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ABSTRACT .

There are two equivalent ways to define order on ordinary affine

©

planes; however generalizations of these definitions to A.H. planes
yileld two'distincg definitions. We investigate tﬁe relation;hip between
ordered A.H. planes and their, ordered coo%dinate biternary rings. We
intro&uce twp new order relations: projective orderings of A.H. planes
which are show; to be eéuivalent to strong orderings of the coordinate
biternary rings of these planes and almost-strong orderings of biternary
rings whiéh are equijvalent to sg;ong orderings of-the corfESponding ‘
A.H, planes. In addition, we extend the axioms of order for projective
planes to'P.H. planes and discuss the properties of these order relatlions.

f
We now show that an A.H* planeLembedded in an ordered P.H. plane

-

is itself ordered. : 8

We considgr the projectivz completions constructed by Artmann,
coordina;;ze them by means of biternary rings with additional ternary
operations and p}ove various properties of the new ternary operators.

We then show that altho;gh there exist sFrongly ordered projectively
uniform A.H, planes whichk''do not have ordered proje;tive completions, we
can always construct ordered projective completions of projectively

-

ordered projectively ﬁniform A.H, planes.
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CHAPTER 1

Introduction

Projective or affine Hjelmslev planes may be described as geom-
etries in which more than one line may pass thrquh two distinct points.
They are defined by means of axioin systems and neighbour relations.

Bacon [2] and Lorimer [f3] have shown that affine Hjelmslev planes
o~

(henceforth called A.H. planes) may be coordinatized by algebraic struc-
»

tures called biternary rings.

Heyting [8] discusses ordered projective and ordered affine

Hjelmslev planes. Thomas in [16] 1investigates ordered Desarguesian A.H.

~ .

planes and shows that an ordering of such’'a plane is equivalent to the

ordering of its coordinate A.H. ring. Laxton et al [10] extend this in-
B .
vestigation, showing that the ordering of any A.H. plane is equivalent

»

e .
to the ordering of its cooga}Q?te biternary ring. In this. paper they

also introduce the notion of a s??Ong ordering of an A.H. plane and a
strong ordering of a biternary ring. Although the strong ordering of a
biternary ring induces a strong ordering of its associated A.H. plane,

they only prove the converse holds in the case of a translation plane.

In this thesis we continue the investigation of ordered Higlmslev

* .

planes. 1In section 3, we define almosfi-strong orderings of biternary

rings and projective or&erings of . planes. We then show that a strong

ordering of an A.H. plane is equivalent to an almost~-strong ordering of
its associated biternary fings and a projective ordering of an A.H. plane

is equivalent to a strong ordering of 1ts associated biternary rings. In

d
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the Desarguesian case, these notions are all equivalent.
, N -

In section 4, we extend the axioms of order for an ordina}y pro-
jective plane givep by Heyting in [8] to p;ojective Hjelmslev planes
(hencefdfth"called P.H. planes) and prove some properties of ordered
P.H. planes. We also show that an A.H. plane embedded in an ordered
P.H. plane is itself ordered.

in‘[8], Heyting also shows that the projective plane constructed
By adding a line at infinity and allvthe points incident with it to an
ordered affine plane is ordered. 1In section 6, we use the methods of
Artmé%h [1] to construct an ordered projective completion for a projgc—

/

tively ordered, projectively uniform A.H. plane.

H .
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CHAPTER 2

’

Basic definitions and prerequisites.

n

2.1. Affine planesi

An incidence structure with parallelism is a structure <WP, L, 1,1l
where T and I are disjoint sets whose elements are called points
and lines respectively, IcP®x ¥ and |/« LxIL 1is an arbitrary equi-
valence relation called Earalleligm. We write PI{ (P 1s incident

with 2) if (P, L) eX and <{||»m (L is parallel to w if (&, me ||.

An lordinary) affine plane is an incidence structure with paral-

lelism A =<P, 1,1 “ > in which:

1) Any two points are incident with exactly one line.
Then two distinct lines either meet in one point or not at all. Two
lines are parallel if they do not meet or are identical.

2) For each palir (P,f)€¢ Px L, there exists a unique line

L(P,4) such that PIL(P,t) and U]JL(P,4).

3) There exist three distanct non-collinear points. v

In an incidence structure, points P and Q are called
neighbours (PrQ) if there exist two dastainct lines {4 and v such

that P, 9QI¢,m. Lines 4 and m are called neighbours (&~vm) 1f

-M’\
for each P on either of these lines there exists a point @ on the //
other such ¢hat PvQ. We define £ Axm = {P € P [ PI{,m} -and \

|X| to be the cardinality of the set X,



An incidence structure with parallelism H o= < P, L, I,||>

1s called an affine Hjelmselv plane (A.H. plane) 1f it satisfies the

following axioms (cf. [1], 1) .
(Al) Any two points are incident with at least one line.
(A2) I1f LAm# $§ (&me L), then |4 Aw| =1 1if and only
if L p¥m.
(A3) For each pair (P,4)¢ x L, there exists a unique line
L(P, ?) such that PIL(P,%) .and || L(p,4).
(A4) There exist an affine plane A and an epimorphism (i.e.,

a surjective map which: takes peints to points and lines to

lines and which preserves incidence and parallelism),

x : # A with the properties:
1) PyQ af and only if  x{(P) = x(Q);
i1) Lvm if and only 1f  x (&) = x(m; - b

ir1) 1f LAm=g, then x(&)]| x(m.
Equivalently, an A.H. plane may be defined as an incidence
structure with parallelism H = <«r, 1, I,H > satisfying the following

set of axioms (cf. {14), 2.6).

(A1) Any two points P and Q are incident with at least
ene line {. If P¥Q, we write PQ = {.

(A2) There exist Pl, P2' P,ec P such that P1 P} % PiP

3 k

where (1, j, k) 1s any permutation of (1, 2, 3). PJ"PﬂP3

1s ¢alled a triangle.
’
{A3) .% 1s transitive on IP.

N

(A4) If PAm# g ({, me L), then lel\m| =1 if and only

if {&Zm.

’

€,
T



(AS)' If 2sw P,RIL; Q,RIm and PnQ, thep R~P,Q.

(a6)' If {vm;n2l; PIL,n and QIm,n, then PYQ.

(a7)' 1f Ullm;PIt,m and €%n, then mzZm and there

7

exists Q such that QImm.
(AB)' For each pair (P,l) e P xI , there exists a unique line

L(P,t) such that PIL(P,0) and 2| L(r,0).

The neighbour relations on P and 1L are equivalence relations
and hence may be used to partition P and I into equivalence classes.

Define P = {QCPIQ'\":P} and L= {meL fmri}. Let ®=®/v and

'-I-I:= L /~v. Then # = ~E, E, Y,n > (where T and Tr are suit-
able restrictions of I and || ) is isomorphic to the undex}ly‘ing
ordinary affine plane A (defined in (pd)) of K ; thus we may take

A= .

r¥3

Finally, if ¢ 1is a line of - , let me = {(me L m||€}. For

€¢IL, we write mun,~nvn if there exist lines ‘qen, and en
{m ‘ . 3™, h m

t

such that %'\ah. Clearly, ~ is an equivalence relation on {ﬂtltc L}.

If -»nm, then for any (q,/h) e x1m . either chﬂ=¢ or 3’\'?\.

¢ t

Let L(P'"L) be the unique line of “f_ through P.

An ordinary affine plane is an A.H. .plane in which two points are

neighbours if and.only if they are identical.

Let # be an A.H. plane. We may coordinatize H in the following
way. Select a triangle (cf. (A2)') O0,X,Y of H.
E = L(X,0Y) A L(Y,0X) and k=OE. Let H= {PcP|P]&} and n=HNO.

The points of H are denoted by a,b,c,... except f 0 and E which



N
¢
are denoted 0 and and 1 ‘respectivoly. To any point P, we assign
the coordinates (x,y), where x = L{?, OY) AR and y = L(P, O0X) A k.
Call L, = {Re L I‘".{mﬂoy} and L, = {Le ILlerﬁnOY}, the sets of
lines of the first and secpnd kind Fespectively. If {4 € lLl then we
assign { the coordinates [u,v]l, where L(®,{) AYE= (u,l) and
2

{
LA0X = (v,0). If Lel,, we ysign { the coordinates (m,n],,

where f.(o,{)/\ XE =(1,m) and 4L AOE = (0O,n).

We now define two ternary maps in the following way.

Tl : HXH X H——H
(x,m,n)MTl(x,m,n) = h/\ L(L((Oln) ’ O(l,m)) A L(X,OY) , OX)

TO : HXn X H——H
(Y 7 U, V)mna T (y 41, v) =R AL(L({v,0), O(u,1)) A L(y,0X), OY).

From the definitions, we may conclude vy = Tl(x,m,n) if and only if

) (x,y) I [m,n]z; X = To(y,u,v) if and only. if (x,y) I [u,v]l. (cf. [11]).

2.2. Biternary rings.

An algebraic system R = <R, T,0,1>, where R is a set, T

is a ternary operator and 0,1 are distinct elements of R is a

ternary ring if the following axioms hold (cf.; [11}), 2.7(a)).
' \

[l

N |
(Z“O) T(m,0,n) =n=7{(0,m,n), for all m,ne R;

(’2_’1) T(l,m,0) =m=T(m,1,0), fo’r all me R;

j - ('fz) T(a,m,x) =b is uniquely solvable for x, for all
a,m,be R. 4 ‘
) If R is a ternary ring then a # 0 1is a left (right] divisor

of zero if therxre exists b # 0 such that T(a,b,0) =0{T(b,a,0) =0]}.

-

’ AR
el mamn e Yace e o s

2



N

Let- D+[I§_]‘ be the sct of 0 and the left [right] divisors of zero

{cf. [11T, 2.7(c}).

. . i An algebraic system ¥ = <R, T, TO' 0,1> 1s a biternary rang if

the following axioms”hold ‘(cf. [11}, 2.7(e)).
(61) R = <R, T,0, 1> 1s a ternary ring.

(B2) '»R 1S an equivalence relation on R, where for a,beR

a“uRb if and only if every x .which satisfies the equation

a = T(x, 1,b) 1s an element of D+.

(83). To: RX D+x R ———--> R with the properties

I

i) TO(m' 0, n) n = TO\(O' p, n) for pé'§)+; m, n €R;

it

/ iy) To(l,u,O) u, for ucD+;
L’-—-/”-

iii) To(a, m, x)

]

b 1s uniquely solvable for }, for all

a,beR, meD .
+

Q
(B4) T(x,ml,nl) = T(x,mz, n2) is uniq&olvable for x if

and only 1if mla’/Rmz.

{85) The system T(ai, X,y) = bi; i=1,2; uniquely determines

k)

the pair x, y if a, ¢R a, . Lf a;, “p 3, and bl '{'R bZ’

then tfhe system cannot be solved. If ay ¢R a2 and b1 ’\'R b2,

¥

then x ¢ D+. |

(B6) The system v = T(x,m,n) and x = TO(y,u,v) where u «¢ D+

determines uniquely the pair x, y.

o , , .
(R7) If a, '\:R a, and ~b1 '\R b2 and (al'bl) # (aZ’bZ) , then
one and only one of the systems ’l‘(ai,x,y) = bi'

TO(bi,u,v) = a i =1,2; 1s solvable with respect to x, ¥

1;
or u, v. The solvable system has at least two solutions and

—




X, VR Xo» Y1 R yo or uy '\:R‘uz. 1 g Vs according as the
former or latter system 1s solvable,

(B8) The system To(bi,x,y) = ai; 1 ="1,2; deteymines uniquely
‘ \J
xeD, and y eR if b1 7{'}2 -b2 and a; “p a,; has no

solutions for x and y if a, %R a,.
(B9) If To(b, u; . vi) = a; i = 1,2, then v, ’vaz and there
exists at least one other pair al, bl such that

al = TO(bi' ui, vi), i=1,2.

.(plo) The function T ind?:‘ées a function T in R/'\:R and
< R/’\:R , T,0,1> is a ternary field with 0= {z[z%RO}

and 1 = {z[z'le} in the sense of Hall; cf. [7].

A
2.2.1, Lemma. The following properties hold in B.
(811) ’I‘l(\x,.m, n) = b is uniquely solvable-for x if m')éRO;
for all m, n, beR. |
/
(812) Tl(a, X, n) = b is uniquely solvable for x if a?éR'O;
-for all a, n,beR. -
Proof. These properties ar—e direct consequence of (’Cl) , (’Cz)
and (BS).
2.2.2. Theorem. (cf. (11}, 2.8). <, Tl' 'I‘O, 0,1> 1is a bi‘t:ernary
ring whe;re D, =n and '\'R =N,

2.2.3 Theorem. (cf. (11], 2.9). Let 8B = <R, Tl,'I'O,O,l> be a

biternary ring and let 4 (8) <P, L, ||, I5 be the incidence struc-

ture defined by:



P'= RXR; ’

= h
1L ]Llu 1L2_ where

L = {[u, v]l‘[u, vl {(To(y.u,V).y) I.ch}; (ulV)eD_’_x}R},

= { a) = ( |xeR}; i
L,= {{m, n],|(m A}, (x; T, C,mn)) | xeR}; (m,n) e Rxpl;

fm, nly i [u, v], if and only if i=3 and m=

;
I 1is set inclusion. \

4( AN
Then (R) is an A.H. plane.

2.3. Projective planes.

An incidence structure ¥ = <P, IL,I> is called an ordinary

projective plane if it satisfies the following axioms.

# 1) Any two points are incldent with a unique line.
2y Any two lines intersect exactly once.

3) There exist four points such that no three of them are

collinear. '

An incidence structure ’P: <P, L, I> 1is called a Erojective

Hjelmslev planc {P.H. plane) if it satisfies the following axioms

(cf. [1],1).

(H1) Any two points are incident with at least one line.

(H2) Any two lines intersect in at least one point.
1]

Two points P,Q are neighbours (P vQ) if they are joined by more

than one line; two lines {,m are neighbours ({~m) if they inter-

sect 1n more than one peint.

. ]
(H3) There exist an ordinary projective plane ¥ and an



epimorphism (ie., a surjective map which takes points to points

and lines to lines preserves incidence) X : P —>P

with the properties \

.

i) PnQ if and only if X (P)

x(Q) ;

B

.ii) £ vm if and only if X (L)

]

X (m) .

+

Equivalently, a P.H. plane may be defined as an incidence struc-

ture ¥ =<P,IL,I> with neighbour relations on ® and I defined

as

/

above satisfying the following axioms. (cf. 9,1.1].

s T

'y 1
(E-l'f) Any two pdints P 'and Q are joined by at least
f 1y /s

P
one lin\e\“(.. If PYQ, we write PQ ={.
(H2)' BAny two lines { and -m intersect in at least*one

point P. If { %wm, we write LA

(H3)' There exist four pairwise non-neighbouring points
A

Pl,Pz,PyP4 such that PiPJ-wPiP for

K

1#37!}(7‘1:' irjl‘kC {1:21314}-
>

o

(H4)' If PILmm;: £%m; muvn, then { #m.
(H5)' If ¢ v and nZ{, then 4£AnvmAn.

(H6)' If P~Q and Q%® R, then PRYVQR.

>

‘5.35 in 2.1, we define 5=;{Qc]P|QmP} and X = {mem|mn~ e ).

| pyd

Also’fifin 2.1, we may identify 0 2 -—:‘<]P/'\a, L/, I/ X))

an

the underlying ordinary projective plane .-#' of 9

. 2.4, Uniform planes. ) A

2.4.1. An AH. (or P.H.) plane H =<P,L,1> is uniform if

10

———

AL A - e



<

11

and only if for-any Pe P, the incidence structure A (p) = <1>P, le, Ip, ”p>

where ]P?=§, Lg =){LQIL|3QE:F;QI,L}, I§=In(]P.§x1L§), is an o

ordinary affine plane. The pencil of lines in - A (P) parallel‘té a

given line 3 shall b% denoted by T .

9

2.4.2v Lemma. An A.H. (or P.H.) plang 4 = <P, L,I> with

non-trivial neighbour relation is uniform if and only if for any 3;+Leim

and P, Qe with vh; P,QIqg; PIh and PnNQ, then QI+,
3 9

The affine case is proved in [14], Satz 2.12. A similar proof

is valid in the projective case.

g

2.5, Projectively uniform A.H. planes.

An A.H. plane is projectively uniform if and only if it is

uniform and whenever two neighbour lines fail to meet they are parallel
A

131,

»

2.5.1. Lemma. Any finite uniform A.H. plane is projectively

uniform; cf. [3], Proposition 2.1.



CHAPTER 3
B2

Ordered affine Hjelmslev planes

3.1. Ordered A.H. planes and biternary rings.

. An ordering of an A.H. plane <P, 1, I, ” > is a non-empty-ternary

relation ¢ on P satisfying the following condition (cf. {101, 3.1).

(01) (P,Q,R)§€ p implies P,Q;R are mutually distinct and
collinear.-

{02) (P,Q0,R) € p implies (R,Q,P) € p.

(03) (pP,Q,R) € p implies (P,R,Q) £ p.

(04) I1f P,Q,R are mutually distinct and collinear, at least
one of (pP,Q,R), (P,R,Q), (R,P,Q) is in p.

(05) If P,Q,st are mutually distinct and collinear and
(P,Q,R) € p, then either (P,Q,‘S)'E p or (S,Q,R) € p..

" (06) Non-degenerate parallel projecﬁions preserve order.

A parallel projection of an A.H. plane is a mapping from the ~

points of a line £ to the points of a line m in the direction of
a parallel pencil n(nyénm) given by X——3»L(X,m) Am. It is called

non-degenerate if it is bijective. It is bijective if and only if

1:7611{. We shall denote a parallel projection from the points of ¢

onto the points of m in the direction of 7 by {£——»m.

T 3

An ordered A.H. plane (O.A.H. plane) is a quintuplet

H = <p, L, I,” (P> where p is an ordering of the A.H. plane

.

12 -
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<P, L,I, H > and some (hence each) line contains three mutually non-

neighbouring points. We note finite A.H. planes canmot be ordered.

3.1.1. Lemma. An ordered A.H. plane has the following proper-

ties (cf. (101, 3.2).

(1) The words "at least" in (04) may be replaced by
"T" '

(» } @xac}: )ﬁ(
(2) / r,0,R), AQ,R,S) € p imply (P,Q,5), (P,R,S) € p.

(3)  (P,Q,R); (P,R,S) €p imply (P,Q,8), (Q,R,S) € p.
> (4) Two of (Q,P,R) € p, (R,P,S) € e, {S,P,Q) € p
exclude_‘the third.
(5)  (P,0.8), (P,R,S) € p imply either (Q,R,S) € g or

(R,0,S) € p.

3.1.2. Lemma. (cf. [10}, 3.3Y. Let -%¢ be an ordered A.H.
eplane. Let g,,9,,93hh' eL; hilh's gowg, (i #3: 1,3 €(1,2,3D.

M = A ] = - i )
Let OI%i‘ Pi 31 H (i 1,2,3) 1f either

(1) Pfl = 3i/\h' (i=1,2,3) and Pif*O; or '
(2) 0,0'I4'; 3; = L(O',gi), Pi = 3!1/\?\, (i=1,2,3)

then (B ,P2,P3) € p implies (pl 2,P ) € p-

3.1.3. An ordering of a biternary ring <R’T1'TO /0,1> 1is a
transitive relation <& on R satisfying the following condi tions

(cf. [10], 4.1).

" (0Ml) For all a,b € R, exactly one of a<b,b<a,a=b holds.

(OM2) If c<d, then 'l‘l(a,m,c) <Tl(a,m,d), for any a,m € R.

B o F Fpn SR s mskod we B A & B 3B hrbaiont



(OM3)

(OM4)

{OMS)

14

If m %R n, m <n and Tl(s,m,c) = Tl(s,n,d), then

s <t [s>t] implies Tl(t,m,c)'< Tl(t,n,d)

[?l(t,m,c) > Tl(t,n,d)] for all ¢, 4 € R.
L 4
If Tl(ai'm’di) = bi’ To(bi,u,v) = ai (i=1,2), m\i.iD+

< .
and dl d2, then b1 < b2

Conditions (OM2) and (OM4) with Tl and To.interchanged.

p An ordered biternary ring is an algebraic structure “

<R, T, T,

0, 1, <> where < R, Tl, TO, 0, 1 > 1is a biternary ring

and < is an ordering of this biternary ring.

© <

3.1.4. Lemma. (cf. {10l , 4.2). An ordered biternary ring

< R, ’I‘l, TO,

(1)
(2)
(3)
(4)

(5)

(6)

(7)

Oﬂ l, <> has the following properties.

If m fR'n, Tl(s,m,c) ; Tl(s,n,d) and Tl(t,m,b) < Tl(t,n,d),
then either s $t and m<n or s>t and m > n.

If m %R n, m<n and O < a [0 > a], then

Tl(a,m,df < Tl(a,n,d) [Tl(a,m,d) > fl(a,n,d)] for any 4 € R.
If a<b, mg ﬁ+ and 0 <m [0 > m], then

T, (d,m,d) < T, .md) [T, (a,m,@) > T (b,md) ] for any d € R.
If Tl(ai'm'di) = bi' To(bi,u,v)‘= a, (i=1,2), m, u € D+

and b, < b,, then 4, <d,.

Property (4) with T  and T interchanged.

0 1

D, is convex (ie.,”if a < b < ¢ apd a, d)E D, then

b € D+).
D, consists of infinitesimals (ie., if a £ D, then

~

-a <x <a for all x € D+).

Rl S
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3.1.5. Theorem. (cf. [10]}, &;) .  An ordering of an A.H. plane

# induces an ordering of each of its biternary rings.

- Al

The ordering induced on <R,T.,T.,0,1> by p is defined in

1"70

the following way. Define O0<1l.” For any x € R, x # 0,1, define
0<x if either (0,x,1) € por (0,1,x) € p and x>0 if (x,0,1)€ p.
For any X,y€ R, X,y # 0 define x<y if either: 1) x<0 and

(x,0,y) € por (x,y,0) € p; or 2) x>0 and (0,x,y) € o,

3.1.6. Theorem. {(cf. [10},87). An ordering of the biternary

[}

ring of an A.H. plane induces an ordering of the plane.

&"5'
> The ordering ‘p is defined in the follogiﬁ'a way. For points

&%

A = (al,az,l) , B = (b]_'bz"l) on a line of the first kind define A<B

if and only 1f a_<b if A,B are on a line of the second kind

2 " P2f
then define A<B if and only if a1<bl. pefine (A,B,C)€ p if
and only if A,B,C are mutually distinct collinear points andd A<B<C

or C<B<A.

3.2. Strongly ordered A.H. planes.

The definition of an ordered A.H. plane given in 3.1 is a gen-
eralization of Pickert's-ordering for an ordinary affine plane (cf. [15},
p-.227); however another way to define ap ordered (orc}inary) affine
plane is to require that: i) every line be totally ordered; ii) every
par;llel projection 0 : {————»m be either an order isomorphism (ie.,

a<b if and only if 6(a) < 6(b) for all a,bI{) or an order anti-
J.somorphls}n (ie., a<b if and only if 6(b) <@8(a), for all a,bIf).
Thus the natural‘ generalization of this definition to A.H. planes would

be the following (cf. [10], 9.2).



3.2.1. An A.H. plane H=<p, o, 1, H > is strongly ordered

( # is a S.0.A.H. plane) if and only if

.i) every line is totally ordered;

ihj‘:) every parallel projection 90 :{—~————ym is either an
order homomorphism or an order antihomomorphism; ie., © 1is a function
(not necessarily a bijection) such that either a<b implies 6 (a) < 6(b)
for all a,bI® or a<b implies o(b) <6(a), for all a,bI{;

iiil) there 1s a line in IL incident with at least three

mutually non-neighbouring points,

3.2.2. Lemma. An A.H. plane is strongly ordered if and only if

it is ordered and satisfies the following axiom.

Q
1

-

(06)* 1f 0: {——3 m is a;ly (possibly degenerate)
parMlel projection then for any A,B,CId with
(A,B,C) € p either (6(A), 6(B), 6(C)) € 5 or two
or more of the points 6(A), 0(B), #(C) are equal.
(We denote this by (8(An), D(B), 6(C)) € p* and say
that p preserves order.)

3.2.3. Lemma. Let ¥ be a strongly ordered A.H. plane. If

8:{~———>m 1s a parallel projection,. A,B,CI{; (A,B,C) € o :111d

8(A) = 6(C), then 6(B) = 6(A).
@

Proof. Assume 6(B) # 0(A). There exists DI such that

D¥A and (B,C,D) € p or (D,A,B) € p without loss of generality,
assume (B,C,D) € p. Then (B,C,D) € p implies (p(B), 9(C), g(D)) €
(as no«two of these points'are equal) and (A,B,C) € p, (B,C,D) € p

[ :

9]
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imply (A,B,p) € p which in Furn implies (8(A), 0(B), 6(D)) € p (as ;

no two of these points are equal). However ©6(A) = 6(C); thus

(6(B), 6(A), 8(D)) € p and (6(A), B(B), 6(D)) € po;: a contradiction.

w e L

A\

oty 1
1’ TO’ 0, 1 > is strongl Tl

ordered if it also satisfies the following conditions (OM3)* and

3.3. Strongly and almost-strongly ordered biternarv rings,

3.3.1. An ordered biternary ring < R, T

(OM3)*'  (cf. [10], 9.4).

(OM3)* I1If m<n and Tl(s,m,c) = Tl(s,n,d), then s < t
[s > t] implies Tl(t,m,c) E_Tl(t,n,d) :
[t (t,me) 27 (t,n,d)] for all ¢, d €R.

4

{OM3)*' is just (OM3)* with Tl; replaced by TO.

3.3.2. Lemma. A strongly ordered biternary ring has the following

properties.
(1) If Ti(s,m,c) = Ti(s,n,d) and Ti(t,m,c) < Ti(t,n,d) (1=0,1),
then either s <t and m<n or s>t and m > n,
(2) If m<n and 0<al0o>a], then T (a,md <1 {a,nd

[Ti(a,m,d) Z’Tl(a,n,d)]; i=0,1. If, in addition, a £ n,

then these are strict inequalities. ’

L

-~
e e anare e

(3) If a<b and m>0 [m < 0], then T, (a,m,d) < T, (b,md)
[T, (a,m,q) g_Ti(b,m,d)] for any d € R; i=0,1.

(4) If m < ? and ‘Tl(s,m,c) = Tl(s,n,d), then s ¥ t, s <t
[s >t] implies T, (t.me) < T (t,n,d)

[Tl(t,m,c) > 'I‘l(t,n,d)] for ¢, d € R,

Proof. These properties follow directly from the definition.



<

3.3.3. Remark. Although 1t is possible to show that the strong

ordering of a biternary ring induces a strong ordering of its A.H. plane

(c£. [10], 9.5), the converse is not true in general (cf. 3.3.8). If we
insist that the A.H. plane be a translation plane, then a strong ordering
of the A.H. plane does induce a strong ordering of its biternary rings

(c£. [10], 9.6). We introduce two axioms that are slightly weaker than

(OM3)* and (OM3)*'.

-y f

3.3.4. An ordered biternary ring is almost-strongly ordered 1f

it satisfies axioms (OM3)** and (OM3)**'.

(OM3)** If mAa n and Tl(s,m,c) = Tl(s,n,d) for any ¢, 4 € R,

then either
Tl(a,m,c) < Tl(a,n,d) and Tl(b,m,c) Z’Pl(b,n,d) for all a < s < b;

orxr

Tl(a,m,c) z_Tl(a,n,d) and Tl(bhm,c) f_Tl(b,n,d) for all a < s < b,

(OM3)**' is just (OM3)** with 'I‘l replaced by TO'

3.3.5. Theorem. An almost-strong ordering of the biternary ring

B = <R, T,, T

1* Tgr 0. 1 > 1induces a strong ordering of the A.H. plane

of R.
Proof. Since X3 1s almost-strongly ordered, it 1s ordered and
hence ¥ is ordered. Thus it 1s sufficient to verify (06)*,

We shall show that the parallel projections

¢

> ~ 4 —+[0,0
[m,n]2 [p,Q]2 [0,0]l where m " p an [m,n]l [p'oll fo, ]2
where m ~ p v 0 preserve order.

Take a < b < c. Then on [m,n]z, we have

——tr

wmda gt X A

T i

4

B S ot Tl T S S

N O

-

T M Gp e Lt e
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((a,Tl(a.m,n)). (b,Tl(b,m,n)), (C.Tl(c,m,n))) € p. Let

—

L((b,T, (b,m,n)), [p,d]2> = {p,al,. By (OM3)**, since

Tl(b,m,n) = Tl(lhp,q). either Tl(a,mfn) < Tl(a,P:Q) and

"“’”“%H(c,m,n) z_Tl(c,p,q) or Tl(a,m,n) Z_Tl(a,p,q) and

Tl(c,m,n) < Tl(c,p,q). Therefore, if L((a,Tl(a,m,n)), [p,0]2) = [p,r]2
and L((c,Tl(c,m,n)), [p,O]z) = [p,sjz, then either r < q <s or

r> g > s. In either case, the parallel projection preserves order.

Similarly, we can prove [m,n] >(0,0] preserves
¥ 1 2

§ I UN
order.

3.3.6. Lemma, Let $ bhe a strongly ordered A.H, plane. Let

1 %27 93 hoh' €EL: Rl|R': oI 93¢ Py =95 A R (i=1,2,3); thus

1, x h., If Pl =9 A h (i=1,2,3) and P # O, then

1
: [l [ [ *
(pl'PZ'P3) € p implies (Pl , P2 , P3 ) €p
Proof. If 9, % gj for i # 3j; 1,3 € {1,2,3}, then the result
1s given in 3.1.2, If any two of P ', P ', P_' are equal, the result

1 2 3

is given by definition. We may, therefore, assume Pl' # Pz' # P3' # Pl'

and at least one pair 3i, ﬁj {(and hence Pi', Pj') (i,3 € {1,2,3},

~

W\
1 # §) are neighbours.

Case 1: (O,Pl,Pl') € p. Since (Pl,Pz,P3)-€ p. the parallel

projection A—————3h' yields (X,P_',Y) € » where X = L(%,iz) AR

2
32
and Y = L(P3,32) A f'. However the (possibly degenerate) projecction
3, ' yields (PZ',X,PI') € p* and the series of projections
32
> 7 L ] . ) *. L] .
31 N 95 15 A, (P2 .Y P3 ) € p Therefore as P2 ¥ X, Y

v' ',pl .
(Pl P2 3 ) € p



R.\al
!

h h

, P
B‘
/ 3'-P' 2} gx
0 X P. 91
Fiiu.rc 3.1 ‘
(Lemma 3.3.6, Case 1)
S
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Case 2: (O,Pl',Pl) € p. Using the same arguments as in Case 1,

we obtain (X,P_.',Y) € p, (P

2 ',X) €ip*, (P2',P ', Y) € p* with

,b
271 3

t ' 1, tp ot p ot .
P # P2 # P3 ; hence (P ', Py ) € p

1 1 2

Case 3: (Pl,O,Pl') € p. Once again using the projections in

~ . 1 P"'e* ] ' ~
Case 1, we obtain (X,P2 Y)Y € p, (X, 5 '91 ) p*, (P3 ,P2 ,Y) € p

3 |l ' 1, Pl,
with P # P2 ¥ P3 ; hence ( 1 P

1 1]
1 ,P3 ) € p.

