
INFERENCE FOR A GAMMA STEP-STRESS

MODEL UNDER CENSORING



INFERENCE FOR A GAMMA STEP-STRESS MODEL UNDER

CENSORING

BY

LAILA ALKHALFAN, M.Sc.

McMaster University

a thesis

submitted to the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Laila Alkhalfan, July 2012

All Rights Reserved



Doctor of Philosophy (2012) McMaster University

(Computational Engineering and Science) Hamilton, Ontario, Canada

TITLE: INFERENCE FOR A GAMMA STEP-STRESS

MODEL UNDER CENSORING

AUTHOR: Laila Alkhalfan

B.Sc., M.Sc.

Kuwait University

SUPERVISOR: Professor N. Balakrishnan

NUMBER OF PAGES: xviii, 211

ii



Abstract

In reliability and life-testing experiments, one of the popular and commonly used

strategies, that allows manufacturers and designers to identify, improve and control

critical components, is called the Accelerated Life Test (ALT). The main idea of these

tests is to investigate the product’s reliability at higher than usual stress levels on

test units to ensure earlier failure than what could result under the normal operating

conditions. Stress can be induced by such factors as voltage, pressure, temperature,

load or cycling rate.

ALT are applied using different types of accelerations such as high usage rate in

which the compressed time testing is done through speed or by reducing off times.

Another type of acceleration is the product design where the life of a unit can be

accelerated through its size or its geometry. Stress loading is another type of acceler-

ation that is applied using constant stress, step-stress, progressive stress, cyclic stress

or random stress. Here, we discuss the step-stress model, which applies stress to each

unit and increases the stress at pre-specified times during the experiment allowing us

to obtain information about the parameters of the life distribution more quickly than

under normal operating conditions.

In this thesis, we present the simple step-stress model (the situation in which

there are only two stress levels) when the lifetimes at different stress levels follow
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the gamma distribution when the data are (Chapter 2) Type-II censored, (Chapter

3) Type-I censored, (Chapter 4) Progressively Type-II censored, and (Chapter 5)

Progressively Type-I censored, as well as a multiple step-stress model under Type-

I and Type-II censoring. The likelihood function is derived assuming a cumulative

exposure model with gamma distributed lifetimes. The resulting likelihood equations

do not have closed-form solutions, and so they need to be solved numerically. We

then derive confidence intervals for the parameters using asymptotic normality of the

maximum likelihood estimates and the parametric bootstrap method. In each case,

the performance of the methods of inference developed here are examined by means of

Monte Carlo simulation study and are also illustrated with some numerical examples.

Keywords and Phrases: Accelerated Testing; Step-Stress Models; Cumulative

Exposure Model; Maximum Likelihood Estimation; Confidence Intervals; Bootstrap

Method; Coverage Probability; Order Statistics; Type-I Censoring; Type-II Cen-

soring; Progressive Type-I censoring; Progressive Type-II Censoring; Monte Carlo

Simulation; Gamma Distribution; Fisher Information; Asymptotic Normality.
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Chapter 1

Introduction

1.1 Background

Observing the time to failure of a product under normal operating conditions is a

relatively expensive and time-consuming process. This problem makes reliability en-

gineers interested in a strategy that could test the lifetime of each product in a faster

and economical way. One such important strategy for reliability testing is the accel-

erated life test, which tests each unit at higher stress levels than normal operating

conditions to assure quicker failures. A model is then fitted to the accelerated failure

times and then extrapolated to estimate the life distribution under normal operating

conditions. Some of the important references in this area are Nelson (1980,1990),

Meeker and Escobar (1998), and Bagdonavicius and Nikulin (2002).

Accelerated life test is usually done using constant stress, step stress, or linearly

increasing stress levels. Unlike the constant stress experiment which could last for a

long time, the step-stress experiment reduces test time and enables quicker failures.
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It starts by applying low stress on each unit and after a pre-specified time, the stress

is increased. So, the stress is sequentially increased to higher stress levels so that more

and more units can fail at these elevated levels of stress. In this test scheme, there

could be more than one change of stress level. For example, if we have n identical

units placed on a life-test starting at an initial stress level x1, then the stress level

is increased to x2, x3, . . . , xm at fixed times τ1, τ2, . . . , τm, respectively. The resulting

failure times from such a test are observed in a naturally ordered manner and are

called order statistics. These ordered failure times are then used to estimate the

parameters of the distribution of failure times under normal operating conditions.

Relating the level of stress with the parameters of the failure distribution at that

stress level is then required, and one of the commonly used models for this purpose

is called the cumulative exposure model.

In the literature, DeGroot and Goel (1979) introduced the tampered random vari-

able model and discussed optimal tests under a Bayesian framework. Sedyakin (1966)

proposed the cumulative exposure model in the simple step-stress model which was

generalized by Bagdonavicius (1978) and Nelson (1980). Miller and Nelson (1983)

obtained the optimal time for changing the stress level from x1 to x2, assuming ex-

ponentially distributed life times. Bai, Kim, and Lee (1989) extended the results

of Miller and Nelson to the case of censoring. Bhattacharyya and Zanzawi (1989)

proposed the tampered failure rate model which assumes that the effect of changing

stress level is to multiply the initial failure rate function by a factor subsequent to

the changed time. This tampered failure rate model was generalized by Madi (1993)

2
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from the simple step-stress model to the multiple step-stress case. Khamis and Hig-

gins (1998) and Kateri and Balakrishnan (2008) discussed inferential methods for

cumulative exposure model under Weibull distributed lifetimes. Alhadeed and Yang

(2002, 2005) obtained the optimal design for the Khamis-Higgins model, and for the

lognormal simple step-stress models. Xiong (1998) and Xiong and Milliken (1999)

discussed inference of the exponential lifetimes assuming that the mean life is a log-

linear function of the stress level. Even though the log-linear link function provides a

simpler model, Watkins (2001) argued that it is preferable to work with the original

exponential parameters. Gouno and Balakrishnan (2001) reviewed the development

on step-stress accelerated life-tests. Gouno, Sen and Balakrishnan (2003) presented

inference for step-stress models under the exponential distribution in the case of a

progressively Type-I censored data. Xiong and Ji (2004) proposed an analysis of step-

stress life tests based on grouped and censored data. Balakrishnan (2009) discussed

exact inferential results for exponential step-stress models and some associated opti-

mal accelerated life-tests. Tang (2003) reviewed multiple steps step-stress accelerated

tests. Balakrishnan, Kundu, Ng and Kannan (2007) discussed the simple step-stress

model under Type-II censoring under the exponential distribution. Balakrishnan, Xie

and Kundu (2009) presented exact inference for the simple step-stress model from the

exponential distribution when there is time constraint on the duration of the experi-

ment. Balakrishnan and Xie (2007) discussed exact inference for a simple step-stress

model with Type-II hybird censored data from the exponential distribution.
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1.2 Order Statistics

It is clear that the failure data collected from life tests result in a naturally increasing

order. So, the analysis of these types of lifetime data is done by using the theory

of order statistics. The order statistics and their diverse applications have been re-

vised extensively by Arnold, Balakrishnan and Nagraga (1992), Balakrishnan and

Rao (1998a, b) and David and Nagraja (2003).

Let X1, X2, . . . , Xn denote a random sample from a continuous distribution having

a probability density function (pdf) f(x) and a distribution function F (x). Let Y1 <

Y2 < · · · < Yn be the Xi’s arranged in ascending order, so that Yk is the k-th smallest.

In particular, Y1= minXi and Yn=max Xi, for i = 1, 2, . . . , n. This way, Y1, Y2, . . . , Yn

are the order statistics from the Xi’s. The distribution of Y1 and Yn can be obtained

easily. The probability that Yn ≤ x is the probability that Xi ≤ x for all i, which is∏n
i=1 P (Xi ≤ x). But, P (Xi ≤ x) is F (x) for all i, hence

FYn(x) = [F (x)]n and fYn(x) = n[F (x)](n−1)f(x).

Similarly,

P{Y1 > x} =
n∏
i=1

P{Xi > x} = [1− F (x)]n.

Therefore,

FY1(x) = 1− [1− F (x)]n and fY1(x) = n[1− F (x)](n−1)f(x).

To derive the density function of Yk for k = 2, 3, . . . , n− 1, we consider the event

4
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x < Yk ≤ x+δx. Then, there must be k−1 random variables less than x, one random

variable between x and δx, and n − k random variables greater than x + δx, where

δx is relatively small. All other permutations will end up being of probability zero.

The density function then can be found to be

fYk(x)δx =
n!

(k − 1)!(n− k)!
[F (x)]k−1f(x)δx[1− F (x)]n−k,

so

fYk(x) =
n!

(k − 1)!(n− k)!
[F (x)]k−1[1− F (x)]n−kf(x).

Similar reasoning allows us to write down the joint density fYk,Yj(x, y) of Yk and Yj,

for k < j, as

n!

(k − 1)!(j − k − 1)!(n− j)!
[F (x)]k−1[F (y)− F (x)]j−k−1[1− F (y)]n−jf(x)f(y),

for x < y, and 0 elsewhere. The joint pdf of Y1, Y2, . . . , Yn is similarly obtained as

fY1,Y2,...,Yn(x1, x2, . . . , xn) = n!
n∏
i=1

f(xi), x1 < x2 < · · · < xn.

1.3 Cumulative Exposure Model

The cumulative exposure model, as mentioned before, is one of the most useful mod-

els in the analysis of step-stress experiments. This model relates the life distribution

of the test units at one stress level to the distributions at preceding stress levels by

assuming that the residual lives of the experimental units depend only on the cumu-

lative exposure that the units have experienced, with no memory of how the stress

5
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was accumulated. Moreover, the surviving units will fail according to the cumulative

distribution at the same stress level that is currently being tested at, but starting at

the previous accumulated stress level.

Figure 1.1 explains the basic cumulative exposure model for a failure mode as-

suming that there are 4 stress levels (x1, x2, x3, x4) that are changed at fixed times

(τ1, τ2, τ3). We also assume that the lifetime distribution functions at stress levels

x1, x2, x3 and x4 are F1, F2, F3 and F4, respectively, and that they all belong to the

same family of distributions. Part (1) of the figure presents the four Cumulative

Distribution Functions (CDFs) at the four stress levels. The experiment starts with

n identical units, and each unit is subjected to an initial stress x1 with lifetimes

following the CDF F1(t). The time at which a unit failed will be collected and the

un-failed units will continue until time τ1 at which the stress is increased to x2 and

the units will follow the CDF F2(t), but it will start at the previously accumulated

fraction failed. Similarly, when the stress is increased from x2 to x3 and from x3 to x4,

and so on, the distributions of lifetimes would change to F3(t), F4(t), and so on, with

them starting suitably at the previously accumulated fraction failed. For example,

the change of stress level from x1 to x2 is going to change the lifetime distribution at

stress level x2 from F2(t) to F2(t− τ1 + τ̂1), where

F1(τ1) = F2(τ̂1). (1.3.1)

Assuming that θ1, θ2, θ3 and θ4 are the scale parameters associated with F1, F2, F3

and F4, respectively, with the assumption that F1, F2, F3 and F4 all belong to the

same family of distributions, and assuming absolute continuity of the cumulative

6
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Figure 1.1: Basic Cumulative Exposure Model
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distribution function of the lifetime, we find

τ̂1 =
θ2

θ1

τ1,

τ̂2 =
θ3

θ2

[
τ2 − τ1 +

θ2

θ1

τ1

]
,

τ̂3 =
θ4

θ3

[
τ3 − τ2 +

θ3

θ2

(
τ2 − τ1 +

θ2

θ1

τ1

)]
.

Thus, in general, for k = 1, 2, 3, . . . ,m, we have

τ̂k =
θk+1

θk
(τk − τk−1 + τ̂k−1) . (1.3.2)

The resulting cumulative distribution function of the lifetime under the cumulative

exposure model (shown in Part (2) of Figure 1.1), which consists of the segments of

the CDFs at different stress levels, is given by

G(t) =



G1(t) = F1(t) for 0 < t < τ1

G2(t) = F2(t− τ1 + τ̂1) for τ1 ≤ t < τ2

G3(t) = F3(t− τ2 + τ̂2) for τ2 ≤ t < τ3

G4(t) = F4(t− τ3 + τ̂3) for τ3 ≤ t < τ4

...
...

Gk(t) = Fk(t− τk−1 + τ̂k−1) for τk−1 ≤ t <∞,

, (1.3.3)

and the corresponding probability density function is given by

8
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g(t) =



g1(t) = f1(t) for 0 < t < τ1

g2(t) = f2(t− τ1 + τ̂1) for τ1 ≤ t < τ2

g3(t) = f3(t− τ2 + τ̂2) for τ2 ≤ t < τ3

g4(t) = f4(t− τ3 + τ̂3) for τ3 ≤ t < τ4

...
...

gk(t) = fk(t− τk−1 + τ̂k−1) for τk−1 ≤ t <∞.

(1.3.4)

In this thesis, we assume a gamma lifetime distribution at all stress levels, with

common shape parameter α and scale parameter θi for distribution Fi. Then, the

cumulative distribution function of the simple step-stress model, in which there are

two stress levels x1 and x2, will become

G(t) =

G1(t) = F1(t) for 0 < t < τ1

G2(t) = F2(t− τ1 + τ̂1) for τ1 ≤ t < τ2

, (1.3.5)

where

F1(t) = IG t
θ1

(α) and F2(t) = IG t
θ2

(α),

and IGt(α) is the incomplete gamma ratio

IGt(α) =

∫ t

0

1

Γ(α)
xα−1e−x dx, t > 0, α > 0,

The corresponding probability density function (PDF) in this case will be

9
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g(t) =

g1(t) = 1
Γ(α) θα1

tα−1e
− t
θ1 for 0 < t < τ1

g2(t) = 1
Γ(α) θα2

(
t− τ1 + θ2

θ1
τ1

)α−1

e
− 1
θ2

(
t−τ1+

θ2
θ1
τ1
)

for τ1 ≤ t < τ2

(1.3.6)

Similarly, we can present forms of the cumulative distribution function and the

probability density function of a gamma multiple step-stress model.

In this thesis, we consider the gamma distribution as a model of failure times

because of its appealing features. This distribution is a very flexible function for the

description of various lifetime events, given the variety of shapes it accommodates for

different values of parameters. It has the structure of the exponential family, which

means it has many of its important properties that are associated with sampling

distributions. It is used to make realistic adjustments to the exponential distribution

in representing life times. Another interesting property is the different patterns of

its Hazard function. This function is used to calculate the failure rate for intervals

of time. It increases monotonically for α > 1 , it is constant for α = 1 and it

decreases monotonically for α < 1. For more details on the gamma distribution and

its properties, one may refer to Johnson, Kotz and Balakrishnan (1994).

1.4 Types of Data Considered

Analysis of the successive failure times in life-testing experiments depend on the type

of failure data that are collected. As mentioned before, there are different types of

censoring schemes, and in this section we will briefly describe the ones that will be

discussed in the subsequent chapters of this thesis.

10
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1.4.1 Type-II Censored Samples

The Type-II censored sample is formed by terminating the life-testing experiment

when a specified number of failures r are observed and the remaining n− r units are

censored. Fixing the number of failures would make the time to failure of a test unit

random, and so the termination time would also be unknown prior to the experiment,

which is a disadvantage of the Type-II censoring but it has the advantage of yielding

the required number of failures from the life test.

1.4.2 Type-I Censored Samples

If the termination of a life-testing experiment is done at a prefixed time τ and lifetimes

of units that are larger than τ are censored, then the observed failure data obtained

from such an experiment form a Type-I censored sample. Controlling the duration

of the experiment is actually an advantage, but fixing it may result in very few or

even no failures before time τ , which is a disadvantage. Another disadvantage of

this type of censoring is the randomness in the number of failures, which results in a

complicated Maximum Likelihood Estimation (MLE) of parameters.

For more details on Type-I and Type-II censoring and associated inferential issues,

one may refer to Lawless (2003), Nelson (1982), Cohen and Whitten (1988), Cohen

(1991), and Balakrishnan and Cohen (1991).

1.4.3 Progressively Type-II Censored Samples

In progressive Type-II censoring, the experiment is terminated after reaching a fixed

number of failures r, which is similar to the Type-II censoring. The difference here

is that at the time of the first failure, R1 of the n − 1 surviving units are randomly

11



Ph.D. Thesis - Laila Alkhalfan McMaster -Computational Engineering and Science

withdrawn or censored from the life-testing experiment. At the time of the next

failure, R2 of the n− 2− R1 surviving units are censored, and so on. Finally, at the

time of the r-th failure, all the remaining Rr = n − r − R1 − · · · − Rr−1 surviving

units are censored. Thus, the censoring takes place here progressively in r stages. It

can be seen that this censoring scheme includes the complete sample situation when

R1 = R2 = · · · = Rr = 0 and n = r, and the conventional Type-II censoring scheme

when R1 = R2 = · · · = Rr−1 = 0 and Rr = n− r. There have been many studies and

discussions on procedures based on progressive Type-II censored sampling. One may

refer to the works of Herd (1956). Cohen (1963, 1966, 1991), Nelson (1982), Cohen

and Whitten (1988), Balakrishnan and Cohen (1991), Balakrishnan and Aggarwala

(2000), Balasooriya, Saw and Gadag (2000), and Ng, Chan and Balakrishnan (2002,

2004), Balakrishnan (2007), all have studied some inferential procedures based on the

progressively censored sample.

1.4.4 Progressively Type-I Censored Samples

In multiple step-stress model under the progressive Type-I censoring scheme, the

experiment is terminated at a pre-specified time τm. We start with n identical units

subjected to initial stress level x1. Then, at a specified time τ1, the stress is increased

to x2, at which R1 surviving units are withdrawn from the experiment provided R1

units are still surviving. After that at time τ2, the stress is increased to x3 and

R2 surviving units are removed from the test provided there are sufficient number

of surviving units still available to be removed, and so on. In this test scheme, we

fix the values τ1, τ2, . . . , τm and R1, R2, . . . , Rm−1 but Rm would be a random variable

corresponding to whatever number of units remain at time τm. In the literature, there

12
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has been some discussions on such a progressive Type-I censoring; see, for example,

Cohen (1963, 1991), Cohen and Whitten (1988), Balakrishnan and Cohen (1991), and

Balakrishanan and Han (2008).

1.5 Scope of the Thesis

This thesis consists of eight chapters in addition to this Introduction chapter, out of

which six chapters deal with various inferential issues concerning a simple step-stress

model as well as m-step-stress model based on gamma lifetimes under different forms

of censoring. Chapter eight presents the computational methods and the optimization

algorithms that are used in this thesis. The final chapter presents some conclusions

as well as further problems of interest in this direction.

In Chapter 2, we consider a simple step-stress model under Type-II censoring

based on gamma lifetimes. In Section 2.2, the considered model is described. The

maximum likelihood estimates (MLEs) are obtained using numerical methods in Sec-

tion 2.3. The derivation of confidence intervals for the unknown parameters using

both the approximate method, which uses the Fisher information matrix, and the

parametric bootstrap method, are discussed in Section 2.4. In Section 2.5, a sim-

ulation study is presented to illustrate the performance of the maximum likelihood

estimates and the confidence intervals which are obtained using the approximate and

the bootstrap methods. Some illustrative examples are also presented.

In Chapter 3, we consider a simple step-stress model under Type-I censoring

based on gamma lifetimes. In Section 3.2, the considered model is described. The

maximum likelihood estimates (MLEs) are obtained using numerical methods in Sec-

tion 3.3. The derivation of confidence intervals for the unknown parameters using the

13
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Fisher information matrix with the asymptotic properties of MLEs and the paramet-

ric bootstrap method are discussed in Section 3.4. In Section 3.5, a simulation study

is presented to illustrate the performance of the maximum likelihood estimates and

the confidence intervals obtained by the two methods. An illustrative example is also

presented.

In Chapter 4, we consider a simple step-stress model under progressive Type-II

censoring based on gamma lifetimes. In Section 4.2, the considered model is discussed.

The maximum likelihood function is derived and the MLEs are obtained in Section

4.3. After that, the derivation of the confidence intervals for the unknown parameters

using both the approximate method, which uses the Fisher information matrix, and

the parametric bootstrap method, are discussed in Section 4.4. In Section 4.5, we

present a simulation study to illustrate the performance of the maximum likelihood

estimates and the confidence intervals which are obtained using the approximate and

the bootstrap methods and we also presented an illustrative example.

In Chapter 5, we consider a simple step-stress progressive Type-I censoring model.

We assume that the lifetime data follows a gamma distribution. The considered

model is discussed in Section 5.2. In Section 5.3, the maximum likelihood function

is obtained with the MLEs. After that, the derivation of the confidence intervals for

the unknown parameters using the Fisher information matrix with the asymptotic

properties of MLEs and the parametric bootstrap method are discussed in Section

5.4. In Section 5.5, we present a simulation study to illustrate the performance

of the maximum likelihood estimates and the confidence intervals obtained by the

approximate and the bootstrap methods. An illustrative example is also presented.

In Chapter 6, we develop inference for the m-step-stress model under Type-II

14
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censoring with gamma distributed lifetimes. In Section 6.2, the considered model is

described. The MLEs are obtained in Section 6.3. After numerically evaluating the

MLEs, we construct confidence intervals for the unknown parameters by using two

methods-the asymptotic method and the parametric bootstrap method-in Section

6.4. In Section 6.5, some simulation results and conclusions are presented. We also

present the reduced parameter multiple step-stress model under Type-II censoring in

Section 6.6. The MLEs for that model are derived and the confidence intervals are also

constructed in Sections 6.6.1 and 6.6.2, respectively. In Section 6.6.3, a simulation

study is carried out on the reduced parameter model with an illustrative example. In

Section 6.7, we describe some life-stress relationships that can be used in this reduced

parameter model.

In Chapter 7,we develop inference for the m-step-stress model under Type-I

censoring with gamma distributed lifetimes. In Section 7.2, the considered model

is described. The MLEs are obtained in Section 7.3. After numerically evaluating

the MLEs, we construct confidence intervals for the unknown parameters by using

two methods-the asymptotic method and the parametric bootstrap method-in Section

7.4. In Section 7.5, some simulation results and an illustrative example are presented.

In Section 7.6, we present the reduced parameter multiple step-stress model under

Type-I censoring. The MLEs for that model are derived and the confidence intervals

are also constructed in Sections 7.6.1 and 7.6.2, respectively. In Section 7.6.3, a

simulation study is carried out on the reduced parameter model and an illustrative

example is presented.

Chapter 8 includes some information about the Sharcnet, which is used to acceler-

ate the computation of the coverage probabilities. We use two algorithms, series and

15



Ph.D. Thesis - Laila Alkhalfan McMaster -Computational Engineering and Science

parallel. In Section 8.2, the structure and the facilities of the sharcnet are mentioned,

and the performance of the parallel algorithm is tested. The optim function is used

in R, which has the option of using different methods of optimization such as: Nelder

and Mead, BFGS, CG, L-BFGS-B, SANN. Each method is explained explicitly in

Section 8.3. After that, in Section 8.4, a comparison of these methods is made to

optimize the likelihood function of the step stress model of Type-I censoring.

Finally, in Chapter 9, some conclusions are presented based on the work in this

thesis. Some problems that are worth considering for further study are also presented.

16



Chapter 2

Simple Step-Stress Model Under

Type-II Censoring

2.1 Introduction

In this chapter, we consider a simple step-stress model under Type-II censoring based

on gamma lifetimes. In Section 2.2, the considered model is described. The maximum

likelihood estimates (MLEs) are obtained using numerical methods in Section 2.3.

The derivation of confidence intervals for the unknown parameters using both the

approximate method, which uses the Fisher information matrix, and the parametric

bootstrap method, are discussed in Section 2.4. In Section 2.5, a simulation study

is presented to illustrate the performance of the maximum likelihood estimates and

the confidence intervals which are obtained using the approximate and the bootstrap

methods. Some illustrative examples are also presented.
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2.2 Model Description

In simple step-stress model under Type-II censoring, we suppose that the failure time

data come from a cumulative exposure model, and we consider a simple step stress

model with stress levels x1 and x2 with Type-II censoring. The lifetime distributions

at stress levels x1 and x2 are assumed to follow a gamma distribution with common

shape parameter α and scale parameters θ1 and θ2, respectively. We have derived

the corresponding Cumulative exposure distribution and PDF from Eqs. (1.3.5) and

(1.3.6), respectively. In the simple step-stress model with Type-II censoring, we start

with n identical units placed simultaneously on a life-test. Each unit will be subjected

to an initial stress level x1. After that, the experiment is run until a fixed time denoted

by τ , at which time the stress level is changed to x2. The experiment is continued

until a specified number of failures r are observed. Let n1 be the number of units that

fail before τ and n2 be the number of units that fail after τ , and so r = n1 + n2. If

r failures occur before τ , then the test is terminated, and otherwise, the experiment

continues after time τ until the required r failures are observed. The ordered failure

times that are observed will be denoted by

{t1:n < · · · < tn1:n < τ ≤ tn1+1:n < · · · < tr:n}. (2.2.1)

2.3 Maximum Likelihood Estimation

Considering the observed Type-II censored data given in (2.2.1), we can obtain the

likelihood function, and then the maximum likelihood estimates (MLEs) of the un-

known parameters α, θ1 and θ2 from it. The likelihood function based on the censored
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data in (2.2.1) [see Arnold, Balakrishnan and Nagraja (1992, p.161)] can be written

as

L(α, θ1, θ2|t) =
n!

r!

{
r∏
i=1

g (ti:n) {1−G (tr:n)}n−r
}
,

0 < t1:n < · · · < tr:n, (2.3.1)

where r = n1 + n2 and t is the vector of observed Type-II censored data. Using

the cumulative exposure model in Eq. (1.3.5) and the corresponding PDF in Eq.

(1.3.6), we obtain the likelihood function of α, θ1 and θ2 based on the observed Type-

II censored sample in (2.2.1) as follows:

1. If n1 = r and n2 = 0, the likelihood function in (2.3.1) becomes

L(α, θ1, θ2|t) =
n!

r!

{
r∏
i=1

g1 (ti:n)

}
{1−G1(tr:n)}n−r

=
n! (
∏n1

i=1 ti)
α−1

r!θαn1
1 (Γ(α))n1

e
− 1
θ1

∑n1
i=1 ti

[
1− IG tn1

θ1

(α)

]n−r
,

0 < t1:n < · · · < tr:n <∞; (2.3.2)

2. If n1 = 0 and n2 = r, the likelihood function in (2.3.1) becomes
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L(α, θ1, θ2|t) =
n!

r!

{
r∏
i=1

g2 (ti:n)

}
{1−G2 (tr:n)}n−r ,

=
n!

r!

1

θαr2 (Γ(α))r

(
r∏

i=n1+1

yi

)α−1

× e−
1
θ2

∑r
i=n1+1 yi

{
1− IG yr

θ2
(α)
}n−r

,

τ ≤ t1:n < · · · < tr:n <∞; (2.3.3)

3. If 1 ≤ n1 ≤ r − 1, the likelihood function in (2.3.1) becomes

L(α, θ1, θ2|t) =
n!

n1!n2!

{
n1∏
i=1

g1 (ti:n)

}{
r∏

i=n1+1

g2 (ti:n)

}

× {1−G2 (tr:n)}n−r

=
n!

n1!n2!

(
∏n1

i=1 ti)
α−1 (∏r

n1+1 yi
)α−1

(Γ(α))rθαn1
1 θαn2

2

× e−
1
θ1

∑n1
i=1 ti−

1
θ2

∑r
i=n1+1 yi

(
1− IG yr

θ2
(α)
)n−r

,

0 < t1:n < · · · < tn1:n < τ ≤ tn1+1:n < · · · < tr:n <∞, (2.3.4)

where r = n1 + n2, yi = ti − τ + θ2
θ1
τ .

From the likelihood functions in (2.3.2), (2.3.3) and (2.3.4), it is evident that the

MLE of θ1 does not exist if n1 = 0, and the MLE of θ2 does not exist if n1 = r. The

MLEs of θ1 and θ2 exist only when 1 ≤ n1 ≤ r−1, and may be obtained by maximizing

the corresponding likelihood function in (2.3.4). In addition, since we are estimating

the common shape parameter α, we need to have r to be at least 3. Maximizing the
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likelihood function for the parameters cannot be achieved analytically because there

is no closed-form for the incomplete gamma function (IG). Numerically maximizing

the likelihood function for the vector of parameters (α, θ1, θ2) seems to be the only

choice. For this purpose, it is convenient to work with the log-likelihood function

rather than the likelihood function in (2.3.4), which is given by

l(α, θ1, θ2|t) = lnL(α, θ1, θ2|t)

= ln(c)− r ln Γ(α)− αn1 ln θ1 − αn2 ln θ2 −
n1∑
i=1

ti
θ1

−
r∑

i=n1+1

yi
θ2

+ (α− 1)

n1∑
i=1

ln ti + (α− 1)
r∑

i=n1+1

ln yi

+ (n− r) ln(1− IG yr
θ2

(α))

0 < t1:n < · · · < tn1:n < τ ≤ tn1+1:n < · · · < tr:n <∞, (2.3.5)

where c = n!
n1!n2!

and yi = ti − τ + θ2
θ1
τ .

The maximum likelihood estimates must be derived numerically because there

is no obvious simplification of the non-linear likelihood equations. Here, numerical

likelihood maximization was carried out on the log-likelihood using R software. First,

we used the log-likelihood function and started with initial values. Then, the function

optim in R is used to maximize this log-likelihood function. After that, the estimates

are found and their confidence intervals are constructed, using the Hessian matrix.

We used the following algorithm to find the MLEs:

1. Simulate n order statistics from the uniform (0,1) distribution, U1, U2, . . . , Un.

2. Find n1 such that Un1 ≤ G1(τ) ≤ Un1+1.
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3. For i ≤ n1, Ti = θ1G
−1 (Ui), where G (t) =

∫ t
0

1
Γ(α)

e−xxα−1dx.

4. For n1 + 1 ≤ i ≤ r, T i = θ2 G
−1 (Ui) + τ − θ2

θ1
τ .

5. Compute the MLEs of (α, θ1, θ2) based on T1, T2, . . . , Tn1 , Tn1+1, . . . , Tr, say

α̂, θ̂1 and θ̂2.

Differentiating the log-likelihood function in (2.3.5) with respect to α, θ1 and θ2,

we obtain the following likelihood equations which need to be solved for finding the

MLEs of α, θ1 and θ2:

∂l(α, θ1, θ2|t)

∂α
= −rΨ(α)− n1 ln θ1 − n2 ln θ2 +

n1∑
i=1

ln ti +
r∑

n1+1

ln yi

+
(n− r)

(1− IGs(α))

[
Ψ(α)IGs(α)− 1

Γ(α)

∫ s

0

uα−1 ln(u)e−udu

]
= 0,

(2.3.6)

∂l(α, θ1, θ2|t)

∂θ1

= −αn1

θ1

+
n2τ

θ2
1

− (α− 1)θ2τ

θ2
1

r∑
i=n1+1

1

yi

+
1

θ2
1

n1∑
i=1

ti +
(n− r)τsα−1e−s

(1− IGs(α))Γ(α)θ2
1

= 0, (2.3.7)

∂l(α, θ1, θ2|t)

∂θ2

= −αn2

θ2

+
1

θ2
2

r∑
i=n1+1

(ti − τ) +
(α− 1)τ

θ1

r∑
i=n1+1

1

yi

+
(n− r)(tr − τ)sα−1e−s

(1− IGs(α))Γ(α)θ2
2

= 0, (2.3.8)
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where yi = ti − τ + θ2
θ1
τ, s = tr−τ

θ2
+ τ

θ1
and Ψ(α) = Γ′(α)

Γ(α)
.

2.4 Confidence Intervals

In this section, we present two different methods for constructing confidence intervals

(CI) for the unknown parameters α, θ1 and θ2. The first method uses the asymptotic

distributions of the MLEs to obtain approximate CIs for α, θ1 and θ2. The second

method is based on a parametric bootstrap method.

2.4.1 Approximate Confidence Intervals

In this subsection, we present an approximate method which provides good prob-

ability coverages for large sample sizes and is easy to compute. Elements of Fisher

information matrix of α, θ1 and θ2 were found numerically. Then, the asymptotic nor-

mality of MLEs is used to construct approximate confidence intervals for α, θ1 and

θ2. Let I (α,θ1, θ2) = [Iij (α, θ1, θ2)] , for i, j = 1, 2, 3, denote the observed Fisher

information matrix of α, θ1 and θ2, where

Iij(α, θ1, θ2) = −(∇2l(α, θ1, θ2)). (2.4.1)

Then, the observed Fisher information matrix (I) is given by

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 , (2.4.2)
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where

I11 =
∂2l(α, θ1, θ2)

∂α2

= −rΨ′(α) +
(n− r)

[1− IGs(α)]2
[(1− IGs(α))[2Ψ(α)B1(s)

+ (Ψ
′
(α)−Ψ2(α))IGs(α)−B2(s)]− [Ψ(α)IGs(α)−B1(s)]2], (2.4.3)

I12 =
∂2l(α, θ1, θ2)

∂α∂θ1

= −n1

θ1

− θ2τ

θ2
1

r∑
i=n1+1

1

yi
+

(n− r)τsα−1e−s

[1− IGs(α)]2θ2
1Γ(α)

× [(1− IGs(α))(ln(s))−Ψ(α) +B1(s)], (2.4.4)

I13 =
∂2l(α, θ1, θ2)

∂α∂θ2

= −n2

θ2

+
τ

θ1

r∑
i=n1+1

1

yi
+

(n− r)(tr − τ)sα−1e−s

[1− IGs(α)]2θ2
2Γ(α)

× [(1− IGs(α)) ln(s)−Ψ(α) +B1(s)], (2.4.5)
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I22 =
∂2l(α, θ1, θ2)

∂θ2
1

=
αn1

θ2
1

− 2

θ3
1

n1∑
i=1

ti −
2n2τ

θ3
1

+
2(α− 1)θ2τ

θ3
1

r∑
i=n1+1

ti − τ + θ2
2θ1
τ

y2
i

+
(n− r)τsα−1e−s

[1− IGs(α)]2θ4
1Γ(α)

× [(1− IGs(α))[(1− (α− 1)s−1)τ − 2θ1]− τsα−1e−s

Γ(α)
], (2.4.6)

I23 =
∂2l(α, θ1, θ2)

∂θ1∂θ2

= −(α− 1)τ

θ2
1

r∑
i=n1+1

ti − τ
y2
i

+
(n− r)τ(tr − τ)sα−1e−s

[1− IGs(α)]2θ2
1θ

2
2Γ(α)

×
[
(1− IGs(α))(1− (α− 1)s−1)− sα−1e−s

Γ(α)

]
, (2.4.7)

and

I33 =
∂2l(α, θ1, θ2)

∂θ2
2

=
αn2

θ2
2

− 2

θ3
2

r∑
i=n1+1

(ti − τ)− (α− 1)τ 2

θ2
1

r∑
i=n1+1

1

y2
i

+
(n− r)(tr − τ)sα−1e−s

[1− IGs(α)]2θ4
2Γ(α)

× [(1− IGs(α))[(tr − τ)(1− (α− 1)s−1)− 2θ2]− (tr − τ)sα−1e−s

Γ(α)
], (2.4.8)
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where

B1(t) =
1

Γ(α)

∫ t

0

uα−1(lnu)e−udu,

B2(t) =
1

Γ(α)

∫ t

0

uα−1 (lnu)2e−udu.

It is known that I21 = I12, I31 = I13 and I32 = I23. Now, the variances and

coveriances of α̂, θ̂1 and θ̂2 can be obtained through the observed Fisher information

matrix as

V ar


α̂

θ̂1

θ̂2

 = (I)−1 =


V11 V12 V13

V21 V22 V23

V31 V32 V33

 . (2.4.9)

The asymptotic distribution of the maximum likelihood estimates are then given

by α̂−α√
V11
∼ N(0, 1), θ̂1−θ1√

V22
∼ N (0, 1) and θ̂2−θ2√

V33
∼ N (0, 1), which can be used

to construct 100 (1− α) % confidence interval for α, θ1 and θ2, respectively. These

confidence intervals are given by

α̂± z1−α
2

√
V11, (2.4.10)

θ̂1 ± z1−α
2

√
V22 (2.4.11)

and

θ̂2 ± z1−α
2

√
V33, (2.4.12)

where zq is the q-th upper percentile of the standard normal distribution.
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2.4.2 Bootstrap Confidence Intervals

Confidence intervals based on the parametric bootstrap sampling can be constructed.

The following are the steps to generate the bootstrap confidence intervals:

1. Using the algorithm in Section 2.3, compute the MLEs of α, θ1 and θ2 based

on T1, T2, . . . , Tn1 , Tn1+1, . . . , Tr, say α̂, θ̂1 and θ̂2.

2. The first r order statistics U1, U2, . . . , Ur from a sample from uniform (0,1)

distribution are simulated next.

3. Find n1 such that Un1 ≤ F ∗1 (τ) ≤ Un1+1, where

F ∗1 (τ) =
∫ τ

θ̂1
0

1
Γ(α̂)

xα̂−1e−xdx.

4. For 1 ≤ i ≤ n1, Ti = θ̂1F
∗−1 (Ui) , and for n1 + 1 ≤ i ≤ r, Ti = θ̂2F

∗−1 (Ui) +

τ − θ̂2
θ̂1
τ, where F ∗ (t) =

∫ t
0

1
Γ(α̂)

xα̂−1e−xdx.

5. Compute the MLEs of α, θ1 and θ2 based on T1, T2, . . . , Tn1 , Tn1+1, . . . , Tr, say

α̂1, θ̂1

1
and θ̂2

1
.

6. Repeat steps 2-5 B times to obtain B sets of MLEs of α, θ1 and θ2 .

A two-sided 100(1− α)% bootstrap confidence interval of α, θ1 and θ2 are then

given by

CIα = [α̂− z1−α
2

√
MSEα̂, α̂ + z1−α

2

√
MSEα̂], (2.4.13)

CIθ1 = [θ̂1 − z1−α
2

√
MSEθ̂1 , θ̂1 + z1−α

2

√
MSEθ̂1 ] (2.4.14)

and

CIθ2 = [θ̂2 − z1−α
2

√
MSEθ̂2 , θ̂2 + z1−α

2

√
MSEθ̂2 ], (2.4.15)
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where MSEa = var (a) + (bias(a))2, and bias (a) = a − a. The performance of the

approximate confidence intervals and the bootstrap confidence intervals are evaluated

using a simulation study in the next section followed by illustrative examples.

2.5 Simulation Study

A simulation study was carried out for different values of n, r and τ . The results are

presented in Tables 2.1 to 2.4 and they are based on an average over 1000 replications.

In Tables 2.1 and 2.3, we can see that as τ increases the conditional failure prob-

abilities occurring on the first level of stress in the interval [0, τ ] increase as well.

But those occurring on the other level of stress in the interval [τ,∞] decrease as τ

increases. This means that as τ increases, there will be more failures occurring before

τ which means more information about θ1 resulting in better inference about θ1.

