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Abstract

Video super-resolution for dual-mode cameras in single-view and mono-view scenarios

is studied in this thesis. Dual-mode cameras are capable of generating high-resolution

still images while shooting video sequences at low-resolution. High-resolution still

images are used to form a regularization function for solving the inverse problem

of super-resolution. Exploiting proposed regularization function in this thesis ob-

viates the need for classic regularization function. Experimental results show that

using proposed regularization function instead of classic regularization functions for

super-resolution of single-view video leads to improved results. In this thesis, super-

resolution problem is divided into low-resolution frame fusion and de-blurring. A

frame fusion scheme for multi-view video is proposed and performance improvement

when exploiting multi-view sequence instead of single-view for frame fusion is studied.

Experimental results show that information taken by a set of cameras instead of a

single camera can improve super-resolution process, especially when video contains

fast motions. As a side work, we applied our low-resolution multi-view frame fusion

algorithm to 3D frame-compatible format resolution enhancement. Multi-view video

super-resolution using high-resolution still images is performed at the decoder to pre-

vent increasing computation complexity of the encoder. Experimental results show

that this method delivers comparable compression efficiency for lower bit-rates.
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Chapter 1

Introduction and Problem

Statement

A video camera is required to deliver a video sequence at desired frame-rate and

spatial resolution. Fulfilling this demand is a challenge for some applications due to

physical limitations of imaging systems. Obviously, high-resolution, high frame-rate

video of a scene is desirable because it contains more recognizable details, and is more

pleasant. A trade off exists between frame-rate and resolution, where improving both

at the same time is either not possible or leads to an expensive or heavy imaging

device, which is not practical for many applications. As an instance, consider a

consumer video recorder that uses CMOS image sensors. To increase resolution,

one approach is to increase pixel density of the image sensor. This may decreases the

Signal to Noise Ratio (SNR) of the sensor output, when the size of the sensor remains

the same and thus the area of each pixel on the chip decreases. As a result, the image

sensor size should be increased, that increases the size of optics used in the device,

and also increases the recording time for each frame because capacitance of CMOS
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sensors increases with their size [Park et al. (2003)]. Increasing recording time for

each frame is equivalent to a lower frame-rate. Although this trade off may be solved

by employing cutting edge of semiconductor technology, the associated cost usually

renders that unsuitable for consumer applications. As a result, most of digital video

cameras produce low-resolution videos at standard frame-rate. What if we need high-

resolution video sequence in an application and high-quality imaging devices are not

practical? Signal processing approaches may be employed to deliver desired video

sequence from a non-ideal imaging system. These approaches may be adopted for

an imaging application to keep the cost of the system acceptable, and render low-

resolution imaging devices an option for more demanding applications [Park et al.

(2003)].

The problem of enhancing each frame of a low-resolution video sequence by exploit-

ing information of many adjacent frames is an interesting and well-researched subject

in the area of signal processing, which is called “multi-frame super-resolution”. In

applications such as medical imaging or remote sensing, a high frame-rate sequence of

the object may not be generally a must. While desirable high-resolution images are

not achievable using the available device, a sequence of frames may be used for gen-

erating one high-resolution image. In fact, multi-frame super-resolution algorithms

were proposed basically for producing one single high-resolution image of the scene

by taking more than one frame and then combining their information. Therefore,

super-resolution techniques can be applied to a wide variety of applications and are

not limited to the video enhancement, and have been shown to lead to promising

results [Park et al. (2003)].

2
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1.1 Overview of the Thesis

In the second chapter, we review the frame formation process in a camera and the

related works in the area of mono sequence super-resolution is studied.

Extensive research has been done on super-resolution of a single low-resolution

sequence. Less work has been done to exploit more than one sequence for super-

resolution. In this thesis we examine different scenarios for video super-resolution.

First, we assume that the camera is capable of producing a sequence of high-resolution

images at a large time interval (e.g. 10 frame of video sequence) while shooting low-

resolution video. This camera may be called a dual-mode camera, which is capable

of performing both tasks simultaneously [X. Wu (2010)]. Images of this sequence are

called auxiliary still images in this thesis. Using such a sequence of images has been

studied before [B. Song (2011)]. In the third chapter, we propose a super-resolution

algorithm to exploit these images and form a regularization function for solving the

inverse problem of the super-resolution process, which is new in this area [S. Najafi

(2012)].

Next, we examine how using multiple low-resolution cameras, instead of one, may

enhance the super-resolution process in the chapter four. The sequence resulted from

recording the scene by multiple cameras is a multi-view video. Efficient fusion of

multi-view video frames is studied for enhancing super-resolution process. As a side

work, the basics of the algorithm proposed for exploiting multi-view video in the

super-resolution process are used for stereo video de-interlacing.

Finally in chapter four, we extend the idea of using auxiliary still images from

single-view to multi-view video and study its performance. This thesis is concluded

in the fifth chapter.

3



Chapter 2

Multi-frame Super-resolution

Background

In this chapter, an overview of LR frame formation in digital cameras, and princi-

pals of multi-frame super-resolution for single sequences is presented in this chapter.

Sources of degradation, and mathematical model for Low-Resolution (LR) and High-

Resolution (HR) frame formation is described briefly.

Multi-frame super-resolution problem can be divided into frame fusion and restora-

tion tasks. Figure 2.1 illustrates the process ... . Frame fusion consists of registration

of adjacent frames and combining them to reconstruct a primary up-sampled frame,

which is studied in the section 2.3. Primarily up-sampled frame should be de-noised

and de-blurred in order to achieve the final super-resolved frame. This problem is

studied in section 2.2.1.

4
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Figure 2.1: Multi-frame super-resolution process.
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2.1 Low-resolution Frame Formation

A digital video sequence is in fact the result of 3-dimensional time-space sampling of

the scene. Each frame is a 2D representation of the scene, spatially sampled at a time

instance. Multiple frames along time axis add the third dimension to the sequence,

representing temporal sampling of the scene. Image sensor plays the important role of

spatial sampling of the scene. Image sensor is a 2D array of CCD or CMOS light sensor

units. Each unit converts the photons detected on its surface into electric signals. The

number of light sensor units on the camera image sensor determines the maximum

achievable spatial resolution of the camera. Camera electronic or mechanical shutter

speed determines the frame-rate and exposure time. These characteristics play an

important role in the quality of recorded frames. In addition to these two factors,

many other factors such as size, pixel density, and dynamic range of image sensor

(which is the ratio of the largest and smallest luminance detectable by the sensor ),

affect the final quality of recorded frame sequence.

The signal recorded by each light sensor unit is directly related to the number of

photons detected on its surface. This number is related to the average light intensity

in the corresponding area, the exposure time, and the area of each light sensor. The

number of photons received from each point of the scene determines the accuracy of

its intensity estimation in presence of different sources of noise. The exposure time

must be sufficient to let a minimum number of photons arrive at the image sensor

surface to produce an accurate measurement with a reasonable SNR; as a result, the

maximum achievable frame-rate, which is inversely related to the exposure time, is

limited. This maximum could increase if the light sensor area is increased and/or scene

illumination is enhanced, but these are not always practical. Increasing the sensor

6
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size means that larger optical devices are required, moreover a larger and heavier

camera is not capable of near-field focus [Pelletier et al. (2005)]. Scene illumination

adjustment is not achievable in every situation. As a trade off, in multi-resolution

image sensors, spatial resolution may be sacrificed to achieve higher frame-rates. In

this approach, a fraction of maximum spatial resolution of image sensor is achieved

at a higher frame-rate by accumulating photons detected over a larger area of the

image sensor for each pixel. This method is called “Binning” and is popular for both

CCD and CMOS sensors [Huang et al. (2011)]. In this way, image sensor noise is

reduced by accumulating weak signals of adjacent pixels on-chip. Usually groups of

adjacent 2× 2 or 4× 4 or even 16× 16 pixels merge together to increase output SNR.

For instance, the SNR of the CCD image sensor output increases either by the square

root, or linearly with the number of pixels binned, depending on which type of noise is

dominant in the image sensor [Zhou et al. (1997)]. Although it seems to be possible to

perform averaging operation off-chip, on-chip binning is dramatically more effective

because sources of noise is suppressed directly on the image sensor chip before read-

out in the case of on-chip binning. Therefore, image sensor has two or more grids to

define area of each pixel. HR grid associates measurement of one light sensor to each

output pixel, and LR grid associates many adjacent light sensor to each pixel ( See

Figure 2.2 ). In the LR grid mode, accumulation of measurements by many adjacent

light sensors lead to a reasonable record of scene intensity in terms of signal to noise

ratio but with a lower resolution compared to HR grid mode as is shown in Figure 2.3

. Many consumer digital camcorders employ the LR grid mode while shooting video

at high frame-rates as exposure time is limited. In contrary, image sensor’s HR grid

is used for taking still images, where exposure time is more flexible [X. Wu (2010)].

7
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Figure 2.2: Pixel binning, LR and HR grid of image sensor.

Figure 2.3: Effect of pixel binning, [PCO-TECH (2012)]. From left to right: No
binning, 2×2 pixel binning, 4×4 pixel binning. Note: Contrast of magnified portions
is enhanced for better illustration.
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Figure 2.4: Effect of lens and optic devices for different aperture sizes [LuminousLand-
scape (2012)]. Top-left: f/5.6 aperture size, Top-right: f/22 aperture size, down-left:
f/32 aperture size, down-right:f/45 aperture size. The smaller the aperture size, the
more visible lens diffraction effect.

Since each pixel value produced by LR grid includes accumulation of signals recorded

by adjacent light sensors, resulting frame apparently suffers from blurring followed by

down-sampled when compared to the frame that could have formed on the HR grid.

Pixel binning is only one blurring source influencing the output frame. Out-of-

focus blur, and diffraction related to the optic parts of camera such as the lens and

aperture (as is shown in Figure 2.4) are other sources of blurring [Park et al. (2003)].

Point Spread Function (PSF) of imaging system includes all blurring and distor-

tions affecting each point of the scene during the process of frame formation. PSF of

an imaging system describes the response of imaging system to a point light source.
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The concept of PSF may be interpreted as the impulse response of the imaging sys-

tem and determines important characteristics of the system. PSF is theoretically

described as a continuous finite impulse response, which convolves with the signal

of light intensities of the scene to produce the resulting frame. If the PSF remains

the same throughout the domain of the formed frame, the convolution of real scene

by it may be interpreted as a linear filtering process. The aforementioned filtered

frame undergoes down-sampling due to finiteness of density of light sensors on the

image sensor. Although filtering by PSF function and down-sampling process happen

simultaneously in digital cameras, these operation may be modeled separately. PSF

operates on the scene signal as the input that is ideally continuous. Assume x(m,n)

as a continuous 2D signal representing scene luminance at each (m,n) location. If we

show PSF function of a digital imaging system as h(m,n), then the frame formation

equation on this system will be as follows:

z(m,n) = h(m,n) ∗ x(m,n)

y(i, j) = z(iL, jL) + n(i, j)

where z(m,n) is the continuous blurred frame before sampling and reading as digital

data by the image sensor read-out circuitry. y(i, j) is the digital frame after contam-

inating by different sources of noise n(i, j), and being sampled along the horizontal

and vertical axes on the image sensor grid. Different sources of image sensor noise

including “Shot Noise”, “Reset Noise” (for CMOS image sensors), and “Readout”

noise which also includes quantization noise contaminate the formed frame [Liu and

El Gamal (2003)]. L represents the width and hight of each pixel on the image sensor.

This frame formation model is not useful since it relates the observed signal to the

10
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continuous signal representing the scene. As we do not want to reconstruct the ideal

continuous signal of the scene, we should find an equation relating observed LR frame

formed on the LR grid of imaging device to the frame that could have been formed

on the HR grid of that device. The PSF relating these two digital frames is a discrete

function that could be represented by a matrix, and can relate the LR and HR frames

by a discrete convolution operation:

z = h ∗ x

y = D{z}+ n

where D is down-sampling operator. Consider y is formed on M × N LR grid of

image sensor, and x is the image could have formed on HR grid of size rM × rN . By

re-arranging y and x in lexicographic order, and reshaping h from a blurring window

to a circulant blurring matrix H of size r2MN × r2MN we can re-write the above

equation as a linear relationship between x and y :

y = DHx + n (2.1)

where x is of size r2MN × 1 and y is of size MN × 1. D is a short matrix of size

MN × r2MN playing the role of down-sampling. n is assumed to be a zero-mean

noise with variance equal to σ2.

