larger than even large values of η (for γ = 7/5, η = 13) as

can be seen in Figure 3.14.

3.6 Conclusions

We have presented a new implementation of RT in the FLD approximation for the

TreeSPH code Gasoline, and have shown that it performs well on a number of standard

tests.

In addition, we have demonstrated that previous photosphere boundary conditions

using the smoothing lengths of edge-particles overestimate photosphere cooling and

are susceptible to large variations in cooling rates due to dynamical effects. We have

presented a new photosphere boundary condition using 2-D SPH sums over edge-

particles that is able to calculate photosphere areas accurately even in dynamical

systems. This boundary condition, coupled to FLD, is able to satisfy the relaxation

test proposed by Boley et al. (2007a), an important test for codes that simulate

protostellar discs; this is the first time this test has been performed with SPH.
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Figure 3.14: Simulation B: azimuthally averaged dimensionless cooling time (solid,
black line) and Toomre Q (blue, dot-dashed line) of the disc after 10 ORPs. The
cooling time in the region of Q ≈ 1 (35-55 AU) is much larger than what one would
expect would allow fragmentation.

In order to test the viability of fragmentation via GI as a mechanism for giant

planet formation, we have performed two simulations, using the coupled FLD and

photosphere boundary condition, of protostellar discs that are gravitationally unstable

in the inner tens of AU. We have found that although the discs develop spiral density

enhancements and have Toomre Q ≈ 1, they do not fragment because they are not

able to cool fast enough.

One of our simulations, Simulation A, is a rerun of a previously published simula-

tion in which the authors observed fragmentation (Mayer et al. 2007). Our simulation

does not show fragmentation, and we attribute this difference to our new, more ac-

curate, treatment of photosphere cooling. This result emphasizes the fundamental

importance of using accurate photosphere treatments in simulations of GI in proto-

stellar discs.

These numerical results, and others (Boley et al. (2007a), Forgan et al. (2009), Cai
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et al. (2010)), as well as analytic studies (Rafikov 2005, 2007), suggest that GI may

be an unlikely mechanism for planet formation in the inner tens of AU of protostellar

discs. However, disc fragmentation is a complex process, with important roles played

by GI, photosphere cooling, disc irradiation (Cai et al. 2008), mass accretion (Rafikov

2009), and dust evolution (Podolak et al. 2011). Further studies exploring a larger

range of parameters and including all of the relevant physics are needed before the

viability of GI as a mechanism for planet formation in the inner regions can be fully

addressed. Nevertheless, analytic work (Nero & Bjorkman 2009) and numerical work

(Boley 2009) have demonstrated the viability of GI as a mechanism of giant planet

formation in the outer regions of protostellar discs. This is particularly interesting

given the recent direct imaging observations (Kalas et al. (2008), Marois et al. (2008))

that have shown extrasolar planets to exist at such large radii. In future work, we

will further investigate the detailed viability of GI as a planet formation mechanism.
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Chapter 4
The fragmentation of protostellar discs: the

Hill criterion for spiral arms

4.1 Introduction

The fragmentation of protostellar discs through gravitational instability (GI) is a

possible mechanism for the formation of gas-giant planets and brown dwarfs. For a

disc to be prone to fragmentation, there are generally thought to be two criteria that

must be satisfied.

The first criterion is that a disc must be gravitationally unstable. This can be

characterized by the Toomre Q parameter (Toomre 1964), which is the result of a

linear stability analysis for a differentially rotating thin disc:

Q =
csκe

πGΣ
. (4.1)

In the above, cs is the sound speed of the gas, κe is the epicyclic frequency (κe = Ω,

the rotation rate, for Keplerian rotation), G is the gravitational constant, and Σ is

the surface density. For low values of Q ∼ 1, such as would be found in a massive,

cold disc, a disc will be gravitationally unstable.

The second criterion for fragmentation is that a disc, in addition to being gravi-

tationally unstable, must also cool quickly. Gammie (2001), using 2-D shearing-box

99
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simulations, examined the stability of a local patch of a protostellar disc with a sim-

plified cooling prescription:

tcoolΩ = β, (4.2)

where tcool is the cooling time and β is a constant. The cooling time here is defined

through the evolution of the specific internal gas energy, u:

Du

Dt
= − u

tcool
, (4.3)

where D
Dt

= ∂
∂t
+ v · ∇ is the co-moving derivative.

By performing simulations with different values for β, the author found the cooling

criterion for fragmentation to be

tcoolΩ ≤ βcrit = 3; (4.4)

this particular value of βcrit is valid only for the specific 2-D power-law equation of

state used by the author. Subsequent work, using global 3-D SPH simulations (Rice,

Lodato, & Armitage 2005), as well as global 3-D grid-based simulations (Mej́ıa et al.

2005), have also found fragmentation for fixed cooling times faster than a critical rate.

Gammie (2001), as well as Rice et al. (2005), outlined a physical argument for

the existence of a critical cooling time. If GI can be well-characterized by an α-

viscosity model (Shakura & Sunyaev (1973); see Lodato & Rice (2004, 2005) for the

applicability of this), then a steady-state can exist if the viscous heating by GI is

balanced by the prescribed cooling. If this balance is achieved, then the required

viscosity of the disc is determined by

α =
1

9/4γ2-D (γ2-D − 1) β
. (4.5)

Here, γ2-D is the two-dimensional adiabatic index. As discussed by Gammie (2001),

this can be related to the 3-D adiabatic index, γ, for the non-self-gravitating case,

where γ2-D = (3γ − 1)(γ + 1), as well as for the strongly self-gravitating case, where

γ2-D = 3 − 2/γ. If GI has a maximum α that it can attain, then it also has a
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maximum heating rate (Rice et al. 2005). If the prescribed β cools the disc faster

than this maximum heating rate, then no balance between heating and cooling can

be achieved, and the disc fragments.

The β-prescription of cooling, however, is a simplified model; more generally, β

will evolve with α in a given disc. In a realistic disc, heating and cooling are linked

to the physical state of the disc. In this work, we consider fragmentation in this more

realistic case, whereas the β-prescription of cooling does not allow Gammie (2001) to

have done so.

Furthermore, the applicability of a single value of βcrit (or αmax) is in some doubt.

Rice et al. (2005) found that the value of βcrit depends on the equation of state of

the gas (the value of γ), but that this dependence is consistent with a unique value

of αmax ∼ 0.06. However, other simulation results in the literature have found a non-

unique value for the critical cooling time, even for a fixed equation of state. Clarke

et al. (2007), using a time-dependent β(t), found that the thermal history of the gas

is important in determining βcrit, and can result in its reduction by a factor of two.

Meru & Bate (2011) found βcrit to be a function of the distance from the central star,

the local surface density, and the stellar mass.

Complicating the applicability of a unique βcrit are questions of numerical conver-

gence. Meru & Bate (2010) recently found that their 3-D SPH simulations had not

converged numerically; they found larger values of βcrit with increasing resolution. A

similar increase in the critical cooling time with enhanced resolution was found by

Paardekooper et al. (2011), using 2-D grid-based simulations. However, these authors

were able to achieve numerical convergence if they slowly decreased the cooling rate

with time, which allowed the entire disc to be in a state of gravito-turbulence while

gradually approaching the fragmentation boundary. Lodato & Clarke (2011) have

proposed that the non-convergence seen by Meru & Bate (2010) may be the result of

heating via artificial viscosity, or smoothing of density enhancements in simulations

with insufficient resolution, while Rice et al. (2011) have proposed that the non-

convergence is the result of using a particle’s specific internal energy in the cooling

rate, rather than using a smoothed version of this quantity.

It is also worth noting that when considering the stability of protostellar discs
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using the cooling criterion (e.g. Rafikov 2005), it is important to consider a disc as it

would be in the non-linear state of GI, rather than as it would be in the axisymmetric

state. The radiative cooling time is a function of temperature, opacity, and surface

density, all of which are different in spiral arms, where fragmentation takes place, as

compared to an axisymmetric disc. For example, Johnson & Gammie (2003) found

that cooling times in the non-linear phase of GI could differ substantially from the

cooling time of the initial axisymmetric initial condition.

In this work, we present a set of 3-D radiation hydrodynamic simulations of a

massive, optically-thick, protostellar disc, unstable near 100 AU, around an A star.

Rather than using a β-prescription for the cooling, these simulations include realistic

heating and cooling of the disc, including cooling from the disc photosphere and

irradiation from the central star. We do, however, vary the cooling rate in this set of

simulations by scaling the dust opacity table by a constant factor. By reducing the

opacity (which reduces the cooling time for an optically thick disc) over this set, we

observe a transition from discs that are stable against fragmentation to discs that do

fragment; this is consistent with the cooling criterion work of Gammie (2001).

We have used results from Cossins, Lodato, & Clarke (2009), and from this set of

simulations to develop a simple, yet detailed, physical model for the fragmentation

of a gravitationally unstable protostellar disc. In this model, spiral arms develop in

an unstable disc on a characteristic scale related to the disc scale height (Cossins

et al. 2009). The heating rate per unit mass of the disc from GI is proportional

to the square of the amplitude of the surface density variations in the disc (Cossins

et al. 2009); as spiral arms become more condensed, the heating rate per unit mass

is increased. The cooling rate per unit mass of the disc from photospheric cooling is

inversely proportional to the square of the surface density; as spiral arms become more

condensed, the cooling rate per unit mass in the arms decreases. There is therefore a

natural scale for the thickness of a spiral arm in a gravitationally unstable disc. This

scale is set by a balance between heating from spiral waves and radiative cooling. It

is worth noting that for faster cooling rates (shorter cooling times), this thickness will

be decreased.

A second scale of interest in this model is the Hill radius, which, for an object of
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mass M , is

HHill =

[

GM

3Ω2

]1/3

. (4.6)

The importance of the Hill radius can be understood within the context of planet

formation in a disc of planetesimals around a star. If a protoplanet embryo has

formed in this disc, then it of interest to determine the radius over which it may

further accrete planetesimals. The Hill radius sets this embryo’s sphere of influence:

material within the Hill radius is bound to the embryo and will be accreted. In

essence, material within the Hill radius of an object is dominated by that object’s

gravity, while material outside of the Hill radius is dominated by the central star’s

gravity, which is equivalent to the role of the local shear in the Toomre criterion. For

the purpose of this discussion, we define the Hill thickness as twice the Hill radius.

In this framework, we can extend the cooling criterion of Gammie (2001) with the

Hill criterion for spiral arms. In a gravitationally unstable disc, the natural thickness

of the spiral arms is set by a balance between heating and cooling. Fragmentation

occurs in this disc if there is a section of arm whose natural thickness is smaller than

that section’s Hill thickness. Essentially, if a section of a spiral arm lies within its

own Hill thickness, then shear will be unable to prevent the collapse of the arm, and

fragmentation can take place.

In a gaseous disc, pressure can prevent fragmentation from taking place. By

considering the Hill radius, we have not addressed the role that pressure plays in

determining fragmentation and how it may modify the critical thickness of spiral

arms necessary for fragmentation to take place. The correct determination of this

scale requires the solution to a stability analysis of a spiral arm in a differentially

rotating system. Since we do not have such a solution, we have chosen to consider

the Hill thickness. The analysis of our simulations; however, does indicate that the

Hill thickness is the correct scale to examine. The Hill criterion for fragmentation is

consequently an empirical criterion.

Our model is consistent with the cooling criterion: as the cooling time decreases,

spiral arms become thinner and more over-dense, becoming more likely to reside

within their own Hill thickness, and consequently more likely to fragment. With
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the Hill criterion, however, we have developed a more detailed, and more complete,

physical picture of fragmentation. This picture can be applied to the general case

of a disc with physical heating and cooling, or the more specific case of a disc with

β-prescription cooling. In fact, it offers a means to calculate what the critical cooling

time is for a given region of a given disc.

There have been previous attempts to characterize the fragmentation of spiral

arms using a physical model. Durisen, Hartquist, & Pickett (2008) examined the

stability of a spiral arm, considered as an isothermal sheet, and found that frag-

mentation was expected for low values of Q; in addition, the authors argued that

strong compression in a spiral shock acts to suppress fragmentation. This implies

that fragmentation should occur near corotation.

Boley et al. (2010) proposed that fragmentation takes place when the Toomre

length (the most unstable radial wavelength) in a spiral arm lies inside the region

around corotation found by Durisen et al. (2008). The physical models of Durisen

et al. (2008) and Boley et al. (2010) are strictly only applicable to isothermal discs;

however, Boley et al. (2010) did find agreement between the fragment masses pre-

dicted in the model, and those found in a simulation with radiative cooling. In

contrast, our model of fragmentation presented in this work is derived for discs with

cooling.

The structure of the paper is as follows. In §4.2, we overview our numerical meth-

ods as well as our set of simulations of gravitationally unstable, irradiated protostellar

discs. In section §4.3, we give a detailed picture of our model of protostellar disc frag-

mentation and the Hill criterion. In addition, we demonstrate the model’s consistency

with the simulations of §4.2. In §4.4, we show that the Hill criterion is quantitatively

consistent with the cooling criterion and discuss the predictive qualities of the model.

Finally, in §4.5 we give our conclusions.
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4.2 Numerical simulations of gravitationally un-

stable irradiated discs

4.2.1 Numerical methods

Our simulations were performed with the TreeSPH code Gasoline (Wadsley, Stadel,

& Quinn 2004), with the addition of radiative transfer in the flux-limited diffusion

approximation [FLD; Rogers & Wadsley (2011)]. As described by the authors, FLD

is able to model the transfer of energy only in regions in which SPH particles reside.

Because of limited resolution, any SPH representation of a protostellar disc naturally

has two edges, representing the upper and lower atmospheres. Radiative cooling from

the disc atmospheres is modelled by means of a photosphere boundary condition:

the SPH particles on the “edge” of the disc (the edge-particles) are found, robust

surface areas (the area of the photosphere for which an edge-particle is responsible)

are calculated using a 2-D SPH estimate, and a plane-parallel cooling term is added

to the radiative energy equation for the edge-particles. The radiative hydrodynamics

has been tested on a number of standard problems, including the relaxation test of

Boley et al. (2007a), which is particularly suited to protostellar disc simulations.

The conditions in the outer regions of discs (roughly 100 AU and beyond) are

expected to be favourable to gravitational fragmentation, since the cooling criterion

is likely satisfied there (Rafikov 2007). As pointed out by Kratter & Murray-Clay

(2011), the heating of the outer regions is expected to be dominated by the irradiation

of the disc’s surface by the central star, rather than by viscous heating. Since our

simulations focus on fragmentation at these large radii, it is fundamentally important

to account for this heating via irradiation.