In Tables 2.2 and 2.4, we can see that as n and r increase the bias and MSE of

each estimate decrease. We can also see that as τ increases the bias and MSE of both

α̂ and θ̂1 decrease, which agrees with the comment made above. It is also seen that

the bias and MSE of θ̂2 are much smaller than those of θ̂1.

We also observe from Tables 2.2 and 2.4 that the estimated coverage probabilities

of the confidence intervals obtained using the parametric bootstrap method are more

closer to the nominal levels than those obtained by using the approximate method.

The reason for this might be due to the fact that the asymptotic normality required

for applying the approximate method may require much larger values of n and r. In

Table 2.2, when n and r are small, the coverage probabilities using the approximate

method for both α and θ2 are above the nominal level while those for θ1 are below

the nominal level. When n and r get larger (see Table 2.4), the coverage probabilities
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Table 2.1: Conditional failure probabilities for the step-stress test under Type-II
censoring when α = 2, θ1 = e1, θ2 = e.5, n = 40 and r = 30.

Conditional Fail-
ure probabilities
(in %)

τ 0 < t < τ τ < t <∞
2 22.13 77.87
3 40.05 59.95
4 58.32 41.68

Table 2.2: The bias and MSE of the MLEs α̂, θ̂1 and θ̂2 with estimated coverage
probabilities (in %) of confidence intervals for a step-stress model under Type-II

censoring for α, θ1 and θ2 based on 1000 simulations when
α = 2, θ1 = e1, θ2 = e0.5, n = 40 and r = 30.

90% C.I. 95% C.I. 99% C.I.
τ bias MSE Approx. Boot Approx. Boot Approx. Boot

α 2 0.7201 4.6054 91.0 89.0 94.6 94.0 97.4 98.0
3 0.3340 1.4608 96.5 92.0 97.9 95.0 99.6 99.2
4 0.2541 0.6796 98.8 91.3 99.6 95.3 100 98.7

θ1 2 1.1813 34.7807 75.9 88.4 82.1 92.4 90.8 97.0
3 0.4485 7.1688 85.2 90.0 90.5 94.6 95.0 98.0
4 0.1204 2.3709 88.8 89.7 92.9 94.5 97.6 97.9

θ2 2 -0.0569 0.3582 97.0 89.0 98.4 93.8 99.6 97.9
3 -0.0042 0.2601 99.1 89.5 99.5 94.2 100 98.7
4 -0.0026 0.2896 99.6 92.2 99.8 95.5 99.9 98.6

become better but not for all values of τ . Thus, the bootstrap method, giving good

coverage probabilities, is recommended for the purpose of constructing confidence

intervals in this set-up.
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Table 2.3: Conditional failure probabilities for the step-stress test under Type-II
censoring when α = 2, θ1 = e1, θ2 = e.5, n = 60 and r = 50.

Conditional Fail-
ure probabilities
(in %)

τ 0 < t < τ τ < t <∞
2 20.23 79.77
3 36.02 63.98
4 51.93 48.07
5 65.83 34.17

2.5.1 Illustrative Examples

In this subsection, we consider two examples. The first example is based on a simu-

lated data set. The second example involves a data set analysed earlier by Blakrish-

nan and Xie (2007). Both those examples are used to illustrate all the methods of

inferences developed in this chapter.

Example 1

In this example, we consider the following data generated with n = 40, α = 2, θ1 =

e1 = 2.718282, θ2 = e.5 = 1.648721, τ = 4, and r = 38. The data are given in Table

2.5.

We consider here three different numbers of failures r = 30, 35, 38. The respective

MLEs of α, θ1 and θ2 and their corresponding standard errors are calculated and are

given in Table 2.6. It can be seen from Table 2.6 that the larger the r, the smaller the

standard errors of α̂, θ̂1 and θ̂2 as the estimation is then based on more failure times.

The confidence intervals for α, θ1 and θ2 obtained by the approximate method

and the bootstrap method for different values of r are given in Table 2.7. From the

presented results, it is seen that for θ2 the bootstrap confidence intervals are narrower
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Table 2.4: Estimated coverage probabilities (in %) of confidence intervals for a
step-stress model under Type-II censoring for α, θ1 and θ2 based on 1000 simulations

when α = 2, θ1 = e1, θ2 = e0.5, n = 60 and r = 50.

90% C.I. 95% C.I. 99% C.I.
τ bias MSE Approx. Boot Approx. Boot Approx. Boot

α 2 0.3634 1.3369 81.6 91.2 87.9 95.3 95.1 98.2
3 0.2113 0.5950 92.7 91.3 96.4 95.8 99.0 98.8
4 0.1552 0.3515 97.3 89.3 99 95.1 99.7 99.1
5 0.1572 0.2932 97.8 90.0 99.3 95.6 100 98.9

θ1 2 0.6361 9.0062 74.2 90.5 81.6 93.9 91.5 97.3
3 0.2517 2.7744 83.8 91.0 89.7 95.0 95.8 98.7
4 0.0969 1.4687 91.1 91.3 95.3 95.2 98.6 98.8
5 0.0120 0.8455 90.6 90.6 94.6 94.8 98.7 99.0

θ2 2 -0.0160 0.2231 98.1 90.7 99.3 94.6 99.9 98.2
3 -0.0161 0.1463 89.4 89.5 92.2 94.8 96.1 98.5
4 -0.0153 0.1422 99.6 89.4 99.9 94.2 100 98.5
5 -0.0443 0.1686 89.9 90.4 94.2 94.7 97.7 98.9

Table 2.5: Simulated data for Example 1

Stress level Failure times
θ1 = e1 0.360 0.963 1.093 1.579 1.583 1.912 2.055 2.204 2.588 2.763

2.783 2.850 2.940 2.968 3.000 3.195 3.418 3.724 3.953
θ2 = e.5 4.040 4.191 4.322 4.443 4.481 4.808 4.920 5.129 5.248 5.537

5.663 6.004 6.053 6.194 6.316 6.392 7.600 8.103 9.597

than the approximate confidence interval, but that is not the case for θ1. For α, some

of the approximate confidence intervals did not include the true value.

Example 2

In this example, we consider the data analysed by Balakrishnan and Xie (2007). They

used these data to illustrate the methods of inference for a simple step-stress model

with Type-II hybrid censored data from the exponential distribution. The data are

presented in Table 2.8. Here, we have n = 35, θ1 = e3.25 = 25.79034 , θ2 = e2.5 =
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Table 2.6: The MLEs of α, θ1 and θ2 and their standard errors

r N3 α̂ se(α̂) θ̂1 se(θ̂1) θ̂2 se(θ̂2)
30 11 2.3753 0.3480 2.0460 0.2150 1.4140 0.9489
35 16 2.4189 0.1476 2.0100 0.2028 1.2390 0.5805
38 19 2.3293 0.1331 2.0878 0.1976 1.5514 0.4943

12.18249 and τ = 15. The MLEs of α, θ1 and θ2 are obtained along with their interval

estimates and they are given in Table 2.9 for different values of r. It can be seen from

these results that the approximate confidence intervals are wider than the bootstrap

confidence intervals for all the parameters α, θ1 and θ2. This once again shows that

the bootstrap method is a better method for the interval estimation of the model

parameters.
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Table 2.7: Interval estimation for the simulated data in Example 1

C.I. for α
r Method 90% 95% 99%
30 Approx C.I. (1.8030, 2.9475) (1.6934, 3.0572) (1.4792, 3.2714)

Bootstrap C.I. (1.8997, 2.8509) (1.8086, 2.9420) (1.6305, 3.1201)
35 Approx C.I. (2.1762, 2.6617) (0.1013, 2.3766) (2.0388, 2.7991)

Bootstrap C.I. (1.9065, 2.9314) (1.8083, 3.0295) (1.6165, 3.2214)
38 Approx C.I. (2.1103, 2.5484) (2.0683, 2.5904) (1.9863, 2.6724)

Bootstrap C.I. (1.8332, 2.8255) (1.7381, 2.9206) (1.5523, 3.1063)
C.I. for θ1

30 Approx C.I. (1.6924, 2.3996) (1.6246, 2.4673) (1.4922, 2.5997)
Bootstrap C.I. (1.4043, 2.6876) (1.2814, 2.8106) (1.0411, 3.0508)

35 Approx C.I. (1.6765, 2.3435) (1.6126, 2.4074) (1.4878, 2.5322)
Bootstrap C.I. (1.3136, 2.7064) (1.1802, 2.8398) (0.9194, 3.1006)

38 Approx C.I. (1.7627, 2.4130) (1.7004, 2.4753) (1.5786, 2.5970)
Bootstrap C.I. (1.4014, 2.7742) (1.2699, 2.9057) (1.0129, 3.1627)

C.I. for θ2

30 Approx C.I. (0.0000, 2.9748) (0.0000, 3.2738) (0.0000, 3.8583)
Bootstrap C.I. (0.8546, 1.9734) (0.7475, 2.0805) (0.5380, 2.2900)

35 Approx C.I. (0.2842, 2.1937) (2.1297, 2.7082) (0.0000, 2.7341)
Bootstrap C.I. (0.7694, 1.7085) (0.6794, 1.7985) (0.5036, 1.9743)

38 Approx C.I. (0.7384, 2.3643) (0.5826, 2.5201) (0.2782, 2.8245)
Bootstrap C.I. (1.1245, 1.9782) (1.0427, 2.0600) (0.8829, 2.2198)

Table 2.8: The sample data for Example 2

α = 1 Times-to-failure
θ1 = e3.25 0.22 0.35 1.27 1.67 2.22 3.79 5.78 8.43 9.27 10.34

11.85 12.63 12.68 12.85 12.88 13.14
θ2 = e2.5 15.28 16.23 17.21 18.52 19.12 19.39 19.81 22.06 23.85 28.46

28.65 28.97 30.02 31.42 35.45 36.25 57.40 58.46 115.14
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Table 2.9: Point and interval estimates of α, θ1 and θ2 based on the data in Table
2.8 with n = 35 and τ1 = 15 fixed and different choices of r

r Point est. 90% C.I. 95% C.I. 99% C.I.
α 20 0.8879 Approx. (0.0000, 3.7781) (0.0000, 4.3318) (0.0000, 5.4140)

Boot (0.5787, 1.1970) (0.5195, 1.2562) (0.4038, 1.3720)
25 0.9029 Approx. (0.0000, 3.6559) (0.0000, 4.1833) (0.0000, 5.2141)

Boot (0.5937, 1.2120) (0.5345, 1.2712) (0.4187, 1.3870)
32 0.9216 Approx. (0.0000, 3.5141) (0.0000, 4.0108) (0.0000, 4.9815)

Boot (0.5894, 1.2539) (0.5257, 1.3175) (0.4013, 1.4420)
θ1 20 30.6218 Approx. (18.3192, 42.9244) (15.9624, 45.2812) (11.3561, 49.8876)

Boot (25.8225, 35.4211) (24.9031, 36.3405) (23.1061, 38.1375)
25 29.5413 Approx. (17.6349, 41.4477) (15.3540, 43.7286) (10.8960, 48.1866)

Boot (24.7420, 34.3406) (23.8226, 35.2600) (22.0256, 37.0570)
32 28.6281 Approx. (16.8428, 40.4134) (14.5851, 42.6711) (10.1724, 47.0838)

Boot (24.6586, 32.5976) (23.8981, 33.3581) (22.4119, 34.8443)
θ2 20 16.4640 Approx. (6.2449, 26.6830) (4.2873, 28.6407) (0.4611, 32.4669)

Boot (11.6017, 21.3262) (10.6702, 22.2577) (8.8497, 24.0783)
25 14.9200 Approx. (7.3494, 22.4904) (5.8991, 23.9408) (3.0645, 26.7754)

Boot (10.0577, 19.7822) (9.1262, 20.7137) (7.3057, 22.5342)
32 14.0613 Approx. (6.2646, 21.8579) (4.7710, 23.3516) (1.8518, 26.2708)

Boot (9.1364, 18.9861) (8.1930, 19.9296) (6.3490, 21.7736)

34



Chapter 3

Simple Step-Stress Model Under

Type-I Censoring

3.1 Introduction

In this chapter, we consider a simple step-stress model under Type-I censoring based

on gamma lifetimes. In Section 3.2, the considered model is described. The maxi-

mum likelihood estimates (MLEs) are obtained using numerical methods in Section

3.3. The derivation of confidence intervals for the unknown parameters using the

Fisher information matrix with the asymptotic properties of MLEs and the paramet-

ric bootstrap method are discussed in Section 3.4. In Section 3.5, a simulation study

is presented to illustrate the performance of the maximum likelihood estimates and

the confidence intervals obtained by the two methods. An illustrative example is also

presented.
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3.2 Model Description

In the simple step-stress model under Type-I censoring, we suppose that the time

to failure data come from a cumulative exposure model, and we consider a simple

step stress model with stress levels x1 and x2. We start with n identical units placed

simultaneously on a life-test. Each unit will be subjected to an initial stress level x1.

After that, the experiment is run until a fixed time denoted by τ1, at which time the

stress level is changed to x2. The experiment is then terminated at a pre-fixed time

τ2. The lifetimes of units larger than τ2 are censored. Let N1 be the random number

of units that fail before τ1 and N2 be the random number of units that fail between

τ1 and τ2. If N1 = n, the experiment is terminated, and otherwise it is continued

until the pre-fixed time τ2. The data observed are of the form

{t1:n < · · · < tN1:n < τ1 ≤ tN1+1:n < · · · < tN1+N2:n ≤ τ2}, (3.2.1)

and we shall use t to denote the vector of ordered failure times.

3.3 Maximum Likelihood Estimation

Considering the observed Type-I censored data given in (3.2.1), we can obtain the

likelihood function, and then the maximum likelihood estimates (MLEs) of the un-

known parameters α, θ1 and θ2 from it. The likelihood function based on the censored

data in (3.2.1) [see Arnold, Balakrishnan and Nagraja (1992, p.160)] can be written

as
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L(α, θ1, θ2|t) =
n!

(n−N)!

{
N∏
i=1

g (ti:n) {1−G (τ2)}n−N
}
,

0 < t1:n < · · · < tN :n < τ2, (3.3.1)

where N = N1 + N2 and t is the vector of observed Type-I censored data. Using

the cumulative exposure model in Eq. (1.3.5) and the corresponding PDF in Eq.

(1.3.6), we obtain the likelihood function of α, θ1 and θ2 based on the observed

Type-I censored sample in (3.2.1) as follows:

1. If N1 = n and N2 = 0, the likelihood function in (3.3.1) becomes

L(α, θ1, θ2|t) = n!

{
N1∏
i=1

g1 (ti:n)

}

=
n!
(∏N1

i=1 ti

)α−1

θαN1
1 Γ(α)N1

e
− 1
θ1

∑N1
i=1 ti ,

0 < t1:n < · · · < tN1:n < τ1; (3.3.2)

2. If N1 = 0 and N2 = n, the likelihood function in (3.3.1) becomes
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L(α, θ1, θ2|t) =
n!

(n−N2)!

{
N∏

i=N1+1

g2 (ti:n)

}
{1−G2 (τ2)}n−N2 ,

=
n!

(n−N2)!

1

θαN2
2 (Γ(α))N2

(
N∏

i=N1+1

yi

)α−1

× e−
1
θ2

∑N2
i=N1+1 yi {1− IGx(α)}n−N2 ,

τ1 ≤ t1:n < · · · < tN2:n < τ2; (3.3.3)

3. If 1 ≤ N1 ≤ N − 1, the likelihood function in (3.3.1) becomes

L(α, θ1, θ2|t) =
n!

(n−N)!

{
N1∏
i=1

g1 (ti:n)

}{
N∏

i=N1+1

g2 (ti:n)

}

× {1−G2 (τ2)}n−N

=
n!

(n−N)!

(∏N1

i=1 ti

)α−1 (∏N
N1+1 yi

)α−1

(Γ(α))NθαN1
1 θαN2

2

× e−
1
θ1

∑N1
i=1 ti−

1
θ2

∑N
i=N1+1 yi (1− IGx(α))n−N ,

0 < t1:n < · · · < tN1:n < τ1 ≤ tN1+1:n < · · · < tN :n < τ2, (3.3.4)

where N= N1 +N2, yi = ti − τ1 + θ2
θ1
τ1 and x = 1

θ2
(τ2 − τ1 + θ2

θ1
τ1).

From the likelihood functions in (3.3.2), (3.3.3) and (3.3.4), it is evident that the

MLE of θ1 does not exist if N1 = 0, and the MLE of θ2 does not exist if N1 = n.

The MLEs of θ1 and θ2 exist only when N1 ≥ 1 and N2 ≥ 1, and may be obtained

by maximizing the corresponding likelihood function in (3.3.4). Maximization of the
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likelihood function for the parameters cannot be done analytically because there is

no closed-form for the incomplete gamma function (IG). Numerically maximizing the

likelihood function for the vector of parameter (α, θ1, θ2) seems to be the only choice.

For this purpose, it is convenient to work with the log-likelihood function rather than

the likelihood function in (3.3.4), which is given by

l(α, θ1, θ2|t) = lnL(α, θ1, θ2|t)

= ln(c)−N ln Γ(α)− αN1 ln θ1 − αN2 ln θ2 −
N1∑
i=1

ti
θ1

−
N∑

i=N1+1

yi
θ2

+ (α− 1)

N1∑
i=1

ln ti + (α− 1)
N∑

i=N1+1

ln yi

+ (n−N) ln(1− IGx(α))

0 < t1:n < · · · < tN1:n < τ1 ≤ tN1+1:n < · · · < tN :n < τ2, (3.3.5)

where c = n!
(n−N)!

.

The maximum likelihood estimates must be derived numerically because there

is no obvious simplification of the non-linear likelihood equations. Here, numerical

likelihood maximization was carried out on the log-likelihood using R software. First,

we used the log-likelihood function and started with initial values. Then, the function

optim in R is used to maximize this log-likelihood function. After that, the estimates

are found and their confidence intervals are constructed, using the Hessian matrix.

We used the following algorithm to find the MLEs:

1. Simulate n order statistics from the uniform (0,1) distribution, U1, U2, . . . , Un.
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2. Find N1 such that UN1 ≤ G1(τ1) ≤ UN1+1.

3. For i ≤ N1, Ti = θ1G
−1 (Ui), where G (t) =

∫ t
0

1
Γ(α)

e−xxα−1dx.

4. For N1 + 1 ≤ i ≤ N , T i = θ2 G
−1 (Ui) + τ1 − θ2

θ1
τ1.

5. Compute the MLEs of (α, θ1, θ2) based on T1, T2, . . . , TN1 , TN1+1, . . . , TN , say

α̂, θ̂1 and θ̂2.

Differentiating the log-likelihood function in (3.3.5) with respect to α, θ1 and θ2,

we attain the following likelihood equations which need to be solved for finding the

MLEs of α, θ1 and θ2:

∂l(α, θ1, θ2|t)

∂α
= −NΨ(α)−N1 ln θ1 −N2 ln θ2 +

N1∑
i=1

ln ti +
N∑

i=N1+1

ln yi

+
(n−N)

(1− IGs(α))

[
Ψ(α)IGs(α)− 1

Γ(α)

∫ s

0

uα−1 ln(u)e−udu

]
= 0,

(3.3.6)

∂l(α, θ1, θ2|t)

∂θ1

= −αN1

θ1

+
N2τ1

θ2
1

− (α− 1)θ2τ1

θ2
1

N∑
i=N1+1

1

yi
+

1

θ2
1

N1∑
i=1

ti

+
(n−N)τ1s

α−1e−s

(1− IGs(α))Γ(α)θ2
1

= 0, (3.3.7)
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∂l(α, θ1, θ2|t)

∂θ2

= −αN2

θ2

+
1

θ2
2

N∑
i=N1+1

(ti − τ1) +
(α− 1)τ1

θ1

N∑
i=N1+1

1

yi

+
(n−N)(τ2 − τ1)sα−1e−s

(1− IGs(α))Γ(α)θ2
2

= 0, (3.3.8)

where yi = ti − τ1 + θ2
θ1
τ1, s = τ2−τ1

θ2
+ τ1

θ1
and Ψ(α) = Γ′(α)

Γ(α)
.

3.4 Confidence Intervals

In this section, we present two different methods for constructing confidence intervals

(CI) for the unknown parameters α, θ1 and θ2. The first method uses the asymptotic

distributions of the MLEs to obtain approximate CIs for α, θ1 and θ2. The second

method is based on a parametric bootstrap method.

3.4.1 Approximate Confidence Intervals

In this subsection, we present an approximate method which provides good probabil-

ity coverages for large sample sizes and provides easy computation. Elements of Fisher

information matrix of α, θ1 and θ2 were found numerically. Then, the asymptotic nor-

mality of MLEs is used to construct approximate confidence intervals for α, θ1 and θ2.

Let I (α,θ1, θ2) = [Iij (α, θ1, θ2)] , for i, j = 1, 2, 3, denote the observed Fisher

information matrix of α, θ1 and θ2, where

Iij(α, θ1, θ2) = −(∇2l(α, θ1, θ2)). (3.4.1)

Thus, then the observed Fisher information matrix (I) is given by
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I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 , (3.4.2)

where

I11 =
∂2l(α, θ1, θ2)

∂α2

= −NΨ
′
(α) +

(n−N)

[1− IGs(α)]2
[(1− IGs(α))[2Ψ(α)B1(s)

+ (Ψ
′
(α)−Ψ2(α))IGs(α)−B2(s)]− [Ψ(α)IGs(α)−B1(s)]2], (3.4.3)

I12 =
∂2l(α, θ1, θ2)

∂α∂θ1

= −N1

θ1

− θ2τ1

θ2
1

N∑
i=N1+1

1

yi
+

(n−N)τ1s
α−1e−s

[1− IGs(α)]2θ2
1Γ(α)

× [(1− IGs(α))(ln(s))−Ψ(α) +B1(s)], (3.4.4)

I13 =
∂2l(α, θ1, θ2)

∂α∂θ2

= −N2

θ2

+
τ1

θ1

N∑
i=N1+1

1

yi
+

(n−N)(τ2 − τ1)sα−1e−s

[1− IGs(α)]2θ2
2Γ(α)

× [(1− IGs(α)) ln(s)−Ψ(α) +B1(s)], (3.4.5)
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I22 =
∂2l(α, θ1, θ2)

∂θ2
1

=
αN1

θ2
1

− 2

θ3
1

N1∑
i=1

ti −
2N2τ1

θ3
1

+
2(α− 1)θ2τ1

θ3
1

N∑
i=N1+1

ti − τ1 + θ2
2θ1
τ1

y2
i

+
(n−N)τ1s

α−1e−s

[1− IGs(α)]2θ4
1Γ(α)

× [(1− IGs(α))[(1− (α− 1)s−1)τ − 2θ1]− τ1s
α−1e−s

Γ(α)
], (3.4.5)

I23 =
∂2l(α, θ1, θ2)

∂θ1∂θ2

= −(α− 1)τ1

θ2
1

N∑
i=N1+1

ti − τ1

y2
i

+
(n−N)τ1(τ2 − τ1)sα−1e−s

[1− IGs(α)]2θ2
1θ

2
2Γ(α)

×
[
(1− IGs(α))(1− (α− 1)s−1)− sα−1e−s

Γ(α)

]
, (3.4.6)

and

I33 =
∂2l(α, θ1, θ2)

∂θ2
2

=
αN2

θ2
2

− 2

θ3
2

N∑
i=N1+1

(ti − τ1)− (α− 1)τ 2
1

θ2
1

N∑
i=N1+1

1

y2
i

+
(n−N)(τ2 − τ1)sα−1e−s

[1− IGs(α)]2θ4
2Γ(α)

× [(1− IGs(α))[(τ2 − τ1)(1− (α− 1)s−1)− 2θ2]− (τ2 − τ1)sα−1e−s

Γ(α)
], (3.4.7)
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where

B1(t) =
1

Γ(α)

∫ t

0

uα−1(lnu)e−udu,

B2(t) =
1

Γ(α)

∫ t

0

uα−1 (lnu)2e−udu.

It is known that I21 = I12, I31 = I13 and I32 = I23. Now, the variances and

covariances of α̂, θ̂1 and θ̂2 can be obtained through the observed Fisher information

matrix as

V ar


α̂

θ̂1

θ̂2

 = (I)−1 =


V11 V12 V13

V21 V22 V23

V31 V32 V33

 . (3.4.8)

The asymptotic distribution of the maximum likelihood estimates are then given

by α̂−α√
V11
∼ N(0, 1), θ̂1−θ1√

V22
∼ N (0, 1) and θ̂2−θ2√

V33
∼ N (0, 1), which can be used

to construct 100 (1− α) % confidence interval for α, θ1 and θ2, respectively. These

confidence intervals are given by

α̂± z1−α
2

√
V11, (3.4.9)

θ̂1 ± z1−α
2

√
V22 (3.4.10)

and

θ̂2 ± z1−α
2

√
V33, (3.4.11)

where zq is the q-th upper percentile of the standard normal distribution.
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3.4.2 Bootstrap Confidence Intervals

Confidence intervals based on the parametric bootstrap sampling can be constructed.

The following are the steps to generate the bootstrap confidence intervals:

1. Using the algorithm in Section 3.3, compute the MLEs of α, θ1 and θ2 based

on T1, T2, . . . , TN1 , TN1+1, . . . , TN , say α̂, θ̂1 and θ̂2.

2. The n order statistics U1, U2, . . . , Un from a sample from uniform (0,1) distri-

bution are simulated next.

3. Find N1 such that UN1 ≤ F ∗1 (τ1) ≤ UN1+1, where

F ∗1 (τ1) =
∫ τ1
θ̂1

0
1

Γ(α̂)
xα̂−1e−xdx.

4. For 1 ≤ i ≤ N1, Ti = θ̂1F
∗−1 (Ui) , and for N1+1 ≤ i ≤ N, Ti = θ̂2F

∗−1 (Ui)+

τ1 − θ̂2
θ̂1
τ1, where F ∗ (t) =

∫ t
0

1
Γ(α̂)

xα̂−1e−xdx.

5. Compute the MLEs of α, θ1 and θ2 based on T1, T2, . . . , TN1 , TN1+1, . . . , TN , say

α̂1, θ̂1

1
and θ̂2

1
.

6. Repeat steps 2-5 B times to obtain B sets of MLEs of α, θ1 and θ2 .

A two-sided 100(1−α)% bootstrap confidence interval of α, θ1 and θ2 are then given

by

CIα = [α̂− z1−α
2

√
MSEα̂, α̂ + z1−α

2

√
MSEα̂], (3.4.12)

CIθ1 = [θ̂1 − z1−α
2

√
MSEθ̂1 , θ̂1 + z1−α

2

√
MSEθ̂1 ] (3.4.13)

and

CIθ2 = [θ̂2 − z1−α
2

√
MSEθ̂2 , θ̂2 + z1−α

2

√
MSEθ̂2 ], (3.4.14)
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where MSEa = var (a) + (bias(a))2, and bias (a) = a − a. The performance of the

approximate confidence intervals and the bootstrap confidence intervals are evaluated

using a simulation study in the next section followed by an illustrative example.

3.5 Simulation Study

A simulation study was carried out for different values of τ1 and τ2. The results are

presented in Tables 3.1 to 3.6 and they are based on an average over 1000 replications.

In Tables 3.1 and 3.3, we can see what is going on in our model when we take

different values of τ1 and τ2. For example, when τ1 = 3 and τ2 = 4, this means that

the gap between these times is small and so there will be fewer failures occurring in

this interval compared to the number of failures occurring in the first interval, and

that is exactly what we observe. But, when we increase the value of τ2 to 6, which

means that the gap between these times becomes larger, there will be more failures

occurring in this interval. This means that there will be more information about θ2,

which will lead to better inference about θ2. We also want to see what are possible

values of τ1 and τ2 that will guarantee adequate numbers of failures in both intervals.

We also can see that the failure probabilities at the first and second intervals add up

to 100%. The reason for that is because as mentioned earlier, we only consider the

case when 1 ≤ N1 ≤ N − 1, which means that these probabilities are conditional.

They were calculated by dividing the number of failures at an interval by the total

number of failures at both intervals.

In Tables 3.2 and 3.4, we see clearly that the MSEs of both α̂ and θ̂2 are less

than those of θ̂1. The MSEs of the three estimates α̂, θ̂1 and θ̂2 are smaller when n

is larger (see Table 3.4). If we look at the MSEs of θ̂2, we see that the wider the gap
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Table 3.1: Conditional failure probabilities for the step-stress test under Type-I
censoring when α = 2, θ1 = e1, θ2 = e.5 and n = 60.

Conditional fail-
ure probabilities
(in %)

τ1 τ2 0 < t < τ1 τ1 < t < τ2

3 4 59.83 40.17
6 37.94 62.06

4 6 57.52 42.48
5 6 78.06 21.94

7 67.85 32.15
6 8 75.82 24.18

between τ1 and τ2 the smaller the MSE of θ̂2. This is expected as explained above.

Looking at the MSEs of θ̂1, we see that as τ1 increases, the MSEs of θ̂1 decrease. This

is understandable, since the larger the value of τ1, the more information there will

be about the parameter θ1 and hence better inference. We also observe that taking

different values of τ2 does not effect the MSEs of θ̂1. This means that no matter when

we stop the test, the information about θ1 will depend completely on the value of τ1.

Looking at the estimated coverage probabilities in Tables 3.2 and 3.4 obtained

using the bootstrap, we can see that they are closer to the nominal levels than those

obtained using the approximate method. The coverage probabilities obtained using

the approximate method are unsatisfactory and this method would be suitable only

when the sample size is large. We therefore recommend the bootstrap method for the

construction of confidence intervals for the parameters of the model considered.

3.5.1 Illustrative Example

In this subsection, we consider the data generated with n = 40, α = 2, θ1 = e1 =

2.718282, θ2 = e0.5, τ1 = 3 and τ2 = 9. The simulated data are given in Table 3.4.
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Table 3.2: The bias and MSE of the estimates α̂, θ̂1 and θ̂2 with estimated coverage
probabilities (in %) of confidence intervals for a step-stress model under Type-I

censoring for α, θ1 and θ2 based on 1000 simulations when α = 2, θ1 = e1, θ2 = e0.5

and n = 60.

90% C.I. 95% C.I. 99% C.I.
τ1 τ2 Bias MSE Approx. Boot Approx. Boot Approx. Boot

α 3 4 0.2739 0.7969 98.6 91.3 99.3 95.4 99.7 99.2
6 0.2124 0.5908 94.3 90.1 97.2 94.8 99.5 99.2

4 6 0.1561 0.3501 98.5 90.9 99.0 95.6 99.7 98.3
5 6 0.1017 0.2777 99.7 89.9 100 94.8 100 98.9

7 0.1315 0.2709 98.6 89.8 99.6 94.9 100 99.0
6 8 0.1017 0.2208 98.7 89.6 99.4 94.5 100 98.3

θ1 3 4 0.1510 2.7861 89.1 90.5 93.2 94.9 97.3 98.6
6 0.2037 2.3640 79.6 90.4 86.7 94.5 94.6 98.0

4 6 0.0909 1.1771 92.1 90.4 94.9 95.1 98.6 98.3
5 6 0.1028 0.8856 95.3 89.7 97.5 94.2 99.2 98.4

7 0.0501 0.8607 93.7 89.7 96.7 94.2 98.9 98.4
6 8 0.0197 0.5821 95.3 88.5 98.5 93.6 99.7 98.2

θ2 3 4 0.1097 0.4743 94.8 91.2 97.1 96.1 99 98.6
6 -0.0088 0.1601 96.1 90.7 97.9 94.9 99.3 98.7

4 6 0.0372 0.2045 97.1 91.1 98.3 95.4 99.8 98.5
5 6 0.1689 0.6323 96.2 92.8 97.5 96.1 99.1 98.4

7 0.0604 0.2506 99.1 91.7 99.5 95.7 100 98.7
6 8 0.0716 0.3585 96.8 91.7 98.3 95.0 99.4 98.8

We consider three different times τ2 = 4, 6, 9. The respective MLEs of α, θ1 and

θ2 and their corresponding standard errors are calculated and are given in Table 3.6.

It can be seen from Table 3.6 that the larger the τ2, the smaller the standard errors

of α̂, θ̂1 and θ̂2.

The confidence intervals for α, θ1 and θ2 obtained by the approximate method

and the bootstrap method for different values of τ2 are given in Table 3.7. In this

table, we can see that for α the bootstrap confidence intervals are narrower than

the approximate confidence interval for all values of τ2. We can also see that the
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Table 3.3: Conditional failure probabilities for the step-stress test under Type-I
censoring when α = 2, θ1 = e1, θ2 = e.5 and n = 100.

Conditional fail-
ure probabilities
(in %)

τ1 τ2 0 < t < τ1 τ1 < t < τ2

3 4 59.07 40.93
6 38.38 61.62

4 6 57.66 42.34
5 6 78.26 21.74

7 67.76 32.24
6 8 75.61 24.39

approximate confidence intervals for θ1 are either too wide or do not include the true

value, while the bootstrap confidence intervals are better in terms of coverage. For θ2,

the bootstrap confidence interval are again better except when τ2 = 6, in which case

the approximate confidence interval is slightly narrower than the bootstrap confidence

interval.
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Table 3.4: The bias and MSE of the estimates α̂, θ̂1 and θ̂2 with estimated coverage
probabilities (in %) of confidence intervals for a step-stress model under Type-I

censoring for α, θ1 and θ2 based on 1000 simulations when α = 2, θ1 = e1, θ2 = e0.5

and n = 100.

90% C.I. 95% C.I. 99% C.I.
τ1 τ2 Bias MSE Approx. Boot Approx. Boot Approx. Boot

α 3 4 0.1248 0.3174 99.7 90.6 99.7 95.3 100 99.3
6 0.0921 0.2406 96.9 90.5 98.5 95.1 99.8 99.4

4 6 0.0873 0.2058 98.5 90.6 99.3 95.1 99.9 99.4
5 6 0.0688 0.1583 99.7 89.7 100 94.9 100 99.3

7 0.0693 0.1463 99.4 89.6 99.7 95.1 99.9 99.3
6 8 0.0607 0.1260 98.9 89.5 99.8 94.5 99.9 98.9

θ1 3 4 0.1282 1.3130 91.3 90.5 94.7 95.4 98.2 98.6
6 0.1478 1.2148 80.6 90.5 88.0 95.5 95.6 98.8

4 6 0.0985 0.8693 89.5 90.6 94.6 95.1 97.9 99.0
5 6 0.0483 0.4719 94.3 90.2 96.6 94.7 99.7 99.0

7 0.0335 0.4321 95.9 90.2 97.7 94.7 99.5 98.8
6 8 0.0266 0.3812 95.1 90.2 98.2 94.7 99.3 98.4

θ2 3 4 0.0481 0.2182 96.4 92.1 98.1 96.3 99.7 99.0
6 0.0258 0.1087 95.6 91.0 97.4 95.5 99.3 99.4

4 6 0.0357 0.1281 99.2 91.7 99.5 96.4 99.9 99.6
5 6 0.1071 0.3182 98.8 92.2 99.2 96.3 99.8 99.4

7 0.4321 0.1282 98.1 90.4 99.1 96.6 99.5 99.8
6 8 0.0434 0.1600 97.9 91.5 99.1 96.1 99.8 99.4

Table 3.5: Simulated data for the illustrative example.

Stress level Failure times
θ1 = e1 0.287 0.863 0.864 0.978 1.087 1.119 1.271 1.789 1.828 2.146

2.164 2.238 2.331 2.528 2.839 2.916
θ2 = e.5 3.482 3.521 3.676 3.728 3.772 3.782 4.034 4.332 4.361 4.382

4.403 4.403 4.546 4.909 4.945 5.656 5.776 6.250 6.446 6.568
6.739 6.967

Table 3.6: The MLEs of α, θ1 and θ2 and their standard errors.

τ2 N2 α̂ se(α̂) θ̂1 se(θ̂1) θ̂2 se(θ̂2)
4 6 1.9238 1.4698 2.2923 1.8839 2.2645 0.6424
6 17 1.9532 0.4706 2.2577 0.3251 1.7112 0.1332
9 22 1.9590 0.2527 2.2522 0.1040 1.6473 0.2420
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Table 3.7: Interval estimation for the simulated data presented in Table 3.5

C.I. for α
τ2 Method 90% 95% 99%
4 Approx C.I. (0.0000, 4.3414) (0.0000, 6.1578) (0.0000, 7.4882)

Bootstrap C.I. (1.4930, 2.3546) (1.4105, 2.4371) (1.2492, 2.5984)
6 Approx C.I. (1.1791, 2.7273) (1.5191, 2.3873) (1.3827, 2.5237)

Bootstrap C.I. (1.5576, 2.3488) (1.4818, 2.4246) (1.3337, 2.5727)
9 Approx C.I. (1.5434, 2.3746) (1.8339, 2.0842) (1.7946, 2.1235)

Bootstrap C.I. (1.5326, 2.3855) (1.4509, 2.4672) (1.2912, 2.6268)
C.I. for θ1

4 Approx C.I. (0.0000, 5.3910) (0.0000, 5.9846) (0.0000, 7.1448)
Bootstrap C.I. (1.5708, 3.0138) (1.4326, 3.1520) (1.1624, 3.4222)

6 Approx C.I. (1.7230, 2.7924) (1.6205, 2.8949) (1.4203, 3.0951)
Bootstrap C.I. (1.6469, 2.8685) (1.5299, 2.9855) (1.3012, 3.2142)

9 Approx C.I. (2.0811, 2.4233) (2.0483, 2.4561) (1.9843, 2.5201)
Bootstrap C.I. (1.6489, 2.8555) (1.5333, 2.9711) (1.3074, 3.1970)

C.I. for θ2

4 Approx C.I. (1.2080, 3.3211) (1.0056, 3.5235) (0.6100, 3.9191)
Bootstrap C.I. (1.5527, 2.9763) (1.4164, 3.1127) (1.1499, 3.3792)

6 Approx C.I. (1.4920, 1.9303) (1.4500, 1.9723) (1.3679, 2.0544)
Bootstrap C.I. (1.3855, 2.0368) (1.3231, 2.0992) (1.2012, 2.2211)

9 Approx C.I. (1.2494, 2.0453) (1.1731, 2.1216) (1.0241, 2.2706)
Bootstrap C.I. (1.3850, 1.9097) (1.3347, 1.9600) (1.2365, 2.0582)
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Chapter 4

Simple Step-Stress Model under

Progressive Type-II Censoring

4.1 Introduction

In this chapter, we consider a simple step-stress model under progressive Type-II

censoring based on gamma lifetimes. In Section 4.2, the considered model is discussed.

