
A Pipelined, Single Precision Floating-Point Logarithm
Computation Unit in Hardware

A Pipelined, Single Precision Floating-Point Logarithm
Computation Unit in Hardware

By
Jing Chen B.Eng

IBM R©Center for Advanced Studies Fellow
A Thesis

Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree
Master of Science

McMaster University
c© Copyright by Jing Chen, July 31, 2012

MASTER OF SCIENCE(2012) McMaster University
COMPUTING AND SOFTWARE Hamilton, Ontario

TITLE: A Pipelined, Single Precision Floating-Point Logarithm Computation
Unit in Hardware

AUTHOR: Jing Chen B.Eng(Capital Normal University)

EMAIL: jingchen cs@yahoo.com

SUPERVISOR: Dr. Christopher K. Anand

NUMBER OF PAGES: xi, 54

LEGAL DISCLAIMER: This is an academic research report. I, my supervisor,
defence committee, and university, make no claim as to the fitness for any
purpose, and accept no direct or indirect liability for the use of algorithms,
findings, or recommendations in this thesis.

ii

Abstract

A large number of scientific applications rely on the computing of loga-
rithm. Thus, accelerating the speed of computing logarithms is significant and
necessary. To this end, we present the realization of a pipelined Logarithm
Computation Unit (LCU)1 in hardware that uses lookup table and interpo-
lation techniques. The presented LCU supports single precision arithmetic
with fixed accuracy and speed. We estimate that it can generate 2.9G single
precision values per second under a 65nm fabrication process. In addition,
the accuracy is at least 21 bits while lookup table size is about 7.776KB. To
the best of our knowledge, our LCU achieves the fastest speed at its current
accuracy and table size.

1This work is funded by the IBM Center for Advanced Studies

iii

iv

Acknowledgments

I would like to thank my supervisor Dr. Christopher Anand, for the trust and
flexibility he gave me, which allowed me to do this project on my own f scratch.

I would like to thank Robert Enenkel from the IBM Toronto Lab, for
the literature he gave me, which motivated me for this project.

I would also like to thank my parents, for their never ending support
and encouragement.

v

vi

Contents

Abstract iii

Acknowledgments v

List of Figures ix

List of Tables x

1 Introduction 3

1.1 Motivation . 3

1.2 Thesis Organization . 3

1.3 Novelty . 4

1.4 Background . 4

1.5 Methods used for Accelerating Function Evaluation 5

1.5.1 Shrink Lookup Table Size 5

1.5.2 Multi-core Technique 5

1.5.3 Pipeline Technique . 6

1.5.4 FPGA Technique . 6

2 Algorithm and Implementation 9

2.1 Design Principle . 9

2.2 IEEE-754 Floating Point Standard 9

2.3 ICSILog Algorithm . 11

2.4 Interpolation Algorithm . 13

2.4.1 Methods used for Interpolation 13

2.4.2 Beeline Interpolation 13

2.4.3 Parabolic Interpolation 14

2.4.4 Discussion . 16

2.4.5 Overall Flow Chart . 16

vii

3 Tolerance and Performance Assessment 19
3.1 Design Method . 19

3.1.1 Software Simulation 20
3.1.2 Hardware Verification 20

3.2 Tolerance Assessment . 20
3.3 Performance Assessment . 22
3.4 Performance Comparison . 25

4 Pipelined Adder 27
4.1 Informal Description of a Full Adder 27
4.2 Switching Equations of a Full Adder 28
4.3 Schematics of a Full Adder 28
4.4 A 4-bit Ripple Carry Adder 29
4.5 A 4-bit Pipelined Ripple Carry Adder 30

5 Pipelined Multiplier 33
5.1 A 4×4 Unsigned Multiplication 33
5.2 A 4-bit Ripple Carry Array Multiplier 34
5.3 A 4-bit Carry Look-ahead Array Multiplier 36
5.4 A 4-bit Carry Save Array Multiplier 38
5.5 Performance Comparison . 39
5.6 A Pipelined Carry Save Array Multiplier 41

6 Pipelined Read-only Memory 43
6.1 SRAM Principle and Architecture 43
6.2 ROM Principle and Architecture 47
6.3 Discussion . 48
6.4 Motivation for Pipelined ROM 49
6.5 A 64×8-bit Pipelined ROM 50

7 Conclusion 53

viii

List of Figures

2.1 Single and double precision floating-point number in IEEE 754. 10
2.2 Beeline interpolation. 14
2.3 Parabolic interpolation. 15
2.4 Flow chart of our log2(x) implementation. 17

4.1 Block diagram of a 1-bit full adder 27
4.2 Schematics of a full adder. 29
4.3 Schematics of a 4-bit ripple carry adder. 30
4.4 A 4-bit pipelined ripple carry adder. 31

5.1 A 4-bit ripple carry array multiplier. 35
5.2 A 4-bit carry look-ahead adder. 38
5.3 A 4-bit carry look-ahead array multiplier. 39
5.4 A 4-bit carry save array multiplier. 40
5.5 A 4-bit pipelined carry save array multiplier. 42

6.1 A 32×8-bit SRAM . 44
6.2 A 256-bit SRAM. 45
6.3 A 6-transistor SRAM cell. 46
6.4 A 32×8-bit ROM. 47
6.5 An 8×2-bit ROM with a 4×4-bit geometry matrix. 48
6.6 Schematics of a 64×8-bit pipelined ROM. 50

ix

x

List of Tables

2.1 Represented Values for Single Precision Format in IEEE-754. . 10
2.2 32MB lookup table with 23-bit index. 12
2.3 256KB lookup table with 16-bit index. 12

3.1 Testing examples . 21
3.2 Overall tolerance analysis report 1 22
3.3 Overall tolerance analysis report 2 22
3.4 Propagation delay under a 65nm fabrication process 24
3.5 Propagation delay under a 0.8µm fabrication process 24
3.6 Performance comparison . 26

4.1 Truth table of a full adder . 28

5.1 An example of a 4×4 unsigned multiplication 33

xi

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

xii

Glossary

ALU Arithemtic Logic Unit is an important compo-
nent of a CPU. It is used to perform arithmetic
and logic operations, 9

CPU Central Processing Unit is an important hard-
ware component within a computer system. It
is used to execute instructions, 9

Cygwin Cygwin is a collection of tools which provide
a Linux look and feel environment for Win-
dows [18], 19

D flip-flop A flip-flop is a memory storage element. It has
two states 0 or 1, 3

DSP slice Digital Signal Processor slice, it is used to ac-
comodate arithmetic and logic computations.
It invovles lookup tables, multipliers, etc, 6

GNU GNU is a Unix-like operating system that is
free software [19], 5

IP block An IP block refers to those configurable hard-
ware resources of an FPGA chip (i.e. multi-
plier, embedded memory). The idea of an IP
block is similar to the subprograms of software
libraries, 6

MOSFET Metal Oxide Semiconductor Field Effect Tran-
sistor. MOSFET is one of the basic compo-
nents for a large scale integrated circuit de-
sign, 45

1

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

RAM Random Access Memory, one can both read
from or write to a RAM by specifing an ad-
dress, 43

ROM Read Only Memory, one can only read the
content of a ROM by specifing an address, 43

SRAM Static Random Access Memory, it consists of
transistors and data which is stored in SRAM
is maintainced as long as power is on, 43

2

Chapter 1

Introduction

1.1 Motivation

A large number of scientific codes rely on computing the natural logarithm. In
[1], Vinyals and Friedland state many multimedia applications which require
the computation of logarithm. They mention a machine learning algorithm,
which is called ICSI speaker diarization engine, in which the time spent on
computing the log-likelihood function occupies 80% of its total runtime. Fur-
thermore, in [4], Alachiotis and Stamatakis present biological applications
where the logarithm function also plays an important role. From [4], we
learn that the logarithm function has been used for facilitating evolutionary
reconstruction, processing real-time image applications and skin segmentation
algorithms. Thus, to improve the speed of logarithms is significant and neces-
sary.

1.2 Thesis Organization

This thesis is organized as follows: In Chapter 1, we review popular approaches
used for implementing the logarithm. In Chapter 2, we describe IEEE-754
Floating-Point Standard, ICSILog and Interpolation Algorithms. Tolerance
and Performance Assessments are presented in Chapter 3. In the following
Chapter 4, 5 and 6 we present the structure of a Pipelined Adder, Pipelined
Multiplier and Pipelined Read-only Memory. We conclude in Chapter 7.

3

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

1.3 Novelty

In this thesis, we present a pipelined logarithm implementation with fixed ac-
curacy and speed. The overall pipeline structure includes 240 stages (or a
240 clock latency). The longest latency among those stages is equal to the
propagation delay of a D flip-flop plus four levels of logic gates. The pipeline
is expected to generate at least 2.9G single precision values per second under
a 65nm fabrication process (see section 3.3). Moreover, we use a lookup table
for speed and a parabolic function to interpolate the values of logarithm. The
lookup table contains 648 entries and occupies roughly 7.776KB of memory
space (see chapter 2). The accuracy for a single precision floating-point num-
ber is at least 21 bits. In other words, the maximum tolerance is 2 bits. The
hardware implementation is mainly composed of three components, which are
pipelined adder, pipelined multiplier, and pipelined Read-only Memory as well
(see chapter 4, 5 and 6).

1.4 Background

One popular approach used by most researchers to implement complicated
math functions is the so-call lookup table based method. Here, the lookup ta-
ble serves as a map table. The values of a math function have been computed
in advance and then stored into a lookup table. Thus, function evaluation is
equivalent to searching for the lookup table and then retrieving the desired
item. Besides, almost no any other additional computations are needed. The
time spent on function evaluation is equal to memory access and retrieval time.
We could say the lookup table based method makes function evaluation faster
and even more precise. However, it does have weaknesses. The size of lookup
tables for most math functions are very large. In most cases, they are too big
to fit into cache. For example, the lookup table for single precision logarithm
contains 8M (223) items, which in turn occupies 32MB (223∗ 4 bytes) of mem-
ory space, with each item taking up 4 bytes. This causes data to be frequently
exchanged between cache and memory during function evaluation, and makes
memory access and retrieval time even longer. This situation will be worse if
several lookup tables have been used when different math functions are being
evaluated at the same time. Besides waiting for hardware innovations (i.e. a
faster and larger cache or memory), how can we further speed up function
evaluation? Actually, several attempts have been made by researchers and
they are discussed in the following section.