Multi-frame super-resolution problem we address in this thesis deals with recov-

ering x that has been degraded through this model. In the next section, recent

approaches to super-resolution frame reconstruction are presented.

11
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2.2 Super-resolution Reconstruction

Consider y is the current LR frame we want to reconstruct. Focusing on equation

2.1, the reconstruction problem can be considered as up-sampling, de-blurring and

de-noising of y to find an estimate to x, which is the original HR frame. Recover-

ing x from this equation directly is not possible because of the following argument.

Degradation operator DH is a rank deficient matrix for two reasons:

1-short form of D,

2-rank-deficiency of H.

D renders the problem under-determined. In other words, the goal is to find r2NM

unknowns, when we have NM equations. H is a circulant matrix, because PSF

is considered to be space-invariant. Therefore, its eigenvalues are Discrete Fourier

Transform (DFT) coefficients of its first row [Davis (1979)]. Moreover, PSF of the

image sensor can be represented as an averaging window which weights the surround-

ing pixels of each pixel, and averages them to form the LR grid pixel value. Therefore,

PSF is low-pass in nature. DFT coefficients of its impulse response is zero for larger

indexed coefficients (i.e. high-frequency coefficients) which means some eigenvalues

of H are zero, and it is rank deficient. As a result, the inverse problem is ill-posed

therefore can not be solved using only information given by y and other information

should be employed. The other issue is the effect of the noise, n. How the recovered x

may be kept away from the noise contaminating y ? Solution to all of these problems

lies in the concept of regularization function which is based on the prior information

about desired frame. Before trying to use priors for recovering the current frame, x,

all the relevant information from observations has to be included in the formulations.

Adjacent frames may carry precious information for recovering samples removed from

12
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the HR grid of current frame. For this aim, we assume current frame to be the orig-

inal representation of the scene, and pixels of the adjacent frames to be translated

and deformed version of the current frame. Therefore, motion of those pixels have to

be determined and taken into account. To use adjacent frames’ pixels, they should

be accurately registered on the HR grid of current frame. Assume registration from

adjacent frame’s HR grid to the current frame’s HR grid is possible, and can be done

by a linear operation and Ft is the warping matrix relates the current frame to tth

adjacent frame, therefore,

yt = DHFtx + n

where yt is tth adjacent frame to current frame. Let’s for generalization assume that

current frame is one of yts and its formation is associated with a warping matrix

(which is basically represents no motion). Consider we want to include T frames in

the super-resolution process of the current frame, and Ft is the warping matrix which

maps pixel locations on the HR grid of current frame to the proper location on the

HR grid of each adjacent frame. Therefore, we will have T equations for the unknown

x:

yt = DHFtx + n 1 < t < T

Considering only the information of adjacent frames, we may take the Least Squares

(LS) approach to restore x. At this point, by assuming equal noise variance for all

adjacent frames, LS answer to the above equation set is as follows:

eLS(x) =
T∑
t=1
‖DFtHx− yt‖

2
2

x̂ = min
x
{eLS(x)}

(2.2)

13
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This solution minimizes the square error related to each equation, and is the same

when we take the Maximum Likelihood (ML) approach to this problem. In terms of

ML criterion, P(y |x ) should be maximized, and it results in the same formulation

assuming white Gaussianity for the noise. As stated before, because of rank deficiency

of H and D, solution to (2.2) is not stable or unique. To show the effect of rank

deficiency of H on the solution, assume xopt is the un-degraded HR frame which is

naturally an answer to (2.2):

e(xopt) ≤ e(x),∀x

In addition, assume xhf is a high frequency noise existing in the null-space of H, then

Hxhf = 0

e(xopt + xhf ) = e(xopt)

and xopt + xhf is another answer to (2.2):

e(xopt + xhf ) ≤ e(x),∀x.

Therefore, any combination of un-degraded signal x as the true answer for (2.2), and a

high-frequency noise from null-space of H can be another undesirable answer of (2.2).

This problem does not have a unique solution and for example; the solution changes by

a minor alteration of the observations due to noise. A constraint should be added to

limit the restored signal to a desirable range, and minimizes its high-frequency energy

content. This knowledge is added to the problem as a “regularization function” for

stabilizing the solution, or as an “image prior” in a stochastic approach. Although

14
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this primary least squares formulation we discussed here cannot lead us to a stable

answer, it is the core of final formulation and has the very important role of frame

fusion in super-resolution process. This cost function defines how adjacent frames

should be mixed with each other and contribute to super-resolution of current frame.

After studying and reviewing regularization functions for this inverse problem, we will

take a deeper look at this primary answer in section 2.3, and discuss how it impacts

the final reconstructed frame.

2.2.1 Regularized Reconstruction Approach

Basically, a regularization function is built based on general ideas about how a nat-

ural image should look like. Regularization function, Ψ(x), returns large values for

irrelevant inputs and is added to former formulation (2.2) using γ as a Lagrangian

multiplier:

e(x) =
T∑
t=1
‖DFtHx− yt‖

2
2 + γΨ(x)

x̂ = min
x
{e(x)}

(2.3)

This formulation may be achieved by easily applying MAP estimation to the problem

and using the following function as the image prior:

P (x) = exp(−Ψ(x))

As can be seen, the regularization function appears in an exponential function’s argu-

ment to play the role of Probability Distribution Function (PDF) of image. Derivation

of (2.3)using MAP by maximizing P (x |y) is straight-forward.

The classic priors used as regularization function are based on one assumption.
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The assumption is that images consist of smooth regions and total energy of high-

frequencies are limited. Well-known Tikhonov regularization function and the Total

Variation (TV) are also based on this assumption. Tikhonov regularization function

is simply Laplacian of the image and can be represented by a linear operator:

Ψ(x) = ‖Lx‖2
2

L = 1
8


−1 −1 −1

−1 8 −1

−1 −1 −1


(2.4)

Laplacian operator is discrete approximation of its continues form. Continues Lapla-

cian operator is defined as:

∇2 = (
∂2

∂u2
+

∂2

∂v2
) (2.5)

For image processing problem, Laplacian of Gaussian is used consisting of first filtering

image by a Gaussian filter, and then taking second derivatives. Gaussian filter is

applied to reduce effect of high-frequency noises. Therefore, continuous Laplacian of

Gaussian operator is:

L = ∇2(G) = − 1

πσ4
(1− u2 + v2

2σ2
) exp(−u

2 + v2

2σ2
) (2.6)

Other regularization functions have been used taking derivative of the image as a

measure of smoothness. For example the following regularization function may also

be used for this aim:

Ψ(x) = ‖Dhx‖2
2 + ‖Dvx‖2

2 (2.7)

where Dh and Dv are operator matrices taking derivative of image in horizontal and
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vertical direction. The type of derivative used in equation (2.7) is first order and di-

rectional compared to Tikhonov which is the summation of second order derivatives.

Since an image show significantly different values across its edges, this regions are

considered as not-desirable outcome, and are penalized using the above regulariza-

tion functions. Therefore, edges are not recovered properly in the restored image.

Specifically penalizing using L2-norm, renders the situation worse. Total Variation

(TV) regularization function is well-known for maintaining smoothness while preserv-

ing edges of the image. TV is defined as the L1-norm of magnitude of gradient of

image [Chan et al. (2001)]:

ΨTV (x) = ‖∇x‖1 (2.8)

Bilateral Total Variation is a modified version of TV, and shown to be very efficient

for preserving edges of the image [Farsiu et al. (2004)] by employing several scales of

derivatives:

ΨBTV (x) =
P∑

i=−P

P∑
j=0

i+j>0

α(i+j)
∥∥∥x− SixS

j
yx
∥∥∥1

1
(2.9)

where α is weighting factor used to discriminate between different scales of deriva-

tives, and Smx and Smy are two operators shift the image by m pixel horizontally and

vertically, respectively.

Approximation theory may also be employed for devising effective regularization

functions. Sparsity among wavelet coefficients which exists in all natural images

can be simply put in a closed mathematical expression and used as a regularization

function [Donoho and Johnstone (1994)]. This idea comes from observations telling us

wavelet transform coefficients are mostly zero or close to zero and tend to be sparse.
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To penalize any non-sparse answer, regularization function is formed by taking Lp-

norm of the wavelet transform of image,

ΨW (x) = ‖TWx‖pp , p ≤ 1 (2.10)

where TW is generally the wavelet operator matrix that may produce coefficients of

any high-frequency sub-band needed, when is multiplied by the signal. Although it

looks different from previous forms which take derivative of image, the latter regular-

ization function is also based on general assumptions about natural images.

2.3 Conventional Frame Fusion Method

Frame fusion is adding information of adjacent frames in the super-resolution process,

and is implicitly embedded in the solution for multi-frame super-resolution presented

in equation (2.3). Information of all LR frames contributing to super-resolution of

current frame are being added together by proper warping matrices, Ft.

To see how frame fusion happens by minimizing (2.3), we separately minimize the

first term of the cost function in (2.3), which is equal to

T∑
t=1

‖DFtHx− yt‖
2
2,

and is responsible for frame fusion. Assuming z = Hx and then minimizing the

following expression for z:
T∑
t=1

‖DFtz− yt‖
2
2

In this way, we are looking at the problem as two separate problems. First, adjacent
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frames registration and up-sampling to achieve a blurred noisy up-sampled frame, ẑ

as follows:

ef (z) =
T∑
t=1
‖DFtz− yt‖

2
2

ẑ = min
x
{ef (z)}

(2.11)

where ef (z) is the fusion cost function. Second, de-blurring and de-noising of the

up-sampled frame are performed by minimizing the following cost function:

er(x) = ‖Hx− ẑ‖2
2 + γΨ(x)

x̂ = min
x
{er(x)}

(2.12)

where er(z) is the restoration cost function. It is worth mentioning, both problems

are actually solved simultaneously by minimizing (2.3). We only discuss the first

minimization problem in this section as it is related to frame fusion and up-sampling.

Solving (2.11) for z, is as follows:

def (z)

dz
=

d

dz

T∑
t=1

(DFiz− yt)
T (DFiz− yt) = 0.

Taking the derivative, we continue as follows:

T∑
t=1

2Ft
TDT (DFtz− yt) = 0

T∑
t=1

FT
t D

TDFtz =
T∑
t=1

FT
t D

Tyt (2.13)

This equation shows how adjacent frames are fused for up-sampling the current frame.

Assume, HR grid is a rM × rN matrix of pixels, and LR grid is a M × N matrix

and r = 2. Operator D takes pixels located on the odd indexed rows and columns
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and put them on the LR grid in the same order. Operator DT performs the inverse

task. It makes a rM × rN all-zero matrix, takes the pixels of LR frame, put them

on the odd indexed rows and columns of the all-zero matrix. Therefore, DTyt is

simply zero-inserted up-sampled version of yt. This task is performed for each LR

frame and its samples placed on the HR grid. FT
t performs the inverse shift to return

the pixels of yt to their proper position in the current frame, and compensates the

relative motion between two frames. The essential requirement for adjacent frames to

contribute in up-sampling of current frame constructively, lies in the form of relative

motion. If motion helps to shift and put pixels of adjacent frames in a manner that

no pixel position of HR grid remains zero in the result of frame fusion,
T∑
t=1

FT
t D

Tyi,

then it is effective. As a result, if less than r2 − 1 adjacent frame are fused (i.e.

T < r2), some pixel locations on the HR grid remain zero. The most important

issue, is capability of algorithm to perform sub-pixel motion estimation and form

F t matrices, and existence of sub-pixel motion between current frame and adjacent

frames. Exploiting more than r2 − 1 adjacent frames increases the chance for each

pixel location on the HR grid to find a sample in adjacent frames. Possibly, more than

one sample could be found for each pixel location on the HR grid. In those cases,

averaging is performed on samples of adjacent frames assigned to that location to

determine its pixel value. Averaging is the case, when L2-norm is used in (2.2). It is

proved in [Farsiu et al. (2004)], that in case of using L1-norm as distance measurement

between restored frame and degradation process, median is taken between samples

of different LR frame associated with a single location to set the pixel value. Using

L1-norm has the advantage of outlier rejection, while L2-norm leads to averaging and

is effective for mitigating degradation effect due to Gaussian noise.
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Although we looked at up-sampling and de-blurring tasks separately in this chap-

ter for better explanation, in many multi-frame super-resolution approaches these

tasks are performed simultaneously by minimizing one cost function [Farsiu et al.