The maximum likelihood function is derived and the MLEs are obtained in Section

4.3. After that, the derivation of the confidence intervals for the unknown parameters

using both the approximate method, which uses the Fisher information matrix, and

the parametric bootstrap method, are discussed in Section 4.4. In Section 4.5, we

present a simulation study to illustrate the performance of the maximum likelihood

estimates and the confidence intervals which are obtained using the approximate and

the bootstrap methods and we also present an illustrative example.
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4.2 Model Description

Assume that the failure time data come from a cumulative exposure model, and we

consider a simple step-stress model with stress levels x1 and x2 with progressive Type-

II censoring. We also assume that the lifetime distribution at stress levels x1 and x2

follow a gamma distribution with common shape parameter α and scale parameters

θ1 and θ2, respectively. The corresponding probability density function (PDF) and

cumulative distribution function (CDF) are as given in Eqs. (1.3.6) and (1.3.5),

respectively. The simple step-stress model with progressive Type-II censoring starts

with n identical units placed at an initial stress level x1 and at a pre-specified time

τ the stress level is increased to x2. The Progressive Type-II censoring is applied by

fixing the total number of failures in the test, which is denoted by r, and by fixing

number of un-failed units that are randomly removed from the test at each failure

time, which is denoted by Rk, where k = 1, 2, · · · , r − 1, stands for the kth failure.

At the time of the first failure, R1 of the n− 1 surviving units are randomly removed

from the test; at the time of the second failure, R2 of the n− 2−R1 surviving units

are randomly removed from the test, and so on; the test is continued until the rth

failure at which time all the remaining Rr = n− r −R1 − · · · −Rr−1 surviving units

are removed. If R1 = R2 = · · · = Rr = 0, then n = r, which is the complete sample

situation. If R1 = R2 = · · · = Rr−1 = 0, then Rr = n − r, which corresponds to the

conventional Type-II censoring scheme discussed earlier in Chapter 2. Such a simple

step-stress model under progressive Type-II censoring is presented in Figure 4.1.

The corresponding cumulative exposure distribution and PDF are given in Eqs.

(1.3.5) and (1.3.6) respectively. Let n1 be the number of failures before time τ at

stress level x1, and n2 be the number of failures after time τ at stress level x2. With
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these notations, the following will be the observed progressively Type-II censored

data:

Figure 4.1: m-step-stress model under progressive Type-II censoring

{t1:n < · · · < tn1:n ≤ τ < tn1+1:n < · · · < tr:n}, (4.2.1)

with the progressive censoring scheme R = (R1, · · · , Rr), where
∑r

j=1 Rj = n− r.
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4.3 Maximum Likelihood Estimation

In this section, the likelihood function is obtained based on the observed progressively

Type-II censored data given in (4.2.1), and then the MLEs of the unknown parameters

α, θ1 and θ2 are obtained. The Likelihood function of this censored sample [ see

Balakrishnan and Aggarwala (2000)] can be written as

L(α, θ1, θ2|t) = cp

{
r∏
i=1

g (ti:n) {1−G (ti:n)}Ri
}
,

0 < t1:n < · · · < tr:n, (4.3.1)

where r = n1 +n2, t is the vector of observed progressively Type-II censored data,

and

cp = n(n− 1−R1)(n− 2−R1 −R2) · · ·

(
n− r + 1−

r−1∑
i=1

Ri

)

=
r∏
j=1

{
i=j∑
r

(Ri + 1)

}

=
r∏
j=1

R∗j . (4.3.2)

Using the cumulative exposure model in Eq. (1.3.5) and the corresponding PDF

in Eq. (1.3.6), we obtain the likelihood function of α, θ1 and θ2 based on the observed

progressively Type-II censored sample in (4.3.1) as follows:

1. If n1 = r and n2 = 0, the likelihood function in (4.3.1) becomes
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L(α, θ1, θ2|t) = cp

{
r∏
i=1

g1 (ti:n) {1−G1 (ti:n)}Ri
}

=
cp (
∏r

i=1 ti)
α−1

θαr1 (Γ(α))r
e
− 1
θ1

∑r
i=1 ti

r∏
i=1

{
1− IG ti

θ1
(α)

}Ri
,

0 < t1:n < · · · < tr:n < τ ; (4.3.3)

2. If n1 = 0 and n2 = r, the likelihood function in (4.3.1) becomes

L(α, θ1, θ2|t) = cp

{
r∏
i=1

g2 (ti:n) {1−G2 (ti:n)}Ri
}
,

=
cp (
∏r

i=1 yi)
α−1

θαr2 (Γ(α))r
e
− 1
θ2

∑r
i=1 yi

r∏
i=1

{
1− IG yi

θ2
(α)

}Ri
,

τ < t1:n < · · · < tr:n <∞; (4.3.4)

3. If 1 ≤ n1 ≤ r − 1, the likelihood function in (4.3.1) becomes
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L(α, θ1, θ2|t) = cp

{
n1∏
i=1

g1 (ti:n) {1−G1 (ti:n)}Ri
}

×

{
r∏

i=n1+1

g2 (ti:n) {1−G2 (ti:n)}Ri
}

=
cp (
∏n1

i=1 ti)
α−1 (∏r

i=n1+1 yi
)α−1

θαn1
1 θαn2

2 (Γ(α))r
e
− 1
θ1

∑n1
i=1 ti

× e−
1
θ2

∑r
i=n1+1 yi

n1∏
i=1

{
1− IG ti

θ1
(α)

}Ri
×

r∏
i=n1+1

{
1− IG yi

θ2
(α)

}Ri
,

0 < t1:n < · · · < tn1:n < τ ≤ tn1+1:n < · · · < tr:n <∞, (4.3.5)

where r = n1 + n2 and yi = ti − τ + θ2
θ1
τ .

From the likelihood functions in (4.3.3), (4.3.4) and (4.3.5), it is evident that the

MLE of θ1 does not exist if n1 = 0, and the MLE of θ2 does not exist if n1 = r.

The MLEs of θ1 and θ2 exist only when 1 ≤ n1 ≤ r − 1, and are obtained by

maximizing the corresponding likelihood function in (4.3.5). In addition, since

we are estimating the common shape parameter α, we need to have r to be

at least 3. Maximizing the likelihood function for the parameters cannot be

achieved analytically because there is no closed-form for the incomplete gamma

function (IG). Numerically maximizing the likelihood function for the vector

of parameter (α, θ1, θ2) seems to be the only choice. For this purpose, it is

convenient to work with the log-likelihood function rather than the likelihood

function in (4.3.5), which is given by
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l(α, θ1, θ2|t) = lnL(α, θ1, θ2|t)

= ln(cp)− r ln Γ(α)− αn1 ln θ1 − αn2 ln θ2 −
n1∑
i=1

ti
θ1

−
r∑

i=n1+1

yi
θ2

+ (α− 1)

n1∑
1

ln ti + (α− 1)
r∑

i=n1+1

ln yi

+

n1∑
i=1

Ri ln(1− IG ti
θ1

(α)) +
r∑

i=n1+1

Ri ln(1− IG yi
θ2

(α))

0 < t1:n < · · · < tn1:n < τ ≤ tn1+1:n < · · · < tr:n <∞, (4.3.6)

where yi = ti − τ + θ2
θ1
τ .

The maximum likelihood estimates must be derived numerically because there

is no obvious simplification of the non-linear likelihood equations. Here, nu-

merical likelihood maximization was carried out on the log-likelihood using R

software. First, we used the log-likelihood function and started with initial

values. Then, the function optim in R is used to maximize this log-likelihood

function. After that, the estimates are found and their confidence intervals are

constructed, using the Hessian matrix. We used the following algorithm to find

the MLEs:

(a) Simulate n order statistics from the uniform (0,1) distribution, U1, U2, . . .

,Un.

(b) Find n1 such that Un1 ≤ G1(τ) ≤ Un1+1.

(c) For i ≤ n1, Ti = θ1G
−1 (Ui), where G (t) =

∫ t
0

1
Γ(α)

e−xxα−1dx.

(d) For n1 + 1 ≤ i ≤ r, T i = θ2 G
−1 (Ui) + τ − θ2

θ1
τ .
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(e) Compute the MLEs of (α, θ1, θ2) based on T1, T2, . . . , Tn1 , Tn1+1, . . .

, Tr, and the censoring schemeR = (R1, R2, · · · , Rr), to obtain α̂, θ̂1and θ̂2.

Differentiating the log-likelihood function in (4.3.6) with respect to α, θ1,

and θ2, we obtain the following likelihood equations which need to be solved for

finding the MLEs of α, θ1, and θ2:

∂l(α, θ1, θ2|t)

∂α
= −rΨ(α)− n1 ln θ1 − n2 ln θ2 +

n1∑
i=1

ln ti +
r∑

n1+1

ln yi

+

n1∑
i=1

Ri

[
Ψ(α)IG ti

θ1

(α)− 1
Γ(α)

∫ ti
θ1

0 uα−1 ln(u)e−udu

]
(1− IG ti

θ1

(α))

+
r∑

i=n1+1

Ri

[
Ψ(α)IG yi

θ2

(α)− 1
Γ(α)

∫ yi
θ2

0 uα−1 ln(u)e−udu

]
(1− IG yi

θ2

(α))
= 0,

(4.3.7)

∂l(α, θ1, θ2|t)

∂θ1

= −αn1

θ1

+
(r − n1)τ

θ2
1

− (α− 1)θ2τ

θ2
1

r∑
n1+1

1

yi
+

n1∑
i=1

ti
θ2

1

+

n1∑
i=1

Ri(ti/θ1)α−1e−ti/θ1ti
(1− IG ti

θ1

(α))θ2
1Γ(α)

+
r∑

i=n1+1

Riτ(yi/θ2)α−1e−yi/θ2

(1− IG yi
θ2

(α))θ2
1Γ(α)

= 0, (4.3.8)
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∂l(α, θ1, θ2|t)

∂θ2

= −αn2

θ2

+
1

θ2
2

r∑
i=n1+1

(ti − τ) +
(α− 1)τ

θ1

r∑
i=n1+1

1

yi

+
r∑

i=n1+1

Ri(ti − τ)(yi/θ2)α−1e−yi/θ2[
1− IGyi/θ2(α)

]
Γ(α)θ2

2

= 0, (4.3.9)

where yi = ti − τ + θ2
θ1
τ and Ψ(α) = Γ′(α)

Γ(α)
.

4.4 Confidence Intervals

In this section, we present two different methods for constructing confidence

intervals (CI) for the unknown parameters α, θ1 and θ2. The first method

uses the asymptotic distributions of the MLEs to obtain approximate CIs for

α, θ1 and θ2. The second method is based on a parametric bootstrap method.

4.4.1 Approximate Confidence Intervals

In this subsection, we present an approximate method which is easy to compute

and provides good coverage probabilities for large sample sizes. Elements of

Fisher information matrix of α, θ1 and θ2 were found numerically. Then, the

asymptotic normality of MLEs is used to construct approximate confidence

intervals for α, θ1 and θ2. Let I (α,θ1, θ2) = [Iij (α, θ1, θ2)] , for i, j = 1, 2, 3,

denote the observed Fisher information matrix of α, θ1 and θ2, where

Iij(α, θ1, θ2) = −(∇2l(α, θ1, θ2)). (4.4.1)
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Thus, then the observed Fisher information matrix (I) is given by

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 , (4.4.2)

where

I11 =
∂2l(α, θ1, θ2)

∂α2

= −rΨ′(α) +

n1∑
i=1

Ri

D2
1

[D1{2Ψ(α) B1(ti/θ1)−B2(ti/θ1) + (Ψ
′
(α)

−Ψ2(α))IGti/θ1(α)} − {Ψ(α)IGti/θ1(α)−B1(ti/θ1)}2] +
r∑

i=n1+1

Ri

D2
2

× [D2{2Ψ(α)B1(yi/θ2)−B2(yi/θ2) + (Ψ
′
(α)−Ψ2(α))IGyi/θ2(α)}

− {Ψ(α)IGyi/θ2(α)−B1(yi/θ2)}2], (4.4.3)

I12 =
∂2l(α, θ1, θ2)

∂α∂θ1

=
−n1

θ1

− θ2τ

θ2
1

r∑
i=n1+1

1

yi
+

n1∑
i=1

Ri(ti/θ1)α−1e−ti/θ1ti
θ2

1D
2
1Γ(α)

[D1 ln(ti/θ1)

−Ψ(α) +B1(ti/θ1)] +
r∑

i=n1+1

Riτ(yi/θ2)α−1e−yi/θ2

θ2
1D

2
2Γ(α)

[D2 ln(yi/θ2)

−Ψ(α) +B1(yi/θ2)], (4.4.4)
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I13 =
∂2l(α, θ1, θ2)

∂α∂θ2

= −n2

θ2

+
τ

θ1

r∑
i=n1+1

1

yi
+

r∑
i=n1+1

Ri(ti − τ)(yi/θ2)α−1e−yi/θ2

θ2D2
2Γ(α)

× [D2 ln(yi/θ2)−Ψ(α) +B1(yi/θ2)], (4.4.5)

I22 =
∂2l(α, θ1, θ2)

∂θ2
1

=
αn1

θ2
1

− 2

θ3
1

n1∑
i=1

ti −
2(r − n1)τ

θ3
1

+ 2(α− 1)
θ2τ

θ3
1

r∑
i=n1+1

1

y2
i

(ti − τ +
θ2

2θ1

τ)

+

n1∑
i=1

Ri(ti/θ1)α−1e−ti/θ1ti
θ4

1Γ(α)D2
1

[D1{(1− (ti/θ1)−1(α− 1))ti − 2θ1} −
1

Γ(α)

× ti(ti/θ1)α−1e−ti/θ1 ] +
r∑

i=n1+1

Riτ(yi/θ2)α−1e−yi/θ2

θ4
1Γ(α)D2

2

[D2{(1− (yi/θ2)−1

× (α− 1))τ − 2θ1} −
τ(yi/θ2)α−1e−yi/θ2

Γ(α)
], (4.4.6)

I23 =
∂2l(α, θ1, θ2)

∂θ1∂θ2

= −(α− 1)τ

θ2
1

r∑
i=n1+1

ti − τ
y2
i

+
r∑

i=n1+1

Riτ(ti − τ)(yi/θ2)α−1e−yi/θ2

θ2
1θ

2
2D

2
2Γ(α)

×
[
D2(1− (yi/θ2)−1(α− 1))− (yi/θ2)α−1e−yi/θ2

Γ(α)

]
, (4.4.7)
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and

I33 =
∂2l(α, θ1, θ2)

∂θ2
2

=
αn2

θ2
2

− 2

θ3
2

r∑
i=n1+1

(ti − τ)− (α− 1)
τ 2

θ2
1

r∑
i=n1+1

1

y2
i

+
r∑

i=n1+1

1

θ4
2D

2
2Γ(α)

×Ri(ti − τ)(yi/θ2)α−1e−yi/θ2 [D2{(1− (yi/θ2)−1(α− 1))(ti − τ)

− 2θ2} −
1

Γ(α)
(ti − τ)(yi/θ2)α−1e−yi/θ2 ], (4.4.8)

where

D1 = 1− IG ti
θ1

(α),

D2 = 1− IG yi
θ2

(α),

B1(t) =
1

Γ(α)

∫ t

0

uα−1(lnu)e−udu,

B2(t) =
1

Γ(α)

∫ t

0

uα−1 (lnu)2e−udu.

It is known that I21 = I12, I31 = I13 and I32 = I23. Now, the variances

and covariances of α̂, θ̂1 and θ̂2 can be obtained through the observed Fisher

information matrix as

V ar


α̂

θ̂1

θ̂2

 = (I)−1 =


V11 V12 V13

V21 V22 V23

V31 V32 V33

 . (4.4.9)

The asymptotic distribution of the maximum likelihood estimates are then given

by α̂−α√
V11
∼ N(0, 1), θ̂1−θ1√

V22
∼ N (0, 1) and θ̂2−θ2√

V33
∼ N (0, 1), which can be used
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to construct 100 (1− α) % confidence interval for α, θ1 and θ2, respectively.

These confidence intervals are given by

α̂± z1−α
2

√
V11, (4.4.10)

θ̂1 ± z1−α
2

√
V22 (4.4.11)

and

θ̂2 ± z1−α
2

√
V33, (4.4.12)

where zq is the q-th upper percentile of the standard normal distribution.

4.4.2 Bootstrap Confidence Intervals

Confidence intervals based on the parametric bootstrap sampling can be con-

structed. The following are the steps to generate the bootstrap confidence

intervals:

(a) Using the algorithm in Section 4.3 and based on T1, T2, . . . , Tn1 , Tn1+1,

. . . , Tr, and the censoring scheme R1, R2, . . . , Rr, we obtain the MLEs

α̂, θ̂1 and θ̂2.

(b) The first r order statistics U1, U2, . . . , Ur from a sample of size n from

uniform (0,1) distribution are simulated.

(c) Find n1 such that Un1 ≤ F ∗1 (τ) ≤ Un1+1, where

F ∗1 (τ) =
∫ τ

θ̂1
0

1
Γ(α̂)

xα̂−1e−xdx.
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(d) For 1 ≤ i ≤ n1, Ti = θ̂1F
∗−1 (Ui) , and for n1 + 1 ≤ i ≤ r,

Ti = θ̂2F
∗−1 (Ui) + τ − θ̂2

θ̂1
τ, where F ∗ (t) =

∫ t
0

1
Γ(α̂)

xα̂−1e−xdx.

(e) Compute the MLEs of α, θ1 and θ2 based on T1, T2, . . . , Tn1 , Tn1+1,

. . . , Tr, say α̂1, θ̂1
1 and θ̂2

2.

(f) Repeat steps (b)-(e) B times to obtain B sets of MLEs of α, θ1 and θ2 .

A two-sided 100(1−α)% bootstrap confidence interval of α, θ1 and θ2 are then

given by

CIα = [α̂− z1−α
2

√
MSEα̂, α̂ + z1−α

2

√
MSEα̂], (4.4.13)

CIθ1 = [θ̂1 − z1−α
2

√
MSEθ̂1 , θ̂1 + z1−α

2

√
MSEθ̂1 ] (4.4.14)

and

CIθ2 = [θ̂2 − z1−α
2

√
MSEθ̂2 , θ̂2 + z1−α

2

√
MSEθ̂2 ], (4.4.15)

where MSEa = var (a) + (bias(a))2, and bias (a) = a− a. The performance of

the approximate confidence intervals and the bootstrap confidence intervals are

evaluated using a simulation study in the next section followed by an illustrative

example.

4.5 Simulation Study

A simulation study was carried out for different values of τ and different cen-

soring schemes. The results are presented in Tables 4.1 to 4.6 and they are

based on an average over 1000 replications.
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Here, we consider different values of τ for different censoring schemes. It

has been proven that the optimal censoring schemes for specific family of dis-

tribution including the exponential family is when (R1, R2, . . . , Rr) = (n −

r, 0, . . . , 0) or (R1, R2, . . . , Rr) = (0, 0, . . . , n− r), (see Burkschat (2006)). Tak-

ing (R1, R2, . . . , Rr) = (0, 0, . . . , n− r) means that all the un-failed units will be

censored when reaching r failures in the test, which is the step-stress Type-II

censoring model. We consider these two censoring schemes with some other

cases. In Tables 4.1 and 4.3, we see that for different censoring schemes we got

different failure probabilities. Looking at the same τ value at each censoring

scheme shows how the failures are distributed in the test. We also see that as

τ increases the failure probabilities occurring in the first stress level increase

as well, which means the more information there will be about θ1 resulting in

better inference about it.

In Tables 4.2 and 4.4, we can see that the MSEs of both α̂ and θ̂2 are less than

those of θ̂1. The MSEs of the three estimates α̂, θ̂1 and θ̂2 are smaller when n is

larger (see Table 4.4). We observe that as τ increases the MSEs for both α̂ and

θ̂1 decrease. The MSEs for θ̂2, on the other hand, are larger for large values of

τ , that is because for larger values of τ there will be less information about θ2.

It is hard to decide on which censoring scheme is the best, so we fix the failure

probabilities in which there are the same number of failures occurring on each

interval. This results in different values of τ that are used to compare between

each censoring scheme. In Table 4.2, at the censoring scheme (24 ∗ 0, 15), when

τ = 3, the failure probabilities are 48.69% and 51.31% in the intervals [0, 3]

and [3,∞] respectively. But for the censoring scheme (15, 24 ∗ 0), the failure
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probabilities are approximately the same as those for the previously mentioned

censoring scheme when τ = 4. By comparing the values of the MSEs of the

estimates α̂, θ̂1 and θ̂2 for the previously mentioned τ values for each censoring

scheme, we conclude that when n = 40 (see Table 4.2) the best censoring scheme

for both α and θ1 is given by : (8, 7, 23∗0). But for θ2 it is given by: (15, 24∗0).

In Table 4.4, when n = 100 the best censoring scheme for both α and θ2 is given

by:(30, 69 ∗ 0). But for θ1 it is given by:(15, 15, 68 ∗ 0).

In Tables 4.2 and 4.4, we see that for α the estimated coverage probabilities ob-

tained using the bootstrap and the approximate method depend on the censor-

ing scheme. For example, in Table 4.2 when the censoring scheme is (15, 24 ∗ 0)

the coverage probabilities obtained using both methods are close to the nominal

levels. On the other hand, when the censoring scheme is (11 ∗ 0, 7, 1, 7, 11 ∗ 0)

the coverage probabilities obtained using the bootstrap method are closer to the

nominal levels. For θ1 and θ2 we can see that the coverage probabilities using

the bootstrap method are more closer to the nominal levels than those obtained

using the approximate method for each censoring scheme. We therefore recom-

mend the bootstrap method for the construction of confidence intervals for the

parameters of the model considered.

4.5.1 Illustrative Example

In this subsection, we consider the data generated with n = 40, r = 25, α =

2, θ1 = e1 = 2.718282, θ2 = e0.5 = 1.648721 and τ = 4. The simulated data are

given in Table 4.5.

We consider here the same data set with two different censoring schemes R1 =
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Table 4.1: Conditional failure probabilities for the step-stress progressive test under
Type-II censoring when α = 2, θ1 = e1, θ2 = e.5, n = 40 and r = 25.

Conditional fail-
ure probabilities
(in %)

Cens. Sche. τ 0 < t < τ τ < t <∞
(24*0,15) 2 26.65 73.44

3 48.69 51.31
4 68.99 31.01

(15,24*0) 2 18.15 81.85
3 31.41 68.59
4 44.30 55.70
5 55.18 44.82

(23*0,7,8) 2 26.83 73.17
3 48.41 51.59
4 68.72 31.28

(8,7,23*0) 2 27.13 72.87
3 31.98 68.02
4 45.14 54.86
5 56.56 43.44

(11*0,7,1,7,11*0) 3 46.87 53.13
4 60.03 39.97
5 68.72 31.28

(9*0,3,2,2,1,2,2,3,9*0) 2 26.56 73.44
3 45.88 54.12
4 60.12 39.88
5 69.80 30.20

(8, 7, 0 ∗ 23) and R2 = (11 ∗ 0, 7, 1, 7, 0 ∗ 11). The respective MLEs of α, θ1

and θ2 and their corresponding standard errors are calculated and are given in

Tables 4.6 and 4.8. From these tables, we can see that the standard error of

α̂ decreased when we change the censoring scheme from R1 to R2, while the

standard errors for both θ̂1 and θ̂2 increase.

The confidence intervals for α, θ1 and θ2 obtained by the approximate method

and the bootstrap method are given in Tables 4.7 and 4.9. In Table 4.7, we
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see that the approximate confidence interval do not cover the true value of

α and θ2. We can also see that the bootstrap confidence interval for θ1 is

narrower than the approximate confidence interval. In Table 4.9, we can see

that the approximate confidence intervals for α do not include the true value,

while the bootstrap confidence intervals are better in terms of coverage. For θ1,

the approximate confidence interval is narrower than the bootstrap confidence

interval. For θ2, the bootstrap confidence interval is slightly narrower than the

approximate confidence interval.
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Table 4.2: Estimated coverage probabilities (in %) of confidence intervals for a
step-stress model under progressive Type-II censoring for α, θ1 and θ2 based on 1000

simulations when α = 2, θ1 = e1, θ2 = e0.5, n = 40 and r = 25.

90% C.I. 95% C.I. 99% C.I.
Censoring scheme τ Bias MSE Approx. Boot Approx. Boot Approx. Boot

α (24*0,15) 2 0.7333 5.2735 94.4 96.7 97.0 99.1 98.1 100
3 0.3652 1.2232 97.6 92.9 98.9 98.6 99.6 99.8
4 0.2298 0.6543 99.0 93.7 99.7 97.5 100 99.6

(15,24*0) 2 0.8053 5.9580 81.2 97.9 86.8 99.3 93.2 100
3 0.3928 1.6747 89.1 93.3 92.7 97.2 96.7 99.5
4 0.3299 0.9228 89.0 90.6 93.9 94.7 98.2 98.7
5 0.2337 0.6304 92.7 92.3 96.7 96.2 99.2 99.5

(23*0,7,8) 2 0.8452 7.7846 94.0 96.3 96.5 99.0 98.4 100
3 0.3531 1.2052 97.4 94.2 99.1 98.2 99.8 99.9
4 0.2524 0.6743 99.3 94.0 99.9 97.5 100 99.6

(8,7,23*0) 2 0.7486 5.4077 94.6 97.0 96.8 99.2 99.0 100
3 0.3961 1.9437 87.2 92.5 91.8 97.9 97.1 99.7
4 0.2802 0.8816 90.0 91.7 94.6 96.5 98.0 99.5
5 0.2366 0.6618 92.4 92.4 96.3 96.7 99.6 99.3

(11*0,7,1,7,11*0) 3 0.4395 1.4480 80.6 93.6 84.7 97.1 92.2 99.6
4 0.3534 0.9418 91.1 90.0 93.5 95.0 97.5 98.7
5 0.3064 0.7807 93.6 91.9 96.3 95.4 98.9 99.5

(9*0,3,2,2,1,2,2,3,9*0) 2 0.5992 2.9624 72.1 96.5 78.0 98.5 87.3 100
3 0.4020 1.3429 80.6 93.4 85.8 97.5 92.1 99.7
4 0.2715 0.7172 89.1 90.8 93.4 95.8 98.3 98.8
5 0.2970 0.6564 94.0 92.9 97.8 96.0 99.5 99.6

θ1 (24*0,15) 2 1.3776 41.2470 72.2 92.3 79.2 96.0 88.0 99.3
3 0.3105 6.2335 81.5 94.3 88.5 97.9 94.7 99.5
4 0.1681 2.2429 87.3 96.5 92.2 99.4 97.1 99.7

(15,24*0) 2 1.7548 58.4256 75.5 93.3 82.5 97.0 89.4 99.2
3 0.5744 12.5923 85.6 91.1 90.0 94.7 96.2 98.7
4 0.2205 4.7673 86.9 91.5 92.2 94.5 97.6 98.6
5 0.1606 2.1183 90.8 91.9 94.7 95.7 98.5 99.3

(23*0,7,8) 2 1.3392 40.2752 73.4 93.9 79.8 96.8 88.1 99.5
3 0.4003 6.1278 81.2 93.7 86.7 97.5 93.4 99.6
4 0.1338 1.9516 86.9 96..8 93.0 99.3 97.2 99.8

(8,7,23*0) 2 0.9193 29.6945 76.0 92.0 80.5 96.1 89.1 99.5
3 0.6157 12.8774 83.7 90.4 89.3 94.7 95.8 98.7
4 0.3349 4.6906 86.6 91 92.2 95.8 96.9 99
5 0.1186 2.0338 91.2 92.8 94.5 96.4 98.8 99.4

(11*0,7,1,7,11*0) 3 0.2380 6.0303 80.6 90.5 87.3 94.6 94.4 98.1
4 0.0271 2.7817 86 89.1 91.3 93.7 96.5 98.2
5 -0.0149 1.8332 87.8 92.8 92.7 96.4 97.9 99.1

(9*0,3,2,2,1,2,2,3,9*0) 2 1.1523 31.8881 75.4 92.8 81.1 96.7 90.4 99.1
3 0.3201 5.5979 81.2 92.8 86.6 96.2 94.9 99.2
4 0.1539 2.4235 85.4 90.3 91.3 95.3 97.6 98.4
5 -0.0333 1.5615 87.5 93..9 93.7 96.8 98.0 99.6

θ2 (24*0,15) 2 -0.0344 0.4499 94.0 95.6 96.7 98.2 99.2 99.8
3 -0.0238 0.3648 98.1 90.7 99.1 96.3 99.8 99.0
4 -0.0347 0.4726 99.1 90.5 99.3 94.3 100 98.9

(15,24*0) 2 -0.0548 0.3301 96.8 93.4 98.3 97.3 99.6 99.8
3 -0.0307 0.2372 98.4 89.0 99.5 94.5 99.9 99.1
4 -0.0571 0.2265 99.4 91.2 99.8 96.1 100 99.1
5 -0.0374 0.2479 99.3 89.6 99.5 94.3 100 98.3

(23*0,7,8) 2 -0.0402 0.4807 93.8 94.1 95.7 97.9 98.8 99.7
3 -0.0616 0.3261 98.6 92.1 99.2 95.6 99.8 99.5
4 -0.0255 0.5766 96.4 90.3 98.2 94.8 99.8 98.8

(8,7,23*0) 2 -0.0565 0.4091 95.7 93.3 98.3 97.6 99.2 99.2
3 -0.0495 0.2250 99.2 91.4 99.7 95.6 99.8 98.5
4 -0.0342 0.2610 99.2 88.9 99.6 94.9 99.9 98.4
5 -0.0282 0.2735 99.2 90.7 99.9 95.3 100 99.0

(11*0,7,1,7,11*0) 3 -0.0632 0.2652 99.0 89.0 99.5 94.3 99.9 97.7
4 -0.0414 0.3023 99.0 88.6 99.3 95.0 99.9 97.9
5 -0.0468 0.3402 99.0 91.0 99.8 95.1 100 98.6

(9*0,3,2,2,1,2,2,3,9*0) 2 -0.0502 0.3499 97.4 92.8 98.2 97.0 99.4 99.6
3 -0.0828 0.2331 99.2 91.4 99.6 95.0 100 98.5
4 -0.0271 0.3082 99.4 90.4 99.7 94.8 100 98.9
5 -0.0501 0.3447 99.3 91.0 99.7 95.1 99.9 98.7
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Table 4.3: Conditional failure probabilities for the step-stress progressive test under
Type-II censoring when α = 2, θ1 = e1, θ2 = e.5, n = 100 and r = 70.

Conditional fail-
ure probabilities
(in %)

Cens. Sche. τ 0 < t < τ τ < t <∞
(69*0,30) 2 23.86 76.14

3 43.37 56.63
4 61.67 38.33

(30,69*0) 2 17.21 82.79
3 30.26 69.74
4 43.28 56.72
5 54.82 45.18

(68*0,15,15) 2 24.06 75.94
3 43.07 56.93
4 62.14 37.86

(15,15,68*0) 2 17.40 82.60
3 30.63 69.37
4 43.57 56.43
5 55.10 44.90

(34*0,15,15,34*0) 3 42.83 57.17
4 56.78 43.22
5 65.61 34.39

(33*0,8,7,7,8,33*0) 2 23.56 76.44
3 43.11 56.89
4 56.75 43.25
5 65.98 34.02
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Table 4.4: Estimated coverage probabilities (in %) of confidence intervals for a
step-stress model under progressive Type-II censoring for α, θ1 and θ2 based on

1000 simulations when α = 2, θ1 = e1, θ2 = e0.5, n = 100 and r = 70.

90% C.I. 95% C.I. 99% C.I.
Censoring scheme τ Bias MSE Approx. Boot Approx. Boot Approx. Boot

α (69*0,30) 2 0.2180 0.5598 96.3 99.0 98.7 99..6 99.6 100
3 0.1406 0.2982 98.5 98.6 99.5 99.6 100 100
4 0.1044 0.2046 99.6 99.5 99.9 99.8 100 100

(30,69*0) 2 0.1987 0.5750 82.2 88.9 88.7 92.5 95.3 97.5
3 0.1380 0.3617 86.1 90.3 91.3 94.1 97.0 97.5
4 0.0737 0.2001 90.4 91.3 95.2 94.9 99.5 98.2
5 0.0976 0.2074 90.2 91.4 94.5 95.9 98.9 99.2

(68*0,15,15) 2 0.2104 0.6288 95.1 98.3 97.9 99.3 99.5 100
3 0.1209 0.2836 98.0 99.1 99.1 99.8 99.8 100
4 0.0686 0.1641 99.8 99.1 99.9 99.9 100 100

(15,15,68*0) 2 0.2398 0.7295 79.1 90.8 86.2 93.6 93.8 98.0
3 0.1450 0.3842 84.8 89.8 90.6 94.5 96.4 97.7
4 0.0874 0.2240 91.0 89.7 95.2 93.9 98.3 98.6
5 0.0943 0.1837 90.5 92.9 95.2 97.0 99.8 99.4

(34*0,15,15,34*0) 3 0.1765 0.3397 74.9 82.0 83.4 88.6 91.9 96.2
4 0.1383 0.2221 91.8 92.6 95.6 96.4 98.9 99.1
5 0.1153 0.1874 93.8 95.7 96.6 97.4 99.3 99.2

(33*0,8,7,7,8,33*0) 2 0.2401 0.5946 70.1 85.9 77.7 91.1 87.9 94.8
3 0.1230 0.2589 77.7 80.4 85.7 87.7 93.4 95.4
4 0.1250 0.2118 91.9 93.2 95.9 96.6 98.8 98.9
5 0.1065 0.1853 93.4 94.9 97.8 97.9 99.4 99.9

θ1 (69*0,30) 2 0.3082 4.3639 75.0 91.6 83.3 95.1 92.4 98.5
3 0.0940 1.3626 80.4 87.5 88.3 92.9 95.5 98.7
4 0.0431 0.6835 86.1 88.9 92.6 93.3 97.7 99.2

(30,69*0) 2 0.5028 6.7184 79.5 89.5 85.7 94.2 92.9 98.1
3 0.1977 1.7785 82.8 87.9 90.0 94.2 96.0 98.2
4 0.1481 1.0298 88.1 90.5 93.1 93.9 97.8 98.6
5 0.0581 0.6842 90.4 91.3 94.7 95.9 98.6 99.3

(68*0,15,15) 2 0.3944 5.3063 74.1 89.4 82.3 94.0 90.6 97.7
3 0.1258 1.2835 81.3 89.2 88.3 94.5 96.4 98.7
4 0.0598 0.6287 88.7 88.1 94.0 94.3 98.4 98.2

(15,15,68*0) 2 0.4563 5.4316 75.9 91.1 83.3 94.5 90.6 98.9
3 0.2206 2.1651 81.2 87.7 87.9 93.6 94.8 98.5
4 0.1202 1.0267 87.5 87.7 93.4 93.9 97.9 98.8
5 0.0363 0.6236 90.9 92.5 95.4 96.2 98.8 99.3

(34*0,15,15,34*0) 3 0.0500 1.4805 81.0 88.0 88.0 92.1 95.9 98.2
4 -0.0394 0.6476 94.5 88.9 97.2 95.7 99.3 98.3
5 -0.0117 0.5920 89.7 91.1 94.3 94.2 98.1 98.6

(33*0,8,7,7,8,33*0) 2 0.2932 4.0934 75.7 91.8 83.2 94.1 91.9 97.3
3 0.1138 1.7159 84.2 86.7 90.2 92.8 96.7 98.3
4 -0.0028 0.7231 86.1 89.1 91.8 95.1 97.7 98.9
5 -0.0086 0.5640 87.3 89.4 92.9 94.9 98.6 99.4

θ2 (69*0,30) 2 -0.0264 0.1430 97.2 91.5 98.7 95.5 99.4 99.4
3 -0.0212 0.1129 94.2 96.7 96.6 98.6 99.3 99.8
4 -0.0125 0.1308 99.4 97.6 99.6 99.1 100 99.7

(30,69*0) 2 -0.0089 0.1207 84.6 89.1 91.4 94.5 97.6 98.8
3 -0.0230 0.0865 99.3 95..3 99.6 98.3 99.9 99.4
4 -0.0070 0.0798 97.4 97.0 98.8 98.6 100 99.8
5 -0.0159 0.1061 99.7 97.3 99.9 98.9 100 99.5

(68*0,15,15) 2 -0.0123 0.1584 96.0 90.0 98.1 95.5 99.4 98.6
3 -0.0194 0.1056 95.5 97.4 98.7 98.6 100 99.9
4 -0.0170 0.1137 97.7 98.2 99.5 99.4 99.9 99.8

(15,15,68*0) 2 -0.0174 0.1184 97.8 92.1 99.0 96.5 99.8 99.2
3 -0.0038 0.0924 98.6 96.3 99.6 98.3 99.9 99.8
4 -0.0073 0.0868 99.3 97.7 99.6 99.1 99.9 99.8
5 0.0048 0.0958 99.5 98.4 99.9 99.6 100 100

(34*0,15,15,34*0) 3 -0.0411 0.1024 98.7 96.2 99.6 98.2 100 99.9
4 -0.0342 0.0977 99.7 97.3 99.8 99.1 100 99.9
5 -0.0209 0.1033 99.6 98.1 99.9 98.0 100 99.6

(33*0,8,7,7,8,33*0) 2 -0.0340 0.1225 97.8 92.4 98.8 96.6 99.8 99.1
3 -0.0154 0.0929 99.2 97.3 99.9 99.4 100 99.8
4 -0.0210 0.0935 97.7 95.6 99.4 96.6 100 99.9
5 -0.0016 0.1236 99.5 98.5 99.7 99.0 100 99.7
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Table 4.5: Simulated data for the illustrative example.

Stress level Failure times
θ1 = e1 0.805 0.918 1.574 2.428 2.714 2.889 3.006 3.328 3.783
θ2 = e.5 4.443 4.455 4.501 4.601 4.787 4.884 5.266 5.566 5.803

6.106 7.700 8.208 8.836 10.067 10.859 16.581

Table 4.6: The MLEs of α, θ1 and θ2 and their standard errors with censoring
scheme R1.

r n2 α̂ Se(α̂) θ̂1 Se(θ̂1) θ̂2 Se(θ̂2)
25 16 2.2201 0.1072 2.7619 0.2062 2.0439 0.0826

Table 4.7: Interval estimation for the simulated data presented in Table 4.5 when
the censoring scheme is R1.

C.I. for α
Method 90% 95% 99%

Approx C.I. (2.0437, 2.3965) (2.0099, 2.4303) (1.9439, 2.4964)
Bootstrap C.I. (1.5318, 2.9085) (1.3999, 3.0404) (1.1422, 3.2981)

C.I. for θ1

Approx C.I. (2.4227, 3.1010) (2.3578, 3.1660) (2.2308, 3.2930)
Bootstrap C.I. (1.6802, 3.8436) (1.4730, 4.0508) (1.0680, 4.4558)

C.I. for θ2

Approx C.I. (1.9080, 2.1799) (1.8819, 2.2059) (1.8310, 2.2568)
Bootstrap C.I. (1.5497, 2.5382) (1.4550, 2.6329) (1.2700, 2.8179)

Table 4.8: The MLEs of α, θ1 and θ2 and their standard errors with censoring
scheme R2.

r n2 α̂ Se(α̂) θ̂1 Se(θ̂1) θ̂2 Se(θ̂2)
25 16 2.2559 0.0773 2.4447 0.2184 1.1252 0.4137
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Table 4.9: Interval estimation for the simulated data presented in Table 4.5 when
the censoring scheme is R2.

