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Abstract

In this thesis, we investigate the properties of a model of an anti-phase modu-

lated d-wave superconductor, particularly in the presence of a magnetic field.

This so-called model of π-striped superconductor has been proposed to de-

scribe the decoupling between Cu-O planes in 1/8 doped La2−xBaxCuO4. The

d-wave superconducting order parameter in a π-striped superconductor oscil-

lates spatially with period 8 and zero average value. Unlike a uniform d-wave

superconductor, this model has non-zero density of states at zero energy and

exhibits an extended Fermi surface. Within Bogoliubov-de Gennes theory, we

study the mixed state of this model and compare it to the case of a uniform

d-wave superconductor. We find a periodic structure of the low-energy density

of states, with a period that is proportional to B, corresponding to Landau

levels that are a coherent mixture of particles and holes. These results are also

discussed in the context of experiments which observe quantum oscillations in

the cuprates.

Furthermore, within Bogoliubov-de Gennes theory, a semiclassical ap-

proximation is used to study quantum oscillations and to determine the Fermi

surface area associated with these oscillations in this model. The Fermi surface

is reconstructed via Andreev-Bragg scattering, and the semiclassical motion

is along these Fermi surface sections as well as between them via magnetic

breakdown. Oscillations periodic in 1/B are found in both the positions and

widths of the lowest Landau levels. The area corresponding to these quantum

oscillations for intermediate pairing interaction is similar to that reported for

experimental measurements in the cuprates. A comparison is made of this

theory to data for quantum oscillations in the specific heat measured by Riggs

et al.
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Chapter 1
Introduction and Overview

1.1 Introduction

Superconductivity is a state characterized by perfect conductivity and per-

fect diamagnetism. It was first discovered by Onnes in 1911 in mercury at

temperatures below 4.1K, known as the superconducting transition temper-

ature, Tc. After the discovery, numerous other metals were found to exhibit

superconductivity at very low temperatures. Nevertheless, the mechanism of

superconductivity remained a mystery for many years until Bardeen, Cooper,

and Schrieffer presented a complete theoretical picture in 1957 (Bardeen et al.,

1957). The so-called BCS theory is an instability of the Fermi surface (FS)

in the presence of an attractive interaction between electrons at low tempera-

tures. The interactions in the BCS model is mediated by phonons, vibrations

of the underlying lattice. The instability of the FS is due to the formation of

bound pairs of electrons, called Cooper pairs. The 2e charge-carrying Cooper

pairs can move in the material without resistance, leading to superconductiv-

ity. There is a minimum energy required to break the pairing of each Cooper



2

pair. This leads to the appearance of a gap at the Fermi energy, consistent

with experimental measurements. Details of BCS theory can be found in the

two books by Tinkham (1996) and de Gennes (1989).

Although BCS theory is successful in describing the mechanism of su-

perconductivity in metals, it fails to explain the nature of the phenomenon in

the so-called unconventional superconductors such as high temperature super-

conductors. The nature of high temperature superconductivity, in particular

cuprate superconductivity, is perhaps the most challenging problem in mod-

ern condensed matter physics. It is the aim of this thesis to investigate one

particular model that has been proposed to explain some of the properties of

the cuprate superconductors. Before discussing the current situation of our

understanding of the cuprate superconductors, we would like to briefly discuss

the mixed state of superconductors, as it is a crucial concept that we will use

in the rest of the thesis.

1.1.1 Mixed State

A perfect conductor in the presence of a magnetic field prevents the field from

entering the bulk. A superconductor, in addition to this property, expels a field

as it is cooled through the critical temperature. This phenomenon is called

the Meissner effect. When the magnetic field exceeds a critical field Hc, it is

energetically favorable to let the field enter the superconductor and the state

of the matter becomes a normal state. However, for type II superconductors,

the transition to the normal state is a smooth transition which might span

several tens of Tesla. Unlike their type I counterparts, the magnetic field flux

starts to partially penetrate the type II superconductor at a lower critical field
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Hc1 and only becomes a normal state at an upper critical field Hc2. Between

Hc1 and Hc2, the material consists of superconducting and normal domains

known as the mixed state. Perhaps the most important property of the mixed

state is that the normal domains are flux tubes that carry a fluxoid quantum

of Φ0 = hc/2e which is half of the flux quantum, φ0. The flux tubes, also called

vortices, tend to arrange themselves in an ordered array such as a triangular

or square array. In the presence of vortices, the magnetic field in the London

approximation is given by

B − λ2∇2B =
φ0

2

∑
i

δ(~r − ~ri) (1.1)

where λ is the London penetration depth and the summation is over the posi-

tions of the vortices. We use this equation in Appendix C to find the superfluid

velocity field.

1.2 High Temperature Superconductivity

In 1986, a new superconducting state was observed by Bednorz and Muller

in Sr-doped La2CuO4 at temperatures close to 30K (Bednorz and Muller,

1986). This discovery had a huge impact on solid state physics as Tc was

higher than that could be understood by the BCS theory. Subsequently, other

doped Copper-oxide materials, the so-called cuprates, have been found to be

superconducting at even higher temperatures. This is why the term high

temperature superconductivity is used to refer to this surprising phenomenon

seen in these ceramic superconductors. Note that the cuprates are only one

of two classes of the high temperatures superconductors that are known at
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this point in time. The other class is the iron-based superconductors which

were discovered much later than the cuprates in 2008. In this thesis, we

focus on the first class of high temperature superconductivity, the cuprate

superconductivity.

Figure 1.1 The two dimensional structure of a CuO2 layer in cuprates.

1.3 Cuprates

Cuprates are made by doping the parent rare earth copper-oxide material

with different kinds of dopants such as Sr. The undoped parent material is a

quasi-two dimensional material in the sense that it consists of two dimensional

copper-oxide (CuO2) layers that have weak inter-layer interactions. The struc-

ture of a single CuO2 layer is shown in Fig. 1.1. The Cu atoms which form

a square lattice each have one unpaired electron in the undoped state. When

the material is doped with holes, some of the Cu atoms lose an electron and

all their remaining valence electrons are paired. The O atoms are located on

the bonds connecting the nearest neighbor Cu atoms. The rest of the atoms

in the material lie in between the CuO2 layers and play the role of a charge

reservoir.

It is common to discuss cuprates in terms of their phase diagram as a

function of temperature, T , and hole-doping, x. In general, the cuprates have
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Figure 1.2 General phase diagram of hole doped cuprates as a function of
doping and temperature. A denotes an antiferromagnetic insulating state and
S denotes a superconducting state.

a phase diagram as shown in Fig. 1.2. Although the parent material can also

be doped with electrons, Fig. 1.2 only shows the hole-doped phase diagram

which is the focus of this thesis. Around x = 0, the so-called half-filling, the

material is an insulating anteriferromagent. The insulating behavior is due

to the strong on-site Coulomb repulsion which prevents Cu atoms from being

occupied by two electrons. Consequently conduction is suppressed and the

material becomes a Mott insulator. Superconductivity, denoted by S in Fig.

1.2, appears in the cuprates only when the antiferromagnetic order is desta-

bilized by doping. The transition temperature increases with the doping, x,

and reaches a maximum at the “optimal doping”. Beyond optimal doping, the

transition temperature decreases with x and finally the superconducting phase

disappears at fairly large dopings. Cuprates are classified as underdoped and

overdoped based on their hole-doping in the phase diagram relative to optimal

doping. The two classes have significant differences that will be discussed in

the following paragraphs.
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The dashed line in 1.2 indicates a cross-over from the normal state to the

so-called pesudogap phase. This mysterious phase that occurs for underdoped

cuprates and temperature range Tc < T < T ∗, is the subject of extensive and

ongoing research (Norman and Pepin, 2003). Although not superconducting,

it is shown that some of the properties of the superconducting state appear

in the pseudogap phase (Williams et al., 1997). Even the normal phase of

the cuprates, above the pseudogap phase in the phase diagram, exhibits some

peculiar properties. For example, conductivity measurements show that it

acts like a metal within the Cu-O layers but is an insulator along the normal

direction to the layers. The resistivity within the Cu-O planes varies linearly as

a function of T which is different from the T 2 dependence of a Fermi Liquid.

This part of the phase diagram is referred as a “strange metal” due to the

its strange characteristics. The normal state for the overdoped materials,

however, is a Fermi Liquid. The small region between the antiferromagnetic

and superconducting phase in the phase diagram is believed to be one where

various orderings such as spin glasses and stripes compete and, as a result, is

poorly understood.

1.3.1 Nature of Superconductivity in the Cuprates

Conventional metallic superconductors are s-wave. That is, the superconduct-

ing gap around the FS is relatively independent of the wave vector k. The

cuprates were initially thought to have the same property. However, after

years of controversies, it was confirmed that the superconducting gap in the

cuprates has a d-wave symmetry (Hardy et al., 1993; Van Harlingen, 1995;

Tsuei and Kirtley, 2000). The d-wave superconducting gap changes signs and
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amplitude around the FS. The amplitude of the gap goes to zero at four points

in the BZ which we refer as nodal points or simply nodes. The nodal behavior

gives rise to zero-energy excitations which dramatically changes the low tem-

perature physics of the cuprates from that of conventional superconductors.

The Cu-O layers in the cuprates are modelled by a constrained two di-

mensional tight-binding Hamiltonian with nearest neighbor antiferromagnetic

exchange interaction, the so-called t-J model (Ogata and Fukuyama, 2008),

which is derived from the Hubbard model in the strong Coloumb repulsion

limit. The constraint in the t-J model is the “no-double occupancy” rule

which turns it into a strongly correlated problem. The model can be solved

approximately using self-consistent BdG mean field theory which results in the

following k-dependence for the gap in the homogeneous case

∆k = 2∆[cos(kx)− cos(ky)] (1.2)

where ∆ is the magnitude of the uniform d-wave order parameter. Then the

excitation energy for the quasiparticles is given by

εk =
√
E2

k + ∆2
k (1.3)

Ek = −2t[cos(kx) + cos(ky)] − µ is the dispersion for the kinetic part of the

Hamiltonian. As usual, physicists are interested in the low energy energy

spectrum which can be obtained by expansion of the cos function in Ek and

∆k around the nodes. The result is a Dirac-like dispersion relation given by

εk =
√

(~vFk1)2 + (~v∆k2)2. (1.4)
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where k1 (k2) is the wave vector component normal (tangential) to the FS and

~vF (~v∆) is the slope of the linear change in quasiparticle energy along that

direction. As a result, the low-energy density of states is linear with respect to

the quasiparticle energy which explains some of the low-temperature properties

of the cuprates (Imai et al., 1988; Hardy et al., 1993). As an example the

electronic specific heat goes as T 2.

There are, however, measurements and phenomenon that can not be

explained with the the simple picture of a BCS-type d-wave superconductor.

Eq. (1.4) describes well-defined, long-lived quasiparticle excitations that would

suggest a Fermi Liquid type behavior for the normal state of the cuprates.

However, in the underdoped regime of the cuprates, the Fermi liquid type be-

havior is absent for both the pseudogap and the strange metal regions. Other

mysterious features of the cuprates are the formation of stripes and quantum

oscillations. Here we will review the pseudogap phase and the quantum os-

cillations in the cuprates. We will discuss the stripe structure in the next

chapter.

1.3.2 Pseudogap

The nature of the pseudogap phase remains a mystery after years of study

and debate. The physical behavior in this phase can be characterized as “non-

Fermi-liquid-like”, which typically means that the sharp fermionic excitations

of a Fermi liquid are broadened even close to the Fermi surface (Ding et al.,

1997; Norman et al., 1998). The spin excitations are suppressed which means

that a gap develops in this pseudogap phase (Williams et al., 1997). This

gap does not lead to superconductivity, and it is also not a full gap with zero
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density of states at low energy, which is why this phase is called the pseudogap

phase. The pseudogap can be seen in different experiments such as NMR

(Williams et al., 1997) and ARPES (Ding et al., 1997; Norman et al., 1998).

ARPES observes disconnected sections of 2D FS which appear to terminate

at gaps near anti-nodal points at (±π, 0) and (0,±π), but which also could be

segments of FS pockets where only part of the pocket has significant spectral

weight. These so-called Fermi arcs become shorter, possibly tending toward

nodal points, as T is lowered. No sharp quasiparticles are observed near the

anti-nodal points at (±π,±π).

The source of the non-Fermi-liquid-like behavior is the subject of hot

debates and disputes. Some studies connect it to resonating valence bonds

(Anderson, 1987) or preformed pairs (Randeria et al., 1989). Others associate

it with exotic forms of fluctuating or static spatial order such as charge or spin

density waves (Brown and Gruner, 1994; Borisenko et al., 2008; Emery et al.,

1997) or singlet or triplet D-density waves (Chakravarty et al., 2001). The

model studied in this thesis is proposed to have connections to the pseudogap

phase.

1.3.3 Quantum Oscillations

Recent observations of Quantum oscillations (QO) in the cuprates added one

more piece to the puzzle of high temperature cuprate superconductivity. QO

are a quantum phenomenon in which various properties of a metals exhibit os-

cillatory behavior as a function of 1/H that are related to the shape of the FS.

Techniques based on quantum oscillations are important experimental tools

for determining the shape of the FS of various materials. The phenomenon
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was first observed in magnetization measurements of a sample of bismuth in

1930. A plausible theoretical theory for the QO phenomenon was not pro-

posed until a much later time in 1952 when Onsager showed that the period

of oscillations in 1/H is in fact proportional to 1/A where A is an extremal

cross-sectional area of the FS in a plane perpendicular to the magnetic field.

Onsager’s qualitative picture can be understood based on the formation of

Landau levels (LLs) near the Fermi energy. LLs are equally spaced discrete

energy levels that are formed due to the presence of a magnetic field and are

reviewed in appendix A. Here we describe the qualitative picture of QO for

a two dimensional free electron system where LLs are formed near the Fermi

energy. A more precise derivation of the quantum oscillations can be found in

the book by Shoenberg (1984).

As the magnetic field increases, the LL spacing ~ωc increases and, as

a result, LLs pass through the Fermi energy. Suppose, for a certain magnetic

field, one LL lies exactly on top of the Fermi energy. Then one can write

εF = (n + 1/2)~ωc where n is an integer counting the number of LLs from

zero to εF . Once the magnetic field increases, the LL moves away from the

Fermi energy. However, for some other magnetic field, another consecutive

LL will again be at the Fermi energy so that εF = (n − 1/2)~ωc. It follows

that ∆(εF/~ωc) = 1. Using the relations εF = ~2A
2πm

and ~ωc = ~eH
mc

for two

dimensional electrons, we obtain Onsager’s relation,

∆(
1

H
) =

2πe

~c
1

A
. (1.5)

Thus the frequency of oscillations in 1/H is given by F = (c~/2πe)A. Note

that the periodic behavior of LLs going through the Fermi energy corresponds
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to oscillations in the magnitude of the DOS at the Fermi energy. This quantity

couples directly to other physical quantities and hence gives rise to periodic

oscillations in those other properties. The oscillatory behavior in the mag-

netization is called the de Haas-van Alphen (dHvA) effect in honor of its

discoverers. Quantum oscillations can also be seen in the field dependence of

the specific heat, electrical resistivity and mechanical properties. In the case

of electrical resistivity, the phenomenon is called the Shubnikov-de Haas effect.

A more rigorous derivation of the Onsager’s relation for each property

starts by writing the free energy as follows:

Ω = −kBT
∑

i

ln[1− exp(−β(εi − µ)] (1.6)

where the sum is over all possible states with energy εF . Consequently one

can find each property such as the specific heat, magnetization, etc., by taking

one or more partial derivative of the free energy. The resulting formula is

the so-called Lifshitz-Kosevich (LK) formula (Lifshitz and Kosevich, 1955).

Experimental data is fit to the LK formula to find the area and effective mass

associated with QO.

Quantum oscillations in the underdoped cuprates were first observed in

the electrical resistivity of YBCO in 2007 (Doiron-Leyraud et al., 2007). Since

2007, quantum oscillations have been observed in other physical properties

and are now a well-established phenomenon in the cuprates (Jaudet et al.,

2008; Riggs et al., 2011; Bangura et al., 2008; Yelland et al., 2008; Audouard

et al., 2009; Sebastian et al., 2008; Singleton et al., 2010; Rourke et al., 2010;

Yao et al., 2011). It is indicative of the existence of a Fermi surface in the

normal state of the underdoped cuprates. Here the term “normal state” is
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ambiguous because the measurements are performed in a resistive state where

the superconducting pairing potential can still be present. In other words,

because the magnetic field is below Hc2, the sample can be in a vortex liquid

state which gives rise to finite resistivity. Consequently, the observation of

QO has shifted the focus away from RVB, etc, toward broken symmetry Fermi

liquid states. Nevertheless, the result of QO experiments is also interesting.

The FS area is only about 2% of the Brillouin zone (BZ), which is significantly

smaller than the area one would expect from paramagnetic band structure

calculations (Andersen et al., 1995). Also the Hall resistivity measurements

have determined the FS to be an electron pocket (Leboeuf et al., 2007) which is

unexpected for a hole-doped cuprate. In contrast, the FS area associated with

QO in the overdoped cuprates is a large FS consistent with the hole doping

(Vignolle et al., 2008). So the following immediate questions arise: Is the QO

a characteristic of the normal state in the underdoped cuprates? Why does it

occur and why is it so dramatically different from the overdoped cuprates?

There have been different proposals to explain quantum oscillations

in the cuprates (Pereg-Barnea et al., 2009; Elfimov et al., 2008; Alexandrov,

2008). A FS reconstruction approach due to some form of translational sym-

metry breaking order is the most promising approach (Brown and Gruner,

1994; Borisenko et al., 2008). Translational symmetry can break due to dif-

ferent reasons, for example antiferromagnetism or the stripe order that comes

in the the form of density waves in the cuprates. Providing an alternative

explanation for QO in the cuprates based a model of a superconductor with

stripe order is the main focus of this thesis.
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1.4 Summary and Overview

A quarter of century after the discovery of the first high-Tc superconductor,

the mechanism responsible for the phenomenon is not established. The un-

derstanding of the normal state from which the superconductivity arises is a

crucial step to understanding the cuprate superconductivity. In principle, one

expects to go from the superconducting state to the normal state by either

raising the temperature or the magnetic field. As discussed earlier, the phys-

ical behavior at higher temperatures is non-Fermi-liquid-like. However, the

state obtained from destroying superconductivity by a magnetic field behaves

like a Fermi liquid. This is mainly based on the observation of quantum os-

cillations in cuprates. Furthermore, it is not straightforward to connect the

FS areas determined by quantum oscillations with the Fermi arc observed in

ARPES (Onsager, 1952). However it has been noted that commensurate static

translational symmetry breaking, due to charge or spin density waves, could

reorganize the large hole FS of the undistorted lattice into a number of smaller

hole and electron pockets and that the small electron pockets could account

for the quantum oscillations (Millis and Norman, 2007; Harrison, 2009). The

explanation for the arcs is then that the spectral weight due to the periodic

perturbation of the CDW or SDW is large on the arcs that are observed by

ARPES and small on the remainder of the FS hole pockets.