(2004)]. On the other hand, in some methods which adjacent frame fusion is compli-

cated fusion step may be performed separately through a different cost functions for

practical implementation issues [Protter et al. (2009)]. It should be mentioned that

separation of these tasks is sub-optimal but useful in terms of practical implementa-

tion.

Conventional motion compensation for frame fusion assigns one motion vector

per adjacent frames to each pixel in current frame. It assumes that each point of the

scene that is represented by one pixel in each of the adjacent frames, takes integer

multiples of HR grid pixel size and moves to another pixel of current frame’s HR grid.

Then, based on the type of the norm which is used in the fusion term of solution,

we take median or mean of pixels associated by motion vectors in adjacent frames.

Finding warping matrices on the HR grid requires sub-pixel motion estimation using

LR frames, and is one of the challenges that multi-frame super-resolution faces. How

could an algorithm estimate sub-pixel motion estimation accurately? The answer

is that conventional multi-frame super-resolution algorithms capability is limited to

scenes with simple motions, such as global transition. Accurate motion estimation

enhances the fusion of LR frame, and non-accurate motion fields leads to sever degra-

dation and artifacts in the super-resolved frame. As a result, recently many efforts

have been made to mitigate the need for explicit sub-pixel motion estimation [Takeda

et al. (2009), Protter et al. (2009)]. Frame fusion method presented in [Protter et al.

(2009)] will be the heart of algorithm presented in next chapter. In the next chapter
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we introduce an implicit motion compensation method for frame fusion, which does

not assume this simple motion model for the motion of the points of the scene, and

assigns more than one motion vector per adjacent frame to each of the pixels in the

current frame.
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Chapter 3

Video Super-Resolution using

Auxiliary High Resolution Still

Images

3.1 Introduction

Limitations related to the factors reviewed in the previous chapter in addition to lim-

itations on processing power of camera video encoders in most consumer applications,

result in a low resolution (LR) video sequence. Delivered low-resolution frames have

gone through different degradation processes including blurring, down-sampling, and

contamination by noise. Super-resolution, the problem of reconstructing high res-

olution (HR) frame from a LR video sequence, is an ill-posed inverse problem and

requires extra knowledge about the unknown to be solved. As studied in details in

previous chapter, this knowledge is added to the problem as a “regularization func-

tion” for stabilizing the solution, or as an “image prior” in a stochastic approach.
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Regularization function plays an important role in solving the inverse problem at

hand and the recovered signal inherits its characteristics from what was imposed on

it by the regularization function.

Although conventional image priors have evolved significantly, the quality of re-

sults is still poor since one general characteristic put in terms of simple mathematical

expressions cannot represent divers characteristics of images. As a solution, example-

based priors have emerged, tuned for a specific family of images. Example-based

priors are specified using many examples of HR images with similar content to the

image being super-resolved [M. Elad (2007)]. A similar technique is applicable in the

area of video super-resolution. It consists of using several HR still images taken from

the same scene to enhance the process of video super-resolution. Since the content

of video changes over time and HR still images should have a minimum correlation

with the video, images should be taken at a regular frequency along the video frames.

For example, they may be taken with a rate far smaller than frame rate of the video

providing useful information to enhance video super-resolution process.

It is worth mentioning that “video” and “auxiliary HR still image” are two terms

used in this chapter which refer to for the LR frame sequence we want to super-resolve

and the extra information we want to exploit for the super-resolution, respectively.

The sequence of HR still images taken for enhancing super-resolution may be consid-

ered as a low frame-rate HR sequence. Super-resolution process should be performed

before final coding and recording video on the memory of camera. Nevertheless, we

use the term “video” for the LR sequence we want to super-resolve, and “still image”

for the extra HR shots of the scene we use for enhancing super-resolution process.
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Exploiting information of HR still images, which is practical in a variety of sce-

narios, have been proposed for video super-resolution enhancement. Using recently

developed CMOS image sensors, it is possible for the image sensor chip to generate

high-resolution images at a lower rate, while recording high-frame rate low-resolution

frame sequence [Pelletier et al. (2005)]. This combination may be exploited inside the

camera for the LR frame-sequence super-resolution (before compression and storage).

In another scenario, we may perform video super-resolution using HR still images us-

ing a software on the computer. In that case, compression effect should be considered

in the process of super-resolution.

Super-resolution may be seen as recovering missing high frequency content of

frames after performing a simple interpolation on the LR frames. [F.Brandi (2008)]

proposed an algorithm for recovering missing high-frequency contents of each block of

LR frames. In their algorithm, high-frequency content of HR still images is extracted

by convolving them with a special filter, then missing high frequency content of blocks

of primarily interpolated LR frames are found by finding their best match in the HR

still images.

Finding the true best match is not always possible due to occlusions and complex

motions in the scene. As a remedy, [B. Song (2011)] used the same matching method

in parallel with a learning based approach reserved for the cases where no relevant

match could be found in the HR still images. Their proposed learning based method

solves this problem by building class specific predictors learned based on the HR still

images for predicting missing high-frequency contents of the LR frames. They assign

a predictor to each class of LR blocks that estimates each pixel of associated HR

block by performing a weighted averaging on the all pixels of LR block. Weights
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are already defined for each class by using HR still images and their corresponding

LR versions as learning set. However, associating a linear dependency between HR

and LR patches without considering adjacent frames and degradation model leads to

blurred restored HR frames.

The goal of this chapter is to effectively exploit all information including adjacent

LR frames and HR still images for super-resolution. It is based on the idea of multi-

frame super-resolution, and performing up-sampling task separately from de-blurring

for easier implementation. We proposed a regularization function for de-blurring and

de-noising.

The rest of this chapter is as follows. In section 3.2, a brief overview on the pro-

posed algorithm is given. Section 3.3 and 3.4 cover up-sampling and de-blurring tasks,

respectively. Section 3.5 describes employing Generalized Cross Validation (GCV)

method for defining regularization parameter. Experimental results are presented in

section 3.6. This chapter is concluded in section 3.7.

3.2 Overview of the Proposed Algorithm

Super-resolution reconstruction of each frame takes the reverse path of the degra-

dation to obtain original HR frame. The degradation process includes camera PSF

blurring, LR grid down-sampling, and contamination by noise. One possible mathe-

matical model for degradation as described in the previous chapter is:

y = DHx + n (3.1)
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where pixels of the current LR and HR frames are rearranged in lexicographic order

and form y and x vectors. D and H are two matrices representing down-sampling and

PSF blurring, respectively. n represents image sensor noise with variance equal to

σ2. As explained in the previous chapter, adjacent frames carry relevant information

and are added to the problem formulation in multi-frame super-resolution approach.

Briefly, multi-frame super-resolution process can be viewed and explained as two

tasks:

1-Registering adjacent LR frames and finding sub-pixel motions between current

frame and adjacent LR frames, and fusing them on the HR grid. The result is an

up-sampled frame which is blurred and noisy as described in previous chapter. We

call this up-sampling step.

2-De-noising and de-blurring of the up-sampled frame using blur model, and an

image prior(i.e. regularization function)

Performance of the first step relies on the existence of motion in the scene. Motion

can reveal lost points on the HR grid of one frame in its adjacent frames. As explained

in the previous chapter, accuracy of the motion estimation and access to sufficient

number of adjacent frames carrying relevant information have a great impact on the

final quality of super-resolved frame.

As explained in the last section of the previous chapter, these tasks may be

performed simultaneously which is the optimal case. But in our proposed super-

resolution algorithm presented in this chapter, these tasks are performed separately.

A block-diagram of different steps of process is depicted in Figure 3.1.
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Figure 3.1: Block-diagram of proposed super-resolution algorithm consists of frame
fusion and de-bluring/de-noising

3.3 Up-sampling : NLM-based Frame Fusion

As stated before, presence and estimation of sub-pixel motion between frames is not

practical in the real world. Therefore, methods implicitly estimate sub-pixel motion

have been proposed recently. One of the most effective method inspired by non-local

means filter is proposed in [Protter et al. (2009)]. It suggests to generalize Non-

local means de-noising approach [Antoni Buades, Bartomeu Coll, Jean-Michel Morel

(2011)] for the multi-frame super-resolution problem. Before reviewing this method,

principals of non-local means filter is discussed in this section.

Non-Local Means (NLM) filter and bi-lateral filter belong to the same family of

de-noising methods. These methods are very successful as de-noising tools and are

based on the fact that an image exhibits self-similarity. Therefore, each pixel can

be de-noised by averaging all similar pixels in its neighborhood. Each neighborhood

pixel contributes partially in the averaging process, according to a weigh associated
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to it based on a similarity measure. The formulation for the restored pixel is:

x̂(k, l) =

∑
(i,j)∈Ω(k,l)

w(k, l, i, j)y(i, j)∑
(i,j)∈Ω(k,l)

w(k, l, i, j)
(3.2)

where Ω(k,l) stands for neighborhood set of the pixel located at (k, l), and w(k, l, i, j)

stands for the weight associated to the pixel located at (i, j) to contribute in con-

struction of pixel located at (k, l). w(k, l, i, j) can be represented using a general

equation:

w(k, l, i, j) = exp(−
∥∥∥R(k,l)x−R(i,j)y

∥∥∥2

2
/2δ2).Φ(‖(k − i, l − j)‖2) (3.3)

where Φ is a decreasing function, and R(m,n) is an operator extracting a patch centered

at the location (m,n). δ is a parameter controls relative contribution of candidate

pixels in the neighborhood of pixel located at (k, l). The difference between NLM

and bi-lateral filter lies in the patch size. The patch size for bi-lateral filter is only

one pixel, while the patch for NLM can be any size. It enables NLM filter to measure

the similarity of two pixels more accurately. It is worth mentioning that the way

these weights are calculated is intuitive and exponential form is first suggested by

[Antoni Buades, Bartomeu Coll, Jean-Michel Morel (2011)]. The exponential form

relation between weight and negated sum of absolute differences, eliminates non-

related patches and penalizes differences severely. [Protter et al. (2009)] uses the idea

behind this method to perform motion estimation and frame fusion and to up-sample

a video frame. De-blurring and de-noising of the resulted up-sampled frame is then

carried out using BTV regularization function in the algorithm proposed in [Protter
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et al. (2009)].

[Protter et al. (2009)] formulated motion estimation and frame fusion as an energy

function minimization and solved it to reach a closed form solution for the frame

fusion. Before explaining the derivation of the non-local means based frame fusion

method, we want to take a deeper look at the origin of non-local means filter. Non-

local means de-noising filter can be derived by minimizing a cost function. Getting

familiar with this derivation is useful to understand how it works, and how it may

used for the frame fusion in the multi-frame super-resolution process.

This cost function imposes each pixel of the restored image to have a close value

to other pixels with similar patches in its vicinity. Consider x is the original frame

and y is its noisy version. The NLM de-noising filter cost function is as follows:

eNLM(x) =
∑
(k,l)

∑
(i,j)∈Ω(k,l)

w(k, l, i, j)
∥∥∥P(k,l)x −P(i,j)x

∥∥∥2

2

Where Ω(k,l) is the set of all candidate pixels weighted inside the search region for the

pixel located at (k, l). P(m,n) is an operator taking out the pixel placed at location

(m,n). For instance, P(m,n)x = x(m,n). This cost function imposes the similarity

between pixels with the similar patches. By minimizing this cost function iteratively,

and substituting x0 = y, the first iteration leads to the NLM filter described by (3.2).

More details about this derivation is available in [Protter et al. (2009)]. Now, consider

we want to use the same idea for up-sampling a LR frame by fusing all adjacent frames.