C.I. for α
Method 90% 95% 99%

Approx C.I. (2.1288, 2.3829) (2.1045, 2.4073) (2.0569, 2.4549)
Bootstrap C.I. (1.5553, 2.9564) (1.4211, 3.0906) (1.1588, 3.3529)

C.I. for θ1

Approx C.I. (2.0854, 2.8041) (2.0165, 2.8729) (1.8820, 3.0075)
Bootstrap C.I. (1.2953, 3.5942) (1.0750, 3.8144) (0.6446, 4.2448)

C.I. for θ2

Approx C.I. (0.5541, 1.6962) (0.4447, 1.8056) (0.2309, 2.0194)
Bootstrap C.I. (0.5806, 1.6697) (0.4763, 1.7740) (0.2724, 1.9779)
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Chapter 5

Simple Step-Stress Model under

Progressive Type-I Censoring

5.1 Introduction

In this chapter, we consider a simple step-stress progressive Type-I censoring

model, which was mentioned earlier in section 1.4.4. We assume that the lifetime

data follow a gamma distribution. The considered model is discussed in Section

5.2. In Section 5.3, the maximum likelihood function is obtained with the MLEs.

After that, the derivation of the confidence intervals for the unknown parameters

using the Fisher information matrix with the asymptotic properties of MLEs

and the parametric bootstrap method are discussed in Section 5.4. In Section

5.5, we present a simulation study to illustrate the performance of the maximum

likelihood estimates and the confidence intervals obtained by the approximate

and the bootstrap methods. An illustrative example is also presented.
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5.2 Model Description

The step-stress model with progressive Type-I censoring starts with n identical

units placed at an initial stress level x1. Then, at prefixed time τ1, the number

of failed units n1 are counted and R1 surviving units are removed from the test;

starting from time τ1, then n − n1 − R1 non-removed surviving units are put

to a higher stress level x2 and run until time τ2, at which time the number of

failures n2 are counted and R2 surviving units are removed from the test, and

so on. At time τm, the number of failed units nm are counted and the remaining

Rm = n −
∑m−1

i=1 ni −
∑m−1

i=1 Ri surviving units are all removed. If at some

point in the life-test not enough units are left for the planned censoring, then

we remove all the surviving units at that point and terminate the experiment.

Figure 5. 1 depict such an m-step-stress model

In this Chapter, for simplicity we only consider the simple step-stress model

under the progressive Type-I censoring. we suppose that the failure time data

comes from a cumulative exposure model and that the lifetime distribution in

the simple step-stress model at stress levels x1 and x2 follow a gamma distribu-

tion with common shape parameter α and scale parameters θ1 and θ2, respec-

tively. The corresponding cumulative exposure distribution and PDF are given

in Eqs. (1.3.5) and (1.3.6), respectively. The observed progressively Type-I

censored data is denoted by

{t1:n < · · · < tn1:n < τ1 ≤ tn1+1:n < · · · < tn1+n2:n < τ2}, (5.2.1)
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Figure 5.1: m step-stress model under progressive Type-I censoring

5.3 Maximum Likelihood Estimation

The likelihood function is obtained based on the observed progressively Type-I

censored data given in (5.2.1), and the MLEs of the unknown parameters α, θ1

and θ2 are also obtained. The likelihood function based on the censored data in

(5.2.1) [ see Balakrishnan and Aggarwala (2000), page 119] can be written as

L(α, θ1, θ2|t) = C

{
N∏
i=1

g (ti:n)

}
m∏
i=1

{1−G (τi)}Ri ,

0 < t1:n < · · · < tN :n < τ2, (5.3.1)
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where C is the normalizing constant independent of α, θ1 and θ2, N = n1 +n2 ,

m = 2 and t is the vector of observed progressive Type-I censored data. Using

the cumulative exposure model in Eq. (1.3.5) and the corresponding PDF in

Eq. (1.3.6), we obtain the likelihood function of α, θ1 and θ2 based on the

observed progressive Type-I censored sample in (5.2.1) as follows:

(a) If n1 = n and n2 = 0, the likelihood function in (5.3.1) becomes

L(α, θ1, θ2|t) = C

{
n1∏
i=1

g1 (ti:n)

}
{1−G1 (τ1)}R1

= C
(
∏n1

i=1 ti)
α−1

θαn1
1 Γ(α)n1

e
− 1
θ1

∑n1
i=1 ti

[
1− IG τ1

θ1
(α)
]R1

0 < t1:n < · · · < tn1:n < τ1; (5.3.2)

(b) If n1 = 0 and n2 = n, the likelihood function in (5.3.1) becomes

L(α, θ1, θ2|t) = C

{
N∏

i=n1+1

g2 (ti:n)

}
{1−G2 (τ2)}R2

= C

(∏N
i=n1+1 yi

)α−1

θαn2
2 Γ(α)n2

e
− 1
θ2

∑n2
i=n1+1 yi [1− IGs(α)]R2

τ1 ≤ t1:n < · · · < tn2:n < τ2; (5.3.3)

(c) If 1 ≤ n1 ≤ N − 1, the likelihood function in (5.3.1) becomes
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L(α, θ1, θ2|t) = C

{
n1∏
i=1

g1 (ti:n)

}{
N∏

i=n1+1

g2 (ti:n)

}
{1−G1 (τ1)}R1

× {1−G2 (τ2)}R2

= C
(
∏n1

i=1 ti)
α−1
(∏N

i=n1+1 yi

)α−1

θαn1
1 Γ(α)Nθαn2

2

e
−
∑n1
i=1

ti
θ1
−
∑N
i=n1+1

yi
θ2

×
[
1− IG τ1

θ1
(α)
]R1

[1− IGs(α)]R2 ,

0 < t1:n < · · · < tn1:n < τ1 ≤ tn1+1:n < · · · < tN :n < τ2,

(5.3.4)

where yi = ti − τ1 + θ2
θ1
τ1 and s = 1

θ2
[τ2 − τ1 + θ2

θ1
τ1].

It can be clearly seen from the likelihood functions in (5.3.2), (5.3.3) and (5.3.4)

that the MLE of θ1 does not exist if n1 = 0, and the MLE of θ2 does not exist

if n1 = n. The MLEs of θ1 and θ2 exist only when there are more than one failure

occurring at each stress level, i.e. when n1 ≥ 1 and n2 ≥ 1, and may be obtained

by maximizing the corresponding likelihood function in (5.3.4). Maximization of

the likelihood function for the parameters cannot be done analytically because

there is no closed-form for the incomplete gamma function (IG). Numerically

maximizing the likelihood function for the vector of parameter (α, θ1, θ2) seems

to be the only choice. For this purpose, it is convenient to work with the log-

likelihood function rather than the likelihood function in (5.3.4), which is given
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by

l(α, θ1, θ2|t) = lnL(α, θ1, θ2|t)

= ln(C)−N ln Γ(α)− αn1 ln θ1 − αn2 ln θ2 −
n1∑
1

ti
θ1

−
N∑

n1+1

yi
θ2

+ (α− 1)

n1∑
1

ln ti + (α− 1)
N∑

n1+1

ln yi

+R1 ln(1− IG τ1
θ1

(α)) +R2 ln(1− IGs(α))

0 < t1:n < · · · < tn1:n < τ1 ≤ tn1+1:n < · · · < tN :n < τ2, (5.3.5)

The maximum likelihood estimates must be derived numerically because there

is no obvious simplification of the non-linear likelihood equations. Here, nu-

merical likelihood maximization was carried out on the log-likelihood using R

software. First, we used the log-likelihood function and started with initial

values. Then, the function optim in R is used to maximize this log-likelihood

function. After that, the estimates are found and their confidence intervals are

constructed, using the Hessian matrix. We used the following algorithm to find

the MLEs:

(a) Simulate n order statistics from the uniform (0,1) distribution, U1, U2, . . . , Un.

(b) Find n1 such that Un1 ≤ G1(τ1) ≤ Un1+1.

(c) For i ≤ n1, Ti = θ1G
−1 (Ui), where G (t) =

∫ t
0

1
Γ(α)

e−xxα−1dx.

(d) For n1 + 1 ≤ i ≤ N , T i = θ2 G
−1 (Ui) + τ1 − θ2

θ1
τ1.

(e) Compute the MLEs of (α, θ1, θ2) based on T1, T2, . . . , Tn1 , Tn1+1, . . . , TN ,

and based on removing R1 and R2 surviving units from the test at τ1 and
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τ2, respectively, to obtain α̂, θ̂1and θ̂2.

Differentiating the log-likelihood function in (5.3.5) with respect to α, θ1 and

θ2, we obtain the following likelihood equations which need to be solved for

finding the MLEs of α, θ1 and θ2:

∂l(α, θ1, θ2|t)

∂α
= −NΨ(α)− n1 ln θ1 − n2 ln θ2 +

n1∑
i=1

ln ti +
N∑

i=n1+1

ln yi

+
R1

(1− IG τ1
θ1

(α))

[
Ψ(α)IG τ1

θ1

(α)− 1

Γ(α)

∫ τ1
θ1

0

uα−1 ln(u)e−udu

]

+
R2

(1− IGs(α))

[
Ψ(α)IGs(α)− 1

Γ(α)

∫ s

0

uα−1 ln(u)e−udu

]
= 0,

(5.3.6)

∂l(α, θ1, θ2|t)

∂θ1

= −αn1

θ1

+
n2τ1

θ2
1

− (α− 1)θ2τ1

θ2
1

N∑
i=n1+1

1

yi
+

n1∑
i=1

ti
θ2

1

+
R1(τ1/θ1)αe−τ1/θ1

(1− IG τ1
θ1

(α))θ1Γ(α)
+

R2τ1s
α−1e−s

(1− IGs(α))θ2
1Γ(α)

= 0, (5.3.7)

∂l(α, θ1, θ2|t)

∂θ2

= −αn2

θ2

+
1

θ2
2

N∑
i=n1+1

(ti − τ1) +
(α− 1)τ1

θ1

N∑
i=n1+1

1

yi

+
R2(τ2 − τ1)sα−1e−s

(1− IGs(α))Γ(α)θ2
2

= 0, (5.3.8)

where Ψ(α) = Γ′(α)
Γ(α)

.
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5.4 Confidence Intervals

In this section, we present two different methods for constructing confidence

intervals (CI) for the unknown parameters α, θ1 and θ2. The first method

uses the asymptotic distributions of the MLEs to obtain approximate CIs for

α, θ1 and θ2. The second method is based on a parametric bootstrap method.

5.4.1 Approximate Confidence Intervals

In this subsection, we present an approximate method which provides good

probability coverages for large sample sizes and provides easy computation.

Elements of Fisher information matrix of α, θ1 and θ2 were found numerically.

Then, the asymptotic normality of MLEs is used to construct approximate

confidence intervals for α, θ1 and θ2.

Let I (α,θ1, θ2) = [Iij (α, θ1, θ2)] , for i, j = 1, 2, 3, denote the observed Fisher

information matrix of α, θ1 and θ2, where

Iij(α, θ1, θ2) = −(∇2l(α, θ1, θ2)).

Thus, the observed Fisher information matrix (I) is given by

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 , (5.4.1)

where
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I11 =
∂2l(α, θ1, θ2)

∂α2

= −NΨ
′
(α) +

R1

D2
1

[D1{2Ψ(α)B1(
τ1

θ1

)−B2(
τ1

θ1

) + (Ψ
′
(α)−Ψ2(α))

× IG τ1
θ1

(α)} − {Ψ(α)IG τ1
θ1

(α)−B1(
τ1

θ1

)}2] +
R2

D2
2

[D2{2Ψ(α)B1(s)

−B2(s) + (Ψ
′
(α)−Ψ2(α))IGs(α)} − {Ψ(α)IGs(α)−B1(s)}2], (5.4.2)

I12 =
∂2l(α, θ1, θ2)

∂α∂θ1

=
−n1

θ1

− θ2τ1

θ2
1

N∑
i=n1+1

1

yi
+
R1(τ1/θ1)αe−τ1/θ1

θ1D2
1Γ(α)

[D1 ln(τ1/θ1)

−Ψ(α) +B1(τ1/θ1)] +
R2τ1s

α−1es

θ2
1D

2
2Γ(α)

[D2 ln(s)−Ψ(α) +B1(s)], (5.4.3)

I13 =
∂2l(α, θ1, θ2)

∂α∂θ2

= −n2

θ2

+
τ1

θ1

N∑
i=n1+1

1

yi
+
R2(τ2 − τ1)sα−1e−s

θ2
2D

2
2Γ(α)

[D2 ln(s)

−Ψ(α) +B1(s)], (5.4.4)
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I22 =
∂2l(α, θ1, θ2)

∂θ2
1

=
αn1

θ2
1

− 2

θ3
1

n1∑
i=1

ti −
2n2τ1

θ3
1

+ 2(α− 1)
θ2τ1

θ3
1

N∑
i=n1+1

1

y2
i

(ti − τ1 +
θ2

2θ1

τ1)

+
R1(τ1/θ1)αe−τ1/θ1

θ3
1Γ(α)D2

1

[
D1{(1− (τ1/θ1)−1(α− 1))τ1 − 2θ1}

− τ1(τ1/θ1)α−1e−τ1/θ1

Γ(α)
] +

R2τ1s
α−1e−s

θ4
1Γ(α)D2

2

[
D2{(1− s−1(α− 1))τ1 − 2θ1}

− τ1s
α−1e−s

Γ(α)
], (5.4.5)

I23 =
∂2l(α, θ1, θ2)

∂θ1∂θ2

= −(α− 1)τ1

θ2
1

N∑
i=n1+1

ti − τ1

y2
i

+
R2τ1(τ2 − τ1)sα−1e−s

θ2
1θ

2
2D

2
2Γ(α)

×
[
D2(1− s−1(α− 1))− sα−1e−s

Γ(α)

]
, (5.4.6)

and

I33 =
∂2l(α, θ1, θ2)

∂θ2
2

=
αn2

θ2
2

− 2

θ3
2

N∑
i=n1+1

(ti − τ1)− (α− 1)
τ 2

1

θ2
1

N∑
i=n1+1

1

y2
i

+
R2(τ2 − τ1)sα−1e−s

θ4
2D

2
2Γ(α)

×
[
D2{(1− s−1(α− 1))(τ2 − τ1)− 2θ2} −

(τ2 − τ1)sα−1e−s

Γ(α)

]
, (5.4.7)

where
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D1 = 1− IG τ1
θ1

(α),

D2 = 1− IGs(α),

B1(t) =
1

Γ(α)

∫ t

0

uα−1 ln(u)e−udu,

B2(t) =
1

Γ(α)

∫ t

0

uα−1 (lnu)2 e−udu.

It is known that I21 = I12, I31 = I13 and I32 = I23. Now, the variances

and covariances of α̂, θ̂1 and θ̂2 can be obtained through the observed Fisher

information matrix as

V ar


α̂

θ̂1

θ̂2

 = (I)−1 =


V11 V12 V13

V21 V22 V23

V31 V32 V33

 . (5.4.8)

The asymptotic distribution of the maximum likelihood estimates are then given

by α̂−α√
V11
∼ N(0, 1), θ̂1−θ1√

V22
∼ N (0, 1) and θ̂2−θ2√

V33
∼ N (0, 1), which can be used

to construct 100 (1− α) % confidence interval for α, θ1 and θ2, respectively.

These confidence intervals are given by

α̂± z1−α
2

√
V11, (5.4.9)

θ̂1 ± z1−α
2

√
V22 (5.4.10)
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and

θ̂2 ± z1−α
2

√
V33, (5.4.11)

where zq is the q-th upper percentile of the standard normal distribution.

5.4.2 Bootstrap Confidence Intervals

Confidence intervals based on the parametric bootstrap sampling can be con-

structed. The following are the steps to generate the bootstrap confidence

intervals:

(a) First, we compute the MLEs of α, θ1 and θ2 based on T1, T2, . . . , Tn1 ,

Tn1+1, . . . , TN , say α̂, θ̂1 and θ̂2 .

(b) The n order statistics U1, U2, . . . , Un from a sample from uniform (0,1)

distribution are simulated.

(c) Find n1 such that Un1 ≤ F ∗1 (τ1) ≤ Un1+1, where

F ∗1 (τ1) =
∫ τ1
θ̂1

0
1

Γ(α̂)
xα̂−1e−xdx.

(d) For 1 ≤ i ≤ n1, Ti = θ̂1F
∗−1 (Ui) , and for n1 + 1 = i = N, Ti =

θ̂2F
∗−1 (Ui) + τ1 − θ̂2

θ̂1
τ1, where F ∗ (t) =

∫ t
0

1
Γ(α̂)

xα̂−1e−xdx.

(e) Compute the MLEs of α, θ1 and θ2 based on T1, T2, . . . , Tn1 , Tn1+1,

. . . , TN , say α̂(1), θ̂
(1)
1 and θ̂

(1)
2 .

(f) Repeat steps (b)-(e) B times to obtain B sets of MLEs of α, θ1 and θ2 .

A two-sided 100(1−α)% bootstrap confidence interval of α, θ1 and θ2 are then

given by
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CIα = [α̂− z1−α
2

√
MSEα̂, α̂ + z1−α

2

√
MSEα̂], (5.4.12)

CIθ1 = [θ̂1 − z1−α
2

√
MSEθ̂1 , θ̂1 + z1−α

2

√
MSEθ̂1 ] (5.4.13)

and

CIθ2 = [θ̂2 − z1−α
2

√
MSEθ̂2 , θ̂2 + z1−α

2

√
MSEθ̂2 ], (5.4.14)

where MSEa = var (a) + (bias(a))2, and bias (a) = a− a. The performance of

the approximate confidence intervals and the bootstrap confidence intervals are

evaluated using a simulation study in the next section followed by an illustrative

example.

5.5 Simulation Study

A simulation study was carried out for different values of τ1 and τ2. We con-

sidered a modified progressive censoring scheme that was presented by Balakr-

ishnan and Han (2008). The results are presented in Tables 5.1 to 5.6 and they

are based on an average over 1000 replications.

In the progressive Type-I model a fixed proportion of surviving units are cen-

sored at the end of each stress level. we start with a vector of proportions

p∗ = (p1, p2) where 0 < pi < 1 for i = 1, 2 and p1 + p2 = 1. Each pi defines the

proportion of surviving units to be censored at the end of each stress level. The

number of censored items is given by:

ci = round [(n− (n1 + n2)) pi], for i = 1, 2.
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Here, n1 and n2 are both random while n and pi are fixed and in this study we

have consider p1 = 0.2 and p2 = 0.8.

In Tables 5.1 and 5.3, we see how the failure units are distributed in our model

when different values of τ1 and τ2 are taken. We observe that the wider the gap

between τ1 and τ2 the more failures occurring in this interval. we can also see

that as τ1 increases the failure probabilities in the first interval [0, τ1] increase as

well. This means that there will be more information about θ1, which will lead

to better inference about θ1. We also can see that the failure probabilities at

the first and second intervals add up to 100%. The reason for that is because as

mentioned earlier, we only consider the case when 1 ≤ n1 ≤ N−1, which means

that these probabilities are conditional. They were calculated by dividing the

number of failures at an interval by the total number of failures at both intervals.

In Tables 5.2 and 5.4, we can see that the MSEs of both α̂ and θ̂2 are less than

those of θ̂1. These MSEs of the three estimates α̂, θ̂1 and θ̂2 are smaller when n

is larger (see Table 5.4). If we look at the MSEs of θ̂2, we see that the wider the

gap between τ1 and τ2 the smaller the MSE of θ̂2. This is expected as explained

above. Looking at the MSEs of θ̂1, we can see that as τ1 increases, the MSEs

of θ̂1 decrease. That is expected, since the larger the value of τ1, the more

information there will be about the parameter θ1 and hence better inference.

We also observe that taking different values of τ2 do not effect the MSEs of θ̂1.

This means that no matter when we stop the test the information about θ1 will

depend completely on the value of τ1.

In Table 5.2, when n = 40 the estimated coverage probabilities obtained using

the bootstrap method are closer to the nominal levels than those obtained using
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the approximate method for α, θ1 and θ2. The coverage probabilities obtained

using the approximate method are unsatisfactory and way above the nominal

levels for α and θ2 but not for θ1. We can see that for larger values of τ1,

the approximate method gave good coverage probabilities that are close to the

nominal levels. In Table 5.4, when n is increased to 100, we can see that the

coverage probabilities using the bootstrap method are closer to the nominal

levels than those obtained using the approximate method for both α and θ2.

So, it is recommended to use the bootstrap method for the construction of

confidence intervals for the parameters of the model considered.

Table 5.1: Conditional failure probabilities for the progressive step-stress test under
Type-I censoring when α = 2, θ1 = e1, θ2 = e.5, n = 40 and p1 = 0.2.

Conditional Fail-
ure probabilities
(in %)

τ1 τ2 0 < t < τ1 τ1 < t < τ2

2 7 18.97 81.03
3 4 59.17 40.83

6 38.36 61.64
9 31.91 68.09

4 6 58.06 41.94
9 45.92 54.08

5 6 78.17 21.83
7 68.13 31.87

6 8 75.74 24.26

5.5.1 Illustrative Example

In this subsection, we consider the data generated with n = 40, α = 2, θ1 =

e1 = 2.718282, θ2 = e0.5, τ1 = 5, τ2 = 8 and p1 = 0.2. The simulated data are

given in Table 5.5.
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We consider three different times τ2 = 6, 7, 8. The respective MLEs of α, θ1

and θ2 and their corresponding standard errors are calculated and are given in

Table 5.6. It can be seen from this Table that the larger the τ2, the smaller the

standard errors of α̂, θ̂1 and θ̂2.

The confidence intervals for α, θ1 and θ2 obtained by the approximate method

and the bootstrap method for different values of τ2 are given in Table 5.7. In this

table, we can see that for α the approximate confidence intervals are slightly

narrower than the bootstrap confidence interval for all values of τ2. We can

also see that the approximate confidence intervals for θ1 do not include the true

value, while the bootstrap confidence intervals are better in terms of coverage.

For θ2, the bootstrap confidence interval are better except when τ2 = 8, in which

case the approximate confidence interval is slightly narrower than the bootstrap

confidence interval.
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Table 5.2: Estimated coverage probabilities (in %) of confidence intervals for a
step-stress progressive model under Type-I censoring for α, θ1 and θ2 based on 1000

simulations when α = 2, θ1 = e1 = 2.72, θ2 = e.5 = 1.65, n = 40 and p1 = 0.2.

90% C.I. 95% C.I. 99% C.I.
τ1 τ2 Bias MSE Approx. Boot Approx. Boot Approx. Boot

α 2 7 0.7023 4.1958 73.3 90 81.0 95.1 90.4 98.3
3 4 0.3412 1.2987 97.0 91.7 98.4 95.7 99.7 98.7

6 0.3503 1.1067 92.0 90 95.8 94.7 98.7 98.2
9 0.3805 1.0826 66.2 91 74.1 96.0 84.6 99

4 6 0.2644 0.6979 97.3 90.9 98.9 94.6 99.6 98.4
9 0.2261 0.6172 79.8 89.8 86.0 95.2 92.2 98.9

5 6 0.2064 0.5155 98.9 90.7 99.5 95.5 99.9 99.1
7 0.1986 0.5087 97.6 88.1 99.1 93.9 99.6 98.7

6 8 0.1951 0.4345 97.9 88 99.2 93.4 99.9 98.5
θ1 2 7 0.7364 17.6207 74.5 86.9 82.7 92.1 91.5 97.6

3 4 0.3667 5.2797 83.0 90.1 88.7 94.9 95.0 97.7
6 0.3341 6.8902 82.8 89.9 87.8 93.8 95.2 98.2
9 0.1711 4.0882 82.8 90.9 88.5 94.8 95.2 98

4 6 0.1308 2.2884 85.2 89.6 91.5 94.5 96.9 98
9 0.1806 2.8785 87.8 89 92.9 95.2 96.9 98.6

5 6 0.0708 1.3650 88.9 90.2 94.0 95.2 98.1 98.6
7 0.0598 1.3414 90.3 88.9 93.8 94.1 98.4 98.7

6 8 0.0216 1.0000 91.0 89.1 95.0 93.2 99.0 98.3
θ2 2 7 -0.1518 0.2581 97.0 87.6 99.0 92.4 100 97.7

3 4 -0.1165 0.6396 98.2 84.5 98.8 90.6 99.4 96.6
6 -0.1481 0.2236 99.2 85.6 99.7 91.5 100 97.6
9 -0.1011 0.1505 94.6 91.2 97.5 95.4 99.7 98.7

4 6 -0.1387 0.2812 98.3 83.8 98.8 89.3 99.7 95.7
9 -0.0878 0.1464 98.1 90 98.8 94.7 99.8 98.6

5 6 -0.0255 0.9385 97.5 84.2 98.5 89.5 99.5 95.2
7 -0.1295 0.3021 98.5 84.7 99.4 90.6 99.8 97.1

6 8 -0.1042 0.5095 98.6 83.5 99.2 90.0 99.9 96.1
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Table 5.3: Conditional Failure probabilities for the progressive step-stress test under
Type-I censoring when α = 2, θ1 = e1, θ2 = e.5, n = 100 and p1 = 0.2.

Conditional fail-
ure probabilities
(in %)

τ1 τ2 0 < t < τ1 τ1 < t < τ2

2 7 18.82 81.18
3 4 59.32 40.68

6 38.58 61.42
9 32.07 67.93

4 6 57.84 42.16
9 46.28 53.72

5 6 78.26 21.74
7 67.69 32.31

6 8 75.48 24.52
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Table 5.4: Estimated coverage probabilities (in %) of confidence intervals for a
step-stress progressive model under Type-I censoring for α, θ1 and θ2 based on 1000

simulations when α = 2, θ1 = e1 = 2.72, θ2 = e.5 = 1.65, n = 100 and p1 = 0.2.

90% C.I. 95% C.I. 99% C.I.
τ1 τ2 bias MSE Approx. Boot Approx. Boot Approx. Boot

α 2 7 0.2617 0.5377 76.0 94.9 83.2 96.4 92.5 98
3 4 0.1122 0.2632 98.7 98 99.6 98.8 99.9 99.4

6 0.1671 0.3401 92.8 98.1 96.6 98.8 98.4 98.9
9 0.1407 0.2622 65.3 93.1 72.8 95.9 85.3 97.7

4 6 0.0746 0.1757 98.2 92.1 99.7 94.5 99.9 97.3
9 0.0917 0.1871 76.1 90 82.9 92.8 92.2 96.4

5 6 0.0691 0.1425 99.4 97.3 100 98.1 100 99.1
7 0.0649 0.1305 98.8 92.3 99.5 95.4 99.9 98.1

6 8 0.0616 0.1311 97.9 97.5 99.1 98.2 99.9 99
θ1 2 7 0.1038 2.6138 76.6 70.1 85.3 73.3 93.8 78.7

3 4 0.1179 1.3645 85.2 84 90.1 89 96.4 94.3
6 0.0517 1.2989 80.7 73.6 87.5 80.9 95.2 87.4
9 0.0362 1.0793 84.3 71.3 91.3 76.9 97.0 84.4

4 6 0.0755 0.7123 86.8 73.4 92.9 80.2 97.9 87.2
9 0.0511 0.7323 85.7 77.9 92.5 84.4 97.8 91.4

5 6 0.0247 0.4505 90.3 88.3 95.8 91.6 98.8 95.8
7 0.0372 0.4340 91.1 79.8 95.2 86.2 98.9 94.2

6 8 0.0377 0.4014 90.4 76.5 95.2 81 98.5 87.9
θ2 2 7 -0.1423 0.0984 98.3 96.5 99.5 97.3 100 99.2

3 4 -0.2053 0.1973 99.1 83.9 99.6 87.4 100 91.5
6 -0.1624 0.0975 94.8 91.8 97.8 94.8 99.7 98.3
9 -0.0764 0.0658 96.6 95.7 98.5 97.5 100 99.2

4 6 -0.1753 0.1119 99.5 97.3 99.9 98.3 100 99.5
9 -0.0768 0.0634 98.8 99.1 99.4 100 100 100

5 6 -0.1930 0.2052 99.6 80.9 99.7 83.9 100 87.5
7 -0.1844 0.1199 99.6 97.3 99.8 99.4 100 99.7

6 8 -0.1674 0.1374 99.4 88.8 99.8 92.3 100 95.3

Table 5.5: Simulated data for the illustrative example.

Stress level Failure times
θ1 = e1 0.179 0.955 1.521 1.738 1.753 1.960 2.284 2.293 2.628 2.637

2.771 2.937 3.037 3.284 4.154 4.217 4.316 4.341 4.477 4.502
θ2 = e.5 5.105 5.243 5.308 5.394 5.508 5.553 5.606 5.950 6.011 6.122

6.797 6.889 7.649 7.761
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Table 5.6: The MLEs of α, θ1 and θ2 and their standard errors.

τ2 n2 n1 + n2 α̂ Se(α̂) θ̂1 Se(θ̂1) θ̂2 Se(θ̂2)
6 8 28 1.8484 0.2741 3.2929 0.1350 1.1934 0.7789
7 12 32 1.8356 0.1755 3.3163 0.1319 1.2993 0.3884
8 14 34 1.8151 0.1162 3.3549 0.1291 1.5826 0.1989

Table 5.7: Interval estimation for the simulated data presented in Table 5.5.

C.I. for α
τ2 Method 90% 95% 99%
6 Approx C.I. (1.3976, 2.2993) (1.3112, 2.3856) (1.1424, 2.5545)

Bootstrap C.I. (1.3655, 2.3313) (1.2730, 2.4239) (1.0921, 2.6047)
7 Approx C.I. (1.5470, 2.1243) (1.4917, 2.1795) (1.3836, 2.2876)

Bootstrap C.I. (1.3484, 2.3228) (1.2550, 2.4162) (1.0726, 2.5986)
8 Approx C.I. (1.6240, 2.0061) (1.5874, 2.0427) (1.5159, 2.1143)

Bootstrap C.I. (1.3568, 2.2734) (1.2690, 2.3612) (1.0974, 2.5328)
C.I. for θ1

6 Approx C.I. (3.0709, 3.5150) (3.0283, 3.5575) (2.9452, 3.6407)
Bootstrap C.I. (2.6007, 3.9852) (2.4681, 4.1178) (2.2089, 4.3770)

7 Approx C.I. (3.0994, 3.5331) (3.0579, 3.5746) (2.9767, 3.6558)
Bootstrap C.I. (2.6202, 4.0123) (2.4869, 4.1456) (2.2263, 4.4063)

8 Approx C.I. (3.1426, 3.5673) (3.1020, 3.6080) (3.0225, 3.6874)
Bootstrap C.I. (2.6944, 4.0155) (2.5678, 4.1421) (2.3205, 4.3894)

C.I. for θ2

6 Approx C.I. (0.0000, 2.4745) (0.0000, 2.7199) (0.0000, 3.1996)
Bootstrap C.I. (0.5600, 1.8268) (0.4386, 1.9482) (0.2014, 2.1854)

7 Approx C.I. (0.6605, 1.9381) (0.5381, 2.0604) (0.2990, 2.2996)
Bootstrap C.I. (0.8205, 1.7781) (0.7287, 1.8698) (0.5495, 2.0491)

8 Approx C.I. (1.2555, 1.9096) (1.1929, 1.9722) (1.0704, 2.0947)
Bootstrap C.I. (1.1198, 2.0453) (1.0311, 2.1340) (0.8579, 2.3073)
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Chapter 6

Multiple Step-Stress Model

under Type-II Censoring

6.1 Introduction

In this chapter, we develop inference for the m-step-stress model under Type-

II censoring with gamma distributed lifetimes. In Section 6.2, the considered

model is described. The MLEs are obtained in Section 6.3. After numeri-

cally evaluating the MLEs, we construct confidence intervals for the unknown

parameters by using two methods-the asymptotic method and the parametric

bootstrap method-in Section 6.4. In Section 6.5, some simulation results and

conclusions are presented. We also present the reduced parameter multiple

step-stress model under Type-II censoring in Section 6.6. The MLEs for that

model are derived and the confidence intervals are also constructed in Sections

6.6.1 and 6.6.2, respectively. In Section 6.6.3, a simulation study is carried out
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on the reduced parameter model with an illustrative example. In Section 6.7,

we describe some life-stress relationships that can be used in this reduced pa-

rameter model.

6.2 Model Description

In this model, we assume that the failure time data come from a cumulative

exposure model, and we consider the m-step-stress model with stress levels

x1 , x2 , · · · ,xm under Type-II censoring with gamma distributed lifetimes. The

lifetime distribution at stress level xi , i=1 , 2 , · · · , m, is gamma distribution

with common shape parameter α and scale parameter θi .

The multiple step-stress Type-II censoring scheme is a generalization of the

Type-II censoring discussed in Chapter 2. We start with n identical units at

an initial stress level x1 , and at a fixed time τ the stress level is increased to

x2 and the successive failure times are recorded. Then, at the fixed time 2 τ ,

the stress is increased to x3 , and so on. So, the stress level starts with x1 and

changed to x2 , x3 , · · · ,xm at fixed times τ, 2τ, . . . , (m − 1)τ , respectively. The

experiment is terminated when a fixed number of failures r are observed. Let

Nk be the number of units that fail between (k−1 ) τ and kτ at stress level xk

for k=1 , 2 , · · · , m. The observed censored sample is given by
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t1 < · · · < tN1 < τ ≤ tN1+1 < · · · < tN1+N2 < 2τ ≤ · · · <

(m− 1)τ ≤ tN1+···+Nm−1+1 < · · · < tr. (6.2.1)

6.3 Maximum Likelihood Estimation

The likelihood function based on the observed Type-II censored data given in

(6.2.1) is presented from which the MLEs of the unknown parameters α, θ1, θ2,

· · · , θm need to be obtained numerically. The likelihood function of this sample

is given by

L(θ|t) =
n!

(n− rm)!

m∏
k=1


rk∏

ik=rk−1+1

gk(tik)

 {1−Gm(trm)}n−rm ,

for t1 < · · · < tN1 < τ ≤ tN1+1 < · · · < tN1+N2 < 2τ ≤ · · · <

(m− 1)τ ≤ tN1+···+Nm−1+1 < · · · < tr, (6.3.1)

where

r0 = 0,

rk =
k∑
i=1

Ni, k = 1, 2, · · · ,m− 1,

Nm = rm − rm−1,
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and t is the vector of observed failure time data. The MLEs of α, θ1, θ2, · · · , θm

exist only when all Nk
,s > 0. Since we are considering a gamma lifetime distri-

bution at all stress levels, with common shape parameter α and scale parameters

θi for distribution Fi, the likelihood distribution function of the m-step-stress

model is given by

L(α, θ1, θ2, · · · , θm|t) =
n!

(n− rm)!

1

[Γ(α)]rm

m∏
k=1

(θk)
−Nk

×
m∏
k=1


rk∏

ik=rk−1+1

(ζik)
α−1


× exp

−
m∑
k=1

 rk∑
ik=rk−1+1

ζik


× {1− IGζrm (α)}n−rm ,

for t1 < · · · < tN1 < τ ≤ tN1+1 < · · · < tN1+N2 < 2τ ≤ · · · <

(m− 1)τ ≤ tN1+···+Nm−1+1 < · · · < tr, (6.3.2)

where

ζik =
tik − (k − 1) τ

θk
+ τ

k−1∑
j=1

1

θj
, k = 1, 2, · · · , m. (6.3.3)

As before, it is convenient to work with the log-likelihood function rather than
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the likelihood function in (6.3.2), which is given by

l(α, θ1, θ2, · · · , θm|t) = ln [L (α, θ1, θ2, · · · , θm|t)]

= ln

(
n!

(n− rm)!

)
−rm ln (Γ(α))−

m∑
k=1

Nk ln (θk)+(α−1)
m∑
k=1


rk∑

ik=rk−1+1

ln (ζik)


−

m∑
k=1

 rk∑
ik=rk−1+1

ζik

+ (n− rm) ln
(
1− IGζrm (α)

)
,

for t1 < · · · < tN1 < τ ≤ tN1+1 < · · · < tN1+N2 < 2τ ≤ · · · <

(m− 1)τ ≤ tN1+···+Nm−1+1 < · · · < tr. (6.3.4)

Differentiating the log-likelihood function in (6.3.4) with respect to α and θk

gives likelihood equations for finding the MLEs α̂ and θ̂k. To find these MLEs,

we will need the first and second partial derivatives of (6.3.4). The first partial

derivatives are given by the following equations:

∂l(α, θ1, θ2, · · · , θm|t)

∂α
= −rmψ(α) +

m∑
k=1


rk∑

ik=rk−1+1

ln (ζik)


+

(n− rm)

[1− IGζrm (α)]

[
Ψ(α)IGζrm (α)−B1 (ζrm)

]
, (6.3.5)

99



Ph.D. Thesis - Laila Alkhalfan McMaster -Computational Engineering and Science

∂l(α, θ1, θ2, · · · , θm|t)

∂θj
= −Nj

θj
+ (α− 1)

m∑
k=1


rk∑

ik=rk−1+1

1

ζik

∂

∂θj
(ζik)


−

m∑
k=1

 rk∑
ik=rk−1+1

∂

∂θj
ζik

+
(n− rm) (ζrm)α−1 e−ζrmτ

Γ(α)θ2
j

[
1− IGζrm (α)

] ,
for j = 1, 2, · · · , m− 1, (6.3.6)

∂l(α, θ1, θ2, · · · , θm|t)

∂θm
= −Nm

θm
+ (α− 1)

m∑
k=1


rk∑

ik=rk−1+1

1

ζik

∂

∂θm
(ζik)


−

m∑
k=1

 rk∑
ik=rk−1+1

∂

∂θm
ζik

+
(n− rm) (ζrm)α−1 e−ζrm (trm − (m− 1)τ)

Γ(α)θ2
m

[
1− IGζrm (α)

] , (6.3.7)

where Ψ (α) = Γ′(α)
Γ(α)

and B1 (v) =
∫ v

0
1

Γ(α)
ln (u) uα−1e−udu.

The maximum likelihood estimates must be obtained numerically because there

is no obvious simplification of the above non-linear likelihood equations. Here,

numerical maximization is carried out on the log-likelihood using R software.

First, we use the log-likelihood function and start with initial values. Then, the

function optim in R is used to maximize this log-likelihood function. After that,

the estimates are found and their confidence intervals are constructed, using the

Hessian matrix. The following is the algorithm used in order to find the MLEs

in the case when m = 3:

(a) Simulate n order statistics from the uniform (0,1) distribution, U1, U2, . . . , Un.

(b) FindN1 such that UN1 ≤ G1(τ1) ≤ UN1+1 whereG1(τ1) =
∫ τ1
θ1

0
1

Γ(α)
xα−1e−xdx.
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(c) For i ≤ N1, Ti = θ1F
−1 (Ui), where F (t) =

∫ t
0

1
Γ(α)

e−xxα−1dx.

(d) Find N2 such that UN1+N2 ≤ G2(τ2) ≤ UN1+N2+1 where

G2(τ2) =
∫ τ2−τ1+

θ2
θ1
τ1

θ2
0

1
Γ(α)

xα−1e−xdx.

