
The Log Analysis in an Automatic Approach

THE LOG ANALYSIS IN AN AUTOMATIC APPROACH

BY

JIANHUI LEI, B.A.Sc.

a thesis

submitted to the department of computing and software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Jianhui Lei, March 2012

All Rights Reserved

Master of Applied Science (2012) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: The Log Analysis in an Automatic Approach

AUTHOR: Jianhui Lei

B.A.Sc., (Computer Engineering)

University of Toronto

Toronto, Canada

SUPERVISOR: Dr. Tom Maibaum

NUMBER OF PAGES: xiv, 195

ii

To my family

Abstract

Large software systems tend to have complex architecture and numerous lines of

source code. As software systems have grown in size and complexity, it has become

increasingly difficult to deliver bug-free software to end-users. Most system failures

occurring at run-time are directly caused by system defects; therefore diagnosis of

software defects becomes an important but challenging task in software development

and maintenance.

A system log is one available source of information from a software system. Soft-

ware developers have used system logs to record program variable values, trace ex-

ecution, report run-time statistics and print out full-sentence messages. This makes

system logs a helpful resource for diagnosis of software defects. The conventional log

analysis requires human intervention to examine run-time information in system logs

and to apply their expertise to software systems, in order to determine the root cause

of a software defect and work out a concrete solution. Complex software systems can

generate thousands of system logs in a relatively short time frame. Analyzing such

large amounts of information turns out to be extremely time-consuming. Automated

techniques are needed to improve the efficiency and quality of the diagnostic process.

This thesis presents an automated approach to diagnosis of software defects, com-

bining source code analysis, log analysis and sequential pattern mining, to detect

iv

anomalies among system logs, diagnose reported system errors and narrow down the

range of source code lines to determine the root cause. We demonstrate that, by im-

plementation, the methodology provides a feasible solution to the diagnostic problem.

v

Acknowledgements

I would like to offer my sincerest gratitude and appreciation to my supervisor, Dr.

Thomas Maibaum, who has supported me throughout my thesis with his patience

and knowledge and provided me with invaluable guidance and suggestions. Without

him this thesis would not have been completed or written.

I would like to thank Dr. George Karakostas and Dr. Alan Wassyng for being on

my thesis committee and for their valuable comments and corrections on my thesis.

Thanks also to Systemware Innovation Corporation (SWI), for suggesting the

topic and permission to use information from work developed at SWI. In particular,

I would like to thank David Tremaine, Jim Picha and Jeff McDougall from SWI, for

their guidance and comments on my implementation work.

I am deeply grateful to Dr. Thomas Maibaum and Dr. Chris George for their

help in carefully proofreading this thesis.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Overview . 4

2 Problem Definition 9

2.1 Background . 9

2.2 Conventional Log Analysis . 10

2.2.1 Logs and Related Concepts 10

2.2.2 What is Log Analysis? . 12

2.2.3 Difficulties with Conventional Log Analysis Revisited 14

2.3 The Log Analysis Project . 15

2.4 Summary . 18

3 Tools and Techniques 20

3.1 Graphs . 20

vii

3.1.1 Call Graph . 21

3.1.2 Access Dependency Graphs 24

3.1.3 Reasons for Choosing Access Dependency Analysis 26

3.2 Program Analysis Techniques . 27

3.2.1 Static Program Analysis . 28

3.2.2 Dynamic Program Analysis 28

3.2.3 Reasons for Choosing Static Program Analysis 29

3.3 Sequential Pattern Mining . 31

3.3.1 Definitions . 31

3.3.2 Methods and Algorithms . 32

3.4 Implementation Tools . 36

3.5 Summary . 39

4 Related Work 40

4.1 Work Related to Program Dependency Analysis 40

4.2 Work Related to Detection and Diagnosis of System Problems 43

4.3 Work Related to Sequential Pattern Mining 47

4.4 Summary . 50

5 Overview of Project Implementation 51

5.1 Principles of The Three-Tier Architecture 51

5.2 Design of Major Components . 53

5.2.1 Source Code Analysis . 53

5.2.2 Log Analysis . 59

5.2.3 Sequential Pattern Mining . 62

viii

5.2.4 Integration of Major Components 63

5.3 Using a Database as a Data Repository 65

5.4 Summary . 66

6 Source Code Analysis 67

6.1 Java Bytecode . 67

6.1.1 Java Bytecode vs. Java Source Code 68

6.1.2 Format of Java Bytecode . 70

6.1.3 The XML Representation of Java Bytecode 73

6.1.4 Converting Java Bytecode into XML 77

6.2 Finding Entities and Inheritance Relations 78

6.2.1 Definition of an Entity . 78

6.2.2 The Implementation . 79

6.2.2.1 Parsing Classes . 81

6.2.2.2 Resolving Inheritance among Classes 81

6.2.2.3 Parsing Methods . 82

6.2.2.4 Storing Entities Information in Memory 82

6.3 Access Dependency Analysis . 84

6.4 Access Dependency Relations . 85

6.4.1 Considerations of Access Dependency Relations 86

6.4.1.1 Method Invocation 86

6.4.1.2 The Dynamic Binding Issue 90

6.4.2 Dependency Graph vs. Dependency Relation 97

6.4.3 Building the Access Dependency Relations 98

6.4.3.1 Parsing Instructions of Method Invocation 100

ix

6.4.3.2 Parsing Non-overridden Entities 101

6.4.3.3 Resolving Dynamic Binding Issue 103

6.4.3.4 Storing Dependency Relations in Memory 105

6.4.4 Saving Dependency Relations into the Database 108

6.4.4.1 Preparing Database Tables 108

6.4.4.2 Inserting Data into Database Tables 109

6.5 Finding Logging Points . 110

6.5.1 Definition of a Logging Point 110

6.5.2 Java Logging Framework . 111

6.5.3 The Implementation . 114

6.5.3.1 Logging Point in Source Code 115

6.5.3.2 Parsing Logging Points in Java Bytecode 115

6.5.3.3 Differentiating Logging Points 116

6.5.3.4 Storing Logging Points 118

6.6 Summary . 119

7 Log Analysis 121

7.1 Parsing Logs . 121

7.1.1 The Log Format of Our Partner’s System 123

7.1.2 Extracting Information from a Log 124

7.1.3 Matching a Log with a Logging Point 126

7.1.4 Storing the Log Information 126

7.2 Access Dependency Graph . 128

7.2.1 Dependency Graph vs. Dependency Relation - Revisited . . . 129

7.2.2 Building the Access Dependency Graph 129

x

7.2.3 Traversing the Access Dependency Graph 131

7.2.3.1 Breadth-first Search (BFS) 131

7.2.3.2 Depth-first Search (DFS) 132

7.2.3.3 BFS vs. DFS . 133

7.3 Matching Logs with Program Call Paths 136

7.3.1 General Process . 136

7.3.2 Determining the Start Node of the Graph Traversal 137

7.3.3 Direction of the Graph Traversal 138

7.3.4 Traversing with Depth-First Search (DFS) 138

7.3.5 Building the Program Call Paths 139

7.3.6 Examples of Matching Logs with Program Call Paths 141

7.4 Sequential Pattern Searching in Historical Logs 146

7.4.1 Collecting Samples of Sequential Logs 146

7.4.2 Analyzing Samples of Sequential Logs for Patterns 147

7.4.3 Storing Sequential Patterns 148

7.5 Matching Logs with Sequential Patterns 150

7.5.1 General Process . 150

7.5.2 Example of Matching Logs with Sequential Patterns 151

7.6 Summary . 153

8 Sequential Pattern Mining 155

8.1 The Implementation . 156

8.2 Example of Sequential Pattern Mining 157

8.3 Summary . 162

xi

9 Evaluation 164

9.1 Our Partner’s System . 164

9.2 Evaluation Approach . 165

9.3 Experimental Results . 166

9.3.1 A Case of Matching Error Logs with Program Call Paths . . . 167

9.3.2 A Case of Matching Normal Logs with Program Call Paths . . 168

9.3.3 A Case of Matching Error Logs with Sequential Patterns . . . 170

9.3.4 A Case of Sequential Pattern Mining 172

9.3.5 Discussions of Experimental Results 176

9.4 Summary . 181

10 Conclusion and Future Work 182

10.1 Contribution . 182

10.2 Limitations . 185

10.3 Future Work . 186

xii

List of Figures

3.1 Call Graph . 22

3.2 (a) Inheritance of Class Y from Class X. (b) Access Dependency Graph. 26

5.1 (a) Three-Tier Architecture. (b) Major Components of Log Analysis

Project. 54

5.2 Process of Source Code Analysis . 55

5.3 Process of Log Analysis . 59

5.4 Process of Sequential Pattern Mining 63

6.1 Process of Source Code Analysis . 68

6.2 Class Inheritance . 91

6.3 Interface Implementation . 94

6.4 Storing Caller Id and Callee Id in Java Long Variable 107

7.1 Process of Log Analysis . 122

7.2 Sample Graph . 135

7.3 Access Dependency Graph of Example One 141

7.4 Access Dependency Graph of Example Two 144

8.1 Process of Sequential Pattern Mining 156

9.1 Sample Error Logs . 167

9.2 Result of Matching Sample Error Logs with Program Call Paths . . . 168

xiii

9.3 Sample Normal Logs . 169

9.4 Result of Matching Sample Normal Logs with Program Call Paths . . 169

9.5 Result of Matching Sample Logs with Sequential Patterns 171

9.6 The Sequences for Sequential Pattern Mining 172

9.7 Result of Sequential Pattern Mining 173

9.8 Entity of Pattern 9 . 174

9.9 Entities of Pattern 4 . 174

9.10 Entities of Pattern 5, 6, 7 and 12 . 175

9.11 Entities of Pattern 3, 8, 10, 11 and 13 176

9.12 Entities of Sequence (218 531 480 533) 176

xiv

Chapter 1

Introduction

1.1 Motivation

Complexity and reliability are like two sides of a coin for a software system. On one

side, users expect the system to be sophisticated enough to provide comprehensive

functions and accomplish the majority of tasks: this is the main reason that software

systems have grown visibly in size with complex architecture and numerous lines of

source code. On the other side, users expect the system to be reliable enough to ac-

complish tasks accurately and securely. Unfortunately, as many applications require

high reliability and availability, software becomes one of two major contributors to

system failure, the other being system administration [Gra85]. Yuan et al. [YMX+10]

have concluded that, as software systems have grown in size and complexity, it has

become increasingly difficult to deliver bug-free software to end users. Most system

failures that occurred during runtime of production, including crashes, hangs, incor-

rect results and other software anomalies, are directly caused by system defects; as a

1

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

result, diagnosis of software defects becomes an important task in software develop-

ment and maintenance.

When a system failure occurs during production runtime, regardless of the root

cause, support engineers are usually called upon to investigate the problem and come

up with a feasible solution within a tight time frame. The conventional diagnosis

of software defects requires support engineers to study and understand what has

happened to the system when failure occurs. In order to narrow down the root

cause, support engineers normally start investigation by reproducing the failure in

the system. In reality, as Yuan et al. [YMX+10] have revealed, many circumstances

make such failure reproduction impossible or forbiddingly expensive. Customer’s

privacy concerns can make failure reproduction infeasible. For example, companies

are prohibited from releasing their databases to software vendors for troubleshooting

purposes. Furthermore, it is difficult to have the exact same execution environment,

which includes hardware, software, network, third-party applications and so on; as a

result, diagnosis of software defects is a challenging task in terms of time and effort.

Software developers and support engineers have turned to external resources at

their disposal, such as third-party tools, to help with diagnosis of software defects.

There are also internal resources of information available within the software system,

i.e., system logs. Xu et al. [XHF+09b] described system logs as providing detailed

information that reflects the original developers’ ideas about noteworthy or unusual

events. A system log could be generated by various techniques from a simple print

statement to a complex logging and monitoring framework, such as Apache log4j.

Software developers have used system logs to record program variable values, trace

2

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

execution, report runtime statistics, and even print out full-sentence messages de-

signed to be read by end users [XHF+09b]. This makes the systems log a very helpful

resource for diagnosis of software defects.

Since systems logs contain useful but large amounts of runtime information of

a software system, on the occasion of a system failure, the customer sends the sys-

tem logs to the vendor of the software system. Instead of the conventional failure-

reproduction approach, support engineers at the software vendor have to manually

examine runtime information recorded in the customer’s system logs, applying their

expertise of the software system, in order to narrow down the possible root cause, and

work out a feasible solution. However, as large software systems are complex, they

may generate thousands of logs in a relatively short time frame for one system failure.

Analyzing such a large amount of information not only requires expert knowledge,

but also turns into it an extremely time-consuming task [YMX+10].

Automated techniques are needed to improve the efficiency and quality of such

an analysis process. There exists research work ranging from searching and exploring

interrelations between log entries and source code, to diagnosing detected problems by

analyzing runtime log files [XHF+09b]. The methodology presented in this thesis has

combined elements of source code analysis, log analysis and data mining techniques,

to provide a feasible solution to automatic diagnosis of software defects by making

use of system logs.

Systemware Innovation Corporation (SWI), a software services and solutions com-

pany, maintains a legacy software system that was developed years ago. The software

system provides online services to end users in the financial industry. Since there

has not been much development work done on the system, it is mainly maintained

3

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

by support engineers, who are also responsible for responding to end users’ requests

when system failure occurs. As the original programmers who developed this soft-

ware system are no longer available, the system totally relies on support engineers’

expertise to solve all potential problems. The system generates logs to record its run-

time information. These are the major resource that support engineers have access

to when investigating end users’ problems. They follow the process of conventional

log analysis; as a result, they have experienced inefficiency in daily practice.

SWI seeks a different approach to improve the overall procedure. They expect

that the alternative approach will be able to minimize manual involvement in the

process of log analysis. More specifically, the alternative approach will not have to

so rely so heavily on support engineers’ expertise to solve end users’ problems, and

so reduce their workload by a considerable amount. The alternative approach will

feature certain automation techniques to achieve those improvements.

SWI contacted the McMaster Centre for Software Certification at McMaster Uni-

versity and expressed their concerns and requests. We conducted extensive research

in both industrial and academic domains and proposed a feasible solution to address

their concerns. In order to demonstrate the effectiveness of our solution, we have

partnered with SWI to implement a research project named the Log Analysis Project

in an Automatic Approach.

1.2 Thesis Overview

The remainder of this thesis is organized as follows:

Chapter 2 presents an overview of the problem that we deal with in this thesis.

This chapter provides more background information about the challenges encountered

4

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

in software development and maintenance. It brings up the concept of log analysis in a

conventional approach, and explains the limitations and difficulties of conventional log

analysis as it is applied in industrial practice. Finally, it presents a brief description

of our research project, which is implemented for the purpose of demonstrating a

feasible solution to our partner’s problem. The objectives and design details of the

project are also presented in this chapter.

Chapter 3 presents several concepts, tools and techniques that have been applied

to the design and implementation of our research project. Two abstract data types in

computer science, graph and call graph, are introduced in this chapter. Furthermore,

abstract notions of an access dependency graph and a program call path are discussed.

It also presents the two most common analysis techniques, static analysis and dynamic

analysis. A brief comparison between these two techniques provides the rationale

behind using static analysis for our project. In addition, data mining techniques,

such as sequential pattern mining techniques, are introduced in this chapter. At the

end of this chapter, we describe a list of implementation tools that are helpful for the

implementation of the project.

Chapter 4 demonstrates related work that have been developed in the fields of

program dependency graph, detection and diagnosis of system problems, and sequen-

tial pattern mining. It also explains why most of the existing work cannot be directly

applied to our specific problem domain.

Chapter 5 presents an overview of modules implemented in our research project. It

starts with descriptions of each of the three major components: source code analysis,

log analysis, and sequential pattern mining. It explains, in terms of data flows, how

these three components are integrated into one application. At the end of this chapter,

5

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

we describe the preparation of the database for our project and how data are stored

and queried during the analysis process.

Chapter 6 presents the implementation details of the first of the three major

components, i.e. source code analysis. It starts with an introduction of Java bytecode.

It compares the advantages and disadvantages of Java bytecode and plain-text source

code and discusses why Java bytecode serves more conveniently than plain-text source

code for the purpose of our project. It explains why it is necessary to convert Java

bytecode into XML representation, and how it could be done with the help of a third-

party application. It continues by explaining how the converted Java bytecode can

be used in two important analysis processes, which are finding entities, inheritance

relations among entities and finding entities responsible for system logging. It provides

corresponding definitions and explanations, along with implementation details of each

analysis process. It clarifies several concepts of the access dependency graph that are

used consistently in this thesis, before describing the overall process of building the

access dependency relations. In this description, it explains the process of parsing

instructions of calling methods and describes the approach to resolving the dynamic

binding issue. Finally, it presents the techniques that are used to store dependency

relations in memory during analysis and into the database afterwards.

Chapter 7 presents the implementations details of the second of the three major

components, i.e., log analysis. It starts with the description of parsing logs in log files.

The process also includes extracting necessary information from logs and matching

each log with the corresponding logging point in source code. It describes how to

utilize the access dependency relations to build up the access dependency graph. It

also introduces two graph traversal algorithms: breadth-first search and depth-first

6

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

search. It also describes the process of searching for sequential patterns in historical

logs and analyzing these patterns to form a knowledge base of the system activities

in the past. The most important subject matter in this chapter is the general process

of log analysis. More specifically, the process of analyzing a sequence of logs to reveal

the corresponding program executions at runtime. The process includes two different

approaches: matching the sequence of logs with program call paths and matching

the sequence of logs with existing sequential patterns. Through the description of

these two approaches, it demonstrates that the methodology and system design of

our project is capable of providing a feasible solution to the problem of diagnosis of

software defects.

Chapter 8 presents the last of the three major components, i.e., sequential pattern

mining. It describes the rationale behind the decision to apply the sequential pattern

mining technique in the log analysis process. It seeks to demonstrate that, by mining

potential sequential patterns hidden in the log analysis results, this technique can

provide an extended insight of the software system from a statistical point of view. It

presents an example of mining sequential patterns from some sample data. It describes

the output of running an implementation of the mining technique and discusses the

implications of these findings for our log analysis project.

Chapter 9 presents an evaluation of the implementation of the log analysis project.

Experiments are conducted by running the implementation on a partner’s legacy

system and analyzing sample logs generated by the system. The experimental results

are collected and verified manually, in order to demonstrate the effectiveness of our

implementation in both log analysis and sequential pattern mining aspects.

Chapter 10 is the last chapter of this thesis. It describes the contribution of the

7

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

log analysis project presented in this thesis. It discusses certain limitations with the

current implementation and provides suggestions on the potential future work that

may be conducted in the future for the purpose of improvement.

8

Chapter 2

Problem Definition

In this chapter, we present an overview of the problem that we deal with in this thesis.

This chapter provides a background to the challenges encountered with diagnosis of

software defects in software development and maintenance. We introduce the concept

of log analysis in a conventional approach, explain the limitations and difficulties as

the conventional log analysis is applied in industrial practice. Finally, we present

a brief description of our research project, which is implemented for the purpose of

demonstrating a feasible solution to our partner’s problem.

2.1 Background

Moore’s law, which is also known as “18 months” law, predicts a long-term trend

in the history of computing hardware. It states that the number of transistors that

can be placed inexpensively on an integrated circuit doubles approximately every 18

months. The phenomenon of the evolution of computer technologies has sufficiently

9

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

corroborated Mr Moore’s foresight. With the support of enhanced computer hard-

ware, software systems tend to have complex architecture, sophisticated functions,

while maintaining necessary efficiency, accuracy and reliability; however, it is un-

avoidable that, with growing complexity, software defects exist in almost every single

large software system. They have caused concern to software practitioners due to

the potential cost in terms of financial expense and human effort. Computer scien-

tists and software engineers have dedicated tremendous effort to the search of feasible

techniques for diagnosis of software defects. Conventional log analysis works well in

certain less complex software systems, but encounters difficulties when deployed in

larger complex software systems.

2.2 Conventional Log Analysis

We present several definitions of a log and its related concepts before describing details

of conventional log analysis.

2.2.1 Logs and Related Concepts

Logs and Log Files

A log is considered to be a record of the activities of a system and is often stored

in a file, which is called a log file. A log file contains a large number of entries

that record runtime information of a system. Log entries in a log file are in time

sequence. Contents of logs are in plain-text form. When certain log contents cannot

be interpreted directly, a log analysis tool is required to help with translation and

interpretation. In general, logs are helpful resources for software defect detection and

10

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

diagnosis.

System Logs

Different software systems have different conventions for recording logs. A system

log is one of the most common logs in software systems. The system log file contains

events that are logged by the operating system components. These events are often

predetermined by the operating system itself. In summary, a system log reveals data

and status of the operating system during program executions, such as processor

speed, memory usage, system calls and so on.

Transaction Logs

A transaction log is a data collection that captures the type, content and time of

transactions made by a person from a terminal with that system [RB83]. The users

of transaction logs may be humans or computer programs acting on behalf of humans.

Interactions are the communication exchanges that occur between users and the sys-

tem. Either users or the system may initiate elements of these exchanges [Jan06]. A

transactions log is often seen in database systems and web servers. Most transaction

logs are server-side recordings of interactions. Both system logs and transaction logs

follow certain standard formats. For example, system log formats are predefined dur-

ing system design and well documented, and typical transaction log formats follow

the standard defined by the World Wide Web Consortium (W3C).

11

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Application Logs

An application log has the most diversified log formats, in contrast to the log formats

of system logs and transaction logs. Such diversity relates to the fact that applica-

tions are highly customized. The implication is that logs are generated by output

statements that developers insert into source code, for the purpose of debugging and

troubleshooting executions of their application; therefore the syntax and semantics

of log contents are application-specific or even developer-specific. The diversity of

application log formats leads to the complication of log analysis in the process of

diagnosing of software defects.

2.2.2 What is Log Analysis?

Log analysis is a process of identifying an anomaly among log messages that indicates

a potential problem with the software system, extracting recorded runtime informa-

tion of program execution to perform the investigation, applying human expertise

to figure out the root cause of the problem, and eventually working out a feasible

solution to the problem. We break down the whole process of log analysis into the

following steps:

1. Anomaly Detection

Since unusual log messages often indicate the source of the problem, it is nat-

ural to formalize log analysis as an anomaly detection problem in machine

learning [YMX+10]. Even though not every single log message directly presents

the root cause of the problem, in general, log messages are still an indicator to

help software end users become aware of potential problems that occur during

12

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

system runtime, such as system crash, execution failure, data storage problem,

improper configuration and so on. This can be done by manually going over

lines of logs to identify the unusual log messages, but there are also assistant

tools available to help users locate the suspect log messages more quickly and

accurately. Such tools parse logs as input and match characteristic strings, i.e.,

status code, to capture those log messages indicating anomalies.

2. Information Extraction

Depending on the log format, a log message contains multiple fields of infor-

mation that reflect the runtime information of program execution, such as date

and time, status code, input and output of program, dynamic values of program

variables, debugging messages and so on. Once unusual log messages are identi-

fied, such information is extracted and formalized, so that relevant information

can be connected and interpreted during problem analysis.

3. Problem Analysis

After collecting all necessary information from unusual log messages, support

engineers apply their knowledge and experience of the software system in or-

der to connect runtime information to the source code of the software system.

Specifically, they may want to know which parts of the source code, i.e., meth-

ods, have been executed and resulted in the log messages identified. They may

be interested in the order of program execution, i.e., execution paths of meth-

ods, which are reflected in the specific sequence of log messages. These are all

pretty valuable analysis results that not only reveal the root cause of the prob-

lem, but also essentially help support engineers work out a feasible solution to

13

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

the problem.

2.2.3 Difficulties with Conventional Log Analysis Revisited

The log analysis process previously presented is typical and conventional, but not

efficient. In this section, we revisit factors attributed to the inefficiency of conventional

log analysis with more detailed discussions.

Lack of Experience

From the description of conventional log analysis, it’s not hard to realize that it in-

volves manual participation. Even though logs contain various information revealing

system runtime operations, it is far from sufficient for support engineers to directly

conclude the root cause of a potential problem. It still requires support engineers to

possess sufficient knowledge and experience of the software system, so that they can

combine their expertise with information acquired from logs to successfully solve the

problem. Knowledge and experience are always valuable, but not easily attainable.

Support engineers with insufficient knowledge or experience may encounter difficulty

in correctly identifying the root cause, and as a result, implement an improper solu-

tion.

Lack of Precise Runtime Information

In industry, the common practise suggests that, in case of system failure, logs gener-

ated by the software system are the only data source provided to support engineers by

the software end user. Conventional log analysis implies that support engineers have

to manually examine these logs to extract useful information about the problem. As

14

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Yuan et al. [YMX+10] have observed, many logs contain hundreds or even thousands

of messages, and each message can provide some information about what could have

happened in the failed production run. Not all possible clues are relevant. It requires

a non-trivial, lengthy analysis to filter out irrelevant information. It is a time and

effort consuming task for most support engineers.

Lack of Time for Diagnosis

However, time is one of the things that software end users cannot afford to lose in cases

of system failure, which could be in the form of a system crash or complete shutdown.

For example, one of the essential requirements for financial software is availability,

which means the software system must be available 24/7. Any system downtime

could cause considerable financial loss. That is the reason why in a case of system

failure, the log analysis needs to be effective in quickly zooming into the right root

cause within only a few rounds of interaction with software end users [YMX+10].

Conventional log analysis with intense manual involvements may be insufficient to

meet such a stringent requirement.

Considering such difficulties with conventional log analysis, we have turned our

focus to searching for a different approach to log analysis, in order to improve the

overall efficiency and accuracy.

2.3 The Log Analysis Project

In this section we provide a brief overview of the log analysis project. The imple-

mentation work presented in this thesis is the major part of the project. The system

modules designed in the project are presented abstractly. Details of implementation

15

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

are described in following chapters.

The Methodology

After conducting research on the current state of the art in both industrial and

academic domains, we have proposed a methodology which combines source code

analysis, log analysis and data mining techniques, to detect anomalies among plain-

text logs, diagnose software defects, and narrow down the range of source code lines

to help determine the root cause of detected problems. The log analysis project in

an automatic approach is built upon this methodology, in order to demonstrate a

feasible solution to our partner’s problem.

The Objectives

To be general and practical, we have four design objectives:

• Unnecessary re-execution of the program: For practicality, the method-

ology only assumes the availability of the source code of the target program

and logs generated from a failed execution. It is completely unnecessary to

re-execute the program in order to re-generate the output of a failed execution.

• Capability of error diagnosis: The methodology is capable of generating a

report on error detection, including specifying source code lines that generate

error logs, and modules or methods that potentially cause the error.

• Accuracy: Information reported by the methodology needs to be accurate. It

avoids leading a support engineer to making an incorrect investigation, wasting

his effort and stalling the whole diagnostic process.

16

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

• Precision: Information reported by the methodology needs to be precise. Too

many possibilities of error diagnosis will not help a support engineer narrow

down the root cause of a failed execution. The methodology applies data mining

techniques, i.e., sequential pattern mining techniques, to refine analysis results,

in order to provide more precise and more specific results.

The Functionalities

The log analysis project does most detailed analysis in a static manner. The source

code of the software system and the logs generated during production runtime are two

main resources it requires. The log analysis project provides several functionalities:

1. Parse source code and analyze dependency relations between classes and meth-

ods.

2. Parse source code and analyze methods that potentially generate logs during

program execution.

3. Parse logs and match each log with the corresponding method.

4. Identify potential system problems recorded in logs.

5. Determine the program execution path that is reflected by the investigated

sequence of logs.

6. Recognize sequential patterns among logs that reveal interrelations among sys-

tem problems in the past.

7. Conclude analysis results and provide suggestions to support engineers.

17

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

The System Modules

The implementation of the log analysis project is broken down into multiple system

modules corresponding to the functionalities above. The system modules are:

• Source Code Parser: Parse source code and identify classes and methods as

entities in source code.

• Source Code Analyzer: Analyze dependency relations between classes and

methods.

• Log Parser: Parse logs and match each log with the corresponding class and

method.

• Log Analyzer: Identify potential system problems recorded in logs. Determine

program execution path that is indicated by the investigated sequence of logs.

Conclude analysis results and provide suggestions to support engineers.

• Sequential Pattern Mining Tool: Recognize sequential patterns among logs

that reveal interrelations between system problems.

• Module Controller: Control inputs and outputs of system modules.

2.4 Summary

In this chapter, we have discussed the background of our problem, from the general

point of view to our partner’s specific point of view. We have also proposed our

solution to the problem and provided a brief overview of the project that this thesis

is built upon.

18

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

In the next chapter, we will present several concepts, tools and techniques that

have been applied to the design and implementation of our project.

19

Chapter 3

Tools and Techniques

As sophisticated software systems have complex architectures and large number of

lines of source code, there has been increasing interest in tools and techniques that are

capable of performing sophisticated program analysis. In this chapter, we will present

common analysis tools and techniques for program learning and data mining. We will

also discuss how these tools and techniques are applied in our project implementation.

3.1 Graphs

Graphs are appropriate models for depicting many problems that arise in the fields of

computer science and software engineering. Control Flow Graph (CFG), Data Flow

Graph (DFG), Component Graph (CG) etc. allow the user to take an analytical

approach to understanding and characterizing software architecture, static and dy-

namic structure and meaning of the programs [Cho05]. It is more convenient that

the structure of source code should be visualized with a pictorial sketch by graphs.

That is why graphs are always preferred by software engineers and researchers to

20

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

demonstrate design, study system architecture and analyze source code.

Corresponding to various graphical models, there are a number of graph analysis

techniques available for software applications. In Control Flow Analysis, a control flow

graph is used to analyze and understand how control of the program is transferred

from one point of the program to another. Similarly, Data Flow Analysis uses a

data flow graph to show and analyze the data dependencies among the instructions

of the program. In Component Graph Analysis, a component graph identifies the

components of a program, shows the use relations among those components and is

very useful in software architecture identification and recovery [Cho05]. Call Graph

Analysis utilizes a call graph to detect dependency relations and calling sequences

among entities of the program.