4

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

1.5 Methods used for Accelerating Function

Evaluation

1.5.1 Shrink Lookup Table Size

Since not all scientific applications require as high precision as those provided
by the GNU math library, some researchers construct smaller lookup tables
for logarithm with adjustable accuracies (as discussed in [1]).The size of the
lookup table represents a trade-off between greater accuracy with a larger ta-
ble, and faster lookup and fewer resources used with a smaller table. To take
advantage of this, users need to choose table size based on their applications.
This method is mainly implemented in software since it is easier to config-
ure and load lookup tables. By using this method, it is about 7 times faster
running on an identical computer than GNU while 16 bits accuracy has been
enforced for single precision values. The improvement mainly comes from the
smaller lookup table, which is able to effectively reduce the time spent ex-
changing data between cache and memory.

1.5.2 Multi-core Technique

A large lookup table can be split into a number of smaller tables, each of which
can fit into cache. Those tables will in turn be loaded into different processors
of a multi-core system. As a result, each processor will keep a fraction of the
original lookup table. During function evaluation, all processors compute in
parallel and each processor accesses and retrieves items within the range of its
own lookup table. Thus, more values can be generated per second.

The idea behind the multi-core technique is very similar to the idea that
a job can be done faster if more people participate. However, several problems
are inherent when designing a multi-core system. For example, how to write
programs so that codes which can be executed in parallel are distributed to
different processors of a multi-core system? As far as I imagine, there could
be two approaches. One approach is by using a programming language which
has concurrent language constructs. Those constructs are able to make the
compiler aware of potential parallisms. The other approach tries to build a
more powerful compiler, which can discover parallelism within a segment of

5

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

code. I think the first approach may complicate programming since program-
mers need to design their algorithms from a concurrent perspective. For the
second approach, it introduces a new topic – the design of a compiler with a
parallelism identification facility. Besides, a network is required to facilitate
data distribution and collection. For these reasons, the design of a multi-core
system involves a lot of software and hardware designs.

1.5.3 Pipeline Technique

By effectively using the pipeline technique, one is able to increase the through-
put of a system. Before the pipeline technique was introduced in the field of
computer design, it was already widely used at the assembly lines of facto-
ries to increase work efficiency. It tries to split a task into a series of smaller
sub-tasks. Each sub-task is made as a separate stage. A pipeline is composed
of a number of stages. As soon as a sub-task in one stage has been done, it
will be forwarded to the next stage for further processing. A task is thought
to be completed as long as it goes through every stage of a pipeline. One
difficulty in designing a pipeline lies in how to effectively split a task into a
series of smaller sub-tasks, so that the workload of each sub-task is balanced.
In addition, the pipeline approach does not reduce the latency of executing a
single task. Sometimes, it has even longer latency than non-pipelined designs.
Thus, the pipeline technique is more appropriate to process a batch of data.

1.5.4 FPGA Technique

An FPGA (Field Programmable Gate Array) is a chip containing reconfig-
urable logic. Unlike conventional logic, which requires a very time-consuming
and expensive design process, which is only affordable for large projects at big
companies, FPGAs are custom hardware which can be designed by individual
engineers and scientists, frees hardware design from the few hardware vendors
and brings many of the advantages of custom logic to. A designer can build
the desired hardware by configuring IP blocks in FPGAs. New generation
FPGA chips contain embedded memory blocks and DSP slices. For example,
the Altera Stratix IV EP4SGX230 FPGA chip (see [2]), it includes but is not
limited to 17,133Kbit of embedded memory (operating at 600 MHz) and 1,288
18×18 embedded multipliers (operating at 600 MHz) as well.

In [3], Dinechin, Joldes and Pasca present a pipelined floating-point
logarithm unit by using Xilinx Virtex Series FPGAs. The maximum through-

6

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

put under single precision is 244MHz. Furthermore, in [5], Alachiotis and
Stamatakis present a pipelined floating-point exponential unit for Xilinx Vir-
tex 2, Virtex 4 and Virtex 5 FPGAs. It occupies 5% of hardware resources
on the Virtex 5 SX95T. The maximum throughput under single and double
precisions is 168MHz and 252MHz respectively.

Although FPGA provides a fast and efficient way to design hardware,
the performance of the configured hardware is largely constrained by the fre-
quency of IP blocks on the target FPGA. Suppose we intend to implement
hardware with a pipelined structure, then the overall throughput can hardly
exceed the highest frequency of the target FPGA. Thus, in order to implement
a pipelined logarithm with 1G operations per second throughput, we need to
try other design alternatives.

7

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

8

Chapter 2

Algorithm and Implementation

2.1 Design Principle

My goal is to implement a single precision, pipelined logarithm computation
unit (LCU) with 1G operations per second throughput. The LCU is expected
to get high precision while using a small lookup table. A small lookup ta-
ble implies less decoding time and less hardware resources, so that it can be
incorporated into the ALU of a CPU.

In order to reach this goal, I chose to use the pipeline technique. Com-
pared with aforementioned approaches in Chapter 1, the pipeline technique
has a number of advantages. First, the principle for the pipeline technique is
straightforward. A pipelined system is able to get high throughput as long
as it can be split into a series of sub-tasks with equal workload. Here, the
expected latency for each stage is less than or equal to the propagation delay
of a D flip-flop plus a 1 bit full adder. Second, the behaviour of the pipeline
can be simulated both by hardware and software. Our hardware implementa-
tion was built from scratch, by using logic gates and D flip-flops only. Before
implementing the hardware, we used C language to simulate the behaviors of
the hardware and give the expected tolerance.

2.2 IEEE-754 Floating Point Standard

Figure 2.1 illustrates how floating point numbers are represented in single and
double precision formats in the IEEE-754 standard [6]. Table 2.1 shows the
represented values in single precision format as defined by the IEEE-754 stan-
dard.

9

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

31 30 23 22 0

.
radix point

exponent (8-bit) mantissa (23-bit)sign

0 or 1

hidden part

63 62 52 51 0

.
radix point

exponent (11-bit) mantissa (52-bit)sign

0 or 1

hidden part

Figure 2.1: Single and double precision floating-point number in IEEE 754.

Table 2.1: Represented Values for Single Precision Format in IEEE-754.
Sign (binary) Exponent (hexadecimal) Mantissa (hexadecimal) Value (decimal)

0 or 1 e=0x00 m=0x0000 ±0.0

0 or 1 e=0x00 m 6=0x0000 ±2−127*0.m

0 or 1 0x00<e<0xff random ±2−127*1.m

0 or 1 e=0xff m=0x0000 ±inf

0 or 1 e=0xff m 6=0x0000 ±NaN

A floating point number as defined by IEEE-754 contains three parts,
which are the sign, exponent and mantissa. The single precision format re-
quires 4 bytes (32 bits) for one floating number. The most significant bit
represents the sign. The following 8 bits represent the exponent and last 23
bits represent the mantissa. The double precision format requires 8 bytes (64

10

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

bits) for one floating number. The most significant bit represents the sign as
well. The following 11 bits represent the exponent and the last 52 bits rep-
resent the mantissa. Any floating-point number can be represented as (the
following two formulas are quoted from [4]):

number = sign ∗ 2exponent ∗mantissa (2.1)

Here, sign represents positive or negative, so:

number = (+/−) ∗ 2exponent ∗mantissa (2.2)

By observing Figure 2.1, we learn that double precision arithmetic is more
complicated and requires more resources. Thus, we chose to implement the
single precision logarithm first.

2.3 ICSILog Algorithm

In this section, we introduce ICSILog algorithm [1]. By applying logarithmic
product and power rules, the value of log2 for a positive number can be rep-
resented as follows (the following formulas and formula reasoning are quoted
from [1]):

log2(number) = log2(2
exponent ∗mantissa) (2.3)

= log2(2
exponent) + log2(mantissa) (2.4)

= exponent ∗ log2(2) + log2(mantissa) (2.5)

= exponent+ log2(mantissa) (2.6)

Implementing log2 is simpler than logarithm with other bases since log2

(2exponent) =exponent holds in this case. By applying the logarithmic change
base rule, logarithm with bases other than two can be represented as follows:

logn(number) = log2(number)/ log2(n) (2.7)

= [exponent+ log2(mantissa)] ∗ [1/ log2(n)] (2.8)

11

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

Let n be a positive number other than two. The above formula demon-
strates that the value of a logarithm with a base other than two can be ob-
tained by multiplying a factor into the value of log2. Here, the factor refers to
[1/log2(n)]. Thus, as long as the value of log2 is pre-computed, the value of a
logarithm with other bases can be derived from it.

By observing the above formula, one might feel that implementing log2
is not difficult. However, it is not as simple as it seems. Implementing log2
with high accuracy and small lookup table size involves a lot of work.

In order to get the value for log2, we need to obtain the value of
log2(mantissa). We get this value from a lookup table. If we treat all of
the 23 bits of mantissa to index the lookup table, the table will have 8M items
and need 32MB of memory space, with each item taking up 4 bytes. Table 2.2
illustrates the contents of a 32MB lookup table.

Table 2.2: 32MB lookup table with 23-bit index.
Location Index Content

0 00000000000000000000000︸ ︷︷ ︸
23

log2(1.00000000000000000000000︸ ︷︷ ︸
23

)

1 00000000000000000000001 log2(1.00000000000000000000001)

.

223 − 1 11111111111111111111111 log2(1.11111111111111111111111)

We place the single precision value of log2(1.00000000000000000000000)
in the first location. Similarly, the values of log2(1.00000000000000000000001)
and log2(1.11111111111111111111111) are placed in the second and last loca-
tions of the table.

To shrink the table size, we use only part of the 23 bit mantissa, say,
high 16 bits, as an index. In this case, the new table will have 64K items
and need 256KB memory space. Table 2.3 illustrates the contents of a 256KB
lookup table.

Table 2.3: 256KB lookup table with 16-bit index.
Location Index Content

0 0000000000000000︸ ︷︷ ︸
16

log2(1.0000000000000000︸ ︷︷ ︸
16

0000000)

1 0000000000000001 log2(1.00000000000000010000000)

.