(e) For N1 + 1 ≤ i ≤ N1 +N2, T i = θ2 F
−1 (Ui) + τ1 − θ2

θ1
τ1.

(f) For N1 +N2 + 1 ≤ i ≤ r, T i = θ3 F
−1 (Ui) + τ2 − θ3

θ2
(τ2 − τ1 + θ2

θ1
τ1).

(g) Compute the MLEs of (α, θ1, θ2, θ3) based on T1, T2, . . . , TN1 , TN1+1, . . . ,

TN1+N2 , TN1+N2+1, · · ·Tr, say α̂, θ̂1, θ̂2 and θ̂3.

6.4 Confidence Intervals

This section contains two different methods for constructing confidence intervals

(CI) for the unknown parameters α, θ1, θ2, · · · , θm. We use the asymptotic

distribution of the MLEs to obtain the approximate CIs for α, θ1, θ2, · · · , θm.

The second method is based on a parametric bootstrap method.

6.4.1 Approximate Confidence Intervals

We present an approximate method which provides good coverage probabilities

for large sample sizes and facilitates easy computation. Elements of Fisher

information matrix are found numerically for different values of m, and then

the asymptotic normality of the MLEs is used to construct the approximate

confidence intervals for α, θ1, θ2, · · · , θm.

Let I(α, θ1, θ2, · · · , θm) = [Iij (α, θ1, θ2, · · · , θm)] , for i, j = 1, 2, · · · ,m, denote
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the observed Fisher information matrix of α, θ1, θ2, · · · , θm, where

Iij(α, θ1, θ2, · · · , θm) = −
(
∇2l(α, θ1, θ2, · · · , θm)

)
. (6.4.1)

For simplicity, we take m = 3, then the observed Fisher information matrix

(I) is given by

I =



I11 I12 I13 I14

I21 I22 I23 I24

I31 I32 I33 I34

I41 I42 I43 I44


, (6.4.2)

where

I11 =
∂2l(α, θ1, θ2, θ3)

∂α2
= −r3ψ

′
(α) +

(n− r3)(
1− IGζr3

(α)
)2

× [(1− IGζr3
(α))

[
2ψ(α)B1(ζr3) + IGζr3

(ψ
′
(α)− ψ2(α))−B2(ζr3)

]
−
[
ψ(α)IGζr3

(α)−B1(ζr3)
]2

], (6.4.3)

I12 =
∂2l(α, θ1, θ2, θ3)

∂α∂θ1

= −N1

θ1

− τ

θ2
1

r2∑
i=r1+1

1

ζi2
− τ

θ2
1

r3∑
i=r2+1

1

ζi3

+
(n− r3)(ζr3)

α−1e−ζr3τ

Γ(α)θ2
1

(
1− IGζr3

(α)
)2

[(
1− IGζr3

(α)
)

ln(ζr3)− ψ(α) + B1(ζr3)
]
, (6.4.4)
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I13 =
∂2l(α, θ1, θ2, θ3)

∂α ∂θ2

= − 1

θ2
2

r2∑
i=r1+1

(ti − τ)

ζi2
− τ

θ2
2

r3∑
i=r2+1

1

ζi3

+
(n− r3)(ζr3)

α−1e−ζr3τ

Γ(α)θ2
2

(
1− IGζr3

(α)
)2

[(
1− IGζr3

(α)
)

ln(ζr3)− ψ(α) + B1(ζr3)
]
, (6.4.5)

I14 =
∂2l(α, θ1, θ2, θ3)

∂α ∂θ3

= − 1

θ2
3

r3∑
i=r2+1

(ti − 2τ)

ζi3

+
(n− r3)(ζr3)

α−1e−ζr3 (tr3 − 2τ)

Γ(α)θ2
3

(
1− IGζr3

(α)
)2

[(
1− IGζr3

(α)
)

ln(ζr3)− ψ(α) + B1(ζr3)
]
,

(6.4.6)

I22 =
∂2l(α, θ1, θ2, θ3)

∂θ2
1

=
αN1

θ2
1

+
(α− 1)τ

θ4
1 θ2

r2∑
i=r1+1

2 θ1ti + (θ2 − 2θ1)τ

ζ2
i2

+
(α− 1)τ

θ4
1 θ2 θ3

r3∑
i=r2+1

(2θ1θ2)(ti − 2τ) + (θ2 + 2θ1)θ3τ

ζ2
i3

− 2

θ3
1

[
(N2 +N3)τ +

r1∑
i=1

ti

]
+

(n− r3)(ζr3)
α−1e−ζr3τ

Γ(α)θ4
1

(
1− IGζr3

(α)
)2

[
(
1− IGζr3

(α)
)

[
(
1− (α− 1)(ζr3)

−1
)
τ − 2θ1]

− τ

Γ(α)
(ζr3)

α−1e−ζr3 ], (6.4.7)
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I23 =
∂2l(α, θ1, θ2, θ3)

∂θ1∂θ2

= −(α− 1)τ

θ2
1θ

2
2

r2∑
i=r1+1

ti − τ
(ζi2)

2
− (α− 1)τ 2

θ2
1θ

2
2

r3∑
i=r2+1

1

ζ2
i3

+
(n− r3)(ζr3)

α−1e−ζr3τ 2

Γ(α)θ2
1θ

2
2

(
1− IGζr3

(α)
)2

×
[(

1− IGζr3
(α)
) (

1− (α− 1)(ζr3)
−1
)
− 1

Γ(α)
(ζr3)

α−1e−ζr3
]
, (6.4.8)

I24 =
∂2l(α, θ1, θ2, θ3)

∂θ1 ∂θ3

= −(α− 1)τ

θ2
1θ

2
3

r3∑
i=r2+1

ti − 2τ

ζ2
i3

+
(n− r3)(ζr3)

α−1e−ζr3 (tr − 2τ)τ

Γ(α)θ2
1θ

2
3

(
1− IGζr3

(α)
)2

×
[(

1− IGζr3
(α)
) (

1− (α− 1)(ζr3)
−1
)
− 1

Γ(α)
(ζr3)

α−1e−ζr3
]
, (6.4.9)

I33 =
∂2l(α, θ1, θ2, θ3)

∂θ2
2

=
N2

θ2
2

+
2(α− 1)

θ2
3

r2∑
i=r1+1

1

(ζi2)2[
(ti − τ)

(
(ti − τ)

2θ2

+
τ

θ1

)]
+

2(α− 1)τ

θ3
2

r3∑
i=r2+1

1

(ζi3)
2

[
(ti − 2τ)

θ3

+
τ

θ1

+
τ

2θ2

]

− 2

θ3
2

[
N3τ +

r2∑
i=r1+1

(ti − τ)

]
+

(n− r3)(ζr3)
α−1e−ζr3τ

Γ(α)θ4
2

(
1− IGζr3

(α)
)2

×
[
(1− IGζr3

(α))
{

(1− (α− 1)(ζr3)
−1)τ − 2θ2

}
− τ

Γ(α)
(ζr3)

α−1e−ζr3
]
,

(6.4.10)
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I34 =
∂2l(α, θ1, θ2, θ3)

∂θ2 ∂θ3

= −(α− 1)τ

θ2
2θ

2
3

r3∑
i=r2+1

ti − 2τ

ζ2
i3

+
(n− r3)(ζr3)

α−1e−ζr3τ(tr − 2τ)

Γ(α)θ2
2θ

2
3

(
1− IGζr3

(α)
)2

×
[(

1− IGζr3
(α)
) (

1− (α− 1)(ζr3)
−1
)
− 1

Γ(α)
(ζr3)

α−1e−ζr3
]
, (6.4.11)

and

I44 =
∂2l(α, θ1, θ2, θ3)

∂θ2
3

=
N3

θ2
3

+
(α− 1)

θ2
3

r3∑
i=r2+1

1

(ζi3)2[
(ti − 2τ)

(
(ti − 2τ)

2θ3

+
τ

θ1

+
τ

θ2

)]
− 2

θ3
3

r3∑
i=r2+1

(ti − 2τ)

+
(n− r3)(ζr3)

α−1e−ζr3 (tr − 2τ)

Γ(α)θ4
3

(
1− IGζr3

(α)
)2 [(1− IGζr3

(α))

×
{

(1− (α− 1)(ζr3)
−1)(tr − 2τ)− 2θ3

}
− (tr − 2τ)

Γ(α)
(ζr3)

α−1e−ζr3 ]. (6.4.12)

where

B1(t) =
1

Γ(α)

∫ t

0

uα−1(ln u)e−udu,

B2(t) =
1

Γ(α)

∫ t

0

uα−1 (ln u)2e−udu.

It is known that I21 = I12, I31 = I13, I32 = I23, I41 = I14, I42 = I24 and I43 = I34.

Now, the variances and covariances of α̂, θ̂1, θ̂2 and θ̂3 can be obtained through

the observed Fisher information matrix as
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V ar



α̂

θ̂1

θ̂2

θ̂3


= (I)−1 =



V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44


. (6.4.13)

The asymptotic distribution of the maximum likelihood estimates are then given

by α̂−α√
V11
∼ N(0, 1), θ̂1−θ1√

V22
∼ N (0, 1) , θ̂2−θ2√

V33
∼ N (0, 1) , and θ̂3−θ3√

V44
∼ N (0, 1),

which can be used to construct 100 (1− α) % confidence intervals for the pa-

rameters α, θ1, θ2 and θ3, respectively. These confidence intervals are given

by

α̂± z1−α
2

√
V11, (6.4.14)

θ̂1 ± z1−α
2

√
V22, (6.4.15)

θ̂2 ± z1−α
2

√
V33 (6.4.16)

and

θ̂3 ± z1−α
2

√
V44, (6.4.17)

where zq is the q-th upper percentile of the standard normal distribution.

6.4.2 Bootstrap Confidence Intervals

Confidence intervals based on the parametric bootstrap sampling can be con-

structed. The following are the steps to generate the bootstrap confidence

intervals in the case when m = 3:

(a) Compute the MLEs of α, θ1, θ2 and θ3, by using the method described in
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Section 6.3, based on T1, T2, . . . , TN1 , TN1+1, . . . , TN1+N2
, TN1+N2+1, · · · , Tr,

denoted by α̂, θ̂1, θ̂2 and θ̂3.

(b) Simulate n order statistics from the uniform (0,1) distribution.

(c) Find N1 such that UN1 ≤ G∗1 (τ1) ≤ UN1+1, where G∗1 (τ1) = F ∗1 (τ1) =∫ τ1
θ̂1

0
1

Γ(α̂)
xα̂−1e−xdx.

(d) For i ≤ N1, Ti = θ̂1F
∗−1 (Ui), where F ∗ (t) =

∫ t
0

1
Γ(α̂)

xα̂−1e−xdx.

(e) Find N2 such that UN1+N2 ≤ G∗2(τ2) ≤ UN1+N2+1, where G∗2 (τ2) =

F ∗2 (τ2) =
∫ τ2−τ1+

θ̂2
θ̂1
τ1

θ̂1
0

1
Γ(α̂)

xα̂−1e−xdx.

(f) For N1 + 1 ≤ i ≤ N1 +N2, T i = θ̂2 F
∗−1 (Ui) + τ1 − θ̂2

θ̂1
τ1.

(g) For N1 +N2 + 1 ≤ i ≤ r, T i = θ̂3 F
−1 (Ui) + τ2 − θ̂3

θ̂2
(τ2 − τ1 + θ̂2

θ̂1
τ1).

(h) Compute the MLEs of (α, θ1, θ2, θ3) based on T1, T2, . . . , TN1 , TN1+1, · · · ,

TN1+N2 , TN1+N2+1, · · · , Tr, say α̂(1), θ̂
(1)
1 , θ̂

(1)
2 and θ̂

(1)
3 .

(i) Repeat steps (b)-(h) B times to obtain B sets of MLEs of α, θ1, θ2 and θ3 .

A two-sided 100(1−α)% bootstrap confidence interval of α, θ1, θ2 and θ3 are

then given by

CIα = [α̂− z1−α
2

√
MSEα̂, α̂ + z1−α

2

√
MSEα̂], (6.4.18)

CIθ1 = [θ̂1 − z1−α
2

√
MSEθ̂1 , θ̂1 + z1−α

2

√
MSEθ̂1 ], (6.4.19)

CIθ2 = [θ̂2 − z1−α
2

√
MSEθ̂2 , θ̂2 + z1−α

2

√
MSEθ̂2 ] (6.4.20)

and

CIθ3 = [θ̂3 − z1−α
2

√
MSEθ̂3 , θ̂1 + z1−α

2

√
MSEθ̂3 ], (6.4.21)
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where the MSEa = var (a) + (bias(a))2, and bias (a) = a− a. The performance

of the approximate confidence intervals and the bootstrap confidence intervals

are evaluated by using a simulation study in the next section followed by an

illustrative example.

6.5 Simulation Study

A simulation study is carried out for different values of n, r, τ1 and τ2. The

results are presented in Tables 6.1 to 6.4, and they are based on an average over

1000 replications.

In Tables 6.1 and 6.3, we can see that as τ1 increases, the conditional failure

probabilities in the interval [0, τ1] increase as well. It can also be seen that the

larger the gap between τ1 and τ2 the larger the failure probabilities in the interval

[τ1, τ2], and the smaller the failure probabilities in the the interval [τ2,∞].

In Tables 6.2 and 6.4, we can see that as n and r increase the bias and MSE of

all estimates decrease. We can also see that as τ1 increases the bias and MSE

of both α̂ and θ̂1 decrease. It is also observed that the bias and MSE of θ̂1 are

much larger than those of α̂, θ̂2 and θ̂3. We can also see that as the gap between

τ1 and τ2 increases, the MSE of θ̂2 decrease and those of θ̂3 increase, and this is

as expected, of course.

We also observe from Tables 6.2 and 6.4 that the estimated coverage proba-

bilities of the confidence intervals obtained by using the parametric bootstrap

method are much closer to the nominal levels than those obtained by using the

approximate method for all the parameters. The reason for this might be due
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Table 6.1: Conditional failure probabilities for the multiple step-stress test under
Type-II censoring when α = 2, θ1 = e1.5, θ2 = e1, θ3 = e.5 n = 150 and r = 100.

Conditional failure prob-
abilities (in %)

τ1 τ2 0 < t < τ1 τ1 < t < τ2 τ2 < t <∞
2 5 11.27 57.36 31.37
3 5 21.67 39.72 39.59

6 21.89 57.47 20.64
4 6 33.59 38.77 27.64

7 33.51 55.05 11.44
5 6 46.16 19.30 34.54

7 45.97 36.77 17.25
6 7 57.97 18.07 23.95
7 8 69.30 16.66 14.04

to the fact that the asymptotic normality required for the approximate method

would require much larger values of n and r. It is also seen that, for the same

values of both τ1 and τ2, in Tables 6.2 and 6.4, the coverage probabilities for the

bootstrap method are much closer to the nominal level. From these findings,

we would recommend the use of the bootstrap method for the construction of

confidence intervals for the model parameters.

6.5.1 Illustrative Example

In this subsection, we consider the data generated with n = 40, r = 38, α =

2, θ1 = e1.5 = 4.481689, θ2 = e1 = 2.718282, θ3 = e0.5 = 1.648721, τ1 = 5 and

τ2 = 7. The simulated data are presented in Table 6.5.

We consider three different numbers of failures r = 30, 35, 38. The respective

MLEs of α, θ1, θ2 and θ3 and their corresponding standard errors are calculated

and are given in Table 6.6. It can be seen from Table 6.6 that the larger the r,

109



Ph.D. Thesis - Laila Alkhalfan McMaster -Computational Engineering and Science

Table 6.2: The bias and MSEs of the MLEs α̂, , θ̂1, θ̂2 and θ̂3 with the estimated
coverage probabilities (in %) of confidence intervals for a multiple step-stress model

under Type-II censoring for α, θ1, θ2 and θ3 based on 1000 simulations when
α = 2, θ1 = e1.5, θ2 = e1, θ3 = e.5, n = 150 and r = 100.

90% C.I. 95% C.I. 99% C.I.

τ1 τ2 bias MSE Approx. Boot Approx. Boot Approx. Boot

α 2 5 0.2273 0.9652 96.4 90 98.2 94.9 99.3 98.4
3 5 0.1789 0.3978 98.2 91.6 99.3 95.9 100 98.6

6 0.1690 0.4329 97.9 89.2 99.2 94 99.9 98.3
4 6 0.1062 0.2384 99.2 89.8 99.8 94.1 100 98.8

7 0.1138 0.2362 99.6 89.1 99.9 93.8 100 99.2
5 6 0.0850 0.1574 99.6 91.6 99.8 96.1 100 99.2

7 0.0837 0.1777 99.6 90.8 100 95.3 99.9 98.8
6 7 0.0589 0.1354 99.8 90.3 99.9 95.4 100 99.2
7 8 0.0565 0.1073 99.8 89.9 100 95.3 100 99.3

θ1 2 5 1.5995 42.5039 87.5 88.5 92 93.4 96.7 97.4
3 5 0.3119 6.7702 93.2 90.9 96.8 95 99.2 98.4

6 0.4099 8.8985 90.9 89 95.3 92.9 98.8 97.7
4 6 0.2044 3.4123 95.6 89 97.8 94.6 99.5 98.2

7 0.1933 3.4468 95.8 89.3 98.3 93.6 99.7 98.5
5 6 0.0602 1.8295 98.5 90.7 99.4 96.1 99.9 98.9

7 0.1228 2.1528 96.4 91.1 98.6 95.4 99.8 99
6 7 0.1040 1.4797 98.5 90.1 99.7 95.6 100 99.4
7 8 0.0393 0.9971 98.4 90.3 99.5 94.3 100 98.9

θ2 2 5 0.1183 0.8601 92 90.6 95.7 94.5 98.4 98.5
3 5 0.0215 0.5269 99 91.2 99.7 94.9 100 98.8

6 0.0148 0.3896 99.4 88.4 99.7 93.6 100 98.5
4 6 0.0559 0.3997 99.2 88.1 99.8 94.1 99.9 98.7

7 0.0212 0.2628 99.4 90.3 99.8 94.5 100 99
5 6 0.1365 0.5945 99.6 92 99.8 96.2 100 99.5

7 0.0491 0.3187 99.8 89.5 99.9 94.1 100 98.7
6 7 0.1913 0.7689 99.1 92.1 99.9 95.6 99.9 99.4
7 8 0.1877 0.7402 99.6 92 99.9 95.7 100 99.5

θ3 2 5 0.0068 0.1820 98.2 96.7 99.1 98.2 100 99.8
3 5 -0.0188 0.1211 98.5 98.2 99.4 99.2 100 100

6 -0.0102 0.1922 97.6 89.6 98.1 94.8 99.5 98.6
4 6 -0.0273 0.1360 98.9 97.6 99.6 98.7 100 100

7 -0.0347 0.4106 99 94 99.5 97.6 99.8 99.5
5 6 0.0004 0.1053 99.4 97.4 99.8 98.7 100 99.9

7 -0.0169 0.1901 99.8 92.5 100 96.3 100 99.4
6 7 -0.0095 0.1387 99.6 97.8 99.7 99.5 100 100
7 8 -0.0257 0.2519 99.7 93.7 100 97.6 100 99.7
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Table 6.3: Conditional failure probabilities for the multiple step-stress test under
Type-II censoring when α = 2, θ1 = e1.5, θ2 = e1, θ3 = e.5 n = 250 and r = 170.

Conditional failure prob-
abilities (in %)

τ1 τ2 0 < t < τ1 τ1 < t < τ2 τ2 < t <∞
2 5 10.88 56.42 32.70
3 5 21.34 38.92 39.74

6 21.34 56.15 22.51
4 6 32.99 38.24 28.76

7 33.06 53.99 12.95
5 6 44.79 19.29 35.92

7 45.08 36.15 18.77
6 7 56.79 17.77 25.43
7 8 68.09 16.55 15.36

the smaller the standard errors of α̂, θ̂1, θ̂2 and θ̂3.

The confidence intervals for α, θ1, θ2 and θ3 obtained by the approximate

method and the bootstrap method for different values of r are given in Table

6.7. From this table, we can see that for α the approximate confidence intervals

are unsatisfactory and are wider than the bootstrap confidence intervals. There

is only one case when r = 35 in which the approximate confidence interval is

narrower than the bootstrap confidence interval. In almost all cases and for

all the parameters, the bootstrap confidence intervals are narrower than the

approximate confidence intervals for every value of r.
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Table 6.4: The bias and MSEs of the MLEs α̂, , θ̂1, θ̂2 and θ̂3 with the estimated
coverage probabilities (in %) of confidence intervals for a multiple step-stress model

under Type-II censoring for α, θ1 and θ2 based on 1000 simulations when
α = 2, θ1 = e1.5, θ2 = e1, θ3 = e.5, n = 250 and r = 170.

90% C.I. 95% C.I. 99% C.I.

τ1 τ2 bias MSE Approx. Boot Approx. Boot Approx. Boot

α 2 5 0.1598 0.3859 96.7 90 98.5 94.9 99.8 98.4
3 5 0.0984 0.2090 98.4 91.6 99.2 95.9 100 98.6

6 0.0832 0.1958 98.7 89.2 99.7 94 100 98.3
4 6 0.0694 0.1346 98.8 89.8 99.7 94.1 100 98.8

7 0.0687 0.1287 99.6 89.1 99.9 93.8 100 99.2
5 6 0.0549 0.0990 99.3 88.8 99.9 94.8 100 99

7 0.0468 0.0901 99.7 90.8 99.9 95.3 100 98.8
6 7 0.0443 0.0707 99.9 90.3 100 95.4 100 99.2
7 8 0.0320 0.0577 100 89.9 100 95.3 100 99.3

θ1 2 5 0.6983 15.7358 88 88.5 92.9 93.4 97.5 97.4
3 5 0.2138 3.6947 92.5 90.9 96.2 95 99 98.4

6 0.2690 3.7113 92.9 89 96.7 92.9 99.4 97.7
4 6 0.1103 2.1135 95 89 97.9 94.6 99.5 98.2

7 0.0866 1.7608 95.8 89.3 98.7 93.6 99.8 98.5
5 6 0.0807 1.2279 97.1 90.8 98.5 94.7 99.8 98.8

7 0.0673 1.1381 97.8 91.1 99.3 95.4 99.9 99
6 7 0.0255 0.7733 98.6 90.1 99.8 95.6 100 99.4
7 8 0.0203 0.5751 99.1 90.3 99.8 94.3 100 98.9

θ2 2 5 0.0201 0.4654 93.4 90.6 96.7 94.5 99.1 98.5
3 5 0.0251 0.3240 97.5 91.2 99.1 94.9 99.8 98.8

6 0.0382 0.2626 96.9 88.4 98.4 93.6 99.9 98.5
4 6 0.0159 0.2286 99.3 88.1 99.9 94.1 100 98.7

7 0.0143 0.1609 99.3 90.3 99.8 94.5 100 99
5 6 0.0524 0.3621 99.8 90.8 100 95.1 100 99.5

7 0.0271 0.1897 100 89.5 100 94.1 100 98.7
6 7 0.0944 0.3201 99.9 92.1 100 95.6 100 99.4
7 8 0.0691 0.3600 99.8 92 99.8 95.7 99.9 99.5

θ3 2 5 -0.0278 0.1051 98.7 96.7 99.4 98.2 100 99.8
3 5 -0.0120 0.0709 99 98.2 99.8 99.2 99.9 100

6 -0.0066 0.1096 99 89.6 99.5 94.8 99.9 98.6
4 6 -0.0023 0.0780 99.4 97.6 99.8 98.7 100 100

7 -0.0097 0.1627 99.3 94 99.8 97.6 99.9 99.5
5 6 -0.0057 0.0566 99.7 96.7 100 99 100 100

7 -0.0228 0.0956 99.9 92.5 99.9 96.3 100 99.4
6 7 -0.0161 0.0730 99.6 97.8 99.7 99.5 99.8 100
7 8 -0.0203 0.1257 98 93.7 99 97.6 99.9 99.7
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Table 6.5: Simulated data for the illustrative example.

Stress level Failure times
θ1 = e1.5 0.374 1.022 1.545 1.983 2.099 2.100 2.111 2.999 3.087

3.165 3.370 3.371 3.829 4.295 4.450 4.644
θ2 = e1 5.093 5.216 5.459 5.629 5.714 5.831 6.330 6.778 6.890
θ3 = e.5 7.400 7.711 7.804 8.059 8.280 8.536 8.925 9.537 9.664

9.734 9.912 11.478 12.332

Table 6.6: The MLEs of α, θ1, θ2 and θ3 and their standard errors.

r N3 α̂ Se(α̂) θ̂1 Se(θ̂1) θ̂2 Se(θ̂2) θ̂3 Se(θ̂3)
30 5 1.8187 0.5079 4.0855 0.8472 2.8426 0.7852 2.4925 0.2723
35 10 1.8417 0.2154 4.0208 0.8407 2.8335 0.7753 2.1881 0.1565
38 13 1.8352 0.0370 4.0385 0.8345 2.8356 0.7658 2.2964 0.1081

6.6 The Reduced-Parameter Model

In this section, we consider a re-parametrization of the m-step-stress model, in

which θi is assumed to satisfy a log-linear link function of the form

lnθi = a− bxi, i = 1, 2, · · · ,m, (6.5.1)

where a and b are unknown parameters and we need to develop inference only

for these two parameters instead of for the original m parameters θ1, θ2, . . . , θm.

6.6.1 Maximum Likelihood Estimation

The likelihood function is obtained based on the observed Type-II censored data

in (6.2.1), and from it the MLEs of the three unknown parameters α, a and b

are then obtained numerically. The log-likelihood function of this sample can
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Table 6.7: Interval estimation for the simulated data presented in Table 6.5.

C.I. for α
r Method 90% 95% 99%
30 Approx C.I. (0.9833, 2.6541) (0.8233, 2.8141) (0.5105, 3.1269)

Bootstrap C.I. (1.2581, 2.3792) (1.1508, 2.4866) (0.9409, 2.6965)
35 Approx C.I. (1.4874, 2.1960) (1.4196, 2.2638) (1.2869, 2.3965)

Bootstrap C.I. (1.3064, 2.3770) (1.2038, 2.4796) (1.0034, 2.6800)
38 Approx C.I. (1.7744, 1.8961) (1.7627, 1.9077) (1.7400, 1.9305)

Bootstrap C.I. (1.3141, 2.3563) (1.2143, 2.4561) (1.0192, 2.6512)
C.I. for θ1

30 Approx C.I. (2.6920, 5.4791) (2.4250, 5.7460) (1.9032, 6.2678)
Bootstrap C.I. (3.2526, 4.9184) (3.0931, 5.0780) (2.7812, 5.3898)

35 Approx C.I. (2.6380, 5.4037) (2.3730, 5.6686) (1.8553, 6.1863)
Bootstrap C.I. (3.2419, 4.7997) (3.0927, 4.9489) (2.8011, 5.2405)

38 Approx C.I. (2.6658, 5.4112) (2.4028, 5.6742) (1.8888, 6.1882)
Bootstrap C.I. (3.2660, 4.8110) (3.1180, 4.9590) (2.8288, 5.2482)

C.I. for θ2

30 Approx C.I. (1.5511, 4.1341) (1.3037, 4.3816) (0.8201, 4.8651)
Bootstrap C.I. (2.2144, 3.4709) (2.0940, 3.5913) (1.8588, 3.8265)

35 Approx C.I. (1.5583, 4.1086) (1.3140, 4.3529) (0.8366, 4.8303)
Bootstrap C.I. (2.2149, 3.4520) (2.0964, 3.5705) (1.8649, 3.8021)

38 Approx C.I. (1.5759, 4.0954) (1.3346, 4.3367) (0.8629, 4.8083)
Bootstrap C.I. (2.2073, 3.4640) (2.0869, 3.5844) (1.8517, 3.8196)

C.I. for θ3

30 Approx C.I. (2.0446, 2.9404) (1.9588, 3.0262) (1.7911, 3.1939)
Bootstrap C.I. (1.3668, 3.6183) (1.1511, 3.8339) (0.7296, 4.2554)

35 Approx C.I. (1.9306, 2.4457) (1.8812, 2.4950) (1.7848, 2.5914)
Bootstrap C.I. (1.5771, 2.7991) (1.4601, 2.9162) (1.2313, 3.1449)

38 Approx C.I. (2.1186, 2.4742) (2.0845, 2.5083) (2.0179, 2.5749)
Bootstrap C.I. (1.7716, 2.8212) (1.6711, 2.9217) (1.4746, 3.1182)
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be written as

l(α, a, b|t) = ln [L (α, a, b|t)]

= ln

(
n!

(n− rm)!

)
−rm ln (Γ(α))−

m∑
k=1

Nk(a−bxk)+(α−1)
m∑
k=1


rk∑

ik=rk−1+1

ln
(
ζ∗ik
)

−
m∑
k=1

 rk∑
ik=rk−1+1

ζ∗ik

+ (n− rm) ln
(
1− IGζ∗rm

(α)
)
,

for t1 < · · · < tN1 < τ ≤ tN1+1 < · · · < tN1+N2 < 2τ ≤ · · · <

(m− 1)τ ≤ tN1+···+Nm−1+1 < · · · < tr, (6.5.2)

where

ζ∗ik = (tik − (k − 1) τ)e−a+bxk + τe−a
k−1∑
j=1

eb xj , k = 1, 2, · · · , m. (6.5.3)

Now, instead of differentiating the log-likelihood function with respect to α and

θi for i = 1, 2, · · · ,m, we differentiate (6.5.2) with respect to α, a and b. As

before, we will need the first and second partial derivatives of (6.5.2), but here

with respect to the parameters α, a and b. The first partial derivatives are given

by the following equations:

∂l(α, a, b|t)

∂α
= −rmψ(α) +

m∑
k=1


rk∑

ik=rk−1+1

ln
(
ζ∗ik
)

+
(n− rm)

1− IGζ∗rm
(α)

[
Ψ(α)IGζ∗rm

(α)−B1

(
ζ∗rm
)]
, (6.5.4)
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∂l(α, a, b|t)

∂a
= −

m∑
k=1

Nk + (α− 1)
m∑
k=1


rk∑

ik=rk−1+1

(−1)


−

m∑
k=1

 rk∑
ik=rk−1+1

−ζ∗ik

+
(n− rm)

(
ζ∗rm
)α
e−ζ

∗
rm

Γ(α)
[
1− IGζ∗rm

(α)
] ,

(6.5.5)

and

∂l(α, a, b|t)

∂b
=

m∑
k=1

Nkxk + (α− 1)
m∑
k=1


rk∑

ik=rk−1+1

1

ζ∗ik
A1(tik)


−

m∑
k=1


rk∑

ik=rk−1+1

A1(tik)

− (n− rm)ζ∗α−1
rm e−ζ

∗
rm

Γ(α)
[
1− IGζ∗rm

(α)
]A1(trm), (6.5.6)

where

Ψ (α) =
Γ′ (α)

Γ (α)
,

B1 (v) =

∫ v

0

1

Γ (α)
ln (u) uα−1e−udu,

A1(tik) = (tik − (k − 1)τ)xke
−a+bxk + τea

k−1∑
j=1

xje
bxj .

Since there is no obvious simplification of the above non-linear likelihood equa-

tions, the maximum likelihood estimates of the parameters need to be obtained

numerically as mentioned earlier. So, the required numerical maximization was
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carried out on the log-likelihood using the R software. First, we use the log-

likelihood function and start with initial values. Then, the function optim in R

is used to maximize this log-likelihood function. After that, the estimates are

found and their confidence intervals are constructed, using the Hessian matrix.

Since for the complete parametrization we used m = 3, so we will consider the

same setting here. The following is the algorithm used to find the MLEs:

(a) Simulate n order statistics from the uniform (0,1) distribution, U1, U2, . . . , Un.

(b) Find N1 such that UN1 ≤ G1(τ1) ≤ UN1+1 where

G1(τ1) =
∫ τ1e−a+bx1

0
1

Γ(α)
xα−1e−xdx.

(c) For i ≤ N1, Ti = ea−bx1F−1 (Ui), where F (t) =
∫ t

0
1

Γ(α)
e−xxα−1dx.

(d) Find N2 such that UN1+1 ≤ G2(τ2) ≤ UN1+N2 where

G2(τ2) =
∫ τ2−τ1+e

−b(x2−x1)

ea−bx2
0

1
Γ
xα−1e−xdx.

(e) For N1 + 1 ≤ i ≤ N1 +N2, T i = ea−bx2 F−1 (Ui) + τ1(1− e−b(x2−x1)).

(f) For N1 +N2 +1 ≤ i ≤ r, T i = ea−bx3 F−1 (Ui)+τ2−e−b(x3−x2)(τ2−τ1(1−

e−b(x2−x1))).

(g) Compute the MLEs of (α, a, b) based on T1, T2, . . . , TN1 , TN1+1, . . . ,

TN1+N2 , TN1+N2+1, · · ·Tr, say (α̂, â, b̂).

6.6.2 Confidence Intervals

As in Section 6.4, we will use two different methods for constructing confidence

intervals (CI) for the unknown parameters α, a and b. The asymptotic distri-

butions of the MLEs is then used to obtain the approximate CIs for α, a and b.
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Here again, we use the parametric bootstrap method as the second method for

constructing confidence intervals for α, a and b.

Approximate Confidence Intervals

We present an approximate method which provides good coverage probabilities

for large sample sizes and also facilitates easy computation. Elements of Fisher

information matrix are found numerically for different values of m, and then

the asymptotic normality of the MLEs is used to construct the approximate

confidence intervals for α, a and b.

Let I(α, a, b) = [Iij(α, a, b)], for i, j = 1, 2, 3, denote the observed Fisher

information matrix of α, a and b, where

Iij(α, a, b) = −
(
∇2l(α, a, b)

)
. (6.5.7)

The observed Fisher information matrix (I) is given by

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 , (6.5.8)
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where

I11 =
∂2l(α, a, b)

∂α2
= −r3Ψ

′
(α) +

(n− r3)(
1− IGζ∗r3

(α)
)2

× [
(

1− IGζ∗r3
(α)
) [

2Ψ(α)B1(ζ∗r3) + IGζ∗r3
(Ψ
′
(α)−Ψ2(α))−B2(ζ∗r3)

]
−
[
Ψ(α)IGζ∗r3

(α)−B1(ζ∗r3)
]2

], (6.5.9)

I12 =
∂2l(α, a, b)

∂α∂a
=

3∑
k=1

rk∑
i=rk−1+1

(−1) +
(n− r3)(ζ∗r3)

αe−ζ
∗
r3

Γ(α)
(

1− IGζ∗r3
(α)
)2

× [
(

1− IGζ∗r3
(α)
)

ln(ζ∗r3)−Ψ(α) +B1(ζ∗r3)], (6.5.10)

I13 =
∂2l(α, a, b)

∂α ∂b
=

3∑
k=1


rk∑

i=rk−1+1

1

ζ∗ik
A1(tik)


+

(n− r3)(ζ∗r3)
α−1e−ζ

∗
r3A1(tr3)

Γ(α)
(

1− IGζ∗r3
(α)
)2

[
Ψ(α)−

[
1− IGζ∗r3

(α)
]

ln ζ∗r3 −B1(ζ∗r3)
]
,

(6.5.11)

I22 =
∂2l(α, a, b)

∂a2
= −

3∑
k=1

rk∑
i=rk−1+1

ζ∗ik +
(n− r3)(ζ∗r3)

αe−ζ
∗
r3

Γ(α)
(

1− IGζ∗r3
(α)
)2

×
[(

1− IGζ∗r3
(α)
) (
ζ∗r3 − α

)
− 1

Γ(α)
(ζ∗r3)

αe−ζ
∗
r3

]
, (6.5.12)
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I23 =
∂2l(α, a, b)

∂a∂b
= −

3∑
k=1

rk∑
i=rk−1+1

(−A1(tik)) +
(n− r3)(ζ∗r3)

αe−ζ
∗
r3A1(trm)

Γ(α)
(

1− IGζ∗r3
(α)
)2

×
[(

1− IGζ∗r3
(α)
) (
αζ∗−1

r3
− 1
)

+
1

Γ(α)
(ζ∗r3)

α−1e−ζ
∗
r3

]
, (6.5.13)

and

I33 =
∂2l(α, a, b)

∂b2

= (α− 1)
3∑

k=1

rk∑
i=rk−1+1

1

ζ∗2ik

{
ζ∗ikA2(tik)− (A1(tik))

2
}

−
m∑
k=1

rk∑
ik=rk−1+1

A2(tik)−
(n− r3)(ζ∗r3)

α−1e−ζ
∗
r3

Γ(α)
(

1− IGζ∗r3
(α)
)2 [(1− IGζ∗r3

(α))

{(
(α− 1)ζ∗−1

r3
− 1
)

(A1(tr3))
2 + A2(tr3)

}
+

1

Γ(α)
(ζ∗r3)

α−1e−ζ
∗
r3 (A1(tr3))

2],

(6.5.14)

where

B1(t) =
1

Γ(α)

∫ t

0

uα−1(lnu)e−udu,

B2(t) =
1

Γ(α)

∫ t

0

uα−1 (lnu)2e−udu,

A1(tik) = (tik − (k − 1)τ)xke
−a+bxk + τea

k−1∑
j=1

xje
bxj ,

A2(tik) = (tik − (k − 1)τ)x2
ke
−a+bxk + τea

k−1∑
j=1

x2
je
bxj .

It is known that I21 = I12, I31 = I13 and , I32 = I23. Now, the variances

and covariances of α̂, â and b̂ can be obtained through the observed Fisher
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information matrix as

V ar


α̂

â

b̂

 = (I)−1 =


V11 V12 V13

V21 V22 V23

V31 V32 V33

 . (6.5.15)

The asymptotic distribution of the maximum likelihood estimates are then given

by α̂−α√
V11
∼ N(0, 1), â−a√

V22
∼ N (0, 1) and b̂−b√

V33
∼ N (0, 1), which can be used

to construct 100 (1− α) % confidence intervals for the parameters α, a and b,

respectively. These confidence intervals are given by

α̂± z1−α
2

√
V11, (6.5.16)

â± z1−α
2

√
V22 (6.5.17)

and

b̂± z1−α
2

√
V33, (6.5.18)

where zq is the q-th upper percentile of the standard normal distribution.

Bootstrap Confidence Intervals

Confidence intervals based on the parametric bootstrap sampling can be con-

structed. The following are the steps to generate the bootstrap confidence

intervals for the case when m = 3:

(a) Compute the MLEs of α, a and b, by using the method described in Sec-

tion 6.5.1, based on T1, T2, . . . , TN1 , TN1+1, . . . , TN1+N2 , TN1+N2+1, · · · , Tr,
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denoted by α̂, â and b̂.

(b) Simulate n order statistics from the uniform (0,1) distribution.

(c) Find N1 such that UN1 ≤ G∗1 (τ1) ≤ UN1+1, where G∗1 (τ1) = F ∗1 (τ1) =∫ τ1

eâ−b̂x1
0

1
Γ(α̂)

xα̂−1e−xdx.

