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ABSTRACT 

This thesis proposes a novel evolutionary approach in antenna design 

optimization. In this approach using the adjoint sensitivity, readily available in 

electromagnetic simulation software, a gradient-based optimization process is 

implemented. In this method coordinates of some control points are used as the 

optimization variables, and the antenna structure evolves through the optimization 

process to satisfy the appropriate constraints. This method has been illustrated by 

design of a number of microstrip antennas. 

In the next step this method has been modified using constraints on angles 

between some hypothetical lines in the antenna structure to keep the antenna 

structure physical during the optimization process. 

Also a new optimization problem has been defined to reduce the spacing 

between antenna elements in an antenna array for MIMO systems. The initial 

antenna structure to solve this problem is one of the antenna structures designed 

previously in this work. A 1 by 2 and a 1 by 3 antenna array for MIMO systems 

have been designed using this method and measurement of the fabricated antenna 

verifies the simulation results. 
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CHAPTER 1 

INTRODUCTION 

Computer-aided design (CAD) and analysis started growing as an 

important subject of research, after emerging the technology of first generation 

computers in 1950s. CAD became a major branch of research in the area of 

engineering, microwave and millimeter-wave circuits and antennas. In the 

beginning, modeling and simulation of radio-frequency (RF) and microwave 

structures was approximate. Representation of complex electromagnetic (EM) 

environment in simulations was by using transmission lines and equivalent-circuit 

lumped elements. This method was fast for computational resources for that time 

and it would provide physical insight and it is still popular between 

electromagnetic computational communities. But by increasing the computational 

power of computers, various numerical methods emerged for full-wave 

electromagnetic simulations. Because of calculating complete field solution for 

the structure, these new methods have better accuracy compared to the old ones. 

As mentioned before these methods emerged with increasing the computational 
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power of computers and it is an essential need for these methods. This is the main 

drawback for the full-wave electromagnetic solvers, which sometimes makes 

them very slow. Thus, it is challenging to use full-wave electromagnetic 

simulation in optimization procedures, which is usually referred as simulation-

based optimization. 

Design optimization in electromagnetics has been growing constantly with 

the permanent advancement in the electromagnetic simulation methods and 

software. But the optimization algorithms have not changed greatly. Evolutionary 

algorithms, which are mostly related to genetic algorithm and particle swarm 

algorithm, are popular between the optimization algorithms. This is because of 

they are easy to understand and user friendly [1]–[11]. Optimization have been a 

main part of design procedure of electromagnetic devices and they have been 

applied in designing many cases including antennas [12]–[19], antenna 

arrays [20]–[29], frequency selective surfaces [30]–[36], filters [37] and [38] and 

many others. 

1.1. MOTIVATION 

In antenna design, optimization is very important, because antenna 

characteristics such as input impedance, gain, sidelobe level etc., are known to be 

highly nonlinear function with respect to design variables. Also very often they 

have functional and slop discontinuities. So, in the design procedure of antenna 

structures usually a template is chosen as an initial geometry. Then, by changing 

all the parameters in the antenna structure, the optimized structure is obtained. But 
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during this optimization process the initial template will not change. For instance, 

when we are trying to optimize a rectangular patch antenna and we just use its 

width and length as the optimization parameters, at the end of the optimization we 

still have a rectangular patch antenna, and the template is the same. 

The optimized structure is supposed to meet all the required specifications, 

but this may not happen every time. At this stage of the design procedure usually 

using another template the same procedure would be repeated, until the right 

template is found. This problem might be because the optimizer is trapped in a 

local optimum or the template of the initial structure of the antenna is incapable of 

satisfying the requirements. Although the optimizer may find the best possible 

design, it might not satisfy the required specifications. In these cases, even with 

try all the possible values of the design parameters we cannot get the required 

structure. To overcome these problems many evolutionary population-based 

stochastic algorithms have been developed to find the global optimum. These 

kinds of algorithms usually start from an initial population, which, in each 

generation they evolve their structure to reach to the optimum design. Evolving 

the antenna structure might just be with changing some parameters or maybe by 

adding or removing some parts of the antenna [39]. 

In this thesis we try to develop a geometry evolutionary method for 

antenna design, exploiting adjoint sensitivities in the optimization algorithm. We 

apply our method in designing microstrip antennas in different frequency bands. 

Also using this method we design some antenna arrays for MIMO systems. 
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1.2. CONTRIBUTIONS 

In this thesis we develop a geometry evolutionary method for antenna 

design. Here, using coordinates of control points in antenna structure as the 

optimization variables the antenna structure would evolve to the optimum design 

during the optimization process. Properly defining the optimization problem and 

formulating it we could use a gradient-based algorithm, to solve it. Using 

HFSS [40] as the electromagnetic simulator and MATLAB [41] as the optimizer 

the antenna optimization is done automatically. In each iteration of the 

optimization process the optimizer would change the coordinates of the control 

points as the optimization variables and then it would run the simulation and 

export the responses and their sensitivities. Using the responses and their 

sensitivities the optimizer would decide to change the optimization variables in 

the direction of the optimum design, and run the simulation again. 

The author’s contribution in this thesis can be summarized as follows: 

1. Formulating and defining the antenna design optimization problem 

using the coordinates of control points in the antenna structure. 

2. Implementation and solving the antenna design optimization 

problem using a gradient-based algorithm, using HFSS as the 

electromagnetic simulator and MATLAB as the optimizer. 

3. Applying this new method to design and fabricate three microstrip 

antennas and increasing their bandwidth with optimizing the 

antenna structure and validating it with measurements. 
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4. Formulating and defining an optimization problem to reduce the 

size of antenna arrays for MIMO systems by reducing the spacing 

between antenna elements. 

5. Implementation and solving the optimization problem using a 

gradient-based algorithm using HFSS as the electromagnetic 

simulator and MATLAB as the optimizer. 

6. Designing, fabrication, and measurement of a 1 by 2 and a 1 by 3 

element antenna array for UWB MIMO systems, using this new 

method and validating the simulations. 

1.3. OUTLINE OF THESIS 

In chapter 2 there is a review on the previous methods in antenna design. 

We have reviewed many evolutionary population-based stochastic algorithms. 

They include computational intelligence, genetic algorithm, particle swarm 

optimization, ant colony optimization, simulated annealing, and invasive 

optimization method. 

In chapter 3, a novel optimization method for antenna structure has been 

described. This method has been illustrated through three antennas examples and 

has enhanced their bandwidth. The simulation and measurement results have been 

presented in this chapter. 

In chapter 4, constraints of the new optimization method has been 

modified. This modified method has been used to design a single element UWB 

microstrip monopole antenna. Then a new optimization problem is defined to 
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reduce the spacing between elements of a MIMO antenna array. By solving this 

new optimization problem a 1 by 2 and a 1 by 3 UWB antenna array for MIMO 

systems have been designed. Also the simulation results have confirmed by 

measurements of the fabricated antennas. 

Finally the thesis is concluded in chapter 5, which also includes future 

works and suggestions. 
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CHAPTER 2 

EVOLUTIONARY ALGORITHMS IN 

ANTENNA DESIGN 

2.1. INTRODUCTION 

Since the simulation tools in electromagnetics (EM) design optimization 

have had steady advancement over the last years, the optimization algorithms that 

are used have remained largely the same. Genetic algorithms (GAs) and particle 

swarm optimization (PSO)-related techniques dominate the mainstream of 

evolutionary strategies (ES), mostly due to widespread availability, understanding 

and user friendliness [1]–[11]. These optimization techniques have had great 

success and have been applied in a wide variety of electromagnetic device design 

problems including antennas [12]–[19], antenna arrays [20]–[29], frequency 

selective surfaces [30]–[36], filters [37] and [38] and many others. 

Antenna problems are challenging design problems, since the antenna 

characteristics such as input impedance, gain, sidelobe level etc., are known to be 
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extremely sensitive to design variables, which are dimensions of different 

elements, number of elements, position of elements, etc. This corresponds to a 

highly nonlinear function space with functional and slop discontinuities. 

Population-based stochastic algorithms are widely used for optimizing 

such problems, as they usually explore multiple solutions simultaneously. This 

class of algorithms have been used in a wide range of engineering design 

problems, including the domain of electromagnetics [9]. 

Although, genetic algorithm (GA) and particle swarm optimization (PSO) 

are perhaps the most popular population-based stochastic optimization methods, 

there are a number of other techniques that have evolved recently, all of which 

can be classified as methods based on computational intelligence (CI). These 

methods that are based on computational intelligence either mimic biological 

systems (GAs, evolutionary algorithms, and artificial immune systems), physical 

processes (simulated annealing, magnetic hysteresis) or individual and collective 

behaviour (as in ants and swarms) [39]. 

In the rest of this chapter we go through some of the aforementioned 

methods with more details, to have a better understanding of them and to know 

their advantages and disadvantages. 

2.2. COMPUTATIONAL INTELLIGENCE 

Computational intelligence algorithm is based on learning originated from 

the experimental results that are reported by Shi and Eberhart [57] from their 

work on particle swarm optimization (PSO). They observed that the PSO 
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performance was not sensitive to the initial number of particles in swarm, and 

showed a fast convergence potential. 

The Computational intelligence algorithm has a leader-follower 

information exchange mechanism. Through this mechanism, individuals learn 

from the better performers. A criterion is needed in order to divide the individuals 

into a set of leaders and a set of followers. However, it is easy to assign fitness 

function to the individuals for unconstrained problems but it is not easy to do the 

same for constrained problems as there are no clear means to compare infeasible 

solutions. Common methods for comparison use different techniques to assign 

fitness values to infeasible individuals such as summation of constraint violations, 

summation of scaled constraint violations, maximum amount of constraint 

violation, scaled and weighted combinations of the above or adaptive weights and 

scaling factors. Such techniques of fitness assignment are computationally 

inexpensive, but they need additional inputs for scaling and aggregation. 

In general, a multiobjective constrained minimization problem can be 

written as: 

(1.2)  

     

 

 

Minimize                      

subject to                   ,

1 2 k

i i

j j

= f f f

g a ,     i=1,2,…,q

                h b ,     j=1,2,…,r

  





F p p p

p

p

  

where there are k objectives, r equality and q inequality constraints, and 

 1, ,
T

np pp  is the vector of n optimization parameters. Each equality 

constraint is substituted by a pair of inequality constraints such as  j jh b  p  
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and  j jh b  p  to handle the equality constraints. Thus, r equality constraints 

would be substituted with 2r inequality constraints. The number of inequality 

constraints of the new problem is  2s q r  . For any individual, there is a 

constraint satisfaction vector,  1 2        
T

sc c cc , where 0ic   indicates the ith 

constraint is not satisfied and it is violated and it is equal to the value of violation 

as: 
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The constraint matrix for M individuals is thus given by: 

(1.1)  

11 12 1

21 22 2

1 2

            

           
Constraint ,

                   

        

s

s

M M Ms

c c c

c c c

c c c

 
 
 
 
 
 

  

The objective matrix for M individuals is in this form 

(1.2)  

11 12 1

21 22 2

1 2

            

           
Objective ,

                   

        

k

k

M M Mk

f f f

f f f

f f f

 
 
 
 
 
 

  

In a population we say individual 1 1 1

1 , ,
T

np p   p  dominates 

2 2 2

1 , ,
T

np p   p  when 1( )F p  is partially less than 2( )F p , i.e. 

   1 2 ; 1, ,i if a f a i k    and  1, ,i k   with    1 2

i if a f a . If an 
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individual do not dominate any of other individuals we call that individual non-

dominated. Individuals are usually sorted using this definitions, in this method 

using the constraint matrix and the objective matrix in non-dominated sorting, the 

individuals are ranked. A linear expression is used for fitness evaluation, and the 

fitness of the ith individual is calculated using the rank of individuals: 

(1.2)   fitness 1 MaxRank Rank ,i i    

The Computational intelligence algorithm is based on the following rules: 

 The algorithm tries to move the set of solutions toward feasibility 

before trying to improve objective function value of an infeasible 

individual. 