For the purpose of our log analysis project, we have also adopted the concept of

an Access Dependency Graph from the research work by Iqbal [Iqb11], which is an

extension of a call graph. The analysis technique, Access Dependency Analysis, is

based on the concept of an access dependency graph. The access dependency analysis

utilizes a graphical model to reveal the dependency relations among entities in the

Java environment.

3.1.1 Call Graph

Definition

Fenton and Pfleeeger [FP98] define a call graph as a directed graph representing the

calling relation between a program’s modules. It has a specific root node, corre-

sponding to the highest-level module and representing an abstraction of the whole

system.

21

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

In mathematics, a call graph is a directed graph G = (N,E) with a set of nodes N

and a set of edges E ⊆ N×N . A node u ∈ N represents a program procedure and an

edge (u, v) ∈ E indicates that procedure u calls procedure v [Iqb11]. As an example,

consider the call graph in Figure 3.1. It has a set of nodes N = {a, b, c, d, e, f} and

a set of edges E = {(a, b), (a, c), (b, d), (b, e), (c, e), (c, f)}.

a

f

c

ed

b

Figure 3.1: Call Graph

The nodes of a call graph represent the methods being either callees or callers;

their edges represent the calling relations between the methods. Since call graphs

are directed graphs, every edge has an explicit source and target node, represent-

ing the calling and called procedure, respectively. Cycles in a call graph represent

recursion [Kas04].

There are some concepts related to call graphs that we would like to clarify, before

moving on to the description of an access dependency graph.

Call Graphs in a Java Context

For two classes A and B, if A’s method a() calls B’s method b1(), b2(), ..., bn(), then

we consider each of these entities, A : a(), B : b1(), B : b2(), ..., B : bn(), as nodes of

22

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

a call graph and with the following caller-callee relations:

A : a()→ B : b1()

A : a()→ B : b2()

...

A : a()→ B : bn()

where the entity on the left of the arrow is the caller (node) and the entity on the

right of the arrow is the callee (node).

Static Call Graphs vs. Dynamic Call Graphs

Call graphs can be static or dynamic. A dynamic call graph is a record of an execution

of the program; therefore a dynamic call graph can be exact for only one execution

of the program, but there can be different dynamic call graphs for the same program

when it is executed multiple times.

A static call graph is a call graph intended to represent every possible execution

of the program; therefore a dynamic call graph is a sub-call graph of a static call

graph for the same program. The exact static call graph is undecidable, which means

a static call graph is generally an approximation of program executions. A static call

graph could possibly include some call relations that would never occur during actual

program executions.

Dynamic Call Graphs vs. Program Call Paths

As previously stated, a dynamic call graph records only one execution of the program,

which reflects the calling sequence of entities in the program during that execution.

Since a dynamic call graph is a directed graph, it visualizes one or multiple paths

23

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

from the starting node toward the ending node; therefore a dynamic call graph is a

set of program call paths, where each program call path is a unique sub-call graph

of the dynamic call graph from one node to another node. When there is one and

only one path from the starting node to the ending node in a dynamic call graph,

this dynamic call graph is also a program call path.

3.1.2 Access Dependency Graphs

The simple notion of a call graph works well in traditional non-object-oriented pro-

gramming languages like C, whose programs involve only explicit method calls. How-

ever, in an object-oriented programming language like Java, where methods are en-

capsulated inside classes, the relations among entities are far more complicated than

a simple call graph could represent. Java language features complex programming

processes such as inheritance and dynamic binding, which can introduce implicit

dependency relations among methods that are not explicitly present in the source

code. Since Java programs involve both explicit and implicit method calls, the entity

relations cannot be conveniently represented by a simple call graph.

For example, there are three classes A, B and C. Class B extends class A and

overrides a method m() in class A. There is a method n() inside class C. Consider

the scenario of an explicit call from class C’s method n() to class A’s method m().

This is a typical dynamic binding issue in an object-oriented language. The call might

actually result in a call to class B’s method m() instead of the one in class A.

Definition

Iqbal [Iqb11] has proposed a notion called an Access Dependency Graph in his thesis:

24

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

An access dependency graph is a directed graph G = (Nm, Nf , E) with a

set of method nodes Nm, a set of field nodes Nf and a set of edges E ⊆

(Nm∪Nf)×(Nm∪Nf). A node m ∈ Nm indicates a method node and is of

the form ClassName:MethodName. A node f ∈ Nf indicates a field node

and is of the form ClassName:FieldName. An edge (m, e) ∈ E (where

m ∈ Nm) may indicate one of the following two kinds of dependency:

• An explicit method call from method m to method e if e ∈ Nm, or

an explicit access of a field e from method m if e ∈ Nf .

• An implicit dependency from method m to method e where an ex-

plicit call from somewhere to method m may actually result in a call

to method e due to dynamic binding.

Modification

Iqbal’s definition of an access dependency graph includes considerations of both meth-

ods and fields. For our log analysis project, we are interested in dependency relations

between methods; therefore we have modified the original definition as follows:

An access dependency graph is a directed graph G = (Nm, E) with a set

of method nodes Nm and a set of edges E ⊆ Nm ×Nm. A node m ∈ Nm

indicates a method node and is of the form ClassName:MethodName. An

edge (u, v) ∈ E (where u ∈ Nm and v ∈ Nm) may indicate one of the

following two kinds of dependency:

• An explicit method call from method u to method v.

25

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

• An implicit dependency from method u to method v where an explicit

call from somewhere to method u may actually result in a call to

method v due to dynamic binding.

Consider the access dependency graph in Figure 3.2. It has a set of method

nodes Nm = {A : a(), B : b(), C : c(), E : e(), F : f(), X : m(), Y : m()} and a set

of edges E = {(A : a(), B : b()), (A : a(), C : c()), (B : b(), E : e()), (B : b(), X :

m()), (C : c(), F : f()), (C : c(), Y : m()), (X : m(), Y : m())}.

A:a()

X

Y

Inheritance

Implicit Dependency

Explicit Dependency

Legend

(a) (b)

X:m()E:e()

C:c()B:b()

F:f()Y:m()

Figure 3.2: (a) Inheritance of Class Y from Class X. (b) Access Dependency Graph.

The first six edges represent explicit dependencies and the last one, which is the

edge X : m()→ Y : m(), represents implicit dependency.

3.1.3 Reasons for Choosing Access Dependency Analysis

Access dependency analysis is a notion of analysis technique based on the concept

of an access dependency graph. It analyzes dependency relations among entities in

the source code environment and presents such relations in the form of an access

26

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

dependency graph. We opted for access dependency analysis in the log analysis

project for the following reasons:

• The source code is the only resource for understanding the structure of our

partner’s system. The access dependency analysis recognizes dependency re-

lations among entities, i.e., methods, in the source code, and the dependency

connections help reveal the structure of the system.

• The core of our partner’s legacy system is developed in Java language, which fea-

tures inheritance and dynamic binding processes that would lead to dependency

relations among entities in source code. Access dependency analysis resolves

such complex issues and prepares dependency information for the eventual log

analysis process.

• The result of access dependency analysis is recorded and conveniently main-

tained. It can be used repeatedly for the log analysis, as long as the source code

remains intact. When there are changes to the source code, in order to obtain

updates on dependency relations among entities, we only need to perform the

access dependency analysis once again.

3.2 Program Analysis Techniques

In computer science, program analysis is the process of studying and analyzing poten-

tial behaviors of computer systems. Static program analysis and dynamic program

analysis are two main techniques. Traditionally, static program analysis and dynamic

program analysis have been viewed as two separate domains. As computer technol-

ogy and technique have evolved and integrated, practitioners and researchers consider

27

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

static program analysis and dynamic program analysis as complementary approaches

to certain software analysis matters, such as program comprehension, system testing,

software verification and so on. Static analysis provides global information concerning

the program structure, whereas dynamic analysis investigates the runtime behavior

of the program [Fai78].

3.2.1 Static Program Analysis

Static program analysis is performed without executing the program. It examines

program source code and reasons over all possible behaviors that might arise at run-

time. Compiler optimizations are standard static program analysis [Ern03].

Static program analysis operates by building a model of the program state, then

determining how the program reacts to this state. Because there are many possible

executions, the analysis must keep track of multiple different possible states. The

process results in many possible program execution paths. It is not reasonable to

consider every possible runtime state of the program; instead, static program analysis

uses an abstracted model of the program state. As a result, the analysis output may

be less precise [Ern03].

Because static program analysis is concerned with analyzing the structure of source

code, it is particularly useful for discovering logical errors with formal methods and

questionable coding practices leading to programming errors [Fai78].

3.2.2 Dynamic Program Analysis

In contrast to static program analysis, dynamic program analysis is performed by ex-

ecuting the program and observing the executions. Testing and profiling are standard

28

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

dynamic program analysis [Ern03].

Dynamic program analysis examines the actual and exact behavior of program

execution. There is little or no uncertainty over what control flow paths were taken,

what values were computed, how much memory was consumed, how long the pro-

gram took to execute, or other quantities of interest; therefore the analysis output is

precise [Ern03].

While dynamic program analysis cannot prove that a program satisfies a particular

property, it can detect violations of properties as well as provide useful information

to programmers about the behavior of their programs [Bal99].

The contrast between dynamic and static program analysis is similar to the con-

trast between dynamic and static call graphs. Static program analysis derives prop-

erties that hold for all possible executions by examining the source code of a program,

while dynamic program analysis derives properties that hold for one or more execu-

tions by examining the execution of a program [Bal99].

3.2.3 Reasons for Choosing Static Program Analysis

We have presented some advantages and disadvantages of static program analysis

and dynamic program analysis. Comparing these two techniques, we opted for static

program analysis in the log analysis project for the following reasons:

• There are only two main resources for diagnosis of software defects in our part-

ner’s problem: the source code and the logs. Logs are generated from specific

instrumented code as an approach to dynamic program analysis, but analyz-

ing logs alone is not sufficient. What is missing is the explicit link to input

combinations as in test cases. Unfortunately, the records of user input are not

29

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

available in this project. Furthermore, dynamic program analysis is usually

performed by executing the instrumented program, but running our partner’s

software system involves their clients’ confidential data; as a result, this is not

permitted in our project due to privacy and security concerns.

• The disadvantage of dynamic analysis is that its results may not generalize

to future executions. There is no guarantee that the test suite over which

the program was run (that is, the set of inputs for which execution of the

program was observed) characterizes all possible program executions [Ern03].

The incoming data to our partner’s legacy system could be in various types and

values. It is almost impossible to create test suites covering all possible inputs.

• The diagnosis of software defects focuses only on the one execution that has

caused the system failure. Even though information is recorded in the logs,

reproduction of exactly the same system failure may be impossible due to the

absence of runtime environment and input data. Since static program analysis

does not require re-execution of the program, it can perform the necessary

analysis with the limited information available.

• Static program analysis can utilize the source code to collect information about

the program structure, dependency relations among program modules and all

possible program call paths. Such software metrics are connected to logs in

order to narrow down the range of source code lines likely to be related to a

specific software defect recorded in the logs. This approach provides a feasible

solution to our partner’s problem given the limited resources of our project.

• There are other software analysis techniques, such as Change Impact Analysis.

30

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Software Change Impact Analysis is defined as the determination of potential

effects to a subject system resulting from a proposed software change [Boh02].

The Change Impact Analysis involves both static and dynamic program anal-

ysis, but the implication focuses on the scoping changes within the details of

a design and the risks associated with changes. It is about the evaluation of

many risks associated with the changes, including estimates of the effects on

resources, effort and schedule. Since the impact of program design changes is

not considered within the scope of our project, strictly speaking, the Change

Impact Analysis is not suitable for our purpose.

3.3 Sequential Pattern Mining

Once we have collected a sufficient number of logs, sequential pattern mining could

be one helpful technique in analyzing the occurrences of logs, recognizing any possible

relationships between logs as patterns, exploring these patterns to discover interre-

lations between logs and the source code lines that generate them. The sequential

pattern mining technique refines the log analysis results, so that they provide sufficient

information to support engineers when they investigate runtime system failures.

3.3.1 Definitions

Let I = {i1, i2, ..., in} be a set of all items. An itemset is a subset of items. A

sequence is an ordered list of itemsets. A sequence s is denoted by 〈s1s2...sl〉,

where sj is an itemset. sj is also called an element of the sequence, and denoted as

(x1x2...xm), where xk is an item. For brevity, the brackets are omitted if an element

31

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

has only one item, i.e., element (x) is written as x. An item can occur at most once

in an element of a sequence, but can occur multiple times in different elements of

a sequence. The number of instances of items in a sequence is called the length

of the sequence. A sequence with length l is called an l-sequence. A sequence

α = 〈a1a2...an〉 is called a subsequence of another sequence β = 〈b1b2...bn〉 and β is

a super-sequence of α, denoted as α v β, if there exist integers 1 ≤ j1 < j2 < ... <

jn ≤ m such that a1 ⊆ bj1 , a2 ⊆ bj2 , ..., an ⊆ bjn [HPY05].

A sequence database S is a set of tuples 〈sid, s〉, where sid is a sequence id and

s is a sequence. A tuple 〈sid, s〉 is said to contain a sequence α, if α is a sub-sequence

of s. The support of a sequence α in a sequence database S is the number of tuples

in the database containing α, i.e., supportS(α) = |{〈sid, s〉|(〈sid, s〉 ∈ S)∧ (α v s)}|.

It can be denoted as support(α) if the sequence database is clear from the context.

Given a positive integer min support as the support threshold, a sequence α is

called a sequential pattern in sequence database S if supportS(α) ≥ min support.

A sequential pattern with length l is called an l-pattern [HPY05].

3.3.2 Methods and Algorithms

The sequential pattern mining problem was first introduced by Srikant and Agrawal [SA96],

and since then the goal of sequential pattern mining is to discover all frequent se-

quences of itemsets in a dataset. Recent studies have developed two major classes

of sequential pattern mining methods: (1) a candidate generation-and-test approach,

represented by (i) GSP, a horizontal format-based sequential pattern mining method,

and (ii) SPADE, a vertical format-based method; and (2) a sequential pattern growth

method, represented by FreeSpan and PrefixSpan and their further extensions,

32

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

such as CloSpan for mining closed sequential patterns [HPY05].

GSP

GSP (Generalized Sequential Patterns) is a horizontal data format-based sequen-

tial pattern mining developed by Srikant and Agrawal [SA96] by extension of their

frequent itemset mining algorithm, Apriori.

GSP adopts a multiple-pass, candidate-generation-and-test approach in sequential

pattern mining. The algorithm makes multiple passes over the data. The first pass

determines the support of each item, that is, the number of data-sequences that

include the item. At the end of the first pass, the algorithm knows which items are

frequent. Each of such items yields a 1-element frequent sequence consisting of that

item. Each subsequent pass starts with a seed set: the frequent sequences found in the

previous pass. The seed set is used to generate new potentially frequent sequences,

called candidate sequences. Each candidate sequence has one more item than a seed

sequence; so all the candidate sequences in a pass will have the same number of items.

The support for these candidate sequences is found during the pass over the data. At

the end of the pass, the algorithm determines which of the candidate sequences are

actually frequent. These frequent candidates become the seed for the next pass. The

algorithm terminates when there are no frequent sequences at the end of a pass, or

when there are no candidate sequences generated [SA96].

The bottleneck of an Apriori-based sequential pattern mining method comes from

its step-wise candidate sequence generation and test. GSP, though it benefits from

the Apriori pruning, still generates a large number of candidates [HPY05].

33

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

SPADE

SPADE (Sequential PAttern Discovery using Equivalent classes) is an Apriori-based

vertical data format sequential pattern mining algorithm [Zak01]. The Apriori-based

sequential pattern mining can also be explored by mapping a sequence database into

the vertical data format which takes each item as the center of observation and takes

its associated sequence and event identifiers as data sets. To find a sequence of

length-2 items, one just needs to join two single items if they are frequent and they

share the same sequence identifier and their event identifiers (which are essentially

relative timestamps) follow the sequential ordering. Similarly, one can grow the length

of itemsets from length two to length three and so on. This forms the SPADE

algorithm [HPY05].

The SPADE algorithm may reduce the access of sequence databases since the

information required to construct longer sequences is localized to the related items

and/or subsequences represented by their associated sequence and event identifiers.

However, the basic search methodology of SPADE is similar to GSP, exploring both

breadth-first search and Apriori pruning. It has to generate a large set of candidates

in breadth-first manner in order to grow longer subsequences. Thus most of the

difficulties suffered in the GSP algorithm will reoccur in SPADE as well [HPY05].

FreeSpan

FreeSpan (Frequent pattern-projected Sequential pattern mining) is a sequential

pattern growth method developed by Han et al. [HPMA+00]. Its general idea is to use

frequent items to recursively project sequence databases into a set of smaller projected

databases and grow subsequence fragments in each projected database. This process

34

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

partitions both the data and the set of frequent patterns to be tested, and confines

each test being conducted to the corresponding smaller projected database.

The performance study shows that FreeSpan mines the complete set of pat-

terns and is efficient and runs considerably faster than the Apriori-based GSP al-

gorithm [PHMA+01]. However, as Pei et al. point out, the projected databases in

FreeSpan have to keep the whole sequence in the original database without length

reduction, which could potentially affect the efficiency of memory usage.

PrefixSpan

PrefixSpan (Prefix-projected Sequential pattern mining), proposed by Pei et al. [PHMA+01],

provides a more efficient processing compared to other sequential pattern mining

methods. The major idea of PrefixSpan is that, instead of projecting sequence

databases by considering all the possible occurrences of frequent subsequences, the

projection is based only on frequent prefixes because any frequent subsequence can

always be found by growing a frequent prefix. According to the performance study

conducted by Pei et al., PrefixSpan outperforms both the GSP algorithm and the

FreeSpan method in mining large sequence databases; therefore we decided to adopt

the PrefixSpan algorithm in our log analysis project.

CloSpan

CloSpan (Closed Sequential pattern mining) is developed by Yan et al. [YHA03] as an

extension of PrefixSpan. While the sequential pattern mining algorithms developed

so far have good performance in databases consisting of short frequent sequences,

when mining long frequent sequences, or when using very low support thresholds, the

35

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

performance of such algorithms often degrades dramatically.

Yan et al. [YHA03] proposed an alternative but equally powerful solution: in-

stead of mining the complete set of frequent subsequences, one mines frequent closed

subsequences only, i.e., those containing no super-sequence with the same support.

CloSpan is developed to mine these patterns. It can produce a significantly less num-

ber of sequences than the traditional (i.e., full-set) methods while preserving the same

expressive power, since the whole set of frequent subsequences, together with their

supports, can be derived easily from our mining results.

3.4 Implementation Tools

We decided to apply different tools in the implementation of log analysis project,

including a development tool, a dependency analysis tool and a data repository tool.

We have successfully integrated such tools to realize the objectives and functionalities

of the project.

Java Environment

We use Java programming language to implement the log analysis project for the

following reasons:

• Java is a reasonably structured and comprehensively developed object-oriented

programming language. It provides extensive functionalities to cope with many

different software engineering issues during software development and mainte-

nance.

36

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

• Java has good open source project support, detailed documentation, large num-

bers of sample implementations on the web.

• Java is platform independent. A Java application that runs on one platform

does not need to be recompiled to run on another; as a result, the log analy-

sis project can be deployed on various mainstream operating systems without

implementing platform specific versions.

• Our partner’s legacy system is implemented using Java. In order to analyze the

source code in the form of Java bytecode (class file), we need specific tools to

interpret contents in Java bytecode. There are existing bytecode analysis tools

that export external functions to projects developed in a Java environment.

Dependency Finder

Dependency Finder [Tes12a, Tes12b] is a suite of tools for analyzing compiled Java

code. The core is a powerful dependency analysis application that extracts depen-

dency graphs and mines them for useful information. This application comes in many

forms for ease of use, including command-line tools, a Swing-based application, a web

application ready to be deployed in an application server, and a set of Ant [Fou12a]

tasks.

Among the suite of tools available with Dependency Finder, the specific tools that

are suitable for our purpose are ClassReader and DependencyExtractor. Iqbal [Iqb11]

has compared these tools experimentally and concluded that both of these tools gen-

erate XML files that are ready for parsing and interpretation. ClassReader ’s XML is

a one to one XML representation of a class file, while DependencyExtractor ’s XML

37

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

specifically encompasses the dependency information. However, although Dependen-

cyExtractor is an excellent tool for extracting a dependency relationship from class

(also jar and zip) files, that dependency information does not incorporate dynamic

binding properly. We have already discussed the importance of dynamic binding issue

in access dependency analysis, so for this particular reason, we have decided to use

ClassReader ’s XML for the access dependency analysis in our project.

XML

Having an XML representation of a Java class file gives us certain advantages over

having other kinds of representations, such as Java bytecode and plain-text Java

source code. First, XML is well formatted so that, when it is necessary, support engi-

neers can manually interpret its contents without much difficulty. Second, due to the

specific format, it is convenient to program an application for automatic interpreta-

tion of XML, as is the case in our log analysis project. Finally, XML is used not only

for representation, but also as a data repository of useful information. The majority

of extensively used programming languages like Java have developed versatile built-in

facilities to parse and manipulate XML.

The Database

Databases are commonly used as a data repository in many software applications as

well. The term database normally implies an organized collection of data. Traditional

databases are organized by records and files. Nowadays, most databases are orga-

nized in digital form. The structure of a database system includes the database with

data collection and the database management system (DBMS). The DBMS enables

38

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

database administrators to store, modify and retrieve information from a database.

In the log analysis project, we use a database along with a DBMS to store a poten-

tially large number of archive logs generated by the software system in the production

environment. Having the database as a central repository of logs allows convenient

yet secure access, locally and remotely, by end users and support engineers, respec-

tively. We can execute handy SQL queries on the database to store or fetch necessary

information. Furthermore, logs in the database can be mined with sequential pattern

mining techniques in the search for hidden sequential patterns among logs. Besides

archive logs, we also use the database to store analysis results as records for future

reference. We decide to use the MySQL database management system [Cor12]. Even

though other standard database systems, such as Oracle and SQL Server, are also

suitable, we opt for MySQL because it is free software and features the functionality

necessary for the purposes of our project.

3.5 Summary

In this chapter, we have presented certain theoretical concepts and definitions, anal-

ysis tools and data mining techniques that are applied in our log analysis project.

In the next chapter, we will present some of the related work that has been

researched and developed in the fields of program dependency analysis, detection

and diagnosis of system problems, and sequential pattern mining. The chapter also

explains why some of this existing work cannot be directly applied to our specific

problem domain.

39

Chapter 4

Related Work

There has been extensive research and development work in the fields of program

dependency analysis, detection and diagnosis of system problems, and sequential

pattern mining. In this chapter, we present some of the related work and discuss why

this existing work cannot be directly applied to our project domain.

4.1 Work Related to Program Dependency Anal-

ysis

Much related work has been performed over the decades in the area of program

dependency analysis and representations.

Ryder [Ryd79] introduced the notion of a call graph as an acyclic graph to collapse

the dynamic relations between procedures in a program. Ryder also proposed an

algorithm to compute the call graph for languages that permit procedure parameters

but disallow recursion. Callahan et al. [CCHK90] extended Ryder’s work to support

40

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

recursion. However, this work was not carried out in object-oriented domains, so they

did not face the challenges that arise in object-oriented content.

More extensive research was carried out in the area of program dependency repre-

sentations. Ottenstein et al. [OO84] introduced the notion of a program dependency

graph (PDG) to facilitate implementation of an internal program representation cho-

sen for a software development environment. Later, Ferrante [FOW87] worked with

Ottenstein et al. on the extension of this dependence-based representation, to explic-

itly represent control and data dependences in a sequential procedural program with

single procedure. Horwitz et al. [HRB90] further extended the PDG to introduce an

inter-procedural dependence-based representation, called system dependence graph

(SDG), to represent a sequential procedural program with multiple procedures. Al-

though these representations can be used to represent many features of a procedural

program, they still lacked the ability to represent object-oriented features in Java

software.

Larsen and Harrold [LH96], along with other researchers, extended the SDG for

sequential procedural programs to the case of sequential object-oriented programs.

Malloy et al. [MMKM94] proposed a new dependence-based representation, called the

object-oriented program dependency graph (OPDG), for sequential object-oriented

programs. Although these representations can be used to represent many features of

sequential object-oriented programs, they still lacked the ability to represent some

specific features such as interfaces and packages in Java software.

One point worth mentioning is that the dependency graph we intend to gener-

ate has to include all necessary information so that log analysis can be carried out

successfully, even at the expense of simplicity. For example, we need dependency

41

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

relations not only among entities in Java source code, but also among internal classes

(class files) and external classes (jar and zip files). The extra information is impor-

tant for the sake of completeness, even though it increases the overall complexity of

the dependency graph. On the other hand, as Iqbal [Iqb11] pointed out, there might

be mutually recursive or conditionally repeated (i.e. for loop) executions: all we need

to know in our case are those entities involved in these executions and their depen-

dency relations, while the repetitive call sequences are beyond our scope. So many of

the concepts and techniques discussed above, even though brilliant and significant in

their specific problem domains, are not quite suitable for our project.

Zhao [Zha98] presented the software dependence graph for Java (JSDG), which

extends previous dependence-based representations, to represent various types of pro-

gram dependence relationships in Java software. The JSDG of Java software consists

of a group of dependence graphs which can be used to represent Java methods, classes

and their extensions and interactions, interfaces and their extensions, complete pro-

grams, and packages respectively. The JSDG can be used as an underlying representa-

tion to develop software engineering tools for Java software. Zhao’s proposal provides

an inspirational approach to representing dependency relations with graphical data

structures. Zhao did not provide implementation details of JSDG in his paper, which

are essential for practical application development. The paper also missed out details

on how to capture entities in a Java environment and recognize dependency relations

among various entities. From development point of view, we need more supportive

information to actually implement the idea of JSDG into an applicable tool in our

log analysis project.

42

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Dependency Finder [Tes12a, Tes12b] has a tool for computing object-oriented soft-

ware metrics that give users an empirical quality assessment of source code in a Java

environment. As a brief recap, Dependency Finder is a suite of tools for analyzing

compiled Java code. At its core is a powerful dependency analysis application that

extracts dependency graphs and mines them for useful information. This application

comes in many forms for ease of use, including command-line tools, a Swing-based

application, a web application ready to be deployed in an application server, and a

set of Ant [Fou12a] tasks. This application can generate two kinds of XML repre-

sentations with two separate tools: one is an one-to-one XML representation of a

Java bytecode (class) file, and the other is an encompassed XML representation of

dependency information only. The former representation is suitable for the log anal-

ysis project; therefore we decide to integrate the Dependency Finder tool into our

implementation.

4.2 Work Related to Detection and Diagnosis of

System Problems

Profiling and Trace Analysis

Profiling is a form of dynamic program analysis. It is achieved by program instru-

mentation. Programmers can instrument either program source code or binary ex-

ecutable form, by inserting instruction codes that monitor specific components in a

system. Mytkowicz et al. [MCD09] proposed a call-profiling technique to collect min-

imal information from the running program without negatively affecting the program

performance. The call path profiles capture the nested sequence of calls encountered

43

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

at run-time; thus they are useful for determining which sequences of calls consume the

most program execution time and for identifying opportunities for code specializa-

tion. They can also reveal any anomaly during execution indicating potential system

problems.

Trace analysis analyzes execution traces generated at runtime by instrumented

programs to detect or diagnose errors. Liblit et al. [LAZJ03] introduced an analy-

sis technique called automatic bug isolation. It collects run-time traces from many

users to offload the monitoring overhead. The trace information gathered from all

executions is analyzed to extract information that is most correlated with the bugs,

which helps support engineers detect and diagnose system problems. Liblit later col-

laborated with Chilimbi et al. [CLM+09] in developing a statistical debugging tool

called HOLMES that isolates bugs by finding paths that correlate with failure. The

tool uses iterative, bug-directed profiling to lower execution time and space over-

heads. The development results indicate that path profiling can help isolate bugs

more precisely by providing more information about the context in which bugs occur.

Even though profiling and trace analysis provide dynamic insights of program

executions, which substantially improve the efficiency of detection and diagnosis of

system problems, there are increasing concerns about the negative impact of program

instrumentation. Normally, instruction codes need to be implanted into a target

program statically or dynamically to monitor executions, which can slow down the

program execution and affect the performance. Moreover, program instrumentation

is not always feasible, especially for production software. Software users are under-

standably reluctant to perform instrumentation on their systems. We decide not to

adopt the approach of profiling and trace analysis in our project.

44

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Log Analysis

Most existing log analysis work adopts principles of static program analysis and ap-

plies statistical techniques to detecting anomalies indicated by the logs or recurring

failures that match known issues.

Lee et al. [LIT91] presented a methodology for the analysis of automatically gen-

erated event logs from fault tolerant systems. With this methodology, errors are

identified based on knowledge of the architectural and operational characteristics of

the measured systems. It is found that the number of errors is small, even though

the measurement period is relatively long. This reflects the high dependability of the

measured systems. The methodology uses multivariate statistical techniques - factor

analysis and cluster analysis - to investigate error and failure dependency among dif-

ferent system components. Despite its advantages, this methodology mostly relies on

statistical techniques and information collected from event logs, and does not utilize

information hidden in source code.

Xu et al. [XHF+09a] have conducted extensive studies and research on data min-

ing and machine learning techniques to learn common patterns from a large number

of console logs, and to detect abnormal log patterns that violate the common pat-

terns. They proposed a novel application of using data mining and statistical learning

methods to automatically monitor and detect abnormal execution traces from console

logs in an online system. In this application, they use a two-stage detection system.

