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Abstract

This thesis traces the development ofthe theory of types from its origins in the

early twentieth century through its various forms until the mid 1950's. Special attention is

paid to the reception of this theory after the publication of the second edition of

Whitehead and Russell's Principia Mathematica. We examine how the theory of types

declined in influence over four decades. From being in the 1920s the dominant form of

mathematical logic, by 1956 this theory had been abandoned as a foundation for

mathematics. The use and modification ofthe theory by logicians such as Ramsey,

Carnap, ChurctU Quine, Gddel, and Tarski is given particular attention. Finally, the view

of the theory of types as a many-sorted first-order theory in the 1950's is discussed.

It was the simple theory, as opposed to the ramified theory of types that was used

almost exclusively during the years following the second edition of Principia. However,

it is shown in this thesis that in the 1950's a revival of the ramified theory of types

occurred. This revival of ramified-type theories coincided with the consideration of

cumulative type hierarchies. This is most evident in the work of Hao Wang and John

Myhill. The consideration of cumulative tlpe-hierarchies altered the form of the theory

of types in a substantial way. The theory was altered even more drastically by being

changed from a many-sorted theory into a one-sorted theory. This final "standardization"

of the theory of types in the mid 1950's made it not much different from first-order

Zermelo-Fraenkel set-theory. The theory oftypes, whose developments are traced in this

thesis, therefore lost its prominence as the foundation for mathematics and logic.
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1. The Theory of Types Introduced

1.1 Introduction

This thesis will trace the development of the theory of types fiom its origins in the

early twentieth century through its various forms until the mid 1950's. By this later date it

had lost any prominence that it once had as a foundation for mathematics. Special

attention will be paid to the reception of this theory after the publication of the second

edition of Whitehead and Rusself s Principia Mathematica. We examine how the theory

of types declined in influence ovbr four decades. From being in the 1920s the dominant

form of mathematical logic, by 1956 this theory had been abandoned as a foundation for

mathematics. The use and modification of the theory by logicians such as Ramsey,

Carnap, Churc[ Quine, Gttdel, and Tarski will be given particular attention. Finally, the

view of the theory of types as a many-sorted first-order theory in the 1950's will be

discussed.

There are two fundamental formulations ofthe theory oftypes; the simple theory

and the ramified theory. Inthe simple theory of types a certain domain is specified as the

domain of individuals. These are assigned to the lowest type (say type 0). Classes and

functions are then stratified into a hierarchy of types. In the case of classes, for instance,

type 0 consists of the pre-specified domain of individuals, type I consists of classes of

individuals, type 2 consists of classes of classes of individuals, and so on. The main

restriction here is that the members of a class of type n*l must all be oftype n.



Furthermore, all classes must belong to some one type; those that do not are deemed non-

existent and discussion of them is prohibited within the system.

This stratification was initially proposed as a way to avoid Russell's paradox.

This paradox arises by making the seemingly natural assumption that any condition

defines a set. With this assumption Russell considered the set of all sets that do not

belong to themselves. But if it is then asked whether this set belongs to itself or not the

contradiction arises; for if it does belong to itself, then by its own defining condition it

does not, and vice versa. Applying the simple theory of types described in the previous

paragraph it is easily seen how this contradiction is avoided; within the simple theory of

types self-membership is meaningless, the question would never arise whether a set could

or could not be a member of itself. Furthermore. the 'set of all sets not members of

themselves' would never arise since 'not a member of oneself is ill-formed by the theory.

This theory can be succinctly explained as follows. Each variable belongs to a

specific type 0, 1,2, ..., and so on indicated by right subscrips. The atomic formulae are

of the form'pe2g' where the type of p must be exactly one lower than the type of 26, and

'U:26' where p and l are of the same type. Furthermore, there is an axiom-schema of

extensionality:

(x;)(yi)[(zi-t)(zi-p ri e zi-ft /i) -+ x i : yi]

and an axiom-schema of comprehension:

(Eyi+r)(.riXxi e yi+t.' q(x)1.

The ramified tlpe theory, on the other hand, includes a distinction between

'orders' as well as 'types'. Variables are given two different indices; one indicates the



type of the variable, and the other the level. The axiom-schema of comprehension then

changes to: If7 is the highest order of any bound variable of level l+l occurring in rp(fii),

then (E;+ryi*rXrxi)[rxi t j+ryi+r * g(rxi)] where the left subscript indicates the order of the

variable. Within this ramified type theory, a large portion of mathematics cannot be

formulated. For instance, the least upper bound of a class of real numbers will be of a

higher order than any of the numbers which are used in its construction.

In order to reinstate these portions of classical mathematics an axiom of

reducibility is sometimes posited. This axiom ensures that for each class of a certain level

and any order, a corresponding class of the same level and order.l exists such that the two

classes contain the same members. It will be seen throughout this thesis that the status of

the axiom of reducibility played an integral part in the development of the theory of types.

This is most notable in the choice between a simple versus a ramified theory.

The ramified theory oftlpes is required when one begins to consider relations (or

functions of more than one variable). Considering relations oftwo variables, one can

quantiff over either variable. To overcome this confirsion d hierarchy of orders is added

tothehierarchyoft1pesinsuchawaythattworelationscanbeofthesamet1pe,andyet

of a different order.l Russell introduced the ramified theory as a natural extension of the

simple theory. However, he did not explicitly distinguish between the two; the

introduction of orders was simply the next necessary step in his process. This was

necessitated by his treatment of classes, relations, and functions as will be seen in the

second chapter of this thesis.

I The order refers to the difference in bpe ofthe variables being related. For example, if x is of6rpe I and
y is of type 3, then a relation between x and y would be of order 2.



The theory of types is closely connected with the distinction between functions

and their arguments. This distinction was made explicitly by Frege in both his

Begrffischrift (1579) and more fully in his Grundgesetze der Arithmetik (1893). This

distinction is clearly needed before any distinction between types of arguments for

functions can be made. However, Church argues in his 1939 paper "Schrdder's

Anticipation of the Simple Theory of Types", that Frege's work cannot properly be seen

as an anticipation of the theory of types. Schrdder's work, on the other hand, is seen as

the frst step towards a simple theory of types. The theory of types was not explicitly put

into use until the beginning of the twentieth century. At that time Russell gave a tentative

sketch of the theory in an appendix of his The Principles of Mathematics (1903). The

theory was put forth as a method for avoiding the paradox that Russell had discovered

while his book was on its way to print. Thus, in this frst chapter a brief outline will be

given of Schrtider and Frege's possible anticipations of the theory of types, together with

a review of the contradictions which the theory of types was designed to overcome.

In his The Principles of Mathematics Russell realizedthat his theory of types was

being given in outline only; he even listed some of the problems which it failed to solve.

Unable to overcome these difficulties, Russell abandoned the theory of types by the

middle of 1903. In the hopes of supplanting the theory of types several different

procedures were investigated by Russell in a 1906 paper. These were the zig-zagtheory,

the theory of limitation of size, and the no-class theory. There is no mention made of the

theory of types in that paper. Dtuing this period between 1903 and 1908 Russell spent

the majority of his time developing his substitutional theory (which is called the no-class



theory in his 1906 paper). However, by 1906 or 1907 Russell had returned to his theory

of types and in a paper of 1908 he developed the theory more fully. This transitional

period in Russell's work will be discussed in the second chapter. A consideration of the

motivation behind Russell's study of the foundations of mathematics, and his early

logicism, is essential to understanding his work in the theory of types and the various

alternatives that he considered. Thus his motivations in this period are highlighted.

Russell's next use of the theory of types occurred rn Principia Mathematica

(1910-1913). The version ofthe theory of tlpes put forththere will also be compared to

previous versions in chapter 2. Finally, the role of propositions, classes, and functions in

Russell's logical systems will receive special attention as their status seems to correspond

to variations in his theory of types.

The second edition of Principia Mathematica (1925-1927) Ieaves the text of the

first edition uncbanged. The main improvements appear in an introductiorl where the

most important contributions to mathematical logic by other authors in the intervening

years are listed. The improvements that bear directly upon the theory of tlpes include the

work done by Chwistek, in which the axiom of reducibility is dropped altogether (with no

replacement), and Wittgenstein's new conception ofthe nature of functions as found in

his Tractatus Logico-Philosophicus (1922). Although not mentioned in the Principia

introduction, Weyl also made some contributions which influenced subsequent work in

the theory of types. Weyl, like Chwistek, used constructive methods in his avoidance of

the logical paradoxes and he thus saw the axiom of reducibility as untenable. These



works will be discussed in the third chapter of this thesis, together with the changes

proposed in the second edition of Principia.

Wittgenstein's newly introduced views of functions and propositions were also

incorporated into Ramsey's work dealing with the theory of types. Like Chwistek and

Weyl, Ramsey attempted to eliminate the need for an axiom of reducibility. However,

Ramsey's severely realist position with respect to classes clearly conflicts with Chwistek

and Weyl's constructivist attitudes. Many of Chwistek's results anticipated Ramsey's,

but the methods they implemented were motivated by different concerns. Ramsey argued

in favor ofthe use of impredicative definitions and for the simple theory of types. While

urging the use of his simple theory of types, Ramsey explicitly distinguished between two

different kinds of contradictions; those which he calls "logical" versus those that he

claims rely upon purely linguistic or "psychologicaf'references (Ramsey 1925,pp.17l-

172). Since it is impossible to formulate the "semantic" antimonies within a formal

language, it is only the logical ones that affect the fonnal development of mathematics

(according to Ramsey). Thus Ramsey urged that the second set of paradoxes, and hence

the axiom of reducibility which was needed only in dealing with antimonies of this kind,

be dispensed with entirely. Ramsey firther proposed the use of propositional functions in

extension as the basis for logical elements. This extensional version of the theory of

types, as well as the classification of different kinds of antimonies, proved to be very

influential.

Like Ramsey, Rudolf Carnap embraced the work of Wittgenstein. Wittgenstein's

notion that mathematics and logic are simply a collection of tautologies and say nothing

6



about the world fit in well with Carnap's conceptions as formulated in his work with the

Vienna Circle. However, Carnap rejected Ramsey's solution of the paradoxes stating, as

Frege had done, that only those entities whose existence can be proved in finitely many

steps may be taken to exist. In his Logical Syntm of Language (1937), Carnap came to

the conclusion that all of logic, mathematics, and philosophy could be developed in

syntactical fornl ultimately reducing to the logical syntax of language. This new

argument rests upon the Principle of Tolerance according to which any language deserves

study for its own sake and can be employed to make other studies more convenient. In

the Logical Syrtm of Language, two systems are developed. The second of these

incorporates a simple theory of types. Camap's work motivated many subsequent works

using a theory oftypes. In chapter 4 a comparison of Ramsey and Carnap's contributions

and use ofthe theory of types is discussed.

The theory of 6pes did not receive its first truly formal treatment until l93l in the

works of Tarski and Gddel. Indeed, the formulations given in Tarski's paper ontruth and

Gtidel's incornpleteness paper were later referred to several times by Quine as the ..neo-

classical theory oftypes" (Quine 1985, p. 86). Until 1935 Tarski used a simple theory of

types as his basic logical system (see for example Tarski 1956, pp. 61, 113-l 15,Z4l-243,

297,384). In the paper on truth Tarski gives his typical statement of a simple tlpe theory

using axioms of comprehension (which he calls 'lseudo-definitions" following

Lesniewski), extensionality, and infinity. Even in his 1941 book Introduction to Logic

the theory of classes is based on a distinction between levels which Tarski acknowledges

to be akin to Russell's logical tlpes (see sections 2l&23,pp. 68, 73-74). However, in the



1935 postscript to the German edition of his paper on truth (Tarski 1956, p. 271) it is

indicated that he had shifted from the theory of types to first-order Zermelo-Fraenkel set

theory (with an axiom of choice) as the best way to formulate his work. In chapter 5

Tarski and Gddel's versions of the theory of types are outlined and compared. Also, the

reasons behind Tarski's abandonment of the theory of types will be traced.

As mentioned above, Quine regarded Tarski and Gddel's work onthe theory of

types very highly. In fact, in some of his early works Quine used these versions ofthe

theory of types as a starting point in his logical investigations. In his'New Foturdations

for Mathematical Logic':6en1,for instance, he modifies Tarski's theory of types to

form his own system that avoids specific reference to types. This work was later

extended to that found nbrs Mathematical Logic (1940). In both of these works specific

references to types are avoided by instead using "stratified formulae". These formulae

are required to be such that subscripts could be added to the variables, indicating the tlpe

of the variable, so as to be consistent with the simple theory of types. Despite this initial

influence ofthe theory of types in Quine's work, like Tarski he eventually restricted his

logic to a first-order predicate logic.2 Churctu on the other hand, initially set out to

provide a system of logic which completely eliminated any reliance upon type

distinctions. However, after this system was shown to be inconsistent by his students,

Kleene and Rosser, Church was forced to abandon his lofty pursuit. The system was not

altogether unfruitful though. From it an important subsystem was singled out; namely

Church's lambda-calculus. In 1940 Church put forth a formulation ofthe simple theory

2 However, his tlpe-inspired system provided years of research for other logicians.



of types which included his lambda-operator.3 Both Quine and Church's work in the

theory of types proved to be quite influential and their systems were studied extensively.

Chapter 6 of this thesis is devoted to a study and comparison of Quine and Church,s

views on the theory of types.

The seventh chapter of this thesis includes an investigation of work that arose

directly from church and Quine's work in the theory of types. In particular, the

rejuvenation ofthe ramified theory of tlpes will be highlighted. This is especially

prevalent in Hao Wang's work, but also in the work of John Myhill who strove to
:

complete the work initiated by Leon Chwistek. Finally, the theory of types as a many-

sorted first-order theory will be investigated.

1.2 Frege and schriider - Anticipations of the simple Theory of rypes

Prior to the discovery of the paradoxes of set theory there was a partial

anticipation of the simple theory of tlpes. Since the set-theoretic paradoxes were not yet

knowru the motivation behind this first formulation was different from Russell's. Church

claims in his paper "schrcider's Anticipation ofthe Simple Theory of T1pes", that

Schrdder's work in the first volume of his Algebra der Logik(l890) can be viewed as a

"striking anticipation of the simple theory of types" (church 1939, p. 40g).

According to Churc[ Schrdder's anticipation can be seen as follows. He starts

out with a universal class, not in the absolute sense, but as composed of all ofthe

3 It is worth noting that throughout his career Church was a consistent defender of highe-order logical
s)Btems. Also, he emphasized the role ofthe axiom of infinity as a crucial frontier b&ir"* i"Li. -amathematics.

9



elements of a domain which is specified in advance. Given this arbitrarily chosen

universal class a second one is obtained by taking the individuals to be precisely the

subsets of the initial domain. Schrdder's algebra is equally applicable to this newly

formed domain. Furthermore, the null classes found in each domain must be kept

distinct. This process of creating a hierarchy of new domains may be extended to infinity

(Schrcider 1890, p. 248).

Church further enunciates Schrdder's anticipation of the simple theory of types as

follows:

If 0 is the null class associated with the lnst domain" 0 the null class associated

with the second ("derived") domain, ard A the class composed of the two

elements 0, 1, where 1 is the universal class associated with the first domain, then

Schr6der would regard 0S0 as false (not meaningless) and 094 as true. Actually,

however, this divergence from an exact anticipation of the simple theory of types

is apparent rather than real; it means that we must interpret Schrdder's symbol 0

within the algebra of the first domain as meaning A, but within the algebra of the

second domain as meaning r'A, and likewise in other cases (Church 1939, p. a08).

This apparent failure of Schrdder's work as an exact formulation is due to his

identification of a unit class with its sole element.a

Since the set-theoretic paradoxes are unknown at the time of Schr0der's work, the

motivation behind his 'type' distinctions must have come from a different source.

Schr6der conceives of classes as built entirely of their members. As such, the members

a lnterestingly, this same procedure is followed by Quine in his systems found in'New Foundations for

Mathematicai Logic' and his Mathematical l-ogic ts discussed in ctrapter 6.

l0



of a particular class must exist prior to the class itself With such a view some sort of

type hierarchy seems to arise quite naturally (Church lg3g).

Apart from this view of classes and their members there is a more practical need

for Schr6der to introduce type distinctions. In his system Schroder has no symbol

available for the class-membership relation (e). He does have a symbol for class-inclusion

and he actually confirses or identifies the two notions, membership and inclusion, on

several occasions (see, for example, Sclrdder 1890, p. 245). By introducing a distinction

of t1pes, Schroder is able, in some respects, to get away with failing to make the

distinction between class-membership and class-inclusion. Thus, although Schrdder,s use

of a tlpe-like hierarchy is not motivated by the set-theoretic paradoxes, his own need for

such a hierarchy seerns quite natural and inevitable (church 1939, p. a09).

After his presentation of Schrdder's partial anticipation ofthe simple theory of

t1pes, Church moves on to discuss "the claim sometimes made on behalf of Frege that his

Stufen (cf. his Grundgesetze der Arithmetik,vol. l, 1893) constitute an anticipation of the

simple theory of tlpes" (Chwch 1939,p.409). Church sees this position as untenable

and the rest of his paper is devoted to explicating this point.

This dissection begins with Church's consideration of Frege's notion of a

function. For Frege, a function is an incomplete symbol and not an abstract object at all.

The 'incompleteness' of the function comes from the fact that it requires something

additional, in particular an argument, to complete its meaning. However, a function is

suffrciently akin to an object to be represented by a variable. Church claims that since

Frege's functions are incomplete symbols they must be divided nto Stufen.,and no other

ll



possibility offers itself' (Church 1939, p. 410). Church goes on to state that'this division

of functions rnto Stufenis not a theory of types. It might become so if it were denied that

besides functions there were also the corresponding completed abstraction, or if a similar

restriction were imposed upon the completed abstraction" (Church 1939, p' 410)'

Actually, Church claims that Frege "explicitly denies that [the corresponding completed

abstractions] are subject to the restriction associated with the division into Stufen"

(Church lg3g,p. al0). Thus, based upon Frege's notion of a function, Church argues that

Frege did not anticipate the theory of types.

This argument against Frege's anticipation of the simple theory of types is

continued and concluded with an even stronger argument as follows:

The characteristic feature of the simple theory of types - that a domain

of individuals is fixed upon, and the laws of logic stated first for (classes or

functions over) this domain and then restated successively for other domains

derived one by one from the original domain and from one another - is not

only not adopted by Frege but is vigorously rejected by him (Church 1939'p.

410).

This is followed by a "violent criticism" of Schrdder's algebra written by Frege which

Church claims gives a clear idea of what "Frege would think (or, indeed, did think) of the

simple theory of types" (Church 1939, p. 410).

Church's claim that Schrdder anticipated the simple theory of types, while Frege

did not, must be taken cautiously. Despite the evidence cited above, it is still the case that

both Schrtt der andFrege had some features of their systems in common with type theory,

t2



while some features differed from type theory. As will be seen in the next chapter, the

first explicit use oftypes stemmed from considerations much different from both

Schrdder's and Frege's. This first theory of types, put forth by Bertrand Russell, was set

up as an attempt at overcoming the logical paradoxes that first appeared near the end of
the nineteenth century.

1.3 The Paradoxes

Since Russell first explicitly introduced the theory of types as a way of avoiding

the set-theoretic paradoxes, a very briefaccount ofhow these paradoxes arose is given in

the present section

The first set-theoretic paradoxes emerged around the turn of the twentieth century.

The earliest ofthese paradoxes include, among others, the paradox of the langest ordinal,

the paradox of the largest cardinal, and Russell's paradox. The paradox ofthe largest

ordinal has come to be called the Burali-Fortiparadox. However, ns is slrown in Moore

and Garciadiego (1981), it was not created by Burali-Forti at all. Nor was it discovered

by Cantor two years earlier as has been often asserted (see for instance Fraenkel and Bar-

Hillel 1958, p. 2). In their article, Moore and Garciadiego de-emphasize tbe question as

to who originally stated the paradox, and instead investigate the process by which it

originated and matured into the form in which it is generally recognized today.s The

Burali-Forti paradox can be stated briefly as follows: The set, w, of allordinals is well-

t *: 
"yo.gid-not-appear 

until 1907. The claim is often made that Burali-Forti had discovered thisparadox in his 1897 paper. However, he never viewed nis resutts as o""tirrg a paradox (Moore andGarciadiego 198 l, pp. 321-323).
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ordered; every well-ordered set has an ordinal number greater than the ordinal numbers of

its members; hence the ordinal number of W is greater than every ordinal'

The Burali-Forti paradox deals with notions from set-theorY, zrs does the paradox

of the largest cardinal, which is known as Cantor's paradox. The paradox of the largest

cardinal can be stated as follows: "The class of all classes has a cardinal number; if this

number is N, then there is another class which has a larger cardinal number; hence there is

no cardinal number ofthe class of all classes" (Moore 1995, p. 226). This paradox was

formulated by Russell only in January 1901. However, it is very similar in form to his

;
antimony of infinite number given in July or August 1899 (see Moore 1995 for details):

.,There are many numbers, therefore there is a number of numbers. If this be N' N+l is

also a number, therefore there is no number of numbers" (Russell 1899, p. 265). These

two paradoxes are clearly similar in fornu not only to each other, but also to Burali-

Forti's paradox.

Since these paradoxes all involve set-theoretic notions it was hoped that they

would be remedied by some simple revision in the proofs of the then young discipline of

set-theory. This hope was shattered when Bertrand Russell published his paiadox in

1903. As shown in Moore,s 1995 article this paradox arose out of philosophical concerns

over the nature of infinity. Indeed, Moore concludes by noting that'lhe traditional

philosophical concern with a 'largest number', a concern with Kantian roots, then

interacted in Russell's mind with Cantor's proof that there is no largest cardinal

number...the new mathematical problems of the infinite -the paradoxes of logic and set

theory- grew out of the old philosophical ones" (Moore 1995,p.236).
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Russell's paradox can be stated using only the most basic logical notions. Russell

communicated his paradox to Frege in a letter in 1902. It was published one year later in

hisThe Principles of Mathematics. The paradox appears rnThe Principles as follows:

The predicates which are not predicable of themselves are...only a selection from

among predicates, and it is natural to suppose that they form a class having a

defining predicate. But if so, let us examine whether this defining predicate

belongs to the class or not. If it belongs to the class, it is not predicable of itself,

for 
Lhat 

is the characteristic property of the class. But if it is not predicable of

itseti then it does not belong to the class whose defining property it is, which is

contrary to the hypothesis. On the other hand, if it does not belong to the class

whose defining predicate it is, then it is not predicable of itself, i.e. it is one of

those predicates that are not predicable ofthemselves, and therefore it does belong

to the class whose defining predicate it is - again contrary to the hlryothesis.

Hence from either hypothesis we can deduce its contradictory (Russell 1903, p.

80).