Assume T LR frames are fused for super-resolving the current frame which is called

x. The unknown we are looking for in the up-sampling step is z = Hx which is the

result of fusion of all LR frames. Fusion of LR frames can only lead to z = Hx as

pixels of LR frames are already affected by H. Although fusion and restoration tasks
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(de-blurring and de-noising) can be done simultaneously theoretically by one cost

function, for the sake of implementation simplicity, it is suggested to perform them

separately [Protter et al. (2009)]. Now, we focus on the up-sampling task to achieve

z by fusion of LR frames. We want to explain up-sampling task as a process similar

to de-noising to exploit NLM de-noising filter for it. The first difference between

up-sampling and de-noising is that the size of frame changes during up-sampling, and

we want to fuse LR frames to get a HR frame. To handle this problem, [Protter et al.

(2009)] suggests to first map pixels of the all LR frames on their HR grid properly.

Assume up-sampling is performed for a factor of r. Therefore, we can fill 1
r2 pixel

locations on the HR grid of each LR frame by just moving its pixels to the proper

location. This location depends on the fact that how we modeled camera PSF and LR

frame formation by blurring and down-sampling matrices H and D. For example, if

up-sampling is performed for a factor of 2 and each LR pixel is the result of averaging

over all 4 neighboring pixels, we may construct H based on the following blurring

window:

1

4


0 0 0

0 1 1

0 1 1


and down-sampling matrix as a matrix which picks pixels at odd indexed rows and

columns, and eliminates the rest. Based on this structure, during mapping each

LR frame’s pixels on its HR grid we should put (i, j) pixel of LR frame on the

(2(i − 1) + 1, 2(j − 1) + 1) pixel location of the HR grid. After this step, we will

have r2−1
r2 holes on the HR grid without any value. We primarily fill this locations

by performing a simple interpolation on the existing pixels. Now, the problem setup

is more similar to a de-noising problem, and the goal is to estimate all pixels on the
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HR grid of current frame (including interpolated and non-interpolated pixels) using

original (non-interpolated) pixels of all adjacent frames. Interpolated pixels in the

adjacent frames are not considering as candidate pixels, since they do not carry any

new information and are calculated based on the original pixels. The following cost

function performs this task for us:

ef (z) =
∑

(k,l)∈Ωz

∑
t∈[1...T ]

∑
(i,j)∈Ωt

(k,l)

w(k, l, i, j, t)
∥∥∥P(k,l)z−P(i,j)ỹt

∥∥∥2

2

ẑ = min
z
{ef (z)}

where ỹt is the tth LR frame involved in the up-sampling process after it is mapped

and interpolated on the HR grid. Ωt
(k,l) is the set of all candidate pixels among

non-interpolated pixels, inside the search region for the pixel located at (k, l) in its

adjacent frame ŷ t. Ωz represents all pixels inside frame z. AssumingP(m,n) extracts

only the pixel at location (m,n), minimizing this cost function in the same way we

explained for minimizing cost function of NLM filter leads to the following close form

expression for reconstructing pixel located at (k, l) in the current frame :

ẑ(k, l) =

T∑
t=1

∑
(i,j)∈Ωt

(k,l)

w(k, l, i, j, t)ỹt(i, j)

T∑
i=1

∑
(i,j)∈Ωt

(k,l)

w(k, l, i, j, t)
(3.4)

where ẑ(k, l) is the estimation for z(k, l). Therefore, all candidate pixels found inside

all primarily up-scaled LR frames contribute to the reconstruction of the pixel located

at (k, l) in the current frame by the above formula. The weight associated to the

candidate pixel located at (i, j) in an adjacent frames ỹt is calculated similar to NLM
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filter by an exponential term as follows:

w(k, l, i, j, t) = exp(−
∥∥∥R(k,l)z̃−R(i,j)ỹt

∥∥∥2

2
/2δ2) (3.5)

where z̃ is an initial up-sampled version of current frame resulted from simple inter-

polation. R(m,n) is an operator extracting the patch centered at the location (m,n).

δ is the parameter controlling the relative contribution of different pixels based on

their local similarity to the pixel located at (k, l).

The difference between the described frame fusion method and conventional ex-

plicit motion compensation based methods is the type of motion they employ. The

NLM-based method tries to find motion of each pixel by many motion vectors in a

fuzzy manner. Conventional methods determine just one motion vector per adjacent

frame for each pixel. In fact, there is no guarantee that pixels of the adjacent frames

can be exactly mapped on the HR grid of current frame. In the NLM-based frame

fusion method, instead of choosing the best motion vector, many motion vectors with

different contributions are employed for each pixel (See figure 3.2). In this way, com-

plex forms of motion can be handled since we are not looking for the “exact match”.

In other words, in NLM-based method averaging replaces the maximization, and this

enhances performance effectively [Protter et al. (2009)]. There are two differences

between the frame fusion method described in [Protter et al. (2009)] and the way we

use it in our application. First, we have access to HR auxiliary frames, therefore we

blur them intentionally using blurring function H and use them like other adjacent

frames during this process. Second, we define search region in another manner. The

method described in [Protter et al. (2009)] weights all pixels located inside the search

region in the adjacent frames while most of the pixels are associated with negligible
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Figure 3.2: Conventional motion estimation (up) vs. Fuzzy motion estimation (down)
for frame fusion (each section represents one pixel)

weights. Therefore, we employed another method to effectively search the most prob-

able regions and reduce complexity of the algorithm. Since not every pixels in the

search region carry relevant information, we adopt a pattern of locations to search

for good candidates. The pattern we used is the famous pattern used in “Diamond

Search” (DS) [Zhu and Ma (2000)]. There is a substantial difference between how DS

is employed in our algorithm and how is it used for conventional motion estimation

purposes. In conventional motion estimation applications, DS is employed for find-

ing the best match. In the proposed algorithm, DS is used to find the region that

best matches probably exist, and all of pixels which DS examines to lead to the best

matches are weighted as candidate pixels. As a result, Ωt
(k,l) is not set of all pixels

inside the search area, and is only pixels which examined by the DS algorithm.

At this point, all discarded samples on the HR grid is estimated using adjacent
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LR frames and ẑ as an estimate of z = Hx is obtained.

Now, restoration should be performed to remove low-pass filtering effect of image

sensor’s PSF and noise. For this task, it is important to take it into account that

noise distribution is different for ẑ compared to yt. Image sensor noise has already

contaminated samples of yt, therefore; ẑ which is related to it by (3.4) is also contam-

inated by this noise. Moreover, ẑ in (3.4) is an estimate of the true sample of Hx,

and this estimation is associated with error.

According to (3.4), samples of ẑ are weighted averages of samples of yt. In terms

of noise, this averaging changes the noise energy of ẑ, compared to yt. Although

Gaussian Identically Independently Distributed (i.i.d.) assumption for the noise con-

taminating y in (3.1) is simplifying and justifiable, we should define properties of the

noise contaminating ẑ more carefully. Weighted averaging process over samples of yt

does not change noise distribution of the resulted sample, because summation of sam-

ples of some Gaussian distributions is also Gaussian. ẑ samples’ covariance matrix

should be calculated with respect to the covariance matrix of y samples. Considering

(3.4) variance of noise contaminating ẑ(k, l) is as follows:

σ2
(k,l) =

T∑
t=1

∑
(i,j)∈Ωt

(k,l)

w2(k, l, i, j, t)

(
T∑
t=1

∑
(i,j)∈Ωt

(k,l)

w(k, l, i, j, t))
2σ

2 =

∥∥∥W (k,l)
∥∥∥2

2

‖W (k,l)‖2
1

σ2 (3.6)

where σ2 is variance of noise contaminating y, and W (k,l) is the set of all weights found

for pixel located at (k, l). Obviously, this value is smaller than σ2 and up-scaling step

itself reduces the effect of image sensor noise. But as stated before, image sensor noise

is not the only noise affecting ẑ contrary to yt. ẑ is supposed to be an estimate for
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Hx. The error of this estimation depends on the type of the motion associated with

each pixel. Each pixel of ẑ is obtained by taking weighted average of similar pixels

in all adjacent LR frames with respect to (3.4). This estimate can lead to a value

substantially different from the exact value for a pixel if it is occluded in the adjacent

frames and there is not enough candidates for it. Therefore, the error associates

with the estimation is separate from noise of image sensor which contaminates all LR

frames and consequently the ẑ.

It is worth mentioning, similar problem exists wherever any form of motion esti-

mation is used in an algorithm, and it is not easy to determine the error of motion

estimation in these cases. For example, explicit motion estimation is used to find

Ft matrices for conventional frame fusion which is described in the previous chapter.

Each element of Ft shows how a pixel has changed its position in a frame, but we do

not have a measure for its correctness to include it in our formulation. Hereafter, we

assume that the total effect of the aforementioned sources which contaminate samples

of ẑ is an i.i.d noise and therefore, Σ is as follows

Σ =


1 . . . 0

...
. . .

...

0 · · · 1

σ
2
z = Iσ2

z

where σz is the total effect of the variance of noise and estimation for pixels of ẑ.

At the next step, de-blurring and de-noising should be performed to remove low-pass

filtering effect of image sensor’s PSF and noise.
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3.4 De-blurring

In previous section we obtained ẑ as an estimate to z = Hx. De-blurring and de-

noising process is required to estimate x from ẑ. For simplicity we will use z instead of

ẑ for representing the up-sampled frame obtained from previous section in the rest of

this chapter. This process can be formulated as a regularized reconstruction approach

based on the reasons discussed about regularization functions in the previous chapter:

e(x ) = (Hx− z)T (Hx− z) + γΨ(x )

x̂ = min
x
{e(x)}

(3.7)

where Ψ(x ) is generally the regularization function. Conventional regularization func-

tions impose general features on restored image such as smoothness or sparsity among

transform coefficients. Using a regularization function specified by samples from the

same scene can mitigate our need for adhering to a general characteristics such as

smoothness. Inspired by the energy function used for NLM filter derivation, we pro-

pose a regularization function, ψr, of the form

ψr(x) =
2∑
t=1

∑
(k,l)∈Ωx

w̄−1
(k,l)

∑
(i,j)∈Ωt

(k,l)

w(k, l, i, j, t)
∥∥∥P(k,l)x−P(i,j)x

r
t

∥∥∥2

2

w̄(k,l) =
2∑
t=1

∑
(i,j)∈Ω(k,l)

w(k, l, i, j, t)

(3.8)

to play the role of Ψ(x) in (3.7). xrt represents previous and next HR still images for

t = 1 and t = 2 respectively. Next and previous HR still image are the closest HR

still images to the LR frame being reconstructed. We do not want to include other

HR still images as they are far from the current LR frame and thus have negligible

correlation. Ωt
(k,l) is the set of candidate pixels found in the tth auxiliary HR image
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for pixel located at (k, l), and Ωx represents all pixels of x. Similar to previous

section, candidate pixels are chosen using a method based on diamond search (DS)

algorithm. As can be seen, when w(k, l, i, j, t) is higher the difference between pixels

of the frame being reconstructed and HR still images leads to higher cost, and the

difference should be penalized more. The above definition for regularization function,

reduces the difference between pixels of the reconstructed frame and pixels of the

HR still images which have similar patches. w̄−1
(k,l) is used as a coefficient behind

the summation of all costs associated with the pixel located at (k, l) to normalize

weights of all candidate pixels associated with that pixel. This way reconstructed

frame reflects patterns of the HR still images when available (i.e. when w(k, l, i, j, t)

is not negligible).