2

3.3.7. Theorem. A strong ordering of an A.H. plane -# induces

-4

an almost-strong ordering on each coordinate biternary ring B of -3C.

Proof. Since a strong ordering of #C 1is an ordering, it induces
» -

an ordering on each 3. We need only verify (OM3)** and (OM3)**',
Case 1: Take mﬂt'n %4 O where Tl(s'm'C) = Tl(s,n,d). Select

some t X s, t <s. 1f Tl(t,m,c) = Tl(s,m,c), then

(s,ll(s,m,c)), (t,Pl(t,m,c)) I [m,c]2, [O,Tl(s,m,c)lz; hence

[m,c]. ~ [oO,T (s,m,é)]z; a contradiction. Similarly

2 1
Tl(t,n,d) # Tl(s,m,c). If Tl(t,m,c) = Tl(t,n,d), then

(t,Tl(t,m,C)), (s,Tl(SrﬁjC)) 1 [m’CJ2’ [n,d]2 which would imply ¢t ~ s;

a contradiction. Therefore Tl(t,m,c), T.(t,n,d) and Tl(s,m,c) are

1

mutually daistinct. Since Tl(t,m,c) N Tl(t,n,d) % Tl(s,m,c), we have
either (Tl(t,m,c), Tl(t,n,d), Tl(s,m,c)) € p or

(Tl(t,n,d), Tl(t,m,c), T . (s,m,c)) € p by 3.1.4(7) and 3.3.6.

1

First suppose that Tl(t,m,c) < T (t,n,d) < Tl(s,m,c). Then by

1
3.3.6 for any x € H, x # s, (Tl(x,m,c), Tl(x,n,d), Tl(s,m,c)) € p* (the
.lines 91 32, %3 of 3.3.6 are [m,c]z, [n,d]2, [O,Tl(s,m,c)]2 respec-
tively). 1If (x,s,t) € p, then (Tl(x,m,c), Tl(s,m,c), Tl(t,m,c)) € p*;

if (s,x,t) € p, then (Tl(s,m,c), Tl(g,m,c), T (t,m,c)) € p*; |if

1
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(swt,x) € p, then (Tl(s,m,c), Tl(t,m,c), Tl(x,m,c)) € p*. Thérefore
if x < s, Tl(x,m,c) f_Tl(k,n,d) f_Tl(s,m,c) and if x > s,
Tl(x,m,c) E_Tl(x,n,d) > Tl(s,m,c). Thus for a, b such that a < s < b,

Tl(a,m,c) S“Tr(a,n,d) and T (b,m,c)fz T, (b,n,d).

1 1

Similarly if Tl(t,m,c) > Tl(t,n,d) > Tl(s,m,c), then
T (am,c) > T, (a,n,d) and T, (b,mc) < T (b,n,d) for all a <s <b;
if Tl(t,ﬁ,d) < Tl(t,m,c) < Tl(s,m,c), then Tl(a,n,d) < Tl(a,m,c) and
Tl(b,n,d) > Tl(b,m,c) for all a < s < b; if

T . (t,n,d) > 7T (t,m,c) >T (s,m,c}, then T (a,n,d) > T (a,m,c) and
l l l l // - l ,J
T)(b,n,d) < T (b,mc) for alla <s <b. -

Case 2: Take m v n A~ 0 where Tl(s,m,c) = T, (s,n,d). Then

1

there exists a unique f such that Tl(s,l,f) = Tl(s,m,c). Select some
t % s, t >s. rThen by (0OM3), Tl(t,m,c) < Tl(t,l,f). As

Tl(t,n,d) v Tl(t,m,c) % Tl(t,l,f), we have either

-

Tl(t,n,d) < Tl(t,m,c) < 'rl(t,l,f) or Tl(t,m,c) < 'I‘l(t,n,d) < Tl(t,l,f).

Suppose Tl(t,n,d) < T (t,mec) < T (t,1,f). Then by 3.3.6, for

1 1

any x € H, x # s, (Tl(x,n,d), Tl(x,m,c), Tl(x,l,f)) € p*. However if

x < s, (OM3) implies Tl(x,l,f) <'Tl(x,m,cl E_Tl(x,n,d) and if x > s,
Tl(x,l,ﬁ) > Tl(x,m,c) Z_Tl(x,n,d). Therefore Tl(a,m,é) < Tl(a,n,d) and
Tl(b,m,c) Z_Tl(b,n,d) for all a < s < b,

Similarly, if Tl(t,m,c) < Tl(t,n,d) < Tl(tyl,f), then

Tl(a,m,c) E_Tl(a,n,d) and T, (b,m,c) £ T, (b,n,d) for all a < s <b.’

1 1

We now verify (OM3)**',
Suppose To(s,m,c) ='T0(s,n,d) where m # h. We may also assume

m# 0. As m, n € W C o~ To(s,m,c) = To(s,n,d) ~ d. There exists a
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<

L2l "W
unique f such that Tl('ro(s,m,c),l,f)‘ =s. Forany t%s, t<s,

there exists a unique u such that tO,t]zA‘ [l,f]2 = (u,t); lie.,
Tl(u,l,f) = t. By 3.1.4(3), u < To(s,m,c); Qotherwise

/_'\
t = Tl(u,l,f) > Tl(To(s,m,c),l,f) = s, Since (u,t) % (To(s,m,c),s)

and [l,f]2¢ [O't]2’ we obtain (u,t) "% (T_(s,m,c),t) and hence

0

u ¥ To(s,m,c). As above, u % To(s,m,c) N To(t,mrc) implies either
t

u < To(s,m,c) < To(t,m,c) or u < To(t,m,c) < To(s,m,c).

Suppose first that wu < To(s,m,c) < To(t,m,c). For anﬁ X € H,
4

X # s, t, there exists a unique Vv such that Tl(v,l,f) = x and

by 3.3.6, we have (v, To(s,m,c), T {x,m,c)) € p*. If x <« s, then

0

v <'To(s,m,c) f‘ro(x,m,c) and if x >s;, v > To(s,m,c) 2‘To(x,m,c)

by 3.1.4(3). If TO(t,n,d) = To(s,m,c), we have the desired result.
Otherwise, by 3.3.6, if (To(t,n,d), To(s,m,c), To(t,m,c)) € p, then
(T, (x,n,d), T,(s,mc), TO(x,m,é)) € p* and Tokx,n,d) < Ty lx,m,c) when
X <s, To(x,n,d) > To(x,m,c) when xy> S ig

(To(t,n,d), To(t,m,c), To(s,m,c)) € p, then

(To(x,n,d), To(x,m,c), To(s,m,c)) € p*  and To(x,m,c) <T (x,n,d) * when

0

X <s, To(x,m,c) Z_Tb(x,n,d) when x > s; if

(To(t,m,c), T (t,n,d), To(s,m,c)) € p, then

0]

‘

(To(x,m,c), T, (x,n,d), To(s,m,c)) € p* and To(x,m,c) > T {x,n,d) when

0

-

b f s, TO(x,m,c) f'To(x,n,d) when x > s.

If u < To(t,m,c) < To(s,m,c), then the result may be proved in

a similar way.

v
3.3.8. An example. The following is an example of a strongly

ordered A.H., plane with an algost-gtrongly ordered (but not strongly

w
o~
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)

ordered) coordinate biternary ring.

Let H = RxIR with coordinatewise addition and multiplication

defined by

'S

+A_ B +ABl) for any A_,A

) Rkie St B 1rRpBy B R

2

-

(Al,A2) : (Bl'BZ) = (AlB

Then H is an A.H. ring with unique max‘il ideal n = {(0,a) ] Ae R},
unit (1,0)F (which may be written 1) and zdxg (0,0) (written ©). Two
. \\/

elements of H, Q(Al,Az) and (81'82) are neighbours if and only if

i

(Aj,A) - (B,,B,)a n (ie., A, = B)) and we put (A;,A) ={(A,,B,) |Bem}.

In particular, 1= {(1,A) lAe R} and 6= n. We define an order

N

-relation on H in the following way (A]..’AZ) < (Bl,Bz) if and only if

A1<Bl or Al =.Bl and A2<82. We put a = (Al,hz), b = (Bl,Bz),
cte.

Consider an inciden.si structure with parallelism ¥ = <P, 1L, I;” >

where R -
= H X H;
IL = IL.lU 11:201L3
= {L[m,r:]llmcn,ncﬂ}u {L[m,nlzl fm,n) € (HXH) S(nX D}
. u fL[mf'n]3 | (m,n) en X 1)

where Lim,n], {{ym + n,y) |y € H}

il

Llm,n], = {(x,xm + n)|x € H}

Llmnl, = {(x, -xm + n)|x € H)

I is 'set inclusion;
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4 2

| coL X = such that ) \ L

le,n]lH L[p,q]l if and only if m = p,

/h-_{n,nlln Lip,q); if i =1,

L[m,n]iH L[p,q]j for i,3,¢e {2,3} if and only if m = p.

Then # is an A.H. plane.

L)
We define a total ordering < on each line of ¥ by ordering
the points on lines of the first kind by their second coordinates and

the pbints on lines of the second or third kinds by their first coordin-
a

ates. We define an order relation p on. P Dby: for three mutually

distinct collinear points (a,,a,), (by/b,), (c;,c,), ({a),a,) )

- 13

(by /b,

(cyic;)) € p if and only if either (a ra,) < (by,b,) < (cl,cz) or

1
(al,az) > (bl,b2) > (cl,cz) . Then J is a strongly ordered A.H. plane.

We coordinatize £ Ain the usual way (cf. 2.1 and 2.2) using
the triangle ((0,0), (0,0)), ((1,0), (0,0)), ((0,0), (1,0)) and the

e IR}

elements of L[(1,0), (0,0)], = {((A,,A), (Al,A2))|Al,A2

(abbreviated as (Al,A )) and hence the elements of H as coordinates.

2
We observe that the point ((Al,Az), (81’82)) has coordinates .

4 k) )
((pAl'AZ)' (?1,82)); the line L[(O,Az), (BI,BZ)]l has coordinates

[(O,Az) ' (81'82”1 and the line L[(Al,Az). (Bl'B2Hi (1= 2,3)

)1,. Therefor¢’ as T THS —— 5H

B 1

has coordinates [(Al,Az) ’ Bl 2

is such that y = 'I‘l(a,b,c) if and only if (a,y)I [b,c’l2 we have

T (a,b,c) =( ab+ c if (b,)gnX L

-ab + ¢ if (b,c)enXi

s

Clearly D+= n and as TO :HXD+X H——>H 1is defined such that
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X = To(a,b,c) if and only if (x,a) I [b,c]] (cf. 2.1), we ha;e
To(a,b,c) = ab + c¢c. Using the (lexiographic) orgering already defined
on H, we have < H, Tl’ TO’ 0, 1, <> ds an ordered biternary ring
satisfying (OM3)*', 1In addition, (OM3)* islsatisfied for all choices
of m, n, ¢, d except (m,c), (n,d) € n X,i.

Let m= (0,M), n= (0,N), c=(1,0), d=(1,) with m < n
which implies M < N. Suppose Tl(s,m,c) = Tl(s,n,d) for some s € H;,

ie., (l,-SlM + C) = (1,-S,N + D). Then for any p >3, p % s, we

1

> . e
have P1 Sl Hence

T,(p,m,c) = ?pm +c 2
= (l,"'PlM -+ C) 'l -

(15-S

1M + (-Pl + Sl)M + C)

(1,—51N1 D + (—Pl + Sl)M)

> (1,=8N + D + (=P, + S,(l)N)‘

1

= (1,-P,N + D)

1
Tl(p,n,d).

n

For any p ~ s, Tl(p,m,c) = Tl(p,n,d) and for any p <s,  p % s,
Tle,m,c) <‘T1(p,n,d). Thus < H, Tl’ TO’ 0, 1, <> is an almost~-

strongly ordered biternary ring which is not strongly ordered.

§Q§43.9. Remark. An almost-strongly ordered A.H. ring (ie., the
o -

I'd

coordinate biternary ring of a translation plane) 1is strongly ordered.

3.3.10. Remark. An ordering p on an A.H. plane 4 induces

. . e
an ordering p on the associated ordYnary affine plane 4. The

ordered affine plane 2Z' may be coordinatized by the ternary ring
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2 =<H, T 6,,-f> (cf. [10], 5).

3.4. Projectively ordered A.H. planes.

3.4.1. An A.H. plane is said to be projectively ordered if it

is strongly ordered and\§atisfies the following additional axiom.
(07) Let A, B, C Im; D% X for any XI-wm 1If (A,B,C) € p,
then (L(E,AD) Am, L(E BD) A, L(E,CD) Avj) € p for any.

EI L(Dgm).

'

3.4.2. Theorem. A projective ordering on an A.H. plane &

induces a strong ordering on each of its ¢oordinate biternary rings.

Proof. As a projective ordering on . 1is a strong ordering,’
it induces an almost-strong ordering on each coordinate biternary ring'
by 3.3.7. We now verify (OM3)* and (OM3)*'.

Consider m < n, where Tl(s,m,c) = Tl(s,n,d) for some
s, ¢, d €EH. If mo n,‘then (OM3) implies Tl(a,m,c) > Tl(a,n,d) and
Tl(b,m,c) <VT1(b,n,d) for all a <s < b. Therefore let m < n and
mvn, Take any t € H; ¢t if;, s; t >s. By (OM3)**, it will be 3
sufficient to show Tl(t,m,c) < Tl(t,n,d).

Case 1: Suppose m, n%ﬁ 0. Then either 0 < m<n or
m<n < 0, First we assume O < m < n., Since
Tl(;,0,0) < Tl(l,m,O) < Tl(%,n,O), (OM3) and (OM3)** imply .
(Tl(t,0,0) ,Tl(t,m,O) ,Tl(t,n,O)) € p*.

If Tl(s,m,O) = Tl(s,n,O) (which implies s ~ 0), then
Tl(s,m,O) v Qg Tl(t,m,O) ~ Tl(t,n,O). By the convexity of n and the

previous paragraph, (Tl(t,O,Tl(s,m,O)), Tl(t,m,O), Tl(t,n,O)) € p*,
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If we assume m < n < 0, then we mé;\hse an argument similar to
the one employed above. ,M;/’

Case 2: Suppose m, n ~ 0. Then m<n<1.

If Tl(s,m,O) = Tl(s,n,O) (which implies s ~ 0), then
Tl(l,m,O) < Tlgl,n,O) and (OM3)** imply Tl(t,m,O) < Tl(t,n,O).
However Tl(t,m,O) # Tl(t,n,O)' as (s,Tl(s,m,O)) € [m,O]2 A [n,O]2
and, s Zt. Let w€H such that T,(s,1,w) = T,(s,m,0). Then by
(OM3), Tl(t,l,w) > Tl(t,n,O). By (07) with D = (s,Tl(s,m,O)) and
E = (S,TI(S{QEEB)A .we obtain ﬁrl(t,m,c), Tl(t,n,d), Tl(t,l,v)) €p
where Tl(s,l,v) = Tl(s,m,c). By (OM3), Tl(t,m,c) < Tl(t,l;v); hence
Tl(t,m,c) < Tl(t,n,d). '

If Tl(s,m,c) # Tl(s,n,O),‘ then we use the method of Case 1
with [O,Tl(s,m,u)]2 and [O,Tl(sl,tix,c)]2 replaced bf [l,w]2 and
[l,v]; respectively wéere Tl(s,l,w) = Tl(s,m,u) and
Tl(s,l,v) = Tl(s,m,c).

"Thus (OM3)* holds.

Now consider m < n where To(s,m,c) = To(s,n,d) for some
s, ¢, d € H. By definition m, n € n. Then m < n < 1. Take any
t €H; t4 0, s ‘and t > s. By (OM3)**' it will be sufficient to
show To(t,m,c).< To(t,n,d). ‘

If To(s,m,O) = To(s,n,O). (whigh implies s ~ 0), then

(To(t,m,O), To(t,:;g){‘i) € p where )
(x,t) = {O,tle (To(s,m,O),s),‘[l,O‘]z). By (07) with




in,d],
pd
e
g - (m.dl,
eTctmd) =
Tt
/[T\O]:.
(S,T-'(S.m,d)l}
(3,Ti(snd) &0, Ti(sme)) (oT &m,c)],
fmuk
0d / t.Tiéen,0) / mol.
( .
N o // @ Ticemu)
\ - Pk
N - (HTHEmoY)
\‘ [oTsmul 2
JEno) ' TS TiGsmu)

OW /

(00)

s, T, (am,00)

|

e = e e i

l

F.c;ure_ 33
(Lcrnr‘no,' 3.4.2,

Case 1, T.(sm.0) <T(sn.0))

30

Q

PP



31

<

Hoyever, as (s,T,(s,m,0)) € [m,O]2 A [n,O]2 and s % t,
Tl(t,m,O) # Tl(t,n,O); hence
(Tl(t,O,Tl(s,m,O)), Tl(t,m,O), Tl(t,n,O)) € p. Using (07) with
D= (s,Ti(s,m,O)) and E = (s,Tl(s,m,c)), we obtain
((,T,(t,0,T,(s,m,0))), (e,T; (t,m,c)), (¢,T,(c,n,d))) € p; {e.,
(Tl(g,m,c), Tl(c,m,c), Tl(t,n,d)) € p. By 3.1.4(3),
Tl(s,m,c) < Tl(t,m,c); thus Tl(t,m,c) < Tl(t,n,d).

Now assume Tl(s,m,o) < Tl(s,n,O). Then
Tl(l,m,O) =m<na= Tl(l,n,O) and (OM3)** {mply s > 0. Therefore
0 <s <t. There exists u € H such that Tl(s,m,u) = Tl(s,n,O).
Since Tl(s,m,u) ; Tl(s,n,O) > Tl(s,m,O), (OM2) implies u > 0. As

((0,0), (s,Tl(s,n,O)), (t,Tl(t,n,O))) € p, the parallel projections

(8,01, 01, > [0, g o7, [1,0),. vteld
(Tl(t,m,O), Tl(t,m,u), Tl(t,n,O)) € p*. Since
Ss,Tl(s,m,u)) € [m,u]2 A [n,O]2 and s 2t imply” Tl(t,m,u) # Tl(t,n,O)
and (OM2) 1implies Tl(t,m,O) < Tl(t,m,u), we have
Tl(t,m,O) < Tl(t,m,u) < Tl(t,n,O). By 3.1.4(3), Tl(s,m,u) < Tl(t,m,u);
hence Tl(t,O,Tl(s,m,u)) < Tl(t,m,u) < Tl(t,n,O). By (07) with
D= (s,Tl(s,m,u)) and E = (s,Tl(s,m,c)),
((t,Tl(t,O,Tl(s,m,c))), (t,Tl(t,m,c)), (t,Tl(t,n,d))) € p; 1e.,
(Tl(s,m,c), Tl(t,m,c), Tl(t,n,d)) € p. As Tl(s,m,c) < Tl(t,m,c) by
3.1.4(3), we obtain Tl(t,m,c) < Tl(t,n,d).

If Tl(s,m,O) > Tl(s,n,O), then (OMg{ﬁi odgplies s < 0.

Therefore either s <0<t or s <t <0, In either case, a discussion

similar to the one in the previous paragraph yields the same result.



To(t,m,c) n To(s,m,c) < y; hence TQ}t,m,c) < To(t,n,d).
If To(s,m,O) < To(s,ﬁ,O), then (OM3)**' {implies 0 < s < t.

Let u € H such that To(s,m,u) = To(s,n,O); hence by (OM2)', u > O.

The parallel projections [n,O}l [m’o]l ’[O,t}z

yield (To(t,m,O), To(t,m,u), To(t,n,O)) € p*; however (OM2)' and

> [1,0]
[0,0]1 2

(To(s,m,u),s) € [m,u]1 A [n’O]l’ s+t imply
To(t,m,O) < To(t,m,u) < 'I‘O(t,n,O). ,Let
(x,t) = [O,t]2 A L((TO(s,m,u),s), [1,0]2). Then
To(t,m,u) < To(t,n,O) < x. Using (07) with D = (To(s,m,u),s) and
E = (To(s,m,c),s), we obtain (TO(t,m,c), To(t,n,d), y) € p where
(y,t) = [O,t]2 A L((To(s,m,c),s),[l,O]z). As To(t,n,d) ~ To(s,m,c) <y,
To(t,m,c) < To(t,n,d).
If To(s,m,O) > To(s,n,O), then (OM3)** implies either
s <0<t or s<¢t<0. Ineither case, a discussion similar to the
one above ylelds the desired result.

Thus (OM3)*' holds.

3.4.3. Theorem. A strong ordering on the biternary ring B

of an A.H. plane ¥ induces a projective ordering on ¥ .
" Proof. By [10], 9.5, a strong ordering on X 1induces a
strong ordering on #. We now verify (07).
Take three points A, B, C I m such that (A,B,C) € p and
points D and E such that D % X for any X Im, E I L(D;m.
Clearly E 2 X for any X I m also.
Case 1: 1f A% B2 C%A, then

(L(E,AD) Am, L(E,BD) Am, L(E,CD) Am) € p by 3.1.2(2).
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/
Case 2:° At least two of A, B, C are neighbours and

m = [p,q]l for some p€n, q € H. Then A = (To(a,p,q),a),

B = (To(b,p,q),b), C = (To(c,p,q),c) for some a, b, ¢c € H and

AD, BD, CD are [ri,si]2 (1=1,2,3) respectively for some

Tys 8y € H. Since (A,B,C) € p, either a<,b<c or a>b > c.

Without loss of generality, we shall assume a <b < c. Since

DI [ri,silz, D = (d’Tl(d’ri’si)) (1=1,2,3) for some d € H. As

D#%X for any X1Iwm, do q-nr To(a,p,q) ~ To(b,p,q) ~ To(c,p,q).
First we assume To(a,p,q) = To(b,p,q) = To(c,p,q). Then

*
(0M3) implies r, < r, <r, if d <q and Ty >r, > rq 1f d > q.

Now suppose at least two of To(a,p,q), To(b,p,q), To(c,p,q)

are distinct. Since a <b < ¢, the parallel projections

R

(0,01, > lpial) [0,0]; >R yleld

(To(a,p,q), To(b,p,q), To(c,p,q)) € p*. Since at least two of these
are distinct, 3.2.3 dimplies To(a,p,q) # To(c,p,q).\ As

[p)q]1 '\‘ [O'TO(a’p'q)]l ¢' [r3 ]

,83 2,

C = (To(c,p,q),c) " (To(a,p,q),Tl(TO(n,p,q),r3,83) % D. Therefore, on
the line [r3,s3 ,» elither (c, (To(a,p,q),Tl(TO(a,p,q),r3,53)), D) € p
or ((To(a,p,q),Tl(TO(a,p,q),r3,s3)), C, D) € p. If the former [latter]

holds, then the parallel projection

3]2

(r.,s

3 >[O,To(a,p,q)]1 ylelds

[r2,92]2

(G,(To(a.p,q),Tl(TO(a,p.q),r3,s3)),(To(a,p,q),T (T4(a,psq),r,,8,))) € o*
[((Ty(a,p,0) Ty (T (2,2,0) ,3,85)),6, (T (8,0,0) ,T; (T (a,p,4),,,8,))) € p*)
where G = L(C,[r2,82]2) A [O,To(a,p,q)ll. However D % C which

implies G # (To(a,p,q),Tl(To(a,p,q),rz,sz)). S}nge (A,B,C) € p, the
A 4 \ — ‘—,/’

//
t
/

{
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parallel projection [p,q]1 ; ‘*[O,To(a,p,q)]l yields

[r,,8,],
(4, (T,(a,p,9),T, (T (a,p,q),7,,8,)),G) € p. Therefore S
(A,(To(a,P,q),Tl(TO(a,p,q),rz,sz)),(To(a,p,q),Tl(To(a,p,q),r3,s3)5) € p.
As above, (OM3)* implies r, <r, < r, if d <q and r, > 1, >r,
if d > q.
Let L(E,AD), L(E,BD), L(E,CD) be [ri,tilz (1=1,2,3)
respectively and E = (e,Tl(e,ri,ti)) (i=1,2,3). Let
[p,q]l A [ri,ti]2 = (To(ui,P,q),ui) (i=1,2,3). Then by (OM3)*,
(T (uy,p,2), T (T (uy,P,a) 5Ty 5t4)), (T(uy,p,a), Ty (Tg(uy,p,9),15,t9)),
(Tg(uy,p,0),T) (Ty(uy,P,q),¥q5t4))) € p.
1f TO(Ul,P,q) = TO(UZ,P>Q;;= To(u3,P,q), we are finished. Otherwise,
To(ul,p,q) # To(u3,p,q) as above and a discussion gimilar to the one
used in the last paragraph implies
(L(E,AD) Am, L(E,BD) Am, L(E,CD) Am) € p.
Case 3: At least two of A, B, C are neighbours and
m=[mﬂr Then A = (a,T,(a,p,q)), B = (b,T,(b,p,),
C = (c,Tl(C,p,q)) for some a, b, ¢ € H, Since at least two of
A, B, ¢ are neighbours, we may assume A " B, (If A~ C, then.
(A,B,C) € p implies A~ B~ C.) Then AD v BD and both lines are of
the form [ri,si]2 (1=1,2) for some LI % p, s, F H or of the
form [ri,sill (1=1,2) for some ry € n, sy € H.
First, we assume AD and BD are [ri,si]2 (1=1,2) respec-

tively. Suppose also that CD is [r ]2 for some r, % p. Then

‘ 3’53
D = (d’Tl(d’ri’si)) (1=1,2,3). 1If (a,c,d) €p or (c,a,d) € p,

we may use the methods of Case 2 to obtain the desired result. Since
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Ty < p. Similarly, we have Tl(a,p,q) = Tl(a,rl sl) and

37

A~nC?D would imply (a,c,d) € p or (c,a,d) € p by 3.1.4(6), we

need only consider the case whete A% C (de., [r3,33]2 % [rl,s

1]2

also) and (a,d,c) € p. As (a,d,c) € p implies

((a,Tl(a,rs,s3)), (d,Tl(d,r3,53)), C) € p, the parallel proigction
[

r.,,s.] >[0,a). yields
3’7372 [rz,szlz 1

(L(c,[r2,5212> A [0,al,, (a,T,(a,1,,s,)), (a,T,(a,x4,85))) € p. The

parallel projection m

i r-[O,a]l yiel?s

225272

(LC,lr,,s,1, A [OLa]l, (a,T,(a,r,,s,)), A) € p. By (a5)',

(a,T (a,r3,s3)) 4 A ﬁ‘(a,Tl(a,rz,sz)); hence

((a,T (a,r3,s3)), A, (a,Tl(a,rz,sz))) € p. By (OM3)*, either

r,<r, <r, or r,>71r >TI,.
3 1 2

3 1 2 g
Suppose r

5 < T < T, and a > d [a < d]. Then (a,d,c) €p
implies a > d > c [a <d < c]. We have Tl(c,p,q) = Tl(c,r3,s3) and
by (OM3), Tl(a,r3,53) < Tl(a,rl,sl) = Tl(a,p,q) and a > ¢

- . *
[Tl(a,r3,33) > Tl(a,rl,sl) Tl(a,p,a) and a < c]; hence by (OM3)%*,

Tl(c,rl,sl) < Tl(c,r3,s3) = Tl(c,p,q) where ¢ < a

(T ¢cyxr ,8)>T (c,r ,5 ) =T (c,p,q) where c¢ > a]; hence by (OM3)*

T > p. TFhus Ty <p< ry <‘r2.
Similarly, ry > 1 > 1, implies Ty > § > T, >,
Suppose r, < p <Tr

| 3 1 <r, [r3 >p>1, > r2]. Let
L(E’AD) Am = (8',T1(a',P,q)), L(E)BD> Am = (b',Tl(b',P’Q)),
L(E,CD) am= (c',T;(c',p,q)) and L(E,AD), L(E,BD), L(E,CD) be
[ri,ti]2 (i=1,2,3) « respectively. If & < a', then

Tl(e.p,q) > Tl(e,rl,tl) = Tl(e,r3,t3)

w:vx;(wxw.ﬁ;wum-.mﬁtwmxwa
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>
c' < e. However, e < a' also
)

T‘l(e’rz’tz) = Tl(esrl9t1) < Tl(e,P,Q)

[Tl(e,p,q) < Tl(e,rl,tl) = Tl( ,r3,t3)] which by’(OMB)* implies
plies

[Tl(e’rZ’t2> = Tl(e"rl’tl) > Tl(E,P,Q)] and

' (at = '
T,(@%r,,t,) > T (@, xy,t4) = T,(a’,p,q)
~~

' ' = ' . '
[Tl(a ,rz,tz) < Tl(a ,rl,tl) Tl(a ,P»4)]; hence by (OM3)* e < b
and b' <a'. Thus c¢' < b' <a', Similarly, if e > a , we obtain .
c¢'">b' >a'., Hence (L(E,AD) Am, L(E,BD) Am, L(E,CD) A-m) € p.

We still assume that AD“and BD are [ri,s (1=1,2)

1]2

respectively where r, i p, s; €H, but suppose that CD = [u,v]l

o

for some u€n, v € H, Then C =’(To(c;u,v),c) for some ¢ € H.

Since (A,B,C) € p and a, b % d } TO(Tl(d,r sl),u,v) Mg 1y To(c,u,v),

l’
we have (a,b,d) € p. . ¢
<r

Suppose r and a <b.<d[a>b>d]. Then

172
Tl(b;p{q) = T (b,1,,8,) < T, (b,r),6))

[Tl(b,pwq) = Tl(b,rz,sz) > Tl(b’rl’sl)]- which implies p < T Thus
p<ry<T,. ] : ' A
- Suppose 1, <r; and a<b<d [a >b > d]. Then as above

P > rl > r2: ‘ , ©oan
. 1
If p<ry<r, (p > r; > r2] and e < a', then

Tl(a',p,q) = Tl(a"rl’tl) < Tl(a',rz,tz)

[Tl(a',P,q) = Tl(a',rl,tl) > Tl(a',rz,tz)] which implies b' < a’.
' \ t ' = v

Since b' < a’, Tl(b ,rl,tl) < Tl(b »P»q) : Tl(b ’r2’t2)

[Tl(b',rl,tl) > Tl(b',p,q) = Tl(b',rz,tz)]; hence b' > e. Thus

e <b' <a'. Similarly, if e > a', we obtain e > b' > a', However

4

-

b
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<

(e,b',a') € p and To(c',u,w) YW TO(Tl(e,rl,sl),u,w) =e % b', a',
where L(E,CD) = [u,w]l,_ imply (To(c',u,w) ,b',a2") € p and
(L(E,AD) Am, L(E,BD) Am, L(E,CD);Am) € p.

"If AD and BD are of the form [ri,si]l (i=1,2), the

methods used above along with (0OM3)*' give the desired result, " ¢

3.4.4. Lemma. Let ¥ be a projectively ordered A.H. plane.,

Let A, B, C Im such that (A,B,C) Ep and D, E 4 X for any X Im.
Then (L(E,AD) Aw, L(E,BD) Aw, L(E,CD) Am) €op.

Proof. If ETL(Dm)then this is just (07), so suppose
E X L(Dyw. .

Let F = L(E,BDP) A L(Dyn). Then by (07),
(L(F,AD\) Awa, L(F,BD) Am, L(F,CD) Am) € p. On the line L(E,BD) the
points‘ are ordered in one of three ways: 1) (F, E, L{(E,BD) Am) € p;

2) (E, F, L(E,BD) Awm) € p; 3) (E,L(E,BD) Am, F) € p.