Russell's paradox can be restated in many different ways. For exarnple, by

considering the set of all sets which are not members ofthemselves, one canthen ask

whether this set is a member of itself. Either assuming that it is, or it is not,leads to a

contradiction. Another set of paradoxes that were being considered in the early part of

the twentieth century includes Richard's paradox and the ancient paradox of the liar.6 It

6 Richard's paradox can be described as follows. All numbers that are defined by finitely many words can

be uniten in a definite order; these nurnbers will form a countably infinite set. Then '\ve can form a

nurnber not belonging to this set. 'Letp be the digit in the dr decimal place of the zth number of the set E;
let us forrr a number having 0 for its integral part and, in its n0l decimal place, pF I ifp is nd 8 or 9, and I
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will be seen that the theory oftypes was introduced in order to solve all of these

paradoxes. In chapter 4 of this thesis it will be seen that in 1925 Ramsey discovered that

the simple theory of types is used in solving the first set of paradoxes, while the ramified

theory was used to solve the second set.

otherwise.' This number-\9* not belong to the set E. If it were the nth number of the set E, the digit in
its zth decimal place would be the same as the one in the zttr decimal place of that number, which is not the
case.
I denote by G the collection of letters between quotation marks.
The nurnber N is defined by the words of the coilection G, that is, by finitely many words; hence it Sould
belong to the set E. But we have seen that it does not.
Such is the contradiction" @ichard 1905, p. 143). The liar paradox @€urs by considering the statement ..I
am Mnd'and then asking wtrether this statement is tue or frlse; ei6er answer implies G contradictry.
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2. The Origins of the Theory of Types

2.1 Introduction

Bertrand Russell was the founder of the theory of types. In an appendix to his

1903 book, The Principles of Mathematics he proposed the theory tentatively as a way of

avoiding his paradox mentioned in the previous chapter. This book also contains the first

exposition of Russell's logicism. Indeed, in the preface Russell clearly states this in the

description of the two main object-q of his book. The first, which occupies Part I only, is

to clearly delimit the "fundamental concepts which mathematics accepts as indefinable"

(Russell 1903, p. xv). The second, found in Parts II-VII, is the proof that "all pure

mathematics deals exclusively with concepts definable in terms of a very small number of

fundamental logical concepts, and that all its propositions are deducible from a very small

number of fundamental logical principles" (Russell 1903, p. xv). The final chapter of

Part I is devoted exclusively to'the contradiction". None of the possible solutions

considered there are deemed adequate. As a result Russell added his Appendix B, *The

Doctrine of T1pes", as a more plausible solution to the paradox.

Several shortcomings of the theory oftypes are pointed out in the appendix, and a

general air of dissatisfaction is prevalent. Thus it is not surprising that by the middle of

1903 Russell abandoned the theory of types. He did not publish another work

incorporating a theory of types until his 1908 paper "Mathematical Logic as Based on the

Theory of Types". However, an investigation of his unpublished work from 1903 to 1908

shows that Russell struggled repeatedly with the question of whether to use a type theory,
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and in what capacity. For instance, in one paper written in April and May 1906 entitled

"Logic in which Propositions are not Entities", Russell explicitly dispenses with any

hierarchy of types of propositions. Alternatively in "On the Functional Theory of

Propositions, Classes, and Relations", also written in April and May 1906, Russell viewed

such a hierarchy as essential. As will be seen below, it is clear that Russell had returned

to some version of the ramified theory of types by October 1906.

During the years between his two published type theories, Russell investigated

various altematives to avoiding the paradoxes. These are collected in a 1906 paper

entitled "On Some Difficulties inthe Theory of Transfinite Numbers and Order T1pes".

These theories include the zig-zagtheory, the limitation of size theory,T and the no-class

theory. A consideration of these theories will occupy section 3 of the present chapter.

The failure of these theories will be considered in light of Russell's returnto the theory of

types in his 1908 paper. This paper will be discussed in section 4, while section 5

compares the theory of types in the first edition of Principia Mathematica withRussell's

previous tlpe theories.

2.2Theory of Types in Russell's The Principles of Mathemotics

Althoughpublished in 1903, the majority of The Principles of Mothematicswas

written in 1900-1901. In the introduction to the second edition, written thirty-four years

later, Russell maintains that "the fundamental thesis of the following pages, that

mathematics and logic are identicaf is one which I have never since seen any reason to

7 Russell never actually worked out a versiqr of this theory on his own. He viewed Cantm and Jourdain's
works as examples of limitation of size theories.
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modi$/" (Russell 1903, p. v). However, as will be seen, the formulations of the theory of

types given in that work did undergo drastic changes in the years following its first

publication.

That this first formulation was to encounter alterations by Russell is not very

surprising. In fact, Russell opens the appendix devoted to the doctrine oftypes by stating

that it is only "here put forward tentatively" (Russell 1903, p.523). The theory of types is

put forth as a possible solution to the paradox to ufiich Russell devotes an entire chapter

of his book. The houbling aspect of his contradiction is that'tro peculiar philosophy is

involved in the above contradiction, which springs directly from common sense, and can

only be solved by abandoning some cornmon-sense assumption" (Russell 1903, p. 105).

The common sensical assumption to which Russell refers seens, in this initial

theory of t1pes, to be the idea that wherever a "class as many'' exists so too does the

corresponding'tlass as one":

Perhaps the best way to state the suggested solution is to say that, if a collection of

ternrs can only be defined by a variable propositional function, theq though a

class as many may be admitted, a class as one must be denied. When so stated, it *.1

appears that propositional functions may be varied, provided the resulting

collection is never itself made into the subject in the original propositional

function. In such cases there is only a class as many, not a class as one. We took

it as axiomatic that the class as one is to be found wherever there is a class as

many; but this axiom need not be universally admitte4 and appears to have been
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the source of the contradiction. By denying it, therefore, the whole difficulty will

be overcome (Russell 1903, p. 104).

In fact, nThe Principles of Mathematics, as in Russell's subsequent attempts at securing

the foundations of mathematics, it is the logical status ofpropositions, propositional

functions, and classes that plays a central role.8

The above passage contains Russell's informal introduction to the theory of types.

As he says at the end of the next paragraph "it is the distinction of logical types that is the

key to the whole mystery" (Russell 1903, p. 105). It is the theory oftypes, as set forth in

Appendix B of The Principles of Mathematics,wlich will now be investigated.

Types are derived from the ranges of significance of propositional functions. The

'range of significance' of a propositional function q(x) is that range in which the variable

x must lie if g(x) is to be a well-formed proposition, whether true or false. The first point

of Russell's theory of tlpes here is that every propositional function has a range of

significance. The second point which Russell deems "less precise than the first" (Russell

1903, p. 523) is that ranges of significance form types.

These tlpes are stratified into a hierarchy in the following rnanner. First, the

lowest tlpe of objects is cornprised of terms or individuals. Russell defines a term or

individual to be "any object which is not a range" (Russell 1903, p. 523). Arange, on the

other hand, is defined, after a lengthy discussion of Frege's notion of Werthverlauf

(translated by Russell as range), to be 'khat are properly called classes, and it is of them

that cardinal numbers are asserted" (Russell 1903, p. 518). The next tlpe is comprised of

t This will be made apparant throughout the rest of this chapter.
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classes (ranges) of individuals. The next type after that consists of classes of classes of

individuals. This process of forming types is extended to infinity and forms the first

series of types.

In discussing this first hierarchy, Russell introduces the notion of a minimum t1pe.

This notion arises by considering a range, z, determined by a propositional function, q(x),

and then looking at not-u. Whereas z consists of all objects, x, such that g(x) istrue, not-

z consists of all objects, x, such that g(x) is false. In this way not-u is contained in g(x)'s

range of significance. However, 'there is a diffrculty in this connection, arising from the

fact that two propositional functions q(x), V(x) may have the same range of truth al, while

their ranges of significance may be different; thr;s not-ubecomes ambiguous" (Russell

1903, p.524). This ambiguity necessitates the introduction ofthe supposedly

unambiguovs minimum types.It is claimed that every z will be contained in a minimum

t1pe, where a minimumtlpe is one which is notthe sum of two or more t1pes. Tlrcnnot-

z is defined as the remainder of this t1pe.e Fromthis point on all types are assumed to be

minimumtypes.

Another series of tlpes begins with what Russell calls couples with sense;these

are relations viewed extensionally. Since he views, for philosophical reasons,lo relations

as intensional he has "doubts as to there being any such entity as a couple with sense"

(Russell 1903, p. 512). In spite ofthis, extensions are deemed quite relevant to

e WhAher this notiqr is really unambiguous seems questimable since a method for deterrnining whether or

lgt any givan tlpe is the smr of two or more tlpes is lacking.
'" These reasons af,e outlined in section 98 on page 99 of The Principles of Mathemdics.
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mathematics.tt Thus the new hierarchy is formed beginning with couples with sense,

then forming ranges of such extensional ranges, or'telations of relations, or relations of

couples...or relations of individuals to couples, and so on; and in this way we get, not

merely a single progression, but a whole infinite series of progressions" (Russell 1903,

pp. 524-525). Similarly, trios form a new series of progressions oftypes. Thus Russell is

justified in claiming that in this way "an immense hierarchy of types" (Russell 1903, p.

525) is formed.

However, this immense hierarchy is not as exhaustive as Russell would like. He

points out that both propositions and numbers are omitted from the above hierarchies.

Forming series oftypes starting with either ofthese notions presents diffrculties'bf

which it is hard to see the end" (Russell 1903, p. 526). By not considering a hierarchy of

proposition tlpes Russell derives another contradiction which is analogous to the original

contradiction with which he was dealing.12 Russell notes that this contradiction can be

avoided by strati$ing propositions into types. However, he feels "this suggestion seems

harsh and highly artificial" (Russell 1903, p. 528). Russell concludes the appendix with

his outlook for foundational work in logic with the following: "The totality of all logical

tt This is reiterated by Russell in the following passage: 'Throughout mathematics there is the same rather
curious relation of intensional and extensional points of view: the symbols other than variable terms (i.e. the
variable class-concepts and relations) stand for intensions, while the actual objects dealt with are always
extensions. Thus in the calculus of relations, it is classes of couples that are relevant, but the symbolism
deals with them by means ofrelations [in intension]" (Russell 1903, p. 99). This is closely analogous to
Russell's teatment of classes nTlw Principles.
r2The new contradiction is derived as follows: "If m be a class ofpropositions, the proposition "every m is
true" may or may not be itself an rn. But there is a sre-one relatiqr of this proposition to m: if nbe
different from z, "eve,ry rz is tue" is not the same proposition as'every z is true." Consider now the
wtrole class of propositions of the form "every nr is tue," and having the property of not being members of
their respective n's. Let this class be w, and letp be the proposition "every rll is tue." Ifp is a w, it must
possess the defining property of u; but this prop€rty demands thatp should not be a w. On the other hand,
ifp be not aw,thenp does possess the defining prop€rty of w, and therefore is a w. Thus the contadiction
appears unavoidable" (Russell 1903,p. 527).
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objects, or of all propositions, involves, it would seern, a fundamental logical difficulty.

What the complete solution of the difficulty may be, I have not succeeded in discovering;

but as it affects the very foundations of reasoning, I earnestly commend the study of it to

the attention of all students of logic" (Russell 1903, p. 528). In this way, Russell does not

decree that the theory of types will necessarily lead to the optimal solution of the

paradoxes. He simply states this as one method which might prove useful; it is, rather,

the discovery of the fundamental problem that seems to most interest Russell.

Thus in the appendx of The Principles of Mathematics dedicated to the theory of

types, Russell is able to outline the main points ofthe theory. These are l) that

propositional functions have ranges of significance and 2) that these ranges of

significance form rlpes such that if g(r) is defined with the instantiation of a variable of

typen,theng(x)willbedefinedwiththeinstantiationof anyvariableoftlpe n. The

tentative sketch is open to several objections and shortcomings which Russell

enumerates; for instance, the problem of dealing with types of propositions as well as

number types.l3

Since these difficulties are not satisfactorily dealt with here, Russell's continued *.-

study of possible solutions to the paradoxes is justified. In his leffer of l5 March 1906 to

Jourdairu Russell spells out when and how he adopted various theories from his

abandonment of the theory of tlpes at the end of 1902 until the autumn of 1905 when he

embraced his substitutional theory. In the following Russell's 'lresent vief is that the

substitutional theory affords the best possible solution to the set-theoretic paradoxes:

t3 As will be seen below, Russell's different type theories from 1907 on all contain a hierarchy of
propositional functions and hence of propositions, unlike his theory of types in 1903.
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I am not sure that I can remember how my ideas developed. But I will tell you all

I can. You will see that in my bookfThe Principlesf (p. 104, art. 104) I suggest

that certain functions do not determine a class as one. This is practically the same

doctrine as that they do not determine a class, for a class as many is not an entity.

(By the way, the view I now adopt, that a propositional function must not be

varied, is discussed on p. 103, second par. of art. 103, and rejected as making

mathematics unworkable. I have now discovered how, by substitutions, to work

mathematics with this view.) My book gives you all my ideas down to the end of

1902: the doctrine of types (which inpractice is almost exactly like my present

view) was the latest of thern Then in 1903 I started on Frege's theory that two

non-equivalent functions may determine the same class...But I soon came to the

conclusion this wouldn't do. Therq in May 1903, I thought I had solved the whole

thing by denying classes altogether; I still kept propositional functions, and made

g do duty for z{gz). I treated g as an entity. All went well till I came to consider

the function IZ, where

Z(tP)'=''-<P(q)'

This brought back the contradiction, and showed that I had gained nothing by

rejecting classes.

The latter part of 1903 and the beginning of 1904 I spent on the Fiscal

Question. Then in April 1904 I began working at the Contradiction agai4 and

continued at it, with few intermissions, till January 1905. I was throughotrt much

occupied by the question of Denoting, which I thought was probably relevant, as it
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proved to be. A denoting function is, broadly, any function which is not

propositional; at times I have used g'x for a denoting function and glr for a

propositional function. The fust thing I discovered in 1904 was that the variable

denoting function is to be deduced fromthe variable propositional function, and is

not to be taken as indefinable. I tried to do without 1 as an indefurable, but failed;

my success later, in the article 'On Denoting', was the source of all my subsequent

progress. Most ofthe year, I adhered to the 'zig-zag'theory, and worked at

different sets of primitive propositions as to what functions determine classes.

But I never got a set of primitive propositions that would really worlq and all the

sets were honibly complicated and un-obvious. I soon discovered that the

difficulty comes only where 'all values of g' are concerned, and I thought perhaps

this was due to a vicious circle. as follows: if

\rr. :.(q).(,pr) Df,

it is part ofthe meaning of yx to assert (vr); thus ry asserts something which

cannot be defined till ry is defined, and which is yet presupposed in the definition

of g. Gradually I discovered that to assume a separable g in gx is just the same, +.i

essentially, as to assume a class defined by gr, and that non-predicative functions

must not be analyzable into a g and anx.

About June 1904, I tried hard to construct a substitutional theory more or

less like my present theory. But I failed for want of the theory of denoting: also I

did not distinguish between substitution of a constant for a constant and

determination of a variable as this or that constant. Hence I abandoned the
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attempt to get on by means of substitution...Then, last autumrl as a consequence

of the new theory of denoting, I found at last that substitution would work, and all

went swimmingly (Russell 1906a, pp. 78-80).

The no-class theory is outlined in Russell's 1906 paper'oOn Some Difficulties in

the Theory of Transfinite Numbers and Order T;pes". Actually, in a note appended 5

February 1906, Russell states that "from further investigation I now feel hardly any doubt

that the no-class theory affords the complete solution of all the difficulties stated in the

frst section of this paper" (Russell 1906, p. 53). In the next section the no-class theory

will be discussed along with the two other theories presented in Russell's 1906 paper;

namely the zig-zag and the limitation of size theories.

2.3 Altematives to the Theory of Types - The Zig-7agTheory, Limitation of Size

Theory, and the No-Class Theory

In Russell's 1906 paper three theories are put forth as ways of avoiding the logical

paradoxes. These theories are the zig-zagtheory, the theory of limitation of size, and the

no-class theory; the theory of qpes is not mentioned. The paper is written in response to

E.W. Hobson's 1905 paper "On the General Theory of Transfinite Numbers and Order

T1pes" in which are raised "a number of questions which must be answered before the

principles of mathematics can be considered to be at all adequately understood" (Russell

1906, p.29). The contradictions that are produced led Russell to state that "a

propositional function of one variable does not always determine a class" (Russell 1906,

p. 37). Interpretations of this broad statement govern the variations in the theories
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considered in this paper. The zig-zagand limitation of size theories are grouped together

as theories in which "all straight forward propositional functions of one variable

determine classes, and that what is needed is some principle by which we can exclude the

complicated cases in which there is no class" (Russell 1906, p. 37). In the case of the zig-

zagtheory classes are avoided which possess a "certain characteristic which we may call

zigzaggness" (Russell 1906, p.37). Before looking at the teatment of the zig-zag

theory, the theory of limitation of size will be investigated.

t",S theory, classes are avoided, as the name suggests, which are excessive in

size. Functions are distinguished as either predicative, or non-predicative; the distinction

depends on a certain limitation of size.ra Non-predicative functions are such that they do

not give rise to corresponding classes. For instance, "if z is a class, 'x is not a member of

z' is always non-predicative; thus there is no such class as 'not u"'@ussell 1906, p. 43).

No general rules are given for determining when a class is 'too big' as this is just an

otrtline given by Russell. The problems that Russell sees as inherent to this mode of

solution include, most importantly, the fact that this theory "does not tell us how far up

the series of ordinals it is legitimate to go...we need further axioms before we can tell

where the series begins to be illegitimate" (Russell 1906, p. 44). Russell concludes by

stating that the problems with the theory seem to outweigh the merits. As such the theory

seems to be less attractive than other possibilities.ls

ra Russell notes that this theory is advocated by Jourdain in, for instance, "On the Transfinite Cardinal
Numbers of Well-ordered Aggregates'(1904), and *On Transfinite Cardinal Numbers ofthe Exponantial
Form" (1905).
tt 

!tg"-tti"gty, this is the kind of theory developed by Zerimelo,Fraerkel, Skolem, von Neuman& Bernays,
and GO'del. It has become the *andard form of set theory used today.
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One of these possibilities to which Russell had adhered for most of 1904 is the

zig-zagtheory. In this theory the predicative functions, which again determine classes,

are "fairly simple, and only fail to [determine classes] when they are complicated and

recondite" (Russell 1906, p. 38). Thus it is clear that the size of a class does not affect

whether or not it is to exist. Russell gives the example that'? is not a man" is a simple

function and under this theory it would hence be predicative. However, the class

determined by this function is satisfied by all but a finite number of objects.

The name ofthe theory comes from Cantor's proofthat there is no greatest

cardinal. The zig-z-ag property of the predicative functions in this theory is explained by

Russell's stating that "if now glx is a non-predicative function, it follows that, given any

class a, there must either be members of z for which glx is false, or members of not-z for

which glx is true. (For, if not, glx would be true when and only when, x is a member of u;

so that glx would be predicative.) It thus appears that rplx fails to be predicative just as

much by the terms it does not include as by the terms it does" (Russell 1906, p. 38). For

the full development of this theory Russell notes that a full set of conditions is required

for determining when functions are predicative. For work along these lines he directs the

reader to sections 103 and 104 of his The Principles of Mathematics.

However, all attempted sets of defining axioms for these predicative functions

turned out to be exceedingly complicated. He was thus led to abandon this theory. He did

this with the reservation that perhaps frrrther research would yield a more adequate set of

axioms. In general, he concludes, the ng-zagtheory "applies beffer to cardinal than

ordinal contradictions" (Russell 1906, p. 39) whereas the theory of limitation of size
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simply dismisses cardinals and ordinals altogether after some unspecified size. Neither of

these theories seerns adequate as a proper solution to the paradoxes, and so Russell next

turns to his no-class theory.

In this no-class theory propositions exist as the fundamental logical machinery;

moreover, classes and relations (and hence propositional functions) are banished

altogether. This is motivated by the fact that the assumption of the existence of these

entities leads to problems. Thus, rather than imposing certain conditions upon thenl they

are simply assumed non-existent. 
_-Russell 

points out three objections to this assumption.

"(l) that it seems obvious to common sense that there are classes; (2) that a great part of

Cantor's theory of the transfinite, including much that is hard to doubt, is, so far as can be

seerl invalid if there are no classes or relations; (3) that the working out ofthe theory is

very complicated, and is on this account likely to containerrors, the removal of which

would, for aught we know, render the theory inadequate to yield the resuhs even of

elementary arithmetic" @ussell 1906, p. 45).

In this theory, instead of functions, propositions are taken as the starting point.

This is done by starting with a propositionp in which a is aconstituent. Then 'p x/a'

denotes what occurs whenx is substituted inp wherever d appears. Theru if D is not a

partof p, and if q is set to be equal to p b/a,then"p x/aistrue for all values ofx" is

equivalent to "q x/b is true for all values ofx". In this way statements aboutp x/a depend,

only uponp. Thus, Russell is able to replace statements involving propositional functions

by statements involving propositions. Russell claims that "there is not much difficulty in

re-wording most definitions so as to fit with the new point of view. But now the
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existence theorems become hard to prove" (Russell 1906, p. 46). For instance, the

existence ofro can be proved, as can the existence ofvarious other ordinal types.

However, the existence of all the usual ordinal types cannot be proved. Just like in the

theory of limitation of size at what point the series begins to be non-existent is unknown.

As the note appended to the paper shows, Russell's subsequent work on the no-class

theory led him to see this theory as the best way of avoiding the logical paradoxes. This

theory was soon abandoned though, and Russell returned to his theory of types in his

1908 paper.l6 As his unpublished works show, Russell worked extensively on the

substitutionaf or no-class theory from 1905 until 1907. Certain aspects of this theory

were carried over into Russell's subsequent type theories. Russell gave the full

exposition of his substitutional theory in a paper entitled "On the Substitutional Theory of

Classes and Relations", submitted to the London Mathematical Society in April 1906, but

withdrawn in October ofthat year.

The primitive notions incorporated in this April 1906 paper are 'entity' (or

'individual') and'propositional function'. Thus, the propositional functions were given

the status of existence, but classes and relations were not. When he withdrew his article

from publication Russell saw the substitutional theory as inadequate and in need of

modification. Several of the unpublished papers from 1905 through 1907 show Russell

working out on paper various improvements of this substitutional theory.

tt For a discussion of this see Consuegra, F. A. R; "Russell's Theory of Types, l90l-1910: Its Complex
Origins in the t-hpublished Manuscripts' ( I 989).
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During these years Russell was aware of a similarity between his substitutional

theory and his early version of the theory of types. In his June 1906 paper "The

Paradoxes of Logic", Russell claims that his 1903 type theory "differs little from the no-

class (or substitutional theory)", which is not "greatly different from the zig-z-agtheory

that had been adopted in sections 103 and 104 of The Principles" (Russell 1906c, p. 280).

He goes on to say that 'the only thing that induced me at that time to retain classes was

the technical difficulty of stating the propositions of elementary arithmetic withoutthem-

a difficulty which seemed to me insuperable" (Russell 1906c, p. 280).17 This is compared

to the no-class theory in which "it is natural to suppose that classes are merely linguistic

or symbolic abbreviations" (Russell 1906c, p. 285).

Around this time Russell tried to give the substitutional theory a greater degree of

security as a foundation for mathematics. In doing so he investigated various alternatives

in which certain aspects of the substitutional theory and tlpe-theory were intermingled.