The first stage uses frequent pattern mining and distribution estimation techniques

to capture the dominant patterns (both frequent sequences and time duration). The

second stage uses a principal component analysis-based anomaly detection technique

to identify actual problems.

45

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

However, the error detection and diagnosis from these studies and research are

mostly based on learning patterns solely from log messages, without leveraging source

code for extracting control-flow and data-flow information; therefore they cannot

recreate the execution paths (or partial execution paths) and runtime variable val-

ues [YMX+10].

Yuan et al. [YMX+10] designed and implemented a practical and effective tool,

called SherLog, that analyzes logs from a failed production run and source code by

leveraging information collected from runtime logs, to diagnose what has happened

during the failed production run. This analysis technique requires neither re-execution

of the program nor knowledge of log semantics. It automatically infers control-flow

and data-flow information that help support engineers investigate the error. The anal-

ysis technique proposed by Yuan et al. is intelligent and inspirational. It overcomes

certain shortcomings of previous methodologies by connecting source code analysis

with log analysis, to provide a thorough understanding of any failed execution at

production runtime. In contrast to previous methodologies like Xu et al.’s, Yuan et

al.’s methodology does not involve any statistical or data mining techniques in the

analysis process.

Conclusion

Considering the fact that large-scale software systems generate a large number of

logs at runtime, we should not neglect the significance of statistical and data min-

ing techniques for the detection and diagnosis of system problems. Some techniques,

such as sequential pattern mining technique, are able to recognize interrelations be-

tween logs and reveal potential system problems. We decide to combine source code

46

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

analysis, log analysis and sequential pattern mining technique, to implement a more

comprehensive solution for detection and diagnosis of system problems.

4.3 Work Related to Sequential Pattern Mining

With the successful development of sequential pattern-growth mining methods, re-

searchers have made great efforts to explore how these methods can be extended to

handle more sophisticated mining requests. We will present a few extensions of the

sequential pattern-growth mining approach proposed by Han et al. [HPY05].

Mining Multi-Dimensional, Multi-Level Sequential Patterns

In many applications, sequences are often associated with different circumstances, and

such circumstances form a multiple dimensional space. It is interesting and useful to

mine sequential patterns associated with multi-dimensional information. Similarly,

items in the sequence may also be associated with different levels of abstraction, and

such multiple abstraction levels will form a multi-level space for sequential pattern

mining [HPY05].

There have been numerous studies of mining frequent patterns or associations

at multiple levels of abstraction, and mining association or correlations in multiple

dimensional space. One of the pattern growth-based methods, such as PrefixSpan,

can be naturally extended to mining sequential patterns efficiently in such a multi-

dimensional, multi-level environment [HPY05].

47

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Constraint-Based Mining of Sequential Patterns

With many sequential pattern mining applications, instead of finding all the possible

sequential patterns in a database, a user may often want to enforce certain constraints

to find desired patterns. The mining process which incorporates user-specified con-

straints to reduce search space and derive only the user-interested patterns is called

constraint-based mining [HPY05].

Constraint-based mining has been studied extensively in frequent pattern mining.

In general, constraints can be characterized based on the notion of monotonicity,

anti-monotonicity, succinctness, as well as convertible and inconvertible constraints

respectively, depending on whether a constraint can be transformed into one of these

categories if it does not naturally belong to one of them. This has become a classical

framework for constraint-based frequent pattern mining. With the development of

the pattern-growth methodology, such a constraint-based mining framework can be

extended to the sequential pattern mining process [HPY05].

Mining Top-k Closed Sequential Patterns

Mining closed patterns may significantly reduce the number of patterns generated

and is information lossless because it can be used to derive the complete set of

sequential patterns. However, setting min support is a subtle task: A too small

value may lead to the generation of thousands of patterns, whereas a too big one

may lead to no answer found. To come up with an appropriate min support, one

needs prior knowledge about the mining query and the task-specific data, and to be

able to estimate beforehand how many patterns will be generated with a particular

threshold [HPY05].

48

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Han et al. [HPY05] proposed that a desirable solution is to change the task of

mining frequent patterns to mining top-k frequent closed patterns of minimum length

min `, where k is the number of closed patterns to be mined, top-k refers to the k

most frequent patterns, and min ` is the minimum length of the closed patterns. They

later developed a multi-pass search space traversal algorithm to discover top-k closed

sequences. The algorithm finds the most frequent patterns early in the mining process

and allows dynamic raising of min support which is then used to prune unpromising

branches in the search space.

Mining Approximate Consensus Sequential Patterns

Conventional sequential pattern mining methods may meet inherent difficulties in

mining databases with long sequences and noise. They may generate a huge number

of short and trivial patterns but fail to find interesting patterns approximately shared

by many sequences. In many applications, it is necessary to mine sequential patterns

approximately shared by many sequences [HPY05].

Han et al. [HPY05] proposed the theme of approximate sequential pattern min-

ing roughly defined as identifying patterns approximately shared by many sequences.

They presented an efficient and effective algorithm to mine consensus patterns from

large sequence databases. First, the sequences are clustered by similarity. Then, the

consensus patterns are mined directly from each cluster through multiple alignments.

A novel structure called weighted sequence is used to compress the alignment re-

sult. For each cluster, the longest consensus pattern best representing the cluster is

generated from its weighted sequence.

49

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Conclusion

We decide to adopt one of the sequential pattern mining algorithms, i.e., Prefixs-

pan, in our log analysis project. We will monitor experimental results generated by

the algorithm and implement applicable extension to refine the results when it is

necessary.

4.4 Summary

In this chapter, we have presented much of the related work in the fields of program

dependency analysis, detection and diagnosis of system problems, and sequential pat-

tern mining. We have also discussed their applicability issues in our project domain.

In the next chapter, we will present an overview of major components implemented

in the log analysis project. We will discuss how these components are systematically

integrated into one single application.

50

Chapter 5

Overview of Project

Implementation

In this chapter, we will present an overview of major components implemented in

the log analysis project. Three major components, source code analysis, log analysis

and sequential pattern mining, are described. It explains how these components are

systematically integrated into one application. The utilization of a database as a data

repository in our project is also discussed.

5.1 Principles of The Three-Tier Architecture

Client-server architecture is a generic term for any application architecture that di-

vides processing between two or more processes, often on two or more machines [Ree00].

For example, any database application is a client-server application if it handles data

storage and retrieval in the database servers, manipulates data outside the database

process, and presents data to clients upon request. According to Reese [Ree00], the

51

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

idea behind the client-server architecture in a database application is to provide mul-

tiple users with access to the same data.

Conventionally, the client-server architecture includes two tiers representing pro-

cesses on the servers and on the clients. As software systems have evolved to complex

and sophisticated architecture, more tiers are necessary to logically separate pro-

cesses. Nowadays, the most commonly used client-server architecture is the three-tier

architecture, in which the user interface, functional process logic, computer data stor-

age and retrieval are developed and maintained as independent modules [Eck95]. In

general, a three-tier architecture is composed of the following three tiers:

• Presentation Tier: This tier consists of a user interface, which communicates

with clients by taking clients’ requests as input and displaying information and

results of services to clients as output.

• Application Tier: This tier is also sometimes called the business logic tier.

It does most of the data manipulations and necessary data computations. It

ensures data flowing between the presentation tier and the data storage tier

complies with business rules required by the application end users. In other

words, this tier controls most of an application’s functionality.

• Data Tier: This tier consists of database servers, which provide data storage

and retrieval upon request. The database system manages data independently

from the application tier, which means any changes to business rules enforced

by the application tier should not affect data maintained at this tier.

52

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

5.2 Design of Major Components

The design of the log analysis project adopts the principle of client-server architecture.

The presentation tier consists of a general Graphical User Interface (GUI) and the

data tier consists of a database server. The application tier is broken down into three

major components as shown in Figure 5.1.

• Source Code Analysis: Source Code Parser and Source Code Analyzer

• Log Analysis: Log Parser and Log Analyzer

• Sequential Pattern Mining: Sequential Pattern Mining Tool

5.2.1 Source Code Analysis

The goal of source code analysis is to collect information about methods that possibly

generate logs during program execution, and about the access dependency relations

among entities, i.e., methods, in source code. This is achieved by parsing and analyz-

ing source code in the form of Java bytecode (class file), which are accomplished by

a source code parser and a source code analyzer, respectively. The process of source

code analysis is as demonstrated in Figure 5.2.

Source Code Parser

The source code parser takes Java bytecode as input, parses its contents to recognize

classes and methods, and collects information about each of these entities, such as the

signature of a method, the class in which a method is defined, the class file name and

so on. This is essential information for access dependency analysis and log analysis.

53

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Source Code
Parser

Source Code
Analyzer

Log Parser

Log Analyzer
Sequential

Pattern
Mining Tool

Database

Source Code Analysis Log Analysis Sequential Pattern
Mining

Presentation
Tier

Application
Tier

Data Tier

(a) (b)

Module Controller

Figure 5.1: (a) Three-Tier Architecture. (b) Major Components of Log Analysis Project.

Java bytecode (class file) is the compilation output of Java source code (java file).

It is a form of program instructions that are executed by a Java virtual machine

(JVM). It is not expected that a Java programmer understands the contents of Java

bytecode. In certain situations, as in our project domain, it is helpful to understand

the contents of Java bytecode in order to capture information in source code. The

reason why we choose Java bytecode over plain-text source code will be discussed in

Chapter 6.

We need specific tools to interpret the contents of Java bytecode and translate

54

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Java Bytecode
(class Files)

Database
of

Source
Code

Source Code
Parser

XML Generator
(Dependency Finder)

Entity &
Inheritance

Analyzer

Dependency
Analyzer

Logging Point
Analyzer

XML Files

Entities &
Inheritance Relations

Source Code
Analyzer

Logging Points Dependency Relations

Legend

Step

 Process

Component

Database Operation

Input Data

Data (Intermediate & Final)

Figure 5.2: Process of Source Code Analysis

them into an XML representation. Dependency Finder is one such tool. This ap-

plication generates a one-to-one XML representation of a Jave bytecode (class) file,

which can be parsed and interpreted automatically by an XML reader program.

In summary, the source code parser takes Java bytecode as input, translates these

class files into XML files using Dependency Finder, parses the XML for classes and

methods, collects information about these entities, saves them in the form of inter-

mediate data so that they are ready for source analysis.

55

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Source Code Analyzer

There are several kinds of information that the source code analyzer needs to collect

from Java bytecode. First, it recognizes entities, i.e., classes and methods, in both

internal and external class files. Second, it resolves inheritance issues, if they exist,

among these entities. Third, it analyzes access dependency relations among these

entities, which substantially builds up the dependency graph. Finally, it identifies

methods that are responsible for generating logs during program execution.

The source code analyzer needs several iterations to collect all the necessary in-

formation. As the source code parser has already translated Java bytecode into XML

representations, for each iteration, the source code analyzer instructs the parser to

search for required entities information in each and every XML file. Let’s explain the

whole process by sequential iterations as follows:

First Iteration

It identifies entities in both internal and external class files. It also collects

information related to each of these entities, such as the signature of a method,

the class in which a method is defined, the class file name and so on. We need to

know all classes and methods that are defined and possibly involved in program

executions. This builds up the fundamental knowledge of the program, which

is essential later for revealing the system structure. All recognized entities are

saved as intermediate data.

During this iteration, it also resolves inheritance relations among known entities,

i.e., interface and superclass. Such relations are clearly stated in Java bytecode;

therefore, with the XML representation, it is not a difficult task to identify the

interface or superclass, if it exists, of each class being parsed. The identified

56

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

inheritance relations are saved as intermediate data as well.

Second Iteration

This is the most important and challenging iteration in the source code analysis

process. It performs the access dependency analysis on entities, in order to

analyze dependency relations between them and eventually build up the access

dependency graph to represent such relations.

For each method being parsed in the XML representation, the analyzer analyzes

methods that are called by the parsed method, matches these methods with

their entity information collected from the previous iteration, connects each of

these methods (callee method) with the parsed method (caller method) to form

dependency relations. Besides the normal caller-callee situation, the analyzer

also considers the dynamic binding situation among entities, which tends to

form dependency relations as well.

Once the source code analyzer finishes the dependency analysis with all XML

representations, all collected dependency relations, along with the intermediate

data saved from previous iterations, are stored in the database to form the

knowledge base of the software system.

Final Iteration

It identifies methods that could possibly generate logs during program execu-

tion. This information is helpful in the log analysis process of matching log

messages with corresponding methods in source code. In the search for such

methods, it needs to be advised about the logging technique implemented in

the software system, before searching for the specific methods.

57

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

For each method being parsed in the XML representation, again, the analyzer

analyzes methods that are called by the parsed method. Among these callee

methods, the analyzer recognizes the specific methods for logging that follow

the advised format. Eventually, all recognized methods for logging are stored

in the database to expand the knowledge base of the software system.

Conclusion

The source code analysis concentrates on utilizing the source code in the form of Java

bytecode to extract information about entities, such as resolving inheritance relations,

analyzing dependency relations and finding methods that potentially generate logs

during program execution.

The entities in our project scope include classes and methods. The methods that

potentially generate logs during program execution are part of the entities. The

dependency relations cover all possible caller-callee relations in the program and the

logging methods are always the callee methods in those corresponding relations. Since

the dependency relations are the major components that build up the dependency

graph later, during the log analysis process, the source code analysis process poten-

tially links logging methods to the dependency graph. Log messages will be parsed

and matched with corresponding logging methods during the log analysis process,

which further links log messages to the dependency graph through corresponding

logging methods.

58

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

5.2.2 Log Analysis

The goal of log analysis is to detect potential system problems reflected in logs, diag-

nose a sequence of logs indicating a system error at runtime, determine the program

call path leading to the error log and provide an analysis result of the root cause.

The analysis is carried out in multiple separate processes, which are accomplished by

the log analyzer. The process of log analysis is as demonstrated in Figure 5.3.

Historical Logs

Parsing Logs

Logs Matched with
Logging Points

Error Logss

1

1

Sequential
Pattern Searching

Matching
Sequential

Pattern

Matching
Program
Call Path

Log Analyzer

Sequential Patterns of
System Errors

2

2

Results of Log Analysis

Database
of

Source
Code

Database
of

Logs

Dependency
Graph

1 21

1 2

2

2

Legend

Step

 Process

Component

Database Operation

Input Data

Data (Intermediate & Final)

n Relative Order of Execution

Log Parser

2

Figure 5.3: Process of Log Analysis

59

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Log Parser

The log parser takes a log file as input, parses every single line in the log file, to

extract the timestamp of the log, the status (code) of execution, the name of the

source code file being executed, the contents of the log message and so on.

It is also necessary to emphasize that most application log formats do not follow

a particular standard format. This is due to the fact that logs are generated by

output methods that developers insert into source code; as a result, the syntax and

semantics of log contents are application-specific or even developer-specific. The log

parser needs to be advised about the log format before parsing logs.

The log parser also attempts to match each parsed log with the statement or

method in source code that generates it. This is an important step towards connecting

the source code analysis with the log analysis, so that the log analyzer can apply

both analysis techniques in the diagnosis of system problems reported by logs. The

matching process makes use of information extracted from a log, and searches among

eligible methods for the one that likely supplies similar information when generating

the log.

Log Analyzer

The log analyzer is the core of the log analysis project. It utilizes information collected

by the source code analyzer and the log parser, to analyze a given sequence of logs in

two different approaches as follows:

Matching Logs with Program Call Paths

The log analyzer builds an access dependency graph to represent the dependency

relations between entities, which consists of all potential program call paths. It

60

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

attempts to match the given sequence of logs with the access dependency graph,

in order to look for the corresponding program call path.

A program call path represents the execution sequence of methods (procedures)

in source code that results in the sequence of logs; therefore, if the given sequence

of logs actually indicates a system error, finding the exact program call path

helps find out the method(s) along the path that may have caused the error.

For each given log, the log analyzer locates the statement or method that has

actually generated the log during program execution and identifies the method

in the access dependency graph that calls the logging statement or method.

Connecting all such matched methods gives us to the expected program call

path.

Matching Logs with Sequential Patterns

The log analyzer searches for sequences of logs among historical logs, which rep-

resent system errors that have occurred in the past. We consider such sequences

as sequential patterns. A sequential pattern of logs contains information about

not only the execution sequence of methods in source code, but also the run-

time events recorded by the logs. The process of sequential pattern searching

is to study interrelations between events recorded in each pattern, collect diag-

nostic information about the system errors, so that the pattern can be used as

reference when analyzing a similar system error in the future.

The log analyzer attempts to match the given sequence of logs with existing

sequential patterns. It compares the logs of the sequence with the logs included

in each sequential pattern and finds the pattern that is the closest match. If the

given sequence of logs actually indicates a system error, finding the matching

61

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

existing sequential pattern helps directly reveal the root cause of the error.

Conclusion

The log analysis concentrates on extracting information from historical logs and uti-

lizing them along with information from the source code analysis to analyze a given

sequence of logs. The analysis can be carried out in two different ways: matching logs

with program call paths and matching logs with sequential patterns. When the given

sequence of logs indicates a system error, either of these approaches can generate

analysis results that are helpful to support engineers in finding the root cause.

5.2.3 Sequential Pattern Mining

Sequential pattern mining is a different process from the sequential pattern searching

previously described. Sequential pattern searching mainly focuses on finding the

log sequences that involve error logs and represent system errors in history, while

sequential pattern mining explores potential patterns hidden in log analysis results

by applying a specific mining algorithm, in order to provide an extended insight into

the software system by studying interrelations among historical system errors. The

process of sequential pattern mining is as demonstrated in Figure 5.4.

The mining process can be accomplished by running a sequential pattern mining

algorithm on a set of log sequences. Sequential pattern mining is considered as a

complementary approach to log analysis. It provides concrete understanding of the

software system from a statistical point of view and assists support engineers in

diagnosing system errors at present and in the future.

62

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Sequential
Pattern Mining

Tool

Sequential Pattern
Mining

Historical Error Logs

Mining Results

Database
of

Logs

Legend

Step

 Process

Component

Database Operation

Data (Intermediate & Final)

Figure 5.4: Process of Sequential Pattern Mining

5.2.4 Integration of Major Components

The source code analysis utilizes Java bytecode to recognize entities in a program and

analyze access dependency relations among these entities. It also identifies methods

that are responsible for generating logs during program execution. The log analysis

parses log files to extract runtime information recorded among log entries. The process

of matching logs with logging methods connects the source code analysis with the log

analysis, so that logs in log files are linked to the corresponding logging methods in

the program.

The log analysis provides two approaches to analyzing a sequence of logs indicat-

ing a system error: matching logs with program call paths and matching logs with

sequential patterns. The first approach utilizes the connection between logs in log

files and logging methods in the program, so that a sequence of logs can be linked

63

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

to the dependency graph that is built upon the dependency relations recognized in

the source code analysis. The dependency graph consists of all possible program

call paths in the program. The first approach results in the program call path that

potentially generates the sequence of logs being analyzed.

The second approach utilizes the sequences of historical logs related to system

errors in the past. The log analysis searches for such log sequences among historical

logs in the database. They are recognized as sequential patterns. Since each sequen-

tial pattern consists of a certain number of sequential logs, it can be linked to the

dependency graph in the search for the corresponding program call path. The second

approach matches the sequence of logs being analyzed to existing sequential patterns,

which results in the expected program call path.

Sequential pattern mining is a complementary analysis that is different from se-

quential pattern searching in log analysis. Sequential pattern searching in log analysis

mainly looks for the sequences of historical logs related to system errors in the past

using database SQL query techniques. Sequential pattern mining takes all the log

sequences related to past system errors as input and applies mining algorithms to ex-

plore potential sequential patterns among these log sequences. The sequential pattern

in this context could be one section of the log sequence that appears more often than

other sections. It implies the corresponding section of program call path and reflects

one or multiple program executions that lead to the eventual system error. The min-

ing algorithm calculates the frequencies of all recognized sequential patterns. From

the statistical point of view, the frequency of a sequential pattern in the past implies

the recurrence probability of the same sequential pattern; therefore the sequential

patterns from log sequences related to past system errors help us better interpret any

64

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

similar system errors that may occur in the future.

The integration of all major components is accomplished by another separate

component called the Module Controller. The module controller handles input and

outputs of all major components and coordinates tasks performed by each of them.

The module controller is demonstrated in Figure 5.1. It locates between the

presentation tier and the rest of the components in the application tier, and it allows

communication between these two tiers. It controls the application’s functionality by

processing incoming requests from users through the presentation tier and returning

analysis results to the presentation tier. It also manages data movements among

different components in the application tier.

The presentation tier accepts a user’s request and passes it to the application

tier, where it is received by the module controller. The module controller processes

the request, decides which component in the application tier is suitable for the task,

translates the incoming request to local inputs and forwards them to the suitable

component. It waits for the component to finish the task, collects results as outputs

from the component and, possibly, merges results from different components. Even-

tually, it converts the collected analysis results into the proper format and returns

them to the presentation tier.

5.3 Using a Database as a Data Repository

The data tier of a three-tier architecture, as its name suggests, normally consists of a

data repository where information is stored and retrieved from. The data repository

can be a database or a file system, or both. For the log analysis project, we use a

database as a data repository to store archive logs and analysis results, while runtime

65

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

logs are stored in the form of plain-text files in the end user’s file system.

There are different kinds of analysis results from either source code analysis or log

analysis. We need different tables to store them separately. For example, we need

to store entities and relevant information about entities in separate database tables.

We also store the inheritance information into three database tables and we need two

database tables for dependency information. Furthermore, we need separate database

tables for data like logging methods, log messages, sequential patterns and so on.

In order to make it convenient and efficient to store and retrieve data from different

database tables, we have two additional modules in the application tier to specifically

handle such requests. One module is responsible for making a connection to the

database and closing the connection after interactions. The other module includes all

necessary methods to store, modify and retrieve data from the database.

5.4 Summary

In this chapter, we have presented an overview of the log analysis project and also

discussed the principles of the three-tier architecture that we have followed in im-

plementing all necessary components. We have also described the general process of

each component and the overall integration of major components in the project.

In the next chapter, we will present implementation details of one major compo-

nent of the log analysis project, i.e., source code analysis, which is one of the main

subject matters of this thesis.

66

Chapter 6

Source Code Analysis

In this chapter, we present implementation details of the first of three major com-

ponents, i.e., source code analysis, as shown in Figure 6.1. We start our discussion

with Java bytecode. We explain how to convert Java bytecode into XML representa-

tion and how to utilize it to explore different kinds of information related to entities

in the program. Then we describe the access dependency graph generation process in

detail. We also discuss the algorithm and techniques that are applied in the process.

6.1 Java Bytecode

We compare Java bytecode with normal Java source code, in order to explain why

Java bytecode serves more conveniently than Java source code in our project domain.

We describe some Java bytecode formats that are relevant to our project. We explain

why it is necessary to convert Java bytecode into XML representation, and how it

could be done with the help of a third-party application.

67

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Java Bytecode
(class Files)

Database
of

Source
Code

Source Code
Parser

XML Generator
(Dependency Finder)

Entity &
Inheritance

Analyzer

Dependency
Analyzer

Logging Point
Analyzer

XML Files

Entities &
Inheritance Relations

Source Code
Analyzer

Logging Points Dependency Relations

Legend

Step

 Process

Component

Database Operation

Input Data

Data (Intermediate & Final)

Figure 6.1: Process of Source Code Analysis

6.1.1 Java Bytecode vs. Java Source Code

The reader might wonder why we choose Java bytecode over normal Java code as the

original source of our analysis. We conduct a comparison between these two repre-

sentations of Java programs to demonstrate some advantages of using Java bytecode

in our project domain.

• Most Java source code is written manually by programmers. Different program-

mers may have different coding styles, such as the comments among code lines,

68

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

the indention starting code lines, the wrapping of code lines, the placement of

parentheses and so on. As a result, for one Java bytecode, there is likely to

be more than one presentation of Java source code. This makes it difficult to

correctly parse Java source code and extract required information using string

processing techniques, such as regular expressions. There is a great chance that

the string processing program misinterprets the source code contents and misses

out important information.

• We have discussed the analysis of dependency relations among classes and meth-

ods in a Java program. We mentioned that the inheritance relations among

classes and the dynamic binding situations are big issues during the analysis

process. We need to identify such relations in the program. Since Java bytecode

is the compiled version of Java source code, it clearly states certain interrela-

tions among classes, such as the superclass of a class of interface. These are

helpful for our analysis. Unfortunately, Java source code does not specifically

indicate such relations.

• Java bytecode can be converted into an XML representation with the help of a

bytecode analysis tool. The XML representation formalizes the content of Java

bytebode so that it can be conveniently parsed and interpreted with an XML

reader program. Most required information, such as entities in source code and

dependency relations among entities, can be accurately extracted from Java

bytecode for the purpose of analysis in our project domain.

69

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

6.1.2 Format of Java Bytecode

The Java bytecode format has been fully described in The JavaTM Virtual Machine

Specification by Sun Microsystems [LY12]. Iqbal [Iqb11] has also explained certain

commonly used formats in his thesis. Each class file contains the definition of a single

class or interface. A class file consists of a single ClassFile structure. We select an

example of ClassFile structure from the JVM Specification [LY12]:

ClassFile {

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count-1];

u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

}

70

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

The specific items of this ClassFile structure that are relevant to our project [LY12,

Iqb11] are:

• access flags contains all access related properties of this class or interface,

such as whether it is public or private, whether it is a class or interface, whether

it is abstract or not and so on.

• this class denotes the name of the class or interface.

• super class denotes the name of the super (parent) class of the class or inter-

face in consideration. It is worth mentioning that, if a class/interface has no

super class explicitly defined in the source code file, then the default super class

is java.lang.Object. It is also necessary to mention that Java only allows

single-inheritance, so there cannot be more than one super class.

• interfaces denotes the set of interfaces that the class implements.

• methods denotes the set of methods in the class.

• method info contains detailed information of all methods declared by this class

or interface, including instance methods, class (static) methods, instance ini-

tialization methods, and any class or interface initialization method.

Each method, including each instance initialization method and the class or inter-

face initialization method, is described by a method info structure. No two methods

in one class file may have the same name and descriptor. We select an example of

method info structure from the JVM Specification [LY12]:

method_info {

71

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes[attributes_count];

}

The specific items of this method info structure that are relevant to our project [LY12,

Iqb11] are:

• access flags contains all access related properties of this class or interface,

such as whether it is public private or protected, whether it is static or non-

static, whether it is abstract or not and so on.

• attributes is the data structure that contains other useful information about

methods. Regarding our project, we are interested in the code attribute and

the signature attribute, which represent the code (instructions) and the name

and parameter(s), respectively, of a method.

Java bytecode is in binary format in general. There are available bytecode analysis

tools that can convert it into an XML representation, so that we are able to interpret

and utilize the program information encapsulated inside Java bytecode. The one that

we have used in our project is the ClassReader tool of Dependency Finder [Tes12a]

application. We will provide a sample of XML representation generated by this tool.

72

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

6.1.3 The XML Representation of Java Bytecode

The ClassReader tool generates a one-to-one XML representation of a Java bytecode

(class) file. We can conveniently extract all necessary information introduced in the

previous subsection by parsing the XML file. Consider the class Example:

public class Example {

public int i = 0;

private String s = "1";

public void a() {

int j = b(i);

System.out.println(s + j);

}

private int b(int i) {

return i++;

}

}

The XML file generated by ClassReader for this class is shown in Listing 6.1,

with some of the details hidden by ellipses.

1 <c l a s s f i l e s >

2 < c l a s s f i l e magic−number=”−889275714” minor−ve r s i on=”0” major−

ve r s i on=”50” acces s−f l a g =”00000000 00100001”>

3 <constant−pool>

4 . . .

5 </constant−pool>

6 <pub l i c/>

73

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

7 <super/>

8 <th i s−c l a s s>Test ing . Example</th i s−c l a s s>

9 <supe r c l a s s>java . lang . Object</supe r c l a s s>

10 < f i e l d s >

11 < f i e l d −i n f o access−f l a g =”00000000 00000001”>

12 <pub l i c/>

13 <name>i</name>

14 <type>int</type>

15 </ f i e l d −i n fo>

16 < f i e l d −i n f o access−f l a g =”00000000 00000010”>

17 <pr i va t e/>

18 <name>s</name>

19 <type>java . lang . Str ing</type>

20 </ f i e l d −i n fo>

21 </ f i e l d s >

22 <methods>

23 <method−i n f o access−f l a g =”00000000 00000001”>

24 <pub l i c/>

25 <name>&l t ; i n i t> ;</name>

26 <s i gnature>Example ()</s ignature>

27 <a t t r i bu t e s>

28 <code−a t t r i bu t e>

29 <l ength>16</length>

30 < i n s t r u c t i o n s>

31 . . .

32 </ i n s t r u c t i o n s>

74

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

33 <a t t r i bu t e s>

34 . . .

35 </a t t r i bu t e s>

36 </code−a t t r i bu t e>

37 </a t t r i bu t e s>

38 </method−i n fo>

39 <method−i n f o access−f l a g =”00000000 00000001”>

40 <pub l i c/>

41 <name>a</name>

42 <return−type>void</return−type>

43 <s i gnature>a ()</s ignature>

44 <a t t r i bu t e s>

45 <code−a t t r i bu t e>

46 <l ength>37</length>

47 < i n s t r u c t i o n s>

48 . . .

49 </ i n s t r u c t i o n s>

50 <a t t r i bu t e s>

51 . . .

52 </a t t r i bu t e s>

53 </code−a t t r i bu t e>

54 </a t t r i bu t e s>

55 </method−i n fo>

56 <method−i n f o access−f l a g =”00000000 00000010”>

57 <pr i va t e/>

58 <name>b</name>

75

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

59 <return−type>int</return−type>

60 <s i gnature>b(i n t)</s ignature>

61 <a t t r i bu t e s>

62 <code−a t t r i bu t e>

63 <l ength>5</length>

64 < i n s t r u c t i o n s>

65 . . .