In this thesis, we consider a variation of this picture in which the peri-

odic superlattice arises from a modulation of the d-wave superconducting gap

function (Berg et al., 2007, 2009; Baruch and Orgad, 2008). We study such

a modulated pairing potential in the presence of large magnetic fields using

lattice Bogoliubov-de Gennes (BdG) theory (de Gennes, 1989) to determine
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whether it gives rise to quantum oscillations. The remainder of this thesis

is organized as follows. In chapter 2, we describe the model for a π-striped

superconductor. This section shows the density of states (DOS), the spectral

functions and the FS in zero field for different gap amplitudes for this model.

In chapter 3, we establish the formation of Landau levels by a magnetic field

and examine the effect of the doping the gap amplitude on the Landau level

spectra. In addition, the specific heat is calculated to make some connection

to experiment. In chapter 4, we provide the justification for a semiclassical

approximation which enables us to calculate the area associated with quantum

oscillations. Consequently, a consistent picture of quantum oscillations in a

π-striped superconductor corresponding to different FS areas was obtained.

The quantum oscillations in this chapter are all found within the context of

the semicalssical approximation and still need to be proved rigorously. Finally,

we summarize this thesis and provide an outlook in chapter 5.



Chapter 2
A π-striped Superconductor

2.1 Introduction

The interplay between magnetism and superconductivity is an essential feature

of the high Tc cuprates. The transition from an antiferromagnetic state at half-

filling to a superconducting state at finite doping is key to understanding of

these materials. To examine the nature of this transition, one needs to address

the region in the phase diagram at low temperature that includes the end of

the antiferromagnetic region and the beginning of the superconducting dome.

This is illustrated by the region inside the thin line in Fig. 1.2. In this region,

there are evidence for spin glass (Matsuda et al., 2002) behavior and stripe

order (Tranquada et al., 1995; Fujita et al., 2004; Abbamonte et al., 2005).

Stripes, which are the focus of this thesis, are not only limited to this part of

the phase diagram and can exist at higher dopings as well.

Stripes is the term describing unidirectional density waves. Stripes are

associated with either a periodic modulation of the charge density, charge den-

sity waves (CDW), or spin density waves (SDW). The stripe state is mainly
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observed in lanthanum cuprates such as La2−xBaxCuO4 and La2−xSrxCuO4.

In this family of cuprates, the stripe order is most stable at 1/8 doping and

is known to coincide with a CDW with the periodicity of 4 lattice constants.

Stripes are believed to be the reason for the so-called “1/8 anomaly” phe-

nomenon in which most lanthanum cuprates exhibit singular behavior in the

doping dependence of various low-temperature properties around 1/8 doping.

The deep minimum in Tc is one of the several anomalies that have been ob-

served in lanthanum cuprates at 1/8 doping. One more example of the 1/8

anomaly is the visible minimum in the superfluid density ns(x) as function

of the hole doping x at 1/8 doping (Berg et al., 2003). The evidence for the

existence of stripes in other cuprates is less compelling. However, studies have

shown that stripes can be induced by a magnetic field in YBCO, a cuprate

with minimal chemical disorder (Wu et al., 2011; Haug et al., 2009). Stripes

can be either static or dynamic. Static stripes have been observed only in cer-

tain particular compounds. However, there are signatures of dynamic stripe

order in the cuprates (Xu et al., 2007).

Whether the stripe state competes or coexists with superconductivity

is not well understood. The fact that Tc for some cuprates drops at 1/8

doping points to the competing nature of stripe and superconducting order.

However, some experimental studies argue that the two states coexist (Howald

et al., 2003; Hücker et al., 2011; Tranquada et al., 2008). Nevertheless, there

is evidence that a two-dimensional-type superconductivity arises within the

cuprate layers which is in direct relation to the appearance of the stripe order in

1/8 doped La2−xBaxCuO4 (Li et al., 2007). Meanwhile, an apparent dynamical

decoupling of the cuprate layers is observed which results in zero Josephson

coupling between nearest cuprate layers. This dynamical decoupling is also



17

reported in studies where a magnetic field is used to induce stripes (Schafgans

et al., 2010; Wu et al., 2011).

To explain the phenomenon of two-dimensional superconductivity in

the stripe-friendly cuprates, a proposal for a new state of matter was put

forward by Berg et al (Berg et al., 2007, 2009), the so-called Pair Density

Wave (PWD). In a PWD, superconductivity does not compete nor coexist

with CDW and SDW, but it is intertwined with these density waves. The

order parameter for this state describes a paired state with non-zero wave

vector, ~q, and breaks the translational symmetry of the underlying lattice.

This is in contrast to more conventional s-wave or d-wave superconductors in

which the pairing is spatially uniform and consequently the paired state has

a net zero momentum. In (Berg et al., 2007), the authors also speculate that

the pseudogap state of cuprates might be associated with a fluctuating PDW

state.

The PDW state is a promising candidate for explaining some of the

properties of the underdoped cuprates. In this thesis, we will focus on a

unidirectional PDW where the translational symmetry is broken only in one

direction. We refer to this case as a π-striped superconductor. Here π denotes

the anti-phase nature of modulations in the superconducting order parameter.

The rest of this chapter1 is organized as follows: in the next section, we intro-

duce a mean field Hamiltonian associated with the π-striped superconducting

model. Next, the method we use to find the DOS and spectral properties

of this model at zero magnetic field is described. Finally, we will report the

calculated properties of the model. This chapter provides some of the back-

1The results presented in this chapter are published in Physical Review B (Zelli et al.,
2011)
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ground information that one needs to understand the subsequent chapters of

this thesis.

2.2 The Model and Method

The two-dimensional tight-binding model for a superconductor with nearest

neighbor singlet pairing is described by the following mean-field Hamiltonian

(Baruch and Orgad, 2008)

H = H0 +
∑

i,δ

{∆iδ[c
†
i↑c

†
i+δ↓ − c†i↓c

†
i+δ↑] +H.C.} (2.1)

where c†iσ (ciσ) creates (annihilates) an electron with spin σ on site i and

∆iδ is the pairing potential associated with the link between nearest neighbor

sites, i and i+ δ. The first term of the Hamiltonian is the kinetic part of the

Hamiltonian, denoted by H0, and is given by

H0 = −
∑

i,δ,σ

tc†iσci+δ,σ −
∑

i,δ′ ,σ

t2c
†
iσci+δ′ ,σ −

∑
i,σ

µc†iσci,σ (2.2)

where δ and δ
′
are assumed over 4 nearest and second nearest neighbor sites, t

(t2) is the nearest (second nearest) neighbor hopping energy and the chemical

potential is denoted by µ. In this thesis, the hopping energies are treated

as constants and can be taken out of the summation. H0 has the dispersion

ε0 = −2t(cos(kx)+cos(ky))−4t2 cos(kx) cos(ky)−µ in k space. For simplicity,

we set t2 = 0 for most of this thesis unless otherwise stated.

In the pairing part of the Hamiltonian, ∆iδ is the order parameter which

specifies the pairing on nearest neighbor bonds in real space. The Hamiltonian
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describes a uniform d-wave superconductor if ∆iδ = ∆ for δ = ±x̂ and ∆iδ =

−∆ for δ = ±ŷ. The most essential feature of a d-wave superconductor is its

nodal behavior where the low-energy DOS vanishes linearly with energy. This

was briefly discussed in chapter 1.

For a model of a π-striped superconductor, the pairing interaction is

modulated in the x direction and is given by





∆iδ = ∆ cos(qx(x− 1/2± 1/2)) if δ = ±x̂
∆iδ = −∆ cos(qx(x− 1/2)) if δ = ±ŷ.

(2.3)

The superconducting condensate for the proposed model occurs at a nonzero

wave vector. By setting qx = π/4, the Hamiltonian describes a system with

a d-wave-type order parameter that has a sinusoidal modulation with 8-site

periodicity in the x direction. The presence of a modulated gap with wavevec-

tor 2π/8 will induce a charge modulation of twice this wavevector since the

charge density is sensitive to the gap magnitude, but not to the sign. This 4

lattice constant periodicity for the charge stripe structure is consistent with

the experimental measurements. Due to the periodic modulation of the order

parameter, a particle with wave vector ~k is coupled to ones with wave vectors

−~k±~qx. We shall see that this property of a striped superconductor has crucial

effects on its low-energy properties.

There are two possible stable configurations for the order parameter of

the π-striped superconducting model. One configuration is the site-centered

configuration in which the node of the modulation lies on a site. The other

one is the bond-centered configuration in which the node lies on a bond. The

calculations in this work are done for the latter configuration which is shown
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Figure 2.1 Position dependence of the pairing gap for the bond-centered con-
figuration using color coding on bonds. The lower part of the figure shows the
varying gap amplitude as a function of x.

in Fig. 2.1. However, the qualitative behavior of the system in the presence

of a magnetic field is similar for the site-centered case.

Now, we derive how particles are coupled in k-space for a π-striped

superconductor. We start with the interaction part of the Hamilton for a π-

striped superconductor with the bond-centered configuration. For simplicity,

we use a notation for the creation and annihilation operators that specifies the

coordinates of the site they operate on and write

H ′ =
∑
x,y

∆{cos(qxx)[c
†
x,y↑c

†
x+1,y↓ + c†x+1,y↑c

†
x,y↓] (2.4)

− cos(qx(x− 1/2))[c†x,y↑c
†
x,y+1↓ + c†x,y+1↑c

†
x,y↓] +H.C.}.

Substituting cx,yσ = 1√
N

∑
k e

i(kxx+kyy)ckσ where σ is the spin sign, we have

H ′ =
1

N

∑

kk′

∑
x,y

∆

2
{((eiqxx + e−iqxx)(eik′x + eikx)ei(kxx+kyy)ei(k′xx+k′yy)c†k↑c

†
k′↓

(2.5)

−(eiqx(x−1/2) + e−iqx(x−1/2))(eik′y + eiky)ei(kxx+kyy)ei(k′xx+k′yy)c†k↑c
†
k′↓ +H.C.}
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Performing the summation over position yields

H ′ =
∑

k

∆

2
{[(e−i(kx+qx) + eikx)− e−iqx/2(e−iky + eiky)]c†k↑c

†
−k−qx↓ (2.6)

+[(e−i(kx−qx) + eikx)− eiqx/2(e−iky + eiky)]c†k↑c
†
−k+qx↓ +H.C.}.

Simplifying the above expression, we get

H ′ =
∑

k

∆{e−iqx/2[cos(kx + qx/2)− cos(ky)]c
†
k↑c

†
−k−qx↓ (2.7)

+eiqx/2[cos(kx − qx/2)− cos(ky)]c
†
k↑c

†
−k+qx↓ +H.C.}.

Eq. (2.7), the pairing part of the mean-field Hamiltonian in k-space, shows

that, for qx = π/4, each wave vector k is only coupled to 7 other wave vectors.

2.3 Bogoliubov-de Gennes Mean Field Theory

In this section, we describe how to solve the Hamiltonian of Eq. (2.1). To do

so, we use the Bogoliubov transformation to write the annihilation operators

as

ci↑ =
∑

n

un(i)γn↑ − vn(i)∗γ†n↓ (2.8)

ci↓ =
∑

n

un(i)γn↓ + vn(i)∗γ†n↑ (2.9)

where γ†nσ and γnσ are quasiparticle operators that obey fermionic anti-commutation

relations. The idea of the unitary transformation is to cast Eq. (2.1) in the
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form

H =
∑
nσ

εnγ
†
nσγnσ + E0, (2.10)

where E0 is the ground state energy and εn is the energy of the n-th quasiparti-

cle excitation. This implies that γ†nσ is an operator that creates a quasiparticle

with energy εn and spin σ. In order to satisfy Eq. (2.10), the space dependent

functions u and v in 2.8 and 2.9 must satisfy the so-called BdG equations given

by

εnun(i) = −t
∑

δ

un(i+ δ)− µun(i) +
∑

δ

∆iδvn(i+ δ), (2.11)

εnvn(i) = t
∑

δ

vn(i+ δ) + µvn(i) +
∑

δ

∆∗
iδun(i+ δ). (2.12)

These can be expressed in short by the following eigenvalue equation

HBdG



un

vn


 =



ĥ ∆̂

∆̂∗ −ĥ∗






un

vn


 = εn



un

vn


 . (2.13)

where HBdG is a Hermitian operator and is called the BdG Hamiltonian. Ac-

cording to 2.11 and 2.12, ĥ and ∆̂ operators are given by

ĥ = −t
∑

δ

ŝδ − µ (2.14)

∆̂ =
∑

δ

∆iδŝδ (2.15)

where ŝδ is defined as the operator, ŝδu(r) = u(r + δ). One important prop-

erty of the BdG Hamiltonian is that, if
(

un

vn

)
is an eigenfunction of HBdG with



23

eigenvalue εn, then
(−v∗n

u∗n

)
is also an eigenfunction of the Hamiltonian with

eigenvalue −εn. So we only need to use the positive energy solutions in calcu-

lation of various physical properties such as DOS.

2.3.1 Translational Symmetry and Bloch Theorem

Performing numerical calculations, one is limited by computational facilities

such as speed and memory. From a computational physicist’s point of view,

diagonalizing large matrices is perhaps the most computationally challenging

task. This is because the time it takes to diagonalize a matrix goes approxi-

mately as the third power of the linear size of the matrix. Hence, to deal with

large systems, one often use approximating methods such as Monte Carlo sim-

ulations. In this thesis, we solve our model by an exact diagonalization of

the Hamiltonian which is possible only because of the translational symmetry

in our model. Due to this property, we block diagonalize the Hamiltonian to

greatly reduce the computational time. The translational symmetry is math-

ematically expressed as

[H, T̂~R] = 0 (2.16)

where T̂ †~R = eip̂·~R/~ is the translation operator. From the commutation relation,

when T̂~R operates on an eigenfunction of the Hamiltonian ψ, it gives

T̂ †~Rψk(r) = ψk(r + ~R) = eik·~Rψk(r), (2.17)

where ~k is an index called the Bloch wave vector. Equation (2.17) is Bloch’s

theorem and states that the an eigenfunction of a Hamiltonian gains a phase
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factor when it is shifted by ~R provided that the operator T̂~R leaves the Hamil-

tonian invariant.

Figure 2.2 A two dimensional system with periodic boundary conditions having
a square unit cell of linear size l. The red and blue dots denote the presence of
an arbitrary intracell potential inside each unit cell but the same for all unit
cells.

What does the Bloch theorem mean for our tight-binding calculations?

Assume we have a system with linear size W , so that there are W 2 sites in

the system. For simplicity, we assume square unit cells with linear size l as

shown in Fig. 2.2 and apply periodic boundary conditions to the system. We

have Bloch wavevectors, ~k, given by kx = 2πl
W
m and ky = 2πl

W
n where m and n

are integers ranging from zero to W
l
− 1. The total number of wavevectors is

M2 = (W
l
)2.

Next we write down the interactions for a reference unit cell and one

of the Bloch wavevectors. When writing the inter-unit-cell interactions, we

use the Bloch theorem so that the wave function outside the reference unit

cell can be shifted back to the the reference unit cell by providing it with the

corresponding Bloch phase. One can think of this approach block-diagonalizing

the big matrix with linear size W to M2 smaller matrices with linear size l.
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If the Hamiltonian contains pairing interactions, then one needs to solve

the BdG Hamiltonian of type (2.13). This means that, for a system with linear

size W and unit cells with linear size l, we need to diagonalize M2 matrices

with linear size 2l. The wave function can be written as



un(i+ ~R)

vn(i+ ~R)


 = ei~k·~R



un(i)

vn(i)


 (2.18)

Then, as described above, ĥ and ∆̂ operators are only defined for the sites

inside the reference unit cell. For each Bloch wavevector, k, when ŝδ in ĥ and

∆̂ takes the operand outside the unit cell, then the operator ŝδ in 2.14 and

2.15 needs to be replaced by





eikx ŝδ−lx̂ if δ = x̂

e−ikx ŝδ+lx̂ if δ = −x̂
eiky ŝδ−lŷ if δ = ŷ

e−iky ŝδ+lŷ if δ = −ŷ.

(2.19)

These conditions make sure that we only need the wave function within the

unit cell to perform our calculation for each Bloch state k.

2.4 Density of States and Spectral Function

In principle, within the mean field approach, one can calculate the various

properties of a superconducting system using the solutions to the BdG Hamil-

tonian. Two properties that are often calculated are the density of states and

the spectral weight function. Both properties are defined based on the Green’s
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function (Takigawa et al., 2002). The local density of states is given by

D(i, ε) = 2

(Ml)2∑
n=1

[|un(i)|2δ(ε− εn) + |vn(i)|2δ(ε+ εn)] (2.20)

where l2 is the number of sites in one unit cell and M2 is the number of unit

cells. Note that i’s here can be any site in the entire system and εn’s are

restricted to the positive-energy solutions of the BdG Hamiltonian. Due to

translational symmetry, the local density of states is the same for translation-

ally equivalent sites in all unit cells.

The spectral weight function in the extended Brillouin zone (BZ) is

given by

A(k, ε) =
2

(Ml)2

(Ml)2∑
n=1

[|un(k)|2δ(ε− εn) + |vn(k)|2δ(ε+ εn)] (2.21)

where un(k) (vn(k)) is the Fourier transform of un(i) (vn(i)) (Garg, 2006).

The k’s are the wavevectors in an extended BZ and differ from the Bloch

wavevector in the previous section, which are the wavevectors in the reduced

BZ. For a π-striped superconductor, to go to the reduced BZ scheme, one sums

A(k, ε) over the eight coupled k in the extended BZ that can be folded back

to one point in the reduced BZ.

The DOS as a function of energy can be obtained from the position

average of the local density of states or the wave vector average of the spectral

weight function.
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Figure 2.3 DOS of a π-striped superconductor for various values of the pairing
gap amplitude. The second nearest neighbor hopping for this DOS calculation
is set to zero and the chemical potential µ is adjusted to yield 1/8 doping here
and in the following figures unless another value is explicitly stated. Note the
finite DOS at zero energy and the complex structure which arises from band
folding associated with the strength of the periodic interaction as discussed in
the text.

2.5 Results

We solve the Hamiltonian of Eq. (2.1) for a π-striped superconductor in zero

magnetic field by diagonalizing the BdG Hamiltonian (2.13) (de Gennes, 1989).

The order parameter for a π-striped superconductor is given in Eq. (2.3). The

DOS of a homogeneous d-wave superconductor vanishes linearly at E = 0.

In contrast, a π-striped superconductor has a non-zero DOS at zero energy

(Baruch and Orgad, 2008). The low-energy dependence of the DOS for various

values of the pairing gap amplitude, ∆, is shown in Fig. 2.3. All the energies

are written in units of the nearest neighbor hopping t which is set to 1. The

chemical potential, µ, here and for the remainder of this thesis is adjusted to

yield 1/8 doping unless another value is explicitly stated.