The photosphere boundary condition of Rogers & Wadsley (2011) offers a straight-

forward means by which this can be done. In addition to the cooling term in the

specific radiation energy equation for each edge-particle, we have added a heating

term of
[

Dξi
Dt

]

irrad

=
Ai

mi
σ (Tirrad)

4 , (4.7)

where ξ is the specific radiation energy, Ai is the surface area of the edge-particle, mi
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is the particle mass, σ is the Stefan-Boltzmann constant, and Tirrad is the temperature

of the stellar irradiation.

Kratter, Murray-Clay, & Youdin (2010b) used the passive flared disc model of

Chiang & Goldreich (1997), along with a stellar evolution model, to determine the

equilibrium temperature distribution for a disc surrounding a 1.35 M⊙ A star, which

they found to be:

T = 40 K

(

R

70 AU

)−3/7

. (4.8)

Since we are not able to treat the super-heated dust layer of optical depth τ < 1 in

our simulations, it is appropriate to use this equilibrium temperature distribution as

the Tirrad in the irradiation heating term, equation (4.7). In addition, we implement

a floor of Tirrad = 20 K to take into account the background radiation field.

There have been previous multidimensional simulations of protostellar discs that

have made efforts to account for the effects of stellar and/or envelope irradiation.

These include 3-D simulations (Cai et al. 2008; Stamatellos & Whitworth 2008;

Boley 2009), axisymmetric simulations (Zhu et al. 2009), and thin-disc simulations

(Vorobyov & Basu 2010).

4.2.2 Initial conditions and input parameters

The initial, axisymmetric model of 5 × 105 SPH particles was created in a manner

similar to that of Shen et al. (2010)– see Figure 4.1 for the disc properties. The

surface density profile has the form Σ ∝ r−1 in the region of 20-70 AU (there is a

smooth increase of Σ from 10-20 AU). There is a smooth functional form of Σ ∝
r−1 exp {−4 log(R) [0.5 log(R)− log(Rm)] / log(Ro/Rm)}, with Rm = 70 AU and Ro

= 160 AU, from 70-160 AU, after which there is a steep drop off of Σ ∝ r−15. There

is roughly 0.61 M⊙ within 200 AU.

This particular surface density distribution is motivated by the initial tempera-

ture profile, which is given by the equilibrium temperature in equation (4.8). The

combination of temperature and surface density results in a broad region of the disc

having an initial Q of roughly unity.

Using the initial surface density and temperature profiles, the vertical structure
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Figure 4.1: The physical quantities of the initial disc profile. The midplane number
density (in units of 1011 cm−3) is given by the solid, black line; the midplane tem-
perature (in units of 10 K) is given by the red, dashed line; the optical depth (in
units of 10) is given by the purple, long-dashed line; and the Q is given by the blue,
dot-dashed line. The horizontal, dotted line is a reference for Q = 1.

satisfying hydrostatic equilibrium was calculated iteratively, taking into account both

the gravity from the central star and the self-gravity of the disc. We have taken

care to design this initial condition to ensure that it is “quiet,” even though it is

gravitationally unstable; that is, to ensure that there is a smooth evolution to spi-

ral structure, without any strong radial redistribution of mass on short timescales

(roughly the orbital period) due to transients from the initial setup. In this way, the

azimuthally-averaged properties of the initial condition are reflective of the evolved

disc.

The central star is modelled as a 1.35 M⊙ sink particle with a radius of 10 AU. We

use a mean molecular weight of 2.3 and realistic Rosseland-mean opacities (D’Alessio,

Calvet, & Hartmann 1997). Although the code is capable of using a consistent treat-

ment of the internal energy of molecular hydrogen that takes into account transla-
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tional, rotational, and vibrational modes (Boley et al. 2007b), to simplify the analysis

of our simulations, we use a fixed adiabatic index of γ = 7/5. In the outer regions

of protostellar discs, of particular interest here, temperatures are typically below 100

K. Therefore, a choice of γ = 5/3 would be more physical; however, for the purposes

of this study, which aims to understand the process of fragmentation in detail, the

distinction is not important. The scale height is resolved by at least three smoothing

lengths outside of 25 AU, and the Jeans length is resolved until shortly after fragmen-

tation takes place. We define one ORP, one outer rotation period, to be the Keplerian

period at our fiducial radius of 100 AU, roughly 863 years.

4.2.3 Simulations

We present a set of five simulations, each of which uses the initial conditions described

above, the only difference being the opacity used. Simulation (A, B, C, D, E) has

an opacity table that is scaled by a constant value of (1/10, 1/3, 1, 3, 10). Thus,

Simulation C has an estimated physical opacity for solar metallicity, while Simulations

A and B have reduced opacities, and Simulations D and E have increased opacities.

Physical changes in opacity could be the result of grain growth (Birnstiel, Dullemond,

& Brauer 2010), grain evolution via the passage of spiral arms (Podolak, Mayer, &

Quinn 2011), or formation in an environment with a non-solar metallicity. Our goal,

however, is not to reproduce different physical environments, but rather to explore

the necessary conditions for gravitational fragmentation. In this context, a simple

scaling of the opacity table is both sufficient and desirable.

All five simulations evolved in a similar fashion over the first 2.5 ORPs. High

mode-number spiral structure developed slowly from SPH Poisson noise in each of

the discs over this time until settling down to a transitioning state of two or three

spiral arms. The transition from axisymmetric initial condition to spiral structure is

observed to be smooth, with no strong transients.

The final states of the simulations are shown in Figure 4.2. Simulations C, D,

and E have been evolved for roughly 8.5 ORPs without fragmentation having taken

place (although strong spiral over-densities may persist), while Simulation A has
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Figure 4.2: The final states of the simulated discs: surface density plots of Simulations
E, D, C, B, and A are shown from top to bottom. As the opacity scaling is reduced
from the physical value, fragmentation occurs. The discs are shown at respective
times of 8.5, 8.5, 8.5, 3.5, and 2.9 ORPs.
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fragmented with two objects forming, and Simulation B has fragmented with one

object forming. This set of simulations, therefore, demonstrates a transition from

non-fragmentation to fragmentation, as a function of the opacity scaling.

For a patch of an optically thick disc, the cooling time is approximately

tcool =
1

4

1

γ − 1

c2sκ

σT 4
Σ2, (4.9)

where κ is the opacity and T is the midplane temperature (Rafikov 2007). As can be

observed in Figure 4.1, our initial condition is optically thick, with τ > 1, out to at

least 150 AU, even when the opacity is scaled by 1/10, as it is in Simulation A. This

extends over the entire gravitationally unstable region (where Q . 1.7, Durisen et al.

2007). Hence, the cooling time is directly proportional to the opacity, and our set of

simulations offers a means of exploring the fragmentation boundary as a function of

cooling time in a manner similar to the simulations of Gammie (2001). The difference

is that our simulations use realistic radiative cooling (even though the opacities may

be scaled), rather than β-prescription cooling.

The cooling criterion suggests that reducing the cooling time (by reducing the

opacity) will eventually lead to fragmentation. Thus, that Simulations A and B frag-

ment is consistent with this picture. However, it is possible to use these simulations

to better understand why exactly fragmentation takes place.

Figure 4.3 shows the five simulations at roughly the same time, shortly before

fragmentation took place in Simulations A and B. The difference in the structure of

the five discs at this time offers evidence of a detailed description for why Simulations

A and B fragment, while Simulations C, D, and E do not. As can be observed, as

the cooling time decreases (as the opacity decreases), spiral arms in a disc become

thinner and more over-dense and this makes fragmentation more likely to occur.

4.3 Fragmentation model and the Hill criterion

We present a model of spiral arm fragmentation in gravitationally unstable discs,

based on the observation from the simulations of the previous section that reduced
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Figure 4.3: The simulated discs before fragmentation: surface density plots of Simu-
lations E, D, C, B, and A are shown from top to bottom. As the opacity scaling is
reduced, the spiral arms become thinner and more over-dense. The discs are shown
at a time of 2.5 ORPs.
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Figure 4.4: The creation of a spiral arm: a local patch of radial extent l0 (left) in an
axisymmetric disc collapses radially to form a section of a tightly-wound spiral arm
(right) of radial extent l1.

cooling times lead to thinner arms, which are more likely to fragment. This model

can be broken into two components: the first is a model for the (roughly) steady-

state spiral structure in an unstable disc; while the second is a criterion for the

fragmentation of these spirals. Many of the details of our model are empirical in

nature: we have used results from the simulations of Cossins et al. (2009), as well as

our own set of simulations in determining some of the important parameters.

4.3.1 Spiral structure

We begin with a model for the spiral structure that results in a gravitationally unsta-

ble disc. We consider a patch of an initially axisymmetric disc that will develop spiral

structure, such as our initial condition for the simulations of the preceding section.

This patch is located at some distance, R, away from the central star and is of a

radial extent l0, with a characteristic surface density Σ0. GI acts on the scale of l0 to
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collapse mass radially1, resulting in the formation of a spiral arm of thickness l1 and

characteristic surface density Σ1. This process is demonstrated in Figure 4.4.

Figure 4.5: Radial Fourier analysis of Simulation B at 2.5 ORPs: the amplitude of
the radial mode is given as a function of the wavenumber times the local scale height
for a number of radii. Each amplitude curve is normalized by the peak amplitude for
that radius. The Fourier analysis is carried out using the method of Cossins et al.
(2009).

What is the appropriate scale for l0? Cossins et al. (2009) performed a number of

simulations of Q ∼ 1 discs and found that, from a radial Fourier transform of these

discs, the dominant radial wavenumber was typically

k ≈ 1

H
=

πGΣ

c2s
. (4.10)

Therefore, we expect the scale of spiral arm formation to be l0 = 2πH . We have

tested that this is consistent with our own simulations. Figure 4.5 shows the results

of a radial Fourier transform of Simulation B at a time of 2.5 ORPs.
1The simulations of §4.2 show tightly-wound spiral structure with a typical winding angle of

i ∼ 10◦; to first-order, a purely radial collapse is a fair approximation.
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How many spiral arms are likely to form in our disc? Numerical studies (Lodato &

Rice 2004, 2005) have shown that as the disc-to-star mass-ratio increases, Q ∼ 1 discs

show fewer spiral arms. Our simulations are of quite massive discs, with a disc-to-star

mass-ratio of Md/M⋆ = 0.45. This high disc mass is necessary for the disc to have

Q ∼ 1 near 100 AU for our realistic irradiation temperature, and results in a typical

arm number of m = 2 or 3.

The number of arms in a disc is likely the result of swing amplification, with

significant amplification of a mode, m, requiring the swing amplification parameter,

Xm =
Ω2R

2πGΣm
, (4.11)

to satisfy 1 < Xm < 3 (Binney & Tremaine 2008). From the above, we can see that

Xm roughly scales with the disc-to-star mass-ratio:

Xm ∝ M⋆/Md. (4.12)

Thus, for low disc-to-star mass-ratios, only high-order modes will satisfy 1 < Xm < 3,

while for high disc-to-star mass-ratios, only low-order modes will.

What is the steady-state thickness, l1, of the newly formed spiral arm? We posit

that this scale is the result of a balance between heating of the disc through the spiral

waves, and radiative cooling. Assuming that the spiral density wave deposits a fixed

fraction, ǫ, of its energy into the disc per dynamical time, Cossins et al. (2009) showed

that the heating rate per unit mass from spiral arms can written as

Q+ = ǫ
c2sMM̃Ω

2

(

δΣ

Σ

)2

, (4.13)

where

M =
mΩp

kcs
and M̃ =

m (Ωp − Ω)

kcs
(4.14)

are the radial phase Mach number and the Doppler-shifted radial phase Mach number,

Ωp is the pattern speed, and (δΣ/Σ) is the spiral over-density, the fractional increase

in surface density in an arm compared to the average surface density at that radius.
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As outlined by the authors, the pattern speed, and hence the Mach numbers, can

be calculated from the dispersion relation for a finite-thickness disc:

m2 (Ωp − Ω)2 = c2sk
2 + Ω2 − 2πGΣ|k|

1 + |k|H , (4.15)

if the radial and azimuthal wavenumbers are known. From their simulations, the

authors found a relatively constant value of ǫ ≈ 0.2 (see their Figure 15). For

Q ∼ 1 discs, which have dominant radial wavenumbers of k ≈ 1/H , solving the

above dispersion relation for the ratio of the pattern speed to the rotation rate yields

Ωp/Ω = 1+ 1/m. We therefore expect the disc to be near corotation throughout the

gravitationally unstable region of Q ∼ 1, consistent with the results of Cossins et al.

(2009).

In an irradiated disc, there is additional heating from the stellar irradiation, so

that

Q+ = ǫ
c2sMM̃Ω

2

(

δΣ

Σ

)2

+
2σT 4

irrad

Σ
. (4.16)

In our simple analytic model, the spiral over-density can be calculated by assuming

that some fraction, 1/f , of the total mass per length within l0, with a characteristic

surface density Σ0, is compressed into the spiral arm, of thickness l1, and characteristic

surface density Σ1 :
(

δΣ

Σ

)

=
Σ1 − Σ0

Σ0

=

(

l0
fl1

− 1

)

. (4.17)

In the above, and in the analytic calculations of §4.4, we have made use of a simplified

top-hat surface density profile for a spiral arm, since we are unable to predict the true

surface density profiles that will result from GI. The surface density Σ1 can be thought

of as the integrated average of the true surface density within the arm’s thickness, l1:

Σ1 =
∫

l1
Σ(R)dR/l1.

The heating from equation (4.16) is balanced by radiative cooling, for which the

cooling rate per unit mass, using equation (4.9), is

Q− = u/tcool =
4

γ

σT 4

κΣ2
, (4.18)



116 P. D. Rogers – Ph.D. Thesis

where we have used u = c2s/[γ(γ − 1)]. Setting the above cooling rate equal to the

heating rate of equation (4.16), and using the other information in this section, as

well as the initial axisymmetric properties of our disc, leaves us with an equation

with only one unknown: the thickness of the spiral arm, l1, in our patch of interest

(assuming that we know the proper midplane temperature for radiative cooling, T ,

in the spiral arm. This will be elaborated upon in §4.4).

4.3.2 Determining fragmentation

Figure 4.6: The Hill criterion for spiral arm fragmentation: if a section of spiral
arm lies within its own Hill thickness, then that section of arm is free to collapse
and fragmentation takes place. If a section of spiral arm lies outside of its own Hill
thickness, then shear stabilizes the arm and fragmentation does not take place.

Once we know the steady-state thickness of the spiral arm, l1, we can determine the

mass of the section of arm within that thickness and use equation (4.6) to calculate the

Hill radius for this section of the arm. If the section of arm has a thickness satisfying

l1/(2HHill) < 1, then the section lies within its own Hill thickness. In the absence

of pressure forces, this means that the section is bound, as the tidal force from the
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central star (manifest as rotational shear) is less than the self-gravity of the section.