Suppose first that (F, E, L(E,BD) Am) € p. The parallel

D —_—
i ™ and L(E,BDZ D ™ yield

(L(F,4D) A, LAE,AD) A'm, .L(E Q) Am) € p* and

projections L(E,BD)—
) 1

(L(F,CD) Am, L(E,CD) A m L(E,BD) Am) € p* respectively. Since
E % L(E,BD) Am; L(E,AD) Awm# L(E,BD) A m# L(E,CD) Am. Hence

either (L(F,AD) A m, 1;(E,AD) Am, L(E,BD) Am) € p or

L(F,AD) Am = L(E,AD) A%» and either

(L(F,CD) A ™, L(E,CD) Am, L(E,Bb) Am) € p ‘or L(F,CD) A = L(E,CD)A™M.

Combining these results with (L(F,AD) Am, L(F,BD) Am, L(F,CD) Am) € p
-we obtain (L(E,AD) Awm,’ L(E,BD) Am, L(E,CD) A™M) € p.

A similar discussion yields the same result in the other cases.

>~ Q ’
. »
»
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CHAPTER 4

Ordered .P.H. planes and their embedded A.H. planes.

4,1, Ordered P.H. pldnes.,

K &.r.1: An ordering on a P.H. plane H=<pP,L, I> isa

quaternary relation on I satisfying the following axioms, If

(4,B,C,D) 1lies in this relation, we write AB o CD (cf. [8], 7.2).

(or1)

(0P2)

(0P3)

(opr4)

(OP5)

(OP6)

13

If AB g éD, thenm A, B, C,.D are mutually distinct and
collinear.

AB o CD 1is equivalent to CD o AB and to BA ¢ CD.

If A, B, C, D are mutually distinct and collinear, éhen
one and only one of the relations Aﬁ o Cb, AC ¢ BD or
AD o BC holds. .

If AC o BD and AD o CE, them AD & BE, for amy A, B,
C, D, E mutually distinct and collinear points.

At least one line is incident with at least four non-
neighbouring points. -

If A, B, C, D are mut;ally distinct points of a line L
and A', B', C', D' are their images uﬁder ; projection

l \
centre P, then AC ¢ BD implies A'C' ¢ B'D'.

A prajection of a PiH. plane is-g mapbing from the points of a
[line & to the points of a line wm from a point P, such that P 4 X

for all X I {,m, given by X »~rPX Am. We shall denote such a\

projection By {,——-2-——?n1 and call P the centre of the projection.

, 40
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4,1.2, Lemma. Let 91 G2 33,‘?\, & eEL; -9\.11 '; P = i:\/\ A
G0F 9 (A5 453 € (1,2,305 for 121,23, g bR, A, P =g aA,

LI ] - ' ' ) o
Py 9, AR, 0TI 90 O#P', P 1 Py. If PP, o P,P, ‘then

'P, - -

1°2

| P, 'P, o P, ,
Proof. If 0 4 Pl; P,', then the result is given by (OP6). We may

therefore assume that 0 is a neighbour of Pl or Pl’.

Take any Q Ig; such that Q4 0, Py, P,'. By (H6)', Q 4 X,

for any X I 4,H'. Since P.P, o P_P, the projection %—Q-—b'fw'

12 3
yields YZ ¢ P3'P where Y = PlQ AHR' and 2 = P2Q A4H'. By (H6)',
P4} X, forrany X I 415 9 g 53. By (H5)', PQ % 1> 9p+ Let U=7PQag

and . V = PQ A 32. We have three possibilities: 1) OP3' o P3Q;"

-

. 1
‘2) OP3 o] P3 Q; 3)0QopPr.P.'.

33 ‘ : )
| Suppose OP.3' o P3Q, Then the projections 33——L>8I° and
P : v , ,
33~—————>~32 'yield OP1 o BlU and OP2 o P2V respectively. Since
OPl’o PlU, the projection I ———Q——»ﬁ' yields P3’ Pl' o YP. Since
1 = Q | ] '
OP2 o PZV’ the projection 82—-————)h yields P3 P2 o ZP. Combining
) 1 1 | 1 1 1 v
YZ ¢ P3 P, P3 P1 o YP and P3 P2 o ZP, we obtain P1 P2 o P3 P.
If OP3 o P3'Q, then the above discussion yields ‘P3'Y o Pl'P and
Yy - X ‘6
' - 15 1 ¥ 1
P3 Zo0 P2 P, Combining these with YZ g P3 P, we obtain Pl P2 io P3 P.
' 1 ' ' o 1 1o .
Finally, 1f 0Q o P3P3 s x‘ve obtain P3 P o Y.Pl and P3 P'o ZP2 ;

hence Pl',Pz" o P3'P.

4.1.3. Lemma. Let "A, B, C, D be four mutually distinct, collinear

points such that A v B4 C4 D4 A. Then AB ¢ CD.
Proof. Assume AB o CD. Let the line incident with A, B, C, D be

€. There exist lines ™ and m such that A_I ™My and 1’1&*?11‘71 ’14 L
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and a point P Iv with P 4 A, Then by (H6)', P 4 X for any X Im,J.
Since AB o CD, the projection l-——g———)m yields

A(PB Am) o (PC AM)(PD Am). As A~V B, PAVPB and A~ PB Am. By
(OP5), there exists E I .1 such ;imc E{ A, C, D. By (6)', E 4 X

for any X Im, PD. Using the projection m———E—-—->PD, we obtain

DF ¢ GH where F = E(PB Am™) A PD, G = E(PC ATv A PP and H = PD A m.
By (}’1\5)' and (H6)', D~ F 4G4+ H{D. As P4 D, P4F; as H Im,
P{H; as C1E, PC{ E(PCAm), P4 G. As A 4 F, there exists a
unique line AF; however A 4 F ~ D implies AF ~ ) which implies
there exists J I %, AF such that J # A. Clearly, J 4 C, D, E. We
have four possibilities: 1) DG ¢ PH and GH o PF; 2) GH o DP and _—
GF o PH; 3) PD o GH and GP o FH; 4) DH o GP and GH o FP.

—~—

Suppose DG o PH and GH ¢ PF. By 4.1.2 (with -+ = PD, &' = PJ,

.

31 = 4G §p =™, Q4 = L), we obtain J(AG A PJ) o P(mA PJ). By A.I.ij,
(with H =PD, &'

PZY,\tal = AG, 32 =m, %3 = AF), we obtair}\
(AG A PJ)(m A PJ) 0 PJ;. a contradiction.
The other three cases lead to a similar contradiction. Thus

AB 4 CD.

4.1,4, Leima. Let -A, B, C, D be four mutually distinctL collinear

! i
points such that A~ B4 C ~ D. Then AB ¢ CD. \'
Proof. Suppose AB 0 CD.: By (OP5), there exists X I AC such .
that X 1, A, C. By (0OP3) and (OP4), one of the following must hold:

AB o XD, CD 0 XA or CD o XB; a contradiction to 4.1.3.

- 4.1.5. Lemima, Let ~¥0 be an ordered P.H. plane. For any three

L Pl
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distinct points A, B, C incident with some line {, there exists a
point D I £ such that AB o CD.

géggg. As there exists a line incident with at least four non-~
neighbouring points, every line 1s incident with at least four non-
neighbouring points.

First suppose A, B, C are palrwise not neighbours. There exists
a point P such that P ¢ X, for any X I{£. Clearly, pPA, PB, PC and
{2 are pairwise not neighbours. There also exist points F, G I PA
such that F, G, P, A are palrwise not neighbours. There are three
possibilities: 1) AP o FG; 2) AF o PG; 3) AG o PF.
' Case 1: Suppose AP g FG. If F ~ C, then F 4 A implies
PA v £ by (H6)'; a contradiction. If PB ~ FC, then PB ¢ PA impliés
F v P; a contradiction. Therefore there exists a unique point
V=PBAFC, If F~V, then F + P 1mplies PA ~ PB; another contra-
diction. If FC ~ PA, then PA | PC {implies P ~ C; again a contradic-
tion. If VA~ X for some X I PA, then V4 F implies FC ~ PA; a
contradiction. If V ~ C, then C + B implies 4 ~ PB; a contrad{ction.
Finally, 1f V ~ X for any X I ¢, then V 4 ¢ implies FC ~ 4 which
implies F v A as { 4 PA; another contradiction. Therefore the map
PA-———X—~—+.L is a projec;ion and by (0P6), AP o FG dimplies
AB o C(GV A 4).

Case 2: Suppose AF 0 PG. Using similﬁr arguments to those

!
employed in Case 1, we caonstruct a unique point V = FB A PC, such that

Vv
V14 X for any X I PA, {. Under the projection PA——>{, AF o PG

AN
vields AB o C(GV A {).
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A

p—.

Case 3: Suppose AG ¢ PF, As above, there exists a unique

V = PC A BG such that V 4 X for any XL -PA, L. Under the projection

PA‘--!~_ﬁ>2, AG 0 PF yields AB o C(FV A%).

Now suppose A~ B and B + C. Then there exists X I { such
that X } A, C. Then by 4.1.3, we have two possibilities: 1) AC o BX
or 2) AX o BC. There exists P such that P + Q for any QI i. In
addition) there exist F, G I PA such that A, P, F,'G are pairwise
not n;ighbours.‘ We have three possibilities: 1) AP o FG;

2) AF o0 PG; 3) AG o PF,.
4

First we assume AC o BX.
Case 1: Suppose AP o FG. As above, there exists a unique point

V = PC A FX where V 1 Q for all Q I {, PA. Using the projection

{————!———>PA, AC o BX vyields AP ¢ HF where H = VB A PA (H A A).

Therefore by (OP4) and 4.1.3, AP ¢ FG and AP ¢ HF imply AG ¢ HP.

There exists W = GC A PX such that W 4{ Q for any Q I {, PA. Then

]
the projection PA———JL~—9-[ vields AC o KX where K = HW A { (K ~ A).
Hence efither AB o CK and we are finished or AK ¢ BC. Assume the.

latter holds. Using the projection -Q————E——a-PA, we obtain AH ¢ LG

where L = WB A PA (L~ A). In addition,-AH.o‘LG and AG o PH imply
AH o PL by (0OP4), The projection PA-———Y——*»Q. then yields AB ¢ CM
where M = VL A £ (M~ A). Thus M is the required point,

Case 2: Suppose AF ¢ PG. There exists a unique point
V =FC AGX such that V 4 Q for all Q.I £;7PA.> Since AC o BX, the
projection §{ ———»PA yields AF o HG where H =BV A PA (H ~ A).
From AF o PG and AF o HG, we obtain \A? o HF by (OP4) and 4.1.3.

\
There exists a unique point W = PC A FX puch that W 4 Q for any.
’ \

)

! ¢

[
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Q I ¢, PA. Then the projection PA———jL——*{. yields AC o KX‘ where
E=HW ALl (K~ A, From AC o KX' and AC o BX, we may conclude by
(opr4) th;t elther AB o CK wﬁich implies K 1is the required point or

AK o BC. Suppose AK o BC. Then the projeéﬁioﬁ {-*——H-——bPA ylelds

AH o LP where L = BW.A PA (L ~ A). From AH o LP ,and AP ¢ HF, we
obtain AH o FL. Finally, using tPe projection PA———SL—Tai, this yilelds
AB;G CM where M =LV A<l (M~ A) and M is the required point.

Case 3: Suppose AG o.PF. "Then we define V = Gd A FX and
W $§PC A GX., VWe may proceed as-in Cas; 2.

Next suppose A +'B, A~ C. By (OP5), there exists X I £ such.
that X 1 A, B. By (OP3) and 411%3, either AB ¢ CX and X is the
required p;int or AX o.BC. Suppose AX o BC. As above, thére exist
points P, F, G. '

Case 1: Suppsse AP o FG. There exists V = PB A GX and V + Q
for any Q I %, PA. Since AX ¢ BC, the projection 4—Y ylelds
AG o PH where H =CV APA (H~A). By (OP4), AG o PH and AP o FG
imply AP o FH; hence the projectién. PA-——~Y——4>{_ yields AB v KC
where K = TV A €. Thus K 1is the required point.

Case 2: Suppose AF o PG. Let V = PX A-FB. Then the argument
used in Case 1 implies K = VG A { 1s the=required'pqint.

Case 3:° éuppose AG 0 PF, Let V =BG AFX. Then K =PV A L
+is the required point. . \

* finally, suppose A, B, C are all neighbours, Then by (OP5).
there exists X I { such that X + A. We have three possibilities:

™~

1) AB O CX which iﬁplies X 1is the required point; 2) AX o BC;
s ' .
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3) AX o BC. Suppose AC o BX. By the above discussion, there exists
Y I L such that AB-o XY. Combining this with “AC ¢ BX, we obtain
AB 0 CY and Y 1is the required point. Similarly, if AX o BC, there

exists Y I{ such that AB ¢ XY¢ which implies AB o CY and Y is the

required point,

,

4.2, The A.H. plane embedded in an ordered P.H. plane.
\ . :
4.2.1. Let ¥ =<P, L, I > be aP.H, pl@he:/l For any & €1,

- L4 -\
define I(¢) = {P € | there exists m€ I with P Im} and

H®) = <P@, L), ¢, || >

where
PR) =T ~ £();
]L(.{) =L N~ (we write ™ =4\ 1f mE L(e));
| if and only if there exists P €T such that P I{,m,n;
T=1n(PE XLM@).
. 4.2.2, Theorem. \Let 4 =<P,L, I > be an ordered P.H. plane.

Then "5(_(2) = <P(), L@, I, || > 1is an ordered A.H. plane.

Proof. %f?) is an A.H. plane by [13].

" For three ;;\utually distinct, collinear points of ‘K,({), we ‘
define (A,B,C) € p if and only if the‘re exists a poj:nt DE L({) such
that AC o BD. We now verify that p 1s an ordering of $((¢).

" (01) and (02) are clearly satisfied.

Before proving (03), we observ? that:

1) for any line m¢ , if P, Q I'm and P, Q € E{), then P ~ Q;

2) 4if P, QIwm¢ I, P~ Q and P € I(f), then Q € Z().

B A R an e

R N I TSIt

G
S e e A e
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To prove (03) suppose (A,B,C) € p. Then there exists D € I{)
sich that AC o BD. If, in addition, (A,C,B) € p, then there wcluld
exist E N~ D such that AB o CE. Combining AC o BD and AB ¢ CE, we
obtain AB o DE; a contradiction to 4.1.3 or 4.1.4. Thus (A,B,C) € p
implies (A,C,B) € p. ‘

“To prove (04), consider three nmtsally distinct points
(A; B, C €P(2) 1incident with a line -Q. Then m¢ € and there exists
a :;iQue point D =maA { in . By (OP3), one of AB ¢ CD, AC o‘BD
or AD ¢ BC holds. ?hese impl¥ ’(A,C,B) € p, (A,B,C) €p or
(BeA,C) €p resﬁectively. ‘

To prove (05), consider four mutually diétfnct,.collinear poinks
A, B,'C, D of 4 (®) such that (A,B,C) € p. Then there, exists
E € Z( such that AC ¢ BE. By (0P3) and (0P4), either DC o BE whicht
impl§es (D,B,C) € p or AD o BE which implies (A,B,D) € o. ’ (
Finally, to prove (06), we cons}der any non-degeng;a?e parallel

0

projection 4%—~—77—4~Q. Consider any three mutually distinct poinfs

3

\ L.
A,B,C § ¥4\ such that (A,B,C) € p. Let mat=D,nAat XE and
g A £ = P. Then AC o BD. The projection Tﬁl—“—g———f?L yiel

A'C' ‘o B'E where A' = L(A,g) Am, ete. Therefore, (A',B',C') € p.

J



CHAPTER 5

A’ projective completion of a proiectively uniform A.H. plane.

[y

5.1. Theorem. A projectively uniform A.H. plane may be extended
to a uniform PH plane with a base line (cf. [1], [3]).

We shall not present a proof of this theorem,but rather shall
restrict ourselves to e; discusgion of the res‘ulting uniform P.H. plane

with a base line which we call a projective completion ‘K * of the

projectively uniform A.H. plane H = <P,

y I, ||>. The construction

itself is due to Artmann ‘[1], but the facg/that he used the additional

condition that .4 . be projectively uniform was observed ?y Bacon [3].

¥

5.2. Preliminary .results (cf. L D.

i 5.2.1, Lemma., Let P be“a point\of 7( (thus P

is also a

neighbour class of points of #.-). Then
I{n— | 9 € L5}
= H{,en,— | @ 15 £, for a fixed Q § Py}
= |[{L el | Q1, for a fixed Q€ P}
= [{TemL |?IT}
‘ Proof. For ar{y N~
L(Q,ﬁﬁ’g) of .A (i‘)' and L(Q,?li,-’%) # L(Q, M5 o) - 1 T ¢ 1=
hence l{n- | q € L3 }l I{L.Eli; | Q I5 {, for a fixed Q €PI—,}I.

Consider 4, m€L such that Q I4,m, gome fixed Q € f,'and

|
\

L ~m, incident with either

‘Then as ‘f( is Pniform, any point of.']Pl—,

4 or -m 1is also incident with the other; hence the restrictions of +{

.54

and any Q € P, there exists a unique line
P,% p

o

PRI I S LY S TV E T
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- i
and to\ A (P) are equal. Thus
It €L | Q Iz { for a fixed Q em§}|
= [{TE€XL | Q1 +¢ for a fixed Q € B}|.
Clearly, {1 €L | Q T4 for a fixed Q€ P} c{L €L | P I,

If P i/I and Q I {, then there exists R € P with R I L. Since!
Q 1 ¢, any line through Q and R 1s not a neighbour of { ; hence by

(A7)'/~Z\;\L(Q,{) and Q1 L(Q,0). Thus

[{L€L | Q1€ forafixed QEF}| = [{E€ | 7 T T}].

75.2.2. Cofollary. Let P ¢I. Then the affine planes :f_(,— and

A(P) have the same order (where the order of an affine plane (not

necessarily finite) is defined to be the card:l,nality of a line considered

\

as a set of points); cf. [1], Lemma 2. y

- > -
5.2.3. Corollary. The affine planes A (P), P € P, all have the

" same order,

5.2.4. Corollary. Let P € P and +H€ L. Then
s,

# s

[{m€L | m||T for a given { €L}| = '{HE,% I q €1z, ]Iﬁ,% P,h”'

5.2.5. Lemma. Let £ be a line of ¥{. Then

[{n, | Hh’\: H{}I = I{H;kl A€ £}| "is equal to the order of F; cf. [1],

Lenma 3.

Proof. Select a point P I {. Then
b, | m, » n{}l = [{hEL|P IH, K1} = |{ny | € X}]. select a
line --m of 4L such that P I-m and 'm,'i/«f_ and a point Q with Q I ¢

and Q4P. Take any & I, P Ih. Then h also meets -m' = L(Qsm) at

3

a point Q' 4 Q and different lines -+ give different points of m'.

»

Pope
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a

Hence |th €L | P 1h, hit}| = |{ X EIP(-2 | X 16‘"{}' which is equal

to the order of the plane A ((—2) and hence to the order of ‘z_ .

5.3. The construction of a projective completion of .

. ;
Consider any projectively uniform A.H. plane M= <P, I, I, |] >

with associated ordinary affine plane f = <f, If., f, H > . Then ?

\
can be ).éxtended to a projective plane K* = <Pk, i*, I* > by the

addition of a single line Em (the improper line of:' 5—_(,—*) and the set of

(improper) points incident with this line [15], 1.2, We shall use J *

" to construct a P.H. plane H* = <P* IL*, I* > such that the neighbour

relation. of -¥{ * 1is an extension of the neighbour relation of -H .

5.3.1. The points .of a projective completion of .. In the pro-

kd

: :jﬁective plane ;(*, let % be an arbitrary but fixed line distinct from
iw and S an arbitrary but fixed point’ not in;:ident wir:h Ew or %1
(In the A.H. plane -H, for any (3, X such that Qé S and X lies on
a line of i', we observe that Q 4 X.) Set V = % A Em. For any point
Y I* Ew’ Y # V, there exists a unique Z = YS A :3 and since # is
uniform, A (Z)° is an ordinary affine plane. We shall now d;afine
,\A(.?) = <Py, Ly, Ig > to be the isomorphic copy of A (Z)  under any
arbitrary isomorphism Vg tA(Z)———> A (‘Y)'. Final'l‘y, we let '

AW = <Pj, Ly, L5 > be any'ordinary affine plane which has the same

order as '7(_ We define P

"
o
ool

the set of improper points of
YH‘w -

the projective completion 4 * and P* =P UPw’ the set of points of

H*. (Here u 1is disjoint union.)

POPNPPPEE

o o

Ry 2
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5.3.2. The 1n}proper lines of the projective completion of §( .
First we select“a.parallel pencil ﬂ.‘7 of AW). By 5.2.5, there exists

a bijection

Y {nﬁlhei}————-—»{{ €Ly l)e € ngl.

For any line -h ¢ %, as hélz for every 2 I i, we define

. h*= U {PEP; | PI yz(R)} U (P EP: | P I y()}.
T T4V Y ! v *‘

(Thus each P GJP? is equal to \b?(Q) for some Q I%, Q € Z and
.vp§(.A (Z)) = A(Y).) We select one line 4 of % and call 4% the

central improper line of -#*. We define L, = {h* | 4 € Ej}, the set of
Y

improper lines of 4 *,.

3

5.3.3. The proper lines of the projective completion of ¥ . We

complete each line mx of L by adjoining to ™ a set of improper

¢

points,

Far any X in :{l‘* such that X I* Zw, we define
A(X) = &% NPg: thus A(X) = (P €Pg | P I vp ) Af X#7V and

AV) = {PEP; | P I A(T,)}. The points of AM(X) 1lie on one line Ag

_of A(X) and g* = U_ MX). From Lemma 5.2.4, there exists a
XI¢
w

bijection

ag ¢ th €L* {Em} | X 1% M———————Hni,&] Ag € 1% 4

For each -k €L* N {Iw} and X =h A, select a bijection (cf. 5.2.5

.

and 5.2.2).
¢€.i':'{nh ,42€'ﬁ)'*~**—*x(i)
with the property that for h,m ¢ L such that  h}|m, h # ™ and

- - »
X1 %,m in 4 * (thus ?\.u-\:\. in #) we have %—" i("&) = ¢1—;, )_((Hm)'

’



We may, therefore, write ¢5—{ instead of ¢§-L 3
Let h€L and X =-HaA iw' The projective completion of h 1is
LI - - — -
R =a{PEP| PIHIUP €5 | P Iz LOg(M),a5(R)) ).

The set {h' |+ €L} 1is the set of proper lines of thetprojective

completion.

5.3.4. The lines of the projective completion. We define

L* = (k' | Lew) U]Lw, the set of lines of the projective completion
4C*.

5.4. The neighbour relation in the projective completion.

In a P.H, plane two points are defined to be neighbours 1f and
only if they are joined by more than one line; two lines are defined to
be neighbours if they intersect in more than one point. We shall now

I3

examine the relationship between the neighbour relations in ¥ and §(*.

5.4.1. Lemma. If P, Q €B* NP , then P~ Q in H * 1if and
only if P~ Q in 4.
5.4.2. Lenma. If P €P* P and Q€T , then P 1 q.

N
Proof. Assume P ~ Q; ie., there exist two distinct lines of "IL*

through P and Q. As P € P* \TPD, these two lines must be proper lines
of L*, say h',R' (R' #R'). Since P I #&', k', we have P Ih X and
hHR in H and in L*, P I* K, k. If R # &, then i

X=HaA iw # & A Iw =Y in # * which implies W' NP cPg,

+! ﬂl’w E'ﬂ?l—( and Q € P}T{ nr§ = @ (a contradiction). On the other hand,

= & ¥ = g il * ' - - -
1f R =&, then for X =RaI in *, w neg L(¢X(ﬂ+\),ax({)) and

U

#
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k! n]g)_( = L(¢)—{(nk)’ai(r‘)); however these two lines are distinct and

parallel in A(X) so Q € ¢ (another contradiction).

5.4.3. Corollary. Two distinct lines h', k' €L* \]Lw cannot

meet in both proper and imprOper'points.

5.4,4, Lemma. Let Hh, kR €L. Then h', k" €EIL* and h' ~ &' if
and only 1f h ~ k&, ‘
p Proof. First, assume h ~ k. By (A2) either Ih A‘QI > 1, which
implies h' v &', or IhA‘kl = 0. If hhvR and |k A K| =0, then

the projective uniformity of -4\ implies h||%k; hence 1f X = R A g,

—_ -— — ~— A \J 1] ] 3
‘{p € Py | p I LGz (M) ,ag(h)} INAY, k' and ' v &',

Now assume #H' ~v k'. By definition, there exist distinct points
~\
P, Q €P* with P, Q I*&', k'. By 5.4.3, either P, Q €B* “P_ which
implies P, Q Th, & and h vk or P, Q EIP;D. Suppose P, Q EIPw.
{ - - - -
This implies |k A k| = 0 and by (A4), 1i1), A A L, =X= R A L,
~ ! 1
Since P, Q Ixh ﬂ]Pw, k ﬂIPw, we have
— — " = ' = —1' = — — t.

L("x(nh)'“x(“)) h ﬂ'ﬂ’w k ‘ﬂ le L(«px(ll&,),ax(k)). Hence

mi(&-\) = a}-((&) and A R,

5.4.5. Lemma. Let K,k €L; &, R € Ii Then f * v k*,

Proof. Since h, kK € g, hv k which implies by the projective
uniformity of -4, that either ]k or +h and h 1intersect in H .

\4
If h||k, then (P E€Rg | P T y(N)) I h*, w*.

e
If 4 and kK meet in some 2Z €T, then by the uniformity of 4« ,

{p EIPz | p I-ih,} = {P E]Pz] P I; k}. In H*, there exists X € P¥

vith X = ZS A Zw. Therefore (P 619}—(~| P Iy zl})-((h\} I h*, k*.

——a

o~ 2

T Rl i Bepibisba g N am Ta A

. - ...‘
TN e o o A 2
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-
-

5.4.6. Lemma. If h' €L* ~L ~ and k* €L , then h' | k*,

Proof. First consider k and L (cf. 5.3.2). By the projective
uniformity of 4, for any X I* %, either
(PEPy | PIg k) N{PEDE [ PIgLl =@ or
(Pe®; | P Ig k) = {PEP; | P Ig )y ie., in each A, &|lgt.
Therefore for any Y I* iw, Y #V, *"?(*‘)H?W?“) = )\i g a?(-m), for any
m EL* ~ {@w}, and y(ﬂk)ll\—ly(n{) = A5 € agbm), for any m €L* ~ {t 1.

Now ¢onsider the limes h' and k*. As all points incident with

4

R* are in '}Pw, all points of H' A k* must be in P‘TI’ where Y = R A Ew

in :R_—*‘ Therefore 1if Y # \7, A ARY = L(¢p=(N ),oﬁ-(ﬁ)) A Yz (R) which -
Y 4\ Y

by the above discussion is a single point; if ¥ =V,

h' A R* = L(%(ﬂh),a\-;(f\)) A y{Il) which is also a single point. «

5.4.7. Lemma. Let P, Q EI’w. Then P ~ Q 1f and only Lf there
exists X EII-S*, X 1Ix iw such that P, Q € IP\-(
Proof. If P ~ Q, then the lines incident with both points are

either all proper lines or improper lines.

Suppose P, Q I X', ®' (L' # k'). Then by 5.4.4, K~ k. Hence

P, Q €ETP; where X=hail =kat.

X W )

Now suppose P, Q I h*, k*. Then h, R € t} and there exists a

VY I*% o - - = - - 3
unique Y I* q such that (P TPy | P Iz h} = {P €T | p Ig k). We have
P, Q E'IP}—( where X = YS A Lw. .

Conversely, suppose there exists X €EP*, X T -{:('” such t\;at

= Sz - -1 -1 .

P, Q €'1P)—(, Let Z = XS A 9- Then ‘l’}-( (P), t}v)—(- Q) EIPZ, hence there
exist distinct lines m, n €1 such that !b)—-;l(P), w}-'-él(Q) Imyn

(and {P €5 | P I; m} = (P €P; | P I;n} # @). Therefore



V), Yge) €Lg and P, Q Ig @) = yp(n) in A (X). 1f

3 .
wi(m)H)-(li, then P, Q I*m¥*,n* in H* and if w)-((m),H then there

X%’
exists +h,k €L (h# k) such that h ¥, &]|k, X = h A i-,w and /

R ={PEP | PIR}U(P €y | p Ig vg(m . ndﬁThe‘n

<' {j} ,
k =-{P€]PIPI&}U{P€IP}—{|PI}—(?S-( )} dnd P, Q I* h', k',

5.4.8. Corollary. Let P, Q €®_ bu h’that P 4 Q. Then

(4]

PQEL, .

5.5. Remark. ‘
~ From our discussion, it is clear that -R_* *1is isomorphic to the

underlying projef:tive plane H* of '.K* (cf. 2.3).* We may, therefore,
use ¥ to ’represent both the class af improper lines of - * and the
improper line, Iw’ of A(*. 1In-addition, we may use Q to denote both
a point of the improper line of H* (I* = Ew)- and to denote a neighbour
class of improper points of H* (and ,A(Q) to repfesent the affine
plane defined over t;he poin'ts of (_2 in A H).

As there is a c;ne-to-one correspondence between the lines *+h of-
$C and ‘the prgper lines 4h' of -#*, we may use *h to represent either
li.m‘a. Generally, i; will be-clear from the coﬁtext whether a line of ¥

or a line of -#* is intended. Im fact, we could have defined -§{* in
. . ‘}’

the fp‘llowing way. Construct ]’w ag in 5.3.1; define the Jjections v,

ags ¢}-( as in 5.3.2 and 5.3.3; and take

v _
L o= Oe=_ U (g} U (YY)} | A€ g} Then 1e71?* =PUP ,
xT*tw,xa&v . >

L* = L U]Lw and extend the incidence relation I to I* cP* XIL* where:

il L 4
-~

1) I= I*IPXL ; 2) for any P EPw, h €L, PI*Hh 1if and only €Lf

< .
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P I}? L(¢)-((Hh),a}-((4-{)) where X = H A {m and P EPZ; 3) for any -
PEP ,h* €L , P I*h* if and only if P Ig yg(), for some X I* Em,
X#7V or PIgy(); 4) for any R EP,-h* €L , P I* h*. Such a
plane is isomorphic to the projective completion defimed in 5.3.

Hénc\eforth, the incidence relations of both K and #* shall
be denoted by 1 afd the incidence relatioﬁs of both 1‘2 and #H* by
I. All lines of IL* shall be denoted by lower case script letters -+, ‘5;,

%,... . (The context will indicate whether we are dealing with proper or

improper lines.)

Finally, in -¥ we°use the notation L(P,h) to déenote the line

through P ‘parallel to h, H‘h to denote the pencil of lines parallel to
+ 4 and L.(P,Hh) to de¢/t;T;E\N>pe of the parallel pencil II,G1 which

passes through the point P. Thesé\\‘lines or classes of lines give r‘ise

to lines or classes of lines in -ﬂ(,/*, therefore in - * we shall.use

‘L(P,h), } €L, to denote the line/of 4(* which passes through P and

is parallel to + in K. We %iefine »H.’L and L(P,Hh) similarly in #(*.