It is useful to compare and contrast the ∆ dependence of the DOS

shown in Fig. 2.3 to that of the one-electron spectral weight shown in Fig.
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Figure 2.4 The spectral weight (left) and FS (right) for four values of the
pairing gap ∆ a) 0.05, b) 0.1, c) 0.2 and d) 0.4 in half of the extended BZ.
The colorbar applies only to the spectral weight.

2.4. For small ∆, small gaps open in the unperturbed FS segments that can

be connected by qx as shown in Fig. 2.4(a). Consequently the DOS at zero

energy does not change significantly with respect to the unperturbed case. For

values of ∆ in the approximate range 0.07 . ∆ . 0.13, the pairing gap has

become strong enough to create two sets of closed loops as can be seen in Fig.

2.4(b) for ∆ = 0.1. The Fermi velocity associated with these loops is small and

consequently they contribute considerably to the DOS at zero energy. This is

why there is a peak in the DOS for ∆ = 0.1. For intermediate values of ∆, in
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the approximate range (0.14 . ∆ . 0.25), the loops are gapped out and the

peak disappears. In this range, the spectral weight exhibits Fermi arcs with

two very small gaps. This is shown in Fig. 2.4(c). For even larger ∆, the gaps

within the Fermi-arc-shaped spectral weight become larger and the shape of

the FS in the repeated BZ scheme appears as figure-8-shaped loops as shown

in Fig. 2.4(d) for ∆ = 0.4.

Figure 2.5 The momentum occupation function for ∆ = 0.02 and µ = −0.23
corresponding to 1/8 doping.

In Fig. 2.5, we show the momentum occupation function for ∆ = 0.02

at 1/8 doping. The function is defined as

n(k) =

∫ 0

−∞
A(k, ε) (2.22)

where A(k, ε) is the spectral function of Eq. (2.21). It shows the occupation of

the states in the quadrant of the extended BZ at zero temperature. The mo-

mentum occupation function is the same as that of the ∆ = 0 case except near

the gaps. Note that there are four gaps in the original FS for the parameters

used and only one gap is shown in the quadrant of the BZ. The u’s and the
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Figure 2.6 The momentum occupation function for ∆ = 0.1 and µ = −0.25
corresponding to 1/8 doping.

v’s, the Bogoliubov quasiparticle amplitudes, jump sharply on crossing the FS

as they do for a normal metal, rather than varying smoothly as they do near

the gapped regions of a d-wave superconductor. In that sense, most of the FS

acts like a metallic FS.

Figure 2.7 The momentum occupation function for ∆ = 0.2 and µ = −0.3
corresponding to 1/8 doping.

Fig. 2.6 shows the momentum occupation function for ∆ = 0.1 at 1/8
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Figure 2.8 The momentum occupation function for ∆ = 0.4 and µ = −0.36
corresponding to 1/8 doping.

doping. It is apparent that the u’s and the v’s are mixed near the anti nodal

points but still rather metallic near the center of the Fermi arcs. In fact this

is the case for even larger ∆ as shown in Fig. 2.7 for ∆ = 0.2. As ∆ increases,

the part of the FS where the u’s and v’s are essentially 0 or 1 at T = 0 shrinks.

This is illustrated in Fig. 2.8 for ∆ = 0.4.

2.6 Periodic Andreev state

Figure 2.9 High (red stripe) and low (blue stripe) density structure of the low-
energy particles relative to the modulated d-wave gap. High (low) density is
indicated by a red (blue) stripe.

In this section, a type of Andreev state that is seen for the low-energy

particles (holes) in the absence of a magnetic field and persists in the presence
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of a magnetic field is discussed. We have already examined how the spectral

weight of the low-energy states of a π-striped superconductor changes as the

pairing amplitude ∆ is varied. We can also look at the real space represen-

tation of these states. Our main finding is that, for intermediate values of

∆ where the shape of Fermi arc is assumed in the spectral function (see Fig.

2.4), the real space representation of the low-energy states exhibits a periodic

stripe structure with the periodicity of four lattice sites. The stripe structure

corresponds to higher and lower density of low-energy electrons and holes.

Each stripe has a width of two lattice constants and the higher density stripes

are located exactly where the order parameter is minimum as shown in Fig.

2.9. The density ratio of the higher density stripes to the lower density ones

increases as ∆ increases. The ratio is approximately 1.5 for ∆ = 0.2 and 2 for

∆ = 0.4. This stripe structure occurs not only at the Fermi energy, but also

near the Fermi energy.

The origin of these stripes is simple. They are formed due to the con-

structive interference of the low-energy electron (hole) waves with their doubly

Andreev scattered counterparts. Since the probability of being Andreev scat-

tered twice increases with ∆, the density difference between higher and lower

density stripes increases accordingly. One can think of the stripe structure as a

periodic Andreev state. For a wave vector at the end-points of the Fermi arcs,

the doubly scattered wave vector is also located at the end-point of another

Fermi arc. This means that the weights of both interfering waves are large

and as a result they contribute considerably to the formation of the stripe

structure. Moving toward the center of the Fermi arc, the coupling interaction

decreases and the periodic Andreev structure is less likely to be formed. This

is why, as mentioned in the paper by Baruch and Orgad (2008), the stripe
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structure is mainly due to states near the end-points of the Fermi arcs.



Chapter 3
The Mixed State of a π-striped

Superconductor

3.1 Introduction

In Chapter 1, we discussed the result of quantum oscillation experiments on

the cuprates. We noted that the QO area is only about 2% of the BZ, much

smaller than what one expected. In addition, the existence of FS pockets that

presumably gives rise to quantum oscillations (QO) is not consistent with the

Fermi arcs observed in ARPES. There have been different proposals to explain

these key results of QO in the cuprates (Pereg-Barnea et al., 2009; Elfimov

et al., 2008; Alexandrov, 2008). Among them, studies based on Fermi surface

(FS) reconstruction approach are the most promising. In general, the FS of

the undistorted lattice can be reconstructed into a number of smaller hole

and electron pockets due to the breaking of translational symmetry. Interest-

ingly, in a recent study, QO are reported to be the strongest at 1/8 doping

which suggests that the breakdown of translational symmetry due to stripes



35

is responsible for the phenomenon (Laliberte et al., 2011). Theoretically, both

charge and spin density waves result in small electron pockets and could ac-

count for the quantum oscillations (Millis and Norman, 2007; Harrison, 2009;

Yao et al., 2011). However, the essential problem with both approaches is

that they result in multiple pockets, whereas in most measurements only a

single frequency has been observed. Moreover, the electron pockets found by

these studies are located in antionodal parts of the BZ where ARPES sees

large gaps. This means that the problem of reconciling the ARPES and QO

experiments still exists.

In addition, thermodynamic measurement of YBCO shows that the
√
H

trend in the magnetic field dependence of the specific heat persists through

the resistive transition (Riggs et al., 2011). The
√
H dependence, which is

consistent with a nodal FS, suggests that a fully developed d-wave pairing is

still present after the resistive transition (Volovik, 1993). In the same study,

it has been argued that these FS reconstruction approaches produce a specific

heat that is too large to be consistent with experimental values (Riggs et al.,

2011).

In this thesis, we use a variation of the previous FS reconstruction

studies to explain QO in the cuprates. The idea is to investigate whether a

π-striped superconductor, that is conjectured to be stable at strong enough

fields, could give rise to QO. This approach is different from previous FS

reconstruction studies in which the resistive state of the cuprate are treated

like a metal with no pairing potential present. It is the aim of this chapter1 to

calculate the low-energy DOS of a π-striped superconductor in the presence

1The results presented in this chapter are published in Physical Review B (Zelli et al.,
2011)
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of a magnetic field and see whether Landau levels are formed near the Fermi

energy for this model.

Figure 3.1 Position dependence of the pairing gap for the bond-centered con-
figuration using color coding on bonds. The circles in the middle of plaquettes
specify the positions of vortices for a l = 8 magnetic field unit cell whose
boundary is shown by the dashed line. In the singular gauge, the vortices at
white (dark) circles are only seen by particles (holes). The lower part of the
figure shows the varying gap amplitude as a function of x.

3.2 A π-striped Superconductor in a Magnetic

field

In chapter 2, we discussed the DOS and spectral weight properties of the π-

striped superconductor at zero magnetic field. In this section, we will examine

the structure of the DOS in the presence of a magnetic field. The magnetic

field is incorporated into the model using the Franz-Tesanovic singular gauge

transformation (Franz and Tešanović, 2000; Vafek et al., 2001). This gauge

transformation is discussed in appendix B. In this approach, one needs to
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introduce magnetic unit cells that have two vortices each; one is seen only by

particles and the other seen only by holes. In our case, we work with square

magnetic unit cells with linear size l, where l is measured in units of the lattice

constant. The magnetic field is inversely proportional to the area of the unit

cell and is given by B = φ0/l
2 where φ0 is the flux quantum. For example,

taking the lattice constant a = 3.8Å, l = 32 corresponds to B = 28 T. We

position the vortices at the nodes of the order parameter, as shown in Fig. 3.1

for the case of l = 8. Because of the 8-site periodicity of the pairing potential

in our model, l is taken to be an integer multiple of 8. This implies that only

discrete values of the magnetic field are accessible when using the method

described above.

Figure 3.2 Low-energy DOS of a π-striped superconductor with ∆ = 0.01t
and µ = −0.226 in the presence of magnetic fields of l = 24 (top) and l = 32
(bottom).

In this section, we investigate how the DOS structure of the model

changes as a function of the pairing amplitude ∆ in the presence of a magnetic
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field. First, we consider small values of ∆ where one can expect to understand

the effect of the interaction based on a simple perturbative picture. For ∆ =

0.01, the spectral weight in the absence of a magnetic field exhibits only small

gaps at four points of the unperturbed FS. It is similar to Fig. 2.4(a) except

that the gaps are smaller.

The low-energy DOS structures for ∆ = 0.01 and two magnetic fields

of l = 32 and l = 24 are shown in Fig. 3.2. The most striking feature of this

figure is the appearance of Landau levels that are equally spaced in energy

with the spacing proportional to B. Furthermore, the presence of a small

perturbative interaction, ∆, causes the low-energy Landau levels to be slightly

broadened and also partially reflected to the other side of the Fermi energy due

to particle-hole scattering. In fact, each Landau level for ∆ = 0 is split into

two peaks (at E and −E) with the second peak having much smaller weight

for small ∆, as seen in Fig. 3.2. The sum of the number of states in these two

peaks equals the degeneracy of a Landau level.

From a semiclassical point of view, particles can keep undergoing Lar-

mor precession by tunnelling through the gaps since the gaps are small for

∆ = 0.01. This is the so-called magnetic breakdown phenomenon (Shoen-

berg, 1984). A particle can also be Andreev scattered as a hole into a state

of −~k ± ~q. This process explains the reflected part of each Landau level with

smaller weight in Fig. 3.2. This picture is motivated by the work of Pip-

pard,(Pippard, 1962) who studied the cyclotron motion of nearly free electrons

in the presence of a weak periodic potential that induces gaps in the Fermi

surface. For this case, when the periodic potential is weak, electrons can tun-

nel through the gaps, following the unperturbed FS trajectory, or they may

be Bragg scattered onto a different cyclotron orbit leading to broadening. The
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main difference between Pippard’s model and the π-striped superconducting

model is that the superconducting periodic potential scatters electrons with

wave vector −~k into holes with wave vector −~k± ~q and vice versa. Thus elec-

trons either tunnel through gaps induced by the periodic potential or scatter

into hole states. Note that magnetic breakdown occurs even if the magnitude

of the gap in the FS is larger than ~ωc (Shoenberg, 1984). We will discuss this

picture in more detail in chapter 4.

For small to intermediate values of ∆ (0.07 . ∆ . 0.13), for which the

FS has well-separated segments (see Fig. 2.4(b)), we do not observe clearly

defined Landau levels. This may be the result of broadening and the close

spacing of Landau levels due to the large density of states. Furthermore,

multiple Fermi surfaces may each give rise to their own sets of Landau levels

which are unresolved.
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Figure 3.3 DOS for ∆ = 0.25 and magnetic field of l = 32 shown as a function
of positive and negative energies separately. The band structure spans energies
from −4 − µ to 4 − µ. However, the DOS is only shown in the −1 < E < 1
range.

For intermediate values of ∆ (0.14 . ∆ . 0.3), the shape of the FS

is simpler. In this range, the spectral function has significant weight on the

parts of the FS that resemble the Fermi arcs observed in ARPES experiments.
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Figure 3.4 Low-energy DOS for ∆ = 0.25 and magnetic fields of l = 40 (top)
and l = 32 (bottom).

The DOS for ∆ = 0.25 and l = 32 is shown in Fig. 3.3 for positive and neg-

ative energies up to E = 1 separately. Remarkably, we again observe periodic

behavior of the low-energy DOS as a function of E with a spacing that varies

linearly with B. This is illustrated in Fig. 3.4 for ∆ = 0.25 and two values

of the magnetic field, l = 40 and l = 32. Note the splitting of each Landau

level into a strong and weak peak seen for small ∆, Fig. 3.2, does not occur

in this larger ∆ range, where the original large FS is not accessible to the

quasiparticles.

In Fig. 3.4, the DOS has a minimum, or possibly a very small gap, at

E = 0 for l = 40. However, for l = 32 it appears that the two Landau levels

closest to E = 0 are joined together and the DOS at E = 0 has a nonzero

value. In general, we find that, for l = 8m where m is an integer, if m is even,

the DOS at E = 0 is nonzero and if m is odd, the DOS is zero at E = 0. This

is a commensurability effect due to the ordered vortex lattice that results in

oscillation of the DOS at E = 0 as a function of l or 1/
√
B and is discussed

further in Sec. 3.4.

The number of states in each peak in Fig. 3.4 is nearly the same as
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Figure 3.5 Low energy Landau level spacing as a function of 1/l2 for ∆ = 0.25
and µ = −0.3. The spacing is defined as E(N)/N where E(N) is the minimum
in the DOS between the N -th and N + 1-th Landau levels and is shown for
N = 2 (triangle) and N = 10 (circle). The line is a linear fit to the data that
goes through the origin.

that of a Landau level. In general, in the presence of a magnetic field, the n-th

peak on the E < side of E = 0 can have a degeneracy slightly different from a

Landau level degeneracy. However, the n-th peak on the E > side compensates

so that the number of states of the two peaks together is always twice that of

a Landau level. This shows that the Landau levels are a coherent mixture of

particles and holes together and the particle-hole scattering is playing a role

in the formation of the Landau levels. The reason for the small difference of

the number of states in each peak from the exact degeneracy of a Landau level

is that the low-energy DOS in the absence of a magnetic field is asymmetric

around E = 0 except at half filling, as shown in Fig. 3.6.

We have calculated the spacing of the low energy Landau levels for a

wide range of fields for ∆ = 0.25 and µ = −0.3 as shown in Fig. 3.5. The LL

spacing can be defined as E(N)/N where E(N) is the minimum in the DOS

between the N -th and N + 1-th Landau levels (counting from E = 0) and is

essentially independent of N provided E(N) . 0.5∆. Fig. 3.5 demonstrates
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the spacing as a function of 1/l2 ∝ B for N = 2 and N = 10. The slope of the

Landau level spacing versus B is inversely proportional to the DOS at E = 0.

By comparison, we find that the slope is about half as large and the DOS at

E = 0 about twice as large for ∆ = 0.
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Figure 3.6 The DOS structure in the absence of a magnetic field for ∆ = 0.25
and two dopings. Note the asymmetry at low E for 1/8 doping.

It is worth contrasting the behavior of the π-striped superconductor,

Fig. 3.4, to the DOS structure of a homogeneous d-wave superconductor.

For the latter, at half-filling, peaks that are not equally spaced are formed

in the low-energy DOS and the spacing scales as
√
B around E = 0 (Vafek

et al., 2001). This is a consequence of the nodal behavior at the Fermi energy.

Therefore, quantum oscillations periodic in 1/B are not expected for a d-wave

superconductor. For the remainder of this paper we refer to each peak of the

type shown in Fig. 3.4 (that is, equally spaced with a spacing proportional to

B) as a Landau level. The fact that there is only one set of Landau levels and

the number of states in each peak is equal to that of a Landau level suggests

that all parts of the FS participate in the formation of low-energy Landau

levels.

It is unclear why the case of intermediate values of ∆, Fig. 3.4, is
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different from the case of very small values of ∆, Fig. 3.2, in which the sum

of the degeneracy of the two peaks equals the degeneracy of only one Landau

level. One possibility is that this is due to the fact that there are two identical,

separate segments of the FS in the reduced BZ assuming that each separate

segment gives rise to the formation of peaks with the degeneracy of one LL.

Because the two segments are identical, we see the two peaks on top of each

other which have a total degeneracy of two LLs.

Figure 3.7 Low-energy DOS for l = 48 and ∆ = 0.2 and ∆ = 0.4. Landau
levels are suppressed for ∆ = 0.4 but a sharp peak around E = 0 appears.

Next we increase ∆ to even larger values. Although Landau levels

are observed in the low-energy DOS in the intermediate ∆ regime (0.14 .

∆ . 0.3), for larger ∆ (∆ & 0.35), the Landau levels disappear. Fig. 3.7,

shows a comparison of the low-energy DOS for ∆ = 0.2 and ∆ = 0.4 in the

presence of a magnetic field l = 48. The DOS for ∆ = 0.4 shows structure

but no clear Landau levels. The sharp peak at E = 0 can be attributed to the

commensurability effect. This is further discussed in appendix 3.4.

As ∆ is increased, large gaps appear within the Fermi arcs. This is

seen in the spectral function, shown in Fig. 2.4(d) for ∆ = 0.4 and zero

magnetic field. If one assumes that the semiclassical process of the formation

of the Landau levels (Anderson, 1998) involves tunnelling of particles (holes)
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across the gaps within the Fermi arcs, one expects the magnetic breakdown

phenomenon not to occur if the gaps are too large. This may explain why the

Landau levels are suppressed for very large ∆. Nevertheless, it is not clear

whether the suppression of the LLs is due to the appearance of large gaps in

the FS or to a strong commensurability effect. We will return to the case of

very large ∆ in chapter 4.

Figure 3.8 Density of electrons versus −µ for the magnetic field of l = 16 and
two cases of ∆ = 0.25 and ∆ = 0. Unlike ∆ = 0, the density does not exhibit
a stepped behavior for ∆ = 0.25.

Landau-type quantum oscillatory behavior has previously been dis-

cussed in the context of a particular model of a ‘Fermi-arc metal’ (Pereg-

Barnea et al., 2009). In that model, parts of the FS of a metal are artificially

gapped out by restricting superconducting pairing to the antinodal regions

of momentum space in order to get a FS that consists of Fermi arcs. The

appearance of LLs in this model is not surprising as both a π-striped super-

conductor and a Fermi-arc metal have almost all the spectral weight on Fermi

arcs. However, the π-striped model, which is based on a specific microscopic

mechanism and has no such restriction on pairing, differs from the Fermi-arc

metal of (Pereg-Barnea et al., 2009) in that it breaks the translational sym-
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metry of the underlying lattice. This means that, unlike the Fermi-arc metal,

the one-electron spectral function for a π-striped superconductor has non-zero

(but possibly very small) weight along continuous lines in k-space.