216 − 1 1111111111111111 log2(1.11111111111111110000000)

Table 2.2 has been reduced by 128 times compared to table 2.3. How-
ever, this new table leads to a problem. Since it does not store all of the

12

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

data, some values of log2 with neighboring mantissa will map onto the same
location. The term ”adjustable lookup table” refers to a table whose size can
be changed dynamically based on desired accuracy (as presented in [1]).

2.4 Interpolation Algorithm

In previous sections, we realized that it is possible to accelerate the computa-
tion speed of our design by shrinking the lookup table size. However, at the
same time, it leads to accuracy loss. Does there exist a method that could
not only shrink lookup table size but also retain the accuracy to a large ex-
tent? One can use interpolation to approximate the intermediate values of a
function when the input lies between two adjacent samples of a lookup table.
Obviously, interpolation is much better than just returning the sample value
as the result. There are a number of interpolation methods and each of them
has its own properties and result in different effects.

2.4.1 Methods used for Interpolation

In the following sections, we introduce three interpolation methods, which
are beeline interpolation, parabolic interpolation and B-spline interpolation.
Parabolic interpolation is a special case of B-spline interpolation. Each of the
three has both advantages and shortcomings. Thus, the choice largely relies
on the specific application. Here, my goal is to find a method that is able
to generate precise approximate values since a better interpolation method
means a smaller lookup table. Furthermore, the algorithm of this method
should not be too complex. A simpler algorithm implies simpler circuits and
less hardware resources.

In fact, the algorithms for beeline and parabolic interpolation are sim-
pler than B-spline interpolation. However, parabolic and B-spline interpo-
lation give more precise approximate values than beeline interpolation does.
By comparing the features they have, I concluded that parabolic interpola-
tion is more appropriate for our design because the approximate values given
by parabolic interpolation are much more precise in comparison to beeline
interpolation while the increase of complexity of the algorithm is manageable.

2.4.2 Beeline Interpolation

A curve which represents log2 is drawn in the graph shown in Figure 2.2.

13

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

X

Y

0.0

1.0

2.01.0

log2(x)

x1-x0

y1-y0

p0

p1

p

Figure 2.2: Beeline interpolation.

There exist two sample points on this curve, which are p0(x0, y0) and
p1(x1, y1). Suppose we would like to evaluate the Y-coordinate value for a
point p whose input lies between the two sample points. For beeline interpo-
lation, we draw a line that goes through the two points and then calculate the
approximate Y-coordinate value of p on this newly drawn line. The formula
for the line is:

y = y0 + k(x− x0) (2.9)

k = [(y1 − y0)/(x1 − x0)] (2.10)

Here, k is a constant. It can be pre-computed and then stored in a lookup table
in advance. From the above formula, we know beeline interpolation needs one
multiplication plus one addition at run time.

2.4.3 Parabolic Interpolation

In Figure 2.3, there are two coordinate systems, which are XY and X’Y’.

A curve which represents log2 is drawn in X’Y’. There exist three sample
points on this curve, which are p0, p1 and p2. Suppose we would like to evaluate

14

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

log2(x)

log2(x)

parabola

y1

y2

x1 x2x

yy'

y0'

x'x0'1.0 2.0

X

X'

Y

Y'

p

p0

p1

p2

Figure 2.3: Parabolic interpolation.

the Y-coordinate value for a point p on this curve when its input lies between
p0 and p1. For parabolic interpolation, it is expected to first draw a parabola
that goes through the three sample points and then calculate the approximate
Y-coordinate value for p on this newly drawn parabola. In order to make
things simpler, we build a new coordinate system XY and set its origin at p0.
Then, the XY-coordinate for the three sample points and the point p are p0 (0,
0), p1(x1, y1), p2(x2, y2) and p(x, y), where 0 < x < x1 < x2, 0 < y < y1 < y2.
The formula for the approximated parabola in XY is as follows:

y = ax2 + bx (2.11)

a = (y2 − 2y1)/(2x
2
1) (2.12)

b = (4x1y1 − x1y2)/(2x21) (2.13)

Suppose the X’Y’-coordinate values for p0 and p are p0(x0’, y0’) and p (x’,
y’). Thus, we have:

15

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

y′ = y′0 + y = y′0 + ax2 + bx (2.14)

x′ = x′0 + x (2.15)

a = (y2 − 2y1)/(2x
2
1) (2.16)

b = (4x1y1 − x1y2)/(2x21) (2.17)

In 2.16, 2.17 a and b are both constant. They can be pre-computed
and stored in a lookup table in advance. From the above formula, we know
parabolic interpolation normally needs two multiplications plus two additions
at run time since the bx term and the ax2 term can be calculated in parallel.

2.4.4 Discussion

In the previous two sections, we showed that the workload for parabolic in-
terpolation is almost double the workload for beeline interpolation. If beeline
interpolation is to reach the same exact precision as parabolic interpolation
does, its lookup table has to be 180 times larger. Parabolic interpolation is
favored for our design since it can shrink the size of a lookup table by a lot
while at the same time just slightly increasing the workload. The lookup table
used for our design contains 648 items and takes up roughly 7.776KB of mem-
ory space. In addition, it achieves 21 bits precision as well. In other words, it
has at most 2 bits tolerance.

2.4.5 Overall Flow Chart

Figure 2.4 illustrates the flow chart of the whole design.
In order to fit our design into a pipelined structure, all of the involved

components have to be pipeline-liked. From the flow chart shown in Figure 2.4,
we know our logarithm implementation is mainly composed of three parts: the
adder, multiplier and Read-only Memory. Thus, we need to build a pipelined
adder, pipelined multiplier and pipelined Read-only Memory as well.

To the best of our knowledge, there is little literature about designing
a full pipeline, particularly for read-only memory. However, without finding
solutions for them, our implementation may not reach a very high throughput.
Thus, all need to be designed from scratch. Placing a large chunk of a single
component into one pipeline stage will decrease the throughput dramatically
since the throughput of a pipeline is determined by the stage with the longest
latency. As a result, it is crucial to have the workload of every stage balanced.
In our design, the stage which has the longest latency is equal to the propa-

16

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

multiplexer

y0 + a*x*x + b*x

multipliermultiplier

adder

y0

x*x

a*x*x b*x

a b

log2(F)

x

multiplier x*x

b*xa*x*x

floating point number F

special situation normal situation

address

produce address,x and exponent

special situation processing

search ROM for y0, a, b

exponent+y0 + a*x*x + b*xadder

exponent

Figure 2.4: Flow chart of our log2(x) implementation.

gation delay of a D flip-flop plus four levels of logic gates.

17

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

18

Chapter 3

Tolerance and Performance
Assessment

3.1 Design Method

Nowadays, CAD (Computer Aided Design) tools greatly facilitate hardware
design. It has enhanced design quality, cut down on design time and reduced
design cost. Take the Altera Quartus II design software for example, it gener-
ally provides two ways to design hardware. One is by using a textual language,
say, VHDL. The other is by using schematics. VHDL is a very productive hard-
ware description language. Several lines of VHDL statements may produce a
circuit with hundreds or thousands of logic gates. However, it is not easy for
a textual language to control the generated circuits in detail. A schematic,
on the other hand, replaces the traditional method of using pencil and eraser
to draw the block diagram for hardware. It is less productive than VHDL
since one needs to specify every tiny detail for a circuit (i.e. logic gates or
wire connections). In order to design a high throughput pipeline system, we
need to control the way that how each component is pipelined, so schematics
is more appropriate for us.

Before implementing the hardware, we used C language to validate the
approximations used by doing exhaustive testing of the algorithm. The C code
will then exactly match the simulation of the circuit, making it easier to test the
circuit at a smaller set of values, and still know the tolerance. Besides, software
simulation allows us to easily try new algorithms and generate the expected
tolerances rapidly. To obtain higher precision, trying and testing different
new algorithms is better than just doing formula reasoning. Sometimes, even
different calculating sequences affect the precision of the whole design. As a

19

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

result, theoratical analysis and software simulation are both very necessary.

3.1.1 Software Simulation

The software simulation program was designed by using the GNU C Compiler
which is embedded into Cygwin. The program simulated a pipelined logarithm
realization and we performed exhaustive testing on it.(231 = 2G input values
in total).

3.1.2 Hardware Verification

The hardware design is implemented by using the Altera Quartus II 7.2 De-
sign Software (Web Edition). The whole design is compiled and simulated1. If
our hadrware implementation does not have any bugs, values generated by the
hardware implementation should be totally consistent with the software sim-
ulation program. However, we just performed partial testing on the hardware
implementation near 1.0 due to the long simulation time.

3.2 Tolerance Assessment

Different math libraries may use different methods or lookup tables to com-
pute the logarithm, so their generated values may differ from each other. For
our design, the lookup table is generated by the GNU math library. We use
parabolic interpolation to produce the intermediate values between two ad-
jacent samples of the lookup table, so accuracy loss is not avoidable. Thus,
minimizing the tolerance to the largest extent becomes essential. The value of
log2 varies from negative infinite to positive infinite. As a result, the range of
the corresponding tolerance is not fixed. It changes as the exponent varies. In
the rest of this section, we intend to define the tolerance for our implementa-
tion and then give several examples to explain it.

Suppose we have two single precision floating-point numbers, N1 and
N2. N1 is represented as 3.1, where x represents one bit:

N1 = 2e1 ∗ 1. xxxxxxxxxxxxxxxxxxxxxxx︸ ︷︷ ︸
23

(3.1)

If N2 can be represented as 3.2, where y also represents one bit:

1Here, the simulation only refers to functional simulation. Functional simulation does
not consider timing issues of a circuit, it verifies the behavioral correctness of a circuit.