 A feasible solution is favoured compared to an infeasible solution. 

 Between feasible solutions, those with better fitness value are 

preferred. 

 Between infeasible solutions we choose using a non-dominated 

rank based on the constraint matrix. 

Ray in [58] suggested to use non-dominated rank of an individual to 

compare infeasible solutions. Also Srinivas and Deb in [59] have introduced a 

non-dominated sorting genetic algorithm (NSGA) to sort the individuals based on 

the constraint matrix. However, the process of non-dominated ranking based on a 

constraint matrix is computationally demanding, eliminates the need for scaling 

and weighting factors, which are needed to derive a single scalar measure of 

fitness. 
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This algorithm has three main sections which are leader identification, 

leader selection, and information acquisition. These three parts have been 

explained more in the following. 

A B

(a)

B

(b)

A A

(c)

C

B

(b)

A
C

B

 

Figure 2.1. Schematic interpretation of leaders. (a) Leaders are constraint rank = 1, (b) 

leaders are {A}   {B}, (c) leaders are all feasible solutions {C}, and (d) leaders are {A}   {C}. 

[39] 

A. Leader Identification 

To identify the leaders we use a non-dominated sorting process based on 

the constraint matrix and the objective matrix. This process is both relative and 

adaptive because it changes depending on the overall performance of the 

individuals. Based on different scenarios, there would be different interpretation 

of leaders, which are shown in Figure 2.1. If the set of individuals were in the 

form as presented in Figure 2.1(a), the set of leaders is the one with constraint 

rank equal to 1. If it was in the form of Figure 2.1(b), the leaders are those that 

have constraint rank equal to 1 and also have an objective rank less than the 

average objective rank of the individuals at the same time. The leaders are the 

feasible individuals when there is any feasible solution, as in Figure 2.1(c), or the 

intersection of the set of feasible individuals and the set of good objective 

performers, as in Figure 2.1(d). Because of handling constraints and objectives 
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separately, using non-dominated ranks and the use of two fitness measures, there 

is no need for scaling and aggregation. It is important to identify the good leaders, 

because it would mean subsequent exploration around their neighborhoods. 

B. Leader Selection 

In every step, the set of individuals are divided into a set of leaders and a 

set of followers. By not moving the leaders and keeping them in their original 

position we can ensures elitism. After selecting a leader for each follower and 

getting information from it the leader they move to a new location. Using a 

Roulette wheel mechanism, the leaders are selected. The better performing leaders 

have a greater chance to share information with the followers. In contrast to PSO 

where a particle has only access to some information, in this leader selection 

process, every follower has information about all the leaders to make a better 

choice. 

C. Information Acquisition 

The third key element in this algorithm is that a follower gets information 

from its leader and moves correspondingly. The information acquisition 

mechanism is similar to the crossover operation in genetic algorithm. The 

information acquisition operator explores neighbourhoods of the leader. During 

the process we can observe a bigger separation between the individuals results in 

a better exploration of the solution space, while a small separation between them 

results in a more focused neighbourhood search around the leader. 
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2.3. GENETIC ALGORITHM 

The basic building blocks of genetic algorithms are genes. A gene is a 

parameter with a binary encoding. A chromosome in a genetic algorithm is a set 

of genes. We can assign a relative value to each chromosome which is associated 

with the cost function. The algorithm begins with a large set of random 

chromosomes. Values of the cost functions are evaluated for each chromosome. 

The chromosomes are sorted from the best-fit to the worst-fit, according to their 

associated cost functions. Then, worst-fit chromosomes are discarded, which 

leaves a superior subset of the original list. Chromosomes that survive become 

parents, and then by swapping some of the parents’ genetic material, new 

offspring would be produced. The parents reproduce enough to compensate the 

number of discarded chromosomes. Thus, the total number of chromosomes 

remains constant during the optimization process. Mutations are a set of 

procedures which cause small random changes in chromosomes. Cost functions 

should be evaluated for the offspring and the mutated chromosomes, and the 

process is repeated. The algorithm stops after the maximum number of iterations 

is reached, or when a preselected acceptable solution is obtained. 

Figure 2.2 is a simple flow chart of a genetic algorithm. The algorithm 

starts by defining a chromosome as an array of binary coded parameter values to 

be optimized. If the chromosome has N  parameters in the algorithm, which 

means there are N  parameters in the optimization problem, and they are given by 

1 2 3,  ,  ,  ,  ,Np p p p  then the chromosome is written as 
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defining 

parameters

generate M

random chromosomes

evaluate fitness of 

the chromosomes

sort chromosomes

mutation

done?

discard worse-fit 

chromosomes

remaining 

chromosomes mate

stop

no

yes

 

Figure 2.2. A flowchart of a genetic algorithm [40] 

(1.2)  
 1 2 3chromosome ,Np p p p

  

Each chromosome is associated with a cost function value, found by 

evaluating a function, F, at 1 2 3,  ,  ,  ,  .Np p p p  The cost function is represented by 

(1.1)   1 2 3cost ,  ,  ,  ,  ,NF p p p p  

Each parameter ( ip ) can be discrete or continuous. If the parameter is 

continuous, either some limits are needed on the parameters, or they should be 
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restricted to a small set of possible values. One way to limit the parameters is to 

encode them in a binary sequence, and by choosing the number of bits which we 

allocate to each parameter we can control the accuracy of that parameter in the 

final solution. This encoding can be done using 

(1.2)  
 

1
1

,
2

L

i k
k

b k
q Q




  

where 

iq  = quantized version of ip  

L  = number of quantization level for iq  

b = array containing the binary sequence representation iq  

Q  = the largest quantization level 

    = half the largest-position value of iq  

The binary-encoded parameters ( iq ) does not have to mathematically 

related to ip  using equation 1.2) ). Instead, they may just represent some values. 

For instance, if ip  have four values of resistivity, then iq  can have two bits and 

each binary code can represent one of the values.  

Here, only genetic algorithms implementation with the binary encoded 

parameters and not the parameters themselves is described. In order to evaluate 

the cost function, the chromosome must first be decoded. An example of a binary 

encoded chromosome that has N  parameters, each encoded with   1  0O  bits, is 
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(1.2)  chromosome ... ,

1 2 Nq q q

= 11010111101110111010 1011001111
 
 
  

  

Substituting this binary representation into equation 1.2) ) yields an array of 

quantized versions of the parameters. This chromosome has a total of O N  bits. 

After planning a protocol to encode and decode the parameters, a set of 

random chromosomes is generated. Each chromosome has an associated cost 

function value, which is calculated from the cost function in equation 1.1) ). For 

example if there is a random set of 8M   chromosomes, with their associated 

cost function values. In the next step in the algorithm, the chromosomes from best 

to worst are sorted according to their cost (assuming a low cost is good). Now, the 

worst chromosomes are discarded. Sometimes, the top x are kept (where x is 

even), and the bottom M x  are discarded. Another possibility is to have a 

threshold for the cost to meet a specified level. 

The next step, after sorting and discarding the chromosomes, is choosing 

mates for the remaining 2M  chromosomes. Any two chromosomes can mate. 

Some possible approaches are to pair the chromosomes from top to bottom of the 

list, pair them randomly, or pair the first one with 2M , second one with 

2 1M  , etc. [40]. After mating, new offsprings are formed from the pair-

swapping parts of chromosomes. As an example, if two chromosomes are selected 

for mating, a random point is selected for crossover. The binary digits from parent 

chromosomes are swapped to the different sides of the crossover point, to form 
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the offspring. In this case the random crossover point is between bits 5
th

 and 6
th

 

digits, the new chromosomes are formed from 

parent #1          1  010100101 offspring #1      1  010110011
   

parent #2          1  100110011 offspring #2     1  100100101

  
 

  

 

After discarding of 2M  chromosomes, pair and mate, the rest of the 

2M  parents are left. By producing 2M  offspring in total again there are M  

chromosomes, which is the same number of chromosomes at the start. 

At this step, random mutations modify some of the bits in the list of 

chromosomes, by changing a “0” to a “1” or vice versa. Some bits are randomly 

selected for mutation from the        M O N  , total number of bits in all the 

chromosomes. By increasing the number of mutations, the region of parameter 

space that the algorithm is searching widens. This would result in more freedom, 

which is important, since the algorithm focus on a particular region of parameter 

space. Typically, on the order of 1% of the bits mutate per iteration [40].  

After the mutations, the cost function would be evaluated for the offspring 

and mutated chromosomes, and the process is repeated. The number of 

generations in this algorithm depends on whether an acceptable and optimum 

solution is reached, or the number of iterations is exceeded a preselected number. 

Ideally, at the end all of the chromosomes and associated costs should become 

almost similar, except for those that are mutated. 

In [41] the algorithm has been modified with adding a search to find local 

optimums around each chromosome. This technique has been used to achieve the  
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Figure 2.3. Geometry of the proposed wide slot CP antenna [41]. 

optimal impedance and axial ratio bandwidth. The antenna structure that has been 

optimized is shown in Figure 2.3, which is a slot circularly polarized (CP) slot 

antenna. 

The parameters of optimization are r1, r2, ls, ws, lc, l, and w. Also the 

fitness function has been defined as summation of a linear combination of S11 and 

axial ratio of the antenna structure for all the frequency points. Final values for the 

optimization parameters are 45.2, 28.5, 45, 4.1, 20.1, 13, and 0.9 mm respectively. 

The optimum antenna structure has achieved 50.8% for the 10 dB input 

impedance bandwidth with center frequency of 2480 MHz and 45.8% for the 3 dB 

axial ratio bandwidth with center frequency of 2400 MHz. 

2.4. PARTICLE SWARM OPTIMIZATION 

The particle swarm optimization (PSO) has been used in optimizing 

different multidimensional problems in a variety of fields [42]. Recently, this 

technique has been successfully applied to antenna design, and results were 

presented [43]. Also, this new stochastic evolutionary technique, based on the 

intelligent behaviour of swarms, has been shown in a few cases to perform better 
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than other methods of optimization like genetic algorithms (GA) [44]. The best 

way to explain PSO is through an analogy similar to that used to develop it by 

Kennedy and Eberhart in 1995 [1]. 

The goal of a bee swarm in a field is to find the location with the highest 

population of flowers. The bees start in random locations with random velocities 

and random directions looking for flowers without knowing anything about the 

field a priori. Each bee can only remember where it found the most number of 

flowers, and somehow knows the location where the other bees found the most 

number of flowers. Torn between returning to the location where it had personally 

found the most flowers, or toward the direction of the location where the other 

bees found the most number of flowers, reported by others. The bee accelerates in 

both directions changing its direction to fly somewhere between the two locations 

depending on whether nostalgia or social influence dominates in each iteration. 

Also, a bee might find a place with a higher density of flowers than it had found 

before. Then, it would be drawn to the location where is the best place found by 

other bees as well as this new location, because it would replace with the previous 

one. In addition to that, occasionally, one bee may find a place with more 

concentration of flowers than had been found by other bees in the whole swarm. 

Then all the other bees would be drawn toward that new location in addition to 

their own personal discovery. This way the bees fly over the locations of greatest 

concentration of flowers in the field, and then go back toward them. They are 

always comparing the territory, which they fly over, with previously discovered 
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locations with highest density, hoping to find a better location, which might have 

the absolute highest concentration of flowers. This would eventually lead them to 

the place in the field with the highest density of flowers. Soon, all the bees only 

fly around this place. Unable to find any location with higher density of flowers, 

so they are constantly drawn back to the same point. 

2.3.1. PSO Language 

In this section the language used to discuss the PSO is explained, which 

follows the analogy of particles in a swarm. Some of the key words are particle or 

agent, Location or position, pbest, and gbest. More detailed descriptions of them 

are given below. 

1) Particle or Agent: Every individual in the swarm (bees in the analogy 

above) is called as a particle or agent. All of the particles in the swarm act 

individually under the same rules. These rules are moving toward the best 

personal and best global location while checking the value of its current location. 