The behavior of a π-striped superconductor is strikingly different from

that of a metal, in spite of the fact that both exhibit a Fermi surface. In

a metal, the particle density n versus µ exhibits a stepped behavior in the

presence of a constant magnetic field. In contrast, the particle density in a

π-striped superconductor changes smoothly as a function of µ as shown in Fig.

3.8 for a large magnetic field of l = 16. Furthermore, we find that the low-

energy DOS behavior of the π-striped superconductor is rather insensitive to

the change in µ. In other words, no oscillatory behavior of the DOS at E = 0

is observed as µ is varied except for finite size effects. This is in contrast to

the result for the simple Fermi-arc metal model (Pereg-Barnea et al., 2009).

However, experimentally, quantum oscillations are induced by changing the

magnetic field, not the chemical potential, and consequently could still be

observed for a π-striped superconductor.

3.3 Specific Heat

In this section, we present specific heat calculations in the absence and pres-

ence of a magnetic field in order to make connections to experiments on the

cuprates. Our analysis in this section is based on the calculation of the Som-

merfeld coefficient, γ, which is the slope of the electronic part of the specific

heat and a measure of the DOS at low energies. This coefficient is discussed

in detail in appendix D. In advance, we note that the
√
B dependence of γ in

the cuprates is not present in the π-striped superconducting model as there is
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a finite DOS at E = 0. However, it will be shown that some features of the

specific heat in the cuprates are consistent with this model. One can calculate

the specific heat from the relationship c = T ∂S
∂T

. For a system of independent

quasiparticles, the entropy is given by (de Gennes, 1989)

S = −2kB

∑
p

[fp ln fp + (1− fp) ln(1− fp)] (3.1)

where fp is the Fermi-Dirac distribution function. The details of the specific

heat calculation are discussed in appendix D. It should be noted that, in this

study, the DOS is not calculated self-consistently as there is no microscopic

Hamiltonian defined. Furthermore, for the following calculations, it is assumed

that the magnitude of the pairing interaction is constant at low temperatures

so that the quasiparticle spectrum is unchanged as temperature increases.

The specific heat at zero field for a π-striped superconductor as a func-

tion of temperature is shown in Fig. 3.9 for ∆ = 0.25 at 1/8 doping. The slope

associated with the linear behavior is γ = 0.70k2
Bt
−1 per site and is directly

proportional to the DOS at E = 0, which is 0.21t−1 per site. The slope is about

half of that of ∆ = 0 at 1/8 doping. The low-energy specific heat at various

fields as a function of temperature is also shown in Fig. 3.9 for ∆ = 0.25 and

µ = −0.3. As expected, all the curves converge to that of zero field as the

temperature increases. However, at very low temperatures, the specific heat

behavior for different fields is significantly affected by the commensurability

effect. This is seen in the nearly zero slope of the curves for odd m (recall

l = 8m) as T → 0.

Low temperature electronic specific heat measurements of the cuprates

point to a finite DOS at E = 0 which is often attributed to the presence of
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Figure 3.9 Specific heat in the presence of various fields as a function of tem-
perature for ∆ = 0.25 and µ = −0.3. The behavior of the curves at very
low temperatures is significantly affected by the commensurability effect. The
heavy line shows the specific heat in zero field for ∆ = 0 and µ = −0.225
corresponding to 1/8 doping. The slope associated with the linear behavior is
about twice as the slope for ∆ = 0.25 in zero field (noted by l = ∞).

disorder in a d-wave superconductor. However, the specific heat measurements

of a cuprate (Riggs et al., 2011) indicate a relatively large DOS at E = 0

which can not be explained by the presence of disorder. Taking the lattice

constant of a typical cuprate to be a = 3.85Å, the specific heat effective

mass becomes m∗/m = 0.34eV/t. A rather wide range of values has been

used for t (Baruch and Orgad, 2008; Yao et al., 2011). Within a simplified

nearest-neighbor hopping only model as used here, we obtain m∗/m = 1.36

for t ≈ 0.25eV (Goswami et al., 2010). This value corresponds to γ ≈ 1.98

mJ· K−2·mol−1 which is consistent with the specific heat measurements for the

cuprates in the absence of a magnetic field, γ ≈ 1.85 mJ· K−2·mol−1 (Riggs

et al., 2011). Instead, if we had taken t ≈ 0.125eV , we would get γ ≈ 3.96

mJ· K−2·mol−1 which corresponds to the specific heat at around 25T where

the quantum oscillation phenomenon appears in the cuprates.

Riggs et al. have studied the low temperature specific heat as a function
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of magnetic field up to very high fields and observed quantum oscillations

(Riggs et al., 2011). This allowed them both to measure the magnitude of the

specific heat in what is presumably the normal state, and also to determine

the cyclotron effective mass associated with the quantum oscillations. Then,

if one assumes the normal state has broken translation symmetry, modelling

the arrangement of electron and hole pockets in the Brillouin zone and using

the measured cyclotron effective mass, one can estimate what the specific

heat should be. The result is much larger than the specific heat that they

observe (Riggs et al., 2011; Tesanovic, 2011). This problem was also noted in

a theoretical study based on FS reconstruction where the calculated specific

heat was larger than the measured value for any reasonable value of t (Yao

et al., 2011).

In our calculations for a π-striped superconductor, it was found that,

even though there exist several FS pockets in the BZ, a single set of Landau

levels is observed above and below the Fermi energy. The relation between

the slope of Fig. 3.5, defining the cyclotron effective mass obtained from the

spacing of Landau levels, and the DOS at E = 0 is the same as for the ∆ = 0

case. This implies that, as for the ∆ = 0 case, the cyclotron effective mass,

mc, is equal to the specific heat effective mass, m∗, for large values of ∆.

Consequently, the quantum oscillations in the specific heat and the magnitude

of the specific heat which is observed in Ref. (Riggs et al., 2011) could be

consistent with the behaviour of a π-striped superconductor state induced by

large magnetic fields, rather than a striped metallic state with no pairing gap as

is often assumed. However, as noted earlier, the ideal π-striped model (with no

uniform d-wave component) is not expected to give a
√
B background, which

also appears to be a feature of the experiments (Riggs et al., 2011). We will
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discuss this feature in the next chapter.

3.4 Commensurability effects

In this section, we discuss the commensurability effect mentioned in Sec. 3.2.

We found that the DOS at E = 0 exhibits a periodic behavior as a function of

l or 1/
√
B for large values of ∆. If m is even, the two vortices in a magnetic

unit cell are in perfectly equivalent positions with respect to the spatially

modulated gap and the DOS at E = 0 is nonzero. In contrast, for odd m, the

gap on the right of one vortex is positive but is negative on the right of the

other vortex as shown in Fig. 3.1. The DOS at E = 0 is zero for odd m.

The same kind of commensurability effect is also seen in a uniform

d-wave superconductor (Melikyan and Vafek, 2008). There, due to strong

internodal scattering, the DOS at zero energy exhibits a periodic behavior as a

function of kdl, where kd is the k-space half distance between the nearest nodes

of the d-wave superconductor. Specifically, depending on whether n is odd or

even in kdl = πn, the DOS around E = 0 shows a linear or gapped behavior.

For a π-striped superconductor, the relevant k-space half distance is π/8 which

leads to a periodicity of δl = 16 for the DOS at zero energy as a function of l.

This is consistent with the periodicity that we observe in our calculations. So

the commensurability effect seen in a π-striped superconductor is most likely

due to interference effects. This suggests that the nonzero DOS at E = 0 for

even m is due to constructive interference of particle and hole waves, while the

gapped behavior for odd m is due to destructive interference.

For very large ∆, a sharp peak develops near E = 0 for even m only, as

shown in Fig. 3.7. It appears that the origin of the peak can be traced back to
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Figure 3.10 Local density of electrons due to the low-energy states within
0.001t of E = 0 for l = 48 and ∆ = 0.4. The vortices are at (3.5, 3.5) and
(27.5, 27.5).

the non-zero DOS at E = 0 for smaller ∆, and consequently is related to the

commensurability effect. The fact that the low-energy Landau levels disappear

when the peak at E = 0 is sharp suggests that the commensurability effect is

competing with the Landau level formation. Figure 3.10 shows the real space

representation of the the states under the sharp peak at E = 0 where a pattern

of stripes of low and high particle density is clearly visible. On average, the

ratio of the density of the higher density stripes to the lower density is 2.35 for

∆ = 0.4, which is larger than the value 0.2 in the absence of a magnetic field

(see Sec. 2.6). It is not clear whether these effects are due to the existence of

a strong commensurability effect or due to the presence of large gaps within

the Fermi arcs.
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3.5 Summary

In this chapter, we have studied the model of a π-striped superconductor in

a magnetic field. Our main finding is that Landau levels are seen in the low-

energy DOS of the π-striped superconductor for a large range of magnetic

fields and pairing amplitudes. This indicates the possibility of quantum oscil-

lations as LLs are a prerequisite for this phenomenon. The low-energy Landau

level formation persists even though particle and hole levels are mixed by the

pairing interaction. In particular, for large values of the pairing potential, the

π-striped superconductor exhibits a unique low-energy Landau level set that

is only due to the Fermi arc part of the spectral weight function. In con-

trast to other studies based on FS reconstruction due to density waves, this is

consistent with the ARPES measurements.

One other promising feature of this model is that it does not lead to a

specific heat that is too large compared to the experimental values. We found

that the cyclotron effective mass, mc defined based on the LL spacing, is equal

to the specific heat effective mass, m∗, for large values of ∆. Note that this

feature of a π-striped superconductor is in contrast to other numerical studies

based on FS reconstruction where the problem of a too large specific heat has

been reported (Yao et al., 2011).

Since our numerical studies are restricted to vortex lattices satisfying

l = 8m, we cannot change the magnitude of the magnetic field continuously

or in small steps. As a result it is not possible, by the method used in this

chapter, to find the FS area associated with quantum oscillations that would

be observed following the simple formula of Onsager (Onsager, 1952). One

might suggest to use a rectangular vortex lattice in order to get more magnetic
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field values. However, this does not add enough magnetic point values for the

calculation of the quantum oscillation area. Furthermore, there is an ambiguity

on how to arrange a rectangular lattice with respect to the modulated order

parameter. For example, a rectangular unit cell with 128 sites can either have

lx = 16 and lx = 8. These two cases have different commensurability effects

and so different low energy DOS. This means that we get two different physical

behavior for the same magnetic field.

We can make conjectures about FS areas that might be observed, based

on our analysis. We expect that any semiclassical trajectory describing the

formation of Landau Levels should have the following characteristics: 1) The

trajectory should use all parts of the FS. 2) Andreev scattering needs to occur

at least at two points during the Larmor precession because Landau levels are

a coherent mixture of particles and holes. 3) Magnetic breakdown is likely

involved in Landau level formation because once the gaps within the Fermi

arcs become too large, the Landau levels disappear.

It is also useful to compare the behaviour of the π-striped superconduc-

tor to the Fermi-arc metal, in which a new mechanism for quantum oscillations

is proposed that is not based on FS reconstruction (Pereg-Barnea et al., 2009).

For that model, it was shown, based on a semiclassical approach, that the fre-

quency of quantum oscillations is proportional to the Fermi arc length. In the

π-striped superconductor, the fact that a quasiparticle with wave vector ~k is

coupled to ones with wave vectors −~k − ~qx and −~k + ~qx provides a different

scattering mechanism which changes the semiclassical motion of quasiparticles.

Consequently, the semiclassical trajectories of the two studies are expected to

be different. Although Landau level formation in the Fermi-arc metal resem-

bles what we have seen in the π-striped model, the DOS at E = 0 shows an
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oscillatory behavior as a function of µ for the Fermi-arc metal which is absent

in our study.

The observation of quantum oscillations corresponding to small Fermi

surface pockets supports the scenario of translational symmetry breaking and

Fermi surface reconstruction, whether due to charge or spin density waves or to

modulation of the d-wave gap. Indeed recent experimental results support the

connection between stripe formation and quantum oscillations (Laliberte et

al., 2011). Our calculations in this chapter show that a modulated d-wave su-

perconductor can support Landau levels and quantum oscillations. However,

we are unable to make detailed comparisons to quantum oscillation experi-

ments because of the restriction to commensurate vortex lattices. One might

expect there to be observable differences between quantum oscillations in the

presence of charge or spin stripes and superconducting stripes, due to the An-

dreev reflection and particle-hole mixing involved in the formation of Landau

levels in the latter case. Therefore, it would be of interest to study modu-

lated superconductivity within a framework that allows the magnetic field to

be varied continuously in order to more directly connect to the quantum os-

cillation experiments on the cuprates. Possible approaches would be to use

random vortex lattices, as is done by Chen and Lee (Chen and Lee, 2009),

or to develop a semiclassical approximation that allows magnetic unit cells of

arbitrary aspect ratios. The latter method is the subject of the next chapter.



Chapter 4
Quantum Oscillations in a

π-striped Superconductor

4.1 Introduction

In chapter 3, we examined the mixed state of a π-striped superconductor

where a spatially periodic d-wave pairing interaction led to a reconstructed

FS. We found that Landau levels (LLs) are formed in the low-energy DOS for

a broad range of values of the pairing interaction. In particular, we found LLs

for intermediate values of the pairing potential where the spectral function

exhibits Fermi arcs. Furthermore, we showed that the cyclotron effective mass

for this model, defined based on the LL spacing, is equal to the specific heat

effective mass. This indicates that a π-striped phase does not lead to too

large a specific heat to explain the data. Riggs et al. (2011) argued that

models based on FS reconstruction give a too large specific heat too, so it

is interesting to note that does not seem to be the case for the π-striped

model. Therefore, with the exception of the
√
H of the background specific
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heat, we demonstrated that the properties of the π-striped superconductor

that we calculated are consistent with those of cuprates. However, our study

in chapter 3 was limited to only a few discrete values of magnetic field which

did not allow the calculation of quantum oscillations.

In this chapter1, we overcome the limitations of the previous chapter

by employing a semiclassical approximation that enables us to make more

quantitative comparison with experiments. The remainder of this chapter is

organized as follows. In Sec. 4.2, we introduce the approximate semiclassi-

cal numerical method used to calculate quantum oscillations. In Sec. 4.3,

we discuss the differences of a uniform and modulated d-wave under this ap-

proximation. Section 4.4 shows the result of this semiclassical method for

small values of the pairing interaction. In this section, we also discuss the

semiclassical picture of Pippard for motion of electrons in a magnetic field in

the presence of a one-dimensional periodic potential, based on linked orbits

in position space, and generalize this picture to the case of a periodic pairing

potential. In Sec. 4.5, results are shown for intermediate values of the pair-

ing interaction where the shape of the spectral function resembles Fermi arcs.

Section 4.6 shows how quantum oscillations in the specific heat behave for this

model. Finally, the plausibility and implications of such a superconducting

π-striped model are discussed in Sec. 4.7.

1The results presented in this chapter are published in Physical Review B (Zelli et al.,
2012)
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4.2 Semiclassical theory in a field: BdG with-

out vortices

In chapter 3, a magnetic field was introduced into the model using the Franz-

Tesanovic singular gauge transformation,(Vafek et al., 2001; Franz and Tešanović,

2000) and the resulting Boboliubov-deGennes (BdG) equations were solved nu-

merically. As explained in appendix B, vortices, commensurate with the super-

lattice, are incorporated into the magnetic unit cell. As a result, the magnetic

unit cells have comparable width and length, which means that the area of a

magnetic unit cell changes significantly when going from one unit cell size to

next available one. Consequently, the magnetic field can only be changed in

very large steps which makes it impossible to measure the area associated with

quantum oscillations. In addition, we observed that commensuration effects,

due to the assumed perfect order of the vortex lattice, resulted in periodic

oscillations of the DOS at E = 0 as a function of 1/
√
B. This behavior is

not consistent with the QO observed in the cuprates where the oscillations

are periodic as a function of 1/B. The mixed state of the cuprates is most

likely characterized by vortex liquid behavior where vortices do not adopt the

assumed ordering in chapter 3. So the commensurability effect is irrelevant to

the cuprates.

In this chapter, we use a different approach. For simplicity, consider

the ∆ = 0 case which describes two-dimensional electrons on a square lattice,

hopping from one site to its nearest neighbors. To apply a magnetic field

to the system, one introduces magnetic unit cells in a given gauge with no

vortices present. Independent of the choice of the gauge, the phase of the

hopping term in the kinetic part of the Hamiltonian changes by 2π in going
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around a magnetic unit cell. In this case, different choices of the magnetic

unit cell aspect ratio result in the same DOS spectrum for a given magnetic

field, provided the magnetic unit cells have the same number of sites. This

means that a unit cell which is a single row of sites is equally acceptable as a

square unit cell. Note that a row unit cell is only possible when using Landau

gauge which has translational symmetry in one direction. The benefit of using

a row unit cell is that one can add only one site to a unit cell to proceed

to the next available unit cell size. Bearing in mind that magnetic field is

inversely proportional to the area of magnetic unit cell, the fractional decrease

in the field for adding one site is −1/L for a row of length L. The magnetic

field increments are much larger if one maintains a square aspect ratio. Thus

a magnetic unit cell formed by a single line of sites allows the smallest field

changes. For the rest of this thesis, we use L to refer to the number of sites in

a unit cell so that L = 256 could correspond to a row unit cell of length 256

or a square unit cell with a linear size l = 16.

In a superconductor, one can not go to the row limit for a magnetic

unit cell because of the supercurrent field associated with vortices introduces

a two-dimensional space-dependent term in the Hamiltonian. However, if one

assumes that the effect of the interactions of quaisparticles with vortices is

negligible, then row unit cells can be used. This allows us to change the

magnetic field in much smaller increments and eliminates commensuration

effects. This approximation can potentially enable us to calculate the area

associated with quantum oscillations. We will refer to this approximation as

the semiclassical approximation or the no-vortices approach. The important

question of the validity of this approximation will be addressed later in this

chapter.
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In order to formulate this approximation more explicitly, we start from

the BdG Hamiltonian in a magnetic field.

H =




−t
∑

δ

e−iAδ(r)ŝδ − µ
∑

δ

∆δe
iφ(r)/2ŝδe

iφ(r)/2

∑

δ

∆δe
−iφ(r)/2ŝδe

−iφ(r)/2 t
∑

δ

eiAδ(r)ŝδ + µ


 (4.1)

where ŝδ is defined as the operator, ŝδu(r) = u(r + δ). For a model of a

π-striped superconductor, the space dependent pairing interaction is ∆δ =

∆ cos(qx(x− 1/2± 1/2)) if δ = ±x̂ and ∆δ = −∆ cos(qx(x− 1/2)) if δ = ±ŷ.
Also Aδ(r) = e

~c
∫ r+δ

r
A(r)dr where A(r) is the vector potential associated with

the magnetic field. The phase of the order parameter associated with a bond

between two sites is approximated by φδ(r) = 1
2
(φ(r) + φ(r + δ)) where φ(r)

is the phase of the order parameter on site r.