In particular, in two papers written in April and May 1906, entitled "On Substitution" he

states that the way around the paradoxes (that he here calls'bdditites") is to introduce a

hierarchy of propositions. He makes the same claim in 1Cn the Functional Theory of

Propositions, Classes, and Relations" (19069), while in his "Logic in which Propositions

are not Entities" (19060 he explicitly dispenses with zuch a hierarchy. Finally, in his

September 1906 paper *The Paradox ofthe liar" he goes so far at one point as to reinstate

classes and relations altogether. This is supplemented with a hierarchy ofthese entities -

t7 Significantly, Russell adopts the vicious-circle principle here where'\rtratever involves appar€nt
variables must not be among the pemissible values of that variable- @ussell 1906c, p. 28ej.- fhis
principle, as will be seen below, was eventually incorpaated as the guiding principle in Russell's mue
matue typo'theories.
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all in contrast with the work he had been doing throughout 1905 and 1906 - where'the

hierarchy which seens both inherently the most plausible and the best designed to obviate

the paradoxes is arranged according to the number of apparent variables in a statement"

(Russell 1906h, p. 331). Although he has a hierarchy composed of individuals, classes of

individuals, classes of classes of individuals, and so or! he has eliminated any hierarchy

for propositional functions and propositions. Thus, the axiom of reducibility that he

adopts here is significantly different from his later version: any propositional function

with any kind of apparent variable is equivalent to a function with only entities and

classes as apparent variables (Russell 1906h, p. 339).

It is clear by the following letter from Whitehead that by 7 October 1906, Russell

had abandoned the substitutional theory for some ramified tlpe-theory:

The nastiness which you wanted to avoid is the Frege bugbear ofpropositional

functions becoming unmeaning when certain terms are substituted. According to

the doctrine of types we have got to put up with this -thus certain things (such as

functions) which can be named and talked about won't do as arguments in some

propositional functions. The result is that we have to use the restricted variable.

The doctrine of substitution was on stronger ground here; for it did without the

function entirely, and simply brought np/a as a typographical device for

predicting that we were talking of the one entity when we were really talking of

two. Hence, if you want the unrestricted variable, the doctrine of substitution is

the true solution...My doctrine is (l) that the variable must be restricted, because

(as you prove) the consideration of all terms leads to contradictions. Also in
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considering "arry" a restriction to significance is necessary (Whitehead 1906, p.

13).

Thus, although Russell had done much work on the theory of substitution, he was

eventually led back to incorporating a division of types in the foundations of his system.

As will be seen in the next section, his next published work on the theory of types (in

1908) was the product of a substantial amount of unpublished work done from 1906 to

r908.

2.4The Retum to the Theory of Types

The shift from the substitutional theory to the theory oftlpes occurred gradually

and is apparent in Russell's unpublished works'dating from 1906 to 1908. In fact, certain

aspects of the substitutional theory even survived in Russell's later versions of the theory

oftlpes. In his unpublished paper "Corrections in Present Work" (1906i), Russell

reinstates membership as a primitive idea. Furthermore, he defines identity ofx andy by

the condition that x alnd y belong to the same classes:

Pi

l-: @o): gr . =. rco Pp

n/.:-: xecr, .: . y€fr, Df

l-:-reo. = . xep: -- . c:F Pp (Russell 1906i, p. a%).

Russell goes on to state 'that the doctrine of types is never relevant except when we use

the inference (x).gx . -+ . gq. Thus we can go as far as we like without explicitly

introducing the doctrine, so long as we can avoid applications to special cases" (Russell
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1906i, p.494). This sentiment is reiterated in his unpublished "T5pes" where he states

that the theory of types is never needed "except when a constant is assumed to be a

determination of a variable" (Russell 1906j, p. 500). However, he soon realizes that this

claim is mistaken by considering the proposition

(x).gx: (x). Vx : = : (r).qr.\yr

which he recognizes as'bnly true if gx and ryx have the same range of significance"

(Russell 1906j, p. 500). The majority of this paper shows him struggling with an axiom

which allows, in a formula rpx, the substitution of a propositional function for the variable

x whenever it is known that gr is true for all values oft, thi, axiom violates the theory of

types. In the end Russell is compelled to accept the axiom of reducibility and concludes

that "if we have to put this <axiom), we may as well assume classes and take xeo as the

form of qx required by the primitive proposition" (Russell 1906j, p. 51a).

Russell continued to study the theory oftlpes in his paper written sometime after

September 1906 and before JuJy 1907, entitled "On T1pes". In that paper he combined

an old version ofthe substitutional theory with a theory oftypes. The hierarchy of types

begins with individuals; the second tlpe is formed by taking first-order proSsitions

containing no apparent variables other than individuals; the third type contains second-

order propositions which contain no apparent variables other than individuals and first-

order propositions. This hierarchy is continued for all finite orders. He also states an

axiom of reducibility:

(Epr):p"la: prla
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and goes on to say that "there is much to be gained from reviving substitution...This plan

seems indubitably feasible, but complicated. I don't know whether it is worth it...If this

form of substitution turns out to be feasible, perhaps it should be put in an appendix. It is

philosophically simpler than functions, but technically vastly more complicated" (Russell

1906/1907, p. 516). However, Russell ends by noting that the substitutional theory is

perhaps too complicated: "The point of view of substitution is perhaps unnecessarily

complicated, seeing that gx is needed in any case, and so is rp(xy). The only thing we

save is g!x. The necessity for gx makes the philosophical gain less than it would be. If

gx could be avoided, substitution would be worth adopting" (Russell 190611907, p. 517).

Russell continued this study ofthe theory of tlpes in several other unpublished

papers from this era. In 'Notes on T5pes" (1907a), Russell notes several times that in

practice it is only necessary to account for relative tlpe differences. While in his

"Fundamentals", also written in 1907, he makes it clear that he has fully accepted a

ramified version of the theory of types while abandoning the no-class theory:

Note that the no-class theory is in essence abandoned by distinguishing between

gx and xey(qy). Forthis requires t}rrti(g)should be a constituent ofxef(g/) and

therefore tlntg(<py) should be something. This difficulty seenu inherent in the no-

class theory, since functions must be allowed as apparent variables. A value of an

apparent variable must be something, and thus the no-class theory won't work. It

worked while we had propositions, because then they became apparent variables

where a variable matrix was wanted. But if propositions are not to be apparent
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variables, functions must be, and therefore functions must be admitted. But then

they may as well be classes (Russell 1907b, p. 5a3).

These sentiments are reiterated several times throughout this rough piece of Russell's

work. Finally, Russell gives a survey of the technical and philosophical points of his

theory in the following passage:

A. Technical. All contradictions are avoided provided no expression containing

an apparent variable is a possible value of that apparent variable. This

requires two sorts of functions, one of which can be an apparent variable while

the other can't. Whether we call the two sorts gx and g!x, or gx and xec, is

technically indifferent. Whichever we do, we need a reducibility-primitive-

proposition, so that one ofthe wider kind is always equivalent to some one of

the narrower kind. And a proposition containing as an apparent variable a

function of the ruurower kind must not be itself of the ruurower kind. These

conditions being satisfied, the contradictions are avoided and mathematics is

workable; provided that a function (of the narrower kind) can't be argument to

itself

B. Philosophically. (a) The no-class theory, with the theory of predicative and

non-predicative functions, supplies what is required, except that (c) there is a

difference about the meaning of a function as apparent variable; (p) the

distinction of predicative and non-predicative is obscure, and the reducibility

ariom is arbitrary. (b) The plan of distinguishing gx fromxe/(g/), in which

the former assent the values of g for the argument x, while the latter asserts
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that x has the property g, has much to recommend it. In this plan, g can only

be an apparent variable when it is explicit, as in xel(gy), not when it is as in

rpx. This has the merit of making the reducibility-axiom obvious, since it

states that "gx .: . x has the property g". But it seems to involve treating

truth-functions as a type. This comes from considering: "( asserts that (sA{A

asserts (xeo). -+ . x-eo)". This reproduces the liar. And there are grave

differences about treating truth functions as a type. (c) The plan of never

varying functions at all and introducing.reo as a primitive ide-1, has very great

advantages. It is simple, it makes a very clear distinction between predicative

and non-predicative functions, it allows us to use the argument that the g in gx

can't be varied because it doesn't occur in gx and is in fact nothing, and it

makes the reducibility-axiom simply the universally admitted axiom of

classes. The objection to this plan is that it makes it hard to see wfiy oea is

meaningless. fNote that it is not sfrictly necessary that oeo should be

meaningless, but only that (x)Lxea) should not implyficec).1 And to get

"Exg!.r" asnot a function ofx, we still need the notion of a truth function"

(Russell 1907b, pp. 552-553).

It is thus clear that in the time leading up to the publication of his 1908 article Russell

spent much time working on ironing out the details of his type theory.

In his paper, "Mathematical Logic as based onthe Theory of Types", submitted

July 1907 and published in 1908, Russell attempts to alter the theory of tlpes in order to

avoid the problems which riddled it in 1903. His view ofthe paradoxes has changed
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somewhat as he claims that they all seem to stem from "the assumption of a totality such

that, if it were legitimate, it would at once be enlarged by new members defined in terms

of itself'(Russell 1908, p. 155). The way to avoid the contradictions thus seems to rely

on an avoidance of this reflexivity. Russell states hisvicious-circle principle tlnt

"'whatever involves all of a collection must not be one of the collection', or conversely:

'If provided a certain collection had a total it would have members only definable in

terms of that total, then the said collection has no total"' (Russell 1908, p. 155) is a rule

that would rectiff the situation. This rule is too restrictive, and instead Russell aims at

improving his theory oftypes.

In this paper he stipulates that the problem can be avoided by considering the

distinctive feature of propositions that contain the word 'all'. By distinguishing between

the use of the words 'all' and 'arLy', Russell is able to distinguish between the notion of a

'real' versus an 'apparent' variable. Russell attributes the distinction between real and

apparent variables to Frege. By asserting any value of a propositional function, one

asserts g(r) where r is a real variable. On the other hand, when stating that a

propositional function holds for allvariables r, one asserts (r)q(x) - namely ihe

generalized proposition corresponding to g(x); here the variable x is an apparent variable.

The problems arise by considering propositions that include phrases such as "all

propositions" or "all properties". Thus, it seems reasonable to dispense with apparent

variables altogether using 'any' in place of 'all'. However, Russell provides several

examples to show that 'any' cannot replace 'all' in many instances throughout

mathematics. Russell concludes that any theory must not only avoid the paradoxes by
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dealing with the use of the term 'all', but it must also retain the distinction between .all,

and'any'.

It is with this distinction between 'all' and 'any' that Russell introduce sthe range

of significance of apropositional function. This he does as follows:

Every proposition containing a// asserts that some propositional function is always

true; and this means that all values of the said function are true, not that the

function is true for all arguments, since there are arguments for which any given

function is meaningless, that is, has no value. Hence we can speak of all of a

collection when and only when the collection forms part or the whole of the range

of significance of some propositional functiorl the range of significance being

defined as the collection of those arguments for which the function in question is

significant, that is, has a value (Russell 190g, p. 163).

Thus Russell distinguishes between the range of truth and the range of significance as he

had done in 1903. However, he is able to do this more precisely with the distinction

between real and apparent variables (that is, by talking specifically about what .all' is to

mean when it occurs in propositions).

Just as in his 1903 version of the theory of t1pes, Russell here defines a .qpe' as

"the range of significance of a propositional function, that is, as the collection of

arguments for which the said function has values" (Russell 1908, p. 163). He also notes

that the range of values of apparent variables in propositions form t1pes, the .t1pe being

fixed by the function of which'all values' are concerned" @ussell 1908, p. 163). It is the

apparent variables here that Russell claims determine an expression's type. Furthermore,
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the need for the division of types is necessitated by the reflexive fallacies mentioned

above. It is in this way that the apparent variables determine the types of expressions;

anything that contains an apparent variable must be of a 'higher type' than that apparent

variable. Thus, 'type' is defined in a similar, and yet more precise fashion in 1908 than it

was in The Principles of Mathematics.

After defining what 'types' are to be in general, Russell begins the construction of

the hierarchy of types of propositions. This was one of the problems of his 1903 accoturt

of the theory of types, namely that it could not account for proposition types. His 1908

paper overcomes this diffrculty by frst noting that propositions containing apparent

variables are generated fiom ones without apparent variables by a process of

generalization - that is, by'the substitution of a variable for one ofthe terms of a

proposition and the assertion of the resulting function for all possible values of the

variable" (Russetl 1908, p. 163).18 Propositions that contain apparent variables are called

'generalized' while those that do not are called 'elementary'. It is claimed that

elementary propositions can be amlyzed into different components: these are called

'terms' and 'concepts'. The terms are 'khatever can be regarded as the subjectof the

propositiorq while the concepts are the predicates or relations of these terms" (Russell

1908, p. l6a). The terms are called 'individuals' and are said to form the fust (or lowest)

typ".tn Russell adds a further stipulation that individuals must be "destitute of

It Clearly the no-class theory is influencing Russell's work here. As will be seen in this paragraptL it is this

incorporatiur of ideas fiom the no-class theory that allows Russell to solve the probluns he had ftced in
1903 with regards to the propositional hierarchy.
re Russell notes here, wtrictr he did not note in 1903, that it is only the relative tlpes that matter in practice.

Thus, the 'lowest type' can differ in different contexts. The soundness of his account thus utly depends

upon fixing some lowest t1pe, and than seeing wtrether the process of generating frnther tlpes is a&nissible.
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complexity" in order that no individual be a proposition. With this in mind one is able to

generate a proposition by applying the process of generalizationto individuals in

elementary propositions. The second logical type is then defined to be ..elementary

propositions together with such as contain only individuals as apparent variables"

(Russell 1908, p. 16$. These propositions are furthermore called ,frst-order

propositions'. From these 'second order propositions' are defined as propositions which

contain first-order propositions as apparent variables. The collection of these

propositions forms the third logical type. This process can be continued indefinitely.

Russell concludes this construction ofthe propositional types by stating that ,the (n+l)th

logical type will consist of propositions of order n, which will be such as contain

propositions of order n -1, but ofno higher order, as apparent variables. The types so

obtained are mutually exclusive, and thus no reflexive fallacies are possible so long as we

remember that an apparent variable must always be confined within some one g;pe"

(Russell 1908, p. 16a). Thus, Russell's conshuction oftlpes ofpropositions is made

possible by his careful distinction between real and apparent variables.

After this presentation ofthe propositional qpe hierarchy, Russell proceeds to the , .,
construction of a hierarchy of functions. His development differs from the process found

in 1903 since Russell defines functions of various orders from propositions of various

orders through a process of substitution.2o Russell does this by first defining .matrices,.

These take the place of functions and are defined as follows: "ifp is a propositio nand, a a

constituent of p,let "p/a;x" denote the proposition which results from substituting x for a

20 Again, the noclass theory seeins to be coming into play.
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wherever a occgrs inp. Then p/a,whichwe will callamatrix' lnay take the place of a

function; its value for the argument x rs p/a;x and its value for the argument a ts p"

(Russell 1908, p. l6a). He defines matrices similarly for two variables. Russell notes

that this can be done and is advantageous since the order of a matrix only depends upon

the order of the proposition in which the substitution is effected.

Although this can be done, the replacement of functions by matrices is technically

inconvenient. Instead Russell proceeds to build the hierarchy of functions directly from

the propositional hierarchy. This is done by fust defining a function of individuals

(whose value is always a fust-order proposition) to be afirst-orderfunction. Then a

function having a fnst-order function or proposition as an apparent variable will be called

a second-order function, arrd so on. In this way he is able to define the hierarchy of

functions in terms ofthe hierarchy of proposition uihere "the type of a function is

determined by the type of its values and the number and type of its arguments" (Russell

1908, p. 165).

This process ofbuilding the functional hierarchy is explained furtherby

considering predicative functions. This is another difference from the theoryof types

found nThe Principles of Mathematics. Apredicative function is defined as a function

.khich is of the order next above that of its argument[s]" (Russell 1908, p. 165). These

functions are denoted using an exclamation mark as in'q!x'. The possible values of the

predicative functions form well-defined totalities, and so the function symbols can be

turned into apparent variables. This is only possible for predicative functions and so

Russell is led to consider how to deal with non-predicative propositional functions.
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Since a propositional function may be of any order, statements about 'all

propositional functions of a variable x' will be meaningless. However, if these statements

are limited to predicative functions ofx, they wilt have a meaning, since the 'all' will

refer to 'all predicative functions of a certain type'. Thus Russell is led to propose his

axiom of reducibility; that is, the axiom which states that "every function is equivalent,

for all of its values, to some predicative function" (Russell 1908, p. 168). This axiom is

not stated in 1903 since the hierarchy of class-types formed there does not depend upon

the proposition-types (since they were un-formable in 1903).

This 1908 paper works to meet the demands made in 1903 further by showing

how number-types can be formed. However, this paper still concludes with an air of

uncertainty with regards to the theory of types. Russell admits that "the theory of tlpes

raises a number of difficult philosophical questions concerning its interpretation" but that

these questions are left to be *dealt with independently''@ussell 1908, p. ls2).

Furthermore, the justification for using the axiom of reducibility is purely pragmatic.

However, this axiom was still incorporated into the theory of types in the first edition of

Principia Mathematica as will be seen in the next section.

Following the general headnote to Part II, vol. 5 of Russell's collected works, a

letter from Whitehead to Russell is now quoted to sum up the views that Russell held on

logic by 16 June 1907. In this letter Whitehead attempted

in (l) to (10) to give an outline of your position - aptrt from special procedures ,

as I understand it.

(l) Your transition from intension to extension by means of

F..,
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f{y(qy)) . = : (Ey):rpx . : . Vlr :f{ry!y} Df is beyond all praise. It must be right.

That peculiar difficulty, which has worried us from the beginning is now settled

forever.

(2) The vicious-circle principle and the idea of a totality of propositions (i.e. the

use of (p)...) appear to conduct inevitably to your hierarchy of propositions.

(3) I agree that the substitutional theory is the proper explanatory starting point.

(4) The hierarchy of propositions appears to depend essentially on the distinction

between dependent and independent entities - the dependent entities having in

some sense an essential reference to tot;ities - and thence also on the various

modes ofdependency.

(5) The independent entities (individuals) require no further logical

discrimination.

(6) Every entity (independent or dependent) must occur in a proposition

containing it, in a manner specifically relevant to its peculiar tlpe of being.

(7) The vicious-circle principle rules out an unlimited totality of "all entities".

(8) Number (6) above considers any totality of entities to be the totality of entities

of a certain type.

(9) For our purposes we may define an entity as that which in any sense can be

amenable to arithmetic ideas. The vicious-circle principles show that this

amenability must be of varying types.

(10) It is possible that all entities, <which are> not individuals have no proper

unity in any sense whatsoever; but that as they appear in propositions they are
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simply a grouping of ideas which conceal an alarming complexity ofthought

(Whitehead 1907, p. 490).

2.5 Types in the First Edition of principia Mathematica

The theory of types is developed in the first edition of Principia in a very similar

manner to the construction in Russell's 1908 paper. The main difference lies in Russell's

more precise statement ofthe axiom of reducibility. Also, the hierarchy of matrices is

more fully developed. These two aspects of the theory oftypes will be considered in this

section.

The axiom of reducibility is needed in the first edition of Principiato deal with

those propositional functions that involve functional variables just as it had been in 190g.

The axiom of reducibility is 'the assumption that, given any function gl, there is a

formally equivalentpredicative function, f.e. there is apredicative functionwhich is true

when gx is true and false when gx is false" (Whitehead and Russell 1910, p. 56). This

axiom is needed, for instance, in dealing with statements that include the..notion .all

properties of a,' meaning 'all functions which are true with the argument a"'(Whitehead

and Russell 1910, p. 55) since these involve the illegitimate totalities of 'all properties'

and 'all functions.' But, one can speak of 'all predicative properties of a,, or.all second

order properties of a;' in general, one can even speak of 'all zth order properties of a' for

any fixed n. Since a wide range of mathematical reasoning involves notions such as .all

properties of a,' the axiom of reducibility is introduced so that this body of mathematical

work is not simply discarded by the theory of types. By claiming that any property is
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equivalent to some predicative property, the axiom of reducibility enables such

mathematical reasonings to remain sound. This axiom is employed in the construction of

the matrix-type hierarchy as follows:

The division of matrices into types is eflected by beginning with objects which are

neither functions nor propositions; these are to be the individuals. The frst matrices have

only individuals as arguments and no apparent variables. The collection of functions that

can be derived from these matrices by turning their variables into apparent variables are

thefirsrorderfunctions. Since these form a well-defined collection, the frst-order

functions can act as variables and can occur in quantifiers. Thus, a new set of matrices

arise (which Russell calls second-order matrices), namely those which contain

individuals and fust-order functions as arguments. From these new matrices a different

class of functions can be derived by turning the variables in the second-order matrices

into apparent variables. These functions together with the second-order matrices are

called second-orderfunctions. This process can be continued, deriving functions of the

(n+l)th order from those of lower orders.2r This is the more complicated hierarchy that

Russell constructs, and it is to functions in this hierarchy that the axiom of reducibility

needs to be applied (for reasons adduced above).

Several examples in which the axiom of reducibility is seen as essential are put

forth by Russell. These examples include the consideration of the proposition't'{apoleon

had all the predicates that make a great general" (Whitehead and Russell 1910, p. 56), an

2r An analogous procedure is canied out for the propositional hierarchy. This process begins with

elementary propositions, from which first-order propositions are derived. Russell notes that "the

propositional hierarchy ir n"uo required in practice, and is only relevant for the solution ofthe paradoxes"

(Whitehead and Russell 1910, p. 55).
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application to the notion of identity, as well as to the theory of classes. Finally, the

reasons for accepting the axiom of reducibility are listed. Russell notes that it is clear that

this axiom is not self-evident, but that self-evidence is only one reason for accepting an

axiom. He continues by stating that since nothing that appears to be false can be derived

from it, and it leads to many propositions which seem to be incontestable, the axiom has

an inductive appeal. He does not rule out the possibility of there being another more

fundamental axiom which can replace the axiom of reducibility, but he states that this is

no rezlson for not using this axiom in the meantime since it is so useful in,the derivation of

a large portion of mathematics.

2.6 Concluding Remarks

In this chapter Russell's transition from the theory of types to various other

theories, and back to the theory of types has been outlined. These theories were all given

in order to avoid the logical paradoxes that arose around the turn ofthe century. The

reactions to Russell's theory of types, as given rn Principia Mathematica, were quite

varied. A common theme was the feeling that Russell's reliance upon the axiom of

reducibility needed to be abandoned. This was motivated by a desire to base mathematics

upon a securely constructed basis. In the next chapter several attempts at securing the

foundations of mathematics will be outlined.
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3. The Theory of Types until the second Edition of Principia

Mathematica

3.1 Introduction

In this chapter the developments and comments upon the theory of types that

occurred between the publication of the first and second editions of Principia

Mathematica are discussed. This is followed by an outline of the changes to the theory

found in the introduction to the second edition of Principia. The works that are focused

upon are all either mentioned explicitly as providing great improvements to mathematical

logic, or else they are found in the list of "contributions to mathematical logic since the

publication of the frst edition of Principia Mathematica" (Whitehead and Russell1925,

p. xlv).