2) Position: In the analogy above position is location of bees in the field, 

which is presented by coordinates on the x-y plane. However, in general we can 

extend this idea to any N-dimensional problem. The N-dimensional space is the 

solution space, and any point in this space represents a solution to the problem 

being optimized. In the analogy above a physical location on the x-y plane is a 

solution, but this could just as easily represent number of elements and their 

position in an antenna array. In general these can be any optmizable parameters. 
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Defining the optimization problem with a set of parameters that could represent a 

position in the solution space is an important step in using the PSO. 

4) pbest: In the aforementioned analogy each bee records the position 

where it personally discovered the most concentration of flowers. This position 

has the best fitness value, which is personally discovered by a bee is called the 

personal best or pbest. Each bee has its own pbest depending on the path it has 

flown. At each point through its flying, the bee compares the fitness value of its 

current point to pbest. If the current point has a better fitness value, pbest is 

changed to the current point. 

5) gbest: Each bee also knows the highest density of flowers discovered 

by the other bees in the whole swarm. This position with the highest fitness 

discovered is called as the global best or gbest. There is one gbest for the whole 

swarm, to which all the bees are drawn. Every bee at each point through its flight 

path compares the fitness of their current point to the gbest. If the fitness of their 

current point has better fitness, gbest is changed to the bee’s current position. 

2.3.2. Development of the PSO Algorithm 

After understanding the language and terms used in PSO, in this section 

algorithm development is described in 5 steps. 

1) Define the Solution Space: 

The first step is to choose the parameters which need to be optimized and 

determine their range, to search for the optimal solution. This means specifying a 
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minimum and maximum value of each parameter in an N-dimensional 

optimization problem. 

2) Define a Fitness Function: 

In this step, we define the link between the PSO algorithm and the 

physical world. It is critical that a properly chosen function accurately represents 

the goodness of the solution in a single number. The fitness function should be 

dependent on all the characteristics we want to optimize. The fitness function and 

the solution space must be defined for each optimization problem separately. 

However, the rest of the algorithm is independent of the physical system being 

optimized. 

3) Initialize Random Swarm Location and Velocities: 

To begin the algorithm, we assign each particle a random location and a 

velocity that is random both in its direction and magnitude. Since in the beginning 

the initial position is the only location discovered by the particles, each particle’s 

pbest would be this position. Then the first gbest is the best position between 

these initial positions. 

4) Systematically Fly the Particles through the Solution Space: 

Then particles must be moved in the solution space like the bees in a 

swarm. The algorithm moves the particles by a small amount, one by one, for the 

entire swarm. The following steps take place for each particle separately. 

a) Evaluate  the  Particle’s  Fitness,  Compare  to  gbest,  pbest: Using the 

fitness function we can evaluate the coordinates of the particle in solution space 
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and assign a fitness value to the current location. If the fitness value is greater 

than the value of pbest for that particle, or the global gbest, then the 

corresponding position to pbest or gbest would be substituted with the current 

location. 

b) Update  the Particle’s Velocity: Handling the particles’ velocity is the 

most important element of the optimization algorithm. Velocity of the particle 

updates using the relative locations of pbest and gbest. It is drawn to them 

according to the following equation: 

(1.2)         +1 rand rand ,i ,j i,j 1 i,j 2 i,j=w× +c × pbest- +c × gbest-V V P P  

where i,jP  is the vector of jth particle’s coordinate in the ith iteration and i,jV  is the 

vector of velocity of the jth particle in the ith iteration where these vectors are 1 

by N in an N-dimensional optimization. From this equation we can say the new 

velocity is the scaled old velocity biased in the direction of gbest and pbest for 

that particular dimension. 1c  and 2c  are scaling factors which are used to 

determine the “pull” of pbest and gbest. These are respectively called the 

cognitive and social rates. 1c  determines how fast the particle is going toward the 

memory of his best location, and 2c  determines how fast the particle is going 

toward the rest of the swarm. By increasing 1c  each particle is encouraged more to 

explore the solution space toward its own pbest and by increasing 2c  each particle 

is encouraged more to explore the global optimum. 
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The rand( ) function generates a number between 0.0 and 1.0. Generally 

the two rand( ) functions in 1.2) ) call the function separately. w is the “inertial 

weight,” which is between 0.0 and 1.0, determines how much the particle remains 

along its original path. This is also another way to balance exploration and 

exploitation. The movement of the particle can be followed based on 1.2) ). The 

particle accelerates in the direction of gbest and pbest until they pass them. This 

“overflying” of the local and global optima is that many believe is one secret to 

the PSOs success [46]. 

c) Move the Particle: 

After velocity has been calculated, the next step is to change the particles 

position to their new position. The velocity is usually for one time step, which is 

assumed equal to one. The new coordinate is calculated for each of the 

dimensions using: 

(1.2)  1, , ,      ,i j i j i jt   P P V  

Then the particles’ location is changed to the location calculated by 1.2) ). 

The complex nature of this algorithm, which includes several independent agents, 

makes it suitable for implementation on parallel processors. 

5) Repeat: This process should be repeated from step 4) for all the 

particles. In this way the particles change their positions and then they are 

evaluated again. It is like snapshots of live swarm every second, which at those 

moments all the particles with their positions, and pbest, and gbest are updated 

before moving the particles for another second. This would be repeated until the  
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Figure 2.4. Configuration of an E-shaped patch antenna. There are six geometrical 

parameters to be optimized [47]. 

termination criteria are satisfied. There are several kinds of termination criteria. 

The most popular criterion is a maximum iteration number. With this criterion the 

PSO stops when the loop starting with Step 4) has been repeated a predefined 

number of times. The next type of stopping criterion is reaching a predefined 

value for the fitness. With this option at any iteration if a solution is found that is 

greater than or equal to the satisfactory fitness value, the PSO is stopped. This 

criterion is used when there is a specific engineering target to achieve, and finding 

the “best” solution is not necessary. A final criterion is about to achieve a 

minimum standard deviation (STD). This criterion compares the STD of the 

particles in the swarm to a predefined STD. If the current STD is less than the 
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predefined STD, it means all the particles are converged around the gbest. Then, 

the algorithm stops with the assumption that it has stagnated around the optimum 

solution. It is important to mention that all the aforementioned criteria can be used 

in any combination with each other. 

In [47] using a FDTD antenna simulator and PSO as the optimization 

method, two E-shaped antenna has been designed. For one of the antennas the 

optimization has been done to reduce the return loss of the antenna structure in 

two frequencies of 1.8 and 2.4 GHz. For the other antenna the optimization has 

been done to be able to cover the entire frequency range from 1.8 to 2.4 GHz. The 

antenna structure and the geometrical parameters that have been used in the 

optimization process are shown in Figure 2.4. The optimization parameters are L, 

W, Ls, Ws, Ps, and x, which are respectively in the range of (30, 96), (30, 96), (0, 

96), (0, 48), (0, 48), and (-48,48) mm, because we want to keep the E-shape 

structure and also because the substrate dimension is fixed at 100 mm by 120 mm. 

Also other constraints should be applied to maintain the E-shape of the antenna: 

(1.2)  sL <L,  

(1.2)  ,s
s

W
P

2
  

(1.2)  ,s
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 (a) 

 (b) 

Figure 2.5. Convergence results for E-shaped antenna designs. (a) The optimization of 

antenna I (dual-frequency antenna). (b) The optimization of antenna II (wide-band antenna) [47]. 

The fitness functions for optimization of the two antenna designs are 

different. For the first antenna (antenna I) in order to reduce the S-parameter the 

fitness function has been defined as 

(1.22)   .11,1.8 GHz 11,2.4 GHzF=50+max S ,S  
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 (a) 

 (b) 

Figure 2.6. Fabricated antenna structures. (a) Antenna I (dual-frequency antenna). (b) 

Antenna II (wide-band antenna). [47] 
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But for the second antenna in order to reduce the S-parameter over the 

frequency range of 1.8 to 2.4 GHz, the fitness function has been defined as 

(1.21)   .11, from 1.8 GHz to 2.4 GHzF=50+max S  

For these two antenna designs optimizations a 10-particle swarm, and the 

maximum number of iteration of 1000 are used. In Figure 2.5 the convergence 

results of the two optimization processes. In the first optimization 3150 FDTD 

simulations are done among 6974 encountered positions, but in the second 4606 

FDTD simulations are done among 6766 encountered positions. 

For the first antenna the final values of the optimization parameters are 54, 

46, 47, 20, 12, and 14. For the second antenna these values are 52, 82, 48, 20, 12, 

and 13, which are assigned to L, W, Ls, Ws, Ps, and x respectively. Also the 

fabricated antenna structures are shown in Figure 2.6. 

2.5. ANT COLONY OPTIMIZATION 

The ant colony optimization (ACO) is a global optimization method. It is 

based on the behaviour of ant colonies in finding food and it is a “short path” 

based algorithm. When the ants are searching around to find food, they release 

pheromone on the ground. The other ants select their paths based on level of 

pheromone on the ground. So, the higher the pheromone level, the more food can 

be found using this path. Furthermore, the pheromone on the ground can be used 

to remember the path to the food; also it’s good for new ants that are added to the 

trail to get more food from that place. The pheromone also evaporates to the air 
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slowly during time. This fact decreases the chance of a trail toward a source of 

food, to be chosen by the ants when its food is finished. 

The implementation of this natural behaviour in an optimization algorithm 

would be well suited for discrete and continuous problems. Firstly we need to 

define two functions for pheromone concentration and fitness evaluation and also 

choose some parameters, such as number of ants, 1 2α , α  (which would be defined 

later), etc., and then: 

Initialize I1, I2, …, In 

For each iteration 

For each ant 

For each adjoining node 

Calculate pheromone function and desirability 

End for 

Choose one node 

If food is found 

Mode 0: Come back home 

Else-if ant is at home 

Mode 1: Searching food 

End if 

Update pheromone 

End for 

End for 
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Solution is I1, I2, …, In with best result [46] 

We have N parameters, which corresponds to an N-dimensional space of 

solutions. Every ant has a vector solution with values of the parameters. The 

solution space is described with nodes. The ants move between nodes through the 

N-dimensional space of solutions by using the fitness value and the pheromone 

concentration level. To choose between the neighbouring nodes, the ants make a 

probabilistic decision among all of them. The value of the vector of solutions in a 

neighbouring node is calculated by changing the state of only one element of the 

vector. So, every ant has N neighbouring nodes, and it needs to choose to move 

toward one of them, in a probabilistic manner. One of the most popular forms for 

combining the two values of fitness function and pheromone level, to calculate the 

probability of choosing nodes in ant’s path is [48]: 

(1.22)   
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1 2
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where ,i jp  is the probability of choosing node j at iteration t from node i, jF  is the 

fitness value of node j,
 

 j t  is the pheromone level of node j at iteration t, 
2α  is 

the parameter used for controlling the importance of pheromone while 
2α  does 

the same for the fitness value. iS  is the set of nodes k available at decision point i. 

We can implement the function j  in different ways. This function 

indicates the pheromone level of nodes which changes during time. This includes  
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Figure 2.7. A 2N by 2M element symmetric planar array in XY plane. 

the evaporation during time and the level increase when ants visit that node. A 

possible approach is [49]: 

(1.22)         1 ,j j jt t t t        

where  j t  is the value which is added on node j because of visit of 

another ant, and  t  is the pheromone persistence, which is defined by: 

(1.22)   

,      mod 0

,

0,       mod 0

t
if

t
t

if








  
 

  
 

     

  

where   is the period time which the pheromone evaporates completely, and   is 

the coefficient of pheromone evaporation by the time period. 

In this section only a brief description of the general concepts that 

constitute ACO-based algorithms has been presented. Further information can be 

found in [49].  
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Figure 2.8. Maximum desirability versus the number of iterations. 

In [46] a 20 by 10 planar array antenna (Figure 2.7) has been optimized to 

have side-lobe level (SLL) less than -24 dB both planes ( 0    and 90  ). 

