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Abstract

This thesis traces the development of the theory of types from its origins in the
early twentieth century through its various forms until the mid 1950's. Special attention is
paid to the reception of this theory after the publication of the second edition of
Whitehead and Russell’s Principia Mathematica. We examine how the theory of types
declined in influence over four decades. From being in the 1920s the dominant form of
mathematical logic, by 1956 this theory had been abandoned as a foundation for
mathematics. The use and modification of the theory by logicians such as Ramsey,
Carnap, Church, Quine, Godel, and Tarski is given particular attention. Finally, the view
of the theory of types as a many-sorted first-order theory in the 1950’s is discussed.

It was the simple theory, as opposed to the ramified theory of types that was used
almost exclusively during the years following the second edition of Principia. However,
it is shown in this thesis that in the 1950’s a revival of the ramified theory of types
occurred. This revival of ramified-type theories coincided with the consideration of
cumulative type hierarchies. This is most evident in the work of Hao Wang and John
Myhill. The consideration of cumulative type-hierarchies altered the form of the theory
of types in a substantial way. The theory was altered even more drastically by being
changed from a many-sorted theory into a one-sorted theory. This final “standardization”
of the theory of types in the mid 1950’s made it not much different from first-order
Zermelo-Fraenkel set-theory. The theory of types, whose developments are traced in this

thesis, therefore lost its prominence as the foundation for mathematics and logic.
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1. The Theory of Types Introduced

1.1 Introduction

This thesis will trace the development of the theory of types from its origins in the
early twentieth century through its various forms until the mid 1950's. By this later date it
had lost any prominence that it once had as a foundation for mathematics. Special
attention will be paid to the reception of this theory after the publication of the second
edition of Whitehead and Russell’s Principia Mathematica. We examine how the theory
of types declined in influence over four decades. From being in the 1920s the dominant
form of mathematical logic, by 1956 this theory had been abandoned as a foundation for
mathematics. The use and modification of the theory by logicians such as Ramsey,
Carnap, Church, Quine, Godel, and Tarski will be given particular attention. Finally, the
view of the theory of types as a many-sorted first-order theory in the 1950’s will be
discussed.

There are two fundamental formulations of the theory of types; the simple theory
and the ramified theory. In the simple theory of types a certain domain is specified as the
domain of individuals. These are assigned to the lowest type (say type 0). Classes and
functions are then stratified into a hierarchy of types. Inthe case of classes, for instance,
type O consists of the pre-specified domain of individuals, type 1 consists of classes of
individuals, type 2 consists of classes of classes of individuals, and so on. The main

restriction here is that the members of a class of type #+1 must all be of type .



Furthermore, all classes must belong to some one type; those that do not are deemed non-
existent and discussion of them is prohibited within the system.

This stratification was initially proposed as a way to avoid Russell’s paradox.
This paradox arises by making the seemingly natural assumption that any condition
defines a set. With this assumption Russell considered the set of all sets that do not
belong to themselves. But if it is then asked whether this set belongs to itself or not the
contradiction arises; for if it does belong to itself, then by its own defining condition it
does not, and vice versa. Applying the simple theory of types described in the previous
paragraph it is easily seen how this contradiction is avoided; withi}1 the simple theory of
types self-membership is meaningless, the question would never arise whether a set could
or could not be a member of itself. Furthermore, the ‘set of all sets not members of
themselves’ would never arise since ‘not a member of oneself’ is ill-formed by the theory.

This theory can be succinctly explained as follows. Each variable belongs to a
specific type 0, 1, 2, ..., and so on indicated by right subscripts. The atomic formulae are
of the form ‘pey’ where the type of p must be exactly one lower than the type of x, and
‘u=y’ where p and y are of the same type. Furthermore, there is an axiom-schema of
extensionality:

)G (ziE xi < ziE yi) = Xi =yl
and an axiom-schema of comprehension:
Eyin)(x)[xi € Yir1 < 0(x)].
The ramified type theory, on the other hand, includes a distinction between

‘orders’ as well as ‘types’. Variables are given two different indices; one indicates the



type of the variable, and the other the level. The axiom-schema of comprehension then
changes to: If; is the highest order of any bound variable of level i+1 occurring in o(xi),
then (Eje1yir1)(xi) [k%i € j+iv1 <> 0(cxi)] where the left subscript indicates the order of the
variable. Within this ramified type theory, a large portion of mathematics cannot be
formulated. For instance, the least upper bound of a class of real numbers will be of a
higher order than any of the numbers which are used in its construction.

In order to reinstate these portions of classical mathematics an axiom of
reducibility is sometimes posited. This axiom ensures that for each class of a certain level
and any order, a corresponding class of the same level and order: 1 exists such that the two
classes contain the same members. It will be seen throughout this thesis that the status of
the axiom of reducibility played an integral part in the development of the theory of types.
This is most notable in the choice between a simple versus a ramified theory.

The ramified theory of types is required when one begins to consider relations (or
functions of more than one variable). Considering relations of two variables, one can
quantify over either variable. To overcome this confusion a hierarchy of orders is added
to the hierarchy of types in such a way that two relations can be of the same type, and yet
of a different order.! Russell introduced the ramified theory as a natural extension of the
simple theory. However, he did not explicitly distinguish between the two; the
introduction of orders was simply the next necessary step in his process. This was
necessitated by his treatment of classes, relations, and functions as will be seen in the

second chapter of this thesis.

! The order refers to the difference in type of the variables being related. For example, if x is of type 1 and
y is of type 3, then a relation between x and y would be of order 2.



The theory of types is closely connected with the distinction between functions
and their arguments. This distinction was made explicitly by Frege in both his
Begriffsschrift (1879) and more fully in his Grundgesetze der Arithmetik (1893). This
distinction is clearly needed before any distinction between types of arguments for
functions can be made. However, Church argues in his 1939 paper “Schréder’s
Anticipation of the Simple Theory of Types”, that Frege’s work cannot properly be seen
as an anticipation of the theory of types. Schréder’s work, on the other hand, is seen as
the first step towards a simple theory of types. The theory of types was not explicitly put
into use until the beginning of the twentieth century. At that time Russell gave a tentative
sketch of the theory in an appendix of his The Principles of Mathematics (1903). The
theory was put forth as a method for avoiding the paradox that Russell had discovered
while his book was on its way to print. Thus, in this first chapter a brief outline will be
given of Schrider and Frege’s possible anticipations of the theory of types, together with
a review of the contradictions which the theory of types was designed to overcome.

In his The Principles of Mathematics Russell realized that his theory of types was
being given in outline only; he even listed some of the problems which it failed to solve.
Unable to overcome these difﬁculties, Russell abandoned the theory of types by the
middle of 1903. In the hopes of supplanting the theory of types several different
procedures were investigated by Russell in a 1906 paper. These were the zig-zag theory,
the theory of limitation of size, and the no-class theory. There is no mention made of the
theory of types in that paper. During this period between 1903 and 1908 Russell spent

the majority of his time developing his substitutional theory (which is called the no-class



theory in his 1906 paper). However, by 1906 or 1907 Russell had returned to his theory
of types and in a paper of 1908 he developed the theory more fully. This transitional
period in Russell’s work will be discussed in the second chapter. A consideration of the
motivation behind Russell’s study of the foundations of mathematics, and his early
logicism, is essential to understanding his work in the theory of types and the various
alternatives that he considered. Thus his motivations in this period are highlighted.

Russell’s next use of the theory of types occurred in Principia Mathematica
(1910-1913). The version of the theory of types put forth there will also be compared to
previous versions in chapter 2. Finally, the role of propositions, classes, and functions in
Russell’s logical systems will receive special attention as their status seems to correspond
to variations in his theory of types.

The second edition of Principia Mathematica (1925-1927) leaves the text of the
first edition unchanged. The main improvements appear in an introduction, where the
most important contributions to mathematical logic by other authors in the intervening
years are listed. The improvements that bear directly upon the theory of types include the
work done by Chwistek, in which the axiom of reducibility is dropped altogether (with no
replacement), and Wittgenstein’s new conception of the nature of functions as found in
his Tractatus Logico-Philosophicus (1922). Although not mentioned in the Principia
introduction, Weyl also made some contributions which influenced subsequent work m
the theory of types. Weyl, like Chwistek, used constructive methods in his avoidance of

the logical paradoxes and he thus saw the axiom of reducibility as untenable. These



works will be discussed in the third chapter of this thesis, together with the changes
proposed in the second edition of Principia.

Wittgenstein’s newly introduced views of functions and propositions were also
incorporated into Ramsey’s work dealing with the theory of types. Like Chwistek and
Weyl, Ramsey attempted to eliminate the need for an axiom of reducibility. However,
Ramsey’s severely realist position with respect to classes clearly conflicts with Chwistek
and Weyl’s constructivist attitudes. Many of Chwistek’s results anticipated Ramsey’s,
but the methods they implemented were motivated by different concerns. Ramsey argued
in favor of the use of impredicative definitions and for the simple theory of types. While
urging the use of his simple theory of types, Ramsey explicitly distinguished between two
different kinds of contradictions; those which he calls “logical” versus those that he
claims rely upon purely linguistic or “psychological” references (Ramsey 1925, pp. 171-
172). Since it is impossible to formulate the “semantic” antimonies within a formal
language, it is only the logical ones that affect the formal development of mathematics
(according to Ramsey). Thus Ramsey urged that the second set of paradoxes, and hence
the axiom of reducibility which was needed only in dealing with antimonies of this kind,
be dispensed with entirely. Ramsey further proposed the use of propositional functions in
extension as the basis for logical elements. This extensional version of the theory of
types, as well as the classification of different kinds of antimonies, proved to be very
influential.

Like Ramsey, Rudolf Carnap embraced the work of Wittgenstein. Wittgenstein’s

notion that mathematics and logic are simply a collection of tautologies and say nothing



about the world fit in well with Carnap’s conceptions as formulated in his work with the
Vienna Circle. However, Carnap rejected Ramsey’s solution of the paradoxes stating, as
Frege had done, that only those entities whose existence can be proved in finitely many
steps may be taken to exist. In his Logical Syntax of Language (1937), Carnap came to
the conclusion that all of logic, mathematics, and philosophy could be developed in
syntactical form, ultimately reducing to the logical syntax of language. This new
argument rests upon the Principle of Tolerance according to which any language deserves
study for its own sake and can be employed to make other studies more convenient. In
the Logical Syntax of Language, two systems are developed. The second of these
incorporates a simple theory of types. Carnap’s work motivated many subsequent works
using a theory of types. In chapter 4 a comparisoﬁ of Ramsey and Carnap’s contributions
and use of the theory of types is discussed.

The theory of types did not receive its first truly formal treatment until 1931 in the
works of Tarski and Godel. Indeed, the formulations given in Tarski’s paper on truth and
Godel’s incompleteness paper were later referred to several times by Quine as the “neo-
classical theory of types” (Quine 1985, p. 86). Until 1935 Tarski used a simple theory of
types as his basic logical system (see for example Tarski 1956, pp. 61, 113-115, 241-243,
297, 384). In the paper on truth Tarski gives his typical statement of a simple type theory
using axioms of comprehension (which he calls “pseudo-definitions” following
Lesniewski), extensionality, and infinity. Even in his 1941 book Introduction to Logic
the theory of classes is based on a distinction Between levels which Tarski acknowledges

to be akin to Russell’s logical types (see sections 21&23, pp. 68, 73-74). However, in the



1935 postscript to the German edition of his paper on truth (Tarski 1956, p. 271) it is
indicated that he had shifted from the theory of types to first-order Zermelo-Fraenkel set
theory (with an axiom of choice) as the best way to formulate his work. In chapter 5
Tarski and Godel’s versions of the theory of types are outlined and compared. Also, the
reasons behind Tarski’s abandonment of the theory of types will be traced.

As mentioned above, Quine regarded Tarski and Godel’s work on the theory of
types very highly. In fact, in some of his early works Quine used these versions of the
theory of types as a starting point in his logical investigations. In his “New Foundations
for Mathematical Logic’; (1937), for instance, he modifies Tarski’s theory of types to
form his own system that avoids specific reference to types. This work was later
extended to that found in his Mathematical Logic (1940). In both of these works specific
references to types are avoided by instead using “stratified formulae”. These formulae
are required to be such that subscripts could be added to the variables, indicating the type
of the variable, so as to be consistent with the simple theory of types. Despite this initial
influence of the theory of types in Quine’s work, like Ta;ski he eventually restricted his
logic to a first-order predicate logic.? Church, on the other hand, initially set out to
provide a system of logic which completely eliminated any reliance upon type
distinctions. However, after this system was shown to be inconsistent by his students,
Kleene and Rosser, Church was forced to abandon his lofty pursuit. The system was not
altogether unfruitful though. From it an important subsystem was singled out; namely

Church’s lambda-calculus. In 1940 Church put forth a formulation of the simple theory

2 However, his type-inspired system provided years of research for other logicians.



of types which included his lambda-operator.> Both Quine and Church’s work in the
theory of types proved to be quite influential and their systems were studied extensively.
Chapter 6 of this thesis is devoted to a study and comparison of Quine and Church’s
views on the theory of types.

The seventh chapter of this thesis includes an investigation of work that arose
directly from Church and Quine’s work in the theory of types. In particular, the
rejuvenation of the ramified theory of types will be highlighted. This is especially
prevalent in Hao Wang’s work, but also in the work of John Myhill who strove to
complete the woric initiated by Leon Chwistek. Finally, the theory of types as a many-

sorted first-order theory will be investigated.

1.2 Frege and Schrider - Anticipations of the Simple Theory of Types

Prior to the discovery of the paradoxes of set theory there was a partial
anticipation of the simple theory of types. Since the set-theoretic paradoxes were not yet
known, the motivation behind this first formulation was different from Russell’s. Church
claims in his paper “Schréder’s Anticipation of the Simple Theory of Types”, that
Schréder’s work in the first volume of his Algebra der Logik (1890) can be viewed as a
“striking anticipation of the simple theory of types” (Church 1939, p. 408).

According to Church, Schréder’s anticipation can be seen as follows. He starts

out with a universal class, not in the absolute sense, but as composed of all of the

* It is worth noting that throughout his career Church was a consistent defender of higher-order logical
systems. Also, he emphasized the role of the axiom of infinity as a crucial frontier between logic and
mathematics.



elements of a domain which is specified in advance. Given this arbitrarily chosen
universal class a second one is obtained by taking the individuals to be precisely the
subsets of the initial domain. Schréder’s algebra is equally applicable to this newly
formed domain. Furthermore, the null classes found in each domain must be kept
distinct. This process of creating a hierarchy of new domains may be extended to infinity
(Schréder 1890, p. 248).
Church further enunciates Schrdder’s anticipation of the simple theory of types as
follows:
If 0 is the null class associated with the jﬁrst domain, 0 the null class associated
with the second (“derived””) domain, and A4 the class composed of the two
elements 0, 1, where 1 is the universal class associated with the first domain, then
Schroder would regard 0<0 as false (not meaningless) and 0<4 as true. Actually,
however, this divergence from an exact anticipation of the simple theory of types
is apparent rather than real; it means that we must interpret Schréder’s symbol 0
within the algebra of the first domain as meaning A, but within the algebra of the
second domain as meaning VA, and likewise 1n other cases (Church 1939, p. 408).
This apparent failure of Schréder’s work as an exact formulation is due to his
identification of a unit class with its sole element.*
Since the set-theoretic paradoxes are unknown at the time of Schroder’s work, the
motivation behind his ‘type’ distinctions must have come from a different source.

Schréder conceives of classes as built entirely of their members. As such, the members

4 Interestingly, this same procedure is followed by Quine in his systems found in “New Foundations for
Mathematical Logic” and his Mathematical Logic as discussed in chapter 6.
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of a particular class must exist prior to the class itself, With such a view some sort of
type hierarchy seems to arise quite naturally (Church 1939).

Apart from this view of classes and their members there is a more practical need
for Schréder to introduce type distinctions. In his system Schréder has no symbol
available for the class-membership relation (¢). He does have a symbol for class-inclusion
and he actually confuses or identifies the two notions, membership and inclusion, on
several occasions (see, for example, Schréder 1890, p. 245). By introducing a distinction
of types, Schroder is able, in some respects, to get away with failing to make the
distinction between class-membership and class-inclusion. Thus, although Schréder’s use
of a type-like hierarchy is not motivated by the set-theoretic paradoxes, his own need for
such a hierarchy seems quite natural and inevitable (Church 1939, p. 409).

After his presentation of Schroder’s partial anticipation of the simple theory of
types, Church moves on to discuss “the claim sometimes made on behalf of Frége that his
Stufen (cf. his Grundgesetze der Arithmetik, vol. 1, 1893) constitute an anticipation of the
simple theory of types” (Church 1939, p. 409). Church sees this position as untenable
and the rest of his paper is devoted to explicating this point.

This dissection begins with Church’s consideration of Frege’s notion of a
function. For Frege, a function is an incomplete symbol and not an abstract object at all.
The ‘incompleteness’ of the function comes from the fact that it requires something
additional, in particular an argument, to complete its meaning. However, a function is
sufficiently akin to an object to be represented by a variable. Church claims that since

Frege’s functions are incomplete symbols they must be divided into Stufen “and no other
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possibility offers itself” (Church 1939, p. 410). Church goes on to state that “this division
of functions into Stufen is not a theory of types. It might become so if it were denied that
besides functions there were also the corresponding completed abstraction, or if a similar
restriction were imposed upon the completed abstraction” (Church 1939, p. 410).
Actually, Church claims that Frege “explicitly denies that [the corresponding completed
abstractions] are subject to the restriction associated with the division into Stufen”
(Church 1939, p. 410). Thus, based upon Frege’s notion of a function, Church argues that
Frege did not anticipate the theory of types.

This argument against Frege’s anticipation of the simple theory of types is
continued and concluded with an even stronger argument as follows:

The characteristic feature of the simple theory of types — that a domain

of individuals is fixed upon, and the laws of logic stated first for (classes or

functions over) this domain and then restated successively for other domains

derived one by one from the original domain and from one another — is not

only not adopted by Frege but is vigorously rejected by him (Church 1939, p.

410).
This is followed by a “violent criticism” of Schréder’s algebra written by Frege which
Church claims gives a clear idea of what “Frege would think (or, indeed, did think) of the
simple theory of types” (Church 1939, p. 410).

Church’s claim that Schroder anticipated the simple theory of types, while Frege
did not, must be taken cautiously. Despite the evidence cited above, it is still the case that

both Schroder and Frege had some features of their systems in common with type theory,
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while some features differed from type theory. As will be seen in the next chapter, the
first explicit use of types stemmed from considerations much different from both
Schréder’s and Frege’s. This first theory of types, put forth by Bertrand Russell, was set
up as an attempt at overcoming the logical paradoxes that first appeared near the end of

the nineteenth century.

1.3 The Paradoxes

Since Russell first explicitly introduced the theory of types as a way of avoiding
the set-theoretic paradoxes, a very brief account of how these paradoxes arose is given in
the present section.

The first set-theoretic paradoxes emerged around the turn of the twentieth century.
The earliest of these paradoxes include, among others, the paradox of the largest ordinal,
the paradox of the largest cardinal, and Russell’s paradox. The paradox of the largest
ordinal has come to be called the Burali-Forti paradox. However, as is shown in Moore
and Garciadiego (1981), it was not created by Burali-Forti at all. Nor was it discovered
by Cantor two years earlier as has been often asserted (see for instance Fraenkel and Bar-
Hillel 1958, p. 2). In their article, Moore and Garciadiego de-emphasize the question as
to who originally stated the paradox, and instead investigate the process by which it
originated and matured into the form in which it is generally recognized today.’ The

Burali-Forti paradox can be stated briefly as follows: The set, W, of all ordinals is well-

3 This form did not appear until 1907. The claim is often made that Burali-Forti had discovered this
paradox in his 1897 paper. However, he never viewed his results as creating a paradox (Moore and
Garciadiego 1981, pp. 321-323).
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ordered; every well-ordered set has an ordinal number greater than the ordinal numbers of
its members; hence the ordinal number of W is greater than every ordinal.

The Burali-Forti paradox deals with notions from set-theory, as does the paradox
of the largest cardinal, which is known as Cantor’s paradox. The paradox of the largest
cardinal can be stated as follows: “The class of all classes has a cardinal number; if this
number is N, then there is another class which has a larger cardinal number; hence there is
no cardinal number of the class of all classes” (Moore 1995, p. 226). This paradox was
formulated by Russell only in January 1901. However, it is very similar in form to his
antimony o£ infinite number given in July or August 1899 (see Moore 1995 for details):
“There are many numbers, therefore there is a number of numbers. If this be N, N+1 is
also a number, therefore there is no number of numbers” (Russell 1899, p. 265). These
two paradoxes are clearly similar in form, not only to each other, but also to Burali-
Forti’s paradox.

Since these paradoxes all involve set-theoretic notions it was hoped that they
would be remedied by some simple revision in the proofs of the then young discipline of
set-theory. This hope was shattered when Bertrand Russell published his pai:adox in
1903. As shown in Moore’s 1995 article this paradox arose out of philosophical concerns
over the nature of infinity. Indeed, Moore concludes by noting that “the traditional
philosophical concern with a ‘largest number’, a concern with Kantian roots, then
interacted in Russell’s mind with Cantor’s proof that there is no largest cardinal
number. ..the new mathematical problems of the infinite — the paradoxes of logic and set

theory — grew out of the old philosophical ones” (Moore 1995, p. 236).
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Russell’s paradox can be stated using only the most basic logical notions. Russell
communicated his paradox to Frege in a letter in 1902. It was published one year later in
his The Principles of Mathematics. The paradox appears in The Principles as follows:

The predicates which are not predicable of themselves are...only a selection from

among predicates, and it is natural to suppose that they form a class having a

defining predicate. But if so, let us examine whether this defining predicate

belongs to the class or not. If it belongs to the class, it is not predicable of itself,
for tbat is the characteristic property of the class. But if it is not predicable of
itse}_f, then it does not belong to the class whose defining property it is, which is
contrary to the hypothesis. On the other hand, if it does not belong to the class
whose defining predicate it is, then it is not predicable of itself, i.e. it is one of
those predicates that are not predicable of themselves, and therefore it does belong
to the class whose defining predicate it is — again contrary to the hypothesis.

Hence from either hypothesis we can deduce its contradictory (Russell 1903, p.

80).