The fgst work considered is Hermann Weyl's The Continuum (1918). This book

is mentioned in the list of contributions to mathematical logic, but not explicitly by

Russell in the text of the introduction. The constructive methods in this book proved to

be influential in later work in the theory of types. In the next chapter Weyl's methods,

along with Chwistek's, will be sharply contrasted with Ramsey's. One of Weyl's chief

concerns in his construction of the continuumwas the removal of any vicious-circle. This

is in line with Russell's aims. However, Weyl was not satisfied with the non-constructive

nature of some of Russell's methods; most notably, the notorious axiom of reducibility.

The second work considered is Leon Chwistek's. Chwistek held a constructivist

attitude comparable to Weyl's. The main aim of his 1924 work, "The Theory of
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Constructive Types", was to rebuild Principia Mathematica without any reliance upon the

axiom ofreducibility. In his work Chwistek anticipates Ramsey's later distinction of the

simple from the ramified theory of t1pes. Chwistek's work proved to be very influential

in later years, most notably in the work of John Myhill. Russell also tried to avoid using

the axiom of reducibility in the second edition to Principia, although he did this along

lines different from Chwistek.

The work that bears most directly upon the theory of types in the second edition of

Principia is Wittgenstein's Tractatus Logico-Philosophicals. However, this work will not

be considered on its own. It will only be outlined in connection with Russell's work in

Principia and as it applies to subsequent work in the theory of types.

In the second edition of Principia Russell takes the idea introduced by

Wittgenstein that all functions of functions are extensional and works "out its

consequences" (Whitehead and Russell 1925,p. xiv) in the new introduction Thus,

Wittgenstein's work is the one which influences the changes in Russell's theory of tlpes

the most. Wittgenstein's extensional view of functions of functions was also taken up by

Ramsey. However, Ramsey came to some conclusions radically different from Russell's

with respect to the theory oftypes. This is most likely due to the enigmatic style in which

Wittgenstein's Tractatus is writterq leaving it opento various interpretations.

3.2 Weyl's Continuum and Chwistek's Constructive Types

lnThe Contimtum, Weyl attempts to construct the continuum of real numbers

using only a finite number ofprinciples. In doing so he avoids the axiom of reducibility
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or any equivalent axiom. Taking the "sequence of the natural numbers [as] an ultimate

foundation of mathematical thought" (Weyl 1918, p. 48) Weyl defines the real numbers

and derives a large portion of analysis. Throughout he emphasizes the importance of

using precise notions in a constructive way. This is clear in his statement that'the

principles of definition must be used to give a precise account of the sphere of the

properties and relations to which the sets and mappings correspond" (Weyl l9l8,p. 47).

In his construction Weyl succeeds in building a set of real numbers which satisff

Cauchy's principle of convergence" aswell as being everywhere dense. Weyl cites three

principles that do not hold in his systern These are "Dedekind's cut principle," that "a

bounded set of real numbers has a unique least upper bound and a unique greatest lower

bound," and that "every bounded infinite set of real numbers has an accumulation point"

(Weyl 1918, p.77).23 Furthermore, Weyl describes the limitations that he prescribes in

his work as "the unrestricted application oftlre concepts "existence" and'ttniversality''to

the natural numbers, but not to sequences of natural numbers" (Weyl 1918, p. 3). These

restrictions are effected through his use of different levels of variables in his quantifiers.

These levels correspond to t1pes. Just as in Russell's work, Weyl is led to a'ramified type

theory by considering relations that hold not only between individuals, but also between

relations, between individuals and relations, and so on. This is done in section 6 of his

22 Weyl states this principle as follows: "The sequerce f(n) converges to some real number c if and only if
this sequence is corwergenf' where'a sequence ofreal numbers fis called convergent il for every fraction
a, there is a natural number n such that for every p and q wtrich are>. n,the rational number --a belongs to
the domain f(p)-f(q), but +a does not. Furlher, we say that the sequence cotverges to the real number cif,
for every fractiqr a, there is a natural nnmber n such that for every p > n, the rational number --a belongs to
the domain f(p)-c,but+a does nof'(Weyl 1918, p. 75). He goes on to note that in these definitions
quantification ctly occurs over natural numbers.
23 Unlike Weyl's Cauchy conv€rge,lroe principle, these all involve quantification over objects other than

natural numbers. This is the reason why the one can hold" wtrile these do not in Weyl's construction.
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book. However, Weyl's type theory differs from Russell's in that his types are not

disjoint; they are cumulative.

The principles that Weyl is unable to derive in his system of real numbers without

the axiom of reducibility are similar to those that Russell was unable to derive. However,

Weyl does not find it disconcerting that he is unable to derive these theorems, since his

continuum is based upon more constructive grounds than most alternatives. Another

attempt at limiting the theory oftypes by avoiding the axiom of reducibility and using

only constructive methods was made by Leon Chwistek.

Using a constructive procedure, just as Weyl had done, Chwistek works in his

"Theory of Constructive Types" towards an improvement ofPrincipia Mathematica.

Many ofthe ideas developed by Chwistek will be seen to be quite similar to Ramsey's in

the next chapter. For instance, Chwistek distinguished between two kinds of theories of

tlpes; the simple and the ramified theories. Chwistek also distinguished the two different

kinds of paradoxes. However, he thought that Richard's paradox could be constructed in

Russell's theory oftlpes (Chwistek 1924, p. l3-la). Ramsey, as will be seeq rectified

this mistake.

Like Ramsey, Chwistek aimed at reconstructing the theory of types without the

axiom of reducibility. This restriction to a purely "constructive" theory led, as Russell

pointed out in the introduction to the second edition of Principta (Whitehead and Russell

1925, p. xi9, to the loss of much of mathematics just as Weyl's overly constructive

system had. Although Russell also tried to avoid the use of the axiom of reducibility in

the second edition of Principia, he did so along different lines; his method followed the
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reconsideration of the nature of functions as introduced by Wittgenstein. Although

Russell did not follow Chwistek's methods, Chwistek's work did prove to be quite

influential. This is especially apparent in John Myhill's work in the 1950's as will be

seen in the last chapter of this thesis.

Again, Wittgenstein's Tractatus Logico-Philosophiczs proved to be the most

influential work bearing on Russell's introduction to the second edition of Principia.

Wittgenstein's work was incorporated by many logicians including not only Russell, but

also Ramsey and Carnap, as discussed in the next chapter. Russell's use of

Wiftgenstein's work is discussed in the next section.

3.3 Russell's Modifrcations to the Theory of Types

In the second edition of Principia Mathemallcc Russell wishes to avoid the axiom

of reducibility just as Chwistek and Weyl had. Since this axiom is utilised in much

mathematical reasoning, the careful replacement of it in the second edition of Principia is

of considerable importance. Russell's proposal stems from a change in philosophic

viewpoint as to the nature of functions. This new conception is borrowed from

Wittgenstein's investigations in his Tractatus Logico-Philosophicus. Here "functions of

propositions are always truth-functions," and "a function can only occur in a proposition

through its values" (Whitehead and Russelllg25,p. 
"iu).'o 

Using this fundamental

change, Russell npdifies the construction of the type hierarchy while avoiding the axiom

of reducibility. However, although the hierarchy is constructed more smoothly with these

2a A fimction only occurring in a proposition through its values simply means ttrat it is not q/ that occurs in
a proposition, but ralher gr, g/, gz, and so on; that ig the values of the functian, not the function itself.
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amendments, without the axiom of reducibility Russell is, like Chwistek and Weyl,

mable to construct certain portions of classical mathematics.

Since the axiom of reducibility is not used, problems2s arise in the construction of

the type hierarchy. As noted above, it is 'khen the apparent variable is of higher order

than the argument" (Whitehead and Russell lg25,p. :xxiv) that a problem arises. This

corresponds to the consideration in the first edition of those statements that involve ,all

properties of a' (as seen in the previous chapter). In this new constructioru variables are

introduced for each new order of function. So, for instance, 91 is used as a variable for a

first order function md gz is used as a variable for a second order function. Then

matrices are used similarly as in the first edition But in using new variables for these

functions of different orders

we shall obtain new functions

@).f.(qzyt), (E qz)l( qzfx)

which are again not among values for g2p (where rp2 is the argument), because the

totality of values of 98, which is now involved, is different from the totality of

values of gD, which was formerly involved. However much we may enlarge the

meaning of g, a function of x in which g occurs as apparent variable has a

correspondingly enlarged meaning, so that, however g may be defined,

(q)l( qf t), @ q).fl( q!*)

can never be values for qx. To attempt to make them so is like attempting to catch

one's own shadow. It is impossible to obtain one variable which embraces among

' The adequacy ofthis new procedure is discussed below.
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its own values all possible functions of individuals (Whitehead and Russell 1925,

p. xxxiv).

The axiom of reducibility is not needed here, it seems. This is the case since the order of

the variables must be indicated before they can be used in the propositional function.

Thus, no statements involving 'all properties of a' would occur since the 'properties'

would be of some indicated order. Russell shows (Whitehead and Russell1925, pp.)Lxv-

xxvii) that "any general propositions about qti are also true about qr.y" and 'this gives us,

so far as such functions are concerned, all that could have been got from the axiom of

reducibility" (Whitehead and Russell 1925,p.xxxvii). However, when attempting to

show similar results for functions involving g4rr this attempt falls short and Russell states

that its failure to hold true in every case is illustrated by the "failure of the inference in

connection with mathematical induction" (Whitehead and Russelllg2s, p. xxxix).

That this attempt to replace the o<iom of reducibility falls short is shown by

Russell in the concluding paragraphs of the new introduction. The problems he illustrates

arise in connection with the theory of classes. This theory he states to be "at once

simplifred in one direction and complicated in another by the assumption that functions

only occur through their values and by the abandonment of the axiom of reducibility"

(Whitehead and Russel|lg25,p. xxxix). The theory of classes is simplified by noting

that all functions of functions are extensional since nt(qil,g can only occur through its

values and if <px is equivalent to yr, then the substitution of gx in/will give the same

truth-value to/as ryx would. In this way the ambiguity which is attributed to classes in

the first edition is dispensed with as "there is no longer any reason to distinguish between
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functions and classes" (Whitehead and Russell lg2s,pg. xxxix). The problems arise

since "classes of different orders composed of members ofthe same order" (Whitehead

and Russell1925, p. xxxtx) must now be distinguished.

This new difficulty leads to the failure of several theorems and methods which

one would want to be included in any account of mathematics. For instance, the proof of

Cantor's theorern, the development of Dedekind cuts, and mathematical induction on the

natural numbers all fail to be derivable within Russell's logical system. He remarks that

those propositions in which itis to be proved that two classes are similar can be derived

in a valid manner. On the othe.r hand, unless at least one class is finite, the proofs that two

classes arc not similar, fail.

In conclusiorl it is apparent from the above considerations that Russell did not

view the second edition of Principia Mathematica as a complete treatise. Rather, it

needed some serious work if it was to fulfill the initial goal of re-writing mathematics in

terms of purely logical symbolism (with axioms that can be viewed as .true, or self-

evident). Since the abandonment of the axiom ofreducibility has the consequence of

sacrificing Dedekind cuts and thus collapsing analysis, it is concluded that some logical

axiom must be found that will allow for the development ofthis important part of

mathematics (Whitehead and Russell lg21,p. xlv).
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3.4 Concluding Remarks

It has been seen in this chapter that Russell's theory oftypes experienced several

revisions by different authors. The most common trend was to omit the axiom of

reducibility. This trend continued for many years after, as the next chapter will show.

Russell,s final version Of the theory Of types, which he by no means saw as a completed

work, was most notably influenced by Wittgenstein's new conception of functions. This

new extensional attitude towards functions was taken one step further by Ramsey, who

took extensionality as an all-embracing principle. Ramsey's work is considered in the

next chapter, as is Carnap's response to some of his views' 
'.
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4. Ramsey and Carnap on Types

4.1 Introduction

In this chapter Ramsey's and carnap's works in the theory of types are

investigated. Ramsey's distinction between the two different kinds of paradoxes was

followed by all subsequent logicians. Using this distinction, he separated the simple from

the ramified theory of types and set out to rework both of these in his own system.

Ramsey redefined the notion of 'predicative functions' an4 in this way he was able to

construct Russell's theory of types without the axiom of reducibility. However, the

axiom of reducibility is not missed in his system since his new definition makes every

propositional function predicative. As will be seen, Camap rejected Ramsey,s proposal

since Ramsey's work relied heavily upon impredicative definitions. However, Carnap

did include a simple type theory in several of his works. The role that this theory played

in carnap's work will be discussed in section 4 of the present chapter.

4.2 Ramsey and the Simple Theory of Types (part t)

In Ramsey's two papers, "The Foundations of Mathematics" (1925) and

"Mathematical Logic" (1926) Russell's logicism is amended and then defended as a

philosophical foundation for mathematics. In the exposition of his theory, Ramsey points

out the flaws' and what he sees to be their source, inherent in other attempts at finding a

foundation for mathematics. The 1925 paper outlines Ramsey's own version of logicism,

while pointing out the weaknesses of Russell's work. The I926paper is devoted to
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showing how the attempts by Weyl (who adopts a form of intuitionism) and Hilbert (with

his formalism) to find a foundation of mathematics fail. It can thus be viewed as an

extension of the 1925 paper in that it puts aside the exposition of Ramsey's own views,

and instead investigates the failure of the other attempts in light of his new discoveries.

Those which lie in his development of the theory of types will be discussed in this

section26 - it is only the axiom of reducibility and the notions to which this leads that are

considered disastrous to Russell's theory of types.

Ramsey is thus able to retain the theory of types as a way of avoiding the 
j

contradictions, but he amends Russell's view of mathematics drastically enough that the

axiom of reducibility can be dispensed with. Ramsey's methods for changing the theory

of types all stem from his version of Wittgenstein's theory of propositions and functions.

Russell had also adopted a version of Wittgenstein's theory in the second edition of

principia,as seen in the previous chapter. However, Russell apparently did not interpret

Wittgenstein's views in the same way as Ramsey since their conclusions regarding the

theory of types are so different. It will be shown that Ramsey takes a more drastic move

towards extensionality than Russell had.

Ramsey considers the propositions ofPrlncipia Mathematica as falling into two

categories: those that are expressed in words, and those that are expressed in logical

symbolism. By the theory of types, Ramsey states that those expressed merely in words

are "nearly all nonsense" (Ramsey 1925, p.174). Ramsey claims furthermore, that all of

those propositions that are expressed in symbols are tautologies (in Wittgenstein's sense),

26 The other problems which Ramsey sees as mcing Rusqgll's account of the foundations of mathematics

include the extensionality of functions, andhis theory of identity.
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except for one;27 the axiom ofreducibility. Thus, since Ramsey claims that mathematical

propositions must be tautologies and completely generalized,2s the axiom ofreducibility

has no place in mathematics for Ramsey.2e This conception of mathematics Ramsey calls

the'tautology theory" (Ramsey 1925,p.177). This view does not differ drastically from

Russell's as advocated in the introduction to the second edition of principia.3o Russell

also hoped to dispense with the a:riom of reducibility, but as will be shown below, his

attempt failed precisely because he did not conceive of propositions in the same way as

Ramsey.

:
After briefly introducing the 'tautology theory", Ramsey proceeds to point out .

what he sees as three fundamental defects rn Principia Mathematica. The second of these

deals directly with the theory of types and its solution to the contradictions. The

remainder of Ramsey's paper is devoted to 'txpounding a modified theory from which

these defects have been removed" (Ramsey 1925,p.184). Ramsey's investigation into

'.1*t is not-quite so simple for tfe multiplicative axiom or the a;riom of infinrry. see the next section for adiscussion of how Ramyv-treatsttre logical status ofthese two axioms as well as for the definitions of
jlusoJogv' and'conradictio.n' wtrich namsey borroua aom *Ge"Jein.
I t" g?oTing that propositions must be tautologies and compleely gaaaliz-d,Ramsey makes a claim notfound in PrinciPia Mdhematic. H.gg Rapsey is urging cerriin ,ofirti*, upon both the form and thecontent of propositions. This new distinction ii a tef ai-re"ence b"t*; the interpretation oipropositionspl.ll by fgsey and Russell. qv'vr I
" In his 1932 review of-Ramsey's paper Clnnch agrees with Ramsey's aim at avoiding the axiombfreducibility' However, he states that:\re cannot agree with Mr. Ramsey, that the reas-on fo.'tlr; desirabilityof avoiding it is that the.axiom-i1 n9t 

"-h!o_l9gy 
ititrt. t*r" Jwitig*tt in" or that it is desirable ornecessarythat all the axioms of logic shorld *-t"utologies...c.tt"i"iitrt"notion-olu-1"i,1;if,} loses muchof its connotation of 'necessary' wtran we discover that the oriom of infinity is a tautology if it be trug but

;.contadiction 
if it be frlse'(ctrurch l9324p.356). ctnnch's nier"s r"itt be explicated"further in chapter

'o In his review of Ramsey's article, Russell states. that-"I agree with Ramsey in rejecting this view [thatmathematics consists solely of those.trug grono{lior in *f,i"tr -ry -ua*ratical or logical conc€ptsoccur], wtrich I advocated in 'The?rincipies of uathematics'. Butit isno longer contained m principia
Matlematica, since the hI-* ofttre multiplicative a:<iom had strown its ftlsehood. At that time I had nodefinition of matherratical propcsitions; t or", ottoyr,g witg;;irt a"noiti* of logic, I agree that theyare tautologous generalizations" @ussell lDit,p. +lnl

59



the deficiencies of the theory of types tn Principia begins with a division of the

contradictions into two categories.3l He regards the principle by which he divides the

contradictions as of .,fundamental importance" (Ramsey 1925,p.183). This distinction

gives rise, in Ramsey's view, to two distinct parts of the theory of types; the one part

deals with the first group of contradictions and the second with the second group'

Ramsey holds the first part of the theory of types found tn Principia to be

unquestionably correct. The contradictions of the first group are dealt with there, and

they are.,removed by pointing out that a propositional function cannot significantly take

itself as argument, and by dividing functions and classes into a hierarchy of types

according to their possible arguments. Thus the assertion that a class is a member of

itself is neither true nor false, but meaningless" (Ramsey 1925, p. lS7). This simple type

hierarchy is what Ramsey holds to be indisputable, and it is to this that he attempts to

reduce the rest ofthe theory oftypes. This is effected, as will be seen' by simply severing

the other branch of the theory.

Whereas the first part of the theory distinguishes qpes of functions only by the

types of their arguments, in the second part of the theory a further distinctiori is required.

This distinction is made between the different functions that take the same arguments'

This part ofthe theory of tpes requires the a:<iom of reducibility which Ramsey aims to

avoid. However, according to the work done n Principia, one is left with the choice of

either accepting the axiom of reducibility, or else eliminating a large portion of

3r The first goup of axioms involve only logical or mathe,matical terms, wtrile those in the second group are

,,oip*"tv flgi.if; they contain ,ome r"ierence to subjective tenns such as 'thought', 'definability', and

'language'.
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mathematical reasoning (including Dedekind cuts). Since neither of these options appeals

to Ramsey, overcoming the need for such a dichotomy is of utmost importance to him; in

particular, Ramsey sees the elimination of any reliance upon the axiom of reducibilitv as

essential.

Ramsey deals with this "most serious" (Ramsey lg25,p. 195) objection to the

foundational work done in Principia by re-defining the notions of a .predicative

function', 'functions of individuals', 'functions of functions of individuals', and so on.

These new definitions are made through considerations of Wittgenstein's logical theories.

Dealing with functions of individuals poses no problem in trying to eliminate the reliance

upon the axiom of reducibility. In this context Ramsey elaborates Wittgenstein,s theory

of propositions viewing '(x)g(x)' as the logical product of a set of propositions, and

'E(x)g(x)' as the logical sum of a set of propositions. Following Wittgensteiq it is

possible for these logical products and sums to be infinite in length. This process is easily

extended to propositional functions oftwo or more individual variables by holding one of

the variables constant and quanti$ing over the other variable (where the function in

which one variable is constant is viewed as a function of one variable).

After encountering no problems in dealing with functions of individuals, Ramsey

attempts to apply the same procedure to functions of functions. This process runs into a

problem almost immediately, and Ramsey concludes that a more precise definition of a

'function of functions' is needed to replace the definition given rn principia. He

distinguishes two ways in which a definition can be given; either by the ,.subjective,, or

by the'bbjective" method. The subjective method is what Ramsey attributes to Russell,s
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procedure. In this method the possible range of functions is defined as all those which can

be constructed in a certain way. However, this method, as has been seen, leads to the

need for the axiom of reducibility. Thus Ramsey pursues the objective method; with this

method he is successful in overcoming the reliance upon the axiom of reducibility.

Instead of dealing with how functions can be constructed" Ramsey views functions

of functions more like functions of individuals where the individuals are names (or

possible names). So, in the analogue, the functions as arguments will be admitted if they

have an appropriate meaning. As Ramsey states: "my method, on the other hand, is to

disregard how we could construct thenU and to determine them by a description of their

meanings" (Ramsey 1925, p.202). In this way, Ramsey allows functions as arguments

with such meanings so that only predicative functions of functions will arise. These

predicative functions, he goes on to show, encompass an even wider breadth of functions

than those found in the predicative functions of Principia. Ramsey thus sees his method

as more successful than that utilised by Russell. Thus, Ramsey uses this version of

logicism as the protoqrpe to be defended against intuitionism and formalism - the two

main views opposing logicism at the time.

The new definitions introduced by Ramsey are clearly impredicative. This,

together with his outright opposition to purely constructive methods makes his opposition

to Weyl and Chwistek clear. Furthermore, Ramsey's view of logicisrn, it will be seen in

section 4, faced serious objections by Carnap. Before looking at those objections,

Ramsey's account of the logical status of the multiplicative axiom and the axiom of

infinity is outlined in the next section.
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4.3 Ramsey and the Simple Theory of Types (part II)

Ramsey had to deal with both the multiplicative axiom32 as well as the a:riom of

infinity33 in order to maintain his thesis that all propositions of mathematics, expressible

in logical symbolism, are tautologies. Ramsey claims that under Russell's interpretatiorl

the first axiom is "logically doubtful" but under his own it is "an obvious tautology''

(Ramsey 1925, p. 222). Furthermore, the axiom of infinity is shown to be either a

tautology or else a contradiction under Ramsey's interpretation, but an empirical

proposition under Russell' s.

Before discussing how his interpretation leads to these results, Ramsey's

definitions of 'proposition', 'tautology', and 'contradiction' will be outlined. According

to Ramsey's (following Wittgenstein's) view that all propositions are truth-functions of

elementary propositions it follows that all propositions are either 'tautologies',

'contradictions', or'empirical' :

Given any set of n atomic propositions as arguments, there are2o corresponding

truth-possibilities, and therefo re 22" subclasses of their truth-possibilities, and so

22n truth-functions of n arguments, one expressing agreement with each sub-class

and disagreement with the remainder. But arnong these 22o there are two extreme

cases of great importance: one in which we eryress agreement with all the truth-

possibilities, the other in which we express agreement with none of thern A

proposition of the first kind is called a tautologt, of the second a contradiction.