5.6. A Coordinatization of -H *.

We shall select ‘a tri‘ngle 0XY in ¥ * as follows. Choose

0, YILL such that, 0] Y an '6,?;?*. Let ﬁ=5§A€w and put

X

U= wl—’(O). Now take any point J OU such that X 14 0, U. Clearly,

X 1 P for any i"I{ (by (H6)') ormgy P I {* and Y 4 P for any

P 1 OU, {*. There exists a unique point E =LLX,l) A L(Y,0X) €EP < P*

. N \
a unique line k = OF ‘with k14 ¢, OU, £*:= Let

€ % \‘Pw | P Ik} We use lower case L7.ln letters to denote the

elements&with the exception of O and E which are denoted by

P
\\ o
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Coordinates for a Pomt
P of +he First kind

F"gurc 83 ' ‘
(Section 56)

Coordinates for a line
h of the first kind
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Coordinates for a

lime A of +he
Q; second kind

£

Coordinates for a
point Q of the
second kind

- Figura 54
(Section 5.6)
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0 and 1 respectively. The elements of H will be used to coordinatiée
#*. Let n=0nH.

As L A't* €V, we may let V =4 A {*. Then for any line m]|{
in # , in 4{* we have

* = - Lo = = v
LA lx = Llog(M),agih)) A v(My) = ¢5(1,) € L Am; de., 1f ml|t in ¥,
then V Im in -4*. Similarly, for éﬁy 1n'|OX in ¥,
= * = - - : - = -~ *

U= 0X A th = L(45(T5,),a5(0%)) A ¥5() = ¢5(l; ) € OX Am in 4 *,

To any point P €1IP* \]Pw, we assign the coordinates ij,x,l)ﬁ

where x =k APV and y = kA PU. Thus x, y € H. We also call such a

propef point, a point of the first kind.
Now consider any line h €IL* \'ILw. If  foad*x =V (de.,

iz Hh v HL in 4 ), we call h a line of the first kind and- assign it

the coordinates [(1l,m,n] where (h A{*)0 A EU= (m,1,1) and

h A OU = (n,0,1). It is clear that [1,m,n] can represent a line of the

first kind if and only if m.€ n. If h AL*x #V, we call h a line éf

"the second kind and assign it the coordinates [m,1,n] where

(oA L*)0O A EV = (1,m,1) and had T (Q,n,1).,

I.f P I OE and' P EI’w, then (PV A UE)O A EV"-’= (1,s,1) f?r some
s € n.’ We assigp- P the coordinates (l‘,l,s). To any Q EI’w, Q # ,‘7’
.we assign the coordinates (1,y,t) (y_€ H, t € n), where

QV A OE = (1,1,t)- and Q0 A EV = (1,y,1). We call such P, and "Q points

of the second kind.

If P €V, we assign P the coordinates  (r,l,s) (ﬁ\, 8 €n)
where PU /(OE = (1,1,s) and PO A UE = (r,1,1). Such a point P 1is
called a point of the third kind. . N

f/'
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Coordinates for a-point .
P of the third kind

Coordinates for a line

h of the third kind
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r.e 5.5

(Section 5.b)
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Finally, we consider any line 4L€:Lw. We call h a line of the

third kind and assign it the coordinates [m,n,1] (m, n € n) where

hAOU= (1,00m) and h A OV = (0,1,n).

5.6.1. Remark. This coordinatization is esséhtially the same as

the one empléyed in ‘[6] with two notable exceptions: the lines of the
first and second kinds are interchanged and in each of these cases the
coordinate m 1is defined in a slightly differént manner. These changes
enable us to obtain a marked similarity between the coordiﬁates defined
here'for the proper points and lines aqq‘ghe coordinatgs defined for the’
corresponding points and lines of ¥ in 2.1. The point (x,y,1)
corfeSponds to (x,y) in 2.1; the lines [1,m,n] and [m,l,h]

correspond to [m,n]l and [m,n]z, respectively..

5.6.2. Lemma. In $(%,

t

v

L =o0v=1[1,0,0] = {(0,y,1) | ¥y €H} U {(o,f,s) | s €n};
au = [o,l;o],= {(x,0,1) | x € H} U {(1,0,8) | s € n};-
OE = [1,1,0] = {(x,x,ls ]‘x € H}'U {(1,1,8) J s € n};
L% = uv = [0,0,1] = {(1,y,0) | y € H} U {(t,1,0) | t € 6};

0 = (0,0,1); E= (1,1,1); U= (1,0,0; V= (0,1,0).

Proof. These follow directly from the defintion of the coordinates.

v

5.6.3. Lemma. Two points (81,82,83) and. (bl’bZ’bS) [Two lines

[81’82383] and [bl’b2’b3] ] are neighbours if and only if a, v by,

4=1,2,3.

Proof. First, we note that two points [lines] of different kinds

cannot be neighbours by defipitfonk ¢f. 5.4, For two points (al;az,a3),

&1

for

TN G AN

»
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(bl bysby) [two lines ‘[al,az,a3], [bl,bz,b3] ] of different kinds,

there exists a pair x (1 € {1,2,3}) such that one of x is

1* Yy
equal to 1 while the. other lies in n. '

17 7y

For the points of the first kipd and line; of the first and
second kinds, the result follows from 5.6.1 and f11]), 2.3, 2.4. By
5.4.5, all lines of the third kind (ie., {[m,n,1] | ﬁ, n € n}) are
neighbours and by definition their corresponding coordinates are neigh-
bours. Similarly, all points éf the third kina‘(ie.,

{(r,1,s) l r\, s € n}) belong to IPV’ are neighbours and‘ have neighbouring

corresponding, coordinates.

Y

Finally, consider two R?ints of the second kind (l,az,a3),

30 b3 € n. Then by (H5)' and (H6)'

(l’a2’83) " (l,bz,b3) if and only 1if .

(l,b2,§3); a5, b2 € H, a

[az,l,O] = (0,0,1)(l,az,a3) ~ (0,0,1)(1,b2,b3) = [b2,1,0]; hence if and

“only if a, b

2 2°

(V4

5.6.4. Lemma. For any ﬁEH[mEnL kLmﬁ)I{mlm]

[(m1,0) 1 [1,m,n]] for ailJ/n € H. )
Proof. Consider any [m,l,n], m, n € H. By definition,
(Im,1,n] A {*)OnA EV = (1,m,1) which dmplies .
([m,l,h] A t%) 1 0(1,m1) = [m,1,0] and “
[m,1,n] A% = [m,1,0] A ¢* = [m,1,0] A [0,0,1] = (1,m,0).
\ANow congider any, [1,m, n] m€n, n€ H, By definition
([1,m,n] A {*)0 A~EU = (m,1,1) which implies ([1,m,n] A t*) 1 [1,m,0]

—

and [l m, n] AL* = [1 m,0] A £* = [1,m,0] A [0 0,1] = (m,1 0)

’
< 1

|
?
f
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5.7. The ternary operators defined on H.

"5.7.1. We now use the incidence structure of H * to define six

ternary operators on H (cf."[6], 1.1).
~ By [11], 2.8.2, there exists a ternary operator
. .
TO:HXT]XH-—_——*‘H v

(y,m,n)««da,\ﬁ.To(y,m,n)

where (T,(y,m,n),y,1) = [0,1,y] A {1,m,n] (cf. 2.1).

5.7.2. Lemma. For any 8 € n>and any [1,mn] (m€n, n€H),

there exists a unique r € n such that (r,1,s) I [1,m,

¥

" Proof. All points incident with (1,1,s)U have last coordinate
8. Since [1,m,n] n® < V, the unique (cf. 5.4.6) point

;l,m,n] A (1,1,s)U is of the third kind; hence there exists a unique

r €n with (r,1,s) I [1,m,n].

3.7.3. We may therefore define a ternary operator
'r2 tnXHX N —mmmm7mn
(;,n,m)'~a,~fv~>T2(s,n,m) . :
where (Tz(s,n,m),l,é) -'(1,1,§)U A [1,m,n]. Hence we have

(1,myn] = {(To(y?ﬁ,n),y,l) ,‘x € H} U {(Tz(s,n,m),l;g)'r-s € n}.

“5.7.4. Similarly, there exist ternary-operators

Tl ¢ HXHXH——>H

[
»

_(x,m,n) W;,Tl(x,m,ﬁ)
~where (x‘ﬁ&(x,ﬁ,n),l) = [1,0,x] A [m,1,n) (cf. 2.1, [11], 2.8.1) and.
T3:n'xuxu—-——-—'>u .7

(f,n,m)/\Av-f~>I3(t,n,m)

%

»



where (l,T3(t,n,m),t) = (1,1,£)V A [m,1,n]. Hence

o, 1,0) = (66,7, Gomem), 1) | x € 1) U LA, T4(e,n,m),0 | ¢ € n).

5.7.5, Finally, we use the lines of the third kind to define two
more ternary operators

] T4 t:HXn X n=———————sn 1

(y50,m) ~amnmy T (y,1,m0)
f "where (1,y,T4(y,n,m)) = (1,y,1)0 A [m,n,1) and
T, nXnXne———sn .
| (x,m,n)/»A/»ﬂv\;Ts(x,m,n)
where (x,l,TS(x,m,n)) = (x,1,1)0 A [m,n,1]. Thus

(m,n,1] = {((1,y,T,(v,n,m) | y € H} U {(x,1,To(x,m,n)) | x € n}.

5.8. Properties of the ternary operators.

- -

5.8.1. As in 2.2, <}, T, Ty, 0, 1 > 1s-a biternary ring.

3

5.8,2., Lemma. The following properties hold for

<H, Ty, Tl,~T2, T, T4,'7r5, 0, 1>, |
1) Ti(O,a,b) = b; 1-0,1,2,%,4,5; for all choices of:ia, b such ’
that Ti(O,a,b) is well-defined.
11) 1,(b,0,3) = a; 1=0,1,2,3,4,5; for all choices of a, b such
thac' Ti(b,O,ai is well-defined.
iii) Ti(l,a,O)'= a; iﬂO,l;&; for all choices of a such £hat

-

T, (1,a,0) 1s well-defined.
~ i
iv) Ti(a,l,O) = a; i=1,3; for all choices of a such that
Ti(a,l,O) is well-defined.

Proof. If 1 = 0 or 1, the results all follow from 5.8.1.
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i) 1f 1 =2, a€H and b €.n, then by definition
(Tz(o,é,b),l,o> - (1,1,00U0 A [1,b,a] = (b,1,0). If 1 =3 =hd
a, b € H, then rl,TS(o,a,b),O) = (1,1,00v A [b,1,a} = (1,b,0). If
i=4 and a, b € n, then (l,O,T4(0,a,b)) = (1,0,1)0 A [b,a,1] = (1,0,b).
Finally, if 1 =5 and a, b € n, then
(0,1,T5(0,a,b)) = (o,i,;)o A [a,b,1] = [1,0,0) A [a,b,1) = (0,1,b).

i1) If 4 =2 and a, b E n, then

(Tz(b,O,a),l,b) = (1,1,b)U A [1,a,0] which implies that

' .W,..V%W}twwymwm,wus:m IR E I L G

((Tz(b,O,é),l,b)O = [1,a,0]. Hence

(a,1,1) = [1,8,0] A UE = (Tz(baoxa)al:b)o A UE = (Tz(bxora)’lal)-

-

sy

If 1 =3, a€H and b € n, then

PR

(l,TB(Q,O!a),b) = (1,1,b)V A [2,1,0] which implies

(1:T32b,0,a),b)0 = [a,1,0]. Hence

-

(1,a,1) = [a;1,0] A EV = (1,T3(b,o,a);b)o A EV = (1,T3(b,0,a),l).

!
|
g
!

If i=4,a€n .and b € H, then ..~
(l,b,Ta(b,O,a)) = (1,b,1)0 A [a,0,1] = (1,b,1)0 A (1,1,8)V; however,
since (1,b,a)0 A EV = (1,b,1) and (1,b,a)V A OE = (1,1,a),
(1,b,a) 1 (1,b,1)0, (1,1,a)V. Thus (1,b,T,(b,0,a)) = (1,b,a).
If i1 =35 and ‘a, b € n, then
(b,l,TS(b,O,a)) =~(b;l,1)0 A [0,a,1]. However
(b,1,a) = (b,1,1)0 A (b,1,a)U = (b,1,1)0 A (1,1,g)u = (b,1,T¢(b,0,a)).
i11) Let {1 = 4 and a € n. By definition,
“‘(l,l,a)
= (0,1,a)U A OF

= (0,1,2)(1,0,0) A OE




=
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='10,a,1] A 0(1,1,1)

= (l,l,TA(l,a,O)).

iv) If {1 = 3, then (1,1,a)V = [a,0,1]. Hence
(1,a,1)

= ((1,1,a)V A UE)O A~EV

= ([a,0,1] A [0,1,1130 A EV

= (l,T3(a,l,0),a)O A EV.

Therefore,

(l,T3(a,l,O),a)

= (1,a,1)0 A [a,0,1]

= [a,1,0) A [2,0,1]

= (1l,a,a).

Thus T3(a,1,0) = a,

5.8.3. Lemma. Ti(x,a,b) ~ by i=2,3,4; for all choices 'of x, a,

such that Ti(s,a,b) is well-defined.
Proof. Consider 1 = 2,‘x, b€n and a € H., Then

4* ~ (1,1,x)U 4 [1,b,al; hence

(b,1,0) = ¢* A [1,b,a] ~ (1,1,x)U A [1,b,a]) = (T,(x,a,b),1,x) by (H5)'.
Similarly, if 1 =3, x €En and a, b € H, thén

L% (1,1,%)V 1 [bpl,a]; hence

(1,b,0) = tx A [b,1,al ~ (1,1,x)V A Ib,1,a] = (1,T,(x,a,b),x).
Finally, if 1 =4, x € H and a, b €'n, then

(1,x,0) = (1,x,1)0 A t; v (1,x,1)0 A [b,a,l] = (l,x,TA(x,a,b)); hence

Td(x,a,b) v 0N b,



-
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5.8.4. Lemma. Ti(x,a,b) = b; 1=0,1,2,3,4,5; for all x, a € n /
. {
and any b for which Ti(x,a,b) is well-defined. / \\
Proof. For 1 =0, since ,[1,a,b] ~ [1,0,b]; /
(b,0,1) T t1,a,b], [1,0,b]); (b,0,1) n (To(x,a,b),x,l) for any x € n /

(by the definition of TO and (H5)'), we have

(To(x,a,b),x,l) I [1,0,b] by the uniformity of 4L *; -hence '
(To(x,a,b),x,l) = (b,x,1).
_ Similarly, for 1 =1, [a,l1,b} ~ [0,1,b];
(0,b,1) 1 [a,1,b]), [0,1,b] and (O0,b,1) ~ (x,T (x,3,b),1) for any
x €, imply T,(x,a,b) = b. For 1= 2,\[l,b,a] ~ [1,6,0);
(6,1,0) I [1,b,a], [1,b,0] (by 5,6.4) and (5,1,0) » (T,(x,a,b),2,x)
{by 5.8.3) 1mp1y‘ Tz(x,a,b) = b, by the uniformity of 4 *. For 1 = 3,
[b,%,a) ~ [b,1,0); -(1,b,0) I [b,1,al, [b,1,0) and
(l,T3(x,a,b),x) ~ (1,b,0) imply T3(x,a,b) = b. For 1 =4, i \
[b,a,1} ~ [b,0,1); (1,0,b) I [b,a,l], [b,0,1] and
(l,x,Ta(x,a,b)) ~ (1,0,b) for any -x € n imply IA(x,a,b) = b. Finally,
if 1=35, la,b,1] ~ [O,b,1); (0,1,b) I [a,b,2], [0,b,1] and |
(0,1,5) = [a,b,1] A [1,0,0] ~ [a,b,1) A (x,1,1)0 =-(x,1,T(x,a,b)) for

any x € n, which imply Ts(x,a,b) = b,

ok s v R o o P e P Tl i

5.8.5. Remark. Lemma 5.8.4 implies that we may ignore the ternary

operator T5 ‘as it is just the ldentity map on the third variable. . :

Therefore the set nf points of [m,n,1] given in 5.7.5 is

[m,n,1} = {(l,y,Ta(y,m,n)) | y€HYU {(x,l,n)‘]‘x € nl. ’

»,

5.8.6. Lemma. The equation Ti(a,m,x) = b; 1=0,1,2,3,4;

som M £ " 3 -
TS P RIS T OT) JIET S 3 PPN POSE
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. solvable for ‘x if and only if n

.
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uniquely sovable for x, for all a, m, b for which the equatioﬂ is
well-defined.
Proof, If 1 = 0 or 1, the result follows from 5.8.1,

Let 1 = 2. Then a, b €n and m € H. . There exists a unique

-
7

line joining the points (m,0,1) .and (b,l,a). This line must be of
the first kind (as it containg points of tﬁé first and third kinds);

: v
hence there exists x € n such that (b,1,a) I [1,x,m] and

b = T,(a,mx) by 5.7.3. : )

Let 1 =3. Then m, b € H and a € n. There exists a unique
line of the second kind joining the points (1,b,a) and (0,m,1);
hence there exists a unique x ~ b (by 5.8.3) such that (1,b,a) I [x,1,m]
and b'= T3(a,m,x) by 5.7.4. o ¢ ﬂi
Let i =4. Then a € H and b, m € n. There exists a unique

line of the third kind jeining the points (1,a,b)) and (0,1,m);

hence .there exists a unique x € n such that 5) N [x,m,1] and

i
b = Ta(a,m,x) by 5.7.5. N
. |

i 5.8.7. Lemma, 'T (x,ui,n ) = Ti(x,mz,nz); i=2,3; -is ﬁniquely

1 Y n, and m i m,, for all m, m,

'ny, n, for which T, (x LIRS ) 1is well-defined (i=2,3; j=1,2). - 3

Proof. Lst 1 = 2, Then m o, m, € H and B, n2,€ n; hence

LTy v, 'If,nml s mé,~then,5.6.3 ipplies [l,nl,mll 4 [l,nz,mzl and

. . . : .
these’ lines have a unique intersection point. Moreover, (A7)' implies

3

such an intersection pgint hmstﬂbe improper. .By 5.7.3, this point is of
- R - : . & .

vn

the form ‘(T (x, ;n );1;&) T (x m, n,),1,%x) for some unique x € n.
n (Tp (eomyomy (T 0xmy )

1f w v om,, *then [1,nl,m1] “~ [l,n 3 and’ they cannot have a unique :

arre



.\\' , 7?
u} ~_

intersectiéh ﬁoint, so0 a unique so;;EEQnP x does not exist. (Actually

~

in this case, if the two lines are diétinct but mot parallel in ¥ (ie.,
~

n1 # nz), they mggﬁ,meet“ty—a~ﬁ§;;qr point by fhe projective umiformity
of ;- Qgpce by 5.4.2 no such x. exists. If the two lines are parallel
in ‘éC//;hen they coincide in V; hence any x€n is a solgﬁfah,)

rd

L Let 1= 3. Then m,m, n;, n, €H. If n, vn, and m 1 m,

/,' then the lines [nl,l,ml] and Inzgl,mz] have a unique intersection
point and (A7)' implies that such an iAtersection point must be iﬁbroper.
By 5.7.4, this point is of the forﬁ .
(i,T3(x,ml,ni),x) = (1,T3(x,m2,n2),x) for'a uniqu?’ x €n. If ny { Ny,
then the lines [ni,},mll and [nz,l,mzl must meet in aisingle.point of
4K by (A7)'. Hence by 5.4.2, there is no solution to the equation
T3(x,ml,nl) = T3(x,m2,n2). 1f n, v, "and my v M, then the lines
[nl,l,ml]- and [nz,l,mz] cannot have a uniqge intersection point. If
n, # n,, then by Lhe projective uniformity'of&'il, the lines [nl,l,n&]
and [nz,l m,} must meet in 4{ and.the equation has no solution; if .
' n, =m,, the lines must coincide in (1 ny 0) and the equation ﬂgf‘many

solutions.. ) -

5.8.8. Remark. As all lines of the third kind ‘are neighbours,

the equatdion -Tééf’ml’nl) = T4(xfm ,nzyﬁ‘where ml,'mz; n, n, € n never
has a unique soluéion fo; x (cf. 5.7.5). .Thé equation is'sblvabie if
m # ; . If m =ﬁhz -and‘ n, # ﬁz, then the lines “[n ,mi,l] And

[nz,m ,1] coincide in- V' hence by 5. 4 7 these lines do not intersect

-OuCBide of V which implies that’ there is no solution to the equation .

L4

Ta(xym1,n1)1 - Ta(x'mz’nz)’ byT‘S'o7-3x? )
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.5.8.9, Lemma.iThe system Tk(ai’x’y) = bi is uniqukly solvable

for the pair x, y 4if and only if a; + a,.

Proof. By 5.6.3 and 5.4.8, there exists a unique line of the third

/ - :
kind through the pair of points (1, a, b ) (1,az,b2) if a; 1 a and

hence there is a unique solution to the system of equations
Ta(ai,x,y) = bi' 1f a, v a,, then (l{al’bl) ~ (l,a2,b2) and there are
at least two lines thxough them. If these lines are of the third kind,

the system Ta(ai,x,y) = bi has at least two solutions; otherwise there

are no solutions.

5.8.10., Remark. Neither the system fghai,x,y) =\bi"ndr the

system Té(ai,f,y) = bi- is uniquely solvable as all the improper points

incident with a given line of the first or second kind are neighbours.

5,8.11. Lemma. The system y = T3(x,m,nk and x = TA(y;u,v), where

m, n € H; u, v € n uniquely determiies the pair x, y.
Proof. The lines [n,1,m] and [v,u,1] are not neighbours and!
hence have a unique intersection point\ﬁhich by 5.7.4 and 5.7.5 must be
\ -

of the second kind, say (1,y,x). In addition, by 5.8.3, y v n and

x' € n by definition.

5.8.12, Lemma., If 3, v ay; bl’ b2:£ n and :(1,ai,bl) # (1,a

then the sysqem bi T (ai,u,v) (i=1,2) is solvable with respéct to

v, v if and only if b1 - b2 The system- a

‘1f and only if -bl ¥ bz. _The solvable system has at lehs@”fﬁégéglutions

1 ;“igkﬁi?x,y) is solvable

* l

‘with x1 ﬁ Xy ?l 4y ?2 or u; N dz, YI NV,

Proof. Consider the pair of points (1,a;,b,), (1,52,1)2)'. with

bJ 29b2) ]
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‘the second kind and a, = T3(bi,x;y) has at least two solutions.

lof a set and|five ternary operators which satisfy some of the properties

79

N

a;. v 83 b, b2 €n. 1If bl = b,, then (1 al,b ), (1, 8y, ) IJ [bl,O,’l] .
and since <1’a1’b1) v (l,az,bz), there exists at least one other line of

- | :
the third kind through them. 'Therefore, bi = T4(ai,u,v) has more than

\

" one solution., As there can be no line of the second kind through. both

4

po}nts, a, = T3(bi,§,y) .has no solution. I? bl # b2 .and

(l'al’bl)’,(l’aZ’bz) I [u,v,1], for some u, v € n, then’by the uniformity

)

of #(x, (l,ai,bl) I [b2,0,1]; hence b1 = b2 (a contradiction). There-

fore, (l’al’bl)’ (;,az,bz) must be incident with at least two lines of

5.8.13, Lemma. If

e Al s g £ AT

315 3y, l’ b € n and b # b2’ then the

system Tz(bi,u,v) =ay has at least two solutions for u, v and

u;, vu
1

'

2 . ' ‘
Proof. Consider the pair of points (al,l b,), (az,l b,). There

2 V1

A
};,
i

exist at least two lines through these points and all lines through both’
poiﬂts‘hust,be ﬁeighbours. By definition, these lines must be elther of
the fifst or third kind; Jhowever, if these points are incildent with a

line of the third kind, say [u,v,1]; then

s

b1 =‘T4(al,v,u).= u. = Ta(az,v,u) - bz; a contrgdiction. Therefore,
these points are incident with lines of the form [1,v,u] and the system

has at least two solutions.

Tz(bi,u,v).= a,

5;8;1&.'Rémark. As in the case of an A.H. plane and an associated
A : : :

biternary fing, it is possible to define an alngraic structure consisting

in 5.8 gnd.use it to comstruct a uniform P.H. plane (cf. Appendix I).
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—~GHAPTER 6

The projective completion of a projectively ordered, projectively uniform
: <

A.H. plane ' \
i '

6.1. Consider any projectively ordered, projectively uniform A.H.

plane ‘{'K a<P,L, I, || >. If the neiglbbour relation on ¥ 1is the

trivial one, then the projective completion of ¥ is j&st the ordered

-

projective plane’ constructed by Heyting [8]. Henceforth, we may assume

that ¥ has a non—trivial neighbour relation. We -may construct an

arbitrary projective completion of 4  in the manner described in Chapter

5. However, \in general, such a projective completion is not an ordered

P.H. plane (c¢cf. 7). By replacing’ the arbitrary bijections vy, ¢i and

ag used in the construction with special bijections and by restricting

the choice of the arbitrary affine plane A (V), we are able to constru‘ct:

an ordered prdjective\ completion ¥{* for (.

'\.

6.2. The construction of the ordered projective completiorl (cf,

5.3 and 4.1).

i

The underlying affine plane € of H 1is ordered (cf. [10],

and may be extended to an ordered ordinary projective plane 4(* ' by the

" addition of a single Line I (c£. [15] and. [8D).

In -}(*, leI: g be an arbitrary but fixed 1ine distinct frqm L

and § an arbitrary but fixed point not incident with { , g. Set

Va c? A‘T.w. -For any Y1 Ew,_a'r #-‘7, there exists a unique’ Z =YS A ‘3'

.Let A () =< Py, Ly, ‘I? > be the isomoxphic copy of A@) under any

80
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ure 6.1 ‘
(Settion b.2)
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isomorphism Yo : A (Z)———e A(Y). Let O be an arbitrary, hut. fixed,
point such that oI 5, 0 # V. Then there exists U=0SA Ew' Let

AW = <].>\-,, ]L‘-’-, I‘-} > be the isomorphic copy of A (0) under any iso-

morphism Y : A (0)——s A(V). As in 5.3.1, we define B = U Pg
’ . ) YI{
and P* =P U:Pm...
Let E, be an arbitgary, but fixed, point such that EX ;':m, §, ou:

£ an arbitrafy, but fixed; line of S in §; O an arbitrary, but fixed,

"element of 0, 0 I ¢{. Let U:=fla(0) . Then take S to be an arbitrary,

but fixed element of §, § I OU.

‘

3 i

We now construct the improper lines of - *. There exists
. . i
T= (SVAOE)U AL and T # O, V. Select any pg.)int T in T such that

T I 4. Choose a parallel pencil % of AV) such that q:‘-;(ou) 2 TI\-;.

For any\ LEWL, h v €, there exists 'L(T,h) A OU € O. We define a

@

°

bijection
RE [thhez}—-——i{mGJL‘-} lmg s}

By ~~rnnne v (M) = L (5 (L(T,A) XOU) T3 -

Let , h* = u__{p .EP,; | P I3 \Pg(’ﬁ)} u {p €]P‘—7’| P I Ym)h)}' for any

: }?iiw,.ygév
€L and }eé i"n{ = {h¥] h € ).

Finally, we complete the lines of H by adding impropez,ints

to each proper line.’

For any X -in J¢* such that X f'iw, we define A (X)= {* Negs

thus A(X) = {p g%-r,l PIVYz)}if X#V and

n.-z - ‘ . * . - - f\
M@= {p €®; | P 1 yN, )} Let ‘ g
AU S A i T
' / Y (I, b‘therwi?e . ‘

i
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We define a set of bijections a-}—{, for X # \7, in the following
a ) L .

way. For any heL* S {10)},, such t}lat X=ha f-,u, there exists a point
Z=hAl and a line- ZS:, . Since Zs is a line of -?(, it is also a
neighbour class of lines of ¥ . As Z I 2S, each line m € 28 of ¥ is

also a line of A(Z). For any two lines "My, m, € 25, we have m Hm

by the uniformity of ¥ . Therefore 7S is a parallel pencil of J (Z)
There exists Y =XS A L. Téke any m¢€ ZS and any 'Y € Y. 'rhen L(Y,«n)
(where this is the line through Y para‘llel tomin ¥ ) is a line of

A{Y) and 1= is a parallel pencil of .A(X). Since S IZ,

X '\p (L(Yrm) )

We define " ag th) = Ig

Rz @emy 70 vz (0 % 9 (L (¥,m)°

*

. %]
6.2.1. Lemma. The map {where XIL,R#V)

. w
oy ¢ {.hé€ I*~ L)} | XI L | A £ Iz v
\ bz = I3, V5 (LY,m) "
where H;{,IJ!'}-((L(Y,;TO) is defined as above, is a bijection.

‘Proof. It is sufficient to show that this map' 1s an injective
, ' "-""'"\"" \ v ; E N .

function. o

-

First we prove if Y 3;2 €Y and my,m, € 2S,then

1’
h- =M= .- ] .
Xobg (LY ,m)) — XodE (LY, my))

N \ .
"'Sincfg mll IE"&' byz the projective. uniformity of K , either

mll Imz in ¥ or there exists P I m, M, P g2 ir? K. 1f -mlllmzp

then L(Y ,ml) I IL(Y ,11\2-),; hence L(Yl;ml_) H§I‘(Y'2'm2)' If there exists

PI ™ mz, P € 7, then L(Y' ml) n L(Yl,mz) by (A?)' By the uniformity '

of “# , these two lines co:.ncide in ¥; hence L(Y: -ml)II-L(Y ) -

)

,Sipge vhi is an isomorphism, the result follows. S e
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Now we show that oy is injective.

Take two distinct lines '4:1,‘4-{2- EE* ~ {iw} such that X I El’

412. Let Zi = *"i»A £ (i=1, 2). Then. Zl # Z‘2 and zls # Zzs' For
any mi € Zis (f“ =1, 2), 'ml'iw m,. Therefore fqr any Y €Y, L(Y,mi) 1:

L(Y,m ) and x}Y is the unique point of intersection«t bf these lines. Hence
L(Y, ml)H-L(Y,mZ) and ¢X(L (¥ /m )),H'—#— (L(Y mz))
In addltion, we deflne uv as follows For any h €TL* ~ {Ew}
such that V I h, there exists a neighbour class of lines
)

17\0 = ((ﬂ A OE)U A £)S of H . Take any l':ine m in this class. There
, \

exists L(O,m) which is. also a line of .A(a) and the set of points of
N,

-

A ® . - .
this line in- O is independent.of the choice of wm € m by the uniform-
1, '

ity of . We define
o5 {h €L* ~ {Zm) J v I R}——n{ns

I~ .
Vg (L(Opm))
S . . . - - =, - Ve =~ =
Clearly, o5 is a.functlon. Since hl, R EL* N {Lw}, v Ifkl' hz
and Ry # &, dmply ((R; A QE)D A D)8 # ((R, A CE)O ADE, o is

“ . : .
injective and henge bijective (cf. 5.2.4).

We definé bijectiohs.. d:‘i for X I¥ by

® - .
¢z {n, | R I X)}——x(X) - ) o . |
Hhm¢§ (Hh)”= wi(L(Syh? AL) ifEX#AV..