One preliminary and straight-forward but not practical way for calculating weights

w(k, l, i, j, t) for this regularization function is as follows:

w(k, l, i, j, t) = exp(−
∥∥∥R(k,l)x−R(i,j)x

r
t

∥∥∥2

2
/2δ2) (3.9)

Using the above formula, we can measure similarities between restored frame and

the auxiliary HR image. But, this formulation renders the derivative of (3.7) very

complicated because it contains the variable x. Moreover, if we want to solve (3.7)

iteratively, we should update weights at each iteration and it severely increases com-

putational complexity. We prefer to calculate these weights independent of x. By a

subtle change in this formula, we can still measure the similarities between current

frame and auxiliary HR image independent of x. The solution is to measure simi-

larities between z which has been obtained already by the up-sampling process and
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blurred versions of auxiliary HR still images in hand:

w(k, l, i, j, t) = exp(−
∥∥∥R(k,l)z−R(i,j)Hxrt

∥∥∥2

2
/2δ2) (3.10)

Although z is blurred and we want to de-blur it, it still reveals the similarities between

unknown de-blurred frame x and the auxiliary HR images when we compare it to the

intentionally blurred version of those images. This approximation is sub-optimal and

its effectiveness depends on estimation accuracy of z from the previous step. Now,

we can proceed with solving (3.7) using proposed regularization function in (3.8). To

minimize the cost function in (3.7), we need to take its derivative with respect to x

and equate it to zero:

de(x)
dx = 2HTHx− 2HTz+

2γ
2∑
t=1

∑
(k,l)∈Ωx

w̄−1
(k,l)

∑
(i,j)∈Ω(k,l)

w(k, l, i, j, t)PT
(k,l)P(k,l)x−

2γ
2∑
t=1

∑
(k,l)∈Ωx

w̄−1
(k,l)

∑
(i,j)∈Ω(k,l)

w(k, l, i, j, t)PT
(k,l)P(i,j)x

r
t = 0

(3.11)

considering:
2∑
t=1

∑
(k,l)∈Ωx

w̄−1
(k,l)

∑
(i,j)∈Ω(k,l)

w(k, l, i, j, t)PT
(k,l)P(k,l)x = x (3.12)

and:

∆r
∆
=

2∑
t=1

∑
(k,l)∈Ωx

w̄−1
(k,l)

∑
(i,j)∈Ω(k,l)

w(k, l, i, j, t)PT
(k,l)P(i,j)x

r
t (3.13)

therefore, we can equate de(x)
dx to zero and solve the equation for x as follows,

(HTH + γI)x−HTz− γ∆r = 0 (3.14)
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x̂ = (HTH + γI)−1(HTz + γ∆r) (3.15)

where PT
(k,l)w(k, l, i, j, t) builds a vector with one non-zero element equal to w(k, l, i, j, t)

placed at the location (k, l). To understand this solution, ∆r should be explained.

Taking a look at the (3.13) describing ∆r we see each pixel of ∆r is a weighted av-

erage of pixels of closest auxiliary still images shown by xr1 and xr2. This fact can

be explained further as follows. P(i,j)x
r
t takes pixels of xrt located inside search re-

gion ((i, j) ∈ Ω(k,l)) out. Each of them is multiplied by the associated normalized

weight w̄−1
(k,l)w(k, l, i, j, t), then all results are added and put at the location (k, l) of

the ∆r using PT
(k,l) operator. In fact, ∆r is a very good primary estimate of the final

reconstructed frame and we call it x̂reg:

x̂reg = ∆r. (3.16)

This estimates can be easily derived by separately minimizing ψr(x) for x. It means

that similarity to x̂reg is what the proposed regularization function imposes on the

final frame. x̂reg is the auxiliary HR still images registered with respect to the cur-

rent LR frame. Therefore, we see the proposed regularization function penalizes the

difference between restored frame and x̂reg. Although x̂reg may be considered as a

primary solution for super-resolution problem itself, it is degraded in the areas which

is occluded and the algorithm cannot find any match for them in the closest auxiliary

HR still images. Note that LR frame and degradation process (matrix H) are com-

pletely ignored in the x̂reg, and it is only based on HR still images. Understanding

the impact of the proposed regularization function on the final restored frame, we
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Figure 3.3: Full diagram of the proposed method

may re-formulate the problem as follows:

e(x ) = (Hx− z)T (Hx− z) + γ(x −∆r)
T (x −∆r)

x̂ = min
x
{e(x)}

(3.17)

Solving this minimization problem we achieve the same answer obtained in (3.15)

and is just representing the problem in another from which is called constrained

reconstruction approach, and the constraint is ∆r, defined based on the auxiliary still

images. As stated in previous paragraph, ∆r is sharp but degraded in some regions

where the current frame do not have good matches in the auxiliary HR still images.

In the occluded regions, first term of the cost function which does not depend on the

auxiliary still images tends to push the optimize answer to a more accurate value by

incorporating z. The experimental results show that occluded regions are handled

effectively in this way. Figure 3.3 illustrates a complete diagram of the proposed

method.
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3.5 Generalized Cross Validation Method for Defin-

ing Regularization Parameter

We showed how the recovered frame should look like auxiliary HR still images through

the regularization function introduced in previous section. But, it is not determined

yet to what extent the restored frame should obey regularization function and to what

extent it should be loyal to observed data from LR frames. It is very important to set

this trade-off in a manner to obtain the best possible result. γ is the regularization

parameter controlling this trade-off and increasing and decreasing it increases the

effect of auxiliary HR still images and LR frames, respectively. Knowing the noise

covariance matrix associated with noisy observation, including ours, may facilitate

defining this parameter but in most applications noise covariance matrix is not known.

Finding the optimal value for regularization parameter has been discussed in details

for conventional regularization functions and many algorithms has been proposed

for that. L-curve [Hansen (2000)] and Generalized Cross Validation (GCV) are the

most popular methods. L-curve method associates with calculating of curvature of

a plot, and is computationally extensive. In this work we exploit GCV to find the

regularization parameter γ.

3.5.1 Cross Validation and Generalized Cross Validation

The idea of cross validation is used to evaluate an assumption on a set of observa-

tions. Based on this idea, observation set is divided into two subsets: estimation

and validation subsets. Estimation subset is used to estimate some parameters of
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observation data based on a number of assumptions. Validation subset is used to as-

sess validity of this estimate and consequently the validity of assumptions associates

with it. The question is that which samples should be chosen as estimation set and

which samples should be used as validation set. If the noise variance was known, the

problem would be much easier to solve, but in most cases and also in our problem it

is not known. [Craven and Wahba (1979),Reeves (1991)] used GCV for determining

γ when regularization function is Tikhonove. We will use the same methodology to

solve our problem. Generalized Cross Validation is based on the same idea but each

observation sample is used at least one time as validation sample and one time as

estimation sample during the procedure. To this end, cross validation is performed

on the observation data set S times, where S is equal to the number of observation

samples, each time one sample forms validation subset and the rest of samples form

the estimation subset. The validity of assumption then is defined by averaging over

all trials. Assume we want to define regularization parameter γ in (3.7) when regu-

larization function is the proposed regularization function, ψr(x). The minimizer of

this cost function is (3.15). We can re-write this solution as a function of γ:

x̂(γ) = (HTH + γI)−1(HTz + γ∆r) (3.18)

To apply GCV for finding best γ, we need to find optimal γ that minimizes the

following expression:

e(γ) = (Hx− z)T (Hx− z) + γψr(x ) (3.19)
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To apply GCV, each time we find the value of this cost function by leaving out one

sample of z and minimizing it through (3.15). Then, the leaved out sample is used

for validation of the obtained γ. Consider ith sample of z have been left out, therefore

the cost function that should be minimized as follows:

ei−(γ) = (Hi−x− z i−)T (Hi−x− zi−) + γψr(x ) (3.20)

where zi− is the vector z when its ith component are removed. Similarly, Hi− is H

when its ith row is removed. The minimizer of new cost function in (3.20) is x̂i−(γ)

as follows:

x̂i−(γ) = (HT
i−Hi− + γI)−1(HT

i−zi− + γ∆r) (3.21)

This estimation is obtained based on a certain assumption for value of the parameter

γ. Validation of this estimation is assessed by exploiting the left out sample, zi.

vi(γ) = (hix̂i−(γ)− zi)
2 (3.22)

where hi, and zi are ith row and element of matrix H and z, respectively. vi(γ) should

be assessed for all elements of z and final assessment for any value of γ is obtained

by averaging vi(γ) over i:

V (γ) =
1

S

S∑
i=1

vi(γ) (3.23)

where S is equal to M ×N and is the length of vector z. To determine V (γ) we start

with vi(γ) as follows:

vi(γ) = (hix̂i−(γ)− zi)
2

hix̂i−(γ) = hi(H
T
i−Hi− + γI)−1(HT

i−zi− + γ∆r)
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considering

HT
i−zi− = HTz− hTi zi

hix̂i−(γ) may be re-written as follows:

hix̂i−(γ) = hi(H
T
i−Hi− + γI)−1(HTz− hTi zi + γ∆r)

therefore;

(hix̂i−(γ)− zi) = hi(H
T
i−Hi− + γI)−1(HTz + γ∆r)− [hi(H

T
i−Hi− + γI)−1hTi + 1]zi

considering

(HT
i−Hi− + γI)−1 =

1

1− αii
(HTH + γI)−1

where αii(γ) is (i, i) element of the following matrix:

A(γ) = H(HTH + γI)−1HT

(hix̂i−(γ)− zi) may be re-written as follows,

(hix̂i−(γ)−zi) =
1

1− αii(γ)
hi(H

TH+γI)−1(HTz+γ∆r)−(
hi(H

TH + γI)−1hTi
1− αii(γ)

+1)zi

considering:

hi(H
TH + γI)−1hTi = αii(γ)
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vi(γ) is simplified as follows:

vi(γ) = [
1

1− αii(γ)
hi(H

TH + γI)−1(HTz + γ∆r)− (
zi

1− αii(γ)
)]2

= [
1

1− αii(γ)
hi(H

TH + γI)−1(HTz + γ∆r − zi)]
2

=
1

(1− αii(γ))2
[ai(γ)z− zi + γhi(H

TH + γI)−1∆r]
2

where ai(γ) is ith row of matrix A(γ). Therefore, V (γ) can be re-written as:

V (γ) =
1

S

S∑
i=1

vi(γ) =
1

S

S∑
i=1

[(ai(γ)z− zi) + γhi(H
TH + γI)−1∆r]

2

[1− αii(γ)]2

αii(γ) is the same for all is because H is a circulant matrix. This fact is proved

later in this chapter (See (3.27), and notes following it). Therefore, we can substitute

[1− αii(γ)]2 by [1− 1
S

N∑
j=1

αjj(γ)]2. Therefore,

V (γ) =

1
S

∥∥∥[(A(γ)− I)z + γH(HTH + γI)−1∆r]
∥∥∥2

[ 1
S
tr(I−A(γ))]2

(3.24)

where tr() represents trace of a matrix. This derivation may be simplified by repre-

senting it by the eigenvalue form as follows:

V (γ) = S

S∑
i=1

[ γ

|ρi|2+γ
]2 |ζi − ρiδi|2

[
S∑
i=1

γ

|ρi|2+γ
]2

(3.25)

where ρi is an eigenvalue of matrix H for each i, and δi and ζi are Discrete Fourier

Transform (DFT) coefficients of ∆r and z, respectively. Derivation of eigenvalue form
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of V (γ) is easy and straight-forward as follows. Considering matrix H is a “circulant

matrix”, the following decomposition holds for it:

H = FĤFT ⇔ H ∈ Circ (3.26)

where Circ is the set of all circulant matrices. F is the matrix of eigenvectors and

equals to Fourier matrix. Eigenvector matrix is orthonormal and the same for all

circulant matrices,

F = [f 0, f 1, f2, ...fm]

fj = (1, wj, w
2
j , w

3
j , ..., w

m−1
j )T , wj = exp(

2πij

m
),m = S2

Ĥ is matrix of eigenvalues of H and is a diagonal matrix:

Ĥ =


ρ1 . . . 0

...
. . .

...

0 · · · ρm



we can re-write A as follows:

A(γ) = H(HTH + γI)−1HT =

FĤFT (FĤ
T
ĤFT + γI)−1FĤ

T
FT = FĤ(Ĥ

T
Ĥ + γI)−1HTFT

assuming

Λ = Ĥ(Ĥ
T
Ĥ + γI)−1HT
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Λ is a diagonal matrix with elements on the diagonal as follows:

λi =
|ρi|2

|ρi|2 + γ

therefore, A(γ) is diagonalized as follows:

A(γ) = FΛFT (3.27)

Considering (3.27), A(γ) is diagonalized by the Fourier matrix F as the eigenvector

matrix. Referring to (3.26), it can be inferred that A(γ) is a circulant matrix, and

all elements on its diagonal are the same. We continue the derivation by re-writing

I−A(γ) based on what is obtained for A(γ) as follows:

I−A(γ) = FFT −A(γ) = FFT − FĤ(Ĥ
T
Ĥ + γI)−1HTFTFFT =

F[I− Ĥ(Ĥ
T
Ĥ + γI)−1HT ]FT

therefore, ith element of vector (I−A(γ))z will be obtained as follows:

[1− |ρi|2

|ρi|2 + γ
]ζi = [

γ

|ρi|2 + γ
]ζi

where ζi = FTz. Considering eigenvectors of H are basic function of Fourier trans-

form, ζi are DFT coefficients of z. Similarly, the second part of noimnator γH(HTH+

γI)−1∆r is a vector which its ith element is as follows:

[
|ρi|2

|ρi|2 + γ
]γδi
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where δi = FT∆r. Substituting achieved eigenvalue form expressions into (3.24) leads

to derivation of (3.25).