(d) For i ≤ N1, Ti = eâ−b̂x1F ∗−1 (Ui), where F ∗ (t) =
∫ t

0
1

Γ(α̂)
xα̂−1e−xdx.

(e) Find N2 such that UN1+N2 ≤ G∗2(τ2) ≤ UN1+N2+1, where G∗2 (τ2) =

F ∗2 (τ2) =
∫ y

0
1

Γ(α̂)
xα̂−1e−xdx, where y = (τ2 − τ1)e−â+b̂x2 + τ1e

−â+b̂x1 .

(f) For N1 + 1 ≤ i ≤ N1 +N2, T i = eâ−b̂x2F ∗−1 (Ui) + τ1 − τ1e
−b̂(x2−x1).

(g) For N1 +N2 + 1 ≤ i ≤ r, T i = eâ−b̂x3F−1 (Ui) + τ2 − e−b̂(x3−x2)(τ2 − τ1 +

τ1e
−b̂(x2−x1)).

(h) Compute the MLEs of (α, a, b) based on T1, T2, . . . , TN1 , TN1+1, · · · , TN1+N2 ,

TN1+N2+1, · · · , Tr, say α̂1, â(1) and b̂(1).

(i) Repeat steps (b)-(h) B times to obtain B sets of MLEs of α, a and b.

A two-sided 100(1 − α)% bootstrap confidence interval of α, a and b are then

given by

CIα = [α̂− z1−α
2

√
MSEα̂, α̂ + z1−α

2

√
MSEα̂], (6.5.19)

CIa = [â− z1−α
2

√
MSEâ, â+ z1−α

2

√
MSEâ] (6.5.20)

and

CIb = [b̂− z1−α
2

√
MSEb̂, b̂+ z1−α

2

√
MSEb̂], (6.5.21)

where the MSEs = var (s) + (bias(s))2, and bias (s) = s− s. The performance

of the approximate confidence intervals and the bootstrap confidence intervals
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are evaluated by using a simulation study in the next subsection followed by an

illustrative example.

6.6.3 Simulation Study

A simulation study is carried out for different values of τ1 and τ2. The results

are presented in Tables 6.8 to 6.11, and they are based on an average over 1000

replications.

In Tables 6.8 and 6.10, we can see how the failures are distributed in our model

when we take different values of τ1 and τ2. We see that as τ1 increases, the

failure probability in the first interval also increases. It is seen that as the gap

between τ1 and τ2 increases the failure probabilities in the second interval [τ1, τ2]

increase, while those in the third interval [τ2,∞] decrease.

In Tables 6.9 and 6.11, we see clearly that the MSEs of b̂ are less than those

of α̂ and â. If we look at the MSEs of α̂ and â, we observe that the wider the

gap between τ1 and τ2, the smaller the MSE. On the other hand, the MSEs of b̂

slightly increase as the gap between τ1 and τ2 increases. By comparing the MSEs

in Tables 6.9 and 6.11, we see that for larger n we have smaller MSE values.

In Table 6.9, it is seen that the coverage probabilities obtained by using the

bootstrap method are closer to the nominal levels than those obtained by using

the approximate method. These coverage probabilities based on the bootstrap

method are equal or below the nominal levels for α while they are above the

nominal levels for a and b. As both n and r increase (see Table 6.11), the

coverage probabilities based on the bootstrap method get closer to the nominal

levels.
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Table 6.8: Conditional failure probabilities for the reduced multiple step-stress test
under Type-II censoring when

α = 2, x1 = 1, x2 = 1.5, x3 = 2.5, a = 4, b = 2, n = 150 and r = 100.

Conditional failure prob-
abilities (in %)

τ1 τ2 0 < t < τ1 τ1 < t < τ2 τ2 < t <∞
4 6 15.22 39.31 45.48

7 15.60 58.16 26.24
5 6 22.04 19.73 58.23

7 22.30 39.80 37.90
8 22.13 57.56 20.31

6 7 29.28 20.26 50.46
8 29.19 39.39 31.43

7 8 36.70 19.93 43.37

Illustrative Example

In this subsection, we consider the data generated with n = 40, α = 2, a =

4, b = 2, x1 = 1, x2 = 1.5, x3 = 2.5, τ1 = 5, τ2 = 7 and r = 38. The simulated

data are presented in Table 6.12.

We consider three different values for the total number of failures: r = 30, 35, 38.

The respective MLEs of α, a and b and their corresponding standard errors are

calculated and are given in Table 6.13. It is seen from this table that as r

increases, the standard errors of â and b̂ decrease. The confidence intervals for

α, a and b obtained by the approximate method and the bootstrap method for

different values of r are given in Table 6.14. From this table, we can see that

the bootstrap confidence intervals are narrower than the approximate confidence

intervals for all values of r.

Recalling the simulation study for the full multiple step-stress model under

Type-II censoring, we faced some problems in the coverage probabilities for θ3.
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Table 6.9: Estimated coverage probabilities (in %) of confidence intervals for the
reduced multiple step-stress model under Type-II censoring for α, a and b based on

1000 simulations when α = 2, x1 = 1, x2 = 1.5, x3 = 2.5, a = 4, b = 2, n = 150
and r = 100.

90% C.I. 95% C.I. 99% C.I.
τ1 τ2 bias MSE Approx. Boot Approx. Boot Approx. Boot

α 4 6 0.1556 0.2976 90.8 90.4 94.8 95.3 98.8 99
7 0.0921 0.1894 94.4 89.7 97.2 95.9 99.5 99.1

5 6 0.1109 0.2677 90.2 90.8 94.9 95.1 98.4 98.9
7 0.0905 0.2432 93.2 89.9 96.1 95.2 99.2 99.4
8 0.0686 0.1771 95 90.9 97.7 96.1 99.5 99.5

6 7 0.0922 0.2069 92.8 89.8 96.5 95.1 99.2 99
8 0.1141 0.2021 94.1 92.1 97.2 95.7 99.3 99.2

7 8 0.1014 0.1916 94.1 90.3 97.4 95.9 99.4 99.5
a 4 6 -0.0607 0.3662 99.7 93.5 99.8 96.9 100 99.8

7 -0.0270 0.3054 99.9 93.4 100 96.7 100 99.4
5 6 -0.0123 0.3631 99.4 92.5 99.7 97.8 100 99.5

7 -0.0243 0.2826 99.7 91.3 99.9 96.7 99.9 99.4
8 0.0094 0.2752 99.9 93.6 100 96.5 100 99

6 7 -0.0129 0.2733 99.9 92.9 100 96.9 100 99.5
8 -0.0454 0.2475 99.9 92.3 100 97.2 100 99.8

7 8 -0.0348 0.2057 100 92 100 95.8 100 99.4
b 4 6 -0.0095 0.0496 100 91.9 100 96.5 100 99.7

7 0.0007 0.0568 100 91.9 100 96.1 100 99.3
5 6 0.0031 0.0434 100 91 100 96.2 100 99.4

7 -0.0033 0.0420 100 90.7 100 95.2 100 98.9
8 0.0165 0.0593 100 92.5 100 96.9 100 98.8

6 7 0.0052 0.0361 100 92.1 100 96.5 100 99.5
8 -0.0086 0.0411 100 91.4 100 96.4 100 99.5

7 8 -0.0046 0.0296 100 91.5 100 95.9 100 98.9
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Table 6.10: Conditional failure probabilities for the reduced multiple step-stress test
under Type-II censoring when

α = 2, x1 = 1, x2 = 1.5, x3 = 2.5, a = 4, b = 2, n = 250 and r = 170.

Conditional failure prob-
abilities (in %)

τ1 τ2 0 < t < τ1 τ1 < t < τ2 τ2 < t <∞
4 6 15.15 38.24 46.61

7 15.27 56.82 27.91
5 6 21.68 19.58 58.74

7 21.65 38.94 39.41
8 21.75 56.39 21.87

6 7 28.71 19.81 51.49
8 28.80 38.59 32.61

7 8 35.84 19.76 44.40

Moreover, the use of the full model becomes complicated if the number of stress

levels increase. But we observe that in the reduced multiple step-stress model

under Type-II censoring, although the approximate method is not satisfactory,

the bootstrap method gives very good coverage probabilities for all parameters.

Here, for simplicity, we have presented the results only for three steps in which

we have 4 parameters for the full model and 3 parameters in the reduced model.

It is evident that the reduced model is simpler and more convenient to use since

we need to estimate only three parameters, α, a and b, no matter how many

steps we consider in the step-stress test. These suggest that it is advisable to

use the reduced model for a multiple step-stress model than the full model due

to its simplicity and computation ease.
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Table 6.11: Estimated coverage probabilities (in %) of confidence intervals for the
reduced multiple step-stress model under Type-II censoring for α, a and b based on

1000 simulations when α = 2, x1 = 1, x2 = 1.5, x3 = 2.5, a = 4, b = 2, n = 250
and r = 170.

90% C.I. 95% C.I. 99% C.I.
τ1 τ2 bias MSE Approx. Boot Approx. Boot Approx. Boot

α 4 6 0.0434 0.1223 92.9 91 96.4 94.7 99.3 99.6
7 0.0381 0.0943 95.6 88.5 97.9 94.7 99.5 99.3

5 6 0.0862 0.1485 90.6 89.9 94.8 95.1 98.9 98.8
7 0.0730 0.1189 93.2 88.9 96.7 95.1 99.5 99.1
8 0.0401 0.0910 95.5 90.2 98 95.3 99.5 99

6 7 0.0649 0.1125 93.1 89.8 97.1 94.9 99.5 98.9
8 0.0510 0.1048 94.1 89 97.6 94.7 99.6 98.5

7 8 0.0529 0.0997 94.9 89.4 97.8 94.4 99.9 98.9
a 4 6 0.0084 0.2139 99.9 92.9 100 96.9 100 99.6

7 -0.0066 0.1642 99.9 91.8 100 96.2 100 99.6
5 6 -0.0424 0.1985 100 91.9 100 95.9 100 99.7

7 -0.0329 0.1702 99.8 91.2 100 95.6 100 99.3
8 0.0048 0.1521 100 91.3 100 95.4 100 99.5

6 7 -0.0207 0.1500 100 91.4 100 96.1 100 99.2
8 -0.0117 0.1553 100 89.6 100 94.6 100 99.3

7 8 -0.0104 0.1268 100 90.5 100 96.4 100 99.4
b 4 6 0.0050 0.0311 100 92.2 100 96.2 100 99.5

7 -0.0002 0.0300 100 92.3 100 96.9 100 99.1
5 6 -0.0110 0.0238 100 90.7 100 95.3 100 99.6

7 -0.0077 0.0254 100 90.9 100 95.5 100 99
8 0.0095 0.0314 100 90.2 100 96 100 99.3

6 7 -0.0007 0.0199 100 92.1 100 96.4 100 99
8 0.0002 0.0257 100 89.6 100 94.8 100 99.3

7 8 0.0021 0.0181 100 91.4 100 95.5 100 99.1
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Table 6.12: Simulated data for the illustrative example.

Stress level Failure times
x1 = 1 0.853 1.754 2.352 2.567 2.665 3.802 4.711
x2 = 1.5 5.113 5.118 5.302 5.307 5.410 5.413 5.624 5.794 6.061 6.218

6.384 6.457 6.835 6.900 6.996
x3 = 2.5 7.019 7.033 7.040 7.119 7.139 7.145 7.154 7.207 7.245 7.271

7.295 7.357 7.425 7.740 7.822 7.898

Table 6.13: The MLEs of α, a and b and their standard errors.

r N3 α̂ Se(α̂) â Se(â) b̂ Se(̂b)
30 8 1.8767 0.5447 4.0999 0.3953 2.2094 0.3124
35 13 1.8861 0.3826 4.0709 0.3825 2.1906 0.2937
38 16 1.9008 0.4523 3.8613 0.3702 2.0270 0.2760

6.7 Life-Stress Relationships

The representation of the life-stress relationships (through a log-linear link)

mentioned earlier in Section 6.5 is a mathematical representation. In this sec-

tion, we present the most widely used physical relationships such as the Ar-

rehenius relationship for temperature-accelerated tests and the Inverse Power

Law. These are all transformable to log-linear link forms. We also describe

some other combination relationships where, instead of having only one type of

stress, we have two types of stresses on each step.

6.7.1 Arrhenius Life-Tempreture Relationship

The Arrhenius life relationship is used to model product life as a function of

temperature. Based on the Arrhenius Law for simple chemical-reaction rates,

the relationship is used to describe many products that fail due to chemical

reaction or metal diffusion. The relationship is adequate over some range of
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Table 6.14: Interval estimation for the simulated data presented in Table 6.12.

C.I. for α
r Method 90% 95% 99%
30 Approx C.I. (0.9807, 2.7727) (0.8091, 2.9443) (0.4736, 3.2798)

Bootstrap C.I. (1.2739, 2.4795) (1.1585, 2.5949) (0.9328, 2.8206)
35 Approx C.I. (1.0506, 2.7216) (0.8906, 2.8816) (0.5777, 3.1944)

Bootstrap C.I. (1.2568, 2.5153) (1.1363, 2.6359) (0.9007, 2.8715)
38 Approx C.I. (1.1568, 2.6447) (1.0143, 2.7872) (0.7358, 3.0657)

Bootstrap C.I. (1.2766, 2.5250) (1.1570, 2.6445) (0.9233, 2.8783)
C.I. for a

30 Approx C.I. (3.4497, 4.7501) (3.3252, 4.8747) (3.0817, 5.1181)
Bootstrap C.I. (3.7019, 4.4979) (3.6257, 4.5742) (3.4767, 4.7232)

35 Approx C.I. (3.4418, 4.7001) (3.3212, 4.8206) (3.0856, 5.0562)
Bootstrap C.I. (3.6462, 4.4956) (3.5649, 4.5770) (3.4058, 4.7360)

38 Approx C.I. (3.2523, 4.4703) (3.1356, 4.5869) (2.9076, 4.8149)
Bootstrap C.I. (3.4144, 4.3081) (3.3288, 4.3937) (3.1615, 4.5610)

C.I. for b
30 Approx C.I. (1.6956, 2.7232) (1.5971, 2.8217) (1.4047, 3.0141)

Bootstrap C.I. (1.9125, 2.5063) (1.8556, 2.5632) (1.7444, 2.6744)
35 Approx C.I. (1.7075, 2.6737) (1.6150, 2.7662) (1.4341, 2.9471)

Bootstrap C.I. (1.2568, 2.5153) (1.8538, 2.5274) (1.7479, 2.6333)
38 Approx C.I. (1.5730, 2.4810) (1.4860, 2.5680) (1.3160, 2.7380)

Bootstrap C.I. (1.7359, 2.3182) (1.6801, 2.3739) (1.5711, 2.4829)
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temperature.

According to the Arrhenius rate law, the rate of a simple (first-order) chemical

reaction depends on temperature as follows:

tp = A′exp[−E/(kV )], (6.6.1)

where

tp is the nominal life which can represent any percentile that is chosen according

to the assumed underline distribution,

E is the activation energy of the reaction, usually in electron-volts,

k is Boltzmann’s constant, 8.6171 ×10−5 electron-volts per ◦C,

V is the absolute Kelvin temperature which equals the Centigrade temperature

plus 273.16 degrees,

A′ is a constant that is a characteristic to the product failure mechanism and

test conditions.

The Arrhenius life-temperature relationship can be transformed to a log-linear

link form in (6.5.1) by setting

xi = 1/Vi. (6.6.2)

6.7.2 Inverse Power Law Relationship

The relationship is sometimes called the inverse power law or simply the power

law. This type of relationship models product life as a function of an accelerating

stress. Assuming that the accelerating stress variable V is positive, then the
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inverse power relationship is given by

tp = A/V γ1 , (6.6.3)

where A and γ1 are parameters of some characteristics of the product, specimen

geometry and fabrication, the test method, etc. Some other equivalent forms of

this law are

tp = (A′/V )γ1 and tp = A′′(V0/V )γ1 ,

where V0 is a specified standard level of stress. The parameter γ1 is called the

power or exponent. We can transform the inverse power law to a log-linear link

form in (6.5.1) by setting

xi = ln(Vi). (6.6.4)

The inverse power law relationship is used for modelling different types of

stresses, as described in the following models:

(a) Coffin-Manson relationship:

The inverse power law relationship is used to model fatigue failure of metals

subjected to thermal cycling. The number N of cycles to failure as a

function of the temperature range δV of the thermal cycle is given by

N = A/(δV )B, (6.6.5)

where A and B are constants representing characteristics of the metal and

test method and cycle. This relationship has been used for mechanical

and electronic components. For metals, the B is close to 2 while for plastic
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encapsulate for microelectronics, B is close to 5.

(b) Palmgren’s equation:

Life tests of roller and ball bearings employ high mechanical load. Life in

millions of revolutions as a function of load is represented by Palmgren’s

equation for the 10th percentile B10 of the life distribution, namely,

B10 = (C/P )p, (6.6.6)

where C is the bearing capacity, p is the power, B10 is the “B-ten” bearing

life, and P is the load in pounds.

(c) Taylor’s model:

In Taylor’s model for the median life τ of cutting tools, we have

τ = A/V m, (6.6.7)

where V is the cutting velocity (feet/sec), and A and m are constants

depending on the tool material, geometry, etc. For high strength steels, it

is known that m ≈ 8, while m ≈ 4 for carbides, and m ≈ 2 for ceramics.

6.7.3 Some Other Combination Relationships

In all previous cases, we only consider the life-stress relationship for only one

type of stress factor. Now, we introduce some relationships with two types

of stresses such as Temperature-Non thermal model. Before considering these
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models, we first need to generalize the log-linear link function on (6.5.1) to the

form

lnθi = a− b1xi − b2yi, i = 1, 2, · · · ,m. (6.6.8)

Here, a, b1 and b2 are coefficients that we need to develop inference for, and xi

and yi are accelerating stress levels of two different stress factors.

It is evident that the function in (6.6.8) is linear in both stress factors, and these

type of relationships are mostly used since they are mathematically convenient

and also physically adequate. We describe below some special cases of the

log-linear relationship of this form:

(a) Electromigration:

High current densities in aluminium conductors, which fail from electromi-

gration, promote movement of aluminium atoms which results in voids or

extrusions. Accelerated tests of this phenomenon employ elevated temper-

ature T and current density J . Black’s formula for median life τ of such

conductors is given by the Erying relationship

τ = AJ−n exp[E/(kT )], (6.6.9)

where we may set xi = − ln Ji and yi = 1
T

to get the log-linear link form

in (6.6.8).

(b) Temperature-Humidity test:

Many accelerated life-tests on epoxy packaging for electronics employ high

temperature and humidity. Peck surveyed such testing and proposed an

133



Ph.D. Thesis - Laila Alkhalfan McMaster -Computational Engineering and Science

Eyring relationship for life, called Peck’s relationship, given by

τ = A(RH)−n exp[E/(kT )], (6.6.10)

where RH is the relative humidity. In this relationship, we may set xi =

− ln(RH) and yi = 1
T

to get the log-linear link form in (6.6.8).
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Chapter 7

Multiple Step-Stress Model

under Type-I Censoring

7.1 Introduction

In this chapter, we develop inference for the m-step-stress model under Type-

I censoring with gamma distributed lifetimes. In Section 7.2, the considered

model is described. The MLEs are obtained in Section 7.3. After numeri-

cally evaluating the MLEs, we construct confidence intervals for the unknown

parameters by using two methods-the asymptotic method and the parametric

bootstrap method-in Section 7.4. In Section 7.5, some simulation results and an

illustrative example are presented. In Section 7.6, we present the reduced pa-

rameter multiple step-stress model under Type-I censoring. The MLEs for that

model are derived and the confidence intervals are also constructed in Sections

7.6.1 and 7.6.2, respectively. In Section 7.6.3, a simulation study is carried out
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on the reduced parameter model and an illustrative example is presented.

7.2 Model Description

In this model, we assume that the failure time data come from a cumulative

exposure model, and we consider the m-step-stress model with stress levels

x1, x2, · · · , xm under Type-I censoring with gamma distributed lifetimes. The

lifetime distribution at stress level xi, i = 1, 2, · · · ,m, is gamma distribution

with common shape parameter α and scale parameter θi.

This type of censoring scheme is a generalization of the Type-I censoring dis-

cussed in Chapter 3. We start with n identical units at an initial stress level x1,

and at a fixed time τ the stress level is increased to x2 and the successive failure

times are recorded. Then, at the fixed time 2τ , the stress is increased to x3, and

so on. So, the stress level starts with x1 and changed to x2, x3, · · · , xm at fixed

times τ, 2τ, · · · , (m − 1)τ , respectively. The experiment is then terminated at

time mτ , where τ < 2τ < · · · < mτ are fixed in advance. The lifetimes of units

larger than mτ are censored. Let Nk be the random number of units that fail

between (k − 1)τ and kτ at stress level xk for k = 1, 2, · · · ,m. The observed

censored sample is given by

t1 < · · · < tN1 < τ ≤ tN1+1 < · · · < tN1+N2 < 2τ ≤ · · · <

(m− 1)τ ≤ tN1+···+Nm−1+1 < · · · < mτ. (7.2.1)
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7.3 Maximum Likelihood Estimation

The likelihood function based on the observed Type-I censored data in (7.2.1)

is presented from which the MLEs of the unknown parameters α, θ1, θ2, · · · , θm

need to be obtained numerically. The likelihood function of this sample is given

by

L(θ|t) =
n!

(n− rm)!

m∏
k=1


rk∏

ik=rk−1+1

gk(tik)

 {1−Gm(mτ)}n−rm ,

for 0 < t1 < · · · < tr1 < τ ≤ tr1+1 < · · · < tr2 < 2τ ≤ · · · <

(m− 1)τ ≤ trm−1+1 < · · · < mτ, and 0 < rm < n, (7.3.1)

where

r0 = 0,

rk =
k∑
i=1

Ni, k = 1, 2, · · · ,m,

and t is the vector of observed failure time data. The MLEs of α, θ1, θ2, · · · , θm

exist only when all Nk
,s > 0. Since we are considering a gamma lifetime distri-

bution at all stress levels, with common shape parameter α and scale parameters

θi for distribution Fi, the likelihood function of the m-step-stress model is given
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by

L(α, θ1, θ2, · · · , θm|t) =
n!

(n− rm)!

1

[Γ(α)]rm

m∏
k=1

(θk)
−Nk

×
m∏
k=1


rk∏

ik=rk−1+1

(ζik)
α−1


× exp

−
m∑

k=1

 rk∑
ik=rk−1+1

ζik


× {1− IGγm(α)}n−rm ,

for 0 < t1 < · · · < tr1 < τ ≤ tr1+1 < · · · < tr2 < 2τ ≤ · · · <

(m− 1)τ ≤ trm−1+1 < · · · < mτ, (7.3.2)

where

ζik =
tik − (k − 1) τ

θk
+ τ

k−1∑
j=1

1

θj
, k = 1, 2, · · · ,m, (7.3.3)

and

γm = τ
m∑
j=1

1

θj
. (7.3.4)

As before, it is convenient to work with the log-likelihood function rather than
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the likelihood function in (7.3.2), which will be given by

l(α, θ1, θ2, · · · , θm|t) = ln [L (α, θ1, θ2, · · · , θm|t)]

= ln

(
n!

(n− rm)!

)
−rm ln (Γ(α))−

m∑
k=1

Nk ln (θk)+(α−1)
m∑
k=1


rk∑

ik=rk−1+1

ln (ζik)


−

m∑
k=1

 rk∑
ik=rk−1+1

ζik

+ (n− rm) ln (1− IGγm(α)) ,

for 0 < t1 < · · · < tr1 < τ ≤ tr1+1 < · · · < tr2 < 2τ ≤ · · · <

(m− 1)τ ≤ trm−1+1 < · · · < mτ. (7.3.5)

Differentiating the log-likelihood function in (7.3.5) with respect to α and θk

gives likelihood equations for finding the MLEs α̂ and θ̂k. To find these MLEs,

we need the first and second partial derivatives of (7.3.5). The first partial

derivatives are given by the following equations:

∂l(α, θ1, θ2, · · · , θm|t)

∂α
= −rmψ(α) +

m∑
k=1


rk∑

ik=rk−1+1

ln (ζik)


+

(n− rm)

1− IGγm(α)
[Ψ(α)IGγm(α)−B1 (γm)] , (7.3.6)
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∂l(α, θ1, θ2, · · · , θm|t)

∂θj
= −Nj

θj
+ (α− 1)

m∑
k=1


rk∑

ik=rk−1+1

1

ζik

∂

∂θj
(ζik)


−

m∑
k=1

 rk∑
ik=rk−1+1

∂

∂θj
ζik

+
(n− rm) (γm)α−1 e−γmτ

Γ(α)θ2
j [1− IGγm(α)]

,

for j = 1, 2, · · · , m, (7.3.7)

where Ψ (α) = Γ′(α)
Γ(α)

and B1 (v) =
∫ v

0
1

Γ(α)
ln (u) uα−1e−udu.

The maximum likelihood estimates must be obtained numerically because there

is no obvious simplification of the above non-linear likelihood equations. Here,

numerical maximization is carried out on the log-likelihood using R software.

First, we use the log-likelihood function and start with initial values. Then, the

function optim in R is used to maximize this log-likelihood function. After that,

the estimates are found and their confidence intervals are constructed, using the

Hessian matrix. The following is the algorithm used in order to find the MLEs

in the case when m = 3:

(a) Simulate n order statistics from the uniform (0,1) distribution, U1, U2, . . . , Un.

(b) Find N1 such that UN1 ≤ G1(τ1) ≤ UN1+1 where

G1(τ1) =
∫ τ1
θ1

0
1

Γ(α)
xα−1e−xdx.

(c) For i ≤ N1, Ti = θ1F
−1 (Ui), where F (t) =

∫ t
0

1
Γ(α)

e−xxα−1dx.

(d) Find N2 such that UN1+N2 ≤ G2(τ2) ≤ UN1+N2+1 where

G2(τ2) =
∫ τ2−τ1+

θ2
θ1
τ1

θ2
0

1
Γ(α)

xα−1e−xdx.

(e) For N1 + 1 ≤ i ≤ N1 +N2, T i = θ2 F
−1 (Ui) + τ1 − θ2

θ1
τ1.
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(f) Find N3 such that UN1+N2+N3 ≤ G3(τ3) ≤ UN1+N2+N3+1 where

G3(τ3) =
∫ u

0
1

Γ(α)
xα−1e−xdx where u = τ3 − τ2 + θ3

θ2
(τ2 − τ1 + θ2

θ1
τ1).

(g) ForN1+N2+1 ≤ i ≤ N1+N2+N3, T i = θ3 F
−1 (Ui)+τ2− θ3

θ2
(τ2−τ1+ θ2

θ1
τ1).

(h) Compute the MLEs of (α, θ1, θ2, θ3) based on T1, T2, . . . , TN1 , TN1+1, . . . ,

TN1+N2 , TN1+N2+1, · · · , TN1+N2+N3 , say α̂, θ̂1, θ̂2 and θ̂3.

7.4 Confidence Intervals

In this section, we consider two different methods for constructing confidence

intervals (CI) for the unknown parameters α, θ1, θ2, · · · , θm. The first method

uses the asymptotic distributions of the MLEs to obtain approximate CIs for

α, θ1, θ2, · · · , θm. The second method is based on a parametric bootstrap

method.

7.4.1 Approximate Confidence Intervals

We present an approximate method which provides good coverage probabilities

for large sample sizes and facilitates easy computation. Elements of Fisher

information matrix are found numerically for different values of m, and then

the asymptotic normality of the MLEs is used to construct the approximate

confidence intervals for α, θ1, θ2, · · · , θm.

Let I(α, θ1, θ2, · · · , θm) = [Iij(α, θ1, θ2, · · · , θm)] , for i, j = 1, 2, · · · ,m, denote

the observed Fisher information matrix of α, θ1, θ2, · · · , θm, where

Iij(α, θ1, θ2, · · · , θm) = −
(
∇2l(α, θ1, θ2, · · · , θm)

)
. (7.4.1)
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For simplicity, we take m = 3, then the observed Fisher information matrix

(I) is given by

I =



I11 I12 I13 I14

I21 I22 I23 I24

I31 I32 I33 I34

I41 I42 I43 I44


, (7.4.2)

where

I11 =
∂2l(α, θ1, θ2, θ3)

∂α2
= −r3ψ

′
(α) +

(n− r3)

(1− IGγ3(α))2

× [(1− IGγ3(α))
[
2ψ(α)B1(γ3) + IGγ3(ψ

′
(α)− ψ2(α))−B2(γ3)

]
− [ψ(α)IGγ3(α)−B1(γ3)]2], (7.4.3)

I12 =
∂2l(α, θ1, θ2, θ3)

∂α∂θ1

= −N1

θ1

− τ

θ2
1

r2∑
i=r1+1

1

ζi2
− τ

θ2
1

r3∑
i=r2+1

1

ζi3

+
(n− r3)(γ3)α−1eγ3τ

Γ(α)θ2
1 (1− IGγ3(α))2

× [(1− IGγ3(α)) ln(γ3)− ψ(α) + B1(γ3)] , (7.4.4)

I13 =
∂2l(α, θ1, θ2, θ3)

∂α ∂θ2

= − 1

θ2
2

r2∑
i=r1+1

(ti2 − tau)

ζi2
− τ

θ2
2

r3∑
i=r2+1

1

ζi3

+
(n− r3)(γ3)α−1e−γ3τ

Γ(α)θ2
2 (1− IGγ3(α))2

× [(1− IGγ3(α)) ln(γ3)− ψ(α) + B1(γ3)] , (7.4.5)
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I14 =
∂2l(α, θ1, θ2, θ3)

∂α ∂θ3

= − 1

θ2
3

r3∑
i=r2+1

(ti3 − 2τ)

ζi3

+
(n− r3)(γ3)α−1e−γ3τ

Γ(α)θ2
3 (1− IGγ3(α))2 [(1− IGγ3(α)) ln(γ3)− ψ(α) + B1(γ3)] , (7.4.6)

I22 =
∂2l(α, θ1, θ2, θ3)

∂θ2
1

=
αN1

θ2
1

+
(α− 1)τ

θ4
1 θ2

r2∑
i=r1+1

2 θ1ti + (θ2 − 2θ1)τ

ζ2
i2

+
(α− 1)τ

θ4
1 θ2 θ3

r3∑
i=r2+1

(2θ1θ2)(ti − 2τ) + (θ2 + 2θ1)θ3τ

ζ2
i3

− 2

θ3
1

[
(N2 +N3)τ +

r1∑
i=1

ti

]
+

(n− r3)(γ3)α−1e−γ3τ

Γ(α)θ4
1 (1− IGγ3(α))2

×
[
(1− IGγ3(α))

{(
1− (α− 1)(γ3)−1

)
τ − 2θ1

}
− τ

Γ(α)
(γ3)α−1e−γ3 , (7.4.7)

I23 =
∂2l(α, θ1, θ2, θ3)

∂θ1∂θ2

= −(α− 1)τ

θ2
1θ

2
2

r2∑
i=r1+1

ti − τ
(ζi2)

2
− (α− 1)τ 2

θ2
1θ

2
2

r3∑
i=r2+1

1

ζ2
i3

+
(n− r3)(γ3)α−1e−γ3τ 2

Γ(α)θ2
1θ

2
2 (1− IGγ3(α))2

×
[
(1− IGγ3(α))

(
1− (α− 1)(γ3)−1

)
− 1

Γ(α)
(γ3)α−1e−γ3

]
, (7.4.8)
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I24 =
∂2l(α, θ1, θ2, θ3)

∂θ1 ∂θ3

= −(α− 1)τ

θ2
1θ

2
3

r3∑
i=r2+1

ti − 2τ

ζ2
i3

+
(n− r3)(γ3)α−1e−γ3τ 2

Γ(α)θ2
1θ

2
3 (1− IGγ3(α))2

×
[
(1− IGγ3(α))

(
1− (α− 1)(γ3)−1

)
− 1

Γ(α)
(γ3)α−1e−γ3

]
, (7.4.9)

I33 =
∂2l(α, θ1, θ2, θ3)

∂θ2
2

=
N2

θ2
2

− (α− 1)

θ4
2

r2∑
i=r1+1

1

(ζi2)2
[(ti2 − τ)

×
[
(ti2 − τ) +

2θ2τ

θ1

]
] +

(α− 1)τ

θ1θ4
2θ3

r3∑
i=r2+1

(2θ1θ2)(ti − 2τ) + (2θ2 + θ1)θ3τ

(ζi3)
2

− 2

θ3
2

[
N3τ +

r2∑
i=r1+1

(ti − τ)

]
+

(n− r3)(γ3)α−1e−γ3τ

Γ(α)θ4
2 (1− IGγ3(α))2

×
[
(1− IGγ3(α))

{
(1− (α− 1)(γ3)−1)τ − 2θ2

}
− τ

Γ(α)
(γ3)α−1e−γ3

]
, (7.4.10)

I34 =
∂2l(α, θ1, θ2, θ3)

∂θ2 ∂θ3

= −(α− 1)τ

θ2
2θ

2
3

r3∑
i=r2+1

ti − 2τ

ζ2
i3

+
(n− r3)(γ3)α−1e−γ3τ 2

Γ(α)θ2
2θ

2
3 (1− IGγ3(α))2

×
[
(1− IGγ3(α))

(
1− (α− 1)(γ3)−1

)
− 1

Γ(α)
(γ3)α−1e−γ3

]
, (7.4.11)
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and

I44 =
∂2l(α, θ1, θ2, θ3)

∂θ2
3

=
N3

θ2
3

+
(α− 1)

θ4
3

r3∑
i=r2+1

(ti3 − 2τ)

(ζi3)2

×
[
(ti−3 − 2τ) +

2θ3

θ2

τ +
2θ3

θ1

τ

]
− 2

θ3
3

r3∑
i=r2+1

(ti − 2τ) +
(n− r3)(γ3)α−1e−γ3τ

Γ(α)θ4
3 (1− IGγ3(α))2

×
[
(1− IGγ3(α))

{
(1− (α− 1)(γ3)−1)τ − 2θ3

}
− τ

Γ(α)
(γ3)α−1e−γ3 , (7.4.12)

where B2 (v) =
∫ v

0
1

Γ(α)
(ln (u))2 uα−1e−udu and B1(v) is as given before.

It is known that I21 = I12, I31 = I13, I32 = I23, I41 = I14, I42 = I24 and I43 = I34.

Now, the variances and covariances of α̂, θ̂1, θ̂2 and θ̂3 can be obtained through

the observed Fisher information matrix as

V ar



α̂

θ̂1

θ̂2

θ̂3


= (I)−1 =



V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44


. (7.4.13)

The asymptotic distribution of the maximum likelihood estimates are then given

by α̂−α√
V11
∼ N(0, 1), θ̂1−θ1√

V22
∼ N (0, 1) , θ̂2−θ2√

V33
∼ N (0, 1) , and θ̂3−θ3√

V44
∼ N (0, 1),

which can be used to construct 100 (1− α) % confidence intervals for the pa-

rameters α, θ1, θ2 and θ3, respectively. These confidence intervals are given

by

α̂± z1−α
2

√
V11, (7.4.14)
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θ̂1 ± z1−α
2

√
V22, (7.4.15)

θ̂2 ± z1−α
2

√
V33 (7.4.16)

and

θ̂3 ± z1−α
2

√
V44, (7.4.17)

where zq is the q-th upper percentile of the standard normal distribution.

7.4.2 Bootstrap Confidence Intervals

Confidence intervals based on the parametric bootstrap sampling can be con-

structed. The following are the steps to generate the bootstrap confidence

intervals in the case when m = 3:

(a) Compute the MLEs of α, θ1, θ2 and θ3, by using the method described in

Section 7.3, based on T1, T2, . . . , TN1 , TN1+1, . . . , TN1+N2 , TN1+N2+1, · · · ,

TN1+N2+N3 , denoted by α̂, θ̂1, θ̂2 and θ̂3.

(b) Simulate n order statistics from the uniform (0,1) distribution.

(c) Find N1 such that UN1 ≤ G∗1 (τ1) ≤ UN1+1, where G∗1 (τ1) = F ∗1 (τ1) =∫ τ1
θ̂1

0
1

Γ(α̂)
xα̂−1e−xdx.

(d) For i ≤ N1, Ti = θ̂1F
∗−1 (Ui), where F ∗ (t) =

∫ t
0

1
Γ(α̂)

xα̂−1e−xdx.

(e) Find N2 such that UN1+N2 ≤ G∗2(τ2) ≤ UN1+N2+1, where G∗2 (τ2) =

F ∗2 (τ2) =
∫ τ2−τ1+

θ̂2
θ̂1
τ1

θ̂1
0

1
Γ(α̂)

xα̂−1e−xdx.

(f) For N1 + 1 ≤ i ≤ N1 +N2, T i = θ̂2 F
∗−1 (Ui) + τ1 − θ̂2

θ̂1
τ1.
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(g) Find N3 such that UN1+N2+N3 ≤ G∗3 (τ3) ≤ UN1+N2+N3+1, where G∗3 (τ3) =

F ∗3 (τ3) =
∫ y

0
1

Γ(α̂)
xα̂−1e−xdx and y = 1

θ3
(τ3 − τ2 + θ̂3

θ̂2
(τ2 − τ1 + θ̂2

θ̂1
τ1)).

(h) ForN1+N2+1 ≤ i ≤ N1+N2+N3, T i = θ̂3 F
−1 (Ui)+τ2− θ̂3

θ̂2
(τ2−τ1+ θ̂2

θ̂1
τ1).

(i) Compute the MLEs of (α, θ1, θ2, θ3) based on T1, T2, . . . , TN1 , TN1+1, · · · ,

TN1+N2 , TN1+N2+1, · · · , TN1+N2+N3 , say α̂(1), θ̂
(1)
1 , θ̂

(1)
2 and θ̂

(1)
3 .

(j) Repeat steps (b)-(h) B times to obtain B sets of MLEs of α, θ1, θ2 and θ3 .

A two-sided 100(1−α)% bootstrap confidence interval of α, θ1, θ2 and θ3 are

then given by

CIα = [α̂− z1−α
2

√
MSEα̂, α̂ + z1−α

2

√
MSEα̂], (7.4.18)

CIθ1 = [θ̂1 − z1−α
2

√
MSEθ̂1 , θ̂1 + z1−α

2

√
MSEθ̂1 ], (7.4.19)

CIθ2 = [θ̂2 − z1−α
2

√
MSEθ̂2 , θ̂2 + z1−α

2

√
MSEθ̂2 ] (7.4.20)

and

CIθ3 = [θ̂3 − z1−α
2

√
MSEθ̂3 , θ̂1 + z1−α

2

√
MSEθ̂3 ], (7.4.21)

where theMSEa = var (a)+(bias(a))2, and bias (a) = a−a. The performance of

the approximate confidence intervals and the bootstrap confidence intervals are

evaluated using a simulation study in the next section followed by an illustrative

example.
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7.5 Simulation Study

A simulation study is carried out for different values of τ1, τ2 and τ3. The

results are presented in Tables 7.1 to 7.4, and they are based on an average over

1000 replications.