20

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

N2 = N1 ± (2e1 ∗ 0. 000000000000000000000︸ ︷︷ ︸
21

yy︸︷︷︸
2

) (3.2)

We say N2 has at least 21 bits precision with respect to N1. In other words,
N2 has at most 2 bits tolerance. For example, if the value of N1 is:

N1 = 20 ∗ 1. 10000000000000000000000︸ ︷︷ ︸
23

(3.3)

and the value of N2 is:

N2 = 20 ∗ 1. 01111111111111111111111︸ ︷︷ ︸
23

(3.4)

Then, we say N2 has at least 21 bits precision with respect to N1 since:

N2 = N1 − 20 ∗ 0. 00000000000000000000001︸ ︷︷ ︸
23

(3.5)

The tolerance of log2 is mainly observed in two intervals, which are
[0.5,1.0) and [1.0,2.0). It becomes worse when the input value comes close
to the value 1.0. Thus, we pay more attention on those two intervals when
we perform testing. Our software simulation program performed exhaustive
testing(231 = 2G input values in total) and then compared the generated val-
ues against the GNU math library. Furthermore, the values generated by our
hardware implementation should be totally consistent with our software sim-
ulation program if it does not contain any bugs. However, we only perform
partial testing on it near 1.0 due to the long hardware simulation time. In the
following, two testing examples are given at table 3.1.

Table 3.1: Testing examples
Example Sign Exponent Mantissa Decimal Value

x1 0 01111110 11111111111111111111110 9.999999∗10−1

GNUlog2(x1) 1 01101000 01110001010101000111100 -1.719827∗10−7

MY log2(x1) 1 01101000 01110001010101000111111 −1.719827 ∗ 10−7

x2 0 01111111 00000000000000000000001 1.000000∗100

GNUlog2(x2) 0 01101000 01110001010101000111010 1.719826∗10−7

MY log2(x2) 0 01101000 01110001010101000110111 1.719826∗10−7

21

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

Here, x1 represents a 32 bits single precision floating-point input. GNU
log2 represents the corresponding single precision value log2(x1) as computed
by the GNU math library. MY log2 represents the single precision value gen-
erated by our software simulation program. We guarantee that all the values
calculated by our logarithm implementation have at least 21 bits precision.
Compared with the precision of log2 given by the GNU math library, our pre-
cision is fairly good given that our lookup table contains 648 items. Tables 3.2
and 3.3 illustrates the overall tolerance analysis reports.

Table 3.2: Overall tolerance analysis report 1
Range of input x

Accuracy
binary decimal

2−2∗1.00000000000000000000000 to 2−2∗1.11111111111111111111111 0.25 to 0.5 22 bits
2−1∗1.00000000000000000000000 to 2−1∗1.11111111111111111111111 0.5 to 1.0 21 bits
20∗1.00000000000000000000000 to 20∗1.11111111111111111111111 1.0 to 2.0 21 bits
21∗1.00000000000000000000000 to 21∗1.11111111111111111111111 2.0 to 4.0 22 bits

Table 3.3: Overall tolerance analysis report 2
Input(in decimal) Accuracy Maximum tolerance Average tolerance

0.25 to 0.5 22 bits 1 bit less than 0.59-bit

0.5 to 1.0 21 bits 2 bits less than 0.59-bit

1.0 to 2.0 21 bits 2 bits less than 0.59-bit

2.0 to 4.0 22 bits 1 bit less than 0.59-bit

other areas 22 bits 1 bit less than 0.59-bit

Tables 3.2 and 3.3 were computed by our software simulation program.
The highlighted rows denote precision results for the worst cases. When the
input value x of log2 lies in the intervals [0.5,1.0) and [1.0,2.0), the correspond-
ing output of log2(x) have an accuracy of 21 bits. In other words, the accuracy
loss for those values is at most 2 bits. As we know, software sometimes may not
entirely simulate the real performance of its corresponding hardware circuits.
Thus, the final report can only be obtained after performing comprehensive
hardware tests.

3.3 Performance Assessment

Our pipelined logarithm implementation is independent of any specific FPGA
platform. It does not use any IP blocks, and is designed by only using logic
gates (AND gate, OR gate, Inverter) and D flip-flops. It is also possible to

22

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

run our design on FPGAs, but the expected throughput is not expected to
be high since our design is not targeted at a specific FPGA. If we intend to
realize our design by configuring the IP blocks of a target FPGA, then the
expected throughput will be determined by the organization and performance
of those chosen IP blocks. Furthermore, the expected throughput can hardly
exceed the maximum frequency among the chosen IP blocks. For example,
the maximum operating frequency for the embedded multiplier and memory
on an Altera Stratix IV EP4SGX2302is 600MHz. In order to implement a
pipelined logarithm with 1G operations per second, we need to try other design
alternatives.

There are two reasons a hardware design obtains very high speed run-
ning on an FPGA chip. First, it may use advanced algorithms. Second, it
may take full advantage of the hardware resources on the target FPGA. In
other words, the designer may configure the IP blocks in a good manner. It
is normal to see that a pipelined design with better algorithms obtains lower
throughput due to badly configured IP blocks. Also, one pipelined design may
have different throughput when configured by different people. Thus, we pre-
fer to treat our pipelined design as a custom circuit and assess its performance
by adopting the measurements used for custom circuits.

The throughput of a pipelined system is determined by the stage which
has the longest latency. In our design, the longest latency is equal to the
propagation delay of a D flip-flop, an AND23 gate, an inverter, an AND3 gate
and an OR44 gate.5.

Suppose the propagation delay for the aforementioned devices are pddff ,
pdand2, pdinverter,pdand3 and pdor4 respectively. Thus, the total latency t is:

t = pddff + pdand2 + pdinverter + pdand3 + pdor4 (3.6)

The propagation delay for a device is determined by the specific fabri-
cation process it has been made under. The propagation delay for the afore-
mentioned devices under 65nm [17] and 0.8µm fabrication process are given

2A new generation FPGA chip used for the Altera DE4.
3AND2 refers to a logic gate with two inputs and performs logical-and operation between

the inputs. Similarly, AND3 refers to a logic gate with three inputs and performs logical-and
operation between the inputs.

4OR4 refers to a logic gate with four inputs and performs logical-or operation between
the inputs.

5This stage may not be the one which has the longest latency in our pipeline system, or
some circuits in our design may violate fanout rule. Since our project is very large (2.6GB),
we are likely to make mistakes. Once a mistake is discovered, it can always be fixed by
splitting the stage into several smaller ones.

23

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

in Table 3.46 and Table 3.5.

Table 3.4: Propagation delay under a 65nm fabrication process
Inverter AND2 OR2 D type flip-flop

10 ps 25 to 40 ps 25 to 45 ps 60 ps

Table 3.5: Propagation delay under a 0.8µm fabrication process
Inverter AND2 AND3 AND4 OR2 OR3 D type flip-flop
0.1 ns 0.25 ns 0.28 ns 0.29 ns 0.34 ns 0.37 ns 1.48 ns

First, let us calculate the potential throughput for our design under a
65nm fabrication process by using equation 3.6 and table 3.4. Suppose the
propagation delay for AND3 and OR4 under a 65nm fabrication process is
from 50 to 90ps, which almost doubles the delay for AND2 and OR2 listed
in 3.4. Thus, the maximum and minimum latencies are:

tmin = 60ps+ 50ps+ 10ps+ 50ps+ 50ps = 220ps (3.7)

tmax = 60ps+ 90ps+ 10ps+ 90ps+ 90ps = 340ps (3.8)

We can also calculate the maximum and minimum throughput by using values
obtained from equations 3.7 and 3.8.

tpmin =
1

tmax

=
1

340× 10−12s
≈ 2.9G/per second (3.9)

tpmax =
1

tmin

=
1

220× 10−12s
≈ 4.5G/per second (3.10)

Second, let us calculate the potential throughput for our design under a 0.8µm
fabrication process by using equation 3.6 and table 3.5. Suppose the propa-
gation delay for OR4 under a 0.8µm fabrication process is 0.4ns. Thus, we
estimate the latency to be:

t = 0.25ns+ 0.1ns+ 0.28ns+ 0.4ns+ 1.48ns = 2.51ns (3.11)

6Data listed in tables 3.4 and 3.5 are not very formal, they were obtained by consulting
domain experts.

24

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

We can calculate the throughput by using the value obtained from equa-
tions 3.11.

tp =
1

t
=

1

2.51× 10−9s
≈ 398M/per second (3.12)

In summary, the potential throughput for our pipelined logarithm im-
plementation under a 65nm fabrication process is estimated to be from 2.9G to
4.5G7 single precision values per second. However, when we consider a 0.8µm
fabrication process, our design is estimated to generate 398M8 single precision
values per second.

3.4 Performance Comparison

To the best of our knowledge, in [4], Alachiotis and Stamatakis present the
fastest pipelined single precision logarithm approximation unit (SP-LAU) im-
plemented on an FPGA with adjustable accuracy. Their implementation is
11 and 1.6 times faster than the GNU and Intel Math Kernel Library (MKL)
implementations and up to 1.44 times faster than the FloPoCo reconfigurable
logarithm unit (as presented in [3]).

In [4], we learned that, when a lookup table is loaded with 4096 en-
tries (13.5KB), SP-LAU is able to generate 353.5M single precision values per
second. The latency for the pipeline is 22-26 clock cycles (62.2ns-73.5ns). In
addition, we also learned that a medium sized FPGA chip9 normally contains
1.35MB of embedded memory. Thus, SP-LAU-409610 takes nearly 1% of the
embedded memory provided by the target FPGA (Xillinx Virtex 5 SX95T).
Furthermore, average tolerance of SP-LAU-4096 is 9 bits.

In fact, the performance between SP-LAU-4096 and our hardware im-
plementation (SP-LCU11) is not comparable. First, SP-LAU-4096 is designed
by configuring IP blocks on a target FPGA. Thus, the performance of SP-
LAU-4096 will be constrained by the chosen IP blocks (i.e. embedded mul-
tiplier frequency, embedded memory size). Second, a design that is targeted
at a specific FPGA is less flexible than a design for custom hardware. For
example, if there exists a stage in our pipelined implementation that has a

7This value is estimated based on table 3.4
8This value is estimated based on table 3.5
9Xillinx Virtex 5 SX95T

10SP-LAU with 4096 entries.
11Pipelined Single Precision Logarithm Computation Unit

25

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

longer latency than other stages, then it is very easy to split it into a number
of stages that has shorter latency. However, for FPGA implementation, it is
not easy to make such changes. Sometimes, this kind of change is crucial for
pipeline throughput.