Russell’s paradox can be restated in many different ways. For example, by
considering the set of all sets which are not members of themselves, one can then ask
whether this set is a member of itself. Either assuming that it is, or it is not, leads to a
contradiction. Another set of paradoxes that were being considered in the early part of

the twentieth century includes Richard’s paradox and the ancient paradox of the liar® It

¢ Richard’s paradox can be described as follows. All numbers that are defined by finitely many words can
be written in a definite order; these numbers will form a countably infinite set. Then “we can form a
number not belonging to this set. ‘Let p be the digit in the nth decimal place of the nth number of the set E;
let us form a number having 0 for its integral part and, in its nth decimal place, p+1 if pisnot 8 or 9, and 1
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will be seen that the theory of types was introduced in order to solve all of these
paradoxes. In chapter 4 of this thesis it will be seen that in 1925 Ramsey discovered that
the simple theory of types is used in solving the first set of paradoxes, while the ramified

theory was used to solve the second set.

otherwise.” This number N does not belong to the set E. If it were the nth number of the set E, the digit in
its nth decimal place would be the same as the one in the nth decimal place of that number, which is not the
case.

I denote by G the collection of letters between quotation marks.

The number N is defined by the words of the collection G, that is, by finitely many words; hence it should
belong to the set E. But we have seen that it does not.

Such is the contradiction” (Richard 1905, p. 143). The liar paradox occurs by considering the statement “I
am lying” and then asking whether this statement is true or false; either answer implies its contradictory.
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2. The Origins of the Theory of Types

2.1 Introduction

Bertrand Russell was the founder of the theory of types. In an appendix to his
1903 book, The Principles of Mathematics he proposed the theory tentatively as a way of
avoiding his paradox mentioned in the previous chapter. This book also contains the first
exposition of Russell’s logicism. Indeed, in the preface Russell clearly states this in the
description of the two main objects of his book. The first, which occupies Part I only, is
to clearly delimit the “fundamental concepts which mathematics accepts as indefinable”
(Russell 1903, p. xv). The second, found in Parts II-VII, is the proof that “all pure
mathematics deals exclusively with concepts definable in terms of a very small number of
fundamental logical concepts, and that all its propositions are deducible from a very small
number of fundamental logical principles” (Russell 1903, p. xv). The final chapter of
Part I is devoted exclusively to “the contradiction”. None of the possible solutions
considered there are deemed adequate. As a result Russell added his Appendix B, “The
Doctrine of Types”, as a more plausible solution to the paradox.

Several shortcomings of the theory of types are pointed out in the appendix, and a
general air of dissatisfaction is prevalent. Thus it is not surprising that by the middle of
1903 Russell abandoned the theory of types. He did not publish another work
incorporating a theory of types until his 1908 paper “Mathematical Logic as Based on the
Theory of Types”. However, an investigation of his unpublished work from 1903 to 1908

shows that Russell struggled repeatedly with the question of whether to use a type theory,
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and in what capacity. For instance, in one paper written in April and May 1906 entitled
“Logic in which Propositions are not Entities”, Russell explicitly dispenses with any
hierarchy of types of propositions. Alternatively in “On the Functional Theory of
Propositions, Classes, and Relations™, also written in April and May 1906, Russell viewed
such a hierarchy as essential. As will be seen below, it is clear that Russell had returned
to some version of the ramified theory of types by October 1906.

During the years between his two published type theories, Russell investigated
various alternatives to avoiding the paradoxes. These are collected in a 1906 paper
entitled “On Some Difficulties in the Theory of Transfinite Nu;nbers and Order Types”.
These theories include the zig-zag theory, the limitation of size theory,” and the no-class
theory. A consideration of these theories will occupy section 3 of the present chapter.
The failure of these theories will be considered in light of Russell’s return to the theory of
types in his 1908 paper. This paper will be discussed in section 4, while section 5
compares the theory of types in the first edition of Principia Mathematica with Russell’s

previous type theories.

2.2 Theory of Types in Russeﬂ;s The Principles of Mathematics

Although published in 1903, the majority of The Principles of Mathematics was
written in 1900-1901. In the introduction to the second edition, written thirty-four years
later, Russell maintains that “the fundamental thesis of the following pages, that

mathematics and logic are identical, is one which I have never since seen any reason to

7 Russell never actually worked out a version of this theory on his own. He viewed Cantor and Jourdain’s
works as examples of limitation of size theories.
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modify” (Russell 1903, p. v). However, as will be seen, the formulations of the theory of
types given in that work did undergo drastic changes in the years following its first
publication.

That this first formulation was to encounter alterations by Russell is not very
surprising. In fact, Russell opens the appendix devoted to the doctrine of types by stating
that it is only “here put forward tentatively” (Russell 1903, p. 523). The theory of types is
put forth as a possible solution to the paradox to which Russell devotes an entire chapter
of his book. The troubling aspect of his contradiction is that “no peculiar philosophy is
involved in the above contradiction, which springs directly from c:ommon sense, and can
only be solved by abandoning some common-sense assumptioﬁ” (Russell 1903, p. 105).

The common sensical assumption to which Russell refers seems, in this initial
theory of types, to be the idea that wherever a “class as many” exists so too does the
corresponding “class as one™:

Perhaps the best way to state the suggested solution is to say that, if a collection of

terms can only be defined by a variable propositional function, then, though a

class as many may be admitted, a class as one must be denied. When so stated, it

appears that propositional functions may be varied, provided the resulting
collection is never itself made into the subject in the original propositional
function. In such cases there is only a class as many, not a class as one. We took
it as axiomatic that the class as one is to be found wherever there is a class as

many; but this axiom need not be universally admitted, and appears to have been
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the source of the contradiction. By denying it, therefore, the whole difficulty will

be overcome (Russell 1903, p. 104).

In fact, in The Principles of Mathematics, as in Russell’s subsequent attempts at securing
the foundations of mathematics, it is the logical status of propositions, propositional
functions, and classes that plays a central role.®

The above passage contains Russell’s informal introduction to the theory of types.
As he says at the end of the next paragraph “it is the distinction of logical types that is the
key to the whole mystery” (Russell 1903, p. 105). It is the theory of types, as set forth in
Appendix B of The Principles of Mathematics, which will now be investigated.

Types are derived from the ranges of significance of propositional functions. The
‘range of significance’ of a propositional function @(x) is that range in which the variable
x must lie if (x) is to be a well-formed proposition, whether true or false. The first point
of Russell’s theory of types here is that every propositional function has a range of
significance. The second point which Russell deems “less precise than the first” (Russell
1903, p. 523) is that ranges of significance form types.

These types are stratified into a hierarchy in the following manner. I::irst, the
lowest type of objects is comprised of terms or individuals. Russell defines a term or
individual to be “any object which is not a range” (Russell 1903, p. 523). A range, on the
other hand, is defined, after a lengthy discussion of Frege’s notion of Werthverlauf
(translated by Russell as range), to be “what are properly called classes, and it is of them

that cardinal numbers are asserted” (Russell 1903, p. 518). The next type is comprised of

* This will be made apparent throughout the rest of this chapter.
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classes (ranges) of individuals. The next type after that consists of classes of classes of
individuals. This process of forming types is extended to infinity and forms the first
series of types.

In discussing this first hierarchy, Russell introduces the notion of a minimum type.
This notion arises by considering a range, u, determined by a propositional function, ¢(x),
and then looking at not-u. Whereas u consists of all objects, x, such that ¢(x) is true, not-
u consists of all objects, x, such that ¢(x) is false. In this way not-u is contained in @(x)’s
range of significance. However, “there is a difficulty in this connection, arising from the
fact that two propositional functions ¢(x), y(x) may have the same range of truth u, while
their ranges of signiﬁcance may be different; thus not-u becomes ambiguous” (Russell
1903, p. 524). This ambiguity necessitates the introduction of the supposedly
unambiguous minimum types. It is claimed that every u will be contained in a minimum
type, where a minimum type is one which is not the sum of two or more types. Then not-
u is defined as the remainder of this type.” From this point on all types are assumed to be
minimum types.

Another series of types begins with what Russell calls couples with sense; these
are relations viewed extensionally. Since he views, for philosophical reasons,'® relations
as intensional he has “doubts as to there being any such entity as a couple with sense”

(Russell 1903, p. 512). In spite of this, extensions are deemed quite relevant to

® Whether this notion is really unambiguous seems questionable since a method for determining whether or
not any given type is the sum of two or more types is lacking.
19 These reasons are outlined in section 98 on page 99 of The Principles of Mathematics.
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mathematics.!' Thus the new hierarchy is formed beginning with couples with sense,
then forming ranges of such extensional ranges, or “relations of relations, or relations of
couples...or relations of individuals to couples, and so on; and in this way we get, not
merely a single progression, but a whole infinite series of progressions” (Russell 1903,
pp. 524-525). Similarly, trios form a new series of progressions of types. Thus Russell is
justified in claiming that in this way “an immense hierarchy of types” (Russell 1903, p.
525) is formed.

However, this immense hierarchy is not as exhaustive as Russell would like. He
points out that both propositions and numbers are omitted from the above hierarchies.
Forming series of types starting with either of these notions presents difficulties “of
which it is hard to see the end” (Russell 1903, p. 526). By not considering a hierarchy of
proposition types Russell derives another contradiction which is analogous to the original
contradiction with which he was déaling. 12 Russell notes that this contradiction can be
avoided by stratifying propositions into types. However, he feels “this suggestion seems
harsh and highly artificial” (Russell 1903, p. 528). Russell concludes the appendix with

his outlook for foundational work in logic with the following: “The totality of all logical

' This is reiterated by Russell in the following passage: “Throughout mathematics there is the same rather
curious relation of intensional and extensional points of view: the symbols other than variable terms (i.e. the
variable class-concepts and relations) stand for intensions, while the actual objects dealt with are always
extensions. Thus in the calculus of relations, it is classes of couples that are relevant, but the symbolism
deals with them by means of relations [in intension]” (Russell 1903, p. 99). This is closely analogous to
Russell’s treatment of classes in The Principles.

"’The new contradiction is derived as follows: “If m be a class of propositions, the proposition “every m is
true” may or may not be itself an m. But there is a one-one relation of this proposition to m: if n be
different from m, “every n is true” is not the same proposition as “every m is true.” Consider now the
whole class of propositions of the form “every m is true,” and having the property of not being members of
their respective m’s. Let this class be w, and let p be the proposition “every w is true.” If p is a w, it must
possess the defining property of w; but this property demands that p should not be a w. On the other hand,
if p be not a w, then p does possess the defining property of w, and therefore is a w. Thus the contradiction
appears unavoidable” (Russell 1903, p. 527).
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objects, or of all propositions, involves, it would seem, a fundamental logical difficulty.
What the complete solution of the difficulty may be, I have not succeeded in discovering;
but as it affects the very foundations of reasoning, I earnestly commend the study of it to
the attention of all students of logic” (Russell 1903, p. 528). In this way, Russell does not
decree that the theory of types will necessarily lead to the optimal solution of the
paradoxes. He simply states this as one method which might prove useful; it is, rather,
the discovery of the fundamental problem that seems to most interest Russell.

Thus in the appendix of The Principles of Mathematics dedicated to the theory of
types, Russell is able to outline the main points of the theory. These are 1) that
propositional functions have ranges of significance and 2) that these ranges of
significance form #ypes such that if ¢(x) is defined with the instantiation of a variable of
type n, then @(x) will be defined with the instantiation of any variable of type n. The
tentative sketch is open to several objections and shortcomings which Russell
enumerates; for instance, the problem of dealing with types of propositions as well as
number types."

Since these difficulties are not satisfactorily dealt with here, Russell’s continued
study of possible solutions to the paradoxes is justified. In his letter of 15 March 1906 to
Jourdain, Russell spells out when and how he adopted various theories from his
abandonment of the theory of types at the end of 1902 until the autumn of 1905 when he
embraced his substitutional theory. In the following Russell’s “present view” is that the

substitutional theory affords the best possible solution to the set-theoretic paradoxes:

1 As will be seen below, Russell’s different type theories from 1907 on all contain a hierarchy of
propositional functions and hence of propositions, unlike his theory of types in 1903.
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I am not sure that I can remember how my ideas developed. But I will tell you all
I can. You will see that in my book [The Principles] (p. 104, art. 104) I suggest
that certain functions do not determine a class as one. This is practically the same
doctrine as that they do not determine a class, for a class as many is not an entity.
(By the way, the view I now adopt, that a propositional function must not be
varied, is discussed on p. 103, second par. of art. 103, and rejected as making
mathematics unworkable. I have now discovered how, by substitutions, to work
mathematics with this view.) My book gives you all my ideas down to the end of
1902: the doctrine of types (which in practice is almost exactly like my present
view) was the latest of them. Then in 1903 I started on Frege’s theory that two
non-equivalent functions may determine the same class...But I soon came to the
conclusion this wouldn’t do. Then, in May 1903, I thought I had solved the whole
thing by denying classes altogether; I still kept propositional functions, and made
¢ do duty for Z(pz). Itreated @ as an entity. All went well till I came to consider
the function W, where
W(9).=p-~0(0).

This brought back the contradiction, and showed that I had gained nothing by
rejecting classes.

The latter part of 1903 and the beginning of 1904 I spent on the Fiscal
Question. Then in April 1904 I began working at the Contradiction again, and
continued at it, with few intermissions, till January 1905. I was throughout much

occupied by the question of Denoting, which I thought was probably relevant, as it
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proved to be. A denoting function is, broadly, any function which is not
propositional; at times I have used ¢‘x for a denoting function and ¢!x for a
propositional function. The first thing I discovered in 1904 was that the variable
denoting function is to be deduced from the variable propositional function, and is
not to be taken as indefinable. I tried to do without 1 as an indefinable, but failed;
my success later, in the article ‘On Denoting’, was the source of all my subsequent
progress. Most of the year, I adhered to the ‘zig-zag’ theory, and worked at
different sets of primitive propositions as to what functions determine classes.
But I never got a set of primitive propositions that would really work, and all the
sets were horribly complicated and un-obvious. I soon discovered that the
difficulty comes only where ‘all values of ¢’ are concerned, and I thought perhaps
this was due to a vicious circle, as follows: if
yx . =.(p)-fox) Df

it is part of the meaning of yx to assert f{y,x); thus y asserts something which
cannot be defined till y is defined, and which is yet presupposed in the definition
of . Gradually I discovered that to assume al separable @ in @x is just the same,
essentially, as to assume a class defined by ¢x, and that non-predicative functions
must not be analyzable into a ¢ and an x.

About June 1904, I tried hard to construct a substitutional theory more or
less like my present theory. But I failed for want of the theory of denoting: also I
did not distinguish between substitution of a constant for a constant and

determination of a variable as this or that constant. Hence I abandoned the
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attempt to get on by means of substitution...Then, last autumn, as a consequence

of the new theory of denoting, I found at last that substitution would work, and all

went swimmingly (Russell 1906a, pp. 78-80).

The no-class theory is outlined in Russell’s 1906 paper “On Some Difficulties in
the Theory of Transfinite Numbers and Order Types”. Actually, in a note appended 5
February 1906, Russell states that “from further investigation I now feel hardly any doubt
that the no-class theory affords the complete solution of all the difficulties stated in the
first section of this paper” (Russell 1906, p. 53). In the next section the no-class theory
will be discu;sed along with the two other theories presented in Russell’s 1906 paper;

namely the zig-zag and the limitation of size theories.

2.3 Alternatives to the Theory of Types - The Zig-Zag Theory, Limitation of Size

Theory, and the No-Class Theory

In Russell’s 1906 paper three theories are put forth as ways of avoiding the logical

paradoxes. These theories are the zig-zag theory, the theory of limitation of size, and the
- no-class theory; the theory of types is not mentioned. The paper is written in response to
E.W. Hobson’s 1905 paper “On the General Theory of Transfinite Numbers and Order
Types” in which are raised “a number of questions which must be answered before the
principles of mathematics can be considered to be at all adequately understood” (Russell
1906, p. 29). The contradictions that are produced led Russell to state that “a
propositional function of one variable does not always determine a class” (Russell 1906,

p. 37). Interpretations of this broad statement govern the variations in the theories
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considered in this paper. The zig-zag and limitation of size theories are grouped together
as theories in which “all straight forward propositional functions of one variable
determine classes, and that what is needed is some principle by which we can exclude the
complicated cases in which there is no class” (Russell 1906, p. 37). In the case of the Zig-
zag theory classes are avoided which possess a “certain characteristic which we may call
zigzagginess” (Russell 1906, p. 37). Before looking at the treatment of the zig-zag
theory, the theory of limitation of size will be investigated.

In this theory, classes are avoided, as the name suggests, which are excessive in
size. Functions are distinguished as either predicative, or non-predicative; the distinction
depends on a certain limitation of size."* Non-predicative functions are such that they do
not give rise to corresponding classes. For instance, “if  is a class, ‘x is not a member of
w’ is always non-predicative; thus there is no such class as ‘not #’” (Russell 1906, p. 43).
No general rules are given for determining when a class is ‘too big’ as this is just an
outline given by Russell. The problems that Russell sees as inherent to this mode of
solution include, most importantly, the fact that this theory “does not tell us how far up
the series of ordinals it is legitimate to go...we need further axioms before we can tell
where the series begins to be illegitimate” (Russell 1906, p. 44). Russell concludes by
stating that the problems with the theory seem to outweigh the merits. As such the theory

seems to be less attractive than other possibilities. "

" Russell notes that this theory is advocated by Jourdain in, for instance, “On the Transfinite Cardinal
Numbers of Well-ordered Aggregates” (1904), and “On Transfinite Cardinal Numbers of the Exponential
Form” (1905).

* Interestingly, this is the kind of theory developed by Zermelo, Fraenkel, Skolem, von Neumann, Bernays,
and Godel. It has become the standard form of set theory used today.
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One of these possibilities to which Russell had adhered for most of 1904 is the
zig-zag theory. In this theory the predicative functions, which again determine classes,
are “fairly simple, and only fail to [determine classes] when they are complicated and
recondite” (Russell 1906, p. 38). Thus it is clear that the size of a class does not affect
whether or not it is to exist. Russell gives the example that “x is not a man” is a simple
function and under this theory it would hence be predicative. However, the class
determined by this function is satisfied by all but a finite number of objects.

The name of the theory comes from Cantor’s proof that there is no greatest
cardinal. The zig-zag property of the pr;dicative functions in this theory is explained by
Russell’s stating that “if now ¢!x is a non-predicative function, it follows that, given any
class u, there must either be members of u for which ¢!x is false, or members of not-u for
which ¢@!x is true. (For, if not, ¢!x \;vould be true when and only when, x is a member of u;
so that ¢!x would be predicative.) It thus appears that @!x fails to be predicative just as
much by the terms it does not include as by the terms it does” (Russell 1906, p. 38). For
the full development of this theory Russell notes that a full set of conditions is required
for determining when functions are predicative. For work along these lines he directs the
reader to sections 103 and 104 of his The Principles of Mathematics.

However, all attempted sets of defining axioms for these predicative functions
turned out to be exceedingly complicated. He was thus led to abandon this theory. He did
this with the reservation that perhaps further research would yield a more adequate set of
axioms. In general, he concludes, the zig-zag theoryA“applies better to cardinal than

ordinal contradictions” (Russell 1906, p. 39) whereas the theory of limitation of size
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simply dismisses cardinals and ordinals altogether after some unspecified size. Neither of
these theories seems adequate as a proper solution to the paradoxes, and so Russell next
turns to his no-class theory.

In this no-class theory propositions exist as the fundamental logical machinery;
moreover, classes and relations (and hence propositional functions) are banished
altogether. This is motivated by the fact that the assumption of the existence of these
entities leads to problems. Thus, rather than imposing certain conditions upon them, they
are simply assumed non-existent. ‘Russell points out three objections to this assumption.
“(1) that it seems obvious to coml:non sense that there are classes; (2) that a great part of
Cantor’s theory of the transfinite, including much that is hard to doubt, is, so far as can be
seen, invalid if there are no classes or relations; (3) that the working out of the theory is
very complicated, and is on this account likely to contain errors, the removal of which
would, for aught we know, render the theory inadequate to yield the results even of
elementary arithmetic” (Russell 1906, p. 45).

In this theory, instead of functions, propositions are taken as the starting point.
This is done by starting with a proposition p in which a is a constituent. Then ‘p x/a’
denotes what occurs when x is substituted in p wherever a appears. Then, if b is not a
part of p, and if g is set to be equal to p b/a, then “p x/a is true for all values of x” is
equivalent to “g x/b is true for all values of x”. In this way statements about p x/a depend
only upon p. Thus, Russell is able to replace statements involving propositional functions
by statements involving propositions. Russell claims that “there is not much difficulty in

re-wording most definitions so as to fit with the new point of view. But now the
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existence theorems become hard to prove” (Russell 1906, p. 46). For instance, the
existence of ® can be proved, as can the existence of various other ordinal types.
However, the existence of all the usual ordinal types cannot be proved. Just like in the
theory of limitation of size at what point the series begins to be non-existent is unknown.
As the note appended to the paper shows, Russell’s subsequent work on the no-class
theory led him to see this theory as the best way of avoiding the logical pafadoxes. This
theory was soon abandoned though, and Russell returned to his theory of types in his
1908 paper.'® As his unpublished works show, Russell worked extensively on the
substitutional, or no-class theory from 1905 until 1907. Certain ;spects of this theory
were carried over into Russell’s subsequent type theories. Russell gave the full
exposition of his substitutional theory in a paper entitled “On the Substitutional Theory of
Classes and Relations”, submitted to the London Mathematical Society in April 1906, but
withdrawn in October of that year.

The primitive notions incorporated in this April 1906 paper are ‘entity’ (or
‘individual’) and ‘propositional function’. Thus, the propositional functions were given
the status of existence, but classes and relations were not. When he withdrew his article
from publication Russell saw the substitutional theory as inadequate and in need of
modification. Several of the unpublished papers from 1905 through 1907 show Russell

working out on paper various improvements of this substitutional theory.

' For a discussion of this see Consuegra, F. A. R.; “Russell’s Theory of Types, 1901-1910: Its Complex
Origins in the Unpublished Manuscripts” (1989).
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During these years Russell was aware of a similarity between his substitutional
theory and his early version of the theory of types. In his June 1906 paper “The
Paradoxes of Logic”, Russell claims that his 1903 type theory “differs little from the no-
class (or substitutional theory)”, which is not “greatly different from the zig-zag theory
that had been adopted in sections 103 and 104 of The Principles” (Russell 1906¢, p. 280).
He goes on to say that “the only thing that induced me at that time to retain classes was
the technical difficulty of stating the propositions of elementary arithmetic without them —
a difficulty which seemed to me insuperable” (Russell 1906c, p. 280)."7 This is compared
to the no-class theory in which “it is natural to suppose that classes ;1re merely linguistic
or symbolic abbreviations” (Russell 1906¢, p. 285).