) b5 € (L (T k) A' OE)U A Jz,)

\ 2

Then the pro;)ective completx.on of the line h €1, where 4 A L = X, i;
h=(rEPp | p Th} U {PERy [P I L(¢x(nk) ag (R}

LetI-*———'{h'IkEL}U'L. S X

R By'5.3, 4(* = <P*,IL*, I > is a uniform P.H. plane. We may

Vs '

cqofainatizé. ¥* as in 5.6, using the triangle O0,X = VE A OU,Y = UB-A L.
’ > : /

M >
|

s
1
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Then H = {P € P* TP, | P I OE} -with the ter;ary operators T,, T,
defined as in section 5.7, is a strongly érde;ed biternagy ring (cf.
3.4.2). Additional ternary qperators Tz, '1‘3,"1‘4 may also be defined
on H as in 5.7 and they satisfy all the prdﬁbrties given in section
5.8.u We shall prove they also satisfy certain order properties in 6.4,

but first we investigate the orderings oli induced on the affine planes

A (X) by the ordering p of (.

6.3. The induced order relation on eéach 'VA(RX

6,3.1. Let P €P* \CPw.\ We may define an order relation p|§
: o \ .
in the following way. For any A, é, c €]P§, (A,B,C) € plﬁ if and only

&

if (A,B,C) € p.

at

6.3.2. Lemma. \A(P). = <Pg, Lz, IS, ”E’plﬁ > is an ordered

affine plane.

Proof. By 2.4.1, A(P) is an ordlinary affine plane, so it will

be sufficient to show p'§ is an ordering of- ,A(P) and each line

|

contains three distinct points (cf£. 3.1.).

As o i; an orderihg of '4(,laxioms (Ol)'- (05) are clearly
saﬁisfied. T;.prove (06) hoids, we need merely ﬁpow that a parallei
projection in A (P) )is a parallel pr?jection of ¥ . consider any two

\ o .
lines ™, EI’§ such that ml”’ﬁ"‘z'\“ 1f mIHm2 in 'J(A,the result is

clear, sd® suppose ml‘Hmz‘ Then for an&y E Q € P, Q Im, , there exists

1
L(Q,ﬂb). If‘ L(Q;wa) 1'ﬁi:. hen pyiTA7)"ané (AS);,1nl +;n2. and there

£

1 1 ‘and by

exists R=m Awm, €1; a contradiction. Hence L(Q,m,) ~m
the uniforﬁity‘of H, these two lines must coincide in A(P). Hence we

niay’ replace ™ by I.(Q,mz). T‘hus all parallel projectior{s .of A (P)

’

¢ « [
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\

are also p;rallel proéections of K.
We now show that there exis; at least three points on one line.
Consider the ordinary affine plane A (0) and the line [0,1,0]

of _AO). Since the neighbour relation on < is non-trivial,

n# f%} and tﬁere exists a € n, a # 0. Then the points (0,0,1),

(a,0,1) 16 [0,1,0). By (Bl), there exists a unique b € H such that .

T)(a/1,b) = 0 and by (82) and (B1), b = T (0,1,b) VT, (a,1,b) = O; w

b€n. If 0<a [0>a], then 3.1 4(3) implies

b = T, (0,1,b) < T, (a,1,b) )='o [b T (o lb) ‘I' Ea 1,b) = 0] and

b # 0,a; hence in v4(6) the three mutually distinct‘points (b,O,l);

(0,0,1), (a,0,1) I3 {0,1,0]. Then all lines of .A(0) are incident

with at least £hree points and by 5.2.2, all lines of every .A(P),

P € P* P o arxe incident with at least three points.
il

-

?.3.3. We now use the order relations p]l-,- on .A(E) , P EPr \‘IPm

‘

to induce order relations on each .A(i), X €IPm in the following'way.
For three points A, B, C E]P— (A,B,C) € p|§ if and only if

it is cléar that each

(q,- (n) w- (B).w Yen e "I(w (X)) "

LA = <®g, Lo, Ip ’ pI- > 1is an ordered affine plane.

X' “x

6.3.4. Let P €]B , P# V. We call wgl}P)' which is a point of
vA(w— (P)), @he preimage of P. Similarly, for any W1€:§§, we call”

- i ‘1 -1 ' i ; * ‘
""p (v:n) (w‘hich is a 1:.1::e of A (epp .(P))) the preimage of m. If h EI.m,

then

, ,n‘
s
%

-~

W= Y {QEP-[QI- xp—(h)}U{QGP-lQI-y(Hh)}
YIL YAV ‘

(cf. 6:2), 5o.each Y3 has h (considered as a line of .34(’- () )

A\l
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as its preimage. We therefore call the line h of -H the preimage of
h*, For any line. m € Tg*, let m|6 ={R€QJ| RIm}. Hence mlc-2 is
actually a line of A(Q) considered as & point set and we may also use

'hda to represent the line of .A(Q) through these points.

6.3.5. The point S in X played an importamt role in the
;onstruction of -#* from - (cf. 5.3.1 and 6.2); therefore the
location of S id ;E.(expressed in ;erﬁs'of the relation 5 with
respect to oghér known poiﬁts of 3() also plgys an important role in the
relationship becwééh the improper points aﬁd their preimages in #.. By
the definition, ¥5(0) = U, ST OU,, S#0,0; hence S must be of the

form (s,0,1) 'where s € H~ n. Without loss of generality, we may let

S = (s8,0,1). There are two possibilities: either 8 >0 or s < O.

6.326. Lemma. Let m < p and (O,n,1) and) (O,q,i) be the

preimages of (1,m,0) (1,p,0) respectively. Then s >]0 [s < 01

! 14
implies n > q [n < q). In addition, m{ p if and only if n ¢ q.

Proof. First suppose m + p and m < p. f

<
)

By definition, the preimage of (1,m,0) 1s in the neighbour

e - P, r
class -(1,m,0)S A L = (O,nl,l) for some ng

L*, the preimage of (1,m,0) is (O,n,1) for.some n € ;1' Similarly,

€

€ H; 1in fact, as (1,m,0) I

the preimage of (1,p,0) 1is (0,q,1) for some q € H. As m + P,
:(l,m,0)§ AL#$ (1,p,005 A &; hence n?} q. The lines [m,1,n] and

[p,1,q] both pass through the neighbour. class 5 }sihce by definition,

(1,n,0)S = (1,m,0)(0,n,1) ‘ar‘xd {T,p,05 = T,p,0(0,q,1).. Since m'} p,
{m,1,0] 4 {p,1,0]; hence by‘(A7)§ [m,1,n] ¢ [p,1,q] and theQe exists

a € H_ such that (a,Tl(a,m,n),l) = (a,Tl(a.p,q),l)‘-‘[ﬁ.l,n] A [p,1,q].

| R ATt A S BRI M I RN SRS BRI e I (A SRt
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By (AS5)', a~n s + 0. Therefore a >0 {a < 0] and

n= T.l(o’m,n) > Tl(o)p!q) = q [n = Tlcolm’n) < Tl(O:P»Q) = q] by (0M3)’
Now suppose m~ p and m < p.
Then the preimages of (1,m,0) . and (1,p,0) are in the neigh-

« —— . —_ .

bour class (1,m,0)S A L = (1,p{0)S A L. As (i,mO0), (1,p,0) I L*, their
preimages are of the form (0,n,1), (0,q,1) respectively with(n V q.
By 2.2, (1,m,0) I [m,1,0] as well as L*. However by definition,

<«

¢(i,m;0)(n[m,1’0]) I [m,1,0],1* .also. Therefore

w(i:;:Th((oonsl)) = (l:m’oy . . )

= ¢(l,m,0)(nbm,l,0])
- w(m—) (L(S,[m,l,O]) A “!—)) !

which implies n 1s the unique value for- which Tl(s,m,n) = 0, Similar-
ly, q 1is the unique value for which Tl(s,p,q) = 0, If s~> 0[s < d],
then 3.3.2(4) implies n = Tl(O,m,n) > Tl(p,p,q) =q -

[n = TI(O,m,n) < Ti(b,p,q) = q]. : . "

6.3.7. Lemma. Let m, p,€ n such that m < p and let

w%l((m.l,O)) « '(0,n,1), W5l((p,1,0)) - (0,q,1). Then &> 0 [s< 0]
~ S . : '
implies n > q [n < ql.

* . "

Proof. By definition, T = (S8V AOE)U AL and T is any point
of T incident with L, By the uniformity of 4 , for any line A such

] - .
that R I ¥, L(T,h) = L((0,s,1},k). Consider the lige [1,m,0]. Let’

-

t €n such that To(s,m,t) = 0. Then. tl,m,t] A [1,1,00 = (E,t,l) by
’ . ’ T ) d .

-.3,8.8. By definition, ¥
¥5€(0,£,1)) = ¥ ((L((0,8,1),[1,,0) A OE)U A 1)

3

. .
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= %51, m,00
(1,m,0) A &*

1

{1,m0)

f

wv((osnyl)): .
ie., t = n and To(s,m,n) = 0. Similarly, (p,1,0) = wv((O,q,l)) where
TO(SsP)Q))a O
Suppose s > 0 [s < 0]. Since “m < p, 3.3.2 implies

n = Ty(0,m,n) > T,(0,p,q) = q [n= Ty(0,m,n) < To(0,p,q) = ql.

AY

6.4. Order properties for ternary operators.
6.4.1. In the following section, we shall make use of the prelmages
of some improper points and lines to prove various order properties for

3

the ternary operators T,, T T We shall use the following pairs of
N4

374
improper points/lines and preimages with the possible addition of sub-
scripts wﬁen the need arises. '

As in Lemma 6.3.6, a going (1,m,0) =\Q(1j;:2?;(ﬁ(8,[m,1,0}) A L)
and hence has as preimage the point (0,n,1) where Tl(s,m,n) = 0. Let
(1,1,0) and (1,r,0) kave preimages (O0,p,1) and (0,u,l) respective-
ly, where Tl(s,l,p) = (0 and Tl(s,r,u) = 0.

‘Now consider a line [m,1,0] of <4L*. By definition,

is the preimage of (l,m,O), 1A [m,l,O} = (0,0,1) and

2

(0,0,1)S = OU = [0,1,0), we obtain

f/ ' a(l,m,O)([m’l’O]) (l m,0), w(l 0)([O 1,n}])’

Hence

[m,l,O]I(m) = L((1,m,0),N )

(T,m,0), \"u ([0,1,n])

0)
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= w(————— (L((0,1,n),n

T,m,0) 0,n,1),(0,1,n]"’

= Ym0 LoLinll gy

-

Thus the preimage of [m,l,O]I(IT;TB) is [O,l,h]l(-(-)-:;--’-f).i
' Si?ilar}y, the lines [l’l’O]lCI:ITE) and [O’l’O]I(ITETB)
have the preimages [0’1’p]}(675715 and [O’I’OJI(ETETI) respectively.
Now consider a line [a,8,1] of S *. Since it is an improper
line, it has as preimage a’ line of the form [1,b,a] where a,b € ;.
Now consider the 1line [0,8,1]. Since [«,8,1] and 1{0,8,1] coincide
in V (cf. 5.8.5) and do not meet elsewhere, tﬁeir preimages in « /
cannot meét. Since both preimages belong to I, theyi;ust be paralley
by the projective uniformity of "“. However, (1,0,0) I [0,8,1] whﬁch

N

implies that the preimage of [0,8,1] must pass through (0,0,1). T;ﬁs

the preinf®ge of [0,8,1] must be [1,b,0]. Next consider the line
{a,0,1]. The lines i* and [a,0,1] coidtéﬁe in V and fail to meet
elsewhere; hence the preimage of [a,0,1] ca;%ot meet L and is there-
fore, by the projective uniformity of ®, parallel to A. In additionm,
as [0,1,0] K”T;tBTIE”:\?I}O,a) I {(a,0,1], :
[O,I,O]I(BT%TI)A [1,b,a] = (a,0,1) (ie., (a,0,1) fis the primage of
(1,0,al} m%fw be incident with the preimage of [«,0,1]. Thus [1,0,a]
is/bﬁ; ;Sre;tmage of {a,O,l].

Since (1,1,a) = [a,0,1] A‘[l,l,O], the preimage of (l4l,a) 1is
[1,0,a) A [0,1,p] = (a,p,1) and since (1,1,8) = [0,B,1] A [1,i,0], the
preimage of (1,1;8)' is [1,b,0) A [0,1,p] = (To(p,g,O),p,l).

For reference we tabukate these results.
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/ PREIMAGE IMAGE
&l
. (0,n,1) 1,m,0)
(0,p,1) (1,1,0)
_ (0,u,1) (1,r,0)
POINTS -
(a,p,1) .(1,1,a)
(Ty(p,b,0),p,1) (1,1,8)
=~ (a,0,1) (1,0,a)
1 - . ,
| .1l gmn | Lollaas
. PROPER LINE§ [0,1,p]](6j5733 [1’1’°]|(IT176)
[o,1,o]|(5:57T) [0’1’011(17675)
[1,b,a] {a,8,1]
IMPROPER LINES (1,b,0} (0,8,1]
{1,0,al [a,0,1]
Table 6.4.1.
6.4.2., Lemma. If Ay Gns Ag € n such that (gl,az,u3) € p, )

1
then ((l,T3(al,q,m),al),(l,T3(q2,q,m),a2),(1,T3(03,q,m),u3)? € pl(m)'
Proof. Since (0‘1’02’“3) € p, we have
((1,a,50), (1,0,,0),(15a,,0)) € plg. The three lines  [a;,1,0] (1=1,%3)
meet at (0,0,1); hence they cannot meet in A (U). Thus

[a,,1,01 |5l l5la,,1,0] |5, for all 1,1 € {1,2,3). The parallel projections

,i’;lﬁ ;[0’1:1”‘(1 - [0,1,0]|G in A (U) yield

[01’1’0]|ﬁ £*|U
((l,O,al),(l,Q,uz),(1,0,(13)) € p|ﬁ By definition (l,O,ai)V = [ui,O,l]

(i=1,2,3).
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Consider the preimpges of the lines [ai,O,l] (1=1,2,3) and
[m,1,0] (cf. 6.4.1) and their intersections. Clearly,
(l,m,ai) = [ai,O,l] A [m,1,0] has preimage
[l,Oggi] A [0’1’“]|(GTE?T) = (ai,n,l). Since
((1,0,a;),(1,0,a ),(1,0;¢3)) € p|ﬁ, ((a;,0,1),(a,,0,1),(a,,0,1)) € p|6
by 6.3.7; de., (al,az,aB) € p. Therefore
((al,n,l),(az,n,l),(a3,n,l)) € ol(ﬁj;jf) and by 6.3.4
((l,m,al),(l,m,az),(l,m,a3)) € pl(ij;?ﬁ)' As the lines [ai,O,l] meet
in V, they cannot meet in VA((l,m,O)) and hence are parallel there.

—_—

Using the parallel projection [m,1 0} —— (m,1,q]} +—=\>
g P proj 01 7275 [a,,0,1] |l 7575

weé obtain

((11T3(Ql)q ym) aﬁgl) > (L)T3(a2 ’q)m) :uz) ’ (1’T3(u3’q’m) ,03)) € P ‘ (m) .

6.4.3, Lemma. Let a, B € n and ml, m,, m, € H such that

i (ml,mz,m3) € p and my 1 m, 1 m, 1 m, . Then
(Té(ml’%3a)’T (mz,S,a),Ta(mB,B,a)) €op.

Proof. Since (1,mi,T4(mi,B,a)) = [mi,l,O] A [a,B,1], 1t has as
preimage the point [O,l,ni] A [1,b,a] = (To(ni,b,a),ni,l) ‘(i=l,2?3).
In addition, [Ta(mi,B,é),O,l] = (l,mi,Ta(mi,B,a))V, so(?ts,preimage is
L((To(ni,b,a),ni,lb,i) = [l,O,TO(ni,b,a)] (1i=1,2,3). Therefore, the
point (l,O,TA(mi,B,a)J = [0,1,0] A [T4(mi,8,a),0,1] has as preimage
the point [0,1,0] A [l,O,To(ni,b,a)] = (To(ni,bya),O,l).

Since (ml’mZ’mB) € p and m +-m2 +,ms 1 m 6.3.6 implies
(ny,n,,n,) € o and n 1 n, 1 n3‘+ n,. By 3.3.3(3),
(To(nl,b?a),To(nz,b,a),TO(n3,b,a)) € p; hence

((Ty(ny,b,a),0,1),(Ty(n,,b,a),0,1), (T5(n,,b,a),0,1)) € ¢15 and by '6.3.3

¢
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(0T (nabal, (.b.al
(anu‘) (.r.(hub.o)gnu ’1)
[1,0,To(n..\o,u)]
O(nnb|°) ‘
1:‘!" yb‘) g
nmy.&./
(o 1) (Ty(na.b,0) N 1)
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(Omg ) Talnybalin ¥
I
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((l,O,Ta(ml,B,a)),(1,0,T4(m2,ﬁ.0)),(1,0,T4(m3,8,q))) € plﬁ. Therefore

(T[‘(ml,s,a),T4(m2.8,a).T4(m3,B,a)2 € o[

6.4.4, Lemma. Let a, B €n \9(0}; m€ HNn such that ' ' s
(1,0,0) I [a,B8,1]. Then (0,0,8) € p when m >0 and a, B lie on the

o
same side of O when m < 0.

—

Proof. If m € n, then [a,8,1] and (0,0 ,1]  would coincide in
(I,m,0) = U and (1,0,a) = [a,8,1] A [0 1,0] = [0,0,1] A [0,1 o] = (1,0 0), g

a contradiction. Hence m § n.

-

Case 1: Suppose m > 0. Then n and p (cf. 6.4.1) must lie on
the same side of 0 by 6.3.6. If a >0 [a < 0], then by (0M2)’ ~
To(n,b,O) < To(n,ﬁia) [To(n,b,O) >,T0(n,b,a)]. However, since

TO(O,O,O)\= TO(Q,b,O) and To(n,0,0) =AO = To(n,b,a) > To(n,b,O)
[To(n,0,0) < TOGn,b,O)], (OM3)*' 1implies To(p,0,0) > To(p,blj

(T (p,0,0) <T (b,b Of] :as n and p lie on the same side of O.
Therefore ((a, T ¢a,q,p),1), (®,p,1)4 (T (P,ﬁ 30), T, (T (p,b,0),q,p),1)) €
olesT) and ((131,0),(1,1,00,(1,1,8)) q 9!(EZTZTD; hence (a,0,8) € p.

V4
Case 2: If m < 0, an analagous pqoof‘gives the desired result.
. | 5
|
i

6.4.5. Lemma. Let Ops Ay, a5, a, ? n  such that [1,Q,ai] is the

<

preimage of [ai,O,l] (1=14,2). Then . ay %:dz implies 2, < a,.

R §° .
Proof. Take the unique element v of H such that Tl(s,v,l) = 0, / —~—

By (OM3)*, if s > 0_[s < 0], then v < 0 [v > 0]. Since ; ) &\\
- /“\

— -
[0,1,11lg = LCgpg 1 1o ((TT,ID) /

: a T H0ONG w0, 1v,1,11)

(L((O 0,1), [v 1 0])

#

the preimage of [0,1,1]]5 is [v,l,O]J6. Hence



+ ((0,0,1
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(l,ai,ai) = [0,1,1] A [ai,O,l] has the preimage . ’
[v,1,0] A [1,0,81] = (ai,Tl(ai,v,O),l).

First we show 1if ay > 0, then a, > 0.

The line Iai,l,OJ meets [0,140] in O (hence
[ai,l,O]lJﬁ[O,l;O]S and 1s incident with (l,ai,ai); thus the preimage

of [ai,l,O] is L((ai,Tl(ai,v,Oq,1),[0,1,0]) = [O,I,Tl(ai,v,O)}. Since

(l,ai,O) = [a:;,1,0) A L%, its preimage is
{0,1,Tl(ai,v,0)] ALl = (O,Tl(ai,v,O),l). However by 6.3.6, if s > 0

[s < 0], then. Tl(ai’v’o) < O'[Tl(ai,v,O) >0)]. as v <0 [v>0],

(OM3)* implies a; > 0.

$imilarly if o <0, then a, <0,

b3 i

v o
E%pally if a; < ay and ay # 0 # s then one of 0 < oy

then by 6.3.6

< 8y

a, <0 < a or a

1 5 1 < a, < 0 holds. If 0 <a

2 1< %2
((1,0,0),(l,al,O),(l,aZ,O)) € p]ﬁ. " The parallel projection

————— = A
YT 0.1,0 [0'1’1].in A yields

((l,0,0),(i,al,al),(l,az;aé)) € Plﬁ; hence ) o
jal,Tl(al,v,O),l)‘,‘(az,Tl(az,v,O),l)) € °'6° and  (0,a,,a,) '€ o

Similarly a; < 0 < @, or a; < a£.< 0 yield (al;O,az) € p or

(al,az,O) € p respectively.. Therefore, by the above discussion, w?

obtain al < ay-

\
8

+

. 6.4.6. Lemma. Let ajs Ay, Bl, 82 € n and Iy, Ty, m € u such
that m 7 £, v T,. If (O,Bi,Bz) € p, then

(Ta(m’O’O)I;T (m’Bl’al)’T (myszyaz)) € p.

Proof. We consider the preimages of these points and lines (cf.

6.4.1). Since (l,m,Th(m,Bi,ai» = [m,1,0] A [ai,Bi,ll, its preimage is

2 By SIS e TRIRT e e e s T 2 v~

2 AT,

o
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’
4

[0,1,91 A [l,bi,ai] = (To(n,bi,ai),n,l) (i=1,2). By 6.4.2,

(0,8,,8,) € p dmplies ((1,1,0),(1,1,8,),(1,1,8,)) € p|(131763 which

>

et et

0p. 1) Hence
(O,To(p,bl,O),To(p,bz,O)) € p which by (OM3)*' implies §0,b1,b ) € p.
\

Since m + r

implies ((0,p,1) ;(TO(P;brO) ,P;l),(TO(Psbz,o) »P,1)) € O{(

1" Ty we obtain n 1 wy ~ou,  and

2
= = = ‘ t
Toﬁul,bl,al) 0 TO(qubZ’aZ) TO(ul’bZ’aZ)' By (OM3)*',

¥

(To(n,O,O),To(n,bl,al)gTO(n,bz,az)) € H therefore )

' ((To(n-’o’o)’n’l)’(To(n’bl’al)’n’l)’(TO(n’bZ’az) ,n,1)) € pt (m) and

((}"m’TA(m’O)O))y(1)m,T4(m,Bl,al)))(lym’T (mygz,az)) € pl(m). Thus

by 6.4.2, (Ta(m,O,O),TQ(m,Bl,al),Ta(m382,929) €op.

-

We shall now prove two order properties for the ternary operator

TQ. They correspond to (OM2) and (OM3)*,

6.4.7. Lemma, Let r € H and @y, @y, B € n such that o < a

. 1 2°
Then Ta(r,S,al) < ?a(r,s,az).

2%
3
>

Proof. If either r € n or B = 0, TA(r,B,ai) = ay (i=1,2) and
we have the desired result., Therefore we may assume that r ¢ n and

B # 0.

Suppose o, < a and B8 > 0 [B < 0].

2 Consider the preimages (cf..

6.4.1). As [l,O,ai] is the preimage of [aL,O,l] (1=1,2), 6.4.5 implies
ay < a,; hence by (0&2)', To(u,b,al) < To(u,b,az). ‘However as ¢

[Ta(r,B,ai),O,i] = (1,r,T (r,B,ai))V = ([r’%1,0] A [ai,e,l])v, it has the
preimage ‘L(([0,1,u] A [l,b,ai]),L) = [l,O,TO(u,p,ai)] (i=1,2). However

by 6.4.5, To(u,b,al) <;To(u,b,a2) implies Ta(r,B,al) < Tk(r,s,az).

. 6.4.8, Lemma. Let

a1» Uy 81, 82 €n and m€ H such that

A o e S

P ¥ henn s

e

- <
Hew WS
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Ta(mssl,al) = Tagm,gz,az)' If Sl < 82, thEH
* { Y w :
Tq(x,Bl,al) < TA(X’BQ’aZ) for any x > m and
T4(x,81,al) > T4(x,82,a2) for any x < m.

Proof. First we take B, = 0. Since &g, # Gl = 0, there exists

1
- N
(L,r,0) I [a7,82,1]. By 6.4.4, 0 < B, implies @, <0 if r>0 and
r i 0 and a, >0 if r <0 and r + 0. If r ~ 0, then ay = 0,
’

Case 1: Let r | 0.

(1), Suppose first m v r. Then @ = Ta(m,O,al) =0 = Ta(m’BZ’GQ)'

~By 6.4.4, 0 > a, = TA(O’BZ’QZ) %f m>0 [0 < 2, = T4(0’82’a2) if
m < 0]. Take any x € H, If x ~ m, then T4(x,82,a2) =0. If x€n, ¢
then 5.8.4 implies Ta(x,Bz,az) = 0o, <0 when m>x and N ;
TA(X’BZ’GZ) = a, > 0 when m < x. Suppose x P m, 0. If (x,m,O? € p,
then (T4(X,82.02),TQ(X,QZ,GQ),TQ(O,BZ,Gz)) = (TA(X,Bz,GZ),O.az) €p by
6.4.3. Similarly, if (m,x,0) € p or (x,0,m) € p, then

0,T {x,Bzgaz),az) € p or (Té(x’éZ’QZ)’GZ’d) € p respectively. There-
fore 'TA(X,SETQQ) >0 whemwr x >m and Ta(k,sz,az) < 0 when x < m.

~
(1i1) Suppdse.m + 0. Then
. v .
@ = Tafm,o,al) = Ta(m,Bz,az) = TA(O’BZ’QZ) = a,. Take any x € H., If
X v m, then T4(x,0,al) = T4(m,0,al) = T4(m,ﬁ2,a2) = Ta(x,Bz,az). If

X v r, then Ta(x,O,al) =0a; =, < 0= Ta(x,sz,az) when r > 0 and

- ™ = i . I
Té(x,O,al) ap = a, >0 TA(X’BZ’az) when r < 0. If x4 m, r, then
one of (x,m,r) € p, (m,x,r) € p or (x,r,m) € p which implies, by
" -]
6'4‘3) (Ta(xvsz’az)’Tacm’82)02)yTQ(ryezyaz)) = (Ta(x)BZ)Q2))u2;O) E p)
(al’TA(x’B2’Q2)’O) € p or (TA(X’BZ’G2)’05“1{ € p respectively. There-
fore. Ta(x,szﬁaz).z TA(X’O’al) if x> m amd ’Ta(x,Bz,az) < TA(X’O’QI)

if x < m.

RPN W
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(111) Now suppose m $ r 4 0 ¢ m. 1f (m,0,r) € p, then
(Tz.(m'ez’“z)’TL.(O'Bz'az)'Ta(r’Bz"’z)) = (04,0,,0) € 0. If (m,r,0) € p,
then (al,O,az) € p. If (O,m,r) € p, then (az,al,O) € p. Hence if
m > 0, then al > a, and 1f m < 0, then o, < a,. Consider any x € H.

1 2
If x v m, then TA(X’BZ’GZ) = . If x~ 0, then Té(x,Bz,az) = q

2
which is greater than ay »1f m <0 and is less than a 1f m> 0.
, R - .
Suppose x 4 0, m. Then (x,m,0) € p implies ’ ”

(Ta(x,Bizyaz),Tz’(m)Bzya?) ’T[‘(O)Bz’az)) = (T4(x,82,02),a1,32) E p by
6.4.3, Similarly, (x,0,m) € p implies (TA(X'BZ’aZ)’“2’a1) € p and
(0,x,m) € p dmplies (QZ’TA(X’BZ’QZ)’al) E p. Combining these results

we obtain TQ(x,Bz,az) >0 when x > m and Ta(x,Bz,az) <o when

X < m.
~

Case 2: Sup??se ' Y bfﬂ\xhen a, = 0.
(1) If m ~ 1, then @y = Ta(m,O,a ) = Td(m’BZ’O) = Tg(l’BZ’O) f ]
hence ay > 0. Consider any x € H. If .x ~ 1, then Té(x’BZ’O) = oy

If x 0, then TA(X’B2’0) = 0 < ay and x < m. Suppose x ¢ 0, 1.

Then (0,1,x) € p implies
(T,(0,85,00,T, (1,8,,0),, (x,8,,0)) = (0,a;,%, (x,8,,0)) € p; (0,x,1) € p

{

Ymplies (O,TA(i,Bz,O);al) € p and (x,0,1) € p 1implies - 4
/

(Ta(x,Bz,O),O,ala\E/ﬁi Hence a < TQ(X’BZ’O) when x > m and

al_z Té(x,Sz,O) if x < m.

(11) If m ~ 0, then a = 0 -also. Consider any x € H. If
x ~ Q, then TA(X’BZ’O) = 0 and if x ~ 1, then Tb(x,82,0) = 82 > 0,
Suppose x $ 0, 1. If 0<1 <x, then O < 82 < Ta(x,BZ,O). Lf
0 <x <1, then 0 <T,(x,8,,0) < B, and if x <.0 <1, then

Th(x’82’0) <0 < 32. Therefore ATQ(X?BZ’OZ‘Z'O when x > m and

3
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T4(x'62’0) <0 ern x < m.
(iii) If m i 0, 1, then one of the following holds:
—

0 <m<1 which implies (T4(0’8210)’T4(m’82’0)'Ta(l’Bz’O)) = (0’01,32)

€ p (hence 0 < a, < 82); or m < 0 which implies o, <« 0 < 62; or

1
1 <m whicdh implies 0 < 82 < a;. Hence @ 0 when m > 0 and
ay < 0 when m < 0. Consider any x € H, If x ~ O, then .
Té(x,sz,O) = 0 which is greater than al when x > m and Is less than
@) when x < m., If x ~ m, then TA(X’BZ’O) = ag. If x # 0, m, then

(O)x’m) € o} and (TA(O’BZ’O)’T[&()(,B.Z’O)’T (m382)0)) = (O’TQ(X‘BZ’O)’al)
€p or (O,m,x) € p and (b,al,Ta(x,Bz,O)) € p or- (x,0,m) € p and
(TA(X’BZ’O)’O’GI) € p. Therefore TA(X’BZ’O) > ay when x > m and
Tn(x,Bz,O) j_al when x < m.

If 82 = 0 # Bl’ then a discussion similar to the one above

yields the desired result.
Now suppose 8l # 0 # 82. Then there exist Ty T, € H such that
(1,r,,0) T [61.81,1] (1=1,2)". Suppose 0 < Bl < B,.
Case 1: Let rl " r2 A~ 0, Then m€ n also ?nd Ql = u, = 0.
Consider any x € H. If x ~ 0, then Ta'(x,Bz,O) =0=T,(x,8,,0). If
x ¢ 0, then by 6.4.6 (O,T (x,Bl,O),Ta(x,B,,O)) € p. However if x >0
(1e., x and 1 1lile on the same side of 0), then

Ta(x,Bl,O), TA(I,SI,O) = B8 >0 by 6.4.3; hence

1
0 < T,(x,8,,0) < T,(x,8,,0). Tf x <0, then (T,(x,8,,0),0,8)) € o;
hence Ta(x,Bz,O) < Té(x,81,0)1< 0. Therefore Té(x282’0) > TA(x,Bl,O)
when x > m and Tb(x'BZ’O) < Ta(x,Bl,O) when x < m.

Case 2: Suppose r, v, 4 0. Then m~ Ty Ty If 1) >0

& 4
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‘[rl < 0],'then

a, a, < 0 [ul, a, > 0] by 6.4.4. By 6,4.6 with xz= o,

we have (az, ul,O) € p. Hence 02 < a if m>0 and a_. > a. 4if

1 2 1
m < 0. Consider any x € H. If x n r, then ,?