32 Namely,-that given any class K of classes, there is a class with o<actly one member in common with each
gember ofK (Ramsey 1925,p.220).
" whidr states that there are an infinite nrrnber of individuals (Ramsey 1925, p.222).
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Tautologies and contradictions are not real propositions, but degenerate cases

(Ramsey 1925, pp. 172-17 3).

The genuine (non-tautolo gous and non-contradictory) proposition "asserts something

about reality" (Ramsey 1925, p. 173) and can thus be called 'empirical'.

Using these definitions, Ramsey first deals with the multiplicative axiom. In his

assertion of this axiom, he states that:

If by 'class' we mean, as I do, any set ofthings homogenous in tlpe not

necessarily definable by a function which is not merely a function in extension,
:

the multiplicative axiom seerts to me the most evident tautology. I cannot see

how this can be subject of reasonable doubt, and I think it never would have been

doubted unless it had been misinterpreted. For with the meaning it has in

Principia, where the class whose existence it asserts must be one definable by a

propositional function of the sort which occurs n Principia, it becomes really

doubtful and, like tlre Axiom of Reducibility, neither a tautology not a

contradiction (Ramsey 1925, pp. 220-221).

This is shown as follows. Firstly, the multiplicative axiom is not a contradiction in

Principia since it is possible that every class in Ramsey's sense is defined by an atomic

function so there will be a class having one member in common with each member in K:

this would also be a class in the sense of Principia. Secondly, the multiplicative axiom is

not a tautology in Principia. This is shown to be the case by considering
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the equivalent theorem that any two classes are commensurable. Consider then

the following case: let there be no atomic functions of two or more variables, and

only the following atomic functions of one variable:

Associated with each individual a an atomic function gr(x) such that

gt(x)' =x 'x: a

One other atomic functionf such thatffi),iCfil are both infinite classes. Then

there is no one-one relation, in the sense of Principia, having either lfJD or iCfy)

, "t 
domain, and therefore these two classes are incommensurable (Ramsey 1925,

. p.22r).

Thus, the multiplicative axiom is not a tautology rn Principia.

On the other hand, the multiplicative axiom is "an obvious tautology'' (Ramsey

1925 , p. 222) under Ramsey's interpretation. He makes this claim and then refutes the

idea that, if the muhiplicative axiom is a tautology, then it should be provable in his

systenr This is done in Ramsey's statement that

it does not seem to me in the least unlikely that there should be a tautology, which

could be stated in finite terms, whose proofwas, nevertheless, infinitely

complicated and therefore impossible for us. Moreover, we cannot expect to

prove the Multiplicative Axiom in -y systenr, because my system is formally the

same as tlro;tof Principia, and the Multiplicative Axiom obviously cannot be

proved in the system of Principia, in which it is not a tautology (Ramsey 1925, p.

222).
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This is a key passage to which Carnap holds exception in his l93l paper, as will be seen

in the next section.

Ramsey further shows that under Russell's interpretation of identity, the axiom of

infinity will be an empirical proposition. This follows from the following considerations:

rn Principia, due to the definition of identity, the axiom of infinity means that there are an

infinite number of distinguishable individuals. This is empirical, since "even supposing

there to be an infinity of individuals, logic cannot determine whether there are an infinity

of them no two of which have all their properties in common" (Ramsey 1925, p.222).

Comparatively, in Rams"r', ,rr,.* the axiom of infinity is either a tautology, or it is a

contradiction. Ramsey claims that this difference in the status of the a><iom of infinity in

the two interpretations stems from the different account of identity,3a and the fact that his

own system admits functions in extension. Ramsey notes that in his interpretatiog the

oriom of infinity will be a tautology in those systems in which the universe has an infinite

number of individuals, and a contradiction otherwise. He thus admits that "in the logic of

the whole world, if [the axiom of infrnity] is a tautology, [it] cannot be proved, but must

be taken as a primitive proposition. And this is the course which we must adopt, unless

we prefer the view that all analysis is self-contradictory and meaningless. We do not

have to assume that any particular set of things, €.g. atoms, is infinite, but merely that

'o In his l93l review of Ramsey's paper, Russell objects to Ramsey's heatment of identity where 'identity'
is eliminated altogether using the convention that different letters are to represent different objects. Russell
objects to this by stating that "this is possible, but very inconvenienl andmakes it impossible to find a
defining concept for a finite set ofobjects given by enumeration" (Russell 193 1, p. 477). Church also
objects to Ramsey's treatment of identity in his 1932 review wtrere he states that "ifr andy are two things
which have all their properties in common, and if we allow that x has the property of being identical with r,
then we must allow thaty also has the properly of being identical withx, that is, thatl-lf'(Chrnctr 1932a,p.
356). Ransey had taken this teatnent of identity from Wittgenstein.
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there is some infinite type which we can take to be the type of individuals" @amsey

1925, p.224). Thus, Ramsey justifies the acceptance of the axiom of infinity on

pragmatic grounds and holds that it is either a tautology or a contradiction (as opposed to

an empirical proposition).

4.4 Carnap's Logical Syntax

Just as Ramsey had been, Carnap was greatly influenced by Wittgensteiin's work.

Carnap had no objection to Ramsey's support ofthe 'tautology theory" as described

above. However, Carnap did object to other aspects of Ramsey's work, most notably his

acceptance of impredicative definitions. These objections, together with Carnap's own

incorporations of the theory of types are listed in this section.

In his l93l paper, Carnap proposes that not only arithmetic, but also set theory

and higher branches of mathematics be constructed tlpe-theoretically. In this paper he

highlights certain problems facing the logicist account of mathematics. Most notably, this

includes the problem of "develop[ing] logic i{ onthe one hand, we are to avoid the

danger of the meaninglessness of impredicative definitions and, on the other hand, are to *.1

reconstruct satisfactorily the theory of real numbers" (Carnap 1931, p. 49). Carnap views

Ramsey's attempted solution of this problem as a failure.

Carnap notes that Ramsey attempts to provide a solution by simply allowing

impredicative definitions; this is done by claiming that although they contain a circle, it is

not a vicious, but rather an admissible circle. Carnap dismisses Ramsey's solution by

stating that'\ile should call Ramsey's mathematics 'theological mathematics,' for when
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he speaks ofthe totality of properties he elevates himself above the actually knowable and

definable and in certain respects reasons from the standpoint of an infinite mind which is

not bound up by the wretched necessity of building every structure step by step" (Carnap

1931, p. 50). Carnap is most certainly referring here to Ramsey's appeal to the "infinitely

complicated" proof as cited above. Here Carnap would like to see a more constructive

foundation of mathematics along the lines of Weyl and Chwistek.

Carnap was led to seek his own solution to this problem in his Logical Syntm of

Language. In this work Carnap studies two formal languages. The second of these

contains a form of tlpe theory. It is by following his Principl" of Tol"r*ce, namely that

any language deserves study for its own sake, that Carnap is able to justrff studying this

seemingly Platonistic systern Since this is just one language that Carnap is studying,

there is no appeal to any higher realm of beings as there must be in Ramsey's work. In

order for this to be the case Carnap must posit the Principle of Tolerance as the basis of

his philosophy of mathematics.3s

4.5 Concluding Remarks

It has been seen in this chapter that [tamsey initiated several important steps in the

theory of t1pes. His distinction between the kinds of paradoxes as well as his use of the

simple theory of tlpes proved to be very influential on subsequent work onthe theory of

t1pes. This is the case despite some reservations concerning his methods ofjustifiing his

35 See Ferreiros 1997, pp.97-99 for more on this point.
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work. In the next chapter the first truly formal presentations of the simple theory of types

will be given. These occurred in the monumental works of Kurt Grldel and Alfred Tarski.
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5. Tarski and Giidel: First Formal Treatment of the Theory of Types

5.1 Introduction

In 1931 Kurt Gridel and Alfred Tarski each presented a version of the simple

theory of types. Tarski made use of this theory in his famous paper on truth, while Gddel

employed his theory of types in his incompleteness paper. Both of these theories

represent the first formal formulations of the simple theory of types. They subsequently

became the standard by which many logicians judged the strength of their systems. Thus, 
,

although these versions of the simple theory of types are based upon ideas fromPrincipia '

Mathematicathetr succinct presentation and ease of use made them ideal for further

investigations in the theory of types. Although his presentation of the theory of tlpes was

so influentiaf Tarski soon became dissatisfied with that theory. In this chapter both

Gddel's and Tarski's formulations will be presented together with an investigation into

Tarski's shift from using the theory of types as his logical basis to his using fnst-order

logic together with Zermelo-Fraenkel set theory for that purpose.

5.2 Tarski - Theory of Truth

Becoming dissatisfied with the common usage of the notion of truth, Tarski

sought to clariff it. Tarski used the theory of types in his paper on truth which was

written in 1931, published in 1933, and based upon lectures that he had given n1929. In

this paper Tarski sets up his version of the simple theory of types and then defines "o is

true in A" inside of that theory. In doing so he attempted to develop a clear notion of
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truth for formalized languages that was "materially adequate and formally correct"

(Tarski 1956, p. 152). Tarski upheld the doctrine that the semantics of an object language

must be of a higher-order than the object language itself The object language may

contain its own syntax and names for all of its own expressions. However, according to

Tarski's investigations, it cannot contain specifically semantic terms such as 'satisfaction'

or 'truth'. In this way Tarski set up a hierarchy of languages. This became the most

commonly employed method of avoiding the semantic paradoxes.

The variables of Tarski's system are distinguished by the use of numerical indices.

Those with index I have individuals as values, those with index 2ltave classes of

individuals as values, those with index 3 have classes of classes of individuals as values,

and so on. With this type-distinction of variables elementary formulae are built up as

follows: 'xit!j' is an elementary formula provided tlntj:i+l; further formulae are

obtained by replacing already formed formulae for'P' and 'e' in '-p', 'p-e' and .(x)p'.

Tarski then gives a list ofrules of inference. His axioms include an axiom of

comprehension, as well as an axiom of extensionality.

It is clear that Tarski's presentation can be viewed as a formal treatment of the

theory oftlpes, as will G6del's treatment in the next section. The differences between

these two theories will be pointed out in the next section. It should be noted here that in a

footnote appended to the German edition ofthis paper Tarski states that he moved from

the theory oftypes to first-order logic with Zermelo-Fraenkel set theory as the optimal

system in which he would subsequently work (Ferreiros 1997,p.101). Tarski mentions

this language as "a much more convenient and actually much more frequently applied
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apparatus for the development of logic and mathematics" (Tarski 1956, p.271). The

theory of types had been used by Tarski in four of the articles from his 1956 book, all

dating prior to 1935. Moreover, with this statement he makes the reason for his switch to

frst-order logic clear.

5.3 Gddel - Incompleteness Theorems

The simple theory of types presented by Kurt Gttdel (G6del 1931, pp. 599-601) is

very similar to that set forth by Tarski. In fact, when refening to these systems as the

prototypes of tlpe-theory, Quine would often list them together (Quine 1985, p. 86;

Quine 1935, p. rc$.

Gttdel included '-' (not), 'vo(or), 'fl'(for all), '0'(zero), /(the successor of), and

'(', ')'(parentheses) as his primitive constants. Then he indexed his infinite list of

variables in such a way that the indices refer to the type of the value which the variable

can take. In particular, rl refers to an individual, xzto nclass of individuals, xr to a class

of classes of individuals, and so on.

Gddel's elementary formulae are of the formri*r(x) together with the usual

definitions for'-a','avb', and 'f[x(a)'. Finally the two axioms pertaining to the theory

of tlpes are given. These are the axiom of comprehension and the axiom of

extensionality. This system is clearly quite similar to Tarski's. The difference between

Tarski and G6del's systems lies in the fact that Tarski uses the membership symbol, e, as

a primitive symbol while Gddel does not. However, as noted in Ferreiros' paper from

1997, Gddel's version can be 'quined' so that 'a(v)' is written as'veu' .
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5.4 Concluding Remarks

The two systems outlined in this chapter are very similar. The importance of

these versions of the simple theory of types will be seen in the next chapter. There,

Quine, one of the most influential logicians during the 1930's and later, uses Tarski and

G<idel's simple theory of types as the standard by which to judge the worth of his work.

In fact, he used Tarski's formulation as the startrng point for his further investigations in

which he attempted to improve upon the theory of types. The resulting systems provided

much stimulation for future logicians as the seventh chapter ofthis thesis will highlight.
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6. Church and Quine on Types

6.1 Introduction

In this chapter Alonzo Church and W.V. Quine's works onthe theory of tlpes will

be examined and compared. Alonzo Church only wrote one paper dealing exclusively

with the theory of t1pes. This paper proved to be quite influential since it incorporated

Church's important lambda-operator into a simple type theory. Church had stated his

famous thesis in 1936 where the intuitive notion of 'calculable function' is equated with

the well-defined class of 'recursive functions'. Furthermore, this class of recursive

functions was shown to be the same as the class of Church's 'lambda-definable

functions'.36 Much work was done using the lambda-operator (which acts as a function

abstractor) by not only ChurctU but also his students Kleene and Rosser. As will be seen

in the next chapter, work was done not only on the lamMa-operator in isolatiorl but also

on Church's system that incorporates that operator into a simple theory of types.

In his early works Church tried to find a logical system that avoided any mention

of types. He was well aware, as he noted in his 1928 review of Principia Mathematica,

that the "theory of tlpes...affords the best known method of dealing with the 'well known

contradictions"' (Church 1928, p.240). However, this theory did not satisfr his notion of

an ideal foundation of mathematics. It was only after his logical systenl which avoids the

36 For an in-depttr historical survey ofthe origins of Church's thesis see G.H. Adam's A History of tle
TIuory of Rectrsive Functions ard Computability lyith Special Reference to the Developments Initiated by

Gadel's Incompleteness Theorems ( I 983).
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theory of t1pes, was shown to be inconsistent3T that Church began to show a serious

interest in developing his own version of the theory oftypes. This interest culminated in

his 1940 paper "A Formulation ofthe Simple Theory of T5pes',. This paper, together

with his later views (especially in his 1956 book Introduction to Mathematical Logic) will

be outlined.

Quine's work is also considered in this chapter. As opposed to Churcb, euine

embraced the theory oftlpes in his early work. Quine realized,,as Church had in his

1928 review, that the theory of types was the standard by which other systems should be

judged. However, Quine was also not completely satisfied with the theory oftlpes.

Rather than taking Church's approach of supplanting the theory altogether, Quine aimed

to amend the use of types in his systems.

6.2 Church on Types

Alonzo Church's views regarding the theory oftlpes seemto have changed over

the early part of his career. Firstly, in his 1928 review of Principia MathematicaChwch

states that many diffrculties arise "in connection withthe theory of logical t54)es" (Church

1928, p.239) and further that 'lve hope to see [the theory of types] supplanted or greatly

modified" (Church 1928, p.239). He notes two more times in that same short review

that *difficulties 
[are] raised by the theory of types" and t]rat certain theorems can be

proved only "if we disregard restrictions imposed by the theory oftlpes" (Church lg1g,

37 This was done in Kleene and Rosser's 1935 paper.
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p. 240).38 He concludes this review by claiming that "question[s] will ultimately be

seffled by the complete abandonment of the theory of logical types or by an alteration in it

more radical than any yet proposed" (Church 1928, p.240). An almost contradictory

statement is made by Church at the end of this review where he states that'the theory of

types ...affords the best known method of' dealing with the 'kell known contradictions"

(Church 1928, p.240). However, this statement simply shows that at this point Church

had not found any alternative to the theory of tlpes that would adequately replace it. This

desire to replace the theory of types would guide Church's later works to a great extent.

Church thus makes his view of the status of Russell's theory of types quite clear in this

review. Similar statements permeate not only his reviews, but also some of his own

articles, as will be shown.

For instance, Church's distaste for the theory of types is stated clearly in his 1932

paper where he attempts to formulate a system that is sufftcient for deriving a large part

of mathematics, while avoiding the logical paradoxes without using the theory of types.3e

Church even states tlratZqrmelo and Russell's approaches to avoiding the paradoxes are

.'somewhat artificial" (Church 1932,p.347). However, the trend of criticizing the theory

of types is not present in Church's review of Ramsey's The Foundations of Mathematics.

In fact, Church commends Ramsey's work, noting that the distinction between two

3t Although Chrnctr mentions many times that there are problems with the theory of types, he only mantions

one.'awkivard situation" explicitly. This can be found in the following passage. "Having proved the

theorem that we require about functions of the first n-l types [in vol. II of Pnncipia], then in order to obtain

the same theorems about ftrnctiqrs ofthe rth tlpe we must make a new assumption of all our postulates,

applylng them to functions of the rth type instead of functions of some lower type, and must then prove all

ou. O"oi.-s anew. We 'see,' by symbolic analogy, that this can always be done. But the statement that

this is so is impossible under the theory oftypes" (Chwcl 1928,p.240).

" In ttris paper, a system of logic is set up including the lamMa-abstact operator. The qntem as a urhole

was abandqred afti it was shown to be inconsistent and from it only the lamMa-calculus was preserved.

This calculus is incorporated into Churdr's 1940 versiqr of the simple theory oftypes as discussed below.
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different tlpes ofparadoxes, and thus the formation of two different hierarchies oftypes,

one to deal with each ofthe sets ofparadoxes, is quite important. Furthermore, he agrees

with the desire to avoid the axiom of reducibility in the ramified theory, but disagrees

with Ramsey's reasons for finding such an avoidance desirable.a0

In his 1935 review of Quine's A System of Logistic, Church discusses what he see

to be the six most important changes that Quine makes to the system of logic found in

Whitehead and Russell's Principia Mathematica. The fourth of these is..a liberalization

of the theory of t1pes, by which the axiom of reducibility is rendered unnecessa4r,,

(Church 1935,p. 59S). Thus, Church continues his praise ofthe method initiated by

Ramsey, in which the theory oftypes is modified in such a way so as to avoid the axiom

of reducibility. Church does not mention any difficulties with the theory of tlpes at all

here, and actually states that this'kork of Quine is in both respects [in the formal

definiteness and mathematical elegance] an important improvement overthe system of

Principia, and, although open to criticism in certain directions, is probably not too highly

praised by Whitehead when he calls it, 'a landmark in the history of the subject,,' (Church

1935, p. 603).

Furthermore, Church sees Quine's propositional functions in extensional as being

an important modification in the theory of types in the following way: basically, since

Quine's propositional functions in extension (classes) appear as complete synrbols (as

no This is stated clearly by Churctr in the following passage: Distust of the axiom of reducibility is, of
oourse' ytdespread being_shared even by the authqs of Prlrcipta Mattematica,ana Oere seems to be nodoubt of the de-sirability-qf-" ttt?.y wtridr avoids ffris a,ximr. ilut we cannot agree with Mr. Ramsey, that
the reason for the desirability of avoiding it is that the axiqn is nc a tautology in the sanse of Wittge,nstein,
or that it is desirable or necessary that all the axioms of logic drould be tantologies" (Churdr 1932a, p.356).n' quine calls these classes, but Lhurdr calls the,m proposi-tional firncticrs since, as he noteg they
correspond more correctly with the propositional frrnc&onq as opposedto the classes, found m principia.
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opposed to classes being incomplete symbols rn Principia), Church states that they are

more adequately compared with the propositional functions of Principia. Church claims

that in this way, "Quine has really made an important modification in the theory of

types,42 in a direction which seems to have been first suggested by F. P. Ramsey" (Church

1935, p. 601).43

Church continues to praise the theory oftypes in his 1937 review of Chwistek's

paper. There Church refers to the simple theory of types (the first version of which

Chwistek had published in l92l) as the "now widei accepted simple theory of types"

(Church 1937,p. 169). Chwistek had originally proposed, tn 1912, that the proper

remedy for the paradoxes and the unacceptability of the axiom of reducibility is simply to

reject that axiom while accepting the ramified theory of types without that axiom.

Diverging from his 1921 formulation of the simple theory of types, one year later

Chwistek returned to his 1912 proposal for developing a ramified theory of tlpes without

the ociom of reducibility. Church notes that *it is well known that the Richard paradox

does arise upon incorporation into the theory of symbols for certain semantical concepts"

(Chruch L937 , p. 169) and this leads him to state that, since objections can still be brought

a2 The importan@ oomes from the fact that Quine is able to avoid the paradoxes without using the axiom of
reducibili?y, but rather by changing the way in which propositional functions are to be dealt with.
n' However, in his 1932 ieviewlf Ramsey's work Church questioned Ramsey's use of extertsional

functions. Chwdr states that Ramsey's "abandonment of the principle that x andy are identical (or equal)

when every propositional fi,rnction satisfied by x is also satisfied byy.. . [is] open to serious objection"

(Church t1iZa'pp.355-356). Church continues to state that Ramsey's proof that the axiqm of infinity is a

Lutology (if it 6 iue) does not depend on Ramsey's revision of his notion of identity (as Ramsey suggests),

but ratier Lpon "the intoduction of propositional functions in extension. This notion of a propositional

figrction in extension is certainly legitimate, but it seems doubtfirl whether the distinc'tion can successfully

be maintained betrveen ordinary propositional functions and propositional functions in extensiqr" (Chtnch

1932a,p.357). Thus, although he does not make an explicit statement.against the reliance upon

extensionality in logic, Chr.ndr does seem to be a bit wary of its fnritfulness here.
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against the axiom of reducibility, Chwistek's proposal to develop a ramified theory of

tlpes without the axiom of reducibility has a strong appeal.

Furthermore, Church notes that "the current view of advocates ofthe simplified

theory of types whereby the relation between a concept and the symbol which denotes it

must appear, not within the original language, but within a meta-language containing the

original language, may itself be regarded as a kind of ramified tlpe theory (the distinction

between a hierarchy of languages and a hierarchy of tlpes within one language being here

a matter ofterminology)" (Churchl937,p.170).aa 
lhurch 

also commends Chwistek's

attempt to incorporate notations for both concepts of syntax and those of semantics into

one systern Church claims that "such a system is no doubt consistently possible, on the

basis of the ramified theory of types, and its development should be of considerable

interest" (Church t937, p. 169). The comparison between a hierarchy oftlpes and a

hierarchy of languages as well as the reconsiderations ofthe ramified theory oftlpes will

be found in the next chapter of this thesis.

After reviewing all ofthese different formulations ofthe theory oftlpes, Church

formulates his own version of the theory of tlpes in his 1940 paper. This version is

altered in a supposedly sufficient manner so as to avoid the problems that he sees as

belonging to other formulations of the theory of types.as In particular, Church affempts to

improve the theory by incorporating "certain features ofthe calculus of lambda-

conversion" (Church 1940, p.56) that are to be found, for example, in his l94l

I 9:ot also suggests this in his 1950 paper as discussed in the ne,<t drapter.
" He never explicitly poi1ls 9gt wtry his version is befter than any pr""io* formulations; he only states thatit'tras c€rtain advantages" (Ctrurdr 1940, p. 56).
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monograph (which was written almost exclusively in 1930.46 Certain aspects of his

version of the simple theory of types, as found in the 1940 paper, will now be briefly

outlined.