Around this time Russell tried to give the substitutional theory a greater degree of
security as a foundation for mathematics. In doing so he investigated various alternatives
in which certain aspects of the substitutional theory and type-theory were intermingled.

In particular, in two papers written in April and May 1906, entitled “On Substitution” he
states that the way around the paradoxes (that hé here calls “odditites™) is to introduce a
hierarchy of propositions. He makes the same claim in “On the Functional 'i‘heory of
Propositions, Classes, and Relations” (1906g), while in his “Logic in which Propositions
are not Entities” (1906f) he explicitly dispenses with such a hierarchy. Finally, in his
September 1906 paper “The Paradox of the liar” he goes so far at one point as to reinstate

classes and relations altogether. This is supplemented with a hierarchy of these entities —

17 Significantly, Russell adopts the vicious-circle principle here where “whatever involves apparent
variables must not be among the permissible values of that variable” (Russell 1906c, p. 289). This
principle, as will be seen below, was eventually incorporated as the guiding principle in Russell’s more
mature type-theories.
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all in contrast with the work he had been doing throughout 1905 and 1906 - where “the
hierarchy which seems both inherently the most plausible and the best designed to obviate
the paradoxes is arranged according to the number of apparent variables in a statement”
(Russell 1906h, p. 331). Although he has a hierarchy composed of individuals, classes of
individuals, classes of classes of individuals, and so on, he has eliminated any hierarchy
for propositional functions and propositions. Thus, the axiom of reducibility that he
adopts here is significantly different from his later version: any propositional function
with any kind of apparent variable is equivalent to a function with only entities and
classes as apparent variables (Russell 1906h, p. 339).
It is clear by the following letter from Whitehead that by 7 October 1906, Russell
had abandoned the substitutional theory for some ramified type-theory:
The nastiness which you wanted to avoid is the Frege bugbear of propositional
functions becoming unmeaning when certain terms are substituted. According to
the doctrine of types we have got to put up with this — thus certain things (such as
functions) which can be named and talked about won’t do as arguments in some
propositional functions. The result is that we have to use the restrictéd variable.
The doctrine of substitution was on stronger ground here; for it did without the
function entirely, and simply brought in p/a as a typographical device for
predicting that we were talking of the one entity when we were really talking of
two. Hence, if you want the unrestricted variable, the doctrine of substitution is
the true solution...My doctrine is (1) that the variable must be restricted, because

(as you prove) the consideration of all terms leads to contradictions. Also in
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considering “any” a restriction to significance is necessary (Whitehead 1906, p-

13).
Thus, although Russell had done much work on the theory of substitution, he was
eventually led back to incorporating a division of types in the foundations of his system.
As will be seen in the next section, his next published work on the theory of types (in
1908) was the product of a substantial amount of unpublished work done from 1906 to
1908.
2.4 The Return to the Tht;ory of Types

The shift from the substitutional theory to the theory of types occurred gradually
and is apparent in Russell’s unpublished works"déting from 1906 to 1908. In fact, certain
aspects of the substitutional theory even survived in Russell’s later versions of the theory
of types. In his unpublished paper “Corrections in Present Work” (1906i), Russell
reinstates membership as a primitive idea. Furthermore, he defines identity of x and y by

the condition that x and y belong to the same classes:

XEQ Pi
|-: (Ea): @x . =. xea Pp
X=p.=:XeA . = . yE Df

|-:xea . = . xef: — . o=f Pp (Russell 1906i, p. 493).
Russell goes on to state “that the doctrine of types is never relevant except when we use
the inference (x).9x . — . pa. Thus we can go as far as we like without explicitly

introducing the doctrine, so long as we can avoid applications to special cases” (Russell
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1906i, p. 494). This sentiment is reiterated in his unpublished “Types” where he states
that the theory of types is never needed “except when a constant is assumed to be a
determination of a variable” (Russell 1906, p. 500). However, he soon realizes that this
claim is mistaken by considering the proposition

(x).x: (x). yx : =1 (X).Qx.yx
which he recognizes as “only true if @x and yx have the same range of significance”
(Russell 1906j, p. 500). The majority of this paper shows him struggling with an axiom
which allows, in a formula @x, the substitution of a propositional function for the variable
x whenever it is known that @x is true for all values of x: ;his axiom violates the theory of
types. In the end Russell is compelled to accept the axiom of reducibility and concludes
that “if we have to put this <axiom>, we may as well assume classes and take xea as the
form of @x required by the primitive proposition” (Russell 1906j, p. 514).

Russell continued to study the theory of types in his paper written sometime after
September 1906 and before July 1907, entitled “On Types”. In that paper he combined
an old version of the substitutional theory with a theory of types. The hierarchy of types
begins with individuals; the second type is formed by taking first-order propgsitions
containing no apparent variables other than individuals; the third type contains second-
order propositions which contain no apparent variables other than individuals and first-
order propositions. This hierarchy is continued for all finite orders. He also states an

axiom of reducibility:

(Ep)):pa=p'la
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and goes on to say that “there is much to be gained from reviving substitution...This plan
seems indubitably feasible, but complicated. I don’t know whether it is worth it...If this
form of substitution turns out to be feasible, perhaps it should be put in an appendix. It is
philosophically simpler than functions, but technically vastly more complicated” (Russell
1906/1907, p. 516). However, Russell ends by noting that the substitutional theory is
perhaps too complicated: “The point of view of substitution is perhaps unnecessarily
complicated, seeing that @x is needed in any case, and so is @(x,y). The only thing we
save is @!x. The necessity for ox makes the philosophical gain less than it would be. If
¢x could be avoided, substitution would be worth ;dopting” (Russell 1906/1907, p. 517).
Russell continued this study of the theory of types in several other unpublished
papers from this era. In “Notes on Types” (1907a), Russell notes several times that in
practice it is only necessary to account for relative type differences. While in his
“Fundamentals”, also written in 1907, he makes it clear that he has fully accepted a
ramified version of the theory of types while abandoning the no-class theory:
Note that the no-class theory is in essence abandoned by distinguishing between
¢x and xej(py). For this requires that $(¢y) should be a constituent of xep(@y) and
therefore that y(¢py) should be something. This difficulty seems inherent in the no-
class theory, .since functions must be allowed as apparent variables. A value of an
apparent variable must be something, and thus the no-class theory won’t work. It
worked while we had propositions, because then they became apparent variables

where a variable matrix was wanted. But if propositions are not to be apparent
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variables, functions must be, and therefore functions must be admitted. But then

they may as well be classes (Russell 1907b, p. 543).

These sentiments are reiterated several times throughout this rough piece of Russell’s
work. Finally, Russell gives a survey of the technical and philosophical points of his
theory in the following passage:

A. Technical. All contradictions are avoided provided no expression containing
an apparent variable is a possible value of that apparent variable. This
requires two sorts of functions, one of which can be an apparent variable while
the other can’t. Whether we call the two sorts @x and ¢!x, or @x a:nd Xg0, 1S
technically indifferent. Whichever we do, we need a reducibility-primitive-
proposition, so that one of the wider kind is always equivalent to some one of
the narrower kind. And a proposition containing as an apparent variable a
function of the narrower kind must not be itself of the narrower kind. These
conditions being satisfied, the contradictions are avoided and mathematics is
workable; provided that a function (of the narrower kind) can’t be argument to
itself. ’

B. Philosophically. (a) The no-class theory, with the theory of predicative and
non-predicative functions, supplies what is required, except that (o) there is a
difference about the meaning of a function as apparent variable; (B) the
distinction of predicative and non-predicative is obscure, and the reducibility
axiom is arbitrary. (b) The plan of distinguishing ¢x from xef(¢y), in which

the former assent the values of ¢ for the argument x, while the latter asserts
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that x has the property ¢, has much to recommend it. In this plan, ¢ can only
be an apparent variable when it is explicit, as in xeP(py), not when it is as in
¢x. This has the merit of making the reducibility-axiom obvious, since it
states that “px . = . x has the property ¢”. But it seems to involve treating
truth-functions as a type. This comes from considering: ¢ asserts that LeA{A
asserts (xea). — . x~ea}”. This reproduces the /iar. And there are grave
differences about treating truth functions as a type. (c) The plan of never
varying functions at all and introducing xeo. as a primitive ideg, has very great
advantages. It is simple, it makes a very clear distinction between predicative
and non-predicative functions, it allows us to use the argument that the ¢ in @x
can’t be varied because it doesn’t occur in @x and is in fact nothing, and it
makes the reducibility-axiom simply the universally admitted axiom of
classes. The objection to this plan is that it makes it hard to see why aca is
meaningless. [Note that it is not strictly necessary that asa should be
meaningless, but only that (x).f{xea) should not imply flaga).] And to get
“Ex!x” as not a function of x, we still need the notion of a truth function”

(Russell 1907b, pp. 552-553).

It is thus clear that in the time leading up to the publication of his 1908 article Russell

spent much time working on ironing out the details of his type theory.

In his paper, “Mathematical Logic as based on the Theory of Types”, submitted

July 1907 and published in 1908, Russell attempts to alter the theory of types in order to

avoid the problems which riddled it in 1903. His view of the paradoxes has changed
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somewhat as he claims that they all seem to stem from “the assumption of a totality such
that, if it were legitimate, it would at once be enlarged by new members defined in terms
of itself” (Russell 1908, p. 155). The way to avoid the contradictions thus seems to rely
on an avoidance of this reflexivity. Russell states his vicious-circle principle that
“whatever involves all of a collection must not be one of the collection’, or conversely:
‘I, provided a certain collection had a total, it would have members only definable in
terms of that total, then the said collection has no total’” (Russell 1908, p. 155) is a rule
that would rectify the situation. This rule is too restrictive, and instead Russell aims at
improving his theory of types.

In this paper he stipulates that the problem can be avoided by considering the
distinctive feature of propositions that contain the word ‘all’. By distinguishing between
the use of the words ‘all’ and ‘any’, Russell is able to distinguish between the notion of a
‘real’ versus an ‘apparent’ variable. Russell attributes the distinction between real and
apparent variables to Frege. By asserting any value of a propositional function, one
asserts @(x) where x is a real variable. On the other hand, when stating that a
propositional function holds for all variables x, one asserts (x)¢(x) - namely ihe
generalized proposition corresponding to ¢(x); here the variable x is an apparent variable.
The problems arise by considering propositions that include phrases such as “all
propositions” or “all properties”. Thus, it seems reasonable to dispense with apparent
variables altogether using ‘any’ in place of ‘all’. However, Russell provides several
examples to show that ‘any’ cannot replace ‘all’ in many instances throughout

mathematics. Russell concludes that any theory must not only avoid the paradoxes by
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dealing with the use of the term ‘all’, but it must also retain the distinction between ‘all’
and ‘any’.
It is with this distinction between ‘all’ and ‘any’ that Russell introduces the range
of significance of a propositional function. This he does as follows:
Every proposition containing all asserts that some propositional function is always
true; and this means that all values of the said function are true, not that the
function is true for all arguments, since there are arguments for which any given
function is meaningless, that is, has no value. Hence we can speak of all of a
collection when and only when the collection forms part or the whole of the range
of significance of some propositional function, the range of significance being
defined as the collection of those arguments for which the function in question is
significant, that is, has a value (Russell 1908, p. 163).
Thus Russell distinguishes between the range of truth and the range of significance as he
had done in 1903. However, he is able to do this more precisely with the distinction
between real and apparent variables (that is, by talking specifically about what ‘all’ is to
mean when it occurs in propositions).
Just as in his 1903 version of the theory of types, Russell here defines a ‘type’ as
“the range of significance of a propositional function, that is, as the collection of
arguments for which the said function has values” (Russell 1908, p. 163). He also notes
that the range of values of apparent variables in propositions form types, the “type being
fixed by the function of which “all values’ are cbhcerned” (Russell 1908, p. 163). vIt is the

apparent variables here that Russell claims determine an expression’s type. Furthermore,
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the need for the division of types is necessitated by the reflexive fallacies mentioned
above. It is in this way that the apparent variables determine the types of expressions;
anything that contains an apparent variable must be of a ‘higher type’ than that apparent
variable. Thus, ‘type’ is defined in a similar, and yet more precise fashion in 1908 than it
was in The Principles of Mathematics.

After defining what ‘types’ are to be in general, Russell begins the construction of
the hierarchy of types of propositions. This was one of the problems of his 1903 account
of the theory of types, namely that it could not account for proposition types. His 1908
paper overcomes this difficulty by first noting that propositions containing apparent
variables are generated from ones without apparent variables by a process of
generalization - that is, by “the substitution of a variable for one of the terms of a
proposition and the assertion of the resulting function for all possible values of the
variable” (Russell 1908, p. 163)."® Propositions that contain apparent variables are called
‘generalized’ while those that do not are called ‘elementary’. It is claimed that
elementary propositions can be analyzed into different components: these are called
‘terms’ and ‘concepts’. The terms are “whatever can be regarded as the subj;act of the
proposition, while the concepts are the predicates or relations of these terms” (Russell
1908, p. 164). The terms are called ‘individuals’ and are said to form the first (or lowest)

type.'* Russell adds a further stipulation that individuals must be “destitute of

18 Clearly the no-class theory is influencing Russell’s work here. As will be seen in this paragraph, it is this
incorporation of ideas from the no-class theory that allows Russell to solve the problems he had faced in
1903 with regards to the propositional hierarchy.

19 Russell notes here, which he did not note in 1903, that it is only the relative types that matter in practice.
Thus, the ‘lowest type’ can differ in different contexts. The soundness of his account thus only depends
upon fixing some lowest type, and then seeing whether the process of generating further types is admissible.
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complexity” in order that no individual be a proposition. With this in mind one is able to
generate a proposition by applying the process of generalization to individuals in
elementary propositions. The second logical type is then defined to be “elementary
propositions together with such as contain only individuals as apparent variables”
(Russell 1908, p. 164). These propositions are furthermore called “first-order
propositions’. From these ‘second order propositions’ are defined as propositions which
contain first-order propositions as apparent variables. The collection of these
propositions forms the third logical type. This process can be continued indefinitely.
Russell concludes this construction of the propositional types by stating that “the (n+1)th
logical type will consist of propositions of order #, which will be such as contain
propositions of order # -1, but of no higher order, as apparent variables. The types so
obtained are mutually exclusive, and thus no reflexive fallacies are possible so long as we
remember that an apparent variable must always be confined within some one type”
(Russell 1908, p. 164). Thus, Russell’s construction of types of propositions is made
possible by his careful distinction between real and apparent variables.

After this presentation of the propositional type hierarchy, Russell pfoceeds to the
construction of a hierarchy of functions. His development differs from the process found
in 1903 since Russell defines functions of various orders from propositions of various
orders through a process of substitution.® Russell does this by first defining ‘matrices’.
These take the place of functions and are defined as follows: “if p is a proposition and g a

constituent of p, let “p/a;x” denote the proposition which results from substituting x for a

% Again, the no-class theory seems to be coming into play.
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wherever a occurs in p. Then p/a, which we will call a matrix, may take the place ofa
function; its value for the argument x is p/a;x and its value for the argument a isp”
(Russell 1908, p. 164). He defines matrices similarly for two variables. Russell notes
that this can be done and is advantageous since the order of a matrix only depends upon
the order of the proposition in which the substitution is effected.

Although this can be done, the replacement of functions by matrices is technically
inconvenient. Instead Russell proceeds to build the hierarchy of functions directly from
the propositional hierarchy. This is done by first defining a function of individuals
(whose value 1s always a first-order proposition) to be a first-order function. Thena
function having a first-order function or proposition as an apparent variable will be called
a second-order function, and so on. In this way he is able to define the hierarchy of
functions in terms of the hierarchy of proposition where “the type of a function is
determined by the type of its values and the number and type of its arguments” (Russell
1908, p. 165).

This process of building the functional hierarchy is explained further by
considering predicative functions. This is another difference from the theory"/of types
found in The Principles of Mathematics. A predicative function is defined as a function
“which is of the order next above that of its argument[s]” (Russell 1908, p. 165). These
functions are denoted using an exclamation mark as in ‘@!x’. The possible values of the
predicative functions form well-defined totalities, and so the function symbols can be
turned into apparent variables. This is only possible for predicative functions and so

Russell is led to consider how to deal with non-predicative propositional functions.
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Since a propositional function may be of any order, statements about ‘all
propositional functions of a variable x* will be meaningless. However, if these statements
are limited to predicative functions of x, they will have a meaning, since the ‘all’ will
refer to ‘all predicative fuﬁctions of a certain type’. Thus Russell is led to propose his
axiom of reducibility; that is, the axiom which states that “every function is equivalent,
for all of its values, to some predicative function” (Russell 1908, p. 168). This axiom is
not stated in 1903 since the hierarchy of class-types formed there does not depend upon
the proposition-types (since they were un-formable in 1903).

This 1908 ;)aper works to meet the demands made in 1903 further by showing
how number-types can be formed. However, this paper still concludes with an air of
uncertainty with regards to the theory of types. Russell admits that “the theory of types
raises a number of difficult philosophical questions concerning its interpretation” but that
these questions are left to be “dealt with independently” (Russell 1908, p. 182).
Furthermore, the justification for using the axiom of reducibility is purely pragmatic.
However, this axiom was still incorporated into the theory of types in the first edition of
Principia Mathematica as will be seen in the next section.

Following the general headnote to Part II, vol. 5 of Russell’s collected works, a
letter from Whitehead to Russell is now quoted to sum up the views that Russell held on
logic by 16 June 1907. In this letter Whitehead attempted

in (1) to (10) to give an outline of your position — apart from special procedures -

as [ understand it.

(1) Your transition from intension to extension by means of
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SO} . =: (Ey):ox . =. ylx :f{yly} Df is beyond all praise. It must be right.
That peculiar difficulty, which has worried us from the beginning is now settled
forever.

(2) The vicious-circle principle and the idea of a totality of propositions (i.e. the
use of (p)...) appear to conduct inevitably to your hierarchy of propositions.

(3) I agree that the substitutional theory is the proper explanatory starting point.
(4) The hierarchy of propositions appears to depend essentially on the distinction
between dependent and independent entities — the dependent entities having in
some sense an essential reference to totz:lities — and thence also on the various
modes of dependency.

(5) The independent entities (individuals) require no further logical
discrimination.

(6) Every entity (independent or dependent) must occur in a proposition
containing it, in a manner specifically relevant to its peculiar type of being.

(7) The vicious-circle principle rules out an uﬁlimited totality of “all entities”.
(8) Number (6) above considers any totality of entities to be the totality of entities
of a certain type.

(9) For our purposes we may define an entity as that which in any sense can be
amenable to arithmetic ideas. The vicious-circle principles show that this
amenability must be of varying types.

(10) It is possible that all entities, <which are> not individuals have no proper

unity in any sense whatsoever; but that as they appear in propositions they are



simply a grouping of ideas which conceal an alarming complexity of thought

(Whitehead 1907, p. 490).

2.5 Types in the First Edition of Principia Mathematica

The theory of types is developed in the first edition of Principia in a very similar
manner to the construction in Russell’s 1908 paper. The main difference lies in Russell’s
more precise statement of the axiom of reducibility. Also, the hierarchy of matrices is
more fully developed. These two aspects qf the theory of types will be considered in this
section. ‘

The axiom of reducibility is needed in the first edition of Principia to deal with
those propositional functions that involve functional variables just as it had been in 1908.
The axiom of reducibility is “the assumption that, given any function ¢y, there is a
formally equivalent predicative function, i.e. there is a predicative function which is true
when @x is true and false when @x is false” (Whitehead and Russell 1910, p. 56). This
axiom is needed, for instance, in dealing with statements that include the “notion “all
properties of a,” meaning “all functions which are true with the argument g’ (Whitehead
and Russell 1910, p. 55) since these involve the illegitimate totalities of ‘all properties’
and “all functions.” But, one can speak of ‘all predicative properties of a,” or “all second
order properties of a;’ in general, one can even speak of ‘all nth order properties of a’ for
any fixed n. Since a wide range of mathematical reasoning involves notions such as “all
properties of a,” the axiom of reducibility is introduced so that this body of mathematical

work is not simply discarded by the theory of types. By claiming that any property is
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equivalent to some predicative property, the axiom of reducibility enables such
mathematical reasonings to remain sound. This axiom is employed in the construction of
the matrix-type hierarchy as follows:

The division of matrices into types is effected by beginning with objects which are
neither functions nor propositions; these are to be the individuals. The first matrices have
only individuals as arguments and no apparent variables. The collection of functions that
can be derived from these matrices by turning their variables into apparent variables are
the first-order functions. Since these form a well-defined collection, the first-order
functions can act as variables and can occur in quantifiers. Thus, a new ;et of matrices
arise (which Russell calls second-order matrices), namely those which contain
individuals and first-order functioﬁs as arguments. From these new matrices a different
class of functions can be derived by turning the variables in the second-order matrices
into apparent variables. These functions together with the second-order matrices are
called second-order functions. This process can be continued, deriving functions of the
(n+1)th order from those of lower orders.2! This is the more complicated hierarchy that
Russell constructs, and it is to functions in this hierarchy that the axiom of reducibility
needs to be applied (for reasons adduced above).

Several examples in which the axiom of reducibility is seen as essential are put

forth by Russell. These examples include the consideration of the proposition “Napoleon

had all the predicates that make a great general” (Whitehead and Russell 1910, p. 56), an

2! An analogous procedure is carried out for the propositional hierarchy. This process begins with
elementary propositions, from which first-order propositions are derived. Russell notes that “the
propositional hierarchy is never required in practice, and is only relevant for the solution of the paradoxes”
(Whitehead and Russell 1910, p. 55).
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application to the notion of identity, as well as to the theory of classes. Finally, the
reasons for accepting the axiom of reducibility are listed. Russell notes that it is clear that
this axiom is not self-evident, but that self-evidence is only one reason for accepting an
axiom. He continues by stating that since nothing that appears to be false can be derived
from it, and it leads to many propositions which seem to be incontestable, the axiom has
an inductive appeal. He does not rule out the possibility of there being another more
fundamental axiom which can replace the axiom of reducibility, but he states that this is
no reason for not using this axiom in the meantime since it is so useful in the derivation of

a large portion of mathematics. .