T4(x,82,a2) =0 = Ta(x,Bl,ul). If x ~ 0, then T4<x’82’“2) = a, and
,Té(x,ﬁl,ul) . If x ¢ r, 0, then by 6.4.6,
'(To(x,0,0),To(x,Bl,al),To(x,Bz,az)) € p. However by 6.4.3, (x,m,0) € p
implies(Ta(x,Bz,az),Ta(m,Bz,az).TL(O,BZ,QZ)) = (TA(XQBZ,az),O,az) € o;
(m,x,0) € p implies (O’TQ(X”BZ’GZ)’QZ) € p and (m,0,x) € p . implies
(O'QZ'TQ(X'SZ’QZ)) & p. Combining these results, we obtain

TA(X’BZ’GZ) > T4(x,8i,al) when x > m and TA(X’BZ’GE) < Ta(x,ﬁl,ul)
when ﬁ < m.

Case 3: Suppose &l 1 ré.‘ Then r, r, 1 m. We shall use pre-

'images'(cf. 6.4.1) to show the degired result.

Since 0 < Bl < 82, we have

((1,1,0),(1,1,31),(1,1,82)) € o'(ITITﬁ) and
((0,p,1), (Ty(p,b) ,0),p,1), (T (p,b,,0),p,1)) € OI(BTFTT) by definitton.

Hence (O,To(p,bl,O),T (p,b2,0)) € p. By (OM3)*' we obtain (O’bl’bz) € p.

T
here exists cl 2’

Assume first that 0 < by <b,. If wu, < u fu2 > u

TO(ul,bl,cl) > TO(ul,O,O) =0 = To(ul,b

€ n such that (0, 1) I [1’b1’c1]' ‘

l]’ then

l)cl)

lTo(ul,bl,cl) < To(ul,0,0) s 0= TO(Ul'bl’Cl)]; hence ¢, > a, [c

Therefore for any y > u, [y < u,l,
Lolyabyeag) 2 Toly,byse)) > Tply,b ,a)) ’

[TO(y’bZ’aZ) < To(y,bl,cl) < To(y,bl,al)] which implies n < u,

[n > u2] since'“fb(n,bz,az) = To(n,bl,al). Thus (n,uz,ul) € p.

If we assume 0 > b1 > b2, then a discussion similar to the one

*
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[Lba.a,]
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v

above also ylelds (n,uz,ul) € p. n/)
Thui 5{5,81,62) €% implies (m,rz,rl) € p. (
Consider any x € H. 5Since *x *m implies

T4(x,81faly = TA(X’BZ’QZ)’ we may assumi x + m. Therg¢ exists =z € H,

z 1 n, such that (0,z,1) is the preimage of (1,x,0). Since

]

(O;bl,bz) € p, we have ‘//"

(To(z,O,TO(n,bz,az)),To(z,bl,al),To(z,bz,az)) € p which 1implies

(Tl;(x’O’Tlo(msBZ’aZ))’T4(x’81’a1)’TA(X’BZ’QZ)) € p‘

Now (m,rz,rl) € p. Suppose first m < r, < rl. By a previous
case, m < r, implies Tb(m’BZ’QZ) < Ta(m,O,Q) = 0. If x < m, then by
6.4.3, .

Therefore Ta(*'BZ’“2> < Th(x’Bl’al) for any x < m. Similarly, for any

. X > m, Té(x’$2’a2) and Té(rZ’BZ’GZ) = 0 1lie on the same side of’

Ta(m,Bz,az); hence TA(X’BZ’GZ) > Ta(x,Bl,al) for any x > m.

A similar discussion yields the desired result wvhen m>r, > r

. 2 1’

The next two lemmas giv?'order properties correspondfng to (OM2)

\

and (OM3)* for the ternary oper r T3.

~

6.4.9. Lemma, Let a € n and mi, m,, q € H such that ‘ml <m

2°

Then T3(u,q,ml) < T3(a,q,m2).
Proof. If m; $ m,, then T3(a,q,ml) vomy * m, v T (a’q’m2) and

T3(a.q,m1) < T3(a,q,m21-

Suppose m, 2

Take v € H such that Tl(s,v,q),= 0. Then

“ m,. Consider the preimages of “[mi’l’qJ’ i=1,2.
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[miilaq]x(l’ i,o) = L(¢(l, i’ )( [mi’l’q]) a(l, i, )([mi,l,q])) a

L((1,m,0),I
mi /(‘l’mi90) ‘P(l m J0)

( 1) EV,l,n])

(L((0,n,1),[v,1,q]) >))

""(1m “0)

) cha;'@“v'l’“i”'

%

The preimage of (l,T3(d,q,mi),a) = {a,0,1)-A [mi,l,q] is
[;,O,a] A [v,l,ni] = (a,Tl(a,v,ni),l). By (OM2), n) <m, if and only 1f
Tl(a,v,nl) < Tl(a,v,nz). Since}

(1,T4(a,q,m ) ,0) = ¢* A [T3(u,q,mi)1,0]

- %
* A L((l,T3(a,q,mi),u) H(l n ), [m 1 0]),

its preimage is //f

t A L(a,T,(a,v,n),1), e T 1’1) [0,1,n ]) = (O,Tl(a,v,ni),l): Hence by

6.3.6, m, < m, implies F3(a,q,ml) < T3(a,q,m2).

6.4.10. Lemma. Let a € n and my, My, 9y, 9, € H stGch that
T3(a,q1,m1) = T3(a,q2,m2). 1f 9 < qy» then for any x € n,

T3(x,ql’m1) < T3(x,q2,m2) when x > a and

T3(x,q1,ml) > T3(x,q2,m2) when x N a.\

Proof. If a4 v 9y then by the uniformity of <{*, [ml,l,qll
and [mz,l,qzl coincide in the neighbour class (I,m,,0 1,O), hence for any
x € n, T3(x,q1,m1) = T3(x,q2,m2). So we may assume ny 4 n, -

As in the previous lemma, the preimagé bf [mi,l,qi] is
[vi,l,ni] where T (s,vi,qi) = 0. Since q; <aq,,

Tl(s,vl,ql) S,T (S’VZ’q59 > Tl(s’VZ’ql) by (OM2); hence if s >0
[s < 0], vy > v [vl < v2]. “The preimage of

(1,T4(a,q ,m),0) = [m,1,q,] A [a,O,l] 1s
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o d .
m’%
. @Tila,un) )
(Opqﬂ’)
\ W w,un) 1
‘ouqnf) \
[U..i,n,]
.
N\ (3.0.0) ,(\u.‘f.(w.m:n.).ﬂ
\[U,J.rﬂ
Eh {EVINID) ™ out.q)
\[U; -‘»q;]
[UQ.‘qu
L
{1.0.a) (1.0} T 0wl
Fiqure 6.5
(Lemma 64.10)
\ 4
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T

[v.,l,n 1 A[1,0,a] = (a,f (a,v,,n,),1) for i=1,2. Take any- x € n.
1710y " 1M

The preimage of [x,0,1} is [1,0,w] for some w € n. Suppose x > a.

Then

w > a

by 6.4.5. Since

Tl(a,v

12 = Tlta,vz,nz), (OM3)* implies

Tl(w,vl,nl)‘z Tl(w’VZ’n2) [Tl(w,vl,nl) f_Tl(w,vz,nz)] if s> 0 [s < 0].

AS (O)Tl(w!vi)ni)’l)

is the preimage of

we obtain T3(x,ql,n1) < T3(x,q2,n2) by 6.3.6.

x < a, T3(x,ql,n1)-3 T3(x,q2,n2).

(l,T3(x,qi,mi),0) (i=1,2),

Similarly, for any

6.4.11. In 6.4.1, we discussed the preimages of various improper

points which were not in V, of various lines in A(X), X # V and of the
2

improyér lines.. We then used these preimages to prove some order prop-

erties for yﬁg ternary operators T and T,.

verse images under

Vg of the points and lines of A

3 4

We now examine the in-

and use their

properties to prove order properties corresponding to (OM2) and (OM3)*

" for the termary operator T

.

~

9

As in 6.3.7, w%l((w,l,O)) = (0,x,1) where To(s,w,x) = 0. Now

consider the line

[l,w,0]lv

i

[1,w,0] of

H* (cf. 6.3.7).

L(¢§(n[l,w,0])’av([l’w,O])>

L{(w,1,0),T

Then

V,wv(L(O,[O,l,O])))

wﬁ(L((O,x,l),[O,l,D]]a)\

, = ¢V([0’1yx]la>!

a

where To(s,w,x) = 0. In particular, [1’0’0]’V = wv([o,l,Olla).

for some

Since T = (SV'A OE)U A1 and T I U (cf

t 40

and

t >0 if

s>0, t <0 1if

s < 0.

. 6.2), T = (0,t,1)

Now consider

a line [0,8,1]. By 6.4.1, the preimage of [0,8,1] in ¥ is

[1,b,0].

Hence

[

¥

G-
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[0,8,1]

= [1,b,0]* ) )

= ___U__{PeP; | P Iz yz([1,5,0)} U (P €5 | P I v(I )},
TIT*, 747 Y Y 'Y J v \ [1,b,0]
Let ¢ €n such that Tb(t,b,c) = 0. Then -

[0’691]|V = Y(n[l,b,O])

Ty = ngv((c,o,l),nﬁ)

= w§([l,0,CJ)-

Since (0,1,8).= [0,8,1] A L, we obtain
_l TN
wv ((Oslas){/éAgl’chJ‘A [oyl;g] = (C’O,l).

Finélly, consﬂd@p the Jine [1,w,v]. As above, take x such
/ ~
. N

that To(s,w,x) = 0 and take 2z € H suct that Tl(s,z,v) = 0. Then

(1,w,v]]5 = LGg(nry o o1 o5 (Lw,vI)

va((o,x,l)),ng,w‘_’(@o]|5)>
bW

wv([z,l?x]).

Since (Tz(s,v,w),l,s) = [0,B8,1] A [1,w,v], wé obtain
wﬁL((Tz(s,v,w),l,s)) = [1,05¢] A [2,1,x] = (¢,Ty(c,2,%),1) and since

(Tz(S,V,w),l,O) = L% A L((TZ(B’V,W),J—,B),H?’[1’0’0]); we obtain

w%l((Tz(B,v,w),l,O)) LA L(Ce, Ty (e,2,%),1),1

6,[0,1,0])

i,

La [O,l,Tl(C,Z,X)]|5

= (O,Tl(c,z,x),l).

-

//;

6.4.12. Lemmma. Let w

Then TZ(B,v,wl) < T2(8,v,w2).

,l

1,IW2, BE€EN and v € H such that wl <

107

w

Proof. We shall consider the preimages of appropriate points and

lines of .A(V) under the isomorphism }/)v (cf. 6.4.11).

Suppose s > 0 [s < 0]. As To(s,wl,xl) = To(s,wz,xz) = 0. and

2
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B

Wl < Wz,
[

WG (Tg(Bv59,),1,00) = (0,7 (e,2,,),1) and 5 ((v;,1,00) = (0,x,,1)}

T - )
hence by (0M2), Tl(c,z,xl) > Tl(c,z,xz) [Tl(c,z,xl) < Tl(c,z,xz)] and. °

3.3.2(4) implies x '=

1 TO(O,wl,xl) > TO(O,wZ,xZ) = x

2
%, = TO(O,wl,xl) < TO(O,wz,xz).= xé]. By the above discussion,

by 6.3-7, Tz(B)v’wl) < TZ(B’V’WZ)' . .« oz ’ 7

. 3 .
A} L4 “ - [3

6.4.13. Lemma. Lét Bl’ 82, €y Cy € n such that

»

-1 V e : :
wv ((O,l,Bi)) = (ci,O,l) (i=1,2). 1If Bl < 82, then Cy < Cye

Proof. We consider the preimages of various points and lines

(cf. 6.4.1 and 6.4,11)., As Il,b ,0] "and [O,l,p]|(6———— are the

_preimages ofJ'[O,Bi,l] cand [1,1 0]|(1 7.0) reSpectively, [B ,0,1]

]

has the preimage [l,O,TO(p,bi,O)] in (. By 6.4.5, By < B, -implies Y

To(p,bl,O) < To(prz,O)‘ However 1f s > 0 [s < 0], then ? < olp> 0] ' ¥

v

by 6.3.6; hence by >b, [b. <b,] by (OM3)*. In addition, s >0

[s < 0) implies t > 0 [t < 0] by 6.4.11. Since To(t,by,c) =0

* = S =
(OM3)* implies €l TO(O’bl’cl) < TO(O’bZ’CZ) cye

)

6.4.14. Lemma. Let éi, 62, 83, wEn and Vv € H such that & ,
(8,,8,,85) € p. Then ' : ' .
, ((Tz(Bl,\:,W) ’l,Bl)Q(TZ'(stv’w) 91 ,'Bg" (T (83,V,W),I,B3)) € DI“}’

Prodf-. Since .(Bl,B ,B ) €Ep, (b ) € p where [1;bi,0)

l’ 2’ 3
is the preimage of [O,B ,11 in K (1=1,2). Take 1 Co» Oy € n

such that 0 = T, (t, bi,c ) (i=1,2 3) Then by 3.3. 2(4), (c1,c50cq) € p;

hence " ((e;,0,1),(c5;0,1),(c,,0,1)) € ol gom = ’

]

) ((0)1).81):(071,82))(031)83)) € Pla.

- N ‘
-~

6.4.15. Lemma: Let w,, w,, BE€ nand v_, v, € H such that
2 e 1’ V2 1% V2 :

%
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©u.1)
. /
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© (¢.0,1) leeon)
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f1.be)
Fiqurc_ b.b
(Lemma b4.15)
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coincide in the nedghbour class V; hence for any y € n,
A p ‘
/:}3\>$ny,vl,wl). Tz(y,vz,wz). We may therefore assume vy + v N

4

TZ(B,vl,wl) = TZ(B,VZ,WZ). If vy < Vos then for any y € n,
Tz(y,vl,wl).i T2(y,v2,w20 when y > B8 and
T2(y,vl,wl) > T2(y,V2,w2) when y < 8.

Proof. If vy ™ V,, then [l,wl,vl] and ’ [l,wz,vz] woPld

2'
Consider the line " [0,y,1]. Using the methods of 6.4.1 and

110

6.4.11, we obtain [O,y,l]I\-,-= wv([l,o,ella) where [1,d,0] 48 the.

preimage of [0,y,1] 4n. ‘¥ and 0 = Ty(t,d,e). As in 6.4.11,

[O’B’lllg = wv([l?O,c]la) where [1,b,0] is the preimage of [0,B51]

. A
in H and 0 = To(t,b,c). Also as in 6.47.11,
~1 . \ ¢
w\_, ((TZ(B’Vi’wi)'l’B)) = (C,'ll(C,Zi,Xi>,l) and

.

w%l((Tz(j,vi,wi),l,y)) = (e,Tl(e,zi,xi),l) ‘where. To(s,wg,xi)*= 0
Tl(s,zi,vi) =0 (1=1,2).

Suppdse s >0 [s < 0). Then V)RV,
Tl(O,zl,vl) =M<V, = Tl(O,?z,vz) and 3.3.2(12 imély z; >z,
[zl < 22]. S%nce TZ(B’vl’wl) w TZ(B,vz,wz), we have
Tl(c,zl,xl) = Tl(c’ZZ’XZ)‘ If_ y > B, then 6.4.13 imélies e > ¢
(OM3)* implies Tl(e,zl,xl) >.Tl(e,zz,x2) [Tl(e,zl;xl) < Tl(:at,zz,x2
and 6.3.7 implies Tz(y,vl,wl) < Tz(y,vz,wz) as Ve

(Tz(y,vi,wi),l,o) = Wv((O.Tg(e,zi,xi),l))- -
6.4.16. Corollary. Let w, B € n and v N v, € H such that

1

vls’..f- Vo. If g >0 [8 < 0], then T2(B,vl,w) < Tz(e,‘vz,w)

ETZ(B,vl,w) Z_TZ(B,VZ,W)]; 1f vy 1 V,» then these inequalities are

strict inequalities.’

.

and

hence

)]
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6.4.17. Corollary. Let

Bl’ 82, w€€n and ‘v €& HN n such that
.Bl < 82. Then T2(Bl,v,w) < T2(82,v,w) if v >0 and

T2(BL)V’W) > T?—(BZ,V,W) if wv < '0.

6.5. The behavior of the points of H * un;:?‘ﬁiojections.

We now use the order properties of the ternary operators to

investigate the behavior of the points of 4 * under various kiitds-of

projections.

6.5.1. Prqjectioné with improper centres. In this section, we

©

%nvestigaté the behavior of the points of ¥ *’ under three types of

projections:

1)

'[1,0,0] (1,u,t) —>{1,m,n], where m,t € n; u, n € H;

x [1,0,01 (1,u,t) > [m,1,n], where t €n; m,on, u€H
[0,1,0] — &2 1,8)" [m,1,n), where u, t € n; m, n € H.
We then use the information we obtain to determine the behavior of the
points of ~f{ * under any projehtion with improper centre.
: By 5.4.8, a pair.of noﬂ—neighbouring improper poiéts is joined
by an improper line; henﬁe the image of an 1mpro§er poincﬁﬁnder a
projection with an imprOper'centre is another improper point. 1In additionm,
as a proper point and an improper point> are joined by a proper line, the
line between a proper point and the centre (which is improper) must be a
proper line which passes through the neighbour class of the centre gnd

hence does not pass through the neighbour class containing the intersection

of the range line with 4%, Thus preper points are mapped to proper

-

points. We may therefore split each of these projections into two

separate’ maps: one on proper points and one.on improper boints.

L

P

R

<

TN e LTI R e

]



First, we define total orderings on the ;\ints Pf the lines in

112

L (ie., on the proper points of the proper linés) and on the proper lines

of each ordinary affine plane A (X)

way:

either the proper or improper points) if

and order is reversed if

for

for

for

for

where X I {*

(a,,b,1), (a,,b,,1) T [1,m,n], 3

(al 1,1) < (a 2,1) 1f and only if b1 < bz;
(al’bl,l)’ (a‘zvbzyl) I [m,l,n], -

(a a, l,1) < (32 2,1) if and only if a; < ay;
(al,l,bl), (ay,1,b )ﬁz. [1,m,n], .

(él,rﬁbl) < (az,l,bz) if apd only if b1 < bZ’
(l’al’bl)’ (l’az)bz)hr('f:—’lj)‘-)[m,l)n])

P <Q

total ordering defined above.

6.5.2

t, m € n and

Proof

Then
However

5.7.3.

[ai,B

Thus

preserved,

. Lemma. A projection

implies 6(P) > 8(Q) where g? is the
3

[1,0,0]

if and only 1if b

We-say order is preserved under the projéction Q

P <Q implies

(1,u,t)

1& the following

u, n € H preserves the order of the
4] .

(TZ(Bl'n’m){l’Bl) < (T2(§2’n’m)’1’82) and order is

i,l] A [1,m,n] =

[ai’Bi’l

]

for some

(Tz(si,n’m) !1 ’Bi)_

ai € n

From the above proof, we may also conclude:

frd

hY

6.5.3. Corollary. A projection

<

[Iym,n]

(1,u,t)

»[1,m,n]

0(P) < 0(Q)

where

improper points.

. Take any C&*lﬁﬁf)’ (0,1,82) I [1,0,0] with Bl <’82.
(0,1,51)(1,U,t) =

(1=1,2) by 5.4.8.

(i=l,g) by 5.8.5 and

—— [1’0’0]

“~

(restrictedfto

'4'}"3‘&..?,'(:“-5'—"1.5:;4.b".-asL-..zﬂ..‘ly . o a
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where m, t € n and u, n € H preserves the order of the 1mprope4

points.

Combining 6.5.2 and 6.5.3, we obtain

6.5.4. Corollary. A projection [1,m,n] (1,u,t)

»{1,p,q]
\

where m, p, t € n and n, q, u € H preserves the order of the improp;¥

polints.

6.5.5. Lemma. A projection [1,0,0] (L,u,t) —[1,m,n], where

m, t €n and n, u € H preserves the order of the proper points.

Proof. Take any (O,bl,l), (O,bz,l) I [1,0,0)] with bl < bz.

0
Then (O,biml)(l,u,t) - [pi“l’bi] for some Py vu (1=1,2),

Eirst suppose b, v b,. Then [pl’l’b1] v [PZ’l’bZ] and the |

two lines must coincige in (1,u,t); hence Pp = Py Clearly,

[pl’l’bi] A [1,0,n] = (n,Tl(n,pl,bi),l) and ‘
[O,I,Tl(n,pl,bi)] A [1,m,n] = FTO(Tl(n,pl,bi),m,n),Tl(n,pl,bi),l)-

As [1,m,n] and [l,O,TO(Tl(n,pl,bl),m,n)] coincide 1in

(TO(Tl(n’pl’bl)’m’n)’Tl(n’pl’bl)’l) =.(n,Tl(n,pl,b1),l) and

(TO(Tl(n,pl,bz),m,n),Tl(n,pl,bz),l) € (n,Tl(n,pl,bl),l), we have
TO(Tl(n,pl,bl),m,n) = TO(Tl(n,pl,bz),m,n). Hence
T) (To(Ty (a,py,b1)5m,0),p,,0)) < Ty (T (Ty(,pyby),mun) ,py,by)  and order
is preserved.
Now suppose by +4 b2. T?en
[pl,l,bl] A [1,0,n] = (n,Tl(n,pl,bl)
N (n,TL(n,pz,bl),l)

& = [}2,1,b 1 A [1,0,n]

4 e 4 v ——— i N, 3 gk

e
\ r‘"‘y‘w" et
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sk
-

S S S



\//"

[

114

[F-|nba]- [p't‘;‘]
(n:Tl (n»Pub.),i) To(T, (n.P'-b.).M.n). T(Te (T. (n, P.,b,)'yn_“)' P"bo)J)
[o.z.T.(n,‘P"g\)J\(\ J
K\\
(G 1 .
/ [-Ph .b.) . ¥
(M, Ti(n,p.bl) (T i p b, TR (T (e, b)mun S, b))
o Titn, puby]
to.b..‘)
/ 5
'FO\' ED"\-bz
£4.0, Tu(Ti¢n, p..
[1.m,n}/ [ (Ticn,pub).m,nY])
Cr.om] [1,m.n)
[p“‘1'bll
(nTitn, szb;).ﬂ
nT:( b [p“'i‘bl]
n, . .
(o,b,,1) 1(n.paba 1)
T (npnb) ) [p k]
(o,b, 1)
for b,4b,
o :

Fiqure 07
(Lemma 6.5.5)
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t+ [p,,1,b,1 A [1,0,n]

= (n,Tl(n,pz,bz),l)

which implies Tl(n,pl,bl) < Tl(n,pz,bz). As

[pl,l,bl] A [1,m,n] ~ [Pz’l'bi] A {1,m,n]

-

~ [py,1,b,1 A [1,0,n]
+ [pzsl’bz] A [l,O,n]

~ [p2’l’b2] A [1,m,n], \

it follows that [pl,l,bl] A (1,m,n] < [pz,l,bz] A [1,m,n].

6.5.6.
where m, t € n

6.5.7.
where m, p, t
pelnts.

6.5.8.
t €En and m,
1f m > u and

Proof.
Bl < 82. Then

*

(1,uw,t)_, 11.0,0]

Corollary. A projection [1,m,n]

Corollary. A projection [1l,m,n]
\

and u, n € H, preserves the order of the proper points.

(l,u,t)

»[1,p,q],

€n and n, q, u € H, preserves the order of the proper

Lemma. A projection [1,0,0)— ‘L0

-» [m,1,n], where

n, u € H, m + u, preserves the ord?r of th; improper points
reverses their order 1f m < u,

Consider two points (0,],81), (0,1,82) I {1,0,0] with

= = i
(0,1,81)(1,u,t) [ui,Ri,l] for some ay €n (i=1,2).

Since Ta(u,Sl,al) = t = T&(U’BZ’GZ)’ 6.4.8 implies that for any m > u

{m <)u], m 4 u, TAFm,Bl,al) < Tb(m'82’a2) [Tb(m’sl’al) > TAKm:B2’02)]’

Now

[Qi.ﬁi.ll v [Tb(m,ﬁi,ai),o,l] imply

(

ai’Bi’l]

[a;.84,

A [m,1,0] = (l,m,Tq(m,Bi,ai)) ~ [ai,Bi,l] A [m,1,n] and

AN

1] A [m,1,n) = [Ta(m,Bi,ai),O,ll A [m,1,n]

- (1,T3(T4(m,81.a1),n,m),T4(m.Bi,ai))
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by the uniformity of 4 *. \

4

6.5.9. Lemma. A projection [1,0,0) (l’“’t)gi;[m,l,n], where

‘\—:yﬁ € n \and m, n, u € H, m } u, preserves the order of the proper points
- -

1f m > u and ‘geverses their order 1f m < u,

, Proof. Take any (O,bl,l), (O,bz,l) I {1,0,0] such that b1 < b2.

The line (O,bi.l)(l,u,t) = {pi’l’bi] for some p, v~ u (i=1,2), Take
X, € H such that {pi,l,bil A.[m,1,n) = (xi,Tl(xi,m,n),l).

Suppose first that bl ~ b2. Then by the proof of 6.5.5,

Py = Py If m>u [m < u], then m > p [m < pl] also and for any

y > x, ly < x2], T, (v,m,n) > Tl(y’pl’bz) > T,(y,p;,b;). Hence x, < x

1 2

[XEBE xz}. and the order ls preserved [reversed].

Now suppose bl 1 b2. Let Xq € H such that

(x3,Tl(x3,m,s),1) = [m,1,n] A [pl,l,bzl. Then Xy v X, 1 Xy, As above

1f wm>u [m < u], then for any y > Xq ly < x3], o

¥

Tl(y,m.n) > Tl(y"’l’bz) '> T,(y,p;»b,) which implies x| < xg [x1 > x3].
However as x, v x, 1 x;, this gives x) < x, [x; > x,}  and the order is

preserved [reversed]. : .

6.5.10. Corollary (to 6.5.8 and 6.5.9). A projection
(1,u,t)

(m,1,n]

+(1,0,0], where t €n and m, n, u €H, mn ¢} u,

preserves the order of the improper [proper] points 1f m > u and

reverses their order 1f m < u.’

(l’u’t)A~>ip,l,q], where

6.5.11, Lemma. A projection [m,1,n]
m, n, u, p, q.€ ﬁh E.E n and m ¢ u *'p preserves the order of the

improper [proper] points if p and m lie on the same side of u and

}
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reverses their order if (p,u,m) € p.

Proof. If p and m lie on the same side of u,:then the pré-
jections [m,l,n]——-il—g—sz——b[1,0,0] and [1,0,0]~;—£l12152->[p,l,q]
efther both preserve'the order of the impropér [proper] points or both
reverse the order of the improper fproper] points; hence their com-
position must éreserve order, If (p;u,m) € p, then one of these pro-

jections preserves order and the other reverses; hence thelr composition

reverses the order of the improper [proper] points.

6.5.12. Lemma. A projection [Q,l;OJ———SBl}JEQ-y[nul,n], where
¥

u, t €En and m, n € H,‘prese}vgs the order of the improper points.

‘ Proof. Consider two points (l,O,ul), fl,O,az) 1 {0,1,0] with
a; < a,. Then (1,0,a )(u 1,t) = {a t,1] by 5.8.5° (1=1,2) and by
the uniformity of -H* [ui,t 1] and [T (m,t,a.),0, 1] c01ncide in
(1,m,0). Hence [ui,t,l] A {m,1,n] = (1,T3(T4(m,t,ai),n,m),T (m,t,a.))

By 6:4.7, TA(m,t,ul) < Ta(m,t,az) and order is preserved.
r

6.5.13. Lemma. A projection [0,1 0]————E~l*£l~4>[m,l,n] , where
u, t €n and m; n € H, preserves the order of the proper points.

Proof. Take any (al,D,l), (32,0,1) 1 {0,1,0)] with a
The line (ai,O,l)(u,l,é) =

| < 8-
[l,pi,ai] for some p, € n (1=1,2).

1/‘4
. First suppose a; " a,7" Then [l,pl,al] a [l,p2,azl, hence they

coincide in v and Py = Py Clearly,
[l,O,a I A [m,1,n] = (a l(al,m n),1l) and

{o,1,T (al,m n)] A [1,p1,a ] = (Tl(al,m n),pl,a ),T (al,m,n),l)

(i.='tl,2)l.i As the lines [l,O,To(Tl(al,m,n),pl,ai] and [L,pl,ai] coin~

cide in the neighbour élasa

a

g
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(To(Tl(al,m,n)Qpl,ai)’TI‘<al)m,n)’l) = (ai,Tl(al,m,n),l) and

[l’pl’ai] A [m,1,n] € (ai,Tl(al,m,n),l), we have

[l,pl,ai] A [m,1,n]

w

= (TO(Tl(al,m,n),pl,ai),Tl(To(Tl(al,m,n?,pljai),m,n),l).
Since TO(Tl(al’m’n)’pl’al) < TO(Tl(al,m,n),pl,az) by (OMZ)',‘the order

is preserved.

Now suppose ay + a Clearly, o

2°
[l,pl,al] A [mylsn] 1{. [,I,Pz,azj A [mylyn] ~ [1,P1,82] A [m,l,n], so 1t )

Wlll be sufficient to show that .
[l,pl,all C [m,1,n] < [l,pl,azl A [m,1,n]. Using the same method as
above, we ogtain
[1,pl,ai] A [m,1,n]
(TO(Tl(ai;m,n),pl,ai),Tl(TO(Tl(ai,m,n),pl,ai),m,n),l).

However TO(Tl(al,m,n),pl,al) ~ap<oa, TO(Tl(az,m,n),pl,az).

6.5.14. Corollary (to 6.5.12 and 6.5.13). A projection
(u,1,t)

* [m,1,n)

—[1,0,0], where u, t €n and m, n € H, preserves

the order of the improper [proper] points.

6.5.15. Corollary (to 6.5.12 and 6.5.13). A projection
(u,1,t)

[m,1,n] >[p,1,q], where u, t €n and m, n, p, q € H, pre-

serves the order of the improper [proper] points.

6.5.16. Projections with proper centres. We now examine the

projections with proper centres. We shall investigate the behavior‘of

the points under the following types of projections:

[1,0,0] —{2,0,1)

—[1,m,n], where ag¢ n, a 1 n;

AALED A% . st
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b,1)
[1,0,11— 202Dy (3 0 0], 2o N TR
~/
[1,0,0] (a,b,1) »[m,1,n], where a € n, b 1 Tl(a,m,n);

[1,0,1]—{2:0,1)

—»[m,1,n], where a € n, b } n;
"~ (a,b,1) "
A

Ei,0,0i s [m,n,1]), where a € n;

(a,b,1)

[1,0,1] >[m,n,1], where a € n.
We shall use the information we obtaln to determine the behavior of the
points under any projection with pfoper centre.

We can use the total orderings defined in 6.5.1 to define total
orderings on subsets of proper points incident with proper %ines by
using the restriction of the total ordering to that subset.

We also define a:total ordering on the points of the second kind
incigent with an improper line (and subsequently on subsets of this) in
the following way: . \

for (l’al’bl)’ (1,a2,b2) I [m,m,l],

1 < az.

Finally we define a total ordering on the lines of HG in AM):

.