3.6 Experiments

We examined the performance of proposed algorithm on four CIF and two 720p HD

videos. HD videos are “City” and “Shields”. The PSF was a 3× 3 Gaussian blurring

window with std = 0.7, and the noise variance σ2 was equal to 1. All frames were

blurred, contaminated by noise and down-sampled by a factor of 2. We kept one

HR frame un-degraded for every T LR frames, to play the role of auxiliary HR still

images. 9 × 9 patches are used for similarity evaluation and weight computation in

both up-sampling and de-blurring steps. Diamond Search (DS) is used for finding

potential candidate pixels within a 32 × 32 search region during up-sampling step.

The parameter d was equal to 0.25 and 1 for up-sampling and de-blurring steps,

respectively. γ, the regularization parameter, was set to 0.175 for all experiments.

First, we examine the γ found by GCV method by comparing it to the optimal

γ. This experiment is conducted for restoration 15th frame of “News” and “Mobile”

sequence when 1st and 30th are HR frames, and noise variance of LR frames is equal

to 1. Figure 3.4, and Figure 3.6 illustrate mean-square errors (MSE) of restored

frame using (3.15) for different values of γ for “News”, and “Mobile” video sequence,

respectively. In addition, GCV values for the restored frames are re-scaled for better

illustration and shown in these figures. As can be seen in this graphs, GCV cost func-

tion is minimized for the γ which is close to optimal regularization parameter which

minimizes true MSE of restored frame. Figure 3.5, and Figure 3.7 are illustrating

restored frame for different regularization parameters, γ, for “News” sequence and
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Figure 3.4: Finding optimal regularization parameter (γ) using GCV method for
“News” video sequence.

“Mobile” sequence, respectively. It shows that small regularization parameter leads

to noisy and undesirable restored frame. Very high regularization parameter γ = 1.5

leads to a frame which only depends on auxiliary HR images and some parts of the

LR frame which can not be found in these HR images is lost for “News” sequence. γ

equal to 0.175 and 0.1 are optimized regularization parameter found by minimizing

GCV cost function for “News” and “Mobile” sequence, respectively and shows the

best restoration quality among the other restorations.

Before comparison to other methods, we show effectiveness of regularized recon-

struction approach compared to registration based approaches for exploiting the in-

formation of HR still images. In addition, we want to show how frames adjacent to

auxiliary HR still images are restored with higher PSNR due to having more correla-

tion with them. The interval between HR still images was 10 frames, and PSNR of

50



M.A.Sc. Thesis - Seyedreza Najafi McMaster - Electrical Engineering

Figure 3.5: Restored frames using different regularization parameters for “News”
sequence. (a) original image, (b) super-resolved by γ = 0.025, (c) super-resolved by
γ = 1.5, (d) super-resolved by γ = 0.175
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Figure 3.6: Finding optimal regularization parameter (γ) using GCV method for
“Mobile” video sequence.

reconstructed frames inside two intervals is shown in the Figure 3.8 for the “Mobile”

frame sequence. Results show that about 1 dB of PSNR is gained, when we use

ψr(x) as a regularization function in (3.15) instead of minimizing it separately for x

to obtain x̂reg using equation (3.16). In addition, we saw that frames places at the

middle of interval between two HR still images are restored with lower PSNR. This

problem becomes severe if we increase this interval because that way, the time dis-

tance between HR still images and LR frames in the middle of interval increases and

those frames will not reconstruct properly as their correlation with the auxiliary still

images is decreased due to the motion. We conclude here that the interval between

HR still images has a maximum for algorithm to be practical and it depends on the

motion of the scene. As this interval is a factor defined by the camera and relates to

its limitations, the proposed algorithm is suitable for videos with limited motion.
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Figure 3.7: Restored frames using different regularization parameters for “Mobile”
sequence. (a) original image, (b) super-resolved by γ = 0.025, (c) super-resolved by
γ = 1.5 ,(d) super-resolved by γ = 0.175
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We compared the results of the proposed method to methods presented in [F.Brandi

(2008)], and [B. Song (2011)]. These algorithms use HR still images for super-

resolution of the LR video sequence in different ways, and are explained briefly in

the beginning of this chapter. In addition, we compared result of our regularization

function to the results of using BTV regularization function in the same way it is

used in [Protter et al. (2009)]. In this test, we assume one auxiliary HR still image

is available every T = 30 LR frame, and the 15th frame is going to be super-resolved.

A longer time interval compared to previous experiment has been chosen to examine

the effectiveness of algorithms when correlation of HR still images and current frame

is not very high. Closest HR still images to the frame being super-resolved are 1st and

31st frames. Results for PSNR of the reconstructed frame using different algorithms

is represented in Table 1 and indicate better performance of our proposed method.

Figure 3.9 and Figure 3.10 illustrate visual quality of restored frames reconstructed

using different method. Sample restored frames for “Mobile” sequence show that

edges of restored frames using our method are reconstructed with a reasonably high

quality compared to other algorithms. It is expected that our method should outper-

form the conventional regularization function such as BTV because in our method we

assumed that we access to additional information in the form of HR still images of

the the scene. Therefore comparison to those method is for demonstrating how those

additional information are exploited effectively, and does not have any other mean-

ing. Methods suggested by [F.Brandi (2008)], and [B. Song (2011)] exploit the same

extra information we used. Therefore, comparison to those method shows that our

algorithm can exploit the information of auxiliary HR still images more effectively.
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Table 3.1: PSNR comparison for frame reconstruction
Bicubic F.Brandi (2008) BTV B. Song (2011) Proposed

City 30.6 31.6 32.7 32.9 34.0

Shields 31.9 31.5 32.8 32.7 34.1

Container 26.7 28.9 30.6 33.2 34.2

News 29.4 30.4 34.3 36.1 37.2

Mobile 22.1 23.4 23.7 25.5 26.0

Hall Monit 28.6 30.5 33.5 38.0 38.1

Figure 3.8: Comparison of super-resolution results: “ Registration based” vs “Regu-
larized reconstruction approach”

3.7 Conclusion

This chapter presents an approach to super-resolution problem using auxiliary HR

still images of the scene. A regularization function is introduced to effectively exploit

the information of HR still images as well as the information of the LR frame sequence

for super-resolution. Registration of LR frames and HR still images are performed

in a fuzzy manner, and many pixels contribute to reconstruct a pixel with different

weights to up-sample each frame. Then, de-blurring task is separately performed

after up-sampling. We proposed a regularization function for this step which is based

on the HR still images. GCV method employed for defining regularization function.

A closed form GCV cost function derived which optimum regularization function

minimizes it.
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Figure 3.9: Reconstruction of “News” sequence, frame number 15 (a) original, (b)
reconstructed using proposed algorithm, (c) BTV regularizer, (d)reconstructed using
method proposed in [F.Brandi (2008)], (e) interpolated using bi-cubic method
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Figure 3.10: Reconstruction of “Mobile” sequence frame number 15. (a) Original,
(b) reconstructed using proposed algorithm, (c) BTV regularizer, (d) reconstructed
using method proposed in [F.Brandi (2008)], (e) interpolated using bi-cubic method
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Chapter 4

Video super-resolution using

Multi-view frame sequences

4.1 Introduction

In previous chapter, video super-resolution with the help of high resolution still im-

ages was discussed. We assumed these still images are captured at a constant time

interval from the same view point that LR video was captured and, and as result, may

be considered as a frame sequence with lower temporal but higher spatial resolution.

In this chapter, exploiting LR video sequences shot from different view-points is in-

vestigated to define how they may carry complementary information to super-resolve

the LR sequence at hand. Therefore, different from previous chapter, we do not have

access to any HR video frames and we have multiple cameras which are recording the

scene with the same resolution from different view-points. Video achieved by mul-

tiple cameras from the scene is called multi-view video and has various applications

especially for 3D and free view-point video display. We will investigate the use of
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simple and common one-dimensional multiple camera setup for multi-view sequence

capturing. In this setup each camera is aligned with others on a straight line at a

small distance (such as 5 cm). Super-resolution in this chapter deals with the se-

quences captured by such a setup. Therefore, disparity estimation between frames

of different views is simplified, and we can avoid the problem of fast and accurate

disparity estimation for general multi-view sequences arises in the field of multi-view

video compression. This way, we focus on our special problem which is multi-view

video super-resolution. Compared to conventional multi-frame super-resolution sce-

narios where adjacency between frames is defined along time axis, here we are adding

another dimension of adjacency which is the view direction.

4.2 Multi-view Video and Disparity Estimation

Multi-view video is a set of sequences shot from the same scene simultaneously and

expands the traditional single-view video sequences in a new direction named “view

direction”. Multi-view video contains much more redundancy compared to single-

view video sequences as sequences from different view-points are capturing data from

the same scene. Redundancy is an important notion in the context of signal and video

compression, and any sort of redundancy have to be recognized, located, and elim-

inated in an ideal video compression algorithm. Similarly, existence of redundancy

is very essential for resolution enhancement in the context of multi-frame super-

resolutions because it can help finding and reconstructing removed and degraded

data. For this reason locating and extracting the redundancies in video sequences is

also very important to resolution enhancement algorithm designers.

Binocular disparity refers to the difference in image location of an object seen by
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the left and right eyes, resulting from the eyes’ horizontal separation. Disparity refers

to the difference in location of any point of the scene when it is seen from different

view points. Depth of objects has a significant effect on their disparity and closer

objects have larger disparity than farther ones. Therefore, disparity of an object may

be large or small based on its distance. Consequently, common approaches to motion

estimation are not effective for disparity estimation as we will need very large search

region. Moreover, as disparity refers to finding displacement of objects in frames shot

at the same time by different cameras, there is no motion. Therefore, direction of

the disparity vector of different objects is only defined by the camera setup and the

relative location of cameras. Fortunately, location of the cameras are fixed during the

recording and we can say direction of disparity vectors will not change from one time

instance to the other [Zhu et al. (2010)]. For example, in the test sequences we use

in this chapter, eight cameras are used and they are aligned horizontally at a fixed

distance from each other. Therefore, direction of disparity of each two frames from

two views can be easily determined by finding the direction of lines connecting two

cameras to each other in the space. As a result, when one camera is placed 5 cm

from the other to its left side, we can say all disparity vectors are almost horizontal

vectors pointing to left. In addition, depth of objects does not vary very much, and

as a result disparity vectors of the adjacent points of the scene are highly correlated

[Zhu et al. (2010)]. These facts can be used to design a fast and effective disparity

estimator for general multi-view sequences.

In our problem we simply estimate disparity by searching the best match for

each block of current frame along a narrow search region elongated in the expected

direction of disparity vectors inside the reference frame. Therefore when cameras
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are aligned horizontally, the expected disparity direction is horizontal to the left or

right, based on the relative location of cameras shooting the current and reference

frame. Once disparity between frames of different views is compensated, searching

for similarities between them is carried out by the same algorithm we used in the

previous chapter (the algorithm applied to adjacent frames in temporal direction).

We will discuss how much information we can extract from other views in a super-

resolution application compared to information exist in adjacent frames in the next

section.