Antenna elements in this example are isotropic. In this example number of ants is 

10 and stopping criterion is to reach maximum 100 iterations. Other parameters of 

the have been selected experimentally and they are 1  , 20  ,   1j t  , 

1 5  , and 1 30  . The fitness function in this example has been defined as 

(1.22)      0 90, .jF =min SLL dB  SLL dB    
  

In Figure 2.8 convergence of the maximum desirability to the maximum 

has been shown, which shows a relatively fast convergence at iteration 40
th

. 
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2.6. SIMULATED ANNEALING 

Originally, simulated annealing aims to simulate the behaviour of the 

molecules of a substance during a slow temperature reduction that would result in 

the formation of crystals, which are the state with minimum energy [50], [51]. 

This technique has been used to solve other types of problems which are based on 

the analogy between the state of each variable y that affects a fitness function and 

the state of each molecule in a substance. The fitness function, here called the 

energy function  F p , where p  is the vector of state variables. In this algorithm 

at each iteration the current state configuration ip , is induced with a small random 

perturbation (where i is the iteration number). If 
p , the new configuration results 

into decreasing in the energy function, then it would definitely be accepted as the 

new current state (
i+1

p p ). Instead, if 
p  results into increasing the energy 

function, it might be accepted with a probability dependent on the system 

temperature, according to the Boltzmann distribution. This probability is higher 

with the higher system temperature. So, the probability that 
p  might be accepted 

as the new current state,  i+1P p p , can be written as: 

(1.22)  
   

   ,        if   
,

1,                                                      otherwise

i

i

i+1

F F
exp F F

P kT







         
     



p p
p p

p p  

where T is the system temperature and k is the Boltzmann constant. The system 

temperature, T, is decreasing in time with increasing the number of iterations, and  
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Figure 2.9. Position vector of Control points the antenna model [54]. 

it is following a logarithmic relationship with the number of iterations [50] [51], 

until the configuration freezes in a certain final state. Because of its probabilistic 

nature, this method has a notable advantage over classic methods of local descent, 

although it is computationally more expensive. By repeating the process with 

different initial points, we can increase the chance of finding the global optimum 

at the end of the process, even though it cannot be guaranteed. 

In [52] and [53], SA was used to find the optimum positions of the antenna 

elements in an array for different applications. In [52], they addressed the problem 

of applying linear arrays to an interferometric imaging technique, which is 

generally used in radio astronomy. His main objective was to improve the angular 

resolution of radio telescopes. Also, Hayward in [53] tried to find the best 

positions for the antenna elements in order to maximize gain of the array in  
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Figure 2.10. Prototype photograph with the whole ground plane [54]. 

 

passive applications of conventional beamforming and matched-field 

beamforming in a two-dimensional isotropic noise field. 

In [54] using  11max
dB

L S  as the energy function a monopole antenna has 

been designed to cover 2 to 11 GHz. In the energy function L is a positive number 

to make the energy function to have a positive value during the optimization. In 

each iteration the S-parameter has been calculated for 19 equally spaced 

frequency points over the frequency band. The finite element electromagnetic 

simulator in this work has been HFSS. The optimization variables are the length 

of the position vector of the 6 control points which has been shown in Figure 2.9. 

So there are 6 variables to be optimized, and the angles of the position vectors are 
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fixed. This optimization has been done in 6107 iterations and the optimized 

design has been shown in Figure 2.10. 

2.7. INVASIVE WEED OPTIMIZATION 

After introducing Genetic algorithm, particle swarm, and ant colony, in 

this section another numerical stochastic method is introduced. These methods are 

all inspired from natural process, and they have been used in order to solve an 

antenna optimization problem. Invasive weed optimization method has been 

inspired from colonized weeds. This algorithm has been used in dynamic and 

control system theory for the first time [55]. 

To understand the colonizing behaviour of weeds, here are some basic 

properties of the process [55], [56]: 

1) A finite number of seeds are being distributed over the solution space. 

2) All the seeds grow to a flowering plant and produce more seeds 

depending on their fitness value. 

3) The new seeds are randomly spread out in the solution space and grow 

to new plants. 

4) This process is repeated until the number of plants is equal to the 

predefined maximum number of plants. Now only the plants with best fitness 

value can survive and reproduce, and others are being destroyed. This 

reproduction and elimination continues and the fitness value of the weeds 

improves in each iteration until maximum number of iterations is reached. The 

process can be explained in details as follows: 
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A) Initialize a population 

Initial number of seeds is distributed in the N-dimensional solution space 

with random positions. 

B) Reproduction 

Only some of the plants are allowed to produce seeds, and that’s decided 

by the plants fitness value and the colony’s lowest and highest fitness values. Also 

the number of seeds that each plant produces depends on its fitness value. It 

increases linearly from the minimum possible seed production to its maximum 

level. 

C) Spatial dispersal 

The produced seeds are randomly spread over the N-dimensional solution 

space by a zero mean normal distribution, but with a varying variance. This 

ensures that the new seeds will be randomly distributed but also they stay near the 

parent plant. The standard deviation,  , of the normal distribution will be 

reduced from a predefined initial value, initial , to a final value, final , in every step 

(generation). For this reduction, a nonlinear variation has shown good 

performance, which is given in: 

(1.22)  
 

 max

max

n

iter initial final finaln

iter iter
σ σ

iter
 


    

where maxiter  is the predefined maximum number of iterations, iter  is the 

standard deviation at the present iteration and n is the nonlinear modulation index. 

D) Competitive exclusion 
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If a plant produces no seeds then it would be extinct.  Otherwise, It would 

reproduce to the maximum number of plants. So, there should be a competition 

between plants for limiting the number of plants in a colony. 

After some iterations, the number of plants in a colony will reach its 

maximum level by fast reproduction, however, it is expected that the plants with 

higher fitness value have been reproduced more. A mechanism for eliminating the 

plants with poor fitness in each generation activates by reaching the maximum 

number of plants in the colony ( maxP ). By activation of the elimination mechanism 

weeds produce seeds according to the mechanism mentioned in the step B. Then, 

they are spread over the solution space according to step C. After distributing all 

the seeds in the solution space, they together with the parent form a colony of 

weeds. And then, the weeds with lower fitness value are eliminated to have the 

maximum allowable number of weeds in a colony. In this way, the parents and the 

new weeds are compared together and the ones with better fitness value survive 

and they are allowed to reproduce again. The elimination mechanism for 

population control is applied in the next generations until the stopping criteria are 

satisfied. 

2.8. CONCLUSION 

In this chapter we covered some of the most popular global optimization 

methods in electromagnetics and antenna design. All these methods have a lot of 

different parameters which need to be set carefully, and finally the user ends up 

repeating the whole optimization process over and over with different values for 
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the aforementioned parameters in the optimization process to find the best 

optimum solution for the problem. So, using these optimization methods is 

basically to optimize the values of the optimization method for the specific 

problem that we want to optimize. 

Also none of the popular global optimization methods use the information 

in the gradients of the objective function. For example using this information we 

can optimize the problem in very lower number of iterations and function 

evaluations. One of the best ways to calculate gradients of the objective function 

in electromagnetics and antenna problems is to use adjoint sensitivities available 

in the commercial electromagnetic software. Using the adjoint sensitivities 

available in the electromagnetic simulation software we can use a gradient-based 

optimization method to optimize our problem, which is the antenna structure. In 

the next chapters we are going to present a new evolutionary optimization method 

to optimize shape of the antenna structure. 
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CHAPTER 3 

ANTENNA DESIGN EXPLOITING 

ADJOINT SENSITIVITY-BASED 

GEOMETRY EVOLUTION 

3.1. INTRODUCTION 

The design of antennas usually starts with a structure with some initial 

geometry. This geometry represents a known design template. The parameters of 

this template are usually changed to meet the design specifications without 

changing the template itself. For example, a rectangular patch antenna is a 

template whose optimizable parameters are the length and width of the patch. The 

changes in the initial design are usually carried out through an optimization 

algorithm (optimizer). The optimizer drives the electromagnetic (EM) simulator 

to change different template parameters towards an optimal solution.  
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The optimization process may not reach a satisfactory design for a number 

of reasons. The optimizer may get trapped into a local minimum. The optimizer 

may reach the best possible solution but the selected template is not able to satisfy 

the given design constraints. Global optimization approaches may help find the 

global solution at the cost of a dramatic increase in the number of required EM 

simulations. These algorithms have been explained in the previous chapter. All of 

them utilize nature-inspired mechanisms to locate the global optimal design. 

They, however, may not be able to locate a good design if the utilized template is 

not able to satisfy the design specifications. 

Other evolutionary approaches aim at changing the antenna structure 

through different mechanisms. These include adding or removing square 

metallization on the antenna surface [6], changing the antenna profile through 

global optimization [1], or using MEMs switches to change the antenna structure 

[7]. These approaches do not make use of response sensitivities which may be 

costly. 

Recently, there has been significant development in the theory of adjoint 

sensitivities using EM solvers. It was shown that using at most one EM 

simulation, the sensitivities of a given objective function with respect to all 

parameters is obtained regardless of the number of parameters. This approach was 

developed for the Finite Element Method (FEM) [8], the transmission line method 

(TLM) [9], the FDTD method [10], the Method of Moments (MoM) [11], and the 

Beam Propagation method (BPM) [12]. In [13], it was shown for the first time 
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that no adjoint simulation is needed to estimate the wideband adjoint sensitivities 

of the S-parameters. This approach is denoted as Self-Adjoint Sensitivity Analysis 

(SASA). Adjoint sensitivities have been utilized in [14] and [15] for solving 

optimization problems. SASA approaches have recently become available in a 

number of commercial solvers including HFSS [16] and CST [17].  

In this chapter, we present a framework for novel adjoint sensitivity-based 

evolutionary method antenna design. Our approach makes use of the recent 

developments in the theory of adjoint sensitivities. The design parameters are 

chosen as the coordinates of the vertices of a number of control points of the 

structure. Using the readily available sensitivity information, the structure evolves 

into arbitrary shapes through the change in the position of the control vertices. 

The number of the vertices indicates the allowed degrees of freedom of the 

structure. Feasibility conditions may be applied to limit the possibility of creating 

non-physical structures that violate geometrical constraints. 

This chapter is organized as follows; In the next section, we state the 

antenna design problem as an optimization problem. Then, we briefly review the 

available self-adjoint sensitivity analysis approaches both in the time and 

frequency domains. After that in the next section our approach is presented. 

Afterward a number of examples illustrate our antenna design approach. Finally, 

conclusions are given in the last Section. 
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3.2. THE OPTIMIZATION PROBLEM 

The problem addressed here is to determine the optimal parameter values 

of a given antenna structure. This design problem can be cast in the form of a 

general multi objective optimization problem which was mentioned in the 

previous chapter and it was simplified to the following mathematical form:  

(1.3) 
( )min

( )

                  

subject to:    0

p
F p

g p
  

where ( )F p  is the objective function, which is to be minimized, and p is the 

vector of the optimization variables. The vector function g represents the linear 

and nonlinear constraints on the optimizable parameters p. These constraints can 

be used to impose feasibility or other constraints on the optimal design. In a 

typical antenna problem, the objective function F is dependent on the S-

parameters at a number of frequencies. Other responses such as the radiation 

pattern in certain directions may also be included. Here, we focus only on the case 

where F is a function of the S-parameters. 

3.3. ADJOINT SENSITIVITIES 

Adjoint sensitivity analysis aims at efficiently estimating the sensitivities 

of a given objective function with respect to all designable parameters. In the time 

domain, this function has the general form: 

(1.3) 
0

( ) ,
T

F dtd


  
m

p,V  
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where   is the observation domain.   is the integral kernel and V is the vector 

of temporal time domain field quantities. They represent, for example, voltage 

impulses in the TLM method and electric and magnetic fields components in the 

FDTD technique. The S-parameter calculations can be cast in the form 1.3) ). 

For the TLM and FDTD techniques, the EM simulation can be cast in the 

form [10]: 

(1.1) , (0) , (0) ,      0 0MV NV KV Q V V  

where M, N, and K are system matrices that are functions of the material 

properties and utilized discretization. Q is the vector of temporal excitations. 