(1,a;,b))- < (1,a2,b2) if and only if a

for (al,l,b), (az,l,b)'I [m,b,1],

) (al,l,b) < (az,l,b) if and only if a, < a

1 2°

6.5.17. Consider a projection [1,0,0] (2,b,1) > [1,m,n], where

ag€n, atn. Fo£ any (0,1,8) I [1,0,0], (0,1,8)(a,b,1) = [1,p,q] for
some p € n, 4 ~a. Since q v a }n, [1,p,q] A [1,m,n] = (Tz(t,n,m),l,t)
for some _t € n by (B9). In addition, for any (0,c,1) I [1,0,0],

there exists p € H such that Tl(a,p,c) =b and [1,m,n] meets

[p,1,c] in a proper point (cf. (B6)). Hence the projection maps proper

points to proper points and improper points to improper points.
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(a,b,1)

»>[1,m,n], where

6.5.18. Lemma. A projection [1,0,0]-
a, b, n €EH and m € n such that a £ n and a + n, preserves the order
of the improper points when n and 0 1lie on the same side of a and
;everses their order when (n,a,0) € p.

Proof. Take two points (0,1,81), (0,1,82) I {1,0,0] such that
By < By. The line (0,1,81)(a,b,1) = [l,pi,qi] for sbme p, €,
q ~ a (i=1,2). Since q vanv q,, the lineg [l,pl,ql] and [l’pl’qz]

coincide in V. Let
'd

[1,p,,q,] A [1,m,n] = [1,p,,q,] A Ll{m,n] = (T,(t,,n,m),1,¢,J.

Case 1l: Suppose n, 0 < a. Then n, 0 < 1, also. By 6.4.17,

Since Tz(tl,nl,m) = Tz(tl,qz,pl), 6.4.15 impligs for any x < t

T,(x,n,m) > T,(x,q,,p,) > T,(x,q,,p,). However T,(ty,n,m) = Tz(tz’qz’pz)’

o < ) o~
s t:l tz

|
Case 2: Suppose n, 0 > a. Then a discussion similar to the one

used in Case 1, yields tl < t2.

Case 3: Suppose 0 <a <n. Then 0 < q, <n also. By 6.4.17,
To(By1qysPy) > Ty(B15a5,P1) = T5(B,,95,0,)5 hence by 6.4.12, p, > p,.
Since Tz(tlfn,m) = T2(t1’q2’pl)’ 6.4.15 implies for any x > £y
T,(x,n,m) > T,(x,9,,p;) > T,(x,q,,p,). However T,(t,,n,m) = Tz(tz’qz’?z)’

) <t,. ahd
oty <ty _ | )

Case 4: Sdppose n < a < 0. Then a discussion similar to the

one wused in Case 3, ylelds t, < t,.

2 1

(a,b,1) »{1,m,n}, where

6.5.19. Lemma. A projection [1,0,0]

a, b,n € H and m € n such that a ¢y and a ¢ n, preserves the
7

~
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3

order_of the proper poiﬁts when n and 0 1lie on the same side of a-~
and reverses their order if (n,a,0) € p.
Proof. Take two points (0,c;,1), (0,c,,1) T [1,0,0] with
c; < ¢y The line (Oﬂci,l)(a,b,l) = [pi,l,ci] for some Py €H
(1=1,2). Using the methods of 6.5.12, we obtain
[pi’l’ci] A [1,m,n] , vt bt
= (To(Tl(n,pi,ci),m,n),Tl(Tole(n,pi,ci?,m,n),pi,ci),l).
1f G N €y then (A5)' implies P v Py hence
TO(Tl(n,pl,cl),m,n) = TO(Tl(n,pz,cz),m,n) by the uniformity of 4 *.
Case 1: Suppose n, 0 € a. Then o«

Tl(a,pz,cz) = Tl(a,pl,cl) < Tl(a,pl,cz) implies Py < P by (OM3)*.

1f cp v Sy then To(Tl(n,pl,cl),m,n) “n<a and 'p, < 51
imply Lot
Ti(TO(Tl(n,pl,cl),m,?),$1,cl) < Tl(TO(Tl(nfﬁszl),m,n),pz,cz)
. = Tl(TO(Tl(n’pZ’CZ)’m’n)’pZ’CZ)’
If ¢y 1 c,, then [pl,l,cll 1. [pz,l;czl and (A5)' implies
Tl('Ijo('I‘l(n,p'l,cl),m;n),pl,cl) ’LTl(TO(Tl(n.,pz,cé),m,n),pé,cz’). Since
;O(Tl(n,pz,cé),m,nz v“n < a, (OM3)* implies /;
Tl(TO(Tl(n,pz,cz),m,n),pz,cék > Tl(TO(Tl(n,pz,cz),m,n),pl,cl)
. ~ Tl(TO(Tl(n’pl’cl)’m’n)’?l’cl)'
Hence Tl(TO(Tl(n,pZ,c;),m,n),pz,cz) > Tl(TO(Tl(n,Pl,Cl);m.n),Pl,Cl)- ‘
gggéig: Suppose n, 0 >6a. Then a discussion similar to the one
‘used 1in Case.k yields
Tl(TO(Tl(n,pz,cz),m,n)gpz,cz) > Tl(TO(Tl(n,pl,cl),m,n),pl;cl).
gggé_g: Suppose n <;a <'0. Then

= *
Il(&,pz,cz) Tl(a’Pl’cI) < Tl(a,pl,c2) implies P, ? Py by (OM3)*.

¥
.
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' * .
1f 'Cl N €y tﬂﬁh‘ TO(Tl(n,pl,cl),é,n) v“nm<a and P, > P

imply
Tl(TO(Tl(n,pl,Cl),m,n)spl’cl) > Tl(TO(Tl(n’pl’cl)’m’n)’pZ’CZ)
~ = T (T (T (nypy,cy) ;m,m),Py3e,) -
If ¢y 4 oo then as in Case 1,
Tl(To(Tl(n’PZ lcz) Dm%pz )cz) ’1' Tl(Tong(nQPl ’cl) sm’n) ’pl ,cl) !
‘ N~V Tl(TO(Tl(n,pz,cz),m,n),pl,cl).

'

Since TQ(Tl(n,piﬂcz),m,n) vn < a, (OM3)* implies
T, (To(T; (n,yp »C5) M, 1), Py,C,) > Tl(TO(Tl(n,pz.cz),m,n),pz,cz); hence
Tl(TO(Tl(n’p ,cl)’m’n)’pl’cl) > TI(TO(Tl(n’p2’CZ)’m’n)’pZ’cz)'

Case 4: Suppose 0 <a <n. Then a discussion similar to the

one used 1n Case 3 yields the same result.

-

: ¢
6.5.20, Now consider a projection [1;0,1]

(a’b’l)ﬂ{l m,n],

where a € n \?yd n £ n. It also maps proper points to proper points

ji) and improper points | proper points.

6.5.21. L 5 A projection [1,0,1] (a,b,1)

> [1,m,n], where

"m, a€n,b€H and n € H N n, preserves the order of the improper
1 ° -

points when n > 0 and reverses their order when n < 0.
| Proof. Take any two points (Tz(Bl,l;O),l,Bl), (Tzqsz,l,O),l,62)
| .
on the line [¥,0,1] such that B, < B,. Then the line
(T,(8,,1,03,1,8,) (a,b,1) =:[1,pi,gi] for some p,, q € n (i=1,2). As
q "~ 0~ qy> the lines [1,pi,qi] and [l’pi’0] coincide in the neigh-

@

bour class v (i=i,2). Let

, [l'pi’q@] A [1,m,n] = [1,p,,0] A [1,m,n] = (p;,1,t,) for some t, € n

Ay

Pein)
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(i=1,2). 7
Case 1: Suppose n > 0. Since 1 > 0, 6.4.17 implies

P, = TZ(Bi’l’O)’ 80 pl-< Py Therefore
Tz(tl,n,m) =Py « P, = Tz(tz,n,m) which implies by 6.4.17 that tl < t,.

Case 2: Suppose n < 0, Then a diacusqion sinilar to the one

" |
used in Casé 1 yields &, > t, .-

1 2 . \
v

6,5.22. Lemma. A projection [1,0,1] (afb’l)

»[1,m,n], where

m, a €n, b€H and i € H~ n, presexrves ‘the order of the proper points

when n > 0 aand reverses thelr order when n < 0. o
\ Proof, Take any two points (L,e;,1), (1,&2,1) I [1,0,1] such
that ¢y < Cye Since Tl(l’pl’ql) =cy <¢c, = Tl(l,ﬁz,qz) and 1 > a,
(OM3)* implies’ Py < Py Using éhe methods of 6.5.12, we obtain
" lpyul,q,] A [1,m,0]
= (T (T, (nyp,0,) 3m,m) Ty (T (Ty (1,P,,4,) ,m,0),py54,),1).
If v Sy, (A5)' implies Py ¥ Py hence -
T8§T1(n,pl,ql),m,n) =‘T0(Tl(n,p2,q2),m,ﬁ). Therefore
T, (To (T, (n,B15q;)5m,0) 1y 587) < Ty (T Ty (0,P7, ) »mim),p50a,)  when
n >0 and
T, (T (T, (1,p1545),m,0) 50154y) > Ty (T(Ty (0,p5,9,) sm,m),p5,9,)  when
n < 0.
I% c1\+AEZ, then (A6)'.implies Py 4 P, and (A5)' gives
‘Tl(TO(Tl(n,pz,qz) ,m.n).plz.qz) } 1 (1o (T, (0,p4,59;),m,1) P ,9;)
. ~ Tl(To(Tl(n,pz,qz),m,n),pl,dZS.
Therefore by (OM3)%, . 1 .l '
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Tl(TO(Tl(n,pz,qz),m.n),pz,qz) > Tl(To(Tl(n,pl.ql){m,n),pl.ql)‘ when
n >0 and ,
. o
Tl (TO (Tl (n:pZ’q2) ’m)n) 5P2:qZ) < Tl(TO (Tl(n’pl’ql) am’n) ’pl’ql) when

n < 0.
|

N ~

We may obtain corollaries similar to 6.5.3 and 6.5.4 for Lemmas

6.5.18, 6.5.19, 6.5.21, 6.5.22, Combining all.this information, we
: s\
obtain the following lemma.

6.5.23. Lemma. Let n, q, 8, b €H and m, p € n_ such that 1
(a,b,1) '

a4 n, q. Then the projection [{,m,n]

»[1,p,q] preserves
the orz;r of the improper [proper] points when n #nd q lie on thé

- same side of a and reverses their order when '(n,a,q) € p.

.
——

6.5.24. Next we consider a projection

(a,b,1)

[1,0,0] —[m,1,n] where a ¢ n and b 4} Tl(a,m,n). There

exists a uhique u € H such?that b = Tl(a,m,u). Clearly u % n. Then

we may partition the domain linekof the projection into four segments

(see below) and each segmeﬁt is mapped to a segment of the rangeiline. ///

We shall investigate each submap individually. l

(0,c,1) | ¢ 4 u; (c,u,m) & pl——>{(x,T (x,m,0),1) | x4 a; (x,a,0) € p}

{0,c,1) | ¢ 4 u; (c,u,n) E p}-———+{(x,T1(x,m,n),l) I‘x 4 a; (x,a,0) € p}
{(0,c,1) l c u}—~——>{(l,T3(t,n,m),t) ]'t‘€ n}-

,

{(O;i,t) | t € n}————*{(x,Ti(x,m,p),l) | x ~ a}.

6.5,25.‘Lemma.'¥ﬁe map
{QmJ)|c+m(mmm%p%**uﬁﬁhmmhn|x+a;uﬁ&)¢ﬂ

preserves order if a >0 and u<n orif a<0 and u>n; it
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P -

7

réyerses order if a >0 and uwu>n or if a<0 and u < n.
Proof. Take any (O,cl,l), (0,c2,l) ﬁrom the set
{0,c,1) | ¢} u; (c,u,n) ¢ D}' such that ey ; Cye
(O,Cifl)(a,b,l) = [pi’l’ci] for some Py 4 m (4=1,2). Since Py 4 m,

Then

‘there exists X, € H such that [pi,l,ci] f in,1,n) = (xi’Tl(xi’m’n)fl)

(1=1,2).

%
- Case 1: Suppose u<n and a >0 [a < 0], Then u < ¢, <y
As T(0,p,c ) =c  >u'= Tl'(o,m,u), (OM3)* implies p, <m [p, > ml.
Therefore, for any y > a [y‘g al, (OM3)* and (0OM2) imply

Tl(y,pi,ci)_ﬁ Tl(y,mfu) < Tl(y,m,n). However Tl(xi,pi,ci) $ZT1(xi,m,n),

so x, <a [xi > al. In addition, as Tl(O,pl,cl) = c; < ¢ =TT1(0,p2{EZ),

(OM3)* implies Py > p, [p1 < p2]. Hence for any vy such that
{

X, < Y < a [x2 >y > al, Tl(y,pl,cl)‘< Tl(y’pZ’CZ) S_Tl(y,m,n) which

implies xy < %, [x1 > x2].

i

Case 2: Suppose u>n and a >0 [a < 0]. Then a discussion

similar to the #Sed above ylelds x; > x, [x < X531

6.5.26, Lemma. The map

{(0,c,1) | ¢ 4 J;ﬁ(c,u,p) € p}————>{(x,Tl(x,m,n),l) | x4 a; (x,a,0) € p}
;reserves order 1f a >0 and u <n or if a <0 and u>n; it
reverses order 1f a > 0 ang U xn or if a <0 and "u < n.

Proof .~ A similar argument to that used in the proof of 6.5.25

gives the desired resultg.

6.5.27. Lemma. The map

{(0,c,1) | ¢~ u}‘r—'*{(l,TB(t,n,m),b) l t € n}

preserves the order if a >0 and u>n or if a <0 and u < nj

£ 28
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it reverses the order if a >0 and u<n or if a <0 and u > n.
Proof. Consider any (0,c,l) such that ¢ ~u and c¢ > u. Then
(0,c,1)(a,b,1) = [p,1,c] where p ~m. Since c "~ u, the lines

[p,1,c] and [p,l,ul] coincide in the neighbour class- (1,m,0). Let

[p,1,c] A [m,1,n] = [p,1,u] A [m,1,n] = (1,T3(t,n,m),t), t €n. ;
Case 1: Suppose u>n and a> 0 [a < 0)]. Then

Tl(a,p,c) = Tl(a,m,u) \and Tl(O,p,c) =c >u= Tl(O,m,u) imply p <m

{p >m]. Since T3(t,n,m) = T3(t,u,p) and

1,(0,n,m) ¥m > p - T,(0,u,p) [T4(0,n,m) = m < p = T,(0,u,p)], 6.4.10

implies t > O [t < 0]. .

Case 2: Suppose u <n and a > 0 [a < 0). Then a similar dis-

cussion to. the one above yields t < 0 [t > 0].°

Similarly, if ¢ < u, then t <0 when u>n and a >0 or

\

'u<n and a <0 and t >0 when u<n and a>0 or u>n and

a <90, hl%
Now consider any two points (0,c1,1), (0,c2,l) such that

Cl» Cp v U, €y # c, # u # cy- ;ﬁen one of (cl,cz,u) € o, (CZ’Cl’u) €p

or (cl,u,cz) € p holds. Let (0,c1,})(a,b,l) - [pi,l,ci] and

[pi,l,ci] A [m,1,n] = [pi, ,ul A [m,l,p] = (l,T3(ti,n,m),ti) as above.

If (Cl’CZ’u) € p, then (pl,p2 m) € p . by (OM3)*; hence in A((1,m,0))

((l,pl,O),(l,pz,O),(l,m,O)) € p|(l 2.0) and the parallel projection

O[O,O,lllcizgca) [m,l,uj4¢;[m’l’nll(i:;EB) in A((Q,m,0)) vyields

((1,T3(tl,n,m),tl),(l,T3(t2,n,m),t2),(l,m,O)) € pl(ij?:ﬁ)' Therefore
(tl,tz,O) €p by 6.4.2, Similarly, if (c2,c1,u) €p or |

(c,,u,c,.) € p, then (t,,t.,
1'% C 2’1

0) € p or (tl,O,tz) € p respectively..
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Combining these results with Cases 1 and 2 gove, we obtain the desired

result.

6.5.28. Lemma. The map

{(0,1,t) ]teﬂ—~—$uxﬂlunmm,h | x ~ a}

preserves order If a 320 and u>n or 1f a < 0 and u < n; it

reverses order 1f a >0 and u<n or if a <0 and ™ u > n.

Proof. Comsider two points (0,1,t.), (0,1,t2), where t

t, €71

l’
and £y < t,. Then (O,l,ti)(a,b,l) = [l,pi,qi] for some Py € n,

2

Cqy v a (i=1,2). ‘Sioce q VBV 4, the line [1’pi’qi] coincides with

the line [l,pi,a] in V. ”

Case l: Suppose u>n and a > 0 [a < 0]. Then
ITz(tz,a,pl) < T2(tl,a,pl) - Tz(tz,a,pz)] by 6.4.17; hence P, > Py
[pl « p2] by 6.4.12. As in 6.5.13,

(1,p5q,1 A [fn,l,n]
/

= (TO(T]. (qi’?"n) Qpi’qi) ,Tl (TO(TI (qi’m)n) )pi’qi) )m)n) :l) .
However Tl(qijh,n) ~ Tl(qz,m,n); hence
To(Tl(?l,ﬁ,n).pl,ql) = TO(Tl(qz,m,n),pl.ql)- Since gq, ™ a,
Ti(qzém,n) v Tl(a,m,n) < Tl(a,m,u) = b. Therefore by (OM3)*',
T (T;(apsmn),py,q)) < To(T; (45,m,0),p5,4,)

Case 2: Suppose u<n and a >0 [a < 0]. Then using the same
nethods as above, we obtain To(Tl(qz,m,n),pl,ql) > TO(Tl(qz,m.n),Pz,qz)

[ TO(Tl(q2 ,m-n?,Pl ’ql) < To(Ti'(QZIm)n)’pZ’qz)]-

[4
6.5.29. Consider the projection [1,0,1] (2,b,1) »>[m,1,n],

&
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where a € n, b 4 n. There exists u € H, u4 n such that

b = Tl(a,gfy%f/’;;\Tﬁ“ﬁfS.24, we may split this into four maps as

follows:

{(l,C,l) I c *Tl(l,mylo; (c,Tl(l,m,u),Tl(l,m,n)) ¢ D}

={(x,T1(x,m,n),l) | x 4 a; (x,a,0) € o0);

(e, 1) | et 1, Q,m,u); (c,Ti(l,m,d).Tl<1,m,n>) € p}

> {(x,T, (x,m,n),1) | x 4 a; (x,a,0) € p};
{(1,c,1) | ¢~ TlCl,m,u)}~———+{(l,T3(t,n,m),c) | t € n)
{(Tz(t,l,O),l,t5 | t € n}———'*{(x,Tl(x,m,n),l) [ x v at.

We may use the methods of 6.5.25 - 6.5.28 to obtain the following:

The first two maps pregérve order if wu > n and reverse order
if u < n. The last two maps preserve order if u < n and reverse

order if wu > n.

{a,b,1)

6.5.30. Now consider the projection [1,0,0] »{m,n,1],

where a ¢ n. Here the proper points of [1,0,0] are mapped to the
points of the second kind incident with [m,n,1] and the improper
points of [1,0,0)] are mapped to the points of V incident with [m,n,1];
ie.,

"{(0,c,1) | c € H)~*~—'{(l,u,T4(u,n,m)) | u € H} and

{(0,1,t) | t € H}——{(v,1,n) ] v € n}l.

6.5.31. Lemma. The map
(a,b,1)

{(0,c,1) | c € B}

={(l,u,T4(u,n,m)) | u € H)
preserves order if a < 0 and reverses order if a > 0.
Proof, Take two points (0,cl,l), (0,c2,l) I [1,0,0] "such that

¢, <c,. Then (O,Ci,l)(a,b,l) = [pi,l,ci] for some Py € B (i=1,2).
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Suppose a > 0 [a < 0). Then .Tl(a,pl,cl) = Tl(a’PZ’CZ) -and
T,(Q,py,¢y) = ¢q C ¢, = T,(0,py,¢,) imply p) > p, [p; <p,] by (OMI)*.
1f cl_* c,, then [pl,l,C.] 1 [pZ’l’CZ] and

(a,b,1) I {pi’l’cll’ [pz,l,czl; hence Py 1 P, by (B4). Since

{pi,l,O] A [m,n,1] = (l,pi,Ta(pi,m,n)) and [m,n,1] coincides with

[Ta(pi,n,m),o,l] in (l,pi,O), we obtain

PR RPN S WPOe s &<

[pi,l,ci] A [m,n,l] = (l,TB(TA(pi,n,m)scispi)’Tl‘(piin!m)) (i-lliz)'

However Té(TA(pl’n’m)’cl’pl) VP > Py v T3(T4(P2,n,m),CZ,P2)

(RN PIP 1L 0 b srgared " b Sme® o Tad

[T3(T4(pl,n,m),cl,pl) ~ Py < py, v T3(T4(p2,n,m),c2,p2)] and order is
reversed [preserved].

If ¢ then (AS)' implies [pl,l,cl] " [pz,l,czl; hence

1 v G20
Py Vv Py Therefore Th(pl,n,m) = T4(pl,nxm) by the uniformity of # .

3 s B b P by

Hence all three lines [m,n,1], [Ta(pi,n,m),O,l] (i=1,2) coincide in

(l,pl,O) = (1,p2,0). As Cy v Cy, the lines [pl,l,cﬂ and [pl,l,c2
also coincide in (1,p1,0). Therefore
[TB(Ta(pl,n,m?cl,pl) = T3(T4(p2,n.m),c2,pl) < T3(T4(p2.n.m),c2,P2)l by

6.&.§ and orde{‘is reversed [preserved].

6.5.32. Lemma. The map
(a,b,l)

>{(v,1,n) | v € n}

' ,’
preserves order if a < 0 and reverses order if a > 0.

. {(0,1,t) | £ €n)

Proof. Take two points (0,1,t1), (0,1,t2) I [1,0,@ , where

tl < t:2.

(i=1,2). Suppose a > 0 [a < 0). Then the two lines [l,pi,qi] and

Then (O,l,ti)(a,b,l) = [l,pi,qi] for some p, €n, q v a,

[1,pi,a] coincide in V (i=1,2). Hence
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Tz(tz,a,pz) = Tz(tl,a,pl) < TZ(tZ’a’pl)

[Tz(tz,a,pz) = Tz(tl,a,pl) > ngtz,a,pl)] by 6.4.17 and P, <Py

[p2 > plk by 6.4.12, However by 5.8.5,

[l,pi,qi] A [mgm,1] = (T'z(n,qi,pi),i,n) = (Tz(n,a,p‘i),l,:x}) (1=1,2). As
Tz(ﬁfggpl) > Tz(n,a,pz) [T2(n,a,pl) < Tz(n,a,pz)] by 6.4.12, order is
reversed [preserved].

6.5.33. Finally, we consider the projection
(a,b,1)

[1,0,1] »[m,n,1), where a € n. This projection also maps the

proper points Yf the domain line to points of the second kind incident
with the range line and the improper points of the domain line to points
of V incident with the range line (cf. 6.5.3Q); ie.,

{(1,c,1) | c € H}———*9{(l,u,TA(u,n,m)) | v € H} and

{(Tz(t,l,O),l,t) ’ t € T\}"“_')'{(V,l,n) l v € n}-

6.5.34. Lemma. The map
(a,b,1)

{(1,c,1) | ¢ € H}

f{(l,u,Ta(u,n,m)) | u € H}; a € n;
e

preserves order. ’

Proof. Take any two points (l,cl,l), (l,cz,l) I {1,0,1] such
that ¢y < ¢y Then '(1{ci,l)(a,b,l) = [pi,l,qi] for some Py € H,
qq " b. Since Tl(l’pl’ql) =cy <cy= Tl(l,pz,qz) and a0 <1,
(OM3)* implies Py < Py As in 6.5.31,
Ipi,l,qi] A [m,n,l] = (i'TB(Té(pi’n’m)’qi’pi)’TA(pggn’m)) (1=1,2).

If c; }c¢,, then p, 4 p, and '
T3(T4(pl,n,m),ql,pl) Npp <Py T3(T4(p2,n,m),q2,p2).’ Hence order is -
preserved.

If cy v €y then Py v Py and Té(pl,n,m)lz Th(p2,n,m). ;n

[T

s e o~
h
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addition, as q; v b v q,, the lines [pl,l,ql] and [pl,l,qz] coincide
in (1,p,0). Therefore
T4(T, (py,m,m),qy,p) = TH(T,(p,,n,m),q,,p;) < T3(T4(p2,n,m-),q2,p2) and

order is preserved.

6.5.35. Lemma, The map

{(Tz(t,l,O),l,t) | t € n} (a,b,1) — {(v,1,n) | veEnly a€n =

preserves order.
Proof. Take two points

(T,(t,,1,0),1,8,), (T,(t,,1,0),1,t,) I [1,0,1)° such that ¢t < t.. Then

1 2°
(T2(ti,l,0),l,ti)(a,b,l) = [l,pi,qi] for some Pys Gy € n. Since

qy € n, the lines [l,pi,qi] and [1,pi,0] coincide in V (4=1,2);
hence Tz(ti,l,O) = Tz(ti,qi,pi) = T2(ti’0’pi) =p,. By 6.4.15,
Py = Tz(tl,l,O) < TZ(CZfl’O) = Py- However [l,pi,O] A [m,n,1] = (pi,l,n),

so order is preserved.

6.5.36. We note that any projection between improper lines has
a proper centre and'preserves the oxder of the second kind points and of
the points in V.

As in'6.5.3; the inverse of each of the projections discussed
behaves in the same manner as the projection itself. We can obtain any
projection wiﬁh a proper centre by composing one of the projections
discussed in this section with the inverse of another such projection.
Hence we can determine the behavior of various sets of points under any

projection with proper centre.
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6.6. The ordering on “H *.

We shall now use the information we have'compiled to define a

total ordering on.the entire point set of each line of ¢ * and then
A :
use this total ordering to define a cyclic ordering on the P.H. plane

4 *. First, we define the notion of ordering by sets.

n
6.6,1. Let A= U Ai be the union of disjoint totally ordered
i=1
sets (Ai,<i); i=1,2,,..,n. For x, y € A, we define x <y if

either:
1) x, v € Ai and x < ¥; or

2) x € Ai’ y €A, and 1 < j.

3

We say that A is drdered setwise.

o NorrT

N
v

6.6.2. Consider any line [l,m,nll Then.we order the points of
[1,m,n] setwise as follows:
[1,m,n] = {(T,(t,n,m),1,t) |t € n} v {(Ty(x,m,n),x,1) | x € H)

with (Tz(tl,n,m),l,t ) X (T2(t2,n,m),l,t2) if and only if t, > t and,
N s

1 2

(To(xl,m,n),xl,l)-< (To(xz,m,n),xz,l) if and only if X <X,

A line [m,1,n) 1s ordered setwise by:
[m,1,n] = {(1,T3(t,n,m),t) | tentu {(x,T, (x,m,n),1) | x € H)

with (},T3(t1,n,m),t ) < (1,$th2,n,?),t2), if and only if tl > t2 and

(xl,Tl(xl,m,n),l)-( (xz,Tl(xz,m,n),l) if and only if X, <%,

Finally, & line [m,n,1] 18 ordered setwise by:
[m,n,1] = {(t,1l,n) I t €n}u {(l,x,Ta(x,n,m)) | x € H}

with (tl,l,n) < (tz,l,n) . 1f and only if t, > t2 and

(l,xl,Ta(xl,n,m)) < (l,xz,Ta(xz,n,m)) if and only if xlh< X,

4



Let « also denote the entire total ordering on each line.

6.6.3. The cyclic ordering on K *. We define a quat‘ernary)

relation on P 1in the following way. Pour points A, B, C, D are in

this relation (written AB o CD) if and only if ‘they are mutua'lly distinct,

collinear and one of the following h?lds:
AX C«L B L&D

é ) A< DB L.C
BLXCLALD

B DL AKC

C B DLA

CXAXKDX B

D ALC B

DU BAC «A. /

We say A and B separate C and D.

As

6.6.4. Theorem. -f{* = <P*, AL*, I, 0> 1s an ordered P.H. plane.

Proof. Axioms (OP1l) through (OP4) "follok immediately from the

sttt

definition of o.
(o4
Since K 1is an ordered A.H. plane, each proper line o_§ 4 *
1
i’ incident with at least three non-neighbouring proper points (cf. 4.1).
The fourth non-neighbouring point on a prope.r line of ¥ *‘would be its
intersection with AL*. Thus (OP5) holds.

3

Axiom (OP6) follow_s from\‘6.5a.
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' Examples and Counterexamples

~

o

In Chapter 6, we constructed an ordered projective completion for
a projectively ordefed, projectively uniform A.H. plane. In this chapter

we provide an'exampl§5°f a strongly ordered, but not prdjegtivFly ordered,

.

projectively uniform A.H. plane which has no ordered projective .

completion. We also give an example to show that an arbitrary projective
b

completion of a’'projectively ordered, projectively uniform A.H. plane is

not necessarily ordered. Finally, we present an example of a ,

projectively ordered, projectiyely uniform A.H. plane and an ordered

- projective completion.
14

7.1. A‘StrOngly orderéd projectively uniform A.H. plane with no
N o 4

ordered projective completion.

In this section, we present an example to show thatL in general,
, & : :

sﬁpongly ofderede'prdjectively uniform AJH. planes do not have ordered

projective completions.

L . . oy
-

Consider tﬁe ex%mple given in 3.5.8. Suppose that 4 has a
projective completion AL * wiéb of;ér relation o¢. Then 2?* is an
‘ <
ordered projective plane with improper line i;.
Take four points (Q,0,1), (0,1 ,1), (O®,(1,1),1),
(0,1L,0) i:cidept with the line [1,0,0]. Since -

(0,0,1) % (Q,1,1) ~ (0,(1,1,1) % (0,1},0) 47(0,0:1),

¢
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Q -~
<+

4.1.3 implies (0,1 ,1) (0’(1,1),1_-) ¢ (0,.0,1) (0)1 )0);

hence either (0,1 ,]l-) (0,11- ,0) g (0,0,]1—) (Q)(l:l)ﬁn) or
Q@

(0,1,1) (@¢,0,1) ¢ (0,1,0) (@,(1,1),1). Assume first that the

f_ormer holds. .

v

{
The projections !

1,00 —&.01) . iq 14,0121 _(0,1,0]

@,1,0) iy o,1]— 293 i1 0,0]

yield (©,0,1) (Q,1,0) 0 (0,1 ,1) (0,(0,-1),1L). Using the

projections

[1’0’0] (1,(—1,—1),0)

s(L,0,L]—1:9.9) .4 0,01,
(0,1,1) (0,1,0) ¢ (0,0,1) (9,(2,1),1) gives _
(@,(0,-1),1) (@,1,0) ¢ (©,(-1,-1),1) (0,0,1). If X &nd Y
are any pair of distinct points selected from the set

, No,oll), (0f-11), (0,1 ,1), (0;,(1,1),1),,(0,1 ,0)}, then
{0,(—1,-41),11.) (0,(<1,0),1) ¢ XY by '4.1.3 and 4.1.4. - Thereforey

\ ;(0,(0,—1)',1) (0,1,0) ¢ (0,0,1) (0O,(-1,0),1).

Using the projection ﬁ,o,o] (1,1 '1') +»{0,0,11],
(0,1,1) (,1,0) ¢ (0,0,1) (0,(1,1),1) gives | |
(1,6,0) (0,1 ,0) ¢ (1,1 ,O)‘ (11.0,(0',1),11‘). .‘Howe_ver since
(0,0,-1),1) (0,1,0) s (0,0,1) (0,{-1,0),1), the projection
1,0,0, 31 (0,0,1] yields
@,®,1).1) (0,1,0) ¢.(1,0,0) 1 1,0); a contradiction.