Church begins his formulation of the theory of types by explaining what is meant

by a hierarchy of tlpes as well as providing rules for generating the type symbols. In

Church's formulation, two undefined type symbols, t and o, are first posited, and from

these, through an inductive definitiotU further type symbols are defined. The class of type

symbols is 'the least class of symbols which contain the symbols t and o and is closed

under the operation of forming the symbol (aD) from the symbols a and b" (Church 1940'

p.56).47 The tlpe symbols enter into Church's system as subscripts for variables and

constants. In the intended interpretation, a subscript indicates the type of the variable or

constant to which it is subscribed, where o is the type of propositions and t the tlpe of

individuals. Furthermore,"(ab) is the tlpe of functions of one variable for which the

range of the independent variable comprises the type b and the range ofthe dependent

variable is contained inthe type a" (Chruch 1940,p.57).

After introducing the method by which tlpes are to be formed, Church goes on to

give a description of what are to comprise his well-formed formulas. This begins with an

a6 He notes that *for features of the formulation wtrich are not immediately connected with the

incorporatiur of lamMa-conversion, we are heavily indebted to Whitehead and Russell [Russell's
Matlematical logic as based on the theory of tyrys, American journal of mathematics, vol. 30 (1908) pp.

222-262;Whitehead and Russell's Principia Mathemaiba vols. l, 2,and3l, Hilbert and Ackermann

[Grundzage der theoretischen Ingik 1928,mdsecond edition 1938], Hilbert and Bemays lGrundlagen der

*tatneriti*,vo. I 1934, vol. 2 li39], and to forerunners of these, as the reader familiar with the works in

question will recogrrize" (Church 1940, p. 56).
ot At Ori. point Chwch lists several abbreviations and notes a few conventions to be used in strortening the

tpe symb-ots. Firstly, he notes that parentheses are to be omitted with the conventiqt that association is to

the left. Also, he uses a' as an abbreviatisr tor ((aa)(aa)), a'' as an abbreviation for ((a'a'[ a'a')), etc.
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infinite list of primitive symbols including tlree improper symbols. These improper

symbols are '71', '(', olrd ')'. The other symbols are the constants N*, A.*, pl(m), ro(oo)

and an infinite list of variables ranging over the different t1pes.a8 within the intended

interpretation, Church mentions in what rnanner he wishes the natural numbers to be

constructed in each tlpe. In doing this it is implicit that a copy of the natural numbers is

to occur within each type. He defines a symbol, Ta..a.,within the system which, when

applied to a natural number of type a', wrlldenote the same number of type a". In this

way, Church's simple theory oftypes seerns to have an advantage over other systems;

namely, in that there is some sort of "communication" between the reduplicated numbers

that occur within each q.pe.4e

Incorporating the use oftype subscripts, Church lists the rules for lambda

conversion as well a rule of substitutio4 modus ponens,and a rule for generalization.

Church lists I I axioms and axiom schemas in total. The first four ,.suffice for the

propositional calculus" (church 1940, p. 6l), while the first 6 suffice for the logical

functional calculus. Church states further that *in order to obtain elementary number

theory it is necessary to add (to l-6) Axioms 7, g, and 9o,, (church 1940, p. 6l), where

the superscripts indicate that the axiom is actually an axiom schema Ganging over the

tlpe 'a'). Axioms 7 and 8 together "have the effect ofthe miom of infinity,while the

a8 lo.tl'",int*ded interpretatidl, '1,' is to act as an abshaction operator, N- denotes negation, , A*odenotes disjunction, PIa-y dardes the universal q'antifier "as a propositionar nrnJion iipi"plitio."rfunctiong" r44 de'notes.1"sel-ecti-on operatc tas a nmctiglgff"drt t"*l functicrs),,, andjuxtapositionis to denote "the aoolication of a fimction to its argurnenf'(ctr;cri 1940, p. 59).tt In his review ofth'rdr's p"p* oltt"i*trqrs this as a great advantage.
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axioms 9o arc arioms of descriptlon" (Church 1940, p .61).to Finally, he states two

axioms schemas that are not used in the rest of the paper. These schemas correspond to

the axioms of extensionality and the axioms of choice. He notes that these axioms are

necessary in "order to obtain classical real number theory (analysis)" (Church 1940,p.

6l). Since the rest of the paper deals only with arithmetic, these a:cioms are not

considered any further. However, Church does make some further comments regarding

the axioms of extensionalitY.

As euine comments in his review of Church's 1940 paper, Church'\rithholds the

general extensionality principle" (Quine 1940,p.114). Indeed, Church says himself that

his axioms 104 areweaker in some ways than other axioms of extensionality, but that

classes can still be introduced that can be associated with a propositional function F*'

This is done by essentially defining the classes using certain properties (using 0 if the

class is to have the property and I if not). Church also points out that if one took the

axiom of extensionality which states that if two propositions are equivalent, then they are

equal, then a different notion of class arises. Namely, classes come to be identified with

propositional functions. Thus, here Church does make use of extensionalityto some

extent, but again it is limited, and does not play a key role in his work.

It has been shown above that over the years Church's view of the theory of types

changed drastically. He began by dismissing that theory in its entirety, seeing it as

50 It is here that Churdr s[ates the independence of the axiom of infinity (Axiom 7 which states-that there

are two elernents that are diflerent from one another, togedrer with Axiom 8 which states that if two

numbers have the same bpe, then if their successors arC equal, then those nurnbers must themselves be

"q*itr 
..the indepandenii of e*io. 7 may be establishedby considering an interpretation ofthe primitive

r'-Ul,fr according to wtrich there is exactly one individual, and that of Axiom 8 by considering an

irltopr"t ti* accJrding to urtrictr there arqa finite number, more than one, of individuals" (Chruch 1940, p'

6l).
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something that should be either completely abolished, or else altered in such a way so as

to make it almost incomparable to its original formulation. This view gradually changed,

so much so that church actually began doing his own research into various aspects of the

theory oftypes. Church's treatment ofthe ramified theory oftlpes as found in his

Introduction to Mathematical Logic (1956) will be outlined together with a statement of
his view ofthe axiom ofreducibility found therein.

In section 58 of his Introduction to Mathematical Logr",Church gives a detailed

account of both a predicative and ramified functional calculus of second order. He

proceeds firstly by formulating the predicative functional calculus of second order. This

is done roughly as follows: Seven axiom schemata are listed, all ofwhich have a relation

to corresponding axiom schemata given by Chwch for the functional calculus of second

order'sl The only difference occurs in the axioms that deal with the substitution of
variables in formulas: in the predicative functional calculus the variable which is to be

substituted must contain no bound propositional or functional variables whereas no such

restriction exists in the regular second order calculus. The ramified version begins with

the predicative version ofthe functional calculus, but proceeds to complicate matters by

introducing, besides orders, arso levels. This is done in the following way:

5r These axioms are (notational {m"*"o1, r),13 g?t), 2) A)(B)Cp(ArBp(Arc))), 3)(-A)-B))(B)A)' 4) ("X1?qP(A{a)B), 5) (")A)B 
"'io" 

g'i.d," result of substituting b for athroughout A where a is an inaiviilTi 
"*iiur", 

a it iri i"aria*i-;;il" or an individual constan! and nofreeoccurrenwof ainAis1awgll-{onnedp;ofaoioerormfrf.,ul@)AtBwtrereB 
istheresultof substitutinEe for p fu"."g\"."1.e *!g:p is a propositional variable, and q contains no boundpropositional or functimal variables., 7) (ri)Bwh€re B is ttre resuiilf substitutin E e for flxr, x2,..., xa)throughout A wherefis Nr n-ary nr"&i6na variable, and",,r"...,i" .. distinct i"aT"ia*f J#i"bles, and gcontains no bound propositionar or tunctionar 

".i"bdaclil; ib;?; 34s-34g).
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In the ramified functional calculi of second order and higher levels, additional

propositional and functional variables are introduced, of successively higher

levels, the leading idea being that in substituting for a propositional or functional

variable of given level, the wffB [this corresponds to 'q' in my footnote 5l]

which is substituted may contain bound propositional and functional variables of

lower levels only. Thus the ramified functional calculus of second order and

second level...contains propositional and functional variables of the first level and

ofthe second level (Church 1956, pp' 349-350)'

Similarly, the ramified functional calculus of second order and third level contains

propositional and functional variables of three different levels, and so on' The axioms for

this ramified calculus of second order correspond analogously to the axioms for the

functional calculus of second order. In fact, the fust five axioms are identical' The only

difference is in the last two, where further restrictions are placed upon the variables which

can be substituted. In the sixth anionr"s2 the bound functional variables of q are all of

level lower than that ofp, and the free propositional and functional variables of g are of

level not higher than that ofp. Inthe seventh axionU the bound propositiorrdl and

functional variables of q are all of level lower than that ofl and the functional constants

and the free propositional and functional variables of q are all of level not higher than that

of/(Church 1956, P. 352).

Church explains how the introduction of these levels alters the representation of

the ramified theory of tlpes as given tn Principia. Essentially, in the second-order

52 See previous footnote for axioms six and seven'
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functional calculi' the level of church's propositional or functional variables corresponds

exactly with what is called the order of a variable tn Principia. However, in connection

with the ramified functional calculi of higher order, what is understood by levelby

Church is what is called tn Principiathe amount by which the order ofthe functional

variable exceeds that of the highest order of any of the variables which may be found in

the argument places ofthat function.

Section 59 of Church's Introduction to Mathematical Logiccontains a brief

account of the axioms of reducibility, but this is included solely ..because oftheir

historical importance" (Church 1956, p.355). The axioms are listed as a doubly infinite

list,s3 and Church indicates that they are not all independent. He justifies this claim by

stating that 'those which contain singulary functional. variables can be proved by using

those which contain bin*y functional variables, and so on downthe list. Also, among

those which contain n-ary functional variables (with fixed n), it is obvious that one in

which F is of lower level can be proved by using one ofthose in which F is ofhigher

level" (Church 1956,p.356). Finally, Church insists that the ramified theory oftypes

together with these axioms of reducibility is not an interesting alternative to the pure

ramified theory or the simple theory of types.sa

As will be seen in the next chapter, Church's version ofthe theory of types proved

to be quite influentiaL There the work by Alan Turing, J. Richard Buchi, and Maurice

L'Abbe will receive special attention

5t This list is given such that for every function of an arbitrary higher level than the firs! there exists afunctional variable of the first level such tt 
"t 

t 
" 

t*o trgtigns aiaeqJvarcnt for every argument. Then
*t*i:,-ir "l Td* g fimctions of one variable, rwo variables, and so on.-' rnrs was lat€r dismissed in chudr's 1976pper wtrich lies outside the scope ofthis thesis.
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6.3 Quine on TyPes

In this section Quine's two major contributions to the theory of types will be

discussed. These are the systems found in his 1937 paper 't"lew Foundations for

Mathematical Logic" and his book from 1940 entitled Mathematical Logic. The system

postulated in the second of these works was an extension of the first. This will be made

apparent in what follows.

a) New Foundations

Although his Ph.D. dissertation was based upon the theory of types, Quine soon

encountered many problems plaguing that theory which he wished to see changed' As he

notes in his ..The Inception of 'New Foundations"' (1987), despite the fact that the theory

of types had been given a neater formulation by Alfred Tarski and Kurt Gtidel, "still I was

unhappy with types. One unattractive feature was the arbitrary grammatical

exclusiveness. Seemingly intelligible combinations of signs were banned as

ungramrnatical and meaningless" (Quine 1987,p.281). Thus Quine tried to formulate a

theory in which the meaningful formulas ofthe theory of types could be generated, while

those meaningless ones were simply unaCcounted for by the definitions (and hence,

would just never arise).

euine,s first attempt at this is found in his 1936 paper "set Theoretic Foundations

for Logic". In that paper Quine took Zermelo's set theory as his starting point and

reduced and varied some of its primitive notions; the variables range over both

individuals and classes indiscriminately. Quine went onto show that the theory of types
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can be simulated in this theory using contextual definitions. Furthermore, an axiom of
infinity was listed as an axiom that can be added to the original list of arioms.

The arbitrary omission of certain combinations of signs was not the only problem

that Quine saw as plaguing the theory oftypes. He was also displeased with the infinite

reduplication of numbers, logical constants, and every other mathematical object in every

higher tlpe' Unfortunately, this second problem remained in the system proposed in his

"set Theoretic Foundations for Logic". Arso, euine often struggled in his work to

include a universal class, which was missing from this work. Thus euine was forced to

pursue a different approach to these problems.

In his 't'{ew Foundations for Mathematical Logic" (lg37)euine set to work at

avoiding these problems. The system introduced there aims at avoiding reliance upon the

theory of tlpes, while retaining the strength of the system set forth rn principia: this is

done by avoiding any specific reference to tlpes, while forming restrictions upon his

axioms based on tlpe restrictions. For instance, two ofthe axioms that are employed in
this system are the axioms of extensionality and of comprehension The a:<iom of
extensionality is stated as: (x)(y)[(z)(zex<+zey)-+p1\, and the a,xiom of comprehension is n,j
(Ey)(x)(xey*p(x)) where g(x) is a stratified formula in which y does not occur free.

Now' a formula is said to be stratified if all ofthe variables can be assigned indices in

such a way as to be consistent with the theory of types. Furthermore, euine,s system

uses the primitives 'l' for alternative denial, ,r, for class membership, and .(x), for
universal quantification. Formulas are described recursively, and in this way the
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translatabil ity of Principia rntothe new system is shown by translating the primitive

formulas of Principia into the recursively defrned formulas of Quine's system'

The system used by Quine contains three more rules specifring the initial

theorems, and finally two rules for "inferential connections" (Quine 1937, p. 77).tt Quine

uses only the extensionality postulate and R3 (mainly R3) in order to derive Russell's

paradox. R3 is the unrestricted comprehension principle. The theory of types is

explained as stratiffing the objects of the system into types so that "an expression which

would be a formula under our original scheme will hence be rejected as meaningless by

the theory of types only if there is no way whatever of so assigning types to the variables

as to conform to [the requirement on epsilon that it only connects variables of ascending

tlpes],, (Quine lg37,p. 7S). Formulas in which the variables can be numbered so that

epsilon occurs only between variables numbered n andn*l are called stratified' An

equivalent way of explaining these formulas isthroughthe use of epsilon-chains' So a

formura is said to be stratified if it has no epsilon-cycles. euine claims that this definition

o.has the advantage of affording an immediate criterion, since the epsilon-chains of

stratified formulas are readily exhausted" (Quine lg37,p. 7S)' The theory of types then

consists of the statement that the system will omit all unstratified formulas'

The theory of types however has several "unnatural and inconvenient

consequences" (Quine lg37,p. 78). These Quin" lists as follows: "the theory allows a

class to have members only of uniform type' the universal class V gives way to an infinite

. 
.Rl and R4 are an adaptation ofthe propositional calculus as

systematized byNicJand Lukasiewicz...R2 and R5 contibute the technique for manipulating the

quantifiet'' (Quine 1937, P. 77).
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series of quasi-universal classes' one for each type' The negation -x ceases to comprise

all non-members ofx, and comes to comprise only those non-members ofx which are

next lower in type than x"(Qu ne 1937 , p.7g). He also notes that all logical constants' as

well as all arithmetical constants are reduplicated within each type' Thus Quine wishes to

set up an alternate way of avoiding the paradoxes which does not succumb to these

unnatural effects.

QuineattemptstoavoidtheparadoxesbymodiffingonlyR3ofhissystem;the

result is the comprehension principle noted above (called R3')' He states that none of the

unnatural properties belonging to the theory of types belongs to his system' Even though

he avoids mention of t1pe, his methods are motivated by the considerations oftypes' In

fact, the method used for avoiding the paradoxes seenN to mimic the theory oftypes quite

closely; yet, it is only the forms of certain sentences that are restricted' Essentially' in

New Foundafiozs Quine imposes the restrictions of the theory of types solely upon the

form of allowable sentences, as opposed to the meanings of the constituents of those

sentences.Thus,itisnotthelanguageitselfwhichisrestricted,butratherwhatcanbe

formed using the langUage. Certain ideas fromthe theory oftypes are used' but in

practise it seems that no mention of types is necessary for Quine' However' it does seem

that his system will be unable to derive Cantor's theorem'56 The question as to how far

this is true is dealt with in another of his papers, namery "on cantor's Theorem" (1937a)'

Since cantor's theorem seems to be disprovable in the New Foundafions' Quine

deems it necessary to investigate the reasons for this (in hopes of avoiding this

56 Narnely the theorern which states that the class of subclasses of a class, W, has a greatq cardinality than

w.
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undesirable aspect ofhis system). This investigation comprises the subject-matter of his

paper entitled "on cantor's Theorem". The disprovability of Cantor,s theore m rn New

Foundations leads Quine to question the consistency of his system. He actually states in
"on cantor's Theorem" that his system "offer[s] less assurance of consistency,, (euine

1937a' p' 120) than those systems which involve the theory of types.57 euine is able to

give greater credence to his system (called s' in his paper) through a comparison of s 
,

with a system s" which "is virtually the same as Tarski and G6del,s simplifications of
the system of Principia Mathematica" (euine 1937a, p. l2l).

The system S'is identical to the one put forth in the New Foundatiow. S,,differs

from S'only in its treatment of unstratified formula; in S" all unstratified formula are

simply abolished' In S" as well, there is a type hierarchy present, whereas in s', as seen

above, there is no mention of the tlpe hierarchy. S" thus retains all ofthe questionable

features discussed in the New Foundations which are inherent to systems involving a

theory oftlpes.

It is with these two systems in mind that Quine begins his investigation of
cantor's theorern Firstly, the formula'(Erxyx)€r)' is easily provable within s.. This

ensures the existence of a universal class v having everything as a member (including

57 The consistency of Quin e's New Foundations andthat of a related .t*go, 
system is investigated byRosser in his "on the cgrsistSncy of Quine's New Foundatio"r ro. r"ruaematical Logic,, (1939a). HereRosser sketches themethods uy urrti"tri"rroped to derive a;"fi;il within euine,s system, as well asthe reasons wtry each method failed. Rossertncludes-by rt"ii.g-trt"pif one could make unsfratifieddefinitions by induction, it would t* trt"io"possibility ofp;&";g some undesirable result by meansof the Gridel technique 9"{d F very muct gr?tq.. .in L""i*r",Jtieems to be the case that there is nodanga of deriving a contadiction algg any irth" t no*n rin"s uniii qre can handle unstatified relationsmore effectively''@osser 19394' p. z+i rtrus, although Rosser wa, *"ur" to derive a contadiction inQuine's New Foundatiozs he did see its consisi.Sg 

"rlrrigrtry 
qu"Ji*"ur.. The key inability to produceunshatified formuras prevelt3! Rg;ser.fr9T 

"pprl"g 
th;4ffi;;;.;ich he and Kleene had used inproducing a conradiction *ttrin fl.nc{'1"ctLivit"^ "ii93}G;und in Kreen;;; R;;r*,s paperfrom 1935,'"The Inconsistency of Certain Eoinaf Ugics,1.
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itself and all of its subclasses). As Quine notes however "this contradicts Cantor's

theorern, according to which the subclasses of V should outnumber the rnembers"

(Quinel937 a,p.122). Quine symbolizes cantor's theoremthat "the converse domain of

any one-many (or one-one) relation has a subclass which does not belong to the domain"

(Quine 1937a, p. 122)in the logical symbolism of s'. He then shows how cantor's proof

would proceed within the symbolism of s" and he concludes that the 'khole proof could

be carried out formarly within S' if we courd prove the existence of a class x satisffing (5)

and (6). (Quine l937Up.122).58 However, the existence of such anx czlnnot be shown

in S' (since 'yez' together with considerations ofthe ordered parr(zy) could not arise)'

Thus, in S' Cantor's theorem fails in this fornl whereas in S" this formulation of

cantor,s theorem cannot even be expressed.5e In fact, this failure to prove cantor's

theorem can be used to disprove Cantor's theorem; Quine also notes that a "simpler

disproof of [cantor'stheorem] in s" consisting essentially of taking v as the class of all

pairs ofthe form (a,a)" (Quine l937up.123) could be easily constructed'

Since this formulation of cantor's theorem is meaningful and frlse in S" while it

is altogether meaningless in S", Quine next looks at the formulation of Cantor's theorem

which is derivable within S"; this he determines to also be derivable within s" since S"

involves the theory of tlpes, the ordered put (z,y) involved in the proof of Cantor's

theorem must be amended so that z andy are ofthe same type' This is done by relating

the unit class {y} to z rf y is of next lower type to z, and {{]/}} to z rf {y} is of next lower

of all that for any.y in x,_there is a z such that y is not in z and yet the 
-

ordered pai (zy)i, irr-;;; v. 
' 

secondly, roi -ilL iftlere is a z zuch thaty is not in z and yet the ordered

pair (zy) is in some v, than Y is in x.
5, This follows to. tii" #""trr"tical remark appended to the prwious sentence: here the formula involving

'ytz' andtheordered Wfu Q$world be unstatified'
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typeto z,arrd'soon. Afterreplacngywith [y] throughouttheoriginalstatementof

cantor's theorern, one is left with the modified version of cantor,s theorem that .the

subclasses of a class outnumber the unit classes of the members,, (Quine lg37a, p. 124).60

Quine concludes therefore that "everything demonstrable in S., admits, indeed, of a

precisely parallel proof in S"' (Quine 1937a, p. 124).6r Thus, even with certain strange

features ofhis systern, Quine still sees lirs New Foundationsas a more acceptable system

than any which incorporates the theory oftypes.62

b) Mathematical Logic

Quine followed up his 1937 system by extending it to his system as found in his

Mathematical Logic. This work differs from the New Foundations tnthat there are two

kinds of object: sets and classes. The original formulation of this system was found, by

Rosser in october l94l,to contain a contradiction; Rosser was able to derive the Burali-

Forti paradox within euine's Mathematicar Logic(euine 19g5, p. 145). euine quickly

set this straight in a correction slip added to those books that had ayeady been sent to

60 obviously this is not an equivalent formulatiur of cantor's theorem within s, since within that systemthe original version is disprovable, while the modified form is provable. Showing that these two
folmyftigns a1e equivafen! woulds-imply 

"moqr! 
to srrowing that there is a one-one relation betweenindividuals and their unit-classes. However, in S'this ir i.ffriur" r-iL it amounts to defining a class ofordered pairs (a, {al) -9 tr9 dgfining condition for this *outa iouotrn" an unsrratified formula. similarly,this one-one relatian is simply-inexprissible in anysystem adnittinjttre theory oftlpes.or There are some oaa conciusions *ltfi-Arir" points out tonecessarily follow tom his investigations ofCantor's theorem: "(a) Cantor's principle tiat thi subclasse, or" 

"tars "twa)4s 
outnumber the members isfalse' (b) The subclasses ofany ilass do, however; oufrrumber the unit subclasses. (c) There is no general

ff:t::t1_Ty,"* objects ana freir unii classes,,(euine l937a, p. t6-Qune was still wary of the theory of tlpes in ttre iaie 1940's. 'i'ftir ir seen clearly in the following passagefrom one of his leters to cartlap on ttt".uuJ".c "I 
lqree 

t1,tft.G;iantimonies are syrnptoms of afundamental unsoundness to.-"n*h"te, uut i ruspe"t aat this unsoriidness lies in platonism itselii.e., in theadmission of abstract values of bindable variabll. The connadi"ti-r r.rri.t issue fiom platurism canindeed be staved offby various artificial devices, and in my ri;r"th;tlt;ry oftlpes is merely one amongvarious sudr devices" (eine 1947,p.409).
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print. Quine later gave a more comprehensive alternative to deal with the problem in his

"Element and Number" from 1941. The essential revision set forth in that paper is

contained in only one of the 6 chapters. The other chapters rather act as an alternative

development to the material found nhrs Mathematical Logic.