The classical approach for estimating the sensitivities of the objective 

function 1.3) ) with respect to all n parameters utilizes finite difference 

approximations. These approximations repeatedly simulated the structure for 

perturbed parameter values. For example, the derivatives obtained using Central 

Finite Differences (CFD) using: 

(1.3) 
( ) ( )

, 1 2 ,
2

j j j j

j j

F p p F p pF
 j= , , , n

p p

  


 
  

The cost of evaluating finite differences for problems with large number of 

parameters or with intensive simulation times can be prohibitive. 

Adjoint Variable Methods (AVMs) offer an alternative approach for 

sensitivity analysis. The sensitivities of the objective function F with respect to all 

design parameters are obtained by carrying out the time domain adjoint 

simulation: 
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(1.3)    , 0, 0T T T

m m T  T


    


M λ N λ K λ λ λ
V

  

Through the original field V and the adjoint field λ , the sensitivities of the 

objective function are evaluated by: 

(1.3) 
0

 ,
mT

T

i

i

F
dtd

p



  

      

where the vector   is a function of the vector V. The subscript “i” in 1.3) ) 

indicates that   is different for different parameter. For the S-parameters, the 

adjoint simulation 1.3) ) can be eliminated as the vector   is deducible from the 

vector V through a simple transformation [13]. A similar approach is implemented 

in the time domain solver CST [16]. 

In the frequency domain, it is usually required to estimate the sensitivities 

of a complex objective function of the form  ,F p I  where I is the vector of 

frequency domain state variables. These variables represent surface currents as in 

the Method of Moments (MoM) or spatial frequency domain fields as in the Finite 

Element Method (FEM). It is obtained by solving the structure’s system of linear 

equations: 

(1.3) ,ZI Q  

Frequency domain AVM analysis requires evaluating the adjoint vector I  

through the adjoint system [11]: 

(1.3)  ˆ / ,
TT

FI IZ     
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Knowing the original and adjoint fields I and I , the sensitivities of the 

objective function with respect to the jth parameter are thus given by [12] 

(1.3) ˆ (( / ) ( ( ) / ))/
T

j j j
p p pQ ZIF I        

where I  is the solution of 1.3) ) at the current set of parameters. If the objective 

function represents an S-parameter, the adjoint simulation 1.3) ) is not needed. The 

vector I  is deducible from the original field I. A similar self-adjoint approach is 

implemented in the commercial EM solver HFSS. 

3.4. OUR APPROACH 

The typical approach used in traditional antenna design approaches utilizes 

geometry templates whose parameters can be optimized without changing the 

template itself. For example, the length and width of a rectangular patch antenna 

are optimized to meet the design specifications. The final design would still be a 

rectangular patch antenna. It follows that the design template is preserved while 

changing only its parameters. 

In this work, we adopt a different approach. The optimized parameters p 

are selected as the coordinates of a number of control points of the structure. For a 

2D planar structure with N evolvable points, the vector of design parameters is 

given by p=[x1  y1  x2  y2 … xN  yN]
T
. By changing these parameters, we allow the 

structure to evolve into a completely different template that is more likely to 

satisfy our design constraints. 
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(a) 

(b) 

Figure 3.1. The top view of the coaxial-fed rectangular patch antenna before (a) and after 

(b) control vertices were allowed to evolve using adjoint sensitivity information. 

For example, consider the coaxial-fed patch antenna shown in Figure 

3.1(a). The points to be selected as control parameters are shown with a star.  The 

choice of these points may be done based on initial sensitivity analysis phase that 

determines which points affect the response more. Following our approach, this 

initial design structure may evolve into the structure shown in Figure 3.1(b) which 

may better satisfy the design constraints. 

We utilize in our approach a gradient-based optimization technique. Such 

a technique requires not only the function value of the response but also its 

gradient with respect to the different parameters. The gradient of the objective 

function F p   is required at every optimization iteration. If the function  F p  

is non-differentiable as in the case of the classical minimax function [19], the 

Jacobian of its sub functions is estimated through adjoint sensitivities and utilized 

in the optimization process. In general, our design approach evaluates, if 

applicable, the Jacobian matrix: 
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(1.33) 
 

 

/
,

/

T

T

F p
J

g p

  
 
   

  

The number of parameters may be large if we allow for a significant 

number of evolvable vertices. In such a case, the cost of evaluating the gradient 

may be extensive using traditional finite difference approaches. 

We instead utilize the self-adjoint sensitivity approach of the S-parameters 

[13] which offers an efficient approach for gradient estimation. Using no extra 

EM simulations, the gradient of the response with respect to all parameters is 

estimated over the frequency band of interest.  This approach has been recently 

adopted by a number of commercial EM solvers, e.g., HFSS and CST. We utilize 

in our approach the self-adjoint sensitivities available in HFSS. Our Matlab [20] 

optimization code drives HFSS and utilizes the values of the S-parameters and 

their sensitivities supplied by HFSS to solve the optimization problem 1.3) ). Any 

suitable gradient-based optimization algorithm can thus be applied. 

Because our approach utilizes the coordinates of the control vertices as 

optimization parameters, it is possible that during the optimization iterations a non 

physical structure may be created. This may happen in the cases that have a 

relatively large number of control points. In such structure, for example, two 

edges may cross one another which are not permissible in a planar structure. This 

kind of problems can be solved using different starting initial design. Feasibility 

conditions on the structure also may be added as nonlinear constraints in 1.3) ).  
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(c) 

Figure 3.2. The starting (a) and final (b) geometry and top view (c) of the fabricated design 

of the monopole antenna structure. 
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This guarantees that no such a structure is created during the optimization 

iterations. 

It should also be noted that our approach obtains a local minimum of the 

objective function.  Starting with different initial geometries, the antenna structure 

will likely evolve to final geometries with different values of the objective 

function.  We thus aim at obtaining only one feasible solution which satisfies the 

give design specifications. 

3.5. EXAMPLES 

In this section we illustrate our approach through a number of examples. 

All these examples were carried out using the commercial EM solver HFSS. The 

optimization functions in MATLAB drive HFSS. The geometry is evolved based 

on the S-parameter information and their adjoint sensitivities available from 

HFSS. 

3.5.1. A Monopole Microstrip Antenna 

In this example, we apply our approach to a single microstrip monopole. 

Our target is to convert this monopole into an UWB antenna by optimizing the 

coordinates of a number of selected coordinates. This single layer structure 

includes a microstrip patch, a microstrip feedline, and a ground plan. The 

structure is shown in Figure 3.2(a). The initial design is narrow band with 

dimensions as reported in previous papers [20]-[22]. 

We use the x and y coordinates of four vertices of rectangular microstrip 

patch of the starting structure as the variables of the optimization problem. These 
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vertices are marked with an “x” in Figure 3.2(a). The vector of optimization 

variables has thus eight components p =[x1  y1  x2  y2  x3  y3  x4  y4]. 

The optimization problem to be solved is given by: 

(1.33) 
 maxmin j

j

lb ub

         F

subject to   

p

pp p 
  

The vector of Fj, j=1, 2, …, 9 are the values of |S11| over frequencies in the 

range 3-11 GHz, which covers the UWB frequency range. The simulation of the 

structure has been done in 9 frequency points which are linearly distributed over 

the frequency band [3.0-11.0] GHz. The objective function to be minimized is the 

maximum of {|S11|} over the specified frequency range. plb and pub are, 

respectively, the lower and upper bounds of optimization variables. These bounds 

are enforced on the optimization problem to have a physically realizable structure 

as the solution of the optimization process. The substrate of the antenna is a 30 

mm×35 mm×1.5 mm FR4. It has a relative permittivity of 4.4. The length of the 

feed line is equal to the length of the ground plan and is equal to 12.5 mm. 

The EM simulator HFSS supplies the values all Fj and their gradient with 

respect to all the optimization variables p using its built-in adjoint sensitivities. 

We utilize the MATLAB function fminimax in solving 1.3) ).  After 11 iterations 

the design specifications of the UWB antenna are satisfied. The starting point for 

the optimization process is shown in the second column of Table 3.1. Notice that 

the negative sign appears because the variables are coordinates of the vertices and 

some are negative with respect to the selected axis. The utilized upper and lower  
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(a) 

 

(b) 

Figure 3.3. (a) the value of the return loss in dB at the initial and final designs and (b) the 

value of the objective function value at each iteration for the microstrip monopole antenna. 

bands are given by pub =[15  35    15   35   15   35   15   35] mm and plb =[-15 12.5 

-15 12.5 -15 12.5  -15 12.5] mm. The final solution of the optimization problem is 

shown in the third column of Table 3.1. The optimized antenna structure and top  
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Table 3.1. Initial and final parameters for the monopole example 

point initial design (mm) final design (mm) 

(x1, y1) (8.0, 12.5) (7.1482,  14.3440) 

(x2, y2) (8.0, 30.0) (8.2614,  30.4482) 

(x3, y3) (-8.0, 30.0) (-8.2490,  30.4451) 

(x4, y4) (-8.0, 12.5) (-7.1072,  14.3276) 

 

view of the fabricated design are shown respectively in Figure 3.2(b) and Figure 

3.2(c). The values of |S11| in dB at the initial and final designs are shown in Figure 

3.3(a). Figure 3.3(b) shows the decrease of the objective function (max {|S11|}) in 

the optimization process. 

For this example we tried using genetic algorithm to solve the same optimization 

problem 1.33) ). We used again one of MATLAB functions for the genetic 

optimization algorithm. In Figure 3.4(a) we can see the values of |S11| in dB for 

the optimized antenna structure using genetic algorithm, the rectangular shaped 

antenna, and the optimized antenna structure using the gradient-based 

optimization method using fminimax. Also in Figure 3.4(b) we can see the values 

of the objective function (max {|S11|}) during the optimization process by the 

genetic algorithm. 
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(a) 

 

(b) 

Figure 3.4. (a) the value of the return loss in dB for the rectangular shaped antenna, 

gradient-based optimization, and the genetic algorithm optimization and (b) the value of the 

objective function value at each iteration for the microstrip monopole antenna using genetic 

algorithm. 
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3.5.2. An E-shaped antenna 

In this example, we apply our approach to the design of an E-shaped 

probe-fed microstrip antenna for wireless communication applications [23], [24]. 

The antenna structure consists of a ground plane, an air gap, and an FR4 substrate 

with a thickness of 1.5 mm. The dimensions of the substrate are 60 mm × 60 mm 

×1.5 mm. The thickness of the air gap is 5.0 mm. The starting structure of the 

optimization process is shown in Figure 3.5(a). 

We choose the x and y coordinates of eight vertices as optimization 

variables. These vertices are marked with a red “x” as shown in Figure 3.5(a). The 

vector of optimization variables is thus p=[x1  y1  x2  y2  x3  y3  x4  y4  x5  y5  x6  y6  

x7  y7  x8  y8]
T
. The optimization problem to be solved is identical to 1.33) ). The  

x
x

x
x

x

x

x

x

 (a) 
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 (c) 

Figure 3.5. The starting (a) and final (b) geometry and top view (c) of the fabricated design 

of the the E-shaped antenna. 

vector of Fj contains the values of |S11| at 10 frequencies evenly covering the band 

5-6 GHz. The frequencies are linearly spaced in the frequency band. 
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(a) 

 

(b) 

Figure 3.6. (a) the value of the return loss in dB at the initial and final designs and (b) the 

value of the objective function value at each iteration for the E-shaped antenna. 