As stated above,, we will not give comparison between SP-LAU-4096
and SP-LCU. Nevertheless, the corresponding data of the two implementations
are listed below:

Table 3.6: Performance comparison
Unit Throughput Maximum Tolerance Lookup table Size Pipeline Latency

SP-LAU [4] 0.3535GHz [4] 9 bits [4] 13.5KB [4] 62.2ns-73.5ns [4]
SP-LCU 2.9GHz 2 bits 7.776KB 52.8ns-81.6ns

(is estimated by 3.4) (is estimated by 3.4)

26

Chapter 4

Pipelined Adder

In chapter 4, we introduce a pipelined 4 bit adder (see section 4.5). This
demonstrates how to apply the pipeline technique to combinational logic cir-
cuit to enhance circuit performance. The reason to choose a 4-bit pipelined
adder is because of the simple structure and straightforward principle.

4.1 Informal Description of a Full Adder

Figure 4.1 shows the block diagram for a full adder [7] [8](Block diagram
directly comes from Quartus II design software, but altered to our purpose).
It takes three inputs and generates two outputs. For the three inputs, a and b
are operands, ci is the carry. For the two outputs, s is the sum, co is the carry
for the next adjacent full adder.

a

b

ci

s

co

1-bit full adder

b

a

ci

co

s

Figure 4.1: Block diagram of a 1-bit full adder

27

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

4.2 Switching Equations of a Full Adder

Table 4.1 shows the truth table of a full adder [7] [8]. Since a full adder has
three inputs, there will be eight entries in the table.

Table 4.1: Truth table of a full adder
Index ci a b s co

0 0 0 0 0 0
1 0 0 1 1 0
2 0 1 0 1 0
3 0 1 1 0 1
4 1 0 0 1 0
5 1 0 1 0 1
6 1 1 0 0 1
7 1 1 1 1 1

By Table 4.1, the switching equations [7] [8] for s and co are:

s = a′bci′ + ab′ci′ + a′b′ci+ abci (4.1)

co = aci+ bci+ ab. (4.2)

4.3 Schematics of a Full Adder

Switching equations can be implemented as circuits by replacing logic opera-
tions by gates. Figure 4.2 illustrates the schematics for a full adder (the block
diagram comes directly from Quartus II design software, but is altered for our
purpose).

Schematics shown in Figure 4.2 contains five kinds of logic gate: in-
verter, AND2, AND3, OR3, OR4. Here, the digit which follows the type of
gate denotes the number of inputs each gate has. Normally, the more inputs
a gate has the longer propagation delay is needed to generate stable output.
Furthermore, the schematic invovles three levels of logic gates. Each input
signal needs to propagate through at most three logic gates to get to the out-
put port. Latency of the schematic depends on the most time consuming path
in Figure 4.2. Here, it is the path that goes through the inverter, AND3 and
OR4.

28

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

a

b

ci

co

s

.

. .

... .

.
. .
.

.

.

.

.

Figure 4.2: Schematics of a full adder.

4.4 A 4-bit Ripple Carry Adder

We can build a 4-bit ripple carry adder [7] [8] by connecting four full adders.
Figure 4.3 illustrates the schematics for a 4-bit ripple adder (the block dia-
gramcomes directly from Quartus II design software, but is altered for our
purpose).

Suppose the two 4-bit operands of an add operation are a[3..0] and
b[3..0]. Here, a[3] represents the most significant bit (MSB) and a[0] represents
the least significant bit (LSB). For an add operation in Figure 4.3, FA 1 is used
for adding a[0] and b[0]. The third input ci is set to logical-0 since there is no
carry at this time. FA 1 generates s[0] and co. co will be passed to the next
adjacent adder, FA 2. Based on the same rationale, FA 4 will not give the
right result until the carry generated from FA 3 is ready. Thus, carries have
been propagated in a sequential fashion from FA 1 to FA 4.

29

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

s co

ci a b

s co

ci a b

s co

ci a b

co

s co

ci a b

a[0] a[1] a[2] a[3]

b[0] b[1] b[2] b[3]

s[0] s[1] s[2] s[3]

ci

FA_1 FA_2 FA_3 FA_4

Figure 4.3: Schematics of a 4-bit ripple carry adder.

4.5 A 4-bit Pipelined Ripple Carry Adder

By observing the 4-bit ripple carry adder shown in Figure 4.3, we see that each
full adder is in charge of partial evaluation. The operation of a full adder with
a higher index relies on the carry generated from an adjacent lower indexed
adder. That is to say, FA 4 will stay idle until all of the three previous adders
(FA 1,FA 2,FA 3) produce stable results. Obviously, this ripple carry design
does not take full advantage of all the hardware resources since many adders
will stay idle most of the time. In order to accelerate the circuit speed, we
intend to use the pipeline technique to make all possible hardware components
work in parallel. Figure 4.4 illustrates the block diagram for a 4-bit pipelined
ripple carry adder1(the block diagram comes directly from Figure 1 in [13],

1Our 4-bit pipelined ripple carry adder was designed without referencing the literatures.
However, since we did not conduct a thorough bibliographical search, such circuits might
have been designed and applied by others already.

30

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

but is altered for our purpose).

operand registers

a[3..0] b[3..0]

temporary variables operand registerspartial results

temporary variables operand registerspartial results

temporary variables operand registerspartial results

final results

s[3..0]

a b

ci

co

s

FA_2

FA_3

FA_4

FA_1

Figure 4.4: A 4-bit pipelined ripple carry adder.

The principle underlaying Figure 4.4 is presented below. In the first
clock cycle, we load FA 1 with a pair of operands, say, a0[3..0] and b0[3..0].
They will be forwarded to FA 2 as soon as FA 1 finishes partial evaluation.
Thus, in the second clock cycle, FA 1 will be loaded with a second pair of
operands, and FA 2 will be in the process of partially evaluating a0[3..0] and
b0[3..0]. We can see how each full adder is a separate stage in the pipeline
structure shown in Figure 4.4. Furthermore, a number of registers are required

31

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

to store the temporary variables and partial results. When some of them are
useful for later evaluation, they will be maintained. Otherwise, if they become
redundant, they will be discarded before entering into the next stage. Due to
the introduction of these registers, the schematic shown in Figure 4.4 becomes
a sequential circuit rather than a combinational circuit. Sequential circuits
are more complicated than combinational circuits, since they introduce timing
issues. Registers are storage elements. They store data on either the rising or
falling edge of a clock cycle. Here, we make all registers work under one unified
clock. In addtion, the clock cycle period needs to be carefully calculated so that
each stage is able to finish their work on time. Another key issue that needs
to be addressed is how to make the workload of each stage in the pipeline
as balanced as possible. If the workload of a specific stage is heavier than
the others, the clock cycle period will be set based on it. Obviously, this
can increase the latency of a pipeline due to most stages finishing their work
earlier. Usually, a stage with a heavier workload can be split into a number of
stages with less work. This problem can be ignored here since each stage in
our design does identical work.

The pipeline technique increases the throughput of a system rather than
decreaseing the time for doing a single item of work. Sometimes, applying the
pipeline technique to a system will increase the latency of a single item of
work. In our case, we do not speed up the time for completing a single 4-bit
add operation. We do, however, make all full adders work in parallel. Thus,
more add operations will finish over the same period of time. Since there are
four stages in our case, the pipelined ripple carry adder is expected to be four
times faster than the non-pipelined version, so long as all of the stages are
fully loaded.

The pipeline structure presented in Figure 4.4 is much simpler than
those used for a general purpose processor because it does not need to handle
cases like forwarding, stalls, flushing and prediction.

32

Chapter 5

Pipelined Multiplier

In chapter 5, we introduce a 4-bit pipelined array multiplier. It applies both the
pipeline technique and the carry save algorithm to improve the circuit’s speed.
Furthermore, three kinds of non-pipelined array multipliers are presented and
compared. They are the ripple carry array multiplier (see section 5.2), carry
look-ahead array multiplier (see section 5.3) and carry save array multiplier
(see section 5.4).

5.1 A 4×4 Unsigned Multiplication

Before starting to design a multiplier, let us take a look at Table 5.1 which
demonstrates a 4×4 multiplication of two unsigned operands.

Table 5.1: An example of a 4×4 unsigned multiplication
1 1 0 1

× 0 1 1 1
+ 1 1 0 1
+ 1 1 0 1
+ 1 1 0 1
+ 0 0 0 0
0 1 0 1 1 0 1 1

The values of the first and second operand are 1101 and 0111 in bi-
nary. Here, we call the first operand the multiplicand and the second operand
multiplier. In the first step, we perform a logical-and operation between the
LSB of the multiplier and each bit of the multiplicand to produce the first
partial product, and then shift it one bit right. In the second step, we perform

33

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

a logical-and operation between the second bit of the multiplier and each bit
of the multiplicand, and then add it to the shifted first partial product to
produce the second partial product. After that, we shift the second partial
product one bit right. Similarly, in the third step, the third partial product
will be generated, and then it will be shifted one bit right. In the fourth step,
we obtain the final product after the fourth partial product is generated and
shifted. By examining this example, we see that multiplication is actually
composed of only three primitive operations. They are the logical-and opera-
tion, add operation and shift operation. Therefore, any circuit for a multiplier
can be implemented by using logical-and gates, full adders and shifters.

5.2 A 4-bit Ripple Carry Array Multiplier

In section 5.1, we reviewed the basic principle of multiplication. In this section,
we will start to design a non-pipelined 4-bit multiplier. There are two design
alternatives. For the first approach, we will use one shifter, one non-pipelined
4-bit adder and several registers in our design. In step one, as soon as the
first partial product is obtained, shift it one bit right and then put it into
a specific register. Here, we call it the pp register, which stands for partial
product register. In step two, move the number stored in the pp register and
the second addend into a non-pipelined 4-bit adder. As soon as the adder
gives a stable result, shift it one bit left and then place it into the pp register
again. Now, the new number stored in the pp register is the second partial
product. In the subsequent steps, step two will be repeated until the fourth
partial result is generated and placed into the pp register. Using this approach,
a multiplication will be completed in multiple clock cycles. Because there is
only one 4-bit adder, it needs to be used repeatedly. One advantage of this
approach is that it saves hardware resources by effectively reusing the adder,
shifter and registers. However, the circuit speed of this approach is very slow.
For a 32×32 multiplication, it will wait 32 clock cycles to get the final product.
Aside from that, this approach can hardly be implemented using a pipelined
structure since most of the blocks keep getting reused. In order to overcome the
aforementioned weaknesses, we introduce the array multiplier [11]. Figure 5.1
shows a 4-bit array multiplier (the block diagram comes directly from Figure
1(c) in [12], but is altered for our purpose).