The final revised edition of Mathematical Logic appeared in l95l; the repair

added there is attributed to Hao Wang. This repair was simply to limit the bound

variables in the membership conditions for the classes of New Foundations to the sets of

Mathematical Logrc (which correspond to these classes). Wang later provedttnt New 
;

Foundations is consistent if and only rf Mathematical Logic is. Furthermore, Rosser

showed that the class of natural numbers cannot be derived in Mathematical Logic unless

the system is inconsistent. One must postulate that it is a set in order to found the theory

of real numbers. Quine notes that "that postulate is an unwelcome artificiality'' (Quine

1985, p. 146).

The system tnMathematical Lo4rc differs fromthat of New Foundations,as

mentioned above, by dealing with both classes and sets.63 Sets are such that they can be

members of both sets and classes, whereas classes can be members of neither. The

a><ioms must then deal with both classes and sets. In the following capital letters stand for

classes whereas lower-case letters stand for sets. Quine posits an axiom of extensionality:

(A)(B)(r)(xeA<+xsB)+4:31; an axiom of comprehension by a set: @y)(x)(xey*q(x))

where g(x) is any stratified formula with set variables only, andy does not occur free in

9(x); and an axiom of comprehension for a class: (EY)(x)(xeY++g(r)) where 9(x) is any

63 By using both classes and sets, Quine is clearly influenced by von Neumann.
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formula in whichy does not occur free. Finally, a curious feature in Quine's work is his

equating individuals with their singleton sets. This is mentioned as a possibility in his

New Foundations, but is done explicitly in l.irs Mathematicar Logic.

6.4 Concluding Remarks

It has been seen in this chapter that both Church and Quine did much work in the

theory of types. Their systems both incorporated a simple type theory in different ways.

Although Church had initially hoped to simply supplant that theory, he ended up working

within it. Quine, onthe other hand, strove to perfect the theory which motivated his two

works New Foundatiozs and Mathematical Logic. Although he later switched to working

with fust-order logic as his basis, these early works of euine's proved to be quite

influential. Some results from other logicians regarding his two systems have been noted

in this chapter. In the next chapter extensions of both Church and Quine's systems will

be discussed, as will other advances in the theory oftypes.
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7. The Theory of Types as a Many-Sorted Theory

T.L Introduction

In this chapter the further extensions of Quine's work are considered, as are

extensions of Church's work. The type-theoretical systems provided by these two

logicians proved to be quite influential in the 1940's and 1950's as the present chapter

will attest. Apart from work done on these systems, a rejuvenated interest in the ramified

theory of types emerged in the 1950's most notably in the work of Hao Wang and John

Myhill. Whereas Wang was working towards providing a purely constructivist

foundation for mathematics, Myhill was working simply with the aim of completing

Chwistek's program (which, although motivated by constructivist concerns, employed a

non-constructive rule of inference). Finally, this chapter will be concluded by

investigating the views of the theory of types as a many-sorted versus a one-sorted theory.

7.2 Church's Theory of Types (Continued)

As noted in the previous chapter, Church's simple theory of types was studied

quite extensively after its publication in 1940. In this section the works of Turing,

L'Abbe, and Buchi will be discussed as extensions of Church's work on the theory of

types.
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a) Alan Turing

In their 1942paper "A Formal Theorem in Church's Theory of Types" Newman

and Turing extend the proof of Church's 'axiom of infinity' to all types which contain "r"

among their symbols. Church showed in his paper that "if Yo stands for

No"'&,+.Noo,yc,.+.Sa.c.Xa.:Sa,a,yc,+&.:ya. (a form of the .axiom of infinity' for type

o), Yo can be proved formally from Y' and the axioms I to 7, for all types a of the forms

L', t",...For other types the question was left open" (Newman and Turing 1942, p.28).

The proof of the extended case involves not only axioms I to 7 and Y, but also axiom 9
;

(the axiom of description) and axiom 10 (he axiom of extensionality).

In his review of this paper, Leon Henkin notes that "axioms 1-8 alone do not

sufftce to establish this result. For by relaxing the requirement of extensionality only in

type (tD, a model can be constructed in which Y"mo'n". holds only for tlpes o whose

symbol contains "(rt)" (or is '1" itself)" (Henkin 1942, p. 122). Henkin adds that the

extent to which axiom 9 is required remains uncertain as does the question of whether

axiom l0 is needed in all t1pes. The proof provided by Newman and Turing involves

three main steps. These are 1) a proof that their version of the "axiom of infinity is

equivalent to the proposition that 'no member belongs 'to its own posterity'"" (Newman

and Turing 1942, p.28).2) A proof that if a type o can be mapped one-one to a part of

another tlpe o', then the axiom of infinity in o' implies the same axiom in o. 3) The

actual construction of mappings from p{t 2) for the pairs o,p, o and op, p. The fnst part

follows from Church's axioms l-8 while the second and third steps make use of the

orioms of description and extensionality. Newman and Turing point out that Church's
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deduction theorem is used throughout. This work is a direct extension of Church's simple

theory of types. The authors state that they needed to extend his results for applications in

other areas of their research for which they were using Church's simple theory of types.

Turing continued his work on type-theory in his 1948 paper "Practical forms of

Tlpe Theo ry".u0 In this paper Turing presents two different forms of the theory of types

where 'types themselves only play a rather small part as they do in ordinary mathematical

argument" (Twing 1948, p. 80). The two logical systems are called the "nested-type" and

th€ "concealed-type" systems. In the nested-type system the "types themselves do not

intrude very much" (Turing 1948, p. 90). It is this system that Turing claims is equivalent

to Church's simple theory of types.

Turing's nested-type system contains a cumulative tlpe hierarchy. He starts by

considering only a finite universe of individuals U1,...,UN. These formtlpe 0. Tlpe I

then consists of functions of individuals, taking individuals as values, together with all of

the individuals themselves. Type 2 consists of functions of arguments in tpe l, taking

values in type l, together with members of tlpe l. In general, trype r*l consists of

functions of arguments in tlpe n, taking values in bpe z, together with members of tlpe

n.

Turing avoids the use of definitions which require the notion of a function being

undefined for certain values by designating a particular universe Ur and renaming it C. In

this way whenever a function would normally be regarded as undefined it is given this

( 
There are also three rmpublistred papers in Turing's ardrives that deal with Churdr's simple theory of

tlpes. These are "Some Theorems about Ctnrrch's system" (1941),'hactical Forms of Tlpe Theory II'
(19434), and "The Refonn of Mathematical Notation , (1944-5).
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designated value, C, instead. That is, 'the value of a function is always C unless the

function is of higher type than the argument" (Turing 1948, p. 81). Turing then defines

functions and individuals together as terms. Then propositions are formed by writing

U:V (for terms U and V). Furthennore, if P and Q are propositions, then (-P) and

(P-Q) are both propositions. Finally, if U is a tenrL then D'U represents the proposition

stating that U is in tlpe r. Turing then defines the remaining ways of forming terms and

propositions. If P is a proposition, then (tx,r)P is a term (read "the r in type r such that

P") while (x,r)P is a proposition (read '?, for all x in type r"). The use of a finite universe

is then dropped since it *as adopt"d solely to ease his explanations.

Turing then gives a list of nine rules ofprocedure. These include rules governing

the use of 'D" and C as well as rules for substitutioq changing bound variables, etc.

Also, an axiom of infinity is stated ifthe universe is infinite, and if it is not a

corresponding axiom stating the size of the universe is given. Turing claims that the

nested-t1pe system may be proved equivalent, in a certain sense, to Church's simple

theory of t1pes. Since the proof is long and tedious he does not provide it. Instead he

gives a sumnnry of his form of equivalence which he thinks "has certain interest in itself'

(Turing 1948, p. 89). Essentially Turing says that two systems are equivalent if '\ve can

translate from either system to the other in such a way that provable propositions translate

into provable propositions agaiq and so that a double translation gives rise to a

proposition equivalent to the original" (Turing 1948, p. 90). It is with this form of

equivalence that Turing shows his nested-t1pe system to be equivalent to Church's simple

tlpe theory.
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b) J. Richard Buchi

In his 1953 paper "Investigations of the Equivalence of the Axiom of Choice and

Zom's Lemma from the Viewpoint of the Hierarchy of Types", Buchi uses Church's

simple theory oftypes as his logical system. Buchi notes that although it is well known

tlntZermelo's axiom of choice and Zorn's lemma are equivalent logical assumptions in

set theory, when type-theoretical formalisms are used a proof of this equivalence is

unknown. In fact, in this formalism these assumptions must enter only as spectra of

formulae (ZA") for Zermelo's axiom and(ZL") for Zorn's lemma, for variables of a fixed

qpe o.

In his investigations Buchi makes use of only 8 of Church's axiom schemata.

Axioms l-6ocorrespond to Church's first six axiom schemata (which suffice for a logical

functional calculus). Buchi's 7o corresponds to Church's axiom of extensionality and his

8o corresponds to Chtrch's restricted choice principle.65 Finally, Buchi writes (ZA") and

(ZL") as follows:

(ZA") is (Eft 
"(".t(a*) fm+ a(ha)l

(ZL") is (r*").[Pr&Wr]+(Er")(uo)frxu+rwl where 'Pr' expresses that r*o quasi-orders +.1

the type a and 'Wr' expresses that every r-chain has an r-upper bound.66 Thus Zermelo's

proposition for elements of type a states that a function ftqoal exists, which to every

propositional function with arguments of type o tbat can be satisfied, selects one

particular element ha for which the proposition c holds. On the other hand, Znm's

65 This axiom is a;r6&(y)[ao6r"+xo=1'J-q"(r<*FJ wtrere r<d is a selection-op€rata that "chooses" a

'larticular element ra with the property a, provided that there sdsts an element x with tre property a and
provided that any two elements having the property a are identical" @uchi 1953, pp. l2ill27).
6 Buchi defines 'quasi-cders', 'r-chain', 'r-upper bound', etc. in Chudr's gmrbolisn.
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proposition for elements of type a states that to every relation r which quasi-orders type

and has the property W, there exists an element xo which is maximal in the sense that rxa

implies that x and u are equivalent relative to r (Buchi 1953, p. 126).

In section 2 of his paper Buchi shows that for any type symbol a, (zLi) is a

consequence of axioms 1-60 for several types p, axiom 7o, and (z1").u, In section 3 of his

paper Buchi shows that for any type symbol a, (ZA") is a consequence of axioms l-6F for

several tlpes p, axiom 8" and (zL"{*\ for variables of the higher type o(oc).68 Buchi

concludes by summarizing his results in the fourth and final section of his paper. There

he makes three observations. First, based upon axioms 1-8o, the collection of formulas

(ZA") is equivalent to the collection of formulas (ZL"). Second, (ZL"\"\ for elements of

tlpe a(oa) implies (ZL") for elements oftype o and similarly for Zermelo's axiom.

Finally' for a fixed tlpe o it is not show& nor does it seem possible to show, that (ZAa) is

equivalent to (ZL") nor to QL) for any particular p. Buchi's investigation of Church,s

simple theory of types thus ends on a somewhat negative note.

c) Maurice L'Abbe

one of Alonzo church's students, Maurice L,Abbe, extended church's

formulation of the simple theory of types to include transfinite types.6e He did this in his

ut tltt f don^"I9ught1as lffgys: first a fixed point theorem is derived for a fimction,6- and rhen an
Sptli:"!"T ofthis leads to finding the desired i* (Buchi 1953, pp. 127_t3l).
:'}1r is done roughly as follows: considering the abbreviation n.1a*yxa*yy fo.
iif("9i'g(*(cJ[c(fc)--+frgc] Buchi shows that i) R quasi-ordor-ilSi ftoc;, iil an R-maximal element
is a Zermelo selector functiur, and iii) there exists an R-maximal n .tion lr"(*i (gir.hi fq53, ; f lg)6e 

trn this article L'Abbe."ttti*, ottto 
"tt"-ptr 

alconstucting fonnal systems involving tansfinite t1pes.
These include E. Bustamante's Ph.D. dissertation Transfinite fype Ztteoryhinceton 6eiq,*a lon ,
Kemeny's dissertation Type Theory and &t Theory Qg4g)tottr orwni*rare based uioo cii*cr,s simple
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Ph.D. dissertatioru submitted in 1951, some results of which were published in his 1953

paper "systems of Transfinite Types Involving )u-Conversion". The paper begins with

Church's system 16 of finite types. This simple type hierarchy is based upon type 0 of

propositions and type I of natural numbers. L'Abbe sets this system up just like

Church's, and in fact refers to that work for a more in-depth explication. He then utilizes

the methods found in Henkin's paper from 1950 in interpreting the formalism with a

model Mr. That is, he interprets the theory of types as a rnany-sortedfrs/-order theory.

L'Abbe then extends this system to the system Iz that includes four different

tlpes, 0,l,2,and 3. The domain of type 2 consists of all thedomains of Io , while the

domain of type 3 is based upon the types 0, l, and 2. The variables of type 3 act as

L'Abbe's nonsense elements just like Turing's domain C. In his review, Gandy claims

that this designated domain is not essential; 'the nonsense value can be a new element of

tpe 2...and we thus obtain a system f2' which is simpler than lz" (Gandy 1958 p. 361).

Furthermore, since L'Abbe states that D can be modeled in set theory, so too "^lr'.'o
The next step in L'Abbe's paper is to prove the consistency of Church's systern,

Io, in the transfinite Iz. In doing this L'Abbe makes use of Gtidel numbers.

Furthermore, a truth definition fot Io is given h Ir. A sketch is finally made of how the

author's results can be extended to systems Ir,..., I,n,..., I',...

These four papers thus show that even in the early 1950's the properties of tlpe

systems were still being investigated. However, this does not imply that the theory of

theory of types. In his review of L'Abbe's article, Gandy notes that L'Abb€ failed to refer to Turing's
nested-type syst€m wtrich provides a particularly good example of this process and also exploits a nqrsense

ele,ment, as seen above (Gandy 1958, p. 362).
?0 More precisely, L'Abbe claims that it is'lossible to prove that the consistency of the Zermelo set theory

Z, including the axiom ofreplace,menl implies the consistency of D'(L'Abbe 1953,p.217).
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types was still considered to be the best underlying logic upon which to build

mathematics. Before considering the fate of the theory of types, extensions of euine's

work are considered.

7.3 Continuation of Quine's Work

As noted in the previous chapter, Quine's work involving the theory of types was

worked on by many logicians in the 1940's and 1950's. Some of this work was

mentioned in connection with Quine's in the previous chapter. In this section further

work on Quine's New Foundations ispresented.

Firstly, in his 1944 paper "A Set ofAxioms for Logic", Hailperin revises Quine's

set ofrules by replacing the infinite axiom schemata R3'by a finite set of axioms.

Hailperin then shows that his system involving the new finite set of axioms is provably

equivalent to Quine's infinite list. Recall that Quine's R3'is the rule that 'If g is

stratified and does not containx, then (Erxy)tyar*g(x)] is a theorem'. Hailperin

replaces this infinite set of rules with nine axioms. Roughly the frst axiom ensures the

existence of the cornplement of the union of two classes. From this Hailperin proves the

existence ofthe complement of a class, the intersection oftwo classes, the empty class,

and the universal class. The second axiom provides, for any relation R, the conesponding

relation which is of one higher t1pe. The third, fourtb and fifth axioms allow the degree

of a relation to be mixed. The sixth axiom provides for the domain of a relation, while

the seventh gives the converse dornain. The eighth gives the class of all unit classes (that

is, the cardinal l). Finally, the ninth states tltat'xey' determines an inhomogenous
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relation (that is, a relation involving x andy which are of different types). Apart from

these, five other axioms are listed to provide for the propositional calculus as well as

providing ways to deal with the abstraction operator. Hailperin then proves the

equivalence of his system with Quine's New Foundations.Tr

In their 1950 article 'T.{on-Standard Models for Formal Logics", Rosser and Wang

follow methods used in Henkin's doctoral dissertation in which he showed that any

consistent theory has a non-standard model. The authors provide three criteria for "non-

standardicity" and go on to show that there is no standard model for Quine's New 
:

Foundations. The three ways in which a model is deemed non-standard are: *a) The

relation in the model which represents the equality relation in the formal logic is not the

equality relation for objects of the model. B) That portion of the model which is

supposed to represent the positive integers of the formal logic is not well-ordered by the

relation S. C) That portion of the model which is supposed to represent the ordinal

numbers of the formal logic is not well-ordered by the relation 3' (Rosser and Wang

1950, p. I l3). The authors claim that it might be natural for one to conclude that since

there is no standard rnodel for the system nNew Foundationsthe system must have no +.1

model whatsoever (and that it is thus inconsistent).

This inference is partially refuted by Rosser and Wang by their claim that it is not

uncommon for strong formal logics to have no standard model. In fact, they show that it

is a property of each familiar logic that if it is ro-consistent then one cannot prove in the

7r Although he makes no mentiqr of it, Hailp€rin's approadr is a variant of G0del's approach in his 1940

monognph on set theory. The first-qder Gddel-Bernap set theory wtrich is used there has a finite set of
axioms, in contast to Zermelo-Fraenkel set theory wtridt does not.
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logic itself that if the logic is consistent then it must have a standard model.72 The main

claim of this paper is the general statement that if the language L* is related to the

language L in such a way that any standard model for L must be a model for L*, then if L

has no standard model, this fact cannot be proved in L*. In fact this cannot even be

proved in L* together with the axiom stating that L is consistent. Therefore .\ve cannot

prove in L* that if L is consistent, then L must have a standard model" (Rosser and Wang

1950' p. 123). The proof is roughly as follows. First the authors show that if there is a

standard model for L, and if L' is simply L together with the axiom stating that L is

consistent, then L' is consistent. From this it is shown secondly that 'if L is consistent

then L has a standard model' is not provable (in L or in L together with the axiom stating

the consistency of L). The result follows from this.

Rosser continued his investigations of standard models with respectto the New

Foundations in his 1952 paper "The Axiom of Infrnity in Quine's New Foundations,,. In

that paper he presents thnee principal results. The first two of these deal with the status of

.. the axiom of infinity in Quine's New Foundafiozs. However, as will be seen below, any

questions about the status of this axiom were answered by Specker in his 1953 paper.

The third result that Rosser presents deals not only with Quine's New Foundations, but

also the system found nhrs Mathematical Logic. After showing in his paper with Wang

tlrat New Foundations has no standard model, together with the fact that it is essentially a

part of the system n Mathematical Logic, Rosser shows why it is possible that the larger

system might have a standard model. It is shown further that it might even be possible for

72 Theynote fl[ther that for some even stonger logics this holds simply ifthe system is consistent as
opposed to or-consistent.
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the New Foundations to be ro-inconsistent, while the other system is co-consistent. Rosser

concludes from this that "such questions as whether a logic is co-consistent, or whether it

possess a standard model, are rather more subjective than objective, in spite of the fact

that in most cases where data are available, there would be general agreement on the

question" (Rosser 1952,p.241). These sentiments are reiterated by Quine in his "On o)-

Consistency and a So-called Axiom of Infinity" (1952) where he urges that the term'o-

consistency' should be reformulated.

In the aforementioned investigations, as well as others involving Quine's New

Foundations, consideration is made of what results when the axiom of infrnity is added to

the system tn New Foundations. This is due to the fact that it was not known until

Specker's 1953 paper that the adom of infinity is provable in Quine's New Foundations.

It is in his paper entitled "The Axiom of Choice in Quine's New Foundations for

Mathematical Logicu,that Specker provedthe axiom of infinity in Quine's New

Foundations. Specker did this by actually disproving the a:<iom of choice. Then, since

the odom of choice holds for all finite sets, the system rnNew Foundationr must contain

infinitely many elements.

Specker follows the notation in Rosser's Logicfor Mathematicians (1953) which

is itself an extension of Quine's New Foundations. T\e proof is done by reductio ad

absurdum. Aszuming the axiom of choice, namely that *3.5 The cardinal numbers are

well-ordered by the relation 'there are sets a,6 such tlnt aan, ben and a is a subset of b"'

(Specker I 953, p. 973) Specker produces the two contradictory statement s tl:eit "5 .4 If m

is a finite cardinal number, thenm#T(m)+l and mlT(m)+2", where T(z) is defined as:
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T(m) :'the cardinal number of the set of unit subsets of m', and *7.4 There is a finite

cardinal n such trnt n: T(n)+l or n:T(n)+2" (Specker 1953, pp. 973-974). Specker

concludes his article with a statement pertaining to the generalized continuum hypothesis

in Quine's New Foundations. This is as follows: "8.1 Generaluedcontinuum hypothesis

in 'New Foundations':If m,2^, n are cardinal numbers, m notfinite and m 1n 12^,then

either m:n or n:2'. The generalized continuum hypothesis does not hold in'NF'. The

proof is by proving the theorem of Lindenbaum and Tarski in'NF" according to which

the axiom of choice is a consequence of the generalized continuum hypothesis" (Specker

1953, p.974). With this result Specker laid to rest any question as to the status of the

axiom of infinity rn New Foundations. That the axiom of choice fails in Quine's system

came as quite a shock as Quine recounts in his "Unification ofUniverses in Set Theory"

(Quine 1956, pp. 270-27 l).

7.4 Ramilied Theory Reconsidered

a) Ramilied Theory of Types and theAxiom of Reducibility

In the past few chapters it has been made apparent that the simple theory of types

has been used more extensively than the ramified theory, especially since Ramsey's work

in the 1920's. However, there are a few exceptions to this general trend. Moreover, it is

the ramified theory without an axiom of reducibility that was developed by certain

logicians such as Hao Wang. The advantage of avoiding the axiom of reducibility was

made clear, besides in Ramsey's work, also in an article by Quine and one by Copi.
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Before looking at Wang's systenr, which incorporates a ramified-type theory, the articles

by Quine and Copi will be considered in this section.

In his "On the Axiom of Reducibility" (1936a), Quine does not ilgue against the

validity of the theory of types, but rather he takes up Ramsey's argument advocating the

abandonment of the semantic part of the theory oftypes.T3 Ramsey had proposed that in

Principia Mathematicathe theory of types could be divided into two parts: the one

section deals with the properly 'logical' paradoxes, while the other deals exclusively with

, the 'semantic' (and thus non-logical) paradoxes. Ramsey's arguments rely upon the

' meanings that are to be attributed to the variables used in Principia. He claims that the

second set ofparadoxes, and thus the second part ofthe theory oftypes, has no place in

logical or mathematical inquiries. This is precisely the position which Quine advocates in

his paper. However, he pursues the matter upon "more formal consideration[s]" (Quine

1936a, p. a9D. This does not mean that he gives a set of formal rules, nor recursive

definitions as to what/ormulas, terms, and so on are to denote. In fact, Quine simply

gives two arguments. The first of these is not 'formal' at all: it deals with the subject

matter of Principia and mention is made of what interpretations are to be rnade for

predicative functions. It is after he gives this argument that Quine states that "granted the

partial extensionality principle, the above argument shows that either the ariom of

reducibility is not legitimate to begin wittr, or else both it and the second part ofthe

theory of tlpes are superfluous" (euine 1936a, p. a9\.