Once the section is bound, fragmentation occurs. Conversely, if l1/(2HHill) > 1, then

the section of arm is not bound and fragmentation does not occur.

In our simple analytic model, with a top-hat surface density profile as in equation

(4.17), the section of arm has a mass M = Σ1l
2
1 and equation (4.6) gives a Hill radius

of:

HHill =

[

GΣ1l
2
1

3Ω2

]1/3

. (4.19)

The Hill thickness tells one about the ability of shear to prevent the fragmen-

tation of the arm and is therefore expected to be an important scale. However, in

comparing the radial thickness of the arm to the Hill thickness we are ignoring the

role of pressure, despite strong radial pressure gradients present across the arm. It is

therefore reasonable to expect that the critical thickness for arm fragmentation may

be modified from the Hill thickness. There are, however, no strong pressure gradi-

ents along the arm (the azimuthal direction), thus fragmentation occurring in this

direction should be determined by the Hill criterion.

Determining the correct scale for fragmentation requires a detailed calculation of

the stability of a spiral arm accounting for differential rotation. In the absence of such

a calculation, we posit that the correct scale to consider is indeed the Hill thickness.

As described below, the results from our simulations are consistent with this. The

Hill criterion for fragmentation, demonstrated in Figure 4.6, is thus empirically based.

4.3.3 Consistency with simulations

An analysis of the spiral arms formed in the simulations of §4.2 shows that their

thicknesses, and stability, are consistent with the Hill criterion for fragmentation. In

Figure 4.7, we show two examples of this analysis to illustrate this consistency. Our

analysis focuses on the surface density of a radial slice of the disc (with a typical

angular width of 5◦). Over this slice, a spiral arm is evident as a large over-density.

We find that arms are often asymmetric; consequently, we determine a thickness for

an arm by fitting each side of the arm (with respect to the radius of highest Σ, Rpeak),
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Figure 4.7: Comparison of a spiral arm’s thickness to its Hill thickness. A radial
slice of Simulation B (Simulation D) is shown in the top (bottom) panel. The surface
density of the radial slice is given by the black line, while the azimuthally averaged
surface density is given by the blue, dot-dashed line. As described in the text, the
spiral arm (the large over-density) is fit (the red, dashed line) and the arm thickness is
found (the vertical, red dashed lines). The mass within this arm thickness is computed
to determine the Hill thickness (the vertical, blue dashed lines). Consistent with the
Hill criterion, Simulation B (Simulation D) has an arm which falls inside of (outside
of) its Hill thickness and fragmentation is (is not) observed shortly thereafter.
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Figure 4.8: Location of the radial cross-sections in Figure 4.7.

with a Gaussian of the form

Σarm = Σbase + Σpeake
(R−Rpeak)

2

2b2 , (4.20)

where Σbase is the value of the surface density adjacent to the arm and Σpeak is the

maximum of the arm’s surface density. The thickness of the arm is taken to be
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l1 = a(bleft+ bright), with a = 2, and the mass of the section of arm is determined using

a numerical evaluation of

Marm =

∫ Rpeak+2bright

Rpeak−2bleft

Θ(R)RΣ(R)dR, (4.21)

where Θ(R) = l1/R is the angular extent of the section of arm. In contrast to our

analytic model presented in the preceding section, we do not use a simplified top-hat

model here, but integrate the fit to the measured arm profile over the thickness of

the arm, since we know what the arm profile is in this case. This allows us to verify

the Hill criterion’s ability to determine fragmentation. With this verification, we can

then be confident in applying the Hill criterion to our analytic model, as we do in

§4.4.

Determining the thickness of a spiral arm is not a trivial task. Our use of Gaussian

fitting functions is an attempt to be objective and reproducible and is motivated by

the reasonably accurate fits that we achieve. Our choice of a = 2 as the coefficient in

determining l1 is motivated by having the majority (95%) of the over-density of the

arm (the mass in the arm that is at Σ > Σbase) contained within the arm. To contain

all of the mass in a Gaussian fit requires integrating out to an infinite distance, which

is clearly problematic in defining the finite thickness of a spiral arm. We have found

that using values of a > 2 in fitting the arms often results in including material that

is clearly outside of the arm; that is, the calculated arm thickness is obviously too

large when the radial surface density profiles are examined by eye.

Figure 4.7 (top) shows this analysis, at roughly 2.5 ORPs, for an arm in Simulation

B, shortly before fragmentation. Consistent with the Hill criterion, the arm thickness

is less than the Hill thickness and therefore fragmentation is expected to occur in

this arm; indeed, this arm fragmented a short time after the time-step used for this

analysis. In contrast, Figure 4.7 (bottom) shows this analysis, at roughly 2.3 ORPs,

for an arm in Simulation D that never fragmented. Consistent with the Hill criterion,

the arm thickness is greater than the Hill thickness and therefore fragmentation is

not expected. The positions of the radial slices for this analysis are shown in Figure

4.8.
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We use these two examples to illustrate the consistency of the fragmentation cri-

terion with the simulations performed. More generally, we have found that lower

opacity discs have arms that are consistently smaller with respect to their Hill thick-

ness in comparison with higher opacity discs. Despite a large range in the opacity

scalings used in the simulations (a factor of 100), we find that the arm thickness in

the discs is generally similar to the Hill thickness. This can be observed for the two

arms examined in Figure 4.7. This small range for the ratio of the arm thickness to

the Hill thickness observed in the simulations may seem surprising; however, it can be

understood through our analytic calculations for radiatively cooled discs, presented

in §4.4.2. The ratio of the arm thickness to the Hill thickness is weakly dependent on

the opacity.

In each of the cases where fragmentation takes place (this occurs in the reduced

opacity discs), the arms that fragment are observed to fall within their own Hill

thickness shortly before fragmentation. Indeed, all arms that smoothly evolve to lie

within their own Hill thickness fragment.

4.3.4 Detailed evolution of spiral arms

The simplicity of the model described above is desirable, as it gives a straightforward,

physical picture of the formation of spiral arms in a gravitationally unstable disc,

as well as the physical criterion that determines whether or not those spiral arms

fragment. However, unstable discs do exhibit a great deal of complexity; here, we

discuss this complexity and comment on its implications for our model.

We have described an individual spiral arm’s stability as being the result of

whether or not it is contained within its Hill radius. In addition, we have described

the steady-state thickness of a single spiral arm as being the result of a balance be-

tween heating and cooling. However, the simulations show that the spiral structure

in the disc evolves with time: the number of arms in the disc is not constant, nor is

the over-density of each arm.

An analysis of spiral arms in our simulations shows that individual spiral arms

typically exist for a number (roughly three) of sound-crossing times; that is, they last
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approximately a dynamical time (orbital period). The sound-crossing times of arms

are shorter than the radiative cooling time (two to thirty times shorter, depending

on the opacity scaling), suggesting that the arms can be treated as evolving in a

quasi-static manner. This is important in applying the Hill criterion to determine

stability.

Material in the arm is shock-heated, and radiatively cools. From the observed

density contrasts between arms and inter-arm regions, we estimate the expected tem-

perature increase in an adiabatic shock, and calculate the radiative cooling time to

reach the observed temperature contrasts. We find that this cooling time is within the

lifetime of the arms (it is equal to or up to five times shorter than the dynamical time,

depending on the opacity scaling). This suggests that the arms have time to come to

a balance between heating and cooling. In addition, the ability of the arm to readjust

hydrodynamically on the short sound-crossing time also suggests that heating and

cooling can come into balance, since the arm can quickly adjust to an imbalance.

Evolution of the disc as a whole, such as heating during a phase of pronounced

spiral activity such as a “burst” (Mej́ıa et al. 2005), does not prevent the application

of our model. As long as the evolution of the disc takes place on a timescale that is

longer than the sound-crossing time of a spiral arm, the balance between heating and

cooling in a spiral arm is a reasonable approximation. Since a burst phase heats the

disc on roughly the orbital time, the model is applicable. A balance between heating

and cooling will be invalid, however, in cases where there are strong hydrodynamic

interactions between spiral arms (or between a spiral and a fragment, see below),

since this will produce heating on a timescale of roughly the sound-crossing time.

The Hill criterion describes the fragmentation of a spiral arm, but it does not

necessarily determine whether or not this fragmentation leads to the formation of a

long-lived object; this also depends on the cooling of the fragment and the complex

environment of the disc in which the initial fragmentation takes place. Simulation C,

for example, demonstrates an instance of “failed fragmentation,” as shown in Figure

4.9. One of the spiral arms appears to have fragmented; however, the fragment is only

short-lived: it shortly thereafter collided with the next spiral arm, without surviving.

The Hill criterion describes the formation of a fragment based on the inability of
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Figure 4.9: An instance of “failed fragmentation” in Simulation C. In this example,
a fragment, visible within the black circle, is observed; however, it is not long-lived.
Shortly after this time-step, the fragment collided with the spiral arm and did not
survive.

shear to stabilize a section of a spiral arm. Further collapse occurs on the radiative

cooling timescale of the fragment. If this timescale is long, then the fragment may

still be quite diffuse, and easily disrupted by collisions with subsequent spiral arms.

Indeed, Simulation B, which generally has shorter cooling times than Simulation C

because of its opacity scaling, shows a fragment which formed, but then subsequently

collided twice with spiral arms; in contrast to Simulation C, this object survived,

as observed in Figure 4.2. Fragmentation, therefore, can be well characterized by

our model; however, whether or not fragments survive also depends on the complex

non-linear interactions between collapsing fragments and the spiral structure in the

disc.

As described, the fragment of Simulation C was disrupted through a collision with

the subsequent spiral arm. This resulted in a strong compression of the spiral arm;

in fact, the compression was strong enough that the arm was observed to lie within

its own Hill thickness. Nevertheless, the arm did not fragment. This does not conflict
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with the Hill criterion because in this instance, the arm was not in a near steady-state.

Since the timescale for the collision was much shorter than the sound-crossing time of

the arm, the arm could not adjust. As a result, the increased over-density of the arm

lead to an increased heating rate, see equation (4.13), and a reduced cooling rate,

see equation (4.18). As a consequence of the imbalance between heating and cooling,

pressure forces caused the arm thickness to expand on roughly the sound-crossing

time, with the result that no fragmentation took place.

4.4 Consistency with the critical cooling criterion

and predictive ability

The physical model developed in the preceding section can be used to examine

whether or not fragmentation is likely to take place in a disc. In this section, we

demonstrate that the predictions of this model are consistent with previous numeri-

cal results of discs evolved using the β-prescription of cooling, as well as the results of

our suite of simulations discussed in §4.2. Specifically, we analyze the initial condition

of our simulated disc described in §4.2 and adopt general values for the parameters.

We use l0 = 2πH , ǫ = 0.2 (Cossins et al. 2009), m = 2 and f = 1.5 (characteristic

of measurements from our set of simulations). We calculate the value of MM̃, equa-

tion (4.14), as outlined in Cossins et al. (2009), by solving the dispersion equation,

(4.15); we use equation (4.10) for k, which results in MM̃ = Q2 (m+ 1). The values

for these parameters will be correct to within O(1), but will likely have variation

depending on the physical properties of a disc.

Caution is warranted when considering the stability of a disc based on its initial

condition. Johnson & Gammie (2003) examined the stability of discs using 2-D

shearing-box simulations that included radiative cooling. They found that the cooling

times in the non-linear phase of the disc could differ by orders of magnitude from the

cooling times in the initial condition. As a consequence, assessing the stability of

the disc in its non-linear phase, via the cooling criterion, based on the initial cooling

times can lead to the wrong conclusion.
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In the following calculations, we use the initial condition of our disc simulations

as a starting point in analytic calculations of stability. However, our model takes

into account the increased surface density in the spiral arms that is characteristic

of the non-linear phase. In addition, for irradiated discs, we take into account the

increase in temperature and opacity in the spiral arms, based on results from our set

of simulations.

4.4.1 Calculating the critical cooling time

Figure 4.10: The critical cooling time (black line), as calculated for our disc initial
condition. The horizontal blue, dot-dashed line represents the value as previously
determined by numerical experiments, while the red, dashed line shows the Q profile.
The vertical, red lines show the extent of the unstable region, with Q < 1.7. As can
be seen, the value for βcrit in this region is consistent with the value from numerical
experiment.

The critical cooling time, βcrit, for a Q ∼ 1 disc with γ = 7/5 has been found to

be βcrit = 12 from numerical experiments [Rice et al. (2005); with the caveat that

numerical convergence has not been clearly demonstrated]. If we adopt a heating
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rate without irradiation (consistent with the aforementioned simulations), given by

equation (4.13) and balance this heating with a β-prescription cooling rate, given by

Q− =
c2sΩ

γ(γ − 1)β
, (4.22)

then we can solve for the cooling rate that results in a certain arm thickness:

β =
2

ǫMM̃γ (γ − 1)

[

1− l0
f23/2

(

2HHill

l1

)3/2(
3fΩ2

GΣ0l0

)1/2
]−2

. (4.23)

The critical cooling time can then be computed from the above equation by setting

the arm thickness to exactly match the Hill thickness, l1/(2HHill) = 1. Since both the

heating, Q+, and cooling, Q−, are proportional to the square of the sound-speed in

this case, the increase in sound-speed that occurs in a spiral shock does not affect the

critical cooling time.

The critical cooling time computed for our disc initial condition is shown in Figure

4.10. As can be seen, we do not find a unique value for the critical cooling rate, but

rather a value that depends strongly on radius (due to the variation of disc properties

with radius). Importantly, we observe that our model of disc fragmentation predicts

critical cooling times in the unstable region of the disc (where Q ∼ 1) that are

consistent with the results of numerical experiments.

Equation (4.23) implies that fragmentation should occur for small values of MM̃,

since these result in longer critical cooling times. The product MM̃ is smallest near

corotation (in fact, it is formally zero there: see equation 4.14); therefore, fragmen-

tation should occur near corotation, as suggested by Durisen et al. (2008). However,

as discussed in §4.3, regions with Q ∼ 1 are expected to be near corotation. Hence,

fragmentation near corotation is consistent with fragmentation in regions with Q ∼ 1.

The consistency of our model with numerical experiments is a useful check on our

model. In addition, it is noteworthy that Figure 4.10 demonstrates the first calcu-

lation of the critical cooling time from a physical model of fragmentation. Previous

estimates of βcrit have come only from numerical experiments.
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4.4.2 Predictive ability of the model for irradiated discs

It is useful to check our model against the results of previous work using cooling

in the form of a β-prescription. However, it is of particular interest to apply the

model to the more realistic case of an irradiated disc with radiative cooling. Without

considering GI, an irradiated disc has a natural equilibrium state in which the heating

of a particular patch of disc from stellar irradiation is balanced by the radiative cooling

of that patch. Here, we consider deviations from this equilibrium state due to GI.