To eliminate the phase of the order parameter, we apply the following

singular gauge transformation

U =



eiφ(r) 0

0 1


 (4.2)

which is a single-valued transformation (Anderson, 1998). This yields

H =




−t
∑

δ

e−i(Aδ(r)−∇φδ(r))ŝδ − µ
∑

δ

∆δe
i∇φδ(r)/2ŝδ

∑

δ

∆δe
i∇φδ(r)/2ŝδ t

∑

δ

eiAδ(r)ŝδ + µ


 (4.3)

where ∇φδ(r) = φ(r + δ) − φ(r). Now using the definition of the superfluid
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velocity, we can write the Hamiltonian as follows




−t
∑

δ

ei(Aδ(r)+2vδ
s(r))ŝδ − µ

∑

δ

∆δe
i(Aδ(r)+vδ

s(r))ŝδ

∑

δ

∆δe
i(Aδ(r)+vδ

s(r))ŝδ t
∑

δ

eiAδ(r)ŝδ + µ


 (4.4)

where mvδ
s(r) = ~∇φδ(r)/2− (e/c)Aδ(r). If the effect of vortices is negligible,

one can approximate 4.4 by setting vδ
s(r) = 0.

Before proceeding further, we compare the results of this approximation

to that of the full BdG equations with vortices to check whether the approxi-

mation works. It is found that the two cases (with and without vortices) are

in qualitative agreement for both small and intermediate ∆. For small ∆, the

qualitative agreement is illustrated in Fig. 4.1 for the low-energy DOS for

∆ = 0.02 and µ = −0.23 in the presence of a magnetic field of L = 256. For

intermediate ∆, the comparison is shown in Fig. 4.2 for L = 1024, ∆ = 0.25

and µ = −0.3 corresponding to 1/8 doping. Note that, in this figure, the

nonzero DOS at E = 0 for the case with vortices is a commensurability effect

which is absent for the case without vortices.

Figure 4.1 Comparison of the low-energy DOS of a π-striped superconductor
with ∆ = 0.02 and µ = −0.23 in the presence of a magnetic field of L = 256
with and without vortices, as described in the text.
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Figure 4.2 Comparison of the low-energy DOS of a π-striped superconductor
in the presence of a magnetic field of L = 1024 with ∆ = 0.25 and µ = −0.3
corresponding to 1/8 doping with and without vortices.

Here some details for the calculation of the DOS in figures 4.1 and 4.2

are provided (also see Appendix A). The length of a row unit cell, which is

spanned in the x direction, is given by L = 8m where m is an integer. The

magnetic field associated with a unit cell L lattice constants long isB = φ0/La
2

where a is the lattice spacing. The number of unit cells in the x direction can

be taken to be only one because adding more unit cells in the x direction

results in the same DOS spectrum. This point is discussed in the next section.

However, the number of unit cells in the y direction, N , must be large to give

a well-defined DOS. Using Bloch’s theorem, one needs to diagonalize N BdG

matrices with linear size 2L so that the total number of positive-energy states

is NL.

4.3 Comparison to Uniform d-wave

In late 90s and early on in this new century, the nature of the electronic states

of a d-wave superconductor in the presence of a perpendicular magnetic field

was a controversial subject in theoretical condensed matter physics. First, it



61

was suggested by Gor’kov and Schrieffer (Gor’kov and Schrieffer, 1998) and

by Anderson (Anderson, 1998) that the spectrum in a magnetic field consisted

of Landau levels with energies ±~ωH

√
n where n is a positive integer and

ωH =
√

2ωc∆/~, ωc is the cyclotron frequency, and ∆ is the maximum gap

(Marinelli et al., 2000). This is essentially the result for an anisotropic Dirac

cone. A key step in obtaining this result is to assume that the effect of the

superfluid velocity due to vortices is negligible compared to the vector poten-

tial A. However, it was soon shown by Mel’nikov (Melnikov, 1999) that the

superfluid velocity is a strong perturbation for this problem, and, not long

afterward, Franz and Tesanovic (Franz and Tešanović, 2000) developed an ap-

proach which treated the superfluid velocity field and the vector potential on

an equal footing. Note that the results of chapter 3 were obtained using this

approach. After linearizing the Hamiltonian near the nodal points, Vafek et al

(Vafek et al., 2001) give an elegant expression for the continuum Hamiltonian

near a single node in the FT gauge.

HN = vF (px + ax)τ3 + v∆(py + ay)τ1 +mvFvsx, (4.5)

where τi are Pauli matrices, 2a = m(ve
s−vh

s ), and 2vs = ve
s +vh

s . This expres-

sion shows that the difference of the superfluid velocities associated with the

vortices on the two sublattices in the FT gauge, the so-called Berry gauge field,

acts like a vector potential and appears coupled to the momenta of the Dirac

quasiparticles, while the superfluid velocity enters as a scalar potential. This

symmetry of the Hamiltonian results in the spectrum of d-wave quasiparticles

in a magnetic field remaining gapless. Based on this result, the authors claimed

that there are no LLs in the low-energy DOS of a d-wave superconductor in
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the presence of a magnetic field.

Note that there are two ways that one can set the superfluid velocity

to zero in the exact BdG equation. If one gets rid of vsx in Eq. (4.5), one does

not get the Dirac-like LLs described earlier in this section. In Eq. (4.4), the

superfluid velocity only appears in one of the diagonal parts, whereas one can

write the superfluid velocity in both diagonal parts of the BdG Hamiltonian

as follows:

H =




−t
∑

δ

ei(∇φ(r)/2+vs(r))ŝδ − µ
∑

δ

∆δe
i∇φ(r)/2ŝδ

∑

δ

∆δe
i∇φ(r)/2ŝδ t

∑

δ

ei(∇φ(r)/2−vs(r))ŝδ + µ


 . (4.6)

Setting vs = 0 in Eq. (4.6) would leave us a system in the absence of a magnetic

field that experiences half-flux scatterings due to the ∇φ(r)/2 term. Such a

system would never be a good approximation to the real system. However,

setting vs = 0 in Eq. (4.4) may be a good approximation provided some

conditions are satisfied. To make our point clearer, let us start with the ∆ = 0

limit in which the DOS spectrum consists of sharp LLs in the presence of a

magnetic field (everywhere except near the van-Hove singularity as seen in

Fig. A.1). Setting vs = 0 in Eq. (4.6) leads to a DOS spectrum that has

no resemblance to the exact DOS solution. However, setting vs = 0 for the

∆ = 0 limit in Eq. (4.4) is exact and results in sharp LLs. Henceforth in

this thesis, when we use the term “ignoring vortices”, we mean setting the

superfluid velocity in Eq. (4.4) to zero. Once ∆ becomes finite, then ignoring

vortices is not exact but an approximation. It is the purpose of this section to

justify this approximation in more detail.

Previous studies have already shown that ignoring vortices is not a good
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Figure 4.3 Low-lying energy levels (in units of t) of a uniform d-wave with
∆ = 0.25, µ = −0.3, and L = 256 plotted versus wave vector along two
directions in the BZ (see Fig. 4 in (Vafek et al., 2001)). In the top panel,
the effects of vortices are ignored. However, the bottom panel includes the
effects of vortices. All calculations were obtained by diagonalizing the BdG
Hamiltonian in the FT gauge.

approximation for a uniform d-wave superconductor. We have investigated the

properties of a uniform d-wave superconductor in a magnetic field in such detail

in order to emphasize the differences between that problem and a π-striped

superconductor. The semiclassical result for uniform d-wave, when neglecting

vs, results in perfectly flat bands, at energies scaling approximately as ±E1

√
n

for n = 0, 1, 2, . . . . This is shown in Fig. 4.3a for a uniform d-wave gap of

∆ = 0.25, without vortices and with µ = −.3 and L = 256, along the directions

Y → Γ → X in the magnetic BZ (see Fig. 4 in (Vafek et al., 2001)). For these

parameters, E1 ≈ 0.31. In contrast, Fig. 4.3b shows the band structure for

the same parameters when including the effect of vortices. One might expect

that the effect of vortices is only to broaden the flat bands which would result
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in broadened Landau levels. However, there is no hint of broadened Landau

levels in Fig. 4.3b. In fact, the two plots in Fig. 4.3 bear no resemblance

to each other, confirming that vs is indeed a strong perturbation for uniform

d-wave.

Figure 4.4 Low-lying energy levels (in units of t) for, from top to bottom, mod-
ulated d-wave ignoring the effects of vortices and modulated d-wave including
the effects of vortices for ∆ = 0.25, µ = −0.3, and L = 256.

In Fig. 4.4, we have calculated the band structure of the excitations for

the system of π-striped superconductor with and without vortices for the case

∆ = 0.25 and µ = −0.3, for a magnetic field corresponding to L = 256. For

the semiclassical approximation, Fig. 4.4a, the bands are flat along Γ → X

which corresponds to moving in the reduced BZ along constant ky = 0f . Dis-

persion arises along the Y direction, resulting in one-dimensional DOS peaks.

To understand the dispersion along ky and the flat bands for constant ky for

vs = 0, we refer to the continuum picture where, in Landau gauge, the wave

functions are plane waves of wavevector ky along y and localized in x around a
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position x0 ∼ ky (see Eq. (A.5)). In the presence of a spatially varying poten-

tial and a perpendicular magnetic field, electrons move along equipotentials.

For a potential modulated along x, this motion is along y, at a position and

energy that depend on ky. This provides an interpretation of the meaning of

“broadened Landau levels.” The broadening is due to the different ways that a

Landau level wave function averages over the periodic (pairing) potential, de-

pending on its position with respect to the modulation. Comparing Figs. 4.4a

(without vortices) and 4.4b (with vortices), we see that band structure is rel-

atively insensitive to the effect of vortices for these parameters. Nevertheless

it is clear that the broadened Landau levels are further broadened and shifted

by the vortices.

Figure 4.5 Comparison of the first two bands for the BdG Hamiltonian of
a π-striped superconductor with ∆ = 0.2 and µ = −0.3 in the presence of a
magnetic field of L = 256 to those of obtained using no-vortices approximation.
The overall agreement is good and, in fact, it is excellent near the Y point.

To have a even better comparison of the exact and approximate method,

we have shown the first two band structures of the two cases for another pairing

potential, ∆ = 0.2, in Fig. 4.5 . One can see that the overall agreement of the

two cases is good. Furthermore, t is also useful to compare the band structures

of the two cases (with and without vortices) for small values of ∆. We have
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already shown that numerical calculations, with and without vortices, result

in similar low-energy DOS as seen in Fig. 4.1 for ∆ = 0.02 and L = 256 at

1/8 doping. The energy bands, shown for positive energy along Y → Γ → X

in Fig. 4.6, look similar for the cases with and without vortices and both are

similar to the Landau level structure observed for ∆ = 0. Note that the bands

for both cases, with and without vortices, shift in the same direction from the

∆ = 0 Landau level energies.

Figure 4.6 Comparison of the low-energy bands for the BdG Hamiltonian of
a π-striped superconductor with ∆ = 0.02 and µ = −0.23 in the presence
of a magnetic field of L = 256. The solid curves are the bands for the full
BdG Hamiltonian, including vortices. The dashed curves are the semiclassical
results for no vortices, and the flat lines (dash-dot lines) are the Landau levels
in the limit ∆ = 0.

So why does this approximation work for a modulated d-wave but not

a uniform d-wave superconductor? The main difference is that the π-striped

superconductor in zero field does not have nodal points at EF with Dirac-like

excitations. Instead it has extended regions of Fermi surface which persist in

the presence of an off-diagonal potential that couples electron states at k and

hole states at −k±q and which gaps only parts of the Fermi surface. We find

that, for not very large gap amplitudes, the u’s and the v’s, the Bogoliubov
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quasiparticle amplitudes, jump sharply on crossing the FS (see figures 2.5, 2.6

and 2.7), as they do for a normal metal, rather than varying smoothly as they

do away from Dirac point. These features of the π-striped superconductor lead

to very different behavior in a magnetic field from that of a uniform d-wave

superconductor. Since quantum oscillations arise from the presence of broad-

ened Landau levels in the semiclassical approximation, we conjecture that this

approximation is valid in parameter ranges where the exact calculation also

exhibits Landau levels. Conversely, if broadened Landau levels are not present

in the full BdG calculation, then the semiclassical approximation is not ap-

plicable. This is the case for large values of ∆ where no LLs are observed in

exact BdG calculations as discussed in Sec. 3.2. As shown in Fig. 2.8, the

parts of the FS where the pairing interaction is vanishingly small shrink for

large ∆. So we expect the semiclassical approximation to be unreliable in this

range.

4.4 Results for Small ∆

For small values of ∆, the effect of the pairing interaction is to induce small

gaps in the closed ∆ = 0 FS as shown in Fig. 2.4a. Looking at Fig. 4.1, it

seems that the only effect of the small pairing potential is to partially reflect

each unperturbed LL to the other side of the Fermi energy. This suggests that

the area associated with quantum oscillations should remain the large closed

FS area for ∆ = 0. However, as we will see, this is not the whole story. It

also happens that interference between the original FS area and another orbit

induced by the potential leads to LL broadening which oscillates as a function

of magnetic field. The widths of the Landau levels near the Fermi energy
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affect the low temperature properties of the system and, consequently, their

dependence on magnetic field is expected to be observable in experiments. In

the following discussion, we focus on the LL closest to the Fermi energy and

measure its width and its position relative to the Fermi energy. We refer to

this LL as the first LL. Here, we define the width to be the difference between

the low and high energy ends of a LL feature in the DOS spectrum (see the

inset of Fig. 4.7). By choosing a large system size N in the y direction and

sufficiently small energy intervals for the DOS calculation, the width of a LL

can be calculated with precision.

Figure 4.7 The width of the LL closest to E = 0 as a function of 1/B or L for
∆ = 0.02 and µ = −0.23, corresponding to 1/8 doping within the semiclassical
(no-vortices) approximation. 1/B is written in terms of the lattice constant, a,
and flux quantum, φ0. The solid line is a spline fit to the data that shows the
oscillatory behavior more clearly. The inset shows the first LL for L = 256.

The width of the first LL as a function of 1/B is shown in Fig. 4.7 for

∆ = 0.02 and µ = −0.23, corresponding to 1/8 doping. The width shows an

oscillatory behavior. To calculate the area associated with the oscillations, we

perform a Fourier transform analysis. Note that the Fourier transform analysis

is performed to determine the dominant frequencies in oscillations in the width

and uses the data but not the spline fit (see Fig. 4.7). To have a reasonably
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Figure 4.8 Power spectrum associated with the oscillations of the width (as
shown in Fig. 4.7 and position of the first LL for ∆ = 0.02 at 1/8 doping. The
x axis is rescaled so that it corresponds to area in units of the area of BZ.

Figure 4.9 The spectral function of a π-striped superconductor for ∆ = 0.02
at 1/8 doping. The yellow area corresponds to the area associated with the
oscillations in the width and is shown in Fig. 4.10(b) separately.
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accurate analysis, we choose the minimum number of input data points for

the Fourier transform function to be 99, here and for the remainder of this

chapter. Figure 4.8 shows the power spectrum associate with oscillations in

the width of the first LL for ∆ = 0.02 and µ = −0.23. The x axis has been

rescaled to correspond to area in units of the area of the BZ. The peak in the

power spectrum associated with oscillations in the width occurs at an area of

about 0.0845. It turns out that by adding 2/8 to 0.0845, we get the area of

the yellow region in Fig. 4.9 which is 0.3345. We refer to this yellow region as

Ab which is shown in Fig. 4.10b separately. Plotting the µ dependence of the

calculated area coming from the power spectrum of width, we discover that it

has the same slope as the yellow area in Fig. 4.9. This is illustrated in Fig.

4.11. The two lines are the same within error bars when 2/8 is added to QO

area. The reason why we are allowed to do this is that the area measured by

the power spectrum is only an area modulo 1/8. Since a minimum of 8 sites is

added to a magnetic unit cell in changing B, one can not directly see periods

of oscillations in L that are smaller than 8. This means that we can not see

areas that are large than 1/8 of the BZ. Although, in principle, any multiple

of 1/8 could be added to the area, only adding 2/8 results in an identified

area or orbit for the FS at this doping and pairing strength. This analysis

shows that the QO area is, in fact, the yellow area in Fig. 4.9. One other

way to prove this is to start with a large chemical potential for which the FS

areas are less than 1/8. By continuously decreasing the absolute value of µ,

the FS area associated with the width oscillations becomes larger and reaches

1/8 for some chemical potential. By even more decreasing µ, we find that the

corresponding Fourier transform peak for this bigger than 1/8 FS is only the

area modulo 1/8.
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Figure 4.10 (a) Boomerang-shaped FS orbit involving two Andreev-Bragg scat-
terings and two tunnellings, as shown schematically in Fig. 4.13b, but for a
period 8 modulation. The area of this orbit is denoted AT − Ab in the text,
where AT is the area of the unperturbed FS (b) The corresponding area Ab.
(c) The area 2Ab −AT , corresponding to the difference of figures (a) and (b).
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Figure 4.11 Comparison of the geometrical area, Ab, and the area associated
with quantum oscillations in the width of the first LL for ∆ = 0.02 vs µ in the
region around 1/8 doping. Adding 2/8 to the calculated FS area, as discussed
in the text, gives the yellow area in Fig. 4.9.
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Next we consider oscillations in the position of the first LL. Since, the

shape of a LL is not symmetric around its position, we define the position of a

LL to be the energy at which there are equal numbers of states on both sides.

Interestingly, there are two peaks that appear in the power spectrum of the

position as shown in Fig. 4.8. The peak on the left corresponds to the large

∆ = 0 FS area, AT , as expected. As before, we can only measure the area

modulo 1/8. For the large FS, one must add 3/8 to the measured value to

obtain an area that corresponds to an allowed FS orbit. The relevant peak

in Fig. 4.8 occurs at 0.0625 which gives 0.0625 + 3/8 = 0.4375 for the area of

the original FS. Note that, as expected for 1/8 doping, this corresponds to a

density of 0.4375 ∗ 2 = 7/8 electrons per site where the factor of 2 accounts

for the spin degree of freedom. The other peak of the power spectrum of

position oscillations is associated with the shaded area in Fig. 4.9 that looks

like a boomerang. One expects this peak to occur at 0.4375−0.3345 = 0.103 in

agreement with the position of the right hand peak in Fig. 4.8. The relationship

is also confirmed in Fig. 4.12 where the position in the power spectrum and

the boomerang-shaped geometrical value are compared as µ is varied.

4.4.1 Pippard’s Semiclassical Picture

So far in this section, we have calculated the areas associated with the oscil-

lations in the width and position of the first LL of a π-striped superconductor

in a magnetic field for small ∆. The question arises whether a simple expla-

nation for the observed areas exists. Here we develop a simple picture of the

semiclassical motion of particles which provides an explanation for the quan-

tum oscillation areas. This picture is based on Pippard’s semiclassical motion
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Figure 4.12 Comparison of the geometrical area, AT − Ab, the boomerang-
shaped area in Fig. 4.10a, and the area associated with oscillations in the
position of the first LL, corresponding to the highest frequency peak in Fig. 4.8,
shown as a function of µ.

of electrons in the presence of a magnetic field and weak periodic potential.