A discussion similar to the one u’sed above valso‘ results in a
contradiction if .we ass:ume

\ .
(o,L,1) (0,0,1) ¢ (0,1,0) (0,(1,1),1).

-~ ~ Q
.
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\
r/})““ Thus %« * is not ordered.
Z i ‘ .
7.2. A projective completion of a projectively ordered,
projectively uniform A.H. piane which 1s not oxdered.
In Chapter 6, we used special bijections v, _¢}—(, ag to
Q\h A construct an ordered proj eci:ive completion of a projectively uniform,

projectively ordered A.H. p}.ane. In this .section, we present an

]example to show that all projective completions of such a plane are not

+

ordered. } i . Q

Let H = TR X IR with coordinatewise addition and multiplica-~

tion defined b?v' (A],A)) - (Bl’BZ) = (AlBl,Ale +.A231). Then, as in

3.3.8, H #s an A.H. ring with unique maximal ideal

n= {0, | A €ER}, unit X = (l,d) and zero @ = (0,0). We may

order H 1lexiographically. The incidence structur(!a’ 4 (H) constructed
.as in 2.2.3, is a project‘ivele 6rdered, projectively uniform A.H. plane.
Take { = [0,0']1 and S = (1 ,(). We may use L and S to
construct ;:he set of improper pgin;\s for a projective completion -f *
of 4((H) as in 6.2, Since T=(SVAOEMU AL and T 1is any

element of T, incident with 1, let T = (@,L). Define 7, o3

x

|
for X I Iw’ X #V, and oz for Y I I‘w as in 6.2. We shall define

in the following way.
o (Mg | ¥ IR ——)(®)
Tyrrnnnrtg () = iGUAUO 7L k) A OB A L)

S . . We may use thesge biject‘ions to construct the -improper lines and to .
- complete the proper lines of -4{*. ' Using the triangle’

, (0,0), (lll &), (o,1), w;a may coordinatize -4* in the manmer of

1
I

’
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The points 0, S, T, (@®,-1) have the coordinates (O@,0,1),

(1L,0,1), (0,1,1), (0,-1,1) respectively. Using the definitions

of v, ‘&bi, ag &I I’m)’ we obtain the following results.

-

For m, n € H,
(L ,m,®) .,
= [m,L,0] A L* ’ o

- q?(I ,m,O)("[m,n , 0 ]) )
= w(:n ,m,0 )(L((.IL ',0 ,|]1. )‘, [m’_ﬂ_ ’Q ]) A

¢(m)((0,—m,l))

-

{m,1 ,0]|(—-s———--——1_ ) ’ - . g
L(¢(31- m,0) in, II.TD]) T me ’0)([101 n,d,01))

L1 ,m,@),0 _ )
- (1L ,m,(b),w(——_——n_ ’m’o)(L((O, m,n.),[o,n N12D))

= w(n/m’o) ([0 ,]l- ,—m] l (m)) ) <,
|

LR NG )
LOE m0) T, n,n]> e NI

For w€n, vEH-w
(w,1,0)
= (L ,w,®] AL*
= %M1 v,07
= wv(L((O,-n ,1L),[1 ,w,01) A 0E)U A L)
= 45 ((0,w,1))

oy et st bt e = 4
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(L ,W,QJIV . , RN

]

ACHIC TP NA(S IR 7))
L((w,1 ,0@), u—([IL o 03))
L{(w,1 0)
40
¥5(l@,1 ,wll 5)

l P

]

]

(Lo, [o 1 0][ )))

[}

[1 W, v]l
= L((w 1,0 ),av([I ,VJ))
—\wv([ -v,1 WJ)

By the above discussion, (1 ,t,0) = w;—}((O,—t,ﬂ.)) and
(& ,t,t) ‘ \

=- lbﬁ([—l 1 ,0]!5 A lO,L ,-t]!a) \

= ‘J’ﬁ(“:,'t)l));

hence the preimage of [t,0,1 ] = (L ,t,t)V in ¥ is

©L((e,-6,1),[0,0,0D = [1,0,t] (e,

.

[t,0 n.]l = tPY([Jl. 0,t:]| (Y)) Y. Therefore

@,i,0) : (;\

= 1,2,0) g A 0L aaTes |

- “’(n T n)‘[""Jl e 12.0.4l gy

" and the preimage of [O0,t,3]1= (1,1 ,t)(Il Q,0) in ¥ is

(t,-1,1)(0,0,1) = (1 ,-,0Q]. Hence )

ot

(O,t,1 ]
- u_ _{PEwy I p Iz 431 ,~t,01))

YIL ,YHV

A\

/X

R o o e
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[@,c,1 N{;
=Yg 01’ ‘ _
- LG5 L((O,1,1),[8 ,-t,0]) A 00),T)
= LG5 ((t,@,1)), 1)
=yl ,0,t]]3)
for any t € n.

~

We ‘may, therefore, conclude that

W)(<O’ -T,(t,n,m),1))
= Cll-,T (t,n,m) _9)

= QX A L((n- ’T3(t,n,m),t),n(1 ,m,O),[m,ﬂ. ’0])

= X A L([t,(),llll A m0) A [m1 ,nll(m),
s lily } ’
. T ,m, 0}, [m, 1L 0]>
R Js s 0)(1,([)1 O,t]I(O 1)A[n1,m]|(-—_;-i-.
- SRS sl
= 4% A w(m)((&e;th%flﬁ),[ﬁ 4

%

-l @

Vi o) A [O.1 ,-tn-n)

= 'Jl(m)((o,-tn—m,l.))

" (de., T3(t,n,m) ‘= tn+m) forany t €n; m, n €H and
wg((O;Tz(t,v,.w),l'))

= (T,(t ,;,w),n »0)

= L* A L((T (t,v,w),1,t), “v ll‘

N =Q*AL(([®CI]|'A[1’WV]I)HVLI)

= L¥ A tp\—’(L([Jl .O,tlla A [ov, 1L w]] , [0 1 0]| ))
= g A (0,1 ,~tv + w])

P TP WL APPT PRI S PRy

PN L cpes W
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= ¥5((0,-tv + w,1))

(1e., Tz(t,v,w) = ~tv + w) for aﬁ& t, w€ n, v € H. We note that
this implies\gbat the inequalities are reversed in 6.4.15.

Consider four points (0,1 ,0), (0,1 »(0,1)), (©0,1 ,1),
(0,0,1) incident with the line [1,0,@]1. B3y 4.1.3,
(0,1,0) (@,1,(0,1)) ¢ (®,1,1) (0,0,1), so either
(©,1,0) (©,1,1) ¢ (0,0,1) (0,1,(0,1)) or
(0,1,0) (0,0,1) ¢ (0,1,1) (®,1,(0,1)). Assume first that
thé former holds.

(e

Using the projections .

1,0,0—2.9%L) .10,6,1]_(20,1) »[0,1 ,1 ]
(0,1 ,0)

~»(0,1,0/—L."1.0) 7 11 5 .0]
we obtain (®,0,1) (O,-1 ,1) ¢ gO,Jl. ,O) (O,(O,ly. In

addition, the projections '

(1,0,0] (n',ﬂ(o,-1>,0) 1,0,1]—_1,0,0) 1,0,0] -
yield (0,(0,1),1) (@,(-1,-1),1) o (0,1,0) (@,0,1). Hovever

as (@,-L,1) (©,(-1,-1),1) 0V by 4.1.3,

(0,(0,-1),1) (0,-1,L) o (®,150) (©,0,1). Using the

da
» \df
>1,0,1]—{200) 15 gy;

~>»00,1,0)__ (02,0 iy 4 0
1,90 _.i1.0.0], '

projections -

1,0,0}—1:0.0)

(0,1 ,1)

" we obtain ‘(@,1,(0,1)) (0,1 1) 0 (0,0,1) (&),1 B); a
contradiction, ) ‘ _ %

A similar contradiction results when we assume
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(@,1,0) (0,0,1) ¢ (0,1 ,1) (@,1,(0,1)).
”

"7.3. An ordered projective completion of a projectively ordered,

——

~,

projectively uniform ALH. plame:,

In 7.2, we construct};\aa an unordered projective completion for
#C(H). \If we replace the definition of ¢7 used there by the original
definition (cf. 6.2), ’

% ¢ M | VI R——a (D)

—— Hhhv“f\v~9¢v(ﬂh) = wg((L(T,h) A OE)U A L),

we obtainvfor w, t €n, v € H, '

1L ,0) = 45 ((@sw,1))

w015 = 4,1 ]|

(R ,w,vllg = ¥5(l-v,0L ,-v] |5

and T,(t,v,w) = tv + w, J

The projective completion =#(* construci:ed using these
bijections is ordered by the ordering o defined in 6.6.
We may use the Desarguesian plane ¥ (H) to construct a
non-Desarguesian A.H. plane #H'=<r, L, 1, I > (cf. [4]) where
TP = H X H;
IL={[m,n]1 | m € n, n € H} U{[m,n]2 | m€n, n €H} U
{[m,nlzlmGH\n,mf_O,nEH}U ‘

{[m,n]3‘m€ﬁ\n,m>0,n€}l},

\

with ’
[Wé{l = {(xm + n,x) ] x“E H},

[m,n], = {(x,xm + n) | x'€ H)

‘

+ -



{m,n]3 = {(x,xm + n) | x + nm“1 > 0} U
{G2xm+2n) | x4t < 0}
I is set inclusion;
[m,n]ill[u,v]j if and only if 1 =3 and m = u.
Then the projective completion $C'* of ' may be constructed
using S = }ﬂ.,(b), L= [dD,()]l and T = (d);ﬂ.). This projective

completion 1s also ordered by the order relation given in 6.6.
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APPENDIX I

Uniform qpihternary rings and uniform P.H. planes.

An algebraic structure K=< R, T

is a uniform quinternary ring if the following axioms hold,

(Q1) <R, Tl’ TO' 0, 1 > 1is a biternary ring. We define

. and Vo as in 5.8.

We define TZ’ T3, T4 to be ternary operators such that

T2 : D¥ XRX D+f———————¥D+

: —_—
T3 : D+ XRXR R

: —_—>
TA RX D+ X D+ D+

Q2) Ti(a,m,x) = b; 1=2,3,4; 18 uniquely solvable for x,

all choices of a, m, b such that Ti(a,m,x) = b 1is

defined.

(Q3) The equation Ti(x,nl,ml) - TL(x,né,mz); 1=2,3; is

uniquely solvable for x if and only if n ¢R q and

m N P

(Q4) The system x = T3(y.n,m); y = Ta(x,q:p) _determines
palr x, y uniquely.
(Q5) The systenm Tb(ai,x,y) - bi is uniquely solvable for

2 a

if and only if R 22°

4

0) Tl’ Tz’ TB) Tl" O’ l >

-

Py

for

well-

the

(Q6) 1If ay ~vp 895 then for (al’bl) ¥ (az,bz), one and only one

of the systems a, = T3(§1.X,y) or bi = Ta(qi,u,v)

is

solvable for x, y or u, v. The solvable system has at

144
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1 tt olutions d N " .
eas WO 8 ons an ,42;7 R x2, yl R y2 or ul WR u2’

L V1 "R V2 depending whether the first or second system is

solvable.

¥

(Q7) 1If b1 # b2, then the system a, = Tz(bi,x,Y) has at least

two solutiogs for x, y and x, NR iz.

(Q8) Ti(a,m,n) %ﬁ n for 1=2,3,4¢ and any a, m, n° such that

Ti(a,m,n) is well-defined; if a € D+ and ml.?R m,, then

N Ti(a,ml,n) = Ti(a,mz,n) for 1=0,1,2,3,4 (some of these
conditions are automatically satisfied by the definition of

Ti)'

Q%) Ti(x,ml,nil = Ti(x,mz,nz); 1=o,1,2; i% golvable for x if

L yR mZT ml # m, and ny NR n,.

We shall ‘use a uniform quinternary ring to construct a uniform

P, H. plane in the following way. Let
’ “y
1 U:P2 UiP3

?11\ h . = {(a,b,1) |A a, b € R} U {(l,a,b) | a €ER, b € D+} U

g,

bl [ac PN

~ {(s,1,b) | a, b ED};

P=-P

{'®
LY
+ ~

L L =L UL, UL,
SN -.{[l,m,n] | m € D+,.n € R} U {[m,1,n] ] m, n € R} U
{Tm;n,1] | m, n € Dy};
I cP XX where |
(a,b,1) I.[l,m,n] {f and only if a = To(b,m,n);
(a,b,1) I [q,i,n) if and only if b = Tl(a,m,n),
(a,b,1) 1 [m,n,1],.

(i,a,b) I [1,m,n],.

] ' ’ ) . -0
¢
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K (qigbi,l) I [x,1,y); 1i=1,2. By (B8), the system To(bi,x,y) = g

146
(1,2,) T [m,1,n] 1f and only if a = T5(b,n,m),
(1,a,b) I [m,n,1] 41f and only 1f b = Ta(a,n,m),
(a,1,b) I [1,m,n] if and only if a = Tz(b,n,m), -

(a,1,b) I [m,1,n]

(a,1,b) I [m,n,1] 4if and only if b = n.

* In the following sequence of Iemmas, we show that

4 =<P,L, 1> 1is a uniform P.H. plane.

AI.1. Lemma. (Hl1) Two points are joined by at least one line.

Proof. Consider distinct points” (a 1) and (az,bz,l)

l)bl!

{ where a1, a,, bl’ b2 € R.

If &) *R ays then (B5) implies the existence of a unique pair
AY .

x, vy in R such that TI(ai;x,y) = bi for 1=1,2. Hence

i;
i=1,2; has no solutions for x and vy aé_ al=+R ay; hence (al,bl,l)

. “ ‘
(a,,b,,1) cannot be on a line of X,. By definition, these points
2'72 1 JE

cannot be incident with a line of x,. P o

If a, “p 8, and b +R b,, then (88) implies the existence of

a unique pair (x,y) € D, X R such that Ty(b ,x,y) = a, for 1i=1,25

i
hence (ai,bi,l) I [1,x,y] for 1=1,2. By (B5), the system

c

Tl(ai,x,y) = bi; i=1,2; cannot be solved for x and y as a; np 8, -

and b, +R by; hence both (al,bl,l) and (a,,b,,1) cannot be imcident

2 Points of 1?1- cannot be incident with lines of ]L3.

Finally, .if a, “p a, and b1 “r b2,'by (B7) one and oply one of

with a-line of 1L

the systems 1 i,x,y) = bix or ’To(bi,x,y)v= a, is solvable and the
{
i
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s

solvable system has at least two solutions. Therefore, (al,bl,l),
L

(a 1) are incident with either two'lines of the form [x,1,y] or

Z’bz b
two lines of the form' [1l,x,y). Points of ]Pl cannot be incident with
lines of 13.

We how consider distinct paints I(a,b,1), (1,c,d) where
a, b, c€ R and d € D+. By (TE), there exlsts a unique n such that
Tl(a,c,n) =b and by (Q2) there exists a unique m such that

T3(d,n3m) = c, By (Q8), c = T3(d,n,m) vg B In addition, (Z}) implies

'that there is a unique p such, that Tl(a,m,p) = b, By (B4) the equation

Tl(x,c,n) = Tl(x,m,p) has a ?ﬁique so}ptibp for x 1if and only if_

¢ +R m; however as ¢ %R m {égg a is‘a soluti?n of the equation there
must be another solution 3, # 3. Pup\ bl = Tl(al,c,n). By (B5), |

al g A2 and bl'«k b. Sigcé ¢, n and m, p are both solutions of the
system b = Tl(a,x,y), bl = Tl(al,k,y), (g7): implies n g P+ '?hérefone
by (Q8), T3(d,p,m) = T3(d,n,m) = c., Thus (a,b,l), (1,c,d) I [m,1,p].

We now prove therg is only one line joining the points ¢(a,b,l) and

(1,c,d). By the definition of I, only lines of X, may pass through both

2
(a,b,l) and {1,c,d). Suppose there exists another line, say ‘tq,i,r]
through these points. Then by'(QS), q g T3(d,r;q) = ¢ = T3(d,p,m) R .
Using (87) as we did iulthe’above argument, we see that. °r g P also.\
Therefore by (Q8) T3(d,r,m) = T3(d,p,m) a ¢ o= T3(d,r!q); hence (Q2)
implies n = q. Since \(a,b,l) 1 [m1,p], [q;l,r], we have
Tl(a,m,p) = b = Tl(a,q,r) -lTl(a,m,r) and by (C%) r =.p.

Now we consider the points (a,b,l1) and (c,l,d) where a, b € R

and c¢, d € D.. By (Q2), there exists a unique m € D, such that
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. )
T2(d,a,m) = ¢ and by (B83) the'equation To(b,m,n) = a 1s uniquely

solvable for' n. Moreover, by (B3) andi(B9), n é; hence by (Q8§)

R

Tz(d,n,m) = T2(d,a,m) =c, Tgys (a,b,1), (c,1,d) I.[1,m,n]. Suppose
"(a,b,1), (c,l,d{ are incident with some other line. By définition, this-
line must be of the form (1,p,q]. By (89), q v n. Theni(QS) implies
T2(d,q,m) = Tz(d,n,m) = c = Tz(d,q,P). By (Qé) m=p, Siﬁce
“(a,b,1) 1 [1,m,p], [{,p,q]; we have Ty(b,mmn) = a = To(b,p,é) = T,(b,m,q)
and by (83) n = q. |

Next we consider the distinct paints (l’al’bl) and (1,32;b2)
for a;, a, € R and by, by €D, |

! If a; +R a,, then ;he~system 'bi =’=’T4(a1,x,y); i=1,2; is

uniquely solvable for x and y by (Q5); hence
(l,al,bi), (l,az,bz) i [y,x,l].‘ By ‘definition, poiéts of ]PZ cannot be
incident with lines of ]Li. The points (l,al,bl)L (l,az,bz): cannot be
incident with a line [m,1,n] of L,, since (Q3)~implies tﬁe system
'u ='T3(v,n,m), v = T4(u,x,y) is uniquely solvable for u and ;.

1f a, &R 2,5 then by (Q6) one and on%y one of the systems
a = T3(bi,x,y?; i=1,2; or bi ='T4(ai,X,y); i=132; is sblvable for
x and y. The solvable system h?s at least two sélutions and (l’al’bl)
(1’82’b2> are incident‘with [y,l,*] or :[y,x,1] according as the first
or second system is solvable. These are the only kind; of lines through
(l,al,bl)’ and (l,aé,bz) as points of ]?2 cann6£ be incident witﬂ lines
of L,. | .o

Now we consider the points (1,a,b), (c,1,d), where a € R and

b,’e, d € D,. By (Q2), there exists a unique m such that Ta(a,d,m)‘= b.

. .

LN T g T, A ot
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Then as (c,l1,d) I [m,d,1] by defimnition, bogh points are incident with

the unique line [m,d,1].

»

Finally, consider the distinct points ’(al,l,bl} and (32{;;b2)

1 {
(al,l,b ), (az,l,bz) 1 [m,bl,ll for all m € D_. In addition, (al,libl)

where a,, a,, by» by €D, If b, = b,y then

and (az,l,bz) cannot be incident with a line’ [1,p,q) of—]Ll as

Tz(bz,q,m) = a, ¥ a, = Tz(bl’q’P).' Tz(bz,q,p). If bl ¥ bz, then the
system~ a, = Tz(bi,x,y) has at least two solutions for x and y by
(Q7) and (al’l’bl)’ (az,l,bz) I {1,y,x] for any such x and y. These

&

points cannot be incident with a line of Iﬁ3 by definition. Points of

P3 cannot be incident with lines of :mz.'

AI.%. Remark., We define two pgints (2, ,24,25), (bl;bz,b3) of ¥
to be neighbours (we write (a,,a,,a Y~ (b.,b,,b,)) if there exist more
177273, 127273

than one line through them. From the proof of the previous lemma, it is

clear that (a1’32’83) "y (bl,bz,b3) if and only if ;{fi; bi (i=1,2,3).

" Since " 1is an equivalence relation, we may write

L (81,82,83) for the

equiYalence class of P. containing (81,82,83). It 1s clear that |,

“<al,a2,a3) = (6;5,,0,) 1f and only 1f a4 =5, (1=1,2,3).

-

AI.3, Lemma. (H2). Two lines intersect in at least ome point.

Proof. Consider first the pailr of distinct lines {1,m, ,n,],

—~— 171

. o
[l,mz,nzl where ml,-m2 €D, and 1ny, n, € R. |

If n *R n,, then by (Q3), thkre exists a unique a € D such
that Tz(a,nl,mi) - Tz(a,nz;mz) gnd To(x,ml,nl) - To(x,mz,nz) has no
solution as To(x,ml,nl) M Y To(x;mz,nz) forjany x € R.

Theréfore [l,ml,nlj A Il,mz,nzl - (Tz(a,nl;ﬁlf,l,a) in this case.’

R Y e it

. s e

<RV v
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If . N n, and ml‘# m,y, then by (Q9), there exists a € R

such that To(a,ml,nl) = To(a,mz,nz). By (B9), there exists at teast one

other pair

>

(T (a,ml,n ),a,1) € [1, »m) 1y ] A{l,m ,n2], but it is not a unique in&fr—

as bl such that b1 = T (al,hi,ni); i=1,2, Therefote:

r

section p01nt

It ny g n, and m =m,, then by (Q8) for any a € D+, \

i = ‘
Tz(a,nl,ml) Tz(a,nz,mz) Thus

[t,ml,nl] A1 m2,n2] {(T,(a,n 1o ),1,8) | a € D, } in this-case.
Now consider the pair of lines [1,m,n], [p,1,q] where m€ D,
\ .
and n, p, q € R. By (B86), there exists a unique pair x, y such that
y = Tl(x,p,q) and x = T,(y,m,n); hence [1,m,n] A [p,1,q]. = (x,y,1)

as by definition no other kind of point can be incident with both lines.

Next consider the pair of lines [1,m, n], [p, q,l] where

m, p, q € D and n € R. By the definition of f, any point on both

oS 2

lines must be of the form (T (q,n,m),1,q) #hich is a single point.
Now consider two distinct line? [ml,l,nl] and [m2’1’n2] where *
m, m,, n;, n, € R. ,\

If m, *R m, . (B4) implies there exists a unique a such that

T (a, sMy,0, )y =T (a,mz,nz) and (Q2) implies T (y, l?ml) = T (y n, ,m )

has no solutions hence [m,,l1, ny ] A [m 2] (a, T (a, )My 50y ),1).

If m 2 and n, 1 Ny, the equation T (x,n ml) = T (x,nz,mz)

-

is uniquely solvable for «x by (Q3) Ad m e o, the equation

T (y, 1,nl) = T (y,mz,nz) cannot have a unique solution for x by (B4).
Suppose it has two solutions by and .by. Let c - Tl(bi’ml’nl

(i=1,2), B* (85), bl NR b2 and c NR c, and by (B7) n) v n,;oa

-
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contradiction, Hence in this case [ml,l,nll A [mz,l,n ] =

(l,T3(x,nliml),x).

If m =m, and n) g Pps then for any x € D+}
T3(x,nl,m1) = TB(*’nZ’mZ) by (Q8). Hence
{(1,T3(x,nl,mi),x) | x € D+} c [ml,l,nl] A [mz,l,nzl. For any x € R,

llet y = Tl(x,ﬁz,pl). Thus (x,y,1) I [ml,l,nll. If (x,y,1) I [m ,l,qzl,

then "'y = Tl(x,mz,nz) and by (I;), n, =, and the l;nes would be

identical. . ) BN N

Finally( 1f moapmo, my #m and ny v By, (Q9) and (84)

imply that the equation Tl(x,ml,nl = Tl(x,mz,nz) hasérwre than one'

‘ solution. Therefore ‘
g A {(x T (x,m1 n;),1) | T, (%,my,my) = Tl(x,mz,nz)}\
[ml,l i ] A [mz, .y
For any x €D, T3(x,nl,m1) T, (x nz,ul) by (Q8)
T,y ,m ) = T,(x, nz,mz), then (Q2) implies m, =m,; .a c?ntradi;:tion.

A

Thus there is no point of P, on [m1 1,n, ] and [m,,1,n,] in this

case,

Next consider the lines [m,1,n),Ip,q,1] where p, q € D, and
m, n € R. By (Q4), the system x = T3(y,n,m),,y = T, (x,q,p) " has a unique
solution for x and y. As only points of ¥, cad be incident with

both these lines, [m,1,n] A [p,q,1] = (1,x,y). )

o -Finally, consider the distinct lines [ml,ni,l], [nz,nz,l]
- A I

Where ‘lll, nz) l’ n2 E D . . . i-

If n, = n2, then {(x l,m) | x€ D } < [my,n;,1] A [my,n,,1]

by" definition. Suppose there _exists-a point (1,a,b) I [ml,nl,ll,
3

[m%,n ,l] Then TA("nl"z) = T (a,nz,ml) which\impliea nl m2 by -

- e SR R S B R e s Seap B TS
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(Q2). Hence no point of P, lies on both lines.

2
If n; # n, and m = m, then for any x € D,

Ta(x,nl,ml) =m =m, = T4(x!n2,m2) by (Q8); hence

{(l,x,'Ta(x,nl,ml)‘) | %€ D+} < [ml,nl,ll A [m2,n2,1]. ‘As n $ n,, no

point/of ]P3

/ H 1f n, # n, and m # mn,, (Q9) implies’thaf_:

can be incident with both lines.

T, ;:\,ffl\,ml) = '1‘4(5n2,m2) is solvable for x and (Q5) implies that the

solution is not unique. No point of 1P3 can be incident with both

these lines. Therefore, in this case,

{(l,x,T4(x,nl,ml)) | TA.(x’nl’i“l) = Ta(x,nz,mz)} = [ml,nl,l] A [m2,n2,1].

Al.4. Remark, We define two lines [al,_az,a3], [bl’bZ’b3] to be

neighboursK (we write '[al,§2,83] " [bl’bZ’b3D if they intersect more

13

than once. From the proof of the p\revious lemma, it is clear that

a; “p bi (i=1,2,3). Since ~

is an equivalence relation on I, we may write [al,az,‘a3] for the

[al,az,a3] " [blbe’b3] if and only if

equivalence class of A containing. [al»,a:2,43]. Clearly,

[al,az,a3] = [bl’bZ’b3] 'if and only if a; = b, (1=1,2,3).

Al.5. Lemma, (H3) There exist an'ordinary projective plane “¥'
and an epimorphism ¥ : P——P ' such that
‘ i) P A~ Q if and only if x(P) = x(Q);
11) L ~m if and only 1if x(L) = x(m).
Proof. We define “O' = <PB/v, L/v, I' > vhere
(a,b,c) I' .[m,n,p) ‘if and only if there exist a point
(a',b',c') € (Z-",'S',?) and a line [m',n',p') € [m,n,p] such that

(a',b',c") I Im',n',p'] in . Let X :’SQ————}“P' with x(P) = P .
» . - v
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and (L) =,1,'for‘every P EP and every L €L,
It is clear from these definitions that Y 1s a surjective map _

which takes pbints to points and lines to lines, preserves incidence and

X Ko T o

satisfies properties 1) and 1i). It remains to verify that -4°' is
an ordinary projective plane.

Since ¥P= <B, /v, I.l/'\i UL,/~, 1" > where

AR i Rer 250

I'"=1'"nN @1/'\: X C[.ll'\» U][.z/'b)) is an ordinary affine pléne (cf. [11],

2.12), pairs of distinct points of the form (a,b,l), (c,d,l) are

X . ¥

joined by unique lines in ¥ and heqpe in ' (cf. AL.1) and pairs of

distinct lines of the form [m,1,nl, Ip,1,ql ‘where\ m ¥ p or of the

form [1,m,nl], [p,l,qf meet in unique points of “¥ and hence in P

(cf. AL.3). . ( | ?
° Cons;der the points (a,b,l), (c;d,l) in ¥'. For a;y |

(ai,bi,lx € (a,b,1) and (l,ci,di) € (1,c,d), there exist unique lines

[mi,l,ni] = (ai’bi’l)(l’ci’di) where m Ve € i=1,2 (cf. AL.1). ‘ J

Therefore by (B10), Tl(gl,ﬁl,ﬁl) ='5i = 52'= T1(§2’52?52); hence by @), l | a

El = 52 and [ml,l,nll = [mh,l,ﬁzl.

“

Now consider the points (a,b,l), {c,d,l) in “4P'. For any

(ai ’bi’

1) € (a,b,1I) and (ci,di,;) € (c,1,d), there exist unique lines
: = ;1= . AL.1)., B
(1,m ni] (ai’bi’l)(ci’l’di) where m, €D; 1=1,2 (cf. AI.1) Z y

» 1’
(B8), ny "g 3 “g 22 "R "2}
Next consider the distinct éoihts (1,a,b), (I,c,d) of H'.

-

hence [l;ml,nl] = [l,mz,nél.

Since b, d € D,, a # c. Therefore for any (l,al,bl)QE (1,a,b) and aEfB

2

el A S S AR P R SRS

(l’éi§§%) € (1,c,d),-there exists a unique linei

- TN

A}

[m,n,l] = (l,al,bl)(l,cl;dl) by AI.l. However all lines of IL3 are

’

neighbours, so (1,a,b)(,c,d) = [m,n,1} (= [0,0,1]).

fe

e
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"

As a point of P2 ‘and a point of '11’3 in ¥ are incident with

[

a unique line of 1L3' (cf. AI.l), any (1,a,b), (¢,1,d) in ' are
incident with [0,0,1]. (
Next we show that pairs of lines of ' have ufxique intersec-

tions.

Consider distinct lines [1,m,nJ), [1,p,q] in #'. Clearly
n ¥ g. For any [l,‘ml,nll € [{1,m,n]’ and any [1,p1,ql] € [1,p,q), there .

exists a unique ‘point (T (a,nl,ml),l‘,a) = [l,ml,nll A[l,pl,qll by AI.3;

however all points of IP, are neighbours, so [1,m,n] A [I,p,q] = @,1,0).

As a line Ofﬂ I..l apdia line of 13 in '10 meet in a unique

point of T, (cf. AI.3) and all points of T, are neighbours, any

P

[(T,m,n), [p,q,1] in~ ' meet in the unique point (0,1,0).

Consider distinct lines [m,1,n) and [p,1,q) where m=p in’
', Thus n$q. For any [m,1,n,]¢€ [m,1,n) and any
[pl’l’qll € [p,1,ql, [ml’l’nl] A [p‘l,l,‘qll = (1,T3(a,nl,ml'),a) for a

unique a € D+ by AI.3. However each (1,T (a,nl,ml),,a) € (1,m,0). by

(Q8). Therefore [m,1,n) A [p,1,q] = (1,m,0).

Consider the lines {m,1,n), Ip,q,1] in 40", For any
[ml,l,n'l] € [m,1,n] and any [pi,ql,l] € [p,q,11, ¢ .
&2 “
'[ml’l’nl'] A[pl,ql,l] - (1,y,'r4(y,q1,pl)) for some y vy my by AL.3 ax:td

(Q8). Since Tl‘(y,’ql,pl) €D, forall'y € R,

(1,)11,0) - [mal»n] A [Poq’l]'
Finally, using the proofs of AIL.l, AI.3 and the above discugsion,
we conclude that (0,0,1), (1,1,1),°(1,0,0), (0,1,0) are four points of

4P, no three of which are collirear.

Thus “4P' 4is an ordinary projective plane.

T
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