The optimization process is done in the same way as the previous 

example, by using the MATLAB function fminimax. The starting point for the 

optimization process is given in the second column of Table 3.2. The upper bound  
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Table 3.2. Initial and final parameters for the E-shaped antenna 

point initial design (mm) final design (mm) 

(x1, y1) (-10,  -8.7) (10.3290, -7.2383) 

(x2, y2) (-7,  -8.7) (-3.2655, -12.2912) 

(x3, y3) (-7,  -2.2) (-1.5994, -1.5775) 

(x4, y4) (10,  -2.2) (9.1761, -2.0847) 

(x5, y5) (10,  2.2) (9.3920, 1.7680) 

(x6, y6) (-7, 2.2) (-1.2730, 1.4774) 

(x7, y7) (-7, 8.7) (-3.1724, 11.8225) 

(x8, y8) (10, 8.7) (10.3455, 7.4790) 

 

for all the variables is 30 and the lower bound is -30.  These bounds limit the 

structure to the 60 mm × 60 mm substrate. The final solution of the optimization 

problem is given in the third column of Table 3.2. The optimized antenna 

structure and top view of the fabricated design are shown respectively in Figure 

3.5(b) and Figure 3.5(c). The change of the objective function at each iteration is 

shown in Figure 3.6(a). The response of the structure at the final structure is 

shown in Figure 3.6(b). 

3.5.3. A Capacitively-Fed Microstrip Antenna 

We also apply our approach to improve the bandwidth of a capacitively 

probe-fed microstrip antenna. The maximum bandwidth achieved of this structure 

in pervious works is 52% [25], [26]. The antenna structure has two microstrip 

patches. A main patch, which is to be optimized, and a 3.7 mm × 1.2 mm patch  
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Figure 3.7. The starting (a) and final (b) geometry and top view (c) of the fabricated design 

of the the capacitively-fed antenna. 
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(a) 

 

(b) 

Figure 3.8. (a) the value of the return loss in dB at the initial and final designs and (b) the 

value of the objective function value at each iteration for the capacitively-fed antenna. 
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Figure 3.9. The antenna structure in iteration 3 (a), 12 (b), and 18 (c) of the optimization 

process which corresponds to objective function equal 0.5 (a), 0.4 (b), and 0.3 (c) 
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Table 3.3. Initial and final parameters for the capacitive-fed antenna 

point initial design (mm) final design (mm) 

(x1, y1) (-8.5,  -8.5) (-5.3633, -8.7011) 

(x2, y2) (-2.8333, -8.5) (-1.4687, -11.7488) 

(x3, y3) (2.8333, -8.5) (2.4818, -9.0689) 

(x4, y4) (8.5, -8.5) (7.6311, -6.8408) 

(x5, y5) (8.5, -2.8333) (9.2986, -3.8876) 

(x6, y6) (8.5, 2.8333) (8.7158, 2.3469) 

(x7, y7) (8.5, 8.5) (4.7774, 4.7886) 

(x8, y8) (2.8333, 8.5) (1.8947, 6.0772) 

(x9, y9) (-2.8333, 8.5) (-3.3988,  11.9247) 

(x10, y10) (-8.5, 8.5) (-12.2114, 7.5617) 

(x11, y11) (-8.5, 2.8333) (-10.2569, 2.2686) 

(x12, y12) (-8.5, -2.8333) (-6.9423,  -3.1556) 

 

which is fed by a coaxial cable. They are placed on top of a 50 mm × 50 mm 

×1.52 mm substrate. The substrate is a Rogers RO3003 with a relative 

permittivity of 3. Also, a 5.0 mm air gap is used between the substrate and the 

ground plan. The initial structure of the optimization process is shown in Figure 

3.7(a). 

In this example, we increase the optimizable degrees of freedom. The 

coordinates of 12 vertices are chosen as optimization variables. These vertices are 

marked with red dots in Figure 3.7(a). The vector of optimization variables is 
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p=[x1  y1  x2  y2  x3  y3  x4  y4  x5  y5  x6  y6  x7  y7  x8  y8  x9  y9  x10  y10  x11  y11  x12  

y12]
T
. The optimization problem has the same form as 1.33) ). The vector Fj has 20 

frequency components evenly spread over the bandwidth 4-7 GHz. The 

frequencies are linearly spaced in the frequency band. Each component of Fj 

corresponds to the value of |S11| at one frequency. The optimal structure and the 

top view of the fabricated design are shown respectively in Figure 3.7(b) and 

Figure 3.7(c). The initial and final responses are shown in Figure 3.8(a). The 

starting point for the optimization process is given in the second column of Table 

3.3. The upper bound for all the variables is 25 and the lower bound is -25, 

because all vertices must be within the 50 mm × 50 mm substrate. The final 

solution of the optimization problem is given in the third column of Table 3.3. 

The values of the maximum of |S11| over all frequencies at different 

iterations of the optimization process are shown in Figure 3.8(b). Figure 3.9(a), 

(b) and (c) show the antenna structure for iterations 3, 12, and 18 which 

correspond to objective functions values 0.5, 0.4, and 0.3, respectively. We 

allowed for 200 optimization iterations. This number of iterations is expected 

given the relatively large number of design parameters.  The bandwidth of the 

final structure is 58% which is more than the optimized result reported in [25] and 

[26]. It should be noted that we optimize only for the antenna bandwidth.  Other 

antenna factors such as the gain and radiation pattern have not been considered. 

The development of self-adjoint approaches for these factors are still an open area 

of research. 



M.A.Sc. Thesis––M. Ghassemi         Chapter 3          McMaster University––E&CE 

81 

 

3.6. CONCLUSION 

A new evolutionary method is presented for the design of antenna 

structures. Our approach exploits the readily available adjoint sensitivities in 

evolving antenna structures. The coordinates of a number of control vertices allow 

the structure to evolve to satisfy the design specifications. Our approach was 

illustrated through a number of examples.  It can be easily integrated with 

commercial softwares that estimate self-adjoint adjoint sensitivities as a by-

product of the electromagnetic simulation. 

 



M.A.Sc. Thesis––M. Ghassemi         Chapter 3          McMaster University––E&CE 

82 

 

REFERENCES 

[1] J. Martinez-Fernandez, J.M. Gil, J. Zapata, “Ultrawideband optimized 

profile monopole antenna by means of simulated annealing algorithm and 

the finite element method,” IEEE Trans. Antennas Propag., vol. 55, no. 6 , 

pp. 1826–1832, June 2007. 

[2] Lin-Yu Tseng, and Tuan-Yung Han, “An evolutionary design method 

using genetic local search algorithm to obtain broad/dual-band 

characteristics for circular polarization slot antennas,” IEEE Trans. 

Antennas Propag., vol. 58, no. 5, pp. 1449–1456, May 2010. 

[3] J. Robinson and Y. Rahmat-Samii, "Particle swarm optimization in 

electromagnetics," IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 397–

407, Feb. 2004. 

[4] J. Aelterman, R. Goossens, F. Declercq, and H. Rogier, “Ant colony 

optimisation-based radiation pattern manipulation algorithm for 

Electronically Steerable Array Radiator Antennas,” IET Sci. Meas. 

Technol., vol. 3, no. 4, pp. 302–311, July 2009. 

[5] A. R. Mallahzadeh, H. Oraizi, and Z. Davoodi-Rad, “Application of the 

invasive weed optimization technique for antenna configurations,” Journal 

of Progress In Electromagnetic Research (PIER), vol. 79, pp. 137–150, 

2008. 

[6] Y. Rahmat-Samii, “Modern antenna designs using nature inspired 

optimization techniques: Let darwin and the bees help designing your 



M.A.Sc. Thesis––M. Ghassemi         Chapter 3          McMaster University––E&CE 

83 

 

multi band MIMO antennas,” Proceedings of IEEE Radio and Wireless 

Symposium (RWS), pp. 463–466, Jan. 2007. 

[7] C. Zhang, S. Yang, H. K. Pan, A.E. Fathy, S. El-Ghazaly, V. K. Nair, “A 

reconfigurable multiband patch antenna for wireless applications using 

MEMS switches,” Microwave and Optical Technology Letters, vol. 51, 

no. 8, pp. 1892–1896, Aug. 2009 

[8] H. Akel, J. P. Webb, “Design sensitivities for scattering-matrix calculation 

with tetrahedral edge elements,” IEEE Transactions on Magnetics, vol. 36, 

no. 4, pp. 1043–1046, July 2000. 

[9] M. H. Bakr and N.K. Nikolova, “An adjoint variable method for time 

domain TLM with wideband Johns matrix boundaries,” IEEE Trans. 

Microwave Theory Tech., vol. 52, no. 2, pp. 678–685, Feb. 2004. 

[10] N. K. Nikolova, H. W. Tam, and M. H. Bakr, “Sensitivity analysis with 

the FDTD method on structured grids,” IEEE Trans. Microwave Theory 

Tech., vol. 52, no. 4, pp. 1207–1216, April 2004. 

[11] E. A. Soliman, M. H. Bakr, and N. K. Nikolova, “An adjoint variable 

method for sensitivity calculations of multiport devices,” IEEE Trans. 

Microwave Theory Tech., vol. 52, no. 2, pp. 589–599, Feb. 2004. 

[12] M. A. Swillam, M. H. Bakr, and X. Li , “Efficient adjoint sensitivity 

analysis exploiting the FD-BPM,” IEEE/OSA Journal of Lightwave 

Technology, vol. 25, no. 7, pp. 1861–1869, July 2007. 



M.A.Sc. Thesis––M. Ghassemi         Chapter 3          McMaster University––E&CE 

84 

 

[13] M. H. Bakr, N. K. Nikolova, and P. A. W. Basl, “Self-adjoint S-parameter 

sensitivities for lossless homogeneous TLM problems,” International 

Journal of Numerical Modelling: Electronic Networks, Devices and 

Fields, vol. 18, no. 6, pp. 441–455, Nov. 2005. 

[14] G. Kiziltas, D. Psychoudakis, J. L. Volakis, N. Kikuchi, ”Topology design 

optimization of dielectric substrates for bandwidth improvement of a patch 

antenna,” IEEE Trans. Antennas and Prop., vol. 51, no. 10, pp. 2732–

2743, Oct. 2003. 

[15] N. Uchida, S. Nishiwaki, K. Izui, M. Yoshimura, T. Nomura, and K. Sato 

”Simultaneous shape and topology optimization for the design of patch 

antennas,” Proceedings of Antennas and Prop. (EuCAP), pp. 103–107, 

March 2009. 

[16] “HFSS” ver. 13, ANSYS, Inc., Canonsburg, PA, 2010. 

[17] “CST” ver. 2010.00, CST, Inc., Framingham, MA, 2010. 

[18] M. H. Bakr, M. Ghassemi, and N. Sangary, “Bandwidth enhancement of 

narrow band antennas exploiting adjoint-based geometry evolution,” 

Proceedings of IEEE International Symposium on Antennas and 

Propagation, pp. 2909–2911, July 2011. 

[19] J. W. Bandler, W. Kellermann, and K. Madsen, “A superlinearly 

convergent minimax algorithm for microwave circuit design,” 

Proceedings of IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 

1519–1530, June 1985. 



M.A.Sc. Thesis––M. Ghassemi         Chapter 3          McMaster University––E&CE 

85 

 

[20] “Matlab” ver. 7, The MathWorks Inc., Natick, MA. 2010. 

[21] L. Wang, W. Wu, X.- W.Shi, F. Wei, and Q. Huang, “Design of novel 

monopole UWB antenna with a notched ground,” Progress In 

Electromagnetics Research (PIER) C, vol. 5, pp. 13–20, 2008. 

[22] N. P. Agrawall, G. Kumar, and K. P. Ray, “Wide-band planar monopole 

antennas”, IEEE Trans. Antennas Propag., vol. 46, no. 2, pp. 294–295, 

Feb. 1998. 

[23] L. Zhang, Z. Cui, Yong-Chang Jiao, and Fu-Shun Zhang, “Broadband 

patch antenna design using differential evolution algorithm,” Microwave 

and Optical Technology Letters, vol. 51, no. 7, pp. 1692–1695, July 2009. 

[24] A. Khidre, K. F. Lee, F. Yang, and A. Elsherbeni, “Wideband circularly 

polarized E-shaped patch antenna for wireless applications,” IEEE 

Antennas and Propagation Magazine, vol. 52, no.5, pp. 219–229, Oct. 

2010. 

[25] G. Mayhew-Ridgers, J. W. Odendaal, and J. Joubert, “Single-layer 

capacitive feed for wideband probe-fed microstrip antenna elements,” 

IEEE Trans. Antennas Propag., vol. 51, no. 6, pp. 1405–1407, June 2003. 