4.3 Frame Reconstruction using Multi-view Sequences

4.3.1 Multi-view Video Super-resolution

In this section we will discuss how one frame in a multi-view sequence may be super-

resolved using temporal neighbors and frames in other views carrying relevant infor-

mation. The basics for super-resolution using multi-view sequences are the same as

what described in the third chapter. The problem consists of up-sampling and de-

blurring. The difference is that extra information we access to in the scenario of this

chapter is not auxiliary still images and is LR video sequences shot from view-points

different from view-point of the main sequence. We used auxiliary still images for

de-blurring and for de-noising in the previous chapter, but in this chapter we will

do this task by means of conventional regularization functions. In the third chapter

we saw how adjacent frames may be used for up-sampling of the current frame. We

tried to estimate samples removed from the HR grid of the image sensor by search-

ing for them in the adjacent frames. We take advantage of frames of other views in
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multi-view video super-resolution by incorporating them in this search process. The

main difference between frames of other views and temporal adjacent frames is that

frames from other views do not contain motions and are associated through dispar-

ity. This difference enables them to add information for super-resolution especially

when occlusion happens in temporally adjacent frames due to motion. Therefore, we

should consider collocated frames of the other views in parallel to the temporal adja-

cent frames in the up-sampling process after disparity compensation. As we said in

the last chapter, diamond search is a powerful algorithm to estimate motion between

temporally adjacent frames. This algorithm is not capable of tracing long dispar-

ity vectors to help us find similar pixels in frames of different views, and is suitable

for finding local short displacements. As a result, we should compensate disparity

between two frames of different views first, and then apply diamond search to find

similarities between them. Disparity estimation we apply here does not have to be

very precise as it is followed by diamond search, and is only required to compensate for

the long disparity displacement between frames of different views. Up-sampling pro-

cess is similar to what explained in previous chapter. All pixels of each LR frame are

mapped properly on the HR grid. Then missing pixels on the HR grid are primarily

interpolated. Each pixel of the interpolated frame (including original and interpolated

pixels) is reconstructed by finding all candidate pixels in adjacent frames, weighting

them followed by averaging them. These candidate pixels are chosen from original

pixels not interpolated pixels. Adjacent frames are chosen both in temporal and view

direction for the multi-view super-resolution. The weight for each contributing pixel

from a temporally adjacent frame is expressed in previous chapter. Similarly defined

as (3.3), the weight for a contributing pixel located at (i, j) from a frame of other
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view is as follows:

w(k, l, i, j,m) = exp(−
∥∥∥R(k,l)y−R(i,j)ŷm

∥∥∥1

1
/2δ2S2) (4.1)

where again, R(m,n) is the operator extracting the patch centered at the location

(m,n). δ controls the relative contribution of different pixels based on their local

similarity to the pixel located at (k, l), and S2 is the patch size. ŷm is the disparity

compensated version of LR frame captured at time t and is from the mth view.

There is no difference between this formula and the formula for weighting pixels of

temporally adjacent frames apart from the fact that we perform disparity estimation

between two frames before measuring the similarities. After this, all candidate pixels

are weighted and we average them according to their weight to reconstruct the pixel

located at (k, l) inside the current interpolated frame as follows:

z(k, l) =

T∑
t=1

∑
(i,j)∈Ωt

(k,l)

w(k, l, i, j, t)yt(i, j) +
M∑
m=1

∑
(i,j)∈Ωm

(k,l)

w(k, l, i, j,m)ym(i, j)

T∑
t=1

∑
(i,j)∈Ωt

(k,l)

w(k, l, i, j, t) +
M∑
m=1

∑
(i,j)∈Ωm

(k,l)

w(k, l, i, j,m)

(4.2)

where T is the number of temporally adjacent LR frames used for up-sampling process,

Ωt
(k,l) is the set of all candidate pixels inside the search region for the pixel located

at (k, l) in the adjacent LR frame y t. M is the number of views which is used in the

up-sampling process, and Ωm
(k,l) is the set of all candidate pixels inside the search

region for the pixel located at (k, l) in the LR frame of view m shown by ŷm in the

above formula.

The goal of this section is to study the performance of super-resolution algorithm

when multi-view video is applied as input and compare it to the case of mono-view
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sequence. The above algorithm explained the fusion step for combining frames of

a multi-view video sequence to achieve an up-sampled frame. The fusion algorithm

for mono-view video explained in the previous chapter and is very similar to fusion

algorithm explained for multi-view in this chapter. To compare the result of multi-

view and mono-view fusion algorithms, we should eliminate the effect of PSF of the

image sensor’s LR grid and the noise from z. The choice of regularization function

we used in this chapter does not matter as we want to compare the final performance

of mono-view and multi-view fusion algorithms. The regularization function we use

simply smoothes the restored frame in horizontal and vertical directions, and is given

by:

Υ(x) =
1∑
i=0

1∑
j=−1
j 6=0

∥∥∥x− SixS
j
yx
∥∥∥2

2
(4.3)

where Smx and Smy are two matrix operators, and shift the image by m pixel in horizon-

tal and vertical directions, respectively. This regularization function is the generalized

form of the simpler regularization function which only takes the derivative in the hor-

izontal or vertical direction [M. Elad (2007)]. Putting this regularization function

into the minimization problem we obtain:

e(x) = ‖Hx− z‖2
2 + γΥ(x)

x̂ = min
x
{e(x)}

(4.4)

We proceed by taking derivative of the cost function with respect to x and equating

it to zero:

de(x)

dx
= 2HTHx− 2HTz + γ

d

dx

1∑
i=−1

1∑
j=−1
i+j≥0

((I− SixS
j
y)x)T ((I− SixS

j
y)x)
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= 2HTHx− 2HTz + 2γ
1∑

i=−1

1∑
j=−1
i+j≥0

(I− SixS
j
y)
T (I− SixS

j
y)x

= 2HTHx− 2HTz + 2γ
1∑

i=−1

1∑
j=−1
i+j≥0

[I− SixS
j
y − (SixS

j
y)
T + (SixS

j
y)
T (SixS

j
y)]x

= 2HTHx− 2HTz + 2γ
1∑

i=−1

1∑
j=−1
i+j≥0

[2I− SixS
j
y − S−jy S−ix ]x

and the solution for x is:

x̂ = (HTH + γΛ)−1(HTz)

Λ =
1∑
i=0

1∑
j=−1
i+j≥0

(2I− SixS
j
y − S−jy S−ix )

(4.5)

γ is the regularization parameter and can be easily determined in the same way we

determined in the previous chapter by GCV method. Employing GCV method the

optimum γ is that minimizes the following expression:

V (γ) =
1
S
‖(A− I)z‖2

[ 1
S
tr(I−A)]2

(4.6)

where A is defined as follows:

A = H(HTH + γΛ)−1HT

4.3.2 3D Frame Compatible Video Format Reconstruction

3D video is recorded and transmitted in a format which contains left and right view

to be displayed on 3D TVs. These two views are effective for representing depth of
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Figure 4.1: Left-right frame compatible stereo video format

the scene. Different formats exist for representing and transmitting 3D video. Frame

compatible formats are among the most common formats being used today. Frame

compatible formats combine frames of two views at each time instance in order to

concatenate and send them in one frame. Before emerging 3D video existing video

production and transmission infrastructure and equipments was designed for mono-

view video, and frame compatible formats are used widely to facilitate using this

infrastructure with minimum changes. Obviously, this format requires transmitter to

reduce number of pixels of each frame to half to put right and left view frames in

one frame. For example, in side-by-side frame compatible format half of the columns

of each frame is removed, then halved frames are concatenated to form a complete

frame as shown in Figure 4.1.

At the receiver, removed columns should be interpolated by means of an interpo-

lation methods. Top-bottom 3D format is another way for conveying stereo video in

frame compatible mode, where half of the rows of frames are removed and halved left

and right frames of each time instance are put one at the top of the other to form one
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frame. Removing half of the rows or columns is similar to what is called video inter-

lacing traditionally. It is worth mentioning that the process of transforming stereo

video (contains complete left and right view) into side-by-side and top-bottom 3D

frame compatible formats is not exactly the same as traditional interlacing approach.

But, the act of removing half of rows or columns which occurs in this transformation

is called interlacing hereafter in this thesis. De-interlacing refers to algorithms used

for interpolating interlaced frame reconstruction. Although many different video de-

interlacing method exist we are interested in NLM-based video de-interlacing method

presented in [R. Dehghannasiri (2012)] because it is very similar to the frame fusion

method we used in this thesis. The NLM-based de-interlacing method introduced in

that work, reconstructs each pixel of removed rows or columns by finding and weight-

ing candidate pixels in that frame or temporally adjacent frames and taking average

of them. Searching, weighting and reconstruction approach is almost the same as

what we did in up-sampling step of super-resolution in previous chapter with minor

differences.

In this section we want to extend that de-interlacing method to frame compati-

ble 3D video format reconstruction. As explained, in side-by-side frame compatible

format, left and right views at each time instance are interlaced and concatenated to

fit into one frame. Receiver is required to interpolate them in some ways to display a

full-frame video. For this aim, we use the basics of frame fusion method explained in

the previous section. Pixels of removed rows or columns are reconstructed by taking

average of all weighted pixels of the adjacent frames and frame of the other view.

Therefore, we are extending NLM-based reconstruction approach of [R. Dehghan-

nasiri (2012)] by using frames of the other views. As no noise or blurring is occurred
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prior to removing rows or columns, there is no need to perform de-blurring and de-

noising step, and after up-sampling frame is reconstructed. We will see how using

information of the other views leads to better reconstruction of interlaced frames.

4.4 Multi-view Video Super-resolution by means

of Auxiliary High Resolution Still Images

In chapter 3, we presented a super-resolution algorithm for mono-view frame se-

quences which depends on a sequence of auxiliary HR still images taken in parallel

to the LR video frame sequence. We assumed that the camera can deliver a sequence

of HR still images with a time period much larger than the time period of the LR

frame sequence. Finally, we combined information of these two sequences to produce

a HR frame sequence. For that algorithm, we assume the super-resolution algorithm

is performed on the sequences before encoding and video encoder encodes the super-

resolved HR frame sequence. Therefore, compression does not affect the performance

of the algorithm.

In this section we extend the idea of the third chapter and use it for multi-view

video. We saw in this chapter that exploiting more than one view can enhance frame

up-sampling and consequently enhance the super-resolution process. Therefore, we

expect to observe a performance improvement in super-resolution by using a sequence

of auxiliary HR still images for multi-view sequences.

Efficient multi-view coding for 3D and free view-point video display requires elab-

orated coding methods to exploit huge temporal and inter-view redundancies. This

is usually done by a central system that is fed by videos coming from different views,
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Figure 4.2: Central encoding structure for multi-view video coding used in
H.264/MVC standard

and is responsible for compressing them jointly by performing motion and dispar-

ity estimation (See Figure 4.2). International standard for multi-view video coding

(MVC) that is an extension to H.264/AVC uses the same structure. These encoding

methods, burdens a huge complexity on the encoder and are in need of broadband

data line for delivering raw data from cameras to the central unit, which limits their

applications. Most of this complexity is due to the motion and disparity estimation

process at encoder where efforts have been taken to reduce it or relocate it to the

decoder [L. Shen (2001)] ,[X. Guo (2008)]. Since disparity and motion estimation

should be performed for each pixel of all frames in the sequence, the complexity of

these tasks and consequently encoder increases as the resolution of frames increases.

The multi-view video super-resolution algorithm we explain in this chapter could be

an extra computation burden on the encoder side if we apply it before the encoding

as shown in Figure 4.3. This problem has two sides. First, encoder has to encode

the super-resolved HR sequences. Second, super-resolution algorithm computation is

added to the encoder side. The advantage of this structure is that lossy compression

can not affect the performance of super-resolution algorithm because super-resolution
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Figure 4.3: Super-resolution at encoder

Figure 4.4: Super-resolution at decoder

is performed on the sequences before any compression. In another option, we can en-

code the LR layer and the HR layer separately by the encoder and super-resolution is

performed at the decoder side, after LR and HR layers are decoded as shown in Fig-

ure 4.4. In this case, encoder does not have to encode the previously super-resolved

multi-view sequence which is high-resolution. Considering HR still images are taken

at a constant period along the time in different views, they actually form a low rate

HR multi-view sequence which should be encoded by the encoder (See Figure 4.5).

The other sequences is the LR frame sequence, which should be encoded in parallel.