The multiplier consists of sixteen full adders that are organized as a
rectangular array. Furthermore, lines are drawn across the rectangular array.
Among them, there are four horizontal lines where each line represents one
bit of the multiplier b[3..0]. Also, there are four slanted lines where each line

34

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

a[0] a[1] a[2] a[3]

b[0]

b[1]

b[2]

b[3]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

a b

ci co

s

Figure 5.1: A 4-bit ripple carry array multiplier.

represents one bit of the multiplicand a[3..0]. At each intersection between a
horizontal and slanted line, there is a full adder and a logical-and gate. The
full adder is used for calculating the partial result. Besides the horizontal and
slanted lines are eight vertically lines that denote the 8 bits product c[7..0]. It
should be noted that the circuit shown in Figure 5.1 is a combinational logic.
It employs four 4-bit ripple carry adders (sixteen full adders in total). Each
ripple carry adder is in charge of the calculation of one partial product. The
way in which adders are arranged makes a shifter unit unnecessary. Compared
with the first design alternative, a multiplication product will be generated in
one cycle rather than being calculated over several clock cycles.

35

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

5.3 A 4-bit Carry Look-ahead Array Multi-

plier

We could further speedup the multiplier shown in Figure 5.1 by replacing the
full adder with a carry look-ahead adder1 [9] [10]. In section 4.4, we presented
a 4-bit ripple carry adder. It was concluded that the calculation of a higher
indexed adder relies on the carry generated from a neighboring lower indexed
adder. Since the carry is passed in a sequential fashion from a lower indexed
adder to a neighboring higher indexed adder. However, a carry look-ahead
adder breaks these sequential dependencies. The circuit of a 4-bit carry look-
ahead adder contains two parts. One part is used to calculate addition results.
This part is implemented by a number of half-adders. The other part is used
for accelerating carry propagation. This part’s design relies on the switching
equations derived in section 4.4. The derivation process is traced below (the
following formulas and reasoning come directly from [9] [10], but are altered
for our purpose). First, we get five derived equations.

ci1 = ci1 (5.1)

ci2 = a[1]ci1 + b[1]ci1 + a[1]b[1] (5.2)

ci3 = a[2]ci2 + b[2]ci2 + a[2]b[2] (5.3)

ci4 = a[3]ci3 + b[3]ci3 + a[3]b[3] (5.4)

co4 = a[4]ci4 + b[4]ci4 + a[4]b[4] (5.5)

Each equation is used for describing an input variable ci. For equation 5.2,
a[1] represents the second bit of operand a, b[1] represents the second bit of
operand b, and ci1 denotes the input variable ci of FA 1. Similarly, ci2
denotes the input variable ci of FA 2. After merging similar items, we get
the following equations:

ci1 = ci1 (5.6)

ci2 = (a[1] + b[1])ci1 + a[1]b[1] (5.7)

ci3 = (a[2] + b[2])ci2 + a[2]b[2] (5.8)

ci4 = (a[3] + b[3])ci3 + a[3]b[3] (5.9)

co4 = (a[4] + b[4])ci4 + a[4]b[4] (5.10)

1Our carry look-ahead array multiplier is designed without referencing the literature,
however, since we did not conduct a thorough bibliographical search, they might have been
designed and applied by others already.

36

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

When we replace the (a[i] + b[i]) and (a[i]b[i]) terms with new variables pi
and qi respectively, equations 5.6, 5.7, 5.8, 5.9, 5.10 are changed to:

ci1 = ci1 (5.11)

ci2 = p1ci1 + q1 (5.12)

ci3 = p2ci2 + q2 (5.13)

ci4 = p3ci3 + q3 (5.14)

co4 = p4ci4 + q4 (5.15)

By replacing variable ci2 in equation 5.12 with equation 5.13, we get:

ci3 = q2 + p2q1 + p1p2ci1 (5.16)

Similarly, by replacing variable ci3 in equation 5.14 with equation 5.16, we
get:

ci4 = q3 + p3q2 + p2p3q1 + p1p2p3ci1 (5.17)

Finally, replacing variable ci4 in equation 5.15 with equation 5.17, we get:

co4 = q4 + p4q3 + p3p4q2 + p2p3p4q1 + p1p2p3p4ci1 (5.18)

By observing equations 5.11, 5.12, 5.16, 5.17, 5.18, we realize that the
calculation induced by any input variable ci depends only on the two operands
(a and b) and ci1. When they are given, all of the carries can be computed
in parallel at the same time. Obviously, this technique improves the speed of
an addition operation remarkably. However, the circuit for a carry look-ahead
adder is much more complex than for the ordinary adder shown in Figure 4.3.
A 4-bit carry look-ahead adder is shown in Figure 5.2(the block diagram comes
directly from Quartus II design software, but is altered for our purpose).

In Figure 5.2, the circuits used for accelerating carry propagation are
placed beside the four half-adders. These circuits are designed from equa-
tions 5.11, 5.12, 5.16, 5.17, 5.18. Figure 5.3 illustrates a 4-bit carry look-ahead
array multiplier (the block diagram comes directly from Figure 1(c) in [12],
but is altered for our purpose).

Here, for simplicity, the circuit of a carry look-ahead adder is not shown.
Each rectangle in Figure 5.3 represents a 4-bit carry look-ahead adder. It is
important to note that carries generated between each rectangle are still prop-
agated to its neighboring rectangle in a sequential fashion. Carries generated
within each rectangle, however, are propagated in parallel due to the carry
propagation accelerating circuits.

37

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

a[0]

b[0]

ci1

a[1]

b[1]

ci2

a[2]

b[2]

ci 3

a[3]

b[3]

ci 4

s[0]

s[1]

s[2]

s[3]

a[0]

b[0]

a[0]

b[0]

a[1]

b[1]

a[1]

b[1]

a[2]

b[2]

a[3]
b[3]

a[2]

b[2]

a[3]

b[3]

ci2

ci3

ci4

P

Q

a

b

s

ci

a

b

s

ci

a

b

s

ci

a

b

s

ci

Figure 5.2: A 4-bit carry look-ahead adder.

5.4 A 4-bit Carry Save Array Multiplier

A carry look-ahead adder increases the calculating speed by using complex
circuits. Thus, it consumes more hardware resources than an ordinary adder.
Surprisingly, there exists an algorithm called the carry save algorithm [9] [10],
that can not only improve the speed, but also save considerable hardware
resources. Unlike the carry look-ahead adder, the carry save adder merely
changes the way that carries are propagated between two neighboring full
adders. It does nothing to optimize the full adder itself. Figure 5.4 illustrates
a 4-bit carry save array multiplier (the block diagram comes directly from
Figure 1(c) in [12], but is altered for our purpose).

You might notice that carries are not propagated horizontally in Fig-
ure 5.4. The adder which is placed at the intersection of line a0 and line b1
generates two output signals, s and co. s will be passed to the next verti-
cally adjacent adder, but co, on the other hand, will not be propagated to the
adjacent adder on the right. It will be propagated to the next upper right
neighboring adder instead. This makes adders on the same row produce two

38

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

look-ahead adder

look-ahead adder

a[0] a[1] a[2] a[3]

b[0]

b[1]

b[2]

b[3]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

look-ahead adder

a[0]b[0]a[1]b[1] a[2]b[2]a[3]b[3]

s[0] s[1] s[2] s[3]

ci co

Figure 5.3: A 4-bit carry look-ahead array multiplier.

outputs for the next row. Notice that the adders on the fourth row from the
bottom in Figure 5.4 generate two outputs. Since the fourth row is regarded as
the last row, an additional adder is required. Here, we call it the final adder.
The final adder is used for adding the two outputs generated from the forth
row together to produce the final product. To further accelerate the speed, we
could replace the final adder with a carry look-ahead adder.

5.5 Performance Comparison

In this section, we intend to analyze the calculating speed for the aforemen-
tioned three array multipliers (as presented in [14]). The longest path for each
multiplier has been emphasized in Figure 5.1, Figure 5.3 and Figure 5.4 respec-
tively. This allows us to find the calculating speed of a multiplier by measuring
its longest path latency. In Figure 5.1, the longest path is highlighted by bold
lines. It covers ten full adder blocks. Here, we treat each full adder block as a
unit of computation so the longest path delay will be measured by the number
of full adders involved. From this we can infer that the longest path for an

39

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

a[0] a[1] a[2] a[3]

b[0]

b[1]

b[2]

b[3]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

a b

ci co

s

final adder

Figure 5.4: A 4-bit carry save array multiplier.

N-bit array multiplier will contain 3N − 2 full adder blocks. In Figure 5.3, the
longest path is highlighted in a dashed line. You might notice it is very similar
to the path drawn in Figure 5.1. This is because the carries are still prop-
agated in a sequential fashion between two adjacent rectangles even though
carries generated within each rectangle are propagated in parallel. Here, the
exact number of full adder blocks involved in the longest path is not given due
to the fact that a carry look-ahead adder does not contain any full adders.
Instead, it is implemented by half-adders and carry propagation accelerating
circuits. In Figure 5.4, the longest path is highlighted by bold lines as well.
It covers seven full adder blocks. From this we can infer that an N-bit array
multiplier’s longest path will 2N − 1 full adder blocks. By comparison, we
know that the array multiplier based on full adders is the slowest one among
the three. Both of the other two multipliers are very fast. However, the carry
save array multiplier is more appropriate for our design since it is easier to
convert into a pipelined multiplier and it costs less hardware resources.

40

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

5.6 A Pipelined Carry Save Array Multiplier

By comparing the features of the aforementioned three multipliers, we have
learned that the array multiplier based on the carry save algorithm is the
best choice for our design. In this section, we will convert it into a pipelined
multiplier. Figure 5.5 illustrates a 4-bit pipelined carry save array multiplier2

(the block diagram comes directly from Figure 1 in [13], but is altered for our
purpose).