2.6 Concluding Remarks

In this chapter Russell’s transition from the theory of types to various other
theories, and back to the theory of types has been outlined. These theories were all given
in order to avoid the logical paradoxes that arose around the turn of the century. The
reactions to Russell’s theory of types, as given in Principia Mathematica, were quite
varied. A common theme was the feeling that Russell’s reliance upon the axiom of
reducibility needed to be abandoned. This was motivated by a desire to base mathematics
upon a securely constructed basis. In the next chapter several attempts at securing the

foundations of mathematics will be outlined.
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3. The Theory of Types Until the Second Edition of Principia

Mathematica

3.1 Introduction

In this chapter the developments and comments upon the theory of types that
occurred between the publication of the first and second editions of Principia
Mathematica are discussed. This is followed by an outline of the changes to the theory
found in the introduction to the second edition of Principia. The works that are focused
upon are all either mentioned explicitly as providing great improvements to mathematical
logic, or else they are found in the list of “contributions to mathematical logic since the
publication of the first edition of Principia Mathematica” (Whitehead and Russell 1925,
p. xIv).

The first work considered is Hermann Weyl’s The Continuum (1918). This book
is mentioned in the list of contributions to mathematical logic, but not explicitly by
Russell in the text of the introduction. The constructive methods in this book proved to
be influential in later work in the theory of types. In the next chapter Weyl’s methods,
along with Chwistek’s, will be sharply contrasted with Ramsey’s. One of Weyl’s chief
concerns in his construction of the continuum was the removal of any vicious-circle. This
is in line with Russell’s aims. However, Weyl was not satisfied with the non-constructive
nature of some of Russell’s methods; most notably, the notorious axiom of reducibility.

The second work considered is Leon Chwistek’s. Chwistek held a constructivist

attitude comparable to Weyl’s. The main aim of his 1924 work, “The Theory of
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Constructive Types”, was to rebuild Principia Mathematica without any reliance upon the
axiom of reducibility. In his work Chwistek anticipates Ramsey’s later distinction of the
simple from the ramified theory of types. Chwistek’s work proved to be very influential
in later years, most notably in the work of John Myhill. Russell also tried to avoid using
the axiom of reducibility in the second edition to Principia, although he did this along
lines different from Chwistek.

The work that bears most directly upon the theory of types in the second edition of
Principia is Wittgenstein’s Tractatus Logico-Philosophicus. However, this work will not
be considered on its own. It will only be outlined in connection with Russell’s work in
Principia and as it applies to subsequent work in the theory of types.

In the second edition of Principia Russell takes the idea introduced by
Wittgenstein that all functions of functions are extensional and works “out its
consequences” (Whitehead and Russell 1925, p. xiv) in the new introduction. Thus,
Wittgenstein’s work is the one which Muences the changes in Russell’s theory of types
the most. Wittgenstein’s extensional view of functions of functions was also taken up by
Ramsey. However, Ramsey came to some conclusions radically different from Russell’s
with respect to the theory of types. This is most likely due to the enigmatic style in which

Wittgenstein’s Tractatus is written, leaving it open to various interpretations.
3.2 Weyl’s Continuum and Chwistek’s Constructive Types
In The Continuum, Weyl attempts to construct the continuum of real numbers

using only a finite number of principles. In doing so he avoids the axiom of reducibility
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or any equivalent axiom. Taking the “sequence of the natural numbers [as] an ultimate
foundation of mathematical thought” (Weyl 1918, p. 48) Weyl defines the real numbers
and derives a large portion of analysis. Throughout he emphasizes the importance of
using precise notions in a constructive way. This is clear in his statement that “the
principles of definition must be used to give a precise account of the sphere of the
properties and relations to which the sets and mappings correspond” (Weyl 1918, p. 47).
In his construction Weyl_succeeds in building a set of real numbers which satisfy
Cauchy’s principle of convergence® as well as being everywhere dense. Weyl cites three
principles that do not hold in his system. These are “Dedekind’s cut principle,” that “a
bounded set of real numbers has a unique least upper bound and a unique greatest lower
bound,” and that “every bounded infinite set of real numbers has an accumulation point”
(Weyl 1918, p. 77).2 Furthermore, Weyl describes the limitations that he prescribes in
his work as “the unrestricted application of the concepts “existence™ and “universality” to
the natural numbers, but not to sequences of natural numbers” (Weyl 1918, p. 3). These
restrictions are effected through his use of different levels of variables in his quantifiers.
These levels correspond to types. Just as in Russell’s wofk, Weyl is led to a;ramiﬁed type
theory by considering relations that hold not only between individuals, but also between

relations, between individuals and relations, and so on. This is done in section 6 of his

22 Weyl states this principle as follows: “The sequence f(n) converges to some real number ¢ if and only if
this sequence is convergent” where “a sequence of real numbers f is called convergent if, for every fraction
a, there is a natural number 7 such that for every p and g which are > n, the rational number —a belongs to
the domain f(p)-f(g), but +a does not. Further, we say that the sequence converges to the real number ¢ if,
for every fraction g, there is a natural number 7 such that for every p > n, the rational number —a belongs to
the domain f(p)-¢, but +a does not” (Weyl 1918, p. 75). He goes on to note that in these definitions
%uantiﬁcation only occurs over natural numbers.

B Unlike Weyl’s Cauchy convergence principle, these all involve quantification over objects other than
natural numbers. This is the reason why the one can hold, while these do not in Weyl’s construction.
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book. However, Weyl’s type theory differs from Russell’s in that his types are not
disjoint; they are cumulative.

The principles that Weyl is unable to derive in his system of real numbers without
the axiom of reducibility are similar to those that Russell was unable to derive. However,
Weyl does not find it disconcerting that he is unable to derive these theorems, since his
continuum is based upon more constructive grounds than most alternatives. Another
attempt at limiting the theory of types by avoiding the axiom of reducibility and using
only constructive methods was made by Leon Chwistek.

Using a constructive procedure, just as Weyl had done, Chwistek works in his
“Theory of Constructive Types” towards an improvement of Principia Mathematica.
Many of the ideas developed by Chwistek will be seen to be quite similar to Ramsey’s in
the next chapter. For instance, Chwistek distinguished between two kinds of theories of
types; the simple and the ramified theories. Chwistek also distinguished the two different
kinds of paradoxes. However, he thought that Richard’s paradox could be constructed in
Russell’s theory of types (Chwistek 1924, p. 13-14). Ramsey, as will be seen, rectified
this mistake.

Like Ramsey, Chwistek aimed at reconstructing the theory of types without the
axiom of reducibility. This restriction to a purely “constructive” theory led, as Russell
pointed out in the introduction to the second edition of Principia (Whitehead and Russell
1925, p. xiv), to the loss of much of mathematics — just as Weyl’s overly constructive
system had. Although Russell also tried to avoid the use of the axiom of reducibility in

the second edition of Principia, he did so along different lines; his method followed the
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reconsideration of the nature of functions as introduced by Wittgenstein. Although
Russell did not follow Chwistek’s methods, Chwistek’s work did prove to be quite
influential. This is especially apparent in John Myhill’s work in the 1950’s as will be
seen in the last chapter of this thesis.

Again, Wittgenstein’s Tractatus Logico-Philosophicus proved to be the most
influential work bearing on Russell’s introduction to the second edition of Principia.
Wittgenstein’s work was incorporated by many logicians including not only Russell, but
also Ramsey and Carnap, as discussed in the next chapter. Russell’s use of

Wiitgenstein’s work is discussed in the next section.

3.3 Russell’s Modifications to the Theory of Types

In the second edition of Principia Mathematica Russell wishes to avoid the axiom
of reducibility just as Chwistek and Weyl had. Since this axiom is utilised in much
mathematical reasoning, the careful replacement of it in the second edition of Principia is
of considerable importance. Russell’s proposal stems from a change in philosophic
viewpoint as to the nature of functions. This new conception is borrowed from
Wittgenstein’s investigations in his Tractatus Logico-Philosophicus. Here “functions of
propositions are always truth-functions,” and “a function can only occur ina proposition
through its values” (Whitehead and Russell 1925, p. xiv).?* Using this fundamental
change, Russell modifies the construction of the type hierarchy while avoiding the axiom

of reducibility. However, although the hierarchy is constructed more smoothly with these

24 A function only occurring in a proposition through its values simply means that it is not ¢y that occurs in
a proposition, but rather ¢x, @y, ¢z, and so on; that is, the values of the function, not the function itself.
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amendments, without the axiom of reducibility Russell is, like Chwistek and Weyl,
unable to construct certain portions of classical mathematics.

Since the axiom of reducibility is not used, problems® arise in the construction of
the type hierarchy. As noted above, it is “when the apparent variable is of higher order
than the argument” (Whitehead and Russell 1925, p. xxxiv) that a problem arises. This
corresponds to the consideration in the first edition of those statements that involve all
properties of @’ (as seen in the previous chapter). In this new construction, variables are
' introduced for each new order of function. So, for instance, ¢, is used as a variable for a
- first order function and ¢, is used as a variable for a second order function. Then
matrices are used similarly as in the first edition. But in using new variables for these
functions of different orders

we shall obtain new functions

(92)1( 929,%), (E 92)./1( 929x)

which are again not among values for @,x (where @; is the argument), because the

totality of values of ¢,), which is now involved, is different from the totality of

values of ¢!y, which was formerly involved. However much we mény enlarge the

meaning of ¢, a function of x in which ¢ occurs as apparent variable has a

correspondingly enlarged meaning, so that, however ¢ may be defined,

@S @px), (E )1 99)
can never be values for px. To attempt to make them so is like attempting to catch

one’s own shadow. It is impossible to obtain one variable which embraces among

% The adequacy of this new procedure is discussed below.
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its own values all possible functions of individuals (Whitehead and Russell 1925,

p. XXXiv).

The axiom of reducibility is not needed here, it seems. This is the case since the order of
the variables must be indicated before they <;,an be used in the propositional function.
Thus, no statements involving ‘all properties of a” would occur since the ‘properties’
would be of some indicated order. Russell shows (Whitehead and Russell 1925, pp. xxv-
xxvii) that “any general propositions about ¢!y are also true about ¢y and “this gives us,
so far as such functions are concerned, all that could have been got from the axiom of
reducibility” (Whitehead aI;d Russell 1925, p. xxxvii). However, when attempting to
show similar results for functions involving ¢, this attempt falls short and Russell states
that its failure to hold true in every case is illustrated by the “failure of the inference in
connection with mathematical induction” (Whitehead and Russell 1925, p. xxxix).

That this attempt to replace the axiom of reducibility falls short is shown by
Russell in the concluding paragraphs of the new introduction. The problems he illustrates
arise in connection with the theory of classes. This theory he states to be “at once
simplified in one direction and complicated in another by the assumption thai’t functions
only occur through their values and by the abandonment of the axiom of reducibility”
(Whitehead and Russell 1925, p. xxxix). The theory of classes is simplified by noting
that all functions of functions are extensional since in f{¢7), ¢ can only occur through its
values and if @x is equivalent to yx, then the substitution of ¢x in f will give the same
truth-value to fas yx would. In this way the ambiguity which is attributed to classes in

the first edition is dispensed with as “there is no longer any reason to distinguish between
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functions and classes” (Whitehead and Russell 1925, pg. xxxix). The problems arise
since “classes of different orders composed of members of the same order” (Whitehead
and Russell 1925, p. xxxix) must now be distinguished.

This new difficulty leads to the failure of several theorems and methods which
one would want to be included in any account of mathematics. For instance, the proof of
Cantor’s theorem, the development of Dedekind cuts, and mathematical induction on the
natural numbers all fail to be derivable within Russell’s logical system. He remarks that
those propositions in which it is to be proved that two classes are similar can be derived
in a valid manner. On the othe; hand, unless at least one class is finite, the proofs that two
classes are not similar, fail.

In conclusion, it is apparent from the above considerations that Russell did not
view the second edition of Principia Mathematica as a complete treatise. Rather, it
needed some serious work if it was to fulfill the initial goal of re-writing mathematics in
terms of purely logical symbolism (with axioms that can be viewed as ‘true’ or self-
evident). Since the abandonment of the axiom of reducibility has the consequence of
sacrificing Dedekind cuts and thus collapsing analysis, it is concluded that some logical

axiom must be found that will allow for the development of this important part of

mathematics (Whitehead and Russell 1925, p. xlv).
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3.4 Concluding Remarks

It has been seen in this chapter that Russell’s theory of types experienced several
revisions by different authors. The most common trend was to omit the axiom of
reducibility. This trend continued for many years after, as the next chapter will show.
Russell’s final version of the theory of types, which he by no means saw as a completed
work, was most notably influenced by Wittgenstein’s new conception of functions. This
new extensional attitude towards functions was taken one step further by Ramsey, who
took extensionality as an all-embracing principle. Ramsey’s work is considered in the

next chapter, as is Carnap’s response to some of his views.
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4. Ramsey and Carnap on Types

4.1 Introduction

In this chapter Ramsey’s and Carnap’s works in the theory of types are
investigated. Ramsey’s distinction between the two different kinds of paradoxes was
followed by all subsequent logicians. Using this distinction, he separated the simple from
the ramified theory of types and set out to rework both of these in his own system.
Ramsey redefined the notion of ‘predicative functions’ and in this way he was able to
construct Russell’s theory of types without the axiom of reducibility. However, the
axiom of reducibility is not missed in his system since his new definition makes every
propositional function predicative. As will be seen, Carnap rejected Ramsey’s proposal
since Ramsey’s work relied heavily upon impredicative definitions. However, Carnap
did include a simple type theory in several of his works. The role that this theory played

in Carnap’s work will be discussed in section 4 of the present chapter.

4.2 Ramsey and the Simple Theory of Types (Part I)

In Ramsey’s two papers, “The Foundations of Mathematics” (1925) and
“Mathematical Logic” (1926) Russell’s logicism is amended and then defended as a
philosophical foundation for mathematics. In the exposition of his theory, Ramsey points
out the flaws, and what he sees to be their source, inherent in other attempts at finding a
foundation for mathematics. The 1925 paper outlines Ramsey’s own version of logicism,

while pointing out the weaknesses of Russell’s work. The 1926 paper is devoted to
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showing how the attempts by Weyl (who adopts a form of intuitionism) and Hilbert (with
his formalism) to find a foundation of mathematics fail. It can thus be viewed as an
extension of the 1925 paper in that it puts aside the exposition of Ramsey’s own views,
and instead investigates the failure of the other attempts in light of his new discoveries.
Those which lie in his development of the theory of types will be discussed in this
section?® — it is only the axiom of reducibility and the notions to which this leads that are
considered disastrous to Russell’s theory of types.

Ramsey is thus able to retain the theory of types as a way of avoiding the
contradictions, but he amends Russell’s view of mathematics drastically enough that the_
axiom of reducibility can be dispensed with. Ramsey’s methods for changing the theory
of types all stem from his version of Wittgenstein’s theory of propositions and functions.
Russell had also adopted a version of Wittgenstein’s theory in the second edition of
Principia, as seen in the previous chapter. However, Russell apparently did not interpret
Wittgenstein’s views in the same way as Ramsey since their conclusions regarding the
theory of types are so different. It will be shown that Ramsey takes a more drastic move
towards extensionality than Russell had.

Ramsey considers the propositions of Principia Mathematica as falling into two
categories: those that are expressed in words, and those that are expressed in logical
symbolism. By the theory of types, Ramsey states that those expressed merely in words

are “nearly all nonsense” (Ramsey 1925, p. 174). Ramsey claims furthermore, that all of

those propositions that are expressed in symbols are tautologies (in Wittgenstein’s sense),

26 The other problems which Ramsey sees as facing Russell’s account of the foundations of mathematics
include the extensionality of functions, and his theory of identity.
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except for one;*’ the axiom of reducibility. Thus, since Ramsey claims that mathematical
propositions must be tautologies and completely generalized,?® the axiom of reducibility
has no place in mathematics for Ramsey.”® This conception of mathematics Ramsey calls
the “tautology theory” (Ramsey 1925, p. 177). This view does not differ drastically from
Russell’s as advocated in the introduction to the second edition of Principia.®® Russell
also hoped to dispense with the axiom of reducibility, but as will be shown below, his
attempt failed precisely because he did not conceive of propositions in the same way as
Ramsey.

After briefly introducing the “tautology theory”, Ramsey proceeds to point out
what he sees as three fundamental defects in Principia Mathematica. The second of these
deals directly with the theory of types and its solution to the contradictions. The

remainder of Ramsey’s paper is devoted to “expounding a modified theory from which

these defects have been removed” (Ramsey 1925, p. 184). Ramsey’s investigation into

% This is not quite so simple for the multiplicative axiom or the axiom of infinity. See the next section for a
discussion of how Ramsey treats the logical status of these two axioms as well as for the definitions of
‘tautology’ and “contradiction’ which Ramsey borrows from Wittgenstein. -

% In decreeing that propositions must be tautologies and completely generalized, Ramsey makes a claim not
found in Principia Mathematica. Here Ramsey is urging certain restrictions upon both the form and the
content of propositions. This new distinction is a key difference between the interpretation of propositions
ugpheld by Ramsey and Russell. v :

% In his 1932 review of Ramsey’s paper Church agrees with Ramsey’s aim at avoiding the axiom of
reducibility. However, he states that “we cannot agree with Mr. Ramsey, that the reason for the desirability
of avoiding it is that the axiom is not a tautology in the sense of Wittgenstein, or that it is desirable or
necessary that all the axioms of logic should be tautologies. .. Certainly the notion of a tautology loses much
of its connotation of ‘necessary’ when we discover that the axiom of infinity is a tautology if it be true, but
a contradiction if it be false” (Church 1932a, p. 356). Church’s views will be explicated further in chapter
6.

* In his review of Ramsey’s article, Russell states that “I agree with Ramsey in rejecting this view [that
mathematics consists solely of those true propositions in which only mathematical or logical concepts
occur], which I advocated in “The Principles of Mathematics’. But it is no longer contained in Principia
Mathematica, since the instance of the multiplicative axiom had shown its falsehood. At that time I had no
definition of mathematical propositions; now, following Wittgenstein’s definition of logic, I agree that they
are tautologous generalizations” (Russell 1931, p. 477).
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the deficiencies of the theory of types in Principia begins with a division of the
contradictions into two categories.3 ! He regards the principle by which he divides the
contradictions as of “fundamental importance” (Ramsey 1925, p. 183). This distinction
gives rise, in Ramsey’s view, to two distinct parts of the theory of types; the one part
deals with the first group of contradictions and the second with the second group.

Ramsey holds the first part of the theory of types found in Principia to be
unquestionably correct. The contradictions of the first group are dealt with there, and
they are “removed by pointing out that a propositional function cannot significantly take
itself as argument, and by dividing functions and classes into a hierarchy of types
according to their possible arguments. Thus the assertion that a class is a member of
itself is neither true nor false, but meaningless” (Ramsey 1925, p. 187). This simple type
hierarchy is what Ramsey holds to be indisputable, and it is to this that he attempts to
reduce the rest of the theory of types. This is effected, as will be seen, by simply severing
the other branch of the theory.

Whereas the first part of the theory distinguishes types of functions only by the
types of their arguments, in the second part of the theory a further distinction is required.
This distinction is made between the different functions that take the same arguments.
This part of the theory of types requires the axiom of reducibility which Ramsey aims to
avoid. However, according to the work done in Principia, one is left with the choice of

either accepting the axiom of reducibility, or else eliminating a large portion of

31 The first group of axioms involve only logical or mathematical terms, while those in the second group are
not purely logical; they contain some reference to subjective terms such as ‘thought’, ‘definability’, and

‘language’.
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mathematical reasoning (including Dedekind cuts). Since neither of these options appeals
to Ramsey, overcoming the need for such a dichotomy is of utmost importance to him; in
particular, Ramsey sees the elimination of any reliance upon the axiom of reducibility as
essential.

Ramsey deals with this “most serious” (Ramsey 1925, p. 195) objection to the
foundational work done in Principia by re-defining the notions of a ‘predicative
function’, ‘functions of individuals’, ‘functions of functions of individuals’, and so on.
These new definitions are made through considerations of Wittgenstein’s logical theories.
Dealing with functions of individuals poses no problem in trying to eliminate the reliance
upon the axiom of reducibility. In this context Ramsey elaborates Wittgenstein’s theory
of propositions viewing ‘(x)p(x)’ as the logical product of a set of propositions, and
‘E(x)@(x)’ as the logical sum of a set of propositions. Following Wittgenstein, it is
possible for these logical products and sums to be infinite in length. This process is easily
extended to propositional functions of two or more individual variables by holding one of
the variables constant and quantifying over the 6ther variable (where the function in
which one variable is constant is viewed as a function of one variable).

After encountering no problems in dealing with functions of individuals, Ramsey
attempts to apply the same procedure to functions of functions. This process runs into a
problem almost immediately, and Ramsey concludes that a more precise definition of a
‘function of functions’ is needed to replace the definition given in Principia. He
distinguishes two ways in which a definition can be given; either by the “subjective” or

by the “objective” method. The subjective method is what Ramsey attributes to Russell’s
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procedure. In this method the possible range of functions is defined as all those which can
be constructed in a certain way. However, this method, as has been seen, leads to fhe
need for the axiom of reducibility. Thus Ramsey pursues the objective method; with this
method he is successful in overcoming the reliance upon the axiom of reducibility.

Instead of dealing with how functions can be constructed, Ramsey views functions
of functions more like functions of individuals where the individuals are names (or
possible names). So, in the analogue, the functions as arguments will be admitted if they
have an appropriate meaning. As Ramsey states: “my method, on the other hand, is to
disregard how we could construct them, and to determine them by a description of their
meanings” (Ramsey 1925, p. 202). In this way, Ramsey allows functions as arguments
with such meanings so that only predicative functions of functions will arise. These
predicative functions, he goes on to show, encompass an even wider breadth of functions
than those found in the predicative functions of Principia. Ramsey thus sees his method
as more successful than that utilised by Russell. Thus, Ramsey uses this version of
logicism as the prototype to be defended against intuitionism and formalism — the two
main views opposing logicism at the time.

The new definitions introduced by Ramsey are clearly impredicative. This,
together with his outright opposi.tio.n to purely constructive methods makes his opposition
to Weyl and Chwistek clear. Furthermore, Ramsey’s view of logicism, it will be seen in
section 4, faced serious objections by Carnap. Before looking at those objections,
Ramsey’s account of the logical status of the multiplicative axiom and the axiom of

infinity is outlined in the next section.
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4.3 Ramsey and the Simple Theory of Types (Part II)

Ramsey had to deal with both the multiplicative axiom®? as well as the axiom of
infinity®* in order to maintain his thesis that all propositions of mathematics, expressible
in logical symbolism, are tautologies. Ramsey claims that under Russell’s interpretation,
the first axiom is “logically doubtful” but under his own it is “an obvious tautology”
(Ramsey 1925, p. 222). Furthermore, the axiom of infinity is shown to be either a
tautology or else a contradiction under Ramsey’s interpretation, but an empirical
proposition under Russell’s.