[26] V. G. Kasabegoudar and K. J. Vinoy, “Coplanar capacitively coupled 

probe fed microstrip antennas for wideband applications,” IEEE Trans. 

Antennas Propag., vol. 58, no. 10, pp. 3131–3138, Oct. 2010. 



 

 

CHAPTER 4 

MIMO ANTENNA DESIGN USING 

GEOMETRY EVOLUTION GRADIENT-

BASED OPTIMIZATION 

4.1. INTRODUCTION 

To improve the channel capacity of communication systems, utilizing 

MIMO systems is regarded a promising solution. Using multiple antennas in the 

transmitter and receiver in a MIMO system, we can make the best use of the 

radiated power. UWB technology has been widely used due to the capability of 

high data rate in short range communications [1]. UWB systems are limited to 

short range communications because of the limitation in power according to 

federal communication committee (FCC) [2]. 

In MIMO antenna design, several approaches were presented to reduce the 

coupling between antenna elements. For instance, suspended inductive lines 
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before the antenna elements were used to reduce the coupling between two mobile 

phone PIFAs [3]. In [4], a tree-like parasitic structure was added between the two 

antenna elements to reduce coupling in a 2 by 1 UWB antenna array for MIMO 

systems. In [4], using two quarter wavelength slits on the ground plane, a 

narrowband transmission zero is created in the coupling path between elements of 

a PIFA array of a handheld device. Other techniques include increasing the 

spacing between the antenna elements or placing the antenna elements rotated by 

90 degrees relative to each other to minimize the coupling between them, see for 

example [6]. 

In this thesis, we present a novel approach to minimizing the distance 

between elements of a MIMO antenna array while also minimizing the coupling. 

In this method, we first design a single element antenna using a modified adjoint-

based geometry evolution optimization [7] with appropriate constraints. In the 

second stage, using an evolutionary approach, the elements of the geometry of the 

elements in the antenna array are allowed to evolve to allow for reducing the 

spacing between them while simultaneously reducing the coupling.  This method 

is first applied to the design single element UWB microstrip monopole.  We then 

design 1-by-2 and a 1-by-3 UWB MIMO systems.  We use HFSS [14]as the EM 

solver. It efficiently supplies both the S-parameters and their gradients with 

respect to all the optimization parameters over the frequency band of interest. 

Matlab [16]is used as the gradient-based optimizer. The Matlab optimization code 
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derives HFSS and uses the exported values of S-parameters, and their gradient, to 

find the local minimum. 

In the following sections of this chapter, the new approach in antenna 

design is clarified and then the optimization problems are defined and solved 

using a modified adjoint-based geometry evolution optimization. We explain both 

the design of the single-antenna element and the minimization of the distance 

between antenna elements. Finally our method is illustrated through the design a 

single element UWB microstrip monopole, a 1-by-2 MIMO system, and a 1-by-3 

MIMO system with UWB microstrip monopoles. 

4.2. MIMO SYSTEMS 

Since the early works in [18] and [19], MIMO technique have seen wide 

application in the field of wireless communications. The new approach of using 

multiple antennas in the transmitter and receiver of a wireless systems to improve 

the channel capacity has been known to be effective in rich multipath 

environments [20]. Using this technique in a communication system channel 

capacity can exceed the upper bound given by Shannon for a single-input single-

output (SISO) system. 

Several important factors determine the performance of a MIMO system. 

Spatial multiplexing of the MIMO elements increases the channel capacity. 

Sufficient spacing between antenna elements, correct number of elements, and 

appropriate array geometry create enough spatial diversity for spatial 

multiplexing. As an extension of spatial diversity, polarization diversity may be 



M.A.Sc. Thesis––M. Ghassemi         Chapter 4          McMaster University––E&CE 

89 

 

used to reduce the coupling between antenna elements.  Also, angel or pattern 

diversity can be useful for spatial multiplexing.  When patterns of different 

antenna elements have different beams, they can receive and transmit signals in 

different directions and different path.  This results in a rich multipath 

environment. Spatial, polarization, and pattern diversity are thus the three 

techniques used in the MIMO antenna design [20]. 

The situation is more sophisticated in designing MIMO antennas for 

handset applications. Generally in a MIMO system, elements of the antenna array 

need to be decoupled [20].  In handheld devices, however, there is also limitations 

in size [21]. In addition to diversity techniques, multi probe [22], [23], and 

multimode [24] excitation have also been applied in this area.  These techniques 

can be very useful in designing MIMO antennas with small size for hand held 

devices. 

4.3. OUR APPROACH 

A. Introduction 

In traditional antenna design typically one stage is the optimization of the 

parameters of the antenna structure to find the best design for the specific 

application and the corresponding characteristics. At this stage usually some 

typical parameters of the antenna structure are selected for the optimization 

process.  For example, in a rectangular microstrip patch, width and length of the 

rectangular patch are two parameters that are usually optimized. Optimizing these 

parameters, in some cases, may not result in a design that satisfies the design 
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specifications. The reason is that template of the design did not change and this 

template may not be capable of satisfying the specifications.  For instance, in the 

aforementioned example, after optimizing width and length of the rectangular 

microstrip patch the template of the antenna structure is not changed and the 

microstrip patch is still rectangular shape. 

Our new approach utilizes a different approach.  The optimization 

parameters are the coordinates of a number of control points of the antenna 

structure. By changing these control points, the antenna geometry would change 

significantly. For a 2D planar structure, the vector of optimization parameters is 

given by p=[x1  y1  x2  y2    xN  yN]
T
, where N is the number of control points. By 

choosing their coordinates as the optimization parameters, there are more degrees 

of freedom in the optimization process. It is more likely that the antenna structure 

would satisfy the design specifications.  The number of optimization parameters 

may be large which may make the computational cost heavy.  Adjoint sensitivity 

techniques offer an efficient approach for gradient-based optimization. They make 

optimization using coordinates of the control points feasible.  Using a self-adjoint 

sensitivity analysis approach for calculating gradients of S-parameters [8]-[13], 

we can estimate the gradient of S-parameters with respect to all the optimization 

parameters, regardless of their number, in one simulation. This approach recently 

has been adopted in some of the commercial EM solvers, e.g., HFSS, and 

CST [15]. 

 



M.A.Sc. Thesis––M. Ghassemi         Chapter 4          McMaster University––E&CE 

91 

 

B. Single Stage Optimization Problem 

Our approach for designing a MIMO system has two stages. The first one 

is for designing a single element antenna. The second one is for minimizing the 

spacing between antenna elements in the MIMO antenna array. 

In the first stage we want to minimize the |S11| of the single element in the 

frequency band of interest. The objective function of the optimization problem is 

the maximum value of |S11| in the specified frequency band. Because in our 

approach the coordinates of the control vertices can freely move, non physical 

structures can occur during the optimization iterations. Some constraints are 

imposed on the optimization parameters to avoid non physical structures. The 

optimization problem may be cast in the form: 

(1.2)  

 maxmin

,

j
j

lb ub

                F

subject to   

                     a 0

p

i

pp p 



  

where the values Fj, j=1, 2,…,N are the values of |S11| on N frequency points, 

which are uniformly distributed over the specified frequency band. p is the vector 

of optimization parameters, which are the coordinates of M control points, and it 

is given by p=[x1  y1  x2  y2  …  xM  yM]
T
. plb and pub are vectors of upper limits and 

lower limits of the optimization parameters, which are defined by the dimensions 

of the antenna structure. They define the free space that the control point can 

move. The values ai, i=1, 2, … , M-1 are the angles between hypothetical lines 

from the origin to the control points (see Figure 4.1). By construing these angles 

to be always positive during the optimization process we can ensure that the  
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Figure 4.1. The starting geometry of the UWB single element antenna structure. 

aforementioned nonphysical structure would not happen, and the vertices would 

not cross each other. We should mention by constraining these angles we are 

limiting our feasibility region more than what actually is needed, and we are 

losing some possible solutions to our problem, but still we can find some points, 

which can satisfy the specifications for the antenna design. We can calculate an 

expression for the values of ai based on the coordinates of the control points: 

(1.1)  
 

 

 

 
1 0 0

1 0 0

arctan arctan ,
i i
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i i

y y y y
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x x x x





    
           

  

where y0 and x0 are the coordinates of the origin. 

To be able to use a gradient-based optimizer we also need to derive 

expressions for the derivatives of the ai based on the optimization parameters, to 

evaluate the gradient of ai and use it in the optimizer. So, to wrap-up the 

calculation, there is M-1 angles and their gradients are vectors with length of 2N, 

which is the length of the vector of optimization parameters, and we need to 
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calculate their gradient vectors. The derivatives of ai with respect to all the 

optimization parameters are zero except xi, yi, xi+1, and yi+1, which i=1, 2, … , M-

1. So, the elements of vectors of gradients are zero except four elements. We can 

derive their expressions using equation (2.2): 
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Using these expressions, and the Matlab code that derives HFSS to 

simulate the antenna structure in every iteration and exports the values of S-

parameters and their derivatives with respect to all the optimization parameters 

alongside, we can implement the optimization problem in Matlab and solve it 

using a gradient-based optimizer. 

C. MIMO Antenna Array Optimization 

In this stage of our approach we form a linear MIMO antenna array using 

the structure resulted from previous stage with a larger spacing that ensures the 
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coupling antenna elements is low. Then, we minimize the spacing between 

antenna elements in the MIMO antenna array, such that the |S11| and coupling 

between all the antenna elements to be less than -10 dB. Notice that we also need 

the constraint in the optimization problem which we had in previous stage for 

single element antenna design, because in this stage also we want to let the 

antenna structure to evolve during the optimization process. But in the vector 

optimization parameters in this stage in addition to the coordinates of the control 

points we also have one extra parameter which is for spacing between antenna 

elements of the MIMO antenna array. Finally the optimization problem is in this 

form: 

(1.2)  

0.5

0.5

min

10 1, 2, ...,( )

10( )

0 1, 2, ...,

j

j

lb ub

i

                         d
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                        a             i =  M-1,

x
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where p is the vector of optimization parameters, which in addition to the 

coordinates of the control points, it includes the spacing between antenna 

elements of the MIMO antenna array. It is given by p=[x1  y1  x2  y2  …  xM  yM  

d]
T
, where d is the spacing, which we want to minimize it. The values fj(p) and 

hj(p) are |S11| and |S12| of the antenna structure, which we constrain them to be less 

than -10 dB during the optimization process. We also have constraints on the 

upper and lower band for the optimization parameters in pub and plb vectors, which 
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are defined by the dimensions of the antenna structure, and constraints on the 

hypothetical angles. 

To be able to use a gradient-based optimizer we need to use the derived 

expression for the derivatives of the hypothetical angles from previous section, 

and implement them in Matlab. Also to solve this problem, we need to calculate 

the |S11| and |S12| of the antenna structure and their derivatives with respect to all 

the optimization parameters using EM simulator, which is driven by the Matlab 

code. 

4.4. EXAMPLES 

In this section for elaborating the new approach in MIMO antenna design, 

we apply it to design a single element UWB antenna. Then using that single 

element we design a 1-by-2 and a 1-by-3 UWB antenna array for MIMO systems, 

by solving the optimization problems, which was described in previous section. 

A. UWB Single Element Antenna Design 

In this example we apply our approach to a microstrip monopole to design 

a UWB microstrip monopole antenna. The antenna structure consists of on a 

normal FR4 substrate with 4.4 relative permittivity, and dimensions of 30×35×1.5 

mm
3
, and a microstrip patch, which is fed by a 12.5 mm long microstrip feed line, 

and the ground plane under the feed line on the other side of the substrate. We 

start the optimization process with a 16×17.5 mm
2
 rectangular patch (Figure 4.1). 

This structure has been used previously in [17]. We choose five control points on 

onesideoftherectangularshapedpatch,whichtheyhavebeenshownbyred“x”
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on Figure 4.1. The other side of the microstrip patch would change symmetrically 

so that after optimization the antenna structure has a symmetric radiation pattern. 