In Tables 7.1 and 7.3, we see how the failures are distributed in our model

when we take different values of τ1, τ2 and τ3. We observe that as τ1 increases,

the failure probabilities in the first interval also increase. It can also be seen

that the larger the gap between τ1 and τ2 the larger the failure probabilities

in the second interval [τ1, τ2], and the smaller the failure probabilities in the

third interval [τ2, τ3]. We also observe that the larger the gap between τ2 and

τ3 the smaller the failure probabilities in the first and the second intervals and

the larger the failure probabilities in the third interval. We also can see that

the failure probabilities at the first, second and third intervals add up to 100%.

The reason for that is because as mentioned earlier, we only consider the case

when all Nk
,s > 0, for k = 1, 2, 3, which means that these probabilities are

conditional. They were calculated by dividing the number of failures at an

interval by the total number of failures at all three intervals.

In Tables 7.2 and 7.4, we see that the MSEs of θ̂3 are less than those of α̂, θ̂1

and θ̂2. The MSEs of the estimates α̂, θ̂1, θ2 and θ̂3 are smaller when n is larger

(see Table 7.4). We can see that as τ1 increases the MSEs of α̂ and θ̂1 decrease.

We also observe that the wider the gap between τ1 and τ2 the smaller the MSEs

of α̂, θ̂1 and θ̂2, and the larger the MSE of θ̂3. If the third interval [τ2, τ3]

increases, then the MSEs of α̂ and θ̂3 decrease, and the MSE of θ̂2 decrease.
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Table 7.1: Conditional failure probabilities for the multiple step-stress test under
Type-I censoring when α = 2, θ1 = e1.5, θ2 = e1, θ3 = e.5 and n = 150.

Conditional failure prob-
abilities (in %)

τ1 τ2 τ3 0 < t < τ1 τ1 < t < τ2 τ2 < t < τ3

2 4 5 13.95 48.07 37.98
3 4 5 29.62 27.21 43.17

8 16.93 15.46 67.61
7 9 17.05 57.37 25.58

4 5 9 25.41 15.19 59.40
6 9 26.32 30.11 43.57

5 6 10 34.03 14.33 51.64
7 10 34.98 27.88 37.14

In Tables 7.2 and 7.4, we observe that the coverage probabilities of the confi-

dence intervals obtained by using the parametric bootstrap method are much

closer to the nominal levels than those obtained by using the approximate

method for almost all the parameters. From these findings, we would rec-

ommend the use of the bootstrap method for the construction of confidence

intervals for the model parameters.

7.5.1 Illustrative Example

In this subsection, we consider the data generated with n = 40, α = 2, θ1 =

e1.5 = 4.481689, θ2 = e1 = 2.718282 , θ3 = e.5 = 1.648721 , τ1 = 5 , τ2 = 7

and τ3 = 12. The simulated data are presented in Table 7.5.

We consider three different times τ3 = 10, 11, 12. The respective MLEs of

α, θ1, θ2 and θ3 and their corresponding standard errors are calculated and are

given in Table 7.6. It can be seen from Table 7.6 that the standard errors of α̂

are the smallest compared to the others, while the standard errors of θ̂2 are the
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Table 7.2: Estimated coverage probabilities (in %) of confidence intervals for a
multiple step-stress model under Type-I censoring for α, θ1, θ2 and θ3 based on 1000

simulations when α = 2, θ1 = e1.5, θ2 = e1, θ3 = e.5 and n = 150.

τ1 τ2 τ3 Bias MSE Approx. Boot Approx. Boot Approx. Boot
α 2 4 5 0.3186 1.1271 97.1 91.1 98.6 94.7 99.4 97.9

3 4 5 0.1739 0.4463 99.2 90.3 99.7 94.7 100 99
8 0.1760 0.4138 86.9 91.5 91.4 96 96.4 99.2

7 9 0.1324 0.3741 91.1 90.3 95.5 95.3 98.5 99
4 5 9 0.1118 0.2530 85.3 90.8 90.7 94.4 96.9 98.3

6 9 0.1012 0.2335 91.1 91.1 95.4 95.5 99 98.2
5 6 10 0.0849 0.1656 84.9 88.3 90.6 92.6 97.7 97.9

7 10 0.0888 0.1670 91.5 88.7 95.7 93.4 99.1 98
θ1 2 4 5 1.2764 37.7601 87 89.8 92.3 93.1 97.1 97.3

3 4 5 0.4395 8.2510 92 89.2 95.9 94.7 99.1 98.6
8 0.4300 12.9653 92.9 90.6 96.4 95.3 99 99.1

7 9 0.5047 7.9598 93.1 89.2 96.9 95.2 99 97.8
4 5 9 0.2022 3.5580 94.5 90.4 97.5 94.6 99.7 98.4

6 9 0.1766 3.0939 96.4 90.5 98.6 94.8 99.9 98.4
5 6 10 0.0859 1.9731 98.2 88.3 99.5 93.1 99.9 97.6

7 10 0.0511 1.8297 97.2 88.7 99.4 93.4 100 97.7
θ2 2 4 5 0.0746 1.1082 94.9 89.6 97.3 94.2 99.2 98.4

3 4 5 0.1204 0.9940 98.7 90 99.4 95.2 100 98.8
8 0.1233 1.0467 98.9 92.5 99.4 95.9 99.7 98.9

7 9 0.0187 0.3439 98.3 90.7 99.4 95 99.9 98.9
4 5 9 0.1128 0.6695 99.6 92.5 99.8 96.3 100 99.2

6 9 0.0544 0.3671 99.7 90 99.8 95.3 100 98.5
5 6 10 0.1501 0.7300 99.2 90.9 99.7 96 99.9 98.9

7 10 0.0279 0.2930 99.7 90.8 100 95.3 100 98.8
θ3 2 4 5 0.0337 0.2792 97.5 95.1 98.3 97.8 99.4 99.6

3 4 5 0.0317 0.1970 91.5 97 96 98.9 98.8 99.8
8 -0.0061 0.0826 97.3 97.7 98.9 99.1 99.9 100

7 9 0.0215 0.1266 95.8 96.6 98.3 98.4 99.9 99.8
4 5 9 -0.0165 0.0637 99.2 95.9 99.8 98.4 100 99.8

6 9 -0.0004 0.0741 99.5 96.1 99.8 98.2 100 99.7
5 6 10 -0.0003 0.0544 99.5 97 99.9 98.4 100 99.9

7 10 0.0019 0.0703 97.3 96.3 98.5 98.5 99.8 99.9
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Table 7.3: Conditional failure probabilities for the multiple step-stress test under
Type-I censoring when α = 2, θ1 = e1.5, θ2 = e1, θ3 = e.5 and n = 250.

Conditional failure prob-
abilities (in %)

τ1 τ2 τ3 0 < t < τ1 τ1 < t < τ2 τ2 < t < τ3

2 4 5 14.05 47.96 37.99
3 4 5 29.59 27.25 43.17

8 16.91 15.38 67.71
7 9 16.96 57.58 25.46

4 5 9 25.48 15.28 59.24
6 8 29.04 33.53 37.43

9 26.20 30.30 43.50
5 6 10 34.05 14.45 51.49

7 8 43.38 35.08 21.54
10 34.74 27.90 37.36

largest. We also can see that for each estimate the standard error is the largest

when τ3 = 12, at which case the total number of failures is 40, and since n = 40

so this means that there are no censored data at this case.

The confidence intervals for α, θ1, θ2 and θ3 obtained by the approximate

method and the bootstrap method for different values of τ3 are given in Table

7.7. From this table, we can see that for θ1 the bootstrap confidence intervals

are narrower than the approximate confidence intervals. For both α and θ3

the approximate confidence intervals are slightly narrower than the bootstrap

confidence intervals.
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Table 7.4: Estimated coverage probabilities (in %) of confidence intervals for a
multiple step-stress model under Type-I censoring for α, θ1, θ2 and θ3 based on 1000

simulations when α = 2, θ1 = e1.5, θ2 = e1, θ3 = e.5 and n = 250.

90% C.I. 95% C.I. 99% C.I.

τ1 τ2 τ3 bias MSE Approx. Boot Approx. Boot Approx. Boot

α 2 4 5 0.1760 0.5002 97.3 89.9 98.7 95.1 99.8 98.6
3 4 5 0.0986 0.2029 99.5 89.9 99.9 94.4 100 98.9

8 0.0786 0.1782 87.3 90 92.9 94.4 98.2 98.8
7 9 0.0637 0.1793 92.1 91.7 95.5 95 98.7 98.8

4 5 9 0.0533 0.1199 95.5 89.7 98.1 95.3 99.5 98.9
6 8 0.0514 0.1211 97.6 90.8 99.6 95.1 100 98.2

9 0.0635 0.1237 90.9 89.7 95.5 95.5 98.7 98.8
5 6 10 0.0431 0.0853 86.4 89.1 92.4 94.5 98.7 98.9

7 8 0.0450 0.0925 99.6 88.9 100 93.6 100 97.9
10 0.0387 0.0923 91.4 89.8 95.7 95 99.1 99

θ1 2 4 5 0.7329 16.0239 86.9 90 91.4 94.7 96.8 98.3
3 4 5 0.1986 3.5961 93.8 89.4 97.4 94 99.5 98.3

8 0.2390 3.4936 93.8 89.6 96.8 94.5 99.5 98.4
7 9 0.3416 3.6475 93.4 90.5 96.3 94.7 99.1 98.5

4 5 9 0.1422 1.8799 95.5 90.1 98.5 95.4 99.9 98.7
6 8 0.1432 1.8789 94.3 90.3 98.3 94.4 99.8 98.5

9 0.0832 1.7071 95.7 90 98.7 94.9 99.8 98.7
5 6 10 0.0614 1.0964 97.9 89.4 99.4 94.7 99.9 98.9

7 8 0.0822 1.1618 97.7 89.3 99.2 93.3 99.8 97.8
10 0.1005 1.1796 97.5 90.1 98.7 94.5 100 98.8

θ2 2 4 5 0.0562 0.6980 93.5 91.7 96.2 96.3 98.9 98.3
3 4 5 0.0526 0.4910 99.4 90.4 99.8 95.7 99.8 99

8 0.1014 0.5423 98.5 88.5 99.5 94.6 100 98.7
7 9 0.0107 0.2044 98.3 90.1 99.3 94.8 99.9 98.9

4 5 9 0.0694 0.4026 99.4 89.8 99.5 94.9 99.9 98.5
6 8 0.0290 0.2052 99.9 89.9 100 95.1 100 99.2

9 0.0093 0.2162 99.9 89.7 100 95.1 100 99.2
5 6 10 0.0568 0.3071 99.9 90.2 100 94.6 100 98.9

7 8 0.0082 0.1818 99.8 89.7 99.9 94.6 100 98.7
10 0.0330 0.1848 99.8 89.7 99.9 94.6 100 98.7

θ3 2 4 5 0.0101 0.1450 97.7 96.1 98.9 98.3 99.9 99.6
3 4 5 0.0155 0.1064 92.1 96.9 96.7 98.9 99.2 100

8 -0.0016 0.0526 96.8 96.5 98.3 98.3 99.8 100
7 9 0.0248 0.0676 99.8 95.6 99.9 97.8 100 99.8

4 5 9 0.0023 0.0372 93 96.6 96.3 98.3 99.1 99.7
6 8 0.0232 0.0568 96 96.7 98.5 98.3 99.8 99.7

9 -0.0047 0.0420 96.3 95.7 98.9 98.2 99.8 99.9
5 6 10 -0.0052 0.0339 96.7 96.8 99.2 98.4 99.9 99.8

7 8 0.0227 0.0896 98.6 96.5 99.2 98.4 99.8 100
10 0.0049 0.0426 100 96.3 100 98.8 100 99.8
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Table 7.5: Simulated data for the illustrative example.

Stress level Failure times
θ1 = e1.5 0.821 0.909 1.718 2.208 2.322 2.330 2.431 2.832 2.897 3.462

3.882 4.179 4.635
θ2 = e1 5.009 5.190 5.312 5.535 5.602 5.644 5.687 5.951 5.997 6.174

6.463 6.547 6.785
θ3 = e.5 7.080 7.282 7.284 7.986 8.268 8.693 8.756 8.906 9.026 9.489

9.537 10.338 11.144 11.593

Table 7.6: The MLEs of α, θ1, θ2 and θ3 and their standard errors.

τ3 α̂ Se(α̂) θ̂1 Se(θ̂1) θ̂2 Se(θ̂2) θ̂3 Se(θ̂3)
10 1.7740 0.1691 4.9798 0.7611 2.0140 1.5266 1.7228 0.2372
11 1.7699 0.1117 4.9967 0.7606 2.0160 1.5238 1.7449 0.2093
12 1.8172 0.1898 4.8097 0.7677 1.9929 1.5507 1.5294 0.2336

7.6 The Reduced-Parameter Model

In this section, we consider a re-parametrization of the m-step-stress model, in

which θi is assumed to satisfy a log-linear link function of the form

lnθi = a− bxi, i = 1, 2, · · · ,m, (7.5.1)

where a and b are unknown parameters and we need to develop inference only

for these two parameters instead of for the original m parameters θ1, θ2, . . . , θm.

7.6.1 Maximum Likelihood Estimation

The likelihood function is obtained based on the observed Type-I censored data

in (7.2.1), and from it the MLEs of the three unknown parameters α, a and b

are then obtained numerically. The log-likelihood function of this sample can
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Table 7.7: Interval estimation for the simulated data presented in Table 7.5.

C.I. for α
τ3 Method 90% 95% 99%
10 Approx C.I. (1.4959, 2.0520) (1.4427, 2.1130) (1.3385, 2.2094)

Bootstrap C.I. (1.1728, 2.3752) (1.0576, 2.4903) (0.8325, 2.7155)
11 Approx C.I. (1.5862, 1.9535) (1.5510, 1.9887) (1.4822, 2.0575)

Bootstrap C.I. (1.1613, 2.3784) (1.0447, 2.4950) (0.8169, 2.7229)
12 Approx C.I. (1.5050, 2.1295) (1.4451, 2.1893) (1.3282, 2.3063)

Bootstrap C.I. (1.2507, 2.3838) (1.1421, 2.4924) (0.9300, 2.7044)
C.I. for θ1

10 Approx C.I. (3.7279, 6.2317) (1.4427, 2.1053) (3.0193, 6.9403)
Bootstrap C.I. (4.0490, 5.9106) (3.8708, 6.0889) (3.5223, 6.4374)

11 Approx C.I. (3.7457, 6.2477) (3.5060, 6.4874) (3.0377, 6.9558)
Bootstrap C.I. (4.0206, 5.9728) (3.8336, 6.1598) (3.4681, 6.5253)

12 Approx C.I. (3.5489, 6.0705) (3.3074, 6.3120) (2.8353, 6.7841)
Bootstrap C.I. (3.8811, 5.7383) (3.7032, 5.9162) (3.3555, 6.2639)

C.I. for θ2

10 Approx C.I. (0.0000, 4.5251) (0.0000, 5.0063) (0.0000, 5.9465)
Bootstrap C.I. (1.4193, 2.6086) (1.3054, 2.7225) (1.0828, 2.9452)

11 Approx C.I. (0.0000, 4.5224) (0.0000, 5.0026) (0.0000, 5.9410)
Bootstrap C.I. (1.4299, 2.6021) (1.3176, 2.7144) (1.0981, 2.9338)

12 Approx C.I. (0.0000, 4.5436) (0.0000, 5.0323) (0.0000, 5.9873)
Bootstrap C.I. (1.4387, 2.5471) (1.3326, 2.6533) (1.1251, 2.8608)

C.I. for θ3

10 Approx C.I. (1.3327, 2.1130) (1.2579, 2.1878) (1.1118, 2.3339)
Bootstrap C.I. (1.1217, 2.3240) (1.0065, 2.4392) (0.7814, 2.6643)

11 Approx C.I. (1.4007, 2.0891) (1.3348, 2.1551) (1.2059, 2.2840)
Bootstrap C.I. (1.1636, 2.3263) (1.0522, 2.4377) (0.8345, 2.6553)

12 Approx C.I. (1.1452, 1.9135) (1.0716, 1.9871) (0.9278, 2.1310)
Bootstrap C.I. (1.0113, 2.0474) (0.9121, 2.1466) (0.7181, 2.3406)
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be written as

l(α, a, b|t) = ln [L (α, a, b|t)]

= ln

(
n!

(n− rm)!

)
−rm ln (Γ(α))−

m∑
k=1

Nk(a−bxk)+(α−1)
m∑
k=1


rk∑

ik=rk−1+1

ln
(
ζ∗ik
)

−
m∑
k=1

 rk∑
ik=rk−1+1

ζ∗ik

+ (n− rm) ln
(
1− IGγ∗m(α)

)
,

for t1 < · · · < tN1 < τ ≤ tN1+1 < · · · < tN1+N2 < 2τ ≤ · · · <

(m− 1)τ ≤ tN1+···+Nm−1+1 < · · · < tN1+N2+···+Nm < mτ, (7.5.2)

where

ζ∗ik = (tik − (k − 1) τ)e−a+bxk + τe−a
k−1∑
j=1

eb xj , for k = 1, 2, · · · , m, (7.5.3)

and

γ∗m = τ e−a
m∑
j=1

ebxj . (7.5.4)

Now, instead of differentiating the log-likelihood function with respect to α and

θi for i = 1, 2, · · · ,m, we differentiate (7.5.2) with respect to α, a and b. As

before, we will need the first and second partial derivatives of (7.5.2), but here

with respect to the parameters α, a and b. The first partial derivatives are given
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by the following equations:

∂l(α, a, b|t)

∂α
= −rmψ(α) +

m∑
k=1


rk∑

ik=rk−1+1

ln
(
ζ∗ik
)

+
(n− rm)

1− IGγ∗m(α)

[
Ψ(α)IGζ∗m(α)−B1 (γ∗m)

]
, (7.5.5)

∂l(α, a, b|t)

∂a
= −

m∑
k=1

Nk + (α− 1)
m∑
k=1


rk∑

ik=rk−1+1

(−1)


−

m∑
k=1

 rk∑
ik=rk−1+1

−ζ∗ik

+
(n− rm) (γ∗m)α e−γ

∗
m

Γ(α)
[
1− IGγ∗m(α)

] ,
(7.5.6)

and

∂l(α, a, b|t)

∂b
=

m∑
k=1

Nkxk + (α− 1)
m∑
k=1


rk∑

ik=rk−1+1

1

ζ∗ik
A1(tik)


−

m∑
k=1


rk∑

ik=rk−1+1

A1(tik)

− (n− rm)γ∗α−1
m e−γ

∗
m

Γ(α)
[
1− IGγ∗m(α)

] [τe−a m∑
j=1

xje
bxj ], (7.5.7)
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where

Ψ (α) =
Γ′ (α)

Γ (α)
,

B1 (v) =

∫ v

0

1

Γ (α)
ln (u) uα−1e−udu,

A1(tik) = (tik − (k − 1)τ)xke
−a+bxk + τea

k−1∑
j=1

xje
bxj .

Since there is no obvious simplification of the above non-linear likelihood equa-

tions, the maximum likelihood estimates of the parameters need to be obtained

numerically as mentioned earlier. So, the required numerical maximization was

carried out by using the R software. First, we use the log-likelihood function

and start with initial values. Then, the function optim in R is used to maxi-

mize this log-likelihood function. After that, the estimates are found and their

confidence intervals are constructed, using the Hessian matrix. Since for the

complete parametrization we used m = 3, so we will consider the same setting

here. The following is the algorithm used to find the MLEs:

(a) Simulate n order statistics from the uniform (0,1) distribution, U1, U2, . . . , Un.

(b) Find N1 such that UN1 ≤ G1(τ1) ≤ UN1+1, where

G1(τ1) =
∫ τ1e−a+bx1

0
1

Γ(α)
xα−1e−xdx.

(c) For i ≤ N1, Ti = ea−bx1F−1 (Ui), where F (t) =
∫ t

0
1

Γ(α)
e−xxα−1dx.

(d) Find N2 such that UN1+1 ≤ G2(τ2) ≤ UN1+N2 , where

G2(τ2) =
∫ y1

0
1

Γ(α)
xα−1e−xdx and y1 = τ2+τ1e−b(x2−x1)τ1

ea−bx2
.

(e) For N1 + 1 ≤ i ≤ N1 +N2, T i = ea−bx2 F−1 (Ui) + τ1(1− e−b(x2−x3)).
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(f) Find N3 such that UN1+N2+N3 ≤ G3(τ3) ≤ UN1+N2+N3+1 where

G3(τ3) =
∫ y2

0
1

Γ(α)
xα−1e−xdx and y2 = τ3−τ2+e−b(x3−x2)(τ2+τ1e−b(x2−x1)τ1)

ea−bx3
.

(g) For N1 + N2 + 1 ≤ i ≤ N1 + N2 + N3, T i = ea−bx3 F−1 (Ui) + τ2 −

e−b(x3−x2)(τ2 − τ1(1− e−b(x2−x1))).

(h) Compute the MLEs of (α, a, b) based on T1, T2, . . . , TN1 , TN1+1, . . . ,

TN1+N2 , TN1+N2+1, · · · , TN1+N2+N3 , say α̂, â, b̂.

7.6.2 Confidence Intervals

As in Section 7.4, we will use two different methods for constructing confidence

intervals (CI) for the unknown parameters α, a and b. The asymptotic distri-

butions of the MLEs is then used to obtain the approximate CIs for α, a and b.

Here again, we use the parametric bootstrap method as the second method for

constructing confidence intervals for α, a and b.

Approximate Confidence Intervals

We present an approximate method which provides good coverage probabilities

for large sample sizes and also facilitates easy computation. Elements of Fisher

information matrix are found numerically for different values of m, and then

the asymptotic normality of the MLEs is used to construct the approximate

confidence intervals for α, a and b.
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LetI(α, a, b) = [Iij(α, a, b)] , for i, j = 1, 2, 3, denote the observed Fisher infor-

mation matrix of α, a and b, where

Iij(α, a, b) = −
(
∇2l(α, a, b)

)
. (7.5.8)

The observed Fisher information matrix (I) is given by

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 , (7.5.9)

where

I11 =
∂2l(α, a, b)

∂α2
= −r3Ψ

′
(α) +

(n− r3)(
1− IGγ∗3

(α)
)2

[(
1− IGγ∗3

(α)
)

[
2Ψ(α)B1(γ∗3) + IGγ∗3

(Ψ
′
(α)−Ψ2(α))−B2(γ∗3)

]
−
[
Ψ(α)IGγ∗3

(α)−B1(γ∗3)
]2
, (7.5.10)

I12 =
∂2l(α, a, b)

∂α∂a
=

3∑
k=1

rk∑
i=rk−1+1

(−1) +
(n− r3)(γ∗3)αe−γ

∗
3

Γ(α)
(
1− IGγ∗3

(α)
)2

[(
1− IGγ∗3

(α)
)

ln(γ∗3)−Ψ(α) + B1(γ∗3)
]
, (7.5.11)
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I13 =
∂2l(α, a, b)

∂α ∂b
=

3∑
k=1


rk∑

i=rk−1+1

1

ζ∗ik
A1(tik)


+

(n− r3)γ∗α−1
3 e−γ

∗
3 τ e−a

3∑
j=1

xj e
b xj

Γ(α)
(
1− IGγ∗3

(α)
)2

×
{

Ψ(α)−
(
1− IGγ∗3

(α)
)

lnγ∗3 − B1(γ∗3)
}
, (7.5.12)

I22 =
∂2l(α, a, b)

∂a2
= −

3∑
k=1

rk∑
i=rk−1+1

ζ∗r3 +
(n− r3)(γ∗α3 )e−γ

∗
3

Γ(α)
(
1− IGγ∗3

(α)
)2

×
[(

1− IGγ∗3
(α)
)

(γ∗3 − α)− 1

Γ(α)
(γ∗α3 )e−γ

∗
3

]
, (7.5.13)

I23 =
∂2l(α, a, b)

∂a∂b
= −

3∑
k=1

rk∑
i=rk−1+1

(−A1(tik))+
(n− r3)(γ∗α3 )e−γ

∗
3 τe−a

∑3
j=1 xje

bxj

Γ(α)
(
1− IGγ∗3

(α)
)2

×
[(

1− IGγ∗3
(α)
) (

(αγ∗−1
3 − 1

)
+

1

Γ(α)
(γ∗α−1

3 )e−γ
∗
3

]
, (7.5.14)
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and

I33 =
∂2l(α, a, b)

∂b2

= (α− 1)
3∑

k=1

rk∑
i=rk−1+1

1

ζ∗2ik

{
ζ∗ikA2(tik)− (A1(tik))

2
}

−
3∑

k=1

rk∑
i=rk−1+1

A2(tik)−
(n− r3)τe−aγ∗α−1

3 e−γ
∗
3

Γ(α)
(
1− IGγ∗3

(α)
)2

× [(1− IGγ∗3
(α))


3∑
j=1

x2
je
bxj + τe−a

(
(α− 1)γ∗−1

3 − 1
)( 3∑

j=1

xje
bxj

)2


+
1

Γ(α)
γ∗α−1

3 e−γ
∗
r3τe−a

(
3∑
j=1

xje
bxj

)2

], (7.5.15)

where

B1 (v) =

∫ v

0

1

Γ (α)
(ln u) uα−1e−udu,

B2 (v) =

∫ v

0

1

Γ (α)
(ln u)2uα−1e−udu,

A1(tik) = (tik − (k − 1)τ)xke
−a+bxk + τea

k−1∑
j=1

xje
bxj ,

A2(tik) = (tik − (k − 1)τ)x2
ke
−a+bxk + τea

k−1∑
j=1

x2
je
bxj .

It is known that I21 = I12, I31 = I13 and , I32 = I23. Now, the variances

and covariances of α̂, â and b̂ can be obtained through the observed Fisher

information matrix as
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V ar


α̂

â

b̂

 = (I)−1 =


V11 V12 V13

V21 V22 V23

V31 V32 V33

 . (7.5.16)

The asymptotic distribution of the maximum likelihood estimates are then given

by α̂−α√
V11
∼ N(0, 1), â−a√

V22
∼ N (0, 1) and b̂−b√

V33
∼ N (0, 1), which can be used to

construct 100 (1− α) % confidence intervals for α, a and b, respectively. These

confidence intervals are given by

α̂± z1−α
2

√
V11, (7.5.17)

â± z1−α
2

√
V22 (7.5.18)

and

b̂± z1−α
2

√
V33, (7.5.19)

where zq is the q-th upper percentile of the standard normal distribution.

Bootstrap Confidence Intervals

Confidence intervals based on the parametric bootstrap sampling can be con-

structed. The following are the steps to generate the bootstrap confidence

intervals for the case when m = 3:

(a) Compute the MLEs of α, a and b, using the method described in Section

7.3, based on T1, T2, . . . , TN1 , TN1+1, . . . , TN1+N2 , TN1+N2+1, · · · , TN1+N2+N3 ,

denoted by α̂, â and b̂.
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(b) Simulate n order statistics from the uniform (0,1) distribution, denoted by

U1, U2, . . . , Un.

(c) Find N1 such that UN1 ≤ G∗1 (τ1) ≤ UN1+1, where G∗1 (τ1) = F ∗1 (τ1) =∫ y1
0

1
Γ(α̂)

xα̂−1e−xdx where y1 = τ1

eâ−b̂x1
.

(d) For i ≤ N1, Ti = eâ−b̂x1F ∗−1 (Ui), where F ∗ (t) =
∫ t

0
1

Γ(α̂)
xα̂−1e−xdx.

(e) Find N2 such that UN1+N2 ≤ G∗2(τ2) ≤ UN1+N2+1, where G∗2 (τ2) =

F ∗2 (τ2) =
∫ y2

0
1

Γ(α̂)
xα̂−1e−xdx, and y2 = (τ2 − τ1)e−â+b̂x2 + τ1e

−â+b̂x1 .

(f) For N1 + 1 ≤ i ≤ N1 +N2, T i = eâ−b̂x2F ∗−1 (Ui) + τ1 − e−b̂(x2−x1)τ1.

(g) Find N3 such that UN1+N2+N3 ≤ G∗3(τ3) ≤ UN1+N2+N3+1, where G∗3 (τ3) =

F ∗3 (τ3) =
∫ y3

0
1

Γ(α̂)
xα̂−1e−xdx, and y3 = eâ−b̂x3(τ3 − τ2 + e−b̂(x3−x2)(τ2 − τ1 +

e−b̂(x2−x1)τ1)).

(h) For N1 + N2 + 1 ≤ i ≤ N1 + N2 + N3, T i = eâ−b̂x3F−1 (Ui) + τ2 −

e−b̂(x3−x2)(τ2 − τ1 + e−b̂(x2−x1)τ1).

(i) Compute the MLEs of (α, a, b) based on T1, T2, . . . , TN1 , TN1+1, · · · ,

TN1+N2 , TN1+N2+1, · · · , TN1+N2+N3 , say α̂(1), â(1) and b̂(1).

(j) Repeat steps (b)-(h) B times to obtain B sets of MLEs of α, a and b.

A two-sided 100(1 − α)% bootstrap confidence interval of α, a and b are then

given by

CIα = [α̂− z1−α
2

√
MSEα̂, α̂ + z1−α

2

√
MSEα̂], (7.5.20)

CIa = [â− z1−α
2

√
MSEâ, â+ z1−α

2

√
MSEâ] (7.5.21)

and

CIb = [b̂− z1−α
2

√
MSEb̂, b̂+ z1−α

2

√
MSEb̂], (7.5.22)
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where MSEs = var (s) + (bias(s))2, and bias (s) = s − s. The performance of

the approximate confidence intervals and the bootstrap confidence intervals are

evaluated by using a simulation study in the next subsection followed by an

illustrative example.

7.6.3 Simulation Study

A simulation study is carried out for different values of τ1, τ2 and τ3. The

results are presented in Tables 7.8 to 7.11, and they are based on an average

over 1000 replications.

In Tables 7.8 and 7.10, we can see how the failures are distributed in our model

when we take different values of τ1, τ2 and τ3. We observe that as τ1 increases,

the failure probability in the first interval also increases. It is seen that as the

gap between τ1 and τ2 increases the failure probabilities in the second interval

[τ1, τ2] increase, while those in the third interval [τ2, τ3] decrease. And when the

gap between τ2 and τ3 increases the failure probabilities in both the first and the

second intervals decrease, while those in the third interval increase. Here again,

we observe that the failure probabilities at the first, second and third intervals

add up to 100%. The reason for that is because as mentioned earlier, we only

consider the case when all Nk
,s > 0, for k = 1, 2, 3, which means that these

probabilities are conditional. They were calculated by dividing the number of

failures at an interval by the total number of failures at all three intervals.

In Tables 7.9 and 7.11, we see that the MSEs of b̂ are less than those of α̂ and

â. If we look at the MSEs of α̂, â and b̂, we see that the wider the gap between

τ1 and τ2 the smaller the MSEs of all the estimates. When only increasing the
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Table 7.8: Conditional failure probabilities for the multiple step-stress test Type-I
censoring when α = 2, a = 4, b = 2, x1 = 1, x2 = 1.5, x3 = 2.5 and n = 150.

Conditional failure prob-
abilities (in %)

τ1 τ2 τ3 0 < t < τ1 τ1 < t < τ2 τ2 < t < τ3

4 5 9 10.21 12.68 77.11
6 8 10.48 26.51 63.01

9 10.55 26.06 63.39
8 10 10.40 49.50 40.10

5 6 10 14.76 13.16 71.98
7 8 16.17 29.01 54.83

10 14.71 26.60 58.69
6 7 8 21.70 14.89 63.41
8 9 10 31.94 14.39 53.67

value of τ3 and keeping the values of τ1 and τ2 the same, we can see that the

MSEs of all estimates are approximately the same. By comparing the MSEs

in Tables 7.9 and 7.11, we see that for larger n we have smaller MSE values.

In Table 7.9, it is seen that the coverage probabilities obtained by using the

bootstrap method are closer to the nominal levels than those obtained by using

the approximate method. These coverage probabilities based on the bootstrap

method are equal or below the the nominal levels for α while they are equal

or above the nominal levels for a and b. As both n and r increase (see Table

7.11), the coverage probabilities based on the bootstrap method get closer to

the nominal levels.

Illustrative Example

In this subsection, we consider the data generated with n = 40, α = 2, a =

4, b = 2, x1 = 1, x2 = 1.5 , x3 = 2.5 , τ1 = 5 , τ2 = 7 and τ3 = 9. The
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Table 7.9: Estimated coverage probabilities (in %) of confidence intervals for the
reduced multiple step-stress model under Type-I censoring for α, a and b based on

1000 simulations when α = 2, a = 4, b = 2, x1 = 1, x2 = 1.5, x3 = 2.5 and n = 150.

90% C.I. 95% C.I. 99% C.I.
τ1 τ2 τ3 Bias MSE Approx. Boot Approx. Boot Approx. Boot

α 4 5 9 -0.1421 0.2265 87.9 84.4 94.2 90.6 98.7 97.1
6 8 0.0842 0.2341 99.3 92.3 99.9 95.9 100 98.4

9 0.0196 0.2115 97.7 86.4 99.4 92.5 99.8 97.9
8 10 0.0666 0.1514 89.5 88.9 93.4 94.4 98.1 99.3

5 6 10 -0.0814 0.2095 89.9 86.6 95.4 92.8 99.5 98
7 8 0.0789 0.1928 95.3 89.6 97.5 95.1 98.9 99

10 0.0332 0.1827 98.6 90.3 99.6 95 100 99.2
6 7 8 0.0953 0.1939 95.2 89.7 97.3 94.8 99.7 99.1
8 9 10 0.0783 0.1392 99.1 88.9 99.7 94.3 100 98.7

a 4 5 9 0.2921 0.6102 87.9 88.5 80 93.3 89.2 97.9
6 8 -0.0260 0.3554 83.3 92.5 89.2 96.6 96.8 99.5

9 0.0091 0.3581 82.7 89.3 89.4 94.4 96.3 98.9
8 10 -0.0526 0.2317 90.9 91.8 94.7 96.2 98.7 99.7

5 6 10 0.1556 0.4290 78.1 89.5 85.9 94.7 94.8 98.2
7 8 -0.0271 0.2811 88.5 92.8 93.6 97.1 98 99.7

10 -0.0092 0.2903 86 90.8 92.8 96.3 98.2 99.9
6 7 8 -0.0299 0.2484 91.1 91.9 95.2 97 98.8 99.3
8 9 10 -0.0308 0.1742 94.9 89.9 98 94.7 99.7 99.6

b 4 5 9 0.0729 0.0687 70.3 90.4 78.1 95.5 89.8 99
6 8 -0.0119 0.0462 80.8 90.9 87 95.9 95.1 99.1

9 -0.0211 0.0468 80.3 89.9 86.3 94 95 98.9
8 10 -0.0341 0.0384 86.4 91.5 92.1 95.8 98.9 99.6

5 6 10 0.0229 0.0505 77 91.1 84 94.9 93.8 98.7
7 8 -0.0096 0.0381 87.1 90.7 93.1 97.1 97.1 99.6

10 -0.0261 0.0393 83.5 89.9 90.8 95.4 97.4 99.5
6 7 8 -0.0044 0.0309 89.5 90.7 94.2 96 98.8 99.4
8 9 10 -0.0070 0.0251 92.6 90 96.6 94.2 99.7 99.5
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Table 7.10: Conditional failure probabilities for the multiple step-stress test under
Type-I censoring when α = 2, a = 4, b = 2, x1 = 1, x2 = 1.5, x3 = 2.5 and

n = 250.

Conditional failure prob-
abilities (in %)

τ1 τ2 τ3 0 < t < τ1 τ1 < t < τ2 τ2 < t < τ3

4 5 9 10.30 12.70 77.00
6 8 10.36 26.48 63.16

9 10.28 26.27 63.45
8 10 10.30 49.87 39.83

5 6 10 14.80 13.30 71.90
7 8 16.07 29.02 54.91

10 14.85 26.56 58.59
6 7 8 21.60 15.00 63.39
8 9 10 31.99 14.23 53.78

simulated data are presented in Table 7.12.

We consider two different times τ3 = 5, 7. The respective MLEs of α, a and b

and their corresponding standard errors are calculated and are given in Table

7.13. It is seen from this table that as τ3 increases, the standard errors of all

estimates α̂, â and b̂ decrease. The confidence intervals for α, a and b obtained

by the approximate method and the bootstrap method for different values of τ3

are given in Table 7.14. Although there is a slight difference between the two

intervals, we observe that the bootstrap confidence intervals are narrower than

the approximate confidence intervals for each value of τ3.

Recalling the simulation study for the full multiple step-stress model under

Type-I censoring, we faced some problems in the coverage probabilities for θ3.

Moreover, the use of the full model becomes complicated if the number of stress

levels increase. But we observe that in the reduced multiple step-stress model

under Type-I censoring, although the approximate method is not satisfactory,
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Table 7.11: Estimated coverage probabilities (in %) of confidence intervals for the
reduces multiple step-stress model under Type-I censoring for α, a and b based on

1000 simulations when α = 2, a = 4, b = 2, x1 = 1, x2 = 1.5, x3 = 2.5 and n = 250.

τ1 τ2 τ3 Bias MSE Approx. Boot Approx. Boot Approx. Boot
α 4 5 9 -0.0808 0.1394 94.9 86.4 98.2 92.7 99.7 97.3

6 8 0.0545 0.1234 93.3 89.7 96.3 95.7 99 99.1
9 0.0132 0.1258 84 89.4 90.2 93.3 95.9 98.4

8 10 0.0554 0.0912 93.9 88.7 97 94 99.7 98.2
5 6 10 -0.0590 0.1131 96.5 88.4 98.8 92.7 99.9 98.4

7 8 0.0716 0.1257 96.5 89 98.7 94.2 99.5 99.2
10 0.0258 0.1156 85.6 89.1 91.1 93.7 96.1 99

6 7 8 0.0614 0.1137 98.1 88.5 99 94.6 99.6 98.7
8 9 10 0.0316 0.0795 99.2 89.2 99.5 94.6 100 98.5

a 4 5 9 0.1593 0.3410 80.7 87.1 88.3 93.6 95.7 98
6 8 -0.0137 0.2004 90.9 90.7 95.5 96 99.3 99.4

9 0.0182 0.2287 88.6 90.3 94.5 94.9 98.5 98.7
8 10 -0.0499 0.1505 95.5 90 98.7 94.8 99.9 98

5 6 10 0.0980 0.2425 88.1 90 93.8 94.3 98.1 98.8
7 8 -0.0408 0.1721 93.1 91.1 96.8 95.8 99.5 99.7

10 -0.0136 0.1712 92.8 89.1 97.1 94.6 99.6 99.2
6 7 8 -0.0231 0.1502 95.3 90.7 97.9 95.3 99.8 98.9
8 9 10 -0.0022 0.0987 98.2 89.7 99.3 94.2 100 98.6

b 4 5 9 0.0362 0.0403 75.1 89.1 83.9 95.6 93.2 99.2
6 8 -0.0035 0.0258 87.5 90.8 92.4 95.5 97.9 99

9 -0.0046 0.0293 84.8 89.9 90.8 94 97.1 98.6
8 10 -0.0252 0.0248 90.5 89.9 94.8 94.9 99 98.8

5 6 10 0.0147 0.0297 84 90.7 89.4 95.1 96.4 99.1
7 8 -0.0137 0.0229 89.3 90.8 94.4 95.7 99.5 99.4

10 -0.0170 0.0230 88.7 89.7 94.8 94.3 99 99.2
6 7 8 -0.0060 0.0181 93 90.5 96.5 95.3 99.5 98.7
8 9 10 0.0008 0.0137 96.6 90.7 98.9 94.7 99.8 99
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the bootstrap method gives very good coverage probabilities for all parameters.