Before discussing how his interpretation leads to these results, Ramsey’s
definitions of ‘proposition’, ‘tautology’, and ‘contradiction’ will be outlined. According
to Ramsey’s (following Wittgenstein’s) view that all propositions are truth-functions of
elementary propositions it follows that all propositions are either ‘tautologies’,
‘contradictions’, or ‘empirical’:

Given any set of n atomic propositions as arguments, there are 2" corresponding

truth-possibilities, and therefore 22" subclasses of their truth-possibilities, and so

2%" truth-functions of n arguments, one expressing agreement with each sub-class

and disagreement with the remainder. But among these 27" there are two extreme
cases of great importance: one in which we express agreement with all the truth-
possibilities, the other in which we express agreement with none of them. A

proposition of the first kind is called a fautology, of the second a contradiction.

* Namely, that given any class K of classes, there is a class with exactly one member in common with each
member of K (Ramsey 1925, p. 220).
* Which states that there are an infinite number of individuals (Ramsey 1925, p- 222).
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Tautologies and contradictipns are not real propositions, but degenerate cases
(Ramsey 1925, pp. 172-173).
The genuine (non-tautologous and non-contradictory) proposition “asserts something
about reality” (Ramsey 1925, p. 173) and can thus be called ‘empirical’.
Using these definitions, Ramsey first deals with the multiplicative axiom. In his
assertion of this axiom, he states that:
If by ‘class’ we mean, as I do, any set of things homogenous in type not
necessarily definable by a function which is not merely a function in extension,
the multiI;licative axiom seems to me the most evident tautology. I cannot see
how this can be subject of reasonable doubt, and I think it never would have been
doubted unless it had been misinterpreted. For with the meaning it has in
Principia, where the class whose existence it asserts must be one definable by a
propositional function of the sort which occurs in Principia, it becomes really
doubtful and, like the Axiom of Reducibility, neither a tautology not a
contradiction (Ramsey 1925, pp. 220-221).
This is shown as follows. Firstly, the multiplicative axiom is not a contradiction in
Principia since it is possible that every class in Ramsey’s sense is defined by an atomic
function so there will be a class having one member in common with each member in K:
this would also be a class in the sense of Principia. Secondly, the multiplicative axiom is

not a tautology in Principia. This is shown to be the case by considering
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the equivalent theorem that any two classes are commensurable. Consider then
the following case: let there be no atomic functions of two or more variables, and
only the following atomic functions of one variable:
Associated with each individual g an atomic function ¢,(x) such that
Psx). = x=a
One other atomic function fj such that j(f)), j(~fy) are both infinite classes. Then
there is no one-one relation, in the sense of Principia, having either fy) or (~f)
for domain, and therefore these two classes are incommensurable (Ramsey 1925,
p. 221).
Thus, the multiplicative axiom is not a tautology in Principia.
On the other hand, the multiplicative axiom is “an obvious tautology” (Ramsey
1925, p. 222) under Ramsey’s interpretation. He makes this claim and then refutes the
idea that, if the multiplicative axiom is a tautology, then it should be provable in his
system. This is done in Ramsey’s statement that
it does not seem to me in the least unlikely that there should be a tautology, which
could be stated in finite terms, whose proof was, nevertheless, infinitely
complicated and therefore impossible for us. Moreover, we cannot expect to
prove the Multiplicative Axiom in my system, because my system is formally the
same as that of Principia, and the Multiplicative Axiom obviously cannot be
proved in the system of Principia, in which it is not a tautology (Ramsey 1925, p.

222).
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This is a key passage to which Carnap holds exception in his 1931 paper, as will be seen
in the next section.

Ramsey further shows that under Russell’s interpretation of identity, the axiom of
infinity will be an empirical proposition. This follows from the following considerations:
in Principia, due to the definition of identity, the axiom of infinity means that there are an
infinite number of distinguishable individuals. This is empirical, since “even supposing
there to be an infinity of individuals, logic cannot determine whether there are an infinity
of them no two of which have all their properties in common” (Ramsey 1925, p. 222).
Comparatively, in Ramsey’s sys;tern, the axiom of infinity is either a tautology, oritis a
contradiction. Ramsey claims that this difference in the status of the axiom of infinity in
the two interpretations stems from the different account of identity,’* and the fact that his
own system admits functions in extension. Ramsey notes that in his interpretation, the
axiom of infinity will be a tautology in those systems in which the universe has an infinite
number of individuals, and a contradiction otherwise. He thus admits that “in the logic of
the whole world, if [the axiom of infinity] is a tautology, [it] cannot be proved, but must
be taken as a primitive proposition. And this is the course which we must adopt, unless

we prefer the view that all analysis is self-contradictory and meaningless. We do not

have to assume that any particular set of things, e.g. atoms, is infinite, but merely that

3 In his 1931 review of Ramsey’s paper, Russell objects to Ramsey’s treatment of identity where ‘identity’
is eliminated altogether using the convention that different letters are to represent different objects. Russell
objects to this by stating that “this is possible, but very inconvenient, and makes it impossible to find a
defining concept for a finite set of objects given by enumeration” (Russell 1931, p. 477). Church also
objects to Ramsey’s treatment of identity in his 1932 review where he states that “if x and y are two things
which have all their properties in common, and if we allow that x has the property of being identical with x,
then we must allow that y also has the property of being identical with x, that is, that y=x" (Church 1932a, p.
356). Ramsey had taken this treatment of identity from Wittgenstein.
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there is some infinite type which we can take to be the type of individuals” (Ramsey
1925, p. 224). Thus, Ramsey justifies the acceptance of the axiom of infinity on
pragmatic grounds and holds that it is either a tautology or a contradiction (as opposed to

an empirical proposition).

4.4 Carnap’s Logical Syntax

Just as Ramsey had been, Carnap was greatly influenced by Wittgenstéin’s work.
Carnap had no objection to Ramgey’s support of the “tautology theory” as described
above. However, Carnap did object to other aspects of Ramsey’s work, most notably his
acceptance of impredicative definitions. These objections, together with Carnap’s own
incorporations of the theory of types are listed in this section.

In his 1931 paper, Carnap proposes that not only arithmetic, but also set theory
and higher branches of mathematics be constructed type-theoretically. In this paper he
highlights certain problems facing the logicist account of mathematics. Most notably, this
includes the problem of “develop[ing] logic if, on the one hand, we are to avoid the
danger of the meaninglessness of impredicative definitions and, on the othex: hand, are to
reconstruct satisfactorily the theory of real numbers” (Carnap 1931, p. 49). Carnap views
Ramsey’s attempted solution of this problem as a failure.

Carnap notes that Ramsey attempts to provide a solution by simply allowing
impredicative definitions; this is done by claiming that although they contain a circle, it is
not a vicious, but rather an admissible circle. Carnap dismisses Ramsey’s solution by

stating that “we should call Ramsey’s mathematics ‘theological mathematics,’ for when
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he speaks of the totality of properties he elevates himself above the actually knowable and
definable and in certain respects reasons from the standpoint of an infinite mind which is
not bound up by the wretched necessity of building every structure step by step” (Carnap
1931, p. 50). Carnap is most certainly referring here to Ramsey’s appeal to the “infinitely
complicated” proof as cited above. Here Carnap would like to see a more constructive
foundation of mathematics along the lines of Weyl and Chwistek.

Carnap was led to seek his own solution to this problem in his Logical Syntax of
Language. Inthis work Carnap studies two formal languages. The second of these
contains a form of type theory. It is by following his Principle c;f Tolerance, namely that
any language deserves study for its own sake, that Carnap is able to justify studying this
seemingly Platonistic system. Since this is just one language that Carnap is studying,
there is no appeal to any higher realm of beings as there must be in Ramsey’s work. In
order for this to be the case Carnap must posit the Principle of Tolerance as the basis of

his philosophy of mathematics.*®

4.5 Concluding Remarks

It has been seen in this chapter that Ramsey initiated several important steps in the
theory of types. His distinction between the kinds of paradoxés as well as his use of the
simple theory of types proved to be very influential on subsequent work on the theory of

types. This is the case despite some reservations concerning his methods of justifying his

3% See Ferreiros 1997, pp. 97-99 for more on this point.
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work. In the next chapter the first truly formal presentations of the simple theory of types

will be given. These occurred in the monumental works of Kurt Godel and Alfred Tarski.
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5. Tarski and Godel: First Formal Treatment of the Theory of Types

5.1 Introduction

In 1931 Kurt Godel and Alfred Tarski each presented a version of the simple
theory of types. Tarski made use of this theory in his famous paper on truth, while Gédel
employed his theory of types in his incompleteness paper. Both of these theories
represent the first formal formulations of the simple theory of types. They subsequently
became the standard by which many logicians judged the strength of their systems. Thus,
although these versions of the simple theory of types are based upon ideas from Principia -
Mathematica their succinct presentation and ease of use made them ideal for further
investigations in the theory of types. Although his presentation of the theory of types was
so influential, Tarski soon became dissatisfied with that theory. In this chapter both
Gd&del’s and Tarski’s formulations will be presented together with an investigation into

Tarski’s shift from using the theory of types as his logical basis to his using first-order

logic together with Zermelo-Fraenkel set theory for that purpose.

5.2 Tarski — Theory of Truth

Becoming dissatisfied with the common usage of the notion of truth, Tarski
sought to clarify it. Tarski used the theory of types in his paper on truth which was
written in 1931, published in 1933, and based upon lectures that he had given in 1929. In
this paper Tarski sets up his version of the simple theory of types and then defines “o is

true in A” inside of that theory. In doing so he attempted to develop a clear notion of
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truth for formalized languages that was “materially adequate and formally correct”
(Tarski 1956, p. 152). Tarski upheld the doctrine that the semantics of an object language
must be of a higher-order than the object language itself. The object language may
contain its own syntax and names for all of its own expressions. However, according to
Tarski’s investigations, it cannot contain specifically semantic terms such as ‘satisfaction’
or ‘truth’. In this way Tarski set up a hierarchy of languages. This became the most
commonly employed method of avoiding the semantic paradoxes.

The variables of Tarski’s system are distinguished by the use of numerical indices. ‘
Those with index 1 have individuals as values, those with index 2 have classes of
individuals as values, those with index 3 have classes of classes of individuals as values,
and so on. With this type-distinction of variables elementary formulae are built up as
follows: ‘xigy;’ is an elementary formula provided that j=i+1; further formulae are
obtained by replacing already formed formulae for ‘P’ and ‘Q’ in ‘~P’, ‘P—Q’ and ‘(x)P’.
Tarski then gives a list of rules of inference. His axioms include an axiom of
comprehension, as well as an axiom of extensionality.

It is clear that Tarski’s presentation can be viewed as a formal treatment of the
theory of types, as will Godel’s treatment in the next section. The differences between
these two theories will be pointed out in the next section. It should be noted here that in a
footnote appended to the German edition of this paper Tarski states that he moved from
the theory of types to first-order logic with Zermelo-Fraenkel set theory as the optimal
system in which he would subsequently work (Ferreiros 1997, p. 101). Tarski mentions

this language as “a much more convenient and actually much more frequently applied
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apparatus for the development of logic and mathematics™ (Tarski 1956, p. 271). The
theory of types had been used by Tarski in four of the articles from his 1956 book, all
dating prior to 1935. Moreover, with this statement he makes the reason for his switch to

first-order logic clear.

5.3 Gidel — Incompleteness Theorems

The simple theory of types presented by Kurt Godel (Godel 1931, pp. 599-601) is
very similar to that set forth by Tarski. In fact, when referring to these systems as the
prototypes of type-theory, Quine would often list them together (Quine 1985, p. 86;
Quine 1935, p. 164).

Gédel included ‘~’ (not), ‘v’(or), ‘] (for all), ‘0’(zero), ‘/ (the successor of), and
‘(¢, *Y(parentheses) as his primitive constants. Then he indexed his infinite list of
variables in such a way that the indices refer to the type of the value which the variable
can take. In particular, x; refers to an individual, x; to a class of individuals, x3 to a class
of classes of individuals, and so on.

Gédel’s elementary formulae are of the form xi+1(x;) together with the usual
definitions for ‘~a’, ‘avb’, and ‘[]x(a)’. Finally the two axioms pertaining to the theory
of types are given. These are the axiom of comprehension and the axiom of
extensionality. This system is clearly quite similar to Tarski’s. The difference between
Tarski and Godel’s systems lies in the fact that Tarski uses the membership symbol, €, as
a primitive symbol while G6del does not. However, as noted in Ferreiros’ paper from

1997, G6del’s version can be ‘quined’ so that ‘u(v)’ is written as ‘veu’.
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5.4 Concluding Remarks

The two systems outlined in this chapter are very similar. The importance of
these versions of the simple theory of types will be seen in the next chapter. There,
Quine, one of the most influential logicians during the 1930’s and later, uses Tarski and
Gddel’s simple theory of types as the standard by which to judge the worth of his work.
In fact, he used Tarski’s formulation as the starting point for his further investigations in
which he attempted to improve upon the theory of types. The resulting systems provided

much stimulation for future logicians as the seventh chapter of this thesis will highlight.
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6. Church and Quine on Types

6.1 Introduction

In this chapter Alonzo Church and W.V. Quine’s works on the theory of types will
be examined and compared. Alonzo Church only wrote one paper dealing exclusively
with the theory of types. This paper proved to be quite influential since it incorporated
Church’s important lambda-operator into a simple type theory. Church had stated his
famous thesis in 1936 where the intuitive notion of ‘calculable function’ is equated with
the well-defined class of ‘recursive functions’. Furthermore, this class of recursive
functions was shown to be the same as the class of Church’s ‘lambda-definable
functions’.>® Much work was done using the lambda-operator (which acts as a function
abstractor) by not only Church, but also his students Kleene and Rosser. As will be seen
in the next chapter, work was done not only on the lambda-operator in isolation, but also
on Church’s system that incorporates that operator into a simple theory of types.

In his early works Church tried to find a logical system that avoided any mention
‘of types. He was well aware, as he noted in his 1928 review of Principia M;thematica,
that the “theory of types...affords the best known method of dealing with the ‘well known
contradictions’” (Church 1928, p. 240). However, this theory did not satisfy his notion of

an ideal foundation of mathematics. It was only after his logical system, which avoids the

36 For an in-depth historical survey of the origins of Church’s thesis see G.H. Adam’s A History of the
Theory of Recursive Functions and Computability With Special Reference to the Developments Initiated by
Gédel’s Incompleteness Theorems (1983).
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theory of types, was shown to be inconsistent®” that Church began to show a serious
interest in developing his own version of the theory of types. This interest culminated in
his 1940 paper “A Formulation of the Simple Theory of Types”. This paper, together
with his later views (especially in his 1956 book Infroduction to Mathematical Logic) will
be outlined.

Quine’s work is also considered in this chapter. As opposed to Church, Quine
embraced the theory of types in his early work. Quine realized, as Church had in his
1928 review, that the theory of types was the standard by which other systems should be
judged. However, Quine was also not completely satisfied with the theory of types.
Rather than taking Church’s approach of supplanting the theory altogether, Quine aimed

to amend the use of types in his systems.

6.2 Church on Types

Alonzo Church’s views regarding the theory of types seem to have changed over
the early part of his career. Firstly, in his 1928 review of Principia Mathematica Church
states that many difficulties arise “in connection with the theory of logical types” (Church
1928, p. 239) and further that “we hope to see [the theory of types] supplanted or greatly
modified” (Church 1928, p. 239). He notes two more times in that same short review
that “difficulties [are] raised by the theory of types” and that certain theorems can be

proved only “if we disregard restrictions imposed by the theory of types” (Church 1928,

37 This was done in Kleene and Rosser’s 1935 paper.
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p- 240).%® He concludes this review by claiming that “question[s] will ultimately be
settled by the complete abandonment of the theory of logical types or by an alteration in it
more radical than any yet proposed” (Church 1928, p. 240). An almost contradictory
statement is made by Church at the end of this review where he states that “the theory of
types ...affords the best known method of” dealing with the “well known contradictions”
(Church 1928, p. 240). However, this statement simply shows that at this point Church
had not found any alternative to the theory of types that would adequately replace it. This
desire to replace the theory of types would guide Church’s later works to a great extent.
Church thus makes his vievs; of the status of Russell’s theory of types quite clear in this
review. Similar statements permeate not only his reviews, but also some of his own
articles, as will be shown.

For instance, Church’s distaste for the theory of types is stated clearly in his 1932
paper where he attempts to formulate a system that is sufficient for deriving a large part
of mathematics, while avoiding the logical paradoxes without using the theory of ‘cypes.39
Church even states that Zermelo and Russell’s approaches to avoiding the paradoxes are
“somewhat artificial” (Church 1932, p. 347). However, the trend of criticizing the theory
of types is not present in Church’s review of Ramsey’s The Foundations of Mathematics.

In fact, Church commends Ramsey’s work, noting that the distinction between two

3 Although Church mentions many times that there are problems with the theory of types, he only mentions
one “awkward situation” explicitly. This can be found in the following passage. “Having proved the
theorem that we require about functions of the first n-1 types [in vol. II of Principia], then in order to obtain
the same theorems about functions of the nth type we must make a new assumption of all our postulates,
applying them to functions of the #th type instead of functions of some lower type, and must then prove all
our theorems anew. We ‘see,” by symbolic analogy, that this can always be done. But the statement that
this is so is impossible under the theory of types” (Church 1928, p. 240).

39 In this paper, a system of logic is set up including the lambda-abstract operator. The system as a whole
was abandoned after it was shown to be inconsistent and from it only the lambda-calculus was preserved.
This calculus is incorporated into Church’s 1940 version of the simple theory of types as discussed below.
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different types of paradoxes, and thus the formation of two different hierarchies of types,
one to deal with each of the sets of paradoxes, is quite important. Furthermore, he agrees
with the desire to avoid the axiom of reducibility in the ramified theory, but disagrees
with Ramsey’s reasons for finding such an avoidance desirable,*°

In his 1935 review of Quine’s 4 System of Logistic, Church discusses what he see
to be the six most important changes that Quine makes to the system of logic found in
Whitehead and Russell’s Principia Mathematica. The fourth of these is “a liberalization
of the theory of types, by which the axiom of reducibility is rendered unnecessary”
(Church 1935, p. 598). Thus, Church continues his praise of the method initiated by
Ramsey, in which the theory of types is modified in such a way so as to avoid the axiom
of reducibility. Church does not mention any difficulties with the theory of types at all
here, and actually states that this “work of Quine is in both respects [in the formal
definiteness and mathematical elegance] an important improvement over the system of
Principia, and, although open to criticism in certain directions, is probably not too highly
praised by Whitehead when he calls it, ‘a landmark in the history of the subject’” (Church
1935, p. 603). "

Furthermore, Church sees Quine’s propositional functions in extension®! as being
an important modification in the theory of types in the following way: basically, since

Quine’s propositional functions in extension (classes) appear as complete symbols (as

“° This is stated clearly by Church in the following passage: “Distrust of the axiom of reducibility is, of
course, widespread, being shared even by the authors of Principia Mathematica, and there seems to be no
doubt of the desirability of a theory which avoids this axiom. But we cannot agree with Mr. Ramsey, that
the reason for the desirability of avoiding it is that the axiom is not a tautology in the sense of Wittgenstein,
or that it is desirable or necessary that all the axioms of logic should be tautologies” (Church 1932a, p. 356).
*I Quine calls these classes, but Church calls them propositional functions since, as he notes, they
correspond more correctly with the propositional functions, as opposed to the classes, found in Principia.
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opposed to classes being incomplete symbols in Principia), Church states that they are
more adequately compared with the propositional functions of Principia. Church claims
that in this way, “Quine has really made an important modification in the theory of
types,* in a direction which seems to have been first suggested by F. P. Ramsey” (Church
1935, p. 601).*

Church continues to praise the theory of types in his 1937 review of Chwistek’s
paper. There Church refers to the simple theory of types (the first version of which
Chwistek had published in 1921) as the “now widely accepted simple theory of types”
(Church 1937, p. 169). Chwistek had originally pr;posed, in 1912, that the proper
remedy for the paradoxes and the unacceptability of the axiom of reducibility is simply to
reject that axiom while accepting the ramified theory of types without that axiom.
Diverging from his 1921 formulation of the simple theory of types, one year later
Chwistek returned to his 1912 proposal for developing a ramified theory of types without
the axiom of reducibility. Church notes that “it is well known that the Richard paradox
does arise upon incorporation into the theory of symbols for certain semantical concepts”

(Chruch 1937, p. 169) and this leads him to state that, since objections can still be brought

%2 The importance comes from the fact that Quine is able to avoid the paradoxes without using the axiom of
reducibility, but rather by changing the way in which propositional functions are to be dealt with.

43 However, in his 1932 review of Ramsey’s work Church questioned Ramsey’s use of extensional
functions. Church states that Ramsey’s “abandonment of the principle that x and y are identical (or equal)
when every propositional function satisfied by x is also satisfied by y...[is] open to serious objection”
(Church 1932a, pp. 355-356). Church continues to state that Ramsey’s proof that the axiom of infinity is a
tautology (if it is true) does not depend on Ramsey’s revision of his notion of identity (as Ramsey suggests),
but rather upon “the introduction of propositional functions in extension. This notion ofa propositional
function in extension is certainly legitimate, but it seems doubtful whether the distinction can successfully
be maintained between ordinary propositional functions and propositional functions in extension” (Church
1932a, p. 357). Thus, although he does not make an explicit statement against the reliance upon
extensionality in logic, Church does seem to be a bit wary of its fruitfulness here.
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against the axiom of reducibility, Chwistek’s proposal to develop a ramified theory of
types without the axiom of reducibility has a strong appeal.

Furthermore, Church notes that “the current view of advocates of the simplified
theory of types whereby the relation between a concept and the symbol which denotes it
must appear, not within the original language, but within a meta-language containing the
original language, may itself be regarded as a kind of ramified type theory (the distinction
between a hierarchy of languages and a hierarchy of types within one language being here
a matter of terminology)” (Church 1937, p. 170). Church also commends Chwistek’s
attempt to incorporate notations for both concepts o;' syntax and those of semantics into
one system. Church claims that “such a system is no doubt consistently possible, on the
basis of the ramified theory of types, and its development should be of considerable
interest” (Church 1937, p. 169). The comparison between a hierarchy of types and a
hierarchy of languages as well as the reconsiderations of the ramified theory of types will
be found in the next chapter of this thesis.