When no periodic potential exists, free electrons precess in circular orbits in

an applied magnetic field both in position and in k space. For free electrons,

the trajectory in k space has the same form as the trajectory in real space,

rotated by π/2. Discrete, sharp LLs are formed because the Aharonov-Bohm

(AB) phase gained by going around the orbit in position space needs to be a

multiple integral of 2π. If a weak periodic potential is turned on, small gaps

open in the original orbits and the orbits become linked as shown in Fig. 4.13a.

Due to the periodic potential, an electron can now Bragg scatter from one orbit

to another. It can scatter twice and as a results follow an electron pocket as

the shaded region Ab in Fig. 4.13a. The particle can also follow the original cir-

cular orbit by tunneling through the gaps. The LLs are broadened due to the

periodic potential. However, interference of the particles moving on different

trajectories determines the magnitude of the broadening. The shaded area in

Fig. 4.13a is ( ~c
eH

)2Ab corresponding to an electron pocket where, in Pippard’s
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notation, Ab is the corresponding area in k space. We also refer to the k space

area of the original orbit as AT which means that the corresponding area in

position space is ( ~c
eH

)2AT .

Figure 4.13 Semiclassical motion of a nearly free particle system in the presence
of a weak periodic potential (a) and a weak periodic superconducting pairing
potential, (b and c). The direction of the semiclassical motion for particles is
shown by black arrows. Holes (shown by red arrows) precess in the opposite
direction. The gray area in the center figure is ( ~c

eH
)2(AT −Ab) where Ab is the

area of the small electron pocket in panel a and AT is the area of the original
circular FS. Starting from the blue cross in panel b, the particle can either
go over the whole unperturbed circular orbit by tunnelling at points B,C,G,
and I, or tunnel only at points G and I and Andreev scatter twice at points B
and C covering the gray area. Another possible path is to Andreev scatter at
points H and I and tunnel at points B and C. However, this path covers the
same gray area. The change in the phase of the wave function is ~cAT

eH
when the

particle goes over the whole circular circuit and ~c(AT−Ab)
eH

+ β when it travels
around the shaded area, where β is the phase shift due to two consecutive
Andreev scatterings and is assumed to be relatively field independent. This
behavior should be contrasted to that of the linked orbit of Pippard, shown
on the left, where the particles orbit around the areas AT and Ab. Thus, as
discussed in the text, the areas associated with quantum oscillations in the
width of the first LL are different for the periodic potential and the periodic
pairing models. Panel c shows the closed orbit corresponding to four successive
Andreev-Bragg scatterings.

Now we consider what happens for a weak periodic superconducting

pairing potential, for which Bragg scattering in Pippard’s picture is replaced
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by Andreev scattering. In this case, the possible orbits are shown in Fig. 4.13b.

For the case of a weak pairing potential and a strong magnetic field, it is most

likely for particles (here either electrons or holes) to tunnel through gaps at

points B, C, G, and I, following the original cyclotron orbit. For the simplest

process involving the periodic pairing potential, a particle could start at the

blue X below point C, tunnel at points G and I through section H, and Andreev

scatter into a hole at point B, pass point F and Andreev scatter back into a

particle at point C. In the first case, the increment in the AB phase of the

wave function is ~cAT

eH
, corresponding to the original FS area. In the second

case it is ~c(AT−Ab)
eH

+β, where β is a phase shift due to two consecutive Andreev

scatterings and is assumed to be relatively field independent. Note that this

path, apart from the original orbit, is the most probable closed path because,

for small ∆ which only induces very small gaps in the FS, the probability of

tunneling is larger than the that of Andreev scattering. Also it is equally likely

for the particle to Andreev scatter at points G and I and tunnel at points B

and C, and this path covers the same shaded area as in the second case. The

probability of undergoing 4 consecutive Andreev reflections (at points B, C,

G, and I), corresponding to an area AT − 2Ab and shown in panel c, is small

for small ∆. It should be noted that, when an electron Andreev scatters, it

keeps precessing as a hole in the opposite direction to electrons as shown in

Fig. 4.13b.

So far the picture seems to be a plausible picture. Now the question is

how this picture justifies the area associated with oscillations in the width of

the first LL. For a fixed chemical potential, AT and Ab are fixed. The phase

of the wave function due to different trajectories changes as H is varied. The

relative change of the phase due to the two trajectories described above is
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δφ = ~Ab

eH
− β. The broadening of a LL will be minimal when δφ is an integral

multiple of 2π. The frequency of this occurring and so the broadening of the LL

should then be proportional to Ab as the magnetic field varies. In fact, this is

equivalent to the yellow area in Fig. 4.9. Note that our semiclassical argument

here is not dependent on the symmetry of the order parameter. In fact, we

performed the same calculations as in the previous section for an oscillating

s-wave order parameter. Interestingly, it was found that the frequency of the

broadening of the first LL corresponds to the same area as for a π-striped

d-wave superconductor.

The same argument can be applied to the case of the periodic poten-

tial in Fig. 4.13a. In this case, it is the interference between the phase shift

around the shaded pocket and that of the original circular orbit that leads

to broadening of Landau levels. As H is varied, the relative phase changes

as δφ = ~c(AT−Ab)
eH

− β′ where β′ is the phase shift due to two consecutive

Bragg scatterings. Performing the numerical calculations for a model in the

normal state with a period 8 site potential, we confirm that AT − Ab is the

area associated with the oscillations in the width of the first LL.

Once again, this is not the whole story. Based on the simple semiclassi-

cal picture provided we can also look for oscillations in the position spectrum

due to the orbit shown in Fig. 4.13c, involving four Andreev-Bragg scatterings,

which is shown for the period 8 system in Fig. 4.10c. This feature is expected

to be weak for ∆ = 0.02 and to occur at 2Ab−AT = 0.2315. Subtracting 1/8,

we expect a small peak in the position spectrum at 0.1065, which is barely

visible in Fig. 4.8. In order to check whether this feature is real or just an arti-

fact, we vary the value of ∆. The results are shown in Fig. 4.14 for ∆ = 0.01,

0.02, and 0.03. As expected, the magnetic breakdown peak at 0.0625 drops
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Figure 4.14 Power spectrum for oscillations of the position of the lowest LL for
small values of the pairing potential amplitude, ∆. As discussed in the text,
the peak at 0.0625 corresponds to the area AT , the original FS. The peak at
0.103 corresponds to AT−Ab, the boomerang-shaped area shown in Fig. 4.10a,
while the feature at 0.1065 corresponds to the orbit with area 2Ab−AT , shown
in Fig. 4.10c.

rapidly with increasing ∆ while the ”boomerang” peak at 0.103 grows and

the peak at 0.1065, due to the closed orbit of Fig. 4.10c, grows more rapidly.

The consistency of the numerical calculations with the semiclassical pictures

we provided for both cases, periodic potential and periodic pairing potential,

indicates that our simple picture for semiclassical motion of particles is valid.

Strictly speaking, it is valid for the no-vortex approximation. However, the

agreement between the vortex and no vortex results presented earlier leads us

to conjecture that this simple picture captures the main features, even in the

presence of supercurrents.

4.4.2 µ Dependence

In this subsection, we examine the approximation of neglecting vortices in more

detail. In particular, we would like to see whether the same kind of quantum

oscillations observed so far in this section occur when vortices are included

in the calculation. Obviously, we can not change the magnetic field in small
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Figure 4.15 The width of the LL closest to E = 0 versus µ for a constant
magnetic field of L = 256. The period of the oscillations for the case without
vortices (the dotted lines) corresponds to a change in the area of Fig. 4.10b by
one LL area. The same function for the case with vortices (solid line) shows
rather similar behavior.

steps if vortices are present, but µ can be varied continuously. If the same

behavior as a function of µ is seen for the two cases, then the same behavior

as a function of 1/B is also expected. Fig. 4.15 shows the width of the first LL

versus µ at a constant magnetic field of L = 256 in the absence and presence

of vortices. Note that L = 256 corresponds to a linear size of l = 16 for a

square unit cell when the FT transformation is used. The apparent oscillatory

behavior of the width as a function of µ, when the vortices are absent, is due

to changes in the area Ab by one LL area. Here a LL area is 1/L of the area

of the BZ. The same plot for the case with vortices shows some similarity,

but the similarity is more apparent when the Fourier transform of the plot is

taken. Note that, in order to have a meaningful Fourier transform, the period

of oscillations as a function of µ needs to be fairly constant as µ varies. Since

the FS area changes rapidly as a function of µ around 1/8 doping, we have

chosen to study larger negative values of µ where the FS area changes more

smoothly.
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Figure 4.16 Power spectrum associated with the behavior of the width as a
function of µ for the case with vortices. The broad peak denoted by the arrow
corresponds to a change in AT andAb by one LL area. Power spectra associated
with the width and the position of the first level for the case without vortices
are shown in the inset. The sharp peak at very low frequencies corresponds
to a change by one LL area in Ab. Note that, as shown in the inset, there is a
maximum at the same low frequency in the position power spectrum for the
case without vortices.

The power spectrum associated with the width of the first LL as a

function of µ for the case with vortices is shown in Fig. 4.16. Looking at the

figure, we see that the peaks in the power spectrum coincide with those of the

width and the position of the first LL in the absence of vortices which are shown

in the inset. The peak denoted by the arrow is a broad peak corresponding

to an oscillatory behavior associated with a change of one LL area both in Ab

and AT . Another peak that appears at very low frequencies for the case with

vortices in Fig. 4.16 does not show up when vortices are absent. It appears that

this peak corresponds to AT − Ab. This latter area has already been seen in

the power spectrum of the position of the first LL in the case without vortices.

This analysis implies that, even though there are differences, the assumption

of neglecting the effect of vortices appears to be a good approximation for

understanding the behavior of a π-striped superconductor in a magnetic field.

The fact that both cases show an oscillatory behavior in the width of the LL
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closest to E = 0 when the area Ab of Fig.4.10b is changed by one LL area

suggests that the main features of quantum oscillations that are observed for

the case without vortices should persist for the case with vortices.

4.5 Intermediate to Large ∆

In this section, we consider larger values of ∆, specifically the range in which

the spectral function resembles Fermi arcs (FA). It should be noted that there

are gaps within the FA-shaped spectral function that play a significant role in

low-energy properties of this model. We examine whether quantum oscillations

exist for this range of intermediate to large ∆. As in the small ∆ case, one can

measure the width and the position of the peak closest to the Fermi energy.

Performing the calculations for a model of only nearest neighbor hopping, the

results are discussed in two subsections, at half-filling and around 1
8

doping.

Later on in this chapter, we include the second nearest neighbor hopping term

in order to have a more realistic band structure.

Note that, even though there is qualitative agreement for intermediate

∆ in the range 0.15 ≤ ∆ ≤ 0.35, our approximation results in a rather dif-

ferent behavior from the full BdG technique with vortices for large ∆ in the

range ∆ ≥ 0.4. In this range, the LLs are sharp when vortices are absent in

contrast to the result of the previous chapter. This is expected because, as

∆ increases, the role of vortices becomes more significant and our semiclas-

sical approximation breaks down for some threshold value of ∆ in the range

0.35 ≤ ∆ ≤ 0.4. Nevertheless, we are reporting the data for large ∆ to gain

some insight for understanding the physical picture in the 0.15 ≤ ∆ ≤ 0.35

range where qualitative agreement exists.
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4.5.1 Half-filling

Figure 4.17 The low-energy DOS for ∆ = 0.4 and L = 800 at half-filling. Each
(double) peak has twice the degeneracy of a LL.

For µ = 0, the points at the centers of the Fermi arcs, which occur at

ky = ±π/2, are gapless. In addition, for this special case of µ = 0, the FS arcs

for ky > 0 (ky < 0) are symmetric under reflection across the line ky = π/2 or

ky = −π/2 which means that the lobes of the figure-eight FS segments have

equal areas.

Fig. 4.17 shows the low-energy DOS for ∆ = 0.4 at half-filling in the

presence of a magnetic field of L = 800. Each peak has twice the degeneracy

of a LL and is, in fact, composed of two Landau levels that touch. Turning

on the chemical potential creates a small gap at the center of the peak. This

merging of pairs of Landau levels does not occur in the case with vortices,

where the Landau levels are resolved even at half-filling.

Fig. 4.18 shows the width of the first peak as a function of 1/B for

several values of ∆ at half-filling. The most obvious feature of this figure is

the oscillations that become more prominent for larger ∆. There is also a

smooth background width which decreases for decreasing B and increasing ∆.

The behavior of Fig. 4.18 can be explained by the left and right panels

of Fig. 4.19. The right hand panel, for ∆ = 0.4, shows a line of figure-eight-
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Figure 4.18 Half width of the peak closest to E = 0 for different values of ∆
at half-filling. The Fermi surfaces for two of the ∆ values in this figure are
shown in Fig. 4.19.

Figure 4.19 Areas consistent with the quantum oscillations seen in the width
of the first peak in the low-energy DOS are shown in red (dark-shaded) for
two values of ∆ at half-filling. Note that, for µ = 0 the gray (light-shaded)
areas have the same area as the red areas.

shaped Fermi surfaces which are separated by gaps in k-space. In contrast,

as shown in the left hand panel, the gaps are very small for ∆ = 0.2. At

high fields, magnetic breakdown causes tunnelling across these gaps along the

open orbits. The fact that, for ∆ = 0.6, the width of the first LL goes to

zero for smaller magnetic fields suggests that there is no magnetic breakdown

phenomenon in this large ∆ limit where the figure-8-shape Fermi surfaces are

well separated.

Fig. 4.20 shows the power spectrum associated with the oscillations in
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Figure 4.20 Power spectrum associated with the oscillations in the width for
∆ = 0.25 and ∆ = 0.4 at half-filling. The x axis is rescaled so that it corre-
sponds to area in units of the area of BZ.

the width of the lowest energy peak for ∆ = 0.25 at half-filling. A sharp

peak appears in this spectrum around 0.025, along with a second one that

seems to correspond to a second harmonic. The area associated with quantum

oscillations for other ∆ values in Fig. 4.18 are also calculated and found to be

consistent with the red colored (dark-shaded) areas shown in Fig. 4.19. Note

that the areas of the gray (light-shaded) and the red (dark-shaded) regions are

the same area. This is because, at half-filling, the two loops in the figure-eight-

shaped segments have exactly the same area. The consistency is confirmed in

Fig. 4.21 where the geometrical area corresponding to the red (or gray) regions

in Fig. 4.19 and the area associated with quantum oscillations follow the same

trend as a function of ∆. Note that, for large values of ∆, the FS areas are

smaller than 1/8 of the BZ area, so we do not need to be concerned with the

fact the measured QO areas are only modulo of 1/8.

It is worth noting that the average position of the lowest energy peak

for µ = 0 (which consists of two LLs) does not exhibit quantum oscillations

for intermediate ∆, but rather scales linearly with B as expected for Landau

levels. This is because the two Landau levels in this peak oscillate in opposite
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directions. As a result, the oscillations in the width of this feature also reflect

position oscillations of its two components.

Figure 4.21 Comparison of the geometrical area (red or gray area in Fig. 4.19)
and the area associated with quantum oscillations in the width of the lowest
energy peak for different values of ∆ at half-filling.

Figure 4.22 Semi-log plot of the width of the first LL for ∆ = 0.4 at half-filling
as a function of 1/B showing a fairly linear average behavior for not very large
fields. This is expected if the broadening is caused by magnetic breakdown.
The dashed line is a linear fit to the data.

To summarize so far, we have seen that, at half-filling, sharp peaks

with the degeneracy of two Landau levels are formed for large ∆ where the

figure-eight-shaped FS segments are well-separated. As ∆ decreases, the gaps

between figure-eight segments decrease and magnetic breakdown occurs which

leads to broadening of the peaks. This is reflected in the smooth non-oscillatory
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part of the curves in Fig. 4.18. According to the theory of magnetic break-

down,(Shoenberg, 1984) its probability is proportional to exp(−B0/B) where

B0 is a constant. Taking the broadening of the first peak as an estimate of

the probability of magnetic breakdown, we show the width as a function of

1/B in a semi-logarithmic plot for ∆ = 0.4 in Fig. 4.22. The non-oscillatory

part exhibits a linear behavior in this semi-log plot which further supports

our argument that magnetic breakdown is responsible for broadening of the

Landau levels.

4.5.2 Nonzero µ

In subsection 4.5.1, we dealt with the half-filled case of π-striped superconduc-

tor where the two lobes of the figure-8-shaped Fermi surfaces have the same

area. There, we established the existence of magnetic breakdown in this sys-

tem. Here, we report on the observation of QO for non-zero µ. Away from

half filling, for example at 1
8

doping, the Landau levels are well resolved. Each

peak has a number of states close to that of a LL, and the total number of

states in the two peaks related by E → −E symmetry is exactly twice the

degeneracy of a LL. This behavior is consistent with BdG calculations with

vortices, as shown in Fig. 4.2.

To better understand the quantum oscillations that exist in a π-striped

superconductor with intermediate pairing potential, we start from the large ∆

limit where, in our semiclassical approximation, the Landau levels are sharp

and magnetic breakdown is strongly suppressed.

The position of the first LL for ∆ = 0.6 and µ = −0.5 corresponding

to 1/8 doping is plotted in the inset of Fig. 4.23 as a function of magnetic



86

Figure 4.23 Power spectrum associated with the position of the first LL for
∆ = 0.6 and µ = −0.5. The inset shows the position of the first LL for the
same parameters.

Figure 4.24 FS for ∆ = 0.6 and µ = −0.5. The difference in the area of the
the gray (light-shaded) and red (dark-shaded) areas gives rise to the strongest
peak in the power spectrum of the position of the first LL.

field. The position shows an oscillatory behavior with a long period, which

implies that the QO area is very small. The power spectrum associated with

the position of the first LL for ∆ = 0.6 and µ = −0.5 is shown in Fig. 4.23.

Within error bars, the largest peak corresponds to the difference in the areas of

the gray (light-shaded) and red (dark-shaded) areas shown in Fig. 4.24. Note

that, semiclassically, the two area are traversed in opposite directions. The

other two peaks on either side of the main peak correspond to the separate
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gray (light-shaded) and red (dark-shaded) areas. Most likely, these two peaks

arise due to a small gap where the two lobes meet, leading to small amplitude

reflections into closed orbits around each lobe. Nevertheless, the oscillatory

behavior that we measure corresponds predominantly to orbits around the

figure-eight-shaped areas. For this value of ∆, there is no sign of magnetic

breakdown across gaps separating neighboring figure-eights.
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Figure 4.25 Position of the first LL for ∆ = 0.5 and µ = −0.4.