Since there is five control points, with the notation of previous section in 

this example M is equal five. Thus, the vector of optimization parameters would 

have 10 elements and it would be given by p=[x1  y1  x2  y2  x3  y3  x4  y4  x5  y5]
T
. 

The vectors of lower and upper bounds of the optimization variables would be 

plb=[0  12.5  0  12.5  0  12.5  0  12.5  0  12.5]
T
 and pub=[15  35  15  35  15  35  15  

35  15  35]
T
. 

Table 4.1. Initial and Final Parameters of The Single Element Antenna 

Optimization Problem 

point initial design (mm) final design (mm) 

(x1, y1) (8.0, 12.5) (8.7841, 15.1650) 

(x2, y2) (8.0, 17.0) (6.5030, 17.4784) 

(x3, y3) (8.0, 21.5) (11.0579, 20.9659) 

(x4, y4) (8.0, 26.0) (12.9389, 25.7970) 

(x5, y5) (8.0, 30.0) (9.8854, 33.8692) 

 

In this example N is equal nine, which means the EM simulations are done 

on nine frequencies over the UWB frequency band (3.1 - 10.6 GHz). So, starting 

from3GHztheninefrequencypointsaregoingtobe,3,4…11GHz.Alsointhis

example for the expressions of constraints on the hypothetical angles, we assumed 
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the origin to be the end of the microstrip feed line, which has coordination of 

(12.5, 0). So the expressions for the angles are in going to be in this form: 

(1.2)     1 2 2 1 1arctan( 12.5 / ) arctan( 12.5 / ),a y x y x     

(1.2)     2 3 3 2 2arctan( 12.5 / ) arctan( 12.5 / ),a y x y x     

(1.22)     3 4 4 3 3arctan( 12.5 / ) arctan( 12.5 / ),a y x y x     

(1.22)     4 5 5 4 4arctan( 12.5 / ) arctan( 12.5 / ),a y x y x     

Also the expression for their gradients can be developed in this form: 
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Figure 4.2. The final geometry of the UWB single element antenna structure. 

 

Figure 4.3. The fabricated UWB single element antenna structure. 
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Figure 4.4. The values of the |S11| in dB at the initial and final designs of the UWB single 

element antenna structure. 

 

Figure 4.5. The values of the objective function at each iteration for the UWB single 

element antenna structure. 
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Finally using the Matlab code to derive HFSS as the EM solver and 

fminimax function in Matlab as the gradient-based optimizer, the antenna 

structure can evolve in 70 iterations to a UWB monopole (see Figure 4.2 

and Figure 4.3). In Figure 4.4 we can see the |S11| of the antenna for the first and 

last iterations. Notice, the difference between the simulation and measurement 

result is not using a homogeneous substrate with uniform permittivity, and using 

normal FR4 substrate for general electronic circuits. In Figure 4.5 we can see the 

objective function of the optimization problem in different iterations, which is 

maximum |S11| between the working frequencies. In this figure, and in this work, 

iteration number is defined number of function evaluations, since in optimization 

of antenna structures number of function evaluations is important and time 

consuming, which is reduced in this work because of utilizing gradient-based 

optimizatoin. Also in Table 4.1 we can see how coordinate of the control points 

change during the optimization process. 
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B. UWB-MIMO Antenna Array Design 

In this section using the antenna structure which resulted from the 

previous stage we form a linear antenna array. The antenna elements are on one 

substrate, and they have symmetric structure, which means in this part we also 

have five control points in one side of one of the antenna elements and the other 

side of the antenna change symmetrically. The other antenna elements also 

change symmetrically and they are identical. Thus, the vector of optimization 

parameters in this section includes coordinates of the five control points, similar 

to the previous stage, plus one more parameter for the spacing between the 

elements, and it is given by p=[x1  y1  x2  y2  x3  y3  x4  y4  x5  y5  d]
T
. Similarly M is 

equal to five, and we have 4 hypothetical angles in the constraints, and we can use 

the same expressions, which was derived in previous section, for the angles and 

their derivatives. The vectors of lower and upper bound of the optimization 

parameters are the same, but with one more element, plb=[0  12.5  0  12.5  0  12.5  

0  12.5  0  12.5  30.02]
T
 and pub=[15351535153515351535∞]

T
. The 

upper limit for the spacing parameter is infinite, but its lower limit should be large 

enough that the ground planes of antenna elements would not overlap. The width 

of the ground planes are 30 mm and the thinnest track for fabrication could be 

with 0.02 mm thickness, so the lower limit for the spacing parameter is 30.02 mm. 

In this part because of the antenna structure is more complicated than 

previous stage and there are more resonance frequencies, the EM simulation is  
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Figure 4.6. The starting geometry of the 1-by-2 UWB-MIMO antenna array. 

 

Figure 4.7. The final geometry of the 1-by-2 UWB-MIMO antenna array. 
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Figure 4.8. The starting geometry of the 1-by-3 UWB-MIMO antenna array. 

 

Figure 4.9. The final geometry of the 1-by-2 UWB-MIMO antenna array. 
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Figure 4.10. The values of the objective function at each iteration for the 1-by-2 UWB-

MIMO antenna array. 

 

Figure 4.11. The values of the objective function at each iteration for the 1-by-3 UWB-

MIMO antenna array. 
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Figure 4.12. The value of the |S11| in dB at the initial and final designs of the 1-by-2 UWB-

MIMO antenna array. 

 

Figure 4.13. The value of the |S12| in dB at the initial and final designs of the 1-by-2 UWB-

MIMO antenna array. 
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Figure 4.14. The value of the |S11| in dB at the initial and final designs of the 1-by-3 UWB-

MIMO antenna array. 

 

Figure 4.15. The value of the |S12| in dB at the initial and final designs of the 1-by-3 UWB-

MIMO antenna array. 
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Figure 4.16. The value of the |S13| in dB at the initial and final designs of the 1-by-3 UWB-

MIMO antenna array. 

 

Figure 4.17. The value of the |S22| in dB at the initial and final designs of the 1-by-3 UWB-

MIMO antenna array. 
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Figure 4.18. The starting geometry of the 1-by-2 UWB-MIMO antenna array. 

 

Figure 4.19. The starting geometry of the 1-by-2 UWB-MIMO antenna array. 

done in 18 frequency points. So in this part N is equal 18 and starting from 3 GHz 

thefrequenciesoftheEMsimulationsare3,3.5,4,4.5…11GHz. 

In this part because the objective function is just a single parameter, we 

can use fmincon functions in Matlab as the gradient-based optimizer. Using the 

Matlab code to derive HFSS as the EM solver and the gradient-based optimizer, 

for the 1-by-2 antenna array the spacing between antenna elements is minimized 

in 11 iterations and the final value is equal to the lower bound specified in the 

optimization problem. But for the 1-by-3 antenna array in 22 iterations the 

spacing was reduced to 5 mm. In Figure 4.6 and Figure 4.7 respectively we can 

see the initial and final antenna structure for 1-by-2 antenna array and in Figure 

4.8 and Figure 4.9 we can see the initial and final antenna structure for 1-by-3  
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Table 4.2. Initial and Final Parameters of The 1-by-2 Antenna Array 

Optimization Problem 

Point initial design (mm) final design (mm) 

(x1, y1) (8.7841, 15.1650) (8.5843, 14.8804) 

(x2, y2) (6.5030, 17.4784) (6.2381, 17.3823) 

(x3, y3) (11.0579, 20.9659) (11.1207, 21.2035) 

(x4, y4) (12.9389, 25.7970) (12.0941, 25.3263) 

(x5, y5) (9.8854, 33.8692) (8.7082, 33.2925) 

d 53.0700 30.0200 

 

Table 4.3. Initial and Final Parameters of The 1-by-3 Antenna Array 

Optimization Problem 

point initial design (mm) final design (mm) 

(x1, y1) (8.7841, 15.1650) (8.7262, 14.5307) 

(x2, y2) (6.5030, 17.4784) (7.0934, 17.2881) 

(x3, y3) (11.0579, 20.9659) (10.6603, 21.8127) 

(x4, y4) (12.9389, 25.7970) (10.7491, 25.9661) 

(x5, y5) (9.8854, 33.8692) (7.2240, 33.3379) 

d 53.0700 35.0447 

 

antenna array. The objective functions of two optimization problems for antenna 

arrays are shown in Figure 4.10 and Figure 4.11. In Figure 4.12 and Figure 4.13 

the |S11| and |S21| of the 1-by-2 antenna array are shown and in Figure 4.14, Figure 
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4.15, Figure 4.16, and Figure 4.17 respectively, |S11|, |S12|, |S13|, |S21|, and |S22| of 

antenna structure are shown in first and last. The measurement results are for the 

final antenna structure, which is fabricated and are shown in Figure 4.18 

and Figure 4.19. Also in Table 4.2 and Table 4.3 we can see the optimization 

parameters in initial and final structure of the antenna arrays. 

4.5. CONCLUSION 

A new evolutionary approach to design MIMO antenna arrays is 

introduced. In this approach using coordinates of control points as the 

optimization parameters, we let the antenna structure to evolve during an 

optimization process. The optimization process is a constrained gradient-based 

optimization, and the constraints are based on hypothetical angles in the antenna 

structure, which can be calculated based on the optimization parameters. We use 

the readily available derivatives of the S-parameters of the antenna structure 

provided by commercial software, during the optimization process. Finally for 

illustration a 1-by-2 and a 1-by-3 UWB antenna array for MIMO systems are 

designed using this approach. 
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CHAPTER 5 

CONCLUSION 

In this thesis a novel approach for optimizing the antenna structure have 

been presented. Using coordinates of control points as the optimization variables 

and then optimizing them, the antenna structure evolves during the optimization 

process. In this method we use the readily available adjoint sensitivities in the 

commercial electromagnetic software to solve the optimization problem with a 

gradient-based optimization algorithm. We have implemented this approach using 

HFSS [1] as the electromagnetic simulator and MATLAB [2] as the optimizer. 

The optimizer will run the electromagnetic simulator to get the antenna response 

and the sensitivities and then export them, after that it would import them again in 

for the optimization algorithm. This method has been explained and illustrated in 

chapter 3 with three antenna examples. These examples have been fabricated and 

tested to confirm the simulation results. 

In chapter 4, the aforementioned approach in antenna design has been 

modified. In the new modification some angles have been defined between 
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hypothetical lines from an origin to the control points. These angles are 

constrained to be always positive. Also, they can be calculated mathematically 

with respect to the optimization variables. So by defining these constraints we can 

make sure the antenna structure remains physical during the optimization process. 

That modified antenna optimization approach has been used to design a UWB 

microstrip monopole antenna. 

Also in chapter 4, a new optimization problem has been defined to reduce 

the spacing between antenna elements in a MIMO antenna array. This problem 

includes the constraints for single element antenna design in addition to new 

constraints for antenna array. We solved this new optimization problem by using 

the aforementioned single element UWB microstrip monopole antenna, as the 

starting point for the antenna arrays. For this problem also like the previous 

problem, we developed a MATLAB code to derive HFSS as the electromagnetic 

simulator and import the S-parameters of the antenna along with the sensitivities 

for the optimization, in each iteration. Once we solved this problem for a 1 by 2 

MIMO antenna array which resulted in almost zero spacing between the two 

antenna elements. In the next step antenna structure was optimized for a 1 by 3 

MIMO antenna array. In this case the spacing was dramatically reduced, but not 

to zero, because of the complexity of the antenna structure. 

All the antenna examples in this thesis was fabricated and tested to verify 

the simulation results. In chapter 3, three examples have been presented for the 

optimization of single elements antenna. In chapter 4, two antenna arrays have 
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been designed and fabricated using our method and measurements verify the 

simulation results. 

Having the experience gained through the course of this work, and the 

review on the previous optimization algorithms, the author suggests improving 

this optimization algorithm with mixing it with other global optimization 

methods. The advantage of this method, which is using a gradient-based 

optimization method, can be used in the other global optimization methods, such 

as particle swarm optimization method, genetic algorithm, etc. 
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