66 </ i n s t r u c t i o n s>

67 <a t t r i bu t e s>

68 . . .

69 </a t t r i bu t e s>

70 </code−a t t r i bu t e>

71 </a t t r i bu t e s>

72 </method−i n fo>

73 </methods>

74 <a t t r i bu t e s>

75 <source− f i l e −a t t r i bu t e>Example . java</source− f i l e −

a t t r i bu t e>

76 </a t t r i bu t e s>

77 </ c l a s s f i l e >

78 </ c l a s s f i l e s >

Listing 6.1: XML File for Example Class

Even though the XML format is lengthy and complex, it is well formatted. We

already stated that this is a one-to-one representation of the Java bytecode, which

means all information in the bytecode, such as details of class and methods, are fully

76

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

converted and presented in the XML. This XML representation can be interpreted

manually, or, more importantly, can be parsed automatically by a standard XML

parser.

6.1.4 Converting Java Bytecode into XML

We use the ClassReader tool of Dependency Finder application to convert Java byte-

code (class file) into an equivalent XML representation. We need to deploy the Class-

Reader tool to our project first. The class file of the ClassReader tool is included in

the jar file of the Dependency Finder application, which can be downloaded from the

official website of Dependency Finder [Tes12a]. Once the class file of the ClassReader

tool is added to our project environment, the tool is ready to use.

Common Data

We maintain a class called GeneralData throughout our analysis process. This holds

common data and constants shared by all other classes. The common data relevant

to the implementation includes:

• classPath - an array of Strings representing the file directories of class files

• unjarOutputPrefix - a string representing the file directory where jar and zip

files are extracted to class files

• classOutputPrefix - a string representing the file directory where XML files

generated from class files are kept

77

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Generating XML Files

We developed a class ClassFileParser whose method passClassPath iterates through

all the directories in the classPath. For each directory, it does two things:

1. If it finds any jar or zip file, it extracts class files into a subdirectory of directory

unjarOutputPrefix. The subdirectory is named according to the jar or zip

file. This is accomplished by two other methods in the XmlGenerator class,

lookForJarsAndZips and unjar.

2. If it finds any class file, it generates an XML file using the XmlGenerator class,

whose method generateClassXml performs the conversion by internally using

the ClassReader. All generated XML files are placed into a subdirectory of

directory classOutputPrefix. The subdirectory is named according to the

directory where the original class files are located.

6.2 Finding Entities and Inheritance Relations

We continue by explaining how the converted Java bytecodes can be used to explore

various kinds of information, such as entities in the program and inheritance relations

among entities.

6.2.1 Definition of an Entity

In our project domain, an entity represents either a class or a method. Technically, an

entity’s name consists of the class name followed by a colon (:) followed by a method

signature, when the entity is a method. An entity’s name can be only the class name

without a colon, when the entity is a class.

78

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

6.2.2 The Implementation

It is necessary to identify all existing entities and resolve inheritance relations among

entities before we start analyzing the dependency relations and building the access

dependency graph, because all the nodes and edges of the dependency graph are based

on entities from the list of entities and the caller-callee relations between them.

Common Data

We have already introduced the GeneralData class, which is maintained throughout

our analysis process and which holds common data and constants shared by all other

classes. The common data relevant to the implementation include:

• entityCount - an integer representing the total number of entities

• entityInfo - a hash map for storing relevant information about entities

• entity - a hash map for storing entities that are originally defined in the pro-

gram

• inheritanceInfo - a hash map for storing inheritance information

General Process

We developed a class EntityParser that identifies classes and methods in XML files

and builds up the list of entities. The parseEntity method in this class parses each

of the generated XML files and fetches out class name, superclass name, interfaces

and methods. Before parsing the methods, it parses the class information and invokes

the InheritanceResolver class to collect the superclass and interface information.

79

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

We defined a class called ClassNode to store information on each class, which has

the following members:

public class ClassNode {

String className;

ClassNode superclass;

HashSet<ClassNode> interfaceList;

HashSet<ClassNode> subclassList;

HashSet<String> transitiveChildren;

}

• className - a string representing the name of the class

• superclass - a reference to another ClassNode representing the superclass of

the class

• interfaceList - a list of ClassNode representing interfaces that the class im-

plements

• subclassList - a list of ClassNode representing the subclasses and implemen-

tations of the class

• transitiveChildren - a list of strings representing transitive subclasses and

implementations of the class

In order to keep track of the inheritance information, we maintain a hash map

data structure inheritanceInfo which maps an entity name to an instance of class

ClassNode representing the entity itself.

80

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

6.2.2.1 Parsing Classes

The parseEntity method starts the process with parsing the class information, which

is performed by the parseClass method. The method extracts the class name from

XML and adds it to the entity list. Before calling the method parseClassForMethod

to parse methods of the class in consideration, it invokes the InheritanceResolver

class to collect the superclass and interface information.

6.2.2.2 Resolving Inheritance among Classes

There are four methods in the InheritanceResolver class. The method checkInheritance

checks for superclass and interfaces and invokes the method recordInheritance, if

the superclass is neither empty nor java.lang.Object. We do not consider java.lang.Object

in our inheritance hierarchy because every class in Java is implicitly a subclass of

it [Iqb11].

The recordInheritance method builds up the inheritance relation between the

class in consideration and the superclass of the class. It creates instances of ClassNode

for the class and the superclass, adds both instances to the hash map of inheritanceInfo

and connects these two nodes based on their hierarchy. It is worth mentioning that

the connection is virtual rather than physical. Even though instances of ClassNode

representing each entity are placed in the hash map of inheritanceInfo, they

are not physically linked. Instead, the inheritance connection among these enti-

ties are recorded by the data fields in each ClassNode instance, i.e., superclass,

interfaceList and transitiveChildren. When accessing the ClassNode of any

entity, it is convenient to trace corresponding hierarchy information.

The other two methods, calculateTransitiveChildren and getTransitiveChildren

81

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

are used to calculate transitive children by recursively traversing the inheritance hi-

erarchy. The information will be used for handling the dynamic binding issue during

the dependency analysis process.

6.2.2.3 Parsing Methods

Returning to the EntityParser class after resolving inheritance among classes, we

have the method parseClassForMethod that parses methods from XML. Like the

class we parse, every parsed method is considered as an entity and added to the

entity list.

6.2.2.4 Storing Entities Information in Memory

The list of entities, maintained in entity, is a hash map using an entity name

as key and an integer as value. The entity name is in the form of either Class-

Name:MethodSignature for a method or ClassName for a class. We maintain a com-

mon data called entityCount that stores an integer value. The value starts from

0 and we increment it by 1 whenever we identify a new entity, either a class or a

method. Then we add entityCount to the hash map of entity as the value and

map it with the key in the new entity name. For example, for the following code

snippet, we have the entity list like Table 6.1.

class A {

public int one() {

return 1;

}

}

82

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

class B {

public int two(int i) {

return i;

}

}

Entity EID
A 1
A:A() 2
A:one() 3
B 4
B:B() 5
B:two(int) 6

Table 6.1: Sample of Entity List

It is worth mentioning that we chose hash map over other kinds of data struc-

tures because the mapping between entity name and entity id makes data query and

retrieval very fast and convenient. With a specific key, we can directly access the

corresponding value in the hash map. If we use a list (such as array list) instead,

then every data query or retrieval requires traversal down the list, which can be time

consuming when there are a large number of entities.

In addition, we maintain another hash map called entityInfo that stores infor-

mation about entities, such as whether an entity is static or non-static. This hash

map has an entity id as key and a flag as value. This flag can have the following

possible values predefined in the common data class GeneralData:

• CLASS (1) if the entity is a class

• NON STATIC METHOD (2) if the entity is a non-static method

83

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

• STATIC METHOD (3) if the entity is a static method

• UNKNOWN ACCESS CLASS (4) if the entity is a class but the access information

is unknown, i.e., external class

• UNKNOWN ACCESS METHOD (5) if the entity is a method but the access informa-

tion is unknown, i.e., external method

Although the information in this hash map is not useful for dependency graph

generation, it at least provides a general understanding of classes and methods in the

program.

6.3 Access Dependency Analysis

The access dependency analysis results in the access dependency graph, which will be

extensively used later in log analysis. Iqbal [Iqb11] has suggested certain criteria that

are taken into account during the access dependency analysis. For our log analysis

project, we adopt and revise Iqbal’s suggestions as follows:

1. For any two classes A and B (where A and B could possibly be the same class,

or B may be an interface), if A’s method a() calls B’s method b() using any of

invokevirtual, invokeinterface, invokespecial and invokestatic, then we add the

following caller-callee relation to the dependency graph:

A : a()→ B : b()

2. For any two classes A and B (where A and B could possibly be the same class,

or B may be an interface), if A’s method a() calls B’s method b() using either

84

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

invokevirtual or invokeinterface, and B has transitive subclasses or implementa-

tions B1, B2, ..., Bn explicitly implementing or overriding b() as its own version,

then we add the following caller-callee relations to the dependency graph in

addition to the caller-callee relation described in criteria 1:

B : b()→ B1 : b()

B : b()→ B2 : b()

...

B : b()→ Bn : b()

In addition, if B is a class that inherits method b() from some other class but

does not override b() itself, then we add the following caller-callee relation to

the dependency graph:

B : b()→ S : b()

where S is the closest transitive superclass of B up the inheritance hierarchy.

6.4 Access Dependency Relations

We discuss two important factors that affect the access dependency graph in a Java

context: method invocation and dynamic binding issue. We clarify some terminologies

that are used consistently in this thesis, before describing the process of building the

access dependency relations. In the description we explain the process of parsing

instructions of calling methods and describe the approach to resolving the dynamic

binding issue, so that we can build up the dependency relations. Finally, we present

the techniques that are used to store dependency relations in memory during analysis

and in the database afterwards.

85

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

6.4.1 Considerations of Access Dependency Relations

6.4.1.1 Method Invocation

According to the JavaTM Virtual Machine Specification by Sun Microsystems, a

method can be invoked by four different instructions [LY12]:

• invokevirtual invokes an instance method of an object, dispatching on the (vir-

tual) type of the object. This is the normal method dispatch in the Java pro-

gramming language.

• invokeinterface invokes a method that is implemented by an interface, searching

the methods implemented by the particular runtime object to find the appro-

priate method.

• invokespecial invokes an instance method requiring special handling, whether

an instance initialization method, a private method, or a superclass method.

• invokestatic invokes a class (static) method in a named class.

invokevirtual

invokevirtual dispatches a Java method. It is used in Java to invoke all methods

except interface methods (which uses invokeinterface), static methods (which

uses invokestatic), and the few special cases handled by invokespecial. Consider

the code snippet:

Object x;

...

x.equals("hello");

86

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

The Java compiler generates bytecode:

ldc "hello"

invokevirtual java.lang.Object.equals(java.lang.Object)

The actual method run depends on the runtime type of the object invokevirtual

is used with. So in the example above, if x is an instance of a class that

overrides Object ’s equal method, then the subclasses’ overridden version of the

equals method will be used [MD12].

invokeinterface

invokeinterface is used to invoke a method declared within a Java interface.

Consider the code snippet:

public void test(Enumeration enum) {

boolean x = enum.hasMoreElements();

...

}

invokeinterface will be used to call the hasMoreElements method, since Enu-

meration is a Java interface, and hasMoreElements is a method declared in that

interface. The Java compiler generates bytecode:

...

invokeinterface java.util.Enumeration.hasMoreElements()

Which particular implementation of hasMoreElements method is used will de-

pend on the type of enum object at runtime [MD12].

87

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

invokespecial

invokespecial is used in certain special cases to invoke a method. Specifically,

it is used to invoke [MD12]:

1. the instance initialization method

2. a method in a superclass of this class

3. a private non-static method of this class

First, the main use of invokespecial is to invoke an object’s instance initialization

method during the construction phase for a new object. Consider the code

snippet:

public void openFile(String filePath) {

File file = new File(filePath);

...

}

The Java compiler generates bytecode:

...

invokespecial java.io.File.File(java.lang.String)

Second, invokespecial is also used by the Java language by the super keyword

to access a superclass’s version of a method. Consider the code snippet:

public class Example {

// override equals

88

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

public boolean equals(Object x) {

// call Object’s version of equals

return super.equals(x);

}

}

The Java compiler generates bytecode:

...

invokespecial boolean java.lang.Object.equals(java.lang.Object)

Finally, invokespecial is used to invoke a private non-static method. Remember

that private methods are only visible to other methods belonging to the same

class as the private method [MD12].

invokestatic

invokestatic calls a static method (also known as a class method) [MD12]. Con-

sider the code snippet:

public class Controller {

public static void runController() {

sourceCodeSetup();

...

}

private static void sourceCodeSetup() {

...

89

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

}

}

The Java compiler generates bytecode:

...

invokestatic void LogAnalysis.Controller.sourceCodeSetup()

Recognizing these four kinds of method invocations is important for analyzing

calls to methods and eventually building up access dependency relations. Details of

implementation will be discussed in the following sections.

6.4.1.2 The Dynamic Binding Issue

The dynamic binding issue (also known as dynamic dispatch) has been introduced

in Chapter 3. It is the process of mapping a message to a specific sequence of code

(method) at runtime. This is done to support the cases where the appropriate method

cannot be determined at compile-time (i.e., statically). Dynamic dispatch is needed

when multiple classes contain different implementations of the same method [Iqb11].

There are two kinds of implementations in a Java environment that can cause dynamic

binding, class inheritance and interface implementation.

Class Inheritance

Suppose that class C extends class B which extends class A, and class A has a

methodm() that is overridden by class B and class C, as demonstrated in Figure 6.2.

Consider the corresponding code snippet:

90

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

A

C

B

Class Inheritance

Legend

<<interface>>

A

CB
Legend

Interface Implementation

Figure 6.2: Class Inheritance

class A {

public void m() {

System.out.println("welcome");

}

}

class B extends A {

public void m() {

System.out.println("hi");

}

}

class C extends B {

public void m() {

System.out.println("hello");

}

91

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

}

class D {

public void test() {

A a = new A();

a.m();

a = new B();

a.m();

a = new C();

a.m();

}

}

Inside the test() method of class D, the first call to a.m() still maps to the method

m() in class A. The other two calls to a.m() dynamically map to the method m() in

class B and class C, respectively, although statically both of them are bound to the

method m() in class A. The output of running the code snippet is as follows:

welcome

hi

hello

If class C does not override the method m() while class B remains intact, and

code in class D is revised:

class A {

public void m() {

System.out.println("welcome");

92

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

}

}

class B extends A {

public void m() {

System.out.println("hi");

}

}

class C extends B {

}

class D {

public void test() {

A a = new A();

a.m();

B b = new B();

b.m();

C c = new C();

c.m();

}

}

then the call to c.m() dynamically maps to the method m() in class A. The output

of running the code snippet is as follows:

welcome

hi

welcome

93

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

In general, this kind of virtual method call can dynamically map to the version of

that method in any other class in the inheritance hierarchy, including subclasses and

superclasses [Iqb11].

Interface Implementation

Suppose that classX and class Y implement interface Z, and interface Z has a method

n() that is implemented by class X and class Y , as demonstrated in Figure 6.3.

Consider the corresponding code snippet:

A

C

B

Class Inheritance

Legend

<<interface>>

Z

YX
Legend

Interface Implementation

Figure 6.3: Interface Implementation

interface Z {

public void n();

}

class Y implements Z {

public void n() {

System.out.println("Mr");

}

}

class X implements Z {

94

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

public void n() {

System.out.println("Ms");

}

}

class W {

public void test() {

Z z = new Y();

z.n();

z = new X();

z.n();

}

}

Inside the test() method of class W , the two calls to z.n() dynamically map to

the method n() in class X and class Y , respectively, although statically both of them

are bound to the method n() in class Z. The output of running the code snippet is

as follows:

Mr

Ms

Similar to class inheritance, the interface implementation can also cause dynamic

binding at runtime. Since a class is allowed to implement multiple interfaces, it is

more challenging to interpret the dynamic binding at runtime.

The reader might consider the above examples to be naive and unrealistic. As

Iqbal [Iqb11] suggested in his thesis, the real problems in practice might be even

95

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

more complicated and the potential dynamic bind issues more difficult to identify. To

demonstrate that, we describe two scenarios by revisiting previous examples:

Scenario One - Class Inheritance Revisited

Going back to the example of class inheritance, we revise the code in class D:

class D {

public void test(A a) {

a.m();

}

}

The test() method of class D receives an object of type A from outside as a

parameter. In this case, when analyzing class D, there is no static way to know

whether the parameter a represents an instance of class A or any subclass (direct or

transitive). So it is almost impossible to interpret ahead of runtime which version of

the m() method will be called [Iqb11].

Scenario Two - Interface Implementation Revisited

Similarly, referring to the example of interface implementation, we revise the code in

class W :

class W {

public void test() {

Z z = new Z();

z.n();

96

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

}

}

Again, when analyzing class W , there is no way to statically interpret which

version of the n() method is being called.

Conclusion

We discussed two important factors that potentially affect the access dependency

graph: method invocation and dynamic binding issue. We have demonstrated with

examples that, the dynamic binding issue is a potential obstacle we need to overcome

in order to achieve the expected log analysis result. We have also introduced four

different kinds of method invocations. It is worth mentioning that, among these four

instructions, only invokevirtual and invokeinterface are candidates for resolving the

dynamic binding issue, while the other two are not.

6.4.2 Dependency Graph vs. Dependency Relation

The reader might find it confusing that we use dependency graph and dependency

relation interchangeably in our previous discussions. Actually, both terminologies

refer to the same concept, but in different contexts.

We consider the dependency relation as a caller-callee relation, or more specifically,

a binary relation between two entities. For example, we have the following dependency

relations:

A : a()→ B : b()

A : a()→ C : c()

97

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

We can present them in the form of binary relation, i.e., (caller, callee), then we have

{(A : a(), B : b()), (A : a(), C : c())}.

On the other hand, imagine both the caller and the callee are the nodes of a

graph, and the arrow (→) is the edge between these two nodes in the graph, then

we have a dependency graph consisting of nodes {A : a(), B : b(), C : c()} and edges

{(A : a(), B : b()), (A : a(), C : c())}.

The reader might notice that the representations of binary relations and edges

of the graph are actually the same, which verifies the similarity between dependency

graph and dependency relation. We will use the dependency graph to represent the

dependency relations among entities during the analysis process, but when we store

the dependency relations into relational database tables, they will be in the form of

binary caller-callee relations.

6.4.3 Building the Access Dependency Relations

We are now ready to describe the implementation of analyzing the access dependency

relation.

Common Data

We have already introduced the GeneralData class, which is maintained throughout

our analysis process and holds common data and constants shared by all other classes.

We reuse some common data introduced in the previous implementation and we need

more data to hold dependency information during the process. We summarize all

necessary common data for the implementation:

• inheritanceInfo - a hash map for storing inheritance information

98

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

• entityCount - an integer representing the total number of entities

• entityInfo - a hash map for storing relevant information about entities

• entity - a hash map for storing entities that are originally defined in the pro-

gram

• externalEntity - a hash map for storing entities that are not originally defined

in the program

• nonOverriddenEntity - a hash map for storing methods that are not overridden

or implemented by other classes

• dependency - an array list for storing all the dependency relation

• dynamicDependency - an array list for storing all the dependency relations

involving dynamic binding

General Process

We developed a class DependencyAnalyzer that iterates through all the XML files

and parses the methods of a particular class for finding instructions of method invo-

cation. To recap, a method can be invoked by four different bytecode instructions,

which are invokevirtual, invokeinterface, invokespecial and invokestatic. For every

instruction, we identify both caller and callee and record the relation in the common

data dependency in terms of entity ids. Especially for instructions invokevirtual and

invokeinterface, which are relevant to the dynamic binding issue, we need to ana-

lyze the potential dependency relations involving transitive subclasses and record the

99

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

relations in another common data dynamicDependency. Eventually, all information

stored in the GeneralData class will be saved into relational database tables.

6.4.3.1 Parsing Instructions of Method Invocation

The class DependencyAnalyzer has a method buildDependencyRelation that iter-

ates through all the XML files and calls another method buildDependencyRelation

to parse methods for finding dependency instructions.

For every instruction, we extract the callee class and callee method signature

and compose the callee entity, then we record the caller entity and the callee en-

tity as a dependency relation. To recap, we store the caller entity as CallerClass-

Name:CallerMethodSignature and the callee entity as CalleeClassName:CalleeMethodSignature.

During the previous analysis process, we have stored all identified entities into

an entity list using a hash map, which maps every entity name to a unique entity

id; therefore, whenever we add a new dependency relation, we need to extract the

corresponding ids of the caller and callee from the hash map of entity list, and place

the pair of ids into the common data dependency, which is an array list of Java long

values. The technical aspect behind this process will be explained in detail later when

we discuss how to store dependency relations in memory.

Since the same method can be called multiple times by a particular method, to

avoid duplication we maintain a temporary list of callee entities, called parsedCalleeEntity,

during the parsing of each method. So if we encounter any callee entity that is al-

ready in the set, we ignore it. This actually helps us avoid unnecessary duplicate

dependency relations.

In addition, it is really common to see standard Java classes and methods used in

100

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

the program. For example:

System.out.println("Hello, world!");

The program calls the println method in the java.io.PrintStream class to

output the string “Hello, World!” on a display console. Neither the println method

nor the java.io.PrintStream class is originally defined in the program. During the

analysis process, we consider such classes and methods as external entities. Separate

from the entity list, we maintain another entity list called externalEntity to keep

track of such entities.

6.4.3.2 Parsing Non-overridden Entities

When we discuss class inheritance and interface implementation, we mention that it is

necessary to know which transitive subclasses of a class override a called method, and

which transitive implementations of an interface have their own version of a called

method. We need this information when we add extra dependency relations that are

dynamically bound.

Iqbal [Iqb11] has suggested an intelligent approach to this problem. Instead of

directly looking for methods that are overridden, he suggested looking for methods

that are not overridden, then we can use the information about transitive subclasses,

superclass and the non-overridden entities, to analyze the extra dependency relations

relevant to the dynamic binding.

When we parse call instructions, if we find a called method that is not in our

entity list but where the class to which that method belongs is in the entity list, then

the class actually uses the inherited version of the method and has not overridden the

method [Iqb11] . We maintain another entity list (actually another hash map) called

101

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

nonOverriddenEntity to keep track of such entities (actually methods). We depict

the following code snippet to demonstrate the idea:

class O {

public void one() {

...

}

public void two() {

...

}

}

class P extends O {

public void one() {

...

}

}

class Q {

public void test(O o) {

P p = new P();

p.one();

p.two();

o.one();

}

}

Suppose that class P extends class O but overrides only method one(), but not

102

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

two(). So entity P : two() will not be in the entity list. Since class Q’s method calls

class P ’s method two(), we add P : two() to the nonOverriddenEntity list.

6.4.3.3 Resolving Dynamic Binding Issue

We have mentioned previously that, instructions invokevirtual and invokeinterface

are related to method invocations that are dynamically bound. We need to iden-

tify them from other instructions, which leads to the following code snippet of the

DependencyAnalyzer class:

...

if (instruction.startsWith("invokevirtual") == true

|| instruction.startsWith("invokeinterface") == true) {

isVirtualOrInterface = true;

}

...

Continuing with Iqbal’s approach presented above, if we find a dependency relation

from either an invokevirtual or invokeinterface instruction, we can use the information

about transitive subclasses, superclass and the non-overridden entities, to analyze the

extra dependency relations relevant to the dynamic binding. In order to separate the

extra dependency relations from the ones in dependency, we maintain another array

list of Java long values, called dynamicDependency.

This process is accomplished with two methods in the DependencyAnalyzer class.

The addToClosestSuperClass method adds a dependency relation between the caller

method and the method of the closest transitive superclass of the callee method, where

the callee method is defined. This is in case the callee class has not defined the callee

103

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

method. We demonstrate this process with an example. Reconsider the previous code

snippet:

class Q {

public void test(O o) {

P p = new P();

p.one();

p.two();

o.one();

}

}

Inside class Q, method test() calls method two() of class P . As we have already

explained, the entity P : two() is a non-overridden entity, which means class P has

not defined method two(). As a result, the call can be dynamically dispatched to

method two() in class O, where the method is defined. We have already added the

dependency relation

Q : test()→ P : two()

to the list of dependency; in order to reflect the dynamic binding, we add the extra

dependency relation

P : two()→ O : two()

to the list of dynamicDependency.

The addImplicitAccessDependency method adds dependency relations between

the caller method and the transitive subclasses and implementations which have de-

fined their own versions of the inherited callee method. We demonstrate this process

with an example.

104

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Consider the previous code snippet again. Inside class Q, method test() calls

method one() of object O. However, method one() has been overridden by class P .

As a result, depending on the actual type of object O, the call can be dynamically

bound to an instance of either class O or any transitive subclass that has also defined

method one, i.e., class P . We have already added the dependency relation

Q : test()→ O : one()

to the list of dependency; in order to reflect the dynamic binding, we add the extra

dependency relation

O : one()→ P : one()

to the list of dynamicDependency.

We also maintain another list parsedDynamicCalleeEntity, which contains the

entity ids of the methods whose dynamic binding issue has been resolved, so that the

methods on the list will not be considered again.

6.4.3.4 Storing Dependency Relations in Memory

We summarize what we have collected up to this point. We have an entity list and

have presented each entity with a unique entity id. We have already collected a list of

dependency relations and every relation consists of the caller entity id and the callee

entity id. For example, for the following code snippet, we have the entity list and the

dependency relations seen in Table 6.2.

class A {

public int one() {

B b = new B();

return b.two();

105

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

}

}

class B {

public int two() {

return 1;

}

}

Entity EID
A 1
A:A() 2
A:one() 3
B 4
B:B() 5
B:two() 6

Caller EID Callee EID
3 5
3 6

Table 6.2: Sample of Entity List and Corresponding Dependency Relations

In the previous section, we have shown how we store the entity information in

memory using a hash map. Our first approach to storing the dependency relations

was using a hash map as well, which means having the caller entity id as key and the

callee entity id as value. We found out very quickly that there was a big problem with

this approach. Normally, the standard hash map data structure in a Java environment

does not allow duplicate keys. That means, for any particular caller entity id, there

can be only one matching callee entity id. If we add a dependency relation whose

caller entity id already exists as a key in the hash map, the dependency relation will

automatically replace the existing one. It is extremely rare that every single method

in a large software system calls no more than one method. The same problem also

106

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

holds when having the callee entity id as key and the caller entity id as value.

Iqbal [Iqb11] has suggested an elegant approach to solving this problem. He

suggested that, in Java, an integer is 32 bits whose maximum value is more than 2000

million, which is a reasonably large amount to store all possible entities. In order to

store the caller and callee entity ids as a relation in memory, we can use a Java long

value which is 64 bits. So we can store the caller entity id in the upper 32 bits and

the callee entity id in the lower 32 bits, as shown in Figure 6.4

caller id callee id

Upper 32-bit (int) Lower 32-bit (int)

64-bit (long)

Figure 6.4: Storing Caller Id and Callee Id in Java Long Variable

So we can store the dependency relations, dependency and dynamicDependency,

as two lists of Java long values. In our implementation, we have two helper methods,

encodeEntityId and decodeEntityId, which encodes two entities’ ids into a Java

long value and decodes a Java long value back to two entities’ ids. The code segment

is:

public static long encodeEntityId(int callerEntityId, int calleeEntityId) {

long longNum = callerEntityId;

longNum = longNum << 32;

longNum += calleeEntityId;

return longNum;

}

107

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

public static int[] decodeEntityId(long longNum) {

int[] entityId = new int[2];

entityId[0] = (int)(longNum >> 32); // callerEntityId

entityId[1] = (int)longNum; // calleeEntityId

return entityId;

}

6.4.4 Saving Dependency Relations into the Database

Having collected all entities information and built the access dependency relations in

memory, we are ready to save everything into relational database tables.

6.4.4.1 Preparing Database Tables

We need different database tables for storing different kinds of information. For

storing the entities information, we have a table called entity with three columns:

EID, ClassName and MethodName. EID stores a unique id assigned to each entity.

ClassName and MethodName store the name of the class and the signature of the

method, respectively, of an entity. The table is populated with data from the hash

maps of entity, externalEntity and nonOverriddenEntity. Remember that we

keep count of entities with entityCount. The total number of entities in entity,

externalEntity and nonOverriddenEntity should be equal to the value of entityCount.

We store the meta-data about entities in a table called entity info, which has

three integer columns: EID, EntityTypeID and EntityStatusID. The EntityTypeID

stores the value field of the hash map entityInfo, which tells whether an entity

is static or non-static. EntityStatusID stores another value that tells whether an

108

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

entity is external, non-overridden, or normal. This is determined by the source of an

entity, which is any one of three entity lists. We keep foreign key constraints from

EID, EntityTypeID and EntityStatusID to the EID column of the entity table.

For storing inheritance information, we need three different tables: inheritance

for storing relations between the class and the transitive subclasses of the class,

inheritance superclass for storing relations between the class and the superclass

of the class, and inheritance interface for for storing relations between the class

and the interfaces that the class implements. Each of the three tables has two integer

columns: ParentClass and ChildClass, which hold the parent entity id and the

child entity id, respectively. The data of these three tables are populated from the

hash map of inheritanceInfo. We keep foreign key constraints from ParentClass

and ChildClass to the EID column of the entity table. The pair ParentClass and

ChildClass forms a primary key, so that we can guarantee each inheritance relation

is unique.

Finally, we store dependency relations into two tables, dependency and dependency dynamic,

which correspond to the lists of dependency and dynamicDependency. Each table has

two integer columns: CallerID and CalleeID, which hold the caller entity id and the

callee entity id, respectively. We also keep foreign key constraints from CallerID and

CalleeID to the EID column of the entity table. The pair CallerID and CalleeID

forms a primary key, so that we can guarantee each dependency relation is unique.