After reviewing all of these different formulations of the theory of types, Church
formulates his own version of the theory of types in his 1940 paper. This vel‘sion is
altered in a supposedly sufficient manner so as to avoid the problems that he sees as
belonging to other formulations of the theory of types.** In particular, Church attempts to
improve the theory by incorporating “certain features of the calculus of lambda-

conversion” (Church 1940, p. 56) that are to be found, for example, in his 1941

* Copi also suggests this in his 1950 paper as discussed in the next chapter.
* He never explicitly points out why his version is better than any previous formulations; he only states that
it “has certain advantages” (Church 1940, p. 56). ‘
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monograph (which was written almost exclusively in 193 6).*¢ Certain aspects of his
version of the simple theory of types, as found in the 1940 paper, will now be briefly
outlined.

Church begins his formulation of the theory of types by explaining what is meant
by a hierarchy of types as well as providing rules for generating the type symbols. In
Church’s formulation, two undefined type symbols, 1 and o, are first posited, and from
these, through an inductive definition, further type symbols are defined. The class of type
symbols is “the least class of symbols which contain the symbols 1 and o and is closed
under the operation of forming the symbol (ab) from the symbols a and 5” (Churcl': 1940,
p. 56).*” The type symbols enter into Church’s system as subscripts for variables and
constants. In the intended interpretation, a subscript indicates the type of the variable or
constant to which it is subscribed, where o ié the type of propositions and 1 the type of
individuals. Furthermore, “(ab) is the type of functions of one variable for which the
range of the independent variable comprises the type b and the range of the dependent
variable is contained in the type a” (Chruch 1940, p. 57).

After introducing the method by which types are to be formed, Church goes on to

give a description of what are to comprise his well-formed formulas. This begins with an

46 He notes that “for features of the formulation which are not immediately connected with the
incorporation of lambda-conversion, we are heavily indebted to Whitehead and Russell {Russell’s
Mathematical logic as based on the theory of types, American journal of mathematics, vol. 30 (1908) pp.
222-262; Whitehead and Russell’s Principia Mathematica vols. 1, 2, and 3], Hilbert and Ackermann
[Grundzuge der theoretischen Logik 1928, and second edition 1938], Hilbert and Bernays [Grundlagen der
Mathematik, vo. 1 1934, vol. 2 1939], and to forerunners of these, as the reader familiar with the works in

uestion will recognize” (Church 1940, p. 56).

7 At this point Church lists several abbreviations and notes a few conventions to be used in shortening the
type symbols. Firstly, he notes that parentheses are to be omitted with the convention that association is to

the left. Also, he uses a’ as an abbreviation for ((aa)(aa)), a’” as an abbreviation for ((a’a"a’a")), etc.
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infinite list of primitive symbols including three improper symbols. These improper
symbols are ‘A’, ‘(‘, and °)’. The other symbols are the constants Noo, Ao, Plooays tatoq)
and an infinite list of variables ranging over the different types.** Within the intended
interpretation, Church mentions in what manner he wishes the natural numbers to be
constructed in each type. In doing this it is implicit that a copy of the natural numbers is
to occur within each type. He defines a symbol, Ta-a’, within the system which, when
applied to a natural number of type a’, will denote the same number of type a”’. In this
way, Church’s simple theory of types seems to have an advantage over other systems;
namely, in that there is some sort of “communication” between the reduplicat;,d numbers
that occur within each type.*’

Incorporating the use of type subscripts; Church lists the rules for lambda
conversion as well a rule of substitution, modus ponens, and a rule for generalization.
Church lists 11 axioms and axiom schemas in total. The first four “suffice for the
propositional calculus” (Church 1940, p. 61), while the first 6 suffice for the logical
functional caiculus. Church states further that “in order to obtain elementary number
theory it is necessary to add (to 1-6%) Axioms 7, 8, and 9% (Church 1940, p 61), where
the superscripts indicate that the axiom is actually an axiom schema (ranging over the

type ‘a’). Axioms 7 and 8 together “have the effect of the axiom of infinity, while the

% In the intended interpretation, ‘A’ is to act as an abstraction operator, Ny, denotes negation, , A,
denotes disjunction, P, denotes the universal quantifier “as a propositional finction of propositional
functions,” 1, denotes a “selection operator (as a function of propositional functions),” and juxtaposition
is to denote “the application of a function to its argument” (Church 1940, p. 59).

* In his review of Church’s paper Quine mentions this as a great advantage.
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axioms 9% are axioms of description” (Church 1940, p .61).* Finally, he states two
axioms schemas that are not used in the rest of the paper. These schemas correspond to
the axioms of extensionality and the axioms of choice. He notes that these axioms are
necessary in “order to obtain classical real number theory (analysis)” (Church 1940, p.
61). Since the rest of the paper deals only with arithmetic, these axioms are not
considered any further. However, Church does make some further comments regarding
the axioms of extensionality.

As Quine comments in his review of Church’s 1940 paper, Church “withholds the
general extensionality principle” (Quine 1940, p. 114). Indeed, Church says himself that
his axioms 10% are weaker in some ways than other axioms of extensionality, but that
classes can still be introduced that can be associated with a propositional function Fo,.
This is done by essentially defining the classes using certain properties (using 0 if the
class is to have the property and 1 if not). Church also points out that if one took the
axiom of extensionality which states that if two propositions are equivalent, then they are

.equal, thena different notion of class arises. Namely, classes come to be identified with
_propositional functions. Thus, here Church does make use of extensionality"io some
extent, but again it is limited, and does not play a key role in his work.

It has been shown above that over the years Church’s view of the theory of types

changed drastically. He began by dismissing that theory in its entirety, seeing it as

50 1t is here that Church states the independence of the axiom of infinity (Axiom 7 which states that there
are two elements that are different from one another, together with Axiom 8 which states that if two
numbers have the same type, then if their successors are equal, then those numbers must themselves be
equal): “the independence of Axiom 7 may be established by considering an interpretation of the primitive
symbols according to which there is exactly one individual, and that of Axiom 8 by considering an
interpretation according to which there are a finite number, more than one, of individuals” (Chruch 1940, p.
61).
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something that should be either completely abolished, or else altered in such a way so as
to make it almost incomparable to its original formulation. This view gradually changed,
so much so that Church actually began doing his own research into various aspects of the
theory of types. Church’s treatment of the ramified theory of types as found in his
Introduction to Mathematical Logic (1956) will be outlined together with a statement of
his view of the axiom of reducibility found therein.

In section 58 of his Introduction to Mathematical Logic, Church gives a detailed
account of both a predicative and ramified functional calculus of second order. He
proceeds firstly by formulating the predicative functional calculus of second order. This
is done roughly as follows: Seven axiom schemata are listed, all of which have a relation
to corresponding axiom schemata given by Church for the functional calculus of second
order.>® The only difference occurs in the axioms that deal with the substitution of
variables in formulas: in the predicative functional calculus the variable which is to be
substituted must contain no bound propositional or functional variables whereas no such
restriction exists in the regular second order calculus. The ramified version begins with
the predicative version of the functional calculus, but proceeds to complicaté matters by

introducing, besides orders, also levels. This is done in the following way:

*! These axioms are (notational differences): 1) A > (B>A),2) A-)((B-)C)—)((A—)B)-)(A—)C))), 3)
(~A>~B)>(B->A), 4) (aXA->B)>(A>(a)B), 5) (a)A>B where B is the result of substituting 4 for a
throughout A where a is an individual variable, b is an individual variable or an individual constant, and no
free occurrence of a in A is in a well-formed part of A of the form (5)C., 6) ()A->B where B is the result
of substituting ¢ for p throughout A where P is a propositional variable, and q contains no bound
propositional or functional variables., 7) (/A->B where B is the result of substituting g for f{x,, x»,..., Xp)
throughout A where fiis an n-ary functional variable, and x,, x,,..., x, are distinct individual variables, and ¢
contains no bound propositional or functional variables (Church 1956, pp. 348-349).
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In the ramified functional calculi of second order and higher levels, additional
propositional and functional variables are introduced, of successively higher
levels, the leading idea being that in substituting for a propositional or functional
variable of given level, the wff B [this corresponds to ‘g’ in my footnote 51]
which is substituted may contain bound propositional and functional variables of
Jower levels only. Thus the ramified functional calculus of second order and
second level. ..contains propositional and functional variables of the first level and
of the second level (Church 1956, pp. 349-350).
Similarly, the ramified functional calculus of second order and third level contains
propositional and functional variables of three different levels, and so on. The axioms for
this ramified calculus of second order correspond analo gously to the axioms for the
functional calculus of second order. In fact, the first five axioms are identical. The only
difference is in the last two, where further restrictions are placed upon the variables which
can be substituted. In the sixth axiom,*? the bound functional variables of g are all of
level lower than that of p, and the free propositional and functional variables of g are of
level not higher than that of p. In the seventh axiom, the bound propositione{l and
functional variables of g are all of level lower than that of f; and the functional constants
and the free propositional and functional variables of q are all of level not higher than that
of f (Church 1956, p. 352).
Church explains how the introduction of these levels alters the representation of

the ramified theory of types as given in Principia. Essentially, in the second-order

52 See previous footnote for axioms six and seven.
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functional calculi, the level of Church’s propositional or functional variables corresponds
exactly with what is called the order of a variable in Principia. However, in connection
with the ramified functional calculi of higher order, what is understood by level by
Church is what is called in Principia the amount by which the order of the functional
variable exceeds that of the highest order of any of the variables which may be found in
the argument places of that function,

Section 59 of Church’s Introduction to Mathematical Logic contains a brief
account of the axioms of reducibility, but this is included solely “because of their
historical importance” (Church 1956, p. 355). The axioms are listed as a doubly infinite
list,* and Church indicates that they are not all independent. He justifies this claim by
stating that “those which contain singulary functional variables can be proved by using
those which contain binary functional variables, and so on down the list. Also, among
those which contain n-ary functional variables (with fixed n), it is obvious that one in
which F is of lower level can be proved by using one of those in which F is of higher
level” (Church 1956, p. 356). F inally, Church insists that the ramified theory of types
to gether with these axioms of reducibility is not an interesting alternative to fhe pure
ramified theory or the simple theory of types.>*

As will be seen in the next chapter, Church’s version of the theory of types proved
to be quite influential. There the work by Alan Turing, J. Richard Buchi, and Maurice

L’ Abbe will receive special attention.

53 This list is given such that for every function of an arbitrary higher level than the first, there exists a
functional variable of the first level such that the two functions are equivalent for every argument. Then
this list is extended for functions of one variable, two variables, and so on.

% This was later dismissed in Church’s 1976 paper which lies outside the scope of this thesis,
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6.3 Quine on Types

In this section Quine’s two major contributions to the theory of types will be
discussed. These are the systems found in his 1937 paper “New Foundations for
Mathematical Logic” and his book from 1940 entitled Mathematical Logic. The system
postulated in the second of these works was an extension of the first. This will be made

apparent in what follows.

a) New Foundations

Aithough his Ph.D. dissertation was based upon the theory of types, Quine soon
encountered many problems plaguing that theory which he wished to see changed. As he
notes in his “The Inception of ‘New Foundations’” (1987), despite the fact that the theory
of types had been given a neater formulation by Alfred Tarski and Kurt Gédel, “still I was
unhappy with types. One unattractive feature was the arbitrary grammatical
exclusiveness. Seemingly intelligible combinations of signs were banned as
~ ungrammatical and meaningless” (Quine 1987, p. 281). Thus Quine tried to formulate a
. theory in which the meaningful formulas of the theory of types could be genérated, while
those meaningless ones were simply unaccounted for by the definitions (and hence,
would just never arise). |

Quine’s first attempt at this is found in his 1936 paper “Set Theoretic Foundations
for Logic”. In that paper Quine took Zermelo’s set theory as his starting point and
reduced and varied some of its primitive notions; the variables range over both

individuals and classes indiscriminately. Quine went on to show that the theory of types
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can be simulated in this theory using contextual definitions. Furthermore, an axiom of
infinity was listed as an axiom that can be added to the original list of axioms.

The arbitrary omission of certain combinations of signs was not the only problem
that Quine saw as plaguing the theory of types. He was also displeased with the infinite
reduplication of numbers, lo gical constants, and every other mathematical object in every
higher type. Unfortunately, this second problem remained in the system proposed in his
“Set Theoretic Foundations for Logic”. Also, Quine often struggled in his work to
include a universal class, which was missing from this work. Thus Quine was forced to
pursue 2—1 different approach to these problems.

In his “New Foundations for Mathematical Logic” (193 7) Quine set to work at
avoiding these problems. The system introduced there aims at avoiding reliance upon the
theory of types, while retaining the strength of the system set forth in Principia; this is
done by avoiding any specific reference to types, while forming restrictions upon his
axioms based on type restrictions. For instance, two of the axioms that are employed in
this system are the axioms of extensionality and of comprehension. The axiom of
extensionality is stated as: (®)O)(2)(zex>zey)—x=y], and the axiom of combrehension is
(Ey)(x)(xey—@(x)) where @(x) is a stratified formula in which y does not occur free.
Now, a formula is said to be stratified if all of the variables can be assigned indices in
such a way as to be consistent with the theory of types. F urthermore, Quine’s system
uses the primitives ‘|’ for alternative denial, ‘¢’ for class membership, and ‘(x)’ for

universal quantification. Formulas are described recursively, and in this way the
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translatability of Principia into the new system is shown by translating the primitive
formulas of Principia into the recursively defined formulas of Quine’s system.

The system used by Quine contains three more rules specifying the initial
theorems, and finally two rules for “inferential connections” (Quine 1937, p. 77).° Quine
uses only the extensionality postulate and R3 (mainly R3) in order to derive Russell’s
paradox. R3 is the unrestricted comprehension principle. The theory of types is
explained as stratifying the objects of the system into types so that “an expression which
would be a formula under our original scheme will hence be rejected as meaningless by
the theory of types only if there is no \;/ay whatever of so assigning types to the variables
as to conform to [the requirement on epsilon that it only connects variables of ascending
types]” (Quine 1937, p. 78). Formulas in which the variables can be numbered so that
epsilon occurs only between variables numbered 7 and n+1 are called stratified. An
equivalent way of explaining these formulas is through the use of epsilon-chains. So a
formula is said to be stratified if it has no epsilon-cycles. Quine claims that this definition
“has the advantage of affording an immediate criterion, since the epsilon-chains of
stratified formulas are readily exhausted” (Quine 1937, p. 78). The theory oi‘ types then
consists of the statement that the system will omit all unstratified formulas.

The theory of types however has several “unnatural and inconvenient
consequences” (Quine 1937, p. 78). These Quine lists as follows: “the theory allows a

class to have members only of uniform type, the universal class V gives way to an infinite

55 The five rules are labeled R1 to RS. “R1 and R4 are an adaptation of the propositional calculus as
systematized by Nicod and Lukasiewicz...R2 and RS contribute the technique for manipulating the
quantifier” (Quine 1937, p. 77).
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series of quasi-universal classes, one for each type. The negation —x ceases to comprise
all non-members of x, and comes to comprise only those non-members of x which are
next lower in type than x”(Quine 1937, p. 79). He also notes that all logical constants, as
well as all arithmetical constants are reduplicated within each type. Thus Quine wishes to
set up an alternate way of avoiding the paradoxes which does not succumb to these
unnatural effects.

Quine attempts to avoid the paradoxes by modifying only R3 of his system; the
result is the comprehension principle noted above (called R3"). He states that none of the
unnatural properties belonging ;o the theory of types belongs to his system. Even though
he avoids mention of type, his methods are motivated by the considerations of types. In
fact, thermethod used for avoiding the paradoxes seems 1o mimic the theory of types quite
closely; yet, it is only the forms of certain sentences that are restricted. Essentially, in
New Foundations Quine imposes the restrictions of the theory of types solely upon the
form of allowable sentences, as opposed to the meanings of the constituents of those
sentences. Thus, it is not the language itself which is restricted, but rather what can be
formed using the language. Certain ideas from the theory of types are used,"’but in
practise it seems that no mention of types is necessary for Quine. However, it does seem
that his system will be unable to derive Cahtor’s theorem.>® The question as to how far
this is true is dealt with in another of his papers, namely “On Cantor’s Theorem” (1937a).

Since Cantor’s theorem seems to be disprovable in the New Foundations, Quine

deems it necessary to investigate the reasons for this (in hopes of avoiding this

56 Namely the theorem which states that the class of subclasses of a class, W, has a greater cardinality than
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undesirable aspect of his system). This investigation comprises the subject-matter of his
paper entitled “On Cantor’s Theorem”. The disprovability of Cantor’s theorem in New
Foundations leads Quine to question the consistency of his system. He actually states in
“On Cantor’s Theorem” that his system “offer([s] less assurance of consistency” (Quine
1937a, p. 120) than those systems which involve the theory of types.”” Quine is able to
give greater credence to his system (called S” in his paper) through a comparison of S
with a system S** which “is virtually the same as Tarski and Gédel’s simplifications of
the system of Principia Mathematica” (Quine 1937a, p. 121).

The system S’ is identical to the one put forth in the N:ew Foundations. S’ differs
from S” only in its treatment of unstratified formula; in S”* all unstratified formula are
simply abolished. In S’" as well, there is a type hierarchy present, whereas in S ', as seen
above, there is no mention of the type hierarchy. S°* thus retains all of the questionable
features discussed in the New Foundations which are inherent to systems involving a
theory of types.

It is with these two systems in mind that Quine begins his investigation of
Cantor’s theorem. Firstly, the formula ‘(Ex)(»)(vex)’ is easily provable withfrl S’. This

ensures the existence of a universal class V having everything as a member (including

7 The consistency of Quine’s New Foundations and that of a related ‘stronger’ system is investigated by
Rosser in his “On the Consistency of Quine’s New Foundations for Mathematical Logic” (1939a). Here
Rosser sketches the methods by which he hoped to derive a contradiction within Quine’s system, as well as
the reasons why each method failed. Rosser concludes by stating that “if one could make unstratified
definitions by induction, it would seem that the possibility of producing some undesirable result by means
of the Gédel technique should be very much greater...in conclusion, it seems to be the case that there is no
danger of deriving a contradiction along any of the known lines until one can handle unstratified relations
more effectively” (Rosser 1939a, P- 24). Thus, although Rosser was unable to derive a contradiction in
Quine’s New Foundations he did see its consistency as highly questionable. The key inability to produce
unstratified formulas prevented Rosser from applying the techniques which he and Kleene had used in
producing a contradiction within Church’s logical system of 1932 (as found in Kleene and Rosser’s paper
from 1935, “The Inconsistency of Certain Formal Logics™).
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itself and all of its subclasses). As Quine notes however “this contradicts Cantor’s
theorem, according to which the subclasses of V should outnumber the members”
(Quine1937a, p. 122). Quine symbolizes Cantor’s theorem that “the converse domain of
any one-many (or one-one) relation has a subclass which does not belong to the domain”
(Quine 1937a, p. 122) in the logical symbolism of §”. He then shows how Cantor’s proof
would proceed within the symbolism of S, and he concludes that the “whole proof could
be carried out formally within S° if we could prove the existence of a class x satisfying (5)
and (6)” (Quine 19374, p. 122).% However, the existence of sucl} an x cannot be shown
in S’ (since ‘yez’ together with considerations of the ordered pair_ (z,y) could not arise).
Thus, in S’ Cantor’s theorem fails in this form, whereas in S°’ this formulation of
Cantor’s theorem cannot even be expressed.59 In fact, this failure to prove Cantor’s
theorem can be used to disprove Cantor’s theorem; Quine also notes that a “simpler
disproof of [Cantor’s theorem] in S, consisting essentially of taking v as the class of all
pairs of the form (a,a)” (Quine 1937a, p. 123) could be easily constructed.

Since this formulation of Cantor’s theorem is meaningful and false in §’, while it
is altogether meaningless in 8™, Quine next looks at the formulation of Cantor’s theorem
which is derivable within S”*; this he determines to also be derivable within S°. Since S™
involves the theory of types, the ordered pair (2.y) involved in the proof of Cantor’s

theorem must be amended so that z and y are of the same type. This is done by relating

the unit class {y} to z if y is of next lower type to z, and {{y}} to z if {y} is of next lower

58 These two conditions ensure, first of all that for any y in x, there is a z such that y is not in z and yet the
ordered pair (z,y) is in some v. Secondly, for any y, if there is a z such that y is not in z and yet the ordered
?air (z) is in some v, then y is in x.

9 This follows from the parenthetical remark appended to the previous sentence: here the formula involving
‘yez’ and the ordered pair (z,)) would be unstratified.
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type to z, and so on. Afier replacing y with {y} throughout the original statement of
Cantor’s theorem, one is left with the modified version of Cantor’s theorem that “the
subclasses of a class outnumber the unit classes of the members” (Quine 1937a, p. 124).5°
Quine concludes therefore that “everything demonstrable in S*’ admits, indeed, of a
precisely parallel proofin S (Quine 1937a, p. 124).°" Thus, even with certain strange
features of his system, Quine still sees his New Foundations as a more acceptable system

than any which incorporates the theory of types.5?

b) Mathematical Logic

Quine followed up his 1937 system by extending it to his system as found in his
Mathematical Logic. This work differs from the New F. oundations in that there are two
kinds of object: sets and classes. The original formulation of this system was found, by
Rosser in October 1941, to contain a contradiction; Rosser was able to derive the Burali-
Forti paradox within Quine’s Mathematical Logic (Quine 1985, p. 145). Quine quickly

set this straight in a correction slip added to those books that had already been sent to

% Obviously this is not an equivalent formulation of Cantor’s theorem within S’ since within that system
the original version is disprovable, while the modified form is provable. Showing that these two
formulations are equivalent would simply amount to showing that there is a one-one relation between
individuals and their unit-classes. However, in S’ this is impossible since it amounts to defining a class of
ordered pairs (a, {a}) and the defining condition for this would involve an unstratified formula. Similarly,
this one-one relation is simply inexpressible in any system admitting the theory of types.
¢! There are some odd conclusions which Quine points out to necessarily follow from his investigations of
Cantor’s theorem: “(a) Cantor’s principle that the subclasses of a class always outnumber the members is
false. (b) The subclasses of any class do, however, outhumber the unit subclasses. (c) There is no general
correlation between objects and their unit classes” (Quine 1937a, p. 124).

%?Quine was still wary of the theory of types in the late 1940’s. This is seen clearly in the following passage
from one of his letters to Carnap on the subject: “I agree that the logical antimonies are symptoms of a
fundamental unsoundness somewhere, but I suspect that this unsoundness lies in platonism itself-i.e., in the
admission of abstract values of bindable variables. The contradictions which issue from platonism can
indeed be staved off by various artificial devices, and in my view the theory of types is merely one among
various such devices” (Quine 1947, p. 409).
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print. Quine later gave a more comprehensive alternative to deal with the problem in his
“Element and Number” from 1941. The essential revision set forth in that paper is
contained in only one of the 6 chapters. The other chapters rather act as an alternative
development to the material found in his Mathematical Logic.