Figure 4.11: The spiral arm thickness (black curves) of an irradiated disc in units
of the Hill thickness, as calculated for our disc initial condition. The arm thickness
is calculated for the range of opacities used in the simulations. From the curve of
greatest l1/(2HHill) to the curve of smallest l1/(2HHill) the opacity scalings are 10, 3,
1, 1/3, and 1/10 the physical opacity (the solid black curve). The Q profile is given
by the red, dashed curve, while the vertical, red lines show the extent of the unstable
region, with Q < 1.7.

Specifically, there is an additional heating of the disc from the spiral arms, given

by equation (4.13), which will result in an increase in the midplane temperature of δT .

We consider spiral arms in which this excess heating is balanced by a perturbative



128 P. D. Rogers – Ph.D. Thesis

radiative cooling. Following Kratter et al. (2010b), for excess heating transported to

the photosphere via radiative diffusion, the perturbative radiative flux is

F =
16σ

3κΣ

(

T 4 − T 4
irrad

)

, (4.24)

which results in a cooling rate per unit mass of

Q− =
F

Σ
=

16σ

3κΣ2

(

T 4 − T 4
irrad

)

, (4.25)

where the midplane temperature is T = Tirrad + δT .

We calculate the natural arm thickness for our disc initial condition from §4.2

by balancing the perturbative heating and cooling in the arm. This results in the

following quartic:

{C} l41 − {B} l21 +
{

2Bl0
f

}

l1 −
{

B

(

l0
f

)2
}

= 0, (4.26)

where

B =
ǫc2sMM̃Ω

2
(4.27)

and

C =
16σ (T 4 − T 4

irrad
)

3κ

(

f

Σ0l0

)2

. (4.28)

Once l1 is calculated, we can calculate the ratio

(

l1
2HHill

)

=
l
2/3
1

2

[

3fΩ2

GΣ0l0

]1/3

(4.29)

to determine the stability of the arm.

Computing the arm thickness requires knowledge of the midplane temperature of

the spiral arm during the non-linear phase. Since we are unable to self-consistently

predict this temperature, this unfortunately limits the predictive ability of the model’s

application to radiatively cooled discs. However, we can use the results of our simula-
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tions in §4.2 to test the consistency of the model with our simulation results. We have

measured the maximum midplane temperature for each opacity case as a function of

radius, averaged over the one ORP before fragmentation took place in Simulations

A and B. We use these measurements of T in determining the arm thickness from

equation (4.26). In addition to the temperature perturbation, we take into account

the resulting changes in sound speed and opacity.

Johnson & Gammie (2003) found that cooling times in the non-linear phase can

differ by orders of magnitude from the cooling times in the initial disc, largely because

of sharp variations in the opacity with temperature. However, these sharp variations

occur in discs that have high temperatures; in particular, temperatures near the

opacity gap, T ∼ 1200 K. In contrast, the outer regions of irradiated discs typically

have much lower temperatures of T < 100 K. For these temperatures, there is no sharp

variation in κ(T ) and κ is not a function of the density. For the typical increase of

δT ∼ Tirrad/2 observed in the region of fragmentation in our simulations, the resulting

change in opacity is only about a factor of 1.25. In the outer regions of irradiated

discs, opacity changes during the non-linear phase are not a large effect; however, we

have taken them into account in our calculations.

The results of the arm thickness calculations, over the range of opacity scalings

used in our simulations, are shown in Figure 4.11. We expect discs to fragment

for l1/(2HHill) ≤ 1, and the trend in Figure 4.11 is consistent with this picture:

as found in our simulations, the increased-opacity discs are less likely to fragment

(have larger l1/(2HHill)) than the reduced-opacity discs. However, even though the

increased-opacity discs are not expected to fragment, the arm thickness is expected

to be within a factor of two of the Hill thickness in the region of Q ∼ 1. The small

range in l1/(2HHill) over the different opacity scalings, as seen in Figure 4.11, may

seem counter-intuitive given that the opacity variation is a factor of 100. However,

we can understand this weak dependence on opacity as the result of the non-linear

nature of the self-regulation of heating and cooling in a spiral arm.

As described in §4.3.1, the region of the initial disc that goes into the formation

of the arm, l0, is the result of the initial GI and does not depend on the opacity of the

disc. The thickness of the spiral arm is then the result of the balance of heating and
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cooling in the arm. For radiative cooling in a spiral arm, the cooling rate per unit

mass is Q− ∝ 1/(κΣ2
1), while the heating rate per unit mass is Q+ ∝ Σ2

1. A lower

opacity results in a faster cooling rate, which requires a faster heating rate for balance

to be achieved. This faster heating rate requires a higher surface density in the arm,

but this acts to decrease the cooling rate. One can see then, that the balance between

heating and cooling, which determines l1/(2HHill), has a non-linear dependence on the

opacity. In fact, if we parameterize this dependence as a power-law, l1/(2HHill) ∝ κν ,

in the region of instability, we find a weak opacity dependence, with ν ∼ 0.1.

As discussed in §4.3.3, this result is consistent with our simulations. Figure 4.7

(bottom) shows the analysis of an arm from Simulation D. This arm is stable, in that

it does not lie within its Hill thickness; however, its thickness only exceeds the Hill

thickness by a relatively small factor. All of the arms analyzed in the simulations

have thicknesses that are similar to their Hill thicknesses.

From our calculation, only the lowest opacity case, corresponding to Simulation

A, has l1/(2HHill) < 1, and would be expected to fragment; in fact, both Simulation

A, and the second-lowest opacity case, Simulation B, have shown fragmentation.

This discrepancy is likely simply the result of the choices of parameters used in the

calculation. We have chosen values for a number of parameters in our model (l0, f , ǫ,

and MM̃) that are expected to be correct to within O(1); however, the exact values

will likely have some variation. A change in these parameters shifts the curves of

l1/(2HHill) vertically, but has little effect on the small range of l1/(2HHill) over opacity

scalings. With an improved understanding of the growth of spiral structure, and the

heating of spiral arms, the model’s predictive abilities will be improved.

Furthermore, our analytic model considers the stability of a disc based on the

stability of a statistically-averaged arm, as our choices of parameters, (l0, f , ǫ, and

MM̃), are characteristic of the average. For example, the value of ǫ, was determined

by Cossins et al. (2009) by considering the overall self-regulation of their Q ∼ 1 discs.

It is unclear how much the value of ǫ in a given arm is expected to vary from this

statistical average. For a disc to fragment, however, only a single arm is required to

be unstable, rather than the statistically-averaged arm. It may then be important

to understand the variance of the model parameters away from their characteristic
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values, in order to more accurately predict fragmentation.

As with the application of the model to the case of β-prescription cooling in §4.4.1,

we find, from our numerical solution of equation (4.26), that fragmentation is more

likely for smaller values of MM̃ in the case of radiative cooling. This implies that

fragmentation should take place near corotation.

4.4.3 Predicted masses of fragments in irradiated discs

Figure 4.12: The predicted initial fragment mass (black curves), in Jupiter masses,
of an irradiated disc, as calculated for our disc initial condition. The fragment mass
is calculated for the range of opacities used in the simulations. From the curve of
greatest mass to the curve of smallest mass, the opacity scalings are 10, 3, 1, 1/3,
and 1/10 the physical opacity (the solid black curve). The Toomre mass is given by
the red, dashed curve, while the predicted mass of Boley et al. (2010) is given by
the blue, triple-dot-dashed curve. The asterisks represents the initial fragments from
Simulation A, while the diamond represents the initial fragment form Simulation B.

The initial mass of fragments can be a useful constraint on the physical model

of fragmentation (Boley et al. 2010; Forgan & Rice 2011). From the natural arm
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thickness, l1, calculated using equation (4.26), the fragment mass can be estimated as

M = Σ1l
2
1. The model predictions are lower-bounds for the final mass of fragments,

since significant accretion of disc-material can occur after fragmentation has taken

place.

Figure 4.12 demonstrates the initial fragment mass expected for the range of

opacity scalings used in our simulations. We compare our model’s fragment mass

with the Toomre mass, MT = πΣ(l0/2)
2, as well as with the fragmentation model of

Boley et al. (2010). In addition, we compare the model predictions with the initial

fragments observed in Simulations A and B, for which masses have been determined

using the SKID group-finder (Stadel 2001). SKID determines groups of SPH particles

based on the gradient of density, and then performs an iterative unbinding procedure,

which we have modified to include thermal energy.

As can be observed in Figure 4.12, our model predicts fragments with initial

masses in the gas-giant regime, significantly less than the Toomre mass. The masses

of the fragments from Simulations A and B are consistent with the predicted masses

to within a factor of two∗. It is interesting to note that the fragmentation model

of Boley et al. (2010), strictly valid only for isothermal simulations, predicts similar

mass fragments in the region where fragmentation is observed.

4.5 Discussion and conclusions

4.5.1 Implications for planet formation

Direct-imaging observations have shown the existence of gas-giant planets at large

distances from their host A star, including HR 8799b, 7 MJup at a distance of 68 AU

(Marois et al. 2008), and Fomalhautb, 3 MJup at a distance of 119 AU (Kalas et al.

2008). It is difficult to explain the existence of gas-giants at such distances from their

host star in the core-accretion scenario, since the surface densities are typically too

low to form the necessary rocky cores within the lifetime of the gas disc (Dodson-

∗Additional comment for thesis : we would like to emphasize that these are the initial masses of
the fragments. The final masses are substantially larger due to subsequent accretion of disc material,
and are in the brown dwarf regime.
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Robinson et al. 2009; Rafikov 2011). However, more investigation is warranted in

order to determine if such planets can be explained in the core-accretion scenario.

In comparison, fragmentation via GI has been shown to be a viable formation

mechanism at large distances from the host star from both theoretical arguments

(Rafikov 2007; Nero & Bjorkman 2009; Kratter et al. 2010b), as well as from numerical

simulations with radiative transfer (Boley 2009; Vorobyov & Basu 2010; Stamatellos

et al. 2011; Boss 2011).

The particular set of 3D radiation hydrodynamic simulations presented here were

designed to investigate fragmentation at large radii (∼ 100 AU) around A stars.

At these distances, heating from stellar irradiation is expected to be the dominant

heating source; we have included irradiation using the Tirrad expected for a 1.35 M⊙

A star (Kratter et al. 2010b).

The results of our simulations show that GI can produce gravitationally bound

objects at large distances from the star, given opacities on the low side of the expected

range. Such opacities could be the result of grain-growth (Birnstiel et al. 2010), grain

evolution via the passage of spiral arms (Podolak et al. 2011), or formation in an

environment with a non-solar metallicity (HR 8799 is roughly 1/3 solar metallicity,

Marois et al. 2008). Our simulations do not take these physical mechanisms into

account, but rather use a simple scaling of the opacity table.

Although our simulations do not have the resolution to follow the evolution of

bound objects as their central densities run away, it is interesting to consider the

objects at the end-state of our simulations, shown in Figure 4.2. At the end of

Simulation A (with an opacity scaled by 1/10), there are two brown dwarfs of masses

21 MJup and 15 MJup, at respective distances of 62 AU and 95 AU; while at the

end of Simulation B (with an opacity scaled by 1/3), there is one brown dwarf of

mass 40 MJup at a distance of 95 AU. Neither the masses nor the distances of these

objects represent their final state: all of the objects are accreting mass and migrating

inwards at the end of the simulation. The long-term evolution, and migration, of

objects formed at large distances through GI is an active area of research. In addition

to providing a mechanism to form the gas-giants observed at large distances from

their star, formation of objects through GI, coupled with inward migration and tidal
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disruption (Boley & Durisen 2010; Nayakshin 2010) represents an interesting channel

for the formation of rocky cores at smaller distances.

We conclude that GI in discs can produce brown dwarfs at large distances from

A stars. We have, of course, only shown fragmentation for a single surface density

and temperature profile. It is of interest to investigate a greater region of the param-

eter space with numerical simulations in order to explore the possibility of low-mass

companions such as those observed by Marois et al. (2008) and Kalas et al. (2008)∗.

4.5.2 Physical model of fragmentation

We have presented a new framework to explain the link between cooling and frag-

mentation in protostellar discs. This framework consists of two components. The

first is a simple model for the formation of spiral arms, in which the thickness of

a spiral arm is set by a balance between heating (through gravitational instability

and irradiation) and radiative cooling. The second is a criterion for fragmentation:

spiral arms that have a natural thickness smaller than their Hill thickness fragment,

resulting in objects that may survive to become gas-giant planets or brown dwarfs.

This model of fragmentation is based on results from Cossins et al. (2009) as well

as our suite of 3-D radiation hydrodynamics simulations of gravitational instability

in an irradiated, optically-thick protostellar disc surrounding an A star. By reducing

the opacity scaling, and consequently the cooling time, over the set of simulations, we

have produced a suite that demonstrates the transition from non-fragmentation to

fragmentation. From an analysis of these simulations, we have found that the critical

scale for determining fragmentation is roughly the Hill thickness: those spiral arms

that are found to fragment lie within twice their Hill radius, while those spiral arms

that do not fragment extend beyond their Hill thickness. In the future, it would be

of interest to have a robust calculation of the critical scale for fragmentation from a

∗Additional comment for thesis : the initial masses of the fragments produced in the simulations
presented here are in the gas-giant planet regime. However, in the outer disc, the isolation and gap
opening masses are in the brown dwarf regime, so fragments grow from planets to brown dwarfs
through accretion of disc material. Fragments may remain in the gas-giant planet mass regime,
and so explain the low-mass companions observed, through gap overlap of multiple fragments or
dispersal of the disc; however, the rate of occurrence of such an outcome requires further study (see
Section 2.4.2 as well as Kratter et al. 2010b).
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stability analysis of a spiral arm in a differentially rotating system.

In comparison to the critical cooling time picture, our model of fragmentation is a

more detailed, and more general, physical picture of fragmentation that is applicable

to discs with realistic heating and cooling, in addition to discs with β-prescription

cooling. Indeed, by coupling the Hill criterion to our simple model of spiral arm

formation, heating, and cooling using a β-prescription, we have been able, for the

first time, to calculate βcrit. We find that there is not a single value for βcrit, but that

it depends on the local properties of the disc; in addition, our calculation is consistent

with the value determined by numerical experiment.

We have also demonstrated how this model can be used to predict fragmentation,

and fragment masses, in irradiated discs with radiative cooling. Applying the model to

the initial condition of our simulated disc, for the various opacity scalings used, yields

predictions that are consistent with the results of our simulations. An improvement

in the predictive abilities of the model depends on a better understanding of several

parameters that describe the formation and heating of the spiral arms.