Now we decrease ∆ by a small amount in order to see what happens

when magnetic breakdown is possible. Fig. 4.25 shows the position of the

first LL for ∆ = 0.5 and µ = −0.4. For larger magnetic fields, the short-

period oscillations are due to magnetic breakdown and correspond to the red

(dark-shaded) area shown in Fig. 4.26. Magnetic breakdown does not occur

for smaller magnetic fields, and so only long-period oscillations occur at small

B, corresponding to the difference in the areas of the two lobes in the figure-

eight-shaped areas of Fig. 4.26.

This provides the key to understanding the semiclassical motion. One

possible semiclassical motion is shown by the black arrows in Fig. 4.26. The

phase that a quasiparticle gains by going around this path is proportional to

the difference in the areas of the two lobes of figure-eight. The semiclassical
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Figure 4.26 FS for ∆ = 0.5 and µ = −0.4. The red area is associated with
short-period oscillations in Fig. 4.25 for larger magnetic fields and the gray
(light-shaded) area is associated with the oscillations in the width of the first
LL when magnetic breakdown occurs. The difference in the area of the two
lobes of the figure-eight results to long-period oscillations in Fig. 4.25 at
smaller fields. Black (thin) and red (thin) arrows show the two possible semi-
classical paths.

motion associated with magnetic breakdown is shown by the red (thin) arrows.

In this case, the phase gained by precessing around the path is proportional to

the red (dark-shaded) area. Like the small ∆ case, we expect that the difference

of the two paths to determine oscillations in the width of the position peak.

Indeed this is what happens. The area associated with the oscillations in the

width is equal to the gray (light-shaded) area in Fig. 4.26.

Having gained some physical insight from the case of very large ∆, we

move on to the case of smaller ∆. In Fig. 4.27, we show the width and position

of the first LL for ∆ = 0.25 and µ = −0.3 corresponding to 1/8 doping. Both

quantities show an oscillatory behavior as a function of 1/B. The amplitude

of oscillations is larger for the width and the frequency is slightly higher.

The power spectra associated with the position and width of the first

LL for ∆ = 0.25 and µ = −0.3, corresponding to 1/8 doping, are shown in

Fig. 4.28. For simplicity, we limit our discussion to the largest position and

width peaks which lie between 0.02 and 0.03 of the BZ. The position spectrum
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Figure 4.27 Position and width of the first peak for ∆ = 0.25 and µ = −0.3,
corresponding to 1/8 doping, plotted versus 1/B.
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Figure 4.28 Power spectrum for ∆ = 0.25 and µ = −0.3

Figure 4.29 FS for ∆ = 0.25 and µ = −0.3 in the quadrant of the first BZ.
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exhibits a peak at around 0.025 which is due to magnetic breakdown and

is associated with the red (dark-shaded) area in Fig. 4.29. In the width

spectrum, there are two peaks. The first one, which is larger, is associated

with the gray (light-shaded) area shown in Fig. 4.29. Note that the gray area

can be thought as the red area minus the difference in the areas of the two

loops of the figure-eight.

In Fig. 4.30, we have shown the consistency between the position and

width spectra of the first peak and the geometrical area for ∆ = 0.2 as a

function of the chemical potential. As µ becomes more negative, the area

associated with the width oscillations becomes larger than the area associated

with the position oscillations. This is consistent with the fact that the area of

the lower loop of the figure-eight segments is larger than the upper loop for

this smaller value of ∆. We will see in the next section that, near 1
8

doping,

the period of the oscillations in the specific heat, as calculated for this model,

corresponds to that seen for the position of the first LL.

−0.5 −0.4 −0.3 −0.2 −0.1

0.025

0.027

0.029

µ

Area

 

 Area associated with oscillations in the width

Area associated with oscillations in the position

Geometrical gray area 

Geometrical red area

Figure 4.30 Comparison of the geometrical area and the area associated with
quantum oscillations in the width and position of the first LL as a function
of µ for ∆ = 0.2. The geometrical area is the area corresponding to the red
(dark-shaded) region in Fig. 4.29 in the case of ∆ = 0.2.
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4.5.3 Second nearest neighbor hopping

So far all the calculations were for the case where the second nearest neighbor

hopping term was set to zero. To allow for the possibility of a more realistic

band structure, calculations were also performed for ∆ = 0.25 and t2 = −0.15

at 1/8 doping. The results are as expected from the t2 = 0 calculations. The

power spectrum for oscillations in the width and position of the lowest LL are

shown in Fig. 4.31. The first peak associated with oscillations in the position

of the first LL corresponds to the red (dark-shaded) area in Fig. 4.32. The first

peak associated with the width of the first LL corresponds to the gray (light-

shaded) area which is smaller than the red (dark-shaded) area. The calculation

for non-zero t2 demonstrates that the position and width frequencies are rather

sensitive to the details of the band structure. However, we use the simplest

model, with nearest neighbor hopping only, to make comparison to experiment

in the next section. Since a number of factors could affect the frequencies,

such as induced charge or spin order, our calculations can be taken as semi-

quantitative when comparing to experiment.
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Figure 4.31 The spectra associated with oscillations in the width and position
for ∆ = 0.25 and t2 = −0.15 at 1/8 doping. The peaks correspond to the gray
(light-shaded) and red areas shown in Fig. 4.32. The results are consistent
with those for t2 = 0.
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Figure 4.32 The areas associated with the first peaks of the position and width
spectra in Fig. 4.31 for ∆ = 0.25 and t2 = −0.15 at 1/8 doping.

4.6 Specific Heat

Figure 4.33 Specific heat versus 1/B for ∆ = 0.25 and µ = −0.3 and t2 = 0
for different temperatures. Temperatures in units of the hopping term, t, are
shown on the right. Note the π phase shift in the oscillatory behavior of specific
heat as T increases through T ∗ ≈ 0.003t. The background specific heat at a
given magnetic field changes linearly with T .

The question remains whether oscillations, related to those seen in the

width and the position of the first LL, can be observed in a physically measur-

able quantity. In this section, we calculate the specific heat in order to make

a connection to experiment. In chapter 3, it was shown that the specific heat

of the model could be consistent with the observed specific heat of a cuprate
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superconductor at 1
8

doping in zero field or in the presence of a magnetic field

by adjusting the value of the only parameter in the model, t. (Note that in

chapter 3 and in this section we take t2 = 0.) In chapter 3, using exact BdG

result, the field dependence of the specific heat could not be studied in detail

for the same reasons that quantum oscillations could not be measured, and, in

addition, commensurability effects were exaggerated because of the restriction

to commensurate vortex arrangements. Using the semiclassical approximation

of this study, the magnetic field can be changed in relatively small steps, and,

in addition, commensurability effects are not present. As a result, we are able

to observe quantum oscillations in the specific heat.

For the following results, the same method and assumptions are made

as in chapter 3. Fig. 4.33 shows the specific heat versus 1/B for ∆ = 0.25

and µ = −0.3 at different temperatures. The oscillatory behavior corresponds

to the same area as seen in the position oscillations of the first peak in Fig.

4.28 and corresponds to the red area shown in Fig. 4.29. Interestingly, there

is a π shift in the oscillatory behavior of the specific heat at a temperature

T ∗. This is consistent with the Lifshitz-Kosevich (LK) formula for the specific

heat (Riggs et al., 2011).

To make a direct connection to the experimental data by Riggs et al., we

have shown the oscillatory part of our specific heat calculations for t = 0.16eV

in Fig. 4.34. The figure can be compared to Fig. 2a of Ref. (Riggs et al.,

2011). The qualitative agreement is good, bearing in mind that we have used

only one parameter t to fit the data. In addition, we have compared the

oscillatory behavior part of the data in our model to the experimental data

at T = 1K in Fig. 4.35. The period of oscillations is shorter for our data

because the quantum oscillation area is larger by about 20%. The fact that
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Figure 4.34 The oscillatory part of the calculated specific heat for ∆ = 0.25 and
µ = −0.34 with a zero second nearest neighbor hopping shown as a function
of the magnetic field and temperature. To plot the data, t = 0.16eV is chosen.
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Figure 4.35 The oscillatory parts of the specific heat data by Riggs et al.
and calculations for a π-striped superconductor at T = 1K with t = 0.16eV,
∆ = 0.25 and µ = −0.3. The left y-axis scale is for the experimental data and
the right one is for the model.
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the approximate magnitudes of the oscillations in the specific heat for the two

data sets are similar supports the conjecture that the π-striped superconductor

is a promising candidate model for explaining quantum oscillations in high Tc

cuprates.

4.7 Summary and Conclusions

In this chapter, we have considered a model of sinusoidally modulated d-wave

superconductivity, the π-stripe phase, in the presence of magnetic fields, and

we have developed an approximate semiclassical method to calculate physical

properties of this model as a function of field. In this model, the reconstructed

FS arises from Andreev scattering by the periodic pairing potential which is

different from the reconstructed Fermi surfaces due to spin waves.

Early in this chapter, we provided some evidence as to why the approx-

imate method of ignoring vortices works for a π-striped superconductor. We

have argued that a direct comparison of the low energy bands and the densities

of states with and without vortices, for small and intermediate values of the

gap amplitude, shows that, for both cases, these states resemble broadened

Landau levels. We concluded that the effect of vortices is to modestly broaden

and distort the bands. Furthermore, we examined the differences between this

model and a d-wave superconductor. It was verified that neglecting vortices is

not a good approximation for a uniform d-wave. For a d-wave superconductor,

there are only 4 nodal points in the BZ where the pairing interaction vanishes.

However, for a π-striped superconductor, there are extended FS regions where

the effective pairing interaction vanishes and, hence, the FS acts like that of

a metal. We concluded that this feature is the reason why the semiclassical
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approximation works for a π-striped superconductor.

For the case of intermediate ∆ in a π-striped superconductor, the DOS

at E = 0 shows a discrepancy between the semiclassical approximation and the

exact BdG calculations. However, as was discussed in chapter 3, this vortex

lattice effect is for the rather artificial case of a commensurate, square vortex

lattice. In reality the vortex lattice will adjust to conform to the modulated

pairing potential, which we expect will reduce the perturbing effect of the

superfluid velocity field. Furthermore, quantum oscillations are observed in

the cuprates under conditions where the state is resistive, i.e., a vortex liquid

state rather than an ordered vortex lattice. Studying the properties of a π-

modulated vortex liquid state is a challenging problem. Nevertheless, one

would expect the effects of the superfluid velocity to be reduced in such a

state.

We find quantum oscillations in the specific heat in a model of π-striped

superconductor with only nearest neighbor hopping present. The calculated

QO is in qualitative agreement with the experimentally observed phenomenon

in the cuprates. For example, the phase of the specific heat oscillations re-

verses at a temperature T ∗(B) which can be well fit by setting the hopping

parameter t = 0.16eV. The frequency of oscillations is only about 20% larger

than the experimental value. This is reasonable, bearing in mind that the

second neighbor hopping term is set to zero. Beyond this, it is difficult to

make detailed comparison because our model is strictly two-dimensional and

does not include disorder.

Nevertheless, it is challenging to reconcile one feature of the cuprates

with this model and that is the background
√
B dependence of the specific

heat. It should be noted that it is not clear from the data whether this
√
B
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dependence persists to high magnetic field, or whether it is simply a low-field

phenomenon. The data of Riggs et al. could, in principle, correspond to a

system which switches from a low-field d-wave superconductor to a high-field

π-stripe phase. Whether such a transition would be sharp or broad depends

on how sensitive it is to disorder and vortex liquid effects.

In conclusion, we have studied a system in which spatially modulated

pairing induces a non-zero density of particle-hole states near EF which, in

the presence of a magnetic field, forms broadened Landau levels and exhibits

quantum oscillations. In light of the oscillations found in the specific heat,

our model would be expected to give similar oscillations in all other quantities

that are sensitive to the density of states near the Fermi energy. The model is

distinctly different from conventional models of quantum oscillations in metals

because of the paired nature of the quasiparticle states near the Fermi energy.



Chapter 5
Summary and Outlook

5.1 Summary

The work of this thesis is concerned with a model of a π-striped superconductor

which has been proposed to describe the type of two-dimensional superconduc-

tivity seen within Cu-O planes in 1/8 doped La2−xBaxCuO4. This model has

peculiar properties and is seen as a possible state of cuprates which might be

stable under certain conditions. In this thesis, we focused on the properties of

this model in a magnetic field. In particular, we spent a considerable amount

of work investigating the existence of quantum oscillations in this model.

Chapter 2 of this thesis introduced this model of π-striped supercon-

ductor and examines how the DOS and spectral properties of this model vary

as a function of the pairing potential, ∆. Unlike a uniform d-wave supercon-

ductor, this model exhibits an extended Fermi surface and has finite DOS at

E = 0. Furthermore, for a certain range of values of ∆, the spectral function

resembles the Fermi arcs seen in the ARPES measurements of the cuprates.

We also find that, for not very large values of ∆, the majority parts of the FS
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acts like a metal rather a superconductor (see Sec. 2.5).

In chapter 3, we calculate the DOS of a π-striped superconductor in

the presence of a magnetic field using the Franz-Tesanovic gauge transforma-

tion. The main result of this chapter is that a periodic structure of the DOS

is observed at low energies with a period that is proportional to B. This

corresponds to the formation of Landau levels that are a coherent mixture of

particles and holes. Furthermore, we showed that, this model is consistent

with the specific heat measurements of cuprates in that it does not lead to the

very large Sommerfeld coefficient that is predicted for the models based on FS

reconstruction. As LLs are prerequisite for the existence of quantum oscilla-

tions, it is natural to ask whether the π-striped superconductor also supports

the phenomenon. However, due to the particular method used in this chapter,

we were not able to make connections to quantum oscillation experiments, by

calculating the area associated with QO, as we were limited to only a few

discrete values of the magnetic field.

In chapter 4, we employed a semiclassical approximation which allows

much smaller increments in the magnetic field and provided justification for

this approximation. Within this approximation, quantum oscillations were

observed in a π-striped superconductor and the oscillation frequencies were

related to the FS areas. In fact, for intermediate values of ∆, the QO area was

found to be close to the experimentally measured value for the cuprates. In

addition, the oscillatory part of the low-temperature specific heat calculated

for this model was shown to be in qualitative agreement with experiments. The

QO in this chapter are found within the employed semiclassical approximation

and still require proof by exact BdG calculations. In conclusion, the work of

this thesis suggests that a π-striped superconducting model is a promising
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candidate to explain the QO phenomenon in the cuprates.

5.2 Outlook

At this point in time, the π-striped superconductor is a fairly new model and,

so, many questions about this model remain to be answered. In this section,

we suggest possible new studies on this model which would help to examine

the possible connection of this model to the cuprates. One question which

immediately comes to mind is whether such a state is likely to occur in the

high Tc cuprates. Arguments for the occurrence of a π-striped superconduct-

ing state have been given earlier by Berg, Fradkin and Kivelson.(Berg et al.,

2007, 2009) Note that another possible superconducting state associated with

stripes could be one in which the superconducting order parameter oscillates

in magnitude but does not change sign. This is a uniform d-wave but mod-

ulated due to interactions favoring stripe formation. There have been several

numerical studies (Corboz et al., 2011; Raczkowski et al., 2007; Loder et al.,

2010) investigating whether striped states arise from the t-J model. They

find that the two states, one in which the gap oscillates in magnitude but

does not change sign and the other in which the sign of the gap oscillates,

are extremely close in energy. To go beyond this investigations, one needs a

microscopic Hamiltonian that stabilizes stripes at the mean field level. The

discovery of such a microscopic Hamiltonian is the key to understanding the

stripe order.

One feature of the cuprates which is absent in this model of a π-striped

superconductor is the background
√
B dependence of the specific heat. How-

ever, it is not clear whether the dependence persists exactly at higher fields
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where the QO occurs. To address this problem in detail, one needs to examine

the relative stability of the π-stripe and a uniform d-wave. It has already been

shown in experimental studies that stripe order can be induced by a magnetic

field. In fact, based on the “nodal-antinodal dichotomy” which characterizes

the sharp distinction between the nature of electronic excitations in the nodal

and antinodal regions, it has been speculated before that there are distinct su-

perconducting types of order parameter, one is spatially uniform and the other

is spatially modulated (PWD) (Berg et al., 2009). The PDW state gradually

becomes stable as temperature decreases and the uniform order parameter be-

comes more stable with the possibility that the two orders coexist at some

temperature range. It is possible that the same behavior occurs as a function

of magnetic field. It is interesting to speculate that there could be a smooth

transition from a uniform d-wave to a modulated d-wave state as magnetic

field increases. Again, understanding the details of such a transition would

require a microscopic Hamiltonian which stabilizes stripe order.

Nevertheless, one can study some properties of the π-striped supercon-

ductor without a microscopic Hamiltonian. Our method in this thesis, allows

for the calculation of quantum oscillations in physical properties, such as the

specific heat presented in chapter 4. It is left as future work to calculate

oscillations in the magnetic susceptibility, resistivity and Hall resistivity. In

addition, the mixed state of cuprates is believed to be in a state of quantum

vortex liquid state. Although complicated, it would be beneficial to study the

implications of such a state in more detail. One expects that one feature of a

quantum vortex liquid is that the commensurability effect, seen in chapter 3 for

a perfect vortex array, will be absent in the vortex liquid state. This suggests

that the semiclassical approximation in chapter 4 may give a good description
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under conditions where quantum oscillations are seen experimentally in the

cuprates.

Finally, one expects a π-striped superconductor to coexist with spin

and charge density wave order. Consequently, one expects the reconstructed

FS due to all intertwined order parameters to be rather different from that

due to only the superconducting order parameter. Again, further study in

this direction requires a microscopic Hamiltonian to determine the relative

magnitude of all the order parameters by self-consistent calculations. This

would provide a more realistic model of the cuprates.



Appendix A
Electrons in a Magnetic Field

In this appendix, we first show how the energy spectrum of a free electron

system develops Landau levels (LLs) in the presence of a magnetic field. Next,

we show that tight-binding electrons also show discrete band structure that,

in the small magnetic field limit, resembles LLs.

To find the energy spectrum of a free electron in a magnetic field, one

needs to solve the following Schrodinger equation

1

2m
(
~
i
∇+

e

c
A(r))2ψ(r) = εψ(r) (A.1)

where A(r) is the vector potential. There are two extensively used gauges:

Landau gaugeA(r) = (0, Bx, 0) and the symmetric gaugeA(r) = 1
2
(−By,Bx, 0).

Here we use Landau gauge which is als o used in chapter 4. The Hamiltonian

(A.1) becomes

H = − ~
2

2m
(
∂2

∂x2
+ (

∂

∂y
+ i

eB

~c
x)2 +

∂2

∂y2
). (A.2)

Because of translational symmetry in the y and z directions, we try the fol-
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lowing function as the solution

ψ(r) = u(x)eikyyeikzz. (A.3)

Then Eq. (A.2) becomes

~2

2m

∂2u(x)

∂x2
+
e2B2

2mc2
(x+

~ky

eB
)u(x) = (ε− ~

2k2
z

2m
)u(x), (A.4)

which is the Schrodinger equation of a one dimensional particle in a harmonic

potential centered at

x0 = −~ky/eB (A.5)

with cyclotron frequency ωc = eB/mc. Consequently the solution gives the

energy levels given by

(εn − ~
2k2

z

2m
) = (n+ 1/2)~ωc (A.6)

where n is an integer.