The final revised edition of Mathematical Logic appeared in 1951; the repair
added there is attributed to Hao Wang. This repair was simply to limit the bound
variables in the membership conditions for the classes of New Foundations to the sets of
Mathematical Logic (which correspond to these classes). Wang later proved that New
Foundations is consistent if and only if Mathematical Logic is. Furthermore, Rosser
showed that the class of natural numbers cannot be derived in Mathematical Logic unless
the system is inconsistent. One must postulate that it is a set in order to found the theory
of real numbers. Quine notes that “that postulate is an unwelcome artificiality” (Quine
1985, p. 146).

The system in Mathematical Logic differs from that of New Foundations, as
mentioned above, by dealing with both classes and sets.® Sets are such that they can be
members of both sets and classes, whereas classes can be members of neithér. The
axioms must then deal with both classes and sets. In the following capital letters stand for
classes whereas lower-case letters stand for sets. Quine posits an axiom of extensionality:
(A)B)[(x)(xeA—xeB)—A=B]; an axiom of comprehension by a set: .(Ey)(x)(xey«-»(p(x))
where @(x) is any stratified formula with set variables only, and y does not occur free in

¢(x); and an axiom of comprehension for a class: (EY)(x)(xeY «<>¢(x)) where ¢(x) is any

% By using both classes and sets, Quine is clearly influenced by von Neumann.

-
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formula in which y does not occur free. Finally, a curious feature in Quine’s work is his
equating individuals with their singleton sets. This is mentioned as a possibility in his

New Foundations, but is done explicitly in his Mathematical Logic.

6.4 Concluding Remarks

It has been seen in this chapter that both Church and Quine did much work in the
theory of types. Their systems both incorporated a simple type theory in different ways.
Although Church had initially hoped to simply supplant that theory, he ended up working
within it. Quine, on the other hand, strove to perfect the theory which motivated his two
works New Foundations and Mathematical Logic. Although he later switched to working
with first-order logic as his basis, these early works of Quine’s proved to be quite
influential. Some results from other logicians regarding his two systems have been noted
in this chapter. In the next chapter extensions of both Church and Quine’s systems will

be discussed, as will other advances in the theory of types.
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7. The Theory of Types as a Many-Sorted Theory

7.1 Introduction

In this chapter the further extensions of Quine’s work are considered, as are
extensions of Church’s work. The type-theoretical systems provided by these two
logicians proved to be quite influential in the 1940°s and 1950°s as the present chapter
will attest. Apart from work done on these systems, a rejuvenated interest in the ramified
theory of types emerged in the 1950°s most notably in the work of Hao Wang and John
Myhill. Whereas Wang was working towards providing a purely constructivist
foundation for mathematics, Myhill was working simply with the aim of completing
Chwistek’s program (which, although motivated by constructivist concerns, employed a
non-constructive rule of inference). Finally, this chapter will be concluded by

investigating the views of the theory of types as a many-sorted versus a one-sorted theory.

7.2 Church’s Theory of Types (Continued)
As noted in the previous chapter, Church’s simple theory of types was studied
quite extensively after its publication in 1940. In this section the works of Turing,

L’ Abbe, and Buchi will be discussed as extensions of Church’s work on the theory of

types.
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a) Alan Turing

In their 1942 paper “A Formal Theorem in Church’s Theory of Types” Newman
and Turing extend the proof of Church’s ‘axiom of infinity’ to all types which contain “\”
among their symbols. Church showed in his paper that “if Y® stands for
NoaXa—Noa'Ya'.—.So'aXa=Sq'a’Yo—Xa=Yo (@ form of the ‘axiom of infinity’ for type
), Y* can be proved formally from Y' and the axioms 1 to 7, for all types a of the forms
V', 1”,...For other types the question was left open” (Newman and Turing 1942, p. 28).
The proof of the extended case involves not only axioms 1 to 7 and Y*, but also axiom 9
(tl:le axiom of description) and axiom 10 (the axiom of extensionality).

In his review of this paper, Leon Henkin notes that “axioms 1-8 alone do not
suffice to establish this result. For by relaxing the requirement of extensionality only in
type (w), a model can be constructed in which Y®mgng holds only for types a whose
symbol contains “(1t)” (or is “v” itself)” (Henkin 1942, p. 122). Henkin adds that the
extent to which axiom 9 is required remains uncertain as does the question of whether
axiom 10 is needed in all types. The proof provided by Newman and Turing involves
three main steps. These are 1) a proof that their version of the “axiom of mf;nity is
equivalent to the proposition that ‘no member belongs “to its own posterity”’” (Newman
and Turing 1942, p. 28). 2) A proof that if a type o can be mapped one-one to a part of
another type a’, then the axiom of infinity in a” implies the same axiom in a. 3) The
actual construction of mappings from part 2) for the pairs af, o and af, B. The first part
follows from Church’s axioms 1-8 while the second and third steps make use of the

axioms of description and extensionality. Newman and Turing point out that Church’s
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deduction theorem is used throughout. This work is a direct extension of Church’s simple
theory of types. The authors state that they needed to extend his results for applications in
other areas of their research for which they were using Church’s simple theory of types.

Turing continued his work on type-theory in his 1948 paper “Practical forms of
Type Theory”.%* In this paper Turing presents two different forms of the theory of types
where “types themselves only play a rather small part as they do in ordinary mathematical
argument” (Turing 1948, p. 80). The two logical systems are called the “nested-type” and
the “concealed-type” systems. In the nested-type system the “types themselves do not
ir;trude very much” (Turing 1948, p. 90). It is this system that Turing claims is equivalent
to Church’s simple theory of types.

Turing’s nested-type system contains a cumulative type hierarchy. He starts by
considering only a finite universe of individuals Uy,...,Un. These form type 0. Type 1
then consists of functions of individuals, taking individuals as values, together with all of
the individuals themselves. Type 2 consists of functions of arguments in type 1, taking
values in type 1, together with members of type 1. In general, type n+1 consists of
functions of arguments in type n, taking values in type n, together with merribers of type
n.

Turing avoids the use of definitions which require the notion of a function being

undefined for certain values by designating a particular universe U; and renaming it C. In

this way whenever a function would normally be regarded as undefined it is given this

% There are also three unpublished papers in Turing’s archives that deal with Church’s simple theory of
types. These are “Some Theorems about Church’s system” (1941), “Practical Forms of Type Theory II”
(1943-4), and “The Reform of Mathematical Notation” (1944-5).
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designated value, C, instead. That is, “the value of a function is always C unless the
function is of higher type than the argument” (Turing 1948, p. 81). Turing then defines
functions and individuals together as terms. Then propositions are formed by writing
U=V (for terms U and V). Furthermore, if P and Q are propositions, then (~P) and
(P—Q) are both propositions. Finally, if U is a term, then D'U represents the proposition
stating that U is in type . Turing then defines the remaining ways of forming terms and
propositions. IfP is a proposition, then (x,7)P is a term (read “the x in type  such that
P”) while (x,r)P is a proposition (read “P, for all x in type ). The use of a finite universe
is then dropped since it was ado;)ted solely to ease his explanations.

Turing then gives a list of nine rules of procedure. These include rules governing
the use of ‘D" and C as well as rules for substitution, changing bound variables, etc.
Also, an axiom of infinity is stated if the universe is infinite, and if it is not a
corresponding axiom stating the size of the universe is given. Turing claims that the
nested-type system may be proved equivalent, in a certain sense, to Church’s simple
theory of types. Since the proof is long and tedious he does not provide it. Instead he
gives a summary of his form of equivalence which he thinks “has certain interest in itself”
(Turing 1948, p. 89). Essentially Turing says that two systems are equivalent if “we can
translate from either system to the other in such a way that provable propositions translate
into provable propositions again, and so that a double translation gives rise to a
proposition equivalent to the original” (Turing 1948, p. 90). It is with this form of
equivalence that Turing shows his nested-type system to be equivalent to Church’s simple

type theory.
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b) J. Richard Buchi

In his 1953 paper “Investigations of the Equivalence of the Axiom of Choice and
Zorn’s Lemma from the Viewpoint of the Hierarchy of Types”, Buchi uses Church’s
simple theory of types as his logical system. Buchi notes that although it is well known
that Zermelo’s axiom of choice and Zorn’s lemma are equivalent logical assumptions in
set theory, when type-theoretical formalisms are used a proof of this equivalence is
unknown. In fact, in this formalism these assumptions must enter only as spectra of

formulae (ZA®) for Zermelo’s axiom and (ZL") for Zorn’s lemma, for variables of a fixed

type a.

In his investigations Buchi makes use of only 8 of Church’s axiom schemata.
Axioms 1-6® correspond to Church’s first six axiom schemata (which suffice for a logical
functional calculus). Buchi’s 7* corresponds to Church’s axiom of extensionality and his
8 corresponds to Church’s restricted choice principle.65 Finally, Buchi writes (ZA") and
(ZL*) as follows:

(ZA®) is (Ehaton))(ao) ax—a(ha)]

(ZL®) is (Foua).[Pr&Wr]—(Ex,)(ua)[rxu—rux] where ‘Pr’ expresses that 7o quasi-orders
the type a and ‘Wr’ expresses that every r-chain has an r-upper bound.% Thus Zermelb’s
proposition for elements of type a states that a function Aq(e) €Xists, which to every
propositional function with arguments of type o that can be satisfied, selects one

particular element ha for which the proposition ax holds. On the other hand, Zorn’s

% This axiom is @oeXe&(Va)[FodVa—Xe=Val— Goo{tatoa)don) WheTE 1yoq) is @ selection-operator that “chooses” a
“particular element 1wz with the property a, provided that there exists an element x with the property a and
&rovided that any two elements having the property a are identical” (Buchi 1953, pp. 126-127).

Buchi defines ‘quasi-orders’, ‘r-chain’, ‘r-upper bound’, etc. in Church’s symbolism.
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proposition for elements of type a states that to every relation r which quasi-orders type
and has the property W, there exists an element x, which is maximal in the sense that 7z
implies that x and u are equivalent relative to r (Buchi 1953, p. 126).

In section 2 of his paper Buchi shows that for any type symbol a, (ZL*) is a
consequence of axioms 1-6° for several types P, axiom 7% and (ZA%.®” In section 3 of his
paper Buchi shows that for any type symbol a, (ZA®) is a consequence of axioms 1-6° for
several types B, axiom 8 and (ZL™*) for variables of the higher type a(0a).®® Buchi
concludes by summarizing his results in the fourth and final section of his paper. There
he makes three observations. First, based upon axioms 1-8% the: collection of formulas
(ZA") is equivalent to the collection of formulas (ZL"). Second, (ZL**®) for elements of
type a(oa) implies (ZL®) for elements of type a and similarly for Zermelo’s axiom.
Finally, for a fixed type a it is not shown, nor does it seem possible to show, that (ZA®) is

equivalent to (ZL®) nor to (ZLP) for any particular . Buchi’s investigation of Church’s

simple theory of types thus ends on a somewhat negative note.

¢) Maurice L’Abbe
One of Alonzo Church’s students, Maurice L’ Abbe, extended Church’s

formulation of the simple theory of types to include transfinite types.”® He did this in his

67 This is done roughly as follows: first a fixed point theorem is derived for a function Jun, and then an
agplication of this leads to finding the desired A,. (Buchi 1953, pp. 127-131).

% This is done roughly as follows: considering the abbreviation Ryaoayyagon) for
MoatoayAatoaf(Con)[c(fc)—fc=gc] Buchi shows that i) R quasi-orders the type a(oa), ii) an R-maximal element
is a Zermelo selector function, and iii) there exists an R-maximal function haouy (Buchi 1953, p. 133).

®® In this article L’ Abbe mentions other attempts at constructing formal systems involving transfinite types.
These include E. Bustamante’s Ph.D. dissertation Transfinite Type Theory Princeton (1944), and John
Kemeny’s dissertation Type Theory and Set Theory (1949) both of which are based upon Church’s simple
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Ph.D. dissertation, submitted in 1951, some results of which were published in his 1953
paper “Systems of Transfinite Types Involving A-Conversion”. The paper begins with
Church’s system Y of finite types. This simple type hierarchy is based upon type 0 of
propositions and type 1 of natural numbers. L’Abbe sets this system up just like
Church’s, and in fact refers to that work for a more in-depth explication. He then utilizes
the methods found in Henkin’s paper from 1950 in interpreting the formalism with a
model M;. That is, he interprets the theory of types as a many-sorted first-order theory.

L’ Abbe then extends this system to the system ), that includes four different
types, 0, 1, 2, and 3. The domain of type 2 consists of all thf; domains of Yo , while the
domain of type 3 is based upon the types 0, 1, and 2. The variables of type 3 act as
L’ Abbe’s nonsense elements just like Turing’s domain C. In his review, Gandy claims
that this designated domain is not essential; “the nonsense value can be a new element of
type 2...and we thus obtain a system Y,” which is simpler than }’,” (Gandy 1958 p. 361).
Furthermore, since L’ Abbe states that Y'» can be modeled in set theory, so too can Zz'.m

The next step in L’ Abbe’s paper is to prbve the consistency of Church’s system,
Yo, in the transfinite },. In doing this L’ Abbe makes use of Godel numbers.
Furthermore, a truth definition for Y is given in Y. A sketch is finally made of how the
author’s results can be extended to systems Y 3,..., Donye- s Jisee-

These four papers thus show that even in the early 1950’s the properties of type

systems were still being investigated. However, this does not imply that the theory of

theory of types. In his review of L’Abbe’s article, Gandy notes that L’ Abbe failed to refer to Turing’s
nested-type system which provides a particularly good example of this process and also exploits a nonsense
element, as seen above (Gandy 1958, p. 362).

7 More precisely, L’ Abbe claims that it is “possible to prove that the consistency of the Zermelo set theory
Z, including the axiom of replacement, implies the consistency of Y ,” (L’ Abbe 1953, p. 217).
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types was still considered to be the best underlying logic upon which to build
mathematics. Before considering the fate of the theory of types, extensions of Quine’s

work are considered.

7.3 Continuation of Quine’s Work

As noted in the previous chapter, Quine’s work involving the theory of types was
worked on by many logicians in the 1940°s and 1950’s. Some of this work was
mentioned in connection with Qﬁine’s in the previous chapter. In this section further
work on Quine’s New Foundations is presented.

Firstly, in his 1944 paper “A Set of Axioms for Logic”, Hailperin revises Quine’s
set of rules by replacing the infinite axiom schemata R3" by a finite set of axioms.
Hailperin then shows that his system involving the new finite set of axioms is provably
equivalent to Quine’s infinite list. Recall that Quine’s R3" is the rule that ‘If ¢ is
stratified and does not contain x, then (Ex)(y)[yex—¢(x)] is a theorem’. Hailperin
replaces this infinite set of rules with nine axioms. Roughly the first axiom ensures the
existence of the complement of the union of two classes. From this Hailperif; proves the
existence of the complement of a class, the intersection of two classes, the empty class,
and the universal class. The second axiom provides, for any relation R, the cotresponding
relation which is of one higher type. The third, fourth, and fifth axioms allow the degree
of a relation to be mixed. The sixth axiom provides for the domain of a relation, while
the seventh gives the converse domain. The eighth gives the class of all unit classes (that

is, the cardinal 1). Finally, the ninth states that ‘xey’ determines an inhomogenous
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relation (that is, a relation involving x and y which are of different types). Apart from
these, five other axioms are listed to provide for the propositional calculus as well as
providing ways to deal with the abstraction operator. Hailperin then proves the
equivalence of his system with Quine’s New Foundations.™

In their 1950 article “Non-Standard Models for Formal Logics”, Rosser and Wang
follow methods used in Henkin’s doctoral dissertation in which he showed that any
consistent theory has a non-standard model. The authors provide three criteria for “non-
standardicity” and go on to show that there is no standard model for Quine’s New
Foundations. The three ways in which a model is deemed non-standard are: “a) The
relation in the model which represents the equality relation in the formal logic is not the
equality relation for objects of the model. B) That portion of the model which is
supposed to represent the positive integers of the formal logic is not well-ordered by the
relation <. C) That portion of the model which is supposed to represent the ordinal
numbers of the formal logic is not well-ordered by the relation <” (Rosser and Wang
1950, p. 113). The authors claim that it might be natural for one to conclude that since
there is no standard model for the system in New Foundations the system must have no
model whatsoever (and that it is thus inconsistent).

This inference is partially refuted by Rosser and Wang by their claim that it is not
uncommon for strong formal logics to have no standard model. In fact, they show that it

is a property of each familiar logic that if it is ©-consistent then one cannot prove in the

7 Although he makes no mention of it, Hailperin’s approach is a variant of Gédel’s approach in his 1940
monograph on set theory. The first-order Gédel-Bernays set theory which is used there has a finite set of
axioms, in contrast to Zermelo-Fraenkel set theory, which does not.
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logic itself that if the logic is consistent then it must have a standard model.”> The main
claim of this paper is the general statement that if the language L* is related to the
language L in such a way that any standard model for L must be a model for L*, then if L
has no standard model, this fact cannot be proved in L*. In fact this cannot even be
proved in L* together with the axiom stating that L is consistent. Therefore “we cannot
prove in L* that if L is consistent, then L must have a standard model” (Rosser and Wang
1950, p. 123). The proof is roughly as follows. First the authors show that if there is a
standard model for L, and if L" is simply L together with the axiom stating that L is
consistent, then L’ is consistent. From this it is shown secondly that ‘if L is consistent
then L has a standard model’ is not provable (in L or in L to gether with the axiom stating
the consistency of L). The result follows from this.

Rosser continued his investigations of standard models with respect to the New
Foundations in his 1952 paper “The Axiom of Infinity in Quine’s New Foundations”. In
that paper he presents three principal results. The first two of these deal with the status of
.. the axiom of infinity in Quine’s New Foundations. However, as will be seen below, any
‘questions about the status of this axiom were answered by Specker in his 19§3 paper.
The third result that Rosser presents deals not only with Quine’s New F: oundations, but
also the system found in his Mathematical Logic. After showing in his paper with Wang
that New Foundations has no standard model, together with the fact that it is essentially a
part of the system in Mathematical Logic, Rosser shows why it is possible that the larger

system might have a standard model. It is shown further that it might even be possible for

72 They note further that for some even stronger logics this holds simply if the system is consistent as
opposed to w-consistent. ‘
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the New Foundations to be o-inconsistent, while the other system is ®-consistent. Rosser
concludes from this that “such questions as whether a logic is m-consistent, or whether it
possess a standard model, are rather more subjective than objective, in spite of the fact
that in most cases where data are available, there would be general agreement on the
question” (Rosser 1952, p. 241). These sentiments are reiterated by Quine in his “On o-
Consistency and a So-called Axiom of Infinity” (1952) where he urges that the term ‘-
consistency’ should be reformulated.

In the aforementioned investigations, as well as others involving Quine’s New
Foundations, consideration is made of what results when the axiom of infinity is added to
the system in New Foundations. This is due to the fact that it was not known until
Specker’s 1953 paper that the axiom of infinity is provable in Quine’s New Foundations.
It is in his paper entitled “The Axiom of Choice in Quine’s New Foundations for
Mathematical Logic”, that Specker proved the axiom of infinity in Quine’s New
Foundations. Specker did this by actually disproving the axiom of choice. Then, since
the axiom of choice holds for all finite sets, the system in New Foundations must contain
infinitely many elements.

Specker follows the notation in Rosser’s Logic for Mathematicians (1953) which
is itself an extension of Quine’s New Foundations. The proof is done by reductio ad
absurdum. Assuming the axiom of choice, namely that “3.5 The cardinal numbers are
well-ordered by the relation ‘there are sets a,b such that aem, ben and a is a subset of 5’
(Specker 1953, p. 973) Specker produces the two contradictory statements that “5.4 If m

is a finite cardinal number, then m#T(m)+1 and m#T(m)+2”, where T(m) is defined as:
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T(m) = ‘the cardinal number of the set of unit subsets of m’, and “7.4 There is a finite
cardinal n such that n = T(n)+1 or n = T(n)+2” (Specker 1953, pp. 973-974). Specker
concludes his article with a statement pertaining to the generalized continuum hypothesis
in Quine’s New Foundations. This is as follows: “8.1 Generalized continuum hypothesis
in ‘New Foundations’: If m, 2", n are cardinal numbers, m not finite and m < n <2", then
either m=n or n=2". The generalized continuum hypothesis does not hold in ‘NF’. The
proof is by proving the theorem of Lindenbaum and Tarski in “NF” according to which
the axiom of choice is a consequence of the generalized continuum hypothesis” (Specker
1953, p. 974). With this result Specker laid to rest any question as to the status of the
axiom of infinity in New Foundations. That the axiom of choice fails in Quine’s system
came as quite a shock as Quine recounts in his “Unification of Universes in Set Theory”

(Quine 1956, pp. 270-271).

7.4 Ramified Theory Reconsidered
a) Ramified Theory of Types and the Axiom of Reducibility

In the past few chapters it has been made apparent that the simple theory of types
has been used more extensively than the ramified theory, especially since Ramsey’s work
in the 1920°s. However, there are a few exceptions to this general trend. Moreover, it is
the ramified theory without an axiom of reducibility that was developed by certain
logicians such as Hao Wang. The advantage of avoiding the axiom of reducibility was

made clear, besides in Ramsey’s work, also in an article by Quine and one by Copi.
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Before looking at Wang’s system, which incorporates a ramified-type theory, the articles
by Quine and Copi will be considered in this section.

In his “On the Axiom of Reducibility” (1936a), Quine does not argue against the
validity of the theory of types, but rather he takes up Ramsey’s argument advocating the
abandonment of the semantic part of the theory of types.”” Ramsey had proposed that in
Principia Mathematica the theory of types could be divided into two parts: the one
section deals with the properly ‘logical’ paradoxes, while the other deals exclusively with
the ‘semantic’ (and thus non-logical) paradoxes. Ramsey’s arguments rely upon the
meanings that are to be attributed to the variables used in Principia. He claims that the
second set of paradoxes, and thus the second part of the theory of types, has no place in
logical or mathematical inquiries. This is precisely the position which Quine advocates in
his paper. However, he pursues the matter upon “more formal consideration(s]” (Quine
19364, p. 499). This does not mean that he gives a set of formal rules, nor recursive
definitions as to what formulas, terms, and so on are to denote. In fact, Quine simply
gives two arguments. The first of these is not ‘formal’ at all: it deals with the subject
matter of Principia and mention is made of what interpretations are to be m:;de for
predicative functions. It is after he gives this argument that Quine states that “granted the
partial extensionality principle, the above argument shows that either the axiom of
reducibility is not legitimate to begin with, or else both it and the second parf of the

theory of types are superfluous” (Quine 19364, p. 499).