Fragmentation, as determined by the Hill criterion, is weakly dependent on opac-

ity, in agreement with Boss (2002) and Cai et al. (2006). Despite the factor of 100 in

opacity scaling across the suite of simulations, the thickness of spiral arms is observed

to be near the Hill thickness, as predicted by our analytic calculations.

In addition, the survival of a fragment can depend on the outcome of the initial

fragment’s collision with the remaining spiral arms. In one of our simulations, a

fragment was destroyed through this process. The destruction of fragments through

interactions with weak shocks has also recently been shown to be important in studies

of GI employing the β-cooling prescription (Paardekooper 2012). The outcome of

these interactions may be particularly sensitive to numerical methods.

This model has been developed in the context of protostellar discs; however, it may

also be of use in the context of star formation in a disc near the Galactic centre (Levin

& Beloborodov 2003), as well as star-cluster formation in optically-thick starburst

galaxies, such as Arp 220.

In this work, we have considered isolated discs; that is, the effects of accretion from

the surrounding envelope were ignored. However, accretion is expected to play an im-
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portant role in gravitationally unstable discs [Boley (2009); Kratter et al. (2010a)],

since it is accretion that will push the mass of the disc towards being sufficient for

instability to set in, keep it unstable despite mass-transport, and contribute to heat-

ing. In future work, we intend to investigate the effects of accretion on the stability

of protostellar discs, in the context of our model of fragmentation.
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Chapter 5
The role of radiative transfer in star

formation

5.1 Introduction

The previous three chapters of this thesis have focused on gas-giant planet and brown

dwarf formation through the fragmentation of massive protostellar discs. As de-

scribed, radiative transfer (RT) plays a critical role in this process, as it determines

the cooling rate of the disc, as well as the heating rate in the outer disc by stellar ir-

radiation. The heating and cooling rates in a gravitationally unstable disc determine

whether or not fragmentation occurs.

In this chapter, we consider the important role that RT plays in the star formation

process. Stars are predominately formed in giant molecular clouds (GMCs), and the

transition from atomic gas to molecular gas depends on having a sufficient column of

gas and dust for effective self-shielding against the galactic FUV field. In the initial

phases of turbulent star formation, non-ionizing (IR) radiation released from gravita-

tional contraction in high-density regions leads to the local heating of these regions,

suppressing small-scale fragmentation. Once massive stars form, they produce large

amounts of ionizing (UV) radiation, which creates HII regions that drive turbulence

on the scale of the parent molecular cloud, and possibly disrupt the cloud as a whole,

shutting off star formation. For massive stars, radiation pressure significantly affects
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accretion. In massive molecular clouds, radiation pressure may also play a role in the

cloud’s disruption.

Our goal is to give context to the numerical methods presented in this thesis,

and demonstrate their importance to simulations addressing fundamental questions

concerning star formation. Our methods will be applied to such simulations in the

near future. This chapter is not meant to be a comprehensive review of the field,

but only a sample of the recent research. We first briefly overview the current under-

standing of star formation in Section 5.2. Our implementation of radiative transfer in

the flux-limited diffusion (FLD) approximation, presented in Section 3.2, is the most

common method of including non-ionizing radiation in simulations of star formation,

as described in Section 5.3. The role of ionizing feedback from massive stars is pre-

sented in Section 5.4; this section gives context to Chapter 6, in which we present

methods and tests for our implementation of ionizing RT in Gasoline.

5.2 A primer on star formation

The star formation process spans an incredible range in physical scale, from that of

galaxies (kpc), to giant molecular clouds (10’s of pc), to individual prestellar cores

(0.1 pc), and ultimately, down to stellar radii (10−8 pc). Star formation also in-

volves a number of physical effects, all of which are likely important: hydrodynamics

(including turbulence), self-gravity, magnetic fields (including non-ideal effects), and

radiative transfer. As a consequence, star formation is an active, and rich, field of

research. Here, we give only a brief introduction to the subject, to give context to our

discussion of the role of radiative transfer. For a more detailed consideration, see the

reviews by McKee & Ostriker (2007), Zinnecker & Yorke (2007), and Klessen et al.

(2009).

Most stars form in clusters (Lada & Lada 2003) created in GMCs, which are

generally defined as having masses greater than 104 M⊙. Most of the molecular mass

in the Milky Way resides in GMCs with M > 105 M⊙ (McKee & Ostriker 2007). The
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timescale for gravitational collapse is the free-fall time:

tff =

(

3π

32Gρ

)1/2

, (5.1)

which is about 4 Myr for a typical GMC number density of 100 cm−3. As noted by

Zuckerman & Evans (1974), GMCs in free-fall collapse, without substantial feedback,

are not consistent with observations, as the resultant star formation rate would greatly

exceed the 1 M⊙ yr−1 of the Milky Way. Observations of GMCs in the LMC (Blitz

et al. 2007) and M33 (Engargiola et al. 2003) indicate typical lifetimes of 10-30 Myr,

with a short starless phase of 3-7 Myr.

These observations indicate that GMCs are either supported, and not in free-fall,

or that they are dispersed relatively soon after the first stars are formed (or some com-

bination of these factors). Magnetic fields have been proposed as one mechanism of

support (Mouschovias & Spitzer 1976); in this picture, athough the cloud as a whole

is magnetically-supported, prestellar cores increase in mass through ambipolar diffu-

sion. When the mass of a core has grown large enough, gravitational collapse ensues.

However, this basic picture of magnetically-controlled star formation is inconsistent

with observed mass-to-magnetic-flux ratios (Crutcher et al. 2009).

Turbulence has been proposed as an alternative method of support for GMCs. The

seminal work of Larson (1981) demonstrated that the observed scale-dependence of

line-widths is indicative of turbulence, which is supersonic on scales larger than about

0.1 pc. Simulations of MHD turbulence (ie. Ostriker et al. 2001) show that it pro-

duces a range of density structures, specifically a log-normal probability-distribution

function, for both the volume density and the column density.

One major goal of any theory of star formation is to explain the initial mass

function (IMF) of stars, the number of stars formed per bin of stellar mass. The

observed IMF shows a power-law at the high-mass end (Salpeter 1955), as well as a

turnover at lower masses (∼ 0.2 M⊙; Chabrier 2003). In the turbulent fragmentation

picture of star formation, overdensities are formed by multiple supersonic shocks.

Some of these are transient, while others becoming self-gravitating prestellar cores

that collapse to form stars. The core mass function (CMF) expected from turbulent
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fragmentation has a similar form to the observed IMF: a high-mass power-law with

turnover at a fraction of a solar mass (Padoan & Nordlund 2002). Observations also

indicate that the CMF has a similar form to the IMF (ie. Reid & Wilson 2006; Alves

et al. 2007), but with a higher turnover mass. A one-to-one transition from core

to star, with an efficiency of 30% has been proposed (Alves et al. 2007), although

this factor may simply be the result of projection effects (Ward et al. 2012). In

addition, a one-to-one correspondence between core and star neglects the observed

high rate of stellar multiplicity (Duquennoy & Mayor 1991), which would result from

the small-scale fragmentation of cores.

The model of turbulent fragmentation predicts that only a small percentage of

the total mass of a GMC is at high enough densities to be capable of star formation.

However, turbulence decays on a sound-crossing time (roughly the free-fall time; Os-

triker et al. 2001). It cannot, by itself, prevent the free-fall collapse of the GMC, and

the resulting unrealistically high star formation efficiencies, unless there is a driving

mechanism. In addition, when stars form, there is resultant feedback on the GMC

in the form of protostellar outflows, radiation pressure, and HII regions created from

the ionizing radiation of massive stars.

Turbulence in GMCs is consistent with driving at the largest scale (McKee &

Ostriker 2007). Turbulence can be driven externally by, for example, cloud-cloud col-

lisions (Tasker & Tan 2009); or internally, by stellar feedback. Protostellar outflows

are unable to drive turbulence on the scale of GMCs (Matzner 2007); however, HII

regions can operate on the largest scale (Matzner 2002). In addition to driving turbu-

lence, analytic models suggest that the expansion of HII regions can act to disrupt the

GMC as whole, unbinding it (Matzner 2002; Krumholz et al. 2006). Recent work has

also suggested that momentum feedback of radiation pressure on dust grains plays

an important role in disrupting GMCs, particularly the most massive (Krumholz &

Matzner 2009; Murray et al. 2010).
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5.3 The effects of non-ionizing feedback

The characteristic mass for gravitational fragmentation in a uniform medium is the

Jeans mass:

MJeans =

(

πc2
s

Gρ

)1/2

∝
(

T

ρ

)1/2

; (5.2)

only regions with M > MJeans collapse when perturbed. In addition, the stability of

rotating systems to gravitational fragmentation is determined by the Toomre Q:

Q =
csΩ

πGΣ
∝

√
T , (5.3)

where we have assumed that the rotation is Keplerian. From the above, we can

see that both the typical mass-scale for gravitational fragmentation, as well as the

stability of discs to fragmentation are sensitive to the thermodynamics of the gas.

During the star formation process, gravitational contraction and shocks lead to the

heating of gas and dust to 10’s to 100’s K, in comparison to the ambient temperature

of 10-20 K. This excess thermal energy is radiated away, predominately in the IR,

where dust grains are the dominant sources of opacity. This radiation heats the

surrounding gas, raising the Jeans mass and preventing fragmentation of low-mass

objects such as brown dwarfs. In addition, this radiative heating acts to stabilize

the circumstellar disc of a protostar, decreasing the likelihood of fragmentation into

low-mass objects. The luminosity of protostars from accretion and fusion contribute

important radiative feedback that limits the subsequent fragmentation of the nearby

material, including the protostar’s disc and nearby filaments.

Only recently have 3D radiation hydrodynamics simulations of star formation in

molecular clouds and protostellar cores been carried out, demonstrating the impor-

tance of the suppression of fragmentation from IR radiative heating. Most of this work

has used FLD (see Section 3.2) to model the transport of IR radiation interacting

with dust grains (work by the Berkeley group, led by Mark Krumholz, Richard Klein,

and Chris McKee; Matthew Bate; Benoit Commerçon; while work by Thomas Peters,

discussed in section 5.4, includes IR heating from protostars via ray-tracing, coupled

to molecular-line cooling). FLD is expected to be a good approximation in optically
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thick regions, including prestellar cores, or high-mass star forming clumps (Krumholz

et al. 2012). In addition, these works assume that the gas and dust temperatures are

well coupled, which is strictly only true in the high-density regions, requiring n & 108

for 100 K gas, or n & 105 for 10 K gas (Offner et al. 2009). The simulations of

Matthew Bate do not include feedback on scales smaller than the sink radius, and

are thus lower-limits on the ability of IR radiative heating to reduce fragmentation.

Simulations with non-ionizing RT of low-mass clouds [50 M⊙ by Bate (2009) and

185 M⊙ by Offner et al. (2009)], high-mass cores [100 M⊙ by Krumholz et al. (2007)],

as well as larger cluster-forming clumps [500 M⊙ by Bate (2012) and 103 M⊙ by

Krumholz et al. (2012)] all show the same general effect of the radiative heating.

Small scale fragmentation in filaments and discs near protostars is suppressed, as

expected from the discussion regarding the Jeans mass and Toomre Q. The effect is

dramatic: the RHD simulation of Bate (2012) produced only 10% of the brown dwarfs

as a barotropic simulation of the same initial condition. Although fewer objects

are formed, roughly the same mass is turned into stars, so that the typical stellar

mass is increased. Simulations of the fragmentation of a 120 M⊙ prestellar core by

Commerçon et al. (2011) have demonstrated the manner in which radiative feedback

and magnetic fields couple to suppress fragmentation. Strong magnetic fields can lead

to effective magnetic braking, which increases the rate of accretion onto a protostar.

Consequently, there is greater radiative feedback, and fragmentation is more highly

suppressed than in a system with weak magnetic fields.

The simulations of cluster-forming clumps (Bate 2012; Krumholz et al. 2012) show

that the inclusion of non-ionizing RT yields IMFs that are consistent with the ob-

served. Interestingly, Krumholz et al. (2012) found that as star formation progressed

in their simulation, the turnover mass shifted to higher masses, as continued accretion

drove increased heating, leading to an increasing Jeans mass. The authors found that

the addition of turbulence on a scale larger than the clump, and to a lesser extent,

the inclusion of protostellar outflows, were necessary to match the turnover mass of

their IMF to the observed.

In addition to affecting subsequent fragmentation, radiation from a massive pro-

tostar can strongly affect further accretion onto the star. For stars more massive than
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about 20 M⊙, the radiation pressure from photons on the dusty infalling envelope is

enough to halt spherically-symmetric accretion, limiting the maximum stellar mass.

Recent 3D RHD simulations (Krumholz et al. 2009) have demonstrated that accre-

tion is not, in fact, halted by the radiation pressure because of multi-dimensional

effects. Accretion can continue through the disc that is formed during the collapse of

the prestellar core, and through filaments created from Rayleigh-Taylor instabilities.

This latter effect may be enhanced by the use of frequency-integrated FLD, and may

require better treatments to properly follow the accretion (Kuiper et al. 2012). Effec-

tive accretion via a disc has also been observed in the 2D and 3D RHD simulations,

using ray-tracing coupled to FLD, of massive star formation carried out by Kuiper

et al. (2010, 2011).

5.4 The effects of ionizing feedback

The simulations described above show that non-ionizing radiative heating primarily

affects local regions of star formation, on the scale of 0.01-0.3 pc. In addition to

the IR photons responsible for such radiative heating, massive stars produce large

numbers of ionizing, UV, photons. These photons produce H II regions of ionized

hydrogen, with characteristic temperatures of roughly 104 K, and sound speeds of

roughly 10 km/s. Analytic models of HII regions in star-forming GMCs (Matzner

2002; Krumholz et al. 2006) indicate that HII regions dominate the energetics of the

GMC, are able to drive turbulence on the scale of the GMC, thereby keeping the star

formation efficiency low, and are ultimately able to disrupt GMCs on timescales of

10-30 Myr, consistent with observed lifetimes. In considering star-cluster formation

on the scale of a GMC, it is fundamentally important to consider the effects of ionizing

radiation. We note that for the largest GMCs, particularly those in starburst galaxies,

analytic models indicate that radiation pressure from both non-ionizing and ionizing

photons may play a dominant role in disruption (Krumholz et al. 2009; Murray et al.

2010). Observations of the giant HII region 30 Doradus indicate that both radiation

pressure and HII gas pressure are important in driving the expansion (Lopez et al.

2011).
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The expansion of a massive star’s HII region into a uniform medium occurs in

two stages (Spitzer 1978). In the first stage, UV photons create an ionization front,

inside of which the gas is ionized and outside of which it is neutral. This front

expands supersonically, in comparison to both the ionized gas and the neutral gas; as

a consequence, the density remains unchanged during this phase. When the radius of

the ionization front approaches the Strömgren radius, inside of which recombinations

balance ionizations, the increased gas pressure of the 104 K gas becomes important,

and there is a second stage, of pressure-driven expansion. In this stage, the HII region

expands supersonically into the surrounding gas, sweeping up a thin shell of material.