6.4.4.2 Inserting Data into Database Tables

We have two classes, DatabaseConnection and DatabaseHelper to help us with

the database. The DatabaseConnection class has methods that help us to make

109

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

a connection to the database and to close the connection after interactions. The

DatabaseHelper has numerous methods that specialize in adding new data (i.e.,

insert), querying interested data (i.e., select), modifying existing data (i.e., update)

and removing unnecessary data (i.e., delete) from the database.

6.5 Finding Logging Points

We have demonstrated an approach to collecting entities (i.e., classes and methods)

from Java bytecode. Some of these entities are actually involved in the process of

generating logs during program execution. Identifying such entities helps us build up

the connection between logs and source code in the log analysis. We start our discus-

sion with the definition of a logging point, and we introduce one logging framework

in the Java environment, Apache log4j. Finally, we describe the implementation of

identifying logging points using Java bytecode.

6.5.1 Definition of a Logging Point

In our project domain, a logging point refers to a logging statement in source code

that outputs a log message at runtime. The logging statement can be as simple as a

print statement and as complicated as a statement handling a Java exception.

The simplest logging point is the print statement, or other equivalent output

statements in source code, but in practice, it can be far more complicated than that.

For example, a logging subroutine, instead of the simple logging statement, can also

be used for logging. The actual logging statement, i.e., the print statement or other

equivalent output statement, is called within the logging subroutine. When we need

110

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

the program to do logging, the logging subroutine will be called; therefore the logging

point should be where the logging subroutine is called in source code, rather than

where the logging statement is.

An object-oriented language, like Java, applies a more complex logging mechanism

in the environment, which is known as Java logging framework. In such a framework,

there are predefined classes and methods for handling Java exceptions, formatting log

messages and outputting the log message to a dedicated medium, such as a plain-text

file. In this case, the logging point should be where the instance method of a specific

logging class is called in source code. From an analysis point of view, it needs to

be advised about the logging class and method that are in use, before parsing and

analyzing the logging points in source code.

6.5.2 Java Logging Framework

We have already mentioned the concept of Java logging framework. We will provide

more details of this concept, because that is what has been used in our partner’s

software system for logging. We believe the description will help the reader better

understand the implementation of analyzing logging points.

A Java logging framework is a computer data logging package for the Java plat-

form. It standardizes the process of logging in a Java environment. Normally, logging

is broken into three major pieces: the Logger, the Formatter, and the Handler (Ap-

pender). The Logger is responsible for capturing the message to be logged, along

with certain meta-data, and passing it to the logging framework. After receiving

the message, the framework calls the Formatter with the message. The Formatter

accepts the message object and formats it for output. The framework then hands

111

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

the formatted message to the appropriate Handler (Appender) for disposition. This

might include a console display, writing to disk, appending to a database, or email.

There are several Java logging frameworks, such as Java Logging API, Apache

log4j, Apache Commons Logging and so on. The specific framework that has been

used in our partner’s software system is Apache log4j.

Apache log4j

Apache log4jTM [Fou12c, Fou12b] is a Java-based logging package and widely used in

many projects and platforms. The log4j package makes it possible to enable logging

at runtime without modifying the application binary. It is designed so that these

statements can remain in shipped code without incurring a heavy performance cost.

Logging behaviour can be controlled by editing a configuration file, without touching

the application binary [Fou12c].

Log4j has three main components: Loggers, Appenders and Layouts. These three

types of components work together to enable developers to log messages according to

message type and level, and to control at runtime how these messages are formatted

and where they are reported [Fou12b].

Loggers are logical log file names. They are the names that are known to the Java

application. Each logger is independently configurable as to what level of logging

it currently logs. The actual outputs are done by Appenders. There are numerous

Appenders with descriptive names available. Multiple Appenders can be attached

to any Logger, so it is possible to log the same information to multiple outputs.

Appenders use Layouts to format log entries. One of the most popular formats is

one-line-at-a-time log file [Fou12b].

112

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Logging Levels of Apache log4j

As previously stated, each logger can be assigned with logging levels that it currently

logs. The set of possible levels includes [Fou12b]:

• The TRACE level designates finer-grained informational events than the DE-

BUG.

• The DEBUG level designates fine-grained informational events that are most

useful to debug an application.

• The INFO level designates informational messages that highlight the progress

of the application at coarse-grained level.

• The WARN level designates potentially harmful situations.

• The ERROR level designates error events that might still allow the application

to continue running.

• The FATAL level designates very severe error events that will presumably lead

the application to abort.

The set of logging levels are defined in the org.apache.log4j.Level class.

Logger Class of Apache log4j

The Logger is one of three main components of log4j. A Logger is an object that

allows the application to log without regard to where the output is sent or stored.

The application logs a message by passing an object or an object and an exception

with an optional severity level to the logger object under a given a name or identifier.

113

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

In order to better demonstrate this idea, we present the structure of the Logger

class and some of the basic methods [Fou12b]:

package org.apache.log4j;

public class Logger {

// creation & retrieval methods:

public static Logger getRootLogger();

public static Logger getLogger(String name);

// printing methods:

public void trace(Object message);

public void debug(Object message);

public void info(Object message);

public void warn(Object message);

public void error(Object message);

public void fatal(Object message);

}

Most loggers are instantiated and retrieved with the class static Logger.getLogger

method. The reader might realize that, for each of six logging levels, there is a cor-

responding printing method that is named with the same wording. These printing

methods are used widely for logging in source code.

6.5.3 The Implementation

After introducing all the background information about logging point and Java-based

logging techniques, we are ready to describe the implementation of identifying the

114

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

logging point in our partner’s software system, which uses one of Java logging frame-

works, Apache log4j.

6.5.3.1 Logging Point in Source Code

We have already introduced the Logger class and some of the logging methods of

log4j. We demonstrate how they are used in source code with the following code

snippet:

public class X {

private static Logger log = Logger.getLogger(X.class);

...

log.debug("Hello, world!");

}

The logger is instantiated with the Logger.getLogger method at the beginning

of the class. Later inside the class, when logging is needed, one of those printing

methods, such as log.debug(), is called to log the message “Hello, world!”; therefore

the code line of

log.debug("Hello, world!");

is considered as a logging point in our project domain.

6.5.3.2 Parsing Logging Points in Java Bytecode

We developed a class called SourceCodeAnalyzer whose method parseSourceCodeFile

iterates through all the XML files and calls another method parseLoggingPoint to

115

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

parse methods in each class. Within each method parsed, the method parseLoggingPoint

parses for bytecode instructions that invoke the logging methods of log4j.

Remember that we previously introduced four different instructions in Java byte-

code that can invoke a method: invokevirtual, invokeinterface, invokespecial and in-

vokestatic. We only consider instructions of invokevirtual and invokeinterface when

parsing for logging points. invokevirtual invokes an instance method of an object,

dispatching on the (virtual) type of the object. This is the case for the Logger

class. invokeinterface invokes a method that is implemented by an interface, search-

ing the methods implemented by the particular runtime object to find the appropri-

ate method. The Logger class implements other interfaces in org.apache.log4j;

therefore we includes invokeinterface in our consideration. The corresponding Java

bytecode of the logging point in the previous example is as follows:

ldc Hello, world!

invokevirtual void org.apache.log4j.Logger.debug(java.lang.Object)

Whenever we capture either invokevirtual or invokeinterface instructions, we check

whether the callee class matches with org.apache.log4j.Logger and the callee

method name matches with one of log4j logging methods. If both match, then it

confirms that the instruction represents a logging point.

6.5.3.3 Differentiating Logging Points

It is worth mentioning that the same logging method can be called more than once in

a method in source code. Thus, we cannot differentiate logging points in a method by

simply using the name of logging method. Originally, we considered using code line

number, since every code line has a unique line number in source code. Unfortunately,

116

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Java bytecode does not contain any information about the code line number. We had

to turn our focus back to the logging methods. We found that it is very common

for software developers to insert a constant string into a log message, so that it is

easier for support engineers to connect the actual log message in log files with the

logging method in source code. Considering this observation, we decided to include

the constant string in the metrics of differentiating logging points.

The reader might wonder, can two logging points in the same method have the

same constant string in their log messages? The answer is Yes! But in practice, it is

difficult for support engineers to differentiate them or match them with corresponding

log messages. It is good practice for software developers to avoid such a programming

style. In our project domain, we have to make this assumption, which means all

logging points in the same method should have different constant strings in their log

messages. Logging points in different methods can have the same constant string

since they can be differentiated by their caller methods.

Reconsider the previous code snippet. Before the invokevirtual instruction, there

is another ldc instruction, which pushes a one-word constant onto the operand stack [MD12].

The one-word constant, i.e., “Hello, world!”, is popped up later and inserted into

the log message by instruction invokevirtual. It is obvious that the one-word con-

stant is exactly the constant string we are interested in. So inside the method

parseLoggingPoint, we have a temporary variable to keep track of the constant

pushed by the ldc instruction before the invokevirtual or invokeinterface instruction.

When we find a logging point, the corresponding constant string will be stored along

with the logging point.

In summary, the metrics used to differentiate logging points include the constant

117

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

string in the log message, the logging method, the method where the logging method

is called, i.e., the caller method, and the Java source code file where the caller method

is defined.

6.5.3.4 Storing Logging Points

Storing in Memory

We defined a class called LoggingPoint to store information about a logging point,

which has the following members:

public class LoggingPoint {

int lid;

int eid;

int callerEid;

String sourceCodeFile;

String logContent;

}

• lid - an integer representing an unique id assigned to each logging point

• eid - an integer representing the entity id of the logging method

• callerEid - an integer representing the entity id of the method calling the

logging point

• sourceCodeFile - a string representing the name of the source code (java) file

• logContent - a string representing the constant in the log message

118

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

During the analysis process, we maintain an array list of LoggingPoint instances

to store all collected logging points in memory.

Remember that the logging class Logger and all logging methods used in source

code are considered entities as well; therefore each of them has an unique entity id.

The source code file is the plain-text java file, not the Java bytecode class file or the

XML file. The reason behind this will become obvious in Chapter 7 when we describe

the process of matching logs with logging points.

Saving into the Database

For storing information about logging points, we prepare a database table called

logging point with five columns: LID, EID, CallerEID, SourceCodeFile and LogContent.

LID stores a unique id assigned to each logging point. EID stores the entity id of the

logging method. CallerEID stores the entity id of the caller method of the logging

point. SourceCodeFile stores the name of the source code (java) file. LogContent

stores the value of the constant string used in the log message. We keep foreign

key constraints from EID and CallerEID in the EID column of the entity table.

The LID is a primary key. The table is populated with data from the array list of

LoggingPoint instances in memory.

6.6 Summary

In this chapter, we have presented implementation details of source code analysis,

which is the first of three major components in our log analysis project. We discussed

concepts of Java bytecode and demonstrated how we utilize the XML representation of

Java bytecode to explore necessary information about a software system, i.e., entities

119

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

information, inheritance relations among entities and logging points in source code.

We discussed the concepts of the access dependency graph and access dependency

analysis. We described the process of building the access dependency relations. These

are the building blocks of the eventual log analysis.

In the next chapter, we will present implementation details of another major

component in the log analysis project, i.e., log analysis, which is another main subject

matter of this thesis.

120

Chapter 7

Log Analysis

In this chapter, we present implementation details of the second of three major com-

ponents, i.e., log analysis, as shown in Figure 7.1. We describe a general process of

parsing logs in log files, extracting log information and matching each log with the

corresponding logging point. Then we explain how to utilize the access dependency

relations to build up the access dependency graph for eventual log analysis. We also

describe the process of searching for sequential patterns among historical logs. The

final analysis includes two different approaches. One approach is to match a sequence

of logs with the access dependency graph and the other is to match the log sequence

with existing sequential patterns of logs.

7.1 Parsing Logs

Logs of the software system are stored in plain-text files. As previously discussed,

it is more convenient and efficient to manage data in a relational database manage-

ment system than in a conventional storage medium, i.e., text file; therefore, before

121

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Historical Logs

Parsing Logs

Logs Matched with
Logging Points

Error Logss

1

1

Sequential
Pattern Searching

Matching
Sequential

Pattern

Matching
Program
Call Path

Log Analyzer

Sequential Patterns of
System Errors

2

2

Results of Log Analysis

Database
of

Source
Code

Database
of

Logs

Dependency
Graph

1 21

1 2

2

2

Legend

Step

 Process

Component

Database Operation

Input Data

Data (Intermediate & Final)

n Relative Order of Execution

Log Parser

2

Figure 7.1: Process of Log Analysis

performing any analysis of logs, we transfer them from the log file to the database.

During the process, we parse logs, extract necessary information from log messages,

and most importantly, match each log with the corresponding logging point in source

code. Finally, we save all of the collected information into database tables for future

reference.

122

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

7.1.1 The Log Format of Our Partner’s System

Since most application log formats do not follow a particular standard format, the

log format used in a software system needs to be known before parsing log files. The

information advised may include how many fields there are in a log, what kind of

information each field represents, what is the delimiter used to separate these fields

and so on. We have mentioned that the logging framework used in our partner’s

software system is Apache log4j. One sample log output by Apache log4j is as follows:

DEBUG 2012-02-29 12:34:56,789 [main] Testing.X - Hello, world!

• DEBUG - This field represents the log level. It can be one of the six log levels

in Apache log4j, which are TRACE, DEBUG, INFO, WARN, ERROR and FATAL, in

increasing order of severity.

• 2012-02-29 12:34:56,789 - This field represents the date and time when this

log is generated.

• [main] - This field represents information about the thread that runs the pro-

gram and generates this log.

• Testing.X - This field represents the Java class where the logging method is

called to generate this log.

In general, the name of a Java class is the same as the file name where the class

is defined. It is safe to assume that this field also represents the name of Java

source code file without the .java extension.

• Hello, world! - This field represents the contents of the log message.

123

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

It is worth mentioning that, as part of the log format, there is a space between

each of these fields in a log. Even though there is also a space separating the date

and the time, we still consider them as one field representing a timestamp. There is

a dash (-) between the Java class and the contents of the log message.

7.1.2 Extracting Information from a Log

Now we understand the log format, we are ready to parse logs in the log files and

extract information from the fields in each log. We developed a class called LogParser

whose method parseLogFile iterates all the log files in the system and calls another

method openLogFile to parse the logs in each log file.

The log file generated by Apache log4j adopts the one-line-at-a-time format, which

means every log takes up one line without wrapping in the log file; therefore the

method openLogFile reads the log file line by line and passes it to another method

parseLogMessage to process the log contents. For each log, the parseLogMessage

method applies regular expression technique to match the log with the expected log

format.

It is worth mentioning that a regular expression provides a concise and flexible

means for matching (specifying and recognizing) strings of text, such as particular

characters, words, or patterns of characters. A regular expression is usually written

in a formal language that can be interpreted by a regular expression processor, which

is a program that either serves as a parser generator or examines text and identifies

parts that match the provided specification. In Java, a class called Pattern works

as the regular expression processor and compiles a regular expression, specified as a

string, into an instance of this class. The resulting pattern can be used to create

124

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

an instance of Matcher class, which matches arbitrary character sequences against

the regular expression. The Matcher class works as the parser that performs match

operations on the character sequences by interpreting the pattern. In our project, the

regular expression used to match logs is as follows:

static String logMsgRegex = "^([FATAL|ERROR|WARN|INFO|DEBUG|TRACE])

\\s{1,2}(\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2},\\d{3})

\\s(\\[.+\\]|\\[{2}.+\\].+\\])\\s(\\w+[\\.*\\w*]*)\\s*-\\s(\\s*\\w.+)$";

and the code segment that performs regular expression matching is as follows:

Pattern pattn = Pattern.compile(RegexHelper.logMsgRegex);

Matcher matcher = pattn.matcher(logLine);

One can divide the character sequences into different groups using parentheses in

a regular expression. In the previous example, we divide the regular expression of

expected log format into five different groups, each of which represents one of the

fields in a log.

Upon a successful match, the method parseLogMessage extracts information from

the matched log, with the help of the Matcher class. The matched subsequences

are captured and temporarily stored in the capturing groups. The Matcher class

has methods for accessing these capturing groups and returning the captured subse-

quences in string form. The returned information is stored into an instance of Log

class.

125

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

7.1.3 Matching a Log with a Logging Point

When a log is matched with the regular expression, the parseLogMessage method

passes the log to another method matchLoggingPoint, which attempts to match the

log with the corresponding logging point in source code.

We have collected information about logging points during the source code anal-

ysis. To recap, for each logging point we learnt about the constant string in the log

message, the logging method, the method where the logging method is called, i.e.,

the caller method, and the Java source code file where the caller method is defined.

The matchLoggingPoint method retrieves existing logging points of the source

code file where the log is generated. It iterates through the list of logging points

and performs match operations on each of them. We know the corresponding logging

method from the log level recorded. That helps narrow down the list of eligible logging

points. Then it compares the constant string of the logging point with the message

contents in the log. If the constant string appears in the log message, then the match

is confirmed. If that is the case, the matchLoggingPoint method stores relevant

information about the matched logging point into the instance of Log class and returns

a positive confirmation; otherwise, it simply returns a negative confirmation.

7.1.4 Storing the Log Information

Storing in Memory

We have mentioned the Log class several times in previous descriptions. We developed

this class to store information about the log plus the corresponding logging point in

memory. The Log class has the following members:

126

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

public class Log {

int mid;

int lid;

int eid;

int callerEid;

String logFile;

int logLine;

String status;

String logTime;

String thread;

String sourceCodeFile;

String message;

boolean matched;

}

• mid - an integer representing a unique id assigned to each log message

• lid, eid and callerEid - representing relevant information about the logging

point that generates this log

• logFile - a string representing the full file directory of the log file

• logLine - an integer representing the relative line number of this log in the log

file

• status, logTime, thread, sourceCodeFile and message - representing infor-

mation extracted from the fields of this log

127

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

• matched - a boolean representing the confirmation that the corresponding log-

ging point is found

During the analysis process, we maintain an array list of Log instances to store

all parsed logs in memory.

Saving into the Database

For storing logs parsed from log files, we prepare a database table called log message

with nine columns. MID stores a unique id assigned to each log. LID stores the id of

the logging point that generates the log. LogFile stores the full file path of the log

file. LogLine stores the relative line number where the log appears in the log file.

Status, LogTime, Thread, SourceCodeFile and Message store information extracted

from the log. The MID is a primary key. For the purpose of efficient data query, we

have the table indexed with LID. The table is populated with data from the array list

of Log instances in memory.

7.2 Access Dependency Graph

The implementation of connecting logs in the log file with logging points in source code

puts us one step closer to the final log analysis process. That is only for one individual

log. In order to analyze a sequence of logs, we still need to implement an approach to

expand this individual matching to a sequential matching, i.e., matching between a

sequence of logs and logging points in a specific order. We have described the process

of analyzing the access dependency relations. We will explain how to utilize these

relations in our analysis process. We present two graph search algorithms that help

128

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

us efficiently traverse the dependency graph.

7.2.1 Dependency Graph vs. Dependency Relation - Revis-

ited

We have clarified the similarities and differences between the two terminologies de-

pendency graph and dependency relation. To recap, they refer to the same concept,

but in different contexts.

When we describe the process of analyzing interrelations among entities in source

code analysis, i.e., caller-callee relations, we use the terminology dependency relation

more often because it properly represents the binary relation between two entities

which are caller and callee, respectively. When we store the caller-callee relations

into relational database tables, technically they are dependency relations, but con-

ceptually, they are also a dependency graph.

In this chapter, we describe our analysis process in the domain of abstract graphs.

We utilize the dependency relations in database tables to build up the dependency

graph in memory. We present two graph search algorithms and discuss the imple-

mentation of applying them to traverse the dependency graph. It is more convenient

and specific to use the terminology dependency graph in our descriptions.

7.2.2 Building the Access Dependency Graph

We developed a class Graph that connects dependency relations in database tables

with edges and builds up the access dependency graph in memory. We also developed

another class GraphNode that represents each entity as a node of the dependency

graph. The class GraphNode has the following members:

129

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

public class GraphNode {

int entityId;

String entityName;

ArrayList<GraphNode> callerList;

ArrayList<GraphNode> calleeList;

}

• entityId - an integer representing the id of an entity

• entityName - a string representing the name of an entity, either ClassName for

a class or ClassName:MethodSignature for a method

• callerList - an array list representing all the caller entities of an entity

• calleeList - an array list representing all the callee entities of an entity

A dependency graph built on the caller-callee relations is a directed graph. The

directed edge (arrow) can either point from caller entity to callee entity or vice versa.

We decide to connect the entities in a way such that the directed edges point from

callee entities to caller entities.

Inside the Graph class, there is a method buildDependencyGraph that obtains

all dependency relations from the database and iterates through all the relations to

connect entities with directed edges. Remember that there are two kinds of depen-

dency relations previously discussed. One is the normal caller-callee relation and

the other is the access relation involving dynamic binding consideration. So the

buildDependencyGraph method first iterates through the list of dynamic dependency

relations and identifies caller and callee entities involving the dynamic binding issue,

130

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

then iterates through another list of normal dependency relations, builds directed

edges from callee entities to caller entities and further adds directed edges to callee

entities in the dynamic binding relations. Once all entities in the dependency relations

are connected with directed edges, the dependency graph is completed.

7.2.3 Traversing the Access Dependency Graph

Graph traversal refers to the problem of visiting all the nodes in a graph in a par-

ticular manner. It explores the structure of the graph and discovers the connections

between the nodes. Depth-first Search (DFS) and Breadth-first Search (BFS) are two

techniques for traversing a finite graph.

7.2.3.1 Breadth-first Search (BFS)

Given a graph G = (V,E) and a distinguished source vertex s, breadth-first search

systematically explores the edges of G to “discover” every vertex that is reachable

from s [CCRS09].

Breadth-first search is so named because it expands the frontier between discovered

and undiscovered vertices uniformly across the breadth of the frontier. That is, the

algorithm discovers all vertices at distance k from s before discovering any vertices

at distance k + 1 [CCRS09].

From the standpoint of the algorithm, all successor nodes obtained by expanding

the predecessor node are added to a First In, First Out (FIFO) queue for exploration.

The pseudo-code of a breadth-first search algorithm is shown in Algorithm 1.

131

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Algorithm 1 Breadth-first Search

function BFS(G, v)
Queue Q := {};
for all u in G do

visited[u] := False;
end for
add Q, v; . add to the tail of the queue
while Q is not empty do

u := remove Q; . remove from the head of the queue
if not visited[u] then

visited[u] := True;
for all neighbour w of u do

if not visited[w] then
add Q, w;

end if
end for

end if
end while

end function

7.2.3.2 Depth-first Search (DFS)

Depth-first search explores edges out from the most recently discovered vertex v that

still has unexplored edges leaving it. Once all of v’s edges have been explored, the

search “backtracks” to explore edges leaving the vertex from which v was discovered.

This process continues until we have discovered all the vertices that are reachable from

the original source vertex. If any undiscovered vertices remain, then depth-first search

selects one of them as a new source, and it repeats the search from that source. The

algorithm repeats this entire process until it has discovered every vertex [CCRS09].

In a non-recursive implementation, all successor nodes obtained by expanding

the predecessor node are added to a Last In, First Out (LIFO) stack for explo-

ration. The pseudo-code of a depth-first search algorithm without recursion is shown

in Algorithm 2.

132

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Algorithm 2 Depth-first Search

function DFS(G, v)
Stack S := {};
for all u in G do

visited[u] := False;
end for
push S, v; . push to the top of the stack
while S is not empty do

u := pop S; . pop from the top of the stack
if not visited[u] then

visited[u] := True;
for all w adjacent to u do

if not visited[w] then
push S, w;

end if
end for

end if
end while

end function

Different from BFS, DFS starts at the selected root node and explores as far as

possible along each branch. It traverses deeper and deeper until either a goal node is

found or it reaches a node that has no successor; therefore a recursive implementation

of DFS is feasible. The pseudo-code of a depth-first search algorithm with recursion

is shown in Algorithm 3.

7.2.3.3 BFS vs. DFS

BFS visits the sibling nodes before visiting the child nodes, that is, it traverses the

breadth of the graph before the depth. BFS is a conservative and prudent search,

because it progresses equally in all possible paths. Given a graph G = (V,E), the

total running time of the BFS procedure is O(V + E) [CCRS09].

DFS visits the child nodes before visiting the sibling nodes, that is, it traverses

133

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Algorithm 3 Depth-first Search with Recursion

function BFS(G, v)
for all u in G do

visited[u] := False;
end for
BFS Recusion(v);

end function
function BFS Recusion(v)

visited[v] := True;
for all w adjacent to v do

if not visited[w] then
BFS Recusion(w);

end if
end for

end function

the depth of the graph before the breadth. DFS is an aggressive and risky search,

because it simply chooses one path and ignores all other paths until it reaches the

end of the chosen path. It is possible for it to reach all the other nodes in the graph

before reaching the goal node. Given a graph G = (V,E), the total running time of

the DFS procedure is Θ(V + E) [CCRS09].

DFS has the advantage over BFS in terms of memory usage as it has a much lower

memory requirement than BFS. Since BFS has to store all of the successor nodes at

each level, in the worse case, it needs to store O(2n) nodes at level n in the graph.

On the other hand, DFS only has to store the current path from the starting node

to the current node that it is expanding, so, in the worst case, it needs to store only

O(n) nodes at level n in the graph.

Either BFS or DFS can be efficient when searching for a particular node in the

graph, depending on the structure of the graph and the location of the node. For

example, if the goal node is at the lower level of the graph, then BFS usually takes

134

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

longer to reach the node than DFS. If the goal node is at the upper level of the graph,

then BFS is usually faster than DFS.

From the standpoint of implementation, BFS implements a First In, First Out

(FIFO) strategy such that it appends new nodes to the tail of a queue and draws

nodes from the head of the queue for exploration. DFS implements a Last In, First

Out (LIFO) strategy such that it pushes new nodes to the top of a stack and pops

nodes also from the top of the stack for exploration.

We demonstrate the differences between the two algorithms with an example.

Consider a sample graph in Figure 7.2:

A

D

CB

FE

Figure 7.2: Sample Graph

BFS - The algorithm visits the nodes in the following order:

A,B,C,D,E, F

DFS - The algorithm visits the nodes in the following order:

A,C, F,E,B,D

It is assumed that new nodes are pushed onto the stack from left to right. For

example, at level 2, node B is pushed onto the stack before node C; as a result,

135

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

node C is popped from the stack before node B, which leads to the visiting

sequence as shown.

DFS with Recursion - The algorithm visits the nodes in the following order:

A,B,D,C,E, F

7.3 Matching Logs with Program Call Paths

We are ready to describe the first of two different approaches to analyzing a sequence

of logs. This approach attempts to match a sequence of logs with all of the eligible

program call paths, in search of the specific one that represents the sequential program

executions resulting in the sequence of logs.

7.3.1 General Process

Our ultimate goal is to analyze a sequence of logs by matching the logs with logging

points in source code, so that we can reveal the sequence of program executions that

leads to the occurrence of system error indicated by logs. The sequence of program

executions can be represented by a program call path.

Our implementation adopts the static analysis approach. We analyze the depen-

dency relations among entities in the program and build up the dependency graph

to represent all potential program call paths, each of which is actually a subgraph

of the dependency graph; therefore the general process is to determine a start node

for traversing the dependency graph, match each visited entity node with the corre-

sponding log in the given sequence and build up program call paths that consists of

matched nodes. The program call paths represent the sequential program executions

136

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

resulting in the given sequence of logs.

7.3.2 Determining the Start Node of the Graph Traversal

Generally speaking, when we analyze a sequence of logs that indicates a system error,

our focal point intuitively falls on the log with an error status (code). We normally

choose this error log as the start point of manual analysis. We also do this in the

automatic approach in our project: we match the error log with the corresponding

logging point in source code, identify the entity of matched logging point as a node

of the dependency graph, and traverse the dependency graph starting from this node

in search for the program call paths.

It is worth mentioning that, even though the logging point is identified as the

start node, specifically, the actual graph traversal starts from the method that calls

the logging point. We can explain this in brief. We mentioned previously that the

logging point is also an entity in the program, which represents one of the six logging

methods in Apache log4j. Since these logging methods are widely used in the program,

if we traverse the dependency graph starting from one of them, it will include other

program call paths that are not necessary for our consideration. That is the reason

why we include the caller method of the logging point to differentiate between logging

points. It also explains why we start the actual graph traversal from the caller method

of the logging point instead of the logging point itself. This helps narrow down the

range of eligible program call paths.

137

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

7.3.3 Direction of the Graph Traversal

Reconsider the example of manual analysis of a sequence of logs. After we determine

the start point of analysis as the error log, we trace backwards the logs recorded

before the error log for further investigation. The logs in a log file are organized in

chronological order, which means the logs appearing before the error log represent

the events (executions) that occur before the system error. The approach of tracing

backwards in reverse chronological order usually helps us identify the suspicious logs

that potentially indicate the root cause.

The same theory applies in the automatic log analysis process. We determine

the logging point that generates the error log and build up program call paths from

the dependency graph that starts from the node of the logging point. In order to

recognize the specific program call path that corresponds to the sequence of logs, we

traverse each path in a backward direction, i.e., from callee to caller, match the nodes

at each level along the way with the log at the corresponding level, filter out the

unmatched branch and look for the expected program call path.

7.3.4 Traversing with Depth-First Search (DFS)

The BFS algorithm visits the sibling nodes before visiting the child nodes, which

means it traverses the breadth of the graph before the depth. The DFS algorithm

visits the child nodes before visiting the sibling nodes, which means it traverses the

depth of the graph before the breadth. The choice of graph traversal algorithm is

determined by our approach to processing the sequence of logs.