7 The results of this paper are contained in his Ph.D. dissertation which “reformulated the theory of
relations of [Principia Mathematical so that the object language could talk of relations of any number of
arguments, but the object language itself is formulated more precisely than in [Principia}, and the simple
theory of types is adopted” (Follesdal and Parsons 2002, p. 105).
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The second consideration put forth by Quine deals with “a metamathematical or
syntactical application in which analogues of the hierarchy of orders and the axiom of
reducibility are of less doubtful significance” (Quine 1936a, p. 499). However, these
analogues do not deal with the actual subject-matter of Principia. Quine concludes
without altering the original claim that the theory of types minus the second portion of the
theory of types is adequate for avoiding the logical contradictions.

In Copi’s 1950 paper “The Inconsistency or Redundancy of Principia -
Mathematica”, Copi shows that the ramified theory of types, as found in Principia
Mathematica, together w1th the axiom of reducibility is either inconsistent or redundant.
Copi begins by noting that since the authors did not specify any specifically semantic
notions, the Principia system can be assumed to either contain semantic notions or not. If
it does not contain semantic notions, then by the arguments given by Ramsey the ramified
theory of types together with the axiom of reducibility is redundant. Thus Copi next
assumes that the ramified system in Principia contains semantic notions.

Under this assumption Copi shows how Grelling’s paradox can be reinstated after
the theory of types eliminates it. Under this second assumption Copi thus cd;lcludes that
the ramified Principia system, with an axiom of reducibility, is inconsistent. Thus Copi
reaches his desired conclusion. It should be noted that the redundancy which Copi
presents differs from that produced by Quine since Copi’s does not depend upon the
axiom of extensionality. Copi notes that Quine showed that the ramified theory of types
together with the axiom of reducibility, as well as the axiom of extensionality, is

redundant.
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Copi also draws out the similarities between the ramified theory of types and the |
theory of levels of languages. In his review of Copi’s paper, Church lists this as perhaps
the most important aspect of Copi’s work. Copi states that the theory of levels of
languages is “very like the theory of orders, because the contradiction is evaded by
arranging that certain symbols of the meta-language are defined over certain ranges”
(Copi 1950, p. 198). However, Copi also notes that there are fundamental differences
between the two theories. Most notably, the ramified type theory depends on the axiom
of reducibility if a large portion of classical mathematics is not to be lost, while the levels
of language device does: not.

With these arguments so deeply entrenched the choice seems to reduce to that
between the simple theory of types and the ramified theory of types without an axiom of
reducibility. The later course was taken by Chwistek, as discussed in Chapter 2. Since
Ramsey’s distinction between the uses of the simple theory of types for the “logical
paradoxes” and the ramified theory of types for the “semantic paradoxes” the simple
theory of types was favored. However, some logicians later tried to investigate theories

involving ramified-type systems. Several of these will now be investigated. |

b) Wang’s System

In his 1954 paper “The Formalization of Mathematics”, Hao Wang setsup a
ramified theory without recourse to an axiom of reducibility. However, Wang’s system,
2., differs from the regular ramified theory in that the two distinctions ‘order’ and ‘type’

are replaced by the one concept of ‘order’. This is done by allowing a mixing of types in
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the following way. The lowest order (the 0™ order) consists of some denumerable totalit
(which may be the positive integers or all finite sets built up from the empty set, for
example). The first order then consists of everything in the 0™ order together with those
sets that can be defined by properties that refer to at most the totality of all sets of the ot
order.” In general, the (n+1)th order contains all sets of order n together with sets
defined by formulas with bound variables from the nth and lower orders only.

This hierarchy of orders is then extended to infinity as follows. The sets of order
o include all sets of the finite orders. Then for an ordinal o+1 the sets of order a+1
consists of all those sets of order a together with sets d:efmed by formulas having bound
variables of order a and lower orders only. Furthermore, for ordinal numbers, B, that are
limit numbers of monotone increasing sequences ao, di,... of ordinals, the sets of order
consist of all and only those sets of orders aq, ay,.... Thus, in Wang’s construction those
sets of order higher than 0 are constructed according to the vicious-circle principle, and
the orders are constructed cumulatively.

Using the above cumulative hierarchy, Wang goes on to list the axioms for 3.
These include axioms for identity; infinite summation where for every limitiﬁg ordinal a,
if B<a, then for every xp, there is a y,, such that xg=y,; abstraction; foundation; bounded
order where if xey and y is not of higher order than x, then there exists a z of order lower
than y such that x=z; and limitation, which is dealt with below (Wang 1954, p. 248).
Furthermore, identity is defined in terms of equal extensions; thus Wang most likely

views all of his objects as sets.

7 Thus, the formulas corresponding to these properties must not contain bound variables of any order
besides the 0™ order.
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The power of Wang’s system seems to come from the fact that Y’ is the union of
all formal systems } ,, where Y, deals with all of those sets which are of order less than or
equal to . Wang is then able to refer to the partial systems in order to make “quite exact
statements about the comprehensive theory ) ” (Wang 1954, p. 249). Several interesting
features thus arise by looking at the partial systems in isolation. For instance, Wang
claims that “I. For each a, we can find a function E of order a+2, such that E,
enumerates all sets of order «; or, in other words, the domain of E,, is the set of all
positive integers and its range is the universal set V, cor}sisting of all sets of order o.

I1. For each a, we can find a truth definition of E, in Eq+; and formalize a consistency
proof of E, in Eq+p” (Wang 1954, p. 249).7

It is with these E, functions that Wang states his powerful axioms‘ of limitation;
namely that “for each order a and each set x,, there is a positive integer m such that Eq(m)
is xo”” (Wang 1954, p. 250). These axioms show that E, well orders all sets of order a,
and so certain axioms of choice can be proved. Furthermore, the continuum hypothesis is
not independent of the other axioms and is in fact provable or refutable according to
whether equi-cardinality is defined by the existence of a one-one mapping b;etween sets
within Eq.+ or within E, itself.

Finally, in Wang’s system, as opposed to the regular ramified theory of types
without an axiom of reducibility, the theorem of least upper bound, the Bolzano-
Weierstrass theorem, and the Heine-Borel theorem are all provable. This is due to the

cumulative nature of Wang’s system. Furthermore, Wang sketches a proof, similar to

7 The truth definition must occur in a system of order two higher than the original, that is of order a+2
instead of a+1, since these definitions require formulas which contain bound variables of order a+1.

111



Fitch’s 1938 proof, showing that each ¥, is consistent.”® Then, since > is the union of all
2.q the consistency of ) follows immediately.

Wang notes that the ramified theory of types is roughly equivalent to the system
2. Without variables of order ®. With this in mind he attempts to show that the axiom of
reducibility is unnecessary in the regular ramified theory of types since he can speak of
functions or sets of all orders at the same time within his Y. He does this by showing
that in using general variables which range over all sets (of any order of the same type),
mathematical induction, the definition of identity, and the Dedekind construction of the
real numbers can all be formulated within Y, without recourse to the axiom of —
reducibility. Since these were the three most important reasons for which Russell
introduced the axiom, Wang claims that it is superfluous.

The one serious drawback of Wang’s system is that Cantor’s proof for the
theorem that the power set of a denumerable set contains more members than that set,
breaks down in }',. This is a similar problem that Quine struggled with for his New
Foundations as mentioned in the previous chapter. Wang simply points out that from the
constructivist point of view this is not only not an objection to Y, but it is a"rpo int in its
favor. This is so because by proving the existence of any infinite number beyond aleph-

zero, impredicative definitions are indispensable. Finally, the key difference that Wang

sees between his theory, Y, and the ordinary ramified theory without the axiom of

7 Fitch provides a proof for the consistency of a formal system based on the ramified theory of types in
which a definition of “truth’ has been given. Roughly, “a consistent non-constructive system S* [is] defined
by means of induction with respect to a serial well-ordering of all the propositions” (Fitch 1938, p. 140) of
the system to be proved consistent. Then it is shown that every true proposition of the system in question is
a true proposition of S’. In his review of Fitch’s paper Bernays notes that a definition of truth, in the sense
of Tarski and Carnap, can be set up for the formulas of ramified type-theories since the formulas can be
interpreted “in such a way that every variable ranges over formal expressions” (Bernays 1939, p. 97).
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reducibility lies in his use of transfinite orders. Furthermore, the axioms of limitation are
seen as a new feature that has never been investigated in standard forms of set theory. In
conclusion, Wang’s motivations for using a ramified-type theory definitely come from his
constructivist philosophy of mathematics and not from the necessity of avoiding the

semantic paradoxes.

¢) Myhill’s System

Similarly to Wang, John Myhill attempted to find a foundation for mathematics
based upon a ramified type theory. In a series of papers’’ Myhill attempted to compiete
Chwistek’s program of building mathematics upon a ramified type theory that includes a
variant of the axiom of reducibility. His system is like Wang’s in that it is cumulative
with no highest type. However, Myhill’s hierarchy is inverted. Thus, type 0 is all
inclusive and classes always have members of higher types than themselves.

Myhill is able to avoid vicious-circle definitions by stating that “if quantifications
are made over the nth type in a formula, that formula belongs to the #-1* type at highest.
It follows that there is no quantification over the zero type” (Myhill 1951, p.‘ 35).
Myhill’s system fails to be constructive, however, since he uses a non-finitary
consequence relation. This relation allows for certain formulae to be regarded as
consequences of certain classes of formulae.

This non-constructive system can be shown to be consistent with a proof similar

to that found in Fitch’s 1938 paper (and hence also along lines used by Wang). Myhill

77 Myhill 1949, 1951, 1951a.
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also considers auxiliary systems Q(1), Q(2),...and then the comprehensive system Q(o0).
Q(o0) contains as its theorems all those formula that are theorems of every Q(%), and is
thus the union of all of the auxiliary systems. From this statement Myhill lists seven
theorems that follow easily. These include that 1) Q(0) is consistent, 2) Q(w) is closed
with respect to infinite induction, 3) every quantificationally valid formula is a theorem of
Q(c0) and, 4) an analogue of the axiom of reducibility is a theorem.”

In the final paper of the series Myhill is able to continue deriving interesting
results. In that paper he is able to derive analogues of Bourbaki’s axiom system for set
theory.” The analogues, of course, contain certain type-restric;tions. Most notably, he is
able to derive axioms of choice and infinity.* Myhill notes in an added note to his paper
that “the referee of a previous version of this paper expressed astonishment that the sum-
class axiom and the axiom of replacement were not included by Bourbaki” (Myhill
1951a, p. 136). Myhill states these axioms in Bourbaki’s symbolism and then provides
simple proofs of their analogues in his system.

Despite these missing axioms, Myhill lists three reasons for choosing Bourbaki’s
as the standard set theory by which to judge his system. These are “1) their gimplicity, 2)

their similarity to set theory, and 3) Bourbaki’s statement that they are adequate for all the

"8 The analogue being the following: “Let us denote by ‘[¢],’ the result of writing a for all occurrences of
‘0’ in @. @ is a theorem of () if and only if [@], is” (Myhill 1951, p. 39).

7 Bourbaki 1949.

% Bourbaki’s axioms as listed by Myhill are as follows (where zxy is synonymous with z=(x,)) (Bourbaki

1949, pg. 81)): The closure of the following are theorems 1) x=x, 2) (x=y.Fx)—Fy, 3) (Ex)xlyz, 4)
(hz.wyz)—x=w, 5) lyzxluw)—(=u.z=w), 6) [(x)xey>xe2)]—=y=z, 7) (Ex)()(yex—yez.Fy)),

8) Ex)(y)yex —~(EzXEw)yizq.z6u.wev)), 9) (Ex)y)yex>(u)uey—ruev)), 10)
[xey.(2)(zey—(Ew)(wez)).(w)(v)((wey.vey)—>(a)~(asw.aev))] —
(EB){()(teb)—(EsXtes.sey)).(r)(rey—(ER)Ym)Y(mer.meb)—~(m=h)))}, 11)

(Ex)(Ey)Ez)(xey.(u)(uez—(w)(weu—wey)).(Nfey—(Enrez.(m)mer)y—>(m=))).(O(v)((tez.vez) —
(Ea)(aez.(h)(heas(hetvhev)))).~yez) (Myhill 19512, p. 132).
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mathematics of the present déy” (Myhill 1951a, p. 132). Although Myhill was successful
in many of his pursuits, his plans to further the results in his system were never carried
through. These plans were to show that the non-extensional Bourbaki system contains a
model of the extensional Bourbaki system. Myhill wanted to do this since his system was
non-extensional. However, Myhill never published any further articles addressing this
open problem. It must be concluded then that he was unable to accomplish the tasks that

he set for himself.

7.5 Type Theory as a Many-Sorted Versus a One-Sorted Theory

In their book on the foundations of set theory, Fraenkel and Bar-Hillel state what
they see to be the most serious disadvantage to the simple theory of types. This is mainly
just that set theory based upon the simple theory' of types does not enjoy the proof
procedures of a complete underlying logic, such as first-order logic (Fracnkel and Bar-
Hillel 1958, p. 191). The shift from the theory of types as the most widespread
underlying logic to first-order logic as the basis for mathematical investigations seems to
be largely due to this fact. The work done by Tarski and the logical group silrrounding
him at Berkeley helped to usher in this new wave of dependence upon first-order logic.
Discussion of this shift is beyond the scope of this thesis. What will be investigated in the
final section of this chapter is the procedure of changing the theory of types from a many-

sorted to a one-sorted theory.
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In his 1952 paper “Logic of Many-Sorted Theories”, Wang showed how any
many-sorted theory can be converted into an equivalent one-sorted theory.®! The
essential part of this process lies in introducing predicates, S;. When applied to variables,
these predicates are meant to state which type the variable would belong to, although
since the theory is converted to a one-sorted theory, the variables all range over the same
set. Thus Si(a) would mean that a belongs to the ith type.

In his paper Wang uses the simple theory of types as put forth by Gédel in his
1931 paper. Wang uses this theory as an example of how to change any many-sorted
_ theory into a one-sorted theory. He does this since he views the simple theory of types as
a prototypical many-sorted theory. This is the technique that Quine uses in his 1956
paper. There he applies the process to Principia Mathematica and arrives at what he calls
the standardized theory of types.

This conversion allows for a translation between the simple theory of types and
Zermelo’s set theory. Although the universe is still divided into types, in any given
- context the variables are not only typically ambiguous, but rather, they range over all
- types. In this way the many-sorted theory becomes a one-sorted theory; Oné system that
Quine sets up, which is treated in Fraenkel’s book, is the following. Certain predicates,
definable solely in terms of ‘e’ are set up. ‘Ty’ is the predicate that holds only for

individuals, ‘T’ holds only for classes of individuals, and so on. The axiom-schemata of

8! Wang also refers to the first use of the term ‘many-sorted’. He attributes this first use to Langford’s 1939
review of Arnold Schmidt’s 1938 paper, “Uber deductive Theorien mit mehreren Sorten von Grunddingen™.
In that review Langford translates the word ‘mehrsortig’ as ‘many-sorted’.
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comprehension and extensionality then have altered forms so as to not refer to types
directly. These now take the following forms, respectively:

ENNTr1 () &) (Ta(x)—(xeyo(x)))] and
Tr1()&Tr1 () &(W)(Tr(w)—>(wex > wey))—x=y.

A third axiom is then added in order to maintain the stratification of types occurring
between sets and their member. This axiom takes the following form.
xey=(Tp(x) = Trn1(»)).

Fraenkel and Bar-Hillel interpret these results with the following passage: “Half a
century after Zermelo and Russell published their theories, independently of each other
and starting from seemingly totally different and even contrary approaches, an almost
complete reunion of these theories is now in full view” (Fraenkel and Bar-Hillel 1958, p.
191). This process of altering the theory of types from its original many-sorted nature
into the one-sorted nature began most distinctly with the use of cumulative types.
However, it was not until the transition between many and one-sorted theories was made
exact that conclusions such as Fraenkel and Bar-Hillel’s could be drawn. Indeed, in his
“The inceptions of ‘New Foundations’” Quine mentions that “I had not yet appreciated
how naturally [Zermelo’s] system emerges from the theory of types when we render the
types cumulative and describe them by means of general variables. I came to see this
only in January 1954 (Quine 1987, p. 287). This date of 1954 refers to the writing of his

“Unification of Universes in Set Theory” as described above.
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8. Summary and Conclusion

In this thesis the developments of the theory of types have been studied. The
theory was originally proposed by Russell as a method of avoiding the set-theoretic
paradoxes. Russell did much work on the theory, altering its initial form substantially.
By the publication of the first edition of Principia Mathematica the theory had attained a
secure place in the foundations of Russell’s mathematics. However, this formulation of
the theory of types still fiepended upon the axiom of reducibility.

Several logicians responded to the dependency of Russell’s type-theory upon the
axiom of reducibility negatively; among these were Weyl and Chwistek. Both of these
logicians attempted to avoid the axiom of reducibility building mathematics upon purely
constructive grounds. However, without that axiom no one was able to retain all of
classical mathematics while developing mathematics in their logical system. In the
introduction to the second edition of Principia Mathematica Russell commended the
attempts at avoiding the axiom of reducibility and tried to do so himself. Russell used
- Wittgenstein’s conception of functions as extensional entities and worked out its
consequences. However, without the axiom of reducibility Russell was still unable to
deal with such common mathematical notions as the least upper bound of a set of real
numbers.

The desire to avoid the axiom of reducibility, while maintaining large portions of
classical mathematics, also motivated Ramsey’s work on the theory of types. Ramsey

tried to improve the work done in Principia Mathematica. He took Wittgenstein’s notion
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of extensional functions, that Russell had also adopted, one step further. While doing this
Ramsey was able to make the distinction between two different kinds of paradoxes —
those that he called “logical” and those that he called “semantic”. He then argued that
only the simple theory of types was needed to avoid the logical paradoxes. Furthermore,
the ramified theory, which was the only part in which the axiom of reducibility was used,
was developed only to deal with the semantic paradoxes. In Ramsey’s conception of
logic these paradoxes had no part. Thus the ramified theory, and the axiom of
reducibility, could be dispensed with without sacrificing parts of classical mathematics.
Despite the fact that ali subsequent logicians followed Ramsey’s distinction between
different kinds of paradoxes, the methods he employed were not generally accepted. For
instance, Carnap disagreed vehemently with Ramsey’s use of impredicative definitions.
However, Carnap did incorporate a simple type-theory into his Logical Syntax of
Language. In fact, the simple theory of types came to be used by many as the basis of
their logic.

It was not until 1931 that the simple theory of types received its first formal
treatment. Both Tarski and Godel formally formulated the simple theory of types. Their
forms of the theory were quite influential and became the standard by which many
logicians judged their work. In particular, Quine used Tarski’s formulation as the starting
point for several of his investigations into the possibilities of altering the theory of types.
Much work was done on Quine’s two works which aimed at improving the theory of

types; namely his New Foundations and his Mathematical Logic. Church also worked on
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the theory of types and many of his students worked within his type-theory which
incorporated his lambda-operator.

It was the simple theory, as opposed to the ramified theory of types that was used
almost exclusively during the years following Ramsey’s work. However, as seen in the
previous chapter, in the 1950’s there occurred a revival of the ramified theory of types.
This revival of ramified-type theories coincided with the consideration of cumulative type
hierarchies. This is most evident in the work of Hao Wang and John Myhill. The
consideration of cumulative type-hierarchies altered the form of the theory of types in a
substantial way. The theory was altered ev;n more drastically by changing the theory
from a many-sorted theory into a one-sorted theory. This final “standardization” of the
theory of types in the mid 1950’s made it not much different from first-order Zermelo-
Fraenkel set-theory. The theory of types whose developments have been traced in this
thesis therefore lost its prominence as the foundation for mathematics and logic.

This decline of the prominence of the theory of types emerged from various
sources. For instance, the technical complexities of the theory were seen as a burden
almost from its initial proposal. Indeed, in Russell and Whitehead’s Principia
Mathematica, instead of using the prescribed type-subscripts a device of typical
ambiguity was employed. In this way the tedious application of adding type-indicating
subscripts for every formula was avoided. This desire to avoid explicit use of type-
subscripts was carried over into Quine’s work in, for example, his New Foundations.

Although many logicians did actually carry out the work of ensuring that type-indices
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were used conscientiously in their work, there is no denying that this was a tedious affair
to be avoided, if possible.

Furthermore, while the theory of types proved to make much work quite
technically difficult, the work being done using first-order logic as a basis proved to be
relatively not very technically cumbersome. Also, the proof-theoretic techniques available
to first-order logic gave ample reasons for many to utilize that system of logic in place of
the complicated theory of types. Finally, with the standardization of type theory making
it not much different from ﬁrst-ordgr Zermelo-Fraenkel set theory, the need to use such a
complicated device as the theory oi; types seemed pointless.

Apart from the technical complications there were other drawbacks facing the
theory of types. For instance, in Henkin’s 1950 paper the theory of types is viewed as a
functional calculus of order @. Thus quantification is allowed to range over the various
types while the rules governing each level come from first-order logic. The problem with
this @-order logic is that it is essentially incomplete (whereas first-order logic is, of
course, complete). The incompleteness of this logic already occurs at the second order; it
was shown by Godel in his 1931 paper that for the functional calculus of the second-
order, no matter what set of axioms are chosen, the system contains a formula which is
valid but not a formal theorem. Here a valid formula is one which is true “whenever the
individual variables are interpreted as ranging over an arbitrary domain of elements while
the functional variables of degree n range over all sets of ordered n-tuples of individuals”

(Henkin 1950, p. 81). Now, since the w-order logic (the theory of types) contains the
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second-order logic, it too is incomplete.®* Thus, the abandonment of the theory of types
does not seem too surprising with these considerations. Not only was the theory far too
technically complicated, but it also was not as semantically well-behaved as the first-

order logic that was to take its place as the foundation for mathematics.

82 In his paper Henkin shows that with a different definition of validity the second-order calculus, and in
fact the w-order logic, is complete. For his new definition a formula is deemed valid if, again, the
individuals are interpreted as ranging over an arbitrary domain of elements, but now the functional variables
are interpreted as ranging over an arbitrary class of sets of ordered n-tuples of individuals (Henkin 1950,
pp. 81-82).
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