The initial expansion of HII regions is more complicated than the classical picture

presented above. Observations indicate that HII regions exist in an embedded, ultra-

compact, phase for roughly 4×105 years (Churchwell 2002). This is much longer than

would be expected for the classical picture of HII expansion. Keto (2002) found that

the addition of the star’s gravity and continued accretion to the analytic model sig-

nificantly modifies the initial expansion of the HII region. Initially, the star is unable

to sustain an HII region. As its mass grows and it produces more ionizing photons,

an HII region develops; however, the escape velocity from the star exceeds the sound-

speed of the ionized gas, and the HII region remains “gravitationally trapped.” After

sufficient mass-growth, the star is finally able to drive a pressure-expanding HII re-

gion. The inclusion of accretion along a disc results in the production of bipolar

outflows (Keto 2007).

Only recently have 3D simulations of star-cluster formation that take into account

ionizing feedback and self-gravity been performed. Peters et al. (2010) performed 3D

simulations of the collapse of a 1000 M⊙ molecular cloud 0.5 pc in size, including

self-gravity, hydrodynamics, an approximate treatment for non-ionizing radiation,

and ionizing radiation using a ray-tracing scheme. As expected, the growth of HII

regions from the resulting massive protostars, over the simulated time of 0.75 Myr,

differs from the classical picture. Continued accretion onto the massive stars leads

to asymmetric, and unsteady expansion of the HII regions. In fact, HII regions were

observed to contract, rather than expand, during periods of increased accretion onto

a star. From the simulation results, the authors were able to successfully reproduce
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the observed morphological classes of ultra-compact HII regions. This study did not,

however, include turbulence, nor did it address the effects of ionizing feedback at the

scale of the GMC.

Dale et al. (2007) have included an approximate treatment for feedback from

ionizing radiation in their SPH code. The method is a Strömgren volume method,

in which SPH particles determine the flux of ionizing radiation received from nearby

sources by a radial integral of the density distribution along the line of sight, taking

into account the ionization of neutral gas, and recombinations in the ionized gas.

Based on the calculated flux, gas may be declared to be ionized, and heated to

104 K. The heating from non-ionizing radiation is treated only approximately using

a barotropic equation of state. HII region expansion also differs from the classical

picture on the largest scales because of the turbulent, self-gravitating nature of GMCs.

Dale et al. (2012) used the Strömgren volume method described to examine the

effects of ionizing feedback for a number GMCs with the same ratio of turbulent

to gravitational energy, but different mean densities. The clouds, with masses of

104 − 106 M⊙ were initially of uniform density, with a turbulent velocity field. Star-

cluster formation, and the resulting ionizing feedback, occurred relatively quickly.

The authors found that the ionizing feedback did have large dynamical effects, with

1-10% of the MC mass ionized, and 1-60% becoming unbound within 3 Myr; the

effects of the feedback decreased for the increasingly massive clouds. However, the

overall star formation efficiency over this period was not largely affected by ionization.

In this discussion, we have focused on the ability of HII regions to disrupt GMCs

and limit the star formation efficiency. However, HII region expansion has also been

suggested as a means of triggering star formation through compression of the sur-

rounding gas (Elmegreen & Lada 1977). Dale et al. (2012) suggest that the negative

effects of ionizing radiation may be offset by triggered star formation in their runs,

although more study is required.

The work of Dale et al. (2012) suggests that the effects of ionizing feedback on

GMC evolution are more complicated than in the analytic models; in particular,

limiting the star formation efficiency is more difficult than expected. Other effects

are likely also important, including stellar winds and protostellar jets (Nakamura &
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Li 2007), which are effective forms of feedback on smaller scales; as well as magnetic

fields, which may increase the energy input of HII regions (Gendelev & Krumholz

2012). For the most massive clusters, whose escape velocities exceed the sound speed

of ionized gas, radiation pressure may play an important role in GMC disruption.

Supernovae will inject considerable energy into the GMC roughly 4 Myr after star

formation.

Harper-Clark (2011) performed grid-based simulations of GMCs of 2 × 105 and

8 × 105 M⊙ and included ionizing radiation (using a ray-tracing method), radiation

pressure, supernovae, and magnetic fields. In contrast to the results of Dale et al.

(2012), the authors found that feedback was effective at limiting the star forma-

tion efficiency (to 5-21% of the GMC mass) and disrupting the GMC. A number of

simulations were carried out, varying the feedback mechanisms that were included.

The results show that the gas-pressure from HII regions was the primary cause of

the limited star formation efficiency. More simulations are thus required in order to

determine the effectiveness of feedback to limit star formation and disrupt GMCs.

More of the GMC parameter space must be explored for longer times, using higher

resolution, and less approximative methods.

5.5 Conclusions

Radiative transfer is fundamentally important in our understanding of star formation,

and a necessary ingredient in numerical simulations. On the small scales, heating from

non-ionizing IR radiation increases the local Jeans mass, and stabilizes protostellar

discs, limiting the production of brown dwarfs and influencing the low-mass end of

the IMF. Massive stars ionize gas, and drive HII regions which unbind GMCs and are

a source of turbulence. Radiation pressure affects the accretion of high-mass stars,

and may also unbind GMCs, particularly the most massive. Our implementation of

FLD in Section 3.2 is suitable for modelling non-ionizing radiation. In the following

chapter, we present methods and tests for ionizing radiation.
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Chapter 6
Ionizing radiation hydrodynamics with

OTVET: methods and tests

6.1 Introduction

In this chapter, we present methods and tests of our implementation of ionizing ra-

diative transfer (RT) in the smoothed particle hydrodynamics (SPH) code Gasoline

(Wadsley et al. 2004). Our implementation closely follows the work of Petkova &

Springel (2009), which was the first to include RT in SPH using the Optically Thin

Variable Eddington Tensor (OTVET) formulation of Gnedin & Abel (2001).

In star formation, non-ionizing radiation is continually reprocessed by dust grains,

creating a diffuse radiation field that is well-treated by methods such as flux-limited

diffusion. In contrast, ionizing photons are emitted by massive stars, and are di-

rectly absorbed by neutral hydrogen. Most recombinations lead to excited states of

hydrogen, and produce non-ionizing IR photons, but a significant number of recom-

binations (40%, Osterbrock & Ferland 2006) do lead directly to the ground state,

producing ionizing photons. However, if the mean-free path of the ionizing recombi-

nation photons is small compared to the size of the HII region, then it is reasonable

not to model the resulting diffuse UV field, but to assume that these photons are

absorbed locally (the on-the-spot approximation, Osterbrock & Ferland 2006). The
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approximation works well for simple geometries, but results in unrealistically sharp

shadows when inhomogoneities are present (Ercolano & Gritschneder 2011). With

this commonly employed approximation, it is the direct emission from nearby sources

(and absorptions along the line of sight) that determines the ionizing radiation field.

Consequently, most treatments of ionizing radiation use a ray-tracing scheme

that solves the equation of radiative transfer along the line-of-sight from star to

gas (Mellema et al. 2006; Rijkhorst et al. 2006; Wise & Abel 2011). Ray-tracing

has previously been implemented in SPH codes (Pawlik & Schaye 2008; Gritschneder

et al. 2009). However, given the complexity of adding ray-tracing to Gasoline, and

the previous work done for our implementation of FLD, we have chosen to use the

OTVET method in Gasoline. OTVET was designed for modelling ionizing RT, in

which the radiation field is dominated by discrete sources. It represents a more di-

rect, and faster, path to including ionizing RT in Gasoline. As a benefit, OTVET was

designed for efficient modelling of RT in cosmological simulations with large numbers

of sources. Our implementation will consequently be very useful for the cosmological

simulations performed in our research group.

6.2 The Variable Eddington Tensor formulation of

radiative transfer

The OTVET formulation was originally developed in order to include the effects

of radiative transfer on galaxy formation in cosmological simulations. We therefore

begin by considering the equation of radiative transfer including cosmological terms.

In the context of this thesis, however, our aim is to use the OTVET formulation to

consider the ionizing radiation from massive stars in star formation simulations at

the scale of molecular clouds. Consequently, we quickly drop the cosmological terms,

though they may easily be included in our implementation in the future. Descriptions

of the OTVET method can also be found in Gnedin & Abel (2001) and Petkova &

Springel (2009).
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6.2.1 The equation of radiative transfer and its moments

The equation of radiative transfer in a comoving frame for an expanding universe is

(Gnedin & Ostriker 1997):

1

c

∂Iν
∂t

+
n

a

∂Iν
∂x

− H

c

(

ν
∂Iν
∂ν

− 3Iν

)

= −κνIν + jν , (6.1)

where ν is the frequency, Iν is the frequency-dependent intensity, κν is the frequency-

dependent absorption coefficient, jν is the frequency-dependent emission coefficient,

a is the cosmological scale-factor, H = ȧ/a is the Hubble constant, n is a direction

vector, and c is the speed of light.

A common approach in solving the equation of RT is to consider the equation’s

moments, as well as the corresponding moments of the intensity, Iν . The first three

moments of Iν are the mean-intensity,

Jν =

∮

IνdΩ, (6.2)

the flux,

F i
ν =

∮

niIνdΩ, (6.3)

and the radiation pressure tensor,

P ij
ν =

∮

ninjIνdΩ, (6.4)

where Ω is the unit of solid-angle and the indices i and j run through the three

elements of a vector in Cartesian space. The Eddington tensor, hij, defines the

relationship between the radiation pressure tensor and the mean intensity:

P ij
ν = hij

ν Jν . (6.5)

We now drop the third and fourth terms on the left-hand side of equation (6.1),

which represent the effects of the expansion of the universe, and set the scale factor
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to a = 1. We write the first two moments of the RT equation:

1

c

∂Jν

∂t
+

1

a

∂F i
ν

∂xi
= −κνJν + jν , (6.6)

and

1

c

∂F j
ν

∂t
+

1

a

∂hijJν

∂xi
= −κνF

j
ν . (6.7)

We ignore the term of c−1 in the second-moment RT equation; the flux is then

F j
ν = − 1

κν

∂hijJν

∂xi
. (6.8)

Since the radiation energy density is Eν = 4πJν/c, this form of the flux is similar

to the flux-limited diffusion approximation, equation (3.8), used in Chapter 3. The

difference in this case is that the direction of propagation of the flux in equation

(6.8) is determined by the Eddington tensor, rather than solely by the gradient of the

radiation energy density. The form of equation (6.8) can be described as anisotropic

diffusion.

If we substitute this form of the flux into the first-moment RT equation, (6.6),

then we can solve for the rate-of-change of the mean intensity:

∂Jν

∂t
= c

∂

∂xj

(

1

κν

∂hijJν

∂xi

)

− cκνJν + cjν , (6.9)

This equation can be used to determine the time evolution of the radiation field, but

only if we know the form of the Eddington tensor, hij.

6.2.2 The Optically Thin Variable Eddington Tensor formu-

lation

Gnedin & Abel (2001) proposed closing the approximate first-moment RT equation,

(6.9), assuming an optically-thin form for the Eddington tensor. For an optically-thin
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medium, the radiation pressure tensor can be computed from

P ij (x) ∝
∫

d3x′ρsource (x
′)
(x− x′)i (x− x′)j

(x− x′)4
, (6.10)

and the Eddington tensor as

hij (x) = P ij (x) /Tr (P (x)) . (6.11)

In the above, ρsource is the density of photons produced at a location from, for example,

a massive star.

6.3 Solution of the first-moment RT equation in

SPH

6.3.1 The first-moment RT equation in SPH

The first-moment RT equation, (6.9), specifies the time-evolution of the frequency-

dependent mean intensity, Jν . A complete multi-frequency approach would require

solving this equation for a number of frequency ranges, dν, that cover the spectrum.

Since RT is computationally expensive, one generally focuses on solving equation

(6.9) only for a small number of physically important frequency ranges. In this work,

we consider a narrow frequency range of radiation corresponding to the ionization

energy of atomic hydrogen, hν0 = 13.6 eV, such that the mean-intensity has the form

Jν = J0f (ν) , (6.12)

where f(ν) is a function describing the typical spectrum near ν0. It is straightforward

to generalize this approach to multiple frequency ranges, such as those correspond-

ing to the ionization energies of helium, and the dissociation energy of molecular

hydrogen.

To solve the first-moment RT equation in SPH requires an appropriate choice

of variables. For the narrow frequency range that we are considering, the number
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density of ionizing photons is

nγ =
1

c

∫

ν

4πJν

hν
dν =

1

c

4πJ0

hν0
. (6.13)

The total number density of hydrogen atoms, including neutral, nHI, and ionized, nHII,

components is

nH = nHI + nHII =
XHρ

mH

, (6.14)

where XH is the mass fraction of hydrogen, ρ is the density, and mH is the mass of a

Hydogren atom. SPH uses Lagrangian particles of fixed mass, but evolving volume.

Therefore, rather than consider the number density of photons, it is more useful to

consider a scaled photon fraction that is independent of volume, ñγ = nγ/nH. With

this choice of variables, the first-moment equation of RT, (6.9), upon multiplication

by 4π/chν and integration over ν, becomes:

∂ñγ

∂t
= c

∂

∂xj

(

1

κ̄

∂ñγh
ij

∂xi

)

− cκ̄ñγ + s̃γ . (6.15)

In the above, s̃γ is the production rate of ionizing photons (scaled by nH to effectively

be per unit mass) from, for example, nearby massive stars. If there is a fixed rate of

production of ionizing photons, Ṅγ , then, for an SPH particle of mass m, the source

term is

s̃γ = Ṅγ
mH

m
. (6.16)

The frequency-averaged absorption coefficient, κ̄, is defined through the loss of

photons; for our narrow frequency range,

κ̄ñγ =
1

nH

∫

ν

4π

chν
κνJνdν = σ̃ñγñHInH, (6.17)

where σ̃ is the frequency-averaged absorption cross-section of neutral hydrogen. For

frequencies with ν > ν0, the cross section of neutral hydrogen is

σν = σ0

(ν0
ν

)4 exp (4− 4 arctan [ǫ]/ǫ)

1− exp (−2π/ǫ)
, (6.18)
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where σ0 = 6.30 × 10−18 cm2 is the cross-section at the resonance frequency, ν0,

and ǫ =
√

ν/ν0 − 1 (Osterbrock & Ferland 2006). From the above, one can see

that absorption will be strongly peaked near ν0. The frequency-averaged absorption

coefficient, and the frequency-averaged absorption cross-section also depend on the

spectrum of photons in the frequency range of interest.