We build up the program call paths when traversing the dependency graph. We

must traverse to the end of an eligible program call path and attempt to match all

138

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

of the nodes along the way with the sequence of logs, before determining whether

this path matches with the log sequence or not; therefore the DFS algorithm is more

suitable to our approach than the BFS algorithm. The DFS algorithm traverses to

the end of a branch before traversing the next branch, it allows us to backtrack to

any of the visited nodes. This is a helpful technique as we have to check back whether

the path includes the required matched nodes after visiting an eligible program call

path.

7.3.5 Building the Program Call Paths

Keeping Track of Traversals with Cursors

We build up the program call paths in memory by cloning and adding every vis-

ited node to the corresponding path, when traversing the dependency graph with

the depth-first search algorithm. The process involves two separate traversals, one

is traversing the dependency graph and the other is visiting logs in the given log

sequence; therefore, accordingly, we maintain two cursors during the process. One

cursor keeps track of the level, or the depth, of the program call path. It starts with

level 0 and will be reset when the process finishes traversing one path. The other

cursor keeps track of the currently visited log. It starts with the last log in the given

log sequence and will also be reset when the process finishes traversing one path.

The process traverses the dependency graph from the selected start node, clones

every visited node and adds it the corresponding program call path. It also matches

every visited node with the currently visited log in the log sequence. If the node

matches with the log, the log cursor moves on to the next log in the log sequence;

otherwise, the log cursor remains intact until a matched node is found. The graph

139

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

cursor moves on to the next node along the path no matter what the matching

outcome.

Methods without Logs

The reason behind such design is that, in practice, methods could be executed with-

out generating logs. This completely depends on the design of the methods. Some

methods are not programmed to generate a log at all, which means there is no logging

point in the method; some methods have logging points, but due to the restrictions

of conditional statements, none of the logging points is executed and as a result, no

log is generated.

Rules of Matching with Program Call Paths

We have considered both scenarios and implemented our solution to handle them

accordingly. When a visited node does not match with the currently visited log, we

mark it as unmatched. We will match the next visited node with the same log until a

matched node is found, then we mark that node as matched. After reaching the end of

the current path, we backtrack to all of the matched nodes. As long as the sequence of

matched nodes along the program call path corresponds with the sequence of logs, no

matter how many unmatched nodes are lying between the matched ones, we consider

this program call path matches with the sequence of logs.

We remove the unmatched program call paths once we have determined whether

the current program call path matches the sequence of logs by backtracking. We

repeat this process with all eligible paths we encounter during graph traversal. The

result will include all of the matched program call paths.

140

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

7.3.6 Examples of Matching Logs with Program Call Paths

Example One

We have a sample program with the dependency graph as demonstrated in Figure 7.3.

The digits in each of the method names represent the corresponding level in the de-

pendency graph. Each of all the possible call paths results in an error log. It is

assumed that each method in the program generates a unique log representing the

method itself when it is executed.

X:main()

X:x43()X:x42()X:x41()

X:x32()X:x31()

X:x2()

X:x12()X:x11()

log.error() log.error() log.error()

Figure 7.3: Access Dependency Graph of Example One

We have a sequence of logs involving an error log as follows:

DEBUG 2011-11-11 09:17:20,941 [main] Testing.X - x12

DEBUG 2011-11-11 09:17:21,956 [main] Testing.X - x2

DEBUG 2011-11-11 09:17:22,972 [main] Testing.X - x32

141

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

DEBUG 2011-11-11 09:17:23,988 [main] Testing.X - x43

ERROR 2011-11-11 09:17:24,050 [main] Testing.X - system error!

For the purpose of debugging, our implementation traverses the dependency graph

using the Depth-first Search (DFS) algorithm and searches for all possible program

call paths leading to the error log. The result is as follows:

Depth-First Search of Dependency Graph

Level 5 - Testing.X:main(java.lang.String[])

Level 4 - Testing.X:x11()

Level 5 - Testing.X:main(java.lang.String[])

Level 4 - Testing.X:x12()

Level 3 - Testing.X:x2()

Level 2 - Testing.X:x32()

Level 1 - Testing.X:x43()

Level 0 - org.apache.log4j.Logger:error(java.lang.Object)

The traversal can use either BFS or DFS. The output from these two algorithms

is correct in terms of content, but slightly different in terms of appearance. The result

of traversal using Breadth-first Search algorithm is as follows:

Breadth-First Search of Dependency Graph

Level 0 - org.apache.log4j.Logger:error(java.lang.Object)

Level 1 - Testing.X:x43()

Level 2 - Testing.X:x32()

Level 3 - Testing.X:x2()

Level 4 - Testing.X:x11()

142

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Level 4 - Testing.X:x12()

Level 5 - Testing.X:main(java.lang.String[])

Level 5 - Testing.X:main(java.lang.String[])

Our implementation performs the matching process to search for the call path

that has generated the sequence of logs. The result of the matching process is as

follows:

Call Path Matching: Closest Matched Call Path

Level 4 - Testing.X:x12()

Level 3 - Testing.X:x2()

Level 2 - Testing.X:x32()

Level 1 - Testing.X:x43()

Level 0 - org.apache.log4j.Logger:error(java.lang.Object)

The correctness of the result can be verified with the dependency graph in Figure 7.3.

Example Two

We have another sample program with the dependency graph as demonstrated in

Figure 7.4. The digits in each of the method names represent the corresponding

level in the dependency graph. Each of all the possible call paths results in an

error log. It is assumed that each method in the program generates a unique log

representing the method itself when it is executed, except node X:x13() and node

X:x33(), which do not generate a log at all during program execution.

We have the same sequence of logs involving an error log:

DEBUG 2011-11-11 09:17:20,941 [main] Testing.X - x12

143

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

X:main()

X:x43()X:x42()X:x41()

X:x32()X:x31()

X:x2()

X:x12()X:x11()

log.error() log.error() log.error()

X:x33()

X:x13()

Figure 7.4: Access Dependency Graph of Example Two

DEBUG 2011-11-11 09:17:21,956 [main] Testing.X - x2

DEBUG 2011-11-11 09:17:22,972 [main] Testing.X - x32

DEBUG 2011-11-11 09:17:23,988 [main] Testing.X - x43

ERROR 2011-11-11 09:17:24,050 [main] Testing.X - system error!

Our implementation performs the matching process to search for the call path

that has generated the sequence of logs. The result of the matching process is as

follows:

Call Path Matching: Closest Matched Call Path

Level 4 - Testing.X:x12()

Level 3 - Testing.X:x2()

Level 2 - Testing.X:x32()

Level 1 - Testing.X:x43()

144

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Level 0 - org.apache.log4j.Logger:error(java.lang.Object)

Level 5 - Testing.X:x12()

Level 4 - Testing.X:x13()

Level 3 - Testing.X:x2()

Level 2 - Testing.X:x32()

Level 1 - Testing.X:x43()

Level 0 - org.apache.log4j.Logger:error(java.lang.Object)

Level 5 - Testing.X:x12()

Level 4 - Testing.X:x2()

Level 3 - Testing.X:x32()

Level 2 - Testing.X:x33()

Level 1 - Testing.X:x43()

Level 0 - org.apache.log4j.Logger:error(java.lang.Object)

Level 6 - Testing.X:x12()

Level 5 - Testing.X:x13()

Level 4 - Testing.X:x2()

Level 3 - Testing.X:x32()

Level 2 - Testing.X:x33()

Level 1 - Testing.X:x43()

Level 0 - org.apache.log4j.Logger:error(java.lang.Object)

The correctness of the result can be verified with the dependency graph in Figure 7.4.

Even though node X:x13() and node X:x33() do not generate a log at all, we still

include them in the potential program call paths; as a result, there are four matched

145

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

program call paths in total.

7.4 Sequential Pattern Searching in Historical Logs

We describe a process of searching for sequential patterns in historical logs. First we

explain why it is necessary and helpful to add this process to the overall log analysis.

Then we break down the process into several steps and describe each step in detail.

The most important step is analyzing samples of logs in search of sequential patterns.

Logs recorded in log files reflect the program executions at runtime; hence they

mostly appear in chronological order. We are interested in a set of adjacent logs that

frequently appear in a specific sequential order over time, which are considered as

a sequential pattern. We believe that such a sequential pattern not only represents

the particular execution sequence of methods in the program, but also reflects the

potential interrelations between the runtime events recorded by the logs; therefore an

important part of the log analysis is to explore any frequent occurrences of sequential

logs in history.

7.4.1 Collecting Samples of Sequential Logs

We presented the overall process of parsing logs in log files, extracting information

from logs and storing the information into corresponding columns of a database table.

Using the database as the main depository of logs makes it fairly convenient and

efficient to collect samples of logs with the help of database SQL queries.

The SQL queries allow us to conveniently search for a certain number of logs for

different kinds of objectives. For example, we can search for logs generated within

146

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

a particular time period and/or on a particular server, we can search for logs with

a particular status (code), we can search for logs generated from a particular source

code file, we can even search for logs whose log messages contains a particular constant

string and so on. This is a huge advantage that the database holds over plain-text

file and XML representation in terms of data repository.

The error log is always one of the most important objectives when we explore the

historical logs. More precisely, we are interested in the sequence of logs involving an

error log. The sequence of logs records an error that occurred at least once during

runtime in the past and reveals the serial program executions that likely led to the

occurrence of the error. We search for such a sequence of logs in historical log files

and collect them to form a knowledge base of past system errors. This knowledge

base not only helps us understand the errors that have occurred in the past, but also

helps us interpret the same error if it occurs in the future.

The process of collecting such a sequence of logs is straightforward. We identify

all the error logs in the database table of historical logs. For each error log, we trace

backwards a certain number of logs, such as five, and form a sample of sequential logs

including the error log. Then we analyze this sample of sequential logs for a potential

pattern.

7.4.2 Analyzing Samples of Sequential Logs for Patterns

We developed a class called DataMining whose method sequentialPatternSearching

analyzes the samples of sequential logs for potential sequential patterns.

The analysis process is similar to the process of matching a sequence of logs with

eligible program call paths. For each sample of sequential logs, the method matches

147

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

the error log with the corresponding logging point and builds up the relevant program

call path starting from the caller method of the matched logging point. Then it

matches the logs in the sequence sample with the corresponding graph nodes when

traversing the whole program call path.

The matched program call path and the sample of sequential logs form the se-

quential pattern that we are searching for. We maintain all the information related

to this sequential pattern in memory during the analysis process and save it in a

database table afterwards.

It is worth mentioning that, since we are interested in the sequential patterns that

involve error logs from the past, it is likely that the system errors recorded by the

error logs have already been investigated and fixed by support engineers before we

identify them. The knowledge base of sequential patterns should allow the support

engineers to enter their thoughts and investigation results of the system errors, so

that the sequential patterns can include such complementary information for future

reference.

7.4.3 Storing Sequential Patterns

Storing in Memory

We developed a class called LogPattern to store information about a sequential

pattern in memory. The LogPattern class has the following members:

public class LogPattern {

int pid;

int startLogMid;

int startLogLid;

148

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

String startLogStatus;

ArrayList<Integer> logSequenceMid;

ArrayList<Integer> logSequenceLid;

String selectCallPath;

String matchedCallPath;

}

• pid - an integer representing a unique id assigned to each sequential pattern

• startLogMid, startLogLid and startLogStatus - representing information

about the starting log of the sequential pattern in a backward direction

• logSequenceMid - an array list representing the ids of logs included in the

sequential pattern

• logSequenceLid - an array list representing the ids of logging points that match

with logs included in the sequential pattern

• selectCallPath - a string representing a set of program call paths that has the

start log as the root node and includes all possible program call paths from the

root node

• matchedCallPath - a string representing the program call path that matches

with all the logs included in the sequential pattern

Saving into the Database

For storing sequential patterns, we prepare a database table called sequential pattern

with nine columns. PID stores a unique id assigned to each sequential pattern.

149

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

StartLogMID, StartLogLID and StartLogStatus store information about the start-

ing log of the sequential pattern. LogSequenceMID stores the ids of logs included in

the sequential pattern. LogSequenceLID stores the ids of logging points that match

with logs included in the sequential pattern. SelectCallPath stores a string repre-

sentation of program call paths that have the start log as the root node and include

all possible program call paths from the root node. MatchedCallPath stores a string

representation of the program call path that matches with all the logs included in the

sequential pattern. The PID is a primary key. For the purpose of efficient data query,

we have the table indexed with StartLogLID. The table is populated with data from

the instance of class LogPattern in memory.

7.5 Matching Logs with Sequential Patterns

We are ready to describe the second of two different approaches to analyzing a se-

quence of logs. This approach attempts to match a sequence of logs with existing se-

quential patterns collected from historical logs, and searches for the sequential pattern

that represents the sequence of logs and reflects the interrelations between program

executions recorded by the logs.

7.5.1 General Process

The process of the second approach is simpler than the first approach, because most

of the essential analysis work has been carried out and all necessary information is

maintained in database tables. The remaining task of this approach is to search

among existing sequential patterns for the one that matches with the sequence of

150

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

logs. The process basically goes over the existing sequential patterns in the database

and attempts to match each of them with the sequence of logs. The only matching

criterion is the sequences of logging point ids from both sides. We consider them

matched as long as either sequence is a subsequence of the other.

If a match is found, then all the information about the matched sequential pattern

including the program call path can be obtained from the database. This information

should be able to provide a solid understanding of the program executions at runtime

that lead to the sequence of logs. Furthermore, if the sequence of logs involves an

error log and the corresponding sequential pattern has more information about the

same error from the past, as previously discussed, the complementary information

can be helpful to support engineers investigating the present system error.

7.5.2 Example of Matching Logs with Sequential Patterns

We reconsider the sample program with the dependency graph as demonstrated in

Figure 7.3. We have the same sequence of logs involving an error log:

DEBUG 2011-11-11 09:17:20,941 [main] Testing.X - x12

DEBUG 2011-11-11 09:17:21,956 [main] Testing.X - x2

DEBUG 2011-11-11 09:17:22,972 [main] Testing.X - x32

DEBUG 2011-11-11 09:17:23,988 [main] Testing.X - x42

ERROR 2011-11-11 09:17:24,050 [main] Testing.X - system error!

The result of the matching process is:

Sequential Pattern Matching: Closest Matched Sequential Pattern

...\testing.log - Line 11 - DEBUG 2011-10-10 08:19:30,347 [main] Testing.X - x12

151

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

...\testing.log - Line 12 - DEBUG 2011-10-10 08:19:31,586 [main] Testing.X - x2

...\testing.log - Line 13 - DEBUG 2011-10-10 08:19:32,450 [main] Testing.X - x32

...\testing.log - Line 14 - DEBUG 2011-10-10 08:19:33,124 [main] Testing.X - x42

...\testing.log - Line 15 - ERROR 2011-10-10 08:19:34,238 [main] Testing.X - system error!

Sequential Pattern Matching: Possible Call Path(s)

Level 5 - Testing.X:main(java.lang.String[])

Level 4 - Testing.X:x11()

Level 5 - Testing.X:main(java.lang.String[])

Level 4 - Testing.X:x12()

Level 3 - Testing.X:x2()

Level 2 - Testing.X:x31()

Level 5 - Testing.X:main(java.lang.String[])

Level 4 - Testing.X:x11()

Level 5 - Testing.X:main(java.lang.String[])

Level 4 - Testing.X:x12()

Level 3 - Testing.X:x2()

Level 2 - Testing.X:x32()

Level 1 - Testing.X:x42()

Level 0 - org.apache.log4j.Logger:error(java.lang.Object)

Sequential Pattern Matching: Closest Matched Call Path

Level 4 - Testing.X:x12()

Level 3 - Testing.X:x2()

152

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Level 2 - Testing.X:x31()

Level 1 - Testing.X:x42()

Level 0 - org.apache.log4j.Logger:error(java.lang.Object)

The correctness of the result can be verified with the dependency graph in Figure 7.3.

The reader might realize that the results from the first and second approaches are

identical, which demonstrates that both approaches are equally valid in terms of

correctness.

7.6 Summary

In this chapter, we have presented implementation details of log analysis, which is

the second of three major components in our log analysis project. We described the

process of parsing logs in log files, extracting information from logs and matching each

log with the corresponding logging point. We also described the process of building

the access dependency graph from the access dependency relations and searching for

sequential patterns in historical logs.

The most important subject matter in this chapter is the general process of an-

alyzing a sequence of logs by applying various information we have collected. The

process includes two different approaches: matching the sequence of logs with pro-

gram call paths and matching the sequence of logs with existing sequential patterns.

The log analysis process described so far has demonstrated that the methodology and

system design of our project is capable of providing a feasible solution to the problem

of diagnosis of software defects.

153

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

In the next chapter, we will present the last major component in the log anal-

ysis project, i.e., sequential pattern mining. We will discuss how the application of

sequential pattern mining helps refine the results of log analysis.

154

Chapter 8

Sequential Pattern Mining

In this chapter, we present the last of three major components, i.e., sequential pattern

mining, as shown in Figure 8.1. We revisit the rationale behind the decision to apply

the sequential pattern mining technique in the log analysis process. We want to

demonstrate that, by mining potential sequential patterns hidden in the log analysis

results, this technique can provide an extended insight into the software system from

a statistical point of view. In order to support our argument, we will provide an

example of mining sequential patterns. We run the mining algorithm on some sample

data, explain the output of the mining process and discuss the implications for our

log analysis project.

Rationale

Sequential pattern mining discovers frequent subsequences as patterns in a sequence

database. By applying the sequential pattern mining technique in the log analysis pro-

cess, we intend to explore potential sequential patterns among historical logs, reveal

interrelations between events recorded by logs and further study the corresponding

155

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Sequential
Pattern Mining

Tool

Sequential Pattern
Mining

Historical Error Logs

Mining Results

Database
of

Logs

Legend

Step

 Process

Component

Database Operation

Data (Intermediate & Final)

Figure 8.1: Process of Sequential Pattern Mining

sequences of program executions behind these events; therefore the sequential pattern

mining is considered as a complementary approach to the log analysis process. It pro-

vides helpful information about the software system in the past and assists support

engineers in diagnosing system errors at present and in the future.

8.1 The Implementation

There has been extensive research and development work in the field of sequential

pattern mining, in both the industrial and academic domains. Software researchers

and engineers have implemented the advanced mining methods and algorithms into

practical applications, so that the mining technique can be broadly utilized in a larger

number of industries.

156

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Fournier-Viger [FV12] has developed an open-source data mining framework writ-

ten in Java. It was originally a sequential pattern mining framework; hence it was

named as SPMF. The SPMF framework now offers implementations of many dif-

ferent data mining algorithms for discovering sequential patterns, sequential rules,

association rules, frequent itemsets and more.

We adopted Fournier-Viger’s implementation of the PrefixSpan algorithm for min-

ing frequent sequential patterns from a sequence database, which is researched and

developed by Pei et al. [PHMA+04]. PrefixSpan mines the complete set of patterns

but greatly reduces the effort of candidate subsequence generation. A characteristic of

this algorithm is that it explores prefix-projection in sequential pattern mining. The

prefix-projection substantially reduces the size of projected databases and leads to

more efficient processing when compared to other sequential pattern mining methods.

8.2 Example of Sequential Pattern Mining

General Process

We have successfully integrated Fournier-Viger’s implementation of the PrefixSpan

algorithm [FV12] into our project. The sequential pattern mining process takes a

set of log sequences as input and applies a mining algorithm to identify potential

sequential patterns in these log sequences.

Suppose that we have collected a set of log sequences from historical logs in the

database through log analysis. The log in each sequence is represented by the id of

the corresponding logging point. Each sequence involves an error log represented by

the last logging point id of the sequence. These sequences of logs actually reflect

157

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

different program call paths that have caused system errors in the past. The order of

program execution is from left to right in each sequence.

0: (19 21 22 24 25)

1: (19 21 22 26 27)

2: (19 21 23 26 27)

3: (19 21 23 28 29)

4: (20 21 22 24 25)

5: (20 21 22 26 27)

6: (20 21 23 26 27)

7: (20 21 23 28 29)

The reader might observe that some sequences share a certain number of logging

points in common. It shows that these sequences of logs are not completely inde-

pendent cases, instead, there are potential interrelations between the logging points

or the caller methods of the logging points hidden in the sequences. We attempt to

explore such interrelations with the help of sequential pattern mining technique.

We have a sequence database consisted of all the sequences presented. The set

of items in the database is {19, 21, 22, 23, 24, 25, 26, 27, 28, 29}. The basic task of se-

quential pattern mining is to find all sequential patterns that occur in more than

the min support number of sequences of the database. The min support is a per-

centage or positive integer representing the support threshold for a sequential pattern.

A subsequence is considered as a sequential pattern in the sequence database only

when the total number of occurrences of the subsequence is no less than the value of

min support.

We ran Fournier-Viger’s implementation of the PrefixSpan algorithm [FV12] with

158

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

min support as 50%, which means a subsequence has to appear in at least half of the

sequences of the database in order to be considered as a sequential pattern. We have

the mining result as follows:

--------- FREQUENT SEQUENTIAL PATTERNS ---------

L0

L1

pattern 1: (19) Sequence ID: 0 1 2 3 support: 0.5 (4/8)

pattern 2: (19 21) Sequence ID: 0 1 2 3 support: 0.5 (4/8)

pattern 3: (21) Sequence ID: 0 1 2 3 4 5 6 7 support: 1 (8/8)

pattern 4: (21 27) Sequence ID: 1 2 5 6 support: 0.5 (4/8)

pattern 5: (21 26) Sequence ID: 1 2 5 6 support: 0.5 (4/8)

pattern 6: (21 26 27) Sequence ID: 1 2 5 6 support: 0.5 (4/8)

pattern 7: (21 23) Sequence ID: 2 3 6 7 support: 0.5 (4/8)

pattern 8: (21 22) Sequence ID: 0 1 4 5 support: 0.5 (4/8)

pattern 9: (20) Sequence ID: 4 5 6 7 support: 0.5 (4/8)

pattern 10: (20 21) Sequence ID: 4 5 6 7 support: 0.5 (4/8)

pattern 11: (23) Sequence ID: 2 3 6 7 support: 0.5 (4/8)

pattern 12: (22) Sequence ID: 0 1 4 5 support: 0.5 (4/8)

pattern 13: (27) Sequence ID: 1 2 5 6 support: 0.5 (4/8)

pattern 14: (26) Sequence ID: 1 2 5 6 support: 0.5 (4/8)

pattern 15: (26 27) Sequence ID: 1 2 5 6 support: 0.5 (4/8)

We observe the sequential pattern mining result and focus on the extreme or

unique characteristics of sequential patterns that have been identified by the mining

algorithm. We interpret the implications of these findings for more insight into the

159

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

software system.

Observations

• There are 15 sequential patterns in total that appear in at least half of the

sequences of the database.

• The sequential pattern with most occurrences is pattern 3, whose item, 21,

appears in all the sequences of the database.

• The longest sequential pattern is pattern 6, which consists of 3 items: 21, 26

and 27.

• Even though pattern 6 is the longest sequential pattern, it is not the longest

consecutive sequential pattern. Some of the items that constitute the pattern

are not adjacent to each other in some sequences. For example, item 26 is not

adjacent to item 21 in any sequence at all.

• The longest consecutive sequential pattern has 2 items. There are 5 such pat-

terns in total: pattern 2, pattern 7, pattern 8, pattern 10 and pattern

15.

• The items of 25, 27 and 29 represent the logging points that generated the error

logs. Only item 27 appears in at least half of the sequences of the database and

is involved in some sequential patterns.

• Item 19 starts half of the sequences of the database and item 20 starts the

other half. Both of these items represent the logging points and the caller

160

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

methods of the logging points that started the program executions resulting in

the corresponding sequences of logs.

Implications

• The sequential patterns with most occurrences imply the logging point or the

caller method of the logging point that was most frequently involved in the

system errors.

• The longest sequential pattern implies the longest subsequence of items that is

included in half of the sequences in the database. It expands the range of logging

points or caller methods of the logging points that were frequently involved in

the system errors.

• The longest consecutive sequential pattern implies the serial method calls that

have most frequently caused the eventual system errors.

• The item that represents the logging point for the error log and has the most

occurrences implies that the caller method of the logging point was the method

where the system errors most frequently occurred.

• Similarly, the item that starts the highest number of sequences in the database

implies that the caller method of the corresponding logging point started the

highest number of program executions that led to eventual system errors.

161

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Conclusion

We have applied the sequential pattern mining algorithm to a set of log sequences

through the integrated mining implementation. The algorithm explores different sec-

tions of logs sequences and determines the potential sequential patterns among them.

Through the observation of mining results, we are able to identify certain extreme or

unique characteristics of the sequential patterns, such as the sequential patterns with

the most occurrences, the longest (consecutive) sequential pattern, and the special

items in these sequential patterns. The implications of these findings not only reflect

the interrelations between the log entries that make up of the patterns, but also pro-

vide extended insight into the software system, such as the program call paths that

are matched with the log sequences and the methods that comprise the program call

paths.

The mining algorithm also calculates the frequencies of all identified sequential

patterns. From the statistical point of view, the frequency of an event or pattern in the

past calculated by the mining algorithm actually implies the recurrence probability

of the same event or pattern in the future; therefore, even though we have made

the implications based on the sequential patterns of historical data, the implications

not only explain the events that occurred in the past, but also help us interpret any

similar events that may occur in the future.

8.3 Summary

In this chapter, we have presented the sequential pattern mining process, which is

the last of three major components in our log analysis project. We performed the

162

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

mining technique on some sample sequences of logs and made some observations of the

sequential patterns identified by the mining algorithm. We discussed the implications

of these findings, in order to demonstrate that, by mining potential sequential patterns

hidden in the log analysis results, this technique can provide an extended insight into

the software system from a statistical point of view.

In the next chapter, we will evaluate the implementation of the log analysis project

with experimental results. We deploy the implementation to our partner’s legacy

system, analyze sample logs from the system and verify the effectiveness of analysis

results.

163

Chapter 9

Evaluation

In this chapter, we evaluate our implementation of the log analysis project. The

intention of the log analysis project presented in this thesis is to provide a feasible

solution to automatic diagnosis of software defects, which is also our partner’s primary

concern. We deploy our implementation on the partner’s software system, conduct

experiments on analyzing sample logs from the system and verify the effectiveness of

analysis results.

9.1 Our Partner’s System

Our partner maintains a legacy software system that was developed years ago. The

core of the system was implemented in Java programming language; therefore the

compiled binaries of source code, i.e., Java bytecode (.class) files, are available for

source code analysis.

Logs generated by the system at runtime are maintained in plain-text files. The

logging framework used in the system is Apache log4j, but there are customized

164

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

logging methods implemented by developers, which generate logs in a slightly different

format from the ones generated by log4j methods. Even though it needs to be advised

about the particular log format, all the logs can be parsed conveniently by the log

parser of our implementation.

Error logs are recorded in log files as well, which are marked with an error status

code. On the occasions of system failures, support engineers of the software system

follow the process of conventional log analysis to investigate the corresponding error

logs for the root cause. Some identified error logs, whose root causes are already

known, are used in our experiments for the purpose of evaluation.

9.2 Evaluation Approach

For the purpose of evaluation, we collected over 6 million lines of logs from our part-

ner’s system, extracted execution information from each log, searched for sequential

patterns of logs related to system errors in the past and summarized essential infor-

mation for automatic diagnosis. We also performed source code analysis on the Java

bytecode files, analyzed dependency relations among entities and stored collected

information into database tables for eventual log analysis.

We have presented the design and implementation details of our solution to sup-

port engineers of our partner’s software system, so that they understand the general

process of log analysis. One of the support engineers has selected several sequences of

logs for case studies to test the effectiveness of our implementation. These sequences

of logs have been manually investigated by support engineers and the corresponding

information on program executions, such as program call paths, are already identi-

fied. Support engineers manually examined the results generated by automatic log

165

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

analysis. They compared the analysis results against the manual diagnosis, in order

to verify the effectiveness of analysis results.

If our implementation infers a set of program call paths potentially matching with

a particular sequence of logs involving an error log, we consider the result useful. If

our implementation infers one and only one program call path correctly matching

with the particular sequence of logs involving an error log, we consider the result

complete.

We mainly focus on verifying the results of log analysis. Since the results of log

analysis are built upon information collected by source code analysis, log parsing and

sequential pattern searching, the effectiveness of all these processes can be examined

by the verification of the eventual results of log analysis.

Our experiments were conducted on a Windows XP machine with Intel Core 2

2.13GHz CPU and 2GB of memory. Our implementation is a single threaded program.

We analyze one sequence of sample logs at a time and collect the corresponding

diagnostic information.

9.3 Experimental Results

Our implementation provides two different approaches to analyzing a sequence of

logs: matching the sequence of logs with potential program call paths and matching

the sequence of logs with existing sequential patterns of logs reflecting historical

system errors. The first three case studies demonstrate the effectiveness of these two

approaches in finding the corresponding program call path for the log sequence.

The sequential pattern mining is another important component of our imple-

mentation. The last case demonstrates that, by applying sequential pattern mining

166

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

technique in the log analysis process, we are able to explore potential sequential pat-

terns among historical logs, reveal interrelations between events recorded by logs and

provide an extended insight of our partner’s system from a statistical point of view.

9.3.1 A Case of Matching Error Logs with Program Call

Paths

We have a sequence of sample logs indicating an exception error as shown in Figure 9.1.