The solution of (A.4) is highly degenerate. This is due to the fact

that the eigenvalues do not depend on the quantum number ky and, as a

result, the energy spectra is the same for different values of ky. One can

qualitatively calculate the degree of degeneracy. ky, which is the y component

of the wavevector, is a multiple integer p of 2π/Ly where Ly is the length of

the system in y direction. On the other hand x0 = −~ky/eB should lie within

the system size, so that 0 < x0 < Ly. This gives

−eB
~
Lx <

2π

Ly

p < 0 (A.7)

which means that the number of allowed values for integer p is eB
h
LxLy =
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eB
h
A where A is the area of the sample. Hence, the degeneracy of the LLs is

proportional to the area of the sample (Yoshioka, 2002).

The energy spectra of electrons moving in a periodic potential is also of

interest. Here we find the solution to the problem of electrons on a lattice where

we assume that the electron are tightly bound to the underlying lattice. The

resulting model is called the tight-binding model. The basis states consist of

Wannier functions which are orthogonal functions centered at lattice sites. In

the absence of the electron-electron interaction, the tight-binding Hamiltonian

in the second quantization notation is given by

H = −
∑
ij

tc†icje
iAij (A.8)

where t is the hopping energy term which is tied to the fact an electron reduce

its energy by hopping from one site to another. Aij is the integral of vector

potential from the i-th site to its nearest neighbor j-th site. Using Landau

gauge, the Schrodinger equation becomes (Hofstadter, 1976)

− t[ψ(x+ 1, y) + ψ(x− 1, y) + eieaBx/~ψ(x, y + 1) +e−ieaBx/~ψ(x, y − 1)] = εψ(x, y)

where x and y are in units of the lattice constant, a. ψ(x, y) is the coefficient

associated with the Wannier function centered at site (x, y) and can be viewed

as the wave function which gives the probability of finding an electron at site

(x, y). Like the continuum case, we write the wave function as ψ(x, y) =

g(x)eiky which means that the magnetic unit cell is a long row magnetic unit

cell in the x direction. Next we find the equation for the function g(m) as

follows

−t[g(m+ 1) + g(m− 1) + 2 cos(2πxα + k)g(m)] = εg(m) (A.9)
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where α = a2B
φ0

is the ratio of the flux through one primitive unit cell to

the flux quantum. Equation (A.9) is called the Harper equation. When α

is a rational number, the Harper equation solution leads to the Hofstadter

energy spectrum and its dependence on α resembles a butterfly, the so-called

Hofstadter butterfly (Hofstadter, 1976). The bands become narrower as the

magnitude of the magnetic field decreases and eventually become very sharp

levels that resemble Landau levels. In this thesis, we also call these narrow

bands Landau levels.

−4 −3 −2 −1 0 1 2 3 4
E

DOS

 

 

With magnetic field

No magnetic field

Figure A.1 The DOS as a function of energy E for α = 1/128 and µ = 0.
LLs are seen everywhere except around E = 0 where the van-Hove singularity
occurs at E = 0. The red curve shows the DOS in zero magnetic field.

Figure A.1 shows the DOS as a function of energy for zero field and α =

1/128. Note that α = 1/128 is equivalent to L = 128 where L is the number

of sites in a magnetic unit cell in chapter 4. LLs are seen everywhere except

around E = 0 where the van Hove singularity occurs. Unlike the continuum

case where the LL spacing is constant, the LL spacing is energy dependent

and is inversely proportional to the DOS in the absence of a magnetic field.

To deal with this, it is convenient to define an effective mass. This topic is

discussed in appendix D in detail.

When there is a pairing potential, one can get equations similar to (A.9)
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only if the effect of vortices is neglected. Using the semiclassical approximation

in chapter 4 (see Eq. (4.4)), one can follow the same procedure as described

above and obtain two Harper-type equations as follows

− t[u(m+ 1) + u(m− 1) + 2 cos(2πxα + k)u(m)]− µu(m) (A.10)

+ ∆m−v(m− 1) + ∆m+v(m+ 1) + ∆m cos(2πxα + k)v(m) = εu(m)

and

t[v(m+ 1) + v(m− 1) + 2 cos(2πxα + k)v(m)] + µv(m) (A.11)

+ ∆m−u(m− 1) + ∆m+u(m+ 1) + ∆m cos(2πxα + k)u(m) = εv(m).

Here ∆m± = ∆ cos(qx(x − 1/2 ± 1/2)) and ∆m = −∆ cos(qx(x − 1/2)) for

a π-striped superconductor. The two equations are two BdG-type equations

similar to (2.11) and (2.12). They can be solved the same way as a BdG

Hamiltonian. Note that these are the two equations one obtains in Landau

gauge which is the gauge that enables us to work with row unit cells. The

majority of results in chapter 4 are based on the solutions to (A.10) and

(A.11).



Appendix B
Singular Gauge Transformations

The BdG Hamiltonian both in the continuum limit and on a lattice has the

following form

H =


 ĥ ∆̂

∆̂∗ −ĥ∗




where there is a phase φ(r) associated with the order parameter operator, ∆̂.

It is convenient to remove the phase by a proper gauge transformation U so

that

H → U−1HU (B.1)

is not phase dependent. In the absence of vortices, this can be achieved by the

symmetric gauge transformation given by

U =


e

iφ(r)/2 0

0 e−iφ(r)/2


 (B.2)

However, in the presence of vortices, the phase of the order parameter acquires

a global curvature which satisfies

∇×∇φ = 2π
∑

i

δ(r − ri). (B.3)
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In other words, the phase should wind by 2π when going around a vortex.

Consequently, the transformation (B.2) is not single valued in the presence of

vortices In principle, one can use branch cuts to assure single valueless. To

avoid this, one needs to use singular gauge transformations. They are three

singular gauges available: the first two proposed by Anderson are

U =


e

iφ(r) 0

0 1


 (B.4)

U =


1 0

0 e−iφ(r)


 . (B.5)

Gauge transformation (B.4) is used in chapter 4. The third gauge transfor-

mation, proposed by M. Franz and Z. Tesanovic, is used in chapter 3 and is

given by

U =


e

iφe(r) 0

0 e−iφh(r)


 (B.6)

where φe(r) and φh(r) satisfy φe(r) + φh(r) = φ(r). In all of the above gauge

transformations, φ(r) satisfies Eq. (B.3). Intuitively, the Franz-Tesanovic

(FT) gauge transformation divides the vortices into two groups, e and h. Each

group is only seen by either electrons or holes. The differential equation for

the phase φµ(r), where µ is either e or h, is given by

∇×∇φµ = 2π
∑

i

δ(r − rµ
i ). (B.7)

Likewise, we need to define two superfluid velocities associated with either e

or h type vortices according to

vµ
s (r) =

1

m
(~∇φµ(r)− e

c
A(r)) (B.8)
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where A(r) is the vector potential associated with the magnetic field. Taking

the curl of the above equation and using Eq. (B.7), we get

∇× vµ
s =

2π~
m

[ẑ
∑

i

δ(r − ri)−B/φ0] (B.9)

which is used in appendix C to find the superfluid velocity associated with

either holes or electrons.

For a superconducting system on a lattice, the tight-binding BdG given

by Eq. (4.1) transforms to

H =



−t

∑

δ

eive
δ(r)ŝδ − µ

∑

δ

∆δe
iΛδ(r)ŝδ

∑

δ

∆δe
iΛδ(r)ŝδ t

∑

δ

e−ivh
δ (r)ŝδ + µ


 (B.10)

under the FT gauge transformation where vµ
δ (r) =

∫ r+δ

r
drvµ

s (r) and Λδ(r) =
∫ r+δ

r
dr[ve

δ(r) − vh
δ (r)]. The Hamiltonian is periodic with periodicity of either

type vortices. The periodic vortex array defines a magnetic unit cell so that

each magnetic unit cell has two vortices inside, one type e and one type h.

The magnetic field is inversely proportional to the area of the magnetic unit

cell. Due to periodic structure of the superfluid velocities, one can use the

Bloch theorem outlined in chapter 2 to find the solution to Eq. (B.10).



Appendix C
Superfluid Velocity

The line integral of the superfluid velocity associated with µ type (electron or

hole type) vortices from one site to its nearest neighbor enters in Eq. (B.10).

Hence, to build the Hamiltonian, one first needs to find the superfluid ve-

locities. In this appendix, we show how to derive the superfluid velocity vµ
s

associated with the group type µ = e(h) on a lattice. We find the local super-

fluid velocities on each lattice site and also on the links connecting the sites.

The latter is needed to have a good approximation of the integral. We start

with the following two equations for the superfluid velocity

∇× vµ
s =

2π~
m

[ẑ
∑

i

δ(r − rµ
i )−B/φ0] (C.1)

∇ · vµ
s = 0 (C.2)

where the summation in (C.1) is over all the vortices of type µ. To use an

easier notation here, we denote the x(y) component of vµ
s on site i with v

x(y)
i .

We drop the µ index and only find v
x(y)
i for type e vortices. v

x(y)
s for h type

vortices can be found by shifting v
x(y)
i by half of the diagonal of the magnetic

unit cell as seen in figure 3.1.

We derive v
x(y)
s in a few steps as follows: we first calculate Bk, the
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Fourier transform of the magnetic field as it is needed later in our calculations.

Next Stokes’ and Gauss’s theorems are applied to equations (C.1) and (C.2)

on a grid with spacing, b, equal to half of the lattice constant. This is because

we also need v
x(y)
i on the links connecting the lattice sites. Then we take the

Fourier transform of the resulting equations and solve the equations in k space.

Finally, the superfluid velocity is converted back to the position space.

First, to find the magnetic field in k-space, we start with the London

equation

B − λ2∇2B =
φ0

2

∑
i

δ(r − ri) (C.3)

where λ is the London penetration depth. Magnetic field and the δ function

in k-space are given by

B =
1

N

∑

k

eik·rBk (C.4)

∑
i

δ(r − ri) =
1

N

∑
i

∑

k

eik·(r−ri) (C.5)

where N is the number of grid points and the summation over k runs over the

reciprocal grid vectors. Substituting these definitions in Eq. (C.3) and using

the definition of the Laplacian on a lattice,

∇2eik·r = −e
ik·r

b2
[(1− eikx)(1− e−ikx) + (1− eiky)(1− e−iky))], (C.6)

we can solve the London equation in k space and get

⇒ Bk =
φ0

2

∑
i e

ik·ri

1 + λ2

b2
[(1− eikx)(1− e−ikx) + (1− eiky)(1− e−iky))]

(C.7)

which we will use later in our calculation. Note that eikx is eikxb where b is

set to 1 for convenience. Next we apply Gauss’ theorem to the divergence Eq.
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(C.2). On a grid, it becomes

vx
r − vx

r+x̂ − vx
r+x̂+ŷ + vx

r+ŷ + vy
r + vy

r+x̂ − vy
r+ŷ − vy

r+x̂+ŷ = 0 (C.8)

Its Fourier transform is

vx
k(1 + eiky − eikx − eikx+iky) + vy

k(1 + eikx − eiky − eikx+iky) = 0 (C.9)

⇒ vy
k = −(1 + eiky)(1− eikx)

(1 + eikx)(1− eiky)
vx

k (C.10)

which is the same as

vy
k = −sin(kx/2)

sin(ky/2)
vx

k . (C.11)

Now we apply Stokes’ theorem to (C.1). Going around the shaded square in

Figure C.1 The application of Stokes’ theorem to a grid used in this appendix
to calculate the superfluid velocity. The black dots denote the position of the
sites.

Fig. C.1, we have

b/2(vx
r + vx

r+x̂ − vx
r+x̂+ŷ − vx

r+ŷ − vy
r + vy

r+x̂ − vy
r+ŷ − vy

r+x̂+ŷ) = φ (C.12)

where φ is the flux of the right hand side of (C.1) through the square. Per-
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forming Fourier transform, we get

b/2[vx
k(1 + eikx)(1− eiky)− vy

i (1 + eiky)(1− eikx)] = φk (C.13)

vx
k =

(1 + eikx)(1− eiky)

[(1− eiky)(1 + eikx)]2 + [(1 + eiky)(1− eikx)]2
2φk

b
(C.14)

⇒ vx
k =

(1 + eiky)(1− eikx)

(1− eikx+iky)2 + (eikx − eiky)2

φk

b
. (C.15)

In the next step, we calculate φk. The flux, approximated by the value of right

hand side of Eq. (C.1) on four corners of the shaded square in Fig. C.1, is

given by

φ =
2π~
m

b2

4
[
∑

i

δ(r − rµ
i )−B(r)/φ0 +

∑
i

δ(r + x̂− rµ
i )−B(r + x̂)/φ0 + ...)

(C.16)

which in k space is given by

φk =
2π~
m

b2

4
(
∑

i

e−ik·rµ
i )f(k)(1 + eikx + eiky + eikx+iky) (C.17)

where

f(k) = 1− 1

1 + λ2/b2[(1− eikx)(1− e−ikx) + (1− eiky)(1− e−iky))]
(C.18)

=
λ2/b2[(1− eikx)(1− e−ikx) + (1− eiky)(1− e−iky))]

1 + λ2/b2[(1− eikx)(1− e−ikx) + (1− eiky)(1− e−iky))]
. (C.19)

Note that, f(k) can be well approximated to be equal to one for a type II

superconductor except for k = 0 which gives f(k) = 0. We substitute φk into
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(C.15) and simplify to get

vx
k =

A(
∑

j e
ik·(i−rj))(1 + eiky)(1 + eikx)2(1− eiky)

(1− eikx+iky)2 + (eikx − eiky)2
(C.20)

where A = π~
m

b
2

and which is valid for k 6= 0. Note that vy
i can be easily

calculated using Eq. (C.11). Taking the inverse Fourier transform of (C.20)

gives the superfluid velocity in position space.



Appendix D
SPECIFIC HEAT

One can calculate specific heat by using the relationship c = T ∂S
∂T

. For a

system of independent fermionic quasiparticles, the entropy, S, is given by

(de Gennes, 1989)

S = −kB

∑

kα

[fk ln fk + (1− fk) ln(1− fk)] (D.1)

where α is the spin degree of freedom and fk is the Fermi-Dirac distribution

function given by

fk =
1

1 + exp(εk/kBT )
(D.2)

where εk is the energy of the quasiparticle associated with the state k and its

dependence on α is implicit. Then the specific heat is calculated as follows

c =− kBT
∑

kα

[(∂fk) ln fk − (∂fk) ln(1− fk)] (D.3)

=− kBT
∑

kα

[∂fk(ln
fk

1− fk

)] (D.4)
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where the notation ∂fk = ∂fk/∂T is used. So

c =
∑

kα

εk∂fk (D.5)

=
1

kB

∑

kα

ε2k/T
2 exp(εk/kBT )

(1 + exp(εk/kBT ))2
. (D.6)

Now, by using the definition of the density of states, the sum can be trans-

formed into an integral over energy as follows

cv = kB

∫ ∞

−∞
dεD(ε)(

ε

kBT
)2 exp(ε/kBT )

(1 + exp(ε/kBT ))2
. (D.7)

where cv is the specific heat per volume and D(ε) is the density of states per

unit volume per unit energy. For a metallic system at low temperatures, the

low-energy density of states is fairly constant and can be approximated by its

value at Fermi energy, D(εf ). Consequently, we have

cv = 2k2
BTD(εf )

∫ ∞

0

dxx2 exp(x)

(1 + exp(x))2
(D.8)

where the integral variable is changed from ε to x = ε/kBT . The answer to

the integral is π2/6 and the specific heat becomes

cv = π2k2
BTD(εf )/3 (D.9)

which shows the linear dependence of cv on T as expected. One can see that

the Sommerfeld coefficient, γ = c/T , is proportional to the density of states

at Fermi energy.

Eq. (D.7) can be used for a superconductor. The only difference is

that, by convention, we only work with positive-energy quasiparticles. So,

now, D(ε) in Eq. (D) is the sum of the positive and negative density of states

and the integral starts from zero.
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To compare the specific heat of a metal to that of a free electron system,

it is conventional to define a quantity called the effective mass, m∗. For a 3-

dimensional system, we have

γ =
k2

B

~2
(
π2

3
)2/3m∗n1/3 (D.10)

where n is the carrier density (Harshman et al., 1989).

For a two-dimensional system, the specific heat per unit area is defined

as cA = γAT where γA is given by

γA =
π2k2

B

3
DA(εf ). (D.11)

In Eq. (D.11), DA(εf ) is the density of states per unit energy per unit area.

However, in reality, we have a stack of two dimensional systems with spacing

p and what is measured is still the specific heat per volume. To relate cv to

cA for these systems, we write

cv =
1

V

dU

dT
=

1

p
(

1

nA

dU

dT
) =

1

p
cA (D.12)

where n is the number of layers in the sample. This means that the Sommerfeld

coefficient of quasi two-dimensional systems measured in experiments is

γ =
π2k2

B

3
DA(εf )

1

p
(D.13)

=
π2k2

B

3
De

m∗

m

1

p
(D.14)

where De = m
π~2 is the density of states of a free electron gas in two dimensions

and is independent of energy. One advantage of writing the coefficient as in

Eq. (D.14) is that, under certain conditions as will be shown, the effective

mass, m∗, is the same as the cyclotron mass that is measured in quantum
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oscillations experiments for two-dimensional systems.

The specific heat calculated here is per volume and needs to be con-

verted to per mole for easier comparison with experiments. To do so, one

needs to multiply the Sommerfeld coefficient by NA

n
where NA is the Avogadro

number and n is the number of carriers in unit volume. We have

γ =
π2k2

B

3
De

m∗

m
NA(

V

pN
) (D.15)

where N is the number of carriers in the sample. The quantity inside the

bracket is the area of each unit cell. For a cuprate, it can be approximated by

a2 = (3.85Å)2 and, consequently, we get γ = 1.46 mJ mole−1K−2 (m∗
m

). This

explains the factor 1.46 in Riggs et al. (2011).

The cyclotron frequency, ωc is equal to eB
m~ for a two-dimensional free

electron gas. For a general physical system, this is not the case. However, it is

convenient to define a cyclotron effective mass, mc, such that the LL spacing

~ωc = ~eB
mcc

. Now we show that, the effective mass defined for specific heat,

m∗, is the same as mc for a closed FS in two dimensions. From semiclassical

physics, the cyclotron effective mass is given by

mc =
~2

2π
(∂A/∂ε) (D.16)

where A is the area of the FS. On the other hand, the density of states of a

closed FS in two dimensions is given by D(ε) = 2
4π2∂A/∂ε. This means that

mc =
~2

2π
2π2D(ε) = m(

D(ε)

De

) (D.17)

which is the exact same definition of m∗ as in (D.14). mc is a quantity that

determines the spacing of LLs through ωc = eB
mcc

. For a constant magnetic

field, a small spacing means large mc and vice versa. As shown in Eq. (D.17),
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mc is proportional to the density of states at Fermi energy. This means that,

for a large D(εf ), the LL spacing is small.
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