For the multiplier shown in Figure 5.4, full adders appearing on the
same row are incorporated into one separate stage. Therefore, besides the final
adder, the remaining circuit is made up of four stages. Each stage produces
two outputs. One output is the partial result, the other is the partial carry.
For the final adder, each full adder is made as one separate stage, so it contains
three stages in total. The workloads between these stages are fairly even since
each stage does exactly the same thing. The latency of one stage is equal to the
latency of a D-flip flop plus the latency of a full adder. Similarly, a floating
point pipelined multiplier can be designed in the same fashion. It can be
implemented by two pipelines. One pipeline is used to perform multiplication
between the two mantissas, the other is used to perform addition between the
two exponents. These two pipelines are executed in parallel. If one pipeline
finishes earlier than the other one, the generated results are kept in a number
of registers until the other pipeline is done.

2Our 4-bit pipelined carry save array multiplier is designed without referencing the lit-
erature, however, since we did not conduct a thorough bibliographical search, it might have
already been designed and applied by others.

41

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

operand registers

a[3..0] b[3..0]

a b

co s

operand registerspartial resultstemporary variables

operand registerspartial resultstemporary variables

operand registerspartial resultstemporary variables

partial resultstemporary variables

ci

partial resultstemporary variables

partial resultstemporary variables

partial resultstemporary variables

final results

s[7..0]

Figure 5.5: A 4-bit pipelined carry save array multiplier.

42

Chapter 6

Pipelined Read-only Memory

Read-only memory plays an important role in our design since the approach
we used to implement the logarithm is table based. Normally, a table is imple-
mented as ROM or RAM. Retrieve time for an item from a table is equal to
the time required to access and retrieve the content of a specific address from
a ROM or RAM. Thus, memory access and retrieve time has significant influ-
ence on the overall performance. In fact, there are two methods to speedup
memory access and retrieve time. One method aims to reduce the table size
to the largest possible extent since the smaller a table is, the less access and
retrieve time it entails. A large memory usually spends a lot of time on address
decoding. The other method tries to apply the pipeline technique to exploit
parallelism between the memory access and retrieve steps. For our implemen-
tation, both of the two methods are adopted. Before we introduce pipelined
read-only memory, we will first present the principle behind and architecture
of SRAM and ROM [15].

6.1 SRAM Principle and Architecture

When treating SRAM as a black box, it usually has four input ports and one
output port. Figure 6.1 illustrates a 32×8 SRAM (the block diagram comes
directly from Quartus II design software, but is altered for our purpose).

The four input ports are: CLK, ADDRESS, DATA and WREN. The
CLK port is connected to a clock signal. Note that SRAM can be triggered
by either the rising or falling edge of a clock. The ADDRESS port holds the
address of a specific memory location. The DATA port holds the data that
will be written into the memory location specified by the ADDRESS port.

43

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

CLK

RAM

ADDRESS[4...0]

DATA[7...0]

WREN

Q[7...0]
CLK

WREN

DATA[7...0]

ADDRESS[4...0]

Q[7...0]

Figure 6.1: A 32×8-bit SRAM

The WREN port stands for write enable. When it is held low (logical-0), then
a read operation is performed. Otherwise, if it is held high (logical-1), a write
operation is performed. The only ouput port, port Q, produces the contents
of a specific memory location.

Within the black box, the organization of SRAM can be divided into
three parts: the row decoder, memory cell array and column decoder. Fig-
ure 6.2 summarizes the organization of a 256 bit SRAM. It has eight address
lines in total (the block diagram comes directly from Fig.1.4.and Fig.1.5(b)
in [15], but is altered for our purpose.).

Row Decoder

A row decoder is used to select one row of memory cells in the memory cell
array. In Figure 6.2, the row decoder is implemented as a 1 of 32 decoder. It
has five inputs and thirty-two outputs. When a read operation is performed,
a specific 8-bit address is placed in the ADDRESS port. Then, the high five
bits of the address are taken as inputs to the decoder. By decoding, only one
of the thirty-two outputs is held high which in turn will activate one of the
many wordlines in the memory cell array. Both the row decoder and column
decoder are essential parts of SRAM because their speed and the power they
consume have significant influence on the performance of SRAM. Ideally, we
should avoid using a large decoder, since the larger a decoder becomes, the
longer its latency.

44

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

A7

A6

A5

A4

A3

A2

A1

A0

Address
 Lines

Output

1 of 32
decoder

 1 of 8
Decoder/Multiplexer

8 columns

3
2

ro

w
s

wordline_00

wordline_01

wordline_31

b
itl

in
e

_
0

b
itl

in
e

_
1

b
itl

in
e

_
7

. . .

... Memory cell array

Figure 6.2: A 256-bit SRAM.

Memory Cell Array

The memory cell array is organized as a matrix, with each element positioned
within an SRAM cell. Each cell can store a single bit-1 or 0. Cells which are
on the same row are connected by a horizontal line (Wordline). Also, cells
which are on the same column are connected by a vertical line (Bitline). In
Figure 6.2, the 256 bit Memory cell array is organized as a matrix with thirty-
two rows and eight columns. Therefore, thirty-two wordlines and eight bitlines
are required. When one of the thirty-two wordlines is held high, all eight
memory cells connected by that wordline are activated. In a read operation,
data stored in those memory cells will flow out via the bitlines. In a write
operation, data will flow into those memory cells via the bitlines.

Each SRAM cell is made up of transistors and simple analog circuits.
Either a bipolar or MOSFET can be used to fabricate an SRAM cell. Com-
pared to a bipolar transistor, a MOSFET has a number of advantages (as
presented in [15]). First, it consumes less power. Second, it achieves high
packing density. Finally, fabrication of a MOSFET has fewer steps than re-

45

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

quired for a bipolar transistor. Also, MOSFET fabrication is much simpler
that that required for a bipolar transistor. An SRAM cell normally contains
six MOSFET. Figure 6.3 illustrates a 6-transistor SRAM cell (the block dia-
gram comes directly from Fig.1.23(b) in [15], but is altered for our purpose).
The four transistors in the center are used to store data. The other two tran-
sistors on each side are used to activate the current SRAM cell. They are
connected to both the wordline and bitline.

bitline bitline column select line

word select line

vdd

...
...

M1 M2

M3 M4

M5 M6

SRAM Cell

Figure 6.3: A 6-transistor SRAM cell.

Column Decoder

After data flows out from the memory cell array, it needs to be further decoded.
For the 256 bit SRAM shown in Figure 6.2, there are eight bitlines. Only
one of the eight bitlines is selected as output. Thus, the column decoder is
implemented as a 1 of 8 decoder. It has three inputs and eight outputs. Each
of the outputs serves as a select signal, it is used to control a specific bitline.
The function of a select signal is similar to a switch. When a switch is turned
on, data on the bitline it controls will flow out. Otherwise, when the switch
is turned off, data on the bitline it controls will be blocked. As a result, only
one bitline’s data will flow at any time while others will be blocked. In fact,
more than one approach can be used to implement a column decoder. In some
designs, a multiplexer is preferred.

46

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

6.2 ROM Principle and Architecture

The principle underlying and architecture of ROM is similar to RAM. Fig-
ure 6.4 shows a 32×8 ROM (the block diagram comes directly from Quartus
II design software, but is altered for our purpose).

CLK

ADDRESS[4...0]

Q[7...0]

ROM
Q[7...0]

ADDRESS[4...0]

CLK

Figure 6.4: A 32×8-bit ROM.

A ROM has two input ports, CLK and ADDRESS, and one output
port, Q. The function of each port is exactly the same as those shown in
Figure 6.1. ROM also consists of three parts: the row decoder, memory cell
array and column decoder. The memory cell array is organized as a matrix as
well. It needs row and column select circuits to select the desired data. Like
RAM, either bipolar or MOSFETs can be used to fabricate a ROM cell. Each
SRAM cell is normally composed of 6 transistors. Each ROM cell, on the
other hand, only needs one MOSFET. Figure 6.5 shows an 8×2-bit ROM with
a 4×4-bit geometry matrix (the block diagram comes directly from Fig.6.17
in [16], but is altered for our purpose).

The memory cell array shown in Figure 6.5 involves four rows, with each
row storing 4 bits of data. To store bit-0, a transistor needs to be placed at
the appropriate position. No transistor is needed to store bit-1. In the figure,
the data stored in each row are 0001,0110,1010 and 0011, starting from the
top. Since the logical structure of the memory cell array shown in Figure 6.5
is 8×2-bit, only three address lines are required, called A[2..0]. Here, A2 is
the most significant bit (MSB). A0 is the LSB. A2 and A1 are inputs to the
row select circuit. Here, the row select circuit is actually a 2 of 4 decoder.
It produces four outputs which are used in turn to connect the gates of the
MOSFETs of each row. The function of the horizontal lines across the memory

47

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

2

 o
f
4

d

e
co

d
e

r

A2

A1

A0

Address
 Lines

 2 of 4
 Multiplexer

Output

Memory cell array

Figure 6.5: An 8×2-bit ROM with a 4×4-bit geometry matrix.

cell array is similar to that of wordline in RAM. A0 is the input to the column
select circuit which is implemented as a 2 of 4 multiplexer. It generates two
outputs, which are the final outputs for this ROM. The function of the vertical
lines across the memory cell array is similar to that of bitline in RAM. In a
read operation, suppose A[2..0] is assigned to 100 in binary. Data stored on
the third row will be activated. In the column select circuit, transistors used
to control the second and forth columns will be set. As a result, data stored
in the second and forth columns of the third row will flow out and then trigger
the multiplexer.

6.3 Discussion

In the previous sections, we introduced the principles and architecture of
SRAM and ROM. We highlighted that memory design is not limited to digital
circuits, say, a decoder or multiplexer, but also contains analog circuits such
as the circuits involved in the memory cell array.