DEBUG 2011-10-28 19:21:03,511 [[ACTIVE] ExecuteThread] com.swi.system.session.SessionManager - getLastSession
DEBUG 2011-10-28 19:21:03,511 [[ACTIVE] ExecuteThread] com.swi.system.servlet.Controller - checkSession
DEBUG 2011-10-28 19:21:03,511 [[ACTIVE] ExecuteThread] com.swi.system.session.SessionManager - getSession
ERROR 2011-10-28 19:21:03,511 [[ACTIVE] ExecuteThread] ReviewException.INTERNAL_ERROR - system:Internal Error
weblogic.utils.NestedRuntimeException: Cannot parse POST parameters of request: '/controller'

at weblogic.servlet.internal.ServletRequestImpl$RequestParameters.mergePostParams(ServletRequestImpl.java:1812)
at weblogic.servlet.internal.ServletRequestImpl$RequestParameters.parseQueryParams(ServletRequestImpl.java:1699)
at weblogic.servlet.internal.ServletRequestImpl$RequestParameters.getQueryParams(ServletRequestImpl.java:1652)
at weblogic.servlet.internal.ServletRequestImpl.getParameterNames(ServletRequestImpl.java:756)
at com.swi.system.servlet.AppServletRequest.<init>(AppServletRequest.java:67)
at com.swi.system.servlet.Controller.doPost(Controller.java:352)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:763)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:856)
at weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:227)
at weblogic.servlet.internal.StubSecurityHelper.invokeServlet(StubSecurityHelper.java:125)
at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:283)
at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:175)
at weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:3228)
at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321)
at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:121)
at weblogic.servlet.internal.WebAppServletContext.securedExecute(WebAppServletContext.java:2002)
at weblogic.servlet.internal.WebAppServletContext.execute(WebAppServletContext.java:1908)
at weblogic.servlet.internal.ServletRequestImpl.run(ServletRequestImpl.java:1362)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:209)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:181)

Caused by: java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:168)
at weblogic.utils.io.ChunkedInputStream.read(ChunkedInputStream.java:159)
at java.io.InputStream.read(InputStream.java:89)
at com.certicom.tls.record.ReadHandler.readFragment(Unknown Source)
at com.certicom.tls.record.ReadHandler.readRecord(Unknown Source)
at com.certicom.tls.record.ReadHandler.read(Unknown Source)
at com.certicom.io.InputSSLIOStreamWrapper.read(Unknown Source)
at weblogic.servlet.internal.PostInputStream.read(PostInputStream.java:177)
at weblogic.servlet.internal.ServletInputStreamImpl.read(ServletInputStreamImpl.java:211)
at weblogic.servlet.internal.ServletRequestImpl$RequestParameters.mergePostParams(ServletRequestImpl.java:1787)
... 19 more

Figure 9.1: Sample Error Logs

The result generated from log analysis with the approach of matching program

call paths is as shown in Figure 9.2. It lists all of the program call paths that

could potentially lead to the indicated exception error. The list is generated from the

167

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Call Path Matching: Eligible Call Path(s)

Level 2 - com.swi.system.handler.MenuHandler:doLogout(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Controller:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 5 - com.swi.system.servlet.Controller:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Controller:handleException(com.swi.system.common.ReviewException,javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Controller:checkSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Login:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Login:handleLogin(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Login:createSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,com.swi.system.blogic.UserInfo,java.lang.String)
Level 3 - com.swi.system.servlet.Login:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Login:handleLogout(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 1 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

Call Path Matching: Closest Matched Call Path(s)

Level 2 - com.swi.system.servlet.Controller:checkSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 1 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

Figure 9.2: Result of Matching Sample Error Logs with Program Call Paths

initial analysis, which traverses the dependency graph with a depth-first search (DFS)

algorithm starting from the method that generated the error log. There are five in

total of such program call paths; however, after the final analysis, it is determined

that only one program call path matches with the sequence of logs. It has been

verified that the result is correct and exact, which means the only matched program

call path correctly shows the methods related to the cause of the exception error.

The result also reveals that, even though the sample log sequence consists of four

log entries, it doesn’t necessarily mean all of the four log entries are generated by the

execution of one program call path. In this case, the first line of the log entry with

message contents of “getLastSession” is not generated by the matched program call

path.

9.3.2 A Case of Matching Normal Logs with Program Call

Paths

The first case represents the typical process of analyzing error logs on the occasion

of system errors. Besides error logs, our implementation can analyze any sequence of

non-error logs and reveal the program call path that possibly generated the particular

168

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

sequence.

We have another sequence of sample logs as shown in Figure 9.3.

INFO 2012-03-14 09:27:41,326 [[ACTIVE] ExecuteThread] com.swi.system.servlet.Controller - Redirecting to jsp page
DEBUG 2012-03-14 09:27:41,326 [[ACTIVE] ExecuteThread] com.swi.system.servlet.Util - Util.forward

Figure 9.3: Sample Normal Logs

Call Path Matching: Eligible Call Path(s)

Level 2 - com.swi.system.filter.Redirect:doFilter(javax.servlet.ServletRequest,javax.servlet.ServletResponse,javax.servlet.FilterChain)
Level 3 - com.swi.system.servlet.Controller:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Controller:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Controller:handleException(com.swi.system.common.ReviewException,javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Controller:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Controller:handleMessage(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,java.lang.String,int)
Level 2 - com.swi.system.servlet.Controller:handleMessage(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,java.lang.String,java.lang.String,java.lang.String)
Level 2 - com.swi.system.servlet.Login:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Login:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Login:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Login:handleForgotOne(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Login:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Login:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Util:showException(com.swi.system.common.ReviewException,javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Util:showException(com.swi.system.common.ReviewException,java.lang.String,javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 5 - com.swi.system.servlet.Login:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 5 - com.swi.system.servlet.Login:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Util:showException(com.swi.system.common.ReviewException,javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Util:showException(com.swi.system.common.ReviewException,java.lang.String,javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Util:showResult(java.lang.String,java.lang.String,javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 1 - com.swi.system.servlet.Util:forward(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,java.lang.String)

Call Path Matching: Closest Matched Call Path(s)

Level 2 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 1 - com.swi.system.servlet.Util:forward(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,java.lang.String)
Level 3 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Controller:handleException(com.swi.system.common.ReviewException,javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 1 - com.swi.system.servlet.Util:forward(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,java.lang.String)
Level 3 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Controller:handleMessage(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,java.lang.String,int)
Level 1 - com.swi.system.servlet.Util:forward(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,java.lang.String)

Figure 9.4: Result of Matching Sample Normal Logs with Program Call Paths

The result generated from log analysis is as shown in Figure 9.4. Even though

there are only two logs in the sequence, there are twelve program call paths that may

lead to the recorded program execution. The range is narrowed down to three after

the final analysis. It has been verified that the result is correct, but not exact.

The reason why the result is not exact is that methods can be executed without

generating logs. This completely depends on the design of the methods. Some meth-

ods are not programmed to generate a log at all, which means there is no logging

point in the method; some methods have logging points, but due to the restrictions

169

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

of conditional statements, such as if -else statements, none of the logging points is

executed and as a result, no log is generated. Either of these two scenarios could have

led to the result we have in this case.

The reader might recognize from the result that all of the three program call paths

start with the same entity (method) com.swi.system.servlet.Util:forward(),

which matches with the second line of log in the sequence, and all of the three paths

end with the same entity (method) com.swi.system.servlet.Controller:doPost(),

which matches with the first line of log in the sequence. Since all of the three program

call paths match the start and end log of the sequence, we consider all of them as

most closely matched.

9.3.3 A Case of Matching Error Logs with Sequential Pat-

terns

We will reconsider the sequence of sample logs indicating an exception error as shown

in Figure 9.1. We intend to demonstrate that, besides the approach of matching logs

with program call paths, another approach of matching logs with sequential patterns

can also generated an effective result.

The result generated from log analysis with the approach of matching sequential

patterns is as shown in Figure 9.5. We happened to identify a pattern match between

the sequence of error logs and an existing log sequence in the database indicating a

similar exception error. Since the exception error has already been identified and

investigated, the previous analysis result was available in the database for retrieval.

The result includes all pieces of information about the matched sequential pattern.

It lists all of the logs making up of the pattern. It also lists all of the program call

170

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Sequential Pattern Matching: Closest Matched Sequential Pattern

C:\ev\logs\yellow1\system.log.68 - Line 15639 - DEBUG 2011-10-27 22:55:39,007 [[ACTIVE] ExecuteThread] com.swi.system.database.DbBase - Database connection returned to connection pool
C:\ev\logs\yellow1\system.log.68 - Line 15640 - DEBUG 2011-10-27 22:55:39,022 [[ACTIVE] ExecuteThread] com.swi.system.session.SessionManager - getLastSession
C:\ev\logs\yellow1\system.log.68 - Line 15641 - DEBUG 2011-10-27 22:55:39,022 [[ACTIVE] ExecuteThread] com.swi.system.servlet.Controller - checkSession
C:\ev\logs\yellow1\system.log.68 - Line 15642 - DEBUG 2011-10-27 22:55:39,022 [[ACTIVE] ExecuteThread] com.swi.system.session.SessionManager - getSession
C:\ev\logs\yellow1\system.log.68 - Line 15643 - ERROR 2011-10-27 22:55:39,022 [[ACTIVE] ExecuteThread] ReviewException.INTERNAL_ERROR - system:Internal Error
weblogic.utils.NestedRuntimeException: Cannot parse POST parameters of request: '/controller'

at weblogic.servlet.internal.ServletRequestImpl$RequestParameters.mergePostParams(ServletRequestImpl.java:1812)
at weblogic.servlet.internal.ServletRequestImpl$RequestParameters.parseQueryParams(ServletRequestImpl.java:1699)
at weblogic.servlet.internal.ServletRequestImpl$RequestParameters.getQueryParams(ServletRequestImpl.java:1652)
at weblogic.servlet.internal.ServletRequestImpl.getParameterNames(ServletRequestImpl.java:756)
at com.swi.system.servlet.AppServletRequest.<init>(AppServletRequest.java:67)
at com.swi.system.servlet.Controller.doPost(Controller.java:352)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:763)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:856)
at weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:227)
at weblogic.servlet.internal.StubSecurityHelper.invokeServlet(StubSecurityHelper.java:125)
at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:283)
at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:175)
at weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:3228)
at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321)
at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:121)
at weblogic.servlet.internal.WebAppServletContext.securedExecute(WebAppServletContext.java:2002)
at weblogic.servlet.internal.WebAppServletContext.execute(WebAppServletContext.java:1908)
at weblogic.servlet.internal.ServletRequestImpl.run(ServletRequestImpl.java:1362)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java:209)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:181)

Caused by: java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:168)
at weblogic.utils.io.ChunkedInputStream.read(ChunkedInputStream.java:159)
at java.io.InputStream.read(InputStream.java:89)
at com.certicom.tls.record.ReadHandler.readFragment(Unknown Source)
at com.certicom.tls.record.ReadHandler.readRecord(Unknown Source)
at com.certicom.tls.record.ReadHandler.read(Unknown Source)
at com.certicom.io.InputSSLIOStreamWrapper.read(Unknown Source)
at weblogic.servlet.internal.PostInputStream.read(PostInputStream.java:177)
at weblogic.servlet.internal.ServletInputStreamImpl.read(ServletInputStreamImpl.java:211)
at weblogic.servlet.internal.ServletRequestImpl$RequestParameters.mergePostParams(ServletRequestImpl.java:1787)
... 19 more

Sequential Pattern Matching: Eligible Call Path(s)

Level 2 - com.swi.system.handler.MenuHandler:doLogout(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Controller:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 5 - com.swi.system.servlet.Controller:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Controller:handleException(com.swi.system.common.ReviewException,javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Controller:checkSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 4 - com.swi.system.servlet.Login:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 3 - com.swi.system.servlet.Login:handleLogin(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Login:createSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,com.swi.system.blogic.UserInfo,java.lang.String)
Level 3 - com.swi.system.servlet.Login:doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 2 - com.swi.system.servlet.Login:handleLogout(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 1 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

Sequential Pattern Matching: Closest Matched Call Path(s)

Level 2 - com.swi.system.servlet.Controller:checkSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Level 1 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

Figure 9.5: Result of Matching Sample Logs with Sequential Patterns

paths that are most closely matched with the sequential pattern, which are also most

closely matched with the sequence of sample logs.

The advantage of matching error logs with existing sequential patterns is efficiency.

All previous analysis information is collected during the process of sequential pattern

searching and maintained in a database table as a knowledge base. When a match

between the new sequence of error logs and the existing sequential pattern is identified,

the previous analysis information can be directly retrieved from the knowledge base

171

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

without repeating the process of matching error logs with program call paths. It is

much more efficient and still provides sufficient and accurate diagnostic information.

9.3.4 A Case of Sequential Pattern Mining

We collect different log sequences related to past system errors from a large number

of historical logs. But these log sequences only reflect system errors in the past

on an individual basis, there is no available information to reveal the interrelations

between multiple sequences of error logs, if any exists. The sequential pattern mining

technique helps us explore such kinds of relations between program executions that

have led to system failures. It looks for sequential patterns in the log sequences that

can provide an extended insight of our partner’s system from a statistical point of

view.

Each of the log sequences that we have collected are represented by the logging

point ids of logs. The order of program execution of each log sequence is from left

to right. All of the log sequences are organized as shown in Figure 9.6 and used as

input for sequential pattern mining.

0: (518 490 517 492)
1: (519 533 216 492)
2: (218 521 218 492)
3: (521 218 542 216)
4: (458 216 218 492)
5: (521 218 542 216)
6: (517 520 484 492)
7: (218 531 480 533)
8: (218 521 218 492)
9: (518 491 542 216)
10: (218 521 218 542)
11: (458 216 218 492)
12: (519 533 216 492)
13: (489 542 216 537)
14: (521 218 542 216)
15: (218 531 480 533)

Figure 9.6: The Sequences for Sequential Pattern Mining

172

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

---------- FREQUENT SEQUENTIAL PATTERNS ----------
 L0
 L1
 pattern 1: (521) Sequence ID: 2 3 5 8 10 14 support : 0.38 (6/16)
 pattern 2: (521 542) Sequence ID: 3 5 10 14 support : 0.25 (4/16)
 pattern 3: (521 218) Sequence ID: 2 3 5 8 10 14 support : 0.38 (6/16)
 pattern 4: (521 218 542) Sequence ID: 3 5 10 14 support : 0.25 (4/16)
 pattern 5: (533) Sequence ID: 1 7 12 15 support : 0.25 (4/16)
 pattern 6: (492) Sequence ID: 0 1 2 4 6 8 11 12 support : 0.5 (8/16)
 pattern 7: (216) Sequence ID: 1 3 4 5 9 11 12 13 14 support : 0.56 (9/16)
 pattern 8: (216 492) Sequence ID: 1 4 11 12 support : 0.25 (4/16)
 pattern 9: (218) Sequence ID: 2 3 4 5 7 8 10 11 14 15 support : 0.62 (10/16)
 pattern 10: (218 492) Sequence ID: 2 4 8 11 support : 0.25 (4/16)
 pattern 11: (218 542) Sequence ID: 3 5 10 14 support : 0.25 (4/16)
 pattern 12: (542) Sequence ID: 3 5 9 10 13 14 support : 0.38 (6/16)
 pattern 13: (542 216) Sequence ID: 3 5 9 13 14 support : 0.31 (5/16)
---------- Patterns count : 13 ----------

Figure 9.7: Result of Sequential Pattern Mining

We have set the support threshold (min support) for a sequential pattern as 25%,

which means a subsequence has to appear in only a quarter of the sequences in order

to be considered as a sequential pattern.

The result of sequential pattern mining is shown in Figure 9.7. There are two

levels of mining processes, which generate thirteen sequential patterns in total.

Observations and Implications

• Most of the identified sequential patterns have supports between 25% and 50%.

Only three patterns, i.e., pattern 6, pattern 7, pattern 9, have supports

equal to or higher than 50%. This implies that the majority of sequential

patterns don’t re-appear very often.

• The sequential pattern with most occurrences is pattern 9, whose item 218

appears in 10 out of 16 sequences. The caller entity (method) of the logging

point with id 218 is as shown in Figure 9.8. It is a database related method.

This implies that database operations are probably involved in most system

173

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

errors in the past.

LID - Entity
521 - com.swi.system.session.SessionManager:checkForSessionTimeout()
218 - com.swi.system.database.DbBase:destroy()
542 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)

LID - Entity
542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
216 - com.swi.system.database.DbBase DbBase(java.lang.String)

Level 6 - com.swi.system.session.SessionManagerThread:run()
Level 5 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 4 - com.swi.system.session.SessionManager:removeExpiredSessions(com.swi.system.database.SessionDbCon)
Level 3 - com.swi.system.session.SessionManager:logUserTimeoutInfo(com.swi.system.database.DbResultSet)
Level 2 - com.swi.system.database.DbConnection:DbConnection()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:removeExpiredUserData()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)

LID - Entity
218 - com.swi.system.database.DbBase:destroy()
531 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
480 - com.swi.system.servlet.Controller:checkSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
533 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

LID - Entity
218 - com.swi.system.database.DbBase:destroy()

LID - Entity
216 - com.swi.system.database.DbBase:DbBase(java.lang.String)

LID - Entity
492 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

Figure 9.8: Entity of Pattern 9

• The longest sequential pattern is pattern 4, which consists of three items: 512,

218 and 542. pattern 4 is also the longest consecutive sequential pattern.

The three items are adjacent to each other in all of the four appearances. The

caller entities (methods) of the three items are as shown in Figure 9.9. The

longest consecutive sequential pattern implies the serial method executions that

have most frequently caused eventual system errors. Furthermore, the longest

sequential pattern contains the sequential pattern with most occurrences, i.e.

item 218, which again implies that database operations are involved in the

majority of system errors in the past.

LID - Entity
521 - com.swi.system.session.SessionManager:checkForSessionTimeout()
218 - com.swi.system.database.DbBase:destroy()
542 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)

LID - Entity
542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
216 - com.swi.system.database.DbBase DbBase(java.lang.String)

Level 6 - com.swi.system.session.SessionManagerThread:run()
Level 5 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 4 - com.swi.system.session.SessionManager:removeExpiredSessions(com.swi.system.database.SessionDbCon)
Level 3 - com.swi.system.session.SessionManager:logUserTimeoutInfo(com.swi.system.database.DbResultSet)
Level 2 - com.swi.system.database.DbConnection:DbConnection()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:removeExpiredUserData()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)

LID - Entity
218 - com.swi.system.database.DbBase:destroy()
531 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
480 - com.swi.system.servlet.Controller:checkSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
533 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

Figure 9.9: Entities of Pattern 4

• The items 533, 492, 216, 542 and 537 represent the logging points that were

executed before the occurrence of system errors. Except item 537, the rest of

the items appear in 4 or more out of 16 (25%) sequences. The caller entities

(methods) of these items are as shown in Figure 9.10. Even though the caller

entities (methods) of logging points may not have directly caused the eventual

system errors, they are the last methods that were executed and generated logs

174

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

before the failed execution. They may record significant execution information

that can be analyzed for the root cause and they are good start points for the

log analysis process.

LID - Entity
521 - com.swi.system.session.SessionManager:checkForSessionTimeout()
218 - com.swi.system.database.DbBase:destroy()
542 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)

LID - Entity
542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
216 - com.swi.system.database.DbBase DbBase(java.lang.String)

Level 6 - com.swi.system.session.SessionManagerThread:run()
Level 5 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 4 - com.swi.system.session.SessionManager:removeExpiredSessions(com.swi.system.database.SessionDbCon)
Level 3 - com.swi.system.session.SessionManager:logUserTimeoutInfo(com.swi.system.database.DbResultSet)
Level 2 - com.swi.system.database.DbConnection:DbConnection()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:removeExpiredUserData()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)

LID - Entity
218 - com.swi.system.database.DbBase:destroy()
531 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
480 - com.swi.system.servlet.Controller:checkSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
533 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

LID - Entity
216 - com.swi.system.database.DbBase:DbBase(java.lang.String)

LID - Entity
218 - com.swi.system.database.DbBase:destroy()

LID - Entity
533 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

492 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

216 - com.swi.system.database.DbBase DbBase(java.lang.String)

542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)

LID - Entity
521 - com.swi.system.session.SessionManager:checkForSessionTimeout()
218 - com.swi.system.database.DbBase:destroy()

216 - com.swi.system.database.DbBase:DbBase(java.lang.String)
492 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

218 - com.swi.system.database.DbBase:destroy()
492 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

218 - com.swi.system.database.DbBase:destroy()
542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)

542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
216 - com.swi.system.database.DbBase DbBase(java.lang.String)

Figure 9.10: Entities of Pattern 5, 6, 7 and 12

• There are seven sequential patterns which consist of more than one item: pattern

2, pattern 3, pattern 4, pattern 8, pattern 10, pattern 11 and pattern

13. We have already interpreted pattern 4, which is the longest consecutive

sequential pattern. The items of pattern 3, i.e., 521 and 542, actually are

not adjacent to each other in all of their appearances. The items of the rest

sequential patterns mentioned are adjacent to each other in at least one of their

appearances. The caller methods of the items in these sequential patterns are as

shown in Figure 9.11. The sequential patterns consisting of consecutive items

implies the sub-paths of program call paths in sequences. The adjacent items

reveal the potential method calls during program execution. This is helpful

information when we analyze the sequence of logs.

• Remember that we match a sequence of logs with an existing sequential pattern

in Case 3. The matched sequential pattern consists of logging points with ids

(218 531 480 533), which is one of the input sequences for the mining pro-

cess. The caller methods of these logging points are as shown in Figure 9.12.

175

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

LID - Entity
521 - com.swi.system.session.SessionManager:checkForSessionTimeout()
218 - com.swi.system.database.DbBase:destroy()
542 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)

LID - Entity
542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
216 - com.swi.system.database.DbBase DbBase(java.lang.String)

Level 6 - com.swi.system.session.SessionManagerThread:run()
Level 5 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 4 - com.swi.system.session.SessionManager:removeExpiredSessions(com.swi.system.database.SessionDbCon)
Level 3 - com.swi.system.session.SessionManager:logUserTimeoutInfo(com.swi.system.database.DbResultSet)
Level 2 - com.swi.system.database.DbConnection:DbConnection()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:removeExpiredUserData()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)

LID - Entity
218 - com.swi.system.database.DbBase:destroy()
531 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
480 - com.swi.system.servlet.Controller:checkSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
533 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

LID - Entity
216 - com.swi.system.database.DbBase:DbBase(java.lang.String)

LID - Entity
218 - com.swi.system.database.DbBase:destroy()

LID - Entity
533 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

492 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

216 - com.swi.system.database.DbBase DbBase(java.lang.String)

542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)

LID - Entity
521 - com.swi.system.session.SessionManager:checkForSessionTimeout()
218 - com.swi.system.database.DbBase:destroy()

216 - com.swi.system.database.DbBase:DbBase(java.lang.String)
492 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

218 - com.swi.system.database.DbBase:destroy()
492 - com.swi.system.servlet.Controller:doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

218 - com.swi.system.database.DbBase:destroy()
542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)

542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
216 - com.swi.system.database.DbBase DbBase(java.lang.String)

Figure 9.11: Entities of Pattern 3, 8, 10, 11 and 13

LID - Entity
521 - com.swi.system.session.SessionManager:checkForSessionTimeout()
218 - com.swi.system.database.DbBase:destroy()
542 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)

LID - Entity
542 - com.swi.system.session.SessionManager getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
216 - com.swi.system.database.DbBase DbBase(java.lang.String)

Level 6 - com.swi.system.session.SessionManagerThread:run()
Level 5 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 4 - com.swi.system.session.SessionManager:removeExpiredSessions(com.swi.system.database.SessionDbCon)
Level 3 - com.swi.system.session.SessionManager:logUserTimeoutInfo(com.swi.system.database.DbResultSet)
Level 2 - com.swi.system.database.DbConnection:DbConnection()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:checkForSessionTimeout()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)
Level 4 - com.swi.system.session.SessionManagerThread:run()
Level 3 - com.swi.system.session.SessionManager:removeExpiredUserData()
Level 2 - com.swi.system.database.SessionDbCon:SessionDbCon()
Level 1 - com.swi.system.database.DbBase:DbBase(java.lang.String)

LID - Entity
218 - com.swi.system.database.DbBase:destroy()
531 - com.swi.system.session.SessionManager:getLatestSession(com.swi.system.session.Session,com.swi.system.session.Session)
480 - com.swi.system.servlet.Controller:checkSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
533 - com.swi.system.session.SessionManager:getSession(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse,boolean)

Figure 9.12: Entities of Sequence (218 531 480 533)

We explore details of the mining result and focus on the extreme or unique charac-

teristics of the sequential patterns identified by the mining algorithm. The extended

information indeed provides us with more insight into system errors in the past and

helps us better interpret and analyze any similar errors that may occur in the future.

9.3.5 Discussions of Experimental Results

We have applied two different approaches, matching errors logs with program call

paths and matching error logs with sequential patterns, to analyze some selected

sample sequences of logs. We have also applied the sequential pattern mining tech-

nique to provide extended information about certain system errors in the past from

the statistical point of view. The results are summarized in Table 9.1.

176

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

C
a
s
e

D
e
s
c
r
i
p
t
i
o
n
s

A
n
a
l
y
s
i
s

A
p
p
r
o
a
c
h

R
e
s
u
l
t

C
o
m
m
e
n
t
s

1

•
A
n
a
l
y
z
i
n
g

a

l
o
g

s
e
q
u
e
n
c
e

i
n
d
i
c
a
t
i
n
g

a

s
y
s
t
e
m

e
r
r
o
r
.

•
T
h
e

l
o
g

s
e
q
u
e
n
c
e

c
o
n
s
i
s
t
s

o
f

f
o
u
r

l
o
g

e
n
t
r
i
e
s
.

M
a
t
c
h
i
n
g

L
o
g
s

w
i
t
h

P
r
o
g
r
a
m

C
a
l
l

P
a
t
h
s

S
u
c
c
e
s
s
f
u
l

•
T
h
e

i
n
i
t
i
a
l

a
n
a
l
y
s
i
s

r
e
c
o
g
n
i
z
e
s

5

p
o
t
e
n
t
i
a
l

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h
s

t
h
a
t

c
o
u
l
d

l
e
a
d

t
o

t
h
e

i
n
d
i
c
a
t
e
d

s
y
s
t
e
m

e
r
r
o
r
.

•
T
h
e

f
i
n
a
l

a
n
a
l
y
s
i
s

d
e
t
e
r
m
i
n
e
s

t
h
a
t

o
n
l
y

1

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h

m
a
t
c
h
e
s

t
h
e

l
o
g

s
e
q
u
e
n
c
e
.

•
T
h
e

r
e
s
u
l
t

i
s

c
o
r
r
e
c
t

a
n
d

e
x
a
c
t
.

•
A
l
l

o
f

t
h
e

p
o
t
e
n
t
i
a
l

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h
s

a
r
e

c
o
r
r
e
c
t

a
c
c
o
r
d
i
n
g

t
o

s
y
s
t
e
m

d
e
s
i
g
n
.

•
T
h
e

o
n
l
y

m
a
t
c
h
e
d

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h

r
e
v
e
a
l
s

m
e
t
h
o
d
s

t
h
a
t

w
e
r
e

r
e
l
a
t
e
d

t
o

t
h
e

c
a
u
s
e

o
f

t
h
e

s
y
s
t
e
m

e
r
r
o
r
.

2

•
A
n
a
l
y
z
i
n
g

a

l
o
g

s
e
q
u
e
n
c
e

r
e
c
o
r
d
i
n
g

a

n
o
r
m
a
l

p
r
o
g
r
a
m

e
x
e
c
u
t
i
o
n
.

•
T
h
e

l
o
g

s
e
q
u
e
n
c
e

c
o
n
s
i
s
t
s

o
f

t
w
o

l
o
g

e
n
t
r
i
e
s
.

M
a
t
c
h
i
n
g

L
o
g
s

w
i
t
h

P
r
o
g
r
a
m

C
a
l
l

P
a
t
h
s

S
u
c
c
e
s
s
f
u
l

•
T
h
e

i
n
i
t
i
a
l

a
n
a
l
y
s
i
s

r
e
c
o
g
n
i
z
e
s

1
2

p
o
t
e
n
t
i
a
l

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h
s

t
h
a
t

c
o
u
l
d

l
e
a
d

t
o

t
h
e

r
e
c
o
r
d
e
d

p
r
o
g
r
a
m

e
x
e
c
u
t
i
o
n
.

•
T
h
e

f
i
n
a
l

a
n
a
l
y
s
i
s

d
e
t
e
r
m
i
n
e
s

t
h
a
t

3

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h
s

m
a
t
c
h

t
h
e

l
o
g

s
e
q
u
e
n
c
e
.

•
T
h
e

r
e
s
u
l
t

i
s

c
o
r
r
e
c
t
,

b
u
t

n
o
t

e
x
a
c
t
.

•
A
l
l

o
f

t
h
e

p
o
t
e
n
t
i
a
l

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h
s

a
r
e

c
o
r
r
e
c
t

a
c
c
o
r
d
i
n
g

t
o

s
y
s
t
e
m

d
e
s
i
g
n
.

•
T
h
e

e
x
a
c
t
l
y

m
a
t
c
h
e
d

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h
s

c
a
n
n
o
t

b
e

d
e
t
e
r
m
i
n
e
d

d
u
e

t
o

l
a
c
k

o
f

s
u
f
f
i
c
i
e
n
t

l
o
g

e
n
t
r
i
e
s
.

3

•
A
n
a
l
y
z
i
n
g

a

l
o
g

s
e
q
u
e
n
c
e

i
n
d
i
c
a
t
i
n
g

a

s
y
s
t
e
m

e
r
r
o
r

s
i
m
i
l
a
r

t
o

C
a
s
e

1
.

•
T
h
e

l
o
g

s
e
q
u
e
n
c
e

c
o
n
s
i
s
t
s

o
f

f
o
u
r

l
o
g

e
n
t
r
i
e
s
.

M
a
t
c
h
i
n
g

L
o
g
s

w
i
t
h

S
e
q
u
e
n
t
i
a
l

P
a
t
t
e
r
n
s

S
u
c
c
e
s
s
f
u
l

•
T
h
e

i
n
i
t
i
a
l

a
n
a
l
y
s
i
s

r
e
c
o
g
n
i
z
e
s

t
h
a
t

t
h
e

t
a
r
g
e
t

l
o
g

s
e
q
u
e
n
c
e

m
a
t
c
h
e
s

t
h
e

p
a
t
t
e
r
n

o
f

a
n
o
t
h
e
r

l
o
g

s
e
q
u
e
n
c
e

r
e
l
a
t
e
d

t
o

a

s
i
m
i
l
a
r

s
y
s
t
e
m

e
r
r
o
r
.