The right hand side of the first-moment RT equation, (6.15), has three terms with

straightforward physical interpretations: the first term is an anisotropic diffusion

term that governs the conservative transport of photons, the second term governs the

absorption of photons, and the third term governs the production of photons.

As with FLD, we introduce a flux-limiter, λ, to ensure that radiation does not

propagate faster than the speed of light in optically thin regions, where κ̄ becomes

small. With this introduction, the first-moment equation is

∂ñγ

∂t
= c

∂

∂xj

(

λ

κ̄

∂ñγh
ij

∂xi

)

− cκ̄ñγ + s̃γ. (6.19)

To compare directly with the test results of Petkova & Springel (2009), we use a

similar flux-limiter

λ (R) =
1 + 0.1R

1 + 0.1R + 0.1R2
, (6.20)

with

R =
|∇ñγ|
κ̄ñγ

. (6.21)

However, we note that the above flux-limiter is slightly different from that presented

by Petkova & Springel (2009):

λP2009 (R) =
1 + 0.1R

1 + 0.1R + 0.01R2
. (6.22)

This is to ensure that the correct limits for the optically thick case, λ → 1 as R → 0,

and the optically thin case, λ → 1/R as R → ∞, are satisfied. Since the test results

in Petkova & Springel (2009) compare well with our tests in Section 6.5, we assume

that there is an error in the paper, and not in their implementation.

To solve the above equation within the SPH framework, we make a final change
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of variables to consider

Ni = miñγ,i, (6.23)

where the subscript i denotes the ith SPH particle, in order to account for particles

of differing mass. N is the number of photons per SPH particle, to within a constant

factor. Particles of differing mass are not commonly used in SPH star-formation

simulations; however, they are common in cosmological simulations. We therefore

make this change of variables to maintain the generality of the implementation.

As discussed in Chapter 3, first derivatives in SPH are straightforward, as they

require only the derivative of the kernel function W ; however, second-derivatives

taken in a similar fashion are noisy due to particle disorder. In our implementation

of FLD, we used the approximation of Cleary & Monaghan (1999) for an isotropic

second-derivative. Petkova & Springel (2009) developed a similar approximation for

an anisotropic second-derivative. For a SPH particle, i, with neighbours denoted by

j, the anisotropic derivative of the tensor Q is:

∂

∂xα

(

1

s

∂Qαβ

∂xβ

)
∣

∣

∣

∣

xi

= 2
∑

j

1

sij

xT

ij

[

Q̃j − Q̃i

]

∇iWij

|xij|2
mj

ρij
. (6.24)

In the above, s and ρ are symmetrized between neighbour-particles, in the form

1/sij = 1/2(1/si + 1/sj), and xij = xj − xi. For the fully anisotropic derivative,

Q̃ =
5

2
Q− 1

2
Tr (Q) I. (6.25)

However, Petkova & Springel (2009) note that this may lead to numerical instability,

as there is the possiblity of anti-diffusion of photons from a particle with fewer photons

to a particle with more photons. Because of this, they also consider an anisotropy-

limited second-derivative, in which equation (6.24) is evaluated with Q̃ = Q. In our

testing, the full-anisotropy derivative has led to numerical instability; therefore, we

use only the anisotropy-limited derivative in the rest of this chapter.

If we symmetrize the exchange of photons between neighbour-particles, then we
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can rewrite the first-moment equation of RT in the SPH formalism as

∂Ni

∂t
=
∑

j

wij (Nj −Ni)− cκ̄iNi +mis̃γ,i, (6.26)

where

wij =
2c

κ̄ij

mij

ρij

xT

ijh̃ij∇iWij

|xij |2
. (6.27)

As mentioned, the subscript ij denotes a symmetric combination, except in the case

of x, in which it represents the distance vector between the particles.

6.3.2 Time-integration of the RT equation

The time integration of the first-moment equation of RT, (6.26), suffers from the same

difficulties dealt with in the implementation of FLD in Chapter 3: the time-steps

required for numerical stability in the explicit time-integration of RT are generally

much shorter than the time-steps of interest in hydrodynamics. We take the same

approach as with FLD, and solve the first-moment equation of RT using a backwards-

Euler time-integration, which has the general form

yn+1
i = yni +∆t

[

Dyi
Dt

]n+1

, (6.28)

for an integrated variable, y, time-step, ∆t, and where the superscript n denotes the

beginning of the current time-step. This integration allows for longer time-steps while

maintaining numerical stability, but requires an iterative solution.

The backwards-Euler integration of the first-moment RT equation, (6.26), results

in a linear-system of the form

Ax = b, (6.29)

in which the matrix elements are

Aij = δij

(

1 +
∑

k

∆twik +∆tcκ̄

)n+1

− wn+1
ij , (6.30)
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where δij is the Kronecker delta, the known vector elements are

bi = Nn
i +∆ts̃n+1

γ,i mi, (6.31)

and the unknown solution vector is

xi = Nn+1
i . (6.32)

The elements of this sparse linear system of equations are computed within the SPH

framework of Gasoline, and the solution vector is computed using the Conjugate-

Gradient method within the Portable, Extensible Toolkit for Scientific Computation

(PETSc; Balay et al. 1997, 2011a,b).

6.4 Coupling RT to hydrodynamics, heating and

cooling, and the chemical network

6.4.1 Operator splitting

We have thus far described the propagation of ionizing photons. However, RT must

also be coupled with the other relevant processes, such as hydrodynamics, ionizations

and recombinations (the chemical network), and non-hydrodynamic heating and cool-

ing processes. Similar to Petkova & Springel (2009), we adopt an operator-splitting

approach, in which the time-integration of these processes is split into a number of

steps: 1) acceleration from gravity and the OTVET Eddington tensor are computed;

2) acceleration and heating from hydrodynamics (artificial viscosity and PdV work)

are computed; 3) the source term of photons for each particle, s̃γ,i, is computed; 4)

The photon number density is calculated from the first-moment RT equation, (6.19);

and 5) the ionization fractions as well as heating and cooling from non-hydrodynamic

processes are computed.

For the test-problems in Section 6.5, we use direct summation to compute the

OTVET Eddington tensor via equations (6.10) and (6.11). Direct summation is
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reasonable for small numbers of ionizing sources (there is only one in the tests),

but scales as N2
sources

, and can be expensive for large numbers of sources. Since the

optically-thin Eddington Tensor has the same 1/r2 dependence as gravity, it can be

efficiently calculated using a tree-method similar to that used for the gravitational

acceleration calculation in Gasoline. OTVET thus scales as Nsources logNsources, and is

well-suited to simulations with large numbers of sources. In general, for nearby tree-

nodes containing sources, direct summation is employed, while for tree-nodes that

are farther away, the total luminosity of the tree-node, rather than the individual

sources, is used to calculate the Eddington tensor. Specifically, an angle-opening

criterion similar to that used for the gravity calculation can be used to determine

whether a tree-node must be opened. Calculation of the OTVET Eddington tensor

in the gravitational tree-walk is currently being implemented within our research

group (R. Woods).

We have also employed a simplified approach for the source terms of ionizing

photons for the testing in Section 6.5. We currently specify one source of photons

based on the position of the gas particles. In the future, we will calculate source terms

based on the positions of the gas particles relative to nearby star/sink particles.

6.4.2 Chemical network

In this work, we consider only hydrogen-ionizing radiation, and therefore also consider

a simplified chemical composition consisting only of atomic and ionized hydrogen. For

this simplified chemical network, there is one governing equation:

∂ñHII

∂t
= cσ̄nHñHIñγ − αnHñeñHII, (6.33)

in which α is the recombination coefficient. We can use the relations nHI = nH − nHII

and ne = nHII to close the above equation. The first term on the right hand side

is the photoionization rate, while the second term is the recombination rate. For

comparison with Petkova & Springel (2009), we have ignored collisional ionization in

the above, although in general it is included.

The extension of this network to include other relevant components such as helium
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or molecular hydrogen is straightforward, and has previously been incorporated within

the cooling framework of Gasoline. In prior work, the photon number density has

been based on uniform backgrounds (Shen et al. 2010) or more recently, approximative

radiative transfer treatments (Christensen et al. 2012). The difference in this work,

is that ñγ is computed from the first-moment equation of RT.

6.4.3 Non-hydrodynamic heating and cooling

The Gasoline cooling framework already includes non-hydrodynamic heating and

cooling processes such as photoionization heating, radiative recombination, collisional

ionization, line-cooling, and bremsstrahlung. The photoionization heating is modified

in this work, as it depends on the number density of ionizing photons. The heating

rate per unit volume is

Γ = cǭκ̄nHñγ , (6.34)

in which ǭ is the frequency-averaged energy in excess of 13.6 eV of ionizing pho-

tons. We calculate the photoionization heating using the ñγ computed from the

first-moment equation of RT.

6.4.4 Time integration

The small time-steps required for numerical stability mean that explicit time-integration

of the chemical network and internal energy is not feasible within hydrodynamic sim-

ulations. Gasoline uses a stiff equation solver to concurrently integrate both the

chemical network and the internal energy, assuming that the hydrodynamic heating

and the density are constant over the hydrodynamic time-step. Within this cooling

framework, the addition of other chemical species, or heating and cooling processes

is straightforward.

6.5 Test cases

We present code results for two tests taken from the Cosmological Radiative Transfer

Codes Comparison Project (Iliev et al. 2006). Each test consists of a uniform-density
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system of pure hydrogen (atomic and ionized), with a single source of ionizing pho-

tons. The tests do not include hydrodynamic evolution. The first test examines the

expansion of an ionization (HII) front in isothermal gas, and has the benefit of an

analytic solution. The second test examines the expansion of an ionization front in

non-isothermal gas, for which heating and cooling are considered. This case has no

analytic solution, but results can be compared to the those of other RT codes. Since

we use methods very close to Petkova & Springel (2009), we use the parameters for

the tests as stated by these authors, and compare directly with their results.

6.5.1 The isothermal ionization front

In this test, we consider an initially neutral, uniform density gas with nH = 10−3

cm−3, which is ionized by a single source of 13.6 eV photons, with Ṅγ = 5 × 1048

photons/s, positioned at the centre of the simulation. The ionization cross-section

is thus σ̄ = 6.30 × 10−18 cm−2, while the recombination rate is taken to be α =

2.59 × 10−13 cm−3s−1, characteristic of the temperature of 104 K. The evolution of

the system is isothermal, and does not include hydrodynamics.

The Strömgren radius describes the region surrounding the source of photons in

which ionizations are balanced by recombinations. If one assumes that the ionization

front is sharp, that the region over which the gas transitions from being completely

neutral to being completely ionized is infinitesimal, then this radius is

rS =

(

3Ṅγ

4παn2
H

)1/3

. (6.35)

The time-evolution of such an ionization front, of radius rI, has the solution

rI (t) = rS [1− exp (t/trecomb)]
1/3 , (6.36)

in which trecomb = 1/nHα is the recombination time (Osterbrock & Ferland 2006). For

the parameters of this test, trecomb = 125 Myr, and rS=5.38 kpc.

The solution for a non-sharp ionization front must be computed numerically from
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Figure 6.1: The isothermal ionization front test at t = 4trecomb = 500 Myr. The
spherically-averaged radial ionization profiles, ñHI (r) and ñHII (r), from Gasoline are
given by the (red, blue, cyan, and green) curves for particle numbers of (163, 323, 643,
and 1283) and a timestep of 0.5 Myr. The analytic solution is given by the black line.

analytic considerations (Osterbrock & Ferland 2006). In this case, rS is defined as

the radius at which ñHI = ñHII. For a single ionizing source, the radial photon density

profile is diluted by geometry and attenuated by absorption:

nγ (r) =
Ṅγ

4πr2c
exp [−τ (r)], (6.37)

where the optical depth is

τ (r) =

∫ r

0

σ̄nHñHI (r
′) dr′. (6.38)

For a given radial ionization profile, ñHI (r), equation (6.37) can be integrated

radially outwards from r = 0 to determine the radial photon density profile. To

determine rS (t), we couple the radial integration of (6.37) to a backwards-Euler time-
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integration of the chemical network equation, (6.33), at each radius. We begin at

t = 0 with an initially neutral medium. For each timestep, we use the previous

timestep’s nγ (r) to update the current step’s ñHI (r) using equation (6.33). We then

use this to update nγ (r) through the radial integration of equation (6.37). From this

process, we compute rS (t).

The equilibrium radial ionization profile can be computed from the above proce-

dure for t ≫ trecomb. It can also be calculated more directly, from the radial integration

of (6.37) out from r = 0, taking ñHI (r = 0) = 0 (the interior of the Strömgren sphere

is almost completely ionized) and assuming that ionizations balance recombinations

at every radius (using equation (6.33) with the left-hand-size set to zero).

Figure 6.1 shows the spherically-averaged radial ionization profile computed by

Gasoline at t = 4trecomb = 500 Myr, for particle numbers of (163, 323, 643, and 1283).

One can see that the ionization front becomes sharper, more closely following the

analytic solution, for higher resolutions. The code results agree well with the analytic

profiles, although they do slightly underestimate rS. These results agree well with

those of Petkova & Springel (2009).

Figure 6.2 shows the time evolution of the ionization front, rS (t), for a particle

number of 643 and time-steps of (0.05, 0.5, 5.0, and 50.0) Myr. The backwards-

Euler time-integration of the photon transport means that the method is numerically

stable for long time-steps. In fact, all of the time-steps used are much longer than

the largest explicitly stable time-step of 10−3 Myr (Petkova & Springel 2009). The

practical criterion for choosing a time-step is not numerical stability, but accuracy,

which must be investigated through testing. From the results, shorter time-steps

result in more accurate solutions, as expected, with the two smallest time-steps of

0.05 and 0.5 Myr giving results that follow the solution quite accurately. For the 5.0

Myr time-step, the expansion of the ionization front is slower than expected, but after

4trecomb, rS is within a few percent of the expected result. We find that a time-step of

50 Myr results in a rather inaccurate treatment of the ionization front. After 4trecomb,

rS is only about 40% of the expected value. We find that our two longest time-steps

of 5.0 and 50.0 Myr give less accurate solutions than the same time-steps of Petkova

& Springel (2009); the reason for this discrepancy is unclear.
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Figure 6.2: The time evolution of the isothermal ionization front. The lower panel
shows rS (t) computed from Gasoline for a particle number of 643. The results for
time-steps of (0.05, 0.5, 5.0, and 50.0) Myr are given by the (orchid, red, blue, and
green) curves. The analytic solution for a sharp-ionization front is given by the
black curve, while the solution for a non-sharp-ionization front is given by the dashed
curve. The upper panel shows the ratio of the numerically calculated rS (t) to the
analytically calculated rS (t) for a sharp-ionization front, using the same colour and
line conventions as in the lower panel.