Here, for simplicity, we have presented the results only for three steps in which

we have 4 parameters, for the full model and 3 parameters in the reduced model.

it is evident that the reduced model is simpler and more convenient to use since

we need to estimate only three parameters, α, a and b, no matter how many

steps we consider in the step-stress test. These suggest that, it is advisable to

use the reduced model for a multiple step-stress model than the full model due

to its simplicity and computational ease.

Table 7.12: Simulated data for the illustrative example.

Stress level Failure times
x1 = 1 1.998 2.526 3.261 3.369 3.910 3.958 4.465
x2 = 1.5 5.545 6.299 6.312 6.865 6.947 6.964 6.987
x3 = 2.5 7.002 7.005 7.020 7.030 7.036 7.089 7.093 7.098 7.143 7.151

7.228 7.276 7.297 7.317 7.347 7.371 7.465 7.521 7.538 7.558
7.718 7.755 7.8250 7.955 8.009

Table 7.13: The MLEs of α, a and b and their standard errors.

τ3 α̂ Se(α̂) â Se(â) b̂ Se(̂b)
8 1.9845 0.4274 4.3899 0.3473 2.2372 0.2430
9 1.8438 0.2109 4.5000 0.3439 2.2420 0.2184
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Table 7.14: Interval estimation for the simulated data presented in Table 7.12

C.I. for α
τ3 Method 90% 95% 99%
8 Approx C.I. (1.2815, 2.6875) (1.1468, 2.8222) (0.8836, 3.0854)

Bootstrap C.I. (1.2588, 2.7101) (1.1198, 2.8491) (0.8481, 3.1208)
9 Approx C.I. (1.4969, 2.1905) (1.4304, 2.2571) (1.3005, 2.3870)

Bootstrap C.I. (1.1228, 2.5647) (0.9847, 2.7028) (0.7148, 2.9727)
C.I. for a

8 Approx C.I. (3.8186, 4.9612) (3.7091, 5.0706) (3.4952, 5.2845)
Bootstrap C.I. (3.8922, 4.8875) (3.7968, 4.9829) (3.6105, 5.1692)

9 Approx C.I. (3.9343, 5.0656) (3.8260, 5.1740) (3.6142, 5.3858)
Bootstrap C.I. (3.9982, 5.0018) (3.9020, 5.0979) (3.7141, 5.2858)

C.I. for b
8 Approx C.I. (1.8375, 2.6368) (1.7609, 2.7134) (1.6113, 2.8630)

Bootstrap C.I. (1.9238, 2.5505) (1.8638, 2.6106) (1.7464, 2.7279)
9 Approx C.I. (1.8487, 2.6353) (1.7734, 2.7107) (1.6261, 2.8579)

Bootstrap C.I. (1.8827, 2.6014) (1.8138, 2.6703) (1.6793, 2.8048)
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Chapter 8

Computational Methods

8.1 Introduction

This chapter includes some information about the Sharcnet, which is used to

accelerate the computation of the coverage probabilities. We use two algorithms,

series and parallel. In Section 8.2, the structure and the facilities of the sharcnet

are mentioned, and the performance of the parallel algorithm is tested. The

optim function is used in R, which has the option of using different methods

of optimization such as: Nelder and Mead, BFGS, CG, L-BFGS-B, SANN.

Each method is explained explicitly in Section 8.3. After that, in Section 8.4, a

comparison of these methods is made to optimize the likelihood function of the

step stress model of Type-I censoring.
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8.2 High Performance Computing (HPC)

A large part of this thesis considers the computational aspect since there are no

closed-form solution for the MLEs, which have to be determined numerically.

Another obstacle is the intensive computations for finding the coverage proba-

bilities of the bootstrap confidence intervals. The time it took to complete the

bootstrap step is between 4 to 6 hours not forgetting the massive memory that

it required. So, it is necessary to accelerate those intensive computations, which

can not be done even on today’s leading desktop systems. Luckily, we had the

opportunity to use Sharcnet, which is a consortium of Canadian academic insti-

tutions who share a network of high performance computers. It exists to enable

world-class computational research so as to accelerate the production of research

results by providing unattainable computing resources, building common com-

puting environments, and promoting remote collaboration and research.

HPC is concerned with varied issues such as hardware, algorithms and software.

In hardware, communicating working processors is the most difficult idea since

interconnecting hardware is a very complex task. Also, sharing memory is

easy to say but hard to realize as systems scale. In software, although parallel

algorithms are well understood, applying those algorithms in software is non-

trivial. Building parallel machines is used to communicate multiple processors,

which can be done in the following ways:

(a) Symmetric Multiprocessors (SMP) in which the memory is shared with

uniform memory access (UMA). In this system, each processor executes

different data with capability of sharing common resources connected by a
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system bus or a crossbar. Speeding up the shared memory data access and

reducing the system bus traffic are both achieved because of the private

high speed memory known as cache memory associated to each processor.

(b) Non-Uniform Memory Access (NUMA), which provides separate memory

for each processor, avoiding the performance impact when several proces-

sors attempt to address the same memory. For problems involving spread

data, NUMA can improve the performance over a single shared memory by

a factor of roughly the number of processors. Of course, not all data end

up being confined to a single task, which means that more than one pro-

cessor may be required to perform the same data. To handle these cases,

NUMA systems include additional hardware or software to move data be-

tween banks. This operation slows the processors attached to those banks,

so the overall speed increase due to the heavily dependence of NUMA on

the exact nature of tasks that are running.

(c) Clusters in which the components are connected through a fast local area

networks where each node runs its own sets of operating system. Those

clusters are the result of convergence of some of the computing trends such

as the availability of low cost microprocessors, high speed networks, and

software for high performance computing. There are different designs of

the cluster depending on how tightly coupled the individual nodes may

be. The Beowulf system is one of the designs in which the application

programs never see the computational nodes, also known as slave com-

puters, but only interact with the Master computer. This specific Master

computer handles the scheduling and management of the slaves and it has
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two network interfaces. One of those networks communicates with the pri-

vate Beowulf network for the slaves and the other for the general purpose

network for the organization.

The Sharcnet systems are built in clusters and share memory and offers running

programs in parallel across multiple machines or in series. If the program was

written without parallelism in mind, then there is very little that can be done

to run it automatically in parallel. Some compilers are able to translate some

serial portion of a program, such as loops, into equivalent parallel code. Also,

some libraries are able to use parallelism internally, without any change in the

user’s program. For this to work, the program needs to spend most of its time

in the library which doesn’t speed up the program itself. So, to gain the true

parallelism and scalability, the code must be rewritten using the message passing

interface (MPI) library (Rmpi library in R software). However, it is not always

the case that running a single program will be faster using parallelism. Often,

one might want to run many different configurations of a program, differing

only in a set of input parameters which is exactly what we have. Since it is

possible to implement this kind of loosely-coupled parallelism using MPI, it is

often less efficient and more difficult, so it’s usually best to start out doing this

as a series of independent serial jobs.

To use the Rmpi library, we had different methods to transform the code into

a parallel algorithm, and they are : the Brute Force method, the task push

method, and the task pull method. The basic steps of all these three methods

is to first divide the problem into multiple sub-problems so that a slave will be

spawned to handle one of these problems. After that, in the Master part, we
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write a code for the common data and functions that are used for each problem.

Then, again in the Master we send the common data, and the functions to the

slaves. Finally, we call back the results from each slave and close those slaves.

Paralleling the algorithm, that is used to compute the coverage probabilities

of the bootstrap confidence intervals, is challenging. The problem is the de-

pendency of many parameters that are passing between processors. So, instead

of paralleling the whole algorithm, we only translate some serial portion of it

into equivalent parallel code. However, it is still expensive timewise. So, we

run multiple independent serial jobs instead of running one parallel job, which

worked very well and accelerated the computation. Instead of waiting 4-6 hours

for only one result, the same amount of time resulted in 10 to 15 results.

8.2.1 Parallel Computing

In this subsection, the performance of the parallel algorithm is evaluated. The

task is to generate 1000 MLEs of α, θ1 and θ2 for the simple step-stress model

under Type-II censoring. The log-likelihood function is maximized starting at

some initial values for the parameters. We first start by spawning a number

of slave processes to perform the work. After that, we send the data and the

functions needed to perform the task to all slave processors. Then we call back

the results, which in our case the MLEs of α, θ1 and θ2 from each slave.

The performance measures that are used to study the scalability of the parallel

algorithm is as follows:

Parallel Execution Time Tp: The time elapsed from the moment a parallel

computation starts to the moment the last processor finishes execution.
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Table 8.1: Performance measures for different number of processors in the parallel
algorithm.

N loop size Tp S Sf e
1 1000 8.107 1.0000 - 100%
2 500 7.231 1.1211 0.7840 56.06%
4 250 6.387 1.2693 0.6818 31.73%
5 200 5.370 1.5097 0.5780 30.19%
8 125 4.720 1.7176 0.5225 21.47%
10 100 4.942 1.6404 0.5662 16.40%
20 50 4.647 1.7446 0.5507 8.72%

Speedup S: The ratio of the serial execution time of the fastest known serial

algorithm (T1) to the parallel execution time of the chosen algorithm (Tp), which

is given by

S =
T1

Tp
. (8.2.1)

Serial Fraction Sf : The ratio of the serial component of an algorithm, which is

the part of the algorithm that cannot be paralleled and had to be executed on

a single processor, to its execution time on one processor. It is given by

Sf =
1/S − 1/N

1− 1/N
, (8.2.2)

where N is the number of processors.

Efficiency e: The ratio of speedup to the number of processors and is used to

normalize the speedup value to a certain percentage. It is given by

e =
S

N
. (8.2.3)
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The algorithm is implemented in two different versions, namely, series and par-

allel. The serial algorithm, mentioned in Chapter 3, is used as the base for

the parallel version. In this algorithm, we use the Brute force method to com-

municate the master with each slave. The parallel algorithm proceeds in the

following manner:

(a) Load the Rmpi package and spawn the slaves;

(b) Write the parameters and the likelihood function;

(c) Combine the series algorithm as one function, including the loop at which

n order statistics are simulated and the MLEs are calculated;

(d) Send the parameters and the functions to each slave;

(e) Run the code on each slave and generate some equal number of MLEs;

(f) Send the set of MLEs from each slave back to the master;

(g) The master receives an equal number of MLEs from each slave;

(h) Close the slaves and quit.

The function that is used to transmit an R command from the master to all

spawned slave processors is the mpi.bcast.cmd. This function is the MPI name

of the one-to-all broadcast operation, which is used to send identical data to all

other processors or to a subset of them. The function that is used to gather each

slave’s results as a list to the master, is the mpi.gather.Robj. This function is

the MPI name of the gather operation, that is the dual of one-to-all personalized

operation, and it collects a unique message from each processor.

In Table 8.1, it is seen that as the number of processors increases, the parallel

execution time decreases, but after using 8 processors, it is almost equal. This
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can be seen clearly in Figure 8.1. We can also observe, from Table 8.1, that

the speedup increases as the number of processors increase. However, it is

not a linear speedup, as seen in Figure 8.2. It is also seen that when we use

10 processors the parallel execution time is larger than using 8 processors. The

smallest parallel execution time occurs when using 20 processors. The efficiency

decreases as the number of processors increases, which means that small gains

in speedup come at the cost of inefficient machine use. It is noticeable that we

are finding only 1000 estimates, as this number increases the efficiency will be

more satisfactory.

Figure 8.1: The parallel execution time (in seconds) vs. the number of processors.
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Figure 8.2: The speedup vs. number of processors.

8.3 Overview of Algorithms

All optimization algorithms require a starting point which is usually denoted

by x0. Then, each algorithm generates a sequence of iterates {xk}∞k=0 that are

terminated when either no more progress can be made or when an optimum

point has been reached and approximated with sufficient accuracy. Starting

with the initial value x0 and moving to the final result can be done in different

strategies. There are two types of algorithms: a derivative-free optimization

algorithm and a derivative-based optimization algorithm.
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Figure 8.3: Efficiency vs. number of processors

8.3.1 Derivative Free Optimization (DFO) Algorithms

Those algorithms differ in the way they use the sampled function values to

determine the new iterate. The most widely used DFO methods include the

simplex-reflection method of Nelder and Mead, and simulated annealing. In

practice, it is not always the case that the derivatives are available due to many

different reasons. One of those reasons might be unknown analytical form of

the objective function f , for example, the evaluation of f(x) can be the result

of an experimental measurement or a stochastic simulation. Another reason

might be the difficulties of coding the function’s derivatives which might be time
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consuming or impractical. One might think of using automatic differentiation

tools to solve that problem but those tools may not be applicable in all cases.

Having f(x) being provided in the form of binary computer code is one of

these cases. Even when the code is available but is written in a combination of

languages, then the automatic tools cannot be applied.

Nelder-Mead Method

This simplex reflection method is the most popular DFO method that was

proposed by John Nelder and Roger Mead (1965). Given a simplex S with

vertices {z1, z2, ..., zn+1}, the algorithm starts by seeking to remove the vertex

with the worst function value and replace it with another point with a better

value. This new point is obtained by reflecting, expanding or contracting the

simplex along the line joining the worst vertex with the centroid of the remaining

vertices. If no better point is found in that manner, then the vertex with

the best function value is retained, and the simplex is shrunk by moving all

other vertices toward this value. Although the performance of the Nelder-Mead

algorithm is often reasonable, a stagnation could be encountered at non-optimal

points. Restarting the algorithm could be used as a solution, but it could cost

some time. It is also notable that the average function value given by

1

n+ 1

n+1∑
i=1

f(xi) (8.3.1)

will decrease at each step of the algorithm. Even if the function f is convex,

the shrinkage step is guaranteed to decrease the average function value.
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Simulated Annealing

This simulated annealing (SANN) method is a probabilistic heuristic method for

the global optimization problems of locating a good approximation to the global

optimum of a given function in a large search set of possible solutions. The basic

idea is to generate a path from one solution to another nearby solution which

will eventually lead to the optimum solution. Each step of the SANN algorithm

replaces the current solution by a random solution. The new solution may

then be accepted with a probability that depends on the difference between the

corresponding function values. This probabilistic acceptance function is given

by

P (i− j) =

 1 if f(j) ≤ f(i)

exp( f(i)−f(j)
c

) if f(j) > f(i)
, (8.3.2)

where c is a control parameter analogous to temperature in a physical system.

So, steps are not strictly required to produce improved solution, but each step

has a certain probability of leading to improvement. At the start, all steps are

equally likely but as the algorithm progresses, the tolerance for the worst solu-

tions decreases eventually to the point where only improvements are accepted.

That is what makes it attain the optimum solution without trapping in local

optima. It is noted that the SANN method depends critically on the settings

of the control parameters so a well-formulated implementation will guarantee

an answer, but it might take a long time to be attained. Although it is not

a general purpose method, it is very useful in getting a good value on a very

rough surface.
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8.3.2 Gradient-Based Optimization Algorithms

The line search is one of those strategies that are used to move from the current

point xk to a new iterate xk+1. If the aim is to find the minimum (maximum)

of a function f , then the line search strategy will choose a direction pk and

search along this direction from the current iterate xk for a new iterate with a

lower (higher) function value. The distance to move along pk can be found by

approximately solving the following one-dimensional minimization problem to

find a step length α:

minα>0f(xk + αpk). (8.3.3)

Since solving (8.3.3) exactly may be too expensive and unnecessary, the line

search algorithm generates a limited number of trial step lengths until it finds

one that approximates the minimum. Then a new search direction and step

length are computed at the new point, and the process is repeated. This means

that at each iteration of a line search method, a search direction pk is computed

and then the length that is needed to be moved in that direction is decided,

and that iteration is given by

xk+1 = xk + αkpk. (8.3.4)

Knowing the fact that a function f is guaranteed to be reduced along a descent

direction pk, one for which pTk∇fk < 0, most of the line search algorithms require

a descent direction which often has the following form:
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pk = −B−1
k ∇fk, (8.3.5)

where Bk is a symmetric and non-singular matrix.

The major issue in the line search method is to choose a direction pk and the

following are the different search directions for that method.

The steepest descent direction

This method is the most obvious choice for search direction for a line search

method. It moves along pk = −∇fk at every step. Although it is an advan-

tage that it only requires calculation of the gradient ∇fk and not the second

derivatives, it can be extremely slow on difficult problems.

The Newton direction

This direction is derived from the second-order Tylor series approximation to

f(xk + p), and it is given by

pk = −(∇2fk)
−1∇fk. (8.3.6)

In order for this direction method to be suitable, it must satisfy the descent

property pTk∇fk < 0, which means that the Hessian ∇2fk must be positive defi-

nite, otherwise (∇2fk)
−1 may not exist. Methods that use the Newton direction

have a fast rate of local convergence, typically quadratic. Convergence to high
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accuracy often occurs in just a few iterations, after a neighbourhood of the solu-

tion is reached. Since explicit computation of the Hessian ∇2fk can sometimes

be a burdensome, error-prone and expensive process, the need of the Hessian

would be in this case the main disadvantage.

The Quasi-Newton directions

This direction is the best solution of the Newton direction problem. It does

not require computation of the Hessian and yet attains a super-linear rate of

convergence. Instead of the true Hessian∇2fk, an approximation Bk is obtained

and is updated after each step. The new Hessian approximation Bk+1 is chosen

to satisfy the following condition, known as the secant equation:

Bk+1sk = yk, (8.3.7)

where

sk = xk+1 − xk, yk = ∇fk+1 −∇fk. (8.3.8)

Two of the most popular formulas for updating the Hessian approximation Bk

are the symmetric-rank-one formula and the BFGS formula. The quasi-Newton

search direction is obtained by using Bk in place of the exact Hessian in (8.3.6),

that is,

pk = −B−1
k ∇fk. (8.3.9)

(a) The BFGS Method:
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It is one of the most popular quasi-Newton algorithms which was published

in 1970 by Broyden, Fletcher, Goldfarb and Shanno. Each step of the

BFGS method has the form

xk+1 = xk − αkHk∇fk, (8.3.10)

where αk is the step length and Hk is updated at every iteration by means

of the formula

Hk+1 = V T
k HkVk + ρksks

T
k , (8.3.11)

where

ρk =
1

yTk sk
, Vk = I − ρkyksTk . (8.3.12)

where sk and yk are as given in (8.3.8). The cost of the performance of each

iteration is of O(n2) arithmetic operations plus the cost of function and

gradient evaluations, which is lower than the cost of performance in linear

system solves or matrix matrix operations which is of O(n3). This BFGS

algorithm is robust and its rate of convergence is super-linear, which is fast

for most practical purposes. It can work with the Hessian approximation

Bk instead of Hk, and the update formula for Bk is given by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
.

One of the significant advantages of the BFGS formula is having a very
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effective self-correcting property. In the case of incorrectly estimating the

curvature in the objective function and slowing down the iteration, the

Hessian approximation will tend to correct itself within a few steps. Un-

fortunately, the inverse Hessian approximation Hk will generally be dense,

so the cost of storing and manipulating is too expensive when the number

of variables is large.

(b) Limited Memory BFGS method (L-BFGS):

This method is based on the BFGS formula and it is useful for solving

large problems whose Hessian matrices cannot be computed at a reason-

able cost. Unlike the original BFGS method which stores a dense n × n

approximation, the L-BFGS method stores a few vectors of length n that

represent the approximation implicitly.

Storing a modified version of Hk implicitly is done by storing a certain

number, say m, of the vector pairs {si, yi} used in (8.3.6), (8.3.11) and

(8.3.12). After the new iterate is computed, the oldest vector pair in the

set of pairs {si, yi} is replaced by the new pair {sk, yk} obtained from

the current step. This way, the set of vector pairs includes curvature

information from the m most recent iterations. It has been shown that

modest values of m (say between 3 to 20) produced satisfactory results.

This method is the best choice for large problems in which the true Hes-

sian is not sparse. It outperforms the Newton method and the Hessian-

free Newton methods such as Newton-conjugate gradient approaches. The

main drawback of this method is that it converges slowly on ill-conditioned

problems, especially when the Hessian matrix contains a wide distribution
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of eigenvalues.

The nonlinear conjugate gradient direction

They have the form

pk = −∇fk + βkpk−1, (8.3.13)

where βk is a scalar that ensures that pk and pk−1 are conjugate. Conjugate

gradient methods were originally designed to solve systems of linear equations

Ax = b, where the coefficient matrix A is symmetric and positive definite.

Solving this linear system is equivalent to minimizing the convex quadratic

function defined by

Φ(x) =
1

2
xTAx− bTx.

Hence, extensions of these algorithms to more general types of unconstrained

minimization problems were investigated. One of the advantages of these non-

linear conjugate gradient directions is that they are more effective than the

steepest decent direction and are almost as simple to compute. Another advan-

tage is that they do not require storage of matrices. However, as a drawback,

these directions do not attain the fast convergence rates of Newton or quasi-

Newton methods.

The Conjugate Gradient Method It is a conjugate direction method with

a special property. When generating the set of conjugate vectors and trying to
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compute a new vector pk, it does not need to know all the previous elements

p0, p1, . . . , pk−2 of the conjugate set. It only uses the immediate previous vector

pk−1 since pk will automatically be conjugate to all other vectors, which means

this strong property would result in requiring the method to have fewer storage

space and computations.

In the conjugate gradient method, each direction pk is chosen to be a linear

combination of the previous direction pk−1 and the negative residual −rk given

by

rk = Axk − b, (8.3.14)

and the new direction pk is given by

pk = −rk + βkpk−1, (8.3.15)

where βk is determined by satisfying the conjugate property of pk−1 and pk with

respect to A.

8.4 Illustrative example

As in Chapter 3, we consider the simple gamma step-stress model under Type-I

censoring and the time to failure data coming from a cumulative exposure model with

stress levels x1 and x2. We start with n identical units subjected to an initial stress

level x1. After a pre-specified time τ1, the stress in increased to x2. The experiment

is terminated at a pre-fixed time τ2. We denote N1 for the random number of units
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that fail before τ1, and N2 for the random number of units failing between τ1 and τ2.

The likelihood function that we are optimizing, with respect to α, θ1 and θ2, is given

by

L(α, θ1, θ2|t) =
n!

(n−N)!

(
N1∏
1

ti)
α−1(

N∏
N1+1

yi)
α−1

Γ(α)NθαN1
1 θαN2

2

× e
− 1
θ1

N1∑
1
ti− 1

θ2

N∑
N1+1

yi

(1− IGt∗(α))n−N

0 < t1:n < ... < tN1:n < τ1 ≤ tN1+1:n<...<tN :n<τ2, (8.4.1)

where N = N1 +N2, yi = ti − τ1 + θ2
θ1
τ1 and t∗ =

τ2−τ1+
θ2
θ1
τ1

θ2
.

For simplicity, we consider the log-likelihood function which is given by

l(α, θ1, θ2|t) = ln[L(α, θ1, θ2|t)]

= ln(c)−N lnΓ(α)− αN1lnθ1 − αN2lnθ2 −
1

θ1

N1∑
1

ti −
1

θ2

N∑
N1+1

yi

+ (α− 1)

N1∑
1

lnti + (α− 1)
N∑

N1+1

lnyi + (n−N)ln(1− IGt∗(α)). (8.4.2)

The aim here is to maximize this non-linear log-likelihood function with respect

to the parameters α, θ1 and θ2. Since the first- and second-order partial derivatives,

as shown in Chapter 3, have explicit forms, we can exclude both the Nelder-Mead

and SANN methods. Those two methods are most useful in the case when there is

no explicit form of the Hessian matrix. So, we now want to find the most suitable

gradient-based method for optimizing our function.

The optim function is given by
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Table 8.2: MLE’s of α, θ1 and θ2 and their standard errors by using different
optimization methods.

α̂ θ̂1 θ̂2

Nelder-Mead 1.95294600 3.07289500 1.09714300
BFGS 1.95327973 3.07193982 1.09723571
CG 1.95387008 3.07033605 1.09702448
L-BFGS-B 1.95321910 3.07206719 1.09724170
SANN 1.95597641 3.03686709 1.08175779

optim(par, fn, gr = NULL, ...,method = c("Nelder-Mead", "BFGS",

"CG", "L-BFGS-B", "SANN"),lower = -Inf, upper = Inf,

control = list(), hessian = FALSE)

The optim function takes the objective function to be optimized and optimizes it

by starting with the initial values provided for the parameters. This function per-

forms minimization by default, but it will maximize if control is negative. Considering

the log-likelihood function in (8.4.2) as the objective function and maximizing it with

respect to α, θ1 and θ2, would result in the MLE’s α̂, θ̂1 and θ̂2, respectively.

In this example, we take n = 40, α = 2, θ1 = e1 = 2.718282, θ2 = e0.5 = 1.648721, τ1 =

4 and τ2 = 8. The initial values that are used in the optim function are α = 2.1, θ1 =

2.5 and θ2 = 1.5. The MLE’s are found by using the different optimization methods,

including the Nelder-Mead and SANN methods, and the results are given in Table 8.2.

In Table 8.2, we see that all the methods converge, even the Nelder-Mead and

the SANN method, and that the MLEs obtained by all of them are almost equal. In

Table 8.3, we observe that the MSEs of α̂ and θ̂1 are the smallest when using the
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Table 8.3: MLE’s of α, θ1 and θ2 and their standard errors by using different
optimization methods.

bias(α̂) MSE(α̂) bis(θ̂1) MSE(θ̂1) bis(θ̂2) MSE(θ̂2)

Nelder-Mead -0.0471 0.0112 0.3546 0.1841 -0.5516 0.3060
BFGS -0.0467 0.0112 0.3537 0.1833 -0.5515 0.3059
CG -0.0461 0.0111 0.3521 0.1819 -0.5517 0.3062
L-BFGS-B -0.0468 0.0112 0.3538 0.1834 -0.5515 0.3059
SANN -0.0440 0.0104 0.3186 0.1545 -0.5670 0.3231

SANN method, but the difference is very small. So, it is not clear which method gives

the best estimates.

Table 8.4 shows the CPU time of each optimization method. In this table, we see

that the fastest methods are BFGS and the L-BFGS-B, and the slowest method is

the SANN method. The Optim function returns list of values of which one is ’counts’,

which gives the number of times optim called the function and its gradient while

obtaining the optimum value. Table 8.5 shows these values. From this table, we

observe that the counts for calling the function using the L-BFGS-B method is the

smallest and that for calling the gradient is the smallest using the BFGS method.

The SANN method, by default, searches for a finer value of the parameter 10000

times even if it reaches the optimum before. So, we can conclude that the BGFS and

the L-BFGS-B methods are the best optimization methods to optimize the likelihood

function in (8.4.2). This function is optimized with respect to three parameters, α,

θ1 and θ2, and so it is more convenient to use the BFGS method. But, in the case of

the multiple step-stress model with more than 3 steps, it might be more convenient

to use the L-BFGS-B method.
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Table 8.4: CPU time (in seconds) for finding MLE’s of α, θ1 and θ2 by using
different optimization methods.

Used System Elapsed
Nelder-Mead 0.06 0.06 0.13
BFGS 0.04 0.01 0.06
CG 0.20 0.20 0.22
L-BFGS-B 0.06 0.01 0.06
SANN 2.33 0.02 2.36

Table 8.5: The number of times optim called the function and its gradient using
different optimization methods.

Function gradient
Nelder-Mead 104 NA
BFGS 25 12
CG 270 101
L-BFGS-B 14 14
SANN 10000 NA
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Chapter 9

Conclusions and Further Research

9.1 Concluding Remarks

In this thesis, we have considered the simple step-stress model with two stress lev-

els, which applies stress to each unit and changes the stress at a pre-specified time

during the life-testing experiment. This model is studied when the observed failure

time data are (1) Type-II censored, (2) Type-I censored, (3) Progressively Type-II

censored, and (4) Progressively Type-I censored. We have also discussed the multiple

step-stress model under Type-II and Type-I censoring. The likelihood functions have

been derived assuming a cumulative exposure model with gamma distributed lifetimes

with common shape parameter α and scale parameters θ1, θ2, (and θ3). The likeli-

hood equations needed to be solved numerically since they do not allow closed-form

solutions. An optimization program has been used for maximizing the log-likelihood

function to obtain the MLEs α̂, θ̂1, θ̂2 (and θ̂3). This optimization is achievable by

different optimization methods such as Nelder-Mead, BFGS, CG, L-BFGS-B and

SANN, which have all been examined in order to find the best method that is most
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convenient for optimizing the pertinent likelihood function. Confidence intervals for

the parameters α, θ1, θ2 (and θ3) have been discussed by two methods: the approxi-

mate method by using the asymptotic normality of the maximum likelihood estimates,

and the parametric bootstrap method. All the methods of inference developed here

have been demonstrated by an empirical study as well as through many numerical

examples.

It has been shown that the best optimization method for determining the max-

imum likelihood estimates of the model parameters is the BFGS method. From the

simulation studies that have been carried out, we have observed that the approxi-

mate method of constructing confidence intervals is unsatisfactory in terms of cover-

age probabilities, especially when the sample size is not large. On the other hand,

the parametric bootstrap method almost always maintains its coverage probabilities

at the nominal level. Some examples have also been presented to illustrate these

methods of inference and to support the conclusions made.

In the m-step-stress model under Type-II and Type-I censoring, we have consid-

ered a reduced model by assuming a log-linear link function, which links the scale

parameter θi of the lifetime distribution to the stress level xi. This mathematical rep-

resentation is convenient for modeling as well as computation. Moreover, many known

physical relationships can be transformed to this log-linear link form. The MLEs have

been derived for the full-parameter model as well as the reduced-parameter model

when the data are Type-II and Type-I censored. We have also constructed confi-

dence intervals in this case by using the approximate method and the parametric

bootstrap method. Here again, all these inferential results have been illustrated by

empirical study and some numerical examples.
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A large part of this thesis is regarding the computational aspect, since there are no

closed-form solutions for the MLEs and that they need to be determined numerically.

We faced some problems while computing the coverage probabilities of the parametric

bootstrap confidence intervals. The main problem is the time it takes to complete the

bootstrap step, and we made use of Sharcnet for completing this computational task.

This network and a discussion on how it was utilized for the computational work in

this thesis has been presented as well.

9.2 Further Research

Although we have covered here many important and interesting aspects of the gamma

step-stress model, we still have many more theoretical as well as practical problems

that are worth considering for further study. Below are some of the problems that

deserve further attention:

1. We have considered the Type-II, Type-I, Progressive Type-II and Progressive

Type-I censoring and developed corresponding inferential results. As an exten-

sion, other types of censoring could be considered such as the Hybrid Type-I

censoring and the Hybrid Type-II censoring. In the Hybrid Type-I censoring,

the experiment is terminated at a pre-fixed time (say τm) if a specific number

of failures (say r) occur after the time τm, and otherwise the test is terminated

as soon as the r-th failure occurs. Thus, the termination time of the life-test

is τ ∗m = min{τm, Tr,n}. On the other hand, in the Hybrid Type-II censoring,

the life-test is terminated at a pre-fixed time τm if the r-th failure occurs before

time τm, and otherwise the test is terminated as soon as the r-th failure occurs.
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Thus, the termination time of the life-test in this case is τ ∗m = max{τm, Tr,n}.

It will then be of interest to develop the inferential procedures under these two

hybrid censored samples.

2. Here, we have discussed the direct way of the maximum likelihood estimation

for the model parameters. One can develop an EM algorithm for this purpose.

This is an iterative method requiring two primary calculations on each iteration:

Computation of a specific conditional expectation of the log-likelihood (E-step)

and then maximization of this expectation over the relevant parameters (M-

step). Another method is the Monte Carlo EM method, which is a modification

of the EM algorithm wherein the required expectation in the E-step is computed

numerically be means of Monte Carlo simulations. A comparison between these

methods may then be done by means of computational efficiency, time and cost.

3. Use of informative prior(s) for computing the Bayesian estimates of the model

parameters may be of interest as well. It is well known that in general if a

proper prior information on model parameters is available, it is better to use

the informative prior(s) than the non-informative prior(s).

4. There has been some work on predicting the times to failure of censored items

for a simple step-stress model with progressive censoring when the failure times

are exponentially distributed. This prediction result could be generalized to

the case of the step-stress test under the gamma distribution that has been

considered here.

5. Through out this thesis, we have relied on Nelson’s cumulative exposure model

for step-stress tests. Unfortunately, one of the consequences of this model is that
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the corresponding hazard function has discontinuities at the points at which

the stress levels are changed as the hazard rate jumps at those points. For

this reason, Kannan, Kundu and Balakrishnan (2010) discussed a step-stress

model with lagged effects which allows for a lag period before the effects of

the change in stress are observed. Incidentally, this model also results in a

continuous hazard function. The work of these authors for this model based on

the exponential lifetime distribution can be generalized to the gamma case.

6. As mentioned in this thesis, there are different types of acceleration, and in

this thesis, we have only considered the simple and multiple step-stress tests.

Consideration of some other types of stress loading such as progressive stress

loading, cyclic stress loading, or random stress loading would be of great interest

since these types of stress loading are widely used in reliability analysis.
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Appendix A

Series and Parallel Algorithms

Below are R series and parallel algorithms for computing 1000 MLEs of the parame-

ters α, θ1 and θ2 of the simple step-stress model under Typ-II censoring.

The series algorithm:

rm(.Random.seed)

n<-40

r=30

shape<-2

theta1<-exp(1) # (=2.718282)

theta2<-exp(.5) #( =1.648721)

m0<-function(x)

{

loglik<- function (x)

{-( -r*lgamma(x[1])-x[1]*N1*log(x[2])-x[1]*N2*log(x[3])
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+(x[1]-1)*sum(log(cc[1:N1]))+(x[1]-1)*sum(log(cc[w:r]-tau1

+(x[3]/x[2])*tau1))-(1/x[2])*sum(cc[1:N1])-(1/x[3])*sum(cc[w:r]

-tau1+(x[3]/x[2])*tau1)+(n-r)*log(1-pgamma((cc[r]-tau1+(x[3]/x[2])

*tau1)/x[3],x[1],1)))

}

W=optim(c(2.1,3,2), loglik, method="BFGS", hessian= TRUE)

W$par

}

estimates<-list()

g<-1000

for (k in 1:g){

U<-runif(n)

Us<-sort(U)

tau1<-4

F1tau<- pgamma((tau1/theta1),shape,1)

N1<-sum(Us<F1tau)

if (N1>=n | N1<=0|N1>=r)next

X1<- Us[1:N1]

Ti<- theta1*qgamma(X1,shape,1)

w=N1+1

V<- Us[w:r]

N2<- length(V)

V1<-theta2*qgamma(V,shape,1)
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Tj<-V1+tau1-(theta2/theta1)*tau1

c1<-matrix(Ti,ncol=1)

c2<-matrix(Tj,ncol=1)

cc<-data.frame(rbind(c1,c2))[,1]

estimates[[k]]<- as.data.frame(t(m0(cc)))

}

R<- do.call(rbind, estimates)

R

The parallel algorithm:

library(Rmpi)

mpi.spawn.Rslaves(nslaves=5)

mpi.setup.rngstream(seed=1:6)

mpi.bcast.cmd( id <- mpi.comm.rank() )

mpi.bcast.cmd( np <- mpi.comm.size() )

mpi.bcast.cmd( host <- mpi.get.processor.name() )

result <- mpi.remote.exec(paste("I am", id, "of", np, "running on", host))

print(unlist(result))

n<-40

r=30

shape<-2

theta1<-exp(1) # (=2.718282)

theta2<-exp(.5) #( =1.648721)
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m0<-function(x)

{

loglik<- function (x)

{

-(

-r*lgamma(x[1])-x[1]*N1*log(x[2])-x[1]*N2*log(x[3])

+(x[1]-1)*sum(log(cc[1:N1]))+(x[1]-1)*sum(log(cc[w:r]-tau1

+(x[3]/x[2])*tau1))-(1/x[2])*sum(cc[1:N1])-(1/x[3])*sum(cc[w:r]

-tau1+(x[3]/x[2])*tau1)+(n-r)*log(1-pgamma((cc[r]-tau1

+(x[3]/x[2])*tau1)/x[3],x[1],1)))

}

W=optim(c(2.1,3,2), loglik, method="BFGS", hessian= TRUE)

W$par

}

loop1=function(n){

m0<-function(x)

{

loglik<- function (x)

{

-(

-r*lgamma(x[1])-x[1]*N1*log(x[2])-x[1]*N2*log(x[3])
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+(x[1]-1)*sum(log(cc[1:N1]))+(x[1]-1)*sum(log(cc[w:r]-tau1

+(x[3]/x[2])*tau1))-(1/x[2])*sum(cc[1:N1])-(1/x[3])*sum(cc[w:r]

-tau1+(x[3]/x[2])*tau1)+(n-r)*log(1-pgamma((cc[r]-tau1

+(x[3]/x[2])*tau1)/x[3],x[1],1)))

}

W=optim(c(2.1,3,2), loglik, method="BFGS", hessian= TRUE)

W$par

}

estimates<-list()

g<-400

i1=0

repeat{ U<-runif(n)

Us<-sort(U)

tau1<-4

F1tau<- pgamma((tau1/theta1),shape,1)

N1<-sum(Us<F1tau)

if (N1>=n | N1<=0|N1>=r)next

i1=i1+1

X1<- Us[1:N1]

Ti<- theta1*qgamma(X1,shape,1)

w=N1+1

V<- Us[w:r]

N2<- length(V)
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V1<-theta2*qgamma(V,shape,1)

Tj<-V1+tau1-(theta2/theta1)*tau1

c1<-matrix(Ti,ncol=1)

c2<-matrix(Tj,ncol=1)

cc<-data.frame(rbind(c1,c2))[,1]

estimates[[i1]]<- as.data.frame(t(m0(cc)))

if(i1 == g) break

}

R<- do.call(rbind, estimates)

R2=data.frame(R)

R2

}

x <- loop1(40)

mpi.bcast.cmd(x <- loop1(40))

mpi.bcast.cmd(mpi.gather.Robj(x))

y <- mpi.gather.Robj(x)

y

mpi.bcast.cmd(n)

mpi.bcast.cmd(r)

mpi.bcast.cmd(shape)

mpi.bcast.cmd(theta1)

mpi.bcast.cmd(theta2)

mpi.bcast.cmd(m0)

mpi.bcast.cmd(loop1)
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y[,1]

proc.time()

mpi.close.Rslaves()

mpi.quit(save="no")
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