•
T
h
e

f
i
n
a
l

a
n
a
l
y
s
i
s

d
e
t
e
r
m
i
n
e
s

t
h
a
t

o
n
l
y

1

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h

m
a
t
c
h
e
s

t
h
e

l
o
g

s
e
q
u
e
n
c
e
,

b
a
s
e
d

o
n

p
r
e
v
i
o
u
s

a
n
a
l
y
s
i
s

o
f

t
h
e

m
a
t
c
h
e
d

s
e
q
u
e
n
t
i
a
l

p
a
t
t
e
r
n
.

•
T
h
e

r
e
s
u
l
t

i
s

c
o
r
r
e
c
t

a
n
d

e
x
a
c
t
.

•
T
h
e

o
n
l
y

m
a
t
c
h
e
d

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h

r
e
v
e
a
l
s

m
e
t
h
o
d
s

t
h
a
t

w
e
r
e

r
e
l
a
t
e
d

t
o

t
h
e

c
a
u
s
e

o
f

t
h
e

s
y
s
t
e
m

e
r
r
o
r
.

4

•
A
n
a
l
y
z
i
n
g

a

s
e
t

o
f

l
o
g

s
e
q
u
e
n
c
e
s

r
e
l
a
t
e
d

t
o

m
u
l
t
i
p
l
e

s
y
s
t
e
m

e
r
r
o
r
s
.

•
M
i
n
i
n
g

f
o
r

s
e
q
u
e
n
t
i
a
l

p
a
t
t
e
r
n
s

a
m
o
n
g

t
h
e

l
o
g

s
e
q
u
e
n
c
e
s
.

S
e
q
u
e
n
t
i
a
l

P
a
t
t
e
r
n

M
i
n
i
n
g

S
u
c
c
e
s
s
f
u
l

•
T
h
e

m
i
n
i
n
g

a
l
g
o
r
i
t
h
m

m
a
n
a
g
e
d

t
o

i
d
e
n
t
i
f
y

a
l
l

p
o
t
e
n
t
i
a
l

s
e
q
u
e
n
t
i
a
l

p
a
t
t
e
r
n
s

f
r
o
m

t
h
e

t
a
r
g
e
t

s
e
t
.

•
T
h
e

i
m
p
l
i
c
a
t
i
o
n
s

o
f

i
d
e
n
t
i
f
i
e
d

s
e
q
u
e
n
t
i
a
l

p
a
t
t
e
r
n
s

c
a
n

b
e

i
n
t
e
r
p
r
e
t
e
d

f
o
l
l
o
w
i
n
g

t
h
e

c
o
n
n
e
c
t
i
o
n
s

b
e
t
w
e
e
n

l
o
g

s
e
q
u
e
n
c
e
s

a
n
d

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h
s
.

•
T
h
e

i
m
p
l
i
c
a
t
i
o
n
s

c
o
r
r
e
c
t
l
y

r
e
v
e
a
l

i
n
s
i
g
h
t

i
n
t
o

t
h
e

s
o
f
t
w
a
r
e

s
y
s
t
e
m

i
n

t
e
r
m
s

o
f

p
r
o
g
r
a
m

e
x
e
c
u
t
i
o
n
s

a
n
d

p
r
o
v
i
d
e

c
o
m
p
l
e
m
e
n
t
a
r
y

i
n
f
o
r
m
a
t
i
o
n

o
n

d
e
f
e
c
t

a
n
a
l
y
s
i
s
.

5

•
A
n
a
l
y
z
i
n
g

a

l
o
g

s
e
q
u
e
n
c
e

i
n
d
i
c
a
t
i
n
g

a
n
o
t
h
e
r

s
y
s
t
e
m

e
r
r
o
r
.

•
T
h
e

l
o
g

s
e
q
u
e
n
c
e

c
o
n
s
i
s
t
s

o
f

f
o
u
r

l
o
g

e
n
t
r
i
e
s
.

M
a
t
c
h
i
n
g

L
o
g
s

w
i
t
h

P
r
o
g
r
a
m

C
a
l
l

P
a
t
h
s

P
a
r
t
i
a
l
l
y

S
u
c
c
e
s
s
f
u
l

•
T
h
e

i
n
i
t
i
a
l

a
n
a
l
y
s
i
s

r
e
c
o
g
n
i
z
e
s

o
v
e
r

a

h
u
n
d
r
e
d

p
o
t
e
n
t
i
a
l

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h
s

t
h
a
t

c
o
u
l
d

l
e
a
d

t
o

t
h
e

i
n
d
i
c
a
t
e
d

s
y
s
t
e
m

e
r
r
o
r
.

•
T
h
e

f
i
n
a
l

a
n
a
l
y
s
i
s

d
e
t
e
r
m
i
n
e
s

t
h
a
t

9

p
r
o
g
r
a
m

c
a
l
l

p
a
t
h
s

m
a
t
c
h

t
h
e

l
o
g

s
e
q
u
e
n
c
e
.

•
T
h
e

r
e
s
u
l
t

i
s

c
o
r
r
e
c
t
,

b
u
t

n
o
t

e
x
a
c
t
.

•
T
h
e

r
e
s
u
l
t

c
o
n
t
e
n
t
s

a
r
e

l
e
n
g
t
h
y

(
o
v
e
r

1
0
0
0

l
i
n
e
s
)
.

T
a
b
le

9
.1
:
S
u
m
m
ar
y
of

E
x
p
er
im

en
ta
l
R
es
u
lt
s

177

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Discussion of Effectiveness

In summary, out of five problems, three were successful and two were partially suc-

cessful.

The successful cases have demonstrated the effectiveness of two different ap-

proaches to analyzing a sequence of logs.

Case 1 The approach of matching error logs with program call paths has been ap-

plied to analyze a log sequence indicating a system error. The analysis process

managed to correctly recognize potential program call paths that could lead to

the indicated system error, and effectively determine the program call path that

is most closely matched with the sample log sequence.

Case 2 The same approach as in Case 1 has been applied when analyzing a log

sequence recording a normal program execution. We managed to achieve an

effective analysis result. Both Case 1 and Case 2 have demonstrated that our

implementation is capable of providing effective analysis results when analyzing

log sequences representing different program executions.

Case 3 The approach of matching error logs with sequential patterns has been ap-

plied. It has shown the efficiency and effectiveness of this approach when the

log sequence being analyzed actually matches with the pattern of an existing

historical log sequence.

Case 4 The sequential pattern mining technique has been applied to explore po-

tential sequential patterns among a set of log sequences. The mining process

returned a list of sequential pattens that have been identified. We managed

178

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

to collect useful information about the software system through observations of

these findings.

In practice, the analysis result, such as the matched program call path, can be used

by support engineerings as a starting point of their investigation on reported system

error. It can save support engineers both the time and effort needed to manually

match the sequence of errors logs with the corresponding methods in source code

during the investigation.

The partially successful case has shown that our implementation has a certain

deficiency. Our log analysis still managed to recognize potential program call paths

that are related to the indicated system error, but cannot determine the program

call paths that were closely matched with the sample log sequence. We will discuss

several factors that could have caused such a deficiency.

Discussion of Deficiency

The analysis results of most sample cases have successfully demonstrated the effec-

tiveness of log analysis; however the analysis result of one case has shown a certain

deficiency in our implementation.

Case 5 There was one sequence of four sample logs indicating another system error.

The analysis result has over a thousand lines of output and lists over a hundred

eligible program call paths. The log analysis has successfully narrowed these

down to nine closely matched program call paths. The result has been verified

as correct, but not exact. That means, the analysis cannot determine the most

closely matched program call path among the potential program call paths that

have been identified.

179

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

There are several factors contributing to such a deficiency.

• The complexity of source code structure determines the complexity of program

call paths. Our partner’s software system has complex architecture and a large

number of lines of source code. This implies that there can be multiple program

call paths between any two methods. The number will grow exponentially when

we take more methods into consideration.

• The log analysis relies heavily on information recorded in each log, but in prac-

tice, methods could be executed without generating logs. Some methods are

not programmed to generate a log at all, which means there is no logging point

in the method; some methods have logging points, but due to the restrictions of

conditional statements, none of the logging points is executed and as a result,

no log is generated. We have to include such methods into the eligible program

call paths; as a result, without sufficient logs to match with program call paths,

we end up having a large set of most closely matched program call paths.

• The selection of sample logs is essential to log analysis. It is not necessarily

true that the more logs for consideration, the better the analysis result. Each

program call path has a start point and an end point. Different program call

paths can be executed in serial format or parallel format at runtime. It is

difficult to identify the start point and the end point of a program call path

by manually interpreting lines of logs. When we select a sample sequence of

logs, it is possible that the sequence includes logs from two different program

executions; as a result, the log analysis may include program call paths from

both executions and the result contents are unnecessarily lengthy.

180

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Even though there exists a deficiency in our implementation, the experimental

results have sufficiently demonstrated that our methodology and design of the log

analysis project provides a concrete and feasible solution to the practical problem of

diagnosis of software defects.

9.4 Summary

In this chapter, we have evaluated the implementation of the log analysis project

by deploying it on our partner’s software system, conducting experiments analyzing

sample logs from the system and performing verifications of analysis results. We have

demonstrated that the log analysis is able to provide effective results in analyzing

a sequence of logs by two approaches: matching error logs with program call paths

and matching error logs with sequential patterns. We have also demonstrated that

the sequential pattern mining approach can provide extended information about the

system from the statistical point of view.

In the final chapter of this thesis we will discuss the contribution and limitations

of the work presented in this thesis, as well as the potential future work that can be

conducted.

181

Chapter 10

Conclusion and Future Work

In this chapter, we discuss the contribution of the log analysis project presented in

this thesis, the limitations with the current implementation and the future work that

may be done to improve it.

10.1 Contribution

We designed and implemented a practical and effective automated diagnostic tech-

nique, which combines source code analysis, log analysis and sequential pattern min-

ing, to detect anomalies among logs from a failed program execution, to diagnose

reported system errors and to narrow down the range of source code lines to help

determine the root cause. We see our main contribution as adopting certain existing

work and applying our own methodology and design to integrate all the different im-

plementations and provide a concrete and feasible solution to the practical problems,

i.e., diagnosis of software defects.

182

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

We implemented the source code analysis to collect information about the soft-

ware system, including the structure of source code and the logging points in source

code that generate logs during program execution. We follow a previously developed

process of parsing and analyzing Java bytecode (class) files to collect the dependency

information among classes and methods and extract method invocations that poten-

tially output logs at runtime. The process involves running an existing off-the-shelf

tool to convert Java bytecode into XML representation so that we can parse contents

of XML to extract the required information. The process is able to build up the static

dependency relations despite working at a relatively high level of abstraction, which

are sufficient to provide helpful reference to understanding and analyzing runtime

logs during the log analysis process.

We implemented the log analysis to extract information recorded in logs and

analyze the information to detect potential system errors and reveal accurate program

execution at runtime. An important contribution of our implementation is that we

have been able to connect each parsed log with the corresponding logging point in

source code. Besides that, we applied graph theory and traversal algorithms to build

up the dependency graph following the dependency relations collected in source code

analysis. The dependency graph visualizes the structure of the source code and

makes it convenient to extract program call paths as the subgraph of the dependency

graph. The log analysis process also involves searching for sequential patterns among

historical logs, which not only represent the particular execution sequence of methods

in the program, but also reflect the potential interrelations between the runtime events

recorded by the logs.

183

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

The main contribution of the log analysis project is that we have been able to pro-

vide two different approaches to analyzing a sequence of logs: matching the sequence

of logs with program call paths and matching the sequence of logs with existing se-

quential patterns. The first approach attempts to match a sequence of logs with the

eligible program call paths, in search of the specific program call path that represents

the sequence of program executions resulting in the logs. The second approach at-

tempts to match a sequence of logs with existing sequential patterns collected from

historical logs, in search of the sequential pattern that represents the sequence of logs

and reflects the interrelations between program executions recorded by the logs.

We have integrated an implementation of sequential pattern mining technique

into our project, so that we have been able to explore potential sequential patterns

among historical logs, reveal interrelations between events recorded by logs and fur-

ther study the corresponding sequences of program executions behind these events.

The sequential pattern mining has been a complementary approach to log analysis.

This is another contribution of our project.

The processes discussed above are fully automated. Interactions between the Java

classes do not require any human intervention. Moreover, due to the modular design

of the processes, if needed, we have the flexibility to stop some of the sub-processes

to observe and verify any intermediate outputs. For example, we can print out the

dependency relations, the eligible program call paths and the matched program call

path during their corresponding analysis processes. The output can be made to a

console or a file on disk to verify the correctness of the information.

184

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

10.2 Limitations

We discuss several limitations of the log analysis project that we have recognized

during the implementation. One limitation of source code analysis is that it currently

can handle Java bytecode only, which means software systems developed in languages

other than Java are temporarily beyond the scope of our project.

There are a couple of limitations of the dependency graph in source code analysis.

One limitation is that at this moment the dependency graph is capable of handling

only Java entities inside the Java environment. There are entities that are outside the

Java environment but are still accessed during program executions. The dependency

relations among such entities are currently not included in the dependency graph. For

example, in practice, there can be database accesses from inside the Java methods

such as executing database queries. Those database functions and procedures can

have dependencies between themselves as well. So the complete dependency graph

should extend from the Java environment to the database, which we have left out

of the scope of our project. Similarly, there can be web server accesses from inside

the Java methods for web applications. The complete dependency graph should

include the dependency relations between these external entities as well, which is not

presently the case with our project. Another limitation of the dependency graph

is that the dependency analysis is limited to the method level, which means the

entities in consideration only include classes and methods. This approach makes the

analysis process a bit simpler but leaves out much of the crucial data flow and control

flow information at the statement level. For example, the dependency graph simply

includes the accesses to both branches of an if-else conditional statement as possible

program call paths, but is not able to reflect the existence of the statement and the

185

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

corresponding conditions leading to either of the two branches.

One limitation of log analysis is that the analysis can handle only logs generated by

Apache log4j framework. Since most application log formats do not follow a particular

standard format, the approach to parsing logs is highly dependent on the semantic

structure of the logs. Ideally, knowledge is needed about the expected log format so

that it can adopt the corresponding approach to parsing logs. Currently, this has not

been implemented in our project. Another limitation of log analysis is the assumption

we have made for the logging points. We have to assume that all logging points in the

same method should have different constant strings in their log messages, to make it

more convenient to match parsed logs with their corresponding logging points. The

assumption makes sense in practice, but from the software engineering principle point

of view, the implementation should have handled such an issue in a better way.

The sequential pattern mining provides only limited mining results and lacks any

practical analysis. It requires manual interpretation and human expertise to obtain

insight into the problem behind the sequential patterns identified by the mining al-

gorithm.

10.3 Future Work

Most of the future projects are complementary to the limitations previously men-

tioned. Regarding the limitation of source code analysis, we should explore feasible

options for expanding the source code analysis to include other programming lan-

guages in consideration, so that the log analysis can be performed on software sys-

tems based on languages other than Java. In future, we may need to handle legacy

186

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

systems based on older programming languages like COBOL. Iqbal [Iqb11] has sug-

gested that the fact that Java bytecode is a relatively higher level representation than

other kinds of compiled code, such as assembly language and machine code, and that

several off-the-shelf bytecode analysis tools already exist has facilitated our work to

a great extent. In the case of languages like COBOL, we may have to write our own

parser and analyzer for processing the compiled representations of these languages,

which will be a challenging issue in the future.

As we are concerned about the limitation of the dependency graph to the method

level only, its potential extension to the statement level will be a feasible but difficult

task. First, it is necessary to understand the Java bytecode representation of both

simple and compound statements in Java. Second, we need to find an efficient way to

interpret these representations. We can either utilize an existing off-the-shelf bytecode

analysis tool that specializes in statement analysis, or we may have to write some

kind of parser and analyzer to get the job done. Third, in order to analyze the effect

of conditional statements on control flow, besides conventional static analysis, we

may need to apply dynamic analysis. Finally, considering all sorts of conditions and

restrictions at the statement level, we analyze the control flow and data flow of the

program and incorporate any findings in the dependency analysis, so that we can

extend the dependency graph to the statement level.

The limitation of log analysis is that it lacks a generic approach to parsing and

analyzing logs in a random format. This can be improved in such a way that the

implementation reads in a guidance on the expected log format before parsing the

logs. The guidance basically describes the log semantics and instructs the program

to extract information from the corresponding fields of each parsed log; however, this

187

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

is only for parsing. For analyzing, we not only need the guidance on the log format

but also need to know the logging structure in source code, so that we can connect

the logs with the corresponding logging points in source code. It will be another

challenging future project to make the analysis process a generic approach.

Finally, we consider applying machine learning technique, a branch of artificial

intelligence, to further analyze the sequential patterns identified by the mining effort.

Specifically, the machine learning technique allows computers to evolve behaviours

based on empirical data. A major focus of machine learning research is to automat-

ically learn to recognize complex patterns and make intelligent decisions based on

data. This will be a complex but significant experimental project in the future.

188

Bibliography

[Bal99] T. Ball. The Concept of Dynamic Analysis. In O. Nierstrasz and

M. Lemoine, editors, Software Engineering - ESEC/FSE ‘99, volume

1687 of Lecture Notes in Computer Science (LNCS), pages 216–234.

Springer Berlin / Heidelberg, 1999.

[Boh02] S.A. Bohner. Extending Software Change Impact Analysis into COTS

Components. In Software Engineering Workshop, 2002. Proceedings.

27th Annual NASA Goddard/IEEE, pages 175–182, December 2002.

[CCHK90] D. Callahan, A. Carle, M.W. Hall, and K. Kennedy. Constructing the

Procedure Call Multigraph. IEEE Transactions on Software Engineer-

ing, 16(4):483–487, April 1990.

[CCRS09] T.H. Cormen, C.E.Leiserson, R.L. Rivest, and C. Stein. Introduction

to Algorithms. The MIT Press, Cambridge, Massachusetts, U.S.A., 3rd

edition, 2009.

[Cho05] P.K. Chowdhury. Symbolic Interpretation of Legacy Assembly Lan-

guage. Master’s thesis, Department of Computing and Software, Mc-

Master University, August 2005.

189

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

[CLM+09] T.M. Chilimbi, B. Liblit, K. Mehra, A.V. Nori, and K. Vaswani.

HOLMES: Effective Statistical Debugging via Efficient Path Profiling.

In Proceedings of 31st IEEE International Conference on Software En-

gineering 2009 (ICSE ‘09), pages 34–44, Vancouver, Canada, May 2009.

[Cor12] Oracle Corporation. MySQL :: The world’s most popular

open source database, February 2012. Electorinally available at

http://www.mysql.com.

[Eck95] W.W. Eckerson. Three Tier Client/Server Architecture: Achieving Scal-

ability, Performance, and Efficiency in Client Server Applications. Open

Information Systems, 3(20):46–50, January 1995.

[Ern03] M.D. Ernst. Static and Dynamic Analysis: Synergy and Duality. In

J. Cook and M. Ernst, editors, WODA 2003: ICSE Workshop on Dy-

namic Analysis, pages 24–27, Portland, Oregon, May 2003. ICSE‘03.

[Fai78] R.E. Fairley. Tutorial: Static Analysis and Dynamic Testing of Com-

puter Software. Computer, 11(4):14–23, April 1978.

[Fou12a] The Apache Software Foundation. Apache Ant, February 2012. Elec-

tronically available at http://ant.apache.org/.

[Fou12b] The Apache Software Foundation. Apache log4j 1.2 - Short In-

troduction to log4j, February 2012. Electronically available at

http://logging.apache.org/log4j/1.2/manual.html.

[Fou12c] The Apache Software Foundation. Apache Logging Service Project

190

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

- Apache log4j, February 2012. Electronically available at

http://logging.apache.org/log4j/.

[FOW87] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program Depen-

dence Graph and Its Use in Optimization. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 9(3):319–349, July 1987.

[FP98] N.E. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Prac-

tical Approach. International Thomsen Publishing Inc., 2nd edition,

1998.

[FV12] P. Fournier-Viger. SPMF: A Sequential Pattern Mining Framework,

February 2012. Electorinally available at http://www.philippe-fournier-

viger.com/spmf/.

[Gra85] J. Gray. Why Do Computers Stop and What Can Be Done About It?

Technical Report 85.7, June 1985.

[HPMA+00] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M-C. Hsu.

FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining. In

Proceedings of 6th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ‘00, pages 355–359, New York,

NY, USA, 2000. ACM.

[HPY05] J. Han, J. Pei, and X. Yan. Sequential Pattern Mining by Pattern-

Growth: Principles and Extensions. In W. Chu and T.Y. Lin, editors,

Foundations and Advances in Data Mining, volume 180 of Studies in

191

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

Fuzziness and Soft Computing, pages 183–220. Springer Berlin / Heidel-

berg, 2005.

[HRB90] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing using De-

pendence Graphs. ACM Transactions on Programming Languages and

Systems (TOPLAS), 12(1):26–60, January 1990.

[Iqb11] A. Iqbal. Identifying Modifications and Generating Dependency Graphs

for Impact Analysis in a Legacy Environment. Master’s thesis, Depart-

ment of Computing and Software, McMaster University, April 2011.

[Jan06] B.J. Jansen. Search log analysis: What it is, what’s been done, how to

do it. Library & Information Science Research, 28:407–432, 2006.

[Kas04] H. Kastenberg. Software Metrics as Class Graph Properties. Master’s

thesis, Department of Electrical Engineering, Mathematics and Com-

puter Science, University of Twente, July 2004.

[LAZJ03] B. Liblit, A. Aiken, A.X. Zheng, and M.I. Jordan. Bug Isolation via

Remote Program Sampling. ACM SIGPLAN Notices, 38(5):141–154,

May 2003.

[LH96] L. Larsen and M.J. Harrold. Slicing Object-Oriented Software. In Pro-

ceedings of the 18th International Conference on Software Engineering

1996, pages 495–505, Berlin, Germany, March 1996.

[LIT91] I. Lee, R.K. Iyer, and D. Tang. Error/Failure Analysis Using Event Logs

192

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

from Fault Tolerant Systems. In Proceedings of Fault-Tolerant Comput-

ing, 1991. FTCS-21. Digest of Papers., 21st International Symposium,

pages 10–17, Montreal, Quebec, Canada, June 1991.

[LY12] T. Lindholm and F. Yellin. The Java Virtual Machine

Specification, February 2012. Electorinally available at

http://java.sun.com/docs/books/jvms/second edition/html/VMSpecTOC.doc.html.

[MCD09] T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred Call Path Profiling.

ACM SIGPLAN Notices, 44(10):175–190, October 2009.

[MD12] J. Meyer and T. Downing. Java Virtual Machine - Online In-

struction Reference, February 2012. Electorinally available at

http://cs.au.dk/ mis/dOvs/jvmspec/ref-Java.html.

[MMKM94] B.A. Malloy, J.D. McGregor, A. Krishnaswamy, and M. Medikonda. An

Extensible Program Representation for Object-Oriented Software. ACM

SIGPLAN Notices, 29(12):38–47, December 1994.

[OO84] K.J. Ottenstein and L.M. Ottenstein. The Program Dependence Graph

in a Software Development Environment. ACM SIGSOFT Software En-

gineering Notes, 9(3):177–184, April 1984.

[PHMA+01] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and

M. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-

Projected Pattern Growth. In Proceedings of International Conference

on Data Engineering 2001 (ICDE‘01), pages 215–224, Heidelberg, Ger-

many, April 2001.

193

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

[PHMA+04] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,

and M. Hsu. Mining Sequential Patterns by Pattern-Growth: The Pre-

fixSpan Approach. IEEE Transactions on Knowledge and Data Engi-

neering, 16(11):1424–1440, November 2004.

[RB83] R.E. Rice and C.L. Borgman. The Use of Computer-Monitored Data

in Information Science and Communication Research. Journal of the

American Society for Information Science and Technology (JASIST),

34(4):247–256, July 1983.

[Ree00] G. Reese. Database Programming with JDBC and Java. O‘Reilly and

Associates, 2nd edition, November 2000.

[Ryd79] B.G. Ryder. Constructing the Call Graph of a Program. IEEE Trans-

actions on Software Engineering, SE-5(3):216–226, May 1979.

[SA96] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generaliza-

tions and Performance Improvements. In P. Apers, M. Bouzeghoub,

and G. Gardarin, editors, Advances in Database Technology - EDBT

‘96, volume 1057 of Lecture Notes in Computer Science (LNCS), pages

1–17. Springer Berlin / Heidelberg, 1996.

[Tes12a] J. Tessier. Dependency Finder, February 2012. Electronically available

at http://depfind.sourceforge.net/.

[Tes12b] J. Tessier. The Dependency Finder User Manual, February 2012. Elec-

torinally available at http://depfind.sourceforge.net/Manual.html.

194

M.A.Sc. Thesis - Jianhui Lei McMaster - Computing and Software

[XHF+09a] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Online System

Problem Detection by Mining Patterns of Console Logs. In Proceedings

of 9th IEEE International Conference on Data Mining 2009 (ICDM

‘09), pages 588–597, Miami, FL, USA, December 2009.

[XHF+09b] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. Jordan. Large-

Scale System Problems Detection by Mining Console Logs. Technical

Report UCB/EECS-2009-103, July 2009. Electronically available

at http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-

103.html.

[YHA03] X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential

Patterns in Large Datasets. In Proceedings of 3rd SIAM International

Conference on Data Mining, pages 166–177, May 2003.

[YMX+10] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy. Sher-

Log: Error Diagnosis by Connecting Clues from Run-time Logs. ASP-

LOS‘10, March 2010.

[Zak01] M.J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Se-

quences. Machine Learning, 42(1/2):31–60, Jan/Feb 2001.

[Zha98] J. Zhao. Applying Program Dependence Analysis To Java Software. In

Proceedings of Workshop on Software Engineering and Database Sys-

tems, 1998 International Computer Symposium, pages 162–169, 1998.

195

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Thesis Overview

	Problem Definition
	Background
	Conventional Log Analysis
	Logs and Related Concepts
	What is Log Analysis?
	Difficulties with Conventional Log Analysis Revisited

	The Log Analysis Project
	Summary

	Tools and Techniques
	Graphs
	Call Graph
	Access Dependency Graphs
	Reasons for Choosing Access Dependency Analysis

	Program Analysis Techniques
	Static Program Analysis
	Dynamic Program Analysis
	Reasons for Choosing Static Program Analysis

	Sequential Pattern Mining
	Definitions
	Methods and Algorithms

	Implementation Tools
	Summary

	Related Work
	Work Related to Program Dependency Analysis
	Work Related to Detection and Diagnosis of System Problems
	Work Related to Sequential Pattern Mining
	Summary

	Overview of Project Implementation
	Principles of The Three-Tier Architecture
	Design of Major Components
	Source Code Analysis
	Log Analysis
	Sequential Pattern Mining
	Integration of Major Components

	Using a Database as a Data Repository
	Summary

	Source Code Analysis
	Java Bytecode
	Java Bytecode vs. Java Source Code
	Format of Java Bytecode
	The XML Representation of Java Bytecode
	Converting Java Bytecode into XML

	Finding Entities and Inheritance Relations
	Definition of an Entity
	The Implementation
	Parsing Classes
	Resolving Inheritance among Classes
	Parsing Methods
	Storing Entities Information in Memory

	Access Dependency Analysis
	Access Dependency Relations
	Considerations of Access Dependency Relations
	Method Invocation
	The Dynamic Binding Issue

	Dependency Graph vs. Dependency Relation
	Building the Access Dependency Relations
	Parsing Instructions of Method Invocation
	Parsing Non-overridden Entities
	Resolving Dynamic Binding Issue
	Storing Dependency Relations in Memory

	Saving Dependency Relations into the Database
	Preparing Database Tables
	Inserting Data into Database Tables

	Finding Logging Points
	Definition of a Logging Point
	Java Logging Framework
	The Implementation
	Logging Point in Source Code
	Parsing Logging Points in Java Bytecode
	Differentiating Logging Points
	Storing Logging Points

	Summary

	Log Analysis
	Parsing Logs
	The Log Format of Our Partner's System
	Extracting Information from a Log
	Matching a Log with a Logging Point
	Storing the Log Information

	Access Dependency Graph
	Dependency Graph vs. Dependency Relation - Revisited
	Building the Access Dependency Graph
	Traversing the Access Dependency Graph
	Breadth-first Search (BFS)
	Depth-first Search (DFS)
	BFS vs. DFS

	Matching Logs with Program Call Paths
	General Process
	Determining the Start Node of the Graph Traversal
	Direction of the Graph Traversal
	Traversing with Depth-First Search (DFS)
	Building the Program Call Paths
	Examples of Matching Logs with Program Call Paths

	Sequential Pattern Searching in Historical Logs
	Collecting Samples of Sequential Logs
	Analyzing Samples of Sequential Logs for Patterns
	Storing Sequential Patterns

	Matching Logs with Sequential Patterns
	General Process
	Example of Matching Logs with Sequential Patterns

	Summary

	Sequential Pattern Mining
	The Implementation
	Example of Sequential Pattern Mining
	Summary

	Evaluation
	Our Partner's System
	Evaluation Approach
	Experimental Results
	A Case of Matching Error Logs with Program Call Paths
	A Case of Matching Normal Logs with Program Call Paths
	A Case of Matching Error Logs with Sequential Patterns
	A Case of Sequential Pattern Mining
	Discussions of Experimental Results

	Summary

	Conclusion and Future Work
	Contribution
	Limitations
	Future Work