The HR multi-view sequence of still images does not involve a large amount of com-

putation due to its low rate. Therefore, computation burden of the super-resolution

process is shifted to the decoder side, which helps maintaining a balance between

encoder and decoder complexity. Super-resolution algorithm is performed on the

compressed sequences in this option. To employ this method, the LR multi-view

sequence is encoded by the means of H.264/MVC at the regular frame rate as the

base layer. In addition, sequence of HR still images is encoded at its low frame rate

as the enhancement layer. An illustration of LR and HR sequences in this scheme is
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Figure 4.5: HR and LR sequences in the proposed scheme

given by Figure 4.5.

Encoding LR multi-view sequence reduces encoder complexity, and mitigates the

need of a broadband inter-camera channel for transmitting raw HR video sequences to

the central encoder. In addition, we recover HR multi-view sequence at the decoder by

employing the enhancement layer of HR still images in a super-resolution algorithm.

In this section, a super-resolution algorithm for the frame reconstruction at the

decoder is explained. In fact, video enhancement algorithm in this section is purely

a combination of the proposed algorithms discussed in previous sections.

4.4.1 Encoder Side

LR sequences are encoded using the H.264/MVC as the base layer. Sequence of HR

still images plays the role of enhancement layer. Since HR still images are produced

by the camera at a low rate, they are sparsely placed compared to LR frames (e.g.

with period of T = 10 LR frames for each HR still image). The decoder is expected

to exploit sparsely placed HR still images to enhance the resolution of all frames of

LR sequences. To encode the HR still images we use primarily up-scaled version of

corresponding LR frame as its predictor and resulting residue frames are encoded
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using H.264/MVC as shown in Figure 4.4. This process may seem unusual as H.264

encoder is designed to use adjacent frames in time and collocated frames in other

views as reference for coding each frame. Encoding the original sequence of HR

still images is not efficient in terms of compression as it’s rate is too low, and there

is not correlation between adjacent frames along the time direction. In the current

scenario, we have access to LR version of each HR still image, and we can use them as

predictors for the sequence of HR still images if we simply interpolate them. Thus, we

interpolate each LR frame associated with a HR still image by a simple interpolation

method such as bilinear to produce a good primary reference for the corresponding

HR still images as inter layer prediction.

4.4.2 Decoder Side

Frame restoration algorithm at the decoder side should exploit LR and HR layers to

recover a HR sequence for each view. The proposed method for frame reconstruction

at the decoder includes two steps. Both are described in details previously. In the

first step, each LR frame is up-sampled using the up-sampling method described for

multi-view sequences in this chapter. Then de-blurring is performed to eliminate

the effect of camera PSF. As compression has degraded all LR decoded frames, the

up-sampled LR frame cannot be related to the ideal HR frame by a simple linear

degradation model introduced in previous chapters. As we do not want to model the

effect of compression, de-blurring cost function simply consists of the regularization

function (i.e. regularization parameter is equal to zero). Regularization function

used for the de-blurring step is the same regularization function used in the chapter

3 to incorporate auxiliary still images in reconstruction process. Therefore, final
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Figure 4.6: Full diagram of the proposed method

restored frame is equal to x̂reg described by (3.16) in the previous chapter. It is

worth mentioning, modeling the compression effect makes it possible to incorporate

the up-sampled frame in the de-blurring process directly. This can be considered as

future work related to this thesis. Currently, the output of up-sampling process is

used in de-blurring step to define weights used in the regularization function, and do

not directly contribute to the reconstruction of current frame through a degradation

model (see Figure 4.6 and compare it to the Figure 3.3).

4.5 Experiments

In the first part of this section we will examine the performance of using multi-view

sequence for super-resolution. We compare its result to results of mono-view super-

resolution and investigate how much performance improvement we may get from other

views for super-resolution. In the second part, we examine 3D frame-compatible video

format reconstruction algorithm explained in previous section of this chapter.

All tests are performed by three multi view sequences consists of “Race1”, “Ball-

room” and “Exit” with resolution of 480×640. Each of these sequences contains eight

views shot by one directional camera setup. Race1 shows a match between racing cars
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and represents fast object and camera motion. Ballroom shows many dancers dancing

in the hall and contains fast motions and occluded areas between frames. Exit is a

slow video showing people going out through a door. For evaluating multi-view video

super-resolution algorithm, we blurred and down-sampled these three sequences by

a factor of 2, and used them as LR videos. Blurring window which plays the role

of PSF of camera is a 3 × 3 Gaussian window with std = 0.7, and contaminating

noise’s variance is equal to 1. We first avoid using adjacent views of the view we

want to super-resolve for up-sampling step. It is the same as mono-view video super-

resolution. Then, we include different number of collocated frames of other views in

the up-sampling step in different experiments. In one experiment, we include one

extra view (the second view) in the super-resolution of the first view. In two other

experiments, we include three and seven views in the up-sampling step. This way we

can see how efficient is to add one, three and seven extra cameras for super-resolution.

In all tests, number of all frames (adjacent frames and frames of other views) involved

with up-sampling step is kept constant for maintaining the level of computation com-

plexity. In other words, when we super-resolve the first view without using any other

view we use ten temporally adjacent frames of that view (usually five previous, five

future) for the up-sampling step. When we involve one more frame from the second

view, we decrease adjacent frames involved with up-sampling process to eight. For the

cases we include three and seven frames of other views we use six and two temporally

adjacent closest adjacent frame in the up-sampling step. The result of super-resolving

frames of the first view for the frames between 1 and 35 is depicted in Figure 4.7, 4.8,

and 4.9. As can be seen from this figures, even one extra view can have a significant

effect on the quality of super-resolved frame, especially when we are dealing with a
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Figure 4.7: Super-resolution of frames of the first view of Race1 multi-view sequence

Figure 4.8: Super-resolution of frames of the first view of Ballroom multi-view se-
quence

75



M.A.Sc. Thesis - Seyedreza Najafi McMaster - Electrical Engineering

Figure 4.9: Super-resolution of frames of the first view of Exit multi-view sequence

scene which contains fast object and camera motion and one object in the current

frame may be occluded in the temporally adjacent frames. Since frames from another

view which are shot at the same time instance are not affected by the motion of scene

or camera, accessing to them can be very effective for up-sampling, especially when

some objects is occluded in the adjacent frames due to motion. This effect is less for

videos with slower motion, such as Exit sequence. Accessing more views increases the

chance for finding true candidate pixels in frames of those views for reconstruction of

missing pixels in the current frame. As can be seen, PSNR of super-resolved frames

increases by incorporating more views in the up-sampling process, but rate of this

increment is reduced gradually, as correlation between views decreases when views

are shot by far cameras.

In the second part of experiments we examined proposed frame compatible 3D
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Figure 4.10: Frame compatible 3D video reconstruction for Race1 sequence

video reconstruction algorithm. This algorithm reconstructs removed rows or columns

of original frames by employing temporal and view data. We compared results of

this algorithm with the results of the algorithm of independent reconstruction of

each view. First and second views of “Race1”, “Ballroom”, and “Exit” sequences

are used for test as left and right views. Figure 4.10, 4.11, and 4.12 represent

PSNR of reconstructed full frames of the left view using proposed algorithm which

uses both view and temporal information. It also depicts PSNR of left view frames

reconstructed independently from the right view. It can be inferred from these graphs

that incorporating the other view for reconstructing one view can be very effective

when camera and scene motion is fast such as Race1 sequence. We achieved 1.3

dB improvement on average when reconstructing left view of this sequence using

both temporal and inter-view information. The average amount of improvement is

0.7 dB for Ballroom sequence and 0.23 dB for Exit sequence. This amount and
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Figure 4.11: Frame compatible 3D video reconstruction for Ballroom sequence

Figure 4.12: Frame compatible 3D video reconstruction for Exit sequence
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Figure 4.13: Performance of multi-layer MVC scheme compared to regular mono-layer
MVC for “Ballroom” sequence

efficiency of proposed algorithm decreases as the video becomes slower in terms of

scene and camera motion. Finally we evaluate the multi-layer multi-view coding

scheme presented in the previous section. MVC extension of H.264/ AVC version 8.5

is used for encoding LR frames of the base layer, and low rate sequence of HR still

images as the enhancement layer separately. We change quantization parameter (QP)

of the base layer encoder from 19 to 28 to achieve different bit-rates. Enhancement

layer QP is set to be 2 levels higher than the base layer for all tests. Therefore,

enhancement layer to base layer bit-rate ratio remains below 20 percent. We examine

the performance of the algorithm for two enhancement layer rates in this experiment

equal to 1.38 and 2.77 kb/s. These values are associated with T (HR still images

interval) equal to 18 and 9 respectively. Figure 4.13, and Figure 4.14 shows average

output PSNR of the proposed method for different average bit-rates using Ballroom

and Exit sample video sequences. We compare the performance of proposed method
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Figure 4.14: Performance of multi-layer MVC scheme compared to regular mono-layer
MVC for “Exit” sequence

to the performance of two other coding possibilities. In these scenarios, multi-view

video sequence has been shot originally high-resolution. In the first case, we encode

HR multi-view frame sequences using MVC extension of H.264. In the second test,

each HR view is encoded separately using H.264/AVC (multicast). Experiments

show that the performance of proposed method for both sequences is comparable

to H.264/MVC and multicast. Moreover, the average PSNR for output of proposed

method is higher for bit-rates lower than 250 kbps compared to MVC extension

of H.264 for Exit video sequence. Experiments show better results for the “Exit”

sequence compared to “Ballroom” sequence as “Exit” sequence contains less fast

motions in the scene. As explained in the previous section, cost function used for

de-blurring process depends only on the HR still images, and occlusion can reduce

the quality of restored de-blurred frame in this way. It can be seen the performance of

proposed method decreases for the “Ballroom” sequence which contains fast motions
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and occluded areas between frames.

4.6 Conclusion

In this chapter we studied exploitation of inter-view information for super-resolution.

Two applications of it including multi-view super-resolution and frame compatible

3D video reconstruction are investigated in this chapter. An algorithm for multi-

view sequence super-resolution proposed and simulation results showed that using

even two cameras can lead to a reasonable improvement in quality of super-resolved

frame. A solution for frame compatible 3D video reconstruction employing inter-

view information proposed, and simulation results show that exploiting inter-view

information can lead to better output in terms of PSNR quality, especially when

video contains relatively fast motion. A multi-layer MVC scheme and associated

enhancement algorithm for decoder side proposed in this chapter. Simulation results

showed that proposed algorithm can be efficient for MVC in terms of PSNR for low

bit-rates. Moreover, the algorithm cannot perform as well for the sequences containing

fast motions.
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Chapter 5

Conclusion and Future Works

In this thesis a number of algorithms to incorporate extra information in the super-

resolution process of a low-resolution video sequence are proposed. In the first chap-

ter, we studied the super-resolution problem using auxiliary HR still images of the

scene. A cost function is introduced in that chapter reconstructs each frame of the

low-resolution sequence using the available HR still images, and incorporates HR still

images in the super-resolution process. Experiment results showed that using auxil-

iary still images to form the regularization function for the super-resolution inverse

problem obviates our need to use conventional regularization functions and leads to

better results. We then extended the thesis to super-resolution process for multi-view

sequences. We studied how incorporating and fusing frames from more than one

view in the super-resolution process can enhance the super-resolution process. We

found out that information of other views can be helpful when motion in the scene is

very fast. Finally we suggested an approach for multi-layer multi-view video super-

resolution. Simulation results showed that the proposed algorithm can be efficient
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for MVC in terms of PSNR for low bit-rates. Although, the algorithm cannot per-

form as well for the sequences containing fast motions, but it is designed to enhance

the spatial resolution of decoded multi-view sequence shot by a dual-mode camera.

As compression degrades the low-resolution multi-view sequence frames non-linearly

after they are degraded by PSF of camera images sensor, we did not incorporate low-

resolution decoded frames at the decoder directly to reconstruct the super-resolved

frame and used them only for a weight-calculation task. However, compression effect

can be modeled and this model can be used to incorporate low-resolution frames in

super-resolution process directly in the multi-view video super-resolution case similar

to single-view super-resolution case. This problem remains as a future work have

may be done later in the direction of this thesis to enhance the performance of the

multi-view video super-resolution algorithm using auxiliary still images.
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