Since our CAD tool, the Altera Quartus II 7.2 design software, only
supports digital circuit design, we need to convert analog circuits into digital

48

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

circuits. One of our attempts tries to replace the cells within the memory cell
array with D flip-flops without altering the three-part memory organization.
In fact, a wordline within a real memory chip usually drives hundreds or thou-
sands of cells. In reality, the output is not able to drive more than eight devices
since digital circuits are TTL (transistor-transistor logic) devices which need
to comply with the fanout rule. Analog circuit design, on the other hand, is
more flexible. In order to drive many devices, an engineer needs to carefully
calculate a series of factors (eg. capacitance, leakage current) and then choose
the appropriate devices to design the desired circuit.

Our first attempt does not seem feasible since the converted circuits
would violate the fanout rule. Thus, we need to consider this problem from a
different perspective. Our solution is to try to design a digital circuit which
has equivalent functionality of the ROM, and then modify this circuit with a
pipelined structure.

6.4 Motivation for Pipelined ROM

In order to reduce the time spent accessing and retrieving items from memory,
we have two design alternatives. The first approach tries to speedup memory
access and retrieval without changing the three-part memory architecture. It
depends largely on the improvement of hardware techniques. In [17], Jean
suggests shrinking circuit component to sizes down to the nanometer range to
get faster, more powerful and efficient electronic circuits. The second approach
tries to reorganize the memory architecture and apply the pipeline technique
to exploit the parallelism between the memory access and retrieve steps. The
second approach is more appropriate for our design. In order to adapt mem-
ory to a pipeline structure, we intend to split the memory into a number of
components with a balanced workload. Furthermore, all of the components
are expected to be implemented as digital circuits. We prefer to design these
components by using basic logic gates since it can better control the way that
the memory is pipelined.

In summary, to design pipelined memory, we need to solve three prob-
lems. First, how to reorganize the memory architecture so that it can use a
pipelined structure? Second, how to split the memory into a number of com-
ponents with a balanced workload? Lastly, how to design those components
by using basic logic gates? In the next section, we will find a solution for each
of them.

49

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

6.5 A 64×8-bit Pipelined ROM

In this section, we present the structure of a 64×8-bit pipelined ROM1. The
reason why we choose ROM rather than RAM is that once the lookup table has
been loaded, it will not change. Thus, ROM is more appropriate. Figure 6.6
shows the schematic for a 64×8-bit pipelined ROM.

byte 0

byte 7

.

.

.

byte 0

byte 7

.

.

.

byte 0

byte 7

.

.

.

memory_group 0memory_group 6memory_group 7

H_decoder L_decoder
1 of 8 1 of 8

multiplexer

8

8

8

8

8

8

8

L7 L0H7 H0H6

. . .

. . .

Figure 6.6: Schematics of a 64×8-bit pipelined ROM.

In Figure 6.6 there are six address lines. Thus, two 1 of 8 decoders are
needed: the H decoder and L decoder. The high three address lines are taken
as inputs of the H decoder. The low three address lines are taken as inputs
of the L decoder. The 64 bytes are organized as eight memory groups. The
H decoder is used to select memory groups. Logical-0 indicates the specified
group is not selected, while logical-1 indicates it is selected. The L decoder,
on the other hand, is used to select bytes. Logical-0 indicates the specified
byte is not selected, while logical-1 indicates it is selected. After group and
byte selection, only the selected byte’s value will be output. The two decoders

1Our pipelined ROM is designed without referencing any literatures. However, since we
do not conduct a thorough bibliographical search, they might be designed and applied by
others already.

50

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

shown in Figure 6.6 are similar to the row and column decoders used in ordi-
nary RAM. The structure shown in Figure 6.6 has several advantages. First,
it can all be implemented by digital circuits. Second, if treating it as a black
box, it has the same input and output ports as an ordinary ROM. Third, it is
very easy to adapt into a pipeline structure.

51

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

52

Chapter 7

Conclusion

In conclusion, we have demonstrated how to implement single precision floating
point logarithm using a pipelined architecture and using only digital circuits.
This platform-independent approach enables us to get a fairly high through-
put. Unlike previous methods, we did not present the trade-off between lookup
table size and accuracy with respect to their affects on speed. In other words,
our logarithm design is completely based on fixed accuracy and fixed speed.
We have estimated that it can generate 2.9G single precision values per sec-
ond under a 65nm fabrication process. We have also shown that the lookup
table contains 648 entries and occupies roughly 7.776KB of memory space
while achieving at least 21 bits precision. Using our design, the performance
of log-based applications can be improved by a large extent. In this thesis, the
presented hardware components (e.g., Pipelined Adder, Pipelined Multiplier,
Pipelined Read-only Memory) were designed without referencing the litera-
ture. However, since we did not conduct a thorough bibliographical search,
they might have been designed and applied by others already.

Our approach can be extended to implement a double precision loga-
rithm. We could either extend the algorithm from single to double precision
or take the single precision implementation as a kernel to design a double
precision algorithm. Additionally, techniques presented in this thesis can be
adapted to other frequently used math functions, like sin, cos, etc.

There are still a number of things that might be improved in the near
future. It is also possible to further reduce the pipeline latency. To this end,
we could either refine our hardware components, say, the multiplier, by using
more advanced algorithms or make more hardware components execute in
parallel.

The pipelined logarithm implementation presented in this thesis is just
a start. We expect that with time all of the frequently used math functions will

53

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

be implemented in hardware and then be incorporated into a CPU as arith-
metic instructions, so that the performance of many scientific computations
will be improved dramatically.

54

Bibliography

[1] Oriol Vinyals, Gerald Friedland. A Hardware-Independent Fast Loga-
rithm Approximation with Adjustable Accuracy, Tenth IEEE Inter. Sym-
posium on Multimedia, on pages 61-65, 2008.

[2] Altera Stratix IV Device Handbook, Also on http://www.altera.com/

literature/hb/stratix-iv/stratix4_handbook.pdf

[3] Florent de Dinechin, Mioara Joldes, Bogdan Pasca. Automatic generation
of polynomial-based hardware architectures for function evaluation, 21st
IEEE Inter. Symposium on Application-specific Systems Architectures and
Processors, on pages 216-222, 2010.

[4] Nikolaos Alachiotis, Alexandros Stamatakis. Efficient Floating-Point Log-
arithm Unit for FPGAs, 2010 IEEE Inter. Symposium on Parallel & Dis-
tributed Processing, on pages 19-23, 2010.

[5] Nikolaos Alachiotis, Alexandros Stamatakis. FPGA Optimizations for a
Pipelined Floating-Point Exponential Unit, ARC’11 Proceedings of the
7th international conference on Reconfigurable computing, on pages 316-
327, 2011.

[6] I. of Electrical and E. Engineers.IEEE 754-1985: Standard for Binary
Floating-Point Arithmetic, 1985. Also on http://grouper.ieee.org/

groups/754/.

[7] R.H.Katz, G.Borriello. Contemporary Logic Design. Prentice Hall, First
Edition, 2005.

[8] M.M.Mano, C.R.Kime. Logic and Computer Design Fundamentals. Pear-
son/Prentice Hall, Upper Saddle River, NJ, 2004.

[9] Israel Koren. Computer Arithmetic Algorithms. A K Peters/CRC Press,
Second Edition, 2001.

55

http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf
http://grouper.ieee.org/groups/754/.
http://grouper.ieee.org/groups/754/.

M.Sc. Thesis – Jing Chen – McMaster – Computing and Software

[10] Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware De-
signs. Oxford University Press,1999.

[11] Yongjiang Jiang. Design of Computer Kernel Components based on Quar-
tus II. Tsinghua University Press, First Edition, 2007.

[12] Zheng Ying, Jin Wu, Changyuan Chang, Tongli Wei. Comparison of High
Speed Multipliers. Chinese Journal of Electron Devices, Microelectronic
Center, Southeast University, Nanjing 210096. P. R. China, 2003.

[13] Feng Liang, Zhibiao Shao, Haijun Sun. Design of 43-bit Floating-Point
Pipelined Multiplier. Chinese Journal of Electron Devices, School of
Electronics and Information Engineering , Xi’an Jiaotong University ,
Xi’an710049. P. R. China, 2006.

[14] Jing Chen, Ning Liu, Zhe Deng. Comparison of Multipliers. Undergradu-
ate Research Project, College of Information Engineering, Capital Normal
University. Beijing, P. R. China, 2008.

[15] Kiyoo Itoh. VLSI Memory Chip Design. Springer, First Edition, 2011.

[16] Gerald Luecke, Jack P. Mize, William N. Carr. Semiconductor Memory
Design and Application. McGRAW-HILL Book Company, 2011.

[17] Rand K. Jean. Electrical Characteristics of 65-Nanometer MOSFETs.
Also on http://nanohub.org/resources/796/download/2003_suri_

jean_abstract.pdf

[18] Cygwin Official Site, http://www.cygwin.com/

[19] GNU Official Site, http://www.gnu.org/

56

http://nanohub.org/resources/796/download/2003_suri_jean_abstract.pdf
http://nanohub.org/resources/796/download/2003_suri_jean_abstract.pdf
http://www.cygwin.com/
http://www.gnu.org/

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Organization
	Novelty
	Background
	Methods used for Accelerating Function Evaluation
	Shrink Lookup Table Size
	Multi-core Technique
	Pipeline Technique
	FPGA Technique

	Algorithm and Implementation
	Design Principle
	IEEE-754 Floating Point Standard
	ICSILog Algorithm
	Interpolation Algorithm
	Methods used for Interpolation
	Beeline Interpolation
	Parabolic Interpolation
	Discussion
	Overall Flow Chart

	Tolerance and Performance Assessment
	Design Method
	Software Simulation
	Hardware Verification

	Tolerance Assessment
	Performance Assessment
	Performance Comparison

	Pipelined Adder
	Informal Description of a Full Adder
	Switching Equations of a Full Adder
	Schematics of a Full Adder
	A 4-bit Ripple Carry Adder
	A 4-bit Pipelined Ripple Carry Adder

	Pipelined Multiplier
	A 44 Unsigned Multiplication
	A 4-bit Ripple Carry Array Multiplier
	A 4-bit Carry Look-ahead Array Multiplier
	A 4-bit Carry Save Array Multiplier
	Performance Comparison
	A Pipelined Carry Save Array Multiplier

	Pipelined Read-only Memory
	SRAM Principle and Architecture
	ROM Principle and Architecture
	Discussion
	Motivation for Pipelined ROM
	A 648-bit Pipelined ROM

	Conclusion