6.5.2 The non-isothermal ionization front

We use the same initial setup of the previous test to consider the evolution of a

non-isothermal ionization front. The gas temperature is set to initially be 100 K ev-
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erywhere, but photoionization heats the gas, which also cools via recombinations, col-

lisional ionizations, collisionally excited line-cooling, and bremsstrahlung. The pho-

toionization heating rate is given by equation (6.34), for which we adopt a frequency-

averaged excess energy of ǭ = 29.65 eV, and a frequency-averaged cross-section of

σ̄ = 1.63× 10−18 cm2. The cooling rates are identical to Petkova & Springel (2009),

and are those of Cen (1992). For completeness, cooling rates in erg cm−3 s−1 for recom-

bination, Λrecomb, collisional ionization, Λc-i, line-cooling, Λline, and bremsstrahlung,

Λbrem, are:

Λrecomb = 8.7× 10−27
√
T

(

T

103 K

)−0.2

/

[

1 +

(

T

106 K

)0.7
]

nenHII (6.39)

Λc-i = 1.27× 10−21
√
T

(

1 +

√

T

105 K

)

exp

(−157809.1

T

)

nenHI (6.40)

Λline = 7.5× 10−19
√
T

(

1 +

√

T

105 K

)−1

exp

(−118348

T

)

nenHI (6.41)

Λbrem = 1.85× 10−27
√
TnenHII. (6.42)

Figure 6.3 shows the evolution of the spherically-averaged radial temperature pro-

file and ionization fraction for times of (20, 100, and 500) Myr and for particles num-

bers of (163, 323, and 643). Inside of rS (t), the temperature of the gas is in the range

104 − 3 × 104 K. This temperature is the result of the balance between photoioniza-

tion heating, which alone would heat the gas to 3.5×105 K, and the various cooling

processes included. This temperature is an overestimate compared to observed HII

regions because of the lack of metal line-cooling here. The gas outside of the ionized

region remains near 100 K. The results for the different spatial resolutions have not

completely converged, as the higher resolution runs show slightly smaller rS (t) and

slightly higher temperatures. However, the differences are not large, and appear to

be decreasing with increased resolution. The results are similar to those found by

Petkova & Springel (2009).
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Figure 6.3: The non-isothermal ionization front. The left panel shows the radial
temperature profile computed by Gasoline. The results for particle numbers of (163,
323, and 643) are given by the (green, red, and blue) curves. The results at times of
(10, 100, and 500) Myr are given by the (solid, dashed, and dot-dashed) curved. The
right panel shows the radial ionization profiles, ñHI (r) and ñHII (r), with the same
colour and line conventions as the left panel.

6.6 Conclusions

We have presented methods and tests of our implementation of ionizing radiative

transfer in the Gasoline TreeSPH code. The transport of photons is computed by solv-

ing the first moment equation of RT, which has been closed using the optically-thin

variable Eddington tensor formulation of Gnedin & Abel (2001). Our implementation

follows that of Petkova & Springel (2009), who first incorporated this method into

SPH. Photon transport has been coupled to the gravity, hydrodynamics, chemical

network (ionization fraction), and heating and cooling calculations present in Gaso-

line. The implementation has been successfully tested on two standard test-problems

from Iliev et al. (2006): the isothermal ionization front, and the non-isothermal ion-
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ization front.
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Chapter 7
Conclusions

7.1 Summary

It is an exciting era in the study of planet formation. It has been fewer than two

decades since the first planet was discovered around another star. A variety of obser-

vational approaches have been used to detect an ever-increasing number of extrasolar

planets, roughly 3000 confirmed and candidate planets at the time of this writing.

These observations have demonstrated the surprising variety of planetary systems,

showing that the architecture of our solar system is by no means the rule. In par-

ticular, gas-giant companions (planets and brown dwarfs), have been discovered over

a wide range of orbital radii from their host stars, from hot Jupiters, with orbits

smaller than that of Mercury, to gas-giant companions with orbits larger than 100

AU in radius.

Observations are critical to the verification of theoretical models of gas-giant for-

mation. In addition, observations of the birthplaces of gas-giants, protostellar discs

composed of gas and dust, provide constraints on these models. Observations indi-

cate that protostellar discs are common around young stars, that they have a massive

phase during their evolution, and that they have typical lifetimes of a few million

years.

In this thesis we have presented original research on the formation of gas-giants

(Jupiter-like planets and brown dwarfs) through the fragmentation of protostellar
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discs via gravitational instability (GI), one of the two prominent models of gas-giant

formation. Fragmentation via GI is a top-down process, in which a region of a massive

protostellar disc, composed of gas and dust, collapses to form a gas-giant quickly, in

thousands of years. In contrast, the core accretion model is a bottom-up process,

in which protoplanets grow through the conglomeration of solids in the protostellar

disc, growing to masses capable of runaway accretion of the gaseous component of

the disc; in this model gas-giants are formed slowly, in millions of years.

Fragmentation via GI requires that a protostellar disc is gravitationally unstable.

The condition for instability has been previously determined analytically; however,

to determine whether instability leads to fragmentation, and the formation of gas-

giants, requires the use of numerical simulations. A number of such simulations have

previously been performed, and have indicated that gravitationally unstable discs

fragment only if they cool relatively quickly.

To study the viability of fragmentation via GI as a gas-giant formation mecha-

nism requires simulations which accurately model the physical heating and cooling in

these discs. Therefore, we have implemented radiative transfer (RT) in the gravito-

hydrodynamics code Gasoline, using the commonly-used flux-limited diffusion (FLD)

approximation. To model net radiative cooling of the disc, we have coupled FLD

to a radiative photosphere boundary condition. The implementation of new physics

in a simulation code requires careful testing, and validation of the method and the

implementation. We have carefully tested our implementation of RT, including the

photosphere boundary, on a number of standard test problems and find that it is

accurate. The implementation and testing of RT were presented in Chapter 3.

Our radiation hydrodynamics simulations of protostellar discs that are gravita-

tionally unstable inside of 40 AU show that GI is not a viable mechanism of gas-giant

formation in this region. Consistent with analytic models, discs are not able to cool

fast enough in this region to transition from instability to fragmentation. Prior nu-

merical simulations of GI, however, disagreed on the likelihood of fragmentation in

this region. For one of these prior simulations, we have demonstrated that fragmen-

tation resulted from an over-estimate of the radiative cooling rate in the disc. These

simulations were presented in Chapter 3.
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We have also performed simulations of protostellar discs that are gravitationally

unstable at large radii, near 100 AU. Consistent with analytic models, we have found

that fragmentation via GI is a viable gas-giant formation mechanism at these dis-

tances. Fragments are found to initially have masses in the gas-giant planet regime;

however, they quickly gain mass through accretion of disc material and become brown

dwarfs. In addition, we have used our suite of simulations to investigate the link be-

tween cooling and fragmentation. From an analysis of our simulations, we have found

that spiral arms only fragment if they are smaller than twice their Hill radius. We

have developed a model of spiral arm formation and fragmentation in which spiral

arms develop due to the linear gravitational instability, have a characteristic width

determined by the balance of heating and cooling, and fragment if this width is less

than their Hill thickness. This model is consistent with the fragmentation and initial

fragment masses in our simulations. In addition, the model has been used in the

first calculation of the critical cooling rate required for fragmentation; the results are

consistent with previous estimates from numerical experiments. These simulations,

and the fragmentation model were presented in Chapter 4.

Radiative transfer is also a fundamentally important physical process in star for-

mation. The numerical methods for RT presented in Chapter 3 can be used to model

the non-ionizing radiation that is important in preventing small-scale fragmentation

and the over-production of brown dwarfs in numerical simulations of star formation.

Ionizing radiation is an important feedback mechanism from massive stars, and can

possibly disrupt star forming giant molecular clouds. We have presented numerical

methods and test for our implementation of ionizing RT in Chapter 6.

7.2 Future prospects

Numerical simulations are indispensable tools in the study of complex, and non-

linear, astrophysical systems such as those discussed in this thesis: protostellar discs,

prestellar cores, and giant molecular clouds. Much of this thesis was devoted to the

incorporation of radiative transfer into the Gasoline code for 3D dynamical simula-

tions. We have thereby expanded our numerical toolkit, making it possible to more
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accurately simulate systems in which RT plays an important role. In this thesis,

we have performed simulations of protostellar discs, and gained an improved un-

derstanding of the fragmentation process, and its viability as a gas-giant formation

mechanism. However, the inclusion of RT in Gasoline has opened up a number of

avenues of research that we have not had time to explore in detail. We conclude by

briefly outlining some that we find particularly interesting.

7.2.1 Protostellar discs and gas-giant formation

The simulations of GI presented in this thesis began with isolated (non-accreting),

gravitationally unstable, axisymmetric initial conditions, with radial surface density

and temperature profiles consistent with observations. We did not address how the

discs evolved to this gravitationally unstable state, nor did we consider the role of

accretion in maintaining the instability against mass transport. Radiation hydrody-

namics simulations of the formation of protostellar discs from the collapse of prestellar

cores will be important in determining the properties of discs in the earliest phases

of evolution. It is during these phases that discs are massive and prone to fragmen-

tation. Such simulations will self-consistently address how common the gravitational

fragmentation of protostellar discs is.

More study is required to determine what becomes of the objects formed from

gravitational fragmentation at large radii. Simulations, including those presented

here, have shown that inward migration is common (with the possible end-result of

accretion by the central star); however, observations have detected gas-giants at large

radii. In what circumstances do fragments remain at large radii without significant

migration, and how common is this outcome? The 2D simulations of Vorobyov & Basu

(2010a,b) suggest that the majority of fragments migrate inwards and are accreted by

the central star, while only a small number may survive at large radii. The gas-giants

observed at large radii may represent a rare outcome of fragmentation. The study of

migration is complicated by the formation of multiple fragments, their interactions

with each other, their interactions with and accretion from the disc, and subsequent

accretion of the remaining envelope mass onto the disc. It is likely that a large suite
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of simulations will be necessary to determine the statistical likelihood of different

migration outcomes. In addition to affecting the positions of fragments (and their

very survival), migration also affects their masses. An understanding of migration is

necessary for a comparison of models to observations.

The survival of gas-giants formed through GI depends on their ability to quickly

contract. Simulations of the evolution of fragments therefore require realistic cooling,

and a realistic equation of state. Of particular importance is the treatment of the dis-

sociation of molecular hydrogen, which allows for the rapid collapse of the fragments

to a more bound state. This equation of state has beens implemented in Gasoline

to study the evolution of fragments in radiation hydrodynamics simulations (Gal-

vagni et al. 2011). If rapid contraction does not occur, what are the consequences of

gas-giant destruction through tidal disruption, or interactions with spiral arms? Are

short-lived gas-giants able to effectively process the solid component of the disc and

promote planetesimal or protoplanet growth?

It is important to determine the long-term evolution of gas-giants formed through

GI because this allows a comparison of the final objects, their masses, positions,

and eccentricities, to the ever-increasing number of extra-solar planet observations.

Population synthesis models have been a useful tool to statistically compare the

products of the core accretion model to observations. A similar statistical comparison

of the products of GI to observations is desired.

7.2.2 Star formation

With the implementation of both non-ionizing (IR) and ionizing (UV) RT in gasoline,

simulations of star formation are an obvious avenue of future research. Previous

simulations of star-cluster formation including non-ionizing RT have focused on small

star forming clumps (M ≤ 103 M⊙). Our research group is currently carrying out

isothermal simulations of a giant molecular cloud of a more realistic mass of 5× 104

M⊙ (J. Wadsley). These simulations, or portions thereof, will be recomputed with

non-ionizing RT included to study its effects on the initial mass function.

Before performing simulations with ionizing RT, we must test the coupling to hy-
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drodynamics on standard tests, such as those of Iliev et al. (2009). After this testing

has been done, simulations examining the effectiveness of ionizing feedback in star

cluster simulations can be carried out. To date, no simulations have included both

ionizing and non-ionizing RT, although both play an important role. Currently, non-

ionizing and ionizing RT are independently implemented in Gasoline; however, cou-

pling the two forms of RT together using operator splitting should be straightforward.

Accurately following the coupling of different frequencies, through the production of

IR photons from the recombination of hydrogen ionized by UV photons for example,

is likely the biggest challenge. Testing will be required to determine how well the

different methods couple.

Our implementation of ionizing radiation can easily be extended to other wave-

lengths of interest, such as the Lyman-Werner (LW) band, which is important in

the dissociation of molecular hydrogen. The formation and destruction of molecular

hydrogen have been implemented in Gasoline (Christensen et al. 2012). Modelling

LW RT would be useful in galaxy-scale simulations of the self-consistent formation

of giant molecular clouds, which would lead to a better understanding of the clouds’

formation, and improved initial conditions for star-cluster simulations.

7.2.3 Galaxy formation

Radiative transfer plays an important role in cosmological simulations of galaxy for-

mation. Including RT in simulations allows for the calculation of self-consistent ra-

diation fields produced by the stellar population. A self-consistent UV field can be

used to examine reionization, and to determine accurate local cooling rates. Cur-

rently, a uniform UV background, which is a function of redshift, is used in Gasoline.

Stars form from molecular gas, yet star-formation “recipes” used in numerical simu-

lations often calculate the star formation rate as a function of the total gas density.

A self-consistent LW field can be used to model the formation and destruction of

molecular gas, making it possible to calculate the star formation rate as a function of

the density of molecular gas (Christensen et al. 2012). Stellar feedback regulates the

star formation in galaxy-formation simulations, but resolution-limits require that it
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be included as a sub-grid model. High resolution simulations of feedback from star

clusters in a local patch of a galactic disc will be carried out by our research group

(B. Keller), with the aim of creating more realistic feedback models. Feedback in the

form of radiation pressure, HII regions, and supernovae will be included.

7.2.4 Numerical improvements and approximations

The inclusion of RT in 3D dynamical simulations can be computationally expensive,

even for approximative methods. The protostellar disc simulations, with non-ionizing

RT, presented in this thesis are roughly ten times slower than similar isothermal simu-

lations (this factor of 10 slowdown for our implicit time integration can be compared

to the factor of 102 to 105 slowdown that would be necessary for an explicit time

integration). Initial testing indicates that the expense of ionizing radiation is similar

to that of the gravity calculation. The timing of production simulations, rather than

tests, will give a better idea of the computational cost. Further improvements in

the computational implementation of FLD, such as in the parallelization of the code

(Matthew Bate, private communication), or a symmetric linearization of the FLD

equations and solution using PETSc, may lead to substantial improvements in com-

putational efficiency of the code. In addition, approximative treatments of RT may

prove useful, and allow for larger simulations to be carried out for longer durations.

The implementation of RT presented in this thesis will be valuable in testing the

accuracy of such approximations.
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