73 The results of this paper are contained in his Ph.D. dissertation wtrich 'teformulated the theory of
relations of [Principia Mathematical so that the object language could talk of relations of any number of
arguments, but the object language itself is formulated mone piecisely than n lprincipial, -i th, simple
theory oftypes is adopted" (Follesdal and parsqrs 2OO2,p.lbr.
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The second consideration put forth by Quine deals with "a metamathematical or

syntactical application in which analogues of the hierarchy of orders and the axiom of

reducibility are of less doubtful significance" (Quine 1936a,p. a9\. However, these

analogues do not deal with the actual subject-matter of Princlpfa. Quine concludes

without altering the original claim that the theory of types minus the second portion of the

theory of tlpes is adequate for avoiding the logical contradictions.

In Copi's 1950 paper "The Inconsistency or Redundancy of Principia '

Mathematica", Copi shows that the ramified theory of types, as found tn Principia

Mathematica,together with the axiom of reducibility is either inconsistent or redundant.

Copi begins by noting that since the authors did not speciff any specifically semantic

notions, the Principla system can be assumed to either contain semantic notions or not. If

it does not contain semantic notions, then by the arguments given by Ramsey the ramified

theory of tlpes together with the axiom of reducibility is redundant. Thus Copi next

assumes that the ramified system rn Principia contains semantic notions.

. Under this assumption Copi shows how Grelling?s paradox can be reinstated after

the theory oftlpes eliminates it. Under this second assumption Copi thus concludes that

the ramified Principia systenl with an axiom of reducibility, is inconsistent. Thus Copi

reaches his desired conclusion. It should be noted that the redundancy which Copi

presents differs from that produced by Quine since Copi's does not depend upon the

axiom of extensionality. Copi notes that Quine showed that the ramified theory oftlpes

together with the axiom of reducibility, as well as the axiom of extensionality, is

redundant.
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Copi also draws out the similarities between the ramified theory of types and the

theory of levels of languages. In his review of Copi's pap€r, Church lists this as perhaps

the most important aspect of Copi's work. Copi states that the theory of levels of

languages is "very like the theory of orders, because the contradiction is evaded by

arranging that certain symbols of the meta-language are defined over certain renges,,

(Copi 1950, p. 198). However, Copi also notes that there are fundamental differences

between the two theories. Most notably, the ramified tlpe theory depends on the axiom

of reducibility if a large portion of classical mathematics is not to be lost, while the levels

oflanguage device does not.

With these arguments so deeply entrenched the choice seems to reduce to that

between the simple theory oftlpes and the ramified theory of types without an axiom of

reducibility. The later course was taken by Chwistek, as discussed in Chapter 2. Since

Ramsey's distinction between the uses ofthe simple theory of tlpes for the "logical

paradoxes" and the ramified theory of tlpes for the "semantic paradoxes" the simple

theory of tlpes was favored. However, some logicians later tried to investigate theories

involving ramified-type systems. several ofthese will now be investigated.

b) Wang's System

In his 1954 paper "The Formalization of Mathematics,,, Hao wang sets up a

ramified theory without recourse to an axiom ofreducibility. However, Wang's systern,

f, differs from the regular ramified theory in that the two distinctions 'order' and .t1pe'

are replaced by the one concept of 'order'. This is done by allowing a mixing of types in
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the following way. The lowest order (the Otr order) consists of some denumerable totalil

(which may be the positive integers or all finite sets built up from the empty set, for

example). The frst order then consists of everything in the Oft order together with those

sets that can be defined by properties that refer to at most the totality of all sets of the Otr

order.Ta In general, the (n+l)th order contains all sets of order n together with sets

defined by formulas with bound variables from the nth and lower orders only.

This hierarchy of orders is then extended to infinity as follows. The sets of order

co include all sets of the finite orders. Then for an ordinal o+l the sets of order orl

consists of all those sets of order a together with sets iefrned by formulas having bound

variables of order o and lower orders only. Furthermore, for ordinal numbers, p, that are

limit numbers of monotone increasing sequencos 4s,41,... of ordinals, the sets oforder B

consist of all and only those sets of ordets as, a1,.... Thus, in Wang's construction those

sets of order higher than 0 are constructed according to the vicious-circle principle, and

the orders are constructed cumulatively.

. Using the above cumulative hierarchy, Wang goes onto list the axioms for I.

These include axioms for identity; infinite summation where for every limiting ordinal o,

if p<a, then for everyrF, there is a/6, such tlnt xp:yo; abstraction; foundation; bounded

order where if xey and y is not of higher order than x, then there exists a z of order lower

thany suchthat r-z;and limitatioru which is dealt withbelow (Wang 1954,p.24$.

Furthermore, identity is defined in terms of equal extensions; thus Wang most likely

views all of his objects as sets.

7n Thus, the formulas corresponding to these properties must not contain bound variables of any order
besides the 06 order.
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The power of Wang's system seens to come from the fact that I is the union of

all formal systems lo, where lo deals with all of those sets which are of order less than or

equal to a. Wang is then able to refer to the partial systems in order to make "quite exact

statements about the comprehensive theory I" (Wang 1954, p.2a\. Several interesting

features thus arise by looking at the partial systems in isolation. For instance, Wang

claims that "I. For each o, we can find a function Eo of order o*2, such that Eo

enumerates all sets of order o; or, in other words, the domain of Eo is the set of all

positive integers and its range is the universal set Vo consisting of all sets of order a.

II. For each o, we can find a truth definition of Eo in Eofz and formalize a consistency

proof of Eo iD Ec+2" (Wang 1954,p.249).7s

It is with these Eo functions that Wang states his powerful axioms of limitation;

namely that "for each order o and each set xo, there is a positive integer rn such that Er(z)

is xo" (Wang 1954, p. 250). These axioms show that Eo well orders all sets of order c,

and so certain axioms of choice can be proved. Furthermore, the continuum hypothesis is

not independent of the other axioms and is in fact provable or refutable according to

whether equi'cardinality is defined by the existence of a one-one rnapping between sets

within Eo+z or within E" itself.

Finally, in Wang's systenl as opposed to the regular ramified theory oftypes

without an axiom of reducibility, the theorem of least upper bound, the Bolzano-

Weierstrass theorenr, and the Heine-Borel theorem are all provable. This is due to the

cumulative nature of Wang's systern Furthermore, Wang sketches a proo{, similar to

75 The tnrth definition must occur in a system of order two higher than the origina[ that is of order c+2
instead of c*1, since these definitions require formulas which contain bound variables of order et-I.
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Fitch's 1938 proo{, showing that each lo is consistent.T6 Then, since I is the union of all

lo, the consistency of I follows immediately.

Wang notes that the ramified theory oftypes is roughly equivalent to the system

I' without variables of order ro. With this in mind he attempts to show that the axiom of

reducibility is unnecessary in the regular ramified theory of types since he can speak of

functions or sets of all orders at the same time within Hr Ir. He does this by showing

that in using general variables which range over all sets (of any order of the same type),

mathematical induction, the definition of identity, and the Dedekind construction of the

real numbers can all be formulated within )oo without recourse to the axiom of -

reducibility. Since these were the three most important reasons for which Russell

introduced the axionq Wang claims that it is superfluous.

The one serious drawback of Wang's system is that Cantor's proof for the

theorem that the power set of a denumerable set contains more members than that set,

breaks down itt I.. This is a similar problemthat Quine struggled with for his New

Foundations as mentioned in the previous chapter. Wang simply points out that from the

constructivist point of view this is not only not an objection to I., but it is a'point in its

favor. This is so because by proving the existence of any infinite number beyond aleph-

zero, impredicative definitions are indispensable. Finally, the key difference that Wang

sees between his theory I, and the ordinary ramified theory without the axiom of

76 Fitch provides a proof for the consistency of a formal system based on the ramified th"ory of types in
which a definition of 'tuth' has been given. Roughly, "a consistent non-constructive system S' [is] defined
by means of induction with respect to a serial well-ordering of all the propositions" (Fitch 1938, p. 140) of
the system to be proved consistent. Then it is shown that every true proposition ofthe system in question is
a true proposition of S'. In his review of Fitch's paper Bemays notes that a definition of truth, in the sense
of Tarski and Carnap, can be set up for the formulas ofranified type-theories since the formulas can be
interpreted "in such a way that every variable ranges over fonnal expressions" (Bernays 1939, p, 97).
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reducibility lies in his use of transfinite orders. Furthermore, the arioms of limitation are

seen as a new feature that has never been investigated in standard forms of set theory. In

conclusion, Wang's motivations for using a ramified-type theory definitely come from his

constructivist philosophy of mathematics and not from the necessity of avoiding the

semantic paradoxes.

c) Myhill's System

Similarly to Wang, John Myhill attempted to find a foundation for mathematics

based upon a ramified tlpe theory. In a series of papersTT Myhill attempted to complete

Chwistek's program of building mathematics upon a ramified tlpe theory that includes a

variant ofthe axiom of reducibility. His system is like Wang's in that it is cumulative

with no highest type. However, Myhill's hierarchy is inverted. Thus, tlpe 0 is all

inclusive and classes always have members of higher tlpes than themselves.

Myhill is able to avoid vicious-circle definitions by stating that "if quantifications

are made over the zth tpe in a formul4 tbat formula belongs to the n-l$ tlpe at highest.

It follows that there is no quantification over the zero t5pe" (Myhill 1951, p. 35).

Myhill's system fails to be constructive, however, since he uses a non-finitary

consequence relation. This relation allows for certain formulae to be regarded as

consequences of certain classes of formulae.

This non-constructive system can be shown to be consistent with a proof similar

to that found in Fitch's 1938 paper (and hence also along lines used by Wang). Myhill

7t Ir,tyhill rg4g, rgsr, 195 la.
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also considers auxiliary systems Q(1), Q(2),...and then the comprehensive system Q(-).

Q(o) contains as its theorems all those formula that are theorems of every Q(k), and is

thus the union of all ofthe auxiliary systems. From this statement Myhill lists seven

theorems that follow easily. These include that l) Q(co) is consistent, 2) Q(-) is closed

with respect to infinite induction, 3) every quantificationally valid formula is a theorem of

Q(o) and, 4) an analogue of the axiom of reducibility is a theorem.Ts

In the final paper of the series Myhill is able to continue deriving interesting

results. In that paper he is able to derive analogues of Bourbaki's axiom system for set

theory.7e The analogues, of course, contain certain type-restrictions. Most notably, he is

able to derive axioms of choice and infrnity.so Myhill notes in an added note to his paper

that 'the referee of a previous version of this paper expressed astonishment that the sum-

class axiom and the axiom of replacement were not included by Bourbaki" (Myhill

l95la, p. 136). Myhill states these axioms in Bourbaki's symbolism and then provides

simple proofs oftheir analogues in his systern

. Despite these missing axioms, Myhill lists three reasons for choosing Bourbaki's

as the standard set theory by which to judge his system. These are "1) their iimplicity,2)

their similarity to set theory, and 3) Bourbaki's statement that they are adequate for all the

78 fire analogue being the following: "Let us denote by'[q]o' the result ofuriting a for all occurrences of
'0' in g. 9 is atheorem of (o) if and only if [9]o is" (Myhill 1951, p. 39).
7e Bourbaki 1949.
t0 Bourbaki's axioms as listed by Myhill are as follows (t'vhere zlxy is synonyrnous with z:(ry) (Bourbaki
1949,p9.81)): The closure of the following are theorems l)r=, 2) (ry.Fx)-,Fy,3) @x)xlyz,
(xlyz.r,vlyz)-y:w, 5) (xlyzxltry't)-Qru.rw),6) [(x)(rey.rxez)l-f2,7) (F-x)@(yu*W.Fy)),
S)(Exxyxy€r<+(Fz\EwNglzqzeu.wev)),9)(ErXyXyer<+(u)(uey--'+uat)),
[x ry.(z)(ny---@w[wez).(w)(v)((uny. vey) ---+(a)laew.aev\)l +
(Er) t (txter)---+(Es[les.sey)) .(r)(rq-,@h)(m)((mer.neb'),-(m: h)))1,

@XgyXEz)(xsy.(u)kez---,(w)Qrcu-,vny)).(/)(fry--+@r)rez.(m)(mer),-(m7)))).(r)(vX(tez.vez\ -
@a\(m.(h)(heae(ln*hev))D.tez)(Myhilll95la,,p.l32).

4)

l0)

ll)
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mathematics of the present day" (Myhill 1951a" p.132). Although Myhill was successful

in many of his pursuits, his plans to further the results in his system were never carried

through. These plans were to show that the non-extensional Bourbaki system contains a

model of the extensional Bourbaki system. Myhill wanted to do this since his system was

non-extensional. However, Myhill never published any further articles addressing this

open problem. It must be concluded then that he was unable to accomplish the tasks that

he set for himself.

7.5 Type Theory as a Many-Sorted Versus a One-sorted Theory

In their book on the foundations of set theory Fraenkel and Bar-Hillel state what

they see to be the most serious disadvantage to the simple theory oftypes. This is mainly

just that set theory based upon the simple theory of types does not enjoy the proof

procedures of a complete underlying logic, such as first-order logic (Fraenkel and Bar-

Hillel 1958, p. l9l). The shift fromthe theory oftypes as the most widespread

underlying logic to first-order logic as the basis for mathematical investigatilns seems to

be largely due to this fact. The work done by Tarski and the logical group surrounding

him at Berkeley helped to usher in this new wave of dependence upon first-order logic.

Discussion of this shift is beyond the scope of this thesis. What will be investigated in the

final section ofthis chapter is the procedure of changing the theory oftlpes from a many-

sorted to a one-sorted theorv.
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In his 1952 paper "Logic of Many-Sorted Theories", Wang showed how any

many-sorted theory can be converted into an equivalent one-sorted theory.8l The

essential part of this process lies in introducing predicates, Si. When applied to variables,

these predicates are meant to state which type the variable would belong to, although

since the theory is converted to a one-sorted theory, the variables all range over the same

set. Thus S;(a) would mean tl:,o;t a belongs to the ith type.

In his paper Wang uses the simple theory of tlpes as put forth by G6del in his

1931 paper. Wang uses this theory as an example of how to change any many-sorted

theory into a one-sorted theory. He does this since he views the simple theory of types as

a prototypical many-sorted theory. This is the technique that Quine uses in his 1956

paper. There he applies the process to Principia Mathematica and arives at what he calls

the standardized theory of tlpes.

This conversion allows for a translation between the simple theory of types and

Zermelo's set theory. Although the universe is still divided into types, in any given

context the variables are not only tlpically ambiguous, but rather, they range over all

types. In this way the many-sorted theory becomes a one-sorted theory. Onb system that

Quine sets up, which is treated in Fraenkel's book, is the following. Certain predicates,

definable solely in terms of 'r' are set up. 'T6' is the predicate that holds only for

individuals, 'T1' holds only for classes of individuals, and so on. The axiom-schemata of

tt W-g also refers to the first use ofthe term 'many-sorted'. He attributes this first use to Langford's 1939

review of Arnold Schmi&'s 1938 paper, 'uber deductive Theorien mit mdreren Sorten von Grunddingen".
In that review Langford tanslates the word 'mdrsortig' as 'many-sorted'.
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comprehension and extensionality then have altered forms so as to not refer to types

directly. These now take the following forms, respectively:

(EyXT*r (y)&(x)(T,(x)--r(xey<+9(x))l and

T,+ 1 
(x) &T"+ {O &@) (T n(w) + (wex e w Ey)) -+ra .

A third axiom is then added in order to maintain the stratification of types occurring

between sets and their member. This axiom takes the following form.

xey -+ (T n(x) *T,' r (y)).

Fraenkel and Bar-Hillel interpret these results with the following passage: "Half a

century after Zermelo and Russell published their theories, independently of each other

and starting from seemingly totally different and even contrary approaches, an almost

complete reunion ofthese theories is now in full view" (Fraenkel and Bar-Hillel 1958, p.

191). This process of altering the theory ofgpes from its original many-sorted nature

into the one-sorted nature began most distinctly withthe use of cumulative t1pes.

However, it was not until the transition between many and one-sorted theories w.ls made

exact that conclusions such as Fraenkel and Bar-Hillel's could be drawn. Indeed, in his

"The inceptions of 'New Foundations"'Quine mentions that "I had not yet appreciated

how naturally [Zermelo's] system emerges from the theory of types when we render the

tlpes cumulative and describe them by means of general variables. I came to see this

onlyinJanuary 1954" (Quine 1987,p.287). Thisdateof lg54referstothewritingof his

"Unification of Universes in Set Theory" as described above.
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8. Summarv and Conclusion

In this thesis the developments of the theory of types have been studied. The

theory was originally proposed by Russell as a method of avoiding the set-theoretic

paradoxes. Russell did much work on the theory, altering its initial form substantially.

By the publication of the first edition of Principia Mathematicathe theory had attained a

secure place in the foundations of Russell's mathematics. However, this formulation of

the theory of types still depended upon the axiom of reducibility.

Several logicians responded to the dependency of Russell's type-theory upon the

axiom of reducibility negatively; among these were Weyl and Chwistek. Both of these

logicians attempted to avoid the axiom of reducibility building mathematics upon purely

constructive grounds. However, without that axiom no one was able to retain all of

classical mathematics while developing mathematics in their logical system. In the

introduction to the second edition of Principia Mathematica Russell commended the

attempts at avoiding the axiom of reducibility and tried to do so himself, Russell used

Wittgenstein's conception of functions as extensional entities and worked out its

consequences. However, without the axiom of reducibility Russell was still unable to

deal with such common mathematical notions as the least upper bound of a set of real

numbers.

The desire to avoid the axiom of reducibility, while maintaining large portions of

classical mathematics, also motivated Ramsey's work on the theory of types. Ramsey

tried to improve the work done in Principia Mathematica. Hetook Wittgenstein's notion
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of extensional functions, that Russell had also adopted, one step further. While doing this

Ramsey was able to make the distinction between two different kinds of paradoxes -
those that he called "logical" and those that he called "semantic". He then argued that

only the simple theory of types was needed to avoid the logical paradoxes. Furthermore,

the ramified theory, which was the only part in which the axiom of reducibility was used,

was developed only to deal with the semantic paradoxes. In Ramsey's conception of

logic these paradoxes had no part. Thus the ramified theory, and the axiom of

reducibility, could be dispensed with without sacrificing parts of classical mathematics.

Despite the fact that all subsequent logicians followed Ramsey's distinction between

different kinds of paradoxes, the methods he employed were not generally accepted. For

instance, Carnap disagreed vehemently with Ramsey's use of impredicative defuritions.

However, Carnap did incorporate asimple tlpe-theory into his Logical Syntu of

Language. In fact, the simple theory oftypes came to be used by many as tbe basis of

their logic.

It was not until l93l that the simple theory of types received its first formal

treatment. Both Tarski and Gddel formally formulated the simple theory oftlpes. Their *.

forms of the theory were quite influential and became the standard by which rnany

logicians judged their work. In particular, Quine used Tarski's formulation as the starting

point for several of his investigations into the possibilities of altering the theory of types.

Much work was done on Quine's two works which aimed at improving the theory of

types; namely his.l/ew Foundations and his Mathematical Logic. Church also worked on
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the theory of types and many of his students worked within his type-theory which

incorporated his lambda-operator.

It was the simple theory, as opposed to the ramified theory of types that was used

almost exclusively during the years following Ramsey's work. However, as seen in the

previous chapter, in the 1950's there occurred a revival of the ramified theory of types.

This revival of ramified-type theories coincided with the consideration of cumulative type

hierarchies. This is most evident in the work of Hao Wang and John Myhill. The

consideration of cumulative type-hierarchies altered the form of the theory of types in a

substantial way. The theory was altered 
"u"n 

rnor" drastically by changing the theory

from a many-sorted theory into a one-sorted theory. This final "standardization" of the

theory of types in the mid 1950's made it not much different from fust-order Zermelo-

Fraenkel set-theory. The theory of types whose developments have been traced in this

thesis therefore lost its prominence as the foundation for mathematics and logic.

This decline of the prominence of the theory of tlpes emerged from various

sources. For instance, the technical complexities of the theory were seen as a burden

almost from its initial proposal. Indeed, in Russell and Whiteh ead's Principia

Mathematica, instead of using the prescribed tlpe-subscripts a device of typical

ambiguity was employed. In this way the tedious application of adding type-indicating

subscripts for every formula was avoided. This desire to avoid explicit use of tlpe-

subscripts was carried over into Quine's work rq for example, his,ly'ew Foundations.

Although many logicians did actually carry out the work of ensuring that qrpe-indices
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were used conscientiously in their work, there is no denying that this was a tedious affair

to be avoided, if possible.

Furthermore, while the theory of types proved to make much work quite

technically difficult, the work beit g done using first-order logic as a basis proved to be

relatively not very technically cumbersome. Also, the proof-theoretic techniques available

to fust-order logic gave ample reasons for many to utilize that system of logic in place of

the complicated theory of types. Finally, with the standardization of type theory making

it not much diflerent from first-order Zermelo-Fraenkel set theory, the need to use such a

complicated device as the theory of types seemed pointless.

Apart from the technical complications there were other drawbacks facing the

theory oftypes. For instance, in Henkin's 1950 paper the theory of types is viewed as a

functional calculus of order co. Thus quantification is allowed to range over the various

types while the rules governing each level come from first-order logic. The problem with

this co-order logic is that it is essentially incomplete (whereas first-order logic is, of

course, complete). The incompleteness ofthis logic already occurs at the second order; it

was shown by Gddel in his 1931 paper that for the functional calculus of the second-

order, no matter what set of axioms are chosen, the system contains a formula which is

valid but not a formal theorem. Here a valid formula is one which is true'khenever the

individual variables are interpreted as ranging over an arbitrary domain of elements while

the functional variables of degree n range over all sets of ordered n-tuples of individuals"

(Henkin 1950, p. 8l). Now, since the co-order logic (the theory oftlpes) contains the
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second-order logic, it too is incomplete.s2 Thus, the abandonment of the theory of types

does not seem too surprising with these considerations. Not only was the theory far too

technically complicated, but it also was not as semantically well-behaved as the first-

order logic that was to take its place as the foundation for mathematics.

tt In his paper Henkin shows that with a different definition of validity the second-orda calculus, and in
fact the co-order logic, is complete. For his new definition a formula is deemed valid i[ again, the

individuals are interpreted as ranging over an arbitary domain of elements, but now the functional variables

are interpreted as ranging over an arbitrary c/ass of sets of ordered n-tuples of individuals (Henkin 1950,

pp. 